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The research in audiology to date about how people listen has been focused narrowly on the 

impact of the task demand (e.g., speech complexity) on the effort exerted for listening. Very few 

studies have examined how intention-associated factors affect listening effort regulation, and 

little is known about how to characterize the individual quality of effort expenditure in terms of 

efficiency. This study tested a compensatory control model for effort regulation to investigate 

how reward would modulate the effect of task demand on listening effort. The secondary aim 

was to propose a modified computational approach for effort efficiency calculation.   

The nonclinical sample was comprised of 40 college volunteer participants with normal 

hearing. All participants completed the Need for Cognition scale, a speech comprehension task 

which required cost-benefit decision making, and a self-report strategy use survey. Pupil dilation 

was measured throughout the speech comprehension task as an indicator of listening effort. 

Results supported the model in which effort regulation during an intended activity is determined 

not only by stimulus-driven factors such as task demand, but also by goal-driven factors such as 

reward. Significant interaction effects emerged. Furthermore, the effort efficiency derived by 

using goal-oriented performance variables demonstrated superiority in distinguishing individuals 

compared to the use of a simple performance accuracy equation.     

This study contributes to the limited literature on proactive listening effort regulation. 

Examining further how hearing, cognition, and personality interact neurophysiologically and 

functionally in individuals with normal hearing and hearing loss can help clinicians and 
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researchers better understand the underlying mechanism of listening effort control, and facilitate 

implementing strategies to aid effective listening through audiologic interventions. 
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1.0  INTRODUCTION 

Listening is not just a very useful, but also often a very enjoyable activity. A normal auditory 

system is able to distinguish thousands of sounds effortlessly (Schnupp, Nelken, & King, 2011), 

and people tend to take this sense for granted until they lose it and realize that listening is 

actually a skill which requires effort. Distinct from hearing as a passive function that provides 

access to the auditory world via the perception of sound, listening is the process of hearing with 

intention and attention which requires the expenditure of cognitive resources (Kiessling et al., 

2003). From the perspective of cognitive hearing science, listening effort is considered to be the 

result of imbalance between the implicit (bottom-up) and explicit (top-down) processes 

(Rönnberg, 2003). Consequently, a better understanding of the interaction between cognitive 

function and hearing related to speech understanding and communication may allow us to 

improve our ability to repair problems if the system is impaired, for example, in people with 

hearing loss whose effort must be particularly concentrated (Sweetow, 2005). 

The interaction between bottom-up and top-down processes can be manifest across levels 

from periphery to cortex, across modalities from auditory-only to multimodality (Rönnberg, 

Rudner, & Lunner, 2011), and across stages from stimulus preprocessing through response 

(Sanders, 1983). This review begins by summarizing the definitions of listening effort. The 

second component of the literature review focuses on the theoretical foundation of listening 

effort, including neurophysiological mechanisms, underlying philosophies of listening effort 
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driven by stimuli and goals, and the impact of individual differences. The third component of the 

literature review is a critical analysis of research on listening effort measurements. Research 

questions and hypotheses are proposed at the end based upon the literature review. 

1.1 DEFINITION OF LISTENING EFFORT 

Effort is a popular and abstract concept in the fields of cognition as well as in information 

processing. In the dictionary, effort is defined as exertion of physical or mental power (The 

Random House College Dictionary, 1980, p.287) and conscious exertion of power (Merriam-

Webster's Collegiate Dictionary, 1997, p.368). However, it is often used interchangeably with 

the terms arousal, attention, capacity, resource, and energy in the literature. Early definitions of 

effort mainly centered on the attentional aspect (Hicks & Tharpe, 2002; Kahneman, 1973; 

Pribram & McGuinness, 1975), however, in recent definitions, scientists have added the 

intention and other cognitive resources (i.e., memory) (Gosselin & Gagné, 2011b; McCoy et al., 

2005; Picou, Ricketts, & Hornsby, 2011; Tyler, Hertel, McCallum, & Ellis, 1979). Table 1 lists 

the definitions from the literature. 
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Table 1. Effort Related Definitions 

Reference Term Definition 

Hicks and Tharpe (2002) Listening 
effort 

The attentional requirements necessary to understand 
speech 

Gosselin and Gagné 
(2011a) 

Listening 
effort 

The attentional and cognitive resources required to 
understand speech 

Picou et al. (2011) Listening 
effort 

The cognitive resources allocated for speech recognition 

Kahneman (1973) Effort An intensive form of attention and is involved whenever 
a human engages in performing mental tasks. (Implied) 

Pribram and McGuinness 
(1975) 

Effort The measure of attention "paid" to increase or maintain 
the efficiency of a communication channel by reducing 
its equivocation (enhancing competency). 

Yates and Kulick (1977) Effort The available resources that are actually applied to the 
task. The available resources refer to external resources 
such as tools and energy source, and internal resources 
such as mental capacity and metabolic energy sources. 

Sanders (1983) Effort Effort is a co-ordinating process, adjusting the balance of 
input and output operations, and mediating high level 
feedback from response outcomes. 

Humphreys and Revelle 
(1984) 

Effort The motivational state commonly understood to mean 
trying hard or being involved in a task. 

Tyler et al. (1979) Cognitive 
effort 

The engaged proportion of limited-capacity central 
processing 

Piolat, Barbier, and 
Roussey (2008) 

Cognitive 
effort 

A measure of the fraction of attentional resources 
allocated to a process at a given moment. 

Tuovinen, Gerven, Paas, 
and Tabbers (2003) 

Mental effort The aspect of cognitive load that refers to the cognitive 
capacity that is actually allocated to accommodate the 
demands imposed by the task. 

Pichora-Fuller, 
et.al.(2016) 

Mental effort The deliberate allocation of mental resources to 
overcome obstacles in goal pursuit when carrying out a 
task. 
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The term resource is widely used in the definition of effort and listening effort. However, 

the definition of resource itself is vague with reference to almost any processing capability, 

energetical as well as structural. Norman and Bobrow (1975) defined resources as “such things 

as processing effort, the various forms of memory capacity and communication channels. 

Resources are always limited” (p.45). Rabbitt (1979) defined that resources are “acquired 

information about the structure of particular tasks and about the external world which are used 

by the subject in order to actively control their momentary perceptual selectivity and their choice 

of responses” (p. 129). When the cognitive capacity is defined as the mental resources available 

for storage and processing of information (Rudner, Lunner, Behrens, Thoren, & Rönnberg, 2012), 

the three terms can hardly be specified because they explain each other. 

There is a tendency in the literature to distinguish effort from the other constructs such as 

arousal, attention, mental load, and working memory (WM). Kahneman (1973) proposed that 

effort is a special case of arousal, and the difference between effort and other varieties of arousal, 

such as produced by drugs or by loud noises, depends on whether voluntary processing is 

involved. Arousal is defined in terms of phasic physiological or psychological responses to input, 

and is said to occur when an input change produces a measurable incrementing of a 

physiological or behavioral indicator over a baseline (Pribram & McGuinness, 1975). Although 

arousal and effort co-occur under many circumstances, which have made it possible to measure 

indices of effort, the dissociation between arousal and effort has been evidenced by independent 

manipulations of stimulus set and response set (Broadbent, 1971). Kahneman (1973) also 

claimed that the voluntary attention is an exertion of effort in activities which are selected by 

current plans and intentions, and the purposeful aspect of attention corresponds to effort. Later 
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definitions of effort continued to use this concept (Gosselin & Gagné, 2011b; Hicks & Tharpe, 

2002; Piolat et al., 2008). Attention and effort are naturally related. We rarely see effort 

expenditure without attention involved, and there is no evidence indicating that effort can vary 

independently from attention, although attention might vary independently from effort under 

certain conditions. Mental load and mental effort are considered as two distinct aspects of 

cognitive load (Tuovinen et al., 2003). Mental load represents the expected cognitive capacity 

demands of a particular task by an individual, whereas the mental effort reflects the actual 

cognitive capacity that the individual allocates to the task. The mental load and effort are 

impacted by the current knowledge about the task as well as subject characteristics (e.g., age, 

skill level), hence, they usually are not equal to each other.   

Pribram and McGuinness (1975) specified that effort accompanies only those attentional 

processes that result in a change in the representational organization of the information 

processing mechanism. Whereas, some researchers suggest that working memory ability, 

believed to be closely related but separated from attention, plays an important role when effort 

occurs. In the specific example of speech perception, when the signal is degraded by background 

noise or hearing loss, the cognitive (explicit) working memory processes help individuals fill in 

the missing information and compensate for speech perception difficulties (Rönnberg, Rudner, 

Foo, & Lunner, 2008). The explicit cognitive processes include verbal inference-making (Lyxell 

& Rönnberg, 1989), word decoding (Lyxell & Rönnberg, 1991), and phonological and lexical 

access (Rönnberg et al., 1998). These processes are required to retrospectively resolve 

ambiguities of previous speech elements during a dialogue and also to construct expectations of 

prospective exchanges in the dialogue. Working memory is often defined as the mental 

workspace where important information is kept in a highly active state, available for a variety of 
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other cognitive processes (Baddeley & Hitch, 1974). It focuses on dual storage and processing 

and includes the processes that encode, store, and manipulate information (Baddeley, 2000; 

Rönnberg, Danielsson, et al., 2011). Whenever a task demands extra storage and processing, the 

task becomes difficult and is associated with more effort (Zekveld, Kramer, & Festen, 2010). 

As can be seen, effort has more overlaps with other cognitive constructs rather than less. 

The one unique characteristic of effort might be the ability of aggregating all kinds of cognitive 

resources and processes, and integrating those intensive components into a strategy in order to 

achieve a goal. Viewing effort from this aerial perspective is helpful because a consensus on the 

precise definition of the related constructs as well as the differentiation from each other is not 

required. However, in order to use the term effort appropriately, the context in which effort is 

used should demonstrate the unique comprehensive aspect of the concept, and a valid measure of 

effort should be available to quantify it. 

Effort could manifest in physiological ways, such as pupil dilation (Globerson, 1983; 

Kahneman, 1973; Zekveld et al., 2010), increased skin conductance (Mackersie & Cones, 2011; 

Mead & Lapidus, 1989), heart rate or fast pulse (Mackersie & Cones, 2011), cortisol 

concentration (Hicks & Tharpe, 2002), evoked potential response (Bernarding, Corona-Strauss, 

Latzel, & Strauss, 2010; Strauss et al., 2009a) and blood flow in the brain (Croxson, Walton, 

O'Reilly, Behrens, & Rushworth, 2009). Effort also could manifest in terms of cognitive process, 

for instance, attention shifting and switching (Fraser, Gagné, Alepins, & Dubois, 2010; Howard, 

Munro, & Plack, 2010; Piolat et al., 2008; Sarampalis, Kalluri, Edwards, & Hafter, 2009); 

explicit processing capacity, which may involve executive processes such as shifting, updating, 

and inhibition to contribute to inference-making (i.e., inferring missing information) (Miyake et 
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al., 2000; Rönnberg et al., 2008); working memory (Rönnberg, Danielsson, et al., 2011; Rudner, 

Rönnberg, & Lunner, 2011); and response selection (Hockey, 1997; Sanders, 1983).  

In addition to the physiological and mental manifestations, the physical effort expended 

by people with hearing impairment should be included in the scope of the listening effort 

definition as well. The individual’s attempts to compensate and to communicate optimally 

require a constant effort to hear, to pay attention and to respond appropriately (Demorest & 

Erdman, 1986). Those who employ beneficial repair strategies, such as using amplification, 

setting up the acoustic environment as favorably as possible, determining the general content of 

the conversation, shortening the distance from the speaker, asking the speaker to rephrase or 

slow down rather than repeat, seeking for visual cues, dominating conversations instead of taking 

turns with other speakers, pursuing and adjusting their assistive listening devices and so forth, 

are expending extra effort on listening (Edwards, 2007). It should be noted that the research on 

listening effort originally started based on vague emotional complaints about effort by people 

with hearing impairment in everyday life and work, unfortunately, the emotional component and 

physical component of listening effort are absent in the above definitions, which are usually 

attached to the concept in a real life environment. 

Furthermore, the momentary effort that a task demands should be distinguished from the 

total amount of effort that is required to complete that task. The momentary effort at a specific 

instant will be quite different if one can complete a task at his/her comfortable pace compared to 

the situation when one completes a task within a strict time limit. Therefore, time-pressure has 

been suggested to be an important determinant of effort (Kahneman, 1973). 

The intention of listening in the definition of listening effort is essential in guiding the 

research direction in this field. Picou et al. (2011) focused on speech recognition, whereas 
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Gosselin et al. (2011b) and Hicks et al. (2002) emphasized speech comprehension. The ultimate 

goals of the effort expended on listening could be to comprehend the speech, to participate in a 

conversation, and/or to enjoy an interesting talk.  Speech perception and recognition are 

necessary but not sufficient to achieve these goals, however, speech comprehension is. In 

addition, speech comprehension is considered a broader term than speech perception and 

includes both implicit (bottom-up) and explicit (top-down) processes (Rönnberg, 2003). 

Therefore, defining listening effort with intension of speech comprehension is more appropriate.  

Effort is difficult to define because its mobilizations, motivations and effects vary with 

each individual. Although difficult, it has been accepted that the effort that a subject deploys at 

any one time corresponds to what he is doing, rather than to what is happening to him 

(Kahneman, 1973). Hence, listening effort should be considered as what a subject is doing while 

listening. In this context, listening effort should be described in terms of the individual’s 

physiological, mental, behavioral and emotional compensation driven by specific intentions (e.g., 

speech comprehension).  

Based on the above review, a suggestive definition of listening effort could be, any form 

of energy or resource (e.g., cognitive, physical, emotional) and process that is intentionally 

allocated (or distributed) in listening for the purpose of speech comprehension and/or pleasure. It 

is restricted by but independent of an individual's capacity. What effort consists of in a specific 

listening task is determined by the environment in which the listening activity takes place and 

how much compensatory strategy use in that environment is allowed. 

In summary, despite interest in the topic for the past few decades, there is still no clearly 

defined, universally accepted definition of listening effort. What we know so far is that listening 

effort is a mental concept closely related to but also distinct from other cognitive constructs. It 
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has characteristics of activeness, voluntariness, control or top-down processing motivated by 

intentions (goal-directed), and characteristics of variability as the individual’s intention changes. 

Similar to other mental constructs, listening effort cannot be directly observed; it must be 

inferred from observation of overt behavior and measurement of psychological and physiological 

processes. Listening effort can be assessed in different domains, such as time (momentary effort 

versus total effort), manifestation (physiological, mental and physical), quantity and quality (e.g., 

efficiency).  

1.2 THEORETICAL FRAMEWORK 

Compelling support for the essential role that the limbic system, especially the anterior cingulate 

cortex (ACC) area, plays in effort mobilization comes from neurophysiology and neuroimaging 

studies on animals and humans. The majority of research on listening effort is based on work of 

Kahneman (1973) and Broadbent (1971) because they present the earliest  attempts to integrate 

energetical mechanisms, with components such as arousal, activation and effort (Freeman, 1948), 

into an information processing model including the main stages of encoding and feature 

extraction, motor adjustment and response preparation, and computational control for central 

decisions (Sternberg, 1969). Both models implied that the energetic resources may be allocated 

and controlled. More recent models have postulated the mechanisms that trigger effortful 

processing or top-down processing, and started to emphasize the influence of active control and 

individual differences on effort exertion. 

This section is divided into three main parts. The first concerns neurophysiological basis 

of effort, followed by theories and models that relate to effort control and speech understanding. 
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The third and final part focuses on the association between individual differences and listening 

effort.  

1.2.1 Neurophysiological basis of listening effort 

The cognitive neurodynamics of listening effort are not fully understood yet, and research related 

to the neural correlates is still in its infancy. Pribram and McGuinness (1975) sought to define 

the major neuroanatomical structures of effort, which are hypothesized to be one of three 

separate but interacting neural systems in the control of attention. The effort mechanism in their 

model acted as a coordinating and organizing principle to coordinate the activity of arousal 

(amygdala circuit) and activation (basal ganglia circuit), and was involved in problem-solving 

and decision-making.  

Effort was said to be a function of the limbic system in a circuit involving the 

hippocampus, cingulate cortex, septal nuclei, posterior hypothalamus and the anterior thalamic 

nucleus, centering on the hippocampus (Pribram & McGuinness, 1975). The hippocampus is an 

area of the primitive cortex, hidden within the medial temporal lobe. The causal relation between 

the hippocampal circuit and effort was investigated by illustrating the abnormal habituation of 

hippocampal lesioned animal subjects in discrimination reversal tasks (Douglas, Barrett, 

Pribram, & Cerny, 1969), and by precise electrical stimulations of selected parts of the 

hippocampus circuit with micro- and macro-electrodes. Bland and Vandenwolf (1972) observed 

the hippocampal electrical activity measured by theta rhythm, an oscillatory pattern (i.e., 4-8Hz) 

in the electroencephalo-graph (EEG) signals recorded either from inside the brain or from 

electrodes glued to the scalp, from freely moving rats. They found that the theta activity occurred 

almost exclusively when the rats were making voluntary movements defined as flexible and 
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modifiable responses. Based on the observed long duration characteristics of hippocampal 

neurons, which indicate a long period of summation preceding hippocampal activity, Pribram 

and McGuinness (1975) proposed that the hippocampus constitutes part of an error (mismatch) 

evaluating mechanism which was conceived to process the perturbations resulting from the 

mismatch among inputs. 

More recent neurophysiological and neuroimaging investigations assign particular 

primacy to the anterior cingulate cortex (ACC) area, which is adjacent to the corpus callosum on 

the medial surface of the frontal lobe and has both connections to prefrontal and subcortical 

limbic structures (He, Dum, & Strick, 1995). The working hypothesis is that the ACC encodes 

information about effort (Rushworth, Walton, Kennerley, & Bannerman, 2004; Walton, 

Bannerman, Alterescu, & Rushworth, 2003; Walton, Kennerley, Bannerman, Phillips, & 

Rushworth, 2006).  

The anterior cingulate cortex (ACC) has been suggested as the neurobiological substrate 

for decisions engaging effort exertion and is believed to play a role in cognitive control (Fellows 

& Farah, 2005; Løvstad et al., 2012; Posner & DiGirolamo, 1998). One influential theory 

postulates that the ACC is involved in response conflict monitoring and serves as a regulator 

signaling to other executive regions such as the dorsolateral prefrontal cortex (DLPFC) whether 

executive attention has to be reinforced or alleviated and whether mental effort is demanded 

(Botvinick, 2008; Botvinick, Braver, Barch, Carter, & Cohen, 2001; Botvinick, Cohen, & Carter, 

2004). This was reflected in a number of neuroimaging studies. Carter et al. (1998) observed an 

increase in blood flow to the ACC when response competition arises as a result of the elicited 

prepotent but inappropriate response tendency (e.g., the Continuous Performance Test). Buckner 

et al. (1995) found that when underdetermining response was needed (i.e., override tasks in 
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which conflict or interference takes place among equally permissible lexical representations in 

working memory), the blood flow to the ACC increased. Braver, Barch, Gray, Molfese, and 

Snyder (2001) demonstrated increased blood flow in ACC during speeded tasks in which conflict 

was present between the executed incorrect response and related correct response. In contrast, 

under circumstances of less challenging auditory discriminations involving little decision-

making and simple movement, there was a reduction of blood flow in the anterior cingulate 

cortex (Cohen et al., 1988). Therefore, the conflict-monitoring theory of ACC function focuses 

on the initiating mechanism to facilitate the deployment of cognitive control, with an increase in 

the strength of top-down control following experienced response conflict. 

It appears that the hippocampus and the ACC share similar function of conflict-

monitoring. However, the approach to address the function of each brain area differs 

dramatically. The hippocampal desynchronization occurs only when a mismatch between an 

input and the neuronal model is present. A neuronal model refers to some competence or a 

patterned memory trace developed in the brain as a representation of the experienced stimulus 

configuration (Pribram & McGuinness, 1975). This hippocampal desynchronization facilitates 

the new reticular formation (registration) and activates the arousal function of the amygdala 

circuit. Discrimination tasks and reasoning tasks examining the contingent negative variation 

(CNV) and/or recording hippocampal theta rhythm often are used in experiments to test this 

hypothesis. The main issue with the hippocampal theta rhythm is that observing a response is 

much more difficult in humans and other primates than in mammals like rats, dogs or cats. The 

issue with CNV relates to its nonspecificity and contamination by spontaneous activities. In 

contrast, the Stroop-like tasks are often used in studying conflict-monitoring function of the ACC 

in combination with functional imaging technique. The characteristics of the conflicts in ACC 
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studies emphasize the complex and response end of the information processing structure, 

whereas the conflicts investigated in hippocampus studies focused more on the input side of the 

processing. It is possible that both hippocampus and anterior cingulate cortex constitute the 

conflict monitoring system but act at different stages. 

There are several other theories about relationships between the ACC and effortful 

behavior. Brown and Braver (2005) demonstrated by a computational model that the ACC might 

not detect conflict or errors per se, but rather adaptively predict the error-likelihood with 

continued exposure to task environments. They differentiated the error-likelihood detection from 

the conflict detection by manipulating response conflict and error probability separately in a 

change-signal task in which participants had to make a left-right reversed button press response 

from that indicated by the go-signal after seeing a change-signal. The variable change-signal 

delay (CSD) represented different levels of error-likelihood with shorter CSD corresponding to a 

4% low-error likelihood condition and longer CSD corresponding to a 50% high-error likelihood 

condition. These two conditions were not explained to the participants prior to the experiment, 

but they were presented by two colors. The participants demonstrated the ability to learn the 

meaning of the color cues over time as a result of negative reinforcement in this case, and to 

adaptively modify their behaviors through this reinforcement learning (RL). A critical finding 

was that the ACC activity as measured by error-related negativity (ERN/Ne) and fMRI was 

significantly greater in high-error trials than in low-error trials even with absence of response 

conflict. The ACC activity occurring in proportion to the error-likelihood therefore determined 

the amount of effort or cognitive control recruitment.  

Although the dominant theories have implied a correlation between the ACC and 

effortful behavior mediated by a conflict-resolution mechanism, a cognitive-control mechanism, 
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or a reinforcement learning mechanism, as those processes all require effort, they are still vague 

on effort motivation itself. A growing body of lesion and neurophysiological studies has yielded 

inconsistent or contradictory results for both the conflict (Nachev, 2011) and reinforcement 

learning (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006) hypotheses, because ACC 

lesions in human typically result in global slowing and increased response variability rather than 

inflexibility of control or lack of the ability to learn from feedback.  

The most recent theory proposed by Holroyd and Yeung (2012) reconciles diverse 

theories of the function of the ACC and suggests a role for ACC not in decision-making and 

deployment of cognitive control, but rather in motivating effortful behavior. In their hierarchical 

reinforcement learning (HRL) theory, behavior is organized hierarchically; interrelated states and 

actions are grouped together to form higher-level behavior options. Each option comprises 

structured sequences of actions directed toward a specified subgoal along with the initiation 

associations to the subgoal, and the ultimate goal is the combination of several subgoals. The 

simple reinforcement learning (better-than-expected outcomes are reinforced) occurs 

simultaneously within and between levels in the structure so that a goal can be achieved 

parsimoniously. Mapping the cognitive concepts to the brain, the ACC and basal ganglia operate 

in parallel but at different levels of the hierarchical organization. The ACC selects, maintains and 

learns about high-level options, whereas the basal ganglia are concerned with low-level actions. 

The ACC integrates the individual action values into a general task value to determine whether 

to sustain optimal performance. The authors suggest that the ACC is responsible for optimal 

option selection by associating and comparing predictive values (an estimate of the long-term 

reward by ventral striatum) with different options, and for maintenance (performance monitoring) 

for the chosen option. Meanwhile, the ACC determines the level of effort to be applied toward 



15 

executing the policy based on the predictive value. High value corresponds to vigorous top-down 

control exerted by the dorsolateral prefrontal cortex (DLPFC) directed from the ACC. The 

DLPFC and motor structures in the dorsal striatum execute those options by signaling basal 

ganglia.  

This hierarchical reinforcement learning theory has incorporated key elements of 

previous theories and simplified the learning process. In addition, the core ACC functions of 

option selection, option maintenance, and cost-effort integration allow the theory to 

accommodate the neurophysiological and neuropsychological evidence that ACC lesions result 

in effort aversion and even loss of the awareness of effort.  

Several investigations have suggested that the ACC is necessary for optimally allocating 

effort expenditure. Laboratory animals with permanent or transient AAC lesions do not 

maximally exploit high-effort-high-return options and fail to allocate their effort towards 

strategies that maximize return (Amiez, Joseph, & Procyk, 2006; Kennerley et al., 2006; 

Schweimer, Saft, & Hauber, 2005; Walton et al., 2003). Rats were tested after 6-

hydroxydopamine infusions into the ACC (Schweimer et al., 2005) or infusing quinolinic acid 

into the ACC (Walton et al., 2003) in cost-benefit tasks. In the tasks, they could choose from 

climbing a barrier to obtain a high reward or obtaining a low reward without the barrier. Results 

demonstrated that the lesioned rats exhibited a reduced preference for the high-cost-high-reward 

response option when given the choice of obtaining a low reward with little effort, whereas the 

control rats with intact ACC preferred to select the high-cost-high-reward option. This indicated 

that the ACC is important when evaluating how much effort to expend for a specific reward. 

Kennerley (2006) demonstrated that ACC’s critical role in reinforcement-guided 

behavior is neither in detecting nor in correcting errors, but in guiding voluntary choices based 
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on the history of action and outcomes. The author trained three of nine rhesus monkeys with 

selective ACC lesions (removal by surgery) on tasks assessing error- and reward-guided action 

selection. Monkeys were free to choose between two actions. In one experiment, the response 

outcomes were categorized as either correct or incorrect, and the monkeys had to use the positive 

reinforcement information to sustain correct performance because only the correct responses 

received reward. In the other experiment, the two actions were rewarded according to unequally 

assigned probabilities, which meant that monkeys had to use another strategy rather than “win-

stay, lose-switch” to obtain optimal return. The results showed that the ACC lesioned monkeys 

did not perform significantly worse than control monkeys on the trials that followed errors, and 

both groups took approximately three trials to notice that the reinforcement was being 

increasingly delayed in the first experiment. However, the lesioned monkeys were less likely to 

repeat a response that had been rewarded and were generally much slower than the control group 

to approach the optimum ratio threshold of action choices in the second experiment. Thus, the 

pattern of impairment suggested that the ACC area is vital for sustaining rewarded action 

selection.  

In another experiment, Hillman and Bilkey (2012) argued that heightened ACC activity 

did not solely result from the level or volume of effort demand of conditions, instead it encodes 

information as to which course of action provides the best effort-outcome ratio. They recorded 

AAC neurons in freely moving rats as they performed a competitive two-choice decision-making 

task. The rats chose whether to physically compete with a peer for food reward under a safe and 

limited physical competition scenario created by using wire mesh and two peer rats. In this study, 

the food reward configuration and the dominance of peer rats were manipulated to represent the 

degree of effort required. They found that the ACC neurons responded to competitive effort costs, 
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increasing their firing rates to indicate the course of action that appeared to provide the best net 

utility (potential gain minus incurred costs). In addition, the ACC neurons were found sensitive 

to subtle changes in competitor’s strength, it was suggested that the neurons registered the 

dominant or highly-food motivated competitor as high-effort, low-return options. More 

interestingly, the heightened ACC activity was not consistently observed for all competitive 

conditions that required effort. When reward size and dominance of competitor were separately 

manipulated in isolated experiments, Hillman and Bilkey found a consistent pattern of higher 

firing rates for the choice that appeared to be the optimal effort-outcome ratio.  

Correspondingly, imaging studies in humans have shown that the greater the effort-based 

cost-benefit net value, the higher the resulting ACC activity (Croxson et al., 2009; Forstmann, 

Brass, Koch, & von Cramon, 2006; Mars et al., 2005; Walton, Devlin, & Rushworth, 2004; 

Yoshida & Ishii, 2006). Croxson et al. (2009) scanned young normal participants’ brains while 

they performed a sequence of effortful tasks with four effort levels to obtain secondary 

reinforcers associated with either high or low money reward.  The location of the intersection of 

a vertical line and horizontal line in a circle visual field served as a cue indicating the levels of 

reward and of effort to be expected at the beginning of each trial, that is, the net cost-benefit 

value of the upcoming task. The authors demonstrated several regions, including insula/posterior 

orbitofrontal cortex (OFT), ventral striatum, dopaminergic midbrain and ACC, which responded 

at different points during multistep response processing toward the reward. The fMRI Blood 

Oxygen Level Dependent (BOLD) signal changes of insula/posterior OFT were found to relate 

only to reward expectation and not to effort expectation, whereas the BOLD signal changes of 

putamen were only determined by effort expectation alone. Although the cue-locked activities in 

ventral striatum, midbrain and ACC were all significantly modulated by the net value of the 
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course of action, only ACC activity increased as participants worked through the effort period 

toward reward, indicating an important role of the ACC in continuously computing the net value 

and maintaining the optimal goal. In a following behavioral confirmation experiment, 

participants consistently chose the visual cue corresponding to the higher net value option, which 

agreed with the fMRI results. The data from Croxson’s (2009) study and Kennerley’s (2006) 

substantially supported the hypothetical goal selection and maintenance function of the ACC in 

the hierarchical reinforcement learning (HRL) theory (Holroyd & Yeung, 2012).  

Alterations in ACC structure or function have been associated with clinical conditions of 

effort misappropriation in humans and cognitive misperception of effort as well. Devinsky (1995) 

observed that patients with elevated anterior cingulate cortex activity often display tics and 

obsessive-compulsive behaviors, sometimes even psychopathic or sociopathic behaviors. 

Conversely, reduced anterior cingulate cortex activity following surgery or infarcts can 

contribute to behavioral disorders such as diminished self-awareness, depression, impaired motor 

initiation, reduced responses to pain and aberrant social behavior. Naccache et al. (2005) 

performed a case study using a Stroop paradigm on a patient with a left mesio-frontal cortex 

lesion including the left ACC and a group of comparison subjects. The authors initially expected 

to see control impairments likely to be found in such patient, unexpectedly however, the control 

abilities of the patient evaluated in various versions of the Stroop tasks were amazingly 

preserved across response modalities. They accidentally discovered that the patient was totally 

unable to experience and report a normally associated feeling of mental effort during those tasks. 

The deficit of sensation of effort could not be simply explained by episodic memory impairment 

or a failure to understand the task because the patient could perform much better than chance-

level when asked to recall the congruity of the stimulus presented on the preceding trials, and she 
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was able to identify the difficulty level of a trial. Naccache et al. thus hypothesized that this 

deficit could be related to an inappropriate generation of somatic signals (e.g., heart rate, pupil 

dilation, skin conductance) from mesio-frontal structures, including the ACC. Clinical 

neuropsychology and brain imaging studies converge to attribute a crucial role to the frontal 

cortical systems in the generation of those somatic signals, and in the coupling of bodily 

reactions to a cognitive evaluation (Critchley et al., 2003).   

In another Stroop experiment, Naccache et al. (2005) increased the duration of the Stroop 

task in order to record the skin conductance responses (SCRs). The patient showed behavioral 

evidence of Stroop interference, but no variation of SCR was observed from congruent trials to 

incongruent trials, or vice versa. In contrast, each of 10 normal comparison subjects showed a 

visible event-related SCR on a trial-by-trial basis, and the SCR amplitude correlated with effort 

measured by asking participants to verbalize which one of the two paired Stroop trials was 

subjectively felt as the more difficult. Importantly, the patient remained able to generate large 

SCRs and to report feelings of emotion when presented an emotional picture. Taken together, the 

series of systematic experiments have led the authors to tentatively suggest that the dissociation 

between preserved cognitive aspects of control and impaired consciously reportable feelings of 

mental effort may be due to an inability to translate actual periods of mental effort into 

physiological emotional signals and eventually into a conscious feeling of having made a mental 

effort. The preserved control might be the result of the spared right ACC because its event-

related potential (ERP) still varied with the requirements for effort. 

Several investigations emphasized the importance of dopamine in mediating effort-

related behavior (Holroyd & Coles, 2002; Holroyd & Yeung, 2012; Schweimer et al., 2005; 

Walton et al., 2003). The midbrain dopamine system has been proposed to carry and transfer the 
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reward prediction error signals (positive error indicating better than expected reward and 

negative error indicating worse than expected reward) to the pyramidal cells in ACC by 

dopamine neuron activity (Holroyd & Coles, 2002). Transient or phasic dopamine release caused 

by dopamine neuron firing codes for positive error, and the brief pauses in the dopamine neuron 

firing codes for negative error (Holroyd & Yeung, 2012). The changes (i.e. dips) in dopamine 

when participants make errors in cognitive tasks consequently elicit an event-related potential 

(ERP), referred to as error-related negativity (ERN). The ERN is not only an error or conflict 

detection mechanism, but its relative magnitude is associated with the extent of learning to avoid 

maladaptive responses. This hypothesis is supported by Frank et al. (2005) using a modified 

version of a reinforcement learning paradigm previously shown to be sensitive to dopaminergic 

manipulation. The data from recording response-locked ERPs suggested that the error-related 

negativity (ERN) was larger for participants who tended to learn more from the negative 

consequences of their decisions. By contrast, the tonic dopamine release is said to be responsible 

for motivating effortful behavior by coding for the average reward probability over time as 

effortful behavior was dramatically impaired by dopamine-induced ACC lesions (Schweimer et 

al., 2005; Walton et al., 2006).  

Therefore, within the hierarchical reinforcement learning (HRL) framework, the phasic 

dopamine signal is associated with optimal option selection, whereas the tonic signal is 

associated with optimal option maintenance. It is the important role of dopamine in effortful 

behavior that has made some researchers suggest an alternative center of the effort circuit, the 

ventral striatum, which is a primary target of the midbrain dopamine system (Carlson, Foti, 

Mujica-Parodi, Harmon-Jones, & Hajcak, 2011). Schmidt et al. (2012) proposed that the ventral 

striatum is a common motivational center that drives both cognitive and motor effort systems by 
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investigating the correlations between the fMRI activation of ventral striatum and cognitive and 

mental effort exertion. No evidence was shown in the study regarding the relationship between 

the ventral striatum and the ACC to either support or to reject the notion that the ACC is superior 

to the ventral striatum in optimal effort-based cost-benefit option selection and maintenance as 

indicated in the hierarchical reinforcement learning (HRL) model.   

Taken together, convergent evidence has shown that effortful behavior is driven and 

controlled by the limbic system centering on the anterior cingulate cortex (ACC). The ACC 

might monitor conflict as an index of task difficulty and/or the mental effort it demands, 

translating this into cost-benefit analyses underlying action or strategy selection. It then 

integrates the choice context and the expected and obtained outcomes across time, and 

determines which actions are worth making and maintaining to achieve goals. The ACC is 

strongly interconnected with the midbrain dopamine system and receives reward prediction error 

(RPE) signals carried by phasic and tonic dopamine release from the ventral striatum. The 

reward-related scalp potentials and fMRI BOLD activation reflect the impact of dopamine 

reward predicted error (RPE) signals on ACC for learning option-specific values. 

Although a growing literature elucidates the crucial contribution of the ACC in 

motivating effortful behaviors, whether those theories can be used to account for the effortful 

behavioral change introduced by peripheral sensory disorders (e.g., hearing impairment) is 

unclear, because neuroanatomically, there is a lack of evidence for direct sensory inputs to ACC.  

Yet such inputs may arrive either via high-level perceptual pathways or frontal areas that show 

stimulus specificity (Boussaoud & Wise, 1993). Neuroanatomical evidence supports the view 

that people with hearing loss use different processes compared to individuals with normal 

hearing to maintain a comparable level of speech understanding performance (Grady, 2000; 
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Wingfield & Grossman, 2006). Relative to people with normal hearing, people with hearing loss 

show a more widespread cortical activation pattern involving the areas associated with working 

memory and executive function, which reflect reliance on the context (i.e., top-down processing) 

as a strategy to compensate for difficult listening situations (Cabeza, Anderson, Locantore, & 

McIntosh, 2002; Pichora-Fuller & Singh, 2006). The reorganization of the neural representation 

from the brainstem through the auditory cortex, and/or across sensory modalities is often seen in 

cases with significant attenuation or reduction of peripheral input such as cochlear damage 

(Gordon et al., 2011; Sweetow, 2005). Because signals from the outside are not carried by these 

damaged sensory neurons and nerves to the brain, the brain’s auditory part begins to weaken and 

deteriorate from the lack of stimulation and resulting disuse. 

A bridge between the general cortical effort framework and the specific auditory pathway 

is needed to answer questions such as what brain structure in the effort circuit is responsible for 

the detection of errors or conflicts between peripheral auditory inputs or responses. How are the 

short-term and long-term statistical probabilities of experienced reward via listening effort 

calculated to generate effective listening strategies?  What is the mediating mechanism of effort 

control in the connection of the cortical and subcortical auditory area and frontal area of the brain 

that underlies the strategic or compensatory behavior? Does the stress and constant feeling of 

effort caused by longstanding hearing impairment adversely impact the function of the dopamine 

system, consequently offset the motivation to learn and mobilize effort? To what extent, is the 

effort circuit flexible to compensate for the decrement of hearing?  
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1.2.2 Theories and models related to effort 

Investigation of listening effort in humans with impaired hearing has a rather short history. 

Several modern theoretical perspectives on this topic are most relevant. These include the 

unitary-resource theory by Kahneman (1973) , ease of language understanding (ELU) model by 

Rönnberg (2008) and compensatory control model by Hockey (1997). Compared to the rapidly 

growing understanding about general effort expenditure in cognitive behaviors (e.g., multiple 

cognitive tasks), relatively less is known in particular about driving mechanisms of strategic 

selection and allocation of effort in stages of the speech understanding process. 

1.2.2.1 Unitary-resource model of Kahneman (1973) 

The unitary-resource model of Kahneman (1973) is widely accepted and serves as the theoretical 

foundation of many studies of listening effort. In this model, effort is considered equivalent to 

attentional capacity and attentional resource. The theory is based on the following four 

assumptions: 1) Humans have a limited attentional capacity that may be exerted when dealing 

with a task; 2) The amount of attentional capacity exerted at any moment varies depending 

primarily on the demands of current activities; 3) The attentional capacity is divisible and 

controllable, it can be allocated to facilitate the processing of selected perceptual units or the 

execution of selected units of performance; the policy of allocation reflects enduring dispositions 

and momentary intentions, and the allocation of attention is a matter of degree but more nearly 

unitary at high levels of task load; 4) Physiological indices of arousal provide a measure that is 

correlated to the momentary capacity. 

One of the central elements of the model is the attentional capacity allocation policy. 

Expending effort depends on the enduring dispositions and the momentary intentions, and how 
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much effort to be expended on the selected task governed by the evaluation of demands, which is 

the other central element of the model.  According to this model, three factors are required for 

successful performance on a task: a sufficient total attentional capacity for the task demands, a 

sufficient momentary supply of the required attentional capacity, and an appropriate allocation 

policy of the attentional capacity. Kahneman (1973) proposed two kinds of effort – involuntary 

effort and voluntary effort. Involuntary effort is driven by enduring dispositions, for example, a 

novel, significant, complex, surprising, or incongruous stimulus spontaneously attracts attention 

and demands greater processing effort than a familiar stimulus without those properties. In 

contrast, voluntary effort is determined by current plans and intentions, for example, search for a 

target object, listen to the sound on the left side, solve a math problem, or comprehend an 

utterance. The surge of both kinds of mental effort can be reflected in manifestations of arousal, 

such as dilation of the eye pupil or the electrodermal response.  

In a given mental task, the nature of input stimuli and task demands at each moment 

determines the required total attentional capacity (or effort) and momentary effort respectively. 

A basic rule of the allocation policy appears to be that activities which demand much capacity 

are favored over less demanding activities. Kahneman’s (1973) theory predicts both single-task 

performance and multiple-task performance in terms of mental effort. In the single-task 

condition, the exerted effort increases with the increase of the task complexity until a state of 

effort overload is approached, at which the exerted effort begins to drop, producing an inverted-

U shape. In the multiple-task condition, particularly when two tasks are performed 

simultaneously, the total capacity varies with the demands of undertaken tasks to some extent, 

and the transient variation in the effort that one investigates in one activity determines his/her 

ability to do the other task at the same time. The spare capacity exerted in the secondary task 
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decreases with the increase of the involvement in the primary task. In reference to this model, a 

task performance can break down due to the insufficient input such as a degraded signal, or 

because of the inadequate total capacity to meet its demands (e.g., an extremely difficult task), or 

as a result of allocation policy (e.g., the available effort has been channeled to other activities). 

Considerable empirical evidence of listening effort supports Kahneman’s (1973) theory. 

Downs (1978) conducted a study to access effort during auditory learning under degraded 

listening conditions. A paired-associate spondee word learning task was performed by six groups 

of randomly assigned young adults with normal hearing, and the effort were accessed by 

introducing the visual probe reaction-time task as a simultaneous measurement. The six listening 

conditions of the stimuli presentation included three levels of intensity (50dB SL, 35dB SL, and 

20dB SL) in quiet and at +6 dB signal-to-noise ratio, respectively. The author found no effect of 

presentation intensity or babble noise competition on learning performance measured by the 

number of trials required to obtain 100% accuracy in a single trial given 100% intelligibility for 

all stimuli. However, the results showed significantly less effort in terms of secondary task’s 

reaction time in quiet versus competition conditions averaged across intensity levels, and no 

statistical difference on effort among the stimulus intensity levels, which demonstrated that 

adding competing noise rather than reducing signal intensity results in extra effort expenditure. 

Howard et al. (2010) used a dual-task interference paradigm to investigate the listening 

effort at typical classroom signal-to-noise ratios on normal hearing children. The primary task 

was repetition of monosyllabic words presented in a background of children’s chatter at quiet, +4, 

0, -4 dB SNR; the secondary task was to simultaneously rehearsing sets of five digits for a later 

recall. The listening effort was indicated by the reduced performance on the secondary task. The 
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authors found that the listening effort increased with the decrease of the SNR while the primary 

listening task performance was maintained.  

More recently, Winn, Edwards, and Litovsky (2015) measured the impact of auditory 

spectral resolution on listening effort using the pupillometry technology. Results showed that the 

pupil dilation systematically grew with each successive degradation in spectral resolution of 

sentences, and the effect of spectral resolution on listening effort persisted even when only 

analyzing trials in which responses were 100% correct.  

There have been several attempts to extend the scope of listening task in studying 

listening effort under the same theoretical framework. The manipulation of the difficulty level of 

listening tasks include the sentence intelligibility level (Ohlenforst et al., 2017; Zekveld et al., 

2010), type of masker noises (Desjardins & Doherty, 2012; Francis, MacPherson, 

Chandrasekaran, & Alvar, 2016; Larsby, Hallgren, Lyxell, & Arlinger, 2005), the predictability 

of the words in the sentences (McAuliffe, Wilding, Rickard, & O'Beirne, 2012; Sarampalis et al., 

2009), signal-to-noise ratio (Bernarding et al., 2010; Fraser et al., 2010; Hicks & Tharpe, 2002; 

Howard et al., 2010; Kramer, Kapteyn, Festen, & Kuik, 1997; Sarampalis et al., 2009), phonetic 

complexity of words (Bernarding, Latzel, Strauss, & Corona-Strauss, 2011; Strauss, Corona-

Strauss, & Froehlich, 2008), syntactic complexity of sentences (Stewart & Wingfield, 2009), 

combination of visual and auditory modalities (Fraser et al., 2010; Picou et al., 2011), relatedness 

of paired word list (Tun, McCoy, & Wingfield, 2009), length of auditory digit test (Mackersie & 

Cones, 2011), order of approximation in auditory recall task (McCoy et al., 2005), uncertainty of 

speech location and talker (Koelewijn, de Kluiver, Shinn-Cunningham, Zekveld, & Kramer, 

2015), accent interference (Iverson, Brint, Song, & Wu, 2016) and first language vs. second 

language (Mackersie & Cones, 2011). The literature has covered a broad range of populations, 
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including young and old adults, and individuals with normal hearing and hearing loss. A few 

studies accessed listening effort of children with normal hearing (Globerson, 1983; Hicks & 

Tharpe, 2002; Howard et al., 2010; Stelmachowicz, Lewis, Choi, & Hoover, 2007).  

The convergent finding from the above mentioned studies shows that, as the processing 

load of the task increases, listening effort increases with or without compromised performance 

accuracy; persons with hearing loss require more listening effort to solve the task than their 

counterparts with normal hearing; and older adults expend more listening effort than young 

adults recognizing and understanding speech in noise.  Despite consistence with the predictions 

of Kahneman’s (1973) model, no consensus exists regarding the common unit of effort in order 

to compare between tasks and subjects. More importantly, tasks used in those empirical studies 

failed to provide compensatory options to show the strategy pattern that participants would have 

used in an adverse listening environment.  

There are four major limits in applying Kahneman’s (1973) theory to listening effort 

research. First, there is no clear distinction between effort and attention in this model. Kehneman 

identified effort with attention and capacity as different names for the same construct, and used 

attention and effort interchangeably. As a result, effort was constrained to the attentional domain, 

which is treated in the present study as only part of effort according to the previous review of 

effort definitions. If effort is equivalent to attention, one would argue that any attention model, 

such as Broadbent’s (1958) filter theory, Navon and Gopher’s (1979b) multiple-resource theory, 

and Wickens’s (2002) four-dimensional multiple resource model could be considered as an effort 

model; the likelihood of agreement on that is probably low though. Moreover, the proposed 

involuntary and voluntary attention does not mesh well with the basic concept of effort. Effort is 

treated as a voluntary, energy-consuming process, whereby processing resources are voluntarily 
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allocated to a particular task or activity with or without the cost of other tasks and activities 

(Nocetti, 2005). In this sense, the part of “voluntary effort” determined by momentary intention 

in this model should be a focus when studying listening effort.  

Second, the intention- or goal-driven rule of attention allocation in Kahneman’s (1973) 

model has not received the same weight as the stimulus- or task-driven allocation policy has. 

According to the model, the allocation of attention is determined principally by three sets of 

factors: the enduring dispositions which control involuntary attention, the momentary task 

intentions which control voluntary attention, and the evaluation of task demands. In the 

experimental work, the momentary task intentions are often set by instructions regardless of 

single task or dual-task paradigm; for example, task instructions may dictate which parts of a 

task should be performed first and what subgoals have relatively high or low priority. However, 

the selection and maintenance of performance stability under demanding conditions in real life is 

usually an active process under the control of the individual, requiring the strategic management 

of effort. Evidence has shown difference in task performance between assigned versus 

participant-set goal conditions (Erez, Gopher, & Arzi, 1990; Strickland & Galimba, 2001), in 

which participants who self-set goals achieved higher overall performance and reported less task-

related cognitive interference compared to those who were assigned goals on dual tasks. Further, 

the type of goal-setting has an impact on subsequent development of task strategy. Earley, 

Connolly and Ekegren (1989) demonstrated that participants given specific, difficult goals were 

more likely to develop plans for idea generation than participants given a general “do your best” 

goal. Effort allocation is a decision-making type of behavior; therefore experimental 

manipulation in listening effort studies should allow participants to optimally allocate their 
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divisible but limited effort based on their self-set subgoals on multiple tasks when they are 

instructed to execute specific responses to auditory stimuli. 

Third, the individual differences in effort allocation are not emphasized in this model and 

neither have been well addressed in the listening effort literature. The original supporting 

evidence of Kahneman’s (1973) model is primarily based on evidence from within-subject 

designs, which have been carried over to the listening effort literature. Although several studies 

investigated between-subject factors such as hearing status and age in groups, the variability of 

the strategic effort allocation among individuals has been overlooked. The impact of task 

difficulty on exerted effort varies among individuals. Pascual-Leone (1970) found that individual 

differences, in particular the cognitive style of field-dependence/independence, play a central 

role in the way subjects manage their effort. Humphreys and Revelle (1984) postulated that two 

dimensions of personality, impulsivity and anxiety, are closely related to mental effort allocation. 

Personality accounts for considerable variance of self-reported handicap and effort due to 

hearing impairment in survey studies (Cox, Alexander, & Xu, 2009). The relationship between 

individual differences and effort allocation is discussed in more detail in a separate section. 

Lastly, there is no mention about the impact of self-perceived or received feedback of 

performance on effort expenditure. The perception of success or failure may influence the mental 

effort investment. The motivational intensity theory by Brehm and Self (1989) proposes that the 

willingness to invest effort into the task is a function of perceived: 1) task difficulty, 2) ability, 

and 3) likelihood that successful performance on the task will achieve a desired goal (e.g. 

momentary incentive, pleasant emotion). Effort is invested into performance if individuals 

believe that they can succeed in achieving a tangible goal. However, if the task is perceived as 

either too difficult or not worthwhile, then effort will be withdrawn. Contrary to this prediction, 
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Venables and Fairclough (2009) found that the performance feedback of failure produced 

adverse changes in mood/motivation, but had no significant influence on willingness to invest 

effort. The authors interpret the results as an agreement with Hockey’s (1997) cognitive-

energetical model that participants in the failure group chose to invest effort in order to 

compensate for perceived failure. As stated in the study, the influence of performance feedback 

on effort investment remains complicated due to some experimental design issues.   

A recently proposed framework, called Framework for Understanding Effortful Listening 

(FUEL) (Pichora-Fuller et al., 2016), adapted Kahneman’s (1973) model and interpreted its core 

components in relation to listening effort. This framework addresses the importance of the 

intentional factor such as motivation in listening effort research and provides a hypothetical 

additive interaction effect of motivation and task demand on effort. This framework makes the 

connection between the Kahneman’s model and listening effort research more explicit; however, 

it does not distinguish effort from attention, and has not yet reached a stage where the strategic 

effort allocation could be quantitatively predicted beyond what Kahneman’s model has been 

capable of.  

In summary, Kahneman’s (1973) model has been successfully used by hearing scientists 

in predicting the allocation of the attentional aspect of effort by listening task demand. What 

have not been successfully applied are the impact of intention and individual differences on the 

effort allocation. Although Kahneman’s (1973) model covers the majority of the critical 

elements required to explain the effort regulation behavior, there are lack of clear discrimination 

between construct terms, the details of the interaction among the determinants of strategic effort 

regulation, and the role of other important factors such as performance feedback played in effort 
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regulation. Those missing parts implies a necessary collaboration of multiple theoretical models 

in studying effort allocation.  

1.2.2.2 Ease of Language Understanding (ELU) model 

A major goal of listening is speech comprehension, and it entails processing a sequence of 

symbols that is produced and perceived over time, which requires a critical role of working 

memory not only in performing the symbolic computations and thereby generating the 

intermediate and final products from the stream of successive words in a context or spoken 

discourse, but also in storing them (Just & Carpenter, 1992). Speech comprehension involves 

both attention and working memory, although the relationship between the two constructs is 

complex (Awh, Vogel, & Oh, 2006; Engle, 2002; Fougnie, 2009), the concept of effort is 

purposely used to incorporate them rather than differentiate them. While Kahneman’s (1973) 

model contributes the listening effort literature from the attentional perspective of effort, the 

more recently developed Ease of Language Understanding (ELU) model has provided important 

supplements from the angle of working memory in the listening effort investigation.  

The ELU model is not a model of language understanding per se, but about the ease with 

which the processing of multimodal language input is accomplished at sentence and discourse 

level (Rönnberg, 2003). The model was assumed to apply to the conditions where poorly 

specified language information is delivered through input channels, such as hearing impairment 

and external noise. A growing amount of studies on listening effort use this model, assuming the 

ease of language understanding to be reciprocal to listening effort.  

The ELU model has five basic assumptions: (1) There is a rapid binding of the speech-

related information delivered in different sensory modalities, which takes place in an episodic 

buffer (Baddeley, 2000). This process is denoted as Rapid Automatic Multimodal Binding of 
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PHOnology (RAMBPHO) (Rönnberg et al., 2008) and based on research of audio-visual speech 

integration in the nervous system (Campbell, 2008; McGurk & MacDonald, 1976) and 

neurophysiology study of hearing native signers in working memory tests (Rudner, Fransson, 

Ingvar, Nyberg, & Rönnberg, 2007). (2) The syllabic-like phonological representations of 

language are stored in long-term memory. The precision of the phonological representations and 

the long-term memory access speed constrain the efficiency of perceptual decoding and lexical 

and semantic access (Pichora-Fuller, 2003). (3) The single or multi-modality information 

extracted by RAMBPHO is compared to a corresponding phonological representation in long-

term memory through a general mismatch mechanism. The mismatch negativity (MMN), an 

electrophysiological response, observed during manipulation of the magnitude of stimulus 

change in auditory memory experiments has served as evidence for the mismatch mechanism 

(Näätänen, 2008; Näätänen & Alho, 1997). (4) There is a threshold in the mismatch mechanism 

that determines the initiation of explicit processing because of the constraints on the implicit 

cognitive functions in humans such as input signal decoding and long-term memory access speed. 

This assumption has not been systematically tested. (5) The ease of explicit processing depends 

on the individual’s working memory capacity. The higher the WM capacity (i.e., faster 

processing and bigger storage) an individual has, the easier the inference-making (i.e., inferring 

missing information) and disambiguation (i.e., repairing misunderstandings) are for this person 

in language understanding. This assumption was supported by evidence that people with high 

WM capacity perform better on speech understanding in noise (Pichora-Fuller, Schneider, & 

Daneman, 1995; Rönnberg, Rudner, Lunner, & Zekveld, 2010), and the observation that people 

with hearing impairment or deafness who have excellent communication skills generally have 

higher WM capacity than their average skilled counterparts (Rönnberg et al., 1998). This 
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assumption is also in accordance with the capacity theory of comprehension proposed by Just 

and Carpenter (1992) which suggests that both processing and storage elements of WM constrain 

the quality and quantity of the individual’s language comprehension in several aspects such as 

flexible interaction among syntactic and pragmatic information and maintaining multiple 

interpretations.  

As indicated in the ELU model (Rönnberg, 2003; Rönnberg et al., 1998; Rönnberg et al., 

2008), when a linguistic signal enters, RAMBPHO serves as an episodic buffer and rapidly and 

automatically integrates the single or multi-modal linguistic information into a stream of 

phonological information, which is then compared to the phonological representations in long-

term memory. If the incoming signal is well specified, no mismatch arises, and the implicit 

cognitive processing involved in language understanding under advantageous conditions is 

sufficient for achieving comprehension. In contrast, when the input is poorly specified (e.g., 

speech in background noise, speech with strong accent, distorted speech from hearing aids or 

cochlear implants), this poorly perceived incoming information results in a mismatch between 

the incoming information and the phonological representation in long-term memory and the 

implicit processing is no longer sufficient. Consequently, language comprehension processing 

becomes explicit.  

Alternatively, the ELU model can be illustrated by a general formulation (Rönnberg, 

2003) as follows: 

ELU =
𝑓𝑓𝑓𝑓(𝑃𝑃)𝑓𝑓𝑓𝑓(𝑆𝑆)
𝑓𝑓𝑓𝑓(𝐸𝐸)𝑓𝑓𝑓𝑓(𝐶𝐶)

 

The four elements correspond to the assumptions. The parameter fp(P) is determined by the 

accuracy of phonological representations in long-term memory, and fs(S) is determined by the 
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long-term memory access speed.  The fp(P)fs(S) constitute the implicit part of the formula. The 

parameter fe(E) stands for the explicit process, i.e., predictive inference-making and 

retrospective disambiguation, and fc(C) represents working memory capacity including both 

storage and processing. The denominator represents the explicit process. The relationship 

between the relative weights of implicit and explicit processes and ease of language 

understanding is that ease of language understanding is positively correlated with the accuracy of 

the phonological representations in long-term memory and the speed access, and negatively 

correlated with the amount of explicit process and the WM capacity invoked as a consequence of 

mismatch. The higher degree of mismatch results in higher weight of explicit process, thus the 

less ease of language processing.  

The ELU model contributes to the listening effort literature by providing a theoretical 

framework of when, how and where the explicit processing is initiated in language understanding 

in the working memory domain. The implications of the model have increased the understanding 

of the phenomena related to hearing loss and listening effort. One of the main implications is that 

mismatch occurs more frequently for people with post-lingual hearing impairment than their 

counterparts with normal hearing even after compensating for audibility. It is partially due to the 

fact that current hearing instruments are still unable to fully restore hearing functions even with 

advanced technologies (Edwards, 2007), and partially because the phonological representations 

have been altered to some extent by lack of reinforcement due to longstanding hearing loss. 

Andersson  and Lyxell (1999) studied the contributions of deficits in the phonological 

representations (in LTM) and deficits in executed processing (in WM) to the phonological 

deterioration in individuals with acquired severe hearing impairment by using rhyme-judgment 

task paradigms and lexical decision tasks. Sixteen participants with severe hearing impairment 
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and sixteen age-matched normal-hearing controls were given a cue word, a cue non-word or a 

cue picture at a time displayed on a computer screen, each of which was followed by a series of 

test items. They were asked to indicate as quickly and accurately as possible whether the 

presented item rhymed with the cue word or not by pushing the predefined buttons. In the lexical 

decision task, given a string of letters on the screen, the participants indicated whether they 

constitute a real word or not by pushing corresponding buttons. The rhyme judgment task 

requires participants to develop a phonological representation for each cue, and match the test 

items with it, while the lexical decision task concerns the ability of an individual to access the 

meaning of words through the phonological route. The results showed that the group with 

hearing loss performed significantly less accurately than the group with normal hearing in the 

rhyme-judgment task; however, no significant difference was found between groups in the 

lexical decision task, indicating degraded phonological presentations in long-term memory but 

intact working memory in the group with hearing loss. In the case of the population that is 

prelingually deaf, their phonological representations of sound in LTM reflect what they hear (i.e., 

unaided, aided with hearing aid or cochlear implant, etc.), and they are learning a different 

coding system from peers with normal hearing. As long as their own phonological 

representations have been established, mismatch should not occur more frequently than people 

with normal hearing, and their depressed language performance should be primarily due to the 

degraded quality of phonological representations in LTM. Lyxell et al. (1998) examined the pre-

operative cognitive performances of 15 adult users with cochlear implants and their post-

operative speech understanding performance in order to investigate the relationship between 

them. They found that, among the 15 participants, eight of them, who had comparable 

performance on a rhyme-judgment task and lexical decision-making task with controls with 
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normal hearing, also had high functional communication ability 12 months after cochlear 

implantation. The remainders had significantly worse performance on cognition tasks than 

controls with normal hearing and less ability in communication even with 12 months experience 

with cochlear implants. These results suggested that the phonological representations built 

through cochlear implant use during 12 months did not have high enough quality to achieve 

communication for those who did not have intact phonological representations prior to 

implantation. The intact phonological representation in long-term memory is therefore crucial for 

people to accomplish the phonological matching and consequent language understanding. Taken 

together, in both prelingual and postlingual situations, the weight of the implicit process (i.e., the 

numerator of the ELU formula) decreases, and the language understanding becomes difficult and 

effortful.  

The second implication is that, frequent mismatches would produce a relative disuse of 

episodic LTM associated with verbal information as the verbal episodes built on degraded 

signals are hardly successfully encoded into the LTM. The mismatches does not necessarily 

affect the WM and semantic LTM though because theoretically they are pushed into constant use 

in order to implement inference-making and disambiguation. However, the semantic LTM might 

be indirectly affected due to its close relationship with episodic LTM in that the efficient 

encoding, storage and retrieval of verbal information from episodic LTM depends on the quality 

of phonological-lexical representations in semantic LTM (Rönnberg et al. 2011). Rönnberg et al. 

(2011) investigated the relationship between hearing acuity and cognitive functions in 160 

hearing aid users with heterogeneous ages and without dementia. The cognitive functions 

evaluated in this study targeted memory in particular, including STM (measured by free word 

and sentence recall tasks), semantic LTM (measured by word fluency and vocabulary tasks), and 
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episodic LTM (measured by free recall of subject-performed tasks). The authors found 

significant negative correlation between hearing loss and episodic LTM performance after 

adjusting for age. A similar link was found between hearing loss and semantic LTM performance, 

but a non-significant link between hearing loss and STM performance, which has supported the 

disuse hypothesis derived from the ELU model. This work, along with other research 

investigating the association between hearing impairment and cognitive functions, such as 

memory (Andersson & Lyxell, 1999; Andersson, 2002; Foo, Rudner, Ronnberg, & Lunner, 

2007), selective and divided attention  (Desjardins & Doherty, 2012; Hauthal, Neumann, & 

Schweinberger, 2012; Humes, 2007; Rakerd, Seitz, & Whearty, 1996; Shinn-Cunningham & 

Best, 2008), and executive function (Beer, Kronenberger, & Pisoni, 2011), might expand the 

researchers’ view of the nature of listening effort deployment by people with hearing loss based 

on their remaining cognitive functions, and help to define and locate the sources of listening 

effort since the top-down compensatory for language understanding is unlikely limited to a 

single cognitive domain. The dramatic variability of the findings on the access of cognitive 

function resulting from hearing impairment raises caution that each case should be considered 

individually. 

The third critical implication from the ELU model is that, when the explicit process (i.e., 

the denominator of the ELU formula) becomes dominant, the language understanding 

performance is dependent on the individual’s working memory capacity. In other words, once 

the explicit processing is triggered by mismatch, ease of language understanding perceived by an 

individuals to achieve a certain level of performance is dependent on his/her working memory 

capacity. In a study by Foo (2007), participants with hearing loss were tested with unfamiliar 

hearing aid settings that differed from the ones they were used to in order to produce a 
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phonological mismatch. Foo et al. observed that WM capacity (measured by reading span) was 

significantly correlated with speech understanding performance and adaptation to a specific 

compression setting in hearing aids. Rudner et al. (2012) studied the relationship between 

subjective rating of listening effort and working memory capacity in persons with hearing loss 

during a speech recognition test at various SNRs corresponding to equated performance levels 

(i.e., 50%, 80%, 95%, 95%+) with either steady-state noise or modulated noise. The subjective 

listening effort rating was measured by a visual analog scale, and working memory capacity was 

measured by a letter-monitoring and a reading span task. The listening effort rating was 

negatively associated with working memory capacity at all SNR levels in a steady-state noise 

condition, but the negative relationship was only observed at the two lowest SNRs in a 

modulated noise condition. These results suggested that adding steady-state noise to speech has 

triggered an explicit process even at high performance levels, such that participants had to 

expend more effort at those levels than when the noise was modulated. The modulated noise 

provided some benefit over the steady-state noise so that the threshold of explicit process 

initiation (a key assumption of ELU model) shifted toward the more challenging situations. 

Findings from Desjardins and Doherty (2012) also support the listening effort and working 

memory association hypothesis. Three groups of participants, fifteen young adults with normal 

hearing, fifteen older adults with normal hearing, and sixteen older adults with hearing loss, 

performed a sentence repetition task at a fixed performance level (76% correct) in various types 

of background noise, and listening effort measurement was administrated using a dual-task 

paradigm and subjective rating scale. Results revealed that, both groups of older participants 

expended higher listening effort than the young normal hearing group across all types of 

background noise conditions, but there was no difference between the two older groups. The 
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listening effort measured by a dual-task paradigm was negatively correlated with working 

memory for all groups. 

From a potential listening effort framework prospective, the ELU model (Rönnberg, 2003; 

Rönnberg et al., 1998; Rönnberg et al., 2008) supplements Kahneman’s (1997) model in several 

aspects. First, the ELU model brings what is thought to be a different cognitive domain from 

attention by majority of researchers, working memory, into the listening effort study field. 

Second, the ELU model was established specifically for challenging situations where the inputs 

are degraded, while Kahneman’s model concerns ideal communication situations and does not 

explicitly describe how the model accommodates the adverse situations. Third, the ELU model 

directly bridges the individual difference of cognitive functions and ease of language 

understanding, especially working memory capacity; whereas the relationship between the 

individual differences and effort allocation is less obvious in the structure of Kahneman’s model. 

These supplements from the ELU model have made the picture of potential listening effort 

framework more specific than using Kahneman’s model alone. Moreover, the ELU model makes 

a remarkable contribution to cognitive hearing science by focusing cognitive functions to the 

population with hearing loss with which audiologists and hearing scientists are most interested.    

There are still some crucial questions relative to listening effort left unanswered. First of 

all, the definition of listening effort is not implied by the ELU model. Ease of language 

understanding is not identical or reciprocal to listening effort. Desjardins and Doherty (2012) 

assessed listening effort with a dual-task paradigm with a sentence in noise recognition test as 

the primary task and a digital visual pursuit rotor tracking test as the secondary task. In addition, 

ease of listening was measured by asking participants to subjectively rate how easy it was to 

listen to each sentence on a scale from 0 (very difficult) to 100 (very easy). Although no 
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statistical analysis was conducted to compare the two by the authors, dramatically distinct 

patterns were shown as a function of difficult listening conditions. The subjective ease of 

listening rating systematically decreased as the difficulty level of the noise condition increased in 

all experimental groups: illustrated as a downward slope. However, the listening effort of elderly 

groups showed a U shape, indicating that they expended less effort under medium difficulty 

condition than under easy and difficulty conditions, whereas the young normal group displayed 

an inverted U shape with lower overall values. Therefore, it seems that ease of listening or 

language understanding represents individual’s subjective judgment on the stimulus or input, 

whereas listening effort represents the invoked output from a person (i.e., what the person is 

doing) by a stimulus. High ease of listening does not necessarily associate with less listening 

effort, and vice versa. Secondly, the ELU model does not provide further information about 

effort allocation than Kahneman’s model does, since how the degree of engagement of explicit 

processing in working memory associates with attention allocation is not addressed. Thirdly, the 

key assumption of threshold in the mismatch system can be used to equate the difficulty level of 

task materials across individuals, but how to systematically measure the individual threshold is 

not indicated in this model. The ELU formula allows quantifying the ease of language 

understanding of a given speech material for a specific person since the elements in the formula 

are measurable in some sense. If the individual threshold is known, more valid results can be 

produced due to better control in the experimental conditions. A within subject trading function 

demonstration using the concurrent task difficulty manipulation method, a systematic controlled 

dual-task paradigm adopted from Slansky and McNeil (1997) and McNeil et al. (2004), can 

potentially serve as a solution.   
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Most importantly, the explicit compensation cannot be presumed to be passive or 

stimulus-driven, as a person’s will or goal also plays a critical role in effort allocation. Moreover, 

the influence of performance feedback on effort allocation is still unclear. These two issues 

consequently raise a need to bring the compensatory control model into the potential listening 

effort framework. 

1.2.2.3 Compensatory control model  

In light of Mulder (1986), there are two conceptualizations of effort, one related to the difficulty 

of the task and the other related to the executive control of state (i.e., compensatory control). The 

former is mainly determined by the intrinsic attentional demand of tasks, which is in common 

with Kahneman’s (1973) conception of mental effort. The latter concept of effort concerns the 

active involvement of individuals in performance of mental tasks by changing the current 

energetical resource state (e.g., arousal level, effort level, activation level) to meet target state. It 

is primarily affected by cognitive manipulations such as instructions, stressors, incentives, 

importance, knowledge of performance, achievement motivation, and personality factors. 

Hockey (1997) presented a two-level compensatory control mechanism of dynamical effort 

allocation which incorporates both conceptualizations of effort.   

The compensatory control model assumes that: 1) Human behavior is essentially driven 

by goals, including both long-term and short-term goals. 2) Control of goal states is normally a 

self-regulatory process. 3) Individuals’ internally-maintained states depend on the goals, and 

directly determine the performance criteria for a task (e.g., accuracy, speed, order). The target 

performance is subject to modification based on the perceived costs and benefits of alternative 

states and actions. 4) There is a performance monitoring mechanism called action monitor in the 

lower-level of compensatory control (i.e., routine regulation), which calculates the difference 
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between the actual performance and the target value; and there is an effort monitor in the upper-

level of compensatory control (i.e., effort-based regulation), which is responsible for detecting 

whether a further effort deployment is demanded. 5) The routine regulation is a bottom-up 

process, while the effort-based regulation is a top-down process. 6) The routine regulation has an 

effort budget associated with anticipated task demands, and the effort-based regulation has a 

maximum effort limit mainly associated with individual differences in cognitive capacity, 

judgment, tolerance and affective state, etc. The difference between the budget and the limit 

provides a reserve effort to deal with additional demands. 7) Effort may be allocated and 

controlled rather than stimulus-driven, and subject to strategic resource-management decisions. 8) 

Regulatory activity attracts costs to other parts of the system in terms of sympathetic activation, 

such as pupil dilation and increased excretion of cortisol. 

According to Hockey’s (1997) two-level compensatory control system, when an 

individual performs a task well within his/her learned skills, a target value for the output (i.e., 

performance goal) is established first, and then the current performance is continuously 

compared with the target output value through the action monitor during the task course. The 

deviation of current activity from the target value can be corrected automatically without active 

regulation or effort if the deviation is small, given that the processing requirement of the task is 

well below the individual’s functional limit of effort expenditure. However, when the difference 

is too dramatic for the low-level correction to bring performance to the target range due to the 

increased complexity of the task and/or increased goal standard, the upper-level effort regulation 

is needed. This concept is similar to the mismatch mechanism in the ELU model (Rönnberg et al., 

2008), except that the ELU model deals with the stimulus end of information processing, 

comparing the input signal with the phonological representation in semantic LTM; whereas the 



43 

compensatory control model (Hockey, 1997) is concerned with the response end of the 

information processing, comparing the actual performance with the target. In addition, the target 

(i.e., phonological representations in LTM) used for comparison in the ELU model is relatively 

stable for a given individual, while the performance target in the compensatory control model 

may vary moment to moment depending upon individual’s instantaneous cost-benefit decisions 

about use of effort (Granholm, Verney, Perivoliotis, & Miura, 2007; Haggard, Cockburn, Cock, 

Fordham, & Wade, 2000; Segerstrom & Nes, 2006) . 

When the effort regulation is shifted from the lower-level to the upper-level because of 

the performance mismatch, effort is not assumed to automatically increase to meet the new 

elevated task demands as suggested in Kahneman’s (1973) model, rather, a structure in the 

upper-level control system called the supervisory controller determines what effort allocation 

strategy is adopted (Hockey, 1997).  For example, if the activity is important, a large reserve 

effort may be set to maintain stable effectiveness level of performance by actively involving 

working memory or executive control. In this case, the high priority task goals are maintained, 

and a subjective feeling of effort is perceived with elevated physiological manifestations. This 

strategy is referred to as active coping. Alternatively, a small reserve effort is likely set when the 

task value is low to the individual. In this case, the performance target is adjusted downward, 

which indicates an acceptance of overt performance decrement with little increase in costs. This 

strategy is referred to as passive coping, and can be adopted by paying less attention, less use of 

working memory, or reducing the required levels of accuracy or speed. Occasionally, an extreme 

strategy of complete disengagement from the pursuit of task goals can be observed in some 

laboratory tasks when the tasks are too stressful to be effectively fulfilled even with further effort 
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expenditure, particularly in sports and education literature (Gendolla, Richter, & Silvia, 2008; 

Hatzigeorgiadis, 2006).  

The above mentioned strategies have been documented in various areas. Hockey and 

Earle (2006) simulated an office-work environment and asked two groups of participants to 

conduct a number of standard office tasks including a set of high-priority and urgent jobs 

(primary tasks) and a set of necessary, low-priority and non-urgent jobs (secondary tasks) within 

a time limit of 2 hours. The secondary tasks should not be accomplished at the expense of the 

primary tasks. One group was allowed to establish their own schedule (i.e., high-control 

condition), while the other group had to follow a fixed schedule (i.e., low-control condition). As 

predicted by the compensatory control model (Hockey, 1997), different adjustment patterns of 

trade-offs among performance, effort and costs were observed regardless of the difficulty level of 

the tasks. The high-control group chose to complete the primary tasks first and allocated 

sufficient time on them to achieve high performance quality, and then used the remaining time to 

complete as many secondary tasks as they could with high performance quality as well. In 

contrast, the low-control group chose to compromise the performance of secondary tasks in order 

to ensure the completion of the primary tasks within the time limit. The performance of the 

primary tasks in low-control group was comparable to the high-control group, however, they 

completed less secondary tasks and made significantly more errors than the high-control group 

participants. Interestingly, participants in the high-control group rated the perceived demands of 

tasks and effort higher than low-control group. The authors argued that making time 

management decision consumes extra effort.  

Granholm et al. (2007) investigated effortful processing resource allocation in people 

with chronic schizophrenia by measuring pupil dilation while performing a span of apprehension 
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(SOA) task. The pupillary response was considered as an indicator of the extent of active 

voluntary effort deployment. On the SOA task, participants had to detect which of two target 

letters was among a letter array (3-letter and 10-letter) shortly flashed on the computer screen. 

One subgroup of 29 participants showed impaired SOA task performance but normal pupillary 

responses compared to normal controls under the 10-letter condition. The other subgroup of 29 

participants displayed significant decrement in both SOA performance and pupillary response in 

the 10-letter condition (i.e., passive coping). The result supported the notion that people with 

schizophrenia have deficits in specific cognitive functions rather than reduced overall resource 

capacity or effort, and the allocation of effort under high task load is subject to the individual’s 

strategic decision. Ahern and Beatty (1979) studied the coping strategy of healthy individuals in 

solving arithmetic problems, and found that some participants with low-ability expended more 

effort measured by pupil dilation in a task to meet increasing difficulty challenges than people 

with high-ability (i.e., active compensatory coping), however, others with low-ability accepted 

low performance standards and adopted a passive coping strategy indicated by significantly 

lower pupil dilation than the high-ability controls.  

Studies concerning listening effort, on the other hand, have failed to demonstrate the 

variability of individuals’ active effort allocation. The major finding in those studies was the 

simple positive correlation between listening effort and the difficulty level of tasks with or 

without impairment of performance (Mackersie & Cones, 2011; McCoy et al., 2005; Sarampalis 

et al., 2009; Strauss et al., 2009a; Zekveld et al., 2010). The goal of tasks and the priority of each 

test item were usually pre-determined by the instructions in those experiments, and no 

compensatory options (e.g., replay the stimulus, taking notes) were provided; therefore, the 
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measured effort in those studies likely reflects the passive response to changing task demands, 

rather than any coping strategies postulated by the compensatory control model (Hockey, 1997). 

The role of performance feedback is briefly addressed in this model, although not 

emphasized. Regardless of internal feedback (self-generated) or external feedback (received 

from others), the function of knowledge of performance results is suggested to inform the 

individual whether the amount of effort required for the performance of a particular task is 

allocated or not. Therefore, it appears that the degree of discrepancy between the perceived 

performance and the target, rather than the origin of the feedback, determines the involvement of 

the high-level control and subsequently influences the strategy adoption. 

Taken together, Hockey’s compensatory model provides an active control-as-moderator 

mechanism underlying the complex relationship between mental effort, task demand and task 

performance. This is an extremely important supplement to and distinction from  Kahneman’s 

(1973) and Rönnberg’s (2008) models in that the concept of self-regulatory control allows 

researchers to not only study the quantity of effort, but also the diversity of effort allocation 

patterns. Additionally, research based on this model has brought some insights of methodology 

used to investigate human’s motivational regulation of effort. Unfortunately, there have been no 

direct experimental studies of the compensatory control hypothesis in relation to listening effort. 

Besides Kahneman’s (1973) unitary-resource model, Rönnberg’s (2008) ease of langue 

understanding model, and Hockey’s (1997) compensatory control model, there are some other 

theoretical frameworks related to effort, such as Yates’s (1977) effort and performance model, 

Sanders’s (1983) cognitive-energetical linear stage model of human information processing and 

stress, Pribram and McGuinness’s (1975) model of energetical mechanisms, and Siegrist’s (1998) 

effort-reward imbalance (ERI) model. These models have pronounced differences in centers of 
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interests, assumptions and methodology from the three models mentioned here; however, 

considerable convergences in explanation of effort exist between them. For example, Yates’s 

(1977) model of effort and performance focuses on the role of individual’s subjective judgments 

(e.g., success probability, difficulty level of a task, effort-performance relationship, potential 

costs and benefits) in the operation of the effort control system. Those subjective judgments 

claim individual motivations which in consequence instruct the effort expenditure policy. The 

model frame is similar to Kahneman’s (1973) unitary-resource model while the components 

more accord with the view of Hockey’s (1997) compensatory control model. As Yates’s (1977) 

model was based solely on subjective estimates on hypothetic tasks rather than truly measured 

outcomes, the reliability and validity tests of this model are needed before it can be applied in 

other fields. Table 2 outlines a comparison of addressed effort-related questions among the 

models emphasized in this document from a potential effort-centered framework perspective. 
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Table 2. Comparison of theoretical models related to effort 

  

Hierarchical 
Reinforcement Learning 

model (Holroyd & Yeung, 
2012) 

Unitary-resource 
model (Kahneman, 

1973) 

Ease of Language 
Understanding (ELU) 
model (Rönnberg et 

al., 2008) 

Compensatory 
control model 
(Hockey, 1997) 

Definition of effort   ●     
Neurophysiological basis of effort ●       
Account for degraded input     ●   
Origins of effort ● ● ● ● 
Effort initiation mechanism ●   ● ● 
Data-driven effort exertion ● ● ● ● 
Goal-driven effort exertion    ●    ● 
Volume of effort   ● ● ● 
Effort allocation pattern (strategy)       ● 
Effectiveness of effort   ● ● ● 
Efficiency of effort   ●   ● 
Prediction of performance ● ● ● ● 
Interference among concurrent tasks   ●   ● 
Interference among successive tasks       ● 
Individual difference     ● ● 
Active compensatory control of effort       ● 
Time pressure   ●   ● 
Effort measurement ● ●   ● 
Upper limit of effort   ●   ● 
Cost/benefit decision ●     ● 
Effect of performance feedback on effort       ● 
Potential computational formula of effort     ●   
Used in listening effort studies   ● ●   
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1.2.2.4 Speech comprehension and effort 

Speech comprehension is one of the most complex human activities, and the comprehension 

processes occur at multiple levels across units of language. Wingfield and Tun (2007) proposed a 

framework of operations involved in speech comprehension at the word, sentence, and discourse 

levels, as well as cognitive supports and constraints in spoken language comprehension. The 

model comprises three basic systems: sensory system, perceptual system, and cognitive system, 

constrained by an overall limited processing resource.  

The operations involved in the sensory system include sensory input detection and source 

discrimination that are carried out by the peripheral and low-level central auditory systems. The 

acoustical features of the input signal, such as intensity, spectrum, metrical pattern, temporal 

structure, and spatial localization, are collected at this stage. The status of the auditory system 

directly determines the quality of the information to be encoded. The second system, the 

perceptual system, begins with aggregation and/or segregation of the received acoustical 

elements, and this also is where cognitive attention enters. An attentional filter is engaged to 

determine which sound to focus on and to minimize the interference as a result of energetic 

masking and informational masking, so that one can isolate the target speech from the 

background. The perceptual operations following the attentional filter are phonological analysis 

and lexical identification, which identify lexical elements, such as nouns, verbs, adjectives, and 

adverbs that the phonemes represent. The perceptual system extends thus far, not only cognitive 

attention plays an essential role in perception, memory also contributes to this process by serving 

as a real time mapping system similar to the matching mechanism mentioned in the ELU model 

(Rönnberg, 2003). However, understanding of the meaning of the input signal is not required at 
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the perceptual stage, whose main purpose is to make the linguistic elements necessary for 

comprehension available for further analysis. Speech perception capability is usually examined 

by speech recognition tests that require listeners to repeat what they heard. Listeners do not have 

to understand the materials in order to perform those tests. The stimuli can be either speech 

sound or non-speech sound. The third system, the cognitive system, consists of several 

interactive operations such as syntactic resolution, thematic role assignment, coherence structure, 

and discourse comprehension. In other words, given all the necessary linguistics elements from 

the perceptual stage, listeners must identify the meaning of the individual words, their 

relationships with other words, and the characteristics by which one can determine what part of 

speech the word belongs to, and/or how the words are associated with the theme of a certain 

sentence. At the discourse level, sentences are connected via coherence logical structures; 

therefore, determination of the propositional content of each sentence and integration of the 

content within and across sentences are needed to achieve discourse comprehension.  

More detailed discussion of language comprehension, at high-level in particular, was 

supplemented by Perfetti and Adlof’s (2012) schematized model of comprehension components. 

Although the framework is based on reading comprehension, it can be readily applied to oral 

language comprehension as the key processes are largely shared between written and spoken 

language. According to Perfetti and Adlof’s (2012) framework, word-level comprehension is 

basically a phonetic and lexical process, and sentence-level comprehension is a syntactic and 

semantic process in addition to phonetic and lexical analysis and closely tied to the grammatical 

structure of the sentence. The most important supplement to Wingfield and Tun’s (2007) 

cognitive system was at discourse-level comprehension, which includes high-level 

comprehension components such as inference-making, comprehension monitoring, and 
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comprehension strategy usage. Inference-making occurs in routine comprehension and helps the 

comprehender build a coherent mental representation of the discourse. Because inferences are 

usually triggered by missing or inexplicit elements of the context, the availability and 

accessibility of the prior knowledge become critical determinants of successful inferences 

drawing. Comprehension monitoring is a metacognitive skill to monitor or judge the quality of 

one’s understanding (Pitts, 1983), i.e., the ability to be aware, while reading or listening, whether 

a text is making sense or not. In addition to verifying understanding, comprehension monitoring 

also plays an important role in allowing the comprehender to make repairs where this 

understanding fails. As is true for inference-making, retrieval of knowledge from memory is 

necessary for comprehension monitoring. Comprehenders commonly use strategies to enhance 

comprehension. For example, strategies enhance reading comprehension (comprehension 

monitoring, cooperative learning, use of graphic and semantic organizers, question answering, 

question generation, story structure, summarization, etc.) (National Reading Panel, 2000), and 

reception strategies enhance listening comprehension (global reprise, specific reprise, hypothesis 

testing, kinesics, uptakes, faking) (Rost & Ross, 1991; Vandergrift, 1997).   

Although described in a sequential fashion, many of the comprehension components and  

operations are necessarily interactive across linguistic levels (Marslen-Wilson, 1975) and across 

time (Dahan, 2010), with information flow moving in both directions. Marslen-Wilson (1975) 

presented evidence in a sentence shadowing task that sentence perception is modulated as a 

parallel rather than serial process among the four descriptive levels – phonetic, lexical, syntactic 

and semantic. In the experiment, participants were asked to shadow sentences and rapidly repeat 

back speech as they heard it. The stimulus materials were constructed such that, 120 pairs of 

sentences were randomly assigned to 3 context groups – normal group, semantic group and 
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syntactic group. The tri-syllabic target-word in the second sentence of each pair was replaced by 

a semantically anomalous new word in semantic group and by a semantically and syntactically 

anomalous new word in syntactic group. Each context group was further divided into 4 

subgroups of 10 pairs each in order to produce lexical disruption. In one subgroup in each 

context group, the target-word was left unchanged, and in the other three subgroups, the first, 

second or third syllable of the tri-syllabic target-word was changed so as to make it into a 

nonsense word, for example, tomorrow was changed into tomorrane (the third syllable change). 

The word restoration (i.e., the restoration of disrupted words to their original form), context 

restoration (i.e., reinstatements of the original word that had been replaced by a contextually 

anomalous word), and repetition latency (i.e., duration between the onset of the target-word in 

the input and the onset of the word in output) were measured to demonstrate the interaction 

effect of context disruption and word disruption. The results showed that the word restoration 

occurred most when the disrupted word was consistent with the preceding semantic and syntactic 

context (normal group) and when its first one or two syllables were not disrupted; however, this 

pattern was not seen in the semantic group and syntactic group. In addition, the repetition 

latencies for context restoration were shorter than those for word restoration. Both findings were 

contrary to the serial models of sentence processing which would expect the word restoration 

frequency to be independent of context variables, and the influence of the contextual information 

to be less effective at short rather than long repetition latency. Therefore, the authors proposed 

that the listener analyzes the incoming material at all available levels of analysis, such that the 

information at each level can constrain and guide simultaneous processing at other levels.  

In the time domain, the traditional view of  comprehension of spoken language over time 

is that the perceptual interpretation of continuous speech takes place in real time (i.e., a 
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sequential or “left to right” analysis), with linguistic analysis and decision-making accomplished 

at the rate at which information reaches the senses (Frazier, 1987). The core assumption of this 

theory is that the lexical processing completes in a serial way with discrete candidate sets and 

discrete points in time narrowing down as new information adds in to identify a single best-

fitting lexical candidate, and there is a brief but measureable temporal delay of the influence of 

contextual information. However, the recent emerging evidence supports an alternative view that 

mapping from the input to meaning is a continuous process with merging representations that are 

continuously updated using multiple information sources such as contextual and phonetic 

sources, similar to the idea from Bayesian models that multiple sources of information are 

evaluated simultaneously and in a probabilistic manner to achieve the optimal interpretation of 

the signal. The propagation of constraints takes place continuously, so that the total support for 

each alternative is continuously updated (Dahan, 2010; Dahan & Tanenhaus, 2004a). Dahan and 

Tanenhaus (2004b) designed two eye-tracking experiments to test this theory. Participants were 

asked to select the object they heard in a sentence from 4 objects displayed on the screen, and the 

proportion of their fixations on each object was measured. The four displayed objects 

corresponded to the target referent, a cohort competitor which overlapped with the onset of the 

referent’s name, a semantic competitor which semantically related to the target, and an irrelevant 

distractor. In experiment 1, two types of verb-based semantic constraint conditions were created, 

one with the main verb (i.e., semantic context) preceding the target noun, e.g., literally translated 

from Dutch “Today crawls the baby a bit further”; and the other with an auxiliary verb preceding 

the target word and the main verb followed the target word, e.g., literally translated from Dutch 

“Today has the baby crawled a bit further”. The authors referred to these two conditions as the 

constraining-verb condition and neutral-verb condition, respectively. The neutral-verb condition 
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was designed to represent the typical “left-to-right” analysis where the early arriving information 

has immediate influence on decision making so that the decision space (i.e., set of possibilities) 

becomes smaller as new pieces of information are added, eventually, a single best-fitting 

candidate is selected, taking into account goodness of fit with the input and the context. The 

constraining-verb condition was the critical condition which demonstrated the continuous and 

simultaneous integration of multiple sources of information, and the modulation of initial 

hypotheses by later-arriving information (referred to as right context effect by the authors). The 

eye-tracking results in terms of proportion of fixations on the given words over a time window 

from 200ms to 500ms after target word onset (i.e., mean duration of the target word) were 

evaluated. In the neutral-verb condition, participants were equally likely to fixate on the cohort 

competitor and the target, the fixations to the target and cohort competitor increased with a 

similar slope from 200ms until around 350ms after target-word onset. Fixations to the target then 

continued to rise while fixations to the cohort competitor began to drop. The rise and fall in 

cohort competitor fixations occurred while the target word was heard and processed, illustrating 

initially consistent and subsequently inconsistent effect of the cohort competitor. A strikingly 

different pattern was seen in the constraining-verb condition, where the fixations to the target 

and cohort competitor diverged very early, and the semantic competitor was not activated in 

either condition. The results indicated an immediate integration of contextual and phonetic 

information, and fixations were determined by the combination of the two resources. There was 

no delay of contextual influence on the speech comprehension as assumed by sequential 

processing models. In experiment 2, the authors additionally manipulated the fragment of the 

vowel (second formant) of the target word in each sentence such that it anticipated the following 

consonant, which led to two different words and meanings, either the target referent or the cohort 
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competitor. This manipulation helped to demonstrate that the spectral cues in the vowel 

mitigated the left-to-right contextual effect. In both neutral-verb and constraining-verb 

conditions, when the prediction of the word by vowel was incongruent with the verbal contextual 

information, the fixations on the target decreased and the fixations on the cohort competitor 

increased; in addition, the point in time of the spectral cues’ impact was quite similar between 

two conditions. This shift of fixation occurred even when the contextual and phonetic 

information had converged towards a single best-fitting lexical candidate which indicated that 

the spectral cues in the spoken word’s vowel temporarily modulated the interpretation. The 

above evidence supports that percepts during speech comprehension emerge from both 

anticipation of upcoming information and integration over a larger temporal window, and the 

ultimate decision is reached after more time has passed and more information has accumulated.  

Taken together, there are enormously sophisticated operations in comprehension of 

spoken language, especially at discourse-level in the cognitive system specified in Wingfield and 

Tun’s model (2007). The operations embedded in the complete comprehension processing are 

highly active and interactive, even the audition in the sensory system which was traditionally 

seen as a passive filter or frequency analyzer based on the Fast Fourier transform (Klatt, 1989), 

has now been discovered to be an active process (Greenberg, 1996), in that different perceptual 

strategies are automatically applied in different listening environments. For example, instead of 

detailed spectral portraiture, the auditory system extracts invariant spectra-temporal 

representations (syllable-like units) of the speech signal through the computation of the low 

frequency modulation spectrum in the auditory cortex in order to obtain the same basic meaning 

across the diverse acoustic conditions such as reverberation, background noise, change of 

speaking rate, speaker, or style (Greenberg, 1996). High-order operations (e.g., inference-making, 
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comprehension monitoring) not only depend on the accuracy of the relatively low-order 

operations (e.g., building phonological representations, context-appropriate meaning retrieval 

from memory), but also have influence on them. Therefore, bottom-up and top-down processing 

coexist in natural speech comprehension. Corruption at any point in the process will introduce 

difficulty in understanding speech and require extra effort to fix it in order to achieve successful 

comprehension.  

According to Wingfield and Tun (2007) and Perfetti and Adlof (2012), the cognitive 

recources draw on a single capacity-limited resource pool, including attention, memory and 

executive function, are widely involved in operations within speech recognition and speech 

comprehension. The purpose for that is to select, temporarily store and process the phrases and 

clauses of syntactically complex sentences in order to determine the correct sentence meaning. 

Compared to speech recognition, comprehension generally requires more complex operations 

accompanied by more effort. Dahan and Tanenhaus (2004a) argued that the goal of lexical 

processing is to make lexically specific information available for ongoing computations about 

comprehension, rather than mere what words have been said in the sentence (recognition). 

However, in the literature of listening effort, little attention has been paid to comprehension; 

instead, researchers tend to focus listening effort at the speech recognition level. The listening 

goal can modulate the pattern of effort allocation. Fallon et al. (2006) examined the effect of task 

goal (recall vs. comprehension) on normal-hearing adults’ self-paced listening time using an 

auditory moving window (AMW) task, in which the participants controlled the flow of 

information in a word-by-word or clause-by-clause fashion at their own rate by pressing a key 

when they were ready to hear the next segment of the speech message. After presenting each 

sentence, participants were asked to either repeat the sentence (recall condition) or respond “true” 
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or “false” to a comprehension probe (comprehension condition). The pause duration between 

segments was recorded to demonstrate the pattern of time expended on the segments, implicitly 

illustrating the pattern of cognitive effort allocation. The results showed that the pause durations 

at the major clause boundary and completion of a sentence were significantly longer when the 

listening goal was to prepare oneself to answer a comprehension question than when the goal 

was to merely recall what had been heard, and the pause durations at other words in the sentence 

were at similar low levels. This result indicates that the type of task demand is a highly relevant 

determinant of the effort exertion. However, the selection of test materials for this type of study 

should be done carefully because a comprehension task does not always demand more effort than 

a recognition task. It depends on various factors including the length of the sentence, the 

comprehension probe type, the memory function of participants, etc. All the sentences used in 

Fallon (2006) were nine words in length, and none of the materials used in listening effort 

studies that were asked to be recalled have exceeded this length. Research relative to the effect of 

listening goals on listening effort is still in its infancy. To what extent the listening goals impact 

the allocation of listening effort in individuals with hearing loss remains an open question.    

In summary, comprehension of spoken speech comprises highly inter-correlated 

perceptual and cognitive operations. Speech processing is considered more as a parallel and 

continuous integration of all available levels of analysis across time than a serial process. 

Cognitive effort in terms of attention, memory and executive function is involved in multiple 

levels of speech processing. As the general goal of listening is to understand the speech rather 

than mere recognition, studies on how people manage their effort while listening should take the 

comprehension-related operations into account in order to simulate the real life situation as well 

as to reveal the full pattern of effort deployment. 
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1.2.3 Individual difference and listening effort 

Effort has been used in many theories of human behavior to account for individual differences in 

intellectual performance in terms of differences in the availability of mental resources and in 

motivation (Humphreys & Revelle, 1984; Mulder, 1986; Strickland & Galimba, 2001). Hockey 

et al. (1986) suggested that the analysis of individual differences on mental effort not only can 

provide information on the range of processing options available to the individual, but also on 

the degree of flexibility in terms of coping strategies that of which the system is capable. The 

effort exerted by an individual usually relates to his or her physical and mental state. If 

attempting to characterize the listening effort allocation, it is necessary to know the available 

physical and mental resources of each individual in order to explain his or her decision on effort 

allocation in a given task.  

The majority of listening effort studies are within-subject designs with manipulation of 

task difficulty level. Only a few studies have looked at between-group factors such as age 

(Bernarding, Latzel, et al., 2011; Bernarding, Strauss, et al., 2011; Desjardins & Doherty, 2012; 

Gosselin & Gagné, 2011a, 2011b; Stewart & Wingfield, 2009; Tun et al., 2009) and hearing 

status (Bernarding, Strauss, et al., 2011; Hicks & Tharpe, 2002; Kramer et al., 1997; Stewart & 

Wingfield, 2009; Tun et al., 2009). There is little discussion about the individually different 

pattern of effort allocation and its underlying components, which might be more informative than 

focusing on group averages so that the conclusions of the research work on listening effort are 

not overgeneralized.   

There are many dimensions of individual differences that might be related to listening 

effort allocation, including general factors such as age and intelligence. However, they are not 

the main focus of this review. The current section discusses three specific potential perspectives 
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in which hearing-impaired individuals may differ from each other: auditory ability, cognition 

ability, and personality in terms of need for cognition.  

1.2.3.1 Auditory ability 

Studies concerning listening effort of participants with hearing loss usually administer the 

common audiometric measures such as pure-tone air-conduction and bone-conduction thresholds, 

tympanogram and acoustic reflex. The most popular sample in these studies has been participants 

with mild-to-moderate high frequency sloping sensorineural hearing loss.  

One issue with focusing only on this specific sample is that generalization of their effort-

related behavior observed in those studies may be limited because other degrees or types of 

hearing loss have not been investigated in the same manner. One cannot simply assume that 

mildly hearing-impaired individuals would exert the same amount and pattern of effort in a 

listening task as individuals with profound hearing loss. On the other hand, severe impairment or 

handicap does not guarantee more effort from the individual. Hence, holding these assumptions 

might essentially introduce bias to their task performance and even rehabilitation solution.  

Although not studied in hearing impairment, research in other disorders has provided 

some reference. In an experiment examining the effect of severity of traumatic brain injury (TBI) 

on performance on the Wisconsin Card Sorting Test (WCST), a total of 176 TBI cases were 

included in the study, and they were classified as mild or moderate to severe according to initial 

injury characteristics based on a thorough review of medical records (Ord, Greve, Bianchini, & 

Aguerrevere, 2010). In order to account for the biases introduced by the various effort levels 

across participants, researchers administrated four commonly used cognitive performance 

validity measures to identify participants’ effort, which included the Portland Digit Recognition 

Test (PDRT; Binder, 1993), Test of Memory Malingering (TOMM; Tombaugh, 1996), Word 
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Memory Test (WMT; Green, Allen, & Astner, 1996), and Reliable Digit Span (RDS; 

Greiffenstein, Baker, & Gola, 1994). Sixty-seven participants with mild TBI showed good effort 

to perform the WCST, and 42 participants with mild TBI showed poor effort. Forty-six 

participants with moderate-to-severe TBI showed good effort, while 21 participants with 

moderate-to-severe TBI showed poor effort. Results demonstrated that effort during testing had a 

larger impact on WCST performance than did the severity of TBI, which is consistent with the 

reports of the influence of individually different effort on neuropsychological test performance 

studied by Lange et al. (2012)  and Iverson (2010). Green et al. (2001) also reported that effort 

during testing accounted for 53% of variance on neuropsychological measures.  The common 

comment was that those who fail effort testing are likely to be misdiagnosed as having severe 

cognitive impairment, and their symptom reporting is likely to be inaccurate. The absence of the 

direct correlation between the severity of hearing impairment and effort might also exist; thus, 

research including a variety of samples is needed to better represent the continuum of the 

population with hearing loss. 

Another issue with the focused sample average is that individuals with similar degrees 

and configurations of hearing impairment identified by audiogram may have large variability in 

other auditory abilities such as frequency selectivity due to outer hair cell (OHC) damage 

(Ruggero & Rich, 1991), temporal resolution resulting from damage to inner hair cells (IHCs) 

and auditory-nerve fibers (Moore, 1993; Moore, 2007), and binaural hearing relying on the 

central auditory system (Moore, 1991). Evidence shows that considerable variation of 

deterioration in temporal resolution and/or frequency selectivity exists among patients with 

diverse inner-ear disorders and among patients with the same diagnosis, regardless of the degree 

of their hearing loss (Schorn & Zwicker, 1990). Santurette and Dau (2012) evaluated the 
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individual auditory profile of 8 normal-hearing and 14 hearing-impaired listeners to investigate 

the relationship between specific deficits and binaural pitch perception performance. The 

auditory profile included measures of hearing thresholds, frequency selectivity, loudness 

perception, binaural processing, temporal fine structure processing and cognitive ability. The 

authors found that the loudness-growth slopes varied in a wide range from normal (approximate 

0.3 cu/dB) to over 1.5 cu/dB in hearing-impaired listeners. Large variability on frequency 

selectivity and temporal resolution also were observed in this group. Interestingly, they were 

both highly correlated with hearing thresholds; however, there was no correlation between 

frequency and temporal selectivity, suggesting that the ability to process the temporal fine 

structure is somehow independent of frequency selectivity. The absence of relationship between 

the function of temporal fine structure processing and frequency selectivity in homogeneous 

listeners with hearing loss in terms of audibility also was found by Strelcyk and Dau (2009). 

Those studies are consistent with Moore’s (1985) notion that temporal resolution is impaired in 

most but not all cases of sensorineural hearing loss. The common audiometric measures of 

hearing ability seem only to provide gross information about listeners’ hearing status. If 

investigating listening effort using tests such as speech perception in background noise or 

compressed speech, whose performance depends on individual’s fine auditory profile (e.g., 

temporal fine structure processing) (Lorenzi, Gilbert, Carn, Garnier, & Moore, 2006; Pichora-

Fuller, Schneider, MacDonald, Brown, & Pass, 2007), ignoring the individual differences may 

lead to errors in interpretation, especially when listening effort is indicated by task performance 

such as in a dual-task paradigm. For example, a group average may indicate a great amount of 

effort and poor performance, but some individuals with fairly normal temporal fine structure 

processing ability may actually achieve normal outcomes with little effort.  
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1.2.3.2 Cognitive ability 

Similar to hearing ability, the correlation between individually different cognitive function and 

listening effort has seldom been directly and systematically tested. Although there are studies 

showing the hearing impairment-related declines in working memory (Mackersie, Boothroyd, & 

Prida, 2000), and focusing selective attention (Gatehouse & Akeroyd, 2006), it has  been argued 

that many of the cognitive deficits observed in people with hearing loss are in fact downstream 

consequences of degraded hearing ability because the normal processing stages are built on one 

another (McCoy et al., 2005; Shinn-Cunningham & Best, 2008). Growing evidence suggests that 

individuals with hearing loss actually differ in cognitive functions as dramatically as the normal-

hearing population. People with hearing loss may have impaired phonological representations 

but intact working memory (Andersson & Lyxell, 1999). A crucial finding on speechreading 

skills of participants with hearing loss from Rönnberg (1998) is that individuals with hearing loss 

as a group did not demonstrate superior compensation in speechreading compared to matched 

normal-hearing controls. Participants with hearing loss who had excellent speechreading skills 

were those with high working memory function. This indicates that variation in visually-based 

communication skill is impacted by individual cognitive differences rather than adaptive 

compensation or neural change. Santurette and Dau (2012) measured cognitive function using 

lexical decision task and reading span task in a group of participants with hearing loss. They 

found that there was no correlation between cognitive function and hearing loss. The average 

accuracy and response time of lexical decision was similar between the two groups with small 

variations; however, large variability was found in the reading span test with no group difference 

between the participants.  
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Just and Carpenter (1992) studied individual differences in working memory capacity for 

language comprehension, and found that working memory varies among normal young adults in 

terms of capacity and allocation scheme. In their capacity theory of comprehension, 

computational processes in combination with storage resources constitute working memory, and 

there is a trading relationship between the two components. This means that the ability for 

rapidly and accurately processing information will be compromised if storage of information for 

later recall also is required. This trading relation between processing and storage in working 

memory not only suggests a common pool of language resources, but also represents allocation 

schemes under the condition that the resource demands of the task exceed the available supply, 

and it is only in this condition that capacity limitations would affect performance. This theory 

was based on empirical evidence of the relationship between individual working memory 

capacity and language comprehension performance in various facets of language processing such 

as lexical access, syntactic parsing, semantic analysis and referential processing studied in a 

group of college students by means of percent correct, reaction time, reading time per word and 

gaze duration measurements. Additionally, the human data have been successfully replicated in a 

proposed simulation model of sentences processing constrained by a single resource capacity. 

Just and Carpenter (1992) postulated three basic resource allocation schemes under the capacity 

constraint: evenhanded scheme in which both processing and storage of working memory share 

the limited capacity equally, processing-favored scheme which ensures fast processing but 

compromises the accuracy, and storage-favored scheme which maximizes the accuracy at the 

cost of processing speed.  

It appears that the working memory system described in Just and Carpenter (1992) can be 

readily applied as a listening effort model since it accounts for both quantity (capacity) and 
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quality (allocation strategy) aspects of effort, and working memory is known to widely engage in 

the operations in spoken language comprehension. However, working memory is only one 

source of effort among all kinds of cognitive resources, and the working memory resource 

allocation schemes are difficult to explain individual’s favoring some processes or even tasks 

over the others compared to explaining individual performance strategy in a specific process or 

task. Moreover, these resource allocation schemes have not been verified in people with hearing 

loss. To what extent the schemes represent their individual differences is unknown. Just and 

Carpenter (1992) mentioned but did not emphasized a concept of intensity dimension of thought 

which represents how much an individual feels himself/herself being engaged in his/her thought 

processes, which might vary independently throughout the performance of a given task. One can 

objectively assess it through physiological measurements such as pupillometry (Beatty, 1982) 

and glucose metabolism (Haier et al., 1988). Nevertheless, the relationship between the intensity 

dimension of thought and individual working memory capacity or individual performance 

differences was implied neither in human data nor in the simulation model.        

In the language comprehension domain of cognition, the individual differences of 

language processing ability have been indicated in Rönnberg’s (2008) ELU model to determine 

the ease of language understanding. The implicit part of the ELU formula consists of accuracy of 

phonological representations in long-term memory and the long-term memory access speed. The 

precision of the phonological representation is an important parameter related to interindividual 

differencea in phonological processing (Andersson & Lyxell, 1999). Studies on phonological 

representation in people with hearing loss support large variability among individuals regardless 

of hearing loss (Foo et al., 2007; Lyxell et al., 1998; Lyxell et al., 1996), and a wide range of 

long-term memory retrieval speed also was evidenced in people with hearing loss (Foo et al., 
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2007; Rönnberg, 1990; Rönnberg et al., 1998; Wingfield, 1996). The time window of lexical 

access may last up to 300-400ms, and its duration is an important feature of the ELU model for 

predicting individual difference (Poeppel, Idsardi, & van Wassenhove, 2008). The individual 

difference of working memory is included in the ELU model as an explicit part, distinct from 

Just and Carpenter’s (1992) capacity model in that it is used to explain ease of language 

understanding rather than performance of language comprehension.  

Theoretically, the higher cognitive functioning one has, the easier a listening task should 

be for the person, and hence the less effortful one might feel the task to be. However, evidence 

has proved that is not always the case. Picou et al. (2011) investigated the prediction of listening 

effort by individual lipreading ability and working memory capacity in a paired-associates recall 

task under two modality conditions (audio-only and audio-visual). They found no significant 

relationship between working memory capacity and objective (recall performance) or subjective 

(self-rating) measures of listening effort when providing visual cues. Participants with high 

working memory and lipreading skills did not show a release of effort, which was similar to 

those with low abilities. Fraser et al. (2010) also failed to observe the listening effort decrement 

with the addition of visual cues in a dual-paradigm task (a speech recognition primary task and a 

tactile secondary task), but individual cognitive function was not investigated in this study. Picou 

et al. (2011) argued that integrating visual speech cues and auditory cues might demand extra 

cognitive resources, and this extra demand overweighs the visual cue benefit. These observations 

also might result from the different experimental design from other studies which found visual 

cues reduce listening effort, or might indicate there is something else independent of cognitive 

abilities that controls listening effort.       
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Taken together, there are numerous interindividual differences in the population with 

hearing loss in terms of auditory and cognitive functions. Those differences determine the 

amount of available internal resources that one can possibly use as effort in performing listening 

tasks. Various working memory resource allocation strategies can be observed under high task 

demand or time pressure conditions, and the strategies are constrained by resource capacity. 

Although researchers have started to cast their attention to individual differences in the hearing-

impaired population, studies are limited to the investigation of the relationship between the 

individual differences and task performance without looking at the listening effort allocation 

pattern of each individual. Consequently, the contribution or constraint of individual auditory 

and cognitive characteristics to the individually different listening effort allocation remains 

unclear. 

Auditory ability and cognitive function are critical sources of listening effort; however, 

they are inadequate to account for all the variability of listening effort among individuals with 

hearing loss because those abilities are relatively stable within an individual, whereas effort has 

the nature of fluctuating moment by moment and might affect performance regardless of the 

absolute level of raw cognitive or sensory ability (Wingfield & Tun, 2007). This is hard to 

explain without including the psychological dimension of individual differences.  

1.2.3.3 Personality 

According to the two-level effort system in Hockey’s (1997) compensatory control model, the 

lower level computational effort is associated with task demands, while the higher level 

computational effort by contrast depends more on individual motivation in origin and is more 

variable. In the psychology literature, the extent to which effort will be invested in a task is 

determined by subjective judgment of probabilities of successful performance and anticipated 
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performance consequences (West, Thorn, & Bagwell, 2003; Yates & Kulick, 1977). Humphreys 

and Revelle (1984) addressed the effect of personality dimensions (introversion-extraversion, 

achievement motivation and anxiety) on motivational construct of effort, moderated by 

situational factors such as success, failure, time pressure, incentives, time of day and stimulant 

drugs. Introversion-extraversion is believed to relate only to arousal level; introverts are more 

aroused than extraverts. Achievement motivation relates only to effort, and anxiety relates to 

both arousal and effort. Although effort exertion explained by achievement motivation is quite 

straightforward in that high motivation corresponds to more effort, it is difficult to quantify the 

achievement motivation construct.  

Two concepts have been introduced as psychology dimensions of individual differences 

to study human behavior in effortful activities such as perceiving, thinking, problem-solving, 

decision-making, effort-managing, learning and so forth. One is the need for cognition, and the 

other is cognitive style. 

Need for cognition 

Cohen, Stotland, and Wolfe (1955) described the need for cognition (NC) as “a need to structure 

relevant situation in meaningful, integrated way. It is a need to understand and make reasonable 

the experiential world” (p. 291). They proposed that the resultant tension would lead to “active 

efforts to structure the situation and increase understanding” (p. 291). In contemporary literature, 

need for cognition refers to the tendency for people to vary in the extent to which they engage in 

and enjoy effortful cognitive endeavors (Cacioppo & Petty, 1982; Cacioppo, Petty, Feinstein, & 

Jarvis, 1996; Petty et al., 2009). People with high NC constantly engage in and enjoy cognitively 

challenging activities, whereas people with low NC find thinking to be a chore that is engaged in 

mostly when some incentive or reason is present. 



68 

Need for cognition has been examined in a wide variety of areas. For example, in the 

domain of survey research, individuals with high NC provide more thoughtful responses and are 

less likely satisfied with their answers than individuals with low NC (Krosnick, 1991, 1999). In 

the study of attitudes and persuasion, researchers have found that people with high NC tend to 

form attitude on the basis of an effortful analysis of the quality of the relevant information in a 

persuasive message; in contrast, the attitude of people with low NC are based more on simple 

peripheral cues inherent in the message (Chang, 2007; Haugtvedt, Petty, & Cacioppo, 1992). 

Individuals high in NC are also more likely to think about their thoughts (i.e., engage in 

metacognition) than individuals low in NC (Petty, Briñol, Tormala, & Wegener, 2007). At the 

most basic level, need for cognition has been shown to affect the amount of thought that goes 

into a decision. This has been demonstrated in the studies of false memory effect, Halo effect and 

priming effect. In Graham’s (2007) study, participants were presented with word lists composed 

of associates which were semantically related to those contained in the studied lists; on a 

subsequent recognition test, high need for cognition participants falsely recognized a greater 

proportion of the non-presented words than low need for cognition participants. Because the high 

NC individuals elaborated each list item and had stronger interconnections in memory, they were 

more likely to think about and access the semantically related non-presented items and therefore 

showed greater false memory. Individuals with low NC have shown to be more susceptible to the 

Halo effect, a phenomenon in which people rate attractive or likable others as superior on a 

variety of other trait dimensions (Feingold, 1992), compared to individuals with high NC 

because the Halo effect can occur when people rely on their stereotypes of attractive others alone 

to judge a novel target (Perlini & Hansen, 2001).  Petty, DeMarree, Briñol, Horcajo, and 

Strathman (2008) reported that the need for cognition as an individual variable has opposite 



69 

implications for priming effects, depending on prime blatancy. They found that as need for 

cognition increases, the magnitude of the priming effect increases with a subtle prime but 

decreases for a blatant prime.  

The need for cognition also is related to efficiency of task performance. Butler, Scherer, 

and Reiter-Palmon (2003) empirically examined the effectiveness of a solution elicitation 

technique based on the presentation of problem objectives and also examined the relationship 

between need for cognition and creative problem solving. They found that need for cognition 

was positively related to the efficiency of solution elicitation (i.e., the proportion of high-quality 

solutions) when no objectives were presented; participants with high NC generated higher  

proportion of high-quality solutions than participants with low NC, but the relationship was 

absent with the presentation of objectives. Kearney, Gebert, and Voelpel (2009) studied 83 teams 

from eight different German organizations engaged in various industrial sectors including 

software development, pharmaceuticals, insurance, telecommunications, manufacturing, media 

and entertainment, food and energy. They investigated team need for cognition as a moderator of 

the relationships between the team diversity (both age and educational specialization) and team 

performance in terms of efficiency, quality of innovations, productivity and overall achievement. 

Their results showed that both types of diversity were significantly positively related to the team 

performance only when team need for cognition is high 

The previous research of need for cognition in the above areas of social psychology have 

shown that need for cognition is a stable individual difference in intrinsic motivation of mental 

effort across a wide range of domain, and individual differences in need for cognition are 

relevant to understanding not only how people process information, but also how they spend 

effort. As need for cognition increases, people prefer allocate more effort to cognitive tasks. This 
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preference generalizes to all cognitive tasks regardless of the importance or consequentiality of 

the task (Betsch & Haberstroh, 2014).  

Despite the research pertaining to the need for cognition, relatively little is understood 

about the relationship between need for cognition and the decision about the effort allocation 

while listening in challenging situations (e.g., fast speech). Specifically, whether high need for 

cognition is associated with the increased listening effort is still unknown.   

Cognitive style 

Cognitive style has been studied as dimensions of individual differences in psychology since the 

early 1950s, and influences how people look at their environment for information and how they 

use the information to guide their actions (Hayes & Allinson, 1998). Cognitive styles represent 

individuals’ heuristics or preferences of processing information and allocating cognitive 

resources, and have both characteristics of stability within individuals over time and adaptability 

in response to specific environmental circumstances (e.g., profession or education) 

(Kozhevnikov, 2007). As a result, cognitive styles also are considered as social interactions 

regulating people’s beliefs and value systems (Witkin & Goodenough, 1981). 

There are numerous ways of describing cognitive styles. The field 

dependence/independence (FDI) construct is one of the most cited cognitive styles, and it has 

become a sort of general theory of perception, intellect and personality. According to Witkin’s 

(1977) definition, field independence (FI) is “the extent to which a person perceives part of a 

field as discrete from the surrounding field as a whole, rather than embedded in the field; or the 

extent to which the person perceives analytically”. People who exhibit field dependence (FD) 

tend to rely on information provided by the outer world, and their cognition is based on this 

overall field rather than embedded parts. They are holistic and socially aware. In contrast, field-
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independent people perceive a particular relevant item or factor in a field and tend to depend on 

their inner knowledge to analyze problems without reference to the field. FDI reflects an 

individual’s perceptual and processing characteristics which influence the preferences and 

strategies one uses to perceive process, store and recall information (Chinien & Boutin, 1993).  

Same-age individuals who differ in their cognitive style (i.e., FDI) have the same mental 

capacity limit but function differently in terms of momentary effort exertion and/or effort 

allocation strategy employment (Globerson, 1983, 1985; Guisande, Páramo, Tinajero, & 

Almeida, 2007; Pascual-Leone, 1970). In the study exploring the relationship between Pascual-

Leone’s (1970) mental capacity model and Kahneman’s (1973) unitary-resource mental effort 

model, Globerson (1983) used Witkin’s cognitive style of field-dependence/independence to test 

the hypothesis that an inverted U-shaped function between measures of momentary mental effort 

and measures of FDI would be observed as was observed between the functional capacity and 

cognitive style in Pascual-Leone’s model. According to Pascual-Leone (1970) the field-medium 

individuals normally have highly functional capacity because they are in the middle of the one-

dimension continuous scale of FDI, solving problems based on both inner knowledge and outer 

information. On the contrary, individuals in the two extremes of the scale, either depend solely 

on inner knowledge or depend solely on outer information, and therefore expend less effort due 

to less interference. 

Regarding the differences in strategy of using the limited mental resources, FD 

individuals are characterized by less effective resource control compared to immediate and FI 

individuals. Guisande et al. (2007) investigated cognitive functioning in 149 children (8-11 years 

olds) with different FDI cognitive styles (field-dependent, intermediate, and field-independent), 

including capacity to focus, shift, and maintain attention, capacity for sustained attention, storage 
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capacity, and verbal working memory. The authors found that field-independent children did not 

show better storage capacity measured by digits forward test than field-dependent children, 

however, they performed significantly better than intermediate and FD children in all other tests, 

indicating that with the same available mental capacity, FI children are more effective in the use 

of control strategies and allocation of attentional resources because those tests require resource 

allocation strategies to maximize the outcomes to different extents (e.g., in the digits backward 

test, resource allocation between storage and processing needs to be managed efficiently).  

There are very limited studies investigating populations of individuals with hearing loss 

with respect to cognitive styles. Blanton and Nunnally (1964) found male children who were 

deaf to be more field-independent than male children with normal hearing while female children 

who were deaf or normally hearing did not differ in performance on a cognitive style test. Fiebert 

(1967) assessed the effect of sex and the developmental differences on the cognitive style 

performance in children who were deaf. A total of 90 children at age levels of 12, 15 and 18 

were tested. The cognitive styles were measured through 3 tests, Rod and Frame Test (RFT), the 

Children’s Embedded Figures Test (CEFT) and the Poppelreuter Test (P-T). The cognitive style 

index was the sum of T scores on the 3 tests. Consistent with earlier finding in children with 

normal hearing, boys who were deaf were significantly more field independent than girls who 

were deaf. The developmental differences of increasing field independency with age was evident 

in boys but not in girls, the authors interpreted it as a phenomenon of identity crisis in the late 

adolescent girls who were deaf. Parasnis and Long (1979) evaluated the relationship between 

communication skills and field independency in 144 first-year deaf students with mean age of 20, 

and found that as a group, students who were deaf were more field-dependent compared to 

students with normal hearing. The communication skills were positively related to field-
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independency. Florence et al. (2012) carried out a study concerning the effects of teaching 

techniques and cognitive styles on students’ achievement in science concepts in 65 secondary 

school students with moderate-to-severe hearing loss. The authors found that field independent 

students with hearing loss gained significantly more benefit from the problem-based learning 

method of teaching than the field neutral and field dependent participants. These studies have 

focused on a young population and none of them have assessed the association between the field 

dependence/independence dimensions of cognitive styles and the listening effort expenditure of 

adults with normal hearing and adults with hearing loss.  

Comparing between the constructs of need for cognition and cognitive style (FDI) in 

terms of effort exertion, the former seems to be a both quantity and quality dimension in nature 

(i.e., the volume of effort and the pattern of effort allocation) whereas the latter is mainly a 

strategic dimension in nature. Cacioppo and Petty (1982) conducted a study to determine 

whether the Need for Cognition Scale was tapping a construct that was although related to, 

nevertheless distinguishable from cognitive style or field dependence. They administered both 

the Need for Cognition Scale and the Embedded Figures Test of field dependence to the same 

419 subjects; as expected, a significant but small correlation between the two measures was 

found. 

The previous listening effort literature has not included individual differences of 

personality in either dimension due to the limitation of the experimental design. For example, the 

participants usually performed the listening tasks with full motivation as instructed by the 

experimenters. Moreover, the laboratory experimental listening tasks that most studies used did 

not involve external environmental variations in addition to the task difficulty manipulation to 

evoke the individual’s strategic effort allocation pattern. The present study will extend the extant 
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literature and allow participants to mobilize effort based on their will, which makes it possible to 

investigate the relationship between the individual’s motivation to expend cognitive effort and 

the actual effort expenditure when processing informational stimuli. For this purpose, the need 

for cognition is chosen to serve as the individual difference variable in this study.  

 

1.2.4 Summary  

In this section, the neurophysiological basis of effort and human behavioral models related to 

listening effort were reviewed. The individual differences that might account for listening effort 

variability were also briefly discussed. Research has reported a strong association between the 

anterior cingulate cortex (ACC) and effort exertion in both animals and humans, however, the 

functional connection between the ACC and auditory cortex in explaining listening effort control 

has not been intensively studied. The tasks used in effort-related ACC research were mainly 

cost-benefit decision-making tests with the assumption that effort is invested basically according 

to the judgment of the cost-benefit value. In contrast, the studies of effort-related human 

behavior in the cognitive hearing science field used speech tests such as speech recognition, 

holding the assumption that effort expenditure is generally determined by levels of task demands. 

Hockey’s (1997) two-level compensatory effort control model accommodates the external 

stimulus-driven and subjective goal-driven facets of the effort regulatory system, and has pointed 

out the value of measuring the strategies that individuals adopt for completing a task. However, 

what is really lacking in the listening effort literature are studies in which task demand and 

environmental conditions are independently varied and alternative task strategies are provided to 

evoke effort allocation strategies and individual differences.  
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The purpose of listening in real life is to understand speech for successful communication, 

thus the process involves more than just the auditory functions of the periphery. More complex 

processes such as selectively attending to sound sources, storing and retrieving information from 

memory, using context information to improve understanding, resolving ambiguities, and 

generating appropriate responses quickly (Sarampalis et al., 2009) are also widely engaged and 

require effort. This implies a consideration of adopting a broader range of speech tasks in the 

study of listening effort.  

In the area of listening effort research, individual differences have not been considered to 

any great extent. Studying individuals’ auditory abilities, cognitive abilities and personality 

should allow the identification of the sources of individual differences in listening effort. 

1.3 LISTENING EFFORT MEASUREMENT 

Listening effort is considered an extra dimension that accounts for the disadvantages experienced 

by persons with hearing loss in daily life (Kramer et al., 1997). This non-audiologic factor is not 

assessable with traditional audiometric or psychoacoustic tests; however, it may be measured in 

physiological, behavioral, and subjective domains. In this section, the current techniques of 

listening effort measurement are reviewed in terms of their rationales, reliability and validity. An 

overview of the strengths and limitations of the different measurement techniques is outlined. 
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1.3.1 Physiological measurement 

Physiological techniques are based on the assumption that changes in cognitive functioning are 

reflected by physiological variables (Mulder, 1986). Andreassi (2000) indicated that a normal 

subject’s body is the field of various detectable reactions affecting breathing rate, blood pressure, 

heart rate, skin conductance or pupil diameter whenever she/he experiences mental effort. The 

techniques used in listening effort measures include dilation of pupil (Globerson, 1983; 

Kahneman, 1973; Kramer et al., 1997; Zekveld et al., 2010), skin conductance (Mackersie & 

Cones, 2011), skin temperature (Mackersie & Cones, 2011), heart rate (Mackersie & Cones, 

2011), electromyography (EMG) (Mackersie & Cones, 2011), saliva cortisol concentration 

(Hicks & Tharpe, 2002), and auditory evoked potential (Bernarding et al., 2010; Bernarding, 

Latzel, et al., 2011; Bernarding, Strauss, et al., 2011; Okusa, Shiraishi, Kubo, & Nageishi, 1999; 

Strauss et al., 2010b). Physiological measurement has a particular advantage over the behavioral 

and subjective rating measurement in that it is measured “online” and continuously so that the 

fluctuation of expended effort while participants are listening to the stimuli can be demonstrated.  

Kahneman (1973) proposed three criteria for any physiological indicator of mental effort: 

sensitive to within-task variation, between-task variation and between-individual differences. 

Among all the physiological measures of mental effort, pupil dilation appears to be the best 

indicator.  

1.3.1.1 Pupil dilation 

That the pupil of the eye dilates during mental activity has long been known in neurophysiology. 

Variation of the pupil diameter is a sensitive measure of the invested mental effort to a task 

(Beatty, 1982). Luria (1973) explained the connection between cognitive activities and 
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autonomic physiological activities by pointing out that the structures maintaining the optimal 

levels of cortical waking state lie in reticular formation of the brainstem rather than the cortex 

itself. The efferent fibers leaving reticular structures typically bifurcate, one branch sends 

upward to higher nervous structures such as the thalamus, caudate body, and terminates in the 

neocortex; the other branch sends downward to synapse on a wide variety of motor nuclei such 

as Edinger-Westphal parasympathetic motor nuclei (Brodal, 1981). The higher nervous 

structures play a critical role in the formation of intensions and plans. Through the extensive 

corticoreticular connections, those structures are able to modulate the activities of the autonomic 

periphery systems of the reticular formation (e.g., pupil dilation) (Beatty, 1982).  

There are two iris muscles controlling the pupil size. The pupillary sphincter results in 

pupil contraction and is regulated directly by the parasympathetic nervous system, whereas the 

pupillary dilator controls pupil’s dilation and ties directly into the sympathetic nervous system 

(Janisse, 1977). The size of the pupil can be influenced either by the activation of the ocular 

sympathetic system stimulating the radial dilator muscles, causing enlargement of the pupil, or 

by inhibiting the oculomoter parasympathetic system. The activation of the parasympathetic 

system will cause a decrease in pupil size. The size of the pupils at any given time reflects the 

balance of the sympathetic and parasympathetic systems (Loewenfeld, 1999). The basic 

responsibility of the sympathetic nervous system is making the task-related physiological 

adjustments that support performance, but more importantly, sympathetic activity increases 

especially when active coping and high task engagement are present during the cognitive tasks 

(Iani, Gopher, & Lavie, 2004).   

The pupil size can not only reflect the arousal state like other autonomic systems; for 

example, the pupil dilation was observed to increase with increasing pure tone intensity level 
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(Nunnally, Knott, Duchnowski, & Parker, 1967) and broadband noise intensity level (Antikainen 

& Niemi, 1983), but can also index the cognitive and emotional processes such as mental effort 

(Beatty, 1982; Granholm & Steinhauer, 2004; Kahneman, 1973) and pleasure (Bradley, Miccoli, 

Escrig, & Lang, 2008). Beatty (1982) and Karatekin, Couperus, and Marcus (2004) suggested 

that the tonic change in pupil size is influenced by general factors such as arousal state, anxiety 

and stress, while the phasic changes in pupil response are time-locked to the onset of stimuli for 

cognitive processing, and they are independent of tonic changes.  

The infrared video-based eye-tracking technology provides accurate assessment of pupil 

dilation. The pupil diameter can range from 1.5 to more than 9 millimeters in man (Goldwater, 

1972). Systems commonly employed today can resolve better than .025 mm on diameter on 

individual measurement at a rate of up to 240 Hz (Granholm & Steinhauer, 2004; Granholm et 

al., 2007). The phasic task-evoked dilations normally onset between 100 and 200 milliseconds, 

peak at 2 to 3 seconds after stimulus onset and terminate rapidly after the completion of 

processing. Because of the delay of the pupillary reflexes, examining an extended time course is 

critical (Kuchinke, Võ, Hofmann, & Jacobs, 2007). As in evoked potential research, signal 

averaging and component extraction techniques are usually used to cancel out the background 

variations and to specify the event-related responses. Beatty and Lucero-Wagoner (2000) 

suggested reporting the mean pupil dilation, peak dilation and latency-to-peak for each time 

interval of interest, and they recommended reporting the pupil dilation in relation to the baseline 

in absolute values rather than in percentages because when the baseline pupil size is small, the 

percentage measures inflate the actual changes. It is important to distinguish between factors 

affecting the task-evoked pupillary response and those that affect the tonic or baseline pupillary 

diameter, such as light reflex, and between the phasic pupillary responses evoked by cognitive 
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and by emotional processes (Goldwater, 1972). Those confounds can be minimized by using 

neutral signals, controlling the luminance of the room, requiring participants to maintain fixation 

and presenting the stimuli aurally.  

Task-evoked pupillary responses have been validated in some within-task, between-task 

and between-individual listening effort experiments. In those studies, pupil size was found to 

vary as a function of processing demands. For example, Kramer et al. (1997) investigated the 

relationship between the pupillary response and the difficulty level of speech recognition in a 

noise task. A list of 13 everyday Dutch sentences was presented in fluctuating noise at various 

SNR levels referenced to individual’s speech reception threshold, and participants were 

instructed to repeat each sentence as accurately as possible. The pupil diameter was measured 

during the course of listening. The results demonstrated that listening to the speech with high 

signal-to-noise ratio (SNR) results in a decrease in pupil dilation; however, the degree of 

decrement in favorable SNR conditions was more significant in normal-hearing than hearing-

impaired listeners. The speech recognition task accuracy was at a similar level across the various 

SNR conditions between the two groups. The authors concluded that the hearing-impaired 

listeners need to expend more listening effort in the adverse SNR conditions than in the easy 

conditions and extra effort is required to achieve equal performance as their hearing peers at the 

same SNR level. Zekveld et al. (2010) used similar Dutch sentences and applied an adaptive 

procedure to estimate the SNR required for 50%, 71% and 84% intelligibility for each of 38 

normal-hearing young adult listeners in a speech repetition task, during which the pupillary 

responses were measured. The results were consistent with Kramer et al. (1997) in that the pupil 

diameter enlarged and the latency to peak dilation prolonged with decreasing the speech 

intelligibility and the SNR of the speech in noise. In a later study, Zekveld, Kramer, and Festen 
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(2011) examined speech recognition in noise in 38 middle-aged normal-hearing adults and 36 

middle-aged hearing-impaired adults, and confirmed that the pupil response decreased with 

increasing sentence intelligibility in hearing-impaired listeners but to a lesser degree than in 

normally-hearing individuals.  

Koelewijn, Zekveld, Festen, and Kramer (2011) also found a similar association between 

the task-related pupil dilation and the listening effort in speech reception with various types of 

background noise in normal-hearing listeners. The speech with a single-talker masker resulted in 

larger pupil dilation compared to other types of noises due to the informational masking. A 

recent listening effort-related pupillometry study was conducted by Kuchinsky et al. (2013) in 

older hearing-impaired adult participants. The authors manipulated the listening difficulty in 

terms of acoustic features (i.e., easy SNR or difficult SNR) and word lexical competition (i.e., 

competitors with or without phonological overlap with the targets). The participants’ task was to 

identify the word that they heard among the four orthographic options displayed on the computer 

screen in various conditions. The percent correct word identification, reaction time and the pupil 

size were measured. The results showed that the largest average pupil size, the most delayed 

peak and the most sustained pupil size following the peak was observed in the condition with 

difficult SNR and lexical competition. However, the word identification scores seemed more 

sensitive to the difficulty level of lexical competition only while the reaction time was more 

sensitive to the SNR manipulation. The authors suggested that the pupil response provides 

additive measures of task difficulty compared to behavioral measures alone.   

Despite the evidence that the task-evoked pupil diameter systematically reflects the task-

processing load in listening as a function of the difficulty level of a task, more evidence is 

needed to demonstrate that the pupil response not only can index the resource allocation directed 
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by changes in task parameters (stimulus-driven), but also can signal the individual subjective 

goal-directed decision of listening effort investment to tasks, because the complexity of the 

stimulus is not the only determinant of listening effort, the individual’s current performance level 

and self-appraisal of stress and comfort contribute to the regulation of effort as well (Fairclough, 

2001; Hockey, 1997; Venables & Fairclough, 2009).  Moreover, the researchers intentionally 

avoided too easy and too difficult task levels in order to maximize the correlation between the 

pupil response and the task demand, however, it actually limits the range to investigate the 

strategic listening effort allocation. Hence, the manipulation of other determinant factors (e.g., 

goals and performance feedback) of effort in addition to task difficulty and the manipulation 

range as dynamic as possible should be included in the study design to examine what the pupil 

response is most sensitive to.  

1.3.1.2 Skin conductance, temperature, Heart rate, Cortisol level, EMG 

Under the same general principle that the active engagement in effortful cognitive tasks typically 

results in increased activity in the endocrine system and the sympathetic branch of the autonomic 

nervous system (ANS) accompanied by decreased activity in the parasympathetic nervous 

system (Staal, 2004), some other measurable physiological changes in addition to the pupil 

dilation index the mental effort, including the skin conductance response (SCR), skin 

temperature, cardiac activity, cortisol level in saliva, electromyography (EMG) and evoked 

response potentials (ERP) (Andreassi, 2000). However, they are not as robust as pupil dilation 

measurement in the study of listening effort.  

Skin conductance 

The skin conductance refers to how well the skin conducts electricity when an external 

direct current of constant voltage is applied. It is one form of electrodermal activity and is 
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associated with the activity of eccrine sweat glands innervated by sympathetic nerves (Figner & 

Murphy, 2010). Not only the hypothalamus and the brainstem (i.e., central origins of autonomic 

nervous system), but also the limbic networks are involved in the control of eccrine sweating 

(Dawson, Schell, & Filion, 2000). Skin conductance is often used in judgment and decision 

making research as an indicator of the involvement of affective and emotional processes 

(Mackersie & Cones, 2011; Naccache et al., 2005; Venables & Fairclough, 2009). For example, 

Naccache et al. (2005) investigated the subjects’ conscious feeling of mental effort in the Stroop 

task and the Iowa gambling task using the skin conductance measurement.  

The skin conductance response (SCR) is typically measured from the volar surfaces of 

the fingers, the palms of the hands, or soles and inner sides of the feet using a small constant 

voltage. Skin conductivity is revealed by the amount of current that passes between the 

electrodes. The SCR is measured in microsiemens (µS), and can be divided into tonic and phasic 

phenomena like pupil response. The phasic SCR consists of many discrete sharp peaks of skin 

conductance response which usually relate to a stimulus, whereas the tonic skin conductance 

refers to the spontaneous responses unrelated to a specific event. The most common measures of 

SCR are the onset latency (typically 1-3 seconds), the rise time (typically 1-3 seconds), and the 

peak amplitude. More recent studies indicate that the measure of area under the curve is a more 

valid indicator than any aspect alone (Naqvi & Bechara, 2006).  

Cardiac activity 

Cardiac activity has been used as a physiological measure to indicate changes in mental 

effort (Mulder, 1986). Cardiac activity can be measured in terms of heart rate, heart rate 

variability, and blood pressure. Heart rate is influenced by both the sympathetic and 

parasympathetic nervous system. When the sympathetic activation is dominant, the heart rate is 



83 

found to respond to effort mobilization (Berntson, Cacioppo, & Quigley, 1993). Heart rate 

variability is the fluctuation in the time interval between consecutive heartbeats and usually 

illustrated as the power spectral density (PSD) as a function of frequency (Akselrod et al., 1981). 

Due to the relatively slow reaction of the sympathetic nervous system, mental effort is reflected 

mainly in the low frequency band (i.e., 0.04~0.15 Hz) of the heart rate variability which 

associates with short-term blood pressure regulation (Mulder, Van Roon, Veldman, Elgersma, & 

Mulder, 1995). In contrast, the high frequency band (i.e., 0.15~0.40 Hz) mainly reflects 

respiratory activity (Akselrod et al., 1981). Previous research showed that an increase in invested 

mental effort is related to an increase of heart rate (Gellatly & Meyer, 1992), and reported a 

strong reverse relationship between mental effort and heart rate variability in that as mental effort 

increases, the heart rate variability decreases in power within the low frequency band (Capa, 

Audiffren, & Ragot, 2008). Mukherjee, Yadav, Yung, Zajdel, and Oken (2011) examined the 

test-retest reliability of heart rate variability in measuring mental effort of 40 healthy seniors 

during the visual working memory tasks with various levels of difficulty. The authors found that 

a large number of heart rate variability parameters (time domain and frequency domain) were 

sensitive and reliable indices of mental effort. 

Skin temperature 

There is a growing investigation of the change of human facial skin temperature in 

relation to mental workload  (Or & Duffy, 2007). Researchers have found that the skin 

temperature drops after the exposure to the task load during arithmetic tests and tracking tasks 

(Genno, Ishikawa, Kanbara, & Kikumoto, 1997; Ohsuga, Shimono, & Genno, 2001; Or & Duffy, 

2007). According to Wallin (1981), the underlying mechanism is that mental load or negative 

emotion can result in activation of the sympathetic nervous system, and consequently induce 
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peripheral metabolic responses such as vasoconstriction. The reduction of blood flow in the 

peripheral capillary vessels causes the decrease of skin temperature.    

Skin temperature can be measured easily in the areas of nose, fingers and toes by 

thermistors or thermocouplers with physical contact and infrared camera (Genno et al., 1997). 

However, the problem with this measure is that it can be affected by the changes of the 

environment temperature. As a result, the difference between nose and forehead temperature is 

proposed as an index of mental strain because the temperature of the forehead skin is 

independent of taskload (Genno et al., 1997).  

Electromyographic (EMG) activity 

Another effort-related physiological index is the facial electromyographic (EMG) activity. 

The increase in facial EMG activity (e.g., the frontalis, the corrugator supercilii) is often manifest 

when exposed to physical or mental effort demanding tasks (Veldhuizen, Gaillard, & de Vries, 

2003). It is considered as an expression of effort compensating for the decrement in performance 

efficiency caused by habituation, boredom, and fatigue (Van Boxtel & Jessurun, 1993; Waterink 

& van Boxtel, 1994). Waterink and van Boxtel (1994) asked 21 healthy college students to 

perform a visual two-choice serial reaction task (i.e., press the right bottom on green light and 

press the left bottom on red) with externally paced (EP) signal presentation rate, and 23 students 

with self-paced signal presentation rate. The EMG activity of frontalis, corrugator supercilii, 

orbicularis oculi, zygomaticus major, and anterior temporalis muscles were measured during the 

performance of the task. A group of participants showed a decline in performance with time and 

their corresponding EMG amplitudes displayed an inverted U shape pattern in which an initial 

EMG increase transferred into a decrease over time. However, the EMG amplitudes of the other 

group of participants who maintained stable performance until the end of the experiment 
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increased uninterruptedly. This result suggested that the EMG responses of specific facial 

muscles are reliable and sensitive to mental effort mobilization. 

There has been few applications of skin conductance, cardiac activity, skin temperature 

and EMG in listening effort research. Mackersie and Cones (2011) included these four 

physiological measures in their listening effort study to determine the physiological and 

emotional cost of maintaining performance near ceiling level (i.e., higher than 96% correct for 

all listening tasks) in normal-hearing adults, and the relations between psychophysiological 

measures, performance measures and subjective measures of listening effort as well. Participants 

were asked to repeat all of the digits they heard in a Dichotic Digits Test with various demand 

level. The information of heart rate, skin conductance, skin temperature, electromyography, 

percentage correct and subjective rating of effort was collected. Results showed that the mean 

recognition scores were close to 100% as expected, and the subjective ratings of listening effort 

systematically increased as the task difficulty increased. The significant task demand effect was 

found only in EMG activity and skin conductance with a monotonic increase in the skin 

conductance and EMG activity as the task became more difficult, however, the heart rate and 

skin temperature remained little changed across test conditions. The authors pointed out the 

importance of individual differences as participants varied in their patterns of ANS reactivity. 

When averaged across task sessions (medium- and high-demand), no significant change in EMG 

activity was found compared to the baseline reference (i.e., low-demand), whereas 60% of the 

participants showed an increase in skin conductance. It was concluded that among the four 

physiological measures, the skin conductance was most sensitive to detect the task demands and 

the individual changes.  

Cortisol level in saliva 
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The change of cortisol in saliva is part of a physiological stress reaction. Increased 

cortisol level is associated with perceived stress, whereas low cortisol level is correlated with 

fatigue or burnout (Hellhammer, Wüst, & Kudielka, 2009; Pruessner, Hellhammer, & 

Kirschbaum, 1999). The cortisol level is controlled by the hypothalamic-pituitary-adrenocorticol 

(HPA) axis. The hypothalamus produces corticotropin-releasing factor which leads to the 

production of adrenocorticotropic hormone (ACTH) by the pituitary gland. It is the ACTH that 

causes the adrenal glands to release cortisol (Nemeroff, 1998). In high-stress situations, stressors 

trigger this hormone chain, resulting in detectable changes of cortisol level in saliva. The salivary 

cortisol is a useful physiological assessment in stress literature, however, the reliability and 

validity are still under investigation (Hellhammer et al., 2009)  

Hicks and Tharpe (2002) have looked for fatigue and listening effort in children with 

normal-hearing and hearing loss by sampling cortisol concentrations in saliva and dual-task 

paradigm, respectively. The saliva was sampled twice a day (morning and afternoon) for two 

days from 14 normal-hearing children and 14 children with mild-to-moderate hearing loss. The 

results showed no significant difference on the cortisol level between two groups. The cortisol 

level was higher in the morning samples than in the afternoon samples for both groups. In the 

listening effort experiment, the same groups of children were asked to perform a speech-

recognition test in various signal-to-noise ratios (primary task) and respond to a random probe 

light simultaneously. They were motivated to pay primary attention to the word recognition task. 

For all SNR conditions, children with hearing loss had greater reaction time change from 

baseline in the secondary task than children with normal hearing, indicating that children with 

hearing loss expended extra effort in listening. This study failed to demonstrate a greater 

decrease in cortisol level in hearing-impaired children throughout a school day than normal-
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hearing children as an indicator of greater fatigue or stress experienced by children with hearing 

loss. The authors argued that the salivary cortisol levels might not be sensitive enough to capture 

changes in listening-related fatigue or stress. As the listening effort was not directly measured by 

salivary cortisol level in this study, the correlation between the cortisol level and listening effort 

remains unknown.   

1.3.1.3 Event-related Potentials (ERPs) 

The electrophysiological evaluation of high level auditory processing as indices of listening 

effort is receiving growing interest. The most frequently measured components of late ERPs are 

N100, P200, MMN, N2b and P300. The N100 and P200 peaks are normally evoked by both 

target and non-target stimuli in the oddball paradigm, whereas the MMN, N2b and P300 only 

occur following the target stimuli (Okusa et al., 1999). The MMN is regarded as a fully 

automatic cerebral response to a deviant stimulus, and the N2b is assumed to correlate with the 

controlled mismatch detection process or effortful processing (Näätänen & Alho, 1997). These 

auditory late responses can be visually identified within the following latency ranges: N100 as 

the most negative peak in the time interval of 80-160ms; P200 as the most positive peak in 140-

230ms; MMN, 150-200ms; N2b, 190-350ms, and P3 as the most positive peak in the range of 

290-520ms (Bernarding et al., 2010; Okusa et al., 1999). 

Okusa et al. (1999) recorded the cognitive event-related potentials (ERPs) from 

participants with cochlear implantation to determine the extent of the listening effort required in 

a 2-tone discrimination task with various levels of difficulty. The participants were instructed to 

lift the thumb whenever they heard the target tone. The ERP recordings showed that the peak 

latency and amplitude of N100 and P200 did not change as a function of task difficulty. However, 

the N2b and P300 latencies became significantly longer as the target stimuli become closer to the 
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non-target stimuli, and the P300 amplitude also became significantly smaller. The MMN was 

also delayed when the task became more difficult, but the MMN was absent in the most difficult 

condition. These results indicated that the late components of ERPs such as N2b and P300 can 

reflect task demand and might be used to assess the listening effort in hearing-impaired 

population. 

Strauss et al. (2010b) proposed a computational transformation of the auditory late 

responses entitled Wavelet Phase Synchronization Stability (WPSS) in order to extract 

information associated with effortful endogenous modulation from the raw individual ERP 

sweeps, and suggested that the increased listening effort can be reflected in an increased WPSS 

of auditory late response sequences. The WPSS trace generated from the data sets of difficult 

listening conditions was larger than from the data sets of easy listening conditions for both 

people with normal hearing and hearing loss, especially in the N100 and P200 wave temporal 

range (Bernarding et al., 2010; Bernarding, Strauss, et al., 2011; Strauss et al., 2010a). Despite 

the robustness of the WPSS in illustrating listening effort within task (various demanding) and 

between tasks (tonal and syllable paradigms), the evidence between subjects is lacking. The 

complexity of the computational equation of WPSS has made this measure of listening effort less 

feasible in the clinical settings. In addition, the critical requirement of the response mode has 

limited the experimental design in listening effort studies, and the visual inspection of the WPSS 

trace for final analysis compromises the objectivity of the listening effort measurement just as 

much as the raw ERP data do. 

Polich (2007) described the P300 as a fundamental attribute of CNS reactivity associated 

with attention and memory operations. The P300 amplitude and latency is sensitive to task 

demand and individual differences in cognitive capacity. The greater amount of attentional 
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resources that a task requires, the P300 amplitude becomes smaller and the peak latency becomes 

longer (Kok, 2001; Okusa et al., 1999; Polich, 2007). Other late ERPs such as N400 and P600 

has been studied to show high association to language comprehension, in which the N400 has 

been correlated with lexico-semantic processes while the P600 was assimilated with syntactic 

reanalysis or integration under a sentence correctness judgment task (Kotz, von Cramon, & 

Friederici, 2005). Although there are only a few ERP studies investigating listening effort, given 

the relationship between the auditory late responses and language comprehension, it seems 

plausible that the late components of evoked response potentials may be used to indicate 

listening effort. 

1.3.1.4 Brain imaging technique 

Among the popular neuroimaging techniques today, such as Functional Magnetic Resonance 

Imaging (fMRI), Positron Emission Tomography (PET) and Magnetoencephalography (MEG), 

the fMRI is most widely used. This technique detects the increase in blood oxygen levels when 

fresh blood is brought to a particular area of the brain due to the neuronal activity change 

following an event. The event-related activation is usually determined in terms of the average 

blood-oxygenation-level-dependent (BOLD) signal intensity (i.e., the percentage change in the 

image signal between the stimulus and silence blocks) (Barth & Poser, 2011; Hwang, Li, Wu, 

Chen, & Liu, 2007). The fMRI technique allows for detailed maps of brain areas underlying 

human mental activities in health and disease, and has the advantages of high spatial resolution 

and noninvasiveness. However, the most serious challenge faced in auditory fMRI studies is the 

interference of the acoustic noise of the gradient coil oscillation caused by rapid switching during 

echo-planar imaging with the presentation of auditory stimuli (Ravicz, Melcher, & Kiang, 2000).  
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There have been some attempts to minimize the impact of the acoustic noise associated 

with echo-planar imaging. Hall et al. (1999; 2000) suggested a sparse imaging procedure in 

which the repetition time of a sequence is longer than its acquisition time, allowing the auditory 

stimuli to be presented during the silent period between the acquisitions of consecutive volumes. 

The disadvantage is that within a limited scanning time, fewer images are acquired in the sparse 

imaging paradigm compared to the conventional continuous paradigm. Another approach to 

reduce the scanner noise is to change its qualitative nature by implementing a quasi-continuous 

gradient switching pattern in order to emit a continuous noise rather than a pulsed noises during 

scanning, which has less effective stimulation to the auditory cortex (Seifritz et al., 2006). 

However, this technique leaves the issue of energetic masking. Schmitter et al. (2008) developed 

a quiet echo-planar imaging sequence in which a constant phase encoding gradient and a 

sinusoidal readout echo train are used to change the gradient switching frequency to one that is 

associated with low acoustic response, therefore reducing the acoustic noise by approximately 

20dBA.  

Peelle, Eason, Schmitter, Schwarzbauer, and Davis (2010) investigated the effect of 

echo-planar imaging sequences (standard, sparse and quiet) on brain activity in a sentence 

listening task. The authors hypothesized that an additional neural activity would be observed in 

the most adverse condition (standard sequence). Six normal-hearing young adults were asked to 

judge if a probe word was semantically related to the sentence they heard. The fMRI results 

showed significantly more speech-related activity in left temporal cortex as well as left inferior 

parietal cortex when using the standard echo-planar imaging sequence than when using the 

sparse and quiet sequence while maintaining high level of performance accuracy (≥ 93%), which 

indicated an extra effort invested in listening in the low signal-to-ratio situation. Davis and 
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Johnsrude (2003) implemented three different acoustic manipulations to distort sentence stimuli 

at various intelligibility levels and collected imaging data from 12 healthy young adults during a 

speech repetition task. They found that elevated activity in large portions of left temporal, 

prefrontal and premotor cortices was associated with listening to the more degraded sentences, 

providing evidence that listeners expended increased effort to extract information from degraded 

signal. 

It is notable that the measures of listening effort in audiology imaging studies are 

different from that in other fields such as psychology (as reviewed in the earlier section). The 

former illustrate effort in terms of the increased activation in the sensory-related brain areas as a 

function of task demand and define effort as quantitative signal processing. However, the latter 

literature demonstrates effort in terms of activity in the specific effort-related area (i.e., ACC) 

and considers effort as a general decision-making process regardless of modality. Further 

research is needed to validate the application of fMRI in the study of listening effort.   
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Table 3.The strengths and limitations of psychophysiological measurements in listening effort assessment. 

 Variables Strengths Limitations 

Pupil dilation 

Mean pupil dilation 
Peak dilation 
Latency to the peak 
Response duration 

• Noninvasive 
• Fast 
• Easy and convenient to operate 
• Reliable 
• Not interfere with mental tasks 
• Able to reflect the variations in the 

cognitive demands evoked by different 
tasks and variations in the perceived 
taskload between individuals 

• Highly sensitive to subtle fluctuations in 
listening effort 

• Can be measured continuously 
• Less expensive than fMRI and EEG. 

 Delay due to the time lag involved in 
autonomic responses 

 May be confounded by illumination and eye 
movement (involuntary looking or blinking) 

 Exclude some data due to distortion 
 Subjective judgment bias when measure peak 

and baseline in traces 

Skin 
conductance 

Peak amplitude 
Onset latency 
Rise time 
Recovery half time 
Spontaneous SCRs per 
time unit 

• Noninvasive 
• Relatively cheap 
• Can be measured continuously 
• Can be measured unobtrusively and 

reliably 

 Slow and time-lagged 
 Need a number of repetitions 
 May prolong the experiment due to using 

relatively long interstimulus intervals  

Skin 
temperature 

Temperature in degrees 
Fahrenheit 

• Noninvasive 
• Easy 
• Relatively cheap 

 Slow 
 Confounded by environment temperature 
 Relatively low reliability in effort 

measurement 

Cardiac 
activity 

Heart rate 
Heart rate variability 

• Noninvasive 
• Easy 
• Fast 
• Reliable 

 Potential effect of breathing pattern on heart 
rate variability 

 Relatively low reliability in effort 
measurement 
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EMG activity Peak amplitude 
Onset latency 

• Noninvasive 
• Fast 
• Reliable 
• Can be measured continuously 

 Artifact 
 Bias of visual inspection 

Salivary 
cortisol Cortisol concentration 

• Noninvasive 
• Easy 
• Fast 
• Purely reflect energy mobilization, 

relatively independent of behavioral or 
cognitive conditioning 

• Relatively cheap 
 

 Mainly used as indices of fatigue rather than 
effort 

 May be affected by the presence of food or 
drink in the mouth  

 Need to consider variables such as estrogens 
(gender, menstrual cycle, oral contraceptives) 
or medical conditions could affect cortisol 
binding and hypothalamic-pituitary-adrenal 
(HPA) responsivity. 

Event-related 
response (ERP) 

Amplitude and latency 
of N100, P200, N2b, 
MMN, P300, N400, 
P600 

• Noninvasive 
• Easy 
• Fast 

• Artifact 
• Bias of visual inspection 
• Require complex computation on raw data to 

obtain reliable effects  

fMRI 
The blood oxygenation 
level dependent 
(BOLD) 

• The brain areas can be identified in a 
functional manner 

• Reliable 

 Slow and time-lagged 
 Significant acoustic noise which interferes 

with the presentation of auditory stimuli 
 Weak temporal resolution 
 The activity as measured by fMRI simply is 

not sufficiently fine-grained to pick up 
certain effects 

 Insensitive to changes in the low or medium 
level of invested effort 

Table 3 (continued) 
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1.3.2 Task- and performance-based behavioral measurement 

Listening effort has been studied using single and dual-task procedures. This research typically 

finds decrements in individuals’ performance in the most difficult conditions. The performance 

is usually presented in terms of percent correct and/or response time, indicating how accurate 

and/or how fast participants accomplish the task. 

1.3.2.1 Single-task paradigm 

To measure listening effort using a single task, researchers tend to choose a task that involves 

extra operations in addition to speech perception, such as encoding speech into memory. This is 

based on the limited resource capacity theory of Kahneman (1973) which suggested that multiple 

tasks performed concurrently or in close sequence compete for limited resources. The more 

resources demanded by a particular task, the fewer resources will be available for the other tasks, 

resulting in a compromised performance in the latter. McCoy et al. (2005) compared the 

performance accuracy of 12 normal-hearing and 12 hearing-impaired older adults in a running 

memory task, which required participants to recall the final three words of the presented 

sentences with various orders of word contextual constraint (i.e., 0-order means none of the word 

is constrained by the remaining words in the sentence, 1st-order means each word is constrained 

by the prior word, and 2nd- and higher order means the word is constrained by at least two prior 

words in the sentence). The two groups of listeners were matched for age, education, verbal 

ability and recall performance for the last word of three-word recall sets. The results showed that 

both groups reached near ceiling recall for the first two words of three-word recall sets of 2nd- 

and higher order of contextual constraint sentences; however, a significant difference on the 
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recall performance between groups was observed in 0- and 1st-order sentences, with the hearing-

impaired group having much lower percent correct score than the normal-hearing group. The 

authors concluded that the hearing-impaired listeners must expend extra effort on perception that 

might otherwise be available for encoding speech to memory, and the effect of contextual 

constraint indicated that hearing-impaired listeners used top-down processing to compensate for 

the degraded input.  

The similar performance decline as an indicator of listening effort also were observed in 

other studies. Rabbitt (1990) reported decreased accuracy in a word list recall task performed by 

hearing-impaired participants when noise was added. Comparable results were found in normal-

hearing listeners as well when the listening environment became more challenging (Sarampalis 

et al., 2009). Stewart and Wingfield (2009) found that participants with hearing loss displayed a 

compromised speech comprehension at difficult levels of syntactic complexity compared to 

those with normal hearing due to the extra listening effort expended on perceiving the sentences.  

However, there is a theoretical issue with interpretation of the observed decrements in 

task performance, because they could be caused by either data limitation or resource limitation. 

The term data limitation refers to changes in task difficulty that cannot be compensated for by 

increased effort, while the resource limitation refers to deficits due to insufficient effort 

investment that may result from low motivation or concurrent involvement with other tasks 

(Navon & Gopher, 1979a; Norman & Bobrow, 1975). These two types of constraints exist 

despite the fact that participants supposedly invest all their effort in task performance. Gopher 

(1994) suggested that studies of difficulty manipulations and changes in task demands that use 

exclusively task performance measures are unable to distinguish between these two causes of 

performance decrements. Alternatively, the combined use of psychophysiological measures and 
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performance measures may allow researchers to distinguish between these two determinants of 

performance decrements (Iani et al., 2004).  

There is also evidence that the addition of response-time measures may be more sensitive 

in reflecting effort than accuracy measures alone (Apoux, Crouzet, & Lorenzi, 2001; Gatehouse 

& Gordon, 1990; Kuchinsky et al., 2013; Piolat et al., 2008). For example, Apoux et al. (2001) 

found that the envelope expansion in vowel-consonant-vowel syllables did not improve the 

identification scores in groups with normal hearing and hearing loss; however, it significantly 

decreased the response time in both groups, suggesting an ease of listening improvement. 

However, the response time measure is also subject to the data and resource constraints, and the 

interpretation of individual data may be complicated by time-order effects (Larsby, Hallgren, & 

Lyxell, 2008; Mackersie, Neuman, & Levitt, 1999). For example, Mackersie et al. (1999) 

reported systematic changes in response time (gradually increasing or decreasing) across a test 

session for some participants.  

Self-paced listening technique described byFerreira, Anes, and Horine (1996), also 

referred to as auditory moving window technique, has been used to explore allocation of 

attentional resources while listening. This technique allows listeners to control the flow of the 

information at their own rate by pressing a key when they are ready to hear the next segment 

(e.g., word, clause) of the speech message. It is presumed that if a listener requires more time 

(i.e., more effort) to process a particular segment, he or she will exhibit a prolonged pause before 

initiating the next segment. A recall request or a comprehension question often follows the 

presentation of the speech message.  Piquado, Benichov, Brownell, and Wingfield (2012) studied 

the narrative recall accuracy of listeners with normal hearing and hearing loss under a 

conventional continuous speech presentation and a self-paced presentation condition. They found 
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that listeners with hearing loss recalled the narratives significantly less accurately than normal-

hearing controls in the continuous presentation condition, however, the difference was 

eliminated in the self-paced condition. The results suggested that processing time can be a valid 

variable to index listening effort. Although the self-paced listening technique is mainly applied in 

the second language learning literature and rarely used in audiology research, it is worth 

incorporating the technique to investigate listening effort in the population with hearing loss with 

respect to the quantity and the individual allocation strategy of effort in terms of the absolute 

processing time and the pattern of the pause duration across segments, respectively. It is also 

feasible and valuable to obtain the information about efficiency of listening effort through the 

use of the self-paced technique.      

1.3.2.2 Dual-task paradigm 

The application of the dual-task paradigm or double stimulation procedures in the audiology 

field is based on Kahneman’s (1973) limited capacity theory. The classic dual-task design holds 

the following assumptions: ⑴ Humans have a certain limited capacity to process information; ⑵ 

When asked to divide their attention in a dual-task paradigm, individuals presumably use the 

majority of mental capacity in the primary task and use the spare mental capacity in the 

secondary task; ⑶ When the primary task is made more difficult, less spare capacity remains for 

completion of the secondary task, thus hindering performance on the secondary task; ⑷ 

Decrements in the performance of one task are taken as an indicator of processing load incurred 

by a second, concurrently performed task. 
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Table 4. Studies of listening effort using dual-task paradigm 

 

Secondary task 
Visual Auditory Tactile Combination 

Arrow_number 
matching Probe light Serial digit recall Target 

tracking Random probe Pattern recognition test Dot-to-dot game 

Pr
im

ar
y 

ta
sk

 

Notetaking and 
writing in L1 and 

L2     Piolat(2008)   

Audio Sentence 
recognition    

Desjardins 
(2011) 

Desjardins 
(2014) 

 

Gosselin,& Gagné(2011) 
Fraser (2010) 
Fraser (2007)  

Audiovisual 
speech 

recognition in 
noise 

     

Gosselin & Gagne (2011) 
Fraser (2010) 
Fraser (2007)  

Word recognition Sarampalis 
(2009) 

Hicks (2002) 
Downs (1982) 
Downs (1978) 

Feuerstein 
(1992) 

Howard (2010) 
Choi (2008) 

Stelmachowicz 
(2007) 

Broadbent 
(1958) 

Picou (2013)   
 

McFadden & Pittman (2008) 

Word list recall    Tun (2009)    

Speech 
comprehension   Rakerd ( 1996)     
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There are three broad categories of dual-task procedures in the literature (McNeil et al., 

2004). The simplest method is the single-to-dual task comparison, which requires that the task(s) 

of interest be performed in isolation and concurrently with a secondary task. This is the method 

that has been applied in the listening effort research. The primary task is typically speech 

recognition, speech comprehension or word recall, combined with a variety of tests across 

modalities as a secondary task (see Table 4). Participants are asked to perform two tasks alone 

first and then perform both of them concurrently. Presumably, in single task conditions, all 

attention can be devoted to either task, whereas in dual task conditions, attention must be divided 

between the two tasks. The priority is assigned to the primary task in a dual-task paradigm by 

instructing participants to shadow the primary task or using tangible payoffs with larger rewards 

for the primary task. Participants receive reward for the secondary task only if they have 

performed the primary task adequately. Listening effort is usually computed using the formula 

based on the performance of the secondary task 𝐿𝐿𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝐿𝐿 = (𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑓𝑓2𝑛𝑛𝑛𝑛 −

𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 𝐿𝐿𝐷𝐷𝑓𝑓𝑡𝑡2𝑛𝑛𝑛𝑛  )/𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑓𝑓2𝑛𝑛𝑛𝑛  (Desjardins & Doherty, 2012; Kemper, Schmalzried, Hoffman, & 

Herman, 2010), or 𝐿𝐿𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝐿𝐿 = 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝑓𝑓2𝑛𝑛𝑛𝑛 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆 𝐿𝐿𝐷𝐷𝑓𝑓𝑡𝑡2𝑛𝑛𝑛𝑛   (Tun et al., 2009). The 

second dual-task procedure is the voluntary effort allocation method in which participants 

perform two concurrent tasks with explicit instructions to vary their allocation of effort between 

them according to the experimental condition (Slansky & McNeil, 1997). The third procedure is 

called concurrent task difficulty manipulation method, in which participants perform two 

concurrent tasks and the difficulty (or some other parameter) of each task is systematically and 

independently manipulated (McNeil et al., 2004; Wickens, 2002) 

 Although the dual-task paradigm is accepted to be a relatively sensitive and objective 

way to reveal the hidden behavioral dimension of effort in theory (Hafter, 2010) and might 
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potentially permit the comparison of different tasks in common units by devising a standard 

subsidiary-task, researchers must apply it with caution. Firstly, according to Kahneman (1973), 

there are two types of interference between concurrently performed tasks, capacity interference 

and structural interference. Capacity interference arises as a function of the attentional demands 

of competing activities, whereas the structural interference occurs when the activities occupy the 

same mechanisms. The interference could take place not only when the total taskload exceeds 

one’s capacity, but also when it is far below the total capacity, and even when the stimuli 

presentation modes (or response modes) are not in the same sensory modality (Pashler, 1992). 

The extent of interference will depend in part on the load which each of the activities imposes 

(Kahneman, 1973). The structural interference appears to be a confounding factor in studies that 

attempted to measure capacity interference which is the case in listening effort studies.  

Secondly, the premise of using the secondary task performance to index listening effort is 

that the primary task performance should maintain at a certain level across experimental 

conditions, because listeners presumably shift their effort from the secondary task to the primary 

task to prevent a decrease in the primary task performance (Kerr, 1973). Some studies reported  

the stability of the primary task performance when the difficulty of the primary task varied (Choi, 

Lotto, Lewis, Hoover, & Stelmachowicz, 2008; Desjardins & Doherty, 2012; Downs, 1982; 

Downs & Crum, 1978; Sarampalis et al., 2009; Tun et al., 2009), while others did not (Feuerstein, 

1992; Hicks & Tharpe, 2002; McFadden & Pittman, 2008). It is also necessary to look at the 

accuracy of the secondary task when measuring response time. Researchers normally included 

only the data from correctly performed trials into analysis, which might lose some important 

information about effort exertion strategy.  Variation of performance in the primary task and/or 
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secondary task will suffer from the uncertainty between data limitation and resource limitation in 

performance results interpretation (Norman & Bobrow, 1975).  

Thirdly, investigating effort allocation strategy is challenging in the dual-task paradigm. 

The invested effort is constrained to the two experimental simultaneous tasks with assigned 

priority order, which does not commonly happen in real life situations. Individuals’ own decision 

of listening effort employment and the pattern of effort allocation among concurrent and/or 

sequential tasks with various levels of difficulty are topics that researchers are most interested in 

but cannot easily analyze in the dual-task paradigm. 

Lastly, the dual-task paradigm requires high cooperation from subjects which might 

results in a disparity between the performance of children and that of adults (McFadden & 

Pittman, 2008). The nature of the crossmodal design in this paradigm to some extent moves the 

focus away from the auditory modality (Strauss et al., 2009b). 

1.3.3 Subjective rating 

Another approach to quantify listening effort is subjective rating. Rating scale techniques are 

based on the assumption that people are able to introspect on their cognitive processes and to 

give a numerical indication of mental effort expended. The rating scale can be independent 

unidimensional scales which only address specific questions about listening effort. It also can be 

a portion of some multidimensional questionnaires which assess groups of associated variables, 

such as mental effort, task difficulty, work load and stress. Various self-assessment scales, such 

as Speech, Spatial and Qualities of Hearing Scale (SSQ) (Gatehouse & Noble, 2004), the NASA 

Task Load Index (Hart & Staveland, 1988) and the Visual Analog Scale (Rudner et al., 2012), 

have been used experimentally. Participants generally rate their perceived listening effort on a 
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scale immediately after the completion of a trial, a condition or the whole task. Such scales are 

sensitive to relatively small differences in cognitive load and are reliable. More details about the 

rating scales applied in the listening effort literature are displayed in Table 5.
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Table 5. Self-assessment instrumentations for listening effort measurement 

 Measured 
construct Sample question and scale 

Fraser et al. (2010) Listening 
effort 

“How effortful was it to identify the components of the 
sentence” 
0% (no effort) ~ 100% (very effortful) 

Downs and Crum 
(1978) 

Task 
difficulty 

Rate the difficulty of the learning task 
1 (Very easy) ~ 7 (Very difficult)  

Larsby et al. (2005) Perceived 
effort 

Rate the degree of effort perceived during the listening 
task 
0 (None at all) ~ 10 (Extremely great) 

Gosselin and Gagné 
(2011b) 

Listening 
effort 

“How much effort was required for you to identify the 
components of the sentence?” 
0 (Negligible amount of effort) ~100 (High degree of 
effort) 

Picou et al. (2011) Listening 
effort 

Verbally rate listening effort 
0 (No effort) ~ 10 (Most effort) 

Zekveld et al. (2010) Listening 
effort 

Rate listening effort 
1 (No effort) ~ 9 (Very high effort) 

Rudner et al. (2012) Listening 
effort 

Rate listening effort via a Visual Analog Scale (VAS) 
0cm (No effort) ~ 11.7cm (Maximum possible effort) 

Brons, Houben, and 
Dreschler (2012) 

Listening 
effort 

Rate listening effort (5-point) 
1 (Extremely high effort) ~ 9 (No effort) 

Mackersie and Cones 
(2011) 

Listening 
effort 

“How hard did you have to work to accomplish your 
level of performance?” 
0 (Lowest effort) ~ 10 (Highest effort) 

Luts et al. (2010) Listening 
effort 

Rate listening effort (13-point) 
0 (No effort) ~6 (Extreme effort) 

McAuliffe et al. 
(2012) 

Listening 
effort 

Rate listening effort via a Visual Analog Scale (VAS) 
0cm (Minimal effort) ~ 10cm (Maximum effort) 
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Although a self-report measure of effort scale gives insight into the experienced listening 

effort, there are at least three limitations to this approach. First, the subjective rating 

measurement appears to be affected by both task difficulty (Gopher, 1994) and compensatory 

control (Hockey, 1997). However, the experimental design rarely takes the compensatory control 

factor into account, thus it is uncertain whether the subjective indication of effort truly reflects 

the availability or demand on processing resources (Wickens, 1992). Second, there are inter-

individual differences in discriminating between questionnaire item dimensions (e.g., 

distinguishing task demand from effort investment) and in decision criteria for rating, which 

makes the interpretation of subjective effort ratings complex (Recarte, Pérez, Conchillo, & 

Nunes, 2008; Yeh & Wickens, 1984; Zekveld et al., 2010). Third, the subjective rating is usually 

conducted after task completion. It is likely that individuals may not accurately recall the 

perceived effort during the performance. As a result, their responses will reflect the average of 

perceived effort across many trials rather than momentary effort (Kuchinsky et al., 2013; 

Kuchinsky, Eckert, & Dubno, 2011). In addition, some common factors such as age, cognitive 

abilities and IQ influence the subjective effort ratings (Van Gerven, Paas, Van Merriënboer, & 

Schmidt, 2004; Zekveld, Kramer, Kessens, Vlaming, & Houtgast, 2009). 

1.3.4 Summary 

Researchers have been exploring techniques to answer the question of what sort of test should be 

included to capture multiple dimensions of listening effort. Three categories of measurements 

have been proposed: physiological measurement, performance-based measurement and self-

reported measurement. Only a few studies have combined two or three techniques of the 

categories in a single experiment (Fraser et al., 2010; Gosselin & Gagné, 2011a, 2011b; Hicks & 
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Tharpe, 2002; Mackersie & Cones, 2011; McAuliffe et al., 2012; Picou et al., 2011; Zekveld et 

al., 2010), among which little evidence supports the strong relationship between the 

measurements. Only two studies found significant correlation. Fraser et al. (2010) reported 

significant negative correlation between the effort rating score and the actual accuracy of the 

secondary tactile task in audio-visual (AV) modality, and Mackersie and Cones (2011) found 

weak but statistically significant relation between physiologic changes in skin conductance and 

subjective ratings of perceived effort measured by NASA-TLX. 

The lack of relationship between these measurements supports that the autonomic 

responses of body, the speed and accuracy of behavioral performance and the self-reported 

perception do not yield redundant information about listening effort. It also can be viewed as 

evidence that the human is not merely a passive difficulty detector. Hence, a well-designed study 

should incorporate these complementary sources and reveal a full picture of listening effort. It 

should be able to measure both the volume (i.e., amount) and pattern (i.e., distribution or strategy) 

of effort allocation, the effectiveness (i.e., quality of performance) and the efficiency (i.e., the 

relation between the quality of performance and the effort invested in it) of effort, the momentary 

(i.e., effort at any instant) and total (e.g., overall in terms of area under curve) effort. The 

combination of pupil dilation assessment, self-paced listening test with some compensatory 

options and a detailed subjective assessment of listening effort (i.e., tackle multidimensional 

listening effort and differentiate the perceived effort in real life environment from lab 

environment) would address the various dimensions of effort. 
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1.4 RESEARCH QUESTIONS AND HYPOTHESES  

Based on the literature review of listening effort in audiology and related fields, mounting 

evidence from neurophysiological and behavioral studies compel audiology researchers to reach 

out further and systematically investigate the interaction effect between external stimulus-driven 

and subjective goal-driven factors on listening effort exertion. The present study was the first to 

systematically examine the effect of the two factors. Prior to applying the compensatory control  

model to potential populations of interest (e.g., people with hearing loss), it was important to 

establish performance and quantify the interaction effect between external stimulus-driven and 

subjective goal-driven factors on listening effort exertion in a young, normal hearing population. 

The primary aim of the current study was to investigate whether listening effort is driven 

by task demand (speech rate) only, goal (reward points) only, or by both task demand and goal. 

The specific research question was, to what extent is the stimulus-driven pattern of listening 

effort allocation in speech comprehension modulated by reward condition under time pressure? It 

was hypothesized that the listening effort allocation pattern among the speech rate levels would 

be modulated by the reward condition. Individuals with normal hearing were hypothesized to 

vary their listening effort based on the taskload/reward net value of the stimuli, meaning that 

people tend to spend more listening effort on the low demand-high benefit items. 

The secondary aim of the proposed study was exploratory in nature and was to 

investigate the efficiency of listeners’ effort allocation in a complex cognitive task within limited 

time. The effort efficiency is defined in the present study as the ability to achieve the target 

reward using a minimum amount of effort with the same consumption of time. The aim was to 

compare two computational approaches of efficiency calculation in characterizing individual 

differences. One approach was proposed by Paas and Van Merriënboer (1993), 𝐸𝐸𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐸𝐸 =
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𝑍𝑍(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝)−𝑍𝑍(𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑝𝑝𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚)
√2

, and the other was proposed by the current study, 𝐸𝐸𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐸𝐸 =

𝑍𝑍(𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑛𝑛)−𝑍𝑍(𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑝𝑝𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚)
𝑍𝑍(𝑚𝑚𝑡𝑡𝑝𝑝𝑝𝑝)+𝐾𝐾

 . As the two equations incorperate different elements, the specific 

question was, which one of the two computational approaches characterizes the effort efficiency 

and differentiates individuals better? It was hypothesized that the new equation would be 

superior to the original equation with the inclusion of the reward and time elements.  

Answering these questions will specify some critical components that should be 

accounted for in the theoretical frameworks of listening effort, as well as in the experimental 

design, especially when studying listening effort in a population with hearing loss. The results of 

this study may help to explain various degrees of perceived fatigue from listening. Furthermore, 

the previous research has not established how the effort efficiency should be characterized. The 

detailed information about listening effort efficiency may help in tailoring individualized 

amplification solutions and auditory rehabilitation programs, which would aim at reducing the 

demands of the environment and maximizing the abilities of the individual, respectively.
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2.0  METHOD 

2.1 EXPERIMENTAL DESIGN 

This study involved a 55 within-subjects Latin Square experimental design, with an 

independent variable of speech rate (5 levels) and an independent variable of reward point (5 

levels). In order to control for both order effect and carryover effect, a digram balanced Latin 

square table was used to create the test conditions of the speech rate and reward point 

combination. As the level of independent variables was an odd number, two Latin square tables 

were generated so that each reward point level was followed by a different point level with the 

same probability, as shown in Table 7. Both tables needed to be used in the experiment, 

therefore, participants were randomly assigned to receive the testing condition sequence 

following one of the two tables. 
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Table 6. The diagram balanced latin square design. 

A B 
  Slow Normal Slightly 

fast Fast Extremely 
fast   Slow Normal Slightly 

fast Fast Extremely 
fast 

Block 1 1 
point 

9 
points 

3 
points 

7 
points 

5  
points Block 1 5 

points 
7 

points 
3 

points 
9 

points 
1  

point 

Block 2 3 
points 

1 
point 

5 
points 

9 
points 

7  
points Block 2 7 

points 
9 

points 
5 

points 
1 

point 
3  

points 

Block 3 5 
points 

3 
points 

7 
points 

1 
point 

9  
points Block 3 9 

points 
1  

point 
7 

points 
3 

points 
5  

points 

Block 4 7 
points 

5 
points 

9 
points 

3 
points 

1  
point Block 4 1 

point 
3 

points 
9 

points 
5 

points 
7  

points 

Block 5 9 
points 

7 
points 

1 
point 

5 
points 

3  
points Block 5 3 

points 
5 

points 
1 

point 
7 

points 
9  

points 

 

The 25 combinations of speech rate and reward point were presented in a block manner. 

Each block consisted of all 5 levels of speech rate and the different reward points assigned to 

every speech rate level. There were 10 speech stimuli in each combination and therefore 50 

speech stimuli in one block. Breaks were given upon the completion of every block. The speech 

stimuli were questions about the spatial relationship between 3 objects. Participants were asked 

to answer where object X is in relation to the object Y by pressing the appropriate key (left, right, 

front, or back) on a keypad. Participants must answer the question correctly in order to get the 

corresponding incentive points, and their task goal was to earn the full reward payment upon the 

completion of the experiment within a limited time period. Their pupil dilation were tracked as 

an indicator of listening effort throughout the whole experiment except during breaks. It was 

hypothesized that participants will manage their listening effort based on the cost-benefit 

decision.  
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2.2 PARTICIPANTS 

Forty healthy young native American English speaking individuals (33 females) aged 19 to 32 

(M=22.43, SD=2.39 years) were recruited from the campus at the University of Pittsburgh. They 

signed a statement of informed consent that had been approved by the University of Pittsburgh’s 

Institutional Review Board and were given a copy of the signed statement. All participants were 

screened for hearing, vision and auditory processing abilities. 

Hearing was screened following a typical clinic audiometry procedure (ASHA, 2005). 

All participants met the normal bilateral hearing sensitivity criteria defined as having pure-tone 

air-conduction thresholds less than 20 dB HL at audiometric test frequencies 250 Hz through 

8000 Hz  in both ears (ANSI, 2004). All participants had a visual acuity of 20/20 or better when 

tested under the binocular condition without correction using the standard Snellen chart (Bailey 

& Lovie, 1980). Participants’ auditory processing capabilities were documented by the 

Computerized Revised Token Test (CRTT) (Eberwein et al., 2007; Heilman, 2008; McNeil et al., 

2009; Turkyılmaz & Belgin, 2012). The CRTT is a diagnostic test used to evaluate auditory 

processing and comprehension abilities, auditory attention, auditory memory and temporal 

processing (McNeil et al., 2015). In the test, participants are required to follow auditory 

commands varying in sentence length and complexity and to identify and manipulate objects of 

standardized shapes (circles and squares), colors (black, red, blue, white and green) and sizes 

(big and small) displayed on a computer screen by either using a computer mouse or 

touchscreen. Studies have shown no significant difference between the two response modes 

(Heilman, 2008; McNeil et al., 2009). The CRTT subtest VII and VIII were used in this study. 

The CRTT speech commands were prerecorded using natural voice with average rate of 3.0–3.5 

syllables per second (approximately 178 wpm)(McNeil et al., 2015). These subtests were chosen 
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because the command type is directional prepositional and the sentences are relatively long, 

which is most similar to the speech test in the present study. An example of speech commands in 

the CRTT subtests is “Put the little green circle to the left of the big red square”, participants are 

expected to select and drag one object to the other by using a computer mouse. A score of 15 is 

the maximum score that a person can achieve on any part of the test, Participants in this study 

had a mean score of 13.72 (range, 12.49-14.58) for subtest VII and a mean score of 14.42 (range, 

13.39-14.90) for subtest VIII. 

Participants were monetarily compensated for their participation due to the incorporation 

of motivation in terms of incentives (i.e., certain reward points redeem a certain amount of 

money) in the study design, This was a one-visit experiment, with each participant performing 

five 20-minute sessions with 5-minute breaks in between. Including screening and instructions, 

total time was approximately 2.5 hours.  

2.3 STIMULI 

Recording 

A set of 432 speech sentences were developed for the study. They were variants of a reasoning 

question about the spatial relationship between two of three objects (i.e., Stone, Kite, Ball). The 

three objects were selected from word lists of the Northwestern University Auditory Test  No. 6 

(NU-6)  (Wilson, Coley, Haenel, & Browning, 1976), and  they were phonetically different from 

each other. The sentences contained two parts, one was the description of the spatial relationship 

among the three objects, and the other was a question of one object’s location in relation to 
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another object (e.g., “The kite is on the left of the ball, the stone is on the right of the ball, where 

is the kite in relation to the stone?”).   

There were 6 different permutations of the three objects array in the left-right direction, 

and 6 different descriptions of each array, and 6 combinations of questions about the spatial 

relationship between 2 objects out of 3. This generated 216 sentences (666). And another 

216 sentences were formed in the same way in the front-back direction. An example of one 

permutation of the left-right array and front-back array is given in Figure 1.  
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Figure 1. An example of speech sentence stimuli. 

The advantages of using these sentences are, first, they have identical lexical and 

syntactic structure. The only component that varies is the relative location of one object with 

respect to the others. The 6 different descriptions of one object array creates differences in 

iconicity (i.e., the conceived similarity or analogy between the sequential order of the objects and 

that described in the speech chain) (Haiman, 1980), as well as differences in answer priming (i.e., 

whether the answer is repeated in the sentence); which result in various difficulty levels of 
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speech understanding. This had been resolved by equating the sentence distribution across test 

conditions. Second, these sentences require a fairly high level of cognitive processing even at a 

slow rate due to their low predictability. Participants had to listen through the end of the sentence 

to be able to solve the question because each question was random, which facilitates participants’ 

engagement in the task. Third, these sentences allow participants to respond by pushing the 

appropriate key on the keypad instead of repeating what they hear, which evaluates listening 

comprehension. In addition, participants’ performance (e.g., correct rate, error rate, response 

time) can be accurately recorded, minimizing the errors made by the raters commonly required in 

speech repetition tasks.     

A male talker and a female talker were asked to read the 432 sentences three times 

producing maximum intelligibility, at a very slow rate that might be directed toward the hard of 

hearing or a non-native English speaker, at their normal conversational speech rate and as fast as 

they could respectively. The purpose of recording the original speech at 3 rates was explained in 

the following speech rate manipulation section. Both talkers were asked to read the sentences 

without exaggerated emphasis on rate, pitch and intensity, even though the last part of the 

sentence is a question.  

The speech stimuli were recorded at 44.1 kHz sampling rate through stereo channels in a 

sound-treated chamber on a Marantz solid state digital recorder (PMD 670) with the Shure SM48 

dynamic microphone. The ambient noise in the sound-treated room was less than 25 dB A. The 

talkers were required to read at an intensity level that passed the midline of the VU meter on the 

recorder display, and the microphone was set at 25 cm from the talker’s lips. A separate 

recording for the cue words which indicate the speech rate and reward points (i.e., slow, normal, 
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slightly fast, fast, extremely fast, 1 points, 3 points, 5 points, 7 points, 9 points) were obtained 

under the same setting.  

A cue phrase (i.e., speech rate + points) proceeded each sentence in the experiment, 

indicating the net value of a specific sentence. The net value was defined as the level of reward 

divided by the difficulty level of the task, which in the present study is the speech 

rate (𝑁𝑁𝑓𝑓𝐿𝐿 𝑣𝑣𝐷𝐷𝑆𝑆𝐷𝐷𝑓𝑓 = 𝑅𝑅𝑓𝑓𝑅𝑅𝐷𝐷𝑒𝑒𝑅𝑅(𝑓𝑓𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝑓𝑓)
𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑒𝑒𝐷𝐷𝐿𝐿𝑓𝑓(𝑅𝑅𝑒𝑒𝑒𝑒𝑅𝑅𝑓𝑓 𝑓𝑓𝑓𝑓𝑒𝑒 𝑚𝑚𝐿𝐿𝐿𝐿𝐷𝐷𝐿𝐿𝑓𝑓)

). This net value computation has been used in 

neurophysiology and neuropsychology studies of effort in both human and animals (Apps & 

Ramnani, 2014; Botvinick, Huffstetler, & McGuire, 2009; Croxson et al., 2009; Kennerley, 

Dahmubed, Lara, & Wallis, 2009; Kennerley et al., 2006). 

The full-version of a speech stimulus token comprised a net value cue phrase, a 2.5 

seconds decision time period, a 0.5 second 1000Hz pure tone signaling the onset of the sentence 

and the sentence. An example of a speech stimulus token is shown in Figure 2. 
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Figure 2. An example of a complete speech token used in the experiment. 

 

Speech rate manipulation 

The waveforms and spectrums of the two talkers’ recordings were compared in a digital 

audio editing program, Adobe Audition 3.0. The speech intelligibility and the quality of neutral 

tone maintenance were judged by a group of 10 native English speakers. The criteria for speech 

intelligibility was that all the sentences could accurately be repeated by all the raters. The criteria 

for neutral tone was that every word in the sentence had the same amount of stress and each 

sentence was perceived as non-emotional. These restrictions minimize the possible confounds to 

the task demand manipulation. The speech from the two talkers was highly intelligible, however, 

the male talker kept the neutral tone significantly better than the female talker. Additionally, the 

speech rates and the speech-to-pause ratio at 3 levels (i.e., slow, conversational and the fastest) 
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were calculated, see Table 7. The speech rate was computed as the number of words in the 

sentence divided by the duration of the sentence in the unit of words per minute (wpm). Some 

studies have used syllables per second (syll/s) as the unit of speech rate; however, it doesn’t 

make a difference in the present study since all sentences consist of identical words.   

Table 7. Speech rate and speech-to-pause ratio comparison between two talkers 

    Slow Conversational Fastest 

Male talker Speech rate (wpm) 163 236 324 

  Speech-to-pause ratio 4.23 4.18 6.463 

Female talker Speech rate (wpm) 172 219 352 

  Speech-to-pause ratio 4.75 5.93 11.82 

According to the literature, speech rates vary tremendously among normal speakers, but 

in general, adults produce an average of 270 wpm during conversational speech and 160-180 

wpm during oral reading (Calvert & Silverman, 1983). The speaking rate of normal adults ranges 

from 220-410 wpm during uninterrupted discourse (Weiner, 1984). When speaking fast, a talker 

unintentionally changes relative attributes of his/her speech such as pause durations, consonant-

vowel duration, etc. The speech-to-pause ratio is defined as the duration of speech segments 

divided by that of pause segments in the present study. The pause boundaries were identified 

automatically by the audio editing program. As the distinction between hesitation or resting 

pauses and phonetic events (e.g., voiceless stops, articulation shifts) can be difficult even in 

healthy speakers, researchers have typically adopted a pause threshold around 250ms as 

proposed by Eisler (1968) and Niimi and Nishio (2001). Therefore, a 250ms pause duration 

threshold was used in this study.   

When linearly regressing the speech-to-pause ratio against speech rate for the speech of 

the two talkers, as shown in Figure 3, the relationship between the speech-to-pause ratio and 
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speech rate of the female talker seemed to follow the linear path better than the male did. 

Considering the speech intelligibility, neutral tone control and speech rate/speech-to-pause 

control, the male talker’s voice was used but the female’s linear equation (i.e., 𝐸𝐸 = 0.0403𝑥𝑥 −

2.4758) was applied to generate the target speech rates variables for the experiment. 

 

Figure 3. Speech-to-pause ratio as a function of speech rate 

 

The range of the speech rate variables used in the present study were intended to cover 

the normal speech rate range indicated in the literature and a level beyond the upper limit of the 

normal range. The purpose for a wide range was to investigate participants’ decision on their 

listening effort exertion not only when task demands were within their capability, but also when 

task demands exceed their ability. A preliminary experiment was conducted to determine the 

exact levels of speech rate that were used in the main experiment.  
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In the preliminary experiment, seven levels of speech rate were generated from the 

original recording, they were 130wpm, 180wpm, 230wpm, 280wpm, 330wpm, 380 wpm and 

430wpm. According to the literature, as the time-compression ratio of the speech signal increases, 

there is a degradation of speech recognition performance (Wilson, Preece, Salamon, Sperry, & 

Bornstein, 1994). The time-compression ratio specifies the percentage reduction in the total 

duration of the original speech sample. For example, in the case of an entire sentence, 40% time 

compression results in a sentence in which the duration is 40% less than the duration of the 

original sentence. Wilson found that compression ratios above 50% substantially affected speech 

perception. These findings are consistent with earlier findings that recognition performance is 

most affected by compression ratios above 60% (Beasley & Freeman, 1977; Beasley & Maki, 

1976). In order to minimize the adverse impact of time compression on the speech intelligibility, 

samples of 130wpm and 180wpm were generated from the original slow recording, sample of 

230wpm and 280wpm were generated from the original conversational recording, and sample of 

330wpm, 380wpm and 430wpm were generated from the original fastest recording. As a result, 

none of the time-compression ratios exceeded 50%, see Table 9.   

Table 8. Target speech rates and their time-compression ratios for the preliminary experiment. 

  Slow Conversational Fastest 
Original recording 163 wpm 236 wpm 324 wpm 
Target speech rate 130 wpm 180 wpm 230 wpm 280 wpm 330 wpm 380 wpm 430 wpm 
Compression ratio 25.4% 9.4% 2.6% 15.7% 1.8% 14.7% 24.7% 

 

To manipulate speech rate, the durations of the 7 target speech rate levels were calculated 

first. It was computed as Duration (second) = 𝑁𝑁𝐷𝐷𝑚𝑚𝑁𝑁𝑓𝑓𝑒𝑒 𝑒𝑒𝑓𝑓 𝑅𝑅𝑒𝑒𝑒𝑒𝑅𝑅𝑓𝑓
𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑒𝑒𝐷𝐷𝐿𝐿𝑓𝑓 (𝑅𝑅𝑓𝑓𝑚𝑚)�  × 60.  The 

sentences regarding the left-right direction consist of 27 words, and the sentences regarding the 

front-back direction consist of 25 words, therefore, the sentence duration were slightly different 
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between the two sets of 216 sentences. The correspondent 7 target speech-to-pause ratios were 

identified from the regression line of the female talker’s speech, as displayed in Figure 4. Given 

the appropriate durations and speech-to-pause ratios (see Table 10), the 7 levels of speech rate 

were then manipulated through the audio editing program (i.e., Adobe Audition 3.0). 

 

Figure 4. The 7 speech-to-pause ratios corresponding to the 7 target speech rates.  

  

 

Table 9. Target sentence durations and speech-to-pause ratios 

 
130 

wpm 
180 

wpm 
230 

wpm 
280 

wpm 
330 

wpm 
380 

wpm 
430 

wpm 
27 words duration 

(Left-right) 12.46s 9.00s 7.04s 5.79s 4.91s 4.26s 3.77s 

25 words duration 
(Front-back) 11.54s 8.33s 6.52s 5.36s 4.55s 3.95s 3.49s 

Speech-to-Pause ratio  
( from linear function) 2.76 4.78 6.79 8.81 10.82 12.84 14.85 

In order to minimize the contamination to the speech caused by processing artifacts, the 

pauses in the sentences were adjusted in duration to achieve the target speech-to-pause ratios 

before Adobe Audition uniformly stretched or compressed the whole sentence. A pause (or 
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silence) was defined as a segment in the waveform that had an intensity lower than 10dB for at 

least 250ms, and could be automatically marked by Adobe Audition. Based on the measured 

speech duration and pause duration within a sentence, precisely calculated silent segments were 

either added to or removed from the original pause segments so that the speech-to-pause ratio 

reached the target value. Once the speech-to-pause ratio was set, the processed sentence was then 

time-compressed or time-expanded by Adobe Audition without changing the pitch. The 

processing algorithm was based on the pitch synchronous overlap and add method (PSOLA) 

(Kawahara, Masuda-Katsuse, & De Cheveigne, 1999; Moulines & Laroche, 1995). First, the 

input waveform was decomposed into a stream of short-time signals based on pitchsynchronous 

marks. Second, the pitch-synchronous short-time signal was either eliminated or duplicated 

based on the predefined stretch factor. Third, the modified short-time signal was added to 

synthesize the stretched and compressed stimulus. The original pitch was preserved during 

processing and the duration of each voiced or silent segment in the speech was uniformly 

changed (Liu & Zeng, 2006). The intensity of each sentence was finally equated to 65dB SPL in 

root mean square (RMS) across all the speech stimuli. 

A total of 42 sentences (6 sentences in each speech rate level) randomly selected from the 

432 sentences pool were used in the preliminary experiment. The reward condition was not 

included in the preliminary experiment because the purpose was to determine which five levels 

of speech rate would to be used in the main experiment. Eight young adults were asked to answer 

the questions as accurately and fast as possible by pushing the appropriate key on the keypad. 

They were allowed to push the middle key on the keypad to skip to the next sentence if it was too 

difficult for them to answer. The results of accuracy, skip rate, response time for correct items, 

incorrect items and skipped items are presented in Figure 5. The bar graph reads the response 
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time on the left Y-axis, and the curve graph reads percentage correct on the right Y-axis. The 

accuracy decreased as the speech rate increased, and there was a rapid decrease in accuracy at 

380wpm, this was also where the response time for the correct items started to decrease, and the 

skipping rate at 380 wpm was fairly high. All these factors made the level of 380 wpm valuable 

to be included in the main experiment. The highest rate 430 wpm was clearly an extreme 

condition, with the lowest accuracy, the highest skipping rate and the shortest response time for 

all items. The rate of 430 wpm was included to serve as a condition where no listening effort is 

expected to be allocated to regardless of reward points. The remaining 5 levels of speech rate 

seemed to be within participants’ processing capability. The response time for the correct items 

increased with the increase of the speech rate, reaching the maximum at 330 wpm. The accuracy 

declined with the increase of the speech rate but had been maintained at a fairly good level, 

Skipping items occurred at 280 wpm and 330wpm with low percentage. These performance 

patterns seen in the range of 130 ~330 wpm were consistent with the prediction of Kahneman’s 

unitary resource theory (1973) and the results of numerous studies investigating listening effort 

within cognitive capabilities. Three out of the 5 levels were therefore selected to represent the 

pattern, and these are 130 wpm, 230 wpm and 330wpm. 
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Figure 5. Results of the preliminary experiment for speech rate range determination purpose. 

 

 

2.4 PROCEDURE 

2.4.1 Screening and descriptive tests 

Participants first completed a brief medical and audiologic history questionnaire (see Appendix 

A). A vision test then was conducted using the Snellen chart, and the eligibility criteria was a 

visual acuity of 20/20 or above without correction tested binocularly. An otoscopic examination 

130 180 230 280 330 380 430
RT 1044.18 1759.35 2054.97 1826.43 2949.40 1994.71 1150.38
RT (incorrect) 1546.36 2415.88 1965.79 1390.96 1223.02 2484.87 1334.14
RT (skip) 0 0 0 1548 1760 1548 1547.29
Accuracy 86% 67% 76% 55% 57% 17% 12%
% of skip 5% 0% 0% 14% 24% 55% 76%
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was performed prior to the audiometric evaluation to ensure that there was no occluding cerumen 

preventing visualization of the eardrum. Individuals who had occluding cerumen were referred to 

an audiologist. Participants’ hearing sensitivity was screened using a Beltone 2000 clinical 

audiometer following the ASHA guidelines (ASHA, 2005).  Participants were eligible for the 

study if they could respond to signals at 20dB HL at octave frequencies from 250 Hz-8000 Hz  in 

both ears tested separately (ANSI, 2004). The subtests VII and VIII of the Computerized Revised 

Token Test (CRTT) were administrated through the experimental computer. Participants listened 

to the CRTT speech commands through a loudspeaker at 65dB SPL calibrated at seating 

position. 

The short form of the Need for Cognitive (NC) test was administered to the eligible 

participants. Although the NC scale was originally developed as a 34-item inventory, the most 

commonly used version contains 18 statements that people rate on 5-point scales to reflect how 

characteristic the statement is of themselves (Cacioppo & Petty, 1984). The scale has high 

internal consistency and test-retest reliability. Participants were instructed to indicate, on a 5-

point Likert-type scale, the degree to which each of the 18 items characterized them (see 

Appendix B).       

. 

2.4.2 Main experiment 

All of the procedures of the main experiment took place in a 1.5x2.2m double-walled sound-

treated booth that meets specifications for maximum permissible ambient noise levels (ANSI, 

2003). The booth was illuminated with medium lighting with a background luminance of 300lx. 
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The experiment setup was presented in Figure 6. Participants were seated at a table in front of the 

computer monitor (size of the display: 19 in., display resolution: 1024×768) at a distance of 

approximately 32 inches (81.28cm) with a five-key response keypad in front of them. The 

experiment instructions and the fixation image (for the purpose of pupil dilation measurement) 

were displayed on this monitor. Speech stimulus presentation was controlled by a computer 

running the experimental control software, SuperLab 5 (Cedrus, Phoenix, Arizona). Speech 

signals were played out via a SoundBlaster soundcard on the experimental computer, and 

subsequently fed to the Beltone audiometer. Participants received the signals via the 

audiometer’s ER-3A insertion earphones. The calibration speech-shaped noise for the 

experimental stimuli was generated by Praat program and matches the Long Term Average 

Speech Spectrum (LTASS) of the speech produced by the male speaker whose speech was 

recorded for this experiment. The sound intensity level calibration was performed using a 

Larson-Davis 824 sound level meter to ensure that the output from the left and right ER-3A 

insert earphones was 65 dB SPL.  
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Figure 6. Experiment setup. 

Prior to the experiment, participants performed a sequence of practice trials to ensure 

they were familiarized with the response keypad and the speech stimuli, and that they understood 

the task and directions. A list of practice trials along with the specific instructions that were both 

read to the participants and displayed on the screen is shown in Table 11. Fifty-five sentences 

randomly selected from the 432 speech stimuli developed for this study were used in the practice 

trials. Participants were allowed to repeat the trials until they correctly followed all of the 

commands in the practice trials.  
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 Table 10. Practice trials objectives, contents and instruction to participants. 

Trial 
ID Objective Content Instruction 

1 • Be familiar with the 
response keypad. 

Commands in text on the screen 
(e.g., "Please press the left key".) 

Please follow the commands by pressing the appropriate 
key on the keypad without looking at it. 

2 

• Be familiar with the 
speech stimuli. 

• Ensure that the 
speech stimuli are 
intelligibility to the 
participants. 

• Be used to fixate 
their gazes on the 
cross display on the 
screen while 
listening. 

A total of 15 speech stimuli (3 for 
each of 5 speech rates) were given 
through the ER-3 insertion phone 
in an order from slow to fast. (e.g., 
The stone is in front of the kite, the 
kite is in front of the ball, where is 
the kite in relation to the ball?)   

You will hear some sentences with a questions at the end, 
and the speech rate will vary from slow, normal, slightly 
fast, and fast to extremely fast. You don't need to answer 
the question, only repeat the question part of the sentence. 
Please look at the cross image on the screen all the time. 

3 

• Ensure that 
participants 
understand the 
speech 

• Be familiar with the 
"skipping key" on the 
keypad 

A different set of 15 speech 
stimuli are given, similar to the 
trial 2. 

You will hear similar sentences to the ones you heard 
before, instead of repeating, please answer the question by 
pressing the appropriate key on the keypad. You can press 
the middle key (namely "skipping key") on the keypad 
when you decide not to answer the question. The next 
sentence will appear automatically. Please look at the 
cross image on the screen all the time. 
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4 

• Be familiar with the 
reward conditions. 

• Be familiar with the 
full-version structure 
of the stimuli. 

A list of 25 full-version stimuli are 
given in a random order. (e.g., 
"Slow, 7 points (0.5 seconds) + 
pause (2.5 seconds) +1000Hz tone 
(0.5 seconds) + stimuli sentence") 

This is a simulation of the real experiment, in which each 
correctly answered question will earn you certain points, 
and each point is worth 5 cents, your goal is to earn as 
many points as possible.  
In each full-version stimuli, you will be told how fast the 
upcoming sentence is, and how many points you can earn 
if corrected answered, then you'll have 2.5 seconds to 
make decision of how much effort you are going to put in 
it. A tone will occur at the end of the pause signaling the 
beginning of the sentence. After the sentence offset, an 
answer prompt (a low frequency tone) will indicate that 
you can push the appropriate button to respond.  
Again, this is only a practice and is meant to prepare 
yourself for the real experiment. Don't forget to look at 
the cross image on the screen all the time. 

Table 10. (continued) 
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In the formal experiment, a total of 250 sentences (5 speech rate levels  5 reward levels 

 10) were selected from the remaining 377 speech stimuli (excluding the 55 used in the 

practice trials) such that each speech ratereward combination had 10 sentences with the same 

distribution of the sentence structure variants. The 250 stimuli were presented in 5 blocks of 50 

sentences (see Table 7) with breaks in-between blocks. The order of the 5 speech ratereward 

combinations presentation within each block was random, whereas the presentation order of the 

10 stimuli within each combination condition remained fixed. Participants were randomly 

assigned to receive one of the testing condition sequences.  

Participants were informed both verbally and in writing (shown on the computer screen) 

that:” There are 5 blocks in total (the last practice was half block). Please remember, each 

correctly answered question will earn you certain points (1, 3, 5, 7 or 9), and each point is 

worth 5 cents. The maximum points you can possibly get is 3700, but you only need 1000 

points to get the full payment ($50). Your goal is to EARN the FULL PAYMENT within a 

limited time. A clock ticking sound will appear when you have spent half of your time in each 

block. Your response won't be registered until the sentence presentation is complete. Don't 

forget to look at the cross image on the screen all the time.” 

Participants were told that they only had a limited time to finish each block, and the time 

limit was set individually based on the amount of time they spent on the 4th practice trial. As the 

4th practice trial has half the number of the sentences in one block, and participants performed it 

without time pressure, the time limit for a single block was set at double the practice time minus 

5 minutes. For example, if one participant finished the 4th practice trial in 20 minutes, he/she was 

told that 35 minutes (202 – 5) was the time limit to complete each block. The performance 

feedback in terms of percent correct and the total gained reward points for the 4th practice trial 
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was provided so that each individual could self-calibrate and prepare a strategy for the 

experiment. The countdown signal was a clock ticking sounds presented at halfway through a 

block. Because no missing data were desired, there was no actual time limit for the experiment. 

Participants were told there was a time limit in order to impact their decision making strategies 

(Verplanken, 1993). Any devices that indicated time in the laboratory were taken away during 

the experiment. Participants were asked to turn off their phones and remove watches and leave 

them in a safe container in the lab during the experiment.  

Participants were required to fixate on a cross-hair presented in the middle of the screen 

while listening to the speech stimuli and responding. They could either answer the question by 

pressing one of the four direction buttons on the keypad or skip to the next stimulus by pressing 

the middle button, depending on their effort management strategies. The stimulus presentation 

was programed to avoid a response occurring before the sentence finishes. The fixation image 

remained on the screen throughout the block.  

2.4.3 Pupillometry  

Listening effort was indicated by pupil dilation in the present study. Participants’ pupil diameters 

were monitored using an ASL Eye-Trac 6 system (Applied Science Laboratories, Bedford, MA), 

which consists of a video camera and an infrared light source pointed at the participant’s right 

eye. The ASL Eye-Trac 6 system allows free movement of the head with a magnetic sensor, 

attached to a headband, tracked and adjusted for head movement. However, using a head and 

chin rest has been shown to be very effective in minimizing head movements, keeping the 

participant in focal range of the video camera, and ensuring a consistent distance from the screen 

(Raney, Campbell, & Bovee, 2014). A chin-rest was mounted at the end of the table, and the 
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height was adjusted so that participants were able to comfortably maintain the position for 30 

minutes at a time (approximate one block). The computer monitor (size of the display: 19 in., 

display resolution: 1024×768) was located approximately 32 inches (81.28cm) from the 

participants. The center of the monitor was at the same level as the participant’s eye. The 

recording video camera was located at the same vertical plane with the monitor, and at 0 azimuth 

to the measured eye.  The distance of camera to eye was approximately 24 inches (60.96 cm). 

The ASL Eye-Trac 6 system employs a Pupil-Centre Corneal Reflection (PCCR) method 

(Mason, 1969) to calculate pupil size and to track the eye diameter and eye gaze location at 60 

Hz (i.e., every 16.7 ms). The spatial resolution of the pupillometer is 0.1mm. 

The luminance of the visual field was controlled to avoid the floor and ceiling of the 

range of pupil size, which is affected relatively more strongly by the light reflex than by 

cognitive load (Beatty, 1982; Beatty & Lucero-Wagoner, 2000; Zekveld & Kramer, 2014). For 

each participant, the brightness of the computer screen was adjusted from black to white in 

successive shades of gray to elicit the range of pupil sizes attributable to the light reflex. The 

luminance required to elicit an intermediate pupil size (midway between the minimum and 

maximum measured sizes) was calculated, and the corresponding shade of gray was used as 

screen background color for the rest of the experiment. This calibration process is consistent with 

Winn and Edwards (2013) and Zekveld et al. (2010). The standard 9 point calibration was used 

to teach the ASL system each individual’s pupil/CR/scene relationship prior to collecting eye 

diameter data. 

As the ASL program was run by a separate computer, a PCI-DIO 24 board manufactured 

by Measurement Computing was used to connect it to the experimental computer which runs 

SuperLab software. The pupil tracking by the ASL system therefore was able to synchronize 
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with the stimulus presentation, having markers of the onset and offset of each trial in the pupil 

dilation traces. 

2.4.4  Data selection, cleaning, and reduction 

2.4.4.1 Pupillary data 

The pupillary data were analyzed to answer the primary research question of listening effort 

allocation. 

Data selection and cleaning 

The output of the eye tracker data files include the major axis length (width) of the pupil and the 

minor axis length (height) at each time sample (i.e., every 16.67 ms, 60Hz sampling rate). The 

minor axis becomes small as the eye rotates away from the camera; however, the major axis does 

not, which indicates that the width is a more accurate pupil size measurement during eye 

movements (Kuchinsky et al., 2013). Therefore, the width of the pupil was used to calculate the 

pupil dilation indices in this study. 

Data were cleaned using the procedures suggested by Siegle, Ichikawa, and Steinhauer 

(2008). The data cleaning process included blink identification and interpolation, smoothing, and 

artifactual trial removal. Correctness and reaction time for each trial were not part of the data 

selection criteria because the experiment allowed subjects to guess, which was considered one of 

the effort allocation strategies.  

As noted in Siegle et al (2008), blinks were identified as large changes in pupil dilation 

occurring too rapidly to signify actual dilation or contraction. Specifically, blinks were coded as 

samples with estimated pupil diameter meeting any of the following criteria: 1) difference 
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between the raw and a smoothed (3 point moving average applied twice) version greater than 

1mm, 2) below 1mm; 3) below the minimum diameter in a subject’s waveform +0.1mm; 4) 

below the median diameter minus 4mm; 5) below two times the interquartile range below the 

25th percentile (i.e., the Tukey extreme outlier hinge). Because intervals between blinks of less 

than 10 samples (0.16s) were unlikely to represent periods of clear vision, when an interval of 

less than 10 samples separated two blinks, both blinks and the interval between them were 

judged to be part of the same single blink.  

Linear interpolations beginning 4 samples before and ending 9 samples after a blink 

replaced blinks throughout the data set. This technique prevented interpolation to poor pre- and 

post- blink pupil estimates due to partial lid closure. The average pupil diameter in the 10 

samples (0.17 sec) preceding the onset of the tone was subtracted from pupil diameter after tone 

onset to produce pupil dilation difference score indices. 

Data were selected using methodology similar to that described by Granholm et al. 

(1996). Specifically, trials comprised of over 50% blinks were removed from consideration. Data 

selection and cleaning procedures resulted in the exclusion of 5 participants, and elimination of 

26.6 trials on average per participant (SD=12.5, Median=24 trials). After removing the 5 

participants, the actual sample size of 35 still met the requirement by the power analysis. 

Determination of windows of significant differences.  

As the effect of speech rate and reward factors on pupil dilation across the entire duration of 

stimulus presentation and response period was of interest in this study, the pupillary data at each 

sample point were included in the analysis. Contrasts on pupil dilation were examined via linear 

regression at each time point along pupil dilation. To control type 1 error for this large number of 

tests, Guthrie and Buchwald’s (1991) technique was used. This method was developed to 
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combine graphical presentation with statistical theory. Briefly, this technique involves using 

Monte Carlo simulations to estimate the number of consecutive significant differences long 

enough to be judged to not have occurred by chance with p<.05 given the temporal auto-

correlation of the data. Thus, contiguous sample-by-sample tests are considered replications. 

This technique has been successfully applied in previous publications on pupil dilation data sets 

(Siegle et al., 2008; Siegle, Steinhauer, Stenger, Konecky, & Carter, 2003; Siegle, Steinhauer, & 

Thase, 2004).  

The autocorrelation was calculated to be 0.98 in the data. The Monte Carlo simulations 

suggested that a window of 85 (i.e., 1.41 seconds given the 60Hz sampling rate) consecutive 

regression tests on pupil dilation along the time course significant at p<.1 would yield a window 

of differences significant at p<.05. When results are reported for an entire time window, they 

represent tests of the mean regression coefficients in a window of consecutive significant 

differences. 

Wavelet analysis 

Due to the temporal property of the speech rate variable, the pupillary time-courses between the 

beginning and the end of the sentence presentation were unaligned in time, with slow rate 

conditions having much longer durations than fast rate conditions (see Figure 7). As a result, 

Guthrie and Buchwald’s (1991) approach is not appropriate for analyzing the pupillary data 

within the sentence presentation time window. The analysis solution aligned the trial segments of 

the pupil data to the beginning of the sentence (circle marker) first, and then to the end of the 

sentence (triangle marker). The temporally aligned cue and pause window (pre) and response 

window (post) adopted the massively univariate approach proposed by Guthrie and Buchwald 

(1991), whereas the wavelet analysis was performed for the sentence presentation window (mid).  
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Figure 7. Illustration of the alignment issue of the pupillary data and the analysis solution.  

 

Wavelet analysis is very useful for processing nonstationary signals, such as the pupillary 

data in this study. Like Fourier analysis, wavelet analysis deals with expansion of functions in 
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terms of a set of basic functions. Unlike Fourier analysis, wavelet analysis expands functions not 

in terms of trigonometric polynomials but in terms of wavelets that are generated in the form of 

translations and dilations of a fixed function called the mother wavelet (Lee & Yamamoto, 

1994). The Morlet wavelet was chosen to be the mother wavelet for the analysis. It is 

a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian 

window (envelope), and it is closely related to human perception, both hearing (Tognola, 

Grandori, & Ravazzani, 1998) and vision (Daugman, 1985).  

Briefly, the Morlet wavelet with a specific width, e.g., a width of 13.5 seconds for a slow 

rate condition, was compared to a section at the start of the original continuous-time pupil 

dilation signal, and a correlation coefficient was calculated.  This single number gives a measure 

of the projection of this wave packet on the data during the first 13.5 second period, i.e. how 

much (amplitude) does the data’s 13.5-second period resemble a sine wave of this width 

(frequency). By shifting this wavelet along the time series, a new time series of the projection 

amplitude versus time was constructed. The process was repeated many times, varying the scale 

of the wavelet by changing its width each time, until the defined scale range was covered. The 

result was a collection of time-scale representations of the signal, all with different resolutions 

(see Figure 8). The duration of the sentences in the study ranged from 4.8 seconds (extremely 

fast) to 13.5 seconds (slow), so the scale range for the wavelet analysis was set to be 0.02~0.2 

Hz.  

The wavelet power value for each of the valid trials was calculated for each participant. 

Finally, 25 condition mean wavelet power values were computed and served as the dependent 

variable in the significance test for the sentence presentation time window.    

https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Complex_exponential
https://en.wikipedia.org/wiki/Carrier_signal
https://en.wikipedia.org/wiki/Gaussian_window
https://en.wikipedia.org/wiki/Gaussian_window
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Figure 8. One subject wavelet data. The pupillary data (top white curve) and the trial onset markers 

(bottom white vertical lines) are shown in the wavelet spectrogram. 

Two-way within-subject ANOVA 

Additional two-way within-subject ANOVA was performed on the peak pupil dilation in 

comparison to Guthrie and Buchwald’s (1991) approach. The purpose was to demonstrate the 

non-redundant information provided by using Guthrie and Buchwald’s (1991) approach. The 

traditional method of analyzing the physiological data such as EEG and pupillary data is to 

conduct statistics on the peak, the peak latency and the mean of the response waveforms. 

However, the peak latency and mean dilation were not appropriate dependent variables due to 

the nature of the experimental design in this study (i.e., the trial duration was not equal among 

the speech rate conditions); therefore, only the peak dilation was included in the analysis.  

2.4.4.2 Behavioral data 

The behavioral data were analyzed to answer the exploratory research question about the quality 

of the effort regulation, denoted by effort efficiency. The individual’s overall performance 
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accuracy, total reward achievement and the total response time of the listening task were 

obtained and applied in the effort efficiency calculation.  Each individual was scored on the Need 

for Cognition questionnaire, and the eighteen questions were averaged to produce a scale score. 

The Pearson correlation analysis was performed between the two efficiency scores and the score 

of need for cognition. 

In the formula proposed by Paas and Van Merriënboer (1993), 𝐸𝐸𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐸𝐸 =
𝑍𝑍(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝)−𝑍𝑍(𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑝𝑝𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚)

√2
, the Z score of performance accuracy and the Z score of the total 

peak pupil dilation (i.e., the overall effort spent) were used, which are the same variables that 

Paas and Van Merriënboer used. In contrast, the variables used in the new formula proposed by 

the current study, 𝐸𝐸𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐿𝐿𝑓𝑓𝐸𝐸 = 𝑍𝑍(𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑛𝑛)−𝑍𝑍(𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑝𝑝𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚)
𝑍𝑍(𝑚𝑚𝑡𝑡𝑝𝑝𝑝𝑝)+𝐾𝐾

 , hwere the Z score of earned reward 

in points, the Z score of the total peak pupil dilation, and the Z score of the total response time 

spent plus a constant K (K > |minimum Ztime|). 

Additionally, the group’s performance, error type, and self-reported strategy use were 

described. Some individuals’ data also were reported.
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3.0  RESULTS 

3.1 PRIMARY RESEARCH QUESTION 

To what extent is the stimulus-driven pattern of listening effort allocation in speech 

comprehension modulated by reward condition under time pressure? 

3.1.1 Guthrie and Buchwald’s (1991) approach 

To illustrate the extent to which time windows differed in the effects of speech rate and reward, 

condition-related differences were evaluated at each time point along the grand-mean waveforms 

via multiple regression tests and the subsequent t-tests on the regression coefficients. Figure 9 

shows the grand mean waveforms and wavelet powers for each speech rate (upper panel) and for 

each reward (lower panel) across all participants.   
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Figure 9. Grand mean pupil waveforms and the results of significance tests.  The main effect of speech rate 

(upper panel) and the main effect of reward (lower panel). Regions of significant differences (at p<0.1) in 

regression test are highlighted along the X-axis by black bars: significant main effect of speech rate (the top 

horizontal bar), main effect of reward (the middle horizontal bar) and the interaction effect of speech rate 

and reward (the bottom bar).    

 

During the pre-sentence time period, there was one significantly long window of main 

effect of speech rate extending from 0.02 to 4.00 seconds after the beginning of a trial (sentence 

onset occurred at 5 seconds) as determined using Guthrie and Buchwald (1991) method. The 
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speech rate positively predicted the pupil dilation after adjusting for the reward, B = 0.02, t (34) 

= 6.48, p < 0.01, d = 1.10. There also was a significant window of positive prediction on the 

pupil dilation by reward after adjusting for the speech rate, from 0.02 to 1.92 s, B = 0.01, t (34) = 

2.91, p = 0.01, d=0.49. The observed interval of the interaction effect of speech rate and reward 

closely preceding the onset of the sentence presentation was not long enough to be considered as 

statistically significant.  

The same multiple regression and subsequent t-test was performed on the condition-

related wavelet power values for the sentence presentation period. The results showed that the 

speech rate significantly predicted the pupil dilation with 0.005 mm increase in dilation for every 

1 wpm increase in speech rate, t (34) = 4.48, p < 0.01, d = 0.76. The prediction by the reward 

condition also was significant, with 0.05 mm raise in dilation for every 1 point increase in 

reward, t (34) = 3.10, p < 0.01, d = 0.52. There was no significant interaction effect of speech 

rate and reward, B < 0.001, t (34) = 0.47, p = 0.639, d = 0.08.    

In the post-sentence time period, a significant interaction effect of speech rate and reward 

was observed within the window from -0.95 to 1.22 seconds relative to the offset of the sentence 

presentation, B < 0.005, t (34) = -2.40, p = 0.02, d = -0.40. As shown in Figure 10 (left panel), 

the pattern of pupil dilation change as a function of speech rate was different at different reward 

levels. At low reward level (i.e., 1 point), the pupil dilation increased with the increase of the 

speech rate, at median reward level (i.e., 5 point), the pupil dilation did not differ among the 

speech rate levels, whereas at high reward level (i.e., 9 point), the pupil dilation declined as the 

speech became fast. The maximum dilation occurred in the slow-rate/9-points condition, and the 

minimum dilation took place in the slow-rate/1-point condition. There was significant main 

effect of speech rate extending from 0 to 5 s, B = 0.04, t (34) = 8.69, p < 0.01, d = 1.47, as well 
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as significant main effect of reward extending from 0 to 3.28 s, B = 0.01, t (34) = 3.99, p < 0.01, 

d = 0.67, similar to the main effects in the previous time periods.  

 

  

  

Figure 10. Interaction effect of reward and speech rate during the post-sentence time period.  

 

The above data support the hypothesized effect of increasing listening effort as the 

speech rate and reward increase. However, the interaction effect was different from the findings 

in the effort literature which have shown that the effort varies as a function of the cost-benefit net 

value (Croxson et al., 2009; Forstmann et al., 2006; Mars et al., 2005; Walton et al., 2004; 

Yoshida & Ishii, 2006). The pattern of effort allocation among the 25 speech rate/reward 

combinations would resemble the pattern in the right panel of Figure 10, where the minimum 

effort would be spent under the extremely-fast/1-point condition, and the most effort would be 

spent under the slow/9-point condition.   
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3.1.2 Two-way within-subject ANOVA 

As a comparison to Guthrie and Buchwald’s (1991) approach on analyzing the pupillary data, a 

traditional 55 within-subjects analysis of variance was performed on the peak dilation as a 

function of speech rate (130wpm, 230wpm, 330wpm, 380wpm and 430wpm) and reward point 

(1 point, 3 points, 5 points, 7 points and 9 points). As the assumption of sphericity was violated, 

the statistics were reported with Huynh-Feldt correction. As displayed in Figure 11, there was no 

interaction effect of speech rate and reward on the peak dilation, F(6.075, 206.543) =1.713, p 

=.118, 𝜂𝜂𝑝𝑝2  =.048, indicating that the pattern of the peak dilation among the speech rate levels was 

not significantly different under different reward conditions. However, there was a significant 

difference on the peak dilation among the levels of speech rate averaged across reward, F(3.032, 

103.075) = 32.419, p <.001, 𝜂𝜂𝑝𝑝2  =.488. The peak dilation was significantly smaller under the slow 

rate condition (M=.373, SE=.028) than under all the other faster rate conditions (M=.536, 

SE=.039), F(1, 34) =77.669, p <.001, 𝜂𝜂𝑝𝑝2  =.696. The peak dilation at the normal rate condition 

(M=.502, SE=.037) was significantly smaller than at the slightly fast condition (M=.556, 

SE=.044), F(1, 34) =11.349, p =.002, 𝜂𝜂𝑝𝑝2  =.250. There was no significant difference on peak 

dilation between any other speech rate conditions. 

A significant difference on the peak dilation among the 5 levels of reward averaged 

across speech rate also was observed, F(3.126, 106.301) =5.201, p =.002, 𝜂𝜂𝑝𝑝2  =.050. The peak 

dilation under 7 points condition (M=.540, SE=.043) and 9 points condition (M=.515, SE=.036) 

were significantly higher than that under 3 points condition (M=.466, SE=.031), F(1, 34) 

=10.754, p =.002, 𝜂𝜂𝑝𝑝2  =.240 and F(1, 34) =13.495, p =.001, 𝜂𝜂𝑝𝑝2  =.284, respectively. No significant 

difference existed between any other reward conditions. 
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Figure 11. Results of the traditional analysis on peak dilation.  Top: Mean peak pupil dilation in the 25 speech 

rate/reward combination conditions. There was no interaction effect of speech rate and reward. Bottom: 

Significant main effect of speech rate and reward. * p < .05. 
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3.2 SECONDARY RESEARCH QUESTION 

Does the inclusion of the reward achievement, pupillary indices of effort and time component 

in the effort efficiency computational equation improve characterizing the quality of effort 

regulation?  

Two efficiency scores were computed for each individual based on the equations in the previous 

section to assess the relationship between the effort efficiency and the Need for Cognition score.  

As shown in Figure 12, there was a significant negative correlation between the Need for 

Cognition score and the effort efficiency calculated by the proposed new equation, r = -.406, n 

=37, p =.013. The Need for Cognition score was not significantly correlated with the efficiency 

calculated by the original equation, r = -.187, n =37, p =.267, although the two effort efficiency 

scores were significantly correlated, r = .478, n =37, p =.003. There was no significant 

association between the performance accuracy and the Need for Cognition score, r = -0.036, n 

=37, p =.830. 
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Figure 12. Correlation between the effort efficiency and the Need for Cognition score. 

 

Further support of the advantage of using the new equation over the old one was 

illustrated by the following individual case comparisons. An example pair of participants, #14 

and #31, were identified as equally efficient by the old equation, however, they were 

differentiated by the new equation in terms of effort efficiency (Table 11). 

 

Table 11. Individual case comparison between the two efficiency equations. 

 Participant #14 Participant #31 

 

Accuracy: 89% 
Total Effort: 10.99 mm 
Reward: $50 
Time: 376.26 s 

Accuracy: 80% 
Total Effort: 6.89 mm 
Reward: $48.8 
Time: 138.90 s 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =
𝒁𝒁(𝒑𝒑𝑬𝑬𝒑𝒑𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑬𝑬𝑬𝑬𝑬𝑬) − 𝒁𝒁(𝒑𝒑𝑬𝑬𝑬𝑬𝒎𝒎𝒑𝒑𝒎𝒎 𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒎𝒎)

√𝟐𝟐
 0.48 0.48 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =
𝒁𝒁(𝒑𝒑𝑬𝑬𝒓𝒓𝒑𝒑𝒑𝒑𝒓𝒓) − 𝒁𝒁(𝒑𝒑𝑬𝑬𝑬𝑬𝒎𝒎𝒑𝒑𝒎𝒎 𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒎𝒎)

𝒁𝒁(𝒎𝒎𝑬𝑬𝒑𝒑𝑬𝑬) + 𝑲𝑲  0.20 1.00 

y = -0.0179x + 1.221
R² = 0.0353
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R² = 0.1642
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The most and least efficient participants identified by the two equations were different 

(see Table 12). According to the efficiency score computed by the original equation, participant 

#40 was most efficient. In contrast, the efficiency score computed by the new equation indicated 

that participant #15 was most efficient. Participant #36 was identified as the least efficient by 

both equations. 

Table 12. Top 5 most efficient participants identified by the two equations. 

Rank Old Equation New Equation 

1st Participant #40 Participant #15 

2nd Participant #20 Participant #32 

3rd Participant #12 Participant #16 

…… …… …… 

35th  Participant #7 Participant #38 

36th  Participant #34 Participant #21 

37th  Participant #36 Participant #36 
 

Table 13. Individual efficiency score comparison between the most and least efficient participants. 

 
Most efficient 2nd Least efficient 

Participant 
#40 

Participant 
#15 

Participant 
#34 

Participant 
#21 

 

Accuracy: 97% 
Effort: 8.56 mm 
Reward: $50 
Time: 244.16 s 

Accuracy: 81% 
Effort: 4.93 mm 
Reward: $50 
Time: 134.64s 

Accuracy: 61% 
Effort: 13.79mm 
Reward: $38 
Time: 519.97 s 

Accuracy: 60% 
Effort: 5.38 mm 
Reward: $37 
Time: 109.52 s 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =
𝒁𝒁(𝒑𝒑𝑬𝑬𝒑𝒑𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑬𝑬𝑬𝑬𝑬𝑬) − 𝒁𝒁(𝒑𝒑𝑬𝑬𝑬𝑬𝒎𝒎𝒑𝒑𝒎𝒎 𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒎𝒎)

√𝟐𝟐
 1.34 0.82 -1.72 -3.59 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =
𝒁𝒁(𝒑𝒑𝑬𝑬𝒓𝒓𝒑𝒑𝒑𝒑𝒓𝒓)− 𝒁𝒁(𝒑𝒑𝑬𝑬𝑬𝑬𝒎𝒎𝒑𝒑𝒎𝒎 𝑬𝑬𝑬𝑬𝑬𝑬𝒑𝒑𝒑𝒑𝒎𝒎)

𝒁𝒁(𝒎𝒎𝑬𝑬𝒑𝒑𝑬𝑬) + 𝑲𝑲
 0.54 1.62 -0.64 -2.55 

 

Participant #40 (the most efficient) and participant #38 (the least efficient) had the exact 

the same performance accuracy, both achieved nearly 100% correct on the task. They gained the 
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same amount of reward; however, participant #40 spent less effort on the task than participant 

#38, although participant #40 needed longer to complete the experiment.  
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In order to investigate whether the effort allocation was based on the net value in the 

most efficient participants as originally hypothesized, a regression analysis was performed on the 

pupil dilation predicted by net value for both participant #40 and participant #15 (Figure 13). 

There was a significant prediction of pupil dilation by the net value for participant #15, F(1, 23) 

= 5.125, p = 0.033, η2 = .182, the pupil dilation wavelet power decreased by .185 with every .01 

increase in net value. When the slow condition data were removed to eliminate its possible 

confounding impact on effort (i.e., the slow condition was too easy for them to spend more than 

required effort on even with the highest reward), the prediction became not significant. There 

was no significant prediction of pupil dilation by the net value for participant #40, F(1, 23) = 

1.621, p = 0.216, η2 = .066, regardless of the inclusion of the slow conditions (Figure 13). These 

results suggest that even for the most efficient individuals, the listening effort allocation was not 

necessarily based on the cost-benefit judgement.  

   

Figure 13. Effort as a function of reward/speech rate net value for the two most effort efficient participants. 
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To summarize, compared to the original efficiency computation equation with only 

performance accuracy and effort elements, the inclusion of the three components, reward, effort 

and time, has shown the advantage of differentiating individuals and characterizing the quality of 

effort allocation, which implies that the resource is optimally allocated to achieve the goal in the 

best way while minimizing the time spent. 

3.3 DESCRIPTIVE DATA 

3.3.1 Performance and response time 

There were a total of 29 participants (74.4%) who gained enough reward points to receive the 

full $50 payment. The accuracy range among the 29 participants was 20% (78%~98%). Thirteen 

participants had an accuracy above 90%.  

On average, the accuracy decreased as the speech rate increased, and the response time 

(range from 0.7 to 1.1 seconds) increased with the increase of speech rate as displayed in Figure 

16. This pattern was consistent across all 5 reward levels; however, it differed from the inverted 

U response time pattern shown in the preliminary data collected without giving the participants 

any reward (see Figure 5), where the accuracy (range from 12% to 86%) decreased as the speech 

rate increased, and the response time (range from 1.0 to 2.9 seconds) increased as the speech rate 

went from slow, normal to slightly fast, then decreased as the speech rate became extremely fast. 
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Figure 14. Averaged performance accuracy and response time. 
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All participants successfully passed the hierarchically organized practice trials prior to 

the main experiment. There were 19 out of 39 participants who chose to use the skip key when 

they did not know the answer to the spatial questions even if there was no punishment for any 

incorrect answer. There were 9 participants who pressed the Left/Right key when answering the 

Front/Back question, and 5 participants who pressed the Front/Back key when answering the 

Left/Right questions, but they only made the former error less than 10 times, and only once for 

the latter error (see Figure 15). These errors are meaningful in the perspective of individual’s 

overall effort regulation and its subsequent efficiency, therefore, the effort allocated on those 

error items was included in the above data analysis.     

 

Figure 15. Histogram of the performance error type. 
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3.3.2 Self-report strategy use 

All subjects responded to two open questions about strategy by typing their answers on the 

computer immediately after completing the main experiment and before they were told how 

much reward they had earned. The first question was: “What strategy did you use to answer the 

object spatial relationship questions?” Nineteen participants reported that they used visual cues 

the most, for instance, a participant described that she tried to use the circle in the fixation image 

as the ball, and visually placed the kite and stone around it. The remaining 21 participants 

reported using finger strategies. For example, a participant described that she assigned locations 

of the objects to a space on the table or control pad with her fingers. She oriented her fingers to 

the commands; if the commands were talking about left and right her fingers were positioned 

going left to right; if the commands were about front to back, she rotated her hand so that her 

fingers went front to back.  

In answering the second strategy question, “How did you distribute your effort among the 

items?” the majority of participants reported that they exerted more effort on the high-reward 

items. A typical response was: “I felt as though I tried to be hyper-attentive when I knew that a 

subset of commands was worth higher value of points. I noticed that when the fast and super-fast 

conditions were worth 1 point only, I was less attentive. If I felt that I did poorly on even the 

heavy-weighted commands, I would try to compensate on the 1-3 point commands despite the 

fact that they were weighted differently to try to make up for my mistakes”. Only 3 participants 

intentionally spent more effort on the fast rate items than on the slow rate items. Eight 

participants claimed that they used the same amount of effort across the items. There was one 

subject who felt that the slow condition was difficult and consumed her additional attentional 

effort, see Figure 16. 



154 

The results of self-reported strategy use suggested an impact of reward on effort 

regulation. When given both task demand and reward information, the reward became more 

salient than the task demand in driving the effort allocation.        

 

 



155 

 

 

Figure 16. Self-reported strategy use. 
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4.0  DISCUSSION 

4.1 GENERAL DISCUSSION 

The goal of the current study was to evaluate the effect of speech rate and reward on listening 

effort allocation in young normal hearing adults and to explore a method to quantify the quality 

of effort allocation, which refers to how efficiently the effort is spent. The main hypothesis was 

that listening effort allocation would be driven by both factors, and the inclusion of the obtained 

reward points, total effort and time spent information in the efficiency computation equation 

would properly differentiate individuals and quantify the effort quality. 

The present study used Guthrie and Buchwald’s (1991) statistical-graphical method to 

evaluate the statistical significance of difference pupil dilation, which provided a new way of 

viewing the significant effects of speech rate and reward on effort at each cognitive processing 

stage along the continuous time-course during the whole speech stimulus trial. From the 

beginning to the end of each trial, the following cognitive processes were expected to happen to 

lead to the completion of the task. In the first 5.5 seconds (i.e., pre-sentence presentation period), 

participants auditorily received the information about speech rate and reward weight of the 

upcoming sentence, and had 2.5 seconds silence to decide how much effort to invest. The effort 

at this stage included attention, auditory perception and comprehension, value evaluation, and 

effort-based decision making. As evidenced by the significant main effects of speech rate and 
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reward on the pupil dilation in this time frame (see Figure 9), the effort was driven by both 

speech rate and reward information, and the impact of speech rate lasted longer than the reward. 

The sustained effect of speech rate is a possible result of the extra cognitive effort required to 

evaluate the less straightforward speech rate cue compared to the straightforward reward cue. At 

the end of the decision-making silent period, the pupil diameter was expected to return to 

baseline after the stimulation of the auditory cues to get prepared to hear the speech sentences; 

therefore, neither factor should impact the pupil dilation right at that particular time. This 

hypothesis was supported by the data.  

During the sentence presentation period (4.8~13.5 seconds depending on the speech rate 

condition), participants used whatever strategy they chose to solve the spatial question while 

listening to the speech sentence. The effort at this stage included various levels of attention 

depending on their earlier decision, auditory perception and comprehension, storage and 

encoding in working memory, and physical effort if using finger strategies. As supported by the 

results of significant main effects of speech rate and reward on the pupil dilation wavelet powers 

in this time window (see Figure 9), the effort spent on listening to the sentence stimuli for the 

purpose of comprehension, solving the problem and obtaining the reward points was driven by 

both speech rate and reward. As expected, the effort significantly increased as the speech rate 

became faster and the designated reward point was higher. At this stage, the pattern of effort 

allocation among the speech rate levels was not expected to significantly vary as a function of 

reward levels due to the difficulty in suppressing the salient auditory stimuli, therefore, it is not 

surprising that no significant interaction effect was observed.  

At the response stage (i.e., post-sentence presentation period), participants were supposed 

to answer the spatial question as quickly as possible given the time pressure and the overall goal 
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of gaining the full payment. The effort in this period included the attention to the answer of the 

question, physical response action and task goal. As hypothesized, in addition to the main effects 

of speech rate and reward similarly seen in the previous two stages, the reward significantly 

interacted with speech rate on the effort allocation. At low reward level, effort was driven by 

speech rate in the positive direction, representing a stimulus-driven pattern; whereas at high 

reward level, effort was driven by speech rate in the opposite direction, representing a goal-

driven pattern.  

Although significant, the modulation of speech rate and reward on each other was not in 

line with the effort-based cost-benefit decision making literature (Croxson et al., 2009; Hardy, 

1982; Hillman & Bilkey, 2012), which claimed that the deployment of effort on a task is based 

on the cost-benefit net value judgment. According to the results, participants as a group did not 

show a clear relationship between effort and net value; even the two participants identified to be 

most efficient did not distribute their effort based on the speech rate-reward net value. This may 

have been due to the many levels of speech rate and reward yet small variability of the net value. 

Both Figure 10 and 15 reveal that the net value clustered between 0.002 and 0.030. It is possible 

that participants were not able to distinguish the subtle value difference between normal/3 points 

(net value=0.0130) and fast/5 points (net value=0.0132).  It may be that because performance 

feedback was not provided until the completion of the whole experiment, that some participants 

spent effort on the low value items unnecessarily to compensate for their perceived failure on 

high value items, as described in the self-reports of strategy use.   

The pupillary data in the present study demonstrated an impact of stimulus factor (speech 

rate) and goal factor (reward point) on the listening effort distribution, which implies that human 

effort allocation during listening is driven by both. The interaction effect at the response stage 
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suggested complex strategic resource-management decisions. These all fit the general predictions 

of Hockey’s (1997) compensatory control model of the individual difference, in terms of 

cognitive capacity, judgment, tolerance, and affective state, as a critical influential factor for high 

level effort control. More specifically, when individuals are actively involved in performance of 

effortful mental tasks by changing their current energetical resource state (e.g., effort level) to 

meet target state, effort is not automatically increased to meet the new elevated task demand. 

Rather, the involvement is affected by the subjective judgment on the cognitive manipulations 

such as incentives, importance, knowledge of performance, and achievement motivation.  

Compared to the conventional analysis approach using mean, latency and peak pupil 

dilation within a discrete window proximal to response prompt, Gutherie and Buchwald’s (1991) 

method of testing the significance on time-series data has shown some unique advantages. First, 

the graphical display of the cross-sectional significance levels provided a clear picture of the 

range of significant differences along the entire cognitive processing time period; second, 

requiring significant intervals of cross-section significance provides experiment-wise protection 

of type I error rate without invoking the very conservative multiple comparison methods; third, 

the method is sensitive to the presence of intervals of significant difference physiological 

activities, such as evoked potentials and pupil responses, in long periods rather than brief 

periods. All the above justified the proper application of this analysis in the present study. This 

data analysis verified that Gutherie and Buchwald’s (1991) approach revealed the interaction 

effect of speech rate and reward which the conventional ANOVA approach performed on the 

peak dilation failed to capture.  

Given the actual allocation pattern of the effort regulation, a logical subsequent question 

of interest was about the quality of the effort exertion, i.e., how efficiently participants had spent 
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their effort. This question was answered by computing efficiency scores using two mathematical 

equations with different performance elements and correlating the efficiency scores to the 

individual differences on the Need for Cognition test. The hypothesis of the superiority of using 

the new equation proposed by the present study was borne out. The efficiency score generated by 

the new equation showed larger variability among individuals and was significantly correlated 

with the individual Need for Cognition score. Interestingly, the correlation was negative, 

indicating that high Need for Cognition scores corresponded to low effort efficiency. A possible 

explanation was that, individuals high in need for cognition are more likely to think about and 

elaborate cognitively on issue-relevant information when forming attitudes but individuals low in 

need for cognition might tend to be driven more by the task difficulty than by the overall task 

goal (Petty, Cacioppo, Kao, & Rodrigues, 1986). In other words, individuals high in need for 

cognition are inclined to take the challenge of difficult tasks regardless of the performance 

outcome. This was demonstrated by the non-significant correlation between the performance 

accuracy and the need for cognition score shown in the present study. The low efficiency of the 

participants high in need for cognition implied that they wasted their effort on tasks beyond their 

capacity. 

In considering the optimal description of individual effort efficiency, the goal-related 

performance, mental effort and time are reasonable and necessary elements to be included in the 

efficiency computation. In a traditional point of view, performance accuracy and mental effort 

are sufficient to characterize relative effort efficiency during complex cognitive tasks (Camp, 

Paas, Rikers, & van Merrienboer, 2001; Paas & Van Merriënboer, 1993). However, as the effort 

allocation is significantly driven by goal, the total reward achievement was considered more 

appropriate to represent the task performance than the accuracy in the context of this study. The 



161 

addition of total response time spent on task was also important to capture individual differences 

because time is another form of resource. The mental effort measured by pupillometry provided 

a wide range of variability in the study sample, which might have played a role in the 

differentiation among individuals. The new effort efficiency equation was able to reflect 

individual differences in effort use preferences and in avoiding effort waste. 

Unlike typical cognitive psychology studies, which usually focus on the accuracy and 

speed measures of performance and only include correct trials in the analysis due to the difficulty 

of identifying participants’ strategy in speed-accuracy tradeoff and their guess process 

(Glickman, Gray, & Morales, 2005), the present study purposely pooled the correct and incorrect 

trials into the data analysis for two reasons. One reason was that, because the study aimed to 

investigate participants’ strategy of effort allocation, the task goal for each individual was not to 

respond as quickly and accurately as possible to every item, but to selectively answer questions 

to gain the full payment within a time limit, which only required an accuracy of 50%~80% 

depending on which items were selected. Participants were allowed, and to some extent 

encouraged by the time pressure to disengage in some of the speech comprehension processes 

(i.e., use the skip button to indicate a giving up) while having the overall task goal in mind. The 

focus of the pupil dilation analysis was on how much effort was actually spent on each test item, 

and therefore the effort spent on the correct and incorrect items both were meaningful in this 

scenario.  

Second, based on the distribution of performance accuracy and reward achievement 

(shown in Figure 17), only 4 participants were suspected of losing the task goal during the 

experiment. Their accuracy scores were 58%, 60%, 61% and 64%, corresponding to the reward 

achievement of $36, $37.15, $37.15 and $38.65 respectively. The identical statistical analysis 
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procedure on the pupillary data was performed without the 4 participants, and the same results as 

shown in Figure 9 emerged. 
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Figure 17 Histogram of performance accuracy and reward achievement. 
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 The third reason for including the error trials was that the efficiency characterizes 

individuals’ effort expenditure preferences as well as the ability to avoid wasting resources. Only 

with the total effort and time spent on both correct and incorrect trials could a clear strategic 

pattern of used and wasted effort be drawn, which illustrated an effective proportion of effort and 

time spent to achieve the overall task goal. 

Typical errors observed in a task include skill-based errors (e.g., slip of action, wandering 

attention) and knowledge-based mistakes (e.g., unable to solve the problem, guess). Not all 

errors were the result of a strategy. However, there was a special strategic error type in the 

present study. During the experiment, participants were given an option to push the skip button if 

they decided not to answer the question for whatever reason. Intuitively using the skip button 

would not be a good strategy to gain the reward since guessing had a 50% probability of 

producing a correct response; however, this option saved time to complete the whole experiment. 

For example, participant 15, the second most efficient participant, selectively used the skip 

option and guessing strategy, as described in her report: “The points were a strong motivation 

factor, but the slower the speed the easier. I think overall I concentrated harder on the sentences 

worth the most points. If the slow speed was only worth 1 point, I still attempted an answer 

because slow speed required a lot less effort. If the extremely fast speed was 9 points, I tried to 

follow to get the points, but since it required a lot more effort, sometimes I missed the relations 

completely and just hit skip. If the extremely fast speed was only worth 1 point, I (more often 

than not) skipped it. For the middle range (both speed and points) sometimes I hit skip if I 

missed the first relation, but other times I figured it couldn’t hurt to just take a guess”. This 

participant obtained 81% accuracy but received enough points to get the full payment.  
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Although the task performance accuracy itself was not a focus in the current study, the 

accuracy results conveyed additional information that supports the important role that the goal-

driven factor played in an effortful task. Specifically, the speech rate range used in the study, 

130~430 wpm, was determined by a preliminary experiment in which the reward was not given. 

The preliminary data showed that the performance accuracy was 90% at slow rate, around 80% 

at normal rate, close to chance (57%) at slightly fast rate, and fell below 20% when the rate was 

fast and extremely fast, which suggested an adequate range, from easy (requiring only a small 

amount of effort) to very difficult (make participants quit). However, the chosen speech rate 

range based on these preliminary data failed to accurately cover the actual full cognitive 

capability of the participants, because the performance accuracy varied between 75% and 93% 

across the speech rate levels in the formal experiment, and even higher under the 9 points reward 

condition. These findings suggested that, goal-driven factors, such as the incentive motivation in 

this study, not only regulate the effort allocation among items with different difficulty levels, but 

also facilitated strategy use and shifted the position of the task relative to the full cognitive 

capability scale. 

The majority of participants reported that reward points drove their effort allocation, few 

participants reported allocating more effort on difficult items (i.e., faster rate conditions) than on 

easy items, although the pupillary data indicated that they actually did. When the task demand 

and reward information are both available as in the present study, the task demand appears to 

become a much less salient driving factor perceived by participants. It is unclear whether the 

absent self-report of stimulus-driven pattern is due to participants’ choice of not explicitly 

expressing their effort preference on the difficult items or due to the deployment of effort in the 

stimulus-driven fashion without participants’ awareness. The latter raises an interesting question 
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about whether the bottom-up computation of task demand takes place regardless of the current 

task instruction and is simply added to the effort weight associated with top-down value 

assessment. This might explain why the subjective measure of listening effort is often not 

strongly related to the objective measure (Capa et al., 2008), as the self-report measures of effort 

seem to tap what appear to be separate processes. 

4.2 RESEARCH AND PRACTICAL IMPLICATIONS 

4.2.1 Research implications 

Beyond the immediate context of the study, this research offers important and closely linked 

research implications. First, this is, to the best of our knowledge, the first study that objectively 

measures listening effort with systematic manipulation of both a goal-driven factor and a 

stimulus-driven factor in the context of the listening effort and the general cognitive effort 

control  literature. This study provides direct support to the two major effort theories. 

Kahneman’s (1973) unitary resource model is a dominant and influential theoretical foundation 

for the listening effort studies, yet, the role of intention in resource allocation regulation 

proposed in this model has not received adequate attention. Hockey’s (1997) effort 

compensatory control model incorporates both goal-driven factors and stimulus-factors in 

explaining how effort is controlled during a cognitive task; however, this model has not been 

adopted in the listening effort research. The lack of nuanced and direct empirical support in the 

field of Audiology for goal-driven effort allocation indicated in both models represented an 

opportunity for this research. Confirmation of the impact of reward on listening effort allocation 
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is a first, yet important step for motivation-based listening research direction, and it improves our 

understanding of the underlying mechanism of listening effort allocation. 

Second, the study brings the dimension of quality of effort allocation into the listening 

effort literature and proposes a method of calculating the effort efficiency. The new equation 

reflects goal-driven effort control and characterizes the individual differences in how well the 

limited resources are distributed in a cognitive task such as listening. By comparing two different 

efficiency computation approaches, the importance of using the appropriate performance 

variables based on task goal to evaluate the quality of effort expenditure has been raised. The 

correlation between the efficiency score and the Need for Cognition score supports an often 

ignored notion that more effort does not guarantee better outcomes. It also sheds some light on 

the role the individual’s dispositional factor played in effort regulation, which is part of the high 

level effort control loop in Hockey’s (1997) compensatory control model.   

Other additions of the present study to the listening effort literature include: the 

introduction of the innovative pupillary data analysis approach to allow viewing the pattern of 

effort allocation in a continuous temporal domain; the empirical evidence of effort change as a 

function of speech rate which is a real life listening difficulty factor (Pichora-Fuller, 2003); the 

introduction of the Need for Cognition scale that assesses individual dispositional differences in 

cognitive motivation; and the direct subjective measure of the driving factors of effort allocation 

by open questions about strategy used. 

4.2.2 Practical implications 

Currently, the main objective of the audiological intervention in clinic is to take full advantage of 

patients’ residual auditory function to improve hearing. This is usually accomplished by using 



168 

the diversity of acoustical signal processing technologies. However, listening effort evaluation 

has not become a part of clinic practice thus far. When hearing is improved, listening effort is 

normally reduced to some extent. Even when speech perception and comprehension are not 

significantly improved by the technologies, the release of listening effort can take place 

(Sarampalis et al., 2009). Hence, assessing this cognitive benefit clinically has become as critical 

as the speech performance in order to evaluate the full dimension of intervention outcomes. In 

the past two decades, researchers have been devoting effort to develop an objective tool that can 

be readily implemented clinically to measure listening effort. However, little attention has been 

paid to in which context listening effort should be measured.  

In daily life, listening activities are accompanied with various types of value (e.g., 

incentive reward, emotional reward), and listeners make decisions frequently on how much effort 

to spend on those activities. Their decision-making performance is important for their 

communication success. Since human decision making is essentially driven by goals, it is not 

surprising that listening effort mobilization is determined by more than just task demand. 

Findings from the current study suggest the need to not only focus the on stimulus-driven pattern 

of listening effort allocation, but to consider both jointly and independently the implication of 

goal-directed factors and individual dispositional differences. 

Specifically, this research provides evidence that when listeners are motivated with a 

reward, they could discover their potential capacity and find coping strategies to improve their 

performance. Adding a motivational factor such as reward in the performance outcome 

measurement can provide a clearer picture of what a given auditory and cognitive system is 

capable of to both audiologists and patients. This information, in combination with patients’ own 

value judgement system, will help them establish a realistic individualized matrix of cost-benefit 
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for listening during the counselling and aural rehabilitation sessions. The audiologists can then 

direct patients to efficiently use their effort. Although we still do not have an easily implemented 

clinical measurement tool of listening effort so that clinicians can quantify the quality of 

listening, and use the calculated effort efficiency as an indicator of listening improvement rather 

than hearing improvement by intervention, the present study nevertheless recommends a rough 

estimate of effort efficiency by assessing individuals’ Need for Cognition. As shown in the study 

results, people high in Need for Cognition tend to have relatively low efficiency, thus need more 

advice on strategic effort use compared to their high efficiency peers.    

 

4.2.3 Limitations and directions for future research 

Limitations  

Several limitations should be considered when evaluating the current results. First, due to a 

practical reason, 80% of the participants were females, which limits the generalizability of the 

results to the female population. Repeating the experiment in a population in which males 

account for the majority may reveal some new insights. Second, the speech rate range was not 

wide enough for some participants with high cognition function to provide a difficulty level 

beyond their capability. Having items at such levels is preferred to demonstrate the subjective 

control on selecting items to which to respond. Since all levels of speech rate were manageable 

for some participants, the interaction effect of speech rate and reward might have been 

compromised to some extent. An individualized task demand range should be used in future 

studies. Third, the task demand-reward net value contrast between items was not explicitly 

distinguishable enough, this could be the reason why effort did not seem to be allocated as a 
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function of the speech rate-reward net value. Fewer independent variable levels and/or larger 

increments between levels than used in this study might be desired. Fourth, the experiment did 

not collect the quantitative data of self-report effort allocation mainly due to the built-in time 

restrictions and the large amount of trials. This has limited our ability to compare the objective 

and subjective measure of effort allocation. Future studies could implement a self-report at the 

end of each block, for example, ask participants to assign a retrospective estimated effort 

expenditure to each of the speech rate-reward conditions in that block. 

Directions for future research 

The present study has made the first step testing the theories of active effort control in the 

context of audiology, and evidenced that young normal hearing adults allocate their listening 

effort depending on both stimulus-driven factors and goal-driven factors. There are four 

directions for future research based on the findings in this study.  

First, assessing whether different populations will demonstrate similar patterns of 

listening effort allocation using the same task demand/reward paradigm. Those populations 

include people with different levels of hearing sensitivity, different age, different culture 

background, etc. Abundant evidence in the literature has shown the relationship between the task 

demand and listening effort in populations with different age and hearing sensitivity, however, 

the impact of goal-driven factors on listening effort control has not been empirically 

documented. Given the potential negative consequences of excessive and sustained effort in 

people with hearing loss to cognition, general health, well-being and quality of life in the long-

term (Pichora-Fuller, 2016), it is of particular importance to know whether the hearing loss 

actually alters listening effort allocation behavior, if this is the case, it is of interest to know, 

whether it is due to the changes in their cost-benefit judgement and whether their judgement can 
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be recalibrated to normal. Furthermore, it is worth studying how the intrinsic motivation and 

reward value judgement may be influenced by additional factors such as age and ethnic 

background which are thought to relate to performance and choice of activities (Deci, Koestner, 

& Ryan, 1999; Iyengar & Lepper, 1999; Wigfield & Eccles, 2000).  

Second, investigating the neuronal mechanism of listening effort regulation is of interest. 

So far, little is known regarding the functional brain circuits that are selectively engaged during 

motivated listening. The reward-modulated listening process should represent a highly 

coordinated and interactive neural network among the auditory, reward and affect systems rather 

than a single-directional pathway from the auditory cortex to other brain regions as documented 

in the previous neuroimaging studies using auditory stimulation. Future research in building the 

neurocognitive framework of listening effort regulation is necessary.  

Third, examining the effects of performance feedback and/or affective feedback on 

listening effort regulation is warranted. The present study has tapped an important determinant of 

high level effort control, yet has not looked in depth into how exactly the effort control is 

executed. According to Hockey’s (1997) model, the effort control is achieved by comparing 

target output values with current activity (in this model through an action monitor), and changing 

the output until the discrepancy is removed (or kept within acceptable limits of error tolerance). 

It implies that the knowledge of results on task performance and/or the perception of success on 

a task might affect the choice of coping strategy, but it has not been studied in the audiology 

field. It is important to examine whether the population with hearing loss relies on and benefits 

from the performance and affective feedback more than their normal hearing peers in order to 

achieve effective communication.  
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Fourth, developing a clinical instrument to predict listening effort efficiency would be an 

important contribution. In parallel to the effort of establishing a clinic-friendly objective test of 

listening effort to meet the need for precise characterization of effort allocation and its 

efficiency, exploring the association between the available effort-related survey tests and effort 

efficiency could help to develop an alternative way of assessing listening effort. For example, 

researchers can construct a battery of survey tests to estimate the quality of effort expenditure. 

The topics of surveys that are relevant in the scope of effort would include cognitive resource 

allocation, reward attitude, intrinsic and extrinsic motivation, value judgement, coping strategy, 

etc. More ideally, an integrated survey test specific to listening behavior could be created to 

directly measure the multi-dimensional attributes of effort in the audiology clinic.  

 

 

 

 

 

4.3 CONCLUSION 

Findings of the current study enhance our understanding of the strategic resource allocation 

behavior during effortful listening among normal hearing young adults, and have provided 

support to the theory of effort regulation that highlights the interactive roles of task demand and 

intention as important to the key process of effort monitoring and control (Hockey, 1997). 
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Results have suggested that it is critical to account for the effect of goal-driven factors such as 

motivation when studying listening effort.  

Redefining effort efficiency in this study raises the attention of future investigation on the 

quality of listening effort allocation and of implementing the efficiency concept in the audiologic 

intervention. Results of this study suggest that adding the goal-oriented performance variables in 

the effort efficiency calculation has the advantage of differentiating individuals in terms of how 

well the effort is spent in a task.  

Evidence from the descriptive data illustrated in this study provide insights into the role 

of motivation in assessing individuals’ capacity range, the role of task errors in demonstrating 

the strategic behavior in a cost-benefit decision making listening process, and the possible 

underlying cause of the disassociation between the objective and subjective measure of listening 

effort observed in previous literature. 

In summary, the current study advances theoretical and methodological considerations 

for listening effort research. Although the results of these experiment are limited to listeners with 

normal hearing, the findings are encouraging and warrant further investigation of seeking to 

integrate current models of speech comprehension, resource allocation, and effort regulation to 

help optimize listening effort for individuals with hearing loss. 
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APPENDIX A 

CASE HISTORY FORM 
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APPENDIX B 

THE NEED FOR COGNITION SCALE 

For each of the statements below, please indicate whether or not the statement is 

characteristic of you or of what you believe. For example, if the statement is extremely 

uncharacteristic of you or of what you believe about yourself (not at all like you) please place a 

"1" on the line to the left of the statement. If the statement is extremely characteristic of you or of 

what you believe about yourself (very much like you) please place a "5" on the line to the left of 

the statement. You should use the following scale as you rate each of the statements below. 

 

1. I prefer complex to simple problems. 

 

2. I like to have the responsibility of handling a situation that requires a lot of thinking. 

 

3. Thinking is not my idea of fun. 
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4. I would rather do something that requires little thought than something that is sure to 

challenge my thinking abilities. 

 

5. I try to anticipate and avoid situations where there is a likely chance I will have to think 

in depth about something. 

 

6. I find satisfaction in deliberating hard and for long hours. 

 

7. I only think as hard as I have to. 

 

8. I prefer to think about small daily projects to long term ones. 

 

9. I like tasks that require little thought once I’ve learned them. 

 

10. The idea of relying on thought to make my way to the top appeals to me. 
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11. I really enjoy a task that involves coming up with new solutions to problems. 

 

12. Learning new ways to think doesn’t excite me very much. 

 

13. I prefer my life to be filled with puzzles I must solve. 

 

14. The notion of thinking abstractly is appealing to me. 

 

15. I would prefer a task that is intellectual, difficult, and important to one that is somewhat 

important but does not require much thought. 

 

16. I feel relief rather than satisfaction after completing a task that requires a lot of mental 

effort. 

 

17. It’s enough for me that something gets the job done; I don’t care how or why it works. 
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18. I usually end up deliberating about issues even when they do not affect me personally. 
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