
 

 

FIRST-PRINCIPLES STUDY OF CO2 REDUCTION ON MO2C 

 

 

 

 

 

 

 

by 

Xi Peng 

 B.S. Chemical Engineering, University of Mississippi, 2015 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

Swanson of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science 

 

 

 

 

 

 

University of Pittsburgh 

2017 

 

 

 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SWANSON SCHOOL OF ENGINEERING 

 

 

 

 

 

 

 

This thesis was presented 

 

by 

 

 

Xi Peng 

 

 

It was defended on 

June 14, 2017 

and approved by 

J Karl Johnson, Ph.D., W. K. Whiteford Professor 

Department of Chemical and Petroleum Engineering 

 

Goetz Veser, Ph.D., Nickolas A. DeCecco Professor 

Department of Chemical and Petroleum Engineering 

 

Thesis Advisor: Giannis Mpourmpakis, Assistant Professor  

Department of Chemical and Petroleum Engineering 

 

 

 

 

UNIVERSITY OF PITTSBURGH 

Swanson School of Engineering 

 

 

 

 

 

 

 



 iii 

Copyright © by Xi Peng 

2017 

 

Copyright © by Xi Peng 

2017 

 

Copyright © by Xi Peng 

2017 

 

Copyright © by Xi Peng 

2017 



 iv 

 

 

 

FIRST-PRINCIPLES STUDY OF CO2 REDUCTION ON MO2C 

Xi Peng, M.S. 

University of Pittsburgh, 2017 

 

Periodic Density Functional Theory (DFT) calculations are widely used to study the 

interactions between reagents and catalysts, as well as to understand the reaction mechanisms 

occurring on the catalyst surface. In this work, we investigated the CO2 adsorption, activation 

and reduction to CO on (1) pristine, (2) K-promoted, and (3) oxygen-covered (001) 

orthorhombic Molybdenum carbide (β-Mo2C) surfaces. We calculated the CO2 interaction with 

both surface terminations of β-Mo2C, Mo-terminated and C-terminated, and we found a 

thermodynamically feasible chemisorption and dissociation of CO2 on the Mo-terminated surface. 

The activation energy for CO2 dissociation on β-Mo2C (001) surface was found to be 16.8 

kcal/mol. The presence of surface promoter atom, potassium (K), enhanced the binding of CO2, 

and lowered the activation barrier for CO2 dissociation from 16.8 kcal/mol to 14.0 kcal/mol. Due 

to the high oxophilicity of the (001) Mo2C surface, we further investigated the CO2 adsorption 

and dissociation profile on O-covered (001) Mo2C (simulating experimental conditions), and we 

found that CO2 can still adsorb and dissociate on β-Mo2C (001) surface, even in the presence of 

surface oxygen up to 0.5ML. As O-coverage increases, the activation barrier for CO2 

dissociation increases. Our results rationalize a series of experimental observations.  
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1.0  INTRODUCTION 

The atmospheric concentration of carbon dioxide (CO2) increasing steadily since the past 

century. CO2 is one of the major contributors to the greenhouse effect, therefore, several 

environmental concerns are associated with its excess presence in the atmosphere.1-4 Countries 

around the globe have been announcing and amending regulations to control CO2 emission.5 In 

2013, environmental organizations around the world reported that a critical level of CO2 

concentration of 400 ppm had been reached.6 The fact that the amount of CO2 being produced is 

greater than CO2 being removed impairs the effectiveness of the measurements taken by human 

society. As increasing amount of CO2 is inevitable as our society develops, more problems 

associated with CO2 are yet to come. Therefore, solutions that are effective and efficient in 

removing CO2 from the atmosphere are in urgent need more than ever.7 In spite of several 

problems associated with CO2, due to its low cost, abundance, nontoxicity, and nonflammable 

nature, it is still a very attractive renewable C1 feedstock for manufacturing several valuable 

chemicals, fuels, and materials.8-11 Researchers have made several attempts to achieve the goal of 

removing CO2 from the atmosphere: in general, these methodologies can be grouped into two 

categories—CO2 capture, and CO2 transformation.7  
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1.1 CO2 CAPTURE 

CO2 capture, is based on the idea that CO2 can be selectively captured and “trapped” in 

systems in a safe, stable, and efficient manner. 12 The concept of CO2  capture is closely related 

to other concepts such as CO2 storage, and CO2 capture can be achieved by either absorption 

(gas molecules permeate/diffuse into absorbents), or adsorption (adhesion of gas molecule onto 

the surface of adsorbents), as described in Figure 1. 13 Some of the vastly applied/investigated 

methods for CO2 capture by both absorption and adsorption are introduced in the following 

section. 

 

Figure 1: Flow diagram for CO2 capture by absorption and adsorption. ( Figure was obtained from  ref: 13) 
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1.1.1 CO2 capture by absorption 

Traditionally, chemical absorption is carried out by using liquid amine-based absorbent, 

which can undergo chemical reactions and therefore stabilize CO2 and eventually reach the goal 

of “CO2 capture”.14 A typical chemical absorption process contains an absorber and a stripping 

column, and by flowing a gas mixture containing CO2 and liquid absorbent co-currently or 

counter-currently, CO2 removal from the gas mixture is achieved. Followed by the CO2 

adsorption, the CO2-rich absorbent enters the stripping column for thermal regeneration. 

Subsequently,  pure CO2 releases from the column, and undergoes compression for storage and 

transportation.13  The absorption/stripping process is considered as one of the most matured 

technologies for CO2 capture, and has been commercialized for many decades13, yet exhibiting 

several disadvantages. One significant limitation of CO2 capture by this process is that no more 

than 10 wt% of CO2 can be absorbed in such systems15. Other limitations include high equipment 

corrosion rate, high amine degradation rate,16 and high energy consumption17. These drawbacks 

associated with absorption process drive researchers and engineers to search for alternative 

approaches to achieve the goal of CO2 capture.16  

Among the others, Ionic liquids (IL) are promising absorbents that have been extensively 

used in catalysis and synthesis because of their unique properties including low vapor pressure, 

high thermal stability, and non-toxicity.18 ILs containing amino-functional groups are 

particularly important due the large CO2 absorbing capabilities.19 The fact that ILs can be 

synthesized with the desired properties gives researchers much flexibility in developing ILs for 

wide range of industrial applications including CO2 capture.20  However, their high viscosity 

(slow diffusion) leads to very slow absorption (low rate of absorption) of CO2 which leads to 

slow kinetics of the adsorption process.21 Dealing with this major drawback of ILs used in CO2 
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capture, researchers proposed that by mixing of ILs with organic compounds (i.e., 

alkanolamine), the viscosity of mixture can be controlled without compromising the capability of 

capturing CO2. However, this approach still has all the other problems associated with organic 

compounds including the volatility issues.22 

High Gravity (HiGee) technology is an innovative method which employs the high 

centrifugal field using a rotating packed bed (RPB). This method involves to the enhancement in 

momentum, heat, and mass transfer.23 RPB has been used in various unit operation processes 

including desorption24, dehydrogenation13, and synthesis of nanoparticles25, and has been 

proposed as capable of capturing CO2.
26, 27 By using aqueous solutions (such as NaOH) in the 

RPB, it was found that the CO2 adsorption rate was significantly enhanced compared to the 

adsorption rates of  traditional packed bed columns.13 However, some of the limitations of the 

most matured adsorption/stripping process, such as high maintenance and operating costs, also 

exist here, and thus limit the application of HiGee technology in large industrial scale.  

1.1.2 CO2 capture by adsorption 

Due to the fact that traditional absorption processes using the liquids have several 

disadvantages including low CO2 loading, low CO2 absorption rate, and high energy 

consumption, researchers have been searching for alternatives to achieve the goal of CO2 

capture. Adsorption by solid materials, has been regarded as a promising alternative because of 

their higher stability under wide temperature ranges and decrease in waste production.28 

Materials such as carbon based, and zeolite based adsorbents have high surface area and large 

pore volume for interaction with CO2 gas molecules, but the adsorbents-adsorbates interaction is 

usually very weak (physisorption), and CO2 molecules are easily detached from the adsorbates 
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under optimal conditions.29 Zeolites are considered to be good candidates for CO2 adsorption. 

These are porous crystalline materials, usually containing periodic array of TO4 tetrahedra (T = 

Si or Al). Several research reports show a great and increasing promise of these materials. 30 The 

molecular-sized cavities and large pores inherently existing in zeolitic structures enable the 

zeolites to selectively adsorb molecules (such as CO2 molecules) by size and polarity.31 

However, experimental studies revealed a substantial decrease in CO2 uptake at elevated 

temperatures (higher than 373 K) or under humid conditions,31,32 and thus zeolites are considered 

to be efficient in CO2 capture only under mild conditions.30 Another type of materials, alkali 

metal carbonated based adsorbents, are capable of capturing CO2 by undergoing reversible 

chemical reactions with CO2, but their durability under industrial operating conditions are yet to 

be discovered.28 Other materials such as Metal Organic Frameworks (MOFs), Zeolitic Imidazole 

Frameworks (ZIFs) (a subclass of MOFs) have been under spotlights in recent years as good 

candidate for separation and storage of CO2. These represent a class of materials which have 

high thermal stability33, adjustable chemical functionality34, and highly ordered structures.35 The 

high surface area presented in MOFs, which can reach up to an extraordinary value of 3000 m2g-

1, 36,37 exceeded the previously reported materials with high surface areas, such as zeolites (904 

m2g-1).38 The highly-complicated frameworks in the structures of MOFs give them intrinsic 

capabilities of selectively adsorbing and storing small gas molecules, and their adjustable 

chemical functionality gives MOFs endless potential in applications.30 ZIFs have been 

experimentally tested in applications such as separation of similar size molecules such as CO2 

and CO, and have been reported to be able to selectively capture CO2 from the mixture with a 

much higher selectivity compared to other state-of-the-art materials such as BPL carbon 39. 
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1.2 CO2 TRANSFORMATION 

Instead of storage of CO2 through the approaches that were discussed in the last section, 

another approach is to transform CO2 into useful chemicals, such as long chain hydrocarbons by 

hydrogenation.40 The molecular CO2 molecule is linear in its ground state. Due to the inherent 

polarity of C-O bonds in CO2, the carbon atom acts as an electrophile whereas the oxygen atoms 

act as nucleophiles. However, CO2 is a very stable molecule with a strong C=O bond strength of 

192 kcal/mol, and therefore any reaction relating to CO2 conversion will have to overcome the 

C=O bond cleavage41. The conversion of CO2 is often limited by its strong bond strength. 

However, high energy materials such as hydrogen or organometallics are often capable to 

convert CO2 to useful chemicals.10  One of the promising routes for CO2 utilization is to convert 

CO2 to carbon monoxide(CO), which can be used to obtain valuable hydrocarbons via Fischer-

Tropsch process.11       

In industry, CO2 reforming of methane42 (described in Equation (1-1)), one approach to 

convert CO2 to CO, has been used to adjust the feed for Fischer-Tropsch process (FT), a process 

that utilizes CO and H2 gas mixture to produce liquid hydrocarbons. 43  

 

CO2 + CH4  2 CO + 2 H2                                                 (1-1) 

The overall process for CO2 reforming of methane is an endothermic reaction (ΔHr = +59.1 

kcal/mol), and many studies had investigated different metal catalysts including Rh, Ru, Pd, Ir, 

for this process. It was reported that Rh and Ru exhibit the highest conversion of CO2, but these 

catalysts are too expensive to be applied in industrial scale productions.36  Direct polymerization 

of CO2 (Equation (1-2)) is another approach to convert CO2 into higher hydrocarbons, and even 
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though the overall reaction is exothermic, the fully dissociation of CO2 requires large energy 

input, and thus have been considered not to be practical in industry.  However, CO2 can be 

converted into CO via reverse water-gas-shift reaction (RWGS) (Equation (1-3)) , and CO can 

then be hydrogenated using the FT process  to produce long chain hydrocarbons (Equation (1-

4)).44 The most commonly used catalysts in industry for FT processes are slight variations of Fe 

and Co-based catalysts, these catalysts however, have several limitations. One of the major 

problems include the poisoning of the Fe-based catalysts by the produced water during  the FT 

process,43 and therefore the reactivity of the catalysts are  impaired after a certain period.  Co-

based catalysts are  comparatively  water tolerant and show a relatively high activity for the 

RWGS reaction.45 The products from FT process when co-feeding CO2 almost always has a high 

methane (CH4) selectivity instead of higher hydrocarbon selectivity.46 Other traditional metal 

catalysts such as Pt, Ru, Pd exist, but due to their high cost, they have rarely been used in 

industrial scale productions.45 CO2 is a promising renewable C1 feed for manufacturing 

numerous high-value chemicals fuels and materials,8,9 due to its high abundance, searching for 

new catalysts that can convert CO2 in a more efficient manner is in urgent need.  

 

CO2 + 3 H2  (CH2) + 2 H2O        ΔHr = -30.6 kcal/mol       (1-2) 

CO2 + H2  CO + H2O                   ΔHr = + 9.1 kcal/mol       (1-3) 

 nCO + (2n+1)H2   CnH2n+2+ nH2O        ΔHr = -39.7 kcal/mol       (1-4) 

 

In the previous studies relating to Fe-based FT catalysts, researchers had identified that iron 

carbides are important active phases in Fe-based catalysts during FT synthesis.47 Other studies 

also showed that on Co-based catalysts, the chain growth in FT synthesis occurs at the carbide 
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site.44 In recent years, plenty of studies have shown that metal carbides have high catalytic 

activity: Experimental and theoretical studies have shown that transition metal carbides (TMCs) 

can act as catalysts as well as supports for metal nanoparticles in various reactions, and in many 

cases they show even better activity than traditional metal catalysts.48,49,50,51,52 Considering the 

high activity and relatively lower cost of TMCs compared to traditional metal catalysts, the 

interaction of CO2 with TMC surfaces is of marked interest. 53, 54 The work done by Rodriguez et 

al. has shown that CO2 can be activated on hexagonal -Mo2C (001) and orthorhombic -Mo2C 

(001) (C-terminated) surfaces, and undergoes C-O bond dissociation on -Mo2C (001) (Mo-

terminated) surface. 49 Porosoff et al. have demonstrated that Mo2C is an active catalyst for CO2 

conversion, and the active phase of Mo2C was found to be the carbide phase.11  

Pistonesi et al. investigated the effects of surface additives on the binding of molecules 

on the Mo2C surfaces. By investigating K-doped Mo2C surfaces, they showed that the addition of 

potassium (K) atoms promotes CO adsorption.55 These findings suggest that TMCs can find 

application in CO2 hydrogenation, however, a fundamental understanding of catalytic properties 

of TMCs is still lacking, especially towards elucidating the detailed reaction mechanisms, and 

catalysts structure under reaction conditions activation and dissociation.  

In this thesis, the adsorption behavior of CO2 on -Mo2C (001) as well as the effects of K 

promoter in the reaction mechanism was investigated using Density Functional Theory (DFT) 

calculations.  
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1.3 THEORETICAL BACKGROUND 

In DFT, according to the Hohenbergy-Kohn (H-K) theorem, the ground state properties of 

a many-electron system can be uniquely determined by an electron density that depends on three 

spatial coordinates. However, the H-K theorems has limitations due to the fact that a universal 

functional form of the density functional that provides this minimum energy is not known 

exactly, especially the energies of interacting electrons. Most DFT calculations are carried out 

using the Kohn-Sham (KS) DFT, where the challenges of presenting energies of interacting 

electrons within the density is treated as a static external potential that is mapped onto a non-

interacting system of electrons moving in a common effective potential using fictitious orbitals. 

The overall ground-state density of the system is identical to the real system and then simply 

becomes the sum of densities of the occupied orbitals  

ρ(r) = ∑ |𝜓𝑛 (𝑟)| 2                                                                                  (1-5) 

The energy functional in KS-DFT is  

𝐸[𝜌] = 𝑇𝑠 [𝜌] + ∫ 𝑉ext (𝑟)𝜌(𝑟)𝑑𝑟 + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌]                            (1-6) 

where Ts represents the kinetic energy of the non-interacting elections, which is the sum of the 

kinetic energies of individual electrons. The integral represents the electrostatic interaction of the 

electron density with an external potential Vext. J represents the Hartree repulsion energy, and Exc 

is the exchange-correlation energy for all electron-electron interactions.  

In general, solving Schrodinger’s equation is the approach of the wavefunction-based ab 

initio methods to study the atomistic interactions of the many-body problems of electronic 

structures at the fundamental level. The approach is very complicated because the wavefunction 

of the many-particle system depends on the position, i.e., coordinates of all the individual 

particles, and thus, for the systems containing large number of electrons, solving Schrodinger’s 
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equation becomes not feasible. DFT provides a compromise between the system size and 

computational cost, and can be applied to systems containing many electrons. The most 

important point for the actual applications of KS-DFT is the functional Exc, which is not known 

exactly, and approximations are needed. Local-Density Approximation (LDA), which assumes 

that the exchange correlation energy at each point in the system is the same as that of a uniform 

electron gas of the same density, provides approximation to the exchange-correlation energy. Yet 

LDA is considered to be a crude approximation, although it gives reliable results for many cases. 

LDA played an important role in the construction of the more sophisticated approximation: 

generalized gradient approximation (GGA), which counteracts the overestimation of binding of 

LDA. Instead of LDA which assumes that the density can be treated as a uniform electron gas, 

GGA considers the gradient of electron density, which is more accurate in approximation 

because density undergoes rapid changes in molecules. In many applications, GGA provides a 

substantially improved description of the ground state properties, in particular for 3d transition 

metals. In the present thesis, the Vienna Ab Initio Simulation Package (VASP) is used, which is 

a powerful and popular ab initio program. VASP has been employed to a wide range of problems 

and materials including bulk systems, surfaces, and interfaces.  
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2.0  METHODOLOGY 

Density Functional Theory (DFT) calculations were performed using the Vienna Ab 

Initio Simulation Package (VASP).56 The Perdew-Burke-Ernzerhof (PBE) exchange-correlation 

functional was employed with generalized gradient approximation (GGA). 57 The crystal 

structure of -Mo2C has an orthorhombic ground state structure with the space group (Pbcn) and 

lattice parameters of a = 6.022 Å, b = 5.195 Å, and c = 4.725 Å. 58 By applying geometry 

optimizations based on minimization of the total energy of the unit cell, the DFT lattice 

parameters are obtained: a = 6.071 Å, b = 5.250 Å, and c = 4.749 Å, which are in good 

agreement with experimental obtained lattice parameters. The (001) facet of -Mo2C is the 

closest-packed surface, and due to the symmetry of the -Mo2C bulk unit cell, the (001) facet can 

be either Mo-terminated, or C-terminated surface. For all the studies relating to -Mo2C (001) 

surface, a (2×2) supercell was employed. For both terminated surfaces, the supercells of the slab 

model have 32 atoms of molybdenum (Mo), and 16 atoms of carbon (C), with a cell dimension 

of 12.15 Å×10.50 Å×14.55 Å. The vacuum space was set to 10 Å in all calculations. For K-

promoted β-Mo2C(001), one K atom was placed on the top layer at different sites, and after 

geometry optimization, the site that exhibited the strongest binding to K atom was selected for 

further calculations (K-promoted β-Mo2C(001) surface). To study the effect(s) of oxygen 

coverage, several possible oxygen binding sites were considered to find the most energetically 

preferential sites for oxygen atoms to bind to the surface. Including the clean surface (0ML 
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coverage), 5 different oxygen coverage was investigated: 0.25ML, 0.50ML, 0.75ML, 1.00ML, 

and 1.25ML, and CO2 adsorption behavior on these systems were studied. The kinetic energy 

cutoff was set to 415 eV, 49 and the convergence criteria to 10E-6 eV for the total electronic 

energy and 0.01 eV Å-1 for the forces acting on atoms and the k-point mesh was 5x5x1 k-point 

grid generated by Monkhorst-Pack scheme.59 The Climbing Image-Nudged Elastic Band (CI-

NEB) method60 has been applied to locate transition states in the CO2 dissociation pathway. 

During geometry optimization, the bottom two layers were fixed in their bulk positions and all 

the other atoms were fully relaxed.  Vibrational frequencies on the adsorbates were performed to 

verify local minima and transition states (presence of one imaginary mode). 

Two different CO2 adsorption configurations on the surfaces were considered: horizontal 

and perpendicular to the surface.  In addition, different sites (top and hollow) were taken into 

consideration for CO2 adsorption. The binding energy (BE) is calculated as:  

BE(adsorbate) = E(surface + adsorbate) – E(surface) – E(adsorbate)                                                (2-1) 

Where E(surface + adsorbate) is the total electronic energy of the surface with the adsorbed CO2, 

E(surface) is the corresponding energy of the clean surface (without any adsorbate), and E(adsorbate) is 

that of the CO2 molecule.   

In this work, we applied DFT calculations to investigate the CO2 adsorption and 

dissociation on -Mo2C, and to understand the effect of K-doping on CO2 adsorption and 

dissociation on the same systems. Under experimental conditions, the metal carbide surface 

exposed can turn into oxy-carbide, and therefore CO2 adsorption on varying O-coverage surfaces 

was investigated as well. The findings in this work are in excellent agreement with the findings 

provided by the experimental collaborators at Naval Research Laboratory (NRL).  

 



 13 

3.0  CO2 ADSORPTION ON MOLYBDENUM CARBIDE 

Our experimental collaborator from NRL conducted a series of experiments and 

demonstrated that potassium-promoted Mo2C is a low-cost, stable, and highly-selective catalyst 

for RWGS. Their EDS mapping of the catalyst were showed that in Mo2C/γ-Al2O3, Mo atoms 

are evenlly distributed, while on K-Mo2C/γ-Al2O3, a large segragation between Mo and Al was 

noted, and K is preferrentially found in Mo-rich domains. These findings suggested that K might 

affect the electronic properties of the on Mo2C phase. In conversion of CO2 on catalysts, their 

experiments showed that with the addition of 2 wt% K to Mo2C/γ-Al2O3, the selectivity towards 

CO was improved significantly, and also showed that a significant improvement in catalytic 

stability with the addition of K. Futhermore, they showed that as K doping increases, selectivity 

of CO increases. With lower or no K doping, CH4 is produced in significant amounts. The 

apparent activation barrier for CO formation under RWGS conditions at 5 different temperatures 

between 270 and 330 °C was also studied for both Mo2C/γ-Al2O3 and K-Mo2C/γ-Al2O3, and 

from their calculations, the activation barriers for CO formation are 14.0 and 11.4 kcal mol-1 for 

Mo2C/γ-Al2O3 and K-Mo2C/γ-Al2O3, respectively. 61 
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3.1 CO2 ADSORPTION ON PRISTINE MO2C (001) SURFACE 

To understand the adsorption of CO2 on the Mo2C surface, two different adsorption 

orientations were considered: the horizontal configuration, with the CO2 molecule being parallel 

to the surface, and the perpendicular configuration, where one oxygen atom interacts with the 

surface atoms. Table 1 summarizes the binding energies (kcal/mol) of the CO2 molecule on both 

the Mo- and C- terminated -Mo2C (001) surfaces. From our results, the horizontally oriented 

CO2 molecule exhibits higher binding energy with the surface compared to that with the 

perpendicularly orientation. On both C-terminated and Mo-terminated surfaces, the CO2 

adsorption on hollow sites and top C/Mo sites (based on surface termination) were investigated, 

and the hollow site was found to have stronger binding with CO2 molecule on both the surfaces. 

Moreover, CO2 chemisorption and activation are thermodynamically feasible on the Mo-

terminated -Mo2C (001) surface, whereas, the CO2 does not chemisorb on the C-terminated 

surface as shown in Table 1.  
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Table 1. Adsorption energy (kcal/mol) of CO2 on both Mo- and C-terminated β-Mo2C(001) surface.  

 

The activation of CO2 on Mo-terminated surface was identified by the bending of the 

CO2 molecule, and bond elongation of the C=O bond. Showing in Figure 2: at hollow site (the 

site that exhibits stronger binding of CO2), the activated CO2 had a O-C-O bond angle of 114.5 

degrees, and the C-O bond was elongated from 1.16 A (C=O bond length in a gas-phase CO2 

molecule) to 1.34 A.  

 

  

Figure 2: activated CO2 (left), and dissociated CO2 (right) on Mo-terminated Mo2C (001) surface. Color code: 

cyan-Mo, black-C, red-O. 

Surface BE(CO2 ,phys) kcal/mol BE(CO2, chem) kcal/mol 

 

Mo2C-C terminated 

-1.91 (perpendicular) hollow site 

-2.37 (horizontal) hollow site 

-0.33 (horizontal) top Mo site 

NA 

 

Mo2C-Mo terminated 

-0.27 (perpendicular) hollow site 

-0.52 (horizontal) hollow site 

-0.33 (horizontal) top Mo site 

-31.40 hollow site 

-24.31 top Mo site 

-74.81 (CO* + O*) 
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Since activation of CO2 is thermodynamically feasible on the Mo-terminated -Mo2C (001) 

surface, we considered whether CO2 can undergo further dissociation, which involves C=O bond 

cleavage. Several dissociated CO2 configurations (CO* and O*) on the Mo-terminated -Mo2C 

(001) surface were studied, and after minimizing the total energy of the systems, the most stable 

structure which has one oxygen atom bonded to hollow position was obtained as shown in Figure 

2.  In this dissociated configuration, CO* was attached to the surface with C atom at a hollow 

position interacting with three surface Mo atoms with an average bond length of 2.1 Å, and C-O 

length in CO* is 1.28 Å. The BE (CO*+O*) = -74.8 kcal/mol (reference: total energy of the 

clean surface and CO2 gas molecule at infinite separation). While the whole process of CO2 

dissociation on the Mo-terminated surface appeared to be thermodynamically feasible, we 

applied a climbing image-NEB (CI-NEB) calculations to study the kinetics of the reaction, to 

study the dissociation pathway, and to obtain transition state (T.S.) and associated activation 

energy. From our result, first, CO2 barrierlessly activates (-31.4 kcal/mol), and then dissociates to 

CO* and O*, with an activation barrier of 16.8 kcal/mol. The C-O bond length for the T.S. was 

1.92 Å (figure 3). In Figure 4, the dissociation profile of CO2 on Mo-terminated surface is 

presented. All of these steps are exothermic with respect to the initial, CO2 physisorption state. 

 

 

Figure 3: Transition state (T.S.) for CO2 dissociation on Mo-terminated Mo2C (001) surface. Color code: 

grey-C, cyan-Mo, red-O 
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Figure 4: CO2 dissociation profile on Mo-terminated, β-Mo2C (001) surface (energy in kcal/mol). Color code: 

grey-C, cyan-Mo, red-O 

 

 

 

3.2 CO2 ADSOPRTION ON K-PROMOTED MO2C (001) SURFACE 

DFT calculations were performed on K-modified β-Mo2C(001) surfaces because we also 

wanted to know how surface adatoms effect adsorption capability of the surface.  Similar to that 

on the pristine surface, CO2 does not chemisorb on the K-promoted C-terminated surface, but 

can be activated and dissociated on the K-promoted Mo-terminated surface. Table 2 summarized 

the calculated CO2 binding energy on the K-promoted surfaces. The activated CO2 on the K-

doped surface was identified by tracking the change in the CO2 bond angle and C-O bond length. 

At the hollow site, the activated CO2 has a bond angle of 123.5 degrees, and the bond length was 
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1.35 Å (Figure 5). By directly comparing the BE of CO2 on pristine and K-promoted surfaces, it 

becomes clear that the presence of K significantly enhances the CO2 physisorption on Mo2C 

(001) (from -0.5 to -6.5 kcal mol-1 at hollow site, from -0.3 to -2.2 kcal/mol at top Mo site), and 

moderately increases the BE of the chemisorbed states (from -74.8 to -80.9 kcal mol-1 for 

dissociated CO2, and from -31.4 to -46.6 kcal mol-1 for activated CO2, respectively). The 

activated CO2 and dissociated CO2 are presented in Figure 5.  

 

Table 2:Adsorption energy (kcal/mol) of CO2 on both K doped Mo- and K doped C-terminated β-Mo2C(001) 

surface. 

 

 

 

 

 

 

 

Surface BE(CO2 ,phys) kcal/mol BE(CO2, chem) kcal/mol 

 

K-Mo2C-C terminated 

-6.17 (horizontal) hollow site 

-0.85 (horizontal) top Mo site 

NA 

 

K-Mo2C-Mo terminated 

-6.97 (horizontal) hollow site 

-2.19 (horizontal) top Mo site 

-46.57 hollow site 

-42.17 top Mo site 

-80.90 (CO*+O*)  
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Figure 5: Activated CO2 (left), and dissociated CO2 (right) on K doped, Mo-terminated Mo2C (001) surface. 

Color code: cyan-Mo, black-C, red-O, purple-K 

 

These energy changes in the presence of K are due to electronic effects.  As the DFT 

calculations suggest (Bader charge analysis), K loses almost one electron, which is delocalized 

on the surface of the Mo2C.  As a result, the presence of a point charge (K-cation) increases the 

dipole-dipole interaction character in the CO2 physisorption (thus, the physisorption energy).  On 

the other hand, the partially negatively charged surface of the Mo2C, facilitates the activation of 

CO2, and the adsorption of electrophilic species, such as atomic oxygen.62  
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Figure 6. CO2 dissociation profiles on Mo-terminated, pristine (black) and K-promoted (purple), β-

Mo2C(001) surfaces (energy in kcal mol-1).  Color code: grey-C, cyan-Mo, red-O, purple-K. 

 

 

Figure 7: Transition state (T.S.) for CO2 dissociation on K doped Mo-terminated (001) surface. Color code: 

grey-C, cyan-Mo, red-O, purple-K 

 

Since the dissociation of CO2 on K-doped Mo-terminated Mo2C (001) is 

thermodynamically favorable, we conducted a CI-NEB calculation to study the actual 

dissociation pathway and locate T.S. In Figure 6, CO2 dissociation profiles on both pristine and 

K-promoted Mo2C (001) surfaces are presented and compared. On the K-promoted, Mo-
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terminated surface (purple), CO2 is first barrierlessly activated to a chemisorbed state (-46.6 

kcal/mol), and then dissociates to CO and O with a barrier of 14.0 kcal/mol.  The bond length of 

C-O of the T.S. was 2.04 Å (Figure 7). All of these steps are again exothermic with respect to the 

initial, CO2 physisorbed state.  It is worth noting that the barrier for CO2 to dissociate from the 

activated state to CO* + O* in the presence of K is 2.8 kcal mol-1 lower than that of the pristine 

β-Mo2C(001) surface.  Taking into consideration the decrease in activation energy for CO2 

dissociation and the increase of the CO2 physisorption on the Mo-terminated, β-Mo2C(001) 

surface in the presence of K, it is apparent that K doping facilitates the formation of CO.  These 

DFT calculated reaction barriers are in excellent agreement with those obtained experimentally, 

as shown in Table 3.  

 

Table 3. Comparison of theoretical activation barrier (Ea) calculated by DFT and experimentally 

determined apparent activation barrier (Ea_app) for CO formation from CO2 over pristine and K-promoted 

Mo2C-based catalysts. (kcal/mol) 

 
Theoretical Ea  Experimental Eaapp  

Pristine (No K) Mo2C 16.8 14.0 

K-Promoted Mo2C 14.0 11.4 
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3.3 CO2 ADSORPTION BEHAVIOR ON O-COVERED MO2C (001) SURFACE 

Under experimental conditions, and based on the affinity of Mo2C to dissociate CO2, the 

metal carbide surface may be converted to an oxygenated carbide surface. Also, the surface 

oxygen is likely to be produced by dissociative adsorption of H2O molecule under RWGS 

conditions.63 As a result, we calculated the binding energy of oxygen on five different oxygen 

surface coverages ranging from 0.25 ML (monolayer) to 1.25 ML, as shown in Figure 8. The 

binding energy of oxygen was calculated by equation (3-1):  

E(O)=E(nO-surf) -nE(H2) –nE(H2O)                                             (3-1) 

where n is the number of oxygen atoms adsorbed in one super cell. The optimized O-covered 

Mo2C (001) surface are shown in Figure 8. The most preferred adsorption site for oxygen atom 

was found to be the hollow site, where the oxygen atom is stabilized by three surface Mo atoms. 

At one ML O-coverage, all of the hollow sites have been occupied by oxygen, and therefore 

further addition of more oxygen atoms to the surface are expected to be of higher energy. From 

Figure 9, one can observe that the binding energy of oxygen increases (more exothermic) as the 

O-coverage increases, and this trend was found to be changed when the surface O-coverage is 

greater than 1 ML (decrease in binding energy).   
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Figure 8. (from left to right) Optimized O-Mo2C (001) surfaces at 0.00ML (clean surface), 0.25ML, 0.50ML, 

0.75ML, 1ML, and 1.25ML oxygen coverage. (up: top view; bottom: side view) 

 

Figure 9. Binding energy of oxygen at a given coverage from 0.25 ML to 1.25 ML (Mo-terminated Mo2C). 

 

It is interesting to see that how the CO2 adsorption behavior changes with surface O-

coverage. As noted earlier, on clean -Mo2C (001) surface, the most preferential site for CO2 

chemisorption is found to be the hollow site. However, on O-covered surfaces, some of these 

sites may be occupied by oxygen, and therefore, different sites must be investigated in order to 

obtain the most stable chemisorption configuration of CO2. On 0.25 ML O-coverage, three 

different sites (shown in Figure 10) were observed to be capable of activating CO2, with the 

strongest binding energy at the hollow site (-18.8 kcal/mol). The O-C-O bond angle of activated 
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CO2 was 134.2 degrees, and the C-O bond length was 1.27 Å. The average Mo-O distance is 

2.37 Å.    

 

Figure 10. (left) Top view of 0.25ML O-Mo2C(001), with 3 adsorption sites pointed in blue. (right) CO2 

adsorption on 0.25ML O-Mo2C (001) surface at hollow site (up: top view, bottom: side view). The O-C-O 

bond angle of activated CO2 was 134.2 degrees, and the bond length was 1.27 Å  

 

 

Figure 11: CO2 adsorption on (a) 0.50ML and (b) 0.75ML O-Mo2C(001) (left: top view, right: side view). 

 

On 0.5 ML O-covered surface, the hollow site was found to activate CO2 with BE of -

5.37 kcal/mol, which shows weaker binding compared to that on 0.25 ML (-18.8 kcal/mol) and 
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clean surface (-29.8 kcal/mol). The O-C-O bond angle of activated CO2 was 137.5 degrees, and 

the C-O bond length was 1.25 Å. The average Mo-O length was 2.31 Å. 

On 0.75 ML O-covered surface, no chemisorption of CO2 was obtained, and a positive BE of 

+12.0 kcal/mol was noted, indicating that the interaction of CO2 becomes endothermic at high O-

coverage surfaces. The activation/adsorption of CO2 on 0.5 ML and 0.75 ML O-covered surfaces 

are shown in Figure 11.  

Figure 12 summaries the binding energy of CO2 vs. O-coverage. One can observe that the 

binding energy of CO2 follows a linear trend: the lower the O-coverage, the stronger the CO2 

adsorption (larger negative BE (CO2) values). However, at O-coverage larger than 0.75 ML, the 

interaction of CO2 with the surface becomes endothermic, the adsorption of CO2 is no longer 

favorable.  

 

 

Figure 12. Binding energy of CO2 (BE_CO2) vs. O-coverage on Mo2C (001) surface (the most preferred 

binding sites on each O-coverage surface). 
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To find the activation energy for CO2 dissociation, CI-NEB calculations were carried out. 

Several CO2 dissociated (CO*+O*) configurations were constructed as described below: holding 

the CO* at a particular site, and varying the location of O* at neighboring sites, and minimize 

the total energies of these different configurations. After obtaining the most stable dissociated 

configuration, this structure was considered as the final state (dissociated CO2) for CI-NEB 

calculations, and the corresponding reaction path was then constructed. Figure 13 and 14 showed 

the CO2 dissociation profiles on 0.25ML and 0.5ML O-Mo2C surfaces (surfaces that still 

chemisorb CO2). The activation barriers on 0.25ML and 0.50ML O-Mo2C surfaces are 23.57 

kcal/mol and 26.89 kcal/mol, respectively. The distances of O-CO bond of the T.S. are 1.750 Å 

(0.25ML) and 1.753 Å (0.50ML). 

 

 

 

Figure 13: CO2 dissociation profile at hollow site on 0.25 ML O-Mo2C surface 
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Figure 14: CO2 dissociation profile at hollow site on 0.5 ML O-Mo2C surface 

 

 

In Figure 15 we summarize the activation energy of CO2 dissociation (kcal/mol) on (1) 

pristine surface, (2) K-doped surface, (3) 0.25 ML O-covered, and (4) 0.50 ML O-covered Mo2C 

(001) surface. We found by our NEB calculations that, while the presence of surface K atom 

decrease the activation energy of CO2 dissociation, surface O atoms have a different effect on 

CO2 adsorption behavior on Mo2C(001) surface. The activation energy of CO2 dissociation 

increases as O-coverage increases, which is in line with the binding energy calculations of CO2 

and oxygen on surfaces with different O-coverage (the weaker the CO2 binding, the higher the 

CO2 dissociation barrier). Surface K atom acts as an electron doner, loses almost one electron, 

and thus creates the partially negatively charged Mo2C surface and enhances adsorption of CO2. 

O atoms, however, stay at active sites for CO2 adsorption, and form Mo oxide, which can 
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introduce repulsion to the adsorbents containing oxygen, and consequently decrease the 

adsorption of CO2 on the surface.  

 

Figure 15. CO2 dissociation profiles on pristine surface (green), K-doped surface (red), 0.25 ML O-

covered (black), and 0.50 ML O-covered surface (blue). Ea represents activation energy in kcal/mol. 
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4.0  CONCLUSIONS 

The adsorption behavior of CO2 on -Mo2C (001) was studied, and the effects of K 

promotion and oxygen coverage on adsorption and dissociation of CO2 have been investigated. 

On clean -Mo2C (001) surface, CO2 undergoes a barrierless activation, with a binding energy of 

-31.4 kcal/mol, and dissociated to CO* and O* with an activation barrier of 16.8 kcal/mol. When 

the surface is promoted by K atom, the changes in the charges surface atoms results in a stronger 

binding of CO2 (-46.4 kcal/mol) and CO2 dissociates through a lower activation barrier (14.0 

kcal/mol). Under experimental conditions, the surface is likely to be covered with oxygen atoms, 

and therefore the effect(s) of O-coverage on Mo2C (001) were also studied. According to our 

results, the binding of oxygen on the surface increases as the surface coverage increases, until it 

reaches a maximum at 1ML coverage. Then, further oxygen adsorption becomes unfavorable 

(decrease in oxygen adsorption energy). CO2 binding energy decreases with the increase in 

surface oxygen atoms, therefore,  CO2 can no longer strongly chemisorb at high oxygen coverage 

(O-coverage > 0.5ML). We show that the activation barriers for CO2 dissociation also increase as 

O-coverage increases. Finally, it should be noted that even though the Mo2C surface can become 

an oxy-Mo2C surface, under reaction conditions, our study shows that CO2 can still adsorb and 

dissociate at low O-coverage (<0.50ML).  
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APPENDIX A 

EXAMPLE OF VASP INPUT FILES 
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1. INCAR  (CI-NEB)  (8 intermediate images for example) 

 

 

SYSTEM = NEB_for_test2_1   

ENCUT  = 415 

PREC   = ACC 

ISTART = 0 

ICHARG = 2 

#ISPIN  = 2 !spin polarized calculation, collinear 

#MAGMOM = 32*0.6 48*0.6 3*2 8*2 

NELM   = 100 

NELMIN = 8 

NELMDL = -15 

EDIFF  = 1.0E-6 

ISMEAR = 1 

SIGMA  = 0.2 

EDIFFG = -0.01 

ISIF   = 2 

 

IBRION = 3 

POTIM  = 0 

# IVDW = 12 

NPAR = 8 

 

NSW    = 1000 

LREAL  = A 

 ALGO  = Fast 

ADDGRID = .TRUE. 

ALGO = Fast 

# IALGO  = 48 

#IALGO  = 38 

# NSIM   = 4 

# NPAR   = 2 

# NCORE  = 12 

# NCORE  = 4 

LPLANE = .TRUE. 

LSCALU = .FALSE. 

ISYM  = 0 

#SYMPREC = 1.0E-5 

LWAVE  = .FALSE. 

LCHARG = .FALSE. 

ICHAIN = 0 

IMAGES = 8 

LCLIMB = .TRUE. 
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INVCURV= 0.01 

MAXMOVE= 0.1 

SPRING = -5 

IOPT   = 1 

 

### MIXING 

AMIX = 0.2 

BMIX = 0.0001 

AMIX_MAG = 0.8 

BMIX_MAG = 0.0001 
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2. INCAR (GEOMETRY OPTIMIZATION) 

 

SYSTEM = Co2C_unit_cell 

  

 ISTART = 0  

 ICHARG = 2 

 ENCUT  = 415 

 EDIFF = 10E-5 

 EDIFFG = -0.01 

 NSW = 600 

 IBRION = 2 

 POTIM = 0.5 

 ISMEAR = 1  

 SIGMA = 0.2 

 LORBIT=11 

 ISIF = 2 

 ISPIN= 2 

 

# MAGMOM = 12*2.73 6*0.6 

# KSPACING = 0.3 

# KGAMMA = .TRUE. 

 

 NPAR = 8 
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3. KPOINTS FILE  

k-points 

 0 

Monkhorst Pack 

5 5 1 

0 0 0 
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4. POSCAR FILE (COORDINATES) 

 

Example: system: CO2 adsorption on 0.25ML O-covered surface. The supercell contains 32 Mo, 

17 C, and 6 O atoms. Bottom two atom layers are frozen.  

 

025_CO2                                  

   1.00000000000000      

    10.5006999968999999    0.0000000000000000    0.0000000000000000 

     0.0000000000000000   12.1464004516999999    0.0000000000000000 

     0.0000000000000000    0.0000000000000000   14.5508003235000007 

   Mo   C    O  

    32    17     6 

Selective dynamics 

Direct 

  0.4089901121250875  0.4138433939748368  0.2327324038002399   T   T   T 

  0.3354400099999992  0.2802599970000017  0.0798399970000006   F   F   F 

  0.1706767613960778  0.2840791025895198  0.2371932394341624   T   T   T 

  0.0854400019999986  0.4092200099999985  0.0833299980000035   F   F   F 

  0.1571365542600798  0.0294400432882011  0.2334426789999201   T   T   T 

  0.0854400019999986  0.1592199950000008  0.0798399970000006   F   F   F 

  0.4298335768171378  0.1462546714021445  0.2299415137326262   T   T   T 

  0.3354400099999992  0.0302599999999984  0.0833299980000035   F   F   F 

  0.9082699154462386  0.4150655722940223  0.2291086048616944   T   T   T 

  0.8354399799999968  0.2802599970000017  0.0798399970000006   F   F   F 

  0.6700133995115881  0.2794636427364713  0.2357875586014058   T   T   T 

  0.5854399799999968  0.4092200099999985  0.0833299980000035   F   F   F 

  0.6563675218506807  0.0264539538526661  0.2322777378701789   T   T   T 

  0.5854399799999968  0.1592199950000008  0.0798399970000006   F   F   F 

  0.9305292865999015  0.1450844837937448  0.2305478844298068   T   T   T 

  0.8354399799999968  0.0302599999999984  0.0833299980000035   F   F   F 

  0.4027903280383004  0.9149510794893511  0.2287900826437061   T   T   T 

  0.3354400099999992  0.7802600260000006  0.0798399970000006   F   F   F 

  0.1645767641944413  0.7831936454790900  0.2376986549950102   T   T   T 

  0.0854400019999986  0.9092199800000031  0.0833299980000035   F   F   F 

  0.1515353847049718  0.5264023538777882  0.2322109688287451   T   T   T 

  0.0854400019999986  0.6592199800000031  0.0798399970000006   F   F   F 

  0.4146821629585720  0.6584340449790593  0.2386635686672430   T   T   T 

  0.3354400099999992  0.5302600260000006  0.0833299980000035   F   F   F 

  0.9046164365401494  0.9161727120557551  0.2306478949435299   T   T   T 

  0.8354399799999968  0.7802600260000006  0.0798399970000006   F   F   F 

  0.6690672160953979  0.7825308576340650  0.2375123164149738   T   T   T 
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  0.5854399799999968  0.9092199800000031  0.0833299980000035   F   F   F 

  0.6544243651298871  0.5262881216821537  0.2369868687148877   T   T   T 

  0.5854399799999968  0.6592199800000031  0.0798399970000006   F   F   F 

  0.9268162692892351  0.6476094681641777  0.2310208189664110   T   T   T 

  0.8354399799999968  0.5302600260000006  0.0833299980000035   F   F   F 

  0.2500000000000000  0.4081600009999988  0.0000000000000000   F   F   F 

  0.0010537975995928  0.2836611066035502  0.1644614150195041   T   T   T 

  0.0000000000000000  0.0313199980000007  0.0000000000000000   F   F   F 

  0.2512857546300574  0.1565691699302806  0.1635337516694853   T   T   T 

  0.7500000000000000  0.4081600009999988  0.0000000000000000   F   F   F 

  0.5007564371717087  0.2843431853042958  0.1642337538795328   T   T   T 

  0.5000000000000000  0.0313199980000007  0.0000000000000000   F   F   F 

  0.7516402588723645  0.1548345132880171  0.1634639209735805   T   T   T 

  0.2500000000000000  0.9081599710000035  0.0000000000000000   F   F   F 

 -0.0017873117864665  0.7840553400353719  0.1640471078622794   T   T   T 

  0.0000000000000000  0.5313199759999989  0.0000000000000000   F   F   F 

  0.2470603336520769  0.6561194884396151  0.1634433723066702   T   T   T 

  0.7500000000000000  0.9081599710000035  0.0000000000000000   F   F   F 

  0.5017403284308778  0.7826588632074278  0.1642497448280300   T   T   T 

  0.5000000000000000  0.5313199759999989  0.0000000000000000   F   F   F 

  0.7482340192474665  0.6549793198625016  0.1640458319473670   T   T   T 

  0.4692821217510015  0.5575438177146878  0.3456122380818236   T   T   T 

  0.2396837041156454  0.4093407981705208  0.3102216873172107   T   T   T 

  0.2412034148914359  0.9072125103773981  0.3098396767776814   T   T   T 

  0.7507613770308194  0.4025195057272736  0.3069790273612038   T   T   T 

  0.7427058991546281  0.9069804082963105  0.3105041706094213   T   T   T 

  0.24706             0.6561204266880118  0.3714307272806929   T   T   T 

  0.5328711562845345  0.4712176694574253  0.3669585335962396   T   T   T 
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