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Current intelligent writing assistance tools (e.g. Grammarly, Turnitin, etc.) typically work

by locating the problems of essays for users (grammar, spelling, argument, etc.) and pro-

viding possible solutions. These tools focus on providing feedback on a single draft, while

ignoring feedback on an author’s changes between drafts (revision). This thesis argues that

it is also important to provide feedback on authors’ revision, as such information can not

only improve the quality of the writing but also improve the rewriting skill of the authors.

Thus, it is desirable to build an intelligent assistant that focuses on providing feedback to

revisions.

This thesis presents work from two perspectives towards the building of such an assistant:

1) a study of the revision’s impact on writings, which includes the development of a sentence-

level revision schema, the annotation of corpora based on the schema and data analysis on the

created corpora; a prototype revision assistant was built to provide revision feedback based

on the schema and a user study was conducted to investigate whether the assistant could

influence the users’ rewriting behaviors. 2) the development of algorithms for automatic

revision identification, which includes the automatic extraction of the revised content and the

automatic classification of revision types; we first investigated the two problems separately

in a pipeline manner and then explored a joint approach that solves the two problems at the

same time.
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PREFACE
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1.0 INTRODUCTION

1.1 BACKGROUND

According to a recent national assessment of writing in the United States (NCES, 2011),

73 % of high school seniors demonstrated only a basic or even worse understanding of the

knowledge and skills that are fundamental for competent writing. One key bottleneck is the

limitation of teaching resources. The improvement of writing requires practices and regular

feedback. However, there are not sufficient teaching resources to meet the requirement.

The development of Natural Language Processing (NLP) techniques provides one potential

solution. Techniques such as automatic scoring of grammar or argumentation structures can

inspire students to improve their essays accordingly (Attali and Burstein, 2006; Graesser

et al., 2012). Based on these techniques, multiple commercial products have been developed

(Grammarly, 2016; Turnitin, 2016; Draft, 2015).

While a lot of works has been done to provide feedback on the problems of a single

essay (what to improve), none of them paid enough attention to the process of rewrit-

ing (how to improve). The skill of rewriting is considered to be an important skill for

successful writing. According to (Faigley and Witte, 1981), experienced writers revise in

ways different from inexperienced writers. Learning to revise is a critical part. Through

rewriting, students are likely to have questions such as “What kind of revisions are more

likely to improve my essay scores?”, “Does my revision achieve the effect that I want?”, “Is

the problem mentioned in the review resolved by my revision?”, etc. Providing feedback on

students’ revisions allows the students to make their revisions more effectively and further

acquire the skills of rewriting. Comparing to existing revision assistance systems such as

WriteLab (Writelab, 2015), Turnitin (Turnitin, 2016) and Draft (Draft, 2015) which aims at
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.

Figure 1.1: A character/word level revision extraction approach typically extracts differences

between drafts at the character level to get edit segments. Sentence 1 in Draft 1 is wrongly

marked as being modified to 1, 2, 3 in Draft 2 because character-level text comparison could

not identify the semantic similarity between sentences.

detecting the problems of the essay and providing solution suggestions, I propose to target

the automatic suggestions on the revision process directly.

This work focuses on argumentative writing revisions as most of the collected corpora are

argumentative writings. Argumentative writing is a common form of writing in education.

Argumentation plays an important role in analyzing many types of writing such as persuasive

essays (Stab et al., 2014), scientific papers (Teufel, 2000) and law documents (Palau and

Moens, 2009). A preliminary study by us indicates that it is possible to extend the current

works to other writing genres.

1.2 RESEARCH OVERVIEW

Two major problems were addressed in this thesis.

The description of revisions. The challenges involve both the decision of revision
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(a) first draft (b) final draft

(c) Revision detection using text-diff (Hashemi and Schunn, 2014)

Figure 1.2: Fragments of a paper, green for recognized modifications, blue for insertions and

red for deletion

granularity and the definition of revision categories. First, different levels of granularity

are used in prior revision researches (Bridwell, 1980; Bronner and Monz, 2012; Iida and

Tokunaga, 2014; Ferschke et al., 2011). As shown in Figure 1.1, the levels of granularity

influence the description of the revisions. Intuitively the word/character level granularity is

the most precise; however, the automatic extractions of word/character level revisions can

be error-prone in practice because the semantic information cannot be easily incorporated

into the extraction process. The level has to be chosen for both the convenience of manual

annotation and automatic revision extraction. Second, most of the prior revision studies only

focus on the correction of spelling and grammar mistakes (Xue and Hwa, 2014; Mizumoto

et al., 2011). The categorization of content revisions is typically not fine-grained. A common

content-oriented categorization is a binary classification of revisions according to whether

the information of the essay is changed or not (e.g. text-based vs. surface as defined by

(Faigley and Witte, 1981)). This categorization ignores potentially important differences

between revisions under the same high-level category. For example, changing the evidence
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of a claim and changing the reasoning of a claim are both considered as text-based changes.

Usually changing the evidence makes a paper more grounded, while changing the reasoning

helps with the paper’s readability. Thus, it is necessary to define revision categories for

the description of argumentative revision purposes. It would also be helpful if the defined

categories can be extended for more generic revision descriptions. The defined categories

should be both distinguishable to humans to allow reliable annotation and pedagogically

meaningful to demonstrate the impact differences on writings of different revision types. A

revision assistant built on the defined schema should have a positive impact on the user’s

revision behaviors.

The identification of revisions. The identification of the revisions involve locating

revisions (revision extraction) and categorizing revisions (revision classification). As

shown in Figure 1.2, the location of revisions cannot be simply solved with a text differ-

ence algorithm. A traditional textual difference algorithm is likely to generate overwhelming

revision information when there are heavy edits to the essay. In our work, we propose to

solve it as a variation of parallel corpus alignment problem using both semantic similar-

ity and global sentence ordering. For the classification of revisions, while there are works

on Wikipedia revision classification (Bronner and Monz, 2012; Daxenberger and Gurevych,

2013), there is a lack of work on revision classification in other datasets such as student

writings. It is not clear whether current features and methods can still be adapted. Thus,

it is necessary to investigate whether the existing approaches can be applied on our task

of argumentative rewriting classification. Also, many types of useful information have not

been fully utilized in revision classification. Existing works (Adler et al., 2011; Bronner and

Monz, 2012; Daxenberger and Gurevych, 2013) typically compare two versions of a text to

extract revisions and then classify the purpose of each revision in isolation. While limited

contextual features such as revision location have been utilized, such features are computed

from the revision being classified but typically not its neighbors. This thesis presents new

features and approaches to improve revision classification. A joint approach that identifies

the location and type of revisions at the same time is also proposed.
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1.3 RESEARCH HYPOTHESES

In the process of addressing the problems above, the following hypotheses were explored.

For the first problem, the description of revisions, we have the following hypotheses:

• H1.1. We can define a revision schema that can be reliably annotated by human.

• H1.2. There is significant correlation between the number of revisions and the writing

improvement. Different types of revisions have different impacts.

• H1.3. There is a difference in participants’ revising behaviors depending on which aspects

of the revision schema are used to provide feedback.

• H1.4. Revision feedback based on the defined schema will inspire the users to further

modify their revision.

For the second problem, the automatic identification of revisions, we have the hypotheses:

• H2.1. The existing features and approaches in Wikipedia revision classification can be

adapted to the prediction of argumentative writing revisions.

• H2.2. Using contextual features can improve the classification performance.

• H2.3. Using discourse information can improve the classification performance.

• H2.4. The identification of revision location and revision type can be jointly predicted.

1.4 RESEARCH METHODOLOGY

To test the hypothesis H1.1, we followed the steps of previous works in developing corpora.

We first defined the representations of the tasks and then developed manual annotation

schemes in iterations. Inter-annotator agreement studies were conducted to validate the

reliability of the annotation schemes. According to the commonly used convention in the

field of NLP (Wilson, 2008), an agreement value of 0.80 allows for firm conclusions to be

made, and a value of at least 0.67 is sufficient for drawing tentative conclusions. We consider

an agreement value of 0.67 to support the hypothesis and a higher agreement value indicates

stronger evidence. Corpora were annotated based on the schema proposed. Based on the
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corpora collected, data analysis is conducted for H1.2. Partial correlation controlling for the

pre-test score is one common way to measure learning gain in the tutoring literature (Baker

et al., 2004). Similarly, we tested the partial correlation between the number of revisions

and the post-test score. A significance test result will suggest the correctness of H1.2. To

test the hypotheses H1.3 and H1.4, we created a prototype revision assistant that provided

revision feedback based on the defined revision schema. Another naive revision assistant

was developed to be compare with the developed assistant. A user study was conducted by

asking the participants to write 2 drafts in advance and then revise based on the feedback on

their previous revisions. Subjective feedback provided by the participants and the objective

number of revisions were used to measure the user’s revision behaviors. To test H1.3, we

choose to test the difference between different revision feedback using ANOVA test with

two factors. The experiment type (experiment feedback or control feedback) is used as one

factor. A significant result will suggest the correctness of H1.3. To test H1.4, we counted

the number of revisions that got further revised. H1.4 can be supported by the observation

that the ratio of being further revised is higher than average when the assistant’s feedback

differs from the participants’ own recognition.

To test the hypothesis H2.1, we first followed the prior works on Wikipedia revision clas-

sification (Adler et al., 2011; Javanmardi et al., 2011). A SVM model using only unigram

features was used as the baseline. Features and methods from prior works were repeated

on our corpora. We can demonstrate the correctness of H2.1 if we observe a significantly

better performance with the features from prior works. Unweighted average F-measure is

used as the evaluation metric. 10-fold cross-validation is conducted and t-test is conducted

to check whether the performance is significantly better. We then explore whether we can

improve the performance to demonstrate the correctness of H2.2, H2.3 and H2.4. For H2.2,

we explored from two perspectives: 1) extract features from the sentences nearby, 2) utilize a

sequence model Conditional Random Fields (CRF) to utilize the contextual dependency be-

tween revisions. For H2.3, we utilize Penn-Discourse Treebank (PDTB) (Prasad et al., 2008)

to represent the discourse information. Deciding that the local PDTB information might not

be sufficient for improving the classification performance, we propose new approaches to infer

long-distance PDTB information for our investigation. For H2.4, we choose to generate a se-
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quential representation of the sentence alignment information and combine such information

with the type of revisions. Then the joint problem is transformed into a sequence labeling

problem. We compare the results with all the prior works to demonstrate the correctness of

H2.4.

1.5 RESEARCH SUMMARY

We defined a sentence-level revision schema to describe the argumentative writing revisions

(Zhang and Litman, 2015). Sentences across drafts are aligned and the revision types are

labeled on the aligned sentence pairs. The revisions are categorized to two major types:

Content and Surface. The Content revisions are categorized to 5 types according to the argu-

mentation role that has been changed: Claim/Ideas, Warrant/Reasoning/Backing, General

Content, Rebuttal/Reservation and Evidence. The Surface revisions describe the surface

changes that does not change the content of the essay. They are categorized as Conven-

tions/Grammar/Spelling, Word Usage/Clarity and Organization. Revisions are annotated

based on the schema. Multiple corpora have been developed to serve as the resources for this

thesis and further research. The corpora consist of essays written by high school students,

undergraduate and graduate students. Two of the corpora have essays graded by experts for

revision schema analysis. The other corpora are used for automatic revision identification

and revision behavior analysis. One of the collected corpora, the ArgRewrite Corpus (Zhang

et al., 2017) is made publicly available1.

To study the schema, we first tested whether the revisions could be reliably annotated and

whether they could capture salient features of writing improvement. We analyzed whether

two annotators could reach a good agreement score using the defined schema. The corpora

with expert gradings were used to analyze the correlation between revision and writing

improvement. Afterwards we explored whether the schema could be useful for providing

revision feedback. We designed a system that provides the revision type information as the

feedback (Zhang et al., 2016a), and then conducted a user study to evaluate whether the

1http://argrewrite.cs.pitt.edu
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feedback can influence the participant’s revision behaviors (Zhang et al., 2017).

For the automatic identification of revisions, we first explored the problem in a pipeline

manner. We first introduce an algorithm for the first part of the task: identification of

revision location (revision extraction). We treat the problem as an automatic sentence

alignment problem (Zhang and Litman, 2014). Then we introduce our efforts for the second

part of the task: identification of revision types (revision classification). We introduce three

approaches developed for the problem: 1) Utilizing the features and method proposed in

existing works (Zhang and Litman, 2015) 2) Utilizing the contextual information to improve

the performance. (Zhang and Litman, 2016) and 3) Utilizing the discourse information to

improve the performance (Zhang et al., 2016b; Forbes-Riley et al., 2016).

Afterwards we explored on the joint identification of revision location and revision type.

The approach involves combining both types of information into one prediction sequence

and improves the sequence likelihood using evolutionary computing techniques (Zhang and

Litman, 2017).

1.6 MAIN CONTRIBUTIONS

The results in this thesis contribute to both education and NLP researches.

For the education research community.

• Develops an argumentative revision schema that can be reliably annotated by human.

The schema captures salient characteristics of writing improvement.

• Develops a prototype intelligent rewriting assistance tool for rewriting tutoring.

• Conducts a user study on the impact of revision feedback on the users’ writings.

For the NLP research community.

• Proposes to use contextual information to improve the performance of revision classifi-

cation.

• Proposes a novel way to utilize the discourse information for revision classification study.
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• Proposes a joint model that combines the identification of revision location and revision

type classification together.

• Collects a publicly available corpus for possible revision researches.

1.7 OUTLINE

This chapter introduces the motivations and challenges of this thesis. The rest of this thesis is

organized as follows: Chapter 2 introduces the annotation schema for argumentative writing

revisions. Chapter 3 introduces data collected based on the schema and the results of the

revision study on the correlation between revision and writing improvement. Chapter 4

introduces a prototype intelligent revision assistant ArgRewrite and a user study to examine

whether feedback based on the schema is helpful. Chapter 5 presents the algorithms for

revision location identification and revision type classification separately. Chapter 6 further

presents a joint approach that identifies the location and the revision type together at the

same time. Finally, Chapter 7 and Chapter 8 summarizes all the works and presents the

possible future directions of our work.
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2.0 REVISION SCHEMA DEFINITION

Data-driven development of a rewriting assistance tool requires the definition of a schema

for the annotation and classification of revisions. The definition should be clear enough for

humans to distinguish. Also, the categorization of revisions should capture the difference of

their impacts on writing improvement. This chapter introduces our efforts in the design of a

revision schema for argumentative writings. Portions of this work were originally published

in (Zhang and Litman, 2014, 2015). In the end we introduce our efforts in generalizing our

framework for another writing genre (science report).

2.1 ARGUMENTATIVE WRITING REVISION SCHEMA AND REVISION

ANNOTATION

2.1.1 Related Work

Faigley and Witte (1981) categorized revisions using two categories: surface change and text-

base (content) change. Bronner and Monz (2012) chose a similar categorization (factual vs.

fluency) for Wikipedia revisions. They both classified revisions according to whether they

change the information of the text or not. The following researchers typically reuse the

categorization as the coarse level revision categorization in their own schema (Cho and

MacArthur, 2010; Early and Saidy, 2014; Daxenberger and Gurevych, 2012). Besides the

coarse categorization of revisions, specific revision categories are typically defined accord-

ing to the researchers’ task. Pfeil et al. (2006) defined revision categories according to the

revision action (add information, reversion, vandalism, etc. ) in the effort of finding differ-
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ences in collaboration between different cultures. Jones (2008) designed revision categories

according to the characteristics of the Wikipedia dataset (Wikipedia policy violation, add

image, add link, etc.) for the analysis of the revision pattern in Wikipedia. Daxenberger

and Gurevych (2012) chose similar categories when they analyze the difference of edit cate-

gories between featured articles and not featured articles and listed them as sub categories

of Faigley and Witte’s definition. Early and Saidy (2014) followed the coarse definition of

Faigley and Witte and further categorized revisions to Main Idea, Developing Argument,

Textual Evidence, Rhetorical Strategies, and Language Choice for the analysis of the stu-

dents’ revision strategies. Our schema is similar to Early and Saidy’s work, which defines

sub-categories under Faigley and Witte’s definition for the study of student writings. Their

work focus on describing what kind of revision strategies are used by students; our work

attempts to describe the details of each individual revision (the location, the operation and

the purpose). We focus the design of our schema on argumentative writings first and then

investigate whether we can apply the schema to scientific writings with minor adaptation.

In Bridwell’s study of students’ revising strategies, revisions were studied at 6 different

levels, including Surface level, Lexical level, Phrase level, Clause level, Sentence level and

Multi-sentence level (Bridwell, 1980). These six levels were used to categorize revisions in

Bridwell’s work. In other research, typically 1 or 2 of the levels was chosen as the granularity

for revision description. Bronner and Monz (2012) first extracted the word-level diff segments

between different versions of Wikipedia drafts and then extracted the user edits as minimal

sets of sentences overlapping with deleted or inserted segments. Iida and Tokunaga (2014)

built a corpus of manually revised texts from the discourse perspective. A discourse parser

was applied to segment text into discourse units and the author’s changes to the ordering

and the connectives of units were annotated. The addition and deletion of sentences were

not addressed in their paper. Lee et al. (2015) developed a large-scale corpus containing

drafts and final versions of essays written by non-native speakers. The corpus includes the

tutor’s comments on the issues of the students’ paper and the alignment of the students’

drafts at the sentence level and the word level. They focused on the issues of the students’

essays but did not explicitly annotate how each of the changes relates to the student’s

issues. Daxenberger and Gurevych (2012) extracted revisions by aligning sentences first and
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extracting character-level edits on minor-changed sentences. A similar approach was chosen

in our work, we extracted revisions at the sentence level by aligning the sentences across

drafts and assign the revision purpose for each of the aligned sentence pair. However, we

did not further extract revisions at word/character level as we found the sentence-level to

be the most appropriate for our task.

2.1.2 Argumentative Revision Schema Definition

As shown in Table 2.1, two dimensions are considered in the definition of the schema: the

author’s behavior (revision operation) and the purpose of the author’s behavior (revision

purpose, i.e. the aspect the author aiming to improve).

Revision operations include three categories: Add, Delete, Modify. The operations are

decided automatically after sentences get aligned. As in the Example 2 of Table 2.2, Sentence

2 in Draft 1 is aligned to null, the revision operation is Delete; Sentence 2 and 3 in Draft 2

are aligned to null, their operations are both Add.

Following the definition of Faigley and Witte (Faigley and Witte, 1981), revisions are

categorized to two major categories: surface and meaning (content) changes. For surface

changes, similar to Faigley and Witte’s classification of Format changes and Meaning preser-

vation changes, we define the category Conventions/Grammar/Spelling to describe the re-

visions for correcting convention/language errors and Word usage/Clarity to describe the

revisions for improving text fluency. We also add a category Organization to describe the

author’s change to the structure of the text (e.g. merging sentences together).

For meaning changes, we first define four categories according to Toumin’s model of argu-

mentation (Toulmin, 2003): Claims/Ideas, Warrant/Reasoning/Backing, Rebuttal/Reservation,

Evidence 1. Inspired by the category Introductory material defined by Burstein et al.

(Burstein et al., 2003) in essay-based discourse categorization, we introduce a category Gen-

eral Content for text that serves as introductory materials or summaries.

In Table 2.2 we provide examples and explanations for the revision purpose categories.

1Corresponds to Claim, Warrant, Backing, Rebuttal, Grounds defined in Toulmin’s model
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Purpose Category Operation Purpose Definition

Content

Claims/ Ideas Add/Delete/Modify change of the position or claim being

argued for

Warrant/ Reasoning/

Backing

Add/Delete/Modify change of principle or reasoning of

the claim

Evidence Add/Delete/Modify change of facts, theorems or citations

for supporting claims/ideas

Rebuttal/ Reservation Add/Delete/Modify change of development of content

that rebut current claim/ideas

General Content Add/Delete/Modify change of content that do not directly

support or rebut claims/ideas

Surface

Word Usage/ Clarity Modify change of words or phrases for better

representation of ideas

Conventions/ Gram-

mar /Spelling

Modify changes to fix spelling or grammar er-

rors, mis-usage of punctuation or to

follow the organizational conventions

of academic writing

Organization Modify changes to the struc-

ture/organization of the text

Table 2.1: Revision schema definition
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2.1.3 Deciding the Granularity for Revision Extraction

Changes between drafts need to be extracted first before further annotations. We compared

the extraction of revisions at three levels: word-level, clause-level and sentence-level.

Ideally word-level revision extraction grabs more details than other two levels. In prac-

tice, however, while word-level comparison can detect small changes between single sentences,

it does not work well on heavy edits. As in Figure 2.1, the sentence in Draft 1 will be aligned

to all sentences in Draft 2, which creates difficulty for more precise revision categorization.

Segmenting text to clauses offers the benefit of more precisely described revisions. As

the example in Figure 2.1, changes between the 1st sentences would be more precisely ex-

tracted as the Claim/Idea change from “the unbaptized and those before Christ dwell” to

“the unbaptized” and the General Content addition of “live in complete darkness”. However,

there are two major drawbacks for the clause-level revision annotation. First, while theo-

retically the clauses-level annotation would cover more details, the current automatic clause

segmentation techniques are still not reliable enough for our purpose yet. The state-of-art

discourse parser (Feng and Hirst, 2014) (which typically segments text into clauses) reports

92.8 precision and 92.3 recall on RST Discourse Treebank. The results are expected to be

worse on our dataset where the essays are less formal as they are written by students. Extra

work needs to be done to fix clause segmentation. Second, while the clause-level annotation

describes changes between one sentence more precisely (i.e. the Modify operations), it is

overkill for the description of the addition/deletion of a whole block of text (i.e. the Add

and Delete operations). In the example of Figure 2.1, annotators have to label the revision

purpose for both “They are not punished” and “because they did not know Christ”, which

increases the workload for the annotators. We also found that annotators often got confused

about whether they should assign the same or different labels for different clauses of the

same sentence during the annotation process.
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Teacher’s

Prompt

Now that we are seven cantos and five levels into Hell; you should be able to correlate

sinners and punishments that Dante feels appropriate. Your task is to construct a

well written, concise essay placing contemporaries into each level and specifically

justify why each modern-day person appropriately fits...at least according to your

thought process. Be certain to cite evidence from the text as needed!

Ex.1 Draft 1: (1, “Finally are the wrathful, here are the people who are full of hate”)

Draft 2: (1, “Finally is the wrathful.”), (2, “Here are the people who are full of

hate”)

Rev (1->1,2, Modify, “Organization”), (1->1,2, Modify, “conven-

tions/grammar/spelling”)

Reason The sentence in Draft 1 is split to two sentences in Draft 2, this change of text

structure is labeled as an “Organization” change. The modification of “are” to

“is” in Draft 2 is an attempt to fix grammar mistakes and thus labeled as “Con-

ventions/Grammar/Spelling”. Note that we label the purpose of a revision only

according to the author’s purpose no matter the revision really improves the paper

or not.

Ex.2 Draft 1: (1, “In this circle I would place Fidel.”), (2, “He was a ruthless dictator.”)

Draft 2: (1, “In the circle I would place Fidel”), (2, “He was annoyed with the

existence of the United States and used his army to force them out of

his country”), (3, “Although Fidel claimed that this is for his peoples’

interest, it could not change the fact that he is a wrathful person.”)

Rev (2->null, “Delete”, “Warrant/Reasoning/Backing” (null->2, “Add”, “Evidence”),

(null->3, “Add”, “Rebuttal/Reservation”)

Reason Sentence 1 of Draft 1 is aligned to the first sentence 2 of Draft 2, there is no change

between the aligned sentences. Sentence 2 of Draft 1 is the author’s reasoning of

why Fidel should be put into the wrathful level. The author deleted the sentence

and added Fidel’s behavior as the support his claim. In sentence 3 the author added

a rebuttal for the reasoning that Fidel’s behavior is for his peoples’ interest.

Ex.3 Draft 1: none
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Draft 2: (1, Before Dante actually enters H. he has to go through the Vestibule.),

(2, In this level the people get stung by hornets and bees but they bleed because of

all of the stings.), (3, I think for this level I would place Mrs. X , the band director

for X high school.)

Rev (null->1, “General Content”), (null->2, “General Content”), (null->3,

“Claims/Ideas”)

Reason Sentence 1,2 are added to introduce the author’s claim of who should be in the

level of Vestibule. However, these two sentences are not directly reasoning or sup-

porting the author’s claim, thus categorized as “General Content”. As the prompt

is requesting students to put contemporaries into different levels of Hell. Sentence

3 is the author’s statement of which person being put into Vestibule.

Ex.4 Draft 1: (1, Saddam Hussein and Adolf Hitler belong to this level.), (2, They both

killed many people when they were in their position.), (3, Many people were killed

for no reason.)

Draft 2: (1, Fidel Castro belongs to this level.), (2, He killed many people when he

was in his position.), (3, Many people were executed for no reason.)

Rev (1->1, “Claims/Ideas”), (2-2, “Word Usage/Clarity”), (3->3, “Word Us-

age/Clarity”)

Reason The author changed the claim of the person belonging to the wrathful level in the

modification of Sentence 1. The revision of Sentence 2 is a “Word Usage/Clarity”

change as the main content is the same, but ”both” is removed and ”were” is

changed to to ”was”. The revision of Sentence 3 is the replacement of “killed” to

“executed”, which is a regular “Word Usage/Clarity” change.

Table 2.2: Examples of different revision purposes.

Comparing to word-level revision extraction, alignment of text between drafts is more

accurate at the sentence level as the semantic similarity is considered during alignment

annotation. Meanwhile, segmenting text according to the natural boundary of sentences

rather than clauses reduces the workload of the annotators and the difficulty of automatic
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revision extraction. While it has the limitation that sometimes two types of changes can be

involved in one sentence (as in Figure 2.1), this case happen infrequently in our dataset and

we can still get around the problem by allowing annotators to annotate multiple revision

purposes to one alignment.

In summary, we argue that the granularity of the revision extraction should be carefully

chosen for different purposes. Word/Character level works best for the task of identifying

surface changes (e.g. grammar error detection). Clause level can describe sentence modifi-

cations more accurately if a reliable clause segmentation tool is available. The workload of

clause-level annotation would increase if there is a higher percentage of Add or Delete edits.

Sentence level is more robust comparing to the other levels for annotation. For our task, we

decide to annotate revisions at the sentence level, which allows annotators to easily align the

text between drafts and annotate the revision purpose.

2.2 DATA ANNOTATION

2.2.1 The Revision Annotation Process

The complete revision annotation process involves 3 stages: text preprocessing, sentence

alignment and revision purpose labeling.

The documents are segmented into sentences using Stanford Document Preprocessor

(Manning et al., 2014) before annotation. After segmentation, for each draft, the N sentences

in the draft are assigned indexes from 1 to N according to the sequence of their occurrence

in text. The pre-processed results are stored in spreadsheet files, each draft corresponds to

a single sheet.

In the alignment stage, the annotators decide the alignment of sentences according to

whether the sentences are semantically similar to each other. Each sentence in the revised

draft is assigned the index of its aligned sentence in the original draft. If a sentence is added,

it will be annotated as Add. The sentence alignments can be one-to-one, one-to-many and

many-to-one. If a sentence in the revised draft is aligned to multiple sentences in the original
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Figure 2.1: In the example, the author removed “those before Christ dwell” from the

claim. The language is also made simpler and more accurate in the second draft.

In the word-level revision annotation, we adapted methods in prior works (Bronner

and Monz, 2012) and extracted changes based on the results of a text-diff algorithm

(https://code.google.com/p/google-diff-match-patch/). In the clause level, the sentences

were first segmented into clauses. In the clause/sentence level annotation, clauses/sentences

were first aligned and revisions were then annotated on the aligned pairs.
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draft, the annotator should mark all the aligned sentences’ indexes. If multiple sentences

in the revised draft are aligned to one sentence in the original draft, the annotator should

mark the aligned sentence’s index for every sentence in the revised draft. We also specified

that one-to-many and many-to-one annotations are only allowed cases where the similarity

between the aligned pairs are explicit (e.g. a sentence with two clauses is broken to two

consecutive sentences).

The annotators are required to annotate on the aligned sentences (including the Add

and Delete pairs). In the annotation of our first data set, each aligned pair can have one

to many revision purposes. In the other annotations, annotators can label multiple surfaces

changes but at most 1 content change for each aligned pair 2. Specific rules are made for

ambiguous cases. In this section the most important ones are listed (more details can be

seen in the Appendix A). The annotator can only annotate multiple revision purposes to one

aligned pair if they cannot differentiate the purposes based on the rules. Figure 2.2 shows a

screenshot of our annotation tool.

Conventions/Grammar/Spelling vs. Word Usage/Clarity These two genres

are similar as they don’t change the content of the text and improve the quality of the

text. The annotators annotates a change as the former one only when there are conven-

tion/spelling/grammar mistakes being addressed.

Evidence vs. Warrant/Reasoning/Backing These two categories are similar as

they both provide support to the authors’ claim. The annotators are required to distinguish

these two categories according to whether the sentences are stating facts. The facts include

(1) Citation: the citation of papers, reports, news and books. (2) Example: facts of history

or personal experiences. (3) Scientific proof. Revisions involving facts would be marked as

Evidence, otherwise would be marked as Warrant.

Claim/Ideas vs. Warrant/Reasoning/Backing One paper typically contains a

major claim and several sub-claims to support the major claims. These sub-claims are

often also used as the reasoning to support the major claim. To distinguish sub-claim and

reasoning, a sentence is annotated as Claim/Ideas if it is further supported or objected by

2The annotators of the first data set were required to select one major content revision if there are multiple
content revision purposes labeled.
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Figure 2.2: A screenshot of the annotation tool

20



other sentences. Otherwise it is marked as “Warrant/Reasoning/Backing”.

General Content vs. Warrant/Reasoning/Backing A revision is annotated as

Warrant/Reasoning/Backing only when it is directly reasoning about the claim. If it is just

providing hints to the claim, even if the hint is explicit and strong, it should still be marked

as General Content.

2.3 GENERALIZING THE REVISION FRAMEWORK

After observing the character of the science dataset, we choose to keep the categories of our

schema while adding a new category “Precision” for the case where the author make changes

to make his statement or argument more precise. For example, the modification from “The

bacteriorhodopsin absorbed a high majority of the wavelengths. ” to “The bacteriorhodopsin

used by aquatic organisms at this time absorbed a high amount of green light like they do

now.” would be a “Precision” revision, where the author added restrictions to make the

statement more precise.

2.4 SUMMARY

In this chapter I describe our efforts in the definition of an argumentative revision schema. I

first compared different levels of granularity for describing revisions and the sentence level is

determined to be the best option. Using the natural sentence boundary, we avoid the possible

segmentation errors of machine learning algorithms. Also, describing revision at the sentence

level allows the consideration of semantic information in text alignment, thus making it easier

for humans to decide the revision categories. Then we described our revision schema and

the annotation process based on the schema. A preliminary attempt on the extension of our

schema to other genres of writings is also conducted.

In Chapter 3 we report our analysis on whether the revision schema defined can be

reliably annotated by human. In Chapter 4 we report our analysis on whether revision

21



feedback based on our schema can influence users’ revision behaviors.
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3.0 REVISION SCHEMA APPLICATION ANALYSIS (SWORD)

This chapter describes the application of the revision schema defined in Chapter 2. This

chapter investigates two major questions: 1) Can revisions be reliably annotated under the

revision schema? 2) Can the defined schema capture salient features of writing improvement?

We first describe the corpora used in our study and then report the results of the agreement

study for the first question. Afterwards we report the data analysis results on the annotated

corpora for the second question.

3.1 DATA DESCRIPTION

Corpora used in this chapter were collected from SWoRD (Cho and Schunn, 2007). The data

consists of the first draft (Draft1) and second draft (Draft2) of papers written by high school

or undergraduate students; students were required to provide feedback on other students’

writings on specified aspects (Thesis, Writing, Evidence, etc.); papers were revised after

receiving and generating peer feedback.

Corpora Align1 and Align2 were written by undergraduate students in a course “Social

Implications of Computing Technology”. In corpus Align1, the students discussed the role

that Big Data played in Obama’s presidential campaign. This corpora contains 11 pairs of

the first and final drafts of short papers. Corpus Align2 talks about intellectual property

and contains 10 pairs of paper drafts. We used these two corpora for our sentence alignment

study in Chapter 5.1.

Corpora HSchool1 and HSchool2 were written by high school students taking English

writing courses. HSchool1 contains papers about Dante’s Inferno and contains drafts from 47
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students. After data was collected, a score from 0 to 5 was assigned to each draft by experts

(for research prior to our study). The score was based on the student’s performance including

whether the student stated the ideas clearly, had a clear paper organization, provided good

evidence, chose the correct wording and followed writing conventions. The class’s average

score improved from 3.17 to 3.74 after revision. In HSchool2, students were required to

explain the rhetorical strategies used by the speaker/author of a previously read lecture

(Topic 1)/essay (Topic 2). As in the previous corpus, students wrote Draft 1 and Draft

2 essays on one of the two topics. Afterwards the students wrote another draft (Essay2)

on the other topic. Like HSchool1, the Draft1 essays were graded by experts (but at a

scale from 0 to 6). Essays were scored on the quality of thesis, rhetorical strategies, textual

evidence, explanations, organization, writing style and standard English. Draft2 essays were

not graded. Instead, Essay2 were graded to study whether there exists transfer learning

effect (Students will learn from previous revisions and do better in writing new essays). The

average of Draft1 scores is 4.59 and the average of Essay2 score is 4.51. These corpora were

used in our revision analysis in Chapter 2 and automatic revision identification study in

Chapter 5 and Chapter 6.

Science reports written by high school students were collected as Corpus Science. 9

pairs of reports have been annotated so far, we utilize the science reports to study the

generalization of our revision schema.

3.2 DESCRIPTIVE STATISTICS

Table 3.1 summarizes some basic characteristics of the corpora collected.

3.3 AGREEMENT STUDY

As stated in Chapter 1, annotators did a study on sentence alignment first on Corpus Align1.

Two pairs of drafts were separately annotated by two annotators and the agreement is 98.77%
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Corpus Writers Size D1Num D2Num Description

Align1 Undergraduate 11 23 23 Used in revision extraction

study in Section 5.1.2 in

Chapter 5

Align2 Undergraduate 10 25 25

HSchool1 High school

(English)

47 38 53 Draft1 and Draft2 graded

by experts, used in revi-

sion study in Chapter 3

and revision classification in

Chapter 5 and Chapter 6

HSchool2 High school

(English)

63 26 29 Draft1 in Essay1 and Es-

say2 graded by experts.

Used in revision study in

Chapter 3 and revision clas-

sification in Chapter 5 and

Chapter 6 .

Science High school

(Science)

9 13 17 Used in extended revision

study in section 2.3 in

Chapter 3

Table 3.1: Corpora collected via SWoRD, size indicates the number of essay pairs, D1Num

indicates the average number of sentences in Draft1, D2Num indicates the average number

of sentences in Draft2
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1, which indicates that humans can align the sentences reliably. HSchool1, HSchool2 were

annotated by 2 annotators each. One of the annotators who participated in the study of

sentence alignment did the alignment of sentences of HSchool1. The other annotator checked

the alignment before labeling revision purposes. Through this process, we make sure both

annotators read the essays before annotation. Annotators first practiced annotations on two

files and discussed with each other on disagreements. Afterwards another 5 files were double-

coded to examine the agreement. The Kappa of HSchool1 2 is 0.75. In the annotation of

HSchool2, annotators practiced sentence alignment and revision purpose annotation on two

files from HSchool1 first and then aligned sentences on 5 files of HSchool2, the agreement

of sentence alignment is 98.43%. After reaching agreement on the sentence alignments,

annotators annotated revision purposes on the 5 files. The agreement Kappa is 0.69.

One annotator who participated in the annotations of Corpora HSchool1 and HSchool2

and one annotator who participated in the annotation of Corpus HSchool2 double-coded 9

files on Corpus Science with the adapted schema. The annotators report no difficulty in the

adaption of the schema. Two annotators reach 100% accuracy in sentence alignment and

0.95 Kappa in revision purpose annotation, which indicate that annotators can annotate

revisions in other types of writings under an adapted version of our revision schema. Details

of the annotated data are in Table 3.2.

Number of revisions

Hschool1 (47), total: 1273

1 Agreement = #AgreedAlignedSentencesDraft1+#AgreedAlignedSentenceDraft2
#Draft1Sentences+#Draft2Sentences , adapted from (Raghava et al.,

2003)
2Each change have 5 categories of revisions: Claim, Warrant, Evidence, General Content, Surface. In

our schema, each aligned pair can have multiple surface purposes. we merged the surface change categories
into one single Surface category as we need only one label on an aligned pair for calculation and it’s easy
for annotators to distinguish different surface changes. A pair is considered to be a surface change only if
it does not have the labeling of content changes. Rebuttal/Reservation is not included as it only occurred
once.
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Purpose #Add #Delete #Modify

Total 797 95 381

Surface 0 0 309

Organization 0 0 45

Conventions 0 0 84

Word-usage 0 0 180

Content 797 95 72

Claim 79 23 8

Warrant 335 40 15

Rebuttal 1 0 0

Evidence 95 10 5

General 287 22 44

HSchool2 (63), total: 1054

Purpose #Add #Delete #Modify

Total 344 152 558

Surface 0 0 401

Organization 0 0 9

Conventions 0 0 109

Word-usage 0 0 283

Content 344 152 157

Claim 27 12 37

Warrant 188 82 57

Rebuttal 0 0 0

Evidence 13 5 16

General 116 53 47

Science (9), total: 116
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Purpose #Add #Delete #Modify

Total 49 14 53

Surface 0 0 31

Organization 0 0 5

Conventions 0 0 3

Word-usage 0 0 23

Content 49 14 22

Claim 3 2 9

Warrant 36 12 9

Rebuttal 0 0 0

Evidence 0 0 0

General 10 0 1

Precision 0 0 3

Table 3.2: Distribution of revisions in the corpora col-

lected via SWoRD

3.4 REVISION ANALYSIS

Two studies were conducted to demonstrate the utility of the schema. We first conducted

a corpus study analyzing relations between the number of each revision type in our schema

and student writing improvement based on the expert paper scores available for HSchool1.

In particular, the number of revisions of different categories are counted for each student.

Pearson correlation between the number of revisions and the students’ Draft 2 scores is

calculated. Given that the students’ Draft 1 and Draft 2 scores are significantly correlated

(p < 0.001, R = 0.63), we controlled for the effect of Draft 1 score by regressing it out of

the correlation.3 We expect surface changes to have smaller impact than content changes

3Such partial correlations are one common way to measure learning gain in the tutoring literature,
e.g. (Baker et al., 2004).
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Revision Purpose (N = 1272) R p

Surface 0.10 0.510

Organization 0.09 0.554

Conventions -0.07 0.627

Word-usage 0.15 0.333

Content 0.53 <0.001

Claim 0.47 0.001

Warrant 0.45 0.002

Evidence 0.41 0.004

General Content 0.24 0.116

Table 3.3: HSchool1 Study. Partial correlation between Draft 2 score and the number of

revisions (control draft 1 score out).Rebuttal/Reservation is not included because of rare

occurrence

as Faigley and Witte (1981) found that advanced writers make more content (text-based)

changes comparing to inexperienced writers.

Data analysis on the effectiveness of revision feedback on users’ writings was conducted

on the ArgRewrite corpus, details of the study will be described in Chapter 4.

We followed similar approaches for HSchool2 and analyzed relations between the number

of each revision type and student writing skill improvement. After testing that the students’

Essay 1 and Essay 2 scores are significantly correlated (p < 0.001, R = 0.54), Pearson

correlation between the number of revisions and the students’ Essay 2 score is calculated

controlling for the effect of Essay 1 score. We expect the observation of a transfer learning

effect, where students making more changes would have a higher improvement in the writing

of a new paper on a different topic.

The results of HSchool1 study are shown in Table 3.3, Pearson correlation between the

number of revisions and the students’ Draft 2 scores was calculated. Results show that only
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Revision Purpose (N = 1045) R p

Surface -0.02 0.890

Conventions -0.02 0.880

Word-usage -0.01 0.968

Content 0.24 0.057

Claim 0.35 0.005

Warrant 0.40 0.001

Evidence 0.20 0.122

General Content -0.13 0.302

Table 3.4: HSchool2 Study. Partial correlation between Essay2 score and the number of

revisions (control Essay1 score out).Rebuttal/Reservation, Organization are not included

because of rare occurrence

the number of content revisions is significantly correlated (R = 0.53, p < 0.001). Within

the content revisions, only Claims/Ideas, Warrant/Reasoning/Backing and Evidence are

significantly correlated. Table 3.4 demonstrates that only the number of Claim/Ideas and

Warrant/Reasoning/Backing revisions are significantly correlated with the writing improve-

ment in a different topic.

Through the results, we do find significant correlations between the author’s rewriting

effort and writing improvement. We also observed a transfer effect that the authors’ effort

in revising one essay would improve their performance in the writing of a new essay. The

findings also demonstrate that different categories of revisions have different relationships to

students’ writing success, which suggests that our schema is capturing salient characteristics

of writing improvement.
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3.5 SUMMARY

In this chapter, we first introduce the results of agreement study on data annotation using

our schema. The high agreement in annotation indicates that our schema can be annotated

reliably by humans, which suggests the correctness of hypothesis H1.1. Data analysis on the

annotated corpora suggests the correctness of hypothesis H1.2, showing that the number

of revisions is significant correlated with both the improvement of essay quality within one

paper and also the author’s skill improvement in the writing of a new paper. The study

results also suggest that different revision categories have different correlations with the

writing improvement, which indicates that our schema captures the salient features of writing

improvement.
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4.0 REVISION SCHEMA APPLICATION ANALYSIS (ARGREWRITE)

Proving that the schema captures salient features of improvement, we further investigate

whether the schema-based application can have an impact on the user’s rewriting behaviors.

To investigate the effects of providing schema-based revision feedback, a revision assistance

tool was developed and a user study was conducted on the application of the tool. This

chapter describes our work in (Zhang et al., 2016a, 2017).

4.1 THE BUILDING OF A PROTOTYPE INTELLIGENT REVISION

ASSISTANT: ARGREWRITE

We argue that an intelligent writing assistant ought to be aware of the revision process; it

should: 1) identify all significant changes made by a writer between the essay drafts, 2)

automatically determine the purposes of these changes, 3) provide the writer the means to

compare between drafts in an easy to understand visualization, and 4) support instructor

monitoring and corrections in the revision process as well.

In this chapter we assume 1) and 2) has been resolved and develops a web-based interface

to support student argumentative writings. The purpose of each change between revisions

is demonstrated to the writer as a kind of feedback. If the author’s revision purpose is not

correctly recognized, it indicates that the effect of the writer’s change might have not met

the writer’s expectation, which suggests that the writer should revise their revisions.
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4.1.1 System Overview

The design of ArgRewrite aims to encourage students to concentrate on revision improve-

ment: to iteratively refine the essay based on the feedback of the automatic system or the

writing instructor. Our framework consists of two major components, arranged in a server

client model. On the server side, the automatic analysis component extracts revision

changes by aligning sentences across drafts and infers the purposes of the extracted revi-

sions. On the client side, a web-based rewriting assistant interface1 allows the student

to retrieve the feedback to their revisions from the server, make changes to the essay and

submit the modified essay to the server for another round of analysis.

The complete process of the student’s writing using our system starts with the student’s

rewriting and submission of the essay. The student writes the first draft of the essay before

using our system and then modifies the original draft in our rewriting assistant interface. The

submitted writings are automatically analyzed immediately after the receipt of the student’s

submission. After receiving the analysis feedback, the student can choose to continue with

the cycle of essay revising until the revisions are satisfactory.

4.1.2 Rewriting Assistance Interface Design

In this chapter we focus on the discussion of the rewriting assistance interface design and

leave the discussion of the automatic analysis to Chapter 5 and Chapter 6.

Our rewriting assistant interface is designed with several principles in mind. 1) Because

the revision classification taxonomy goes beyond the binary textual versus surface distinction,

we want to make sure that users don’t get lost distinguishing different categories; 2) We

want to encourage users to think about their revisions holistically, not always just focusing

on low-level details; 3) We want to encourage users to continuously re-evaluate whether

they succeeded in making changes between drafts (rather than focusing on generating new

contents). Thus, we have designed an interface that offers multiple views of the revision

changes. As demonstrated in Figure 4.1, the interface includes a revision overview interface

1rewriting assistant interface: http://argrewrite.cs.pitt.edu/demo.html now supported on chrome
and firefox browser only
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(a) revision overview interface (b) revision detail interface

Figure 4.1: Screenshot of the web interface, which includes (a) the revision overview interface

with the revision statistics (the numbers indicate the numbers of specified revision purposes)

region, the revision map region and the revision distribution region, (b) the revision detail

interface with the revision text area region and the revision map region (from left to right).
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for the overview of the authors’ revisions and a revision detail interface that allows the

author to access the details of their essays and revisions.

Inspired by works on learning analytics (Liu et al., 2013; Verbert et al., 2013), we design

the revision overview interface which displays the statistics of the revisions. Following design

principle #1, the revision purposes are color coded and each purpose corresponds to a spe-

cific color. In Chapter 3 we have demonstrated that only Content revisions are significantly

correlated with the writing improvement. To inspire the writers to focus more on the im-

portant Content revisions, cold colors are chosen for the Surface revisions and warm colors

are chosen for the Content revisions. The statistics and the pie chart provide a quantitative

summary of the writer’s revision efforts. For example, in Figure 4.1, the writer makes many

changes on the Fluency (15) of sentences but makes no change on the Thesis/Ideas (0). To

allow the users to concentrate on improving one revision type at a time, the interface allows

the user to click on a single revision purpose type and view only the specified revisions.

Following our design principle #2, the revision map in both interfaces presents an at-a-

glance visual representation of the revision. This design is inspired by (Southavilay et al.,

2013). Each sentence is represented as a square in the map. The left column of the map

represents the sentences in the first draft and the right column represents the sentences in

the second draft. The paragraphs within one draft are segmented by blanks in the map. The

aligned sentences appear in the same row. The added/deleted sentences would be aligned to

blank in the map. The revision map allows a user (either an instructor or a student) to view

the structure of the essay and identify the locations of all the changes at once. For example,

in Figure 4.1, the user can quickly identify that the writer aims at improving the clarity and

soundness of the third paragraph by making a Rebuttal modification on the second sentence

and Fluency modifications on all other sentences. The user can also click on the square to

view the details of the revision in the revision text area region of the revision detail interface.

To encourage students to make revisions (design principle #3), in the revision detail

interface the revision text area region highlights the revisions (color-coded by the revision

categories) in the essay and allows the writer to modify it directly. The writer clicks on

the text to read the revision and examine whether the revision purpose is recognized by the
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instructor/system. A character-level diff2 is done on the aligned sentences to help the writer

identify the differences between two drafts. In the example the writer can see that their

“Evidence” change is recognized, indicating that the revision effort is clear and effective. If

the writer finds out that their real revision purpose is not recognized, they can modify the

essay in the textbox directly and submit the essay to the server when all the edits are done.

4.2 ARGREWRITE USER STUDY

Based on the developed assistant, we conducted a user study to investigate whether the

schema-based revision feedback has an impact on the users’ revision behaviors.

4.2.1 Hypotheses

We design our user study experiment following the two hypotheses proposed in Chapter 1.

For H1.3. To investigate whether there is a difference in participants’ revising behaviors

when different aspects of the revision schema is used to provide feedback, we decided to

split the users to two groups using different revision feedback and observe the difference

between the two groups. The experiment group utilizes ArgRewrite as the interface for their

feedback, where revisions are colored according to their types and highlighted. The control

group will only have their revisions listed and no additional information is given.

For H1.4. To investigate whether the difference between the recognized revision type

and the users’ own recognition can motivate the users’ changes, we require the participants

to record whether they agree with the revision type recognized by the system.

To evaluate these hypotheses, besides the collection of objective statistics such as revision

numbers, we also collect the participants’ subjective responses to the system.

2google diff match: https://code.google.com/archive/p/google-diff-match-patch/
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Figure 4.2: The process of the ArgRewrite study

4.2.2 User Study Experiment Procedure

We recruited 60 participants aged 18 years and older, among whom 40 were English native

speakers and 20 were non-native speakers with sufficient English proficiency.3 The study is

carried out in three 40-60 minute sessions over the duration of two weeks.

Figure 4.2 demonstrates the procedure of the user study.

Pre-Study Survey The pre-study survey contains participant demographic information

as well as their self-reported writing background, such as their confidence in their writing

ability, the number of drafts they typically make, etc. Details of the question are listed in

Appendix B.1.

Draft1 Each participant begins by completing a pre-study questionnaire and writing a

short essay online. Participants are instructed to keep the essay around 400 words, making

a single main point with two supporting examples. They are given the following prompt:

“Suppose you’ve been asked to contribute a short op-ed piece for The New York Times.

Argue whether the proliferation of electronic communications (e.g., email, text or other

social media) enriches or hinders the development of interpersonal relationships.”

Draft2 A few days after (typically around a week (avg: 5.88, std: 5.61)), participants

3i.e., with a TOEFL score higher than 100.
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(a) Interface ArgRewrite.

(b) Interface Diff.

Figure 4.3: Screenshot of the interfaces. (a) ArgRewrite (Experiment) with the annotated

revision purposes, (b) Diff (Control) with a streamlined character-based diff.
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are asked to revise their first draft online based on the following feedback: Strengthen the

essay by adding one more example or reasoning for the claim; then add a rebuttal to an

opposing idea; keep the essay at 400 words.

Annotated Revisions I (Rev12) The two drafts are semi-manually aligned at the

sentence level.4 Then, the purpose of each pair of sentence revision is manually coded by a

trained annotator, following the annotation guideline as in Appendix A.

Draft3 Participants perform their third revision in a lab environment. This time, they

are not given additional instructional feedback. Instead, participants are shown a computer

interface that highlights the differences between their first and second draft. They are asked

to revise the third draft to improve the general quality of their essay. We experimented

with two variations of elicitation. Chosen at random, half of the participants are shown

Interface ArgRewrite, which highlights the annotated differences between the drafts (Figure

4.3(a)); half of the participants are shown Interface Diff, a streamlined character-based diff

(Figure 4.3(b)). Comparing to the ArgRewrite interface published in (Zhang et al., 2016a),

dropboxes are added on the top to allow the participants to report their own recognition of

the revision. Word counts are added to help participants keep track of the words they have

written. To remove the possible impacts of revision classification errors, the revision types

are manually corrected. Both groups are asked to read a tutorial (details of the tutorials

are listed in Appendix B.3) about their respective interfaces before beginning to revise.

Additionally, participants in the experiment group are also asked to verify the manually

annotated revision purposes between their first and second draft. After completing the final

revision, all participants are given a post-study survey about their experiences. Additionally,

participants in the experiment group are asked to verify the automatically predicted revision

purposes between their second and third draft.

Post-Study Survey The post-study survey contains questions about the participants’

in-lab revision experience, such as whether they found the computer interface helpful. Details

of the survey questions are shown in Appendix B.2.

Annotated Revisions II (Rev23) Regardless of which interface the participant used,

4Sentences are first automatically aligned using the algorithm in (Zhang and Litman, 2014) and then
manually corrected by human.
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Language Writers Size D1Num D2Num D3Num Description

ESL College 20 19 20 26 Used in revi-

sion identifi-

cation study

Native College 40 19 20 27 in Chapter 5

and Chapter

6 and feed-

back impact

study in

Chapter 4

Table 4.1: ArgRewrite Corpus, size indicates the number of essay pairs, D1Num indicates the

average number of sentences in Draft 1, D2Num indicates the average number of sentences

in Draft 2, D3Num indicates the average number of sentences in Draft 3

the second and third draft are compared and annotated by the trained annotator in the same

process as before.

4.2.3 Data Annotation

Table 4.1 summarizes the descriptive characteristics of the corpus collected in the ArgRewrite

user study. Similar to the annotation in Chapter 3, the ArgRewrite corpus was also annotated

by the annotator who participated in the annotation of HSchool2. To check the agreement

on the annotation of ArgRewrite corpus, two annotators annotated on 10 randomly selected

essay pairs and the agreement Kappa is 0.71. Table 4.3 demonstrates the distribution of

revisions in the annotated corpora.
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Content Surface

Rev12 Rev23 Rev12 Rev23

L2 (20) 172 78 163 176

Interface ArgRewrite 91 37 71 85

Interface Diff 81 41 92 91

Native (40) 334 285 303 246

Interface ArgRewrite 177 154 149 111

Interface Diff 157 131 154 135

Table 4.2: Number of revisions, by participant groups (language, interface), coarse-grain

purposes, and revision drafts (Rev12 is between Draft1-Draft2; Rev23 is between Draft2-

Draft3.

Revision Purpose
Draft1 to Draft2 Draft2 to Draft3

#Add #Delete #Modify #Add #Delete #Modify

Content 294 179 33 320 27 16

Claims/Ideas 25 8 4 5 0 0

Warrant/Reasoning/Backing 166 83 7 191 13 3

Rebuttal/Reservation 23 1 0 13 0 0

General Content 50 80 18 86 13 13

Evidence 30 7 4 25 1 0

Surface 0 0 466 0 0 422

Word Usage/Clarity 0 0 362 0 0 357

Conventions/Grammar/Spelling 0 0 75 0 0 52

Organization 0 0 29 0 0 13

Table 4.3: Number of revisions, by fine-grain revision purposes and edit types (add, delete,

modify).
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4.2.4 Data Analysis

Methodology As our study involves both ESL5 and Native speakers, we also decide to in-

vestigate whether there exists revision behavior difference between ESL and Native speakers

besides the two main hypotheses.

To test the hypotheses, we will use both subjective and objective measures. Subjective

measures are based on participant post-study survey answers. Ideally, objective measures

should be based on an assessment of improvements in the revised drafts; since we do not have

evaluative data at this time, we approximate the degree of improvement with the number of

revisions, since these two quantities were demonstrated to be positively correlated (Zhang

and Litman, 2015). The objective measures are computed from Tables 4.2 and 4.3.

To compare differences between specific sub-groups on the subjective and objective mea-

sures, we conduct ANOVA tests with two factors. For example, one factor is the native

language of the participant, and another is the interface used.

To determine correlation between quantitative measures, we conduct Pearson and Spear-

man correlation tests.

Results and Discussions

Testing for H1.3 Comparing participants from the experiment and the control group,

we observe some differences. First, we detect that the experiment group agrees with the

statement “The system helps me to recognize the weakness of my essay” more so than the

control group (Experiment group has a mean ratings of 3.97 (“Agree”) while the control

group’s is 3.17 (“Neutral”), p < 0.003, F:9.976, Partial Eta Squared: 0.151).

Second, in the experiment group, there is a trending positive correlation between the

number of revisions from Draft2 to Draft3 and the ratings for the statement “The system

encourages me to make more revisions than I usually make” (ρ=.33 and p < .07); whereas

there is no such correlation for the control group. Additional information about revision

purposes may elicit a stronger self-reflection response in the experiment group participants.

In contrast, in the control group, there is a significant negative correlation between the

number of revisions from Draft1 to Draft2 and ratings for the statement “it is convenient to

5In specific, the L2 speakers (proficient non-native speakers)
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view my previous revisions with the system” (ρ=-.36 and p < .05). This suggests that the

character-based interface is ineffective when participants have to reflect on many changes.

On the other hand, when comparing the number of revisions made by both groups on

Rev23 (controlling for their Rev12 numbers), we did not find a significant difference (p:

0.330, F:1.180, Partial Eta Squared: 0.079).

As we did not observe a significant difference in the number of revisions made by the two

interface groups, we cannot verify that H1.3 is true; possibly a larger pool of participants

is needed, or possibly the writing assignment is not extensive enough (in length and in the

number of drafts). Another possible explanation is that the system might only motivate the

users to make more revisions when the feedback is different from the user’s intention. To

further verify the correctness of H1.3, we plan to have the essays graded by experts. The

graded scores could allow us to analyze whether essays improved more when ArgRewrite was

used.

Testing for H1.4 Focusing on the 30 participants from the experiment group, we check

the impact of the feedback regarding Rev12 on how they subsequently revise (Rev23). We

counted the Add and Modify revisions where the participant disagrees with the revision pur-

pose assigned by the annotator in Rev12. Of those, we then count the number of times the

corresponding sentences were further revised6. Of the 53 sentences where the participants

disagreed with the annotator, 45 were further revised in the third draft. The ratio is 0.849,

much higher than the overall ratio of general Rev12 revisions being further revised in Rev23

(161/394 = 0.409) and the ratio of the agreed Rev12 revisions being revised in Rev23 (67/341

= 0.196). In further analysis, a Pearson correlation test is conducted to check the correlation

between the number of Rev23 and the number of disagreements for different types of agree-

ment/disagreements, controlling for the number of Rev12. We find a negative correlation

between Rev23 and the number of cases (r=-0.41, p < .03) in which the revisions annotated

as Content are verified by the participants; we also find a positive correlation between Rev23

and the number of cases (r=0.36, p <= .05) in which the revisions annotated as Surface

are intended to be Content revisions by the participants. Both findings are consistent with

H1.4, suggesting that participants will revise further if they perceive that their intended

6Delete revisions were ignored as the deleted sentences are not traceable in Draft3
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revisions were not recognized.

From the finding in H1.4 one might argue that the users might revise more when the

system makes recognition errors. However, we argue that it is important that the revision

assistant should at least be “mostly” accurate to be “trusted” by the users. Thus, it is still

important to improve the accuracy of automatic revision identification.

Testing for Language impact We observe that native and L2 speakers exhibit different

behaviors.

First, we detect a significant difference in the number of Content and Surface revisions

made by L2 and native speakers (p < .02 and p < .03). More specifically, native speakers

tend to make more Content changes while the L2 speakers are likely to make more Surface

changes.

Second, there is also a significant interaction effect among two factors of Group and

users’ native language (p < .021) on their ratings for the statement “the system helps me to

recognize the weakness of my essay”.

Third, we observe a significant positive correlation in the native group between the

number of content revisions in Rev23 and the ratings of the statement “the system encourages

me to make more revisions than I usually make” (ρ=.4 and p < .009). This suggests that

giving feedback (from either interface) encourages native speakers to make more content

revisions.

Finally, in the L2 group, there is a significant negative correlation between the number

of surface revisions in Rev12 and the ratings for the statement “the system helps me to

recognize the weakness of my essay” (ρ=-.57 and p < .008). This shows that giving feedback

to L2 speakers is less helpful when they make more surface revisions.

4.3 SUMMARY

This chapter describes the prototype revision assistant tool we developed and the user study

conducted based on the tool. The tool allows the participant to quickly identify the locations

and types of changes they have made. A user study on the effectiveness of such feedback is
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then conducted, where the participants revise their essays according to the manually labeled

revision feedback. Both the participants’ revisions and their subjective ratings to the system

were recorded, data analysis was conducted on the collected data to analyze the impact of

revision feedback on users’ writings.

The user study results provide support for hypotheses H1.3 and H1.4. For H1.3 on

the impact difference of different revision feedback, while we observe a significant difference

from the participants’ subjective ratings, we cannot observe a significant difference from the

number of revisions made by the participants. For H1.4, we observe that 1) the partici-

pants make more changes when there is discrepancy between their own intention and system

recognition 2) Giving feedback encourages native speakers to make more content revisions.

It is important to notice that besides the revision interface, there are also other factors that

might influence the behaviors of the users’ rewritings. Study results have demonstrated the

impact of the language difference, yet there are still other factors such as education level to

be studied in the future.
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5.0 AUTOMATIC REVISION IDENTIFICATION (PIPELINE)

This chapter introduces our works on the automatic identification of revisions. In this chapter

the identification of revisions is solved in a pipelined fashion, involving the identification of

where the revision happens (Revision Extraction) (Zhang and Litman, 2014) and what the

revision is (Revision Classification) (Zhang and Litman, 2015, 2016; Zhang et al., 2016b).

5.1 REVISION EXTRACTION

This section describes our work as stated in (Zhang and Litman, 2014). As introduced in

Chapter 2, revisions are extracted by aligning sentences. An added sentence or a deleted

sentence is treated as aligned to null. The aligned pairs where the sentences in the pair are

not identical are extracted as revisions.

5.1.1 Related Work

We borrow ideas from the research on sentence alignment for monolingual corpora. Existing

research usually focuses on the alignment from the text to its summarization or its simpli-

fication (Jing, 2002; Barzilay and Elhadad, 2003; Bott and Saggion, 2011). Barzilay and

Elhadad (2003) treat sentence alignment as a classification task. The paragraphs are clus-

tered into groups, and a binary classifier is trained to decide whether two sentences should

be aligned or not. Nelken and Shieber (2006) further improves the performance by using

TF*IDF score instead of word overlap and also utilizing global optimization to take sentence

order information into consideration. We argue that summarization could be considered as
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a special form of revision and adapted Nelken’s approach to our approach.

5.1.2 Alignment Based on Sentence Similarity

The alignment task goes through three stages.

1. Data preparation: for each sentence in the annotated final draft, if it is not a new

sentence, create a sentence pair with its aligned sentence in the first draft. The pair is

considered to be an aligned pair. Also, randomly select another sentence from the first draft

to make a negative sentence pair. Thus we ensure there are nearly equal numbers of positive

and negative cases in the training data.

2. Training: according to the similarity metric defined, calculate the similarity of the

sentence pairs. A logistic regression classifier predicting whether a sentence pair is aligned

or not is trained with the similarity score as the feature. In addition to classification, the

classifier is also used to provide a similarity score for global alignment.

3. Alignment: for each pair of paper drafts, construct sentence pairs using the Cartesian

product of sentences in the first draft and sentences in the final. Logistic regression classifier

is used to determine whether the sentence pair is aligned or not.

We added Levenshtein distance (LD) (Levenshtein, 1966) as another similarity metric in

addition to Nelken’s metrics. Together three similarity metrics were compared: Levenshtein

Distance, Word Overlap(WO), and TF*IDF.

5.1.3 Global Alignment

Sentences are likely to preserve the same order between rewritings. Thus, sentence or-

dering should be an important feature in sentence alignment. Nelken’s work modifies the

Needleman-Wunsch alignment (Needleman and Wunsch, 1970) to find the sentence align-

ments and goes in the following steps.

Step1 : The logistic regression classifier previously trained assigns a probability value

from 0 to 1 for each sentence pair s(i, j). Use this value as the similarity score of sentence

pair: sim(i, j).
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Step2 : Starting from the first pair of sentences, find the best path to maximize the likeli-

hood between sentences according to the formula s(i, j) = max{s(i−1, j−1)+sim(i, j), s(i−

1, j) + sim(i, j) , s(i, j − 1) + sim(i, j)}

Step3 : Infer the sentence alignments by back tracing the matrix s(i, j).

We found out that changing bolded parts in the formula to s(i, j) = max{s(i − 1, j −

1) + sim(i, j), s(i − 1, j) + insertcost , s(i, j − 1) + deletecost} shows better performance in

our problem. insertcost and deletecost are both set to 0.1 as they are found to be the most

effective during practice.

5.1.4 Experiments and Evaluation

We use accuracy as the evaluation metric. For each pair of drafts, we count the number of

sentences in the final draft N1. For each sentence in the final draft, we count the number of

sentences that get the correct alignment as N2. The accuracy of the sentence alignment is

N2

N1
.

We use Hashemi’s (Hashemi and Schunn, 2014) approach as the baseline. For our method,

we tried four groups of settings. Group 1 and group 2 perform leave-one-out cross validation

on corpora Align1 and Align2 (test on one pair of paper drafts and train on the others).

Group 3 and group 4 train on one corpus and test on the other.

Group Levenshtein Distance Word Overlapp TF*IDF Baseline

1 0.9811 0.9863 0.9931 0.9427

2 0.9649 0.9593 0.9667 0.9011

3 0.9727 0.9700 0.9727 0.9045

4 0.9860 0.9886 0.9798 0.9589

Table 5.1: Accuracy of our approach vs. baseline on Corpora Align1 and Align2

Table 5.1 shows that all our methods beat the baseline on corpora Align1 and Align2 1.

1For Groups 1 and 2, we calculate the accuracy of Hashemi’s approach under a leave-one-out setting,
each time remove one pair of document and calculate the accuracy. A significance test is also conducted, the
worst metric LD in Group 1 and WO in Group 2 both beat the baseline significantly ( p1 = 0.025,p2 = 0.017)
in two-tailed T-test.
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Among the three similarity metrics, TF*IDF is the most predictive.

We also test our algorithms on corpora HSchool1 and HSchool2 separately with the

setting of the 10-fold (student) cross-validation using TF*IDF as the similarity metric. We

achieve 0.9199 accuracy on HSchool1 and 0.9121 accuracy on HSchool2. We achieved 0.8991

accuracy when trained on HSchool1 and tested on HSchool2 and 0.9119 accuracy in reverse.

We also tested our algorithms on the corpus ArgRewrite with 10-fold (student) cross-

validation2 and achieved accuracy 0.9328.

5.2 REVISION CLASSIFICATION USING FEATURES FROM EXISTING

WORKS

This section describes our work in (Zhang and Litman, 2015), where we investigated whether

the existing features and approaches in Wikipedia revision classification can be adapted to

the prediction of argumentative writing revisions.

5.2.1 Related Work

There are multiple works on the classification of revisions (Adler et al., 2011; Javanmardi

et al., 2011; Bronner and Monz, 2012; Daxenberger and Gurevych, 2013; Zhang and Litman,

2015). While different classification tasks were explored, similar approaches were taken by

extracting features (location, text, meta-data, language) from the revised text to train a

classification model (SVM, Random Forest, etc.) on the annotated data.

As our task focuses on identifying the argumentative purpose of writing revisions, work

in argument mining is also relevant. In fact, many features for predicting argument structure

(e.g., location, discourse connectives, punctuation) (Burstein and Marcu, 2003; Moens et al.,

2007; Palau and Moens, 2009; Feng and Hirst, 2011) are also used in revision classification.

Our work also investigated the use of such features. Different from works in argument mining

2Note that the revisions from the same student will be either all in the training data or all in the test
data
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which extract features from one single draft, our work collected features for sentences in both

drafts.

5.2.2 Classifying Revisions in Isolation

We first followed prior works and investigated features that can be used in argumentative

revision classification. In this section we only extract features from the revision sentence pair

and ignores the contextual information around the revision. As shown in Table 5.2, besides

using unigram features as a baseline, our features are organized into Location, Textual,

and Language groups following prior work (Adler et al., 2011; Bronner and Monz, 2012;

Daxenberger and Gurevych, 2013).

Baseline: unigram features. Similarly to Daxenberger and Gurevych (2012), we

choose the count of unigram features as a baseline. Two types of unigrams are explored.

The first includes unigrams extracted from all the sentences in an aligned pair. The second

includes unigrams extracted from the differences of sentences in a pair.

Location group. As Falakmasir et al. (2014) have shown, the positional features are

helpful for identifying thesis and conclusion statements. Features used include the location

of the sentence and the location of paragraph .3

Textual group. A sentence containing a specific person’s name is more likely to be

an example for a claim; sentences containing “because” are more likely to be a sentence

of reasoning; a sentence generated by content revisions is possibly more different from the

original sentence compared to a sentence generated by surface revisions. These intuitions are

operationalized using several feature groups: Named entity features4 (also used in Bronner

and Monz (2012)’s Wikipedia revision classification task), Discourse marker features (used

by Burstein et al. (2003) for discourse structure identification), Sentence difference features

and Revision operation (similar features are used by Daxenberger and Gurevych (2013)).

Language group. Different types of sentences can have different distributions in POS

tags (Daxenberger and Gurevych, 2013). The difference in the number of spelling/grammar

3Since Add and Delete operations have only one sentence in the aligned pair, the value of the empty
sentence is set to 0.

4Stanford parser (Klein and Manning, 2003) is used in named entity recognition.
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mistakes5 is a possible indicator as Conventions/Grammar/Spelling revisions probably de-

crease the number of mistakes.

Text From the 3rd paragraph of Draft 1 (5 paragraphs)

(1, The third circle is for Wrathful people.), (2, Saddam Hussein and Osama

Bin Laden come to mind when mentioning wrathful person)

From the 3rd paragraph of Draft 2 (7 paragraphs)

(1, The third circle contains wrathful people), (2, Fidel Castro comes to

mind when mentioning wrathful people)

Features Unigram

Unigrams of all: [“Saddam”, “Hussein”, “and”, “Osama”, “Bin”, “Laden”,

“come”, “to”, “mind”, “when”, “mentioning”, “wrathful”, “people”, “Fidel”,

“Castro”, “comes”]

Unigrams of diff: [”Saddam”, ”Hussein”, ”and”, ”Osama”, ”Bin”, ”Laden”,

”Fidel”, ”Castro”, ”come”, ”comes”]

Location

First sentence of paragraph? Draft 1: No, Draft 2: No

Last sentence of paragraph? Draft 1: No, Draft 2: No

First paragraph of essay? Draft 1: No, Draft 2: No

Last paragraph of essay? Draft 1: No, Draft 2: No

Sentence in the paragraph (Ratio) Draft 1: (2-1)/(5-1) = 0.25, Draft 2:

0.125 Diff: -0.125

Sentence in the paragraph (Number): Draft 1: 2, Draft 2: 2, Diff: 0

Paragraph in the essay ...

Textual

Named entity:

5The spelling/grammar mistakes are detected using the languagetool toolkit
(https://www.languagetool.org/).
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PERSON count: Draft 1: 2, Draft 2: 1, Diff: -1

LOCATION count: Draft 1: 0, Draft 2: 0, Diff: 0

Discourse markers: Contains ”because”, ”due to”,... Draft 1: No, Draft 2,

No

...

Sentence difference: Diff in commas: 0, Diff in digits: 0, ...Edit distance: 31

Revision Operation: Modify

Language

POS tags:

count of adjectives: Draft 1: 1, Draft 2: 1, Diff: 0

count of nouns: ...

...

Ratio of POS tags

ratio of adjectives: Draft 1: 0.077 Draft 2: 0.111, Diff: 0.034

...

Spelling mistakes: Draft 1: 0, Draft 2: 0, Diff: 0

Grammar mistakes: Draft 1: 0, Draft 2: 0, Diff: 0

Table 5.2: An example of features extracted for the

aligned sentence pair (2->2).

5.2.3 Experiments and Results

Experiments

We conducted three different experiments to compare the performance of our approaches.

In the first two experiments, the performance on surface vs. content classification are com-

pared both intrinsically and extrinsically. In the third experiment, we compared the effect

of different feature groups using SVM6 as the classifier for binary classification tasks on each

6We compared three models used in discourse analysis and revision classification (C4.5 Decision Tree,
SVM and Random Forests) (Burstein et al., 2003; Bronner and Monz, 2012; Stab and Gurevych, 2014) and
SVM yielded the best performance.
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revision purpose.

Paired t-tests are utilized to compare whether there are significant differences in perfor-

mance. Performance is measured using unweighted F-score. In the extrinsic evaluation, we

repeat the corpus study from Chapter 3 using the predicted counts of revision. If the results

in the intrinsic evaluation are solid, we expect that a similar conclusion could be drawn with

the results from either predicted or manually annotated revisions.

Experiment 1: Surface vs. Content

As the corpus study in Chapter 3 shows that only content revisions predict writing im-

provement, our first experiment is to check whether we can distinguish between the surface

and content categories. The classification is done on all the non-identical aligned sentence

pairs with Modify operations7. We choose 10-fold (student) cross-validation for our experi-

ment. SVM of the Weka toolkit (Hall et al., 2009) is chosen as the classifier for the unigram

baseline. Considering the data imbalance problem, the training data is sampled with a cost

matrix decided according to the distribution of categories in training data in each round.

Two baselines (Majority and Unigram) were compared. The results are evaluated both

intrinsically and extrinsically.

Experiment 2: Pipelined revision extraction and classification

In this experiment, revision extraction and Experiment 1 are combined together as a

pipelined approach. The output of sentence alignment is used as the input of the classification

task. The predicted Add and Delete revisions are directly classified as content changes.

Features are used as in Experiment 1.

Experiment 3: Binary classification for each revision purpose category

In this experiment, we test whether the system could identify if revisions of each specific

category exist in the aligned sentence pair or not. The same experimental setting for surface

vs. content classification is applied. This experiment compares the effects of different features

(Textual, Language, Location) using the SVM model.

Analysis

Analysis of Experiment 1, 2

Table 5.3 presents the results of the classification between surface and content changes

7Add and Delete pairs are removed from this task as only content changes have Add and Delete operations.
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HSchool1 N = 381 Precision Recall F-score

Majority 32.65 50.00 37.14

Unigram 45.47 49.82 46.71

Basic 62.55∗ 58.01∗ 54.39∗

HSchool2 N = 558 Precision Recall F-score

Majority 32.59 50.00 37.69

Unigram 48.01 47.09 42.01

Basic 57.60∗ 51.17∗ 49.64∗

ArgRewrite N = 937 Precision Recall F-score

Majority 47.85 50.00 48.89

Unigram 47.85 50.00 48.89

Basic 50.40∗ 50.60∗ 49.98∗

Table 5.3: Experiment 1 on corpora HSchool1, HSchool2 and ArgRewrite (Surface vs. Con-

tent): average unweighted precision, recall, F-score from 10-fold (student) cross-validation;

Basic represents the combination of features Location, Textual, Language and Unigram; ∗

indicates significantly better than majority and unigram.
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HSchool1 Predicted purposes R p

#All revisions (N = 1273) 0.52 <0.001

#Surface revisions 0.18 0.245

#Content revisions 0.55 <0.001

Pipeline predicted purposes R p

#All (predicted N = 1356) 0.51 <0.001

#Surface revisions 0.23 0.124

#Content revisions 0.54 <0.001

HSchool2 Predicted purposes R p

#All revisions (N = 1054) 0.27 0.041

#Surface revisions -0.03 0.808

#Content revisions 0.27 0.038

Pipeline predicted purposes R p

#All (predicted N = 1101) 0.27 0.039

#Surface revisions -0.05 0.775

#Content revisions 0.27 0.042

Table 5.4: Partial correlation between number of predicted revisions and Draft2/Essay2

score on corpora HSchool1 and HSchool2. (Upper: Experiment 1, Lower: Experiment 2)
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N = 1273 Content Surface

Experiments Claim Warrant General Evidence Org. Word Conv

110 390 353 110 45 84 180

Majority 47.87 41.44 41.12 47.90 25.49 46.12 48.06
Unigram 59.67 61.64 66.38 48.39 49.23 51.63 53.58
All features 62.30 67.08∗ 72.47∗ 48.28 54.01∗ 73.79∗ 70.95∗
Textual+unigram 56.18 64.84∗ 72.08∗ 49.55 52.62∗ 58.75∗ 66.35∗
Language+unigram 57.76 66.27∗ 69.23∗ 48.81 49.21 65.01∗ 69.62∗
Location+unigram 62.79∗ 66.46∗ 70.55∗ 49.61 49.25 52.36 49.25

Table 5.5: Experiment 3 on corpus HSchool1: average unweighted F-score from 10-fold (stu-

dent) cross-validation; ∗ indicates significantly better than majority and unigram baselines.

Rebuttal is removed as it only occurred once.

N = 1054 Content Surface

Experiments Claim Warrant General Evidence Word Conv

76 327 216 34 283 109

Majority 43.23 37.05 40.17 44.25 37.91 42.17
Unigram 44.44 51.50 47.09 44.48 50.33 47.44
All features 46.03∗ 60.18∗ 46.96 47.56∗ 64.89∗ 68.75∗
Textual+unigram 43.22 56.64∗ 45.72 48.62∗ 64.33∗ 68.19∗
Language+unigram 44.34 54.50∗ 47.23 45.81 65.01∗ 69.62∗
Location+unigram 45.61∗ 56.73∗ 47.53∗ 49.28∗ 54.96∗ 48.37

Table 5.6: Experiment 3 on corpus HSchool2: average unweighted F-score from 10-fold (stu-

dent) cross-validation; ∗ indicates significantly better than majority and unigram baselines.

Rebuttal and Organization are removed because of rare occurrence.
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N = 1757 Content Surface

Experiments Claim Warrant General Evidence Org. Word Conv

42 463 260 67 42 719 127

Majority 49.41 42.54 46.06 48.99 49.39 36.90 48.06
Unigram 49.41 55.97 48.24 48.99 49.39 71.51 48.76
All features 49.41 75.78∗ 55.41∗ 48.99 49.39 86.64∗ 64.03∗
Textual+unigram 49.41 70.81∗ 51.76∗ 48.99 49.39 86.27∗ 58.65∗
Language+unigram 49.41 63.27∗ 49.23∗ 48.99 49.39 86.11∗ 63.62∗
Location+unigram 49.41 67.17∗ 50.56∗ 48.99 49.39 80.17 48.01

Table 5.7: Experiment 3 on corpus ArgRewrite: average unweighted F-score from 10-fold

(student) cross-validation; ∗ indicates significantly better than majority and unigram base-

lines. Rebuttal is removed as it only occurred once.

on corpora HSchool1, HSchool2 and ArgRewrite. Results show that our learned models

significantly beat majority and unigram baselines for all of unweighted precision, recall and

F-score.

According to Table 5.4 , the conclusions drawn from the predicted revisions and anno-

tated revisions are similar (Table 3.3). Content changes are significantly correlated with

writing improvement, while surface changes are not. We observe significant correlation be-

tween content changes and we can also see that the coefficient of the predicted content change

correlation is close to the coefficient of the manually annotated results.

Analysis of Experiment 3

Table 5.5, Table 5.6 and Table 5.7 show the classification results for the fine-grained

categories. Our results are not significantly better than the unigram baseline on Evidence of

HSchool1. While the poor performance on Evidence might be due to the skewed class distri-

bution, our model also performs better on Conventions where there are not many instances.

For the categories where our model performs significantly better than the baselines, we see

that the location features are the best features to add to unigrams for the content changes

(significantly better than baselines except Evidence on HSchool1 and better than all base-

lines on HSchool2 ), while the language and textual features are better for surface changes.

The contribution of the feature groups also varies on different corpora. For example, the
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textual feature group is predictive for Evidence changes on HSchool2 while not predictive

on HSchool1. We have similar findings on corpus ArgRewrite, where textual features and

location features work better for Content revisions and language features work better for

Surface revisions. We also see that using all features does not always lead to better results,

probably due to over fitting. Replicating experiments in these three corpora also demon-

strates that our schema and features can be applied across essays with different topics with

similar results.

5.3 ENHANCE THE CLASSIFICATION PERFORMANCE WITH

CONTEXTUAL FEATURES

Because the investigation of the feature groups for revision classification indicated there was

still significant room for improvement, we explored the ways to enhance the classification

performance. In this study, we focus on the classification task assuming we have the gold

standard alignments. As we focus on argumentative changes, we merge all the Surface sub-

categories into one Surface category. As we found that both Rebuttals and multiple labels

for a single revision were rare, we merge Rebuttal and Warrant into one Warrant category

and allow only a single (primary) label per revision. Different revision types are assigned

different priority and the type with highest priority is selected8. This simplification allows

us to explore the classification of revision purposes using the sequence labeling technique.

The features used in the previous section were used together as the baseline features. This

section describes our work in (Zhang and Litman, 2016).

5.3.1 Related Work

Lawrence et al. (2014) use changes in topic to detect argumentation, which leads us to

hypothesize that different types of argumentative revisions will have different impacts on

text cohesion and coherence. Guo et al. (2011) and Park et al. (2015) both utilize Condi-

8Order of priority: Claim > Rebuttal > Evidence > Reasoning > General > Word Usage/Clarity >
Conventions/Grammar/Spelling
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tional Random Fields (CRFs) for identifying argumentative structures. While we focus on

the different task of identifying revisions to argumentation, we similarly hypothesize that

dependencies exist between revisions and thus utilize CRFs in our task.

5.3.2 Methodology

Adding contextual features

We proposed two new types of contextual features to enhance the classification perfor-

mance. The first type (Ext) extracts the baseline features from not only the aligned sentence

pair representing the revision in question, but also for the sentence pairs before and after

the revision. The second type (Coh) measures the cohesion and coherence changes in a

2-sentence block around the revision.

Utilizing the cohesion and coherence difference.

Inspired by works in (Lee et al., 2015; Vaughan and McDonald, 1986), we hypothe-

size that different revisions can have different impacts on the cohesion and coherence of

the essay. We propose to extract features for both impact on cohesion (lexical) and im-

pact on coherence (semantic). Inspired by Hearst (1997), sequences of blocks are created

for sentences in both Draft 1 and Draft 2 as demonstrated in Figure 5.1. Two types of

features are extracted. The first type describes the cohesion and coherence between the re-

vised sentence and its adjacent sentences. The similarity (lexical/semantic) between the re-

vised sentence block and the sentence block before (Sim(Block Up,Block Up Self)) and af-

ter (Sim(Block Down,Block Down Self)) are calculated as the cohesion/coherence scores

Coh Up and Coh Down. The features are extracted separately for Draft 1 and Draft 2 sen-

tences9. The second type describes the impact of sentence modification on cohesion and

coherence10. Features Change Up and Change Down are extracted as the division of the

cohesion/coherence scores of two drafts (Coh Up(Draft2)
Coh Up(Draft1)

, Coh Down(Draft2)
Coh Down(Draft1)

).

A bag-of-word representation is generated for each sentence block after stop-word filtering

and stemming. Jaccard similarity is used for the calculation of lexical similarity between

sentence blocks. Word embedding vectors (Mikolov et al., 2013) are used for the calculation

9For the added and deleted sentences, features of the empty sentence in the other draft are set to 0.
10The feature values of sentence additions/deletions are 0
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Figure 5.1: Example of cohesion blocks. A window of size 2 is created for both Draft 1 and

Draft 2. Sequence of blocks were created by moving the window at the step of 1 (sentence).

of semantic similarity. A vector is calculated for each sentence block by summing up the

embedding vectors of words that are not stop-words. Afterwards the similarity is calculated

as the cosine similarity between the block vectors. This approach has been taken by multiple

groups in the SemEval-2015 semantic similarity task (SemEval-2015 Task 1)(Xu et al., 2015).

Transforming to sequence labeling

To capture dependencies among predicted revisions, we transform the revisions to a

consecutive sequence and label it with Conditional Random Fields (CRFs) as demonstrated

in Figure 5.2. For both drafts, sentences are sorted according to their order of occurrence in

the essay. Aligned sentences are put into the same row and each aligned pair of sentences

is treated as a unit of revision. The “cross-aligned” pairs of sentences11 (which does not

often occur) are broken into deleted and added sentences12. After generating the sequence,

each revision unit in the sequence is assigned the revision purpose label according to the

annotations, with unchanged sentence pairs labeled as Nochange.

We conducted labeling on both essay-level and paragraph-level sequences. The essay-

11Sentences in Draft 1 switched their positions in Draft 2, the cross-aligned sentences cannot be both in
the same row and and following their order of occurrence at the same time.

12I.e, the cross-aligned sentences in Draft 1 are treated as deleted and the sentences in Draft 2 are treated
as added.
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Figure 5.2: Example of revision sequence transformation. Each square corresponds to a

sentence in the essay, the number of the square represents the index of the sentence in the

essay. Dark squares are sentences that are changed. In the example, the 2nd sentence of

Draft 1 is modified, the 3rd sentence is deleted and a new sentence is added in Draft 2.

level treats the whole essay as a sequence segment while the paragraph-level treats each

paragraph as a segment. After labeling, the label of each changed sentence pair is marked

as the purpose of the revision13.

5.3.3 Experiments and results using the contextual information enhancement

In this work, we directly compare the performance of our CRF + Contextual features ap-

proach with the SVM baseline14.

Experiments

We tested whether the performance is improved by considering contextual features and

transforming the problem to a sequence labeling problem. We first conducted a 10-fold

(student) cross-validation on the performance of surface vs. text classification using the

13Revisions on cross-aligned pairs are marked as Surface.
14SVM model implemented with Weka (Hall et al., 2009) and CRFs model implemented with CRF-

Suite (Okazaki, 2007)

61



Corpora Precision Recall F-score

HSchool1 (SVM) 62.55 58.01 54.39

HSchool1 70.66∗ 68.23∗ 69.27∗

HSchool2 (SVM) 57.60 51.17 49.64

HSchool2 66.79∗ 63.46∗ 64.96∗

ArgRewrite (SVM) 50.40 50.60 49.98

ArgRewrite 53.50∗ 52.41∗ 53.16∗

Table 5.8: Experiment 1 using the enhanced approach on corpora Hschool1, HSchool2 and

ArgRewrite (Surface vs. Content): average unweighted precision, recall, F-score from 10-fold

(student) cross-validation; same set of folds as Table 5.3 are used for comparison, all results

are significantly better than the SVM approach

contextual enhancement approach. The same set of data were used as in Experiment 1

for the comparison with the SVM model. Afterwards we compared the SVM model and

the enhanced approach in a 5-class classification setting (Experiment 4)15. We merge all

the surface revision types into one “Surface” revision type and ignore the revision type

(Rebuttal/Reservation) that rarely occurs. In the experiment we also examined whether the

contextual features can improve the performance of the SVM model. All experiments are

conducted using 10-fold (student) cross-validation with 300 features selected using learning

gain ratio16.

Analysis

Table 5.8 demonstrate that our CRF approach is significantly better than the prior SVM

approach on surface vs. content classification. On multi-class classification, as demonstrated

in Table 5.9, we observe that the Coh features yield a non-significant improvement over the

baseline features on Corpus HSchool1, and a significant improvement on Corpora HSchool2

15Experiment 3 (binary classification for each category) is not fit for the testing of the CRFs approach as
the CRFs approach needs to take advantage of the label information

16We tested with parameters 100, 200, 300, 500 on a development dataset disjoint from HSchool1, HSchool2
and ArgRewrite and chose 300 which yielded the best performance.
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SVM CRFs

Base(B) B+Ext B+Coh All All

HSchool1 P 0.666 0.689 0.673 0.684 0.701∗

R 0.620 0.632 0.630 0.630 0.642∗

F 0.615 0.630 0.619 0.626 0.643∗

HSchool2 P 0.530 0.543 0.559 ∗ 0.553∗ 0.655∗

R 0.516 0.525 0.534 ∗ 0.532 0.532

F 0.502 0.510 0.524 ∗ 0.520∗ 0.584∗

ArgRewrite P 0.565 0.575 0.590 ∗ 0.610∗ 0.658∗

R 0.544 0.546 0.543 0.532 0.524

F 0.533 0.540 0.563 ∗ 0.540 0.640∗

Table 5.9: Experiment 4. The average of 10-fold (student) cross-validation 5-class clas-

sification (Claim/Ideas, Warrant/Reasoning/Backing, Evidence, General Content, Surface)

results on Corpora HSchool1, HSchool2 and ArgRewrite. Unweighted average precision (P),

Unweighted recall (R) and Unweighted F-measure (F) are reported. Results of CRFs on

paragraph-level segments are reported (there is no significant difference between essay level

and paragraph level). The first four columns of Table 5.9 show the performance of base-

line features with and without our new contextual features using an SVM prediction model.

The last column shows the performance of CRFs using all features. ∗ indicates significantly

better than the baseline, Bold indicates significantly better than all other results (Paired

T-test, p < 0.05).
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and ArgRewrite . This indicates that changes in text cohesion and coherence can indeed im-

prove the prediction of argumentative revision types. The Ext feature set - which computes

features for not only the revision but also its immediately adjacent sentences - also yields a

slight (although not significant) improvement. However, adding the two feature sets together

does not further improve the performance using the SVM model. The CRF approach almost

always yields the best results for all corpora, with all such CRF results significantly better

than all other results. This indicates that dependencies exist among argumentative revisions

that cannot be identified with traditional classification approaches.

5.4 ENHANCING THE CLASSIFICATION PERFORMANCE WITH

DISCOURSE INFORMATION

Discourse analysis is a hot research topic recently. We also believe using discourse analysis

results can improve the performance of classification since the discourse relations represent

the impact of the revised text to the argument. For example, if the discourse relation of a

sentence with its adjacent sentence is Expansion, the sentence is less likely to be the thesis of

the essay, and thus unlikely to be a Claim revision. This is inspired by (Cabrio et al., 2013)

where the discourse relations are mapped to argument structures. In (Forbes-Riley et al.,

2016), discourse relations on corpus HSchool1 were annotated under the Penn Discourse

Treebank (PDTB) Framework, which allows us to explore whether it is possible to improve

the performance with discourse information. This section describes our work in (Zhang et al.,

2016b).

5.4.1 PDTB Introduction

We decide to have the discourse relationship described using the Lexicalized Tree Adjoining

Grammar for Discourse (D-LTAG) (Webber, 2004) as it is easier to adapt its discourse

relations to the features used in our model. The Penn Discourse TreeBank (PDTB) (Prasad

et al., 2008) is an annotated corpus based on the D-LTAG model and multiple automatic
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Draft2 Essay (1) The lustful are those who long and crave for one another. (2) The person
guilty of lust is put in this layer of hell because of his over indulgence of
sexual-pleasure. (3) The man who is stuck in this layer is Hue Heffner. (4)
He has devoted his entire life for other people ’s lustful pleasure and his
own. (5) He has spent millions on working on his mansion which is for the
purpose of other lustful desires. (6) People who were stuck in this layer are
constantly whipped around and “ banging ” into one another. (7) What you
do in your Earthly presence follows with you into Hell. (8) For him and like
many others he is now tortured in a whirlwind of torment with others lustful
accommodators with himself.

Annotated PDTB (1->2, EntRel), (2->3, Expansion), (3->4, Contingency), (4->5, Expansion),
(5->6, EntRel), (6->7, Contingency), (7->8, Contingency)

Table 5.10: A paragraph from an essay about putting contemporaries into different levels of

hell (top), and annotated PDTB relations between sentences (bottom). The paragraph can

be divided into two segments. In the first segment (sentences (1) to (3)) the author introduces

the person to be put in the lustful layer. In the second segment (sentences (4) to (8)), the

author states why this person belongs there and how he will be treated. PDTB relations are

processed from PDTB annotations ignoring the discourse connectives, e.g. (1->2, EntRel)

represents the discourse information: (Arg1: Sentence1, Arg2: Sentence2, Relation Type:

EntRel).
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discourse analysis research works have been done on the corpus (Pitler et al., 2009; Pitler

and Nenkova, 2009; Zhou et al., 2010; Wang et al., 2010). PDTB-style annotation (Prasad

et al., 2008) adopts a lexically grounded approach by anchoring discourse relations according

to discourse connectives. In a typical PDTB annotation process, an annotator first locates

discourse connectives (explicit or implicit) then annotates text spans as their arguments.

While the process of manual PDTB annotation has been demonstrated to yield reliable

results (Alsaif and Markert, 2011; Danlos et al., 2012; Zhou and Xue, 2015; Zeyrek et al.,

2013), it yields more shallow annotation when compared to another widely-used discourse

scheme, namely Rhetorical Structure Theory (RST) (Mann and Thompson, 1988; Carlson

et al., 2002). This is because when using RST a text is represented as a hierarchical discourse

tree, while when using PDTB the relations exist only locally (typically between sentences or

clauses). Table 5.10 presents an example of PDTB annotation.

The lack of discourse information across larger contexts potentially limits the utility

of PDTB-style labels. Feng et al. (2014) found that when applied to the tasks of sen-

tence ordering and essay scoring, an RST-style discourse parser outperformed a PDTB-style

parser. Performance on both tasks was also likely impacted by parsing errors. To address

both the local nature of PDTB-style annotations as well as the errors introduced by state-

of-the-art discourse parsers, we propose to first build paragraph-level discourse structures

from annotated PDTB labels, then to infer discourse relations based on these structures.

We hypothesize that features extracted from inferred relations will improve performance in

downstream applications, compared to features extracted from only original annotations.

Thus three approaches were attempted to utilize PDTB information for revision classifi-

cation. Besides using PDTB annotations directly, two approaches were proposed to infer

long-distance PDTB relations between sentences.

5.4.2 Intuitions for PDTB Inference

Different from other discourse annotations, the PDTB annotation schema anchors at the la-

beling of discourse connectives and labels text spans around the connective. The annotator

either locates the “Explicit” connectives or manually fills in the “Implicit” connectives be-
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tween two text spans. The text span where the connective structurally attaches to is called

Arg2, while the other text span is called Arg1. The spans are usually used at the level of

sentence/phrase. In Prasad et al. (2014), five relation types are annotated: Explicit, Implicit,

AltLex, EntRel and NoRel. Within the Explicit/Implicit relations, the senses of relations are

further categorized at multiple levels. In Level-1, the relations are categorized to 4 senses:

Comparison, Contingency, Expansion and Temporal. We focus on the type/sense of Level-1

relations only and ignore the discourse connectives17. Arg1, Arg2 and the discourse rela-

tion type/sense are used as demonstrated in Table 5.10. For the Explicit/Implicit relations,

we use the sense of the relation directly to represent the relation. Below we explain our

intuitions for inferring new discourse relations within the paragraph.

Intuition 1. Latent discourse relations can be inferred from annotated discourse rela-

tions. In this paper we explore two possible cases: 1) Same type transition: If sentence

A has relation type T with sentence B and sentence B has the same relation type with

sentence C, we can infer that A has relation type T with C. In the example in Table 5.10,

a Contingency relation between sentences 6 and 8 will be inferred from the Contingency

relationships between sentences (6,7) and sentences (7,8). 2) Across segment propaga-

tion: If a paragraph can be segmented to text segments semantically dissimilar to each other

(i.e. the two text segments are serving different semantic purposes), the discourse relation

of sentences on the boundary of two segments can be propagated to infer weaker relations

between all sentences in the segments. In the example in Table 5.10, due to the discourse

relation between sentences 3 and 4 and the segment boundary between them, the segment

from 4 to 8 will also be viewed as a reasoning (Contingency) of the segment from 1 to 3 (why

and how Hue Heffner belongs to the lustful level), and weak relations are inferred between

sentences (1,2,3) and (4,5,6,7,8).

Intuition 2. The importance of discourse relations to argumentation varies even if the

relation types are the same. The relations connecting the semantically dissimilar segments

are likely to be more important than the relations within a segment. In Table 5.10, the

Contingency relation between sentences 3 and 4 transits the thesis introduction to the ar-

guments supporting the thesis. The Contingency relation between sentences 6 and 7 is just

17We plan to explore connectives in future work.
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Figure 5.3: The construction of PDTBSegment structure of the example in Table 5.10. As

sentence similarity between 3 and 4 is 0.22, smaller than the value 0.56 (before) and 0.55

(after), the paragraph is segmented to segment(1-3) and segment (4-8). Afterwards relations

are inferred both within the segment and across the segments. The dashed lines represent

the propagated relations.

a transition to smooth the description of how Hue Heffner is going to be treated.

5.4.3 PDTB Inference - PDTBSegment

Based on intuition 1, the PDTBSegment approach emphasizes the inference of discourse

relations.

Step1. Linear segmentation. Inspired by the TextTiling algorithm (Hearst, 1997) for

linear segmentation, we utilize the “valley” of semantic similarity scores between sentences

as the segmentation boundary.

The summed word-embedding vector is calculated for each sentence18 and cosine value

between vectors is used as the similarity score. Similarity scores indicates a possible seg-

mentation boundary. In the example of Figure 5.3(a), the similarity between (2,3) and the

similarity between (4,5) are larger than the similarity between (3,4), in other words, sentence

3 and 4 has a low similarity score preceded by and followed by high similarity scores, thus

18Pre-trained word2vec vectors from (Mikolov et al., 2013).
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Figure 5.4: PDTBTree structure of Table 5.10 example. The dashed lines represent the

propagated relations.

the paragraph is first segmented into segment (1,2,3) and segment (4,5,6,7,8) as in Figure

5.3(b).

Step2. Relation inference. 1) Within segment. We conduct “same type transition”

for sentences within the same segment. As in Figure 5.3(c), there exists relation Contingency

between 6 and 8 as the same relationship exists between 6, 7 and 7, 8. 2) Across segment.

“Across-segment propagation” is conducted for sentences in different segments. If there

exists relation (type T) between two segments Seg1 and Seg2, a relation with type T is

inferred for each sentence in Seg1 and each sentence in Seg2. In Figure 5.3(c), we propagate

the Contingency relations between sentence (1,2,3) and sentences (4,5,6,7,8).

5.4.4 PDTB Inference - PDTBTree

PDTBTree focuses on intuition 2 using sentence aggregation. To better separate impor-

tant discourse relations, a hierarchical tree structure is constructed for each paragraph and

relations then inferred.

Step 1. Tree construction. As in Figure 5.4(a), the tree is constructed iteratively

starting with each sentence constructed as a leaf node. Semantic similarities between adja-

cent sentences are calculated in the same manner as the PDTBSegment approach. In each

round, the two most similar nodes are selected and merged into one node and similarities
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between the merged node and its adjacent nodes are calculated19. The selection and merge

of nodes repeats until there is only one root node left.

Discourse relations are assigned to the non-leaf nodes after tree construction. For each

tree node, sentences in its left and right child are listed asNodesleft andNodesright. Relations

with Arg1 in Nodesleft and Arg2 in Nodesright are assigned to the merged node. For example,

the discourse relation (1->2, EntRel) is assigned to the root node as sentence 1 is in its left

child and sentence 2 is in its right child. After this step we bind each non-leaf node with one

or several discourse relations.

Step 2. Relation inference. Relations are first assigned different levels of importance

as depths. As in Figure 5.4(b), the assignment starts at the root node and traverses the

whole tree until all the non-leaf nodes are labeled. Depth starts from 1 and smaller number

indicates larger importance. As in the example, we notice that the transition from the thesis

to its reasoning (3->4) is recognized as a depth-2 relation while the transitions between

sentences 6,7,8 are recognized as depth-4 and depth-5 relations.

Afterwards discourse relations are inferred by traversing up from the leaf nodes back to

their parent nodes. The parent node is used as the discourse connector and its child leaf

nodes are used as Arg1 and Arg2. For example, in Figure 5.4(b), sentence 3 is the left child of

the node (3->4, Contingency) and sentence 5 is the right child. Thus we infer the discourse

relation between 3 and 5 as (3->5, Contingency).

5.4.5 Utilizing PDTB Information

Constructing the relation matrix

For both approaches, relation matrices are constructed to represent the discourse in-

formation as in Table 5.11. Extraction of features using the matrix is described in the

next section. Relations already labeled by the annotator/parser are directly recorded in

the matrix. Observing that the reliability of an inferred relation decreases as the number

of annotated relations connecting the arguments increases, we record not only the relation

types but also the “distance” information for the inferred relations.

19The similarity between merged nodes is calculated as the average of the similarity between their child
leaf nodes.
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Segment 1(Arg2) 2 3 4 5 6 7 8

1(Arg1) N/Aa Ent N/Ab Cont
(2,0)c

Cont
(2,1)

Cont
(2,2)

Cont
(2,3)

Cont
(2,4)

2 N/A N/A Expan Cont(1,0) Cont
(1,1)

Cont
(1,2)

Cont
(1,3)

Cont
(1,4)

3 N/A N/A N/A Cont Cont
(0,1)

Cont
(0,2)

Cont
(0,3)

Cont
(0,4)

4 N/A N/A N/A N/A Expan N/A N/A N/A
5 N/A N/A N/A N/A N/A EntRel N/A N/A
6 N/A N/A N/A N/A N/A N/A Cont Cont

(1)
7 N/A N/A N/A N/A N/A N/A N/A Cont
8 N/A N/A N/A N/A N/A N/A N/A N/A

Tree 1(Arg2) 2 3 4 5 6 7 8

1(Arg1) N/A Ent-1 Ent-
1(0,1)d

Ent-
1(0,1)

Ent-
1(0,2)

Ent-
1(0,2)

Ent-1
(0,3)

Ent-
1(0,3)

2 N/A N/A Expan-
3

Cont-
2(1,0)

Cont-
2(1,1)

Cont-
2(1,1)

Cont-
2(1,2)

Cont-
2(1,3)

3 N/A N/A N/A Cont-2 Cont-
2(0,1)

Cont-
2(0,1)

Cont-
2(0,2)

Cont-
2(0,3)

4 N/A N/A N/A N/A Expan-
4

Ent-
3(1,0)

Ent-
3(1,1)

Ent-
3(1,2)

5 N/A N/A N/A N/A N/A Ent-3 Ent-
3(0,1)

Ent-
3(0,2)

6 N/A N/A N/A N/A N/A N/A Cont-4 Cont-
4(0,1)

7 N/A N/A N/A N/A N/A N/A N/A Cont-
5(0,1)

8 N/A N/A N/A N/A N/A N/A N/A N/A

Table 5.11: Relation matrix constructed for the PDTBSegment approach (Upper) and the

PDTBTree approach (Below). Ent is short for EntRel, Expan short for Expansion and Cont

short for Contingency.

aRelationship between clauses within the sentence is not used in relation inference.
bNo relations can be inferred between 1 and 3.
cCont (2,0) means distance to real Arg1 is 2 and distance to real Arg2 is 0. Here the inferred relation is

coming from the labeled relation (3->4, Contingency). 3 is the real Arg1 and 4 is the real Arg2. Distance
to real Arg1 is 2 as the the distance between 1 and 3 is 2.

dEnt-1(0,1) stands for Depth 1 distance, distance=0 for Arg1 and distance = 1 for Arg2.
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For the PDTBSegment approach, distances are recorded separately for within-segment

relations and across-segment relations. For within-segment relations, the distance is recorded

according to the number of sentences between Arg1 to Arg2. For example, distance for

sentence 6 and 8 is recorded as 2 as there is one sentence between the two sentences. For

across-segment relations, distances are recorded for both Arg1 and Arg2 according to their

distances to the real Arg1/Arg2 of the across-segment relation as (Dist1, Dist2). For example,

distance between sentence 1 and 5 is recorded as (2,1) as there is the distance of 2 between

sentence 1 and 3 and there is the distance of 1 between sentence 4 and 5.

For the PDTBTree approach, we traverse up from Arg1 and Arg2 to their closest

common parent node and count the distances for both arguments as (Dist1, Dist2). In Table

5.11, distance between sentence 2 and 5 is recorded as (1,1) as we back trace both nodes to

their parent node (3->4). As sentence 2 is the real text span in relation node (2->3) and

sentence 5 is in the node (5->6), we get distance 1 for sentence 2 as the distances between

(2->3) and (3->4) in the tree is 1; similarly, we get distance 1 for sentence 5.

Extracting Features

The PDTBSegment and PDTBTree structures are constructed for both drafts as in

Figure 5.5. Table 5.12 shows the PDTB features extracted for the added sentence 6 in Table

5.10, with features explained below.

Features using the labeled local PDTB information (Local). Features are extracted as the

types of relations a sentence is involved with (i.e. the relation where the sentence acts as

Arg1 or Arg2.) Features are extracted for sentences in both drafts. If a sentence is added or

deleted, the features for the empty sentence are marked as N/A.

Features using PDTBSegment (Segment).

• Individual features Within each draft, the features of sentences are extracted based on

the relation matrix. Similar to Local, we extract the discourse relation type of each

sentence acting as Arg1 and Arg220. Features for across-segment relations are extracted

separately since the discourse relations across segments are likely to be more important

than relations within segments. Weights are assigned to relations according to their

distance information. A within-segment relation with distance (d1) is assigned weight

20The row of the sentence in the relation matrix corresponds to Arg1 and the column corresponds to Arg2.
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1
d1+1

; an across-segment relation with distance (d1, d2) is assigned weight 1
(d1+1)∗(d2+1)

.

If a sentence is involved with multiple same-type relations, the relation with the largest

weight is chosen.

• PDTBSegment Structure change features For these across draft features, the segment

structures created for draft 1 and draft2 are compared. Nodes of segment structures are

aligned according to the sentence alignment information. After comparison, the aligned

nodes that are affected by the revision are selected, where the change of their related

relations with the revised sentence are counted. For example in Figure 5.5(b), sentences

1, 2, 3, 5, 8 are affected by the addition of sentence 6. For sentence 1, 2, 3, sentence 6

brings addition of three across-segment relations. For sentence 5, the original “NoRel”

label between sentence 5 and sentence 8 is removed. For sentence 8, relation between

sentence 6 and sentence 8 is added. A vector of relation changes is thus created according

to the relation matrix.

Features using PDTBTree (Tree).

• Individual features Features are collected in a similar manner as the PDTBSegment

approach. To enlarge the difference of different-depth relations, weight 1
2d1+d2 is assigned

to a relation with distance (d1, d2) .

• Structure change features Due to the complexity of the tree structure, only the non-leaf

nodes that are directly related to the revised sentence (i.e. the sentence as Arg1 or Arg2

of the relation) are considered in the extraction of structure changes. As in Figure 5.5(d),

the added sentence 6 acts as Arg2 in node (5->6) and Arg1 in node (6->7). Change of

relations (4->6), (5->6) are considered as the changed relations of node (5->6). Change

of relations (5->8) and (6->8) are the changed relations of node (6->7). Change vectors

are calculated in similar manners as the PDTBSegment approach at each depth. To

avoid data sparsity, the depth number is limited to 4 to reduce the number of features21.

21If the depth of tree is larger than 4, the depth of the relation is still considered as 4.
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Figure 5.5: The change of discourse structure from Draft 1 (D1) to Draft 2 (D2). The gray

nodes are the affected nodes and the dashed lines are the affected relations. Sentences are

aligned as (1->1), (2->2), (3->3), (4->4), (5->5), (6->8), (Null->6), (Null->7).

Features Example

Loc D1-Arg1a: N/A, D1-Arg2: N/A, D2-Arg1: Contingency, D2-Arg2: EntRel

Seg Individual: WithinSegment: D1-Arg1: N/A, D1-Arg2: N/A, D2-Arg1: Contin-
gency, D2-Arg2: EntRel, AcrossSegment: D2-Arg2: (Contingency, 1

3)b

Structure: WithinSegmentc: (-1, 1, 0, 0, 0.5, 0, 0), AcrossSegment: (0, 0, 0, 0, 1
3 ,

0, 0)

Tree Individual: D1-Arg1: N/A, D1-Arg2: N/A, D2-Arg1: Contingency-4, D2-Arg2:
(EntRel-1,18), (Contingency-2, 1

4), EntRel-3
Structure: Depth1Vector: (0,0,0,0,0,0), Depth2Vector:(0,0,0,0,0,0), Depth3Vector:
(-1,1,0,0,0,0), Depth4Vector: (0,0, 0,0,1,0,0)

Table 5.12: Examples of the features extracted for the added sentence 6 in Table 5.10.

aD1-Arg1 means features of sentence acting as Arg1 in the first Draft.
b(Contingency, 1

3 ) represents relation type Contingency with weight 1
3 .

cThe columns of the change vector are (NoRel, EntRel, AltLex, Comparison, Contingency, Expansion,
Temporal).
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Corpus HSchool1 Base Base+Local Base+Segment Base+Tree

Claim (110) .623 .630 .640 .668‡∗

Warrant (390) .671 .693 .715‡∗ .713‡∗

Evidence (110) .482 .510∗ .538‡∗ .544‡∗

General (353) .725 .732 .756‡∗ .744∗

Organization (45) .540 .538 .544 .538

Word Usage/Clarity (84) .738 .740 .732 .740

Conventions/Grammar/Spelling (180) .710 .721 .733 .728

Table 5.13: Experiment 3. 10-fold (student) cross-validation. The unweighted average F-

measure is reported. ∗ indicates significantly better than the baseline (paired T-test, p<0.05),

‡ indicates significantly better than (Base+local), bold indicates best.

5.4.6 Experiments and Results Using the Discourse Information Enhancement

Experiment We first repeated Experiment 3 using our new proposed feature group. We

compared the results using inferred information to the baseline results, and to the results

with baseline features plus each individual feature group22. Table 5.13 demonstrates the

results.

Afterwards we repeated Experiment 4 using our new proposed feature group. The en-

hanced approach in Section 5.3 was used as the baseline. Table 5.14 demonstrates the

results.

Analysis

According to Table 5.13, comparing to the baseline, Base+Local (using only features

from the labeled PDTB relations) yields a significant improvement only when classifying

Evidence revisions. In contrast, both Base+Segment and Base+Tree (our inference-based

approaches) yield several significant improvements over the baseline23. Comparing to the

22We also experimented mixing all the features groups together but did not observe significant improve-
ment.

23We also tested using just individual features (without the structure change features) and both approaches
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Corpus HSchool1 Base Base + Local Base + Segment Base + Tree

Precision 0.701 0.710 0.730∗‡ 0.728∗

Recall 0.642 0.644 0.652 0.651

F-Measure 0.643 0.648 0.678∗‡ 0.669∗

Table 5.14: Experiment 4. The average F-measure of 10-fold (student) cross-validation is

reported, ∗ indicates significantly better than the baseline (paired T-test, p<0.05), ‡ indicates

significantly better than (Base+local), bold indicates best.

baseline, the PDTBSegment approach yields significant improvement in the classification

of Warrant, Evidence and General Content revisions and the PDTBTree approach yields

significant improvement in the classification of all revisions except Surface. For the minority

category Evidence, the PDTBTree approach improved F1 from 0.288 to 0.415. Comparing

to the results using only labeled PDTB, the PDTBSegment approach yields significant

improvement in the classification of Warrant, Evidence and General, while the PDTBTree

approach yields significant improvement in the classification of Claim,Warrant and Evidence

and a significant overall F1 improvement. Table 5.14 further demonstrates that the features

extracted from the inferred PDTB relations can improve the performance of the contextual

enhancement approach, indicating that the inferred relations introduces additional informa-

tion for revision classification.

It is worthy to notice that the results reported are based on manually labeled PDTB

information, and thus shows an upperbound of PDTB application. The real application of

PDTB in revision classification can be influenced by the correctness of automatic PDTB

recognition.

Also, while the PDTB inference approach works for the revision classification problem

in this thesis, it is unclear whether this approach can be generalized for other tasks such

as argument mining. We can investigate the problem from two directions 1) Applying the

still significantly outperform the baseline.
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method on another task and check whether a similar improvement can be observed. 2) An

intrinsic evaluation of the inferred PDTB relations, one possible way to do the evaluation is

to check whether the Amazon Mechanical Turkers would agree with the inferred relation.

5.5 SUMMARY

In this chapter I describe our efforts in the automatic identification of revisions. We first

investigated the automatic extraction of revisions and treated the problem as a monolingual

sentence alignment problem. Afterwards we investigated the automatic classification of revi-

sions. We first investigated the application of features and approaches used in prior studies

to our problem. Three groups of features were collected: Location, Textual, Language. The

performance is evaluated both intrinsically and extrinsically. In the intrinsic evaluation, per-

formance was compared both on surface vs. content classification and binary classification

for each individual category. Both results demonstrated significantly better performance

than the unigram and majority baseline. In the extrinsic evaluation, we repeated the revi-

sion study in Chapter 3 using the number of predicted revisions. The study on predicted

revisions demonstrate similar results as the manually annotated revisions. Afterwards we

explored enhancing the classification performance using contextual information. Results

demonstrated that by using contextual features and transforming the classification problem

to a sequence labeling problem, we achieved significantly improvement over our previous

approach. Finally we explored the possibility of improving classification performance using

discourse relations between sentences and results demonstrated that the performance could

be improved with discourse information.

The results of section 5.2 suggest the correctness of hypothesis H2.1. Section 5.3 suggests

the correctness of hypothesis H2.2. Section 5.4 supports hypothesis H2.3.
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6.0 AUTOMATIC REVISION IDENTIFICATION (JOINT)

In Chapter 5, we introduced our pipelined approach to address the problem of revision

identification. One problem of the pipelined approach is that the errors of the revision

extraction step are propagated to the revision classification step. To solve this problem, an

approach that can conduct revision extraction and revision classification at the same time

is needed. This chapter describes our solution in (Zhang and Litman, 2017).

6.1 INTRODUCTION

Table 6.1 demonstrates an example of error propagation in argumentative revision classifi-

cation. According to human annotation, (D1-2) should be aligned to (D2-2), (D1-3) should

be aligned to (D2-3). Based on alignment, their revision types should be Surface1. However,

when the automatic sentence alignment misses the alignment, the revision classification step

considers the sentences as deleted and categorizes them as Reasoning.

We propose a sequence labeling-based joint identification approach by incorporating the

output of both tasks into one sequence. The approach is designed based on two hypotheses.

First, the classification of a revision can be improved by considering its nearby

revisions. For example, a Claim revision is likely to be followed by a Reasoning revision2.

In (Zhang and Litman, 2016) we used the types of revisions as labels and transformed the

revision classification task to a sequence labeling problem. Results demonstrated significantly

better performance than SVM-based classification approaches. In this work, we extend the

1Surface include changes such as spelling correction and sentence reorderings that do not change a paper’s
content.

2If you changed the thesis/claim of your essay, you have to change the way you reason for it.
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Draft 1
(D1-1) Tone has a lot to say for Louv. (D1-2) On account that Louv uses words to
sound completely annoyed and disgusted with how far people have drifted, says he is very
disgusted and annoyed. (D1-3) The beginning paragraph tells that scientists can now,
at will, change the colors of butterfly wings. (D1-4) Telling how humans are in control,
at will, with nature.

Draft 2
(D2-1) The way Louv talks throughout the essay is his tone. (D2-2) Using words to
sound very annoyed and completely disgusted. (D2-3) In the beginning of the excerpt,
Louv tells of what scientists are doing now with nature, such as changing the colors of
butterfly wings. (D2-4) Telling how humans are in control, at will, with nature.

Gold-standard revision extraction Automatic revision extraction
(D1-1, D2-1), (D1-2, D2-2), (D1-3, D2-3),
(D1-4, D2-4)

(D1-1, D2-1), (D1-2, Null), (Null, D2-2),
(D1-3, Null), (Null, D2-3), (D1-4, D2-4)

Gold-standard revision classification Automatic revision classification
(D1-1, D2-1, Modify, Surface) (D1-1, D2-1, Modify, Surface)
(D1-2, D2-2, Modify, Surface) (D1-2, Null, Delete, Reasoning)

(Null, D2-2, Add, Reasoning)
(D1-3, D2-3, Modify, Surface) (D1-3, Null, Delete, Reasoning)

(Null, D2-3, Add, Reasoning)
(D1-4, D2-4, Nochange) (D1-4, D2-4, Nochange)

Table 6.1: An example of pipeline revision identification errors (Bolded). A revision is

represented as (D1-SentenceIndex, D2-SentenceIndex, RevisionOp, RevisionType) (e.g. (D1-

1, D2-1, Modify, Surface)). In the example 6 revisions are identified. The revision extraction

step aligns D1-2 and D1-3 wrongly as the syntactic similarities between the gold-standard

sentences are not strong enough. The errors of the alignment step propagates to 4 false

“Reasoning” revisions in the revision classification step.
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ideas by introducing EditSequence to also utilize alignment information for revision type

prediction. An EditSequence describes a consecutive sequence of edits where not only the

revision type but also the alignment information are incorporated into the labels of the

edits. We hypothesize that adding alignment information can further improve revision type

prediction. Second, the alignment of sentences can be corrected according to the

types of labeled revisions. For example, the predicted types in Table 6.1 as a whole are

rare, as there are 2 deleted Reasoning sentences and 2 added Reasoning sentences without

any Claim change. Such a sequence is likely to have a small likelihood in sequence labeling

and thus a possible alignment error is detected. We introduce the idea of “mutation” from

genetic algorithms to generate possible corrections of sentence alignments. The alignment of

sentences after correction allows us to conduct a new round of revision type labeling. Our

approach iteratively mutate and label sequences until we cannot find sequences with larger

likelihood. Two approaches are utilized to generate seed sequences for mutation: (1) Direct

transformation from predicted sentence alignment (Zhang and Litman, 2014) (2) Automatic

sequence generation using a Recurrent Neural Network (RNN). These settings together allow

us to achieve better performance for both revision extraction and revision classification.

6.2 RELATED WORKS

The idea of using sequence labeling for revision identification derives from the work in (Zhang

and Litman, 2016), where the types of revisions used as labels. Revisions are transformed to

a sequence of labels according to the gold-standard alignment information. In this section,

the sentence alignment step is also included as a target of our identification3. We extend

our prior work by grouping sentence alignment and revision type together into one label for

joint identification.

As our tasks involve alignment, the problem in this chapter can look similar to a labeled

alignment problem, which can be solved with approaches such as CRFs (Blunsom and Cohn,

2006) or structured perceptrons/SVMs (Moore et al., 2006). For example, Blunsom and Cohn

3As the models in this chapter are trained at the paragraph level, we assume the paragraphs were aligned
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Figure 6.1: Overall approach architecture. Components within the dashed box are covered

in this chapter. Notice that sentence alignment in the preprocessing step can be skipped

with LSTM sequence generation.

(2006) utilized CRFs to induce word alignment between bilingual sentence pairs. In their

work, each sentence in the source document is treated as a sequence. Sequence labeling is

conducted on the source sentence and the index of the aligned word in the target sentence is

used as the label. Features such as translation scores between words are used and the Viterbi

algorithm is used to find the maximum posterior probability alignment for test sentences.

Our problem is more complicated as our labels cover both the alignment and the revision type

information. In labeled alignment, labels are used to represent the alignment information

itself in one sequence. In revision identification, labels are used to represent the interaction

between two sequences (the difference between sentences). Thus, our work utilized the

revision operation (add/delete/modify) instead of the sentence index to mark the alignment

information. Such design allows us to have the location information better coupled with the

revision type information, and meanwhile allows us to update the alignment prediction by

simply mutating the revision operation part of the labels.

The idea of sequence mutation is introduced from genetic algorithms to generate pos-

sible sentence alignment corrections. There are works on tagging problems (Araujo, 2002;

Alba et al., 2006; Silva et al., 2013) where genetic algorithms are applied to learn a best

labeling or rules for labeling. However, our approach does not follow the standard genetic

algorithm in that we do not have crossover operations and we stop mutating when the cur-

rent generation is worse than last. The idea behind our seed generation approach is similar
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to Sequential Monte-Carlo (Particle-filter) (Khan et al., 2004), where the sequence samples

are generated by sampling labels according to their previous labels. In the chapter we utilize

a Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) RNN to generate

sample sequences as seeds. The advantage of LSTM is that it can utilize long distance label

information instead of just the label before.

6.3 APPROACH DESCRIPTION

6.3.1 Approach Overview

Figure 6.1 demonstrates the workflow of our approach. The sentence alignment approach in

(Zhang and Litman, 2014) is first utilized to segment the essays into sentences and generate

a sentence alignment prediction. Afterwards seed EditSequences are generated either using

a LSTM network or by transforming directly from the predicted sentence alignment. The

seed EditSequences are then labeled by the trained sequence labeling model. The candidate

EditSequences are mutated according to the output of the sequence model. Finally the best

EditSequence is chosen and transformed to the list of revisions.

6.3.2 Transformation between Revision and EditSequence Representation

Instead of using the sentence indices as the alignment information as in other works (Blun-

som and Cohn, 2006), we propose EditSequence as a sequence representation of revisions.

It incorporates both the alignment information and the revision type information in one

sequence4.

EditStep is defined as the basic unit of an EditSequence. An EditSequence contains a

consecutive sequence of EditSteps. An EditStep unit contains 3 elements (Op1, Op2, RevType).

For a pair of revised essays (Draft1, Draft2), a cursor is created for each draft separately

and we define D1Pos,D2Pos to record cursor locations. Op1 and Op2 record the actions

4Following (Zhang and Litman, 2016), we treat a revision that reorders two sentences as a Delete and an
Add revisions.
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1 32

1 32

Draft 1

Draft 2

Cursor1: Move

Cursor2: Move

(a) M-M-Nochange

1 32

1 32

Cursor1: Keep

Cursor2: Move

(b) K-M-Reasoning

1 32

1 32

Cursor1: Move

Cursor2: Keep

(c) M-K-Reasoning

1 32

1 32

Cursor1: Move

Cursor2: Move

(d) M-M-Surface

Figure 6.2: Example of EditSequence transformation. The first row represents the sentences

of the original essay (Draft1) and the second row represents the sentences of the revised essay

(Draft2). The vertical direction indicates sentence alignment. The shadowed sentences are

revised and there are three revisions: (Null, 2, Add, Reasoning), (2, Null, Delete, Reasoning)

and (3, 3, Modify, Surface). With the cursors, we transform the revisions to 4 consecutive

EditSteps from left to right and generate the sequence representation (M-M-Nochange ->

K-M-Reasoning -> M-K-Reasoning -> M-M-Surface).

of the cursors. There are two cursor actions: Move (M) and Keep (K). Move indicates

that the corresponding cursor is going to move to the position of the next sentence while

Keep indicates that the cursor remains at the same location. RevType records the revision

type information. Following (Zhang and Litman, 2016), revision types include five types5

for sentences changed6 and one type Nochange when aligned sentences are identical.

Revisions to EditSequence. Figure 6.2 demonstrates how we transform from the

revision representation used in prior works to our sequential representation EditSequence.

In Figure 6.2(a), the cursors of the two drafts start at the beginning of the segment with

D1Pos and D2Pos set to 1. Given that sentence 1 in Draft1 is the same as sentence 1

in Draft 2, both cursors move to the next sentence and we generate an EditStep (M, M,

Nochange). In Figure 6.2(b), D1Pos and D2Pos are set to 2 according to the action of the

previous step. In the example, sentence 2 in Draft 2 is an added Reasoning sentence, thus

we generate a new EditStep (K-M-Reasoning) by keeping the cursor of Draft 1 in its current

5Claim/Ideas (Claim), Warrant/Reasoning/Backing (Reasoning), Evidence, General Content (General)
and Surface

6Added/Deleted/Modified
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position (for comparison at the next step) and moving the cursor of Draft 2. Similarly, we

move the cursor of Draft 1 in Figure 6.2(c). In Figure 6.2(d), D1Pos and D2Pos are set to

3. Sentences at the position are aligned to each other and both cursors are thus moved. Each

EditStep is assigned a label as Op1-Op2-RevType and thus we generate a labeled sequence

representation of revisions. As there are only three possible Op combinations (M-M, K-M,

M-K)7, the total number of possible labels is 3×RevisionClassNum.

EditSequence to Revisions. The sequence transformation step is reversible and we

can infer all the revisions according to the sequence of edits. Head of the EditStep label

indicates the revision location: a label starting with “M-M” indicates that two sentences are

aligned, “M-K” indicates that a sentence is deleted while “K-M” indicates that a sentence

is added. Tail of the label corresponds to the revision type.

6.3.3 EditSequence Labeling and EditSequence Mutation

For our first hypothesis, we conduct sequence labeling on EditSequence and use RevType

of the labeled sequence as the results of revision classification. For our second hypoth-

esis, we utilize both the likelihood provided by the sequence labeler and the (Op1,Op2)

information of labels to correct sentence alignments.

Given a candidate EditSequence, sequence labeling is conducted to assign labels to each

EditStep in the sequence. The RevType part of the assigned label is used as the revision

type. Conditional Random Fields (CRFs) (Lafferty et al., 2001) is utilized for labeling8.

Features used in (Zhang and Litman, 2015) are reused, which include unigrams and three

feature groups.

Location group. For each EditStep, we record its corresponding D1Pos and D2Pos as

features, We also record whether the D1Pos and D2Pos are at the beginning/end of the

paragraph/essay.

Textual group. For each EditStep, we extract features for the aligned sentences pair

(D1Pos, D2Pos). Features include sentence length (in both drafts), edit distance between

aligned sentences and the difference in sentence length and punctuation. We not only cal-

7At least one of the cursors has to move.
8CRFSuite (Okazaki, 2007) is used in implementation.
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culate the edit distance between sentence pair (D1Pos, D2Pos) but also for pairs (D1Pos,

D2Pos+1)9 and (D1Pos+1, D2Pos).

Language group. Part of speech (POS) unigrams and difference in POS counts are en-

coded. Again features are extracted for pairs (D1Pos, D2Pos+1) and (D1Pos+1, D2Pos)

besides (D1Pos, D2Pos).

Besides assigning labels to the sequence, the CRFs model also provides us the likelihood

of each label and the likelihood of the whole sequence. We compare the likelihood between

sequences to decide which sequence is a better labeling. Within one sequence, we compare

the likelihood between EditSteps to decide which EditStep is most likely to be corrected.

Besides using the likelihood of each EditStep, we also compare the (Op1, Op2) information

with the (Op1, Op2) information of the prior candidate EditSequence. We call it collision

when such information does not match, which indicates that the candidate’s alignment does

not follow a typical sequence pattern and suggests correction.

We borrow the idea of “mutation” from genetic algorithms to generate possible cor-

rections of sentence alignment. There are three possible kinds of “mutation” operations.

(1) “M-M” to “M-K” or “M-M” to “K-M”. This indicates breaking an alignment

of sentences to one Delete revision and one Add revision. Thus for a EditStep with tag

“M-M-Type”, we would remove the step from the sequence and add two new steps “M-K-

Nochange” and “K-M-Nochange”. Notice that here Nochange is a dummy label and will

be replaced in the next round of labeling. (2) “M-K” to “M-M” or “K-M” to “M-

M”. This indicates aligning a deleted/added sentence to another sentence. Depending on

the labeling of the following EditStep, the operation can be different. “M-K” followed by

“K-M”10 indicates that the aligned sentence in Draft 2 is not aligned to other sentences. For

example in Figure 6.3, the second EditStep (M-K-Nochange) is followed by EditStep (K-M-

Nochange), which indicates that Sentence 2 (Draft 2) has not been aligned to other sentences

and aligning sentence 2 (Draft 1) will not impact the alignment of Sentence 2 (Draft 2). In

that case, we remove the two steps and add a step “M-M-Nochange”. “M-K” followed by

“M-M” indicates that the aligned sentence has been aligned to other sentences. For that

9If D2Pos+1 does not exceed paragraph boundary
10Or “K-M” is followed by “M-K”.
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Figure 6.3: Example of EditSequence update. Two EditSequences can be mutated from

Slabeled: one from the EditStep with collision (the shadowed EditStep) and one from the

EditStep with the lowest likelihood (the last EditStep). The first generation (seed sequences)

will always be mutated, while the other generations will only mutate if they have a larger

likelihood than the prior generation. Note that only RevType in labeled sequences (Slabeled

or SnewLabeled) will be used as the type of revisions.
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case, we need to remove the “M-K” and “M-M” step and add two steps “M-M-Nochange”

and “M-K-Nochange” for the misaligned sentence. (3) “M-K” to “K-M” or “K-M” to

“M-K”. This means changing from Delete to Add. This is similar to the previous case,

where the mutation operation depends on the labeling of the following EditStep. If the

following EditStep starts with “M-M”, it indicates that the sentence in the Add revision is

aligned and we need to break the existing alignments and add a “M-K” EditStep besides

changing “M-K” to “K-M”.

Figure 6.3 provides an example of the EditSequence update process. The process starts

with seed candidate sequences as the first generation (Figure 6.3(a)), the first generation will

always be mutated (Figure 6.3(b)). For a seed EditSequence Sseed and its labeled sequence

Slabeled, the alignment part of their EditStep labels are compared to check for collision. For

every collision detected, we mutate Sseed to generate one new candidate sequence Snew as

a member of the next generation (Figure 6.3(c) shows one mutation). After the mutation

of the first generation is complete, all Snew in the new generation are labeled with CRFs

again. The new labels provide us new revision types within the new alignments (Figure

6.3(d)). If the likelihood of the labeled sequence SnewLabeled is larger than Slabeled, it indicates

that the sentence alignment in Snew is more trustworthy than the alignment in Sseed, thus

Snew should be further mutated to see if the alignment can be further improved. Otherwise

we do not further mutate Snew. We keep mutating the EditSequences until we cannot

conduct any further mutation. For the labeled EditSequences in all generations, we first

select sequences with minimum number of collisions and then select the sequence with the

maximum sequence likelihood. The (Op1, Op2) of labels are used as results of revision

extraction and RevTypes are used for revision classification. Through the process, sequence

labeling provides likelihood for both alignments and revision types, while sequence mutation

provides new possible sequences for labeling.
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Groups Model Revision extraction (sentence
alignment)

Revision classification

Baseline
(Base)

Pipeline Based on sentence similarity
(Zhang and Litman, 2014)

CRF sequence labeling, using revi-
sion type as label (Zhang and Lit-
man, 2016)

1Best Joint (Zhang and Litman, 2014) + Edit-
Sequence mutation

CRF sequence labeling, using both
revision type and alignment as la-
bel

+NCandidate
(+NC)

Joint (Zhang and Litman, 2014) +
LSTM EditSequence generation +
EditSequence mutation

CRF sequence labeling, using both
revision type and alignment as la-
bel

Table 6.2: Description of three implemented approaches

6.3.4 Seed Candidate EditSequence Generation

For a paragraph with m sentences in the first draft and n sentences in the second draft,

there is a total of
(
m+n
n

)
= (m+n)!

m!n!
possible sequences11. While theoretically we can first

generate a sequence without sentence alignment (all sentences in Draft 1 treated as deleted

and all sentences in Draft 2 treated as added) as the seed sequence and keep mutating until

the best sequence is found, such process is too computationally expensive and is likely to

fall into local optima during mutation. Thus an approach is needed for the generation of

high-likelihood seed EditSequences. We propose two approaches for sequence generation,

one based on the revision extraction method proposed in (Zhang and Litman, 2014), the

other based on automatic sequence generation with LSTM.

1-Best EditSequence generation based on alignment prediction During prepro-

cessing, the essays are segmented into sentences and sentences are aligned following (Zhang

and Litman, 2014). A logistic regression classifier is first trained on the training data with

Levenshtein distance as the feature and alignment is conducted using Nelken’s global align-

ment approach (Nelken and Shieber, 2006) based on the likelihood provided by the classifier.

As the number of essays in the dataset is limited, we construct sequences at the paragraph

level. We trained our models on paired paragraphs assuming paragraphs have been aligned.

11With m sentences of Draft 1 set, there are m+n slots to put in the n sentences of Draft 2.
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Figure 6.4: LSTM recurrent neural network for generating candidate sequences. X are

features extracted according to the location of the cursors. For example, Xt−1 corresponds

to features extracted when sentence index in Draft 1 is 1 and sentence index in Draft 2 is 1.

For each paragraph pair, an EditSequence is generated following the sequence transformation

method with RevType of all EditSteps set to Nochange12.

N-Candidate EditSequence generation with LSTM network The 1-best approach

can provide a good sequence to start with, however, it is more likely to fall into local optima

in the labeling step with only one seed candidate. Thus we also trained LSTM to generate

multiple possible candidates. As demonstrated in Figure 6.4, we construct the neural network

with LSTM units. Due to the size limit of our current training data, we only include one

layer of LSTM units to reduce the number of parameters in the network. Each EditStep is

treated as a time step in the neural network. According to the D1Pos and D2Pos property

of the EditStep, we extract features X as the input to the neural network. The same set of

features used in the sequence labeling step is used. The model transforms the input to hidden

state S, where hidden state St−1 at time (t-1) is used together with input Xt to predict the

hidden state St at time t. A softmax layer is added on the top of the hidden state to predict

Ot, which describes the probability distribution of the sequence labels. At the training step,

we fit the model with EditSequences transformed from revisions between the paragraphs.

12Nochange is a just a placeholder as the real RevType are to be labeled in the labeling step.
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At the generation step we start with both D1Pos and D2Pos set to 1 and extract features

for X1. In each time step, a label is sampled according to the probability distribution Ot.

According to the sampled label, we change the positions of D1Pos and D2Pos to extract

the features for X2. In the example, the sampled label at Xt−1 is M-M-Nochange, this label

moves D1Pos and D2Pos to (2,2) and the Xt is extracted and used together with St−1 to

predict St. According to the probability distribution Ot, a new label is sampled and the

result is used to move the cursors for the next EditStep. The process is repeated until an

EditSequence is generated for the whole paragraph pair. We repeat the algorithm until N

candidates are collected.

6.4 EXPERIMENTS AND RESULTS

Experiments are conducted using different revision type settings. In addition we group

Warrant/Reasoning/Backing, Evidence and General Content together as one Support cat-

egory13. We first evaluate the performance of sentence alignment and Content vs. Surface

vs. Nochange revision classification (3-class). Then we experimented with Claim vs. Sup-

port vs. Surface vs. Nochange (4-class). Finally we used all revision categories (6-class).

For each experiment, three approaches are compared as in Table 6.2: Baseline, 1Best and

+NCandidate. 10 draft pairs from Corpus HSchool2 were used as the development set for

setting up parameters of LSTM14 and choosing N. N is set to 10 for all our experiments.

Afterwards 10-fold (student) cross-validation were conducted on corpora HSchool1, HSchool2

(without the development set) and ArgRewrite. The same set of data folds and features were

used for all three approaches. The training folds in each round will be used for training both

CRFs and LSTM. For evaluation we used alignment accuracy15 to measure the accuracy of

revision extraction and precision/recall to measure the result of revision identification.

Precision is calculated as #CorrectRevisions
#PredictedRevisions

and Recall is calculated as #CorrectRevisions
#GoldStandardRevisions

.

13Content revisions that support the claim of the essay.
14LSTM implemented with deeplearning4j (http://deeplearning4j.org) with epoch set to 1, iteration

numbers to 100 and output dimension of the first layer to 100
15 2×AgreedAlignment

#Draft1Sentences+#Draft2Sentences , adapted from Zhang and Litman (2014).
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Extraction Classification
Accuracy Prec Recall

3-class

HSchool1 Base 0.940 0.780 0.830
1Best 0.948∗ 0.801∗ 0.859∗
+NC 0.957∗‡ 0.815∗‡ 0.875∗‡

HSchool2 Base 0.928 0.780 0.834
1Best 0.930 0.782 0.840
+NC 0.934 0.788 0.848‡

ArgRewrite Base 0.933 0.524 0.540
1Best 0.960∗ 0.572∗ 0.561∗
+NC 0.964∗ 0.581∗ 0.580∗‡

4-class

HSchool1 Base 0.940 0.647 0.685
1Best 0.937 0.648 0.703∗
+NC 0.940 0.652 0.723∗‡

HSchool2 Base 0.928 0.595 0.627
1Best 0.935∗ 0.620∗ 0.654∗
+NC 0.944∗‡ 0.647∗‡ 0.702∗‡

ArgRewrite Base 0.933 0.605 0.641
1Best 0.960∗ 0.698∗ 0.768∗
+NC 0.968∗‡ 0.717∗‡ 0.789∗‡

6-class

Hschool1 Base 0.940 0.397 0.376
1Best 0.940 0.411∗ 0.390∗
+NC 0.948∗ 0.427∗‡ 0.406∗‡

HSchool2 Base 0.928 0.400 0.344
1Best 0.930 0.393 0.339
+NC 0.936 0.390 0.338

ArgRewrite Base 0.933 0.565 0.544
1Best 0.960∗ 0.442� 0.433�
+NC 0.959∗ 0.440� 0.424�

Table 6.3: The average of 10-fold (student) cross-validation results on Corpora HSchool1,

HSchool2 and ArgRewrite. Alignment accuracy, Unweighted average precision/recall are

reported. ∗ indicates significantly better than the baseline, ‡ indicates significantly better

than 1Best (Paired T-test, p < 0.05), � indicates significantly worse than Base. Bold

indicates best result.
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Table 6.3 demonstrates our experimental results. We first compare the pipeline baseline

with our joint model using 1Best seed EditSequence. With 3 revision types (3-class), the

joint model achieves significantly better performance than the baseline on Corpora HSchool1

and ArgRewrite for both revision extraction (sentence alignment) and revision classifica-

tion. It also shows better performance on Corpus HSchool2 (while not significant). The

improvement on the precision/recall of revision classification supports our first hypothesis

that alignment information can improve the accuracy of revision classification. The improve-

ment on sentence alignment supports our second hypothesis that the patterns of predicted

revisions can be used to correct the false alignments. We notice that the number of revision

types impacts the performance of the model. On corpus HSchool1, the model shows signif-

icantly better performance than the baseline in almost all experiments. While on corpora

HSchool2 and ArgRewrite, the model yields significantly better performance in 4-class ex-

periment. The impact of revision types on our model can be two-fold. On the one hand,

more revision types indicates more detailed sequence information, which improves the chance

of recognizing problems in sentence alignment. On the other hand, the increase of revision

types increases the difficulty of sequence labeling, which in return can hurt the performance

of joint identification. We leave the error analysis of performance difference between different

revision types to the future work.

Next, we compare results using 1Best and +NCandidate EditSequences. We observe

that using generated sequences improves the 1Best performance, yielding the best result

on almost all experiments (except on Corpora HSchool2 and ArgRewrite with 6 revision

types). We counted the number of generations in EditSequence mutation for both 1Best

and +NCandidate on 3-class experiment. Results show that the 1Best approach will stop

mutating after an average of 1.2 generations while +NCandidate stops mutating after an

average of 2.3. This suggests that our approach prevents the model from easily falling into

local optima.
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6.5 SUMMARY

In this chapter a joint identification approach for argumentative writing revisions is described.

For the two different sub tasks of revision identification (revision location extraction and re-

vision type classification), we transform the location representation to a revision operation

format and incorporate it together with the revision type into one label. The two different

tasks are thus transformed to one joint sequence labeling task. With this design, the likeli-

hood of a labeled sequence indicates not only the likelihood of sentence alignments but also

the likelihood of the revision types. We utilize the mutation idea from genetic algorithms to

iteratively update the labeling of sequences. LSTM is utilized to generate seed candidate Ed-

itSequences for mutation. Results demonstrate that our approach improves the performance

of both tasks.

Experimental results suggest the correctness of our hypothesis H2.4, showing that we

can improve the performance of revision location extraction and revision type classification

by combining these two tasks together and predict them jointly using sequential models.
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7.0 FUTURE DIRECTIONS

There are several remaining research questions to be addressed in the future. In the previous

chapters, we discussed the two major issues addressed in this thesis. In this chapter, we

discuss the possible future works on these two issues. Also, we describe the possible future

works on the building of an intelligent revision assistant.

7.1 SCHEMA AND CORPORA COLLECTION

7.1.1 Expanding the Schema

Argumentation plays an important role in analyzing many types of writing such as persuasive

essays (Stab et al., 2014), scientific papers (Teufel, 2000) and law documents (Palau and

Moens, 2009). In Chapter 2.3 we discussed about the expansion of the revision schema

to scientific writings, where we included a Precision category to cover the revisions that

make the statement more precise. While the preliminary study on 9 scientific reports looks

promising, it is uncertain whether more categories are needed for other types of scientific

writings. The expansion of the schema on this corpus requires the collection of more complete

and advanced scientific writings such as scientific paper writing. Similarly, it is also important

to study how to extend the schema for the law document revisions.

Meanwhile, it is not clear whether the current schema can also capture the salient features

of writing improvement in other kinds of writings. The study on the revision schema for

academic paper writings could be an important extension of this thesis’s works.

94



7.1.2 Collecting the Quality of Revisions

While the works in this paper addresses the problem of “what are the revisions?”, the problem

of “are these revisions useful?” has not been addressed. In Chapter 4 we have shown that

the users tend to make changes if they don’t agree with the revision type recognized by the

system. Similarly, we can hypothesize that users would try to improve their changes if the

system can provide feedback to the quality of revisions.

Annotation of the revision quality can be done from different scales. The annotation

of Surface revision quality can be annotated at the sentence level, where we can compare

whether the revised sentence looks better than the previous sentence. Tan and Lee (2014)

has created a sentence-level statement strength comparison corpus via Amazon Mechanical

Turk, where the Turkers annotated whether one sentence is having a stronger statement

strength than the other. Similar approaches could be applied for the annotation of Surface

revision quality. However, the annotation of Content revision quality would require more

contextual information. One solution can be the annotation of revision quality within a

paragraph. Each revision within the paragraph can be annotated based on the context of

the paragraph. A new schema should be proposed to cover the possible types of paragraph-

level improvement by a sentence-level revision.

7.1.3 Connecting Revisions to Reviews

Feedback has also been shown to be helpful for students’ writing improvement (Cho and

Schunn, 2007). We hypothesize that it is possible to improve the helpfulness of the revision

assistant tool if it connects the user’s revisions to the reviews received. In another project

on corpus HSchool2, the implementation of reviews were annotated as Praise, Implemented

and Not implemented as in Table 7.1. This allows us to create a corpus for the study on

review revision connection.

For review linking annotation, we can first annotate the property of reviews and then

connects the annotated reviews to the revisions.

• Review Unit. Each review unit corresponds to one issue of the author’s essay. One review

can contain multiple review units. Each review unit has one review type and contains 0
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Review Aspect Implementation

“Your thesis completes the task entirely. You

clearly stated what Kelley was trying to por-

tray in her speech and showed how she accom-

plished this through the usage of rhetorical de-

vices. It was concise and easy to follow. ”

Thesis Praise

“I think paragraph one would be more effec-

tive if it began with a topic sentence that in-

cluded the rhetorical device in it (repetition),

giving the reader a clear idea about what the

paragraph will discuss.”

Organization Not implemented

“You should always end your quote with a ci-

tation to the text so that the reader can always

look back to the text and see where the quo-

tation came from”

Writing Style Implemented

Table 7.1: The reviewers leave their comments on specified aspects: thesis, rhetorical strate-

gies, textual evidence, explanations, organization and writing style and standard English. If

a review contains only praises, it is marked as Praise; otherwise the annotators examined

the revised essay to decide whether the problem pointed out in the review is implemented

in the revision or not.
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to multiple review targets and solutions.

• Review Type. Intuitively, the purpose of a revision should correspond to the prob-

lem type pointed out by the review. Thus we use the categories defined in our re-

vision annotation schema for the reviews. The categories include: Claims/Ideas, War-

rant/Reasoning/Backing, Evidence, Rebuttal/Reservation, General Content, Word-Usage/

Clarity, Organization, Conventions/Grammar/Spelling and Precision. Besides annota-

tion, the other solution is to use the meta information of review aspect directly (Thesis,

Evidence, etc.).

• Review Target. The annotator is required to mark out the specific text segment that

describes the location of the problem. If the review does not target on a specific problem

of the essay, the attribute “IsGlobal” will be marked as “Yes”, otherwise it will be marked

as “No”. The annotation of the review target will help the automatic systems discover

the patterns for target extraction.

• Review Solution. The annotator is required to mark out the text segment of the solution

suggested by the reviewer if there is solution suggested. Similar to review target, the

marking of review solution would also help the systems develop the patterns for solution

extraction. The extracted information would also be used for the matching of reviews

and revisions. The annotator can leave the annotation empty is the review unit does not

contain any solutions.

7.1.4 Expanding the Corpus Annotation

Besides the expansion of the revision schema, it can also be helpful to the NLP community

to expand the corpus annotation. The expansion can involve works from three perspectives.

• Increase the size of the corpus. The size of the current corpus still limits the application

of more advanced computation models. For example, the deep learning model proposed

in Chapter 6 could potentially achieve better performance with more training data.

• Increase the drafts of essays written by each user. The ArgRewrite study in Chapter 4

collects three drafts from each user, which allows us to analyze the possible influence of
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ArgRewrite by comparing two versions of revisions. Adding more drafts for each user

would further allow us to observe a longer-term influence of the revision assistant tools.

• Increase the annotations on each single draft. The current annotations only contain the

information of revision location and revision type. The annotation of other information

on the corpus would allow us to conduct more advanced study for revision identification

enhancement. For example, the annotation of PDTB information on corpus Hschool1

allow us to improve the classification results with discourse information in Chapter 5.4.

Similar researches can be conducted with the annotation of other information such as

discourse roles(Burstein et al., 2003).

7.2 AUTOMATIC REVISION IDENTIFICATION

7.2.1 Revision Identification for Essays with Frequent Structure Changes

In Chapter 5 and Chapter 6 multiple approaches were proposed to take advantage of the

context information. However, there were multiple assumptions made for the purpose of

simplification. It is important to address these problems in the future.

First of all, the sequential approaches are shown to be helpful for the performance im-

provement. However, all the sequential approaches are built based on the simplification of

removing structure changes (e.g. switching the locations of paragraphs). While it is accept-

able in our dataset where the structure changes rarely happens, such assumption might not

hold for more advanced writings such as academic paper writing.

Second, in Chapter 5.4, the manually labeled PDTB relation were utilized for improving

revision classification performance. However, the state-of-art PDTB parser (Lin et al., 2014)

has not demonstrated satisfactory performance in identifying PDTB relations. It is necessary

to study whether it is still possible to improve the classification performance with noisy

discourse parsing output.

Third, the joint approach in Chapter 6 made an assumption that the paragraphs have

been aligned. However, in real applications, the errors in the paragraph alignment step can
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be propagated to the revision identification step. There exists two possible directions to solve

this problem: 1) The development of a highly accurate paragraph aligning algorithm 2) An

approach that can utilized the results in the revision identification step to correct possible

paragraph alignment errors.

7.2.2 Error Analysis for Revision Identification

It is important to mention that the automatic revision identification results in this thesis is

still far from satisfactory. Thus, it is important to analyze and understand the difficulties of

this problem. There are multiple works that need to be done:

• Automatic identification on other corpora. The corpora used in this thesis are essays

are written by high school/university students. Those essays are less likely to be well-

organized, thus it is also important to understand how well the algorithms work on a

better organized essay. For example, we can investigate whether we can observe a good

performance on the published writings such as Wall Street Journals.

• Detailed error analysis for each category. While the difficulty in revision identification

can come from bad writings, it is also possible that not the correct features were used in

our task. One possible future work is to analyze the most commonly mistakes made by

the current recognizer and design specific rules for those mistakes.

• Understanding the models. In Chapter 6 we described a complicated joint model involv-

ing multiple components. However, we have not studied the role of each component. For

example, is the “mutation” step or the “sequence labeling” step the essential component

for writing improvement? Ablation test can be done here to understand the effectiveness

of these approaches.

7.2.3 Automatic Revision Scoring

This task would be possible with the collection of revision quality data. I hypothesize that

this problem would be similar to the current works on essay scoring. A list of possible

questions to be asked are:
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• Can we utilize the features from essay scoring for the revision quality scoring tasks?

• What is the best level (sentence or paragraph or essay) for us to conduct automatic

revision quality evaluation?

• How do we utilize contextual information for this task?

7.3 BUILDING INTELLIGENT REVISION ASSISTANT

7.3.1 Improving the User Interface Design

The user interface design of the future revision assistant could be more complicated. In

Chapter 4 we created RevisionMap to help users quickly locate the revisions they have

made. With the works on the new directions, there could be new problems on the design of

such assistant. Here is a list of possible questions:

• How to show the important revisions (E.g. highlight the ineffective revisions)?

• How to show revisions at different levels? (Paragraph level, sentence level or even phrase

level)

• How to show the connection of revisions to reviews?

7.3.2 Study with a Fully Automated System

In Chapter 4.2, we described our study on the effectiveness of ArgRewrite with all the

revisions manually corrected. However, we have not tested whether the system can still

influence the user’s rewritings with all the revisions automatically recognized. For the study

with a fully automated ArgRewrite, a user can iteratively revise his essay with the instant

feedback from ArgRewrite. This experiment would allow us to have a more accurate estimate

of the effectiveness of our revision assistant system.
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7.3.3 More Comprehensive User Study

In Chapter 4.2, we investigated the impact of the language factor on the user’s rewriting

behavior. However, there are other factors that might influence the user’s writings. A more

comprehensive study can be done in the future to understand the impacts of these factors.

For example, there might exists correlation between the users’ rewriting and their education

level (undergrad vs. graduate). A user’s major (social science vs. natural science) can also

influence the user’s writing behaviors. Besides, the user’s own writing skills (how many

drafts do they typically write for one essay, whether they are confident in their writings,

etc.) can also impact the way they rewrite.

7.4 SUMMARY

In this chapter we listed the possible future works towards the building of an intelligent

revision assistant. On the basis of automatic revision identification, the tool can be made

more useful by constructing a system that can 1) cover more genres of writings 2) identifying

the quality of the revisions 3) Link reviews to the revisions made. Works on these directions

could contribute to researches both in the education field and the NLP field.
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8.0 SUMMARY

This thesis present my works towards the building of intelligent revision assistant. The

developed techniques are expected to provide automatic feedback to students on the purpose

of the author’s revision. Two major issues are resolved.

First, a sentence-level argumentative revision schema is developed. The schema describes

the revisions at the level of sentence and categorizes the revisions according to the author’s

purpose. Based on the schema, several corpora were annotated. The analysis on the cor-

pora annotation demonstrate that the schema can be reliably annotated by human. Also,

statistical analysis on the annotated corpora indicates that the schema can capture salient

characteristics of writing improvement. Results indicate that there is a significant correlation

between the number of revisions and the writing improvement. I also show that it is possible

to generalize our framework to scientific report writings. Based on the proposed schema, a

prototype revision assistant is developed based on the collected corpora and developed algo-

rithms. A user study on the effectiveness of a wizard-of-oz revision assistant is investigated,

where both Native and ESL speakers are recruited. It is demonstrated that users tend to

make more changes when they found that their intended revision was not recognized. Also,

we found that the Native and ESL speakers are impacted differently by the revision feedback

they received.

Second, approaches for the automatic identification of revisions are developed, including

both the identification of revision location (revision extraction) and the classification of

revision types (revision classification). The extraction problem is treated as a monolingual

sentence alignment problem and high accuracy is achieved on the tested corpora. For the

classification problem, three groups of features (Location,Textual, Language) are investigated

for the classification task.Then the classification performance is enhanced by using contextual
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features and transforming the classification problem to a sequence labeling problem. We

also found that the classification performance can be improved by utilizing PDTB discourse

information. We also investigated a joint approach that identifies the location and the type

of revisions at the same time. Experiment results indicate that this approach can improve

the performance of both tasks.

The works presented above have provided support for all of our hypotheses. We demon-

strate that the schema proposed can be reliably annotated by human and captures salient

features of writing improvement. Based on the schema, we collected multiple corpora. Multi-

ple approaches are investigated to improve the accuracy of automatic revision identification.

Our user study on the revision assistant suggests that providing feedback on certain types

of revisions can inspire users to make more revisions to their essay.
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APPENDIX A

ANNOTATION MANUAL

A.1 REVISION ANNOTATION CODING TABLE

Attribute Codes Note

Aligned Index (in

Sheet 0)

The index of the aligned sen-

tence in the new draft (Numer-

ical value starting from 1) or

“DELETE”

1) The aligned index should be the

same number as the Sentence Index

of the aligned sentence in sheet1 2)

When a sentence could not be aligned

to any sentences in the new draft,

mark it as “DELETE”

Aligned Index (in

Sheet 1)

The index of the aligned sen-

tence in the original draft (Nu-

merical value starting from 1) or

“ADD”

1) The aligned index should be the

same number as the “Sentence In-

dex” of the aligned sentence 2) When

a sentence could not be aligned to

any sentences in the original draft,

mark it as “ADD”

Original Para-

graph Index (in

Sheet 0)

The index of the paragraph the

sentence is in in the original

draft (Numerical value starting

from 1) or blank

Should check the raw file for the an-

notation of this column
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Original Para-

graph Index (in

Sheet 1)

The index of the paragraph the

sentence is in in the original

draft (Numerical value starting

from 1) or blank

1) Should check the raw file for the

annotation of this column 2) When a

sentence is newly added, this cell is

left blank

New Paragraph

Index (in Sheet 0)

The index of the paragraph the

sentence is in in the second draft

(Numerical value starting from

1)

1) Should check the raw file for the

annotation of this column 2) When

the sentence is deleted in the second

draft, this cell is left blank

New Paragraph

Index (in Sheet 1)

The index of the paragraph the

sentence is in in the second draft

(Numerical value starting from

1)

Should check the raw file for the an-

notation of this column
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Revision Purpose Select from the following list

• Claim/Ideas

•

Warrant/Reasoning/Backing

• Rebuttal/Reservation

• General Content

• Evidence

•

Conventions/Grammar/Spelling

• Word Usage/Clarity

• Word Usage/Clarity -

CASCADED

1) Claim/Ideas: the position or claim

being argued for; the conclusion of

the argument. Also described as

“thesis” of a paragraph or essay. 2)

Warrant/Reasoning/Backing: prin-

ciple or reasoning of the claim and

justification to the claims/ideas 3)

Rebuttal/Reservation: exception to

the claim/ideas 4) General Content:

When the content-development is

not explicitly related to the claim,

mark it as general content. (i.e.

the content is not claim, reasoning

for the claim, rebuttal for the claim

or evidence for the claim) 5) Evi-

dence: evidence or example for the

claim. Evidence has to be either ex-

amples/citations/theorems
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6) Conventions/Grammar/Spelling:

changes to fix spelling or grammar er-

rors, misusage of punctuations or to

follow the organizational conventions

of academic writing (If the previous

organization could be considered as

a mistake) 7) Word Usage/Clarity

Clarity: changes of words or phrases

for better representation of the au-

thors ideas or to follow a specific re-

quirement Word Usage: replace-

ment of a specific word/phrase, the

replacement can either be for the

purpose of better word choosing or

the word 8) Word Usage/Clarity-

CASCADED: A specific category of

Word Usage/Clarity for describing

cascaded changes

Table A1: Coding table

A.2 ALIGNMENT ANNOTATION

A.2.1 Description

After processing the original documents, for each draft, the N sentences in the draft are

assigned indexes from 1 to N according to their occurrence in the paper. For sentence

alignment, each sentence in the revised draft is assigned the index of its aligned sentence

in the original draft. Also, each sentence in the original draft is assigned the index of the

aligned sentence in the revised draft. If a sentence is newly added, it will be annotated as
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ADD. If a sentence is deleted from the old draft, it will be marked as DELETE.

A.2.2 Rules

• Every sentence should be either aligned or marked as ADD or DELETE. Only the

alignment from the old draft to the new draft contains DELETE and only alignment

from the new draft to the old draft contains ADD. We only allow the sentence alignments

to be one-to-one, one-to-many and many-to-one cases.

• For one-to-one case, align the sentences if the sentence is either a replication of the other

sentence or a modification of the other sentence with one or several of the following

changes: a. addition/deletion of content b. modification of words, phrases c. restate-

ment of the ideas. The sentences that are aligned should be either semantically close

or syntactically close and within the same/similar context. (i.e. the paragraphs the

sentences belong to should be similar). 1

• For many-to-one and one-to-many cases, only align multiple sentences to one sentence

(one-to-many and many-to-one) when it is explicit that the multiple sentences should be

grouped together to be aligned to the one sentence. (i.e. For the group of multiple sen-

tences, it is explicit that it is better to align the target sentence to the merged sentences

than to align the target sentence to one or some of the sentences.)

A.3 REVISION PURPOSE ANNOTATION

A.3.1 Rules

The order of revision purpose type importance

Importance Orders of Revision Purposes (Higher to lower):

1Semantically similar: The two sentences describes the same information, or the other sentence
adds/deletes information on the basis of the other sentence; Syntactically similar: The two sentences look
explicitly similar to each other. (i.e. the difference between the two sentences should be a small ratio of
the whole sentence. For example, a normal sentence with less than 10 words should have at most 2 words
(Does not count the change of words in the same stem, e.g. change-¿ changes is not counted in the number
of differences) that are different).

119



Claims/Ideas > Rebuttal/Reservation >= Warrant/Reasoning/Backing

>= Evidence > GeneralContent > Conventions/Grammar/Spelling

> WordUsage/Clarity

As said above, except for the special case of Word Usage/Clarity, only one major re-

vision purpose type should be selected for each revision unit. The importance of different

revision purpose types are different, when there are multiple revision purpose types in one

revision, make sure that the more important one is selected. The following sub-rules explains

more specific details for cases where the decision of the appropriate revision purpose can be

difficult.

a) Claim/Ideas vs. Warrant/Reasoning/Backing

One typical case is that a paper can have a major claim and several subclaims to support

the major claims. These subclaims are usually in the form of reasoning to support the major

claim. Thus the differentiation of claim and reasoning can be ambiguous. We ask the

annotators to think of the Claim and Reasoning as a hierarchical tree structure. The leaves

of the tree are marked as ”Warrant/Reasoning/Backing” while the others are marked as

“Claim/Ideas”. In specific, if a sentence is further supported or objected by other sentences,

it is considered as a claim. Meanwhile, if there are no other sentences (Reasoning or Evidence

or Rebuttal) for or against this sentence, it is marked as ”Warrant/Reasoning/Backing”.

b) General Content vs. Warrant/Reasoning/Backing

Differentiating General Content and Reasoning can be difficult as they both often occur

after the author proposes a claim. To differentiate the two categories, the annotator is

required to distinguish whether the author is suggesting his position for his claim in the

sentences or not. If the annotator senses the author’s sentiment position towards his claim,

then it should be “Warrant/Reasoning/Backing”, whereas it should be “General Content”.

c) Evidence vs. Warrant/Reasoning/Backing

These two categories are similar as they both provide support to the authors’ claim.

The annotators are required to distinguish these two categories according to whether the

sentences are stating facts. The facts can be (1) Citation: the citation of papers, reports,

news and books. (2) Example: facts of history or personal experiences. (3) Scientific proof.

If there are facts involved, it is marked as Evidence, otherwise it is marked as Warrant.
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d) Conventions/Grammar/Spelling vs. Word Usage/Clarity:

These two genres are similar as they don’t change the content of the text and improve

the quality of the text. The annotators are required to make the judgment according to the

question: Are there spelling/grammar mistakes in the original draft and has this mistake

been addressed in the new draft? If the mistake is addressed, it should be marked as

“Grammar/Spelling”.

Annotate according to what has the author changed rather than where the

author changed

It is not necessarily that revisions made on the thesis of the paragraph are Claim/Idea

changes, the type of the change should be determined according to what the author really has

changed. For example, in a Claim sentence of a paragraph, if the author added a clause in the

new sentence for reasoning the claim, the change would be a Warrant/Reasoning/Backing

change; if the author only replaced some word with a more appropriate form of word, the

annotator should mark it as Word usage change.

Handling the cascaded changes

The handling of the cascaded changes should follow Rule 2, for example, in the case

below:

• Change 1: Sadam Hussein would be the perfect example here. − > Fidel Castro and

Kim Joon En are perfect examples here.

• Change 2: He killed people who are against him in Iraq. − > They killed people who

are against them in their countries.

In this example, the author changed the person from “Sadam Hussein” to “Fidel Castro

and Kim Joon En” in Change 1. Depending on the topic of the paper, it can be either a

Claim/Ideas change or an Evidence change. However, Change 2 is a cascaded change due to

Change 1. While here there is the change from “he” to “they” indicating the change of the

subjects, it should be marked as “Word Usage/Clarity”.

In other words, the type of cascaded changes should be decided according to what re-

ally has been changed. In the example above, the changes in the subject resulted in the

changes from “He” to “They”. But as a reasoning sentence, the way the author reasons
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about his claim/evidence is still the same. Thus the change should be categorized as “Word

Usage/Clarity-CASCADED”. In other cases, for example, if the author changed the claim

of paper, and resulted the changes in the way he reasons about his claim, the changes would

be categorized as “Warrant/Reasoning/Backing”.

The special case of Word Usage/Clarity change

In the various types of Word Usage/Clarity change, simply replacing a word/phrase of

the sentence is quite commonly seen. However, annotating them can be difficult. A simple

word/phrase replacement can be just surface fixing or important content change.

For example, there is usually not a big difference between Alice is a good person to Alice

is a great person. However, switching from This is 10 feets long to This is 10 inches long will

be very important concept change. Even more, sometimes the author might even change

the claim of a paragraph by simply replacing a word. For example, in the prompt where the

student is required to provide an answer to the question. Changing from Species A would

survive in this environment to Species B would survive in this environment would be a Claim

change.

Thus for the specific case of Word Usage/Clarity change, the annotator is required to

annotator two revision purposes if necessary. In specific, for the case of word/phrase replace-

ment, if the replacement DOES NOT involve an important concept change, just mark it as

Word Usage/Clarity. If the replacement involves importance changes such as feets to inches

in the example above, the annotator should also annotate the specific content change type

IN ADDITION to Word Usage/Clarity. For example, changing from This is 10 feets long to

This is 10 inches long would typically be Word Usage/Clarity + General Content change.

Read and understand the prompt before the annotation

Sometimes the annotation of revision purpose could be different according to what the

author is really targeting. So it is critically important that the annotator read and under-

stand the prompt before the annotation. For example, in a regular essay, a sentence change

from Fidel Castro would be a good example for this case to Sadam Hussein would be a good

example for this case would typically be Word Usage/Clarity + Evidence. However, if the

prompt of the essay writing assignment is Put the contemporaries at different levels of Hell,

then the annotation would be Word Usage/Clarity + Claim/Ideas.

122



APPENDIX B

ARGREWRITE STUDY MATERIALS

B.1 PRESTUDY SURVEY QUESTIONS

The prestudy survey questions involves questions about the demographics of the participant

and the participant’s previous writing behaviors.

For the demographic questions, the participants have to select from the given options.

• What is your major? (Natural Sciences vs. Social Sciences vs. Humanities)

• Are you an undergraduate or graduate student? (Undergradudate vs. gradudate vs.

None)

• What is your current year of study? (1st year vs. 2nd year vs. 3rd year vs. 4th year vs.

5th year or above)

• Is English your native language? (Yes or No)

The writing behavior questions involve the following:

• What are some of your recent classes that have an intensive writing component to them?

How did you do in these classes?

• When writing a paper for a class, how many drafts of major revisions do you typically

make? (0 vs. 1 vs. 2 vs. 3 vs. 4 or above)

• Overall, how confident are you with your writings (1 to 5 from Not at all confident to

Extremely confident)?
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• What aspects of writing do you think you are good at? e.g. vocabulary choice, clear

sentences, writing organization.

• What aspects of writing do you think you can improve?

B.2 POSTSTUDY SURVEY QUESTIONS

For users in the experiment and the control group, they all have to rate the following questions

from 1 to 5 (Strongly Disagree to Strongly Agree):

• The system allows me to have a better understanding of my previous revision efforts.

• It is convenient to view my previous revisions with the system.

• The system helps me to recognize the weakness of my essay.

• The system encourages me to make more revisions than I usually make.

• The system encourages me to think more about making more meaningful changes.

• Overall the system is helpful to my writing.

They are also instructed to answer a subjective question: “How would you expect the

system to be more helpful / what other designs of system is helpful to you?”.

For the experiment group users using the ArgRewrite system, they have to rate 4 addi-

tional questions from 1 to 5:

• Taxonomy of revisions inspires me to make more changes

• Listing the changes for me inspires me to make more changes

• Visualization of revision distribution inspires me to make more changes

• Difference between system recognition and self recognition inspires me to make more

changes

The control group users have 1 additional question to rate from 1 to 5: “The presentation

of ”Diff” inspires me to make more changes”
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B.3 TUTORIALS BEFORE DRAFT3 WRITING

ArgRewrite interface tutorial
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Brief introduction to the key functions of our system 
1. The revisions to your essay that were identified by our system are color coded to distinguish 

between two major categories of revision type: Content and Surface. Content revisions change 

the information/content of the essay (for example, by modifying the thesis or adding evidence).  

Surface revisions change the surface details of the essay (for example,  by correcting  grammar 

mistakes or making the language more fluent). Hover your mouse on the specific items on the 

left and you will be given a detailed definition of each category.  The content changes are 

colored in “warm” colors while the surface changes are colored in “cold” colors.  

2. On the right you were given a “revision map” to view the changes you made. In the revision 

map, each sentence is represented as a tile and each paragraph is composed of a segment of 

tiles. The tile is pale if there are no changes from draft 1 to draft 2 on the sentence. If the tile is 

colored, the color represents the revision type that best categorizes the purpose of the change 

for that sentence. Click on the tile to view the details of the revision.  

Hints to rewriting with our system  

1. More “warm” color goal. 

Research on revisions indicates that making content changes will  most improve your writings. 

So you should aim to see more “warm” colors than “cold” colors in the interface.  

2. Expect multiple warm colors in new added paragraphs. 

In good writing, each paragraph is well structured. In the writing of persuasive essays, we expect 

each paragraph to have one or two sentences as the thesis or rebuttal, at least one sentence to 

reason for the thesis and one sentence to provide evidence for the thesis. So if a new paragraph 

only contains one warm color or no warm colors, try to add more content to make the 

paragraph better.  

3. Reflect on all revisions where the mapped color does not agree with your expectation. 

Your revision is labeled by a human expert  based on what he or she thinks your purpose was for 

making the revision. It is possible that the human expert made a mistake when  labeling your 

revision, but it is also  likely that your change did not always successfully achieve your desired 

rewriting goal. So whenever the color of the revision type does not agree with your intended 

revision type, think about how to change the sentence and try to revise it to better implement 

your revision intention.  

4. Check whether your revisions agree with the prompt 

You were given a prompt when you revised your essay from draft 1 to draft 2, and in the prompt 

you were required to add new content such as rebuttals.  Check the revision map to confirm 

that your second draft contains what you were required to write.  
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Revision examples (Ignore Unknown at this moment) 

The content changes can be sentences added/deleted/modified 

 

1. Additions/Deletions 

When there is an added/Deleted paragraph, set the revision type to the argument type of the sentence 

Example 1  

Topic: Arguing what rhetoric strategy Richard Louv uses in his argument 

  

 

 

 

 

 

 

 

Example 2 

Topic: Arguing how does electronic communication impacts social relationships 

 

 

 

 

 

 

 

 

 

 

 

Draft 1:  

Empty 

Draft 2:  

First and foremost, Richard Louv uses an anecdote to show that children are actually 

being encouraged to use electronics rather than enjoy nature. Louv mentions 

someone who is buying a new car, when the buyer says no to adding “backseat 

entertainment,” the salesman is shocked. This anecdote explains that electronic 

entertainment for children is becoming more and more common, almost to the point 

where it is a standard. Louv believes that this “standard” is taking away the 

knowledge that children gain by looking out the window of a car. 

Ideas    Reasoning     Other 

Draft 1:  

Empty 

Draft 2:  

A final example of why electronic communication takes away from interpersonal 

relationships is the case of the Republic of Zimbabwe. In this southern African nation, 

telecommunications are scarce and communication primarily relies on neighbors talking to 

one another, or families writing letters to one another. This type of verbal and non-verbal 

communication have helped to develop strong interpersonal relationships with family 

members and friends. This example proves how this type on non-electronic 

communication can alternatively be more powerful at establishing inter-personal 

relationships. 

In contrast, I acknowledge there is one advantage to using electronic communications to 

establish interpersonal relationships. If a natural disaster such as a hurricane or tornado 

were to occur, I acknowledge that using electronic forms of communication such as texting 

or social media are critical to reach out to your relatives and friends, and let them know 

that you and your family are all safe. 

Evidence   Reasoning   Rebuttal 
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2. Modifications 

Content modifications modifies the corresponding argument role, and changes 

the information contained in the content. The biggest difference with surface 

modifications is that the content modifications changes the information of 

the essay 

Example 1 

Topic: Arguing the rhetoric strategies used by Florence Kelly in her speech. 

 

 

 

 

 

 

 

 

 

 

 

NOTE: While there is only one “pathos” added here, this is a change to the major claim of the essay.  

Example 2 

Topic: Arguing how does electronic communication impacts social relationships 

 

 

 

 

 

 

 

Draft 2: 

Child labor was not so much of an issue to 

onlookers as it was to the actual children who 

partook in breadwinning at ages as young as six 

years old. In her attempt to enlighten the public 

about the severe injustices surrounding child 

labor laws, Florence Kelley delivered a powerful 

speech before the convention of the National 

American Woman Suffrage Association on July 22, 

1905. Kelley’s use of conspicuous repetition, 

cheeky sarcasm, pathos, and an oxymoron in her 

speech helped emphasize the crime in the 

practice of child labor and the need for 

reformation. 

Ideas 

Draft 1: 

Child labor was not so much of an issue to 

onlookers as it was to the actual children who 

partook in breadwinning at ages as young as six 

years old. In her attempt to enlighten the public 

about the severe injustices surrounding child 

labor laws, Florence Kelley delivered a powerful 

speech before the convention of the National 

American Woman Suffrage Association on July 

22, 1905. Kelley’s use of conspicuous repetition, 

cheeky sarcasm, and a thought inducing 

oxymoron in her speech helped emphasize the 

crime in the practice of child labor. 

Draft 1: 

An example for the case where the electronic 

communication is limited would be China.  

Draft 2: 

An example for the case where the electronic 

communication is limited would be North Korea.  

Evidence 
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Example 3 

 

 

 

 

 

 

 

Surface changes can only be sentences reordered or modified 
 

Example 1 

Topic: Argue the type of person that should be put into certain levels of Hell 

 

 

 

 

 

 

Example 2 

 

 

 

 

 

 

 

 

 

 

Draft 1: 

He is tall.  

An example for the case where the electronic 

communication is limited would be China.  

 

 

 

Draft 2: 

He is 6 feet tall.  

An example for the case where the electronic 

communication is limited would be mainland 
China.  

Precision 

 

Draft 1: 

The hoarders and the spendthrifts linger in the 

fourth level of Hell. The first example would be 

Donald Trump. The second example would be 

Candy Spelling. 

 

 

 

Draft 2: 

The spendthrifts and hoarders linger in the 

fourth level of Hell. The first example would be 

Candy Spelling. The second example would be 

Donald Trump. 

Reordering 

 

 

 

 

 

Draft 1: 

He is tall.  

He runs fast.  

These technologies have been beneficial for 

many reasons. 

Although, people can use it in positive ways such 

as the case mentioned above, it can be harmful 

for relationships. 

Draft 2: 

He is a tall person.  

He is a fast runner. 

Many, if not all, of the people agree on this, 

that these technologies are beneficial from 

many different aspects. 

Although, people can use these technologies in 

positive ways such as the cases mentioned 

above, they can be harmful for relationships. 

Fluency 
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Note:  Surface revisions either make no changes or make very limited changes on the information of 

sentences.   

Example 3 

 

 

 

 

 

 

 

 

 

 

 

Revision Reasons 
Besides self-motivation, we listed four possible revision motivations from our 

system.  

Taxonomy of revisions 
The types of revisions defined in the system inspires you on what you can do to improve the essay.  

Basically, this following list of revision categories is being helpful.  

 

 

Draft 1: 

He like oranges.  

He is a good person, He loves to help people.  

Draft 2: 

He likes oranges.  

He is a good person. He loves to help people. 

Errors 
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Listing the changes for me 
The fact that the system marks every changes you make is helpful. Basically, the revision map and the 

highlights on the text makes you aware of where you have changed and reminds you what to change 

next.  

 

 

 

 

Visualization of revision distribution (Warm/Cold) 
 

 

 

You make the revisions not only because the system tells you where you have changed, but also because 

the system gives you the information of Content/Surface changes. The visualization of warm color 

content changes and cold color surface changes help you to recognize which part of the essay is only 

containing surface changes and which part of the essay is containing idea/content changes.  

 

 

Cold colors, only surface revisions 

Warm colors, content revisions 
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Difference between system recognition and self-recognition 
 

 

The exact type of the revision recognized by the system is not the same as the revision type I thought I 

made. This difference reminds me that maybe my revision is not clear enough to be recognized and 

inspires me to further revise.  

 

Difference between system recognition and self-recognition 
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Control interface tutorial
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Brief Introduction to the system 
The system incorporates a word-level diff algorithm to help you locate your revisions. In Draft1, the 

deleted words/sentences are shown in red with strike.  In Draft 2, the added words/sentences are 

shown in green. Notice that there is no “Modification” here, which means that the modification from 

one word/sentence to another word/sentence will be viewed as a deleted word/sentence in Draft 1 and 

an added word/sentence in Draft 2.  

Examples 

Add shown as green underline in Draft 2 
Draft 1 

 

Draft 2 
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Delete shown as red strike section in Draft 1 
Draft 1 

 

Draft 2 

 

Modify shown as red strike in Draft 1 and green underline in Draft 2 

Draft 1:  

 

Draft 2: 
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Hints to rewrite 
Our previous findings indicate that the revisions are only helpful when they contain more meaningful 

changes. This means that the change of one single word/phrase might not be enough. We encourage 

more added words/phrases in the revision to improve the paper.  

Check whether your revisions agree with the prompt. You were given a prompt when you revised your 
essay from draft 1 to draft 2, and in the prompt you were required to add new content such as 
rebuttals.  Check whether the revisions you have made contains what you were required to write. 
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