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Although individual cancers are driven by heterogeneous processes, cancer mortality has a near 

universal cause—therapy resistance, recurrence and eventual metastasis to vital organs. Despite 

great advancements in cancer therapies this past decade, outcomes in patients with advanced 

disease remain static. In these translational studies, using multiple cohorts of longitudinally 

collected tumor specimens, we test the hypothesis that relapsed cancers are molecularly distinct 

from primary disease and acquire druggable vulnerabilities throughout their life histories. As a 

preliminary study, a targeted gene expression analysis was performed to (1) determine 

differences in breast cancer (BrCa) intrinsic subtypes between primary tumors and matched brain 

metastases (BrM) and (2) explore if druggable targets are acquired in metastases. While BrM 

generally retain their intrinsic molecular subtypes, even after years of dormancy, nearly all gain 

expression of clinically actionable genes—most notably HER2 (35% of cases). To further assess 

molecular features acquired in metastases, exome-capture RNA-sequencing on decade-old and 

degraded tumor specimens was evaluated. Applying this technology, transcriptome-wide 

acquisitions in BrM were discovered, including highly recurrent expression gains in RET (38% 

of cases). Targeting RET or HER2 using in vitro, ex vivo, and in vivo models produced marked 
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responses, suggesting RET and HER2-driven signaling as prime targets for patients with BrM. 

The same approach was applied to estrogen receptor [ER]-positive BrCa bone metastases, which 

discerned further site-specific acquisitions—such as shifts to Her2 and LumB phenotypes, 

temporally influenced expression evolution and druggable gains in CDK-Rb-E2F and FGFR-

signaling pathways. To determine if these changes are consistent in non-metastatic samples, both 

RNA expression and DNA changes were assessed in a cohort of ER-positive local recurrences. 

Limited DNA-level changes, yet highly recurrent transcriptional remodeling events were 

observed—in particular, losses of ESR1, gains of NTRKs and upregulation of the cancer stem cell 

marker PROM1. Lastly, these findings were corroborated in ovarian cancer recurrences, where 

we show fusion RNA transcripts and recurrent outlier expression gains (NTRK2, INHBA and 

IGF1) are acquired in relapsed disease. Taken together, these studies establish that cancer 

recurrences commonly acquire multimodal and readily druggable molecular dependencies, 

unique from primary tumors, which may have profound clinical implications. 
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1.0  INTRODUCTION 

1.1 BREAST CANCER 

Breast cancer represents the greatest burden of noncutaneous cancer in women—responsible for 

approximately 233,000 new diagnoses and over 40,000 deaths annually1. Despite these numbers, 

in the past decades, outcomes in breast cancer have encouragingly grown steadily with current 5-

year survival estimates well over 90%2. This progress has largely been due to earlier detection 

and an elevated understanding of the disease’s biology, which has led to effective targeted 

therapies in the form of small molecules and biologics. 

Nonetheless, like many epithelial cancers, breast cancer remains a complex and 

heterogeneous disease. Although groundbreaking success has been made in identifying 

targetable drivers in breast cancer, there is still a gap in knowledge on how breast cancers 

progress—particularly what mechanisms drive a breast cancer’s ability to resist therapies and 

metastasize. This lack of understanding has in part resulted in stagnant outcomes in patients with 

advanced or recurrent disease. For the past decade, 5-year survival rates for patients with distant 

metastases is unchanged at approximately 25%3. Thus, to identify therapeutic targets in patients 

with advanced disease, we sought to characterize molecular features that make metastatic or 

therapy resistant tumors distinct from treatment-responsive primary tumors. 



2 

1.1.1 Breast cancer subtypes and genomic features 

Breast cancer has served as a prototype for targeted therapies in epithelial cancers. One of the 

first major observations defining a molecular 

“cancer subtype”—that is, a subset of tumors from the same tissue of origin with distinct 

molecular features—was the association between breast cancer estrogen receptor [ER] 

expression and responses to adrenalectomies by Jensen et al. in 19714. Further studies into this 

association solidified the concept that a large proportion of breast cancers are driven by 

estrogen—ultimately leading to the development and wide clinical adoption of estrogen-

depleting therapies. In the late 1980s, the ERBB2 gene was found to be amplified and its protein 

product, human epidermal growth factor receptor 2 (HER2), highly expressed in approximately 

20% of breast cancers5. A humanized monoclonal antibody that targets HER2, trastuzumab, was 

rationally developed a decade later and is now standard of care. This concept of tailoring a 

treatment decision to the molecular properties of individual tumors was inaugurated in breast 

cancer—and is now a driving force for precision medicine in oncology6. With the advent and 

wide adoption of genome-wide interrogation techniques such as microarrays and massively 

parallel sequencing, even greater insight into breast cancer subtypes and potentially targetable 

cancer drivers has been elucidated. 

Perhaps the most well established genome-wide interrogation of breast cancer was the 

discovery of the intrinsic molecular subtypes—subclasses of breast cancers with similar 

expression profiles. Preceding this work, breast cancer subtyping was limited by analyzing 

protein expression of single molecules such as ER and HER2. When performing unsupervised 

hierarchical clustering on the entire transcriptome, breast tumors predictably segregated ER-
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positive and ER-negative tumors; however, more subtypes emerged7–9. These five observed 

subtypes (LumA, LumB, HER2, Basal and Normal-like) were further refined to an expression-

based classifier of 50 genes, now colloquially known as the PAM50, and carried prognostic 

consequences that was previously unappreciated10. Consequently, a version of the PAM50 

classifier was recently FDA-approved for identifying risk of distant recurrence in breast cancer 

patients (ProsignaTM) and inspired the development of other multi-gene expression-based tests 

routinely used in the clinic to guide treatment decisions, such as MammaPrintTM and Oncotype 

DXTM 11,12.  

Further granulation of breast cancer was elucidated by larger scale collaborative 

molecular characterization efforts such as The Cancer Genome Atlas (TCGA) and the Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC)13,14. Despite the additional 

characterization of thousands of tumors, recurrent driver mutations were quite rare—only 

PIK3CA, TP53 and GATA3 were mutated in greater than 10% of tumors in both TCGA and 

METABRIC— and the core intrinsic subtypes still serve as the dominant classifiers to place 

breast cancers into a biological framework15. It must be noted; however, that within the major 

subtypes, further delineations can be made. As an example, basal cancers alone can be broken up 

into many distinct biological categories based on transcriptome expression—such as basal 

immunomodulatory, luminal androgen receptor and mesenchymal-like subtypes16,17. 

Importantly, the molecular taxonomy of breast cancer has been exclusively defined in 

treatment-naïve and relatively indolent primary tumors. How this taxonomy changes or remains 

consistent following therapies, such as in the context of recurrence or metastases, and the clinical 

implications of these alterations remain unaddressed and largely unknown. 
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1.1.2 Breast cancer treatment modalities and resistance mechanisms 

Adjuvant breast cancer treatment can be classified into four major categories (1) local therapy, 

which includes surgery and radiotherapy, (2) hormone therapy, (3) targeted therapy and (4) 

chemotherapy (Figure 1A). Although the ultimate choice will be made by the physician and 

patient—treatments are relatively consistent based on the molecular subtype of the tumor. 

Patients with hormone receptor positive or luminal tumors are almost unambiguously provided 

an estrogen depleting therapy, patients with HER2-positive tumors are generally offered HER2-

targeted therapies and patients with triple-negative or basal breast cancers, which lack expression 

of any targets, are uniformly offered chemotherapy18–20. Patients with ER-positive and/or HER2-

positive breast cancers identified as “high risk” for recurrence—either in their clinical 

presentation or with a companion multi-gene expression-based test—may also be provided with 

chemotherapy11,12,21. 

Figure 1: Breast cancer subtype, treatments and resistance mechanisms 
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1.1.2.1 Endocrine therapy 

The mainstay treatment of ER-positive breast cancer is endocrine therapy, which aims to limit 

17ß-estradiol (E2) action in breast cancer cells. E2 is the most potent estrogen steroid hormone, 

diffuses through cell membranes, binds to its receptors (ER-alpha, encoded by ESR1 and ER-

beta) and causes ER dimerization. The dimerized, E2-bound complex then binds to DNA and 

mediates transcription of a host of E2-regulated genes22. This regulation is further influenced by 

the presence or absence of a series of coregulators, such as NCOA family members, and 

chromatin interactions23–25. The ER complex can also bind to other transcription factors (e.g. 

SP1) and trigger more indirect effects on transcription26. Furthermore, non-genomic action of ER 

has been observed, whereby E2 binding can rapidly induce mitogenic signaling cascades—

including IGF, PI3K and MAPK-driven pathways27–30. Kinase regulators of these pathways can 

also act bidirectionally, phosphorylating ER-alpha and regulating its activation31,32. In breast 

cancer cells, this complex and multi-mechanistic ER-driven action ultimately triggers an 

agglomeration of cancer phenotypes such as cellular proliferation. Modulating this pathway has 

proven remarkably effective in improving outcomes in patients with breast cancer. 

Eliminating E2 effects on breast cancer cells can be accomplished surgically via ovarian 

ablation or pharmacologically. The first small molecule developed for this purpose was 

tamoxifen, discovered in the late 1960s, with the first preclinical evidence of its efficacy in 

breast cancer emerging in the 1970s33,34. Tamoxifen is a selective estrogen receptor modulator 

(SERM) that competes with E2 binding and acts as an antagonist of ER activity in breast cancer 

cells. Importantly, as their name implies, SERMs activity on estrogen mediated signaling is 

variable and tissue dependent—as tamoxifen carries agonist properties in the endometrium and 

bone35–37. Another class of pharmacologics, strict competitive antagonists, is selective estrogen 
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receptor degraders (SERDs) such as fulvestrant—which bind to ER, limit its dimerization and 

ultimately trigger ER protein degradation38–41. Lastly, aromatase inhibitors (AI) are often used in 

post-menopausal women, which block the conversion of androgens into estrogens by inhibiting 

the enzyme aromatase in the periphery—mainly within adipose tissue42. The use of these three 

classes of agents has provided vast improvements in recurrence-free and overall survival in 

patients with breast cancer, yet therapy resistance mechanisms are emerging in the context of 

long-term recurrences and metastases43,44.  

Many endocrine resistance mechanisms have been elucidated in breast cancer, especially 

through in vitro models—particularly long-term estrogen deprived (LTED) cell lines that have 

become estrogen independent—and correlating outcome data with molecular or clinical features. 

The latter method has established that breast cancers can be intrinsically resistant to endocrine 

therapies, driven collectively by a more proliferative, Luminal B phenotype—which coincides 

with higher tumor grade, greater Ki67 indices, higher risk scores from multigene signature tests 

and somatic mutations such as TP53 and RUNX145.  

Identifying and validating mediators of acquired long-term endocrine therapy resistance 

in patient samples is challenging due to long periods of disease dormancy in ER-positive 

patients. Nonetheless, recurrent mechanisms of resistance have emerged. Up to 20% of relapsed 

tumors tend to lose expression of ER, and some have been shown to activate other growth factor 

receptors (e.g. FGFR1, ERBB2, IGF1R) in its place to preserve mitogenic pathways including 

MAPK and PI3K46–50. Recent sequencing studies have shown that alterations in the ESR1 gene is 

a common mechanism of acquired endocrine therapy resistance, as over 20% of ER-positive 

metastatic breast cancers harbor hotspot ESR1 mutations—generally occurring in the ligand-

binding domain and conferring ligand-independent ER-activity51–53. Interestingly, preliminary 
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evidence suggest ESR1 mutations are more common in AI-treated therapy, indicating 

pharmacologic class-specific mechanisms of endocrine therapy resistance may be at play54. 

Alterations in the Rb-CDK-E2F pathway have been proposed as mediators of therapy resistance, 

such as cyclin D1 (CCND1) amplifications, which may explain recent success with cell-cycle 

inhibitor therapies (Section 1.1.2.4)13,44. Other, less widely accepted mechanisms of endocrine 

resistance have been discovered using cell models, yet still must be validated in more treatment-

resistant patient specimens to confirm their clinical importance and actionability—such as ESR1 

fusions and amplifications, stem-cell and mesenchymal-like cell state changes and 

microenvironment interactions55,56. 

1.1.2.2 HER2 targeted therapy 

The second major class of targeted therapy in breast cancer is those targeting HER2. HER2 is a 

receptor tyrosine kinase, a member of the epidermal growth factor receptor family and is 

overexpressed and/or mutated in approximately 20% of breast cancers. HER2 signaling is driven 

by a complex program at the cell surface, whereby it can homo- and heterodimerize with other 

EGFR members, become phosphorylated and potentiate downstream mediators which encourage 

cell growth and anti-apoptotic programs—the most well established being the RAS-MAPK and 

PI3K pathways57,58. Two pharmacological options exist for targeting HER2—biologics and small 

molecule inhibitors.  

Trastuzumab is the first rationally designed therapy to target HER2 and although its 

mechanism of action is complex, the humanized monoclonal antibody has been shown to inhibit 

downstream signaling by interfering with dimerization and HER2 shedding, increasing HER2 

degradation and eliciting antibody-dependent cell-mediated cytotoxicity59–63. Pertuzumab, a 

more recently adopted monoclonal antibody, acts similarly but shows more efficacious and 
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specific inhibition of HER2 dimerization with ligand-bound HER3. Considering their different 

epitopes and distinct properties, the combination of the two unsurprisingly show overall survival 

benefits in patients with metastatic HER2-positve breast cancers64–67. The other class of HER2 

agents, small molecule tyrosine kinase inhibitors, also show efficacy in HER2-positive disease. 

This includes lapatinib—a reversible inhibitor that binds to the ATP-binding pocket of the 

intracellular domain of HER2 preventing phosphorylation—and neratinib—an irreversible 

inhibitor that binds covalently to cysteine residues and limits the action of the catalytic domain 

of EGFR family members68–71. Importantly, small molecules targeting HER2 may be more 

efficacious for breast cancer brain metastases, given their ability to cross the blood-brain-barrier 

more easily than bulky biologics72. 

Resistance to HER2-therapies has been appreciated both intrinsically and in the acquired 

setting. Like ESR1, somatic mutations in ERBB2 can confer therapy resistance—including a 

truncated form of HER2 stemming from an alternate transcription initiation site that eliminates 

the N-terminal extracellular binding region of trastuzumab, p95HER2, and a splice variant, 

HER2∆16, that lacks exon 16 and induces stronger dimerization73,74. Gatekeeper mutations are 

emerging as mechanisms of acquired resistance, as was observed in a patient with an activating 

L869R mutation that was initially responsive to neratinib but became resistant following the 

acquisition of a T798I mutation75. Moreover, L755S mutations can be selected for in HER2-

amplified cell lines under the selective pressures of HER2-therapies, suggesting cancers with 

already amplified ERBB2 can reestablish therapeutically blunted HER2 signaling by another 

“hit” in the form of an activating mutation76. Other proposed mechanisms of resistance, which 

still warrant careful evaluation in human specimens and trial settings, are activation of 

downstream mediators via alternative mechanism—such as PIK3CA mutations77, PTEN loss78,79 
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and upregulation of alternate growth factor receptors including EGFR, IGF1R and HER380–83. 

What has cultivated appreciation recently is trastuzumab’s immunologically driven antitumor 

activity. Trastuzumab’s effectiveness can be predicted by a signature of immune genes and the 

amount of tumor infiltrating lymphocytes84,85, suggesting resistance mechanisms could be 

imparted by an altered host immune response. Finally, as discussed above, cross-talk with ER-

signaling and activation of cell cycle mediators such as cyclin D1 and CDK4 has been instigated 

as a mechanism of HER2-therapy resistance86,87.  

1.1.2.3 Chemotherapy 

Chemotherapy in breast cancer is initiated for patients with high risk clinical phenotypes, 

particularly the basal or triple-negative subtype, and metastatic disease. Chemotherapy choice, 

unlike the aforementioned targeted therapies, is much more variable. Nonetheless, major classes 

have emerged as more effective than others with combination anthracycline and taxane-based 

therapies being the standard of care for most patients88. Outside of anthracycline and taxane-

based treatments, regimens are commonly supplemented with other cytotoxic compounds 

including cyclophosphamide, etoposide, capecitabine, gemcitabine, vinorelbine and platinum-

based therapies such as cisplatin—among others depending on the patient’s course, specific 

responses and tolerances89. Given overlapping agents, mechanisms of chemotherapy resistance in 

the context of breast and ovarian cancers are discussed in Section 1.2.3.  

1.1.2.4 PI3K/AKT/mTOR and CDK4/6 Targeted Therapy 

Targeting the PI3K/AKT/mTOR axis has been a prime area of investigation in breast cancer 

given this pathway is a downstream effector of HER2 and ER signaling. Although mTOR 

inhibitors such as temsirolimus and everolimus have shown promising preclinical evidence, 
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identifying subsets of patients that benefit most from these compounds has been challenging, 

especially given additional toxicities. Recent evidence suggests that cancers with hyperactive 

PI3K pathway activation (e.g. tumors with PIK3CA mutations or PTEN loss) may show greater 

response rates90–93. Nonetheless, mTOR inhibitors remain an option for patients with advanced, 

hormone-therapy resistant, metastatic breast cancer with the caveat that large-scale trials have 

shown minimal gains in overall survival. Promising early phase investigations have recently 

been completed using PI3K pathway inhibitors, particularly for patients with tumors that harbor 

PIK3CA mutations94,95—although it is premature to predict their utility. 

Another recent therapy, likely to become widely adopted in hormone receptor positive 

breast cancers, is targeting CDK4/6—two key kinases responsible for the transition from G0/G1 

to S-phase of the cell cycle. Dysregulation of the cell cycle is an established hallmark of cancer; 

yet, given its ubiquity, targeting this pathway with non-selective inhibitors has been wrought 

with difficulty and toxicities96,97. Some estrogen-receptor positive breast cancers; however, are 

uniquely dependent on cell cycle mediators, largely mediated by cyclin D1 (CCND1) given its 

amplification, overexpression and association with worse outcomes in a subset of ER-positive 

breasts cancers98,99. Indeed, estrogen signaling is intimately linked to the CDK pathway, as 

cyclin D1 potentiates E2-regulated genes in the absence of estrogen in breast cancer cells, binds 

to ER to influence its regulation and can also aid in recruiting transcriptional modulating 

cofactors100–103. Given this link, breast cancer has served as a model to test the efficacy of more 

selective CDK4/CDK6 inhibitors—particularly ribociclib and palbociclib. These compounds 

bind reversibly and selectively to the ATP-binding pocket of CDK4 and CDK6, blocking their 

phosphorylation of the retinoblastoma protein (Rb)—ultimately stalling the cell cycle to G1 and 

diminishing downstream activation of E2F transcription factors104,105. Promising preclinical data 
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using these inhibitors in luminal breast cancer models eventually paved the way towards clinical 

trials—where both palbociclib and ribociclib have shown promising trends of longer 

progression-free survival in patients with advanced disease, even as first-line therapy106–108. The 

compounds have since been FDA-approved for metastatic breast cancers and many trials are 

ongoing to further refine their utility, with resistance mechanisms already emerging—including 

upregulation of cyclin D1 via amplification, enhanced CDK2 expression and Rb loss109.  

Taken together, these biologic insights and rationally designed therapies have reduced the 

burden of breast cancer worldwide. Indeed, tamoxifen, trastuzumab and anastrozole have been 

added to the World Health Organization’s Model List of Essential Medicines. Nevertheless, 

distinct resistance mechanisms to these therapies have been observed (Figure 1B), many of 

which are hypothesized to drive breast cancer recurrence, metastasis and ultimately—breast 

cancer mortality. 

1.1.3 Breast cancer recurrence and metastasis 

Despite enormous strides in understanding breast cancer biology and an increasing arsenal of 

targeted therapies, risk of recurrence for patients with even the most indolent subtype, hormone 

receptor positive breast cancer, can still be over 20% after 5-10 years110,111. Breast cancers can 

return locoregionally, reemerging in breast tissue or the chest wall, or develop into life-

threatening metastases. The most common sites of distant metastasis for patients with breast 

cancer is the bone, liver, lung and brain (Figure 2)112. Once metastases are detected, the 5-year 

survival probability is approximately 20%. Unfortunately, overall survival in patients with 

distant metastases is unchanged in the past decade—with one study concluding no improvement 

in metastatic breast cancer outcomes for the past three decades (Figure 3)3,113. Clearly, there is an 
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urgent need to identify mediators of therapy resistance and metastasis in breast cancer; and 

although progress has been made, comprehensive molecular characterizations of the most 

common types of breast cancer metastases are limited.  

Figure 2: Metastatic breast cancer site frequencies 
Metastatic site location(s) from 1202 patients with metastatic breast cancer cared for within the University of 
Pittsburgh Medical Center (1986-2015, data provided by Dr. Margaret Rosenzeig). 
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Figure 3: Metastatic breast cancer overall survival 
Overall survival of patients diagnosed with metastatic breast cancer (n=918, University of Pittsburgh Medical 
Center, data provided by Dr. Margaret Rosenzeig), segregated by ER/HER2 statuses. Number at risk table below. 

Cancer metastasis is a multi-step process that can take years to develop. Generally, in 

order to successfully metastasize, cancer cells must co-opt neighboring cells, garner new abilities 

such as the capacity to invade through adjacent extracellular matrix, intravasate into circulation, 

shield themselves from the immune system and physical forces encountered in circulation, 

extravasate into a target tissue and finally adapt themselves to colonize a completely foreign 

microenvironment—all the while evading the onslaught of therapies114. Although complex, each 

step of this process has been explored using in vitro and in vivo models and consistent themes 

and players have emerged. 

In order for an epithelial cancer cell to leave its local microenvironment, the cell often 

undergoes an epithelial-mesenchymal transition (EMT), whereby it takes on mesenchymal-like 
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features and consequently develops new abilities— such as motility, invasiveness and in breast 

cancer cells, even more stem-like, tumor-initiating properities115. This is coordinated through a 

suite of transcription factors including Twist, Slug and Snail. Activation of these EMT-

transcription factors is precipitated by an impressive number of upstream mediators including 

TGF-ß, Notch, Wnt, Beta-catenin and growth factor receptor pathways (EGF, FGF)116. 

Additionally, cancer cells have been shown to commandeer surrounding, non-neoplastic cells 

such as macrophages and stroma, which supply proteases and growth factors to assist a cancer 

cell’s journey through the extracellular matrix towards circulation117. 

Once within circulation, cancer cells interact with other circulating cells to survive. By 

associating with platelets, malignant cells shield themselves from the survey of immune cells and 

maintain an EMT-like state through platelet-derived TGFβ118–120. Indeed, metastatic breast 

cancer cells extracted from patient blood are enriched for mesenchymal markers121. Prior to 

extravasating into a target tissue, cancer cells recruit and make tight interactions with 

neutrophils, hijacking their ability to infiltrate parenchyma by facilitating interactions with 

endothelial cells122,123. Capturing circulating tumor cells is a particularly promising field of 

translational research in breast cancer, given they have shown prognostic potential and can serve 

as a source of genomic information in the form of a “liquid biopsy” to identify metastatic 

evolution and clonal selection of clinically actionable targets124–126.  

The last step, colonization, represents the greatest barrier for cancer cells to successfully 

metastasize. Metastatic inefficiency—that is, the inability of disseminated, micrometastatic 

populations to successfully form a macroscopic tumor upon colonization of a foreign organ—has 

been appreciated in a variety of cancer types. A mere 0.01-0.02% of disseminated cells are able 

to successfully generate a macometastatic lesion127–130. Although most disseminated cancer cells 
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quickly undergo apoptosis once in a foreign microenvironment, in breast cancer, 

micrometastases are quite common—approximately 30% of patients have micrometastases in the 

bone marrow at the time of diagnosis, suggesting cancer cell dissemination can be a very early 

event, which has been further corroborated in mouse models131. These micrometastases can 

remain dormant for many years and the majority will never reactivate—further supporting the 

notion of metastatic inefficiency. The mechanisms dictating the survival of dormant cancer cells 

and how they reactivate to produce macrometastases is an active field of research—with data 

suggesting particular pathways may play a role. For example, Src signaling is thought to allow 

dormant cancer cells to survive in bone marrow through activation of Akt132, DDR1-driven 

signaling initiates a stem-cell like phenotype that awakens dormant cells in multiple organs133 

and microenvironmental influences—such as the TGFβ-rich perivascular niche134 and an 

osteogenic milieu in bone metastases135—also promote dormancy and organ-specific 

colonization.  

Because of this intimate relationship between the microenvironment, it is not surprising 

that certain cancer types have tropisms for colonizing particular organs. Both the intrinsic 

features of the cancer and the microenvironment contribute to these tropisms—often referred to 

as the “seed and soil” hypothesis. This is observed clinically, as breast cancer most commonly 

metastasizes to the lung, brain, bone and liver with subtypes of breast cancer having even more 

specific tropisms—such as HER2 and basal cancers commonly colonizing the brain and ER-

positive tumors homing to the bone136,137. In vivo models, usually with cells that have been 

clonally selected after many xenograft passaging from a metastatic organ of interest, have 

revealed these interactions can be quite complex138–142. For example, brain cancer cells can 

express PCDH7 highly, which can promote the formation of Cx43 gap junctions between 
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carcinoma cells and astrocytes—allowing a cGMP driven bidirectional signaling cascade 

between astrocytes and cancer cells which promotes STAT1 and NFK-B signaling to engender 

tumor growth and chemoresistance143. Despite the elegance of these model systems and 

groundbreaking insight into these oftentimes complex interactions, the translational applicability 

of these studies remains questionable, given the difficulty in validating these mechanisms in 

human disease and the fact that they are generally agnostic to the external selective pressures of 

therapeutic intervention. 
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1.2 OVARIAN CANCER 

Unlike breast cancer, therapeutic advances in ovarian cancer have been remarkably modest. 

Although relatively rare, with an estimated 23,000 cases diagnosed each year, over 14,000 

patients die annually with greater than 50% of patients succumbing to the disease within 5 

years144,145. This is largely due to late detection, as ovarian cancers often present as late-stage 

disease with non-specific gastrointestinal symptoms (e.g. nausea, vomiting, constipation and 

abdominal discomfort). Counterintuitively, advanced ovarian cancers are exquisitely sensitive to 

initial cycles of cytotoxic agents—greater than 75% of patients will show a response and over 

50% of patients will have a complete response following primary therapy146. Unfortunately, most 

patients will eventually relapse and acquire therapy resistant tumors. Relapsed ovarian cancer is 

essentially incurable and carries a mere 12 to 24 month median overall survival147.  

The difficulty in treating ovarian cancer can be partially explained by the complexity of 

its genome. Although pathways such as DNA repair have been identified as central to its 

pathophysiology, ovarian cancer is uniquely heterogeneous and as a result, no promising drug 

targets have emerged. Like breast cancer; however, most molecular characterizations have been 

performed on treatment-naïve primary tumors. The molecular changes that differentiate a 

treatment-responsive ovarian cancer and an unresponsive, chemoresistant tumor are largely 

unknown. In these studies, we aimed to build initial insight into this evolution and identify 

potential mediators of ovarian cancer progression. 
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1.2.1 Ovarian cancer and genomic features 

Ovarian cancer is a heterogeneous disease that can be segregated into distinct histological and 

molecular subtypes. The focus of this work is on epithelial derived high-grade serous ovarian 

cancers (HGSOC), which represents the most common and most lethal form of the disease—

responsible for over 70-80% of ovarian cancer deaths148. Although labeled as ovarian cancer, 

more recent evidence suggests this neoplasm arises from the epithelial lining of the fallopian 

tube149–151. Deciphering the molecular mechanisms of and identifying potential therapeutic 

targets for HGSOC has been wrought with difficultly. Nonetheless, as more HGSOCs are 

characterized by genome-wide interrogations, patterns are emerging.  

There are few recurrent single nucleotide mutations in ovarian cancer, with TP53 

mutations being present in nearly all HGSOCs and lower frequency mutations in BRCA1 and 

BRCA2 observed—which have been long known to confer strong genetic susceptibilities152. 

Ovarian cancers, like basal breast cancers, have an unusually high degree of recurrent DNA 

structural variation. As such, ovarian cancers are categorized as C-class (copy number) driven 

tumors as opposed to M-class (mutation) driven tumors like renal cell carcinomas153. This 

structurally variant genome often results in gene breakages, which are commonly detected in 

DNA-repair genes and tumor suppressors154. Indeed, with multimodal mechanisms of DNA-

repair gene inactivation including mutations, gene disruption via structural variants and silencing 

via methylation—it is estimated that most ovarian cancers have some degree of DNA repair 

dysfunction.  

The use of PARP inhibitors as a targeted therapy has thus been an active area in ovarian 

cancer, with recent clinical trials showing increased progression-free survival with their 

use155,156. Other targeted therapies tested include EGFR family member, Src, VEGFA and 



19 

estrogen signaling inhibitors—yet all have failed to improve outcomes in overall survival157–161. 

This could be due to improper patient selection, as there are at least four molecular subtypes of 

HGSOC that may have distinct etiologies and thus may respond differently to targeted agents152. 

Consequently, the foundation of HGSOC treatment remains surgery and chemotherapy—

particularly regimens consisting of platinum and taxane-based agents. 

1.2.2 Ovarian cancer recurrence and chemoresistance 

Ovarian cancer is initially managed with surgery and cytotoxic agents—often referred to as 

primary surgical cytoreduction or “primary debulking.” The goal is to eliminate any evidence of 

macroscopic disease and can become quite complex depending on the degree of carcinomatous 

within the peritoneum162. The combination of a platinum and taxane-based therapy following 

surgery has increased outcomes substantially in the past two decades and is first-line therapy for 

all late-stage patients163. Refinements to this core treatment plan, including altered dosing 

regimens and the use of intraperitoneal chemotherapy, has also contributed to improved 

outcomes with greater than 70% of patients now showing objective responses164,165. Yet, even 

with these impressive response rates, acquired chemoresistance is common—approximately 80% 

of ovarian cancer patients will suffer a relapse.  

Following primary therapy, patients are clinically categorized with platinum-sensitive or 

platinum-resistant disease, depending on the timing of disease progression162. If progression 

occurs after 6 months, the cancer is deemed platinum-sensitive and patients will be given 

additional lines of platinum-based therapies for a future recurrence. If progression occurs before 

6 months, the disease is considered platinum-resistant and alternative agents will be used to treat 

a recurrence such as doxorubicin, topotecan, gemcitabine, etoposide and vinorelbine—very 
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similar therapeutic choices to advanced, treatment-resistant breast cancers162. Other options 

include bevacizumab, PARP inhibitors and various maintenance regimens—though when 

ovarian cancers become platinum-resistant and recur, the disease is essentially incurable. 

Understanding the mechanisms driving resistance to these initially effective therapies is a key 

step to improve the poor outcomes in patients with relapsed disease. 

Chemotherapy resistance is a common problem for advanced breast and ovarian cancers 

and given overlapping agents, mechanisms mediating this resistance are shared between the two 

diseases. Perhaps the most well established driver of chemotherapy resistance is through the 

activation of drug-efflux pumps—membrane bound proteins that eliminate hydrophobic 

compounds, including cancer agents, from cells. Members of this family, including ABCB1 and 

ABCG2 and their hyperactivation have been implicated in chemotherapeutic resistance in both 

breast and ovarian cancer166–168. Copper efflux transporters, such as ATP7A, selectively cause 

resistance to platinum based therapy in ovarian cancer cells through sequestering agents to 

intracellular vesicles and limiting their access to DNA, where the drugs crosslink DNA, inhibit 

DNA repair and drive cancer cells towards apoptosis169,170. Alterations in DNA repair, 

unsurprisingly, are another common pathway dysregulated in both chemoresistant breast and 

ovarian cancer. Disruption of the mismatch repair system (e.g. MLH1 and MSH2) can cause 

cancer cells to lose their ability to initiate apoptosis upon DNA damage and although BRCA-

deficiency is associated with favorable responses to chemotherapies, BRCA reversion can occur 

whereby mutant BRCA-cells acquire a wild-type allele after primary treatment, restore their 

ability for DNA-repair and thus become more resistant to DNA-damaging agents154,171–173. 

Altered cell states is also thought to contribute to disease progression, as malignant cells that 

switch to more mesenchymal and stem-like phenotypes has been associated with resistance to 
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cytotoxic agents168,174–176. Further mechanisms at play in chemoresistance include alterations in 

how the agents are metabolized, dysregulation of pro and anti-apoptotic mediators, autophagy 

and interactions with the microenvironment177,178. Again—despite the multi-mechanistic 

understanding of chemoresistance in breast and ovarian cancer models, molecular 

characterizations of advanced disease are scant, making it difficult to validate and act on these 

resistant mechanisms in the clinic. 

1.3 HYPOTHESIS 

The selection of therapy resistant and metastasis-capable malignant cells is ultimately the process 

that kills patients with cancer. Despite this fact, as it stands currently, the most well characterized 

cancers are relatively indolent primary tumors. Recent studies analyzing multiple patient-

matched, spatiotemporally collected specimens have suggested that metastatic or recurrent 

disease acquire clinically meaningful, sometimes patient-specific alterations not appreciated in 

primary tumors—both at the DNA and transcriptional level179,180. Indeed, an analysis of 

publically available data collated from an academic clinical sequencing center (1272 breast 

cancers; 795 metastases, 477 primary tumors)181 shows significantly enriched mutations in 

metastatic breast cancer versus primary disease (Figure 4).  

We hypothesize that advanced breast and ovarian cancers acquire recurrent 

molecular dependencies, distinct from primary tumors, throughout their life histories. In 

this collection of studies, we test this hypothesis by defining the altered molecular taxonomy 

of primary breast cancers following their development of estrogen-independence and 
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colonization of the brain and bone and ovarian cancers after establishing therapy 

resistance.  

Figure 4: Metastatic breast cancer SNV enrichments 
Somatic single nucleotide variation (SNV) frequencies in primary (n=477) and metastatic (n=795) breast cancers. 
Enrichment p-value in metastases was performed via a Fisher’s Exact test and its magnitude is highlighted by both 
size and color of circles on the plot. 
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2.0  INTRINSIC SUBTYPE SWITCHING AND HER2 GAINS IN BREAST CANCER 

BRAIN METASTASES 

2.1 ABSTRACT 

Breast cancer (BrCa) patients with brain metastases (BrM) have limited therapeutic options. A 

better understanding of molecular alterations acquired in BrM could identify clinically actionable 

metastatic dependencies. We aimed to (1) determine whether there are intrinsic subtype 

differences between primary tumors and matched BrM and (2) uncover BrM-acquired alterations 

that are clinically actionable. Out of 20 cases, 17/20 BrM retained the PAM50 subtype of the 

primary BrCa. Despite this concordance, 17/20 BrM harbored expression changes (< or > 2-fold) 

in clinically actionable genes including gains of FGFR4 (30%), FLT1 (20%), AURKA (10%) and 

loss of ESR1 expression (45%). The most recurrent expression gain was ERBB2, which showed a 

>2-fold expression increase in 7 of 20 BrM (35%). 3 of these 7 cases were HER2-negative, out

of 13 HER2-negative in the cohort, in the primary BrCa and became IHC-positive (3+) in the 

paired BrM with metastasis-specific amplification of the ERBB2 locus. In an independent 

dataset, 2 of 9 (22.2%) HER2-negative BrCa switched to HER2-positive with one BrM acquiring 

ERBB2 amplification and the other showing metastatic enrichment of the activating V777L 

ERBB2 mutation. An expanded cohort revealed that ERBB2 amplification and/or mutation is 

enriched in BrM versus local disease (13% local vs 24% BrM, p<0.001). Taken together, this 
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study demonstrates BrCa BrM commonly acquire alterations in clinically actionable genes, with 

metastasis-acquired ERBB2 gains in ~20% of HER2-negative cases.  

Contributors to study: Nolan Priedigkeit1, Ryan J. Hartmaier2, Yijing Chen1, Damir Vareslija3, 

Ahmed Basudan1, Rebecca J. Watters1, Roby Thomas1, Jose P. Leone4, Peter C. Lucas1, Rohit 

Bhargava1, Ronald L. Hamilton1, Juliann Chmielecki2, Shannon L. Puhalla1, Nancy E. 

Davidson1, Steffi Oesterreich1, Adam M. Brufsky1, Leonie Young3, Adrian V. Lee1
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3Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in 

Ireland, Dublin, Ireland 

4University of Iowa Holden Comprehensive Cancer Center, University of Iowa Hospitals and 

Clinics, C32 GH. 200 Hawkins Drive, Iowa City, IA, USA 
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2.2 INTRODUCTION 

Brain metastases (BrM) occur in 10-15% of patients with metastatic breast cancer (BrCa) and 

present a major clinical challenge, overshadowed by a relatively poor 8.5-month median overall 

survival182,183. Limited therapeutic options exist for patients with BrM and current management 

consists of surgical resection, radiation therapy and chemotherapy. HER2-positive BrM have 

demonstrated promising responses to HER2-targeted therapies in recent clinical trials, yet more 

comprehensive studies are needed to confidently define their utility184,185. Unfortunately, in 

patients with HER2-negative BrM, no targeted therapies have shown even modest benefits186. 

Clearly, there is an urgent need to better understand the mechanisms of BrCa metastasis to the 

brain and to define novel therapeutic targets. 

Although metastasis is the major contributor to mortality regardless of cancer type, our 

understanding of metastatic disease is remarkably limited. The mechanistic drivers of primary 

BrCa have been well-studied, largely spearheaded by collaborative efforts such as The Cancer 

Genome Atlas13. Metastatic breast cancers are much less well characterized, especially BrM 

given their relative anatomic inaccessibility. Molecular interrogations of patient-matched 

primary and metastatic lesions in other cancers have successfully identified mechanisms of 

tumor evolution and therapy resistance154,180,187,188. A recent, pan-cancer study on tumor 

evolution in BrM, which focused exclusively on single nucleotide variants and copy number 

changes, revealed metastasis-acquired DNA-level changes that may serve as therapeutic 

targets179.  
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In this study, we performed targeted expression profiling of 127 target genes from five 

breast cancer prognostic signatures on a molecularly diverse clinical cohort of 20 primary breast 

tumors and their patient-matched BrM to determine transcriptional differences between primary 

cancers and BrM and to define metastasis-acquired alterations that may be clinically actionable.  

2.3 MATERIALS AND METHODS 

2.3.1 Patient samples 

Eligible breast cancer cases had paired formalin-fixed paraffin-embedded (FFPE) tissue from 

primary and resected BrM. Given the rarity of samples, no exclusion criteria were enacted. In 

total, 20 cases of patient-matched primary breast tumors (10 ER-, 10 ER+) and BrM from two 

institutions were included—6 pairs from Royal College of Surgeons (RCS), Ireland and 14 pairs 

from University of Pittsburgh (Pitt), USA (Table 1). This study was reviewed and approved by 

Institutional Review Boards from both participating institutions (University of Pittsburgh IRB# 

PRO15050502, Royal College of Surgeons IRB #09-07). An independent, controlled-access 

dataset of 17 patient-matched samples with brain metastases generated by the Broad Institute 

was acquired from dbGap (phs000730.v1.p)179 under the IRB# PRO16030233. A collection of 

7,884 breast cancer tumor data (52% metastases, including BrM) was analyzed from Foundation 

Medicine with study approval by the Western Institutional Review Board (WIRB). 
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Table 1: Abridged clinicopathological features of brain metastasis cases 
Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; 
IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma. Hormone receptor status were called from IHC as 
per ASCO/CAP recommendations189,190. 

Case Tissue 
Source Pathology ER 

Status 
PR 

Status 
Her2 

Status 
Endocrine 
Therapy 

HER2 
Therapy 

RCS_1 RCS IDC Neg Neg Pos - - 

RCS_2 RCS IDC Neg Neg Pos - + 

RCS_3 RCS IDC Pos Neg Pos NA + 

RCS_4 RCS IDC Pos Neg Neg + - 

RCS_5 RCS IDC Neg Neg Neg - - 

RCS_6 RCS IDC Pos Neg Neg + - 

Pitt_6 Pitt IDC Neg Neg Neg - - 

Pitt_7 Pitt IDC Pos Neg Pos + + 

Pitt_12 Pitt IDC Neg Neg Neg - - 

Pitt_17 Pitt IDC Pos Neg Pos - + 

Pitt_25 Pitt IDC Neg Neg Neg - - 

Pitt_29 Pitt IDC Pos Neg Neg - - 

Pitt_47 Pitt IDC/ILC Pos Pos Pos + + 

Pitt_51 Pitt IDC Pos Neg Neg + - 

Pitt_52 Pitt IDC Neg Pos Pos - + 

Pitt_62 Pitt IDC Pos Pos Neg + NA 

Pitt_64 Pitt IDC Neg Neg Neg - - 

Pitt_68 Pitt IDC Neg Neg Neg + - 

Pitt_71 Pitt IDC Neg Neg Neg - - 

Pitt_72 Pitt ILC Pos Pos Neg + -
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2.3.2 Tissue processing 

Formalin-fixed paraffin-embedded (FFPE) tumor blocks were sectioned and H&E staining 

analyzed by a pathologist for histological and tumor cellularity classifications. All specimens had 

a tumor cellularity equal to or above 60% except for BM_Pitt_68 (40%) and BM_Pitt_71 (30%). 

Between four to ten (depending on tumor size) 10-micron FFPE sections immediately adjacent to 

the H&E-analyzed section were scrolled and pooled for dual DNA/RNA extraction using 

Qiagen’s AllPrep kit according to manufacturer’s instructions.  

2.3.3 Clustering and molecular subtyping 

Hierarchical clustering was performed on normalized expression data (Data Supplement 1: S2, 

S3). Clustering was performed using the hclust function in R, with 1 minus Pearson correlation 

as distance measures and the “average” agglomeration method. Heatmap was created with 

heatmap.3 in R. PAM50 molecular subtyping was performed using genefu191. To account for 

PAM50 test set bias, normalized expression data from a cohort of 20 tumor samples with known 

ER-status were subsampled to create a balanced cohort of ER-positive and ER-negative 

tumors192. A query sample of unknown molecular subtype was added to the balanced cohort. An 

intrinsic molecular subtype was called for the query sample using the pam50.robust model in 

genefu. This method was repeated for all 40 clinical specimens (Data Supplement 1: S4). 

OncoTypeDX scores were determined using unscaled genefu OncoTypeDX scores and a linear 

model generated from 72 samples with known OncoTypeDX scores as performed previously193. 
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2.3.4 Recurrent expression alterations 

Fold-change values were calculated between patient-matched primary and metastatic tumors 

using log2 transformed normalized expression counts for each gene (Data Supplement 1: S5). 

The mean fold-change between primary and metastatic lesions for all genes across all samples 

was -0.01 with a standard deviation of 1.04 (Appendix A.1: Figure 24). An ‘expression 

alteration’ was defined as a log2 fold-change value greater than or less than one standard 

deviation from the mean fold-change. Recurrent alterations were plotted using 

ComplexHeatmap194. To interrogate clinically significant alterations, the Drug-Gene Interaction 

(DGIdb 2.0) database was used195. All genes were input into the database and only those 

annotated as ‘clinically actionable’ (as of March 10th, 2016) were visualized. To plot and 

statistically assess gene-specific expression differences, the beeswarm R package was used to 

create ladder plots along with Wilcoxon signed-rank tests on paired (metastasis vs. primary) 

normalized log2 expression values. 

2.3.5 Immunohistochemistry 

10 micron FFPE sections were mounted on slides and stained for HER2 and ER as described 

previously and clinical staining scores were called in accordance with ASCO/CAP 

recommendations196.  
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2.3.6 Copy number alteration and single nucleotide variant analysis 

Tumor DNA quality was assessed by an Illumina FFPE QC Kit. DNA with a Delta Cq value 

below 5 were restored using the Infinium HD FFPE DNA Restore Kit. 200 ng of restored tumor 

DNA was analyzed on an Illumina iScan System using an Illumina HumanCytoSNP-FFPE v.2.1 

BeadChip. GenomeStudio was implemented to produce normalized logR intensity values from 

the two-color readouts using the HumanCytoSNP-12v2.1-FFPE_G.egt cluster file. These values 

were then analyzed using the copynumber package in R197. LogR values were preprocessed by 

excluding outliers via Winsorization and imputing missing measurements as a logR value of 0. 

Data then underwent multi-sample segmentation and final LogR values and segments were 

assessed and plotted for chromosome 17 (Data Supplement 1: S6). Raw fastq files from whole-

exome sequencing of an independent cohort of 17 patient-matched primary BrCa and BrM were 

aligned using bwa (v0.7.13), sorted with samtools (v1.3), duplicates marked and removed with 

picardtools (v1.140) and local realignment performed with GATK (v3.4-46)198–200. To estimate 

and plot copy number ratios, CNVkit was utilized on processed bam files201. A pool of bam files 

from normal tissue was used as a CNVkit reference. Log2 ratio estimates were then analyzed for 

metastasis-specific gains in ERBB2 by performing a student’s t-test on primary and metastatic 

estimated logR values across the 26 ERBB2 exonic regions (Data Supplement 1: S7). To 

discover ERBB2 activating mutations in the HER2-switching PB0049 case, the ERBB2 region 

was probed for somatic mutations using CLC Genomics Workbench (http://www.clcbio.com, 

v9.0) and IGV (v2.3.60)202.  
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2.3.7 FoundationOne ERBB2 alterations 

To test whether ERBB2 amplification and base pair mutation is metastasis-site specific, changes 

in this gene were evaluated in an expanded cohort of 7,884 breast tumors enriched for metastatic 

samples (52%) including liver (16.7%), lung (4.3%), bone (3.6%), and brain (2.0%) that 

underwent genomic profiling as part of routine clinical care in a CLIA-certified, CAP-accredited, 

and New York State-accredited laboratory (Data Supplement 1: S8203. ERBB2 alterations were 

identified as described previously203,204. 

2.4 RESULTS 

2.4.1 Expression concordance between primary tumors and matched brain metastases 

To determine the transcriptional similarity between primary tumors and patient-matched BrM, 

unsupervised hierarchical clustering was implemented using normalized gene expression values. 

This produced three major clades broadly classified as ER-positive, HER2-positive and ER-

negative (Figure 5A). The majority of patient-matched pairs (12/20) clustered within a single 

doublet clade. The 7 pairs that did not cluster within a doublet clustered within the same major 

clade.  

To further interrogate clinically relevant differences between the patient-matched 

samples, the intrinsic molecular subtype (PAM50) of each tumor was calculated. PAM50 

assignments were consistent in 17/20 pairs (Figure 5B) with 3 discordant pairs being Case 

RCS_2 (LumA to Her2), RCS_4 (LumB to LumA) and Pitt_47 (LumA to Her2). OncotypeDX 
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scores were also largely unchanged between primary and metastatic tumors, retaining their 

clinical risk score in 75% of cases (Appendix B: Table 8). 

Figure 5: Transcriptional similarity between primary breast cancers and matched brain metastases 
(A) Unsupervised hierarchical clustering heatmap of 20 patient-matched cases with hormone status (green =
positive, black = negative), tissue site source/institution (yellow = Royal College of Surgeons, Ireland, purple =
University of Pittsburgh, USA) and tumor site (blue = primary, red = metastasis) of each sample indicated; BP =
Breast Primary, BM = Brain Metastasis. Asterisk below plot indicate patient-matched pairs that clustered in the
same doublet of a clade in the dendrogram. (B) PAM50 intrinsic molecular subtype calls in patient-matched cases
(red = Basal, green = Her2, blue = LumA, yellow = LumB). Discordant pairs are marked with a delta symbol.
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2.4.2 Distinct expression gains of clinically actionable genes 

Despite a large degree of similarity within patient-matched pairs, 100 genes were recurrently 

altered (< or > 2-fold expression change) in BrM when compared to patient-matched primaries 

(Figure 6A). The most recurrently downregulated genes were cytokeratins—KRT17 being 

downregulated in 14 of 20 pairs, KRT5 and KRT14 in 15 of 20 pairs, p < 0.001 (Figure 6B). The 

most recurrently upregulated genes were RAB6B (9 of 20 pairs, p < 0.01, Wilcoxon signed-rank 

test) and GRB7 (8 of 20 pairs, p < 0.001).  

Ten genes in the panel are defined as clinically actionable in the DGIdb and many 

showed BrM-specific changes (Figure 7A). Of these, ERBB2 was the most recurrent alteration 

showing at least a 2-fold expression increase in 35% of BrM (p < 0.05). 3 of these 7 cases were 

classified as HER2-negative in the primary tumor. FGFR4 showed increased expression in 30% 

of samples, with 3 cases showing >4-fold increase. Other recurrent expression increases included 

FLT1 (20%), AURKA (10%) and EGFR (10%). The most recurrently downregulated gene was 

ESR1, showing a 2-fold decrease of expression in 4 samples and a >4-fold decrease in 5 samples 

(p < 0.05). 2 samples with the greatest fold-change in ESR1 switched expression from ER-

positive to ER-negative levels, while 3 samples with alterations in ERBB2 went from HER2-

negative levels to HER2-positive levels of expression (Figure 7B). 
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Figure 6: Recurrent expression alterations in breast cancer brain metastases 
(A) OncoPrint plot of recurrent expression alterations in 20 cases, ranked by frequency of alteration by gene. Blue tile represents a >2-fold decrease in the
patient-matched brain metastasis relative to the primary, while a red tile represents a >2-fold increase. (B) Paired ladder plots visualizing case-specific alterations
in the most recurrently upregulated and downregulated genes interrogated. Blue dots represent primary tumor expression values (Log2 normalized counts), red
dots represent metastatic tumor expression values; p-values (* p <= 0.05, ** p <= 0.01, *** p <= 0.001) shown are from Wilcoxon signed-rank tests.
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Figure 7: Expression alterations in clinically actionable genes. 
(A) Tile plot visualizing expressions alterations in clinically actionable genes. Top panel consists of recurrent increases in expression (light red = >2-fold
increase, dark red = >4-fold increase), bottom panel are recurrent decreases in expression (light blue = >2-fold decrease, dark blue = >4-fold decrease) between
patient-matched pairs. (B) Paired ladder plots of the two most recurrent upregulated and downregulated clinically actionable genes (ERBB2 and ESR1). Green
dots represent samples with suspected hormone status switching, p-values (* p <= 0.05, ** p <= 0.01, *** p <= 0.001) shown are from Wilcoxon signed-rank
tests.
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2.4.3 DNA-level HER2 acquisitions in breast cancer brain metastases 

To determine the consequences of ERBB2 mRNA expression changes, IHC was performed in 3 

samples with the greatest fold-changes in ERBB2. These samples were HER2-negative in the 

primary tumors by IHC (out of 13 HER2-negative primaries in the cohort). All three tumors 

showed significant increases in HER2 IHC scores—RCS_4; 1+ in primary, 3+ in BrM, RCS_6; 

1+ in primary, 3+ in BrM, Pitt_62; 0 in primary, 3+ in BrM (Figure 8A). SNP-array CNV 

analysis revealed HER2-status switching is driven by canonical amplification of the ERBB2 

locus (Figure 8B).  

We examined ERBB2 amplification and SNV in an independent cohort (n=17; 9 HER2- 

and 8 HER2+) of patient-matched breast cancer and BrM analyzed by whole-exome sequencing. 

One case (Broad_PB0150) showed metastasis-specific copy number gain in ERBB2, which was 

consistent with the case being HER2-negative in the primary and HER2-positive in the 

metastasis (Figure 8C, top). Another case (Broad_PB0049) switched from HER2-negative to 

positive, but no significant DNA-level gains in the BrM was found; however, there was an 

enrichment—from an allele frequency of 39% to 69%—of a somatic V777L activating mutation 

in the metastasis (Figure 8C, bottom).  

2.4.4 ERBB2 amplifications and SNVs enrichment in brain metastases 

To generalize these observations and test whether changes in HER2 status is specific to BrM, we 

analyzed a cohort of 7,884 breast cancers (7,265 with unambiguous tissue site information) 

representing 3135 cases of local disease and 4,130 cases of metastases for amplifications and/or 
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SNV in ERBB2. Comparing all local and metastatic tumors from all sites (Figure 8D, top) 

showed no significant difference; however, there was a strong and significant enrichment of 

ERBB2 alterations specifically in brain metastases (24%) compared to local disease (13%) 

(Fisher-exact p < 0.0005; Figure 8D, bottom). While SNVs were too infrequent to determine a 

significant enrichment in BrM, there was a slight enrichment (albeit not statistically significant) 

for ERBB2 SNVs with concurrent amplification (Data Supplement 1: S8). 
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Figure 8: ERBB2 gains in breast cancer brain metastases 
(A) Pitt_62 normalized counts of mRNA expression (blue = primary tumor, red = brain metastasis) with Primary
and Metastatic IHC staining of HER2. (B) LogR value plot for chromosome 17 in primary and brain metastasis
(BrM). ERBB2 region highlighted with a red arrow. (C) Top; Broad PB0150 CNVkit LogR plots from primary and
brain metastasis. Segmented LogR ratio means are marked with horizontal orange lines across a 4 MB region
surrounding the ERBB2 locus (marked with a vertical yellow line). Bottom; PB0049 V777L activating ERBB2
mutation in primary and brain metastasis as visualized in IGV. G to C variant highlighted in blue, along with variant
frequency barplots above. (D) Top; ERBB2 alterations (amplification or mutation, red) in 3135 local tumors and
4130 metastatic tumors. Bottom, ERBB2 alterations in local tumors and 167 brain metastases.
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2.5 DISCUSSION 

The brain is a common and catastrophic site of metastasis for breast cancer patients. Our 

understanding of metastasis-specific gene expression is limited, as are the options for treatment. 

In this study, the largest of its kind in BrCa BrM to date, we found that patient-matched primary 

BrCa and BrM have similar gene signatures; however, when examining on a gene-level, many 

recurrent changes were observed in clinically actionable genes. Importantly, we found that ~20% 

of HER2-negative breast cancers recur as HER2-positive with either ERBB2 amplification and/or 

gains in ERBB2-activating SNVs. Taken together, these observations have immediate clinical 

implications, as they (1) reveal that BrM acquire expression gains distinct from the primary 

tumor in targetable genes, many of which have open clinical trials or FDA-approved therapies, 

(2) establish that approximately 20% of patients with HER2-negative BrCa acquire BrM-specific

ERBB2 amplifications and/or activating SNVs that may be sensitive to existing therapies and (3) 

suggest that therapies and trial eligibilities on limited, single-platform molecular data from a 

primary tumor may engender missed opportunities in advanced cancer settings. 

A high degree of transcriptional similarity was observed between primary tumors and 

BrM, both across the entire gene set and when performing clinical gene signature assignments. 

Transcriptional concordance between patient-matched primaries and metastases has been 

appreciated in many cancer types205–208. Given the observed metastatic inefficiency of tumor 

cells to colonize a distant site, it is perhaps surprising that many tumors are similar to their 

patient-matched primary. A limitation to this study and others like it; however, is that 
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intermediate mechanisms of metastasis—such as those dictating intravasation, EMT, survival in 

circulation, extravasation, initial colonization and MET—are masked given the binary 

comparison of a primary tumor and a metastatic endpoint114. Further studies focusing on the 

intermediate steps, such as profiling of circulating tumor cells, would complement matched-

sample studies121,209. 

Nonetheless, even with a remarkable transcriptional similarity between paired samples, 

clinically actionable alterations were identified in all but 3 pairs, including ERBB2 which showed 

expression increases in 35% of BrM. The importance of ERBB2 in BrM, including mechanistic 

evidence of HER2’s contributions to brain metastasis in vivo, has been increasingly appreciated 

in the past decade with the most recent ASCO recommendation supporting HER2 testing in the 

metastatic setting189,210. Duchnowska et al. and Thomson et al. reported a HER2-negative to 

HER2-positive switching frequency of 16% and 18% respectively in BrM via IHC, with a 

portion of these BrM showing no copy number gains211,212. In a pan-cancer expression analysis 

of unmatched BrM, Saunus et al. found that breast cancer BrM have higher ERBB2 expression 

than BrM from other sites213. Additionally, in a single matched case, the authors identified a case 

that switched from a HER2-negative primary to HER2-positive BrM. The patient was treated 

with trastuzumab and lapatinib in the advanced setting and had a clinical response. The results 

herein further reinforce the notion that HER2 expression gains in BrCa BrM are relatively 

common (~35%), and even occur in HER2-positive disease—as 4 of 7 patients who were 

initially HER2-positive showed ERBB2 expression increases. Analysis of HER2-switching 

samples showed expression gains are partially driven by classical amplification of the ERBB2 

locus. Interestingly, the HER2-switching Broad_PB0049 case showed no copy number gains in 

the BrM, yet harbored an enrichment of the activating V777L ERBB2 mutation214, suggesting a 
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heretofore unknown mechanism of ERBB2 gain in metastatic tumors. These observations, 

especially in the context of patients classified as HER2-negative in the primary tumor, present 

immediate personalized treatment options.  

A hurdle to molecularly profiling brain metastases to inform therapeutic decisions; 

however, is their relative anatomic inaccessibility, as biopsying or resecting a brain metastasis 

can be impractical. Yet, for patients with inaccessible tumors, DNA-level alterations in ERBB2 

can be assessed in tumor DNA from circulating-free DNA and circulating tumor cells. Although 

there is evidence suggesting tumor DNA from brain lesions is more difficult to detect, recent 

advances in detection technologies and successful detection of circulating tumor DNA in 

cerebral spinal fluid are encouraging and should be further investigated for patients with BrM, 

especially given our observations215–217.  

Novel recurrent targetable alterations beyond ERBB2 were also discovered, including 

expression increases in FGFR4 (30% of pairs), FLT1 (20%), AURKA (10%) and EGFR (10%). 

Each one of these targets have clinical trials ongoing and our results suggest that trial eligibility 

requiring expression of these markers (NCT02325739) should assess the metastatic tumor, 

especially given up to 6-fold expression changes (i.e. FGFR4) in metastases relative to primaries. 

Significant loss of gene expression from the primary to metastatic lesions was also 

observed. The most recurrent expression losses involved cytokeratins. Cytokeratins have shown 

a complex role in oncogenesis and breast cancer metastasis, with loss of cytokeratin expression 

being a hallmark of EMT and metastasis116,218,219. Notably, CK5, CK14, and CK17 are expressed 

in basal and myoepithelial cells, suggesting the loss of keratin gene expression may be due to the 

departure from the breast environment.  



42 

One of the most recurrently downregulated genes was ESR1, showing a 2-fold decrease 

in expression in 45% of tumors, with some cases changing expression from ER-positive to ER-

negative levels. For example, case Pitt_47 harbored a >6-fold decrease in ESR1 expression in the 

brain metastasis and this loss of transcript expression was confirmed at the protein level via IHC 

(Appendix A.1: Figure 25). This patient received endocrine therapy and such recurrent losses in 

ESR1 have important implications, as loss of ER expression and coincidental activation of other 

mitogenic pathways is an established mediator of estrogen independence and hormone therapy 

resistance and has been shown to be prognostically significant44,220. Notably, this brain 

metastasis had a greater than two-fold increase of ERBB2 and greater than four-fold increase in 

FGFR4, perhaps suggesting these two mediators can maintain tumor growth in the absence of 

ER. 

 To conclude, this study identifies that breast cancer brain metastases are remarkably 

similar to patient-matched primary tumors transcriptionally; yet, despite this similarity, recurrent 

expression changes in clinically actionable genes are common. These results support the notion 

that that metastatic tumors may be considered distinct from primary tumors and provides 

rationale to comprehensively profile metastatic lesions to inform clinical decisions, such as 

targeted therapies and trial eligibilities, in advanced breast cancer. Furthermore, approximately 

20% of HER2-negative patients show CNV and SNV gains in HER2 across multiple cohorts, 

which warrants immediate clinical investigation as many of these patients will not be provided 

HER2-targeted therapies. 
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3.0  EXOME-CAPTURE RNA-SEQUENCING OF DECADE-OLD BREAST 

CANCERS AND MATCHED DECALCIFIED BONE METASTASES IDENTIFIES 

CLINICALLY ACTIONABLE TARGETS 

3.1 ABSTRACT 

Bone metastases (BoM) are a significant cause of morbidity in patients with Estrogen-receptor 

(ER)-positive breast cancer, yet characterizations of human specimens are limited. In this study, 

exome-capture RNA-sequencing (ecRNA-seq) on aged (8-12 years), formalin-fixed paraffin-

embedded (FFPE) and decalcified cancer specimens was first evaluated. Gene expression values 

and RNA-seq quality metrics from FFPE or decalcified tumor RNA showed minimal differences 

when compared to matched flash-frozen or non-decalcified tumors. ecRNA-seq was then applied 

on a longitudinal collection of 11 primary breast cancers and patient-matched de novo or 

recurrent BoM. BoMs harbored shifts to more Her2 and LumB PAM50 intrinsic subtypes, 

temporally influenced expression evolution, recurrently dysregulated prognostic gene sets and 

altered expression of clinically actionable genes, particularly in the CDK-Rb-E2F and FGFR-

signaling pathways. Taken together, this study demonstrates the use of ecRNA-seq on decade-

old and decalcified specimens and defines expression-based tumor evolution in long-term, 

estrogen-deprived metastases. 
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3.2 INTRODUCTION 

Bone metastases (BoM) occur in approximately 65-75% of breast cancer patients with relapsed 

disease, resulting in significant comorbidities such as fractures and chronic pain221. Following 

colonization to the bone, breast cancer cells exploit the local microenvironment by activating 

osteoclasts, which in turn provides proliferative fuel for tumor cells222. This process is targeted 

clinically using anti-osteoclast agents such as bisphosphonates and RANKL inhibitors, yet these 

therapies do not confer significant survival benefits223.  

Importantly, the majority of breast cancers that metastasize to bone are estrogen receptor 

(ER)-positive and present clinically in the context of long-term endocrine therapies such as 

selective estrogen receptor modulators and aromatase inhibitors (Section 1.1.2.1)224. In vivo 

models of BoM have unfortunately been somewhat restricted to ER-negative disease due to the 

more indolent characteristics of ER-positive cell lines225. Molecular characterizations of ER-

positive specimens that have recurred in an estrogen-deprived system, which represents the 

major burden of breast cancer BoM, are thus essential to reinforce the significant scientific 

contributions made using in vivo bone metastasis models135,226–228. Nonetheless, datasets are 

currently limited, in part due to the practical difficulties of obtaining and processing human BoM 

specimens229.  

Large-scale molecular characterizations of patient-matched samples—primary tumors 

and synchronous or asynchronous matched metastases—show that metastatic lesions acquire 

features distinct from primary tumors that are either clinically actionable or confer therapy 

resistance179,180,230. Indeed, current treatment guidelines in breast cancer recommend a biopsy to 

guide therapy in advanced disease if possible and our previous work (Chapter 2) further 

supported this notion21. Unfortunately, BoM often undergo harsh decalcification procedures with 
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strong acids to eliminate calcium deposits prior to specimen sectioning. Decalcification degrades 

nucleic acids and can alter results of immunohistochemistry231–233. Furthermore, formalin-fixed 

paraffin embedding (FFPE)—often performed in concert with decalcification—causes severe 

degradation and hydrolysis of RNA234. In light of this, new capture-based methods of nucleic 

acid sequencing on aged FFPE specimens have shown efficacy in identifying DNA variants and 

even guiding care in academic centers235–237. Exome-capture RNA-sequencing (ecRNA-seq) is 

less well characterized in aged tumor samples, although recent studies on FFPE specimens have 

shown promising expression correlations with flash-frozen tissues238–240. 

 Because of the untapped potential of archived, decalcified BoM specimens, the burden 

of BoM in breast cancer patients and the lack of long-term endocrine treated tumor datasets, the 

performance of ecRNA-seq from decade-old, degraded and decalcified tumor samples was first 

assessed. Following this evaluation, ecRNA-seq was then applied to a collection of 11 ER-

positive patient-matched primary breast cancers and bone metastases to define transcriptional 

evolution in breast cancer cells following metastatic colonization in the bone and years of 

endocrine therapy. 

3.3 MATERIALS AND METHODS 

3.3.1 Sample acquisition 

Eleven sets of formalin-fixed paraffin-embedded (FFPE) primary breast tumors and patient-

matched bone metastases (total of 22 samples) were obtained from the Health Sciences Tissue 

Bank, a certified honest broker facility at the University of Pittsburgh that maintains an IRB-
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approved protocol for collecting excess tissue and biological materials. A molecular pathologist 

reviewed hematoxylin and eosin slides from each sample and then subsequently cut 0.6-1 mm 

cores from the paraffin block exclusively from regions of high tumor cell purity for RNA 

extraction. De-identified clinical and biological data were collected under the approval of the 

University of Pittsburgh Institutional Review Board (Protocol numbers: PRO14040193 and 

PRO10050461). 

3.3.2 Tissue processing and RNA extraction 

 Tissues were digested over-night with shaking at 300 rpm at 56 °C in PKD buffer with the 

addition of proteinase K (Qiagen). RNA extraction was then performed with Qiagen’s FFPE 

RNeasy kit (Qiagen, Cat#73504) according to the manufacturer’s instructions under sterile 

RNase/DNase free conditions. RNA concentration was determined with the Qubit 3.0 

Fluorometer (ThermoFisher Scientific). Quality RNA integrity number (RIN) scores and 

fragment sizes (DV200 metrics) were obtained utilizing either the Agilent 2100 Bioanalyzer or 

the Agilent 4200 TapeStation.  

3.3.3 Exome-capture RNA-sequencing 

Sequencing library preparation was performed using a minimum of 25 ng of RNA according to 

Illumina’s TruSeq RNA Access Library Preparation protocol. Indexed, pooled libraries were 

then sequenced on the Illumina NextSeq 500 platform with a High Output flow cell producing 
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stranded, paired-end reads (2 X 75 bp). A target count of 50 million reads per sample was used to 

plan indexing and sequencing runs. 

3.3.4 RNA-sequencing expression quantification and normalization 

RNA transcripts from paired-end FASTQ files were mapped and quantified using k-mer based 

lightweight-alignment with seqBias and gcBias corrections (Salmon v0.7.2, quasi-mapping 

mode, 31-kmer index built from GRCh38 Ensembl v82 transcript annotations)241. Transcript-

level abundance estimates were collapsed to gene-level estimates using tximport2242. To filter 

out non- or low expressed genes, only genes harboring a TPM value of more than 0.5 in at least 

10% of samples were considered. Gene-level counts or log2 transformed TMM-normalized CPM 

(log2normCPM) values were implemented for subsequent analyses243,244. 

3.3.5 Expression correlations and RNA-seq quality assessment 

Exome-capture RNA-seq was performed on two cohorts: 1) a set of four aged (ranging from 8 – 

12 years) primary breast cancer specimens that at the time of surgical resection were split in half 

and either immediately embedded in optimal cutting temperature (OCT) compound and flash-

frozen for storage at -80C, or formalin-fixed paraffin embedded (FFPE) and stored at room 

temperature. A second cohort consisted of three breast cancer bone metastases that at the time of 

resection were split in half and either decalcified or nondecalcified and processed to FFPE. 

These datasets were quantified and normalized as described above. Pearson r correlations 

between all samples were determined using log2normCPM values. Reads and mapping rates 

were obtained from Salmon. More detailed RNA-seq metrics were calculated and plotted using 
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QoRTs (v1.1.8) following two-pass read alignment with STAR (v2.4.2a) for the 11 patient-

matched cases245,246. 

3.3.6 tumorMatch patient-matched sample identifier 

To confirm samples were patient-matched, variants from RNA-seq were called using GATK’s 

Best Practices for variant calling on RNA-seq247. Output .vcf files were then provided to 

tumorMatch, a custom R script that analyzes a pool of .vcf files and calculates the proportion of 

shared variants (POSV) between each .vcf. These proportion values were visualized using 

corrplot in R248. 

3.3.7 Unsupervised hierarchical clustering and intrinsic subtyping 

Hierarchical clustering was performed using the heatmap.3 function 

(https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R) in 

R on log2normCPM values of the top 5% most variable genes (defined by IQR) with 1 minus 

Pearson correlations as distance measurements and the “average” agglomeration method. 

PAM50 calls were generated using the molecular.subtyping function in genefu191. A separate 

cohort of exome-capture RNA-sequencing expression data from primary tumors (n = 12 ER-

negative, 9 ER-positive) was merged with the bone metastasis cohort to help account for test-set 

bias and increase the stability of the PAM50 assignments192. To call PAM50 subtypes, for each 

query sample in the bone metastasis cohort a random subset of primary tumor expression data 

was added to enforce a balanced distribution of ER-positive and ER-negative tumors. This was 

repeated 20 times and the discrete PAM50 subtype was designated as the mode of this 20-fold 

https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R)
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PAM50 assignment test while the final probability score was an average of all 20 probability 

scores from genefu. 

3.3.8 Differential gene expression 

Salmon gene-level counts with effective lengths of target transcripts were used to call 

differentially expressed genes (DEGs) between primary tumors and bone metastases using 

DESeq249. Given samples were patient-matched, a multi-factor design was implemented 

(~Patient + Tumor [i.e. primary vs. metastasis]). Genes with an FDR adjusted p-value of less 

than 0.10 were assigned as differentially expressed. An unclustered heatmap using 

log2normCPM values from the 207 DEGs, first segregated by metastatic log2FoldChange gains 

and losses and then sorted by DESeq2 adjusted p-values, was created in R using heatmap.3. 

Differentially expressed genes within the MsigDB database that were gained or lost in bone 

metastases were separately interrogated for gene ontology (GO: Biological Process) enrichment 

by computing significant (top 10 gene sets) gene overlaps using the MsigDB online tool250.  

3.3.9 ssGSEA signatures and METABRIC survival analyses 

Microarray expression along with disease-specific survival (DSS) data was obtained from the 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) through 

Synapse (https://www.synapse.org/, Synapse ID: syn1688369), following IRB approval for data 

access from the University of Pittsburgh14. Normalized expression values from IHC-confirmed 

ER-positive tumors were used to develop a single-sample gene-set enrichment score (ssGSEA) 

for strongly DEGs (adjusted p-value < 0.05) between primary tumors and bone metastases251. 48 
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genes that carried positive log2FoldChange values and had a corresponding gene expression 

value in METABRIC were assigned to the “boneMetSigUp” signature; 74 genes with negative 

log2FoldChange values were assigned to the “boneMetSigDown” signature. A ssGSEA score for 

each sample from both gene sets was calculated using the ssGSEA method implemented in the 

GSVA R package252. Binary dichotomization of samples (low vs. high) based on ssGSEA 

signature score strata (10th, 25th, 50th, 75th, 90th percentiles) and log-rank testing were used to 

assess significant differences in DSS253. The strata with the most significant log-rank p-values 

were plotted using survminer from CRAN254. 

3.3.10 Ranked Gene Set Enrichment Analysis (GSEA) 

To determine pathways significantly enriched or lost in breast cancer bone metastases versus 

patient-matched primaries, GSEA analyses were performed using gene sets with coordinately 

expressed genes representing specific biological and cancer-related pathways (MSigDB: H and 

C6 sets). Input into GSEA was a ranked list (DESeq2 log2FoldChange values) of 21,702 genes. 

Enrichment scores, significance values and plots were generated using default settings of the 

Broad Institute’s javaGSEA Desktop Application (v2.2.3). 

3.3.11 RBBP8 survival analysis 

RBBP8 expression was further interrogated and plotted using log2normCPM values from 

patient-matched tumors. RBBP8 expression influence on DSS in METABRIC ER-positive 

patients was interrogated as described above. RBBP8 expression influence on bone-met free 
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survival (BMFS) was assessed by querying a GCRMA-normalized microarray expression dataset 

(GSE12276) from 204 primary tumors and associated survival data as described above139.  

3.3.12 Gains and losses in clinically actionable genes 

Clinically actionable gene set was obtained using the Drug Gene Interaction Database (DGIdb 

2.0)195. Considering metastatic fold-change distributions calculated from log2normCPM values 

for all genes were slightly different for each case, stringent case-specific fold-change thresholds 

were used to transform continuous fold-change values into discrete “expression alterations.” 

More specifically, if the fold-change value for a clinically actionable GENE_X was greater than 

the 95th percentile of all gene fold-change values in that case, GENE_X would be designated as a 

significant, case-specific expression gain. If the fold-change value for GENE_Y was lower than 

the 5th percentile, GENE_Y was designated as a significant, case-specific expression loss 

(Supplementary Data S13). After assigning discrete expression alteration calls to clinically 

actionable genes, data was visualized using the OncoPrint function in ComplexHeatmap194. 

3.3.13 Statistical considerations 

To determine differentially expressed genes between patient-matched primary tumors and bone 

metastases, DESeq2 was used. DESeq2 is designed for RNA-seq gene-based count abundance 

estimates and assigns differential expression p-values based on a negative binomial distribution. 

For Kaplan-Meier curves, the logrank test was used to determine statistically significant 

differences in event probabilities (i.e. death or time to metastasis) based on binary expression or 
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signature strata. For single gene queries, paired Wilcoxon-signed ranked tests on log2normCPM 

values were used. 

3.4 RESULTS 

3.4.1 ecRNA-sequencing of aged and decalcified breast cancers 

To determine the feasibility of sequencing an aged, FFPE and decalcified tumor cohort, ecRNA-

seq on two separate sample sets was performed. The first sample set included four cases of 

primary breast tumors that at the time of resection, were split in two. One part was flash-frozen 

and stored at -80 C and the other tumor section was formalin-fixed paraffin embedded and stored 

at room temperature. Storage times ranged from 8.2 to 12.3 years. Post-alignment RNA-

sequencing QC analyses showed differences in GC content and insert size, yet gene body 

coverage and transcript diversity assignments were largely similar (Figure 9A). After quantifying 

and normalizing gene abundances, expression correlations between frozen and FFPE matched 

samples were assessed using log2normCPM values. Pearson r correlations ranged from 0.929 to 

0.963, with an average correlation of 0.953 (Figure 9B). The same analysis was performed using 

a second sample set of matched FFPE-decalcified and FFPE-non-decalcified samples. Again, no 

concerning deviations in RNA-seq quality metrics were observed between the two differently 

processed sample groups (Figure 9C) and Pearson r expression correlations ranged from 0.936 to 

0.969 (Figure 9D). Furthermore, correlation matrices of the two sample sets showed matched 

tumor sample expression values were more similar to each other than expression values from 

tumors with equivalent processing and storage (Appendix A.2: Figure 26). Full RNA-seq metrics 



54 

from the QC analysis did reveal differences in some metrics between FFPE and flash-frozen 

tissue (i.e. splice junction loci number), that may be informative for other applications such as 

indel mutation calling or isoform detection (Data Supplement 2: S1, S2). In summary, ecRNA-

seq shows outstanding quality metrics for analysis of aged FFPE and decalcified bone metastases 

samples. 

3.4.2 ecRNA-seq of breast cancer bone metastases 

Following the validation of ecRNA-seq, a cohort of 11 ER-positive patient-matched primary 

tumors and BoMs was acquired through the University of Pittsburgh Health Science Tissue Bank 

(Table 2, Data Supplement 2: S3). Abstracted clinical records showed that nearly all patients 

(10/11) were documented as having received adjuvant endocrine therapy, and bone metastasis 

free survival ranged from 0 (de novo bone metastasis) to greater than 5 years with the most 

common site of bone metastasis being the vertebral column.  

ecRNA-seq was performed on the 22 samples yielding an average read count of 

58,294,593 and an average Salmon transcript mapping rate of 92.6% (Data Supplement 2: S4). 

Consistent with the initial quality control studies above, quality metrics on these samples showed 

consistent gene body coverage, GC content, insert sizes and transcript diversity regardless of 

decalcification status (Appendix A.2: Figure 27, Data Supplement 2: S5). Furthermore, since 

samples within the cohort had been surgically excised and banked many years apart, all paired 

specimens underwent an analysis of shared variants, which confirmed tumor pairs were patient-

matched (Appendix A.2: Figure 28).  
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Table 2: Clinicopathological features of breast cancer bone metastasis cohort 
Abbreviations: Dx, diagnosis; Tx, therapy; ER, estrogen receptor; PR, progesterone receptor; HER2, human 
epidermal growth factor receptor 2; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; BoM, bone 
metastasis; BMFS; bone metastasis free survival; OS, overall survival 

Case Age 
Dx 

Hist 
Subtype Stage ER 

Prim 
PR 
Prim 

HER2 
Prim 

BoM 
Location 

BoM 
Decal 

Endo 
Tx 

HER2 
Tx 

Radio 
Tx 

Chemo 
Tx BMFS OS 

17 54 IDC IIIA Pos Pos Neg Ileum Yes Yes No Yes Yes 24 46 

19 50 
IDC w/ 
lobular 
features 

IV Pos Pos Neg Vertebra No Yes No Yes No 0 75 

22 60 IDC IIA Pos Pos Neg Femur No Yes No Yes Yes 18 37 

31 59 
IDC w/ 
lobular 
features 

IIB Pos Pos Neg Vertebra Yes Yes No Yes Yes 43 55 

34 38 IDC IIIA Pos Pos Neg Vertebra Yes Yes No Yes Yes 65 130 

43 65 IDC IV Pos Pos Neg Vertebra Yes Yes No Yes No 0 54 

44 56 IDC IA Pos Pos Pos Femur No NA Yes Yes Yes 23 42 

48 49 ILC IIIC Pos Pos Neg Vertebra No Yes No Yes Yes 28 68 

55 56 IDC IV Pos Pos Neg Femur No Yes No NA No 0 137 

60 44 IDC IIB Pos Pos Neg Sacrum Yes Yes No Yes Yes 46 53 

A25 39 IDC IIIA Pos Pos Neg Femur Yes Yes Yes Yes Yes 38 57 



56 

Figure 9: Exome-capture RNA-sequencing of aged, FFPE and decalcified tumors 
(A) RNA-seq quality metrics (GC content, insert size, gene body coverage and cumulative gene assignment
diversity) of aged and tumor-matched FFPE and flash-frozen (FF) sample; FF samples in blue, FFPE samples in red.
(B) Expression value correlations between four sets of matched tumor samples (FF vs. FFPE) along with Pearson r
correlations and sample ages. (C) RNA-seq quality metrics of matched non-decalcified and decalcified samples;
non-decalcified samples in blue, decalcified samples in red. (D) Expression correlations between three sets of
matched tumor samples (non-decalcified vs. decalcified) along with Pearson r correlations.
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3.4.3 Clustering and temporal expression shifts 

Unsupervised hierarchical clustering of patient-matched pairs revealed that decalcification of 

BoMs did not produce independent clades, with 5 of 11 BoM clustering in the same doublet 

clade as their matched primary (denoted with * in Figure 10A). Notably, 3 of the 5 doublet 

clustering cases were de novo metastases. Discrete PAM50 intrinsic subtype assignments were 

identical in 6 of 11 pairs. 2 pairs switched from LumA to LumB in the metastasis, 1 pair from 

LumB to LumA, 1 pair from LumB to Her2 and another was classified as Normal subtype in the 

primary tumor and LumB in the BoM (Figure 10B). To obtain more granularity than discrete 

PAM50 calls, probability scores for each PAM50 subtype were assigned (Figure 10B and Data 

Supplement 2: S6). Her2 and LumB profile gains (defined as a probability gain of >10% in a 

matched BoM) were the most common—being observed in 4 of 11 cases (Figure 10B). Given 

observed shifts in expression profiles of bone metastases and doublet clustering of de novo bone 

metastases, temporal influence on transcriptional evolution was analyzed. Pearson r correlations 

between each patient-matched pair using log2normCPM expression values were utilized as a 

metric for transcriptional similarity. Expression pair similarity was significantly correlated 

(Pearson r = -0.864, p-value < 0.001) with time from primary tumor diagnosis to bone metastasis 

(Figure 10C). 
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Figure 10: Unsupervised clustering, intrinsic subtype shifts and temporal evolution of ER-positive bone 
metastases. 
(A) Unsupervised hierarchical clustering heatmap (red = high relative expression, blue = low relative expression) of
patient-matched pairs using the top 5% most variable genes (n = 1096) across the cohort. Tumor (primary in blue,
metastasis in red) and decalcification status (positive in green, negative in black) indicated. Asterisks below heatmap
designate patient-matched pairs that cluster in a single doublet clade. (B) Discrete PAM50 assignments (red = basal,
green = HER2, blue = LumA, purple = LumB, yellow = Normal) and PAM50 probabilities for patient-matched
pairs. PAM50 probability shifts in metastases (if greater than 10%) are marked with a black diamond. (C)
Correlation of patient-matched tumor expression similarity versus clinical time to metastasis with Pearson r value
and correlation p-value.
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3.4.4 Differentially expressed genes 

To determine genes consistently up- or downregulated in bone metastases, a paired DESeq2 

differential gene expression analysis was performed. 207 genes were differentially expressed 

(FDR adjusted p-value < 0.10)—80 genes with increased and 127 genes with decreased 

expression in bone metastases (Figure 11A, Data Supplement 2: S7). Gene ontology analysis was 

performed to determine biological processes represented in the up- and downregulated gene sets. 

Generally, genes within osteogenic programs showed the most significant increases in expression 

while muscle-related, adhesion and motility gene sets were found to be significantly lost in bone 

metastases (Figure 11A, Data Supplement 2: S8, Appendix A.2: Figure 29). Given that a subset 

of these genes may be mediating therapy resistance and/or distant metastases, single sample gene 

set enrichment analysis (ssGSEA) scores251 were calculated using tumor expression data from 

patients with long-term outcomes in METABRIC14. Two separate gene lists were created to 

build the signatures—representing the most significantly upregulated (boneMetSigUp) and 

downregulated (boneMetSigDown) genes in bone metastases (Data Supplement 2: S9). Tumors 

intrinsically expressing higher boneMetSigUp and lower boneMetSigDown ssGSEA scores 

conferred worse (log-rank p-value < 0.001) disease-specific survival outcomes (Figure 11B). To 

increase the power of discerning gene expression effects due to long-term estrogen deprivation, a 

differential gene expression analysis was performed excluding the treatment-naïve, de novo bone 

metastases. This yielded a list of 612 differentially expressed genes (Data Supplement 2: S10), 

some of which were not detected as differentially expressed with treatment-naïve de novo bone 

metastasis cases included.  
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Figure 11: Differentially expressed genes in patient-matched bone metastases 
(A) Left, heatmap (red = high relative expression, blue = low relative expression) of log2normCPM values from 207 differentially expressed genes (FDR
adjusted p-value < 0.10) between primary tumors and patient-matched bone metastases. Heatmap is segregated into two sections; genes with log2FoldChange > 0
on top and genes with log2FoldChange < 0 on bottom. Each section is gene-sorted by adjusted p-values. Right, Gene Ontology: Biological Process gene overlap
analysis for genes with significant expression gains (top, red) and losses (bottom, blue) in bone metastases. Top 10 pathways are shown alongside FDR adjusted
q-values. (B) Disease-specific survival outcome differences in ER-positive METABRIC tumors using boneMetSigUp (top) and boneMetSigDown (bottom)
expression scores as strata. 95% confidence intervals are highlighted along with log-rank p-values and associated risk table.
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3.4.5 Dysregulated gene sets and RBBP8 expression loss 

To determine pathway level changes in breast cancer bone metastases, a pre-ranked GSEA was 

performed. All genes were ranked by DESeq2 calculated log2 fold-changes (metastasis vs. 

primary, Data Supplement 2: S11) and then analyzed for enrichments using Molecular Signature 

Database (MsigDB) gene sets (http://software.broadinstitute.org/gsea/msigdb, H: Hallmark gene 

sets, C6: Oncogenic signatures)250. This yielded several significantly metastasis-enriched and 

metastasis-diminished gene sets (FDR q-val < 0.10, Data Supplement 2: S12). The three most 

significantly enriched gene sets in metastases involved E2F transcription factor targets, genes 

mediating the G2M checkpoint and an experimental perturbation gene set consisting of genes up-

regulated with knockdown of RBBP8 in a breast cell line (Figure 12A). Other upregulated gene 

sets included hedgehog signaling and gene sets associated with Rb loss and KRAS gains. The 

three most significantly negatively correlated gene sets consisted of an NFKb/TNF gene set, 

genes involved in epithelial mesenchymal transition (EMT) and an embryonic development gene 

set. We further interrogated RBBP8 due to it being the most significant gene set enriched in bone 

metastasis. As predicted by the enrichment, bone metastases carried significant RBBP8 

expression loss (Wilcoxon-signed rank p-value = 0.02), with 5 of 11 metastases [45%] having at 

least a 2-fold decrease in expression versus patient-matched primaries (Figure 12B). Tumors 

intrinsically expressing lower levels of RBBP8 showed worse disease-specific and bone 

metastasis-free survival outcomes (Figure 12C).  

http://software.broadinstitute.org/gsea/msigdb
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Figure 12: Dysregulated gene sets and RBBP8 loss in breast cancer bone metastases 
(A) Top three enriched and depleted gene sets (by FDR q-value) in bone metastases from ranked GSEA analysis.
Gene list ranking was performed using log2FoldChange values from DESeq2 differential expression output, where a
positive log2FoldChange represents increased expression in metastasis (red) and a negative log2FoldChange
represents decreased expression in metastasis (blue). Green line shows running enrichment score as algorithm walks
down the ranked gene list. Black vertical lines below curve show where genes within the query gene set are
represented in the ranked list. Normalized enrichment score (NES) and FDR q-values are noted below gene set
names. (B) RBBP8 expression values (log2normCPMs) in primary tumors (blue) and bone metastasis (red). Pairs are
connected with a line and Wilcoxon signed-rank p-value is shown. (C) Disease-specific survival outcome
differences in ER-positive tumors (METABRIC) and bone metastasis free survival differences (GSE12276) using
normalized RBBP8 expression values as strata. 95% confidence intervals are highlighted along with log-rank p-
values and risk tables.

3.4.6 Expression gains and losses in clinically actionable genes. 

Because of the observed acquisition of clinically actionable targets reported in other studies of 

paired primary and recurrent tumors (Chapter 2)179,230, a paired expression analysis to define 

clinically actionable expression changes in ER-positive bone metastases was performed (Data 

Supplement 2: S13). Using stringent, case-informed cutoffs for expression alterations (Appendix 



63 

A.2: Figure 30), the most common expression losses in bone metastases were PIK3C2G [8 of 11,

73%], ESR1 [7 of 11, 64%] and TUBB3 [6 of 11, 55%] (Figure 13A and Appendix A.2: Figure 

31). Other notable losses included GREM1, PTPRT, CDKN2A, KIT and GATA3. The most 

recurrent expression gains were FGFR3 [7 of 11, 64%], EPHA3 and PTPRD [6 of 11, 55%]. 

PDGFRA, PTCH1, ALK, HGF, FGFR1 and FGFR4 also showed highly recurrent gains (Figure 

5B). Interestingly, some expression gains were absent in de novo bone metastasis cases (Cases 

19, 53 and 55) yet highly recurrent in long-term endocrine-deprived cases (EPHA3, PTPRD, 

PDGFRA, PTCH1), suggesting clinically actionable, treatment-driven gains in endocrine-

resistant breast cancer recurrences. 
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Figure 13: Recurrent, clinically actionable expression gains and losses in ER-positive bone metastasis 
(A) Recurrent expression alteration losses, ranked by frequency, for each patient-matched case (columns). Each blue tile represents a bone metastasis with a
lower log2FoldChange vs. its matched primary than the case-specific expression loss threshold. Expression values (log2normCPMs) for most recurrent losses
(PIK3C2G, ESR1) are pair plotted with corresponding Wilcoxon signed-rank test p-values noted. (B) Recurrent expression alteration gains, ranked by frequency.
Red tiles represent bone metastases with higher log2FoldChange than the case-specific expression gain thresholds. The two most recurrent expression gains
(FGFR3, EPHA3) are also plotted.
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3.5 DISCUSSION 

Bone is the most common site of distant recurrence for patients with ER-positive breast cancer, 

yet comprehensive sequencing datasets of endocrine therapy treated, metastatic samples are 

currently limited. This is in part due the challenge of obtaining tissue, and degradation of nucleic 

acids caused by decalcification. In this study, we found that aged FFPE and FFPE-decalcified 

tumors showed highly similar transcript quantification values as matched flash-frozen and FFPE-

non-decalcified tumors. As a proof-of-concept, we then applied ecRNA-seq to a cohort of 

patient-matched primary and bone metastases collected over a period of five years. We identified 

subtle shifts in intrinsic subtypes and found a strong temporal influence on transcriptional 

evolution in breast cancer recurrences. Furthermore, we created several differentially expressed 

gene sets/signatures that are prognostic and point towards acquired RBBP8 loss, CDK-Rb-E2F 

and FGFR pathway gains as mediators of ER-positive breast cancer progression. Lastly, we 

found bone metastases commonly gain or lose expression in clinically actionable genes, which 

may be distinct from primary tumors. 

ecRNA-seq is an effective method for quantifying expression on aged, FFPE and 

decalcified tumor specimens. Previous work has assessed nucleic acid amplification success, 

DNA-sequencing and RNA integrity metrics using decalcified samples233,255,256; however, a 

comprehensive analysis of RNA-sequencing, to our knowledge, has not yet been performed. 

Consistent with only very minor differences between GC content, insert sizes and other QC 

metrics, gene expression values between aged matched FFPE/flash-frozen and FFPE-

decalcified/FFPE-non-decalcified tumors are highly correlated (Pearson r range 0.929 – 0.969). 
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This study reinforces and should encourage the use of capture-hybridization approaches to 

sequence RNA from retrospectively collected, low yield, highly degraded and decalcified 

archival specimens (Data Supplement 2: S14)238–240. Expanding sample sets and modalities for 

genome-wide characterization, especially for rare specimen cohorts that may be impractical to 

obtain prospectively in large numbers, will accelerate translational discoveries. 

Given promising results from our evaluation, we applied ecRNA-seq in a proof-of-

concept effort to characterize the transcriptome of 11 archival patient-matched ER-positive 

primary and recurrent metastases— 3 cases having treatment-naïve, de novo bone metastases and 

8 recurrent cases harboring long-term endocrine-therapy treated metastases. In the recurrent 

cases, bone metastasis-free survival ranged from 18 to 65 months. Despite a large portion of the 

bone metastases being decalcified, global transcriptome QC metrics showed similar features (i.e. 

GC content, insert sizes, gene body coverage and transcript assignment diversity) and no outliers. 

Consistent with this, unsupervised hierarchical clustering showed no distinct clusters of 

decalcified samples, with 5 bone metastases clustering in the same doublet clade as their patient-

matched primary breast cancer. Interestingly, 3 of these doublet clustering pairs were clinically 

de novo, treatment naïve bone metastases, implying limited transcriptional evolution from the 

primary tumor in synchronous metastases. This was further corroborated with a striking negative 

correlation between patient-matched expression similarity and time to bone metastasis, 

suggesting metachronous metastases that present later in their treatment course are more 

dissimilar from their derived primary lesions. Intrinsic subtyping revealed 5 of the 11 cases 

changed PAM50 subtypes, with 3 cases switching to LumB in the metastasis and another 

switching to Her2. Subtle Her2 and LumB profile shifts were also the most common when 

observing continuous PAM50 probability scores, even in samples that remained concordant in 



67 

their discrete PAM50 assignments. A recent, targeted expression study analyzed PAM50 

assignments in 123 matched breast cancer metastases and the authors found similar frequencies 

of LumB and Her2 acquisitions in ER-positive metastatic tumors257. Given this transcriptional 

evolution to more LumB and Her2 profiles, a thoughtful reevaluation of therapy selection in the 

advanced and perhaps the adjuvant setting may be necessary.  

 We found 207 genes to be differentially expressed between primary tumors and patient-

matched bone metastases. The top upregulated genes belonged to osteogenic gene sets—BGLAP, 

RANKL, PTH1R all showing significant expression gains—and supports in vivo modelling 

observations of breast cancer osteomimicry and hijacking of the bone microenvironment258. 

Downregulated gene sets included genes involved in broad categories such as cellular adhesion, 

hemidesmosome assembly and epithelium development, pointing towards specific biological 

programs lost following metastatic colonization. Moreover, when either the upregulated or 

downregulated genes are expressed coordinately in primary tumors, we found that they confer 

worse and better outcomes respectively in ER-positive tumors, suggesting some tumors may 

develop these transcriptional programs early in their evolution. Lastly, a differential expression 

analysis between endocrine naïve primary tumors and long-term endocrine treated bone 

metastases identified a larger list of differentially expressed genes. Importantly, known 

mediators of endocrine resistance are represented in the list, including dysregulated expression of 

Wnt family members259, expression gains in FGFR150, FOXC1260 and loss of ESR1 expression44. 

Notably, many of these genes do not overlap with the differential expression analysis that 

included the de novo metastases, suggesting expression alterations specific to late recurrent 

therapy-treated tumors. This non-overlapping gene set included a greater than 2-fold average 

expression gain of ABCG2 in therapy-exposed metastases—a multidrug resistance protein shown 
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to be active in breast cancer261,262—and loss of CDKN2A. CDKN2A encodes p16, a negative 

regulator of CDK4/CDK6 and is located on a common somatically deleted region (9p21) in 

cancer263. Given recent success of CDK4/CDK6-inhibiting compounds (palbociclib and 

ribociclib) in treating ER-positive breast cancers, this recurrent, acquired, metastatic-specific loss 

of CDK2NA is a clinically important observation106–108. 

Following significant gene-level changes, a gene set enrichment analysis defined 

enriched and diminished pathways in breast cancer bone metastases. Enriched genes included 

those involved in G2M checkpoint and E2F targets. Consistent with the observed LumB 

enrichments, breast cancer cells appear to develop a more proliferative phenotype following 

bone colonization and the strong enrichment of E2F signature in metastatic disease again 

highlights the CDK-Rb-E2F pathway as a potential actionable target. Interestingly, another study 

that utilized a targeted gene expression platform found proliferative gene signatures in ER-

positive metastases may be more accurate at predicting overall survival than signatures in the 

primary tumor257. A survival analysis for this work was impractical given the small set of 

patient-matched pairs, but future meta-analyses are warranted to determine if gene expression 

signatures in metastases are better predictors of overall survival in the advanced setting, 

especially given the significant transcriptomic shifts observed in this study.  

The most significant gene set enriched in bone metastasis was an experimental 

perturbation gene set involving the knockdown of the tumor suppressor RBBP8264. RBBP8 (also 

known as CtIP) binds directly to Rb, mediates cell cycle regulation, helps maintain genomic 

stability and loss of RBBP8 incurs tamoxifen resistance and sensitizes breast cancer cells to 

PARP inhibition in vitro265–268. Concordant with the GSEA analysis, bone metastases have 

significant expression loss of RBBP8, with 45% of cases showing a greater than 2-fold decrease 
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in expression. We found low RBBP8 expression in ER-positive tumors confers poorer disease-

specific survival and bone metastasis-free survival outcomes. These observations point to RBBP8 

loss in metastatic breast cancers as being a prime, perhaps therapeutically relevant candidate for 

further preclinical investigations.  

Lastly, considering we have previously shown that brain metastases acquire highly 

recurrent gains in clinically actionable genes (Chapter 2)230, particularly in HER2, we analyzed 

the same set of genes in bone metastases. All tumors harbored significant gains and losses, some 

of which were highly recurrent. PIK3C2G, a relatively uncharacterized gene in the PI3K 

pathway, was the most recurrent gene expression loss. Other notable losses included ESR1, 

CDKN2A and GATA3—genes that have already been implicated in endocrine therapy resistance 

in experimental models. Intriguingly, GATA3 is one of the most recurrently mutated genes in 

breast cancer, being particularly enriched in ER-positive disease13. Moreover, GATA3 inhibits 

breast cancer metastasis in various model systems and given losses of GATA3 in ER-positive 

bone metastases are common, further evaluation of GATA3 as a potentially targetable breast 

cancer metastasis suppressor gene should be encouraged260,269,270. Metastatic gains included 

FGFR family members (FGFR3, FGFR4, FGFR1), ALK and KDR—all protein products having 

small molecules currently in clinical trials. Interestingly, some highly recurrent expression gains 

(i.e. EPHA3, PTPRD, PDGFRA, PTCH1) were exclusive to long-term endocrine treated bone 

metastases suggesting them as prime, clinically actionable candidate mediators of therapy 

resistance. Collectively, these observations provide yet further evidence of acquired 

transcriptional programs in metastatic lesions and suggests that precision care in breast cancer 

should be informed by molecular features of advanced tumors in order to not miss targetable 

metastatic dependencies acquired in advanced disease. 
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Although this study points towards ecRNA-seq as being a viable option to characterize 

the transcriptome of archived, decalcified specimens, there are limitations. Firstly, multiple 

methods are used for decalcification with varying effects on nucleic acids and we were unaware 

of this information for the profiled specimens, as it is rarely recorded in clinical notes233. 

Secondly, in primary versus metastatic expression studies, it is difficult to deconvolute 

expression contributions from tumors versus the altered microenvironment of the distant organ 

site. To limit these artifacts in this study, regions of high tumor cellularity in the bone metastasis 

were cored by a trained molecular pathologist for RNA extraction, which is corroborated by 

RNA-seq derived tumor purity estimates—as no significant tumor purity differences between 

primary and metastatic tumors (Data Supplement 2: S15) were observed271. Nonetheless, single-

cell sequencing approaches of metastatic tumors will be essential to bring cell-level resolution to 

transcriptional studies of metastatic tumors. Novel computational methods that deconvolute 

heterogeneous sample sets, until single-cell sequencing becomes more widely adopted, will also 

be essential272–274. All of this withstanding, features of the data are encouraging such as patient-

matched tumors clustering together, intuitive PAM50 assignments, corroboration of other 

groups’ findings and treatment-specific gains and losses. Finally, a limitation of this study is the 

small sample size. Hopefully, these results will encourage the use of ecRNA-seq to 

transcriptionally profile other highly degraded samples and begin a collection of genomic data 

from metastatic or rare tissues for integration. Importantly, de-identified clinical data should be 

provided alongside the sequencing, as in this study, to allow more fluid merging of datasets and 

inspire clinical phenotype-driven analyses. 

Taken together, this study both validates the use of ecRNA-seq to transcriptionally 

profile highly degraded RNA from decade-old and decalcified tumor specimens and defines 
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multiple acquired and lost transcriptional programs in ER-positive bone metastases. We highlight 

acquired changes in the CDK-Rb-E2F and FGFR pathways, particularly relevant given the recent 

clinical use of CDK4/6 inhibitors, and point towards RBBP8 as a particularly compelling 

candidate in breast cancer progression. We also find significant gains in clinically actionable 

genes that may have not been appreciated in primary tumors, reinforcing the need for 

longitudinal characterizations of cancer specimens to guide clinical care. 
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4.0  TRANSCRIPTOME-WIDE IDENTIFICATION OF RET AND HER2 

SIGNALING AS RECURRENTLY ENRICHED DEPENDENCIES IN BREAST 

CANCER BRAIN METASTASES 

4.1 ABSTRACT 

Breast cancer brain metastases (BrM) are defined by complex adaptations to both adjuvant 

treatment regimens and the brain microenvironment. Consequences of these alterations remain 

poorly understood, as does their potential for clinical targeting. In this study, the most 

comprehensive of its kind to date, we extensively characterized the BrM-altered transcriptome 

across 21 patient-matched primary breast tumors and their associated brain metastases. We 

observe that breast cancer cells shift their expression profile following colonization in the brain 

parenchyma and demonstrate recurrent gains in RET expression and HER2 signaling. In line 

with these observations, inhibition of aberrant RET and HER2 results in significant anti-tumor 

activity in BrM patient-derived xenograft models and patient resected BrMs cultured ex-vivo. 

Altogether, our study identifies recurrent, acquired vulnerabilities in BrM that warrant immediate 

clinical investigation. 
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4.2 INTRODUCTION 

Given acquired transcriptional changes demonstrated in Chapters 2 and 3—especially involving 

genes that are readily druggable—and the technical success of exome-capture RNA-sequencing 

on highly degraded, FFPE biospecimens, we revisited the brain metastases cohort to define 

transcriptome-wide changes that occur in breast cancer cells following colonization. The goal of 

this study was to (1) further challenge the notion that brain metastases (BrM) are molecularly 

distinct from primary tumors with a more unbiased, comprehensive, transcriptome-wide 

methodology and (2) demonstrate preclinical evidence that targeting these acquired or enriched 

features may be viable therapeutic options for patients with BrM.  

4.3 MATERIALS AND METHODS 

4.3.1 Patient and tumor samples 

Informed consent from all eligible patients was received and the study was approved by 

Institutional Review Boards from both participating institutions (University of Pittsburgh IRB# 

PRO15050502, Royal College of Surgeons IRB #13/09; ICORG 09/07). Eligible cases had 

patient-matched formalin-fixed paraffin-embedded (FFPE) tissue from primary and resected 

BrM (Table 3; Data Supplement 3: S1) processed for analysis. Tumor tissues were subjected to 
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neuropathological review to confirm histology and tumor cell content. Between four to ten 

(depending on tumor size) 10-micron FFPE sections immediately adjacent to the H&E-analyzed 

section underwent dual DNA/RNA extraction using Qiagen’s AllPrep kit according to 

manufacturer’s instructions. 

4.3.2 Exome-capture RNA-sequencing 

Library preparation was performed using 100 ng of RNA and Illumina’s TruSeq RNA Access 

Library Preparation protocol. Indexed, pooled libraries were then sequenced on a High Output 

flow cell with an Illumina NextSeq 500 (paired-end reads, 2 X 75 bp). A target of 25-50 million 

reads per sample was used to plan indexing and sequencing runs.  

4.3.3 RNA-sequencing expression quantification and normalization 

FASTQ files were quantified using k-mer based lightweight-alignment (Salmon v0.7.2, quasi-

mapping mode, 31-kmer index established from GRCh38 Ensembl v82 transcript annotations, 

seqBias and gcBias corrections)241. Read counts and percentage alignment were calculated (Data 

Supplement 3: S2). Transcript abundance estimates were collapsed to gene-level values using 

tximport275. To exclude non- or lowly expressed genes, only genes with a TPM value greater 

than 0.5 in at least 10% of samples were considered for clustering, gene set enrichment and 

clinically actionable kinase evaluation. Log2 transformed TMM-normalized CPM 

(log2normCPM) values were implemented for subsequent analyses243,244. 
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4.3.4 RNA-seq quality assessment 

Reads and mapping rates were obtained from meta_info files output by Salmon. More detailed 

RNA-seq metrics (Data Supplement 3: S3; Appendix A.3: Fig. 32) were calculated and plotted 

using QoRTs (v1.1.8) following two-pass read alignment with STAR (v2.4.2a) for the 21 

patient-matched cases245,246. 

4.3.5 tumorMatch patient-matched sample identifier 

To validate samples collected over many years and across institutions were patient-matched, 

RNA-seq variants were generated using GATK’s Best Practices for variant calling on RNA-

seq247. Output .vcf files were then provided to tumorMatch, a custom R script that analyzes pools 

of .vcf files and provides a proportion of shared variants (POSV) value for each sample pairing 

(Appendix A.3: Fig. 33) These proportion values were visualized using corrplot in R. 

4.3.6 Differential gene expression 

Salmon gene-level counts with effective gene lengths were provided to DESeq2 to identify 

differentially expressed genes249. Given patient-matched samples, a multi-factor design was used 

(model = ~Patient + Tumor [i.e. primary vs. metastasis]). Genes were considered to be up or 

down-regulated if they exhibited a log2 fold change of greater than ± 1.5 and an adjusted p-value 

of <0.05 (Data Supplement 3: S4). 
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4.3.7 Correspondence Analysis 

Correspondence analysis was carried out using the made4 package in R on the regularized log 

data from the 20,219 Ensembl genes of the 21 patient matched breast cancer primary and BrM 

samples276. The samples were then visualized in three dimensions with the first 3 components of 

the correspondence analysis, representing the clinical variables that describe the most variance, 

using the rgl package in R. 

4.3.8 Unsupervised hierarchical clustering, intrinsic subtyping and HER2 signature 

Hierarchical clustering was performed with the heatmap.3 function 

(https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R) in 

R on log2normCPM values from the top 2000 most variable genes (defined by IQR) with 1 

minus Pearson correlations as distance measurements and the “average” agglomeration method. 

PAM50 assignments were made using the molecular.subtyping() function in genefu191. To 

account for test-set bias, a random subset of primary tumor expression data was added to each 

query sample’s PAM50 expression set to ensure an even distribution of ER-positive and ER-

negative tumors192. This process was repeated 20 times. The discrete PAM50 assignment was 

finalized as the mode of the 20-fold PAM50 assignment tests while the probability score was an 

average of 20 probability scores (Data Supplement 3: S5). HER2 signature scores for each 

sample was calculated using the genefu sig.score() function along with the HER2 gene module277 

(Data Supplement 3: S6). Correlations between HER2 signature change (HER2 signature in met 

– HER2 signature in primary) and ESR1 expression fold-changes were assessed using Spearman
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r correlations. In correlation plot, but not Spearman r calculation, case 47_Pitt was excluded for 

better visualization given extreme ESR1 log2FoldChange of approximately -6.  

4.3.9 Merging of publicly available microarray breast cancer datasets. 

The raw .CEL files from primary breast cancer microarray gene expression data from GSE12276 

(Affymetrix HGU133plus2) and GSE2034 (Affymetrix HGU133a) were downloaded and 

subsequently merged using inSilicoMerging package278 in R. There were 22,277 probes in 

common between the two datasets. The probe expression values were normalized using GCRMA 

and were then corrected for batch effects using the ComBat tool279. These merged primary breast 

cancer datasets had clinical information regarding time to distant metastasis and the site of 

metastasis: brain (n=23), lung (n=65), bone (n=171) and liver (n=66). Some of the primary 

samples metastasized to multiple sites. The merged dataset was used for site of metastasis 

survival analysis described below. In a separate analysis, public breast cancer metastasis 

microarray data (.CEL files) were downloaded and analyzed: GSE14017 (Affymetrix 

HGU133plus2) and GSE14018 (Affymetrix HGU133a). These were processed in the same 

manner as the public primary breast cancer datasets above (GSE12276 and GSE2034). This 

resulted in 22,277 probes in common between the two datasets that were normalized and batch 

corrected. The merged dataset contained breast cancer metastasis samples in the brain (n=19), 

lung (n=18), liver (n=5) and bone (n=16).  
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4.3.10 Contamination model construction 

A pseudo brain transcript contamination model was created to estimate likely gene expression 

differences due strictly to an altered microenvironment. We first randomly drew RNA-

sequencing data from 100 TCGA breast cancer primaries consisting of 60% ER+ / 40% ER- to 

match the proportion in the cohort, and randomly drew another 100 RNA-seq datasets generated 

from brain tissues (cerebellum and cortex) from GTEx. The two data sets were normalized by 

correcting for library size in DESeq2. Each brain-contaminated TCGA sample was then created 

by mixing the counts from one TCGA primary and one brain tissue. In this way, we artificially 

introduced brain transcript contamination into TCGA primaries, and a paired DESeq2 analysis 

comparing contaminated TCGA and pure TCGA primaries was performed to determine genes 

likely to be differentially expressed solely due to brain contamination. To better select the 

mixing weight of brain tissues so that the brain contamination model was similar to our cohort 

(i.e. brain metastasis vs. primary), we selected 200 brain genes known to be highly expressed in 

brain but not in breast. We assume those brain genes should have similar fold changes in 

experiment and contamination model comparisons, if the brain contaminations are similar. We 

tried various mixing weights ranging from 0.01-0.20, and selected 0.07 as this carried the least 

sum of squared difference. 

4.3.11 Microenvironmental gene deconvolution 

The (1,314) genes that were found to be up-regulated in the BrM samples relative to the primary 

(using the paired DESeq2 analysis described above) were filtered to remove potential brain 

contaminating genes. We applied a stringent filter to define brain metastasis genes. This filter 
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used a log2 fold change cut off of greater than 1.5 in the experimental model comparison (brain 

metastasis vs. primary) and a log2 fold change of less than 1 in the contamination model 

comparison (TCGA brain contaminated vs. pure TCGA). This aimed to catch genes which are 

highly expressed in the brain metastasis but which are not typically highly expressed in the brain 

contaminated breast cancer model. Ensembl gene IDs were converted HGNC IDs using biomaRt 

(Data Supplement 3: S7)280. Deconvoluted genes were assessed using an independent dataset, 

GSE52604. Data from GSE52604 was downloaded and analyzed for differentially expressed 

genes between non-neoplastic brain (n=10) and breast cancer to brain metastases samples (n=35) 

using the limma package in R281. Differentially expressed genes were defined as having a log2 

fold change > 1.5 and Benjamini-Hochberg adjusted p-value < 0.05. 

4.3.12 Brain metastasis-free survival analysis 

The (249) deconvoluted brain metastasis genes were assessed for higher expression in brain 

metastasis relative to other metastatic sites using the merged publicly available datasets 

described above (GSE14017 and GSE14018). Not all genes had probes present on the array. 

Probes that had a mean 1.5-fold change higher in the brain metastasis relative to their mean 

expression in the three other sites of metastasis (lung, liver and bone) were deemed to be brain 

metastasis specific and were subjected to site of metastasis survival analysis described below. 

The merged public primary breast cancer datasets described above (GSE12276 and GSE2034) 

were used for site of metastasis survival analysis. Ensembl IDs/HGNC IDs were converted to 

probe IDs. Not all genes were represented as probes on the array. The expression values for any 

matching probes were converted to a z-score (as calculated per probe). The mean of the z-score 

per sample was then used to create a signature for the selected probes. This was then used to 
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carry out Cox proportional hazards test to the different sites of metastasis. All analysis was 

carried out using the survival package in R. Kaplan-Meier plots were created using the survplot 

package in R. 

4.3.13 Gene Set Variation Analysis (GSVA) 

To determine oncogenic pathways enriched in breast cancer brain metastases, a GSVA analysis 

was performed with cancer pathway gene perturbation sets (n = 190) that harbor coordinately 

expressed gene members (MSigDB: C6 set)250,252. Input into the GSVA algorithm was 

log2normCPM values from genes within each gene set. A GSVA score representing potential 

pathway enrichments, using the maximum difference GSVA enrichment score, was assigned to 

each sample for each gene set. A paired Wilcoxon-signed rank test (metastasis vs. primary) was 

then implemented on GSVA scores to determine pathway enrichments in brain metastases. 

Significantly enriched gene set candidates were defined as those that carried a Benjamini and 

Hochberg adjusted p-value < 0.05 and a greater than 0 difference between mean metastasis 

GSVA scores and mean primary GSVA scores. GSVA scores for these values were then plotted 

using heatmap.3 and sorted by adjusted p-value. 

4.3.14 DNA methylation profiling 

DNA was bisulfite converted (BS) and the efficiency of BS conversion was assessed using 2 X 

50 base pair (bp) sequencing of the libraries on the Illumina MiSeq platform. Once the libraries 

demonstrated >98% BS conversion efficiency, methyl-capture was carried out for each of the 

DNA libraries generated. The captured sample was assessed for overall quality using a 
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bioanalyzer, followed by sequencing in a 2 X 125 bp fashion on the HiSeq2000 v4.0 Illumina 

platform. 

4.3.15 DNA methylation analysis 

Paired end raw reads were analyzed with fastqc (http: //www.bioinformatics. 

babraham.ac.uk/projects/fastqc/) for initial quality control. Trim Galore (v.0.4.2) (http: 

//www.bioinformatics. babraham.ac.uk/ projects/trim_galore/) was used to remove sequencing 

adapters and remove base calls with a Phred quality score < 20. Trimmed reads were aligned to 

the human genome (hg19) reference using bwa-meth (v.0.10) with default parameters. 

Picardtools was used to mark and remove likely duplicates. Bis-SNP BisulfiteGenotyper282 was 

used to identify single-nucleotide polymorphisms (SNPs) and insertion/deletion events (indels) 

and BisulfiteIndelRealign was used to realign reads. Analysis of processed BS-seq data was 

conducted in R using the methylKit package283. CpG level methylation calls with a minimum 

coverage of 10 reads for each were read into R and % methylation levels calculated by counting 

the ratio of C/(C+T) at each base. Differential methylation analysis was performed using 

methylKit which uses the Fisher’s Exact Test and p-value adjustment using the SLIM method. A 

CpG was considered to be differentially methylated if methylation difference (Δ) = (μ normal – 

μtumor) was greater than 0.3 and a q-value < 0.01.  

4.3.16 Gains and losses in clinically actionable kinases 

Clinically actionable and kinase gene sets were obtained from the Drug Gene Interaction 

Database (DGIdB 2.0) and the overlap between the two sets were used to define clinically 
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actionable kinases (n = 105)195. Continuous expression fold-changes calculated from 

log2normCPM values (Data Supplement 3: S8) were transformed to discrete, stringent 

expression gains by defining an “expression gain” as a log2FoldChange greater than the 95th 

percentile (log2FoldChange = 1.198) of all gene and case fold-changes (Appendix A.3: Figure 

34). After assigning discrete expression gains, data for recurrent gains (n > 1 pair) was visualized 

using the OncoPrint function in ComplexHeatmap194. NTRK2 and NTRK3 were excluded from 

the OncoPrint due to the kinases being highly expressed in normal brain, making it difficult to 

discern if unusually high expression gains (10 of 21 cases for NTRK2, 16 of 21 cases for NTRK3) 

were due to the altered microenvironment or tumor. 

4.3.17 Immunohistochemistry (IHC) Staining 

4-micron-thick paraffin sections were mounted on slides and stained for protein of choice using

Dako EnVisionTM Kit, as described previously284. Briefly, heat antigen retrieval was carried out 

with 10 mM sodium citrate buffer (pH 6.0) for 20 min. Sections were treated with peroxidase 

block (Dako), and then incubated for 1 hour at 25˚C using recommended dilutions of the 

following antibodies: Ki67 (mouse monoclonal Dako clone MIB-1, M2740, Lot #A97064), ER 

(mouse monoclonal, novacastra leica, NCL-L-ER-6F11, Lot #6043537), PanCK (Mouse 

monoclonal, novacastra leica, NCL-L-AE1/AE3, Lot #6038590), HER2 (Mouse monoclonal, 

novacastra leica, NCL-L-CB11, Lot #6046036), RET (Rabbit polyclonal, Sigma Prestige 

Antibodies, Lot #A97064). All images were captured at 10x or 20x magnifications, and 

quantifications of Ki67 were performed following recommended guidelines285. ki67 staining was 

confirmed and analyzed on 3 non-consecutive slides at least 10 sections apart. Images were 
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scored as the percentage of Ki67 positive tumor cell nuclei per total tumor cell nuclei in each 

captured field. 

4.3.18 In vitro studies 

Estrogen receptor positive, endocrine therapy-resistant LY2 cells were a kind gift from R. 

Clarke, Georgetown University, Washington DC. LY2 cells were maintained in Phenol red-free 

Modified Eagle Medium (MEM) with 1x L-glutamine (L-Glut) and supplemented with 10% fetal 

bovine serum (FCS) (Invitrogen). They have demonstrated ability to readily metastasize to 

distant organs286, including the brain (Appendix A.3: Figure 35). MDA-231-BrM2 cell line was 

obtained from the Massague Lab, MSKCC, New York. This metastatic variant of the MDA-231 

has metastatic selectivity for the brain139. MDA-231-BrM2 cells were maintained in Dulbecco's 

MEM with 1x L-glutamine (L-Glut) and supplemented with 10% fetal bovine serum (FCS) 

(Invitrogen). All cells were maintained at 37˚C, 5% CO2 in a humidified incubator. All cell lines 

were authenticated according to ATCC guidelines and mycoplasma tested (Mycoalert plus, 

Lonza) prior to undertaking functional studies. No cell lines used in this paper are listed in the 

database of commonly misidentified cell lines maintained by ICLAC. Cells were treated with 

Cabozantinb (10nM), Afatinib (25nM) or vehicle (%DMSO). Cellomics Cell Motility Kit 

(Thermo Scientific, K0800011) was used to assess individual cell movement after 24 hours as 

per manufacturer's instructions using cells seeded at 1x104cells/mL. Mean track areas (minimum 

of 100 cell tracks per condition) were analyzed with Olympus cell imaging software. For growth 

assays, cells were treated at experimentally determined time-points and concentrations. MTS 

reagent (Sigma Aldrich) was added after 3 days and the resultant colorimetric outputs analyzed 

by measuring the absorbance at 490nm using a spectrophotometer (Perkin Elmer, USA).  
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4.3.19 Patient-derived brain metastases ex vivo culture 

Written informed consent was obtained from patients, and fresh brain metastases were acquired 

from patients undergoing neurosurgery under the Institutional Review Board (IRB) approved 

protocol (Royal College of Surgeons IRB #13/09; ICORG 09/07). To establish patient-derived 

brain metastatic ex vivo models, fresh intact tumor tissue was collected, de-identified and placed 

in DMEM/F12 on ice immediately after surgical resection from the brain. Within 30-40 minutes, 

under sterile conditions, the brain metastatic tissue was cut and dissected into 2-4mm3 fragments. 

These tumor fragments were placed on pre-soaked 1 cm3 hemostatic gelatin dental sponges 

(Vetspon, Novartis) as described previously in brain/breast supporting media consisting of 

human mammary epithelial media (HMEC), supplemented with B27 (Life Technologies), N2 

(Life Technologies), at 37 °C and 5% CO2287. The ex vivo brain tumors were cultured and treated 

with Cabozantinb (10nM), Afatinib (25nM) or vehicle (%DMSO) for 72hrs after which they 

were paraffin embedded and IHC stained. The viability of the tumors was evaluated by screening 

for necrosis of the tissue and using proliferation markers to confirm viable, proliferating cells. 

Schematic of the explant procedure utilized in this study is shown in Figure 16A.  

4.3.20 In vivo experiments 

All animal experimental procedures were conducted under IACUC approval. The following 

work was conducted in collaboration with Champions Oncology, using Champions Oncology 

breast cancer brain metastases patient-derived xenograft (PDX) model CTG-1520. 

Immunocompromised female nu/nu nude mice (Harlan Laboratories, USA) between 5-8 weeks 

of age were housed on irradiated, Alpha-twist-enriched 1/8” corncob bedding (Sheperd) in 
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individual HEPA ventilated cages (Innocage® IVC, Innovive USA) on a 12-hour light-dark 

cycle at 68-74°F (20-23°C) and 30-70% humidity. Animals were fed water (reverse osmosis, 2 

ppm Cl2) and an irradiated test rodent diet (Teklad 2919; 19% protein, 9% fat, and 4% fiber) ad 

libitum. Mice were implanted subcutaneously into the left flank with the tumor fragments. 

Tumor growth was monitored twice a week using digital calipers and the tumor volume (TV) 

was calculated using the formula (0.52 × [length × width2]). When the TV reached 

approximately 150-300 mm3, animals were matched by tumor size and assigned into control or 

treatment groups (n = 4/group). Mice were treated for 4 cycles of once daily for 5 days followed 

by 2 days off (QDx5 on, 2 off) via oral gavage (PO) of vehicle, 20 mg/kg Afatinib or 30 mg/kg 

Cabozantinib. Researchers were not blinded to the treatment groups. Effects on tumor growth 

were evaluated by measuring percent tumor growth inhibition (TGI). Tumor size and body 

weight were measured twice weekly. The study was terminated when the mean tumor volume in 

the control group reached approximately 1500 mm3. At study completion, tumors were collected 

from all animals in each group. The tumors were bisected: half was flash frozen and stored at -80 

°C; the other half was processed for FFPE. Tumors that were < 250 mm3 were processed as a 

single flash frozen sample and no FFPE material was available. Tolerability was assessed by 

body weight loss, lethality, and clinical signs of adverse treatment-related side effects of which 

there were none.  

4.3.21 Test and Control Agents 

Afatinib (#CT-BW2992) and Cabozantinib (CT-XL184) were obtained from Chemietek, USA. 

Agents were stored at -20 °C in the dark. The vehicle was 0.5 % methylcellulose, 0.4% Tween-

80, 10% dimethyl sulfoxide (DMSO) in deionized water. Afatinib dosing solution (2 mg/mL) 
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was prepared by adding 0.72 mL of DMSO to 14.4 mg Afatinib in an amber dosing vial with a 

few glass beads, followed by vortex/sonication to yield a clear solution. A volume of 6.48 mL 

0.5 % methylcellulose, 0.4% Tween-80 in deionized water was added and then followed by 

vortexing to form a solution. The dosing solution was stored at 2-4˚C for up to 7 days. 

Cabozantinib dosing solution (3 mg/mL) was prepared by adding 0.72 mL of DMSO to 21.6 mg 

Cabozantinib in an amber dosing vial with a few glass beads, followed by vortex/sonication to 

yield a clear solution. A volume of 6.48 mL 0.5 % methylcellulose, 0.4% Tween-80 in deionized 

water was added and then followed by vortexing to form a solution. The dosing solution was 

stored at 2-4˚C for up to 7 days. 

4.3.22 Statistical Considerations 

Statistical parameters including the exact value of n in terms of number of samples and models 

for each figure are reported in the Figures and the Figure Legends. All results are shown as mean 

+/- s.e.m., unless otherwise indicated. P < 0.05 was considered to indicate statistical significance 

throughout the study. Differentially expressed genes between patient-matched primary tumors 

and brain metastases were determined with DESeq2—a computational platform that utilizes a 

negative binomial distribution to assign differential expression p-values for gene-based count 

abundance estimates derived from RNA-seq. For survival analyses, logrank tests were used to 

illustrate statistically significant differences in event probabilities (i.e. death or time to 

metastasis)253. For single gene queries, paired Wilcoxon-signed ranked tests (primary vs. 

metastasis) on log2normCPM values were used. All cell-based in vitro experiments were 

independently repeated three times in triplicate. Two-way Student’s t-test was used to compare 

two groups of independent samples. For ex vivo Ki67 analyses p values were obtained using one-
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way analysis of variance (ANOVA), followed by Dunnett’s test (GraphPad Prism). For in vivo 

study statistical comparisons of tumor volumes were conducted using one-way ANOVA 

followed by Newman-Keuls multiple comparison test (GraphPad Prism). p < 0.05 was 

considered to be statistically significant. The investigators were blinded to allocation for ex vivo 

and immunohistochemical analyses. With respect to randomization, for animal experiments, 

tumor-bearing mice of similar tumor burden were equally divided into the control and 

experimental groups for subsequent drug treatment which was not blinded. No statistical method 

was used to predetermine sample size. For animal experiments, efforts were made to attain the 

scientific aims of this study with the minimum number of animals taking into consideration PDX 

tumor growth deviations and results of previously tested agents. For in vitro, ex vivo and in vivo 

studies, all completed experiments are reported. 

4.4 RESULTS 

In order to identify recurrent alterations that can guide improvement in BrM treatment, we 

undertook an analysis of a clinical cohort of patient-matched primary breast and paired BrM 

(n=21) (Table 3; Data Supplement 3: S1). We performed genome-wide exome-capture RNA-seq. 

This method yields highly concordant expression values when compared to matched frozen 

samples (Chapter 3). 
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Table 3: Comprehensive clinical data of brain metastasis RNA-seq cohort 
Abbreviations: Dx.Age, age at primary breast diagnosis; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; ER, estrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2; pos, positive; neg, negative; -,not determined; NA, not available; BrM, brain metastasis; DFS, disease free 
survival, time from primary diagnosis to first recurrence; BMFS, brain metastases free survival, time from primary diagnosis to death or last follow-up; SPBM, survival 
post brain metastasis, time from brain metastasis to death or last followup; OS, overall survival, time from primary diagnosis to death or last follow up.  
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4.4.1 Transcriptome evolution in breast cancer brain metastasis 

Differential gene expression analyses revealed a catalogue of recurrently altered genes in BrM 

(Up in BrM n=1314; Down in BrM 1702; DESeq; fc>1.5, p-adj< 0.05) (Data Supplement 3: S4). 

Correspondence analysis showed that despite a marked gene expression divergence from primary 

tumors to BrM, transcriptome variability was largely due to intrinsic molecular subtypes (Figure 

14A). Indeed, unsupervised hierarchical clustering revealed three major clusters—estrogen 

receptor (ER)-positive, HER2-positive, and ER-negative disease. 38.1% (8/21) of the patient-

matched primary and metastatic tumor samples clustered as related pairs in the dendrogram 

(Figure 14B). Furthermore, PAM50 subtyping revealed 19/21 brain metastases retained the 

intrinsic subtype of the matched primary tumor (Figure 14C), consistent with our previous 

observations using targeted nanoString analysis (Chapter 2)230. Despite this broad conservation, 

10/21 brain metastases showed deviations (>10%) of PAM50 subtype probabilities from their 

patient-matched primaries with the most common shifts being gains in Her2 and LumB profiles 

(Figure 14C; Data Supplement 3: S5), in line with our observations in Chapter 3 and recent 

PAM50 analyses in metastatic tumors257.  

To identify determinants of brain metastasis proficiency, we interrogated the 

overexpressed BrM genes in an expression dataset with multiple metastatic sites132. Of the 1314 

Up in BrM genes, we focused on those expressed in BrM cohorts at a higher level (>1.5-fold) 

than in metastases from other sites. 7.9% of the genes satisfied this criteria (Figure 14D; 

Appendix A.3: Figure 36). Notably, in established cohorts of primary breast cancer tumors with 

extended follow-up expression of this BrM-related gene set significantly associated with brain 

(p=0.016) and lung relapse (p=3.2e-05) but not relapse to either bone or liver (Figure 14E, 
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Appendix A.3: Figure 36)139,288. To further define brain tumor-associated genes, we developed a 

brain deconvolution approach to remove potentially contaminating non-neoplastic brain genes 

(Appendix A.3: Figure 37). Deconvoluted BrM gene set had a highly significant association with 

brain relapse (Figure 14F/G; Appendix A.3: Figure 38).  

Beyond identifying alterations in genes important in the brain metastatic process 

including enrichment in genes implicated in vascular co-option (L1CAM)143 and metastatic 

outgrowth (SOX2)289, using gene set enrichment analysis252; we further delineated expression 

changes in BrM from matched primaries by identifying several oncogenic pathway gains in 

BrM290. These included several gene sets associated with cell cycle dysregulation (E2F3, RB), 

proto-oncogenes (KRAS, ALK) and kinase-driven pathways (SRC, mTOR, HER2) (Figure 

14H). 
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Figure 14: Transcriptome evolution in breast cancer brain metastasis. 
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(A) Correspondence analysis showing overall trends in paired samples using the gene expression of all protein coding genes. The matched primary (circles) and
the metastasis samples (squares) are paired via a connecting line. The first component (“Comp1”) represents the strongest trend and splits the samples from the
primary to the metastasis, the other two components split the samples by intrinsic subtype. (B) Unsupervised hierarchical clustering heatmap. Patient-matched
primary and metastatic tumor samples that clustered as related pairs in the dendrogram are indicated with an asterisk. (C) PAM50 intrinsic molecular subtype
calls in patient-matched samples. Probability for each subtype is a mean of all 20-fold test probabilities; tile plot denotes this probability for each subtype.
Diamonds indicate brain metastases with >10% probability gain in PAM50 subtypes. Legend denotes PAM50 subtype (blue=luminal A, purple=luminal B,
green=Her2, red=basal), hormone status (green=positive, black=negative), tissue source (yellow = Royal College of Surgeons, Ireland, purple = University of
Pittsburgh, US) and tumor site (blue=primary, red=metastasis). (D) Recurrent differentially up-regulated genes (n=1314) were screened in two merged public
metastatic cohorts (GSE14017/18). Heatmap displays 62 genes whose expression was upregulated in brain metastases but not in metastases to lung, liver, or bone
(BrM-related gene set). (E) Kaplan–Meier curves for brain metastasis-free survival of BrM-related gene set status in two cohorts (n=268) (GSE12276/2034). p
value based on log rank test. (F) Schematic of the workflow for uncovering decontaminated brain metastases related genes. (G) Kaplan–Meier curves for brain
metastasis-free survival on the basis of decontaminated BrM-related gene set (n=11) status in two cohorts (n=268) (GSE12276/2034). p value based on log rank
test. (H) GSVA analysis utilizing MsigDB Oncogenic Pathway (MsigDB). Heatmap illustrates brain metastasis enriched pathways (FDR adjusted Wilcoxon
signed-ranked P-value < 0.05) in brain metastases vs. primaries.
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4.4.2 Recurrent expression gains of clinically actionable kinase pathways in breast cancer 

brain metastases 

Using an established HER2 signature277, we explored HER2 pathway activation in BrM given 

demonstrated HER2 expression increases in up to 35% of BrMs relative to matched primaries 

(Chapter 2) and a significant HER2 pathway enrichment from GSVA. Here, we show 15/21 pairs 

harbored elevated HER2 signature scores in the BrM relative to the matched primary (Figure 

15A; Appendix A.3: Figure 39). Significant HER2 signature gains were not restricted to cases 

that switched from HER2-negative to HER2-positive in the BrM, implying that BrM outgrowth 

may be dependent on subclones with the highest levels of HER2 activation in the primary tumor 

(Appendix A.3: Figure 39). Indeed, tumors that switched from HER2-negative to HER2-positive 

in the brain metastasis had intermediate HER2 signature scores in the primary tumor (Figure 

15B). Loss of ESR1 gene expression, a known byproduct of hormone therapy resistance46,284, 

correlated with increases in HER2 signature (Figure 15C, Appendix A.3: Figure 39). In the case 

4_RCS, loss of ESR1 was accompanied by enhanced ESR1 hypermethylation acquired in BrM 

compared to the primary tumor (Figure 15C).  

Given BrM-acquired gains in multiple kinase-driven signaling pathways, we examined 

clinically actionable kinases for recurrent expression gains (DGIdb 2.0). The most recurrent 

expression gains in BrM were RET and ERBB2 (both gained in 38% of brain metastases) (Figure 

15F). Alterations observed in RET mRNA in BrM were also confirmed at the protein level by 

IHC (Figure 15G, Appendix A.3: Figure 40). 
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Figure 15: Recurrent expression gains of clinically actionable kinase pathways in breast cancer brain 
metastases.  
(A) Paired ladder plot of established genes represented in the HER2 signature depicts the expression change in
patient matched cases (p=0.008; Wilcoxon signed-rank test; primaries vs. brain metastases). Blue dots represent
primary tumor signature scores and red dots represent metastatic tumor signature scores. (B) Scatter plot of HER2
signature score in primary tumors. Blue dots (-/-) represent patient-matched are HER2 negative in both the primary
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and metastatic tumors, red dots (-/+) represent patient-matched cases that switched from HER2 negative to positive 
whereas green dots (+/+) represent HER2 positive tumors that have further activation in HER2 pathway. (C) Tile 
plot indicates gain of HER2 signature or loss of ESR1 expression. Squares represent patient-matched cases that 
switched from HER2 negative to positive whereas circles represent HER2 positive tumors that have further 
activation in HER2 pathways. (D) Primary and metastatic log2normCPM values of ESR1/ERBB2 from case 4_RCS, 
along with immunohistochemistry protein analysis. Images shown are 20x; scale bars correspond to 50μm. (E) ESR1 
gene differentially methylated regions (DMR) identified with methyl capture sequencing are illustrated and were 
identified by comparing 4_RCS case primary and brain metastasis. Plot shows regions of hypermethylation and 
hypomethylation found in ESR1 gene. (F) OncoPrint of clinically actionable kinases (DGIdb) with discrete 
expression gains in brain metastases. (G) Paired ladder plot of RET expression in patient-matched cases. Light green 
dots represent primary tumor expression values and dark green dots represent metastatic tumor expression values 
(log2norm CPM). Primary and metastatic IHC staining of RET from case 5_RCS; along with TMM normalized 
CPM counts. Images shown are 20x; scale bars correspond to 50μm. 
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4.4.3 Inhibition of RET and HER2 demonstrates significant anti-tumor activity in breast 

cancer brain metastases ex vivo and in vivo 

Given RET and HER2 have FDA-approved agents and were the most recurrent expression gains, 

we next evaluated the effect of RET and HER2 inhibition in BrM models using RET inhibitor 

cabozantinib, and pan-EGFR-pathway inhibitor afatinib. A small molecule inhibitor of HER2 

was selected over the large biologic trastuzumab due to the reported observations that the blood 

brain barrier may prevent its uptake to therapeutically efficacious levels291. In vitro we observed 

that inhibition with either cabozantinib or afatinib had a significant effect on the cellular viability 

and migratory capacity of TNBC139 and ER positive brain-colonizing cell lines (Appendix A.3: 

Figure 35).  

For preclinical assessment of the efficacy of cabozantinib and afatinib on BrM, we 

developed an ex vivo culture of BrM samples obtained from patients undergoing BrM resection. 

These models fully capture the histological, cellular and molecular components of the epithelial 

tumor interacting with the cells of glial origin, thus recapitulating components of the brain 

microenvironment (Figure 16A). Ex vivo Patient 1 (x-BrM T606) had endocrine-resistant 

disease, with loss of ER expression resulting in a triple negative brain metastatic tumor, whereas 

Patient 2 (x-BrM T347) gained ERBB2 amplification. Ex vivo Patient 3 (x-BrM 681) was 

treatment naïve. The pathology of these metastatic tumors mirrored the key receptor subtype 

alterations observed in our sequencing study. We observed strong tumor specific RET expression 

in all ex vivo models used in this study (Figure 16B). HER2 was highly expressed in x-BrM 

T347 and T681, whereas x-BrM T606 had a weak expression, and was clinically graded as +1. 

Cabozantinib demonstrated substantial anti-tumor efficacy in x-BrM T606, T347 and T681 
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demonstrated by a significant decrease in proliferating cells (ki67+) compared to vehicle treated 

tumors (Figure 16B). Likewise, we see a significant tumor response to afatinib inhibition in x-

BrM T606, T347 and T681 (Figure 16B). Of note, afatinib had an anti-proliferative effect 

independently of HER2 amplified status as evidenced in x-BrM T606, which may be due to 

activation of additional members of the EGFR pathway.  

We next evaluated the effect of cabozantinib and afatinib in BrM patient-derived 

xenograft (PDX/ CTG-1520) derived from a triple negative tumor (Data Supplement 3: S1). The 

metastatic tumor expressed high levels of RET and was clinically HER2 negative (+1) (Figure 

16C). PDX tumors were transplanted subcutaneously as grafts into immunocompromised mice 

and were allowed to grow to a volume of 150–300 mm3. The tumor-bearing mice were then 

treated with cabozantinib (30 mg/kg), afatinib (20 mg/kg) or vehicle control via oral gavage for 

20 days (5 days on/ 2 days off). At the conclusion of the study, both agents showed similar and 

significant anti-tumor activity compared to vehicle treatment in the BrM PDX model 

(cabozantinib 86%TGI; afatinib 91%TGI) (Figure 16C).  
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Figure 16: Inhibition of RET and HER2 demonstrates significant anti-tumor activity in breast cancer brain 
metastases ex vivo and in vivo.  
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(A) Schematic of the ex vivo experimental set up. (B) Brain metastatic tissue (x-BrMT606, T347 and T681) was
treated with vehicle (0.1%DMSO), 10nM cabozantinib and 25nM afatinib and processed as described. IHC was
carried out to profile ER, HER2 and RET of the ex vivo sample. MRI/CTI images of the brain metastases resected
are shown. ER, PR and HER2 status in primary and brain metastases are indicated alongside adjuvant treatment
received prior to resection. Representative images of IHC analyses of Ki67 tumors treated for 72hrs with indicated
treatments (positive cells indicated with red triangles). All scale bars, 50 μm. Error bars represent mean ± s.e.m. (n =
5–10 images per group). ***P < 0.001, one-way analysis of variance (ANOVA), followed by Dunnett’s test. (C)
Schematic indicates clinical information pertaining to brain metastases (BrM) PDX CTG-1520 and the experimental
design of the in vivo experiment. Treatment schedule was 4 cycles (QDx5 on/ 2 off) via oral gavage of vehicle
(black line), 30mg/kg cabozantinib (red line) and 20mg/kg afatinib (blue line). Representative IHC images of H&E,
pan cytokeratin, HER2 and RET are shown. Scale bars, 50 μm. Effects on tumor growth were evaluated with %
tumor growth inhibition (%TGI). The tumor growth curve shows mean tumor volume +/- S.E.M. (n = 4 per
treatment group). **P < 0.01, ***P < 0.001, one-way ANOVA test followed by Newman-Keuls multiple
comparison test. Tx, treatment; xBrM, brain metastases explant; TC, taxol/carboplatin; AC,
cyclophosphamide/doxorubicin; AI, aromatase inhibitor; T, taxol; XRT, radiotherapy; FEC, fluorouracil (5FU),
epirubicin, cyclophosphamide; DC, docetaxel/carboplatin; CMF, cyclophosphamide, methotrexate, 5-fluorouracil;
PTX, paclitaxel (Performed by Dr. Damir Vareslija).
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4.5 DISCUSSION 

Brain relapse can occur rapidly or in numerous cases many years after a primary diagnosis, a 

facet of BrM latency reflected in our clinical cohort. Genomically, analyses of BrM suggest that 

cancer cells continue to evolve upon colonization of the brain parenchyma, with mutations that 

are both common and distinct to originating tumors. The observations presented here expand 

upon these findings and establish recurrent transcriptional reprogramming events in breast cancer 

cells following brain colonization, shedding new light on the biology of BrM and potential 

therapeutic targets.  

Our studies revealed a comprehensive list of genes enriched in BrM, including genes 

previously implicated in experimental models in the early events of vascular co-option292, and 

those found to be essential for early survival and brain metastatic outgrowth289. Our work also 

points to many novel candidate BrM genes, whose exact role in BrM is open to further analyses 

but that appear specific to the brain parenchyma. This BrM-related gene set significantly 

associated with brain-relapse in primary tumors. Given the overlap with lung relapse and the 

limited available datasets, these observations are not interpreted as a gene signature capable of 

predicting brain relapse with high selectivity. More complete analyses can be undertaken as 

further relevant cohorts become available. Nevertheless, these collective shifts in gene 

expression signify a molecularly dynamic tumor adapting to its new microenvironment which 

have a large degree of metastatic selectivity and clinical relevance.  

Metastatic colonization and BrM outgrowth depends on key adaptive pathway and 

alterations, and we demonstrate recurrent enrichments in druggable kinase-driven signaling. We 
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show conclusive activation of the HER2 pathway in BrM, especially important given the 

acquired HER2 mutational burden verified in BrM179,230. The observed and reinforced HER2 

pathway gains have a number of immediate implications; (1) the observation of HER2 switching 

underlies the importance of dynamic tracking of tumor evolution; (2) intra-tumor heterogeneity 

of HER2 should be incorporated into routine breast pathology given data indicating the ability of 

subclones to evolve and adapt in BrM; and (3) HER2 inhibitors may be effective in patients with 

non-HER2 amplified (+2) metastatic BrM. 

Notably, our transcriptional approach revealed no loss in PTEN expression, which has 

been proposed as a potential driver of PI3K/AKT activation in BrM293,294. This concordance in 

PTEN expression in patient-matched samples has previously been reported295, and does not rule 

out its potential significance in BrM, particularly in PTEN-mutated BrM. Perhaps more 

importantly, ESR1, key clinically actionable gene, demonstrated consistent depletion in BrM 

compared to primary tumors. This loss of ESR1 gene expression, a known feature of hormone 

therapy resistant disease, correlated with increases in HER2 signature. We further show ER loss 

in brain metastases can be epigenetically driven, suggesting further mechanistic studies into this 

process—especially as it relates to coincident HER2 activation—may be informative. 

Additionally, the exact point at which these ESR1/ERBB2 alterations are acquired in the multi-

step metastatic process is unclear and could be addressed through analyzing advanced but non-

metastatic lesions or through profiling circulating tumor cells. Overall, these observations 

reinforce the dynamic regulatory interactions between ER and HER2 and expand its importance 

to the clinical setting of brain metastases296. 

Lastly, we define recurrent RET enrichments as a novel target for breast cancer BrM. 

Expression and activation of RET contributes to disease progression in multiple tumor types and 
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has been implicated in therapy resistance in breast cancer models297–299. We demonstrate 

significant anti-tumor efficacy of cabozantinib in ex vivo models of BrM that highly express 

RET. A recent clinical trial of cabozantinib monotherapy in heavily pretreated metastatic breast 

cancer demonstrated clinical activity including objective response and disease control300. 

However, the response to cabozantinib could perhaps be augmented through inhibiting other 

receptor tyrosine kinases (RTK) including MET and VEGFR301. In future studies, the impact of 

the tumor cell-brain parenchyma interaction should be assessed in the context of intracranial, 

orthotopic PDX models.  Interestingly, we note that 24% of BrM cases demonstrated dual 

activation of both RET and HER2, and in those instances it is plausible to assume that 

combination therapy could amplify an anti-tumor response. As such, combining RET-specific 

inhibitors302 with drugs targeting its downstream effectors (i.e. mTOR) may increase efficacy and 

improve overall benefit of blocking RET in BrM293,297,303. 

Collectively, though limited overall intrinsic clinical subtype switching is observed, our 

study demonstrates that BrMs undergo significant transcriptome shifts upon colonization. 

Enhanced cancer cell dependency on aberrant kinase pathways facilitates survival and outgrowth 

advantages—presenting therapeutic opportunities for BrM that are distinct from their matched 

primary tumors. These translational pre-clinical results deliver a compelling proof-of-principle 

for exploiting acquired vulnerabilities in advanced cancers. 
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5.0  RECURRENT TRANSCRIPTIONAL REMODELING EVENTS IN LONG-TERM 

ESTROGEN-DEPRIVED BREAST CANCER RECURRENCES 

5.1 ABSTRACT 

Resistance to endocrine therapies is a hallmark of advanced estrogen receptor (ER) positive 

breast cancers. In this study, we undertook a longitudinal analysis of 12 local recurrences that 

grew long-term (median time to recurrence 3.7 years) in an estrogen-deprived environment and 

compared them to features of their matched primary tumor using hybrid-capture DNA and RNA 

sequencing of approximately 1400 genes. Despite being up to 7 years removed from the primary 

lesion, the majority of recurrences harbored similar transcriptional and copy number profiles. 

Only two genes, AKAP9 and KMT2C, were found to have enrichment in mutation allele 

frequencies in more than one local recurrence. Other enriched mutations, which were found only 

in a single case, included SNVs within transcriptional regulators such as ARID1A, TP53, 

FOXO1, NCOA1 and NCOR2. One local recurrence showed enrichment of three distinct 

activating PIK3CA mutations, suggesting a strong, polyclonal selection in that particular tumor. 

In contrast to DNA-level changes, recurrent mRNA expression alterations were much more 

common. This included shared outlier gains in TP63 [n = 4 [42%]), NTRK2 [n = 5 [42%]), 

NTRK3 (n = 4 [33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]) and TERT (n = 3 [25%]). 

Recurrent losses involved ESR1 (n = 5 [42%]), RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]) and 
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FOSB (n = 4 [33%]). Analysis of a subset of local recurrences that harbored major losses of 

ESR1 mRNA expression (42% of recurrences) uncovered shared and distinct transcriptional 

remodeling events in these tumors—most notably gains in PROM1 (CD133), a cancer stem cell 

marker usually expressed in basal cancers. Taken together, this study defines specific, targetable 

and recurrently acquired transcriptional remodeling events in long-term, hormone therapy treated 

disease and identifies a relatively common hormone-therapy resistant, ESR1-depleted breast 

cancer subtype that gains basal-like transcriptional traits. 
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5.2 INTRODUCTION 

Hormone receptor positive breast cancer has served as a prototype for targeted therapy due to the 

well-established efficacy of estrogen-depleting small molecules in managing the disease. Largely 

because of these compounds, breast cancers are somewhat unique in that recurrences can occur 

years, sometimes decades following the primary diagnosis111,306–308. Unsurprisingly, outcomes of 

patients with locoregional relapse are generally worse than patients with an initial diagnosis, as 

10-year median overall survival rates are between 40–70%309,310. Given the majority of patients

in the past few decades receive long-term maintenance regimens of either a selective estrogen 

receptor modulator (SERM) or aromatase inhibitor (AI), recurrent breast cancers are 

occasionally classified as estrogen-independent given their ability to thrive in a continuously 

estrogen-deprived environment. Identifying the biological mediators that allow breast cancer 

cells to bypass their dependence on estrogen is a crucial step in understanding advanced breast 

cancer biology and defining novel therapeutic targets. 

Defining these molecular processes in patient samples; however, has been challenging 

because of the logistics in obtaining well-characterized, longitudinally collected biospecimens. 

Nevertheless, shared features of more advanced breast cancers have emerged, such as relapsed 

tumors losing expression of ER and up to 20% of metastatic ER-positive breast cancers acquiring 

mutations in ESR1 that confer ligand-independent signaling51–53. Other largely accepted 

mechanisms of estrogen-independence are bypass activations of mitogenic pathways such as 

MAPK and PI3K through initiating FGFR, EGFR and IGF signaling and exploitation of the Rb-

CDK-E2F axis46–50. Less well validated mechanisms include ESR1 fusions and amplifications, 

stem and mesenchymal cell state transformations and altered states of the microenvironment55,56.  
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Recent studies analyzing multiple, longitudinally collected, pre and post-treatment 

samples have shown clonal evolution and selection in the context of targeted 

therapies75,180,188,311–313. Similar work analyzing hormone-receptor positive breast cancers have 

almost exclusively been restricted to short-term pre/post neoadjuvant therapy analyses284,314–316. 

The most comprehensive study of this type was a multi-platform effort that characterized the 

clonal architecture of tumors after four months of AI therapy317. Although drastic clonal 

remodeling was observed at the DNA-level, few recurrent resistance mechanisms were 

appreciated. The molecular changes that occur in long-term endocrine-deprived tumors, which 

represent the greatest burden of advanced breast cancer, are still completely unknown.  

Thus, to better define both DNA and transcriptional changes that occur in long-term 

estrogen-independent tumors, we undertook a targeted analysis of 12 paired primary and local 

recurrences from patients with ER-positive breast cancers that were documented as being treated 

with some form of estrogen-depleting therapy. The median time to recurrence was 3.7 years, 

with the longest time to recurrence being over 7 years.  
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5.3 METHODS AND MATERIALS 

5.3.1 Patient samples, tissue processing and nucleic acid extractions 

Institutional Review Board approval from both participating institutions (University of 

Pittsburgh IRB# PRO15050502, The Charité IRB Office) was obtained prior to initiating the 

study. Inclusion criteria for this study were (1) patients harbored patient-matched formalin-fixed 

paraffin-embedded (FFPE) tissue from primary breast cancers and local recurrences (Table 4), 

(2) biospecimens contained macrodissectable regions with sufficient tumor cellularity and (3)

disease was treated continuously with a form of estrogen-depleting therapy prior to the 

recurrence. Biospecimens were reviewed by a trained molecular pathologist to confirm 

pathology, quantify tumor cellularity and to highlight regions of relatively high tumor cellularity 

for macrodissection. If a slide region harbored sufficient, microscopically verifiable adjacent 

normal cells, this region was also dissected and processed for downstream analyses. Between 

four to ten (depending on tumor size) 10-micron FFPE sections immediately adjacent to the 

H&E-analyzed section were pooled and underwent dual DNA/RNA extraction using Qiagen’s 

AllPrep kit. Nucleic acids were quantified fluorometrically with a Qubit 2.0 Fluorometer and 

quality assessed with an Agilent 4200 TapeStation Instrument prior to sequencing.
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Table 4: Clinical features of local recurrence cohort 
Abbreviations: Dx: Diagnosis; Hist: Histology; ER: estrogen receptor; PR: Progesterone receptor; HER2: human 
epidermal growth factor 2; Endo: endocrine; Tx: therapy; DFS: disease free survival; SPLR: survival post local 
recurrence; OS: overall survival; IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; IMC: invasive 
mucinous carcinoma 

Case Age 
Dx Hist Stage ER 

Prim 
PR 

Prim 
HER2 
Prim 

Endo 
Tx 

HER2 
Tx 

Radio 
Tx 

Chemo 
Tx DFS SPLR Vital 

Status OS 

ERLR_01 36 IDC/ILC 
Mixed I Pos Pos Neg Yes No Yes Yes 86 132 Alive 218 

ERLR_02 54 IDC IIA Pos Neg Pos Yes No Yes Yes 61 141 Alive 203 

ERLR_03 74 IDC I Pos Pos NA Yes No Yes No 76 128 Dead 204 

ERLR_05 54 IDC IIA Pos Pos Neg Yes No Yes Yes 69 85 Dead 155 

ERLR_07 58 IDC I Pos Pos Pos Yes No Yes No 19 179 Alive 199 

ERLR_08 52 IDC IA Pos Pos Pos Yes Yes Yes Yes 37 38 Alive 75 

ERLR_09 51 IDC IA Pos Pos Neg Yes No Yes No 25 46 Alive 71 

ERLR_12 47 IMC IIA Pos Pos Neg Yes No No No 26 34 Alive 61 

ERLR_14 50 IDC IA Pos Pos Neg Yes No NA No 3 26 Alive 29 

ERLR_15 65 IDC IIIC Pos Pos Neg Yes No Yes No 10 27 Alive 38 

ERLR_19 49 
IDC w/ 
lobular 
features 

IIA Pos Pos Neg Yes No No No 52 8 Alive 61 

ERLR_20 42 IDC IIIA Pos Pos Pos Yes Yes Yes Yes 59 44 Dead 104 

5.3.2 RNA and DNA-sequencing 

RNA-seq library preparation was performed for all 12 cases using approximately 100 ng of RNA 

and Illumina’s TruSight RNA Pan-Cancer (1385 targets) protocol. DNA-seq library preparation 

was performed for 10 (6 with associated normal tissue) cases using no less than 30 ng of DNA 

and Illumina’s TruSeq Exome protocol with TruSight RNA Pan-Cancer probes for hybridization-

based capture. Indexed, pooled libraries were then sequenced on Medium Output flow cells 

using an Illumina NextSeq 500 system (paired-end reads, 2 X 75 bp). A target of 5-10 million 

reads per sample was used to plan indexing and sequencing runs for RNA-sequencing and a 

target of 10-15 million reads was used for DNA-sequencing. RNA-sequencing FASTQ files 
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were quantified with k-mer based lightweight-alignment (Salmon v0.7.2, quasi-mapping mode, 

31-kmer index using GRCh38 Ensembl v82 transcript annotations, seqBias and gcBias

corrections)241. tumorMatch (Chapter 3, Chapter 4) was used to validate sequencing pairs were 

patient-matched. 

5.3.3 RNA-sequencing quantification and DNA-sequencing alignment 

RNA-seq read counts and mapping percentages were calculated (Data Supplement 4: S1) and 

transcript abundance estimates were collapsed to gene-level with tximport275. Log2 transformed 

TMM-normalized CPM (log2normCPM) values were implemented for subsequent 

analyses243,244. DNA-seq reads were aligned with bwa –mem (v.0.7.13) to an hg19 reference, 

sorted with samtools (v1.3), duplicates marked and removed with picardtools (v1.140) and local 

realignment performed with GATK (v3.4-46)198–200. Average coverage depth for the processed 

bam file was calculated using GATK’s DiagnoseTargets and the Illumina Pan-Can bed file 

(Appendix A.4: Figure 41, Data Supplement 4: S2). Metrics for average coverage values across 

all target intervals were plotted with ggplot2. 

5.3.4 DNA-seq recurrence enriched variant determination 

To determine enriched variants in recurrences versus patient-matched primary tumors, VarScan2 

was implemented318. More specifically, primary and recurrent samtools mpileup files derived 

from processed bam files were input into VarScan2 using somatic mode, with somatic p-values 

representing the significance of a particular variant being acquired or enriched in the recurrence 

[SS = 1 or SS = 2]. Tumor purity estimates, as assessed by a molecular pathologist, were 
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included in VarScan2 to correct contaminating normal cell influence on allele frequencies. The 

minimum coverage for a variant to be considered was 40X, with a minimum allele frequency 

(AF) of 0.05 in either the primary or recurrence and a minimum of 5 reads supporting the 

variant. Germline variants were determined for cases containing a matched normal (ERLR_01, 

ERLR_02, ERLR_07, ERLR_08, ERLR_12 and ERLR_15) using VarScan2’s germline mode 

with the same parameters. VCF output files were then imported into R using the 

VariantAnnotation package319. If an adjacent normal sample was available for the case, all 

germline variants (AF > 0.30) were excluded from subsequent analyses. Additionally, to limit 

technical artifacts especially considering specimens were formalin-fixed paraffin embedded320, a 

“blacklist” of variants was created including those called in at least 3 of the normal samples. 

Germline and blacklist-removed variants were then annotated with Annovar321. Lastly, to call 

recurrence-enriched, potentially pathogenic variants the following inclusion criteria were 

enacted: (1) VarScan2 somatic p-value < 0.05, (2) > 2-fold gain in allele frequency in the 

recurrence versus the primary, (3) minimum AF of 0.10 in the recurrence, (4) non-silent and (5) 

an ExAC AF < 0.01 considering some samples were without a paired normal (Data Supplement 

4: S3)322. These non-silent, enriched, potentially pathogenic variants were then plotted using the 

OncoPrint function in ComplexHeatmaps194. A pearson R correlation was calculated between the 

frequency of enriched variants and disease-free-survival. PIK3CA mutations were visualized 

with IGV (2.3.60)202 and variant allele frequencies were derived from VarScan2. 

5.3.5 Copy number alterations 

To estimate copy number ratios, CNVkit was implemented on processed bam files using default 

settings and the -drop-low-coverage option201. A pool of bam files from adjacent normal tissue, 
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sequenced in the same manner, was used as a reference. Probe and segment level copy number 

estimates were finalized with CNVkit’s call function, which utilizes circular binary 

segmentation323. To adjust for tumor purity and normal contamination, the –m clonal option was 

used with tumor purities from pathologic evaluations. Copy number ratios were then plotted with 

the heatmap function and copy number values were assessed and plotted with ggplot2. Gene-

level copy number estimates represent the mean copy number call across all probe targets. 

CNVkit copy number ratios showed a near normal distribution and ERBB2 copy number values 

demonstrated a strong correlation (pearson R = 0.924, p-value < 0.001) with expression 

(Appendix A.4: Figure 42). 

5.3.6 Differential gene expression, clustering and outlier gains and losses 

Hierarchical clustering was performed using the heatmap.3 function 

(https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R) in 

R on log2normCPM values of the top 10% most variable genes (defined by IQR) with 1 minus 

Pearson correlations as distance measurements and the “average” agglomeration method. 

Differential expression between primary and recurrent tumors was analyzed with limma. Raw 

counts were input into the voom function and quantile normalized prior to fitting the linear model 

and performing the empirical Bayes method for differential expression281,324. The linear model 

was fitted with a design that accounts for the paired nature of the cohort (model = 

~Patient+Tissue [primary or recurrence]). Outlier expression gains and losses were determined 

for each patient by discretely categorizing genes into one of 5 categories. If log2FC values (i.e. 

recurrence log2normCPM – primary log2normCPM) for a given gene were less than Q1 – (1.5 X 

IQR) or Q1 – (3 X IQR), using case-specific log2FC values for all genes as the distribution, that 

https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R)
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gene was deemed an “Outlier Loss” or “Extreme Loss” respectively. If log2FC values calculated 

were greater than Q3 + (1.5 X IQR) or Q3 + (3 X IQR), it was deemed an “Outlier Gain” or 

“Extreme Gain” respectively. All other genes with intermediate fold changes were classified as 

“Stable.” To determine subtype expression of KLK7, PROM1 and NDRG1, normalized 

microarray expression data along with PAM50 calls was obtained from the Molecular Taxonomy 

of Breast Cancer International Consortium (METABRIC) through Synapse 

(https://www.synapse.org/, Synapse ID: syn1688369), following IRB approval for data access 

from the University of Pittsburgh14. Overlap with genes in long-term estrogen deprived, ER-

positive breast cancer lines (HCC1428, MCF7, T47D, ZR75.1) was performed by running a 

separate differential expression analysis (LTED vs. parental lines) on microarray data with 

limma281,325. Dysregulated gene overlap was designated if the nominal p-value and FDR-adjusted 

p-value were both < 0.05 in the local recurrence and LTED differential expression analysis,

respectively. Binary dichotomization of METABRIC samples using NDRG1 expression (>50th 

percentile, <50th percentile) and log-rank testing were used to assess significant differences in 

disease-specific survival (DSS) and then Kaplan-Meier curves were plotted with survminer253,254. 
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5.4 RESULTS 

5.4.1 Expression and copy number alteration profile conservation 

Unsupervised hierarchical clustering showed most patient matched pairs cluster with their 

matched primary—regardless of the length of disease free survival (Figure 17A). Unlike a 

previous transcriptome-wide analysis of primary breast cancers and matched bone metastases 

(Chapter 3), there was no significant correlation in pair transcriptional similarity and time to 

recurrence—although a negative correlation was observed (pearson R = -0.37, p-value = 0.236). 

Only a single recurrence showed marked transcriptional deviation from its matched primary 

(ERLR_03_R1); whereby it lost ER-positivity and gained HER2-positivity clinically (marked 

with a ∆). Copy number alterations (CNAs) between primary and recurrences were then analyzed 

in the targeted capture regions for 10 cases. Similar to expression, copy number alterations were 

largely consistent among the recurrences when compared to their matched primary (Figure 17B). 

Two exceptions were recurrences from cases ERLR_01 and ERLR_03, which showed distinct 

copy number profiles from the matched primary tumors. Notably, unlike case ERLR_03, 

ERLR_01 retained a similar expression profile. An analysis of shared variants validated both 

DNA and RNA extracts originated from the same patient (Appendix A.4: Figure 43), excluding 

the possibility of sample mixup. 
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Figure 17: Transcriptional and CNA conservation in ER-positive local recurrences 
(A) Unsupervised hierarchical clustering and heatmap on normalized gene expression values from patient-matched pairs (P1 = Primary, R1 = Recurrence).
Clinical ER and HER2 status (black = negative, green = positive, grey = unknown), tissue source site (purple = Pitt, yellow = Charite), and tumor type (blue =
primary, red = recurrence) are indicated. Delta symbol shows distinct clustering of ERLR_03_R1 away from its matched primary, ERLR_03_P1. (B) Heatmap of
copy number ratios from patient-matched pairs. Redder regions indicate regions of copy number gain and bluer regions indicate regions of loss.
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5.4.2 SNV enrichments and differentially expressed genes 

To assess if there are shared features acquired in recurrences, an analysis of enriched single 

nucleotide variants (SNVs) was performed for the 10 cases that were DNA-sequenced. Two 

genes were found to be enriched in more than one case (n = 2 [20%]) in local recurrences versus 

primary tumors, AKAP9 and KMT2C (Figure 18A, Data Supplement 4: S3). The recurrent 

mutations did not show any features suggesting functional selection, such as being within a 

conserved functional domain or within a COSMIC326 hotspot region, making it difficult to assess 

if these are pathogenic. Other case-specific, n-of-one enriched mutations included a nonsense 

mutation in ARID1A (Case ERLR_20, Primary AF 0.5%, Recurrent AF 16.5%), an acquired 

TP53 mutations (Case ERLR_03, Primary AF 0.0%, Recurrence AF 53.4%) and an enriched 

NCOR2 mutation (Case ERLR_08, Primary AF 4.4%, Recurrence AF 19.4%). In case ERLR_01, 

an enrichment of a suite of three somatic mutations in PIK3CA was observed (E542K, Q546K, 

E726K) in the recurrence (Figure 18B). Notably, the number of enriched, non-silent SNVs 

ranged from 0 to 13 and was positively correlated with clinical time to recurrence (Figure 18C). 

No acquired ESR1 mutations were observed, and this was orthogonally confirmed by droplet 

digital PCR (data not shown, performed by Zheqi Li). A differential expression analysis, 

comparing all primary tumors versus all local recurrences, yielded no genes passing an FDR 

corrected p-value of less than 0.05—which is perhaps expected given the heterogeneity of 

clinical specimens (Data Supplement 4: S4). Nonetheless, 71 genes with an average, voom 

normalized expression value of 2 or greater, a nominal p-value of less than 0.05 and a log2 fold-

change greater than +/- 0.5 were identified (Table 5). Some of these genes, including the 

upregulation of EPOR, NDRG1, IDH2, CEBPA and PTPA and downregulation of ESR1, IGF1R, 
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NFKB1 and RUNX2, are also differentially expressed in long-term estrogen deprived ER-positive 

cell lines (Appendix A.4: Figure 45). 

Figure 18: SNV enrichments in ER-positive local recurrences. 
(A) OncoPrint of non-silent, enriched single nucleotide variants in patient-matched cases. Missense variants are
indicated with a green box and nonsense variants with black. (B) Polyclonal, triplet mutation enrichment of PIK3CA
mutations in case ERLR_01. Collapsed IGV alignments are shown, along with allele frequencies, for the normal,
primary and recurrence. (C) Frequency of enriched, non-silent single nucleotide variants versus time to recurrence
along with pearson R and calculated p-value.
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Table 5: Differentially expressed genes in long-term estrogen-deprived local recurrences 

Gene Log2FC voom Average 
Expression Nominal P-value FDR Adjusted P-value 

DDIT3 0.570 6.241 0.004 0.322 
PC 0.536 5.847 0.004 0.322 

CEBPA 0.750 4.889 0.005 0.322 
E2F1 0.788 5.223 0.011 0.422 

FANCA 0.550 7.102 0.012 0.441 
RET 0.714 7.015 0.015 0.441 

HIST1H3B 0.803 5.165 0.015 0.441 
RASGRF1 1.139 4.066 0.015 0.441 

EPHB6 1.014 3.418 0.016 0.441 
POLD1 0.505 6.353 0.017 0.441 

RECQL4 0.770 6.370 0.020 0.441 
SLC7A5 0.579 6.292 0.021 0.441 
CEBPB 0.627 7.198 0.023 0.441 
CENPU 0.745 7.597 0.023 0.441 
ALDOC 0.796 5.265 0.026 0.441 
LAMA5 0.542 10.076 0.027 0.441 
RPA3 0.626 5.020 0.027 0.441 

NDRG1 0.747 9.013 0.029 0.441 
PPP1R13L 0.503 5.638 0.029 0.441 

NTRK3 1.334 3.993 0.029 0.441 
EPHA2 0.642 4.947 0.030 0.441 

SLC34A2 2.031 2.218 0.031 0.441 
AURKA 0.582 5.966 0.032 0.443 
H2AFX 0.593 4.357 0.037 0.459 
EPOR 0.701 3.987 0.039 0.461 

VEGFA 0.692 9.212 0.041 0.471 
ASPH 0.565 11.252 0.046 0.490 
CIT 0.578 7.406 0.048 0.492 

SFRP2 -1.329 8.934 0.000 0.162 
ETV1 -1.102 5.522 0.000 0.162 

CYP1B1 -0.765 6.342 0.001 0.162 
AK5 -1.399 4.639 0.001 0.162 

AKT3 -0.718 7.441 0.001 0.279 
LEF1 -0.520 7.241 0.002 0.289 

PDGFRA -0.893 7.161 0.002 0.313 
RUNX2 -0.815 6.515 0.002 0.322 
CDC14A -0.611 6.782 0.004 0.322 
IGF1R -0.807 9.598 0.004 0.322 
LHFP -0.625 6.217 0.005 0.322 

HTRA1 -0.816 9.288 0.005 0.322 
POSTN -0.905 12.477 0.005 0.322 
ZNF521 -0.747 7.905 0.006 0.322 
SFRP4 -1.306 7.855 0.006 0.343 
ADD3 -0.825 8.199 0.007 0.355 

CDH11 -0.618 9.666 0.007 0.355 
ARHGAP20 -0.834 4.204 0.009 0.386 

DCN -0.831 11.074 0.009 0.386 
ZFPM2 -0.733 6.488 0.009 0.386 
GRIN2A -0.970 2.159 0.010 0.414 

RELN -1.171 4.220 0.011 0.422 
GRID1 -0.607 3.894 0.014 0.441 
EGR2 -0.914 6.350 0.015 0.441 
EGR1 -1.000 9.137 0.016 0.441 

PQLC3 -0.525 6.472 0.016 0.441 
HAS2 -0.747 5.090 0.018 0.441 
ESR1 -1.668 9.480 0.019 0.441 

ATP8A2 -1.279 3.966 0.021 0.441 
PRRX1 -0.641 7.975 0.021 0.441 
STAT4 -0.886 4.178 0.022 0.441 

PRDM16 -0.917 2.311 0.023 0.441 
LAMA1 -0.549 5.186 0.027 0.441 

IL7R -1.025 5.094 0.028 0.441 
COL6A3 -0.591 13.383 0.030 0.441 

ALDH1A1 -0.636 6.524 0.030 0.441 
RASGRF2 -0.623 6.833 0.030 0.441 

NAV3 -0.535 6.228 0.036 0.459 
GAS7 -0.561 7.495 0.037 0.459 

COL1A2 -0.500 14.574 0.037 0.459 
DGKI -0.722 5.383 0.039 0.461 
IL1R1 -0.560 8.198 0.044 0.487 
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5.4.3 Outlier expression gains and losses 

To further explore major expression changes that may be driving recurrence but not shared 

among all recurrences, an outlier expression analysis was performed using gene-level fold-

change values of each patient-matched case. Unlike non-silent SNVs, recurrent transcriptional 

gains and losses were common (Figure 19A). These included gains and losses in shared pathway 

members, notably NTRKs and SFRPs respectively, targetable upregulation of growth factor 

pathway mediators such as FGFR4 and EGF and outlier gains in the CDK regulator CCNE1. 3 

of 12 cases also shared outlier expression gains in TERT, with case ERLR_14 harboring a 

particularly extreme enrichment from near undetectable levels in the primary tumor (Figure 

19B). Case ERLR_03’s recurrence, which was most dissimilar to its patient-matched pair 

transcriptionally, showed extreme loss and gain of ESR1 and ERBB2 respectively. CNA analysis 

confirmed recurrence-specific ERBB2 amplification and is consistent with previous studies of 

endocrine therapy-treated breast cancers selecting for HER2-signaling in more advanced tumors 

(Chapters 2, 3). The most recurrent outlier loss involved ESR1. 
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Figure 19: Outlier expression gains and losses in ER-positive local recurrences 
(A) OncoPrint of outlier expression gains (red) and outlier expression losses (blue) in ER-positive local recurrences.
Genes are sorted by frequency of outlier changes across pairs. (B) Extreme expression gain of TERT in case
ERLR_14; 2 other cases showed similar TERT enrichments in recurrent tumors. (C) Extreme expression gain and
loss of ERBB2 and ESR1 respectively. TMM-normalized CPM values of primary (blue) and recurrent (red) tumor.
ERBB2 expression gain is driven by recurrence-specific DNA-level amplification of ERBB2 locus.
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5.4.4 ESR1 depleted recurrences 

Five cases showed outlier expression losses of ESR1 (Figure 20A). Despite estrogen receptor 

being the driver of ER-positive breast cancer and a major regulator of transcription; 

counterintuitively, 4 of 5 of the recurrences which lost ESR1 expression generally retained the 

expression profile of their patient-matched primary (Figure 17A). Importantly, many of these 

cases also harbored very similar CNA profiles (Figure 17B), implying the recurrences were 

derived from a continuous cancer linage as opposed to being completely distinct breast cancers. 

Thus, to explore the transcriptional consequences of acquired ESR1 loss in ER-positive disease 

and identify potential bypass mechanisms driving ESR1 independence, a differential expression 

analysis was performed on the subset of pairs with outlier ESR1 expression losses. This analysis 

revealed several recurrently dysregulated genes in ESR1 depleted recurrences (Figure 20B, Data 

Supplement 4: S6). Two standout genes, KLK7 and PROM1, showed the highest degree of fold 

change with a log2 fold-change increase of 5.4 and 3.9 respectively—with some tumors 

exhibiting changes from near undetectable levels to high expression (Figure 20C). These two 

genes are more commonly expressed in basal cancers, with PROM1 being a cancer stem cell 

marker and luminal lineage factor (Appendix A.4: Figure 44)327. Other genes with significant 

log2 fold-changes > 1 included drug targets such as FGFR4, KIT, IGF1R and BCL-2 (Table 6). 

NDRG1, a particularly compelling candidate since it also showed upregulation in LTED breast 

cancer models, was further interrogated using METABRIC data. Like PROM1 and KLK7, 

NDRG1 is most highly expressed in basal breast cancers; yet, when expressed in ER-positive 

primary tumors, NDGR1 confers significantly worse disease-specific survival outcomes 

(Appendix A.4: Figure 46). 
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Figure 20: ESR1 depleted recurrences 
(A) TMM-normalized expression of patient-matched local recurrences; primary tumor expression in blue, recurrent
tumor expression in red. (B) Heatmap of differentially expressed genes (nominal p-value < 0.05) in ESR1 depleted
recurrences versus matched primary tumors. Genes are sorted by p-value and segregated by log2 fold-change values;
log2 fold-change > 0 on top, log2 fold-change < 0 on bottom. (C) Ladder plots showing log2normCPM expression
values for both KLK7 and PROM1, two of the most significantly upregulated genes in local recurrences with the
largest average log2 fold-changes.
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Table 6: Differentially expressed genes in ESR1 depleted recurrences 

Gene Log2FC voom Average 
Expression Nominal P-value FDR Adjusted P-

value 
PAPPA 1.395 6.416 0.001 0.293 
KLK7 5.422 1.158 0.001 0.293 

PROM1 3.931 5.005 0.002 0.588 
RASGRF1 2.307 4.106 0.002 0.588 

DKK1 2.732 0.473 0.004 0.614 
EPHB6 1.641 3.819 0.005 0.614 
ABCC3 1.637 8.010 0.006 0.614 
FGFR4 1.515 5.267 0.010 0.695 
FBN2 1.010 5.326 0.010 0.695 

TENM1 1.326 4.709 0.012 0.705 
COL9A3 2.034 2.249 0.014 0.705 
NDRG1 1.218 8.945 0.014 0.705 

TP63 2.135 4.441 0.018 0.768 
SCN8A 1.290 5.881 0.019 0.768 

KIT 1.289 6.020 0.020 0.768 
TCL6 2.228 -0.254 0.022 0.790 

WNT11 1.585 1.256 0.024 0.823 
SOCS1 1.534 0.387 0.033 0.911 

HOXD11 2.755 -1.369 0.034 0.911 
PLAG1 1.275 4.576 0.036 0.911 
DTX4 1.185 5.711 0.036 0.911 
FLNC 1.588 6.787 0.037 0.911 

ALDOC 1.494 5.224 0.039 0.911 
ACSBG1 1.843 0.601 0.042 0.915 

SYP 1.348 0.862 0.045 0.915 
ESR1 -3.952 9.492 0.000 0.146 

ATP8A2 -2.599 4.510 0.003 0.588 
ELOVL2 -2.090 2.413 0.006 0.614 
RABEP1 -1.009 10.352 0.012 0.705 

EYA1 -1.494 2.203 0.013 0.705 
IGF1R -1.149 9.083 0.016 0.747 

CAMK2A -1.391 2.742 0.016 0.747 
RERG -1.413 6.562 0.018 0.768 
BCL2 -1.055 6.619 0.020 0.768 

FGF14 -1.393 2.430 0.023 0.790 
RASGRP1 -1.044 6.799 0.027 0.857 
BHLHE22 -1.822 0.822 0.035 0.911 
ZNF703 -1.811 4.865 0.038 0.911 

MYB -1.179 8.857 0.045 0.915 
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5.5 DISCUSSION 

In this study, a targeted RNA/DNA analysis of approximately 1,400 cancer genes in ER-positive 

primary breast cancers and matched long-term, endocrine therapy treated local recurrences was 

performed. We found a profound conservation of transcriptional and copy number profiles—

suggesting that even after 7 years of dormancy and the onslaught of therapies, recurrent breast 

cancers retain their intrinsic molecular features. An analysis of recurrence-enriched single 

nucleotide variants revealed limited recurrent mutation events, including no acquired ESR1 

mutations, yet notable “n-of-one” mutation evolution was observed—such as case ERLR_01 

which showed three distinct, recurrence-enriched PIK3CA mutations. The most striking changes 

in long-term estrogen-deprived tumors; however, were highly recurrent (up to 42%), outlier 

expression changes. An analysis of tumors with the most recurrent outlier loss, ESR1, revealed 

concurrent upregulation of genes typically expressed in basal breast cancers, such as PROM1, 

KLK7 and NDGR1.  

Nearly all recurrences are more similar transcriptionally to their matched primaries than 

to other, long-term estrogen deprived tumors—reinforcing the notion that advanced cancers 

generally retain their core transcriptional programming, even after nearly a decade of 

dormancy26-29. This transcriptional conservation appears to be even more pronounced than 

metastatic lesions (Chapter 2,3,4)— perhaps due to an unaltered microenvironment and the 

greater, multistep selective pressures required for cells to seed a foreign organ328. Furthermore, 

amplifications and deletions of recurrences are markedly similar to primaries, supporting recent 

evidence from breast cancer single-cell sequencing that structural variation is likely an early 
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event and many CNAs, even in metachronous therapy-resistant tumors, may be shared by the 

majority of subclones329. An important exception to this conservation was ERLR_03_R1, a 

recurrence with a completely unique transcriptional and copy number profile than its matched 

primary. Evidence has emerged of so-called ‘collision tumors’, whereby two synchronous, 

distinct cancers can merge anatomically and only under the selective pressures of therapy or 

through deep sequencing , their individuality can be unmasked317,330. Indeed, this “recurrence” 

switched to ER-negative/HER2-positive from ER-positive/HER2-negative clinically, and thus 

could represent a completely different cancer than the primary tumor. Countering this notion; 

however, were shared variants with similar allele frequencies between the primary and recurrent 

tumors (data not shown)—although it is difficult to make this assessment conclusively given a 

matched normal from this patient was not available. 

Limited shared, non-silent SNVs were discovered in these specimens, with AKAP9 

(R3320W, S319*) and KMT2C (T1969I, Y366N, R894Q) being the only two genes that harbored 

recurrence-enriched mutations in greater than one case. These mutations are not in a conserved 

functional domain nor in a hotspot location, making it difficult to assess their pathogenic roles. 

AKAP9 and KMT2C also encode relatively large gene products (3911 and 4911 amino acids, 

respectively) which may increase the likelihood of obtaining a so called passenger mutation by 

chance. Nevertheless, KMT2C and other lysine methyltransferases have been implicated in breast 

cancer pathology, argued as potential drivers in large-scale sequencing studies of primary tumors 

and KMT2C mutations specifically may confer hormone therapy resistance in breast cancer 

models15,331,332. Case ERLR_20 harbored an enriched nonsense mutation in ARID1A (Q1424*, 

primary AF 0.5%, recurrence AF 16.54%). Notably, somatic mutations in this chromatin 

remodeling gene are frequent in gynecologic cancers with compelling data supporting ARID1A 
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as a tumor suppressor. ARID1A is also associated with more unfavorable tumor features in breast 

cancer and is enriched in metastatic breast cancers versus primary tumors (Figure 4), further 

suggesting a role in disease progression333–335. A single recurrent cancer (ERLR_01_R1) showed 

enrichment of three somatic hotspot PIK3CA mutations (E542K, Q546K, E726K), suggesting an 

extreme, polyclonal selection within that particular tumor. Given the likely dependency this 

tumor carries on PI3K signaling and recent early phase trials for PIK3CA mutant cancers94,95, 

enriched mutations found early in local recurrences may represent a particularly compelling 

method of rational drug selection or planned trial enrollment if this patient were to progress to a 

more advanced disease. SNVs within genes that act as corepressors and coactivators, some with 

direct influences on estrogen receptor mediated transcription, were found to be enriched in 

recurrences—such as NCOA1, NCOR2, FRYL and CREBBP—along with transcription factors 

including PAX5, FOXO1 and TP53. Finally, we observed a positive correlation between the 

frequency of acquired, non-silent SNVs and disease-free survival—validating the concept that 

surviving cancer cells after initial therapy acquire potentially pathogenic mutations as they lay 

dormant and undetectable over time. As more long-term estrogen deprived breast cancers are 

characterized, the selection of advanced disease driver mutations—which may be distinct from 

primary disease such as ESR1 mutations—will become clearer. 

Given the heterogeneity of clinical specimens makes it difficult to rely on typically used 

differential expression analyses—since resistant mechanisms of individual tumors may be 

distinct—we undertook an analysis of outlier expression gains and losses to identify more 

extreme transcriptional reprogramming events within individual cases that may be driving 

estrogen independence. Surprisingly, unlike SNVs, recurrent outlier transcriptional gains and 

losses were quite common. Particularly compelling outlier events included recurrent gains within 
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shared pathway members, such as near mutually exclusive upregulations of NTRK2 [n = 5 

[42%]) and NTRK3 (n = 4 [33%]). Tropomyosin-related kinases have been historically 

associated with psychiatric disorders and neural development; however, their role in cancer has 

been increasingly appreciated given their involvement in recurrent, oncogenic fusions336–338. 

Notably, activation of NTRK’s mediates downstream signaling pathways typically associated 

with breast carcinomas, including PI3K and MAPK, and small molecule inhibitors of this family 

are currently being tested in solid tumor trials (NCT02568267)339. Other notable pathway 

member changes included loss of Wnt antagonists SFRP2 (n = 3 [25%]) and SFRP4 (n = 4 

[33%]). SFRP2 is hypermethylated and silenced in a subset of breast cancers340,341 and 

experiments in model systems have shown cross-talk between ER and Wnt signaling that may 

mediate endocrine therapy resistance259,342. Other recurrent gains included FGFR4 (n = 4 [33%]), 

TERT (n = 3 [25%]) and CCNE1 (n = 3 [25%])—particularly relevant given the recent success of 

CDK inhibitors in hormone-positive disease and the burgeoning use of FGFR inhibitors against 

solid malignancies343.  

The most recurrent outlier expression loss was ESR1, which was diminished in 42% of 

long-term estrogen-deprived local recurrences. Interestingly, the loss of ESR1 for the majority of 

cases was not associated with a dramatic change in the tumors’ transcriptional profile. To further 

explore this counterintuitive result, given ESR1 is a master regulator of transcription and a driver 

of luminal breast cancers, we identified genes that were consistently altered in ESR1 depleted 

recurrences. The most substantial gains in ESR1 depleted tumors are genes generally expressed 

in basal breast cancers—such as NDRG1, DKK1, KIT, KLK7, PROM1 and COL9A3—and genes 

significantly lost in the ESR1 depleted subset are generally downregulated in basal cancers—

EVLOVL2, BCL2, IGF1R, MYB, ESR1, RABEP and ATP8A2 (MsigDB: 
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SMID_BREAST_CANCER_BASAL_DN/UP gene lists)250. These results reveal a distinct 

ESR1-depleted subtype of advanced breast cancers that obtain more basal-like characteristics. 

The greatest fold-change difference in ESR1 depleted recurrences was the upregulation of 

PROM1. PROM1 is a marker for tumor-initiating cancer stem cells and plays a key role in 

determining ER-positive luminal cell fate during differentiation from multipotent stem cells327, 

suggesting long-term endocrine deprived breast cancer cells may enrich themselves with stem-

like progenitors to achieve estrogen-independence. Indeed, PROM1 has been shown to mediate 

endocrine therapy resistance in breast cancer models through IL6/Notch3 signaling 344,345. Here, 

we show that a large portion of long-term endocrine resistant breast cancers may be exploiting 

this transcriptional reprogramming. Importantly, this gene has been shown to be immunogenic in 

melanoma and glioma, suggesting it may be a prime target for immunotherapy—benefits of 

which has not yet been realized for breast cancer346,347. Finally, NDRG1, also significantly 

upregulated in ESR1 depleted recurrences and generally expressed in basal cancers, showed 

differential expression in three distinct, ER-positive LTED cell lines. NDRG1 is a suspected 

metastasis suppressor gene. Counterintuitively, we see upregulation of this gene in resistant 

disease and show increased expression confers worse survival outcomes in ER-positive primary 

tumors348. Further functional studies assessing the mechanistic and biological consequences of 

these transcriptional reprogramming events will be essential. 

A pertinent point these results raise is the potential benefit of integrating longitudinal, 

targeted RNA-sequencing to inform resistance mechanisms and therapeutic targets in breast 

cancers. In this study, we find limited DNA-level enrichments yet highly recurrent, acquired 

transcriptional remodeling events from primary to advanced cancers, including a few of which 

that are immediately targetable such as NTRKs, FGFR4 and CCNE1. Overall, this work may 
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challenge our lack of emphasis on RNA-level changes, particularly those that can be elucidated 

from longitudinal biopsies, in clinical profiling of tumors—especially in breast cancers 

considering they are driven by transcriptional regulators rather than recurrent DNA-level 

changes. 

Collectively, these results begin to unravel the complex adaptations that breast cancer 

populations undergo when under the selection of estrogen depleting therapies long-term. We 

identify acquired DNA-level mechanisms of resistance, such as mutations in ARID1A and 

polyclonal selection of PIK3CA mutations—but more importantly, uncover the most recurrent 

genomic adaptations taking place appear to be at the transcriptional level. These include 

targetable outlier gains and modifications in NTRKs as well as a distinct population of ESR1 

depleted recurrences that enrich themselves with genes generally expressed in basal breast 

cancers—such as PROM1 and NDRG3. Preclinical, mechanistic investigations into these 

temporally altered genes are immediately warranted given they may uncover novel and 

targetable mechanisms of endocrine therapy resistance in advanced breast cancers. 
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6.0  ACQUIRED MOLECULAR FEATURES IN RECURRENT CHEMORESISTANT 

OVARIAN CANCERS 

6.1 ABSTRACT 

80% of patients with late-stage serous ovarian cancer (OvCa) recur after an initial treatment 

response, with the majority of relapsed tumors developing deadly resistance to subsequent 

therapies. Identifying molecular mediators accountable for this increased malignancy is essential 

to improve the tragic 12-18 month prognosis for OvCa patients with recurrent disease. To 

decipher the molecular features driving relapsed ovarian cancers towards therapy resistance, we 

undertook a transcriptome analysis of 19 longitudinally collected patient-matched pairs 

representing early and late disease (median disease-free interval of 37 months). We identify a 

suite of genes consistently upregulated in ovarian cancer recurrences, the most significant being 

NTRK2 (adjusted p-value < 0.001) —a targetable tyrosine kinase. Given the lack of targeted 

therapies available for ovarian cancer, we pragmatically screened for additional clinically 

actionable targets by defining outlier expression gains and losses in recurrences. The most shared 

outlier gains were INHBA (n = 8 [44%]) and IGF1 (n = 7 [39%]). Because of the structurally 

unstable ovarian cancer genome, we then analyzed the cohort for cancer-specific (i.e. absent in a 

comprehensive panel of normal tissues) fusion RNA transcripts. Globally, 18 of 19 recurrent 

cancers acquire cancer-specific fusion RNAs that are undetectable in the early lesion. We 
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subsequently validate an in-frame, late-disease specific fusion between TOP2A, a target of 

doxorubicin and known chemoresistance mediator, and STAU1. Lastly, we identify a recurrent, 

in-frame fusion (CCDC6-ANK3) with distinct breakpoints that is maintained in both primary and 

recurrent lesions and also expressed in the OVCAR3 cell line. Collectively, these results define 

multimodal transcriptomic mechanisms of ovarian cancer evolution in late disease—and point 

towards highly shared acquisitions in recurrences (NTRK2, INHBA, IGF1, as well as acquired in-

frame fusions) as compelling candidates for disease progression and further preclinical 

investigation. 
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6.2 INTRODUCTION 

High-grade serous ovarian cancer is a deadly disease with limited options—not one targeted 

therapy tested clinically has shown overall survival benefits. As such, cytotoxic agents remain 

the mainstay therapy, particularly platinum and taxane-based chemotherapies349. Despite the high 

mortality of the disease; counterintuitively, over 50% of patients have a complete clinical 

remission following primary therapies146. This short-term success is diminished by the fact that 

greater than 80% of tumors will recur, after which, the disease is generally incurable with a 

median overall survival of only 1 to 2 years147. Understanding the molecular mediators that 

permit ovarian cancer to be exquisitely sensitive to chemotherapies at the onset, yet its 

recurrence to reemerge as viciously chemoresistant, is essential to improve outcomes. 

Like almost all other cancers, our understanding of ovarian cancer stems from large-scale 

genomic characterizations of treatment-naïve primary tumors. From these studies, ovarian cancer 

is thought to be driven by genomic instability rather than single nucleotide mutations considering 

the disease is dominated by recurrent structural variation—such as copy number alterations and 

rearrangements153. The only genomic hallmarks thus far are nearly ubiquitous TP53 mutations 

and defects in DNA-repair genes, which are disrupted by nucleotide level mutations or an 

intervening structural variant that causes gene breakage154. The adaptations that occur following 

therapies; however, are largely unexplored.  

The only comprehensive, longitudinal study of treatment-resistance ovarian cancers was 

a whole-genome characterization of 13 primary and relapsed pairs154. The authors found little 

shared potential mechanisms of resistance, but identified BRCA mutation reversion events, 

histologic switching to a more stromal phenotype and recurrent promoter-driven fusions 

involving ABCB1, the MDR1 drug efflux pump for various cytotoxic agents including paclitaxel, 
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as likely mediators154. Importantly, this study focused on DNA-level changes and most of the 

recurrent specimens were not solid tumors, but rather malignant ascites cells—as recurrent 

tumors are rarely biopsied or banked.  

In this study, we aimed to expand the characterizations of late ovarian cancer by 

performing, to our knowledge, the largest transcriptome-wide molecular characterization of 

paired primary and solid tumor recurrent disease to date.  

6.3 METHODS AND MATERIALS 

6.3.1 Patient Samples 

Institutional Review Board approval from both participating institutions (University of 

Pittsburgh IRB #PRO15050502, IRB0406147, Roswell Park Cancer Institute IRB #215512) was 

obtained. Inclusion criteria for this study were (1) patients harbored patient-matched frozen 

tissue from primary ovarian cancer and a later recurrence (referred to as “early” and “late” 

disease respectively, Table 7), (2) biospecimens contained regions with sufficient tumor 

cellularity (> 30%, median in cohort 80%) and (3) RNA integrity scores (RIN) was sufficient for 

total RNA-sequencing (RIN > 5, median in cohort 7.7). Both a top and bottom slide of the whole 

tumor, with RNA extraction slides in between, were reviewed by a trained molecular pathologist 

to confirm pathology and to quantify tumor cellularity. Six, 25-micron frozen OCT-embedded 

sections were pooled and underwent RNA extraction using Qiagen’s RNeasy protocol. Nucleic 

acids were quantified fluorometrically with a Qubit 2.0 Fluorometer and quality assessed with an 

Agilent 4200 TapeStation Instrument to determine RIN scores prior to sequencing. 
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Table 7: Early and late disease, patient-matched ovarian cancer cases 
Abbreviations: Met NOS: Metastasis not otherwise specified; NA: Data not currently available.  
Note: Case OVCA_19 was excluded from expression analyses given this was a case sequenced by the TCGA. A 
different sequencing platform was used and harbored profound batch effects vs. all other pairs. 

Case 
Disease 
Interval 
(months) 

Early Disease 
Site 

Late Disease 
Site 

OVCA_01 32 Ovary Small Bowel 

OVCA_02 22 Omentum Met NOS 

OVCA_03 72 Met NOS Colon 

OVCA_04 24 NA Lymph Node 

OVCA_05 37 NA Met NOS 

OVCA_06 48 Ovary Ovary 

OVCA_07 88 Met NOS Abdominal 
Wall 

OVCA_08 18 Omentum Lymph Node 

OVCA_09 73 Spleen Ovary 

OVCA_10 62 Ovary Met NOS 

OVCA_11 24 NA NA 

OVCA_12 37 Ovary Lymph Node 

OVCA_13 25 Ovary Colon 

OVCA_14 55 Ovary Abdominal 
Wall 

OVCA_15 54 Ovary Lymph Node 

OVCA_16 6 Omentum Spleen 

OVCA_17 7 Omentum Spleen 

OVCA_18 6 Endometrium Abdominal 
Wall 

OVCA_19 64 Ovary Pelvic Mass 
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6.3.2 Total RNA-sequencing 

RNA-seq library preparation was performed for 18 early and late disease ovarian cancer pairs 

using approximately 500 ng of RNA and Illumina’s TruSeq Stranded Total RNA-seq with Ribo-

depletion protocol. Indexed, pooled libraries were then sequenced on High Output flow cells 

using an Illumina NextSeq 500 system (paired-end reads, 2 X 150 bp). A target of 50 million 

reads per sample was used to plan indexing and sequencing runs. OVCA_19 was previously 

sequenced by The Cancer Genome Atlas using different sequencing parameters and was included 

in the fusion transcript analysis, and not the differential expression analyses, given a large batch 

effect observed with expression values. 

6.3.3 Expression analyses 

Adapter-trimmed RNA-sequencing FASTQ files were quantified with k-mer based lightweight-

alignment (Salmon v0.8.2, quasi-mapping mode, 31-kmer index using GRCh38 Ensembl v88 

transcript annotations, seqBias and gcBias corrections)241. tumorMatch (Chapter 3, Chapter 4, 

Chapter 5) was used to validate sequencing pairs were patient-matched. RNA-seq read counts 

and mapping percentages were calculated from salmon (Data Supplement 5: S1) and transcript 

abundance estimates were collapsed to the gene-level with tximport242. Lowly expressed genes 

were excluded by defining an expressed gene as having a transcripts per million (TPM) value 

greater than 1.0 in at least 3 samples. Expressed gene counts were then converted to Log2 

transformed TMM-normalized CPM (log2normCPM) values. Log2NormCPM values were used 

for subsequent analyses, such as hierarchical clustering and outlier expression analyses243,244. 

Adapter-trimmed FASTQs were also aligned using 2-pass mode in STAR (v.2.5.3.a) for 
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visualization in Integrated Genomics Viewer (v2.3.60)202,246. Hierarchical clustering was 

performed using the heatmap.3 function (https://raw.githubusercontent.com/obigriffith/biostar-

tutorials/master/Heatmaps/heatmap.3.R) in R on the top 20% most variable genes (defined by 

IQR) with 1 minus Pearson correlations as distance measurements and the “average” 

agglomeration method. Differential expression between primary and recurrent tumors was 

analyzed with DESeq2249. A paired model was used in the differential expression design (model 

= ~Patient+Tissue [primary or recurrence]) to account for patient-matched samples. Genes were 

designated as differentially expressed if they carried an FDR-adjusted p-value of less than 0.10. 

Outlier expression gains and losses were determined for each patient by discretely categorizing 

genes into one of 5 categories. If log2FC values (i.e. late disease log2normCPM – early disease 

log2normCPM) for a given gene were less than Q1 – (1.5 X IQR) or Q1 – (3 X IQR), using case-

specific log2FC values for all genes as the distribution, that gene was deemed an “Outlier Loss” 

or “Extreme Loss” respectively. If log2FC values calculated were greater than Q3 + (1.5 X IQR) 

or Q3 + (3 X IQR), it was deemed an “Outlier Gain” or “Extreme Gain” respectively. All other 

genes with intermediate fold changes were classified as “Stable.”  

6.3.4 RNA Fusion Detection and RT-PCR validations 

Fusion RNAs were called with FusionCatcher v0.99.7b. Default parameters were used. Final-

candidate fusion genes were subsequently filtered for cancer-specific fusions by discarding any 

fusion also detected in the Human Protein Atlas350 or BodyMap (EMBL-BMI, E-MTAB-513) 

RNA-sequencing datasets. The same fusion analysis was performed on ovarian cancer cell line 

data from the Cancer Cell Line Encyclopedia (CCLE)351. To validate fusions via RT-PCR, 

cDNA was generated from 250-500 ng of RNA template using Bio-rad’s iScript Reverse 

https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R)
https://raw.githubusercontent.com/obigriffith/biostar-tutorials/master/Heatmaps/heatmap.3.R)
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Transcription Supermix and the manufacturer’s protocol. Approximately 0.5 - 1 ul of resulting 

cDNA was used to perform a 40-cycle PCR with forward and reverse primers flanking the fusion 

RNA breakpoints. The PCR product was then visualized with SYBR Safe following agarose gel 

electrophoresis. PCR product was then cleaned using Exiqon’s DNA Clean and Concentrator kit 

and subjected to Sanger sequencing. Primer sequences used for validations can be found in 

Appendix B: Table 9. 

6.4 RESULTS 

6.4.1 Acquired expression gains in ovarian cancer recurrences 

To determine global transcriptome differences between matched pairs, unsupervised hierarchical 

clustering was performed using normalized expression values. Nine pairs clustered in the same 

doublet clade of their patient-matched primary, suggesting a profound transcriptional 

conservation between the recurrence and the early lesion (Figure 21A). To confirm samples were 

patient-matched, given up to 88 months between early and late disease surgeries, an analysis of 

shared variants was performed. All pairs harbored a higher proportion of shared variants with 

their patient-matched primary than to other samples (Figure 21B).  

Differential expression analyses revealed heterogeneous expression between the patient-

matched samples, only uncovering 39 differentially expressed genes (Figure 22A, Data 

Supplement 5: S2). The most significantly upregulated gene in late ovarian cancer was NTRK2, 

showing upregulation in the majority of recurrences (Figure 22B). Other genes included a suite 
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of adipogenesis genes, such as FABP4, ADIPOQ, APOD, and upregulation of an ABC 

transporter, ABCA6.  

Since resistance mechanisms in advanced cancers may be mutually exclusive, and thus 

would be missed by conventional differential expression analyses given the gene-level 

stringency, we performed a targeted analysis focusing on outlier expression gains and losses—

particularly in genes that are clinically actionable (Data Supplement 5: S3)195. Four clinically 

actionable genes showed outlier increases in at least one-third of late disease samples versus their 

matched early disease lesion—INHBA, IGF1 NTRK2 and EPHA3 (Figure 22C). 
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Figure 21: Unsupervised clustering and tumorMatch in ovarian cancer cohort 
(A) Unsupervised hierarchical clustering on 20% most variable genes across the cohort (E1 = early disease, L1/2 = late disease). Institution (yellow = Roswell
Park Cancer Institute; purple = University of Pittsburgh) and tumor type (blue = early disease; red = late disease) is indicated. Samples marked with an asterisk
are early and late lesions that cluster together. (B) tumorMatch scores which represent the proportion of shared variants between samples. Darker blue and larger
squares indicate a higher degree of genetic similarity between samples.
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Figure 22: Differentially expressed genes and outlier expression events in ovarian cancer recurrences 
(A) MA plot of genes interrogated for differential expression (log2FC [recurrence vs. primary] vs. mean of normalized counts). Significant genes (n = 39, padj <
0.10) are indicated in red. (B) Normalized expression heatmap of differentially expressed genes, ranked by adjusted p-value (top to bottom) and segregated by
increased genes and decreased genes. (C) OncoPrint of outlier expression gains (red) and losses (blue) in patient-matched pairs, along with alteration case
frequencies and recurrence percentage.
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6.4.2 Preserved and acquired fusion RNAs in ovarian cancer recurrences 

Given structural variation is a hallmark of ovarian cancer and preliminary data supports acquired 

fusions as potential mediators of chemoresistance in relapsed disease, we undertook an analysis 

of cancer-specific fusion RNAs. After excluding fusion RNAs found in a comprehensive panel 

of normals, a median of 7 cancer-specific fusion transcripts was acquired in each late disease 

sample. Nearly all recurrences also harbored “preserved” fusions—fusion transcripts detected in 

both the early and late lesion (Figure 23A). Given the low sensitivity observed in fusion finding 

algorithms352, we selected three, bioinformatically called “acquired” fusion RNAs to validate 

using RT-PCR with primers flanking the breakpoints. All three were found to be either specific 

to the recurrence or highly enriched in the recurrence versus the matched primary (Appendix 

A.5, Figure 47).

152 fusions were predicted to produce an in-frame, chimeric protein—48 being acquired 

in late disease and 55 being preserved (Data Supplement 5: S4). Although no acquired fusions 

were present in more than one recurrence, fusions of particular interest included an acquired 

WNT2-CTTNBP2 in case OVCA_04, which retained a Wnt signaling peptide in the N-terminal 

region of the hypothetical protein product, and a fusion involving TOP2A (chromosome 17) and 

STAU1 (chromosome 20) in case OVCA_19. Given the latter fusion’s involvement with a known 

chemoresistance mediator, TOP2A, we explored this fusion in more detail. The TOP2A-STAU1 

fusion, containing up to exon 19 in TOP2A and the 3’ region of STAU1 beginning at exon 6, 

carried a high degree of bioinformatic support with 19 unique reads spanning the breakpoint 

(Figure 23B). Visualization of the RNA-seq alignment also revealed increased coverage of 

TOP2A up until the breakpoint in only the late disease sample (Figure 23C). The fusion was then 
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validated with RT-PCR and Sanger sequencing using two separate PCR primer pairs spanning 

the breakpoint. Importantly, TOP2A-STAU1 was not detected in the early lesion or in an 

unrelated sample—confirming its specificity to OVCA_19 and its acquisition in advanced 

disease (Figure 23D). 

Because preserved fusions we found to be common in ovarian cancer recurrences, we 

searched for preserved fusion genes that were shared in multiple samples, which would increase 

their likelihood of being driver alterations. Two recurrent in-frame fusions were identified—

MED12-IRF2BPL and CCDC6-ANK3. The bioinformatically called MED12-IRF2BPL fusion 

breakpoint was within highly homologous polyglutamine repeat regions of each fusion partner, 

suggesting this as a false positive fusion. CCDC6-ANK3; however, was found to harbor distinct 

breakpoints in each of the samples called—all of which produced a hypothetical, in-frame 

protein product. These breakpoints were confirmed with RT-PCR and another CCDC6-ANK3 

fusion was validated in the cisplatin-resistant OVCAR3 cell line (Figure 24E)353. 
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Figure 23: Fusion RNA landscape in recurrent ovarian cancer 
(A) Landscape of cancer-specific (CS) fusion transcripts in late ovarian cancer. Frequency of cancer-specific fusions are shown for each case, with blue
representing the number of preserved fusions (present in both early and late disease) and red representing the number of late disease acquired fusions. (B) Reads
supporting the in-frame, late disease specific fusion involving TOP2A and STAU1. (C) STAR RNA-seq alignment showing enriched coverage of reads preceding
TOP2A fusion breakpoint at exon 19. (D) RT-PCR of ACTB and TOP2A-STAU1 in early and late disease samples of case OVCA_19 (E1, L1) and another,
unrelated early and late disease pair (E2, L2). Sanger sequencing of PCR product showing fusion breakpoint sequence below gel image. (E) CCDC6-ANK3
fusion validations. Top: Ovarian cancer cases, E = early disease, L = late disease sample. Bottom: OVCAR-3, CL = cell line, 0 = no template control.
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6.5 DISCUSSION 

Recurrent ovarian cancer is generally incurable and presents a major clinical challenge. The 

molecular differences between primary tumors—which tend to be uniquely sensitive to initial 

rounds of chemotherapy—and relapsed disease are largely unknown. In this study, we performed 

a preliminary interrogation of molecular features acquired in advanced disease versus early. We 

identify differentially expressed genes consistently upregulated in late ovarian cancers—most 

notably NTRK2, a targetable tyrosine kinase. We subsequently analyze outlier expression gains 

in clinically actionable genes and find highly recurrent upregulations of INHBA, IGF1 and 

EPHA3. Next, we define the landscape of cancer-specific fusion genes in relapsed ovarian cancer 

and although we observe minimal recurrent events, we discover both preserved and acquired 

cancer-specific fusion RNAs are quite common. This included an in-frame, relapse-specific 

TOP2A-STAU1 fusion and a recurrent CCDC6-ANK3 fusion harboring distinct breakpoints in 

three separate cancers—two cases with the fusion retained in both the primary and recurrent 

tumors and another fusion present in a cisplatin-resistant cell line. Collectively, these results 

represent the most comprehensive, expression-based characterization of relapsed ovarian cancer 

to date and identify novel targets for further preclinical investigation. 

Like the previous studies (Chapters 2, 3, 4, 5), advanced ovarian cancers can be very 

similar to their patient-matched primaries transcriptionally, yet acquire recurrent alterations that 

make them distinct from earlier lesions. NTRK2 is the most differentially expressed gene in 

ovarian cancer recurrences, harboring expression gains in the majority of relapsed samples. 

Tropomyosin kinases, such as NTRK2, have a recently appreciated role in oncogenesis, with 

preclinical evidence suggesting that fusions involving members of this gene family may serve as 

viable therapeutic targets (NCT02568267)336–338. Other differentially expressed genes included 
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the upregulation of adipogenesis pathway members, including FABP4. Fatty acids in the 

peritoneum, stemming largely from the omentum, have been proposed as fuel for ovarian cancer 

growth and therapy resistance with FABP4 being a key regulator of this process and our results 

in late ovarian cancers further support this potential mediator of disease progression354.  

The most recurrent clinically actionable gains in ovarian cancer were INHBA (n = 8 

[44%]), IGF1 (n = 7 [39%]), NTRK2 (n = 7 [39%]) and EPHA3 (n = 6 [33%]). INHBA produces 

a protein product inhibin beta A—a subunit of both activin and inhibin that act as positive and 

negative regulators, respectively, of hormone secretion, particularly FSH. Dysregulated 

expression of these subunits has been shown to play a role in ovarian cancer pathogenesis and 

serum inhibins may serve as potential biomarkers to complement CA125 in ovarian cancer355–357. 

Given ovarian cancer recurrences have extreme gains of this particular subunit, the activin and 

inhibin axis in late, chemoresistant ovarian cancers should be explored in more detail. IGF1 

gains are also common in ovarian cancer recurrences, particularly relevant given IGF-signaling 

inhibitors are readily available. Indeed, IGF pathway members mediate chemotherapy resistance 

in ovarian cancer cell models and IGF growth factors and binding proteins, when upregulated, 

confer worse outcomes in ovarian cancer358–362. Finally, we find an ephrin receptor (EPHA3) to 

be upregulated in recurrences. Like IGF, expression of ephrin receptors in ovarian cancers is 

associated with shorter survival, with this receptor mediating many cellular functions including 

growth advantages, angiogenesis and cell adhesion phenotypes363,364 Notably, ephrin and NTRK 

family members were found to be upregulated in chemotherapy treated breast cancer metastases 

and local recurrences as well (Chapters 3, 4, 5), suggesting these pathways may mediate disease 

progression and chemotherapy resistance across a broad range of cancer types. 
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A comprehensive analysis of cancer-specific (i.e. not present in normal tissue) fusion 

transcripts was then performed. Across each recurrence, a median of 7 acquired fusions were 

discovered. A particularly compelling acquisition was a relapse-acquired fusion transcript 

between the 5’ region of TOP2A and the 3’ region of STAU1. STAU1, an RNA-binding protein, 

post-transcriptionally regulates cell cycle mediators in cancer cells and the first 88 amino acids, 

notably absent in the identified fusion, are necessary for inhibiting cellular proliferation365. 

TOP2A is an essential protein for DNA replication and transcriptional regulation, mediates 

chemoresistance, is associated with poor prognosis in a variety of cancers and the ATPase, 

transducer and TOPRIM functional domains are importantly retained in the fusion product366–370. 

Additionally, inhibitors of TOP2A are used clinically with doxorubicin intriguingly showing 

selective efficacy in a subset of patients with recurrent OvCa371,372. Future functional studies of 

this fusion, as well as additional screening to see if TOP2A fusions are a common event in 

relapsed ovarian cancer, may be warranted.  

Lastly, we identified recurrent, in-frame CCDC6-ANK3 fusions preserved in both early 

and late cancers in two separate cases and present in the cisplatin resistant OVCAR3 cell line. 

The three identified fusions harbored distinct breakpoints, implying a potential driver alteration 

in ovarian cancer.  CCDC6 and ANK3 are relatively uncharacterized, although CCDC6 is often a 

fusion partner with RET in lung cancers373. Intriguingly, the fact that these fusions, as well as 

others, can be preserved in both early and late disease suggest fusion transcripts can serve as 

early, “truncal” events—preserved in the majority of subclones in the cancer. This presents an 

interesting opportunity given fusion breakpoints are uniquely cancer-specific and 15 of 19 cases 

(79%) had preserved fusions. We have shown previously that quantifying fusion RNA transcripts 

in plasma can serve as personalized biomarkers of disease surveillance, as they correlate with 
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tumor burden as effectively as CA125374. Furthermore, recent methods have used CRISPR to 

exploit and target cancer-specific nucleotide sequences brought about through genomic 

rearrangements, which may imply fusion transcripts—even if only present in single patients—

may serve as “no-of-one” biomarkers or therapy targets375. 

In summary, this study uncovers novel and potentially targetable acquisitions in advanced 

ovarian cancers that make them distinct from early tumors. We identify a suite of highly 

recurrent gains in more advanced disease, including druggable acquisitions of NTRK2 and IGF1. 

Furthermore, we explore a previously unrecognized form of transcriptome evolution in advanced 

cancers, particularly the acquisition of fusion transcripts. Lastly, we define preserved, “truncal” 

fusion transcripts as common somatic events in ovarian cancer—the recurrent CCDC6-ANK3 

being a prime example—which may serve as unique, cancer-specific nucleotide targets and 

biomarkers in ovarian cancer.  
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7.0  CONCLUSIONS 

An individual cancer serves as a microcosm of evolution. The cancer’s intrinsic genetic toolkit, 

where it grows, the exposures and therapies it encounters—these complex and interacting 

pressures drive the evolution and ultimately define what the cancer becomes376. The final step in 

a cancer’s evolution; however, is oftentimes killing its host—after the disease gains an ability to 

evade therapies and colonize vital organs. Surprisingly, these more advanced tumors are largely 

uncharacterized and the most poorly understood, tragically overshadowed by near stagnant 

survival gains of patients with advanced cancers in the past few decades3.  

In this collection of studies, we defined molecular features that make advanced cancers 

unique from the relatively benign, early lesions that they originate from. We use novel 

sequencing strategies and analyses to prove our hypothesis that advanced breast and ovarian 

cancers acquire distinct, recurrent and druggable molecular dependencies as they evolve towards 

therapy resistance and metastatic colonization—which may have profound implications for how 

we study, profile, understand and ultimately treat advanced disease. 

In Chapter 2, to begin to explore this hypothesis, we performed a targeted expression 

analysis of breast cancer cells that colonize the brain. We find that the majority of breast cancer 

brain metastases retain their intrinsic transcriptional subtype; yet, nearly all cancers acquire 

expression features distinct from the primary lesion—some of which are readily druggable. The 

most recurrent expression alteration included gains of ERBB2, with brain metastases 
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significantly upregulating ERBB2 in nearly 35% of cases. Importantly, we show approximately 

20% of brain metastases acquire HER2-positivity in patients with originally HER2-negative 

primary tumors—which has immediate clinical implications since the majority of these patients 

can be offered a HER2-targeted therapy. Other significant expression gains included FGFR4 and 

FLT1 as well as recurrent losses in ESR1. Studies are now ongoing to determine how to 

preemptively identify which patients’ tumors will switch to HER2 and if plasma biomarkers, 

such as circulating tumor cells or circulating free tumor DNA, can uncover patients who have 

switched without an invasive biopsy. Encouragingly, we found that primary breast cancers that 

switched to HER2 positive in the brain metastasis, exhibited increased ERBB2 expression (data 

not shown), perhaps reflecting subclonal amplifications in the primary cancer which are 

subsequently selected for expansion during therapy or metastasis. Thus, it is possible that a 

comprehensive analysis of ERBB2 levels and/or HER2-activation in primary cancers may 

identify a subset of HER2-negative breast cancers for whom metastasis may be prevented by 

early HER2 therapy. 

Following this targeted study, we then performed a technical analysis to determine the 

efficacy of hybridization-based exome-capture RNA-sequencing (ecRNA-seq) on quantifying 

expression from samples that were formalin-fixed paraffin embedded (FFPE), up to a decade-

old, decalcified and highly degraded. Using a particularly unique set of matched aged and frozen 

samples, we found minimal differences in expression values between highly degraded RNA from 

FFPE and intact RNA from frozen tissue. We then applied this technology to decalcified bone 

metastases—an historically challenging sample type to molecularly characterize given highly 

degraded nucleic acids. We discovered shifts in subtypes to more proliferative, HER2 and 

Luminal B profiles in bone metastases versus matched primary tumors, a significant temporal 
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influence on transcriptome evolution and like the previous Chapter, acquisitions of clinically 

actionable targets—particularly in the CDK-Rb-E2F and FGFR signaling pathways. Overall, this 

study defines a novel technology that can be used to perform expression-based characterizations 

on highly degraded RNA extracts and defines compelling targets for further investigation into 

bone metastasis mechanisms. Ongoing studies are determining the role of FGFR upregulation in 

recurrent breast cancers and functionally screening candidates identified in this study for 

metastatic or endocrine-resistance phenotypes. 

In Chapter 4, we apply ecRNA-seq to the brain metastasis cohort, thereby obtaining a 

more global view of transcriptomic adaptations breast cancer cells make after colonizing the 

brain. We identify novel pathway-level gains in brain metastasis, create a signature of breast 

cancer-specific genes that can predict brain metastasis relapse, show that HER2-switching cases 

identified in Chapter 2 may be predicted by intermediate levels of a HER2-signature in the 

primary tumor and identify methylation of the ESR1 locus as a mechanism of ESR1 loss in 

advanced breast cancers—particularly important given ESR1 loss is a shared feature of most of 

the patient-matched cohorts. Finally, we identify a suite of targetable kinases that are 

consistently upregulated in brain metastases—the two most recurrent being HER2 and RET. To 

test if these gains are genuine dependencies, we then applied in vitro, ex vivo patient-derived 

brain metastases and in vivo brain metastasis-derived xenograft models to show targeting HER2 

or RET has significant antitumor activity, pointing towards RET as a novel target in patients with 

brain metastases. Ongoing studies are now using orthotopic brain metastasis mouse models to 

reinforce targeting these acquired kinases as viable therapeutic options. A particularly interesting 

observation that also demands future investigation is the majority of receptor kinases upregulated 

in brain metastases (ERBB2, RET, ERBB4) harbor ligands that are highly expressed in the brain 
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(neuregulins, GDNF-family ligands). This is suggestive that cancer subclones which express a 

particular receptor highly may selectively colonize a target organ that is enriched with the ligand 

of this receptor. Future studies should explore this “ligand-homing” hypothesis further and to see 

if this observation is preserved across other metastatic sites. 

To determine if these changes are observed in non-metastatic, but therapy resistant 

lesions, in Chapter 5 we undertook another, more comprehensive targeted DNA and RNA 

expression analysis on long-term local recurrences that grew in an estrogen-depleted 

environment. We show an even more profound transcriptional profile conservation in local 

recurrences than in metastases. Likewise, we observed limited, pathogenic DNA-level 

enrichments in recurrences, with few exceptions including a recurrence-enriched suite of three 

PIK3CA mutations and a nonsense ARID1A mutation. In contrast to DNA-level changes; 

however, recurrent expression alterations were very common—the most notable being losses of 

ESR1 in 42% of tumors and gains of NTRK family members, TERT and FGFR4. An analysis of 

tumors that became ESR1 depleted uncovered consistent remodeling events in these tumors—

most notably the acquisition of the stem-cell and luminal lineage marker PROM1 along with a 

group of other genes usually expressed in basal-like breast cancers. Taken together, this study 

uncovered highly recurrent and targetable acquired transcriptional remodeling events in 

endocrine therapy resistant tumors and potentially identified a relatively common ESR1-depleted 

breast cancer subtype that gains basal-like transcriptional traits when exposed to estrogen 

deprivation. Future studies should focus on the more recurrent transcriptional events—such as 

NTRK gains and this ESR1 depleted phenotype—particularly how these gained genes can confer 

estrogen independence or more malignant phenotypes. 
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Lastly, in Chapter 6, we prove these themes are conserved in ovarian cancer—a cancer 

with no effective targeted therapies. Undertaking the most comprehensive transcriptome-wide 

characterization of relapsed ovarian cancer to date, we identify recurrently acquired expression 

gains and losses when ovarian cancers become therapy resistant—specifically upregulations of 

NTRK2 and IGF1; genes that are readily druggable. Moreover, we define a novel mechanism of 

tumor evolution in the acquisition of fusion transcripts, identifying late disease acquired fusion 

RNAs such as TOP2A-STAU1. Finally, we uncover “truncal” recurrent fusions that are preserved 

in both early and late disease, which could serve as unique, patient and cancer-specific nucleic 

acid or protein targets. Ongoing efforts are identifying strategies to detect and target these fusion 

transcripts through the use of CRISPR technology, or to use them as more exotic immunotherapy 

targets such as cancer-specific neoepitopes—especially given almost every case studied harbored 

these preserved fusions in both the primary and recurrent lesion. 

Taken together, this body of work provides compelling evidence that transcriptome 

evolution should be considered a prime resource in identifying novel therapeutic strategies in 

advanced cancers. Nearly every cancer pair analyzed harbored a major expression gain or loss in 

a gene that is readily druggable—with sometimes highly recurrent gains in specific cancer 

subtypes and metastatic sites. Currently, clinical tumor profiling to identify actionable targets 

generally emphasizes largely static (i.e. one time point) DNA-level changes in the advanced 

setting. The results herein reinforce that longitudinal profiling of transcriptomic changes may be 

just as essential, if not more, in identifying precision therapeutic targets for cancers that have 

learned to evade traditional therapies and colonize distant organs.  
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APPENDIX A 

SUPPLEMENTAL FIGURES 

A.1 INTRINSIC SUBTYPE SWITCHING AND HER2 GAINS IN BREAST CANCER

BRAIN METASTASES: SUPPLEMENTAL FIGURES 

Figure 24: Fold change density distribution in patient-matched pairs 
Fold-change value density plot for each case (i.e. Log2 brain metastasis normalized expression – Log2 primary 
metastasis normalized expression). Mean is -0.01 and 1 standard deviation above and below the mean are marked 
with vertical red lines. Expression alterations outside these lines were counted as ‘expression alterations’. 
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Figure 25: ER expression loss in breast cancer brain metastases 
(A) Paired ladder plot of ESR1 expression in patient-matched cases. Green dots represent samples with suspected
hormone status switching, p-values (* p <= 0.05, ** p <= 0.01, *** p <= 0.001) shown are from Wilcoxon signed-
rank tests (primaries vs. metastases). (B) Primary and metastatic IHC staining of ER from case Pitt_47, along with
normalized NanoString expression counts and pathological H-score. Top images are low magnification, bottom
images are high magnification.
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A.2 EXOME-CAPTURE RNA-SEQUENCING OF DECADE-OLD BREAST

CANCERS AND MATCHED DECALCIFIED BONE METASTASES IDENTIFIES 

CLINICALLY ACTIONABLE TARGETS: SUPPLEMENTAL FIGURES 

Figure 26: Expression correlation plots of ecRNA-seq sample sets 
Correlation plots of matched flash-frozen vs. FFPE and matched FFPE-decalcified vs. FFPE-non-decalcified sample 
sets. Both size and shade of color represent Pearson r correlations between all samples within each sample set; larger 
circles and darker blue colors represent higher correlations. 
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Figure 27: ecRNA-seq QC metrics for patient-matched sample cohort  
ecRNA-sequencing gene body coverage, GC content and insert size distributions along with gene assignment 
diversity assignments for all 22 tumors in patient-matched cohort. Each tumor is plotted with a different color, 
legend on right. 

Figure 28: tumorMatch: Proportion of shared variants (POSV) between samples in patient-matched cohort 
Left, diagram outlining tumorMatch method which identifies patient-matched tumor specimens or sample 
mislabeling. Right, correlation plot showing proportion of shared variants between all 22 tumors in the cohort; 
bigger squares and darker blue color represents a higher proportion of shared variants (POSV) between two samples. 
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Figure 29: Gene Ontology: Biological Processes (GO:BP) gene overlaps for differentially expressed gene sets 
(A) GO:BP gene overlaps for genes with significant expression increases in bone metastases vs. patient-matched
primaries. (B) GO:BP gene overlaps for genes with significant expression decreases in bone metastases vs. patient-
matched primaries.
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Figure 30: Case-specific expression fold-change distributions and expression alteration thresholds  
Fold-change density plots using log2normCPM values (Metastasis log2normCPM – Primary log2normCPM) for all 
genes. Expression alteration thresholds for significant expression loss (marked in blue, 5th percentile) and significant 
expression gain (marked in red, 95th percentile) shown for each of the 11 patient-matched cases. 
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Figure 31: All recurrent expression alterations in clinically actionable genes 
Oncoprint plot showing all recurrent (> 1 case) expression alterations in bone metastases with each column 
representing a patient-matched case. Pair alteration frequencies, gene-specific expression alteration percentages and 
gene alteration frequency shown. Red tiles represent significant expression gains and blue tiles represent significant 
expression losses (as defined by case-specific expression alteration thresholds). Genes ranked by gene alteration 
frequency. 
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A.3 TRANSCRIPTOME-WIDE IDENTIFICATION OF RET AND HER2

SIGNALING AS RECURRENTLY ENRICHED DEPENDENCIES IN BREAST 

CANCER BRAIN METASTASES: SUPPLEMENTAL FIGURES 

Figure 32: Brain metastasis cohort RNA-seq quality metrics. 
Calculated and plotted using QoRTs (v1.1.8) following two-pass read alignment with STAR (v2.4.2a) for the 21 
patient-matched cases. GC content, gene body coverage, insert size and cumulative gene assignment diversity are 
shown, with colors representing each of the 42 samples. 
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Figure 33: tumorMatch in brain metastasis cohort. 
tumorMatch workflow diagram and correlation plot showing proportion of shared variants (POSV) values for each 
sample pairing. Larger and darker squares indicate higher POSV values and identify patient-matched samples. 

Figure 34: Gene-level fold change density distribution in brain metastasis cohort.  
Fold-change value density plot for all cases (i.e. log2normCPM of brain metastases - log2normCPM of matched 
primary tumors). Genes with fold changes above the 95th percentile (marked with a red line) were considered a 
discrete, significant "expression gain." 
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Figure 35: Cabozantinib and afatinib efficacy in MDA-231-BRM2 and LY2 models 
(A) Representative ex vivo bioluminescence images of a mouse following intracardiac injection of luciferase
expressing endocrine resistant breast cancer cells LY2. Bar chart displays significant effect of Cabozantinib (10nM,
p=0.0159) and Afatinib (25nM, p=0.0027) on LY2 cell viability when compared to vehicle-treated samples
(DMSO). (B) Bar chart displays significant effect of Cabozantinib (10nM, p=0.0012) and Afatinib (25n, p=0.0008)
on MDA-231-BrM cell viability when compared to vehicle-treated samples (DMSO). Treatment with either
Cabozantinib (10nm, p=0.0001) or Afatinib (25nM, p=0.0018) decreases cell motility of MDA-231-BrM cells.
Histogram shows mean migratory area per cell (μm2). Images are representative and show cells stained with DAPI
and rhodamine‐phalloidin. All error bars represent mean ± S.E.M., n=3 (***p<0.001, **p<0.01,*p<0.05).
(Performed by Dr. Damir Vareslija)
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Figure 36: Identified brain metastasis genes predict brain-relapse free survival in primary breast tumors. 
(A) Schematic of the bioinformatic workflow used. Recurrent differentially up-regulated genes (n=1314) were
screened in two merged public metastatic cohorts (GSE14017/18). (B) Kaplan–Meier curves for bone, liver, lung
and brain metastasis-free survival on the basis of BrM-related gene set status in two breast primary cancer cohorts
(n=268) (GSE12276/2034). p value based on log rank test. (Performed by Dr. Ailis Fagan)
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Figure 37: Brain metastasis gene deconvolution 
(A) ID mapping workflow from HGNC IDs to GSE52604 probes for genes up regulated in brain metastasis before
deconvolution. 63% of the genes up regulated in the BrM model were significantly higher in non-neoplastic brain in
GSE52604. (B) Heatmap of the 1795 Agilent probes in the GSE52604 dataset with non-neoplastic brain and BrM
samples. Highlighted in pink is a cluster of genes that are highly expressed in the non-neoplastic brain relative to
brain metastasis. (C) Process of retrieving deconvolution genes using the brain contamination model. (D) 1314
genes plotted using the log2 fold changes from the experiment model vs. the log2 fold changes contamination
model. Deconvoluted brain metastasis genes are highlighted in green. (E) Shows the ID mapping workflow for the
deconvoluted brain metastasis genes. Of these probes, 5.8% of these were higher in the non-neoplastic brain relative
to the brain metastasis in GSE52604. (F) Heatmap of the deconvoluted genes.
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Figure 38: Metastasis-free survival with deconvoluted brain metastasis genes 
(A) Recurrent differentially up-regulated genes (n=1314) were filtered to remove potential brain contaminating
genes. (B) Deconvoluted genes upregulated in BrM were screened in two merged public metastatic cohorts
(GSE14017/18). Heatmap displays 11 genes whose expression was 1.5 fold change higher in the mean of brain
metastases relative to metastasis to lung, liver, or bone (deconvoluted BrM-related gene set). (C) Kaplan–Meier
curves for brain, liver, lung and bone metastasis-free survival on the basis of BrM-related gene set expression in two
merged breast cancer primary cohorts (n=268) (GSE12276/2034). P-value based on log rank test.
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Figure 39: HER2 and ER in breast cancer brain metastases. 
(A) HER2 signature score distribution in HER2 positive (red dots) and HER2 negative (blue dots). Scatter plot of
HER2 signature compared in HER positive (red dots) and HER2 negative (blue dots). (B) Immunohistochemistry
staining of HER2 protein case 62_Pitt showing highly heterogeneous areas of HER2 high and low positivity. Also
shown is HER2 positivity gained in brain metastases of 62_Pitt. (C) Paired ladder plot of ESR1 and ERBB2
expression levels in patient-matched primary and brain metastases (Wilcoxon signed-rank test). Light green dots
represent primary tumor expression values and dark green dots represent metastatic tumor expression values. (D)
Correlation analyses of HER2 signature score versus ESR1 fold change expression (Spearman rho= -0.591).
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Figure 40: RET protein expression in brain parenchyma and metastases. 
(A) RET immunohistochemistry image showing RET protein expression in normal brain. (B) 20x images of RET
protein expression by immunohistochemistry in representative breast to brain metastases. Images shown are 20x;
black scale bars correspond to 50μm and red scale bars correspond to 100μm.
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A.4 RECURRENT TRANCRIPTIONAL REMODELING EVENTS IN LONG-TERM

ESTROGEN-DEPRIVED BREAST CANCER RECURRENCES: SUPPLEMENTARY 

FIGURES 

Figure 41: DNA-seq target interval coverages  
Violin plots showing the distribution of mean DNA-sequencing coverage across all targeted intervals. 25th, 50th and 
75th percentiles are indicated with horizontal black lines. To better visualize distributions, y-axis limit was set at 500. 



169 

Figure 42: Copy number call distribution and correlation with expression values 
(A) Log2 copy number ratio distribution, derived from CNVkit, for all samples in cohort. (B) Distribution of
discrete, gene-level copy number calls with gene-level values representing the mean of discrete calls across all
probed regions covering the gene. (C) Log2 CN values versus log2normCPM values for ERBB2 using all samples in
the cohort, revealing high correlation (R = 0.924, p-value < 0.001) between calculated CNA calls and expression.
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Figure 43: tumorMatch in local recurrences cohort 
tumorMatch proportion of shared variants correlation plots for both RNA- (left) and DNA-sequencing, showing all 
paired specimens, including trios that include normal, are patient-matched. 

Figure 44: KLK7 and PROM1 basal breast carcinoma expression 
Normalized microarray expression values (METABRIC) of KLK7 and PROM1, segregated by PAM50 subtypes. 
Horizontal black bars indicate 25th, 50th and 75th percentile values. 
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Figure 45: Overlap of differentially expressed genes between local recurrences and ER+ LTED lines 
(A) Genes significantly upregulated in both local recurrences vs. primaries and LTED vs. parental lines. (B) Genes
significantly downregulated in both local recurrences vs. primaries and LTED vs. parental lines.
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Figure 46: NDRG1 expression in PAM50 subtypes and survival influence in ER-positive breast cancer 
(A) NDRG1 expression in PAM50 subtypes. (B) Disease-specific survival in METABRIC of patients with ER-
positive primary tumors that express NDRG1 highly (>50th percentile, red) or lowly (<50th percentile, blue).

A.5 ACQUIRED MOLECULAR FEATURES OF RECURRENT CHEMORESISTANT

OVARIAN CANCERS: SUPPLEMENTARY FIGURES 

Figure 47: RT-PCR validation of late-disease acquired fusions. 
Three bioinformatically called fusion RNAs validated with RT-PCR using fusion breakpoint flanking primer pairs. 
Case and fusion are indicated, E = early disease sample, L = late disease sample.  
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APPENDIX B 

SUPPLEMENTAL TABLES 

Table 8: Multi-gene test classifications in patient-matched pairs 
Case along with PAM50 subtype calls, inferred OncoTypeDX score and corresponding clinical risk value. 
Discordant pairs are marked with an asterisks. 

Case PAM50 
Subtype 

OncoTypeDX 
Score 

OncoTypeDX 
Risk 

BP_RCS_1 Her2 41.2 1 
BM_RCS_1 Her2 55.2 1 
BP_RCS_2 LumA 15.6 0 
BM_RCS_2 Her2* 60.9 1* 
BP_RCS_3 LumB 40.2 1 
BM_RCS_3 LumB 56.4 1 
BP_RCS_4 LumB 9.8 0 
BM_RCS_4 LumA* 3.3 0 
BP_RCS_5 Basal 58.6 1 
BM_RCS_5 Basal 66.3 1 
BP_RCS_6 LumA -4.9 0 
BM_RCS_6 LumA 12.6 0 
BP_Pitt_6 Basal 29.9 0.5 
BM_Pitt_6 Basal 12.8 0* 
BP_Pitt_7 Her2 55.1 1 
BM_Pitt_7 Her2 60.0 1 
BP_Pitt_12 Basal 32.1 1 
BM_Pitt_12 Basal 52.3 1 
BP_Pitt_17 LumA 7.5 0 
BM_Pitt_17 LumA 25.1 0.5* 
BP_Pitt_25 Basal 50.0 1 
BM_Pitt_25 Basal 36.9 1 
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BP_Pitt_29 Basal 66.5 1 
BM_Pitt_29 Basal 59.0 1 
BP_Pitt_47 LumA -9.3 0 
BM_Pitt_47 Her2* 13.8 0 
BP_Pitt_51 LumB 33.5 1 
BM_Pitt_51 LumB 28.9 0.5* 
BP_Pitt_52 Her2 39.5 1 
BM_Pitt_52 Her2 39.4 1 
BP_Pitt_62 LumB 14.6 0 
BM_Pitt_62 LumB 31.4 1* 
BP_Pitt_64 Basal 51.5 1 
BM_Pitt_64 Basal 46.5 1 
BP_Pitt_68 Basal 53.0 1 
BM_Pitt_68 Basal 45.2 1 
BP_Pitt_71 Basal 48.9 1 
BM_Pitt_71 Basal 53.5 1 
BP_Pitt_72 LumA -2.3 0 
BM_Pitt_72 LumA 0.1 0 

Table 9: Fusion validation primers 

Primer Sequence 
ACTB_F1 AGCCTCGCCTTTGCCGA 

ACTB_R1 CTGGTGCCTGGGGCG 

TOP2A_STAU1_F1 TCCCTTCTATGGTGGATGGT 

TOP2A_STAU1_R1 CCACCTCGAAATTCACAGGC 

TOP2A_STAU1_F2 CGAGAAGTAAAGGTTGCCCAAT 

TOP2A_STAU1_R2 TCACAGGCAAGTTCCGTTTAAG 

TMC6_ENOX1_F1 CGAGACCTCAGTTCCCGG 

TMC6_ENOX1_R1 TGTTCTCTCGGTCTTGGTTGA 

RBM14_YIF1A_F1 GATTTTCGTGGGCAATGTGTCG 

RBM14_YIF1A_R1 CTCCTGTGGCTGGGTATCC 

PELP1_CAMTA2_F1 TTTGCAGACTGGGAAGCCTA 

PELP1_CAMTA2_R1 CTGCTCCAGTCGCTCTAGTAT 

CCDC6_ANK3_F1 CAAGAGAACAAGGTGCTGAAGA 

CCDC6_ANK3_R1 TACGAGTGGCTCTTCTTTTCCA 

CCDC6_ANK3_F2 AAAGCCGAACTAGAACAGCATC 

CCDC6_ANK3_R2 TCCGAGACTAAAGCCCATGTAA 

CCDC6_ANK3_F3 AGCTGGAGACCTACAAACTGAA 
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APPENDIX C 

DATA SUPPLEMENTS 

Data Supplement 1: INTRINSIC SUBTYPE SWITCHING AND HER2 GAINS IN BREAST 

CANCER BRAIN METASTASES 

Data Supplement 2: EXOME-CAPTURE RNA-SEQUENCING OF DECADE-OLD BREAST 

CANCERS AND MATCHED DECALCIFIED BONE METASTASES IDENTIFIES 

CLINICALLY ACTIONABLE TARGETS 

Data Supplement 3: TRANSCRIPTOME-WIDE IDENTIFICATION OF RET AND HER2 

SIGNALING AS RECURRENTLY ENRICHED DEPENDENCIES IN BREAST CANCER 

BRAIN METASTASES 

Data Supplement 4: RECURRENT TRANSCRIPTIONAL REMODELING EVENTS IN 

LONG-TERM ESTROGEN-DEPRIVED BREAST CANCER RECURRENCES 

Data Supplement 5: ACQUIRED MOLECULAR FEATURES IN RECURRENT 

CHEMORESISTANT OVARIAN CANCERS 

/32521/1/DATA-SUPPLEMENT_1.xlsx
/32521/2/DATA-SUPPLEMENT_2.xlsx
/32521/3/DATA-SUPPLEMENT_3.xlsx
/32521/4/DATA-SUPPLEMENT_4.xlsx
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