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ELECTROWEAK SPLITTING FUNCTIONS AND HIGH ENERGY

SHOWERING

Junmou Chen, PhD

University of Pittsburgh, 2017

We derive the electroweak (EW) collinear splitting functions for the Standard Model, includ-

ing the massive fermions, gauge bosons and the Higgs boson. We first present the splitting

functions in the limit of unbroken SU(2)L × U(1)Y and discuss their general features in the

collinear and soft-collinear regimes. These are the leading contributions at a splitting scale

(kT ) far above the EW scale (v). We then systematically incorporate EW symmetry breaking

(EWSB), which leads to the emergence of additional “ultra-collinear” splitting phenomena

and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly

convenient choice of non-covariant gauge (dubbed “Goldstone Equivalence Gauge”) that dis-

entangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and

allows trivial book-keeping of leading power corrections in v/kT . We implement a compre-

hensive, practical EW showering scheme based on these splitting functions using a Sudakov

evolution formalism. Novel features in the implementation include a complete accounting

of ultra-collinear effects, matching between shower and decay, kinematic back-reaction cor-

rections in multi-stage showers, and mixed-state evolution of neutral bosons (γ/Z/h) using

density-matrices. We employ the EW showering formalism to study a number of important

physical processes at O(1–10 TeV) energies. They include (a) electroweak partons in the

initial state as the basis for vector-boson-fusion; (b) the emergence of “weak jets” such as

those initiated by transverse gauge bosons, with individual splitting probabilities as large

as O(35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final

state; (d) the occurrence of O(1) interference effects within EW showers involving the neu-

iii



tral bosons; and (e) EW corrections to new physics processes, as illustrated by production

of a heavy vector boson (W ′) and the subsequent showering of its decay products.
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1.0 INTRODUCTION

1.1 STANDARD MODEL AND BEYOND

The last century of particle physics has witnessed great triumph, with all known interactions

– except for gravity – unified under the structure of quantum field theory and the principle

of gauge symmetry. Especially, the unitarity and renormalization of abelian and non-abelian

gauge theories are established[1][2], which put modern particle physics on firm ground and

give us remarkable predictive power.

Strong interactions, weak interactions and electromagnetic interactions are described

with the gauge group SU(3)c × SU(2)L × U(1)Y , with the name of “the standard model”

(the SM). All known elementary particles are summarized in figure 1, fermions – particles

with half-integer spin — can be divided into leptons and quarks. Leptons have three genera-

tions, the first generation includes: electron e and electron neutrino νe; the second generation

includes: muon µ and νµ; the third generation includes τ and ντ . Similarly, quarks have three

generations too: u quark and d quark; c quark and s quark; t and b quark. Except for neu-

trinos, all fermions participate in electromagnetic interactions, but only leptons participate

in weak interactions, and only quarks participate in strong interactions. The interactions

between fermions are mediated by spin-1 particles called gauge bosons. Electromagnetic

interactions are mediated by photon, weak interactions are mediated by W± and Z bosons,

strong interactions are mediated by gluons. The Higgs boson plays an important role as

it is closely related to the mechanism of electroweak symmetry breaking that gives rise to

the masses of particles, especially gauge bosons W±, Z. The Higgs boson is also the only

elementary particles in the SM that has spin-0. With the discovery of the Higgs boson [3][4],

the last piece of the puzzle of the SM is completed. So far, the evidence implies that the
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Figure 1: Elementary particles of the Standard Model

Higgs boson behaves as the SM model predicts, but further research is obviously needed.

The SM is a self-consistent theory and is consistent with all the experimental evidence

so far. It’s possible that it will continue to be valid upto some very high energy scale,

which could be the Planck scale: 1019 GeV, or the grand unification scale (GUT): 1016

GeV. However, it is widely expected that new physics could exist not very far from the

electroweak (EW) scale: v = 256 GeV. The most notable argument is probably the so-called

“hierarchy problem”, which states the following: the mass of the Higgs boson is very sensitive

to quantum corrections. The one loop correction of the Higgs mass due to a quark is

δm2
h = −

λ2
f

8π2
Λ2
UV (1.1)

for some ultraviolet cutoff ΛUV [5]. If ΛUV is taken to be close to the Planck scale, virtual

corrections to the Higgs boson becomes gigantic, and thus requires a counter term with

equally gigantic value to cancel the divergence. Because of the quadratic dependence of

Higgs mass loop corrections, it is widely believed that there should be some additional
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principles cancelling the quadratic correction, and “stabilizing” the EW scale. One of the

most popular candidates is supersymmetry. Although there hasn’t been any particle beyond

SM discovered so far in large hadron collider (LHC), it’s still too early to draw any conclusion.

Naturalness and hierarchy problem still remain an important guiding principle for researches

on model building.

As mentioned above, supersymmetry is a very promising candidate to solve the hierarchy

problem. The basic principle of supersymmetry is that every fermion state is accompanied

by a boson state and vice versa. Thus, for every fermion loop of Higgs mass, there is another

loop contribution from its superpartner, which cancels he quadratic divergences. Super-

symmetry doubles every existing particle, thus resulting in very rich phenomenology[5][6].

Moreover, to really resolve the hierarchy problem, the predicted SUSY particles cannot be

heavy, thus should be within the range of LHC or future colliders. Supersymmetry is at-

tractive not only because it provides an elegant solution to the hierarchy problem. It’s also

a natural consequence of string theory, the only non-trivial extension to Coleman-Mandula

theorem[7]. Moreover, minimal supersymmetric standard model (MSSM) with R-parity pro-

vides natural candidates for dark matter, and optimizes the grand unification of strong, weak,

electromagnetic couplings. Nonetheless, there are also many alternative theories addressing

the hierarchy problems, taking the examples of large extra dimensions, composite higgs[8],

relaxations and etc. All of those are to be tested in experiments.

Except for theoretical expectations, there are some really unambiguous experimental

and observational evidence implying new physics beyond the SM, though not necessarily at

energy scale close to the EW scale. The most important one is probably the existence of dark

matter confirmed by astronomical observation [9][10][11]. The very nature of dark matter

is still unknown, but there are good reasons to believe that at least part of dark matter is

composed of weakly interacting massive particles (WIMP)[12]. There have been numerous

experimental projects searching for dark matter particles through indirect searches, direct

searches. Besides, it’s also possible to produce dark matter particles directly in colliders.

The discovery of neutrino oscillations, indicating neutrinos have very small masses, can

also be regarded as a phenomenon of new physics. Although neutrino masses could be

incorporated into the SM by simply adding Dirac fermion terms with small Yukawa couplings
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into the Lagrangian, the smallness of neutrino masses make people wonder if there are other

underlying mechanisms. One possible mechanism for the small neutrino mass is the “see-

saw” mechanism, which relates some high-energy scale, e.g. the GUT scale, to the EW scale,

resulting in the suppression of neutrino masses.

To sum up, there are many reasons to believe there is new physics not very far from EW

energy scale. More research should be carried out, building a future high energy collider is

very much motivated.

1.2 LARGE COLLIDERS AND PARTON SHOWER

1.2.1 Strong interactions and perturbative QCD

As mentioned in section 1.1, quarks participate in strong interactions mediated by the corre-

sponding gauge boson – gluons. The gauge group is SU(3), with each flavor of quark forming

a triplet in the fundamental representation and gluons forming an octet in the adjoint rep-

resentation. The novel quantum number under the gauge group SU(3) is called “color”.

The theory describing strong interactions is called quantum chromodynamics (QCD). The

Lagrangian for QCD is

L = −1

4
Gµν
a Gaµν + Ψ̄(i /D −m)Ψ (1.2)

a represents color indices. It is actually remarkable that strong interactions could be de-

scribed by a massless non-abelian gauge theory. The experimental observed particles related

to strong interactions are hadrons: mesons (integer spin)and baryons (half-integer spin).

Hadrons are composed of quarks. However, because of color-confinement, no isolated quark

can be observed in experiments, nor gluons. Nevertheless, because of asymptotic freedom,

quarks inside hadrons become nearly free at high energy scale. This phenomenon is well-

described by parton model. The corresponding scattering cross section could be reduced to

the scattering of quarks and gluons convoluted with universal objects: parton distribution
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functions (PDFs). Take hadron-hadron collisions as an example, the cross section for hadron

A and hadron B scattering can be written as

σ(AB → X) =
∑
a,b

Cab

∫
dxadxb[fa/A(xa)fb/B(xb) + (A↔ B if a 6= b)]σ̂(ab→ X) (1.3)

Cab is the color factor, X is generally any final states, fa/A(xa) is the parton density of a in

hadron A with momentum fraction xa, i.e. the PDF. Similarly, fb/B(xb) is the parton density

of b in hadron B with momentum fraction xb. σ̂(ab→ X) can be calculated with perturbative

methods. The universality of PDFs has been proved to all orders in many processes[13].

However, in electroweak interactions, due to the non-cancellation of soft divergences between

real corrections and virtual corrections[14], PDFs might not be well-defined anymore.

In final states, the parton model leads to the expectation of jets, which have been ob-

served over and over in high energy colliders[15]. The first jet production was observed at

e+e− colliders in 1975. Consider the process e+e− → qq̄ at the partonic level. When the

energy is high enough, the produced qq̄ would first go through a parton shower, and then

fragmentation, and finally materialize as a pair of back-to-back jets. Jets are basically clus-

ters of collimated high energy hardron particles. At the parton level, jets arise from collinear

splittings of high energy partons “dressed” by fragmentation and hadronization. Jets are

the dominant feature of hadron production in high energy colliders, for example, the LHC

collider. The definition of jets is not unique, in fact, the identification of hadronic jets varies

with different algorithms. Although all the algorithms should satisfy the basic principle of

infrared safety, i.e. the resulting cross section shouldn’t be sensitive to the masses of the

partons. A good jet algorithm should satisfy the following properties: (1) deliver consistent

results to particles and tracks or energy clusters; (2) be stable to detector noise and coinci-

dental soft collisions and radiation and etc.; (3) good energy and angular resolution[16]. Most

jet algorithm in use could be divided into two categories: the con algorithms and sequential

clustering algorithms including kT algorithm, anti-kT algorithm and the Cambridge/Aachen

algorithm.

Take the sequential clustering algorithms as an example, there are two distance variables,

the distance between two particles: dij = min(paT i, p
a
Tj) ×

R2
ij

R
and the distance between a

particle and the beam axis: diB = paT i. R2
ij is the (η − φ) space distance between the two
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particles, and R is the radius parameter determining the final size of the jet. The algorithm

works this way: compare dij and diB, if dij is the minimum, combine the two particles

into one by adding the 4-momenta; if diB is the minimum, then the particle i is labeled as

the final jet and removed from the particle list. The procedure continues until all particles

belong to a jet. Different values of a in dij correspond to different algorithms. a = 2

corresponds to kT algorithm, a = −2 corresponds to anti-kT algorithm, a = 0 corresponds

to the Cambridge/Aachen algorithm [17].

Except for jet algorithms, it’s also interesting and useful to study the collective features

of particle distributions, those variables that describes “event shapes” include sphericity,

aplanarity, thrust and etc. Thrust is one of the most widely studied jet variables. Thrust T

is defined as

T = maxn

∑
i |~pi · ~n|∑
i |~pi|

(1.4)

The direction of ~n that thrust is maximized is defined as the thrust axis. The angular

distribution of 2-jet events are often measured relative to the thrust axis. Since the definition

of thrust is based on linear sums of particle momenta, it’s stable against collinear splittings

and thus insensitive to long-distance physics like parton shower and fragmentation[15].

Thus the understanding of events in colliders requires not only precise calculations of

parton scattering order by order, but also the precise determination of PDFs and jet sub-

structure, which are usually done with help of Monte Carlo methods.

1.2.2 Reasons for parton shower

For processes with multiple final states and at higher orders, exact calculations of scattering

amplitudes become more and more difficult. For example, gg → gg is already a non-trivial

task. There are 4 diagrams, but each diagram has complex structure and generate many

terms, this is contrast to compact form and simplicity of the total amplitude. Moreover,

the number of diagrams increases fast with the number of external states. gg → ggg has 25

diagrams, gg → gggg has 220 diagrams, gg → 8g has diagrams of order 106 [18], making

direct calculations with Feynman diagrams basically impossible. Interestingly, people have
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found that despite the complexity at first look, there are many unexpected super-selection

rules in scattering amplitudes[19], especially involving gluons. Those simplifications are

most easily seen in a new method of evaluating amplitudes – the spinor-helicity formalism.

Nevertheless, that’s beyond the topic of this thesis. The loop corrections of processes are

even more difficult, there are few cases that cross sections beyond one loop have been fully

obtained. However, we also have some good news. There are many circumstances in which

physics is dominated by soft-collinear emission of external states, such as the substructure of

jets and scale dependence of PDFs. This is when Monte Carlo and 1→ 2 splitting functions

come in and play significant roles in the determination of events distributions in high energy

colliders. Parton shower is implemented by Monte Carlo simulations, step by step in terms

of 1→ 2 collinear splittings. Pragmatically, this method significantly reduces the calculation

resources needed to predict the physics in colliders, while still being able to capture the main

part of the physics[22]. From now on, we take parton shower by the meaning of both the

phenomenon and Monte Carlo simulation of this phenomenon.

Another crucial property of parton shower is that it’s universal, independent of specific

hard processes. Because of this fact, parton shower and hard scattering could be implemented

in a modularly independent way, and then combined with a “merging” procedure. The the-

oretical basis of parton shower relies on the factorization of soft/collinear physics from hard

scattering, as well as the fully cancellation of real and virtual soft divergence. Those issues

are well-established in QCD[20] in many processes, although there is still plenty of room

for improvement. In electroweak interactions, the factorization is not well-established yet.

Nevertheless, research [54][63] indicates that at leading logarithm, a process-independent

parton shower algorithm is still justified. Beyond leading log, the violation of BN theorem

implies that some coherent treatment between final states is needed. There could be some

generalized version of parton shower, but not generally process independent. The implemen-

tation of parton shower usually starts from an energetic particle with high virtuality Q2.

The virtuality decreases with splittings, and stops at some infrared cut-off scale. In QCD,

the cut-off is the confinement scale ΛQCD. In EW interactions, the cut-off could be taken as

v = 256 GeV.

Not only is it a very convenient and efficient way of simulating collider events, the parton
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shower can also capture the contributions to the cross section beyond fixed-order perturbative

calculations. Actually parton shower is an implementation of resumming logarithms to all

orders. For some observables in colliders such as jet masses, fixed-order calculations are not

enough, resummation of logarithms needs to be carried out[23]. Resummation can be done

more precisely with the method of soft-collinear effective field theory. Nevertheless, parton

shower, due to its universal feature, is more flexible.

1.2.3 Parton shower in QCD and QED

The details of arrangement of splitting functions, as well as final states evolution kernel

and DGLAP equations, are discussed in section 2. Here we lay out the basic formalisms

for parton shower in QCD. We only focus on final state radiation with time-like branching

shower. Generically parton shower is based on the statement that long-distance physics could

be factorized from hard, short-distance physics. We can build the formalism of parton shower

from 1→ 2 splittings [22][24]. Consider two particles B and C are produced nearly collinear

from a high energy, hard process mediated by an off-shell particle A. Up to power suppressed

terms, the cross section could be factorized into hard cross section times a differential splitting

function.

dσX,BC ' dσX,A × dPA→B+C , (1.5)

dP is usually characterized by two variables, z as momentum (or energy) fraction of B to A,

and kT as the transverse momentum. An alternative common variable is the virtuality of A:

Q2. So the collinear differential splitting function is usually written as dPA→B+C

dzdk2T
. The basic

feature of the collinear splitting functions is they are dominated by collinear divergences. In

QCD, all the splitting functions are proportional to 1
k2T

, thus can be written as

dPA→B+C

dzdk2
T

=
αA→B+C

2π
PA→B+C(z)

1

k2
T

(1.6)

PA→B+C(z) is called a splitting kernel, αA→B+C is the coupling αs for strong interactions,

αem for QED. In strong interactions, there are three basic types of splitting kernels,

Pq→gq(z) = CF
1 + z̄2

z
(1.7)
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Pg→gg(z) = NC
(1− (zz̄)2)2

zz̄

Pg→qq̄(z) = TR(z2 + z̄2)

with z̄ = 1 − z, CF = 4/3, NC = 3, TR = nf/2. There are two subtleties need mentioning.

First, the analytical expressions of splitting kernels are usually associated with the “plus

prescription” and another δ(1−z) term. The effect is to remove soft singularity, and to ensure

flavor and energy conservation. However, in parton shower, flavor and energy conservation

are implemented explicitly every step of the showering program, the soft singularity could

be avoided to introduce a cut-off in the range of z. Second, the factors in the splitting

kernels PA→B+C are normalized so that z means the energy fraction of particle B to particle

C. Thus, for g → g + g, the total splitting probability for one of the daughter gluons have

energy fraction z is given by 2Pg→gg(z).

For QED, there is no γ → γγ splitting, but there are analogue of the other two splittings

in QCD.

Pq→γq(z) = Q2
EM

1 + z̄2

z
(1.8)

Pγ→qq̄(z) = TR(z2 + z̄2) (1.9)

QEM is the electric charge.

Now we have completed all 1 → 2 splittings for QCD + QED. The evolution of parton

shower makes use of the Sudakov form factor with the collinear splitting functions as kernels.

Pno−splitting(t0, t) = exp

[
−
∑
BC

∫ t

t0

dt′
∫
dz

dPA→B+C(z, t′)

dz dt

]
(1.10)

Here we have made a change of variable t = log(k2
T ). In the implementation of showering,

the Sukakov form factor is taken to be the no-splitting probability at some scale k2
Tmax

or

equivalently tmax = t0. t could be seen as “time” in simulation, the whole parton shower is

very analogue to that of cascade decay of a heavy particle in real time. Thus the splitting

probability at any “time” t is given by

dPA
dt

= −dPno−splitting(t)
dt

=
∑
B,C

∫ z+(t)

z−(t)

dz
αABC

2π
PA→B+C(z) · Pno−splitting(t0, t) (1.11)
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In final state radiation (FSR), the evolution starts from some maximal “time” t0, the prob-

ability decrease over “time”. Translating back to the picture with variable k2
T , the hard

particle is assigned some k2
Tmax

, after every splitting, the kTi is smaller than the previous one

kTi+1
: k2

Ti
< k2

Ti+1
. The splitting continues until the transverse momentum square reaches

the QCD scale Λ2.

For initial state radiation(ISR), shower evolution is to trace back in “time”. In terms of

variable k2
T , the evolution starts from hard process at a low energy scale pTmin

, increases at

every splitting, until p2
T reaches some high energy scale p2

Tmax
. The implementation of ISR is

different from FSR at many aspects and is beyond the scope of this thesis. However, because

of the universal structure of infrared divergences, collinear splitting functions play central

roles in both ISR and FSR.

There is still an important subtlety worth mentioning, we see that in equation 1.11,

Pno−splitting (t0, t) serves as a suppression factor weighing on the “naive” splitting probability

of particle A in a small interval of δt. This setting is based on the Kinoshita-Lee-Nauenberg

theorem[25][26] stating that the total inclusive cross section in strong interactions are free

of infrared divergence and logarithms. The infrared logarithms arising from real corrections

and virtual corrections always cancel with each other. This property justifies the suppression

factor Pno−splitting(t0, t), which also ensures the conservation of probability in parton shower.

1.3 ELECTROWEAK PARTON SHOWERS

Process-independent parton showers in QED and QCD have long served as invaluable tools

for particle physics in high energy collisions and decays. By exploiting formal factoriza-

tions between hard/wide-angle physics and soft/collinear physics [13, 20, 21], the extremely

complicated exclusive structure of high energy scattering events can be viewed in a mod-

ular fashion. The dominant flows of energy and other quantum numbers are modeled

with manageable, low-multiplicity matrix elements. These are subsequently dressed with
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soft/collinear radiation, and hadronization applied to bare color charges. Detailed imple-

mentations have varied significantly in specific approach, but showering programs such as

PYTHIA [22], HERWIG [24], and SHERPA [27] are now standard workhorses required for describ-

ing realistic collider events. They have also found widespread use in modeling the interactions

of high-energy cosmic rays [28], as well as the exclusive products of dark matter annihilation

and decay [29, 30].

Collinear parton showers become a ubiquitous phenomenon for processes at energies

far above the mass scales of the relevant final-state particles, such as the electron mass

in QED or the confinement scale in QCD. With the upgraded LHC and proposed future

accelerators [6, 31, 32] and a growing suite of instruments sensitive to indirect signals of

multi-TeV dark matter [12, 33, 34], we are now forced to confront processes at energies far

above the next known mass threshold in Nature, the electroweak (EW) scale v ≈ 246 GeV

(the electroweak vacuum expectation value, “VEV” in short). Consequently, we are entering

a phase in particle physics where it becomes appropriate to consider electroweak parton

showers, extending the usual SU(3)QCD×U(1)EM showers into the fully SU(3)QCD×SU(2)L×

U(1)Y symmetric framework of the Standard Model (SM). In effect, we will start to see

electroweak gauge bosons, Higgs bosons, and top quarks behaving like massless partons [35,

36], appearing both as constituents of jets [37] as well as of initial-state beam particles. This

is in stark contrast to the conventional perspective in which they are viewed as “heavy”

particles that are only produced as part of the hard interaction.

The concept of electroweak bosons as partons has a long history, beginning with the

“effective-W approximation” [38, 39, 40]. This picture of electroweak vector bosons radiating

off of initial-state quarks is now strongly supported by the experimental observation of

Higgs boson production via vector boson fusion (VBF) at the LHC [41]. As we imagine

probing VBF-initiated processes at even higher energies, with both the initial weak bosons

and their associated tag jets becoming significantly more collinear to the beams, the idea

of weak parton distribution functions (PDFs) within protons becomes progressively more

appropriate.

Many calculations have further revealed large negative electroweak virtual corrections to

a variety of exclusive high-energy processes, wherein real emission of additional weak bosons
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is not included. Such large “non-emission” rate penalties indicate the onset of the universal,

logarithmically-enhanced Sudakov form-factors characteristic of massless gauge theories [42,

43]. For example, exclusive di-jet production receives corrections from virtual W/Z exchange

that begin to exceed −10% for transverse momenta exceeding 3 TeV [44, 45], and grow

to approximately −30% at the 10’s of TeV energies expected at future hadron colliders.

For processes that include weak bosons at the hard event scale, such as γ/Z/W+jets or

vector boson pair production, the corrections can quickly grow to O(1) [46, 47, 48, 49, 50,

51, 52]. A process-independent framework for extracting all such log-enhanced electroweak

virtual corrections at fixed leading-order has been developed in [53, 54], and next-to-leading

logarithmic resummation of the gauge corrections has been achieved using SCET formalism

in [55, 56, 57, 58, 59].

The total rates of real W/Z emissions and other electroweak parton splittings have a di-

rect correspondence with the “lost” event rates encoded in the negative electroweak virtual

corrections, with matching logarithmic enhancements in accordance with the Kinoshita-Lee-

Nauenberg theorem. Iterating this observation across all possible nested emissions and loops

within a given process builds up the usual parton shower picture, allowing formal resum-

mations of the logarithms that would otherwise still appear in well-defined exclusive rates.

Many studies have addressed aspects of electroweak parton showering in the past several

years [14, 60, 61, 62, 63, 64, 65, 66, 67]. Parts of the complete shower are already avail-

able in public codes and are being tested at the LHC, with ATLAS recently making a first

observation of collinear-enhanced W/Z radiation within QCD jets [68]. A detailed listing

of electroweak collinear splitting functions and PDF evolution equations, restricted to pro-

cesses that survive in the unbroken limit, has been worked out in [61]. There, the effects of

electroweak symmetry breaking (EWSB) are addressed minimalistically by including a hard

phase space cutoff and working in a preferred isospin basis. These results and more recent

SCET-based calculations have also been adapted for the problem of TeV-scale dark matter

annihilation in [69, 70, 71, 72, 73, 74, 75]. For general-purpose applications, recent versions

of PYTHIA incorporate radiation of W and Z bosons off of light fermions [65], including a

detailed model of how this component of the shower turns off due to W/Z mass effects. A

study using SHERPA [66] instead breaks down these emissions into separate transverse (VT )
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and longitudinal (VL) components, coupling in the latter strictly using Yukawa couplings

by appealing to the Goldstone-boson Equivalence Theorem (GET) [76, 40]. The problem

has been approached in different way within ALPGEN [77, 64], by multiplying exclusive hard

event rates with the fixed-order Sudakov factors of [53, 54] and supplementing with ex-

act fixed-order real emission processes. This approach, which is itself a first step towards

electroweak shower matching, works well when the soft/collinear phase space enhancements

are modest and the need for added accuracy of higher-multiplicity hard event generation

balances the added computational complexity. However, a complete matching prescription

will also ultimately involve a dedicated parton shower step, especially when convolved with

QCD radiation. The simpler, process-independent parton shower approach will also become

particularly useful in new physics applications [78, 79].

1.4 OUR APPROACH

Notably, no existing general-purpose parton showering algorithm that is capable of gener-

ating fully exclusive events has addressed the full scope of universal collinear electroweak

physics. In particular, a complete treatment must include the high-rate of non-Abelian split-

tings amongst the weak bosons themselves, as well as showers that involve longitudinal/scalar

states and many of the sometimes subtle effects of spontaneous symmetry breaking. The goal

of the present paper is to outline such an algorithm, providing a comprehensive framework

in which all collinear electroweak showering phenomena can be implemented, and including

a systematic treatment of EWSB. Towards this end, we derive and tabulate the complete

set of electroweak splitting functions in the broken phase, including the massive fermions,

gauge bosons, and the Higgs boson. These generalize and unify both the unbroken-phase

evolution equations of [61] and the purely broken-phase effects already observed within the

effective-W approximation, namely the generation of longitudinal vector boson beams from

massless fermions [38, 39, 40]. We further investigate some of the physical consequences of

these various electroweak showering phenomena.

Relative to QED and QCD showers, the complete electroweak parton shower exhibits
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many novel features. At the level of the unbroken theory at high energies, the shower be-

comes chiral and the particle content is extended to include an EW-charged scalar doublet.

Most of the degrees of freedom contained in this scalar are to be identified with the lon-

gitudinal gauge bosons via the Goldstone-boson Equivalence Theorem. Including Yukawa

couplings, the set of core splitting function topologies expands from the usual three to seven.

EWSB also already makes a subtle imprint here due to the presence of a preferred isospin ba-

sis for asymptotic states, leading to interference and self-averaging effects between different

exclusive isospin channels. The latter are intimately related to “Bloch-Nordsieck violation”

when occurring in the initial state [14, 63, 80]. As the shower evolves down through the weak

scale, it becomes physically regulated by the appearance of gauge boson, scalar, and fermion

masses. Unlike in QCD where the shower regulation occurs non-perturbatively due to con-

finement, or in QED where a small photon mass is sometimes used as an artificial regulator

for soft emissions, the electroweak shower exhibits a perturbative transition with genuinely

massive gauge bosons. It is possible to describe this transition rather accurately, but do-

ing so requires a careful accounting of symmetry-violating effects beyond simple kinematic

suppressions, and a consistent elimination of gauge artifacts. In particular, Goldstone-boson

equivalence ceases to hold at relative transverse momenta of order the weak scale, allowing

for an additional burst of many “ultra-collinear” radiation processes that do not exist in the

unbroken theory, and are highly suppressed at energy scales kT � v. To cleanly isolate these

effects, we introduce a novel gauge dubbed “Goldstone Equivalence Gauge” (GEG). This is

a particularly convenient choice of non-covariant gauge, allowing a completely transparent

view of Goldstone-boson equivalence within the shower, as well as systematic corrections

away from it in the splitting matrix elements, organized in a power series in VEV factors.

The naively bad high energy behavior of the longitudinal gauge bosons is deleted, and the

Goldstone fields allowed to interpolate physical states, at the cost of re-introducing explicit

gauge-Goldstone boson mixing.

Our formalism developed here has deep implications and rich applications at TeV-scale

energies and beyond. Some aspects include EW parton distribution functions associated with

initial state radiation (ISR), multiple emissions in EW final state radiation (FSR), consistent

merging of EW decays with EW showering, a quantum-coherent treatment of the Sudakov
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evolution of γ/Z/h states, as well as modeling of general ultra-collinear processes including,

e.g., tR → htR and h → hh. We also make some preliminary studies of the impact of EW

showering on new physics searches in the context of a heavy W ′ decay. Quite generally, we

begin to see the emergence of the many nontrivial phenomena of “weak jets” across a broad

range of SM and BSM phenomena.

The rest of the paper is organized as follows. We begin in Section 2 with a generic dis-

cussion of splitting and evolution formalism with massive particles. We then outline some

of the other nontrivial features such as PDFs for massive particles, interference between

different mass eigenstates, showers interpolating onto resonances, and back-reaction effects

from multiple emissions. In Section 3, we introduce the splitting kernels for the unbroken

electroweak theory, namely SU(2)L × U(1)Y gauge theory with massless fermions in SM

representations, a single (massless) scalar doublet, and Yukawa interactions. We then pro-

ceed in Section 4 to generalize these results to the broken phase. After a discussion of the

violation of the Goldstone-boson Equivalence Theorem, we introduce the Goldstone Equiv-

alence Gauge. We then discuss the EWSB modifications to the unbroken splitting functions

and present a complete list of ultra-collinear processes that arise at leading-order in the

VEV. Section 5 explores some key consequences of electroweak showering in final-state and

initial-state splitting processes, including a discussion of EW parton distribution functions

and multiple EW final state radiation. We emphasize the novel features of the EW shower

and illustrate some of the effects in the decay of a heavy vector boson W ′. We summarize

and conclude in Section 6. Appendices give supplementary details of Goldstone Equivalence

Gauge, the corresponding Feynman rules and illustrative examples of practical calculations,

more details on the density-matrix formalism for coherent Sudakov evolution, and a short

description of our virtuality-ordered showering program used for obtaining numerical FSR

results.
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2.0 SHOWERING PRELIMINARIES AND NOVEL FEATURES WITH

EWSB

We first summarize the general formalism for the splitting functions and evolution equations

with massive particles that forms the basis for the rest of the presentation. We then lay out

some other novel features due to EWSB.

2.1 SPLITTING FORMALISM

Consider a generic hard process nominally containing a particle A in the final state, slightly

off-shell and subsequently splitting to B and C, as depicted in Fig. 2 (left figure). In the

limit where the daughters B and C are both approximately collinear to the parent particle

A, the cross section can be expressed in a factorized form [20]

dσX,BC ' dσX,A × dPA→B+C , (2.1)

where dP is the differential splitting function (or probability distribution) for A → B + C.

A given splitting can also act as the “hard” process for later splittings, building up jets.

The factorization of collinear splittings applies similarly for initial-state particles, leading to

the picture of parton distribution functions (PDFs) for an initial state parton B or C, as in

Fig. 2 (right figure),

dσAB′→CX ' dPA→B+C × dσBB′→X . (2.2)

We will discuss this situation in the next subsection. While our main focus here is on

resummation of these splitting effects in a parton shower/evolution framework, at a leading
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Figure 2: Schematic processes involving a collinear splitting A → B + C in either the final

state (left) or initial state (right).

approximation Eqs. (2.1) and (2.2) can also be taken as-is, with a unique splitting in the

event and no virtual/resummation effects, in order to quickly capture the tree-level collinear

behavior of high energy processes. In our further analyses, we will refer to such a treatment

as a “fixed-order EW shower” or “fixed-order EW FSR (ISR).”

Integrating out the azimuthal orientation of the B+C system, the splitting kinematics are

parametrized with two variables: a dimensionful scale (usually chosen to be approximately

collinear boost-invariant) and a dimensionless energy-sharing variable z. Common choices for

the dimensionful variable are the daughter transverse momentum kT relative to the splitting

axis, the virtuality Q of the off-shell particle in the process, and variations proportional

to the daughters’ energy-weighted opening angle θEA. Our descriptions here will mainly

use kT , as this makes more obvious the collinear phase space effects in the presence of

masses. For our numerical results in Section 5, we switch to virtuality, which allows for a

simpler matching onto W/Z/t decays. Mapping between any of these different scale choices

is however straightforward. The energy-sharing variable z (z̄ ≡ 1− z) is commonly taken to

be the energy fraction of A taken up by B (C). The splitting kinematics takes the form

EB ≈ zEA, EC ≈ z̄EA, kT ≈ zz̄EAθ . (2.3)
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When considering splittings involving massive or highly off-shell particles, various possible

definitions of z exist which exhibit different non-relativistic limits. Besides strict energy

fraction, a common choice is the light-cone momentum fraction, z ≡ (EB + ~kB · k̂A)/(EA +

|~kA|). Our specific implementation in Section 5 uses the three-momentum fraction

z ≡ |~kB|
|~kB|+ |~kC |

, (2.4)

which makes phase space suppression in the non-relativistic limit more transparent. How-

ever, in the relativistic regime, where the collinear factorization is strictly valid, all of these

definitions are equivalent, and we do not presently make a further distinction.1

In the simplest cases, generalizing the collinear splitting function calculations to account

for masses is straightforward. Up to the non-universal and convention-dependent factors

that come into play in the non-relativistic limit, the splitting functions can be expressed as

dPA→B+C

dz dk2
T

' 1

16π2

zz̄ |M(split)|2

(k2
T + z̄m2

B + zm2
C − zz̄m2

A)2
. (2.5)

Here, M(split) is the A → B + C splitting matrix-element, which can be computed from

the corresponding amputated 1 → 2 Feynman diagrams with on-shell polarization vectors

(modulo gauge ambiguities, which we discuss later). This may or may not be spin-averaged,

depending on how much information is to be kept in the shower. Depending upon the

kinematics, the mass-dependent factors in the denominator act to either effectively cut off

collinear divergences at small kT or, in final-state showers, to possibly transition the system

into a resonance region. In cases where interference between different mass eigenstates can

be important, this basic framework must be further generalized. Resonance and interference

effects are introduced in Section 2.2.

On dimensional grounds, |M(split)|2 goes like either k2
T or some combination of the various

m2’s. Conventional splitting functions typically scale like dk2
T/k

2
T , which is exhibited by all

of the gauge and Yukawa splittings of the massless unbroken electroweak theory, as to be

1There is unavoidably some frame-dependence to this setup, as there is in all parton showers that are
defined strictly using collinear approximations. A more complete treatment would exhibit manifest Lorentz-
invariance and control of the low-momentum region, at the expense of more complicated book-keeping of the
global event structure, by using superpositions of different 2→ 3 dipole splittings. Extending our treatment
in this manner is in principle straightforward, but beyond the scope of the present work.
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shown in Section 3. There can also be mass-dependent splitting matrix elements that lead to

m2dk2
T/k

4
T type scaling. These splittings are highly suppressed for kT ∼> m. However, they

are much more strongly power-enhanced at low kT , a behavior which we call ultra-collinear.

Upon integration over kT , the total rate for an ultra-collinear splitting comes out proportional

to dimensionless combinations of couplings and masses, with the vast majority of the rate

concentrated near kT ∼ m. Such processes exist in familiar contexts like QED and QCD

with massive fermions, for example the helicity-flipping splittings eL → γeR and g → bLb̄L.

They are usually not treated as distinct collinear physics with their own universal splitting

functions, though they are crucial for systematically modeling shower thresholds. We choose

to treat them on independent footing, since the threshold behaviors of the electroweak shower

are highly nontrivial, including processes that are qualitatively different from the massless

limit.

In both the conventional collinear and ultra-collinear cases, the remaining z dependence

after integrating over kT can be either dz/z or dz×(regular). The former yields additional soft

logarithms (again, formally regulated by the particle masses), and appears only in splittings

where B or C is a gauge boson.

2.1.1 Evolution equations

When applied to the initial state, the splitting functions outlined in the previous section lead

to both initial state radiation (ISR) as well as the dynamical generation of B and C parton

distribution functions from a parent A. Considering a generic parton distribution function

fi(z, µ
2) with a factorization scale µ in kT -space, the leading-order convolution relation is

fB(z, µ2) = fB(z, µ2
0) +

∑
A

∫ 1

z

dξ

ξ
fA(ξ, µ2

0)

∫ µ2

µ20

dk2
T

dPA→B+C(z/ξ, k2
T )

dz dk2
T

, (2.6)

where µ0 is an input factorization scale. Differentiating with respect to µ2 and incorporating

as well the evolution of the fA leads to the celebrated Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equation [81, 82, 83].

∂fB(z, µ2)

∂µ2
=
∑
A

∫ 1

z

dξ

ξ

dPA→B+C(z/ξ, µ2)

dz dk2
T

fA(ξ, µ2) . (2.7)
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Gauge theories such as QED and QCD predict that at high energies the splitting functions

dP/dk2
T go like 1/k2

T , and thus that the PDFs evolve like ln(Q2/µ2). This is the classic

violation of the Bjorken scaling law [84]. In the broken electroweak theory, there are also the

qualitatively different ultra-collinear splitting functions, which instead go as m2/k4
T . The

PDFs arising from these splittings “live” only at the scale kT ∼ m. Instead of evolving

logarithmically, they are cut off by a strong power-law suppression at kT ∼> m. The cor-

responding PDFs preserve Bjorken scaling, up to contributions beyond leading order. In

particular, longitudinal weak boson PDFs are practically entirely determined at splitting

scales of O(mW ), even when used as inputs into processes at energies E � mW .2

Numerical computation of electroweak PDFs with a proper scale evolution do not ex-

ist yet in the literature, though the complete unbroken-theory evolution equations appear

in [61], and fixed-order results are straightforward to obtain with the simple convolution in

Eq. (2.6). In the resummed treatment, contributions from the region kT ∼ mW can per-

haps most simply be incorporated as perturbative “threshold” effects, essentially adding in

their integrated fixed-order contributions up to some scale (a few)×mW as δ-functions in

kT -space. These would include the finite, mass-suppressed contributions from the turn-on

of f → WTf splittings, as well as the entire ultra-collinear f → WLf contribution. Equiva-

lently at leading-order, they may instead be folded continuously into the DGLAP evolution

using the massive splitting functions defined as in Eq. (2.5). This latter approach may also

be simpler when alternative scaling variables are used, such as virtuality.

The other qualitatively new electroweak effects in the PDFs concern the treatment of

weak isospin. First, the chiral nature of the EW gauge interactions leads to more rapid

evolution toward low-x for left-handed fermions than for right-handed fermions. Further-

more, the isospin non-singlet nature of typical beam particles yields an additional interesting

subtlety. In QED and color-averaged QCD evolution, the soft-singular limits of, e.g., q → gq

at a given scale become indistinguishable from q → q with no splitting. Indeed, this allows

2This observation persists even in the presence of QCD corrections. We can imagine that a quark is first
evolved to large kT (and hence large space-like virtuality Q) from multiple gluon emissions, and then splits
into an on-shell quark and space-like longitudinal vector boson. The former emerges as an ISR jet and the
latter participates in a hard interaction. We would find (e.g., using Goldstone Equivalence Gauge, introduced
in Section 4.1) that the collinear-enhanced piece of the scattering amplitude carries a net suppression factor
of O(m2/Q2), which cannot be compensated by integration over the collinear emission phase space.
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for the balancing of real and virtual IR divergences as z is formally taken to zero at fixed

kT , conventionally encoded in the plus-prescription. However, following this prescription for

the electroweak evolution of fermion PDFs at kT � mW leads to unregulated divergences

in isospin-flipping transitions, such as uL ↔ dL via arbitrarily soft W± emission. This is a

manifestation of the so-called Bloch-Nordsieck violation effect [14, 63, 80]. Regulation and

resummation of this effect requires the introduction of some form of explicit cutoff z ∼> kT/E

in the evolution equations when formulated in (kT , z) space, in order to avoid non-collinear

emission regions [61].3 The net effect is a gradual, controlled merging of the uL and dL PDFs

(or eL and νL PDFs in the case of electron beams) into a common “qL” (“`L”) PDF. Unlike

conventional PDF evolution, implementing the z cutoff in this way necessitates extending

the arguments of the PDFs to explicitly include the (CM-frame) beam energy. While this

is not a major complication, we do point out that different choices of scaling variables may

yield the same non-collinear regulation without requiring the extra energy argument. A par-

ticularly simple choice would be the energy-weighted angle θEA. We defer a detailed study

of these issues to future work [85].

Another novelty, also discussed in [61], is that some of the PDFs must be treated as

matrices. This is particularly relevant for the photon and transverse Z-boson PDFs, which

develop sizable off-diagonal contributions. Indeed, the naive concept of independent “photon

PDF” and “Z PDF” at kT � mZ is necessarily missing important physics, as γ and Z are not

gauge eigenstates. We outline the appropriate treatment in Section 2.2.2 and Appendix C.

The same splitting functions that govern ISR and PDF generation also serve as the

evolution kernels for final-state radiation (FSR). This integrates to the well-known Sudakov

form factor ∆A(t) characterizing the possible time-like branchings of parent A at scales below

t ∼ log(kT ) or log(Q)

∆A(t) = exp

[
−
∑
BC

∫ t

t0

dt′
∫
dz

dPA→B+C(z, t′)

dz dt

]
, (2.8)

where the allowed z range is determined by kinematics. Practically, we perform the evolution

starting at a high kT or virtuality scale characterized by the CM-frame energy of the hard

3In QED and QCD, these non-collinear emissions are implicitly and “incorrectly” integrated over in
the plus-prescription. However, in the limit E � kT , the numerical impact of doing so is of sub-leading
importance.
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partonic process, and running continuously down through the weak scale with the proper

mass effects. The Sudakov factor, evaluated in small t steps, functions as a survival proba-

bility for A, upon which the usual Markov chain monte carlo is constructed. (See, e.g., [86].)

If A does not survive at some step, it is split into a state B + C. This splitting acts as the

“hard” process that produced particles B and C, and Sudakov evolution is continued on

each of those particles. The “resolution” scale t0 can be any scale well below mW , at which

conventional QED and QCD showers can take over. Of course, the basic framework leaves

many details unspecified, and allows for a great deal of freedom in specific implementation.

For example, besides the choice of evolution variable, one must also specify a treatment of

kinematic reshuffling. We elaborate on some additional aspects of our own implementation

of final-state showers below and in Appendix D. We will generally refer this treatment of

Sudakov formalism as the “full EW shower” or “full EW FSR”, in contrast to the fixed-order

splitting calculations in Eqs. (2.1) and (2.2).

2.2 OTHER NOVEL FEATURES IN EW SHOWERING

There are several additional novel features in EW showering beyond those encountered in

the standard formalism. We outline a few relevant to our later discussions and also propose

concrete schemes for their implementations.

2.2.1 Mass effects

Besides the basic kinematic modifications and the emergence ultra-collinear splitting phe-

nomena, the existence of a mass scale mW,Z ∼ gv and mf ∼ yfv requires some special

treatments as we approach kinematic thresholds and the boundaries of turnoff regions.

An immediate complication is that final-state weak showering smoothly connects onto

the on-shell weak decays of top quarks, W/Z bosons, and (to a much lesser extent) Higgs

bosons. The shower describes the highly off-shell behavior of these particles, including

resummed logarithmically-enhanced effects. But the effect of the pole is nonetheless visible,
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encoded in the last term in the denominator of Eq. (2.5). Within the resonance region,

the dominant behavior is more correctly captured by the standard Breit-Wigner line-shape

governed by the physical width Γ, which involves a very different kind of resummation.

However, a few Γ above the peak, both descriptions can be expanded perturbatively and

yield numerically similar predictions.4 It is therefore straightforward to define a well-behaved

matching prescription. This is easiest to formulate within a virtuality-ordered shower: Halt

the shower at some matching scale Qmatch = m+(a few)Γ, and if the state has survived to

this point, distribute its final mass according to a Breit-Wigner resonance below Qmatch. The

exact choice of matching scale here is not crucial, as long as it is within the region where the

Breit-Wigner and shower predictions are comparable. For other shower ordering variables,

such as kT , we can instead run the shower down to its nominal kinematic limit, but not

integrating z within the region that would yield Q < Qmatch. In either case, the parton

shower may be restarted on the resonance’s decay products.

Another place where mass effects can become important is in multiple emissions. In

massless showers, sequential splittings are dominantly very strongly-ordered in scale, and

as a consequence a given splitting rate can be computed without regard to the subsequent

splittings while still capturing the leading behavior. However, in showers with massive

particles, a large fraction of the available phase space for secondary splittings may require

nontrivial kinematic rearrangements within the preceding splittings. For example, aW boson

might nominally be produced with a kinematic mass mW via emission off of a fermion. If the

W subsequently splits into a W and a Z boson at a virtuality Q � mW , there is a chance

that the off-shell W now sits near a suppressed region (i.e., dead cone) for emission off of the

mother fermion. In order to avoid badly mis-modeling such cases, secondary splittings can be

weighted according to the relative rate modification that would be incurred on the previous

splitting. This back-reaction factor depends in detail on how kinematic arrangements are

done in the shower. Generally, a given (z,Q) or (z, kT ) parametrizing the mother splitting

will be mapped onto a new (z∗, Q∗) or (z∗, k∗T ) for producing the off-shell daughter. The

required back-reaction factor is the ratio of the new differential splitting function to the

original one, multiplied by the Jacobian for the change of variables. For a final-state shower

4The agreement is further improved if Γ is generalized to Γ(Q). E.g., ΓZ → ΓZ(Q) ' (Q/mZ)ΓZ .
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sequence A∗ → B∗C → (DE)C, for the nested splitting we can use a splitting function

multiplied by the back-reaction factor:

dP(B∗ → DE)

dzDE dk2
T,DE

×
(
dP(A∗ → B∗C)/dz∗dk2∗

T

dP(A∗ → BC)/dz dk2
T

·
∣∣∣∣det

[
dz∗dk2∗

T

dz dk2
T

]∣∣∣∣) . (2.9)

The simplest implementation would compute this factor independently for each daughter

branch, assuming an on-shell sister and neglecting possible correlations in the potentially

fully off-shell final configuration A∗ → B∗C∗. But a more thoroughly correlated weighting

scheme could be pursued if deemed numerically relevant. The above prescription also gener-

alizes beyond massive showers, wherein it has a sizable overlap with the effects of standard

angular vetoing. We further show below how back-reaction factors can be conveniently ap-

plied for a complete treatment of mixed neutral bosons, wherein an “on-shell” kinematic

mass is not necessarily determined at their production.

The above back-reaction effects can be particularly important for ultra-collinear emis-

sions, as these occur almost exclusively at the boundaries delineated by finite-mass ef-

fects. For example, the prototypical ultra-collinear emission is f → WLf
′ with massless

fermions [38, 39, 40]. It proceeds only via a delicate balancing between a suppression fac-

tor m2
W/E

2 in the squared splitting matrix element and a strong 1/k4
T power enhancement

from the fermion propagator that gets cut off at kT ∼ mW , controlled by the form of the

denominator in Eq. (2.5). Within a final-state shower, if either the WL or its sister f ′ is

set far off-shell by a secondary splitting at some scale Q (possibly a QCD splitting), that

cutoff moves out to kT ∼ Q but the original production matrix element stays approximately

the same, and the total rate picks up an additional relative power suppression factor of

O(m2
W/Q

2).5 Roughly speaking, ultra-collinear processes can only occur near the “end” of

the weak parton shower as it passes through the weak scale, or conversely near the “be-

ginning” of weak PDF evolution. Such a feature is essentially built-into kT -ordered parton

evolution. The back-reaction correction ensures that it is also enforced in showers built on

5When the WL is off-shell, we would naively compensate by using an off-shell gauge polarization, yielding
Q2/E2 instead of m2

W /E
2. However, the appropriate treatment, discussed in more detail in Appendices A

and B, uses on-shell polarization factors throughout. Additional non-collinear corrections might still be
present, but are more appropriately viewed as contributions to 1→ 3 splittings. New soft logarithms might
also arise in these processes, but new collinear logs will not.
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other ordering variables, such as virtuality, while still allowing further low-scale showering

such as q → gq and WL → γWL.

2.2.2 Mixed-state evolution

Thus far, the shower formalism that we have presented neglects the possibility of interference

between different off-shell intermediate particle states contributing to a specific splitting

topology. Traditionally in QED and QCD showers, such interference leads to sub-leading

effects associated with the unmeasured spin and color of intermediate particles [87]. However,

the full electroweak theory at high energies presents us with cases where different mass and

gauge eigenstates can also interfere at O(1) level, most notably the neutral boson admixtures

γ/ZT and h/ZL [61]. All other particles in the SM carry (approximately) conserved charge

or flavor quantum numbers that can flow out into the asymptotic state, and therefore they

do not tend to interfere in this manner. Interferences originating from CKM/PMNS flavor

violations should be small and difficult to observe, and we neglect them for simplicity.

Showering involving superpositions of different particle species can be described using

density matrix formalism. Let us consider the simpler case of final-state showers for illus-

tration. The initial value of the density matrix is set proportional to the outer product of

production amplitudes: ρij ∝M(prod)∗
i M(prod)

j , tracing out over other details of the rest of the

event.6 Here, the indices run over the particle species. The probability for an initial mixed

quantum state to subsequently split into a specific exclusive final state must be computed

by generalizing the splitting functions to Hermitian splitting matrices dPij. The exclusive

splitting rates are then computed by tracing against the normalized density matrix,7

dP =
ρij dPji

tr[ρ]
. (2.10)

6This treatment does not attempt to address quantum correlations between different branches of an event
or shower.

7In more complete generality, a mixed state can split into another mixed state, leading to an enlarged
set of indices for the splitting matrices. However, in most cases, the final-state density matrices are fully
determined by the initial-state density matrices, such that in practice a single pair of indices suffices.
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Representing the propagator matrix as Dij, and the amputated splitting amplitudes as

M(split)
i , this modifies Eq. (2.5) to the more complete, yet more complicated form

[
dPA→B+C

dz dk2
T

]
ij

' 1

16π2

1

zz̄
M(split)∗

k D∗kiDjlM
(split)
l . (2.11)

Note that large interference effects can persist even in the massless limit with unmixed

propagators. A full treatment, including the Sudakov evolution for ρij and the explicit form

of the propagators for γ/ZT and h/ZL systems, is given in Appendix C.

Handling the kinematics and decays of mixed states requires some additional steps. “On-

shell” kinematics cannot be defined a priori, and we cannot collapse onto mass eigenstates or

a showered final-state with well-defined mass until the coherent Sudakov evolution has run

its course. A simple prescription is to first produce a mixed boson with its minimum possi-

ble kinematic mass (zero for γ/ZT , mZ for h/ZL) in order to fully fill out the phase space.

Splittings that occur before reaching the resonance are weighted by a back-reaction factor

as per Eq. (2.9). If the state survives un-split down to the heavier resonance’s matching

threshold, we can decide to project onto a specific mass eigenstate according to the relative

probabilities encoded in the surviving density matrix. The back-reaction factor may once

again be employed here, implemented as a veto probability for the heavier resonance. (The

factor will typically come out less than one for a sensibly-defined change of variables.) If the

veto is thrown, the splitting that produced the mixed state is undone, and its mother’s evolu-

tion continued. This prescription especially becomes relevant when evolving near kinematic

thresholds or suppressed regions, for example where Z boson emission would be suppressed

but photon emission allowed.

For the mixed γ/ZT system, if a photon is projected out, we can restart a pure QED

parton shower (γ → ff̄) with virtuality constrained below the Z boson’s Qmatch scale at

≈ 100 GeV. Interference effects below the matching scale can also be incorporated by coher-

ently adding both the γ and Z contributions within the Z resonance region. This requires

delineating as well a lower virtuality boundary, ideally at a scale O(1) smaller than mZ .

Depending on the integrated probability in this region (modulo the back-reaction veto), we

would either create an ff̄ state with an appropriately-distributed mass, or again set the
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state to a photon and continue running a pure QED shower, now constrained below the Z

resonance region.

We also comment that a fully consistent treatment here would require minor changes to

the standard output formats of hard event generators. The standard practice of immediately

collapsing onto mass eigenstates is equivalent to assuming trivial Sudakov evolution, and

cannot formally be inverted such that a proper coherent parton shower can be applied.

In particular, only one specific linear combination of γ/ZT states participates in the high-

rate non-Abelian splittings to W±
T W

∓
T . While collapsing onto mass eigenstates is required

to obtain well-defined hard event kinematics, a simple remedy here would be to supply for

these particles their production density matrices, using some appropriately-mapped massless

kinematics.
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3.0 SPLITTING FUNCTIONS IN UNBROKEN SU(2)L × U(1)Y

Before working out the complete set of electroweak splitting functions in the broken phase,

it is important to first consider a conceptual limit with an unbroken SU(2)L ×U(1)Y gauge

symmetry with massless gauge bosons and fermions, supplemented by a massless complex

scalar doublet field H without a VEV. This last ingredient is the would-be Higgs doublet.

This simplified treatment in the unbroken phase is not only useful to develop some intu-

ition, but also captures the leading high-kT collinear splitting behavior of the broken SM

electroweak sector. Some aspects of electroweak collinear splitting and evolution at this level

have been discussed, e.g., in [61].

Anticipating electroweak symmetry breaking, we adopt the electric charge basis in weak

isospin space. The corresponding SU(2)L bosons are W± and W 0, and the hyper-charge

gauge boson we denote as B0. Gauge boson helicities are purely transverse (T ), and are

averaged.1 For the scalar doublet, we decompose as

H =

 H+

H0

 =

 φ+

1√
2
(h− iφ0)

 , (3.1)

where φ±, φ0 will later become the electroweak Goldstone bosons and h the Higgs boson.

However, at this stage, we will keep the neutral bosons h and φ0 bundled into the complex

scalar field H0, as they are produced and showered together coherently. In the absence of

the VEV, the doublet carries a perturbatively-conserved “Higgs number,” which may also

1While the gauge helicity averaging is not strictly necessary, especially given that we will later make a
distinction between transverse and longitudinal polarizations, it does simplify our presentation. We also
do not incorporate azimuthal interference effects, though this would be straightforward in analogy with
QCD [24].
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be taken to flow through RH-chiral fermions in the Yukawa interactions.2 We denote a

generic fermion of a given helicity by fs with s = L,R (or equivalently s = ∓). We do not

always specify the explicit isospin components of f at this stage, but implicitly work in the

usual (u, d)/(ν, e) basis. Isospin-flips (including RH-chiral isospin where appropriate) will be

indicated by a prime, e.g. u′ = d. Effects of flavor mixing are ignored.

The U(1)Y and SU(2)L gauge couplings are respectively taken to be g1 ≈ 0.36 and

g2 ≈ 0.65 (here evaluated near the weak scale, though in general run to a scale of O(kT )).

For compactness we often represent a generic gauge coupling by gV . We represent the gauge

charge Q of a particle p coupling to gauge boson V by QV
p , and we give the complete list of

the gauge charges for the SM fermions and scalars in Table 9 in Appendix B.1.

The splitting functions that involve only fermions and gauge bosons closely follow those of

QED and QCD. Fermions with appropriate quantum numbers may emit transverse SU(2)L

and U(1)Y gauge bosons with both soft and collinear enhancements, yielding total rates that

grow double-logarithmically with energy. At this stage, fermion helicity coincides with the

corresponding chirality, and is strictly conserved in these processes. The SU(2)L bosons

also couple to one another via their non-Abelian gauge interactions, and similarly undergo

double-logarithmic soft and collinear splittings W 0 → W+W− and W± → W±W 0. This is

in direct analogy to g → gg in QCD, except that here we do not sum/average over gauge

indices. All of the electroweak gauge bosons may also undergo single-log collinear splittings

into fermion pairs, similar to g → qq̄ or γ → ff̄ .

The results can be cast into a familiar form. We write the probability function of finding

a parton B inside a parton A with an energy or momentum fraction z in terms of the collinear

splitting kernels for A → B as PBA(z). Stripping the common g2/8π2 and 1/k2
T factors, as

well as group theory factors that depend on the gauge representations (hyper-charges or

2We have expanded the neutral scalar field as H0 ∝ h− iφ0, adopting a phase convention such that h and
φ0 fields create/annihilate their respective one-particle states with trivial phases, and H0 annihilates the one-
particle state |H0〉 ∝ |h〉+ i|φ0〉. Treating h and φ0 as independent showering particles would be analogous
to adopting a Majorana basis instead of a Dirac basis for the fermions in QED or QCD. An incoherent
parton shower set up in such a basis would not properly model the flow of fermion number and electric
charge. Analogously, H0 and H0∗ particles carry well-defined Higgs number that we choose to explicitly
track through the shower. This leads to correlations between spins and electric charges within asymptotic
states.
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SU(2)L quadratic Casimirs and Dynkin indices), we are left with

PV f (z) =
1 + z̄2

z
, PV ′V (z) =

(1− zz̄)2

zz̄
, PfV (z) =

z2 + z̄2

2
, (3.2)

with z̄ ≡ 1 − z. Note that the other possible splitting f → f (′)V is given by Pf (′)f (z) =

(1 + z2)/z̄, but it is not independent and can be derived from PV f with z ↔ z̄. The factor

of 1/2 in PfV , relative to the standard form in QED with the electric charge stripped (or in

QCD with the SU(3) Dynkin index stripped), is due to the fact that we treat each chiral

fermion individually.

Interference between different gauge groups is a subtlety that is absent in the color-

averaged SU(3)QCD × U(1)EM shower, and arises here from the fact that we have fixed a

preferred gauge basis for asymptotic states instead of summing over gauge indices. Within

different exclusive isospin channels in this basis, exchanges of B0 and W 0 can exhibit O(1)

interference, and thus must be described using density matrices, which have briefly been

discussed in Section 2.2.2. In a truly massless theory, the physical preparation and identi-

fication of states in any preferred weak isospin basis is actually impossible, since arbitrarily

soft W± can be radiated copiously at no energy cost and randomize the isospin.3 Our pre-

ferred basis here only becomes physical once we turn on the electroweak VEV and cut off

the IR divergences. But the tendency for states to self-average in isospin space will persist

at high energies.

Beyond these, the major change is the introduction of the scalar doublet.4 First, the

scalars may themselves radiate SU(2)L and U(1)Y gauge bosons. The soft-collinear behav-

ior is identical to their fermionic counterparts, but the hard-collinear behavior is different.

Second, the electroweak gauge bosons can split into a pair of scalars, again in close analog

with splittings to fermion pairs. Third, fermions with appreciable Yukawa couplings to the

scalar doublet can emit a scalar and undergo a helicity flip. Finally, the scalars can split into

3Absent the quark chiral condensate at O(100 MeV), massless SU(2)L would also technically confine in
the IR, so that asymptotic states would anyway be isospin-singlet bound states, making the situation even
more analogous to QCD.

4We neglect all 1 → 3 splittings coming from either the scalar quartic or the scalar-gauge 4-point.
These may feature single-logarithmic collinear divergences, but are expected to be rather highly numerically
suppressed due to an additional O(1/16π2) phase space factor.
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a pair of collinear, opposite-chirality (same-helicity) fermions. The corresponding splitting

function kernels are found to be

PHf (z) =
z

2
, PHV (z) = zz̄, PV H(z) =

2z̄

z
, PfH(z) =

1

2
. (3.3)

The other possible splittings H → H(′)V and fs → f
(′)
-s H are given by PH(′)H(z) = 2z/z̄ and

P
f
(′)
-s fs

(z) = z̄/2, derived from PV H and PHf , respectively.5 The splittings W 0/B0 → H0H0(∗)

can also be conveniently represented by the final-state hφ0, in what will ultimately become

hZL in mass/CP basis. Here the final-state bosons are entangled, but the effects of that

entanglement are subtle and only become relevant if both bosons undergo secondary splittings

and/or hard interactions. In practice, we will simply take the expedient of collapsing the

final state to hφ0.

The complete set of splitting functions is summarized in Tables 1 through 3. The tables

are organized according to the spin of the incoming particles: polarized fermions with helicity

s, transverse gauge bosons (VT ), and scalars. Each table is further subdivided according to

the spins of outgoing particles, all together corresponding to seven unique core splitting

functions. The various table entries associated to a specific set of incoming and outgoing

spins provide the remaining coupling and group theory factors. All of the splitting functions

have a conventional collinear logarithmic enhancement dk2
T/k

2
T , and those involving emission

of a massless gauge boson have an additional soft logarithmic enhancement dz/z. (The latter

are the only emissions that preserve the leading particle’s helicity in the soft emission limit.)

To represent the off-diagonal terms for the neutral gauge bosons (either in production or

splitting, where appropriate), we use the symbol [BW ]0. Otherwise, processes involving B0

or W 0 alone implicitly represent the respective diagonal term in the density matrix.

5Note that transitions involving the scalars must conserve the Higgs number introduced earlier in this
section. For example, we may have H0 → W−φ+, but not H0 → W+φ−. Similarly, H0 → tRt̄R is allowed
but H0 → tLt̄L is not.
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1

8π2

1

k2
T

(
1 + z̄2

z

)
1

8π2

1

k2
T

(z
2

)
→ VT f

(′)
s [BW ]0T fs H0(∗) f-s or φ± f ′-s

fs=L,R g2
V (QV

fs
)2 g1g2YfsT

3
fs

y2

f
(′)
R

Table 1: Chiral fermion splitting functions dP/dz dk2
T in the massless limit, with z (z̄ ≡

1 − z) labeling the energy fraction of the first (second) produced particle. The fermion

helicity is labelled by s. Double-arrows in Feynman diagrams indicate example fermion

helicity directions. Prime indicates isospin partner (u′s = ds, etc, independent of s). Yukawa

couplings are labelled by the participating RH-helicity fermion. The state H0∗ is the “anti-

H0”, produced when the RH fermion is down-type and in the initial-state, or up-type in the

final-state. Processes with B0 and W 0 implicitly represent the respective diagonal terms in

the neutral gauge boson’s density matrix, whereas [BW ]0 indicates either of the off-diagonal

terms (see text). Anti-fermion splittings are obtained by CP conjugation. The conventions

for the couplings are given in B.1.

32



1

8π2

1

k2
T

(
(1− zz̄)2

zz̄

)
1

8π2

1

k2
T

(
z2 + z̄2

2

)
1

8π2

1

k2
T

(zz̄)

→ WT WT fs f̄
(′)
-s φ+ φ− or H0 H0∗ φ+ H0∗ or φ− H0

VT 2g2
2 (V=W 0,±) Nfg

2
V (QV

fs
)2 1

4
g2
V

1
2
g2

2

[BW ]0T 0 Nfg1g2YfsT
3
fs

1
2
g1g2T

3
φ+,H0 0

Table 2: Transverse vector boson splitting functions dP/dz dk2
T in the massless limit, where

allowed by electric charge flow. Nf is a color multiplicity factor (Nf = 1 for leptons, Nf = 3

for quarks). Other conventions as in Table 1.

1

8π2

1

k2
T

(
2z̄

z

)
1

8π2

1

k2
T

(
1

2

)
→ V 0

T H [BW ]0T H W±
T H ′ uR ū

(′)
R d̄L d

(′)
L

or ēL e
(′)
L

H = φ+, H0 1
4
g2
V

1
2
g1g2T

3
φ+,H0

1
2
g2

2 3y2
u Nd,ey

2
d,e

Table 3: Scalar splitting functions dP/dz dk2
T in the massless limit via gauge couplings and

Yukawa couplings. The symbol H in the column headings represents the appropriate state

φ+, H0 for the given splitting, and H ′ represents the SU(2)L isospin partner (e.g., H0′ = φ+).

Anti-particle splittings are obtained by CP conjugation. Other conventions as in Tables 1

and 2.
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4.0 SPLITTING FUNCTIONS IN SPONTANEOUSLY BROKEN

SU(2)L × U(1)Y

While the parton shower formalism of the electroweak theory in the symmetric phase has

much in common with that of SU(3)QCD×U(1)EM, care needs to be taken when dealing with

the broken phase and systematically accounting for the effects of the VEV (v). In a sense, we

must extract the “higher-twist” effects of the broken electroweak theory in terms of powers

of v/E. Although the regulating role of v in the shower is somewhat analogous to that

of ΛQCD, the electroweak theory remains perturbative at v, and the unbroken QED shower

continues into the deep infrared regime. The interplay between gauge and Goldstone degrees

of freedom within the shower can also seem obscure, both technically and conceptually.

Most immediately, the splitting functions of the unbroken theory, already detailed in

Section 3, must be adjusted to account for the physical masses of the gauge bosons, Higgs

boson, and top quark. To large extent, these constitute simple modifications, folding in the

kinematic effects discussed in Section 2. As a straightforward example, in Fig. 3 we illustrate

the fixed-order emission rate for W± bosons off a massless fermion at Ef = 10 TeV. Both the

collinear and soft singularities of the massless theory (dotted curves) become regulated with

mW ≈ 80 GeV (solid curves), as seen in the transversely-polarized boson kT distribution in

Fig. 3(a) and the z distribution in Fig. 3(b).1 Indeed, giving the gauge bosons a mass is a

common trick for regulating QCD and QED calculations. In the electroweak theory, such

regulated splitting functions become physically meaningful.

Figure 3 also shows a contribution from longitudinal gauge boson radiation off of a

1Note that in the region z ∼< mW /E, the W s are non-relativistic, and collinear splitting function language
ceases to be strictly appropriate or reliable. This region could more rigorously be matched onto universal
soft Eikonal factors, e.g. as in [53, 54]. But in practice, our treatment here still yields approximately correct
rates for splitting angles ∼< 1 when the splitting is defined in the hard scatter frame.
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massless fermion (dashed curves). This is a good example of an “ultra-collinear” process

which emerges after EWSB at leading power in v/E. In this case it has a splitting probability

of the form

dP ∼ m2
W

k2
T

dk2
T

k2
T

. (4.1)

The rate is seen to be significant in the region kT ∼ mW , and it can be larger than the

conventional transverse emissions in the ultra-collinear region kT ∼< mW as seen in Fig. 3(a).

We further show in Fig. 3(b) the z distribution at kT = mW/2, where we can see the

dominance of the longitudinal polarization (dashed curve) over the transverse polarization

(solid curve) for all values of z at weak-scale values of kT . Here we have defined z as

three-momentum fraction, employed a strict kinematic cut-off z > kT/E, and multiplied the

splitting rate by the W velocity to account for non-relativistic phase space suppression.

Considering emissions from light initial-state fermions, the ultra-collinear origins of these

longitudinal weak bosons leads to quite distinctive PDFs [38, 39, 40]. Due to the existence

of an explicit mass scale mW ∼ gv, the resulting PDFs exhibit Bjorken scaling [84]. In other

words, they do not run logarithmically and do not exhibit the usual scaling violations of

conventional PDFs in massless gauge theories. Consequently, the ISR jets associated with

their generation are constrained to the region kT ∼ mW even for arbitrarily-energetic hard

processes. This observation has led to the concepts of “forward-jet tagging” [88, 89, 90]

for the WLWL scattering signal and “central-jet vetoing” [91] for separating the f → WTf
′

backgrounds.

Such processes have no analogs in the unbroken theory. A naive application of the

Goldstone-boson Equivalence Theorem (GET) [76, 40] would have instructed us to identify

longitudinal vector bosons with the eaten scalars from the Higgs doublet, and would have

predicted zero rate because massless fermions have vanishing Yukawa couplings. More gener-

ally, we expect to see a variety of large effects of EWSB at kT ∼ v, beyond simple regulation

of the unbroken-theory splitting functions. These will involve not only the broken-phase

masses of the SM particles, but also broken-phase interactions such as scalar-vector-vector

and the scalar cubics.

The more general role of Goldstone boson equivalence and its violations within the parton

shower are rather subtle. We expect that the high-kT showering of longitudinal gauge bosons
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should closely follow the behavior of the scalars in the unbroken theory. But even this simple

identification is obscured by longitudinal polarizations that diverge with energy and by the

gauge/Goldstone boson propagators with gauge-dependent tensor and pole structure. For

processes with multiple emissions, as well as with the introduction of the novel ultra-collinear

emissions, complete isolation and removal of non-collinear gauge artifacts can appear rather

complicated. We are thus compelled to seek out a more efficient treatment, such that the the

bad high energy behavior of the longitudinal gauge bosons is alleviated and the key features

of EWSB are made more transparent.

4.1 LONGITUDINAL GAUGE BOSONS AND GOLDSTONE BOSON

EQUIVALENCE

The standard form for the polarization vector of an on-shell longitudinal gauge boson W

with a four-momentum kµW = EW (1, βW k̂W ) is

εµL(W ) =
EW
mW

(
βW , k̂W

)
=

kµW
mW

− mW

EW (1 + βW )
nµ, (4.2)

where we define the light-like four-vector

nµ ≡ (1,−k̂W ) . (4.3)

The second term in Eq. (4.2) is of the order mW/EW , which could seemingly be ignored

at very high energies in accordance with the GET. However, there are caveats to this pic-

ture, and understanding how pseudo-scalars and longitudinal vector bosons behave as both

external and intermediate states requires some care.

In the simplest approach, one would keep only the leading contribution, kµW/mW . When

contracted into scattering amplitudes, this piece effectively “scalarizes” the longitudinal vec-

tor boson, realizing the GET. This can often be seen at the level of individual Feynman

diagrams. For example, in the decay of a heavy Higgs boson with mh � 2mW , the ver-

tex g mWhW
µWµ simply leads to a scalar interaction (m2

h/v)hφ+φ− after the substitution

εµL(W ) → kµW/mW . In other cases, such as in couplings to fermion lines, the naively bad
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high-energy behavior ∝ EW/mW is fully cancelled thanks to Ward identities, up to possi-

ble chirality-flip effects that go like mf/EW . This reproduces the Yukawa couplings of the

unbroken theory. When longitudinal and Goldstone bosons appear as off-shell intermediate

states, it is also possible to show that neither the naively badly-behaved structure kµkν/m2
W

(in unitarity gauge) nor spurious gauge/Goldstone poles (in more general gauges) can lead

to new collinear behavior at zeroth-order in the VEV. The unbroken shower emerges as

expected as long as kT � mW .

The major complication to the GET picture is that the naively sub-leading effects from

EWSB can dominate in the relativistic ultra-collinear regime. Even if the kµW/mW piece of

an emitted gauge boson is removed by Ward identities, the O(mW/EW ) remainder of εµL(W )

can still receive a compensating ultra-collinear power-enhancement in the region kT ∼ mW .

There may also be comparable EWSB contributions lurking within off-shell propagators,

including as well the propagators of Higgs bosons and massive fermions.

Disentangling all EWSB effects in an ultra-collinear parton splitting can be accomplished

by isolating and removing all parts of a 1→ 2 splitting amplitude that go like (Q2−m2)/m2
W ,

where Q2 and m2 are respectively the squares of the four-momentum and pole mass of the

off-shell particle in the splitting. Once multiplied by the propagators, such contributions are

explicitly not collinear-enhanced, and would need to be combined with other non-collinear

(and hence non-universal) diagrams from a hard process. Their extraction can generally be

accomplished via manipulations between kinematic quantities, polarization vectors, and cou-

plings. However, carrying out this extraction procedure process-by-process can be tedious,

especially when multiple gauge bosons and/or nested collinear emissions are involved, and

the effects of EWSB are often not immediately obvious. Within the gauge/Goldstone boson

sector, we expect that the kµW/mW piece of the longitudinal polarization vector must gen-

erally reproduce the Goldstone scalar couplings, whereas the effects of EWSB are captured

by the remainder term in Eq. (4.2). A more convenient approach for tracking EWSB ef-

fects would be to keep the Goldstone scalar contributions manifest, and treat the remainder

polarization as a separate entity.

We point out that such a division can be enforced by judicious gauge-fixing. We do so

here via a novel gauge which we call Goldstone Equivalence Gauge (GEG). GEG is defined
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by generalizing off-shell the light-like four-vector nµ that appears in Eq. (4.2) and using it

to perform the gauge-fixing in momentum-space. Taking Wµ to represent any specific real

gauge adjoint, with contraction of gauge indices left implicit, we adopt the gauge-fixing term

(dropping here and below the “W” subscript on energy/momentum variables)

Lfix = − 1

2ξ

(
nµ(k)Wµ(k)

)(
nν(k)Wν(−k)

)
, (ξ → 0) . (4.4)

Taking the ξ → 0 limit effectively introduces an infinite mass term for the gauge polar-

ization associated with the collinear light-like direction n̄µ ≡ (1, k̂), aligned with the large

components of relativistic momentum modes. This reduces the naive number of dynamical

gauge degrees of freedom from four to three. The transverse modes (xy or helicity ±1) are

as usual, except that they gain a mass term after spontaneous symmetry breaking. The

remaining gauge degree of freedom “Wn” explicitly mixes into the Goldstone boson, and

becomes associated with exactly the remainder polarization in Eq. (4.2).

GEG is essentially a hybrid of Coulomb gauge [92] and light-cone gauge [93], incorpo-

rating both the rotational-invariance of the former and the collinear boost-invariance of the

latter, while isolating spurious gauge poles/discontinuities away from physical regions.2 This

approach can be contrasted with the more commonly-used Rξ gauges, in which individual

splitting diagrams often exhibit unphysical gauge artifacts scaling as 1/v, Goldstone fields

live purely off-shell, and Goldstone equivalence can become obscured.

Canonically normalizing such that the gauge remainder field Wn interpolates a longitudi-

nal boson state with unit amplitude at tree level, its interaction vertices carry the polarization

factor

εµn(k) ≡
−
√
|k2|

n(k) · k
nµ(k)

on-shell
→ mW

E + |~k|

(
−1, k̂

)
. (4.5)

The Goldstone field remains an integral part of the description here, but in a manner quite

different from that in Rξ gauges. In particular, it interpolates onto the same external particle

as the remainder gauge field. This particle, which may alternately be viewed as a “longitudi-

nal gauge boson” or as a “Goldstone boson”, takes on a kind of dual identity in interactions.

2GEG falls into a more general class of non-covariant but physical gauges that exhibit many similar
features in the broken phase. These include Coulomb [92], axial [94], and strict light-cone [93] (as well
as temporal, which has received little attention). In particular, splitting functions computed within GEG
and Coulomb gauge should agree at high energies, but the latter can exhibit artificial singularities at zero
three-momentum due to the residual gauge freedom.
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Processes involving creation/annihilation of this particle are computed by coherently sum-

ming over Feynman diagrams interpolated by both remainder gauge fields and Goldstone

fields.3

More details and example calculations are presented in Appendices A and B. However,

we can summarize here the key features of GEG that are relevant for parton shower physics:

• Gauge artifacts proportional to E/mW are deleted from the description of the theory

at the outset, and appear neither in external polarizations nor in propagators. Physical

longitudinal gauge bosons are no longer interpolated by a gauge boson field WL and

its associated O(E/mW ) polarization vector εµL, and no propagating component of the

gauge field serves a proxy for the eaten Goldstone bosons in high-energy interactions via

“scalarization.” Instead, only a remainder gauge field Wn may still interpolate longitu-

dinal gauge bosons. But it does so via the suppressed O(mW/E) polarization vector εµn

in Eq. (4.5).

• The high-energy equivalence between longitudinal gauge bosons and Goldstone bosons

becomes trivially manifest at the level of individual Feynman diagrams. This is because

the Goldstone fields behave almost identically as in the unbroken theory at high energies

(v/E → 0). The equivalence extends off-shell, encountering neither the usual fake gauge

nor Goldstone poles. All propagators exhibit the physical pole at mW or mZ with positive

residue. This greatly simplifies the interpretation of an “almost on-shell” boson as an

intermediate state in a shower.

• Departures from Goldstone boson equivalence become organized in a systematic power

expansion in v/E factors. This allows general ultra-collinear splitting processes to be

viewed as simple sums of well-behaved 1→ 2 Feynman diagrams. EWSB contributions in

splitting matrix elements can come from remainder-longitudinal gauge insertions, fermion

mass terms in spinor polarizations, and a small set of standard EWSB three-point ver-

tices.

As a final remark of this section, we would like to point out that the GET has been shown

to be valid including radiative corrections [96, 97, 98]. Given the close relation between the

3For a different but related approach, see [95].

39



GET and GEG, we suspect that GEG should also be adequate in dealing with radiative

corrections.

4.2 SPLITTING FUNCTIONS IN THE BROKEN PHASE

4.2.1 Modifications to unbroken-phase splitting functions

The unbroken-phase splitting functions governed by the gauge and Yukawa couplings given

in Tables 1 to 3 of Sec. 3 are still valid for kT ’s and virtualities far above the masses of all of

the participating particles, provided we make the identification between pseudo-scalars and

longitudinal gauge bosons in accordance with the GET. Indeed, in Goldstone Equivalence

Gauge, this correspondence is completely transparent. The splitting matrix elements can be

used largely unchanged as long as all of the particles are also relativistic, with corrections

that typically scale as O(g2v2/E2).

At kT ’s and virtualities approaching the physical masses, EWSB causes these splitting

functions to either smoothly shut off or to transition into resonance decays. The modifications

are captured by the propagator and kinematic effects outlined in Section 2. In particular,

the propagator modifications effectively rescale the unbroken-phase splitting functions of

Tables 1–3 as

dP
dz dk2

T

→ k4
T

k̃4
T

dP
dz dk2

T

where k̃2
T = k2

T + z̄m2
B + zm2

C − zz̄m2
A. (4.6)

Soft (1/z type) singularities also generally become regulated, though in the 1→ 2 collinear

splitting function language this regulation is somewhat convention-dependent. For kT ’s

far above the physical masses, soft singularities are anyway constrained by kinematics:

z, z̄ ∼> kT/EA. For lower kT ’s, such that non-relativistic splitting momenta can be ap-

proached, the kT suppression also sufficiently regulates any soft-singular behavior. But addi-

tional soft phase space factors can also be applied to reduce artificial spikes in the differential

splitting rates. Minimalistically, this involves the product of velocities of the outgoing prod-

ucts in final-state showers, and for initial-state showers involves the product of the on-shell
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daughter’s velocity and the space-like daughter’s “velocity”. We have seen a simple example

in Fig. 3(b).

For the neutral boson states, the propagator factors become matrices. These may be

conveniently diagonalized by rotating from the interaction basis B0/W 0 and H0/H0∗ to

the mass basis γ/ZT and h/ZL. The former requires the usual rotation by θW in gauge

space. The latter is accomplished by a U(2) rotation into the standard CP-eigenstates. The

showering must still be performed coherently in order to capture nontrivial effects such as

the flow of weak isospin and Higgs number. The full treatment is detailed in Appendix C.

One residual complication is that the off-diagonal terms in the splitting function matrices

are proportional to products of different propagator factors. E.g., for a γ/ZT state, the

appropriate modification factor for dPγZ would use instead

k̃4
T → (k2

T + z̄m2
B + zm2

C)(k2
T + z̄m2

B + zm2
C − zz̄m2

Z) . (4.7)

We also note that our convention here is to align the phases of external ZL states with those

of the eaten scalar φ0. Consequently, terms like dPhZL
are pure imaginary.

The above modifications do not explicitly address possible running effects in the masses.

Indeed, the numerical impact of the mass terms in the shower is anyway highly suppressed

except at splitting scales of O(v). Still, some cases, such as kinematics with kT ∼ v but

Q � v, might require special care in the inclusion of higher-order radiative corrections.

Similar considerations apply to the purely ultra-collinear splitting processes discussed below.

4.2.2 Ultra-collinear broken-phase splitting functions

The remaining task is to compute all of the ultra-collinear splitting functions, proportional

to the EWSB scale like in Eq. (4.1). Generalizing the standard massless-fermion f → WLf
′

calculation [38, 39, 40], we include the splittings involving arbitrary particles in the SM.

The electroweak VEV (v), to which all of these splitting functions are proportionate, has

been explicitly extracted, as well as universal numerical factors, the kinematic factor k̃4
T

as in Eq. (4.6) or Eq. (4.7), and the leading soft singularity structure (1/z, 1/z̄, or 1/zz̄).

These are obtained quite straightforwardly in GEG, where individual 1 → 2 ultra-collinear
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matrix elements all scale manifestly as g2v, y2
fv, or gyfv. See Appendix B for some explicit

examples.

We present these “purely broken” splitting functions in Tables 4−??, using similar logic

as in Section 3, though now working exclusively in mass basis for the neutral bosons. Unlike

conventional collinear splittings, ultra-collinear splittings do not lead to collinear logarithms.

Instead, integrating the emissions at a fixed value of z yields a rate that asymptotes to a fixed

value as the input energy increases. However, they are also unlike ordinary finite perturbative

corrections, in that they are highly collinear-beamed, and subject to maximally large Sudakov

effects from the conventional parton showering that can occur at higher emission scales.

Ultra-collinear emissions of longitudinal gauge bosons, when formed by replacing a trans-

verse boson in any conventional gauge emission by a longitudinal boson, retain soft-singular

behavior ∼ 1/z. (Within GEG, the 1/z factors within the splitting matrix elements be-

come regulated to 2EW/(EW + kW ).) Fully integrating over emission phase space, these

still lead to single-logarithmic divergences at high energy. This result might seem at odds

with smoothly taking the unbroken limit. For f → WLf
′, as we dial v to zero at fixed

fermion energy, the emission rate for longitudinal bosons grows unbounded. However, the

spectrum of those bosons has a median energy fraction z ∼
√
mW/Ef , and also tends to

zero. Moreover, in theories where the fermion has a gauge-invariant mass, such as QED, the

nominal ultra-collinear region kT ∼< mW becomes subsumed by the usual emission dead cone

at kT ∼< mf .

Many of the other (soft-regular) splitting functions are close analogs of the unbroken

splittings, but with “wrong” helicities. For example, there are processes where a fermion

emits a transverse gauge boson but undergoes a helicity flip, and also where a fermion emits

a Higgs boson without flipping its helicity. There are also new processes such as h → hh

where such an identification is not possible. Schematically, all of these processes can be

viewed as arising from 1→ 3 splittings in the unbroken theory, where one of the final-state

particles is a Higgs boson set to its VEV.

To make Tables 4−?? more compact, and to make closer contact with practical applica-

tions, we have made one additional simplification by neglecting neutral boson interference

effects for outgoing particles. E.g., for an ultra-collinear process such as ts → (h/ZL)ts (he-
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licity non-flipping scalar emission), we treat the outgoing Higgs and longitudinal Z states

incoherently. For final-state radiation, such a treatment is easily justified, since, as discussed

in Section 2.2.1, the particles produced out of an ultra-collinear splitting have suppressed sec-

ondary showering. And for PDF evolution starting from an initial-state composed exclusively

of light matter, there are simply no available ultra-collinear processes where such interfer-

ence effects can occur (e.g., there is GET-violating qs → ZLqs, but not qs → hqs). At higher

scales, where heavier particles begin to populate the PDFs, further ultra-collinear splittings

are again suppressed. Note, however, that we retain interference effects for incoming neutral

bosons, which can remain important for final-state splittings like γ/ZT → W±
LW

∓
T . We also

re-emphasize that interference effects for outgoing particles should still be retained for the

conventional splitting functions, even in the broken phase. This is particularly important

for the generation of the mixed γ/ZT PDF.

43



 (GeV)Tk

0 100 200 300 400 500

p
e

r 
G

e
V

0

0.0005

0.001

0.0015

0.002

  (z=0.2)T    vs    k
Tdz dk

’)L f± W→
L

dP(f

 (massless)TW

TW

LW

(a)
z

0 0.05 0.1 0.15 0.2

p
e

r 
G

e
V

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

)Wm
2
1=

T
    vs    z  (k

Tdz dk

’)L f± W→
L

dP(f

 (massless)TW

TW

LW

(b)

Figure 3: Fixed-order differential emission rate for W± bosons off a massless fermion at

Ef = 10 TeV: (a) kT distribution at z = 0.2, (b) z distribution at kT = mW/2. The

different curves correspond to massless transversely-polarized W±
T (dotted curves), massive

transversely-polarized W±
T (solid curves), and massive longitudinally-polarized W±

L (dashed

curves).
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1

16π2

v2

k̃4
T

(
1

z

)
1

16π2

v2

k̃4
T

1

16π2

v2

k̃4
T

→ VL f
(′)
s (V 6=γ) h fs VT f

(′)
-s

fs=L
(
IVf (y2

f z̄ − y2
f (′)

)z −QVfLg
2
V z̄
)2 1

4y
4
fz(1 + z̄)2 g2

V z
(
QVfRyf z̄ −Q

V
fL
yf (′)

)2
fs=R

(
IVf yfyf (′)z

2 −QVfRg
2
V z̄
)2 1

4y
4
fz(1 + z̄)2 g2

V z
(
QVfLyf z̄ −Q

V
fR
yf (′)

)2
Table 4: Ultra-collinear fermion splitting functions dP/dz dk2

T in the broken phase. Wavy

lines represent transverse gauge bosons, while the longitudinals/Goldstones and Higgs bosons

are represented by dashed lines. The k̃4
T symbol is defined in Eq. (4.6). The IVf symbol is

a shorthand for the “charge” of a fermion in its Yukawa coupling to the eaten Goldstone

boson, or equivalently the fermion’s axial charge under the vector V . These are normalized

to approximately follow the weak isospin couplings, but are defined independently of the

fermion’s helicity: IZu = 1/2, IZd/e = −1/2, IW
±

u = IW
±

d/e = 1/
√

2. Other conventions are given

in Appendix B.
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1

16π2

v2

k̃4
T

(
1

z

)
→W±L γT W±L ZT ZLW

±
T W+

L W−T
or W−L W+

T

W±T e2g2
2 z̄

3 1
4c

2
W g

4
2 z̄
(
(1 + z̄) + t2W z

)2 1
4g

4
2 z̄(1 + z̄)2 0

γT 0 0 0 e2g2
2 z̄

ZT 0 0 0 1
4c

2
W g

4
2 z̄
(
(1 + z̄)− t2W z

)2
[γZ]T 0 0 0 1

2cW eg
3
2 z̄
(
(1 + z̄)− t2W z

)

1

16π2

v2

k̃4
T

1

16π2

v2

k̃4
T

→ h VT (V 6=γ) fs f̄
(′)
s

VT
1
4zz̄g

4
V

1
2g

2
V

(
QVfsyf (′)z +QVf-syf z̄

)2

[γZ]T 0 1
2egZy

2
fQ

γ
f

(
QZfsz +QZf-s z̄

)

Table 5: Ultra-collinear transverse vector splitting functions dP/dz dk2
T in the broken phase.

For the off-diagonal incoming [γZ]T , the k̃4
T symbol is defined in Eq. (4.7). Other conventions

are as in Table 4 and in Appendix B.

46



1

16π2

v2

k̃4
T

(
1

zz̄

)
→W+

L W−L ZLW
±
L /ZL

W±L 0 1
16g

4
2

(
(z̄ − z)(2 + zz̄)− t2W z̄(1 + z̄)

)2
h 1

4

(
g2

2(1− zz̄)− λhzz̄
)2 1

8

(
g2
Z(1− zz̄)− λhzz̄

)2
ZL

1
16g

4
2

(
(z̄ − z)(2 + zz̄ − t2W zz̄)

)2
0

[hZL] i
8g

2
2

(
g2

2(1− zz̄)− λhzz̄
)

(z̄ − z)
(
2 + zz̄ − t2W zz̄

)
0

1

16π2

v2

k̃4
T

(
1

z̄

)
1

16π2

v2

k̃4
T

→ hW±L /ZL h h

W±L
1
4z
(
g2

2(1− zz̄) + λhz̄
)2

0

h 0 9
8λ

2
hzz̄

ZL
1
4z
(
g2
Z(1− zz̄) + λhz̄

)2
0

[hZL] 0 0

Table 6: Ultra-collinear longitudinal vector boson and Higgs boson splitting functions

dP/dz dk2
T . The Higgs quartic coupling λh is normalized such that m2

h = λhv
2/2. For

the off-diagonal incoming [hZL], the k̃4
T symbol stands for (k2

T + z̄m2
B + zm2

C − zz̄m2
h) · (k2

T +

z̄m2
B + zm2

C − zz̄m2
Z). Other conventions are as in Tables 4, 5 and in Appendix B.
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T /ZT W+

T W−T fs f
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W±L 2e2g2
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3z̄ 1
2c
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W g

4
2zz̄
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(z̄ − z) + t2W

)2 0
s=L : 1

2
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2zz̄
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2
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f ′

h 0 1
4g

4
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1
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4
2zz̄

1
4y

4
f (z̄ − z)2

ZL 0 0 1
2g

4
2zz̄ (z̄ − z)2

(
IZf y

2
f −QZfsg

2
Zzz̄

)2

[hZL] 0 0 − i
2g

4
2zz̄ (z̄ − z) (−1)s i2y

2
f (z̄ − z)

(
IZf y

2
f −QZfsg

2
Zzz̄

)

Table 7: Ultra-collinear longitudinal vector boson and Higgs boson splitting functions

dP/dz dk2
T . The Higgs quartic coupling λh is normalized such that m2

h = λhv
2/2. For

the off-diagonal incoming [hZL], the k̃4
T symbol stands for (k2

T + z̄m2
B + zm2

C − zz̄m2
h) · (k2

T +

z̄m2
B + zm2

C − zz̄m2
Z). Other conventions are as in Tables 4, 5 and in Appendix B.

48



5.0 SHOWER IMPLEMENTATION AND RELATED NEW PHENOMENA

We are now in a position to implement the splitting formalism and to present some initial

physics results. Our studies here involving PDFs have been generated using simple numerical

integration techniques. Our studies involving final-state radiation, which provide much more

exclusive event information, have been generated using a dedicated virtuality-ordered weak

showering code. Some technical aspects of this code can be found in Appendix D. We do

not presently study the more technically-involved exclusive structure of weak ISR radiation.

More detailed investigations of specific physics applications will appear in future work [85].

We first show some representative integrated splitting rates for an illustrative set of

electroweak splitting processes in Table 8, at incoming energies of 1 and 10 TeV, as well as the

leading-log asymptotic behavior. We have mainly focused on examples from Sections 3 and 4

that exhibit single- or double-logarithmic scaling with energy. Unless otherwise noted, the

rates are summed/averaged over spins and particle species. (For instance, q = uL, uR, dL, dR,

and f denotes all twelve fermion types of either spin.) The symbols in the parentheses

denote the conventional collinear-enhanced (CL), infrared-enhanced (IR) and ultra-collinear

(UC) behaviors, respectively. Radiation of a VT boson exhibits the usual CL+IR double-

log behavior. Notably, the largest splitting rates occur for VT → VTVT , due to the large

adjoint gauge charge. Splittings of this type occur with roughly 35% probability at 10 TeV,

a factor that is enormous for an “EW correction” and which clearly indicates the need for

shower resummation. We also see the analogous UC+IR process VT → VLVT , which only

grows single-logarithmically, but which still represents a sizable fraction of the total splitting

rate (even more so if we focus on low-kT regions, similar to Fig. 3). Similarly, the other

ultra-collinear channels are smaller but not negligible.

We next present our numerical results for various exclusive splitting phenomena, paying
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special attention to the novelties that arise in the EW shower.

5.1 ELECTROWEAK EFFECTS IN PDFS

We first revisit the classic calculation of weak boson PDFs within proton beams [38, 39].

The basic physical picture has been dramatically confirmed with the observation of the Higgs

boson signal via vector boson fusion at the LHC [41]. It is anticipated that at energies in

the multi-TeV regime, the total production cross section for a vector boson fusion process

V1V2 → X can be evaluated by convoluting the partonic production cross sections over the

gauge boson PDFs, originated from the quark parton splittings q → W±q′, q → γ/Zq.1 A

useful intermediate object in this calculation is the parton-parton luminosity, consisting of

the convolutions of the PDFs from each proton. We write the cross section in terms of the

parton luminosity of gauge boson collisions as

σPP (V1V2 → X) =

∫ τhigh

τlow

dτ
dLV1V2
dτ

σ̂(V1V2 → X̂τ ) , (5.1)

and can approximate this luminosity at fixed-order using the the concept of weak boson

PDFs of individual quarks within the proton:

dLV1V2
dτ

' 2

(δV1V2 + 1)

∫ 1

τ

dξ

ξ

∫ 1

τ/ξ

dz1

z1

∫ 1

τ/ξ/z1

dz2

z2

×

∑
q1,q2

fV1∈q1(z1)fV2∈q2(z2) fq1∈P (ξ)fq2∈P

(
τ

ξz1z2

)
. (5.2)

Here, τ = s/S is the ratio of the partonic and hadronic energies squared, and τlow and τhigh

the kinematic boundaries (e.g., defining a bin in a histogram). We assume τlow � 4m2
W/S.

The objects fV ∈q are evaluated at fixed-order as

fV ∈q(z) ≈
∫ O(s/4)

0

dk2
T

dPq→V q(′)
dz dk2

T

(z, k2
T ) , (5.3)

1It should be noted that a formal factorization proof for electroweak processes in hadronic collisions is
thus far lacking. For instance, it is not presently demonstrated whether contributions from gauge boson
exchanges between the two incoming partons are factorizable. Nonetheless, we expect that the factorized
PDF approach should furnish a reliable and useful calculation tool at very high energies at leading order, as
indicated by simple scaling arguments [99, 100].
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where the upper boundary of the kT integration is of order the partonic CM energy. For

example [38, 39],

fW±T ∈u/d
(z) ' αW

8π

1 + z̄2

z
log

(
s

4m2
W

)
, fW±L ∈u/d

(z) ' αW
4π

z̄

z
, (5.4)

where the PDFs have been integrated up to k2
T = s/4, assumed to be much larger than mW .

Implicit in the definition of the quark PDFs is the factorization scales. Since the weak

coupling and log(E/mW ) factors are both of modest size at planned future machines, the

choice of factorization scale might seem to be of strictly higher-order concern. However,

the interleaving of the much faster QCD evolution complicates the situation somewhat,

especially at a large value of the energy fraction z. We have already noted above that the

longitudinal W/Z PDFs would not evolve above mW , as their ultra-collinear generation is

constrained to the region kT ∼ mW . It is therefore important to fix a factorization scale of

O(mW ) for the quark PDFs from which the WL PDFs are derived, even for processes where
√
s� mW [101]. However, the transverse W/Z PDFs are sourced continuously at all scales.

Higher-order calculations and/or full solution of the mixed QCD/EW DGLAP equations

would be required to more fully resolve the issue of scale choices for the transverse bosons.

Here we simply fix the scale for the sourcing quark PDFs to be the geometric mean of
√
s

and mW (e.g., O(1 TeV) in a 10 TeV process).2

Figures 4(a) and 4(b) show the predicted fixed-order luminosities for a variety of possible

colliding partons, including quarks as well as polarized W± bosons and photons, at the 14

TeV LHC and a 100 TeV pp collider. At low scales, the “EW” PDFs are of course wholly

dominated by photons. However, at scales above mW , the W± PDFs are of comparable

size. This can be seen here by comparing the qγ and qW±
T parton luminosities, as well

as the W+
T γ and W+

T W
−
T luminosities. Note that in this comparison, we have also derived

the photon PDF at fixed-order, sourced from quark PDFs. Attempts at fitting the photon

PDFs with LHC data have recently been made [102]. Some recent discussions regarding the

2 This calculation uses only QCD evolution for the quark PDFs. The additional impact of electroweak
evolution effects on the sourcing of the electroweak PDFs should indeed be small. Note also that mixed
processes, such as VTVL → X would generally need a different factorization scale for each sourcing quark
PDF.
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factorization scale uncertainties can be found in Ref. [103]. More importantly, a complete

description will ultimately require including as well the ZT and mixed γ/ZT PDFs [85].

The PDFs and corresponding parton luminosities for longitudinal gauge bosons can be

seen to be significantly smaller than those of transverse bosons. Of course, these nonetheless

remain uniquely important for probing the nature of the electroweak sector beyond the

Standard Model [76, 40, 91, 104, 8, 105]. In Fig. 4(c), we show the ratios of the partonic

luminosities at the 100 TeV collider and the LHC dL100(s)/dL14(s). The increase with

energy is largest for WLWL, with an enhancement factor about two orders of magnitude for
√
s = 1–4 TeV.

As discussed in Sec. 2.1.1, some additional novel electroweak effects in the PDFs in-

volve the different gauge interactions of left-handed and right-handed chiral fermions, and

the isospin non-singlet nature of typical beam particles. The former leads to more rapid

evolution to low-x for left-handed fermions than for right-handed fermions. The latter leads

to Bloch-Nordsieck violation [14, 63, 80]. In PDF language, this appears as a self-correcting

instability wherein the two LH isospin components of the beam flip between one another

at a progressively increasing double-logarithmic rate, via soft/collinear W± emissions. Both

effects contribute to spontaneous beam polarization. In particular, in unpolarized proton

beams the uL and dL PDFs will gradually split off from the uR and dR PDFs, and begin to

asymptotically merge together into a common “qL” PDF at high energies. We investigate

these phenomena in future work [85].

5.2 FINAL STATES WITH MULTIPLE GAUGE BOSONS

The collinear showering approximation allows us to estimate the leading contributions for

multiple EW gauge boson production at high energies. A major component is splittings

amongst the gauge bosons themselves via their non-Abelian interactions, in analogy with

g → gg splittings in QCD. These have so far received little dedicated study in the electroweak

theory.

As a simple illustration of the onset of shower-dominated behavior, we show in Fig. 5(a) a
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2D kinematic distribution in fixed-order W±Z+q/g production at a 100 TeV proton collider,

generated with MadGraph5 [106]. A single kinematic cut pT (q/q) > 3 TeV is applied. The

horizontal axis is the ∆R separation between the W and Z, and the vertical axis is the

relative transverse momentum carried by the W : 2pT (W )/HT with HT defined as the scalar

sum of all object pT s. Several features are immediately apparent. Most of the rate is

concentrated along a curved band at low ∆R(W,Z), indicating W (q/g) production with a

secondary collinear W → ZW splitting, and with enhancements at high (low) relative pT for

W (Z) events. A second clear concentration of events occurs at ∆R(W,Z) ' π and near-

maximal relative HT indicating Wq production with a secondary q → Zq splitting. A third,

more subtle concentration is visible at ∆R(W,Z) ' π and low relative HT , representing Zq

production with a secondary q → Wq′ splitting.

We can show how portions of this distribution arise within an available showering frame-

work by generating V j events within PYTHIA8, and applying its native weak parton shower [65].

This shower currently includes only q → V q splittings, and does not model the V → V V

splittings responsible for the dominant rate near ∆R(W,Z) ' 0. The resulting incomplete

distribution is shown in Fig. 5(b).

As a step toward gaining a more complete picture, we show in Fig. 5(c) the same distribu-

tion with hard V j events supplied by PYTHIA8 but dressed with our own EW FSR treatment

(Appendix D), for the moment using fixed-order splitting functions and without Sudakov

evolution effects. Now including V → V V as well as V → V q, the agreement becomes quite

good in all of the collinear-enhanced regions where we expect splitting functions to furnish

a reliable description.3

Besides the simpler generation of high-multiplicity final-states in collinear regions, the

advantage of the parton shower is the ability to automatically fold in Sudakov corrections,

going beyond fixed-order predictions. We show the result of running the full parton shower

evolution Fig. 5(d), including as well important contributions such as V → ff̄ . Exclusive

W±Z(q/g) events are selected as including exactly one each of “on-shell” W and Z, defined

3Physics parameters here and in the MadGraph simulation are evaluated at a fixed scale ofmZ for simplicity
of comparison, using MadGraph’s defaults. The PDF set is CTEQ6L1, evaluated at a factorization scale of
3 TeV. The PYTHIA simulation does not track fermion chirality throughout the hard event, and directly
collapses γ/Z states into mass basis instead of providing a gauge-space wave function. We have explicitly
corrected for both of these effects in this comparison and below.
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as lying within 10Γ of their pole mass, and we allow for multiple photon emissions. While

the distribution looks similar to that at fixed-order, the overall rates in the collinear regions

are reduced by several tens of percent due to the Sudakov corrections.

While formally any secondary parton splittings involve rate penalties of O(αW ), they

become progressively more log-enhanced at high energies. This is again in close analogy

to QCD. However, unlike in QCD, individual weak splittings in arbitrarily soft/collinear

limits are in principle both observable and subject to perturbative modeling. Figure 6 shows

the predicted number of W/Z generated from showering off a highly energetic particle with

E = 10 TeV. In this calculation, we keep the weak bosons stable and include only the

splittings f → V f and V → V V . QCD showering is also turned off. We construct “weak

jets” by clustering particles with the anti-kT algorithm [107] with R = π/2, and count the

contained W/Z bosons. In Fig. 6(a), we show the results for a left-handed chiral fermion

(dL). Roughly speaking, we see that the emission of each additional gauge boson comes

with an O(10%) suppression factor, which can be compared to the naive (not log-enhanced)

O(1%) suppression typical of adding gauge bosons to lower-energy processes. The solid

histogram shows the total rate and the long-dashed histogram indicates the rate with non-

Abelian gauge splittings turned off. The difference indicates the large contribution from

the gauge boson self-interaction beyond the first emission. As a cross-check, we include as

well the prediction from the PYTHIA8 weak shower [65], as shown by the dotted histogram.

Our own shower by default includes a back-reaction correction, discussed in Section 2.2.1,

which approximates the expected suppression of multiple emissions due to dead cone-like

effects for off-shell particles. To make a more direct comparison, we have also switched this

off, and plotted the result as the short-dashed histogram. The two showers, both modeling

unrestricted q → V q emissions, are then seen to be in close agreement.

In Fig. 6(b), we show the predicted number of W/Z contained in “weak jets” generated

from showering off of a highly energetic transversely-polarized W± boson with EW = 10 TeV.

As already indicated in Table 8, the overall emission rates are much higher, close to 40% for

the first emission (including both photons and Z bosons). Here we have again considered the

effect of turning on/off back-reaction corrections. In addition, from experience with QCD

showers, it is known that coherence effects in emission amplitudes lead to effective color-
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screening and approximate angular-ordering of nested emissions in non-Abelian splittings. To

test this, we have also turned on/off a strict angular-ordering veto in our shower simulation.

The results, visible in Fig. 6(b), are that both the back-reaction correction and the angular

ordering can have an O(1) effect at high multiplicities, but that the two effects come with

sizable overlap. Splittings with large opening angles tend to exhibit large back-reaction

effects, and vice-versa. This observation provides some evidence that modeling of the high-

multiplicity region might be made to quickly converge, though more study is required.

It should be noted that at higher energy scales, the production of multiple gauge bosons

could be the characteristic signature in many scenarios for physics beyond the SM [108, 109].

5.3 EW SHOWERS INITIATED BY TOP QUARKS

Top quarks are instrumental in searches for new physics related to the EWSB sector, and

for exotica such as resonances with large couplings to the third generation, as well as third-

generation squarks [110]. High-energy tops can be produced copiously at the LHC and at

future accelerators, and multi-TeV top quarks offer a particularly rich laboratory to study

the effects of weak showering.

We start by considering splittings that follow the same structure as the top quark’s weak

decay, t → W+b. Figure 7(a) shows the resulting Wb mass spectrum from applying this

splitting process to 10 TeV top quarks of left-handed or right-handed helicities. One imme-

diate feature is the transition between shower and decay: the Breit-Wigner peak centered

at mt continuously matches onto a high-virtuality shower dominated either by WT emission

from left-handed top quarks, or WL emission from right-handed top quarks.4 The former are

simple manifestations of SU(2)L gauge showers with a larger rate (upper curve), whereas

the latter are a due to the Goldstone-equivalent Yukawa showers with a smaller rate (mid-

dle curve). Ultra-collinear emissions are necessary for properly modeling the shower/decay

transition, as shown in more detail in Appendix B (see Fig. 13). We also show the unpolar-

4To improve the matching, we have distributed the “decay” events according to a Breit-Wigner distribu-
tion weighted by Γt(Q)/Γt(mt). This constitutes approximately a 30% effect at the given matching scale of
187 GeV.
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ized top decay with a fixed-width Breit-Wigner without shower (lower curve in Fig. 7(a)).

The events are understandably much more constrained to the region M(Wb) ' mt. It is

very important to appreciate the difference, for example since one must properly model the

properties of off-shell top quarks in searching for new physics [111, 112, 113, 114, 115, 110]

associated with the top quark as well as the Higgs sector.

Top quarks may also radiate Higgs bosons and, analogously, longitudinal Z bosons. Both

of these Yukawa-showering processes occur with similar rates off of left-handed and right-

handed tops, and grow single-logarithmically with energy. In Fig. 7(b), we present a 10

TeV right-handed top quark splitting via the EW shower. The rates for tR → htL and

to ZLtL are governed by the Yukawa coupling and essentially the same, due to the GET.

The channel tR → ZT tR, shown for reference, is via the gauge coupling of nearly pure B0,

which is rather small. The other two channels tR → htR, ZLtR are helicity-conserving scalar

emissions and are of the ultra-collinear nature. The integrated splitting rates for all the

above channels are of similar size: P(tR → htL) ' P(tR → ZLtL) ≈ 7.2×10−3, P(tR → htR)

and P(tR → ZT tR) ≈ 4.5×10−3, and P(tR → ZLtR) ≈ 2.3×10−3. Notably, the rates for the

ultra-collinear processes are concentrated toward smaller virtualities (and correspondingly

smaller kT s). Though the total splitting rate represented in Fig. 7(b) is only a few percent,

the fact that top quarks are produced through strong interactions can lead to significant

numbers of showered events at a hadron collider. On the other hand, the splitting rates to a

Higgs boson are in sharp contrast to the much smaller rate for an on-shell top quark decay

to a Higgs boson in the Standard Model [116], of the order 10−9.

In considering determination of the top-quark Yukawa coupling in the processes tt̄h/tt̄Z

at high energies [117], the qualitative features shown here should be informative.

5.4 EW SHOWERS INITIATED BY NEUTRAL BOSONS

The neutral bosons γ, ZT , h, and ZL contain rich physics at high energies, but their showering

requires special treatment due to the presence of sizable interference effects.
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5.4.1 γ/ZT coherence

For the γ/ZT system, these interference effects have two aspects: the mass basis is misaligned

with the gauge interaction basis, and even when viewed within the B0/W 0 interaction basis,

the existence of a preferred physical isospin basis for asymptotic states leads to observable

coherence between B0 and W 0 exchanges. A rigorous final-state shower must address both

of these aspects simultaneously by using Sudakov evolution based on density matrices, as

outlined in Section 2.2.2. More specific details can be found in Appendix C.

As a simple example of the basis alignment issue, consider high energy showering of neu-

tral bosons γ/Z → W+W−. A naive treatment would shower the photon and Z including the

triple-vector processes γ → W+W− and Z → W+W−.5 However, depending on the gauge

charges of the initial sources, the interference between these two mass-basis splitting channels

can be O(1). In particular, for an energetic γ/Z emitted from a right-handed chiral electron

line, the SU(2)L content of the produced neutral gauge bosons is practically zero, suggesting

a near absence of collinear W+W− splittings in the final state. We explicitly compute these

splittings assuming either an e−L or e−R source, which radiate off 2.5 TeV γ/Z bosons (e.g.,

via neutral boson pair-production at a 5 TeV e−e+ collider). The results are displayed in

Fig. 8. Our full EW FSR treatment is labeled as “coherent shower,” contrasting with the

hypothetical incoherent contributions from individual γ or Z. For the γ/Z produced by

left-handed electrons in Fig. 8(a), the W 0 fraction is prominent from the constructive inter-

ference between γ/Z, leading to a total splitting rate of roughly 15% (black solid curve) and

noticeable Sudakov distortions relative to a simple fixed-order splitting calculation (dashed

curve). Fig. 8(b) shows the result for a right-handed electron source, exhibiting the almost

complete destructive interference between the γ and Z channels, due to the fact that the

produced boson is nearly pure B0 when viewed in gauge basis. The small residual rate

at high virtualities is actually dominated by the unbroken-phase vector-to-scalar splitting

B0 → φ+φ− ∼ W+
LW

−
L . In our GEG approach, this is simply computed as a distinct process,

rather than due to a delicate cancellation.

Perhaps more subtle are the interference effects between different exclusive isospin chan-

5Such a simplification has been made in [69] for neutral bosons produced in dark matter annihilation.
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nels. Naively, we might expect to be able to treat SU(2)L×U(1)Y in a manner analogous to

SU(3)QCD × U(1)EM, wherein the showers of the two gauge groups are simply run indepen-

dently of one another. However, weak isospin quantum numbers are directly correlated with

electric charge, and are therefore usually experimentally distinguishable. (Consider, e.g., the

response of a detector to eL versus νL.) Therefore, weak isospin cannot be summed/averaged

like QCD color. As a consequence, observable rate asymmetries arise due to interference be-

tween the SU(2)L and U(1)Y gauge boson exchanges. Although a well-known effect, it has

never been implemented in a parton shower framework. Again, we illustrate this by the split-

tings of 2.5 TeV γ/Z neutral bosons, here produced off of a left-handed chiral electron line.

This boson may subsequently split into a `−`+ or νν̄ pair. The splitting rates with/without

interference effects are shown in Fig. 9.6 Besides the full coherent EW evolution (solid

curves), two hypothetical incoherent treatments are shown using γ-Z mass basis (dashed

curves) and B0-W 0 gauge basis (dotted curves). It is instructive to see that Z → νLν̄R con-

tribution alone gives the correct result as seen in Fig. 9(a); B0 → `−R
¯̀+
L alone also gives the

correct result at high masses as seen in Fig. 9(c), although it misses substantial destructive

interference near mZ due to the unequal γ and Z masses; and `−L
¯̀+
R would need coherent

treatment in the whole kinematical regime as seen in Fig. 9(b). The same issues of course

arise in hadron colliders, though the numerical impact is often smaller because of the healthy

admixtures of u/d flavors and LH/RH chiralities, as well as the charge-rearranging effects

of hadronization. Nonetheless, we strongly advocate for a consistent treatment based on

matrix-valued splitting functions and Sudakovs.

5.4.2 Higgs splitting and h/ZL coherence

Analogous interference effects also occur between the Higgs boson and longitudinal Z boson.

In the high-energy gauge theory, these appear as different components of the same complex

scalar, and particular linear combinations carry a partially-conserved “Higgs number” that

flows through the shower. As a simple illustration, consider high energy production of

6For the incoherent sum over mass or gauge eigenstates, we have evolved separate samples starting from
the individual pure-state density matrices, and recombined them according to their squared production
amplitudes. Sudakov evolution of these density matrices has been switched off.
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W+
T → (h/ZL)W+

L . The coherently mixed h/ZL carries Higgs number of −1, and corresponds

to the “anti-Higgs” state H0∗. This state preferentially splits into W+
T W

−
L (or, equivalently,

W+
T φ
−), as shown in the top curve of Fig. 10(a), labeled by the W helicities and charges

as T+L−. The charge conjugate state W+
LW

−
T (labeled L+T−) carries the opposite Higgs

number and thus is highly suppressed. It arises only at low virtuality, mainly due to the

Higgs-Z mass difference. An incoherently-showered admixture of h and ZL would instead

distribute probability equally between these two different polarization channels, as shown in

the figure with the middle curve. (A similar charge-polarization correlation also occurs in

splittings to top quark pairs.)

The contributions from the other sub-leading ultra-collinear polarization channels are

shown by curves labeled L+L− and T+T−. Though not obvious from the virtuality distribu-

tions, we note that coherence effects also significantly influence these channels. In particu-

lar, the ultra-collinear splitting H0∗ → W+
LW

−
L inherits the soft divergence from the regular

gauge splitting H0∗ → W+
T W

−
L , but only in the limit as the W+

L becomes soft. Similarly for

the CP-conjugate process. The individual h and ZL incoherent showers, on the other hand,

exhibit parts of the soft-singular behaviors of each of their H0 and H0∗ components. See

Table ??.

As a final novel example of neutral boson showering, we consider the purely ultra-collinear

splitting h→ hh. This proceeds through the Higgs cubic interaction that arises after EWSB,

and it is the unique 1→ 2 splitting process in the SM that is strictly proportional to Higgs

boson self-interaction λh. Isolating the h component of a general energetic h/ZL state, the

total splitting rate comes out to about 0.14% for E � mh. We illustrate in Fig. 10(b)

the kinematic distribution ∆R(h, h), for an example initial Higgs energy of 1 TeV. The

distribution peaks at roughly 2mh/E, which in this example is close to 0.25. Generally, the

majority of the phase space for high-energy production hhX for any X becomes dominated

by such collinear configuration. While this ultra-collinear splitting process lacks any log-

enhancements, integrating the splitting phase space yields a total rate relative to hX that

scales like λh/16π2, whereas the non-collinear regions contribute a relative rate of order

λ2
h/16π2 × v2/E2. Therefore the “collinear enhancement” here is E2/λhv

2 ∼ E2/m2
h, rather

than a conventional logarithm. Though the splitting rate is still quite small, for a 100 TeV pp
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collider with 10’s of ab−1 integrated luminosity, we expect thousands of such events arising

from the (also novel) high-energy production process qVL → q(′)(h/ZL) at pT ∼ 1 TeV. In

future precision Higgs physics [118], accurate description of such Higgs splittings could serve

an interesting role.

5.5 EW SHOWERS BY A NEW HEAVY STATE: W ′ EXAMPLE

The possibility of multiple weak boson emissions in the same event, and indeed even from

the same parent particle, leads us inevitably to start considering final-states in terms of

“weak jets” rather than in terms of individual, well-separated EW-charged particles (possibly

dressed with QCD and EM radiation). Besides altering the energy spectra of the particles

emerging from a hard interaction, EW emissions can significantly alter the multiplicity and

flavor structure of an event. In particular, this new feature could have major consequences

for how a new physics signal would be detected and reconstructed.

While it is beyond the scope of this current paper to present detailed examples for physics

beyond the SM in high energy collisions [119], we study a simple case for illustration. We

consider the decay of a narrow heavy W ′+ resonance into νL`
+
R, with a left-handed coupling

and MW ′ � mW . Nominally, the resonance is reconstructed from the charged lepton and

the missing transverse momentum using the transverse mass variable MT (`, 6ET ), which gives

a Jacobian peak at MW ′ . When multiple EW emissions are taken into account, various new

flavor channels open up, as well as additional kinematic handles that can facilitate more

accurate resonance reconstruction. For example, in [78], it was pointed out that collinear

weak emissions ν → Zν can effectively reveal the neutrino’s direction-of-flight when the Z

decays visibly. For illustration here, we simply divide up the showered signal by inclusive

lepton multiplicity, focusing on channels up to three charged leptons. Quarks and τ -leptons

may be present in the secondary W/Z showering/decays, but are ignored here for simplicity.

Within each lepton multiplicity channel, we approximately reconstruct the resonance using

the “cluster transverse mass” variable MT cl, defined as [120]

M2
T cl =

(√
p2
T,`′s +M2

`′s + 6ET
)2

− (~pT,`′s + ~6ET )2. (5.5)
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The result of this analysis is displayed in Fig 11(a), taking MW ′ = 20 TeV. Solid curves are

those from the nominal EW shower for 1`+X, 2`+X and 3`+X, where X represents the

rest of the particles in the event (mainly neutrinos and quarks). The dotted line shows the

result of the naive two-body decay calculation, without the parton shower. To focus on the

weak-scale contributions, we have terminated the EW shower at a lower virtuality of 50 GeV.

The showering reduces the total visible rate within 10% of the nominal peak by about 10%

due to the radiation. In this window, the relative contributions from 1-lepton, 2-lepton,

and 3-lepton are respectively 0.81, 0.13 and 0.06. Although higher lepton multiplicities are

rarer, their MT cl distributions are also more sharply-peaked. It is also instructive to compare

these predictions to those of a simple fixed-order splitting calculation, which captures the

leading-log corrections but does not resum them. We find that this calculation predicts 9%

more 1-lepton events than the full EW shower in the near-peak region.

Like eL and νL, left-handed top and bottom quarks live together in a weak isospin doublet,

and can also convert into one another through soft/collinear W± emissions. Similar to the

Bloch-Nordsieck violation effect discussed above for PDFs, the distinction between tL- and

bL-jets therefore becomes somewhat blurred at high energy [80]. This effect, which is double-

log enhanced at fixed order, is automatically resummed in the parton shower. Consider again,

as a simplified example, a narrow 20 TeV W ′+ resonance, this time decaying to tLb̄R of 10 TeV

each in energy. The final flavor content of two heavy quarks should gradually average out.

We show in Fig. 11 the mass spectrum of the two-quark system resulting from the decay

plus EW parton shower, individually in tb̄, bb̄, tt̄, and bt̄ channels. (For this purpose, the

threshold between the “shower” and “decay” of a top quark is set to mt+10Γt.) Respectively,

these are dominated by unshowered events, events with a single t → W+b splitting, events

with a single b̄ → W−t̄ splitting, and events with one of each such splitting. The relative

rates of the four channels are about 0.77, 0.09, 0.12, and 0.015. Within 10% of the W ′ mass

peak, the nominal tb̄ signal would be reduced by almost 30% from purely electroweak effects.

Of course, this observation invites “weak jet” reconstructions that add back in the emitted

gauge and scalar particles, though inferring the resonance’s charge becomes somewhat more

complicated.

Finally, we can consider the interplay of EW and QCD radiation, which is shown in
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Fig. 11(c) for the mass spectra of the quarks when t → gt and b → gb emissions are also

turned on. Again the shower is terminated at 50 GeV virtuality to focus on effects at and

above the EW scale. The full Standard Model showering leads to dramatic distortions in

both mass and flavor distributions. Now the W ′ mass could be more accurately reconstructed

by adding back in both-the EW and QCD radiation, which practically may overlap heavily

since emitted weak bosons dominantly decay hadronically.
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Process ≈ P(E) (leading-log term) P(1 TeV) P(10 TeV)

q → VT q
(′) (CL+IR) (3× 10−3)

[
log E

mW

]2

1.6% 7%

q → VLq
(′) (UC+IR) (2× 10−3) log E

mW
0.4% 1.1%

tR → W+
L bL (CL) (8× 10−3) log E

mW
2.5% 4%

tR → W+
T bL (UC) (6× 10−3) 0.6% 0.6%

VT → VTVT (CL+IR) (0.015)
[
log E

mW

]2

7% 34%

VT → VLVT (UC+IR) (0.014) log E
mW

2.7% 7%

VT → ff̄ (CL) (0.02) log E
mW

5% 10%

VL → VTh (CL+IR) (2× 10−3)
[
log E

mW

]2

0.8% 4%

VL → VLh (UC+IR) (2× 10−3) log E
mW

0.5% 1%

Table 8: Representative electroweak splitting behaviors and integrated fixed-order splitting

probabilities for an illustrative set of processes at two parent energies E = 1, 10 TeV. The

symbols in the parentheses denote the collinear (CL), infrared (IR), and ultra-collinear (UC)

behaviors, respectively.
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Figure 4: Representative parton luminosities in pp collisions at (a)
√
S = 14 TeV, (b)

√
S =

100 TeV, and (c) the ratio of luminosities between the two beam energies as a function of

partonic CM energy
√
s.
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Figure 5: Event population for exclusive WZ + j production in the plane of 2pT (W )/HT

versus ∆R(W,Z) with pT (j) ≥ 3 TeV at a 100 TeV proton collider. (a) 2 → 3 fixed-order

WZj production generated with MadGraph; (b) 2→ 2 dressed with the PYTHIA weak shower,

which includes only q → V q splittings; (c) 2→ 2 Wj and Zj production dressed with fixed-

order FSR splitting functions; (d) 2 → 2 dressed with the full EW FSR shower, including

all collinear final-state Sudakov effects. QCD showering is not incorporated. An integrated

luminosity of 10 ab−1 is used for illustration.

65



# W and Z

0 1 2 3

fr
a
c
ti

o
n

 o
f 

e
v
e
n

ts

­5
10

­4
10

­3
10

­2
10

­1
10

1

VV→Vq and V→q

Vq unconstrained→q

Vq PYTHIA→q

Vq with back­reaction→q

­initiated shower, 10 TeV
L

d

(a)
# W and Z

1 2 3 4 5

fr
a
c
ti

o
n

 o
f 

e
v
e
n

ts

­5
10

­4
10

­3
10

­2
10

­1
10

1

VV unconstrained→V

back­reaction correction

angle veto

back­reaction & angle veto

­initiated shower, 10 TeV
+

T
W

(b)

Figure 6: Normalized rates versus the number of multiple final-state W/Z emissions with a

10 TeV initial state particle, (a) dL-initiated showers for q → V q and V → V V splittings with

full EW FSR (solid histogram), q → V q splitting only (long-dashed), and q → V q without

back-reaction correction (short-dashed). Output from PYTHIA q → V q weak shower is also

included for comparison (dotted histogram). (b) WT -initiated showers for fully constrained

FSR (solid histogram), compared with various stages of approximations as labeled.

66



M(Wb)  (GeV)

0 1000 2000 3000 4000 5000

n
o

rm
a

li
z
e

d
 d

if
fe

re
n

ti
a

l 
ra

te
 p

e
r 

T
e

V

­3
10

­210

­110

1

10

210

Lt

Rt

B­W decay

 Wb decay/shower→t 

(a)
M(h/Z t)  (GeV)

0 1000 2000 3000 4000 5000

fr
a
c
ti

o
n

 o
f 

e
v
e
n

ts
 (

p
e
r 

2
0
0
 G

e
V

)

­5
10

­410

­3
10

 h/Z t→ 
R

t

L
ht

L
tLZ/

R
tTZ

R
ht

R
tLZ

(b)
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for unpolarized top decay without shower (lower curve); (b) for tR → htL/ZLtL, ZT tR (upper

curves) and to htR, ZLtR (lower curves), respectively.
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Figure 8: Invariant mass distributions for W+W− produced in the EW splitting of a 2.5

TeV γ/Z neutral boson, initiated from (a) eL current with full coherent EW FSR (solid

curve), fixed-order FSR (dashed curve), and the hypothetical incoherent γ or Z splittings

(lower curves); (b) eR current with full coherent EW FSR (solid curve) and the hypothetical
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Figure 9: Invariant mass distributions for fermion pairs produced in the EW splitting of a

2.5 TeV γ/Z neutral boson, sourced by an eL current, for exclusive final states (a) νLν̄R,

(b) `−L`
+
R, and (c) `−R`

+
L . Three treatments of the showering neutral bosons are: hypothetical
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Figure 10: (a) W+W− invariant mass distributions from the EW splitting of a 10 TeV

h/ZL (H0∗) → W+W−, labeled by the helicities and charges as T+L−, L+T−, T+T−, and

L+L−. The “incoherent T+L− or L+T−” curve shows the corresponding result from show-

ering h and ZL states independently. (b) Kinematic ∆R separation between the final state

Higgs boson pair for the ultra-collinear splitting process h→ hh from a 1 TeV Higgs boson.
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Figure 11: Showered events from 20 TeV W ′+ decays. (a) W ′+ → νL`
+
R cluster transverse

mass distributions, running the full EW shower and breaking down the signal by inclusive

lepton multiplicity (solid curves), as well as the uncorrected two-body decay result (dotted

curve). (b) W ′+ → tLb̄R quark-pair invariant mass distributions, running the full EW shower,

and (c) combining EW and QCD showering.
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6.0 SUMMARY AND CONCLUSIONS

At very high energies, far above the electroweak scale, the full gauge and Yukawa struc-

ture of the Standard Model emerges, leading to an extremely rich set of parton showering

phenomena. As this full SM parton shower evolves down in scale, it ultimately passes back

through the electroweak scale. There it encounters additional showering phenomena that

arise uniquely from EWSB, and then finally transitions back into the SU(3)QCD × U(1)EM

gauge showers familiar from the past several decades of theoretical and experimental work.

With an eye towards experiments in the next decade and beyond, in this paper we

have attempted lay out the above picture of electroweak showering in a more comprehensive

manner. We have systematically presented the electroweak collinear splitting functions in

the SM in the SU(2)L × U(1)Y symmetric phase as well as in the broken phase after elec-

troweak symmetry breaking. We discussed their general features in the collinear and soft-

collinear regimes and identified the general class of EWSB contributions that are uniquely

“ultra-collinear,” namely localized at kT ∼ v with appreciable rates, but otherwise absent

in conventional showering regimes. Effects of the ultra-collinear part of the shower include

counter-intuitive “violations” of the Goldstone-boson Equivalence Theorem. We have also

identified a convenient way to isolate EWSB effects within the shower, especially by disen-

tangling contributions from gauge bosons and Goldstone bosons at high energies, using a

novel gauge choice which we call Goldstone Equivalence Gauge (GEG). We further imple-

mented the full EW shower in a numerical monte carlo, and showed a number of new results

regarding its subtleties and practical impact in SM processes and beyond.

We summarize our results as follows:

• The splitting functions of the unbroken SU(2)L × U(1)Y theory, presented in Sec. 3, typ-

ically act as the leading contributions to showering processes at energies far above the EW
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scale.

• At splitting scales kT ∼ gv and yv, the unbroken splitting functions become regulated and

the new ultra-collinear splitting functions arising from EWSB appear, as presented in Sec. 4.

The latter is the analogue of “higher-twist” terms in terms of the formal power counting.

While they do not contribute to the leading logarithmic evolution, numerically they can be

larger than the unbroken contributions at low kT , and in some cases can also account for a

sizable fraction of the integrated splitting rates.

• Goldstone-boson equivalence ceases to hold in the ultra-collinear regime, allowing, e.g., for

emission of relativistic longitudinal bosons from massless fermions. This effect is generalized

here to all splitting functions in the SM, often involving nontrivial interplays of EWSB effects

in gauge, Yukawa, and scalar couplings.

• We introduced the Goldstone Equivalence Gauge (as detailed in Appendix A) that prac-

tically as well as conceptually disentangles the effects from the Goldstone bosons and the

gauge fields. Utilization of this gauge choice makes the GET transparent and organizes its

leading violations in a straightforward diagrammatic expansion (see Appendix B). The con-

cept of a “nearly on-shell” gauge/Goldstone boson as an intermediate state in the shower

also becomes unambiguous.

• We implemented a practical EW showering scheme based on the calculated collinear and

ultra-collinear splitting kernels in a Sudakov formalism. As discussed in Sec. 2, some addi-

tional novel features in the implementation include matching between showering and reso-

nance decay, kinematic back-reaction corrections for multiple emissions of massive particles,

and a density matrix treatment for the mixed-state evolution of neutral bosons (γ/Z/h).

Our treatment of EW showering is fully self-contained, and far beyond the currently existing

monte carlo simulation packages.

• We applied the EW showering formalism to a number of important physical processes at

high energies. They include: electroweak partons in PDFs as the basis for vector-boson-

fusion; EW FSR as a leading source of multiple gauge boson production, with splitting

probabilities at the level of 10s of percent; EW showers initiated by top quarks, including

Higgs bosons in the final state; and showers initiated by neutral bosons γ/Z/h, for which care

must be taken to obtain meaningful results. The emergence of “weak jets” from high-energy
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new physics processes was illustrated using a heavy W ′ as an example.

In conclusion, we have derived the collinear splitting functions for the Standard Model

electroweak sector, including the massive fermions, gauge bosons, and the Higgs boson, and

implemented a showering scheme in the Sudakov formalism for all SM particles at high

energies. We have highlighted many novel features and the necessity to include them for

physics explorations in and beyond the SM at high energies, including any physics at future

colliders, as well as other processes in high energy regimes much above the electroweak scale.
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APPENDIX A

GOLDSTONE EQUIVALENCE

As discussed in Section 4, there are considerable conceptual and technical complications in

handling processes involving longitudinal gauge bosons at high energies. The behavior of

longitudinal gauge bosons in high energy scattering and showering, both as off-shell inter-

mediate states and as external particles participating in collinear splittings, becomes most

transparent in “physical” non-covariant gauges where gauge-Goldstone mixing is left explicit,

and the Goldstone fields remains capable of interpolating external particles [92, 94, 93] (see

also [95]). We propose a particularly convenient physical gauge dubbed “Goldstone Equiva-

lence Gauge” (GEG), wherein the emergence of Goldstone equivalence and its leading viola-

tions are manifest and easily calculable at tree-level, while maintaining some residual Lorentz

symmetry and avoiding unphysical gauge poles. In this Appendix, we work out the details

of this gauge.

GEG is essentially a hybrid of Coulomb and light-cone gauges. It employs a light-like

gauge reference four-vector that rotates with momentum1

nµ(k) = (n0(k), ~n(k)) ≡ (1,−k̂), nµnµ = 0. (A.1)

Representing a generic gauge adjoint component of a vector field by W µ, we decompose

the gauge degrees of freedom as the components of Wn (Wn̄) aligned (anti-aligned) with nµ

1k0 can be negative for general off-shell modes. The given parametrization of nµ is not unique. For
example, (sign(k0),-k̂) and (1,-k̂) also serve the same purpose of eliminating kµ. However, the complex

analysis in QFT requires S-matrix to be holomorphic functions of kµ. nµ(k) = (sign(k0),−k̂) would destroy
this purpose.
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and the two ±1 helicity (or “xy”) transverse modes, collectively WT :

W µ(k) = WT (k) εµT (k) + Wn(k) εµn(k) + Wn̄(k) εµn̄(k) , (A.2)

with n̄µ ≡ (1,+k̂). Since W µ is a real vector field here, we have chosen the above definition

such that nµ(k)∗ = nµ(k) = nµ(−k). Introducing the gauge-fixing Lagrangian in momentum

space as

Lfix = − 1

2ξ

(
n(k) ·W (k)

)(
n(k) ·W (−k)

)
, (ξ → 0), (A.3)

the large light-like component of the on-shell longitudinal polarization, Wn̄ field, ceases to

propagate because of its infinite “mass” 1/ξ. This is the key feature for GEG by design. We

are left with three physical degrees of freedom that can propagate. It is interesting to note

that GEG respects the rotational symmetry under SO(3) by construction. The surviving

polarization states are also invariant (up to a possible rescaling) under boosts collinear to ~k.

Incorporating EWSB, neither the gauge boson mass nor the would-be-Goldstone field

φ are folded into the gauge-fixing procedure. The normalization of Wn and its associated

polarization vector εµn ∝ nµ can be chosen such that Wn will interpolate external particles

with unit amplitude:

εµn(k) ≡
−
√
|k2|

n(k) · k
nµ(k)

on-shell
→ mW

E + |~k|

(
−1, k̂

)
. (A.4)

This polarization vector is what remains of the standard longitudinal polarization εµL(k)

upon subtraction of the Goldstone-equivalence term (scalarization term) kµ/mW . Preserving

Hermiticity of the Wn field also necessitates introduction of a factor of i into the polarization

vector, such that (iεµn(k))∗ = iεµn(−k). This will also conveniently synchronize the phase of

states created by the Wn field and the φ field.2 Accounting for the gauge-Goldstone mixing

term, the quadratic Lagrangian can then be expressed as

LT (k) + h.c. = WT (k)
(
k2 −m2

)
WT (−k)

2When working in a complex gauge basis, as for W±, these polarization phase factors become simply ±1.
In all cases, care must be taken to rigorously define the orientation of momentum flows when computing
amplitudes, since εµn(−k) = −εµn(k), and the sign is often needed to determine the relative phase between
gauge-interpolated and Goldstone-interpolated diagrams.
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Lnφ(k) + h.c. =
[
Wn(k) φ(k))

] |k2| −mW

√
|k2|

−mW

√
|k2| k2

Wn(−k)

φ(−k)

 (A.5)

Inverting yields the propagators

〈
WT (k)WT (−k)

〉
=

i

k2 −m2
W

,
〈
Wn(k)Wn(−k)

〉
=

i

k2 −m2
W

sign(k2),〈
φ(k)φ(−k)

〉
=

i

k2 −m2
W

,
〈
Wn(k)φ(−k)

〉
=

i

k2 −m2
W

mW√
|k2|

. (A.6)

These propagators are naively fully Lorentz-invariant, though choosing a polarization basis

in the first place has anyway tied us to a specific frame. They share a unique, common pole

at k2 = m2
W with residue +1. The mixed Wn and φ fields interpolate the same particle:

the “longitudinal gauge boson” or “Goldstone boson,” depending on perspective.3 Note

that the apparent spurious pole at k2 = 0 in the mixed propagator is purely an artifact of

our momentum-dependent field normalization, and does not lead to light-like gauge poles in

complete Feynman diagrams.4

Goldstone boson equivalence in the high-energy limit now emerges trivially, diagram-

by-diagram. For a process where |k2| � m2
W for all internal gauge/Goldstone lines and

E � mW for all external bosons, the mixed propagators and εn factors scale away, leaving

over only the Goldstone contributions. In addition, since there are no terms that go like

k/mW or E/mW , power-counting of corrections ∝ mW becomes straightforward at the level

of individual Feynman diagrams. Upon introduction of complete fermion and scalar sectors,

we may generalize to counting VEV factors associated with arbitrary masses and interac-

tions introduced by spontaneous symmetry breaking. Some simple examples for splitting

calculations are given in Appendix B.

3This may be seen in various ways. Probably the most intuitive is to incorporate the W ’s decay into
massless fermions, as actually occurs in the SM. A Wn/φ created from some hard process would then
coherently propagate and decay into the same final-state with the same amplitude.

4Such a pole arises in Lorenz-Landau gauge, where gauge-fixing on the light-cone is incomplete. Generally,
gauge poles will cancel between gauge-exchange and Goldstone-exchange diagrams, but can lead to spurious
singularities in individual diagrams. In GEG, the only such gauge pole occurs at the zero-mode, kµ = 0,
and only in the mixed gauge-Goldstone propagator. The loop-level and renormalization properties of this
gauge could be interesting to study, assuming that there are no obvious analytic obstructions do doing so.
However, as we here confine ourselves to tree-level, we save this topic for future work.
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Figure 12: Schematic tree-level collinear factorization for an arbitrary process with a splitting

Goldstone/longitudinal in the final state.

We can also see how this gauge choice facilitates a factorized picture of longitudinal

gauge/Goldstone boson production and splitting in the parton shower, beyond the sim-

ple Goldstone-equivalent picture at zeroth-order in the VEV. Fig. 12 illustrates how this

works schematically in a final-state shower. A generic hard process produces an off-shell

gauge/Goldstone boson of virtuality k2 with m2
W � k2 � E2, and this boson subsequently

splits. There are four contributing classes of diagrams, corresponding to the four possible

propagator exchanges between the production and splitting processes. We would like to

approximate this as an on-shell production amplitude multiplied by a universal splitting

amplitude. The decomposition is trivial for the leading pure Goldstone exchange diagram,

but the other, subleading diagrams involve interplays between the propagators and the off-

shell polarization vectors εµn ∝ (
√
k2/E)nµ. For the mixed diagrams, the propagator factor

mW/
√
k2 can be combined with the polarization factor

√
k2/E to yield an approximate on-

shell polarization proportional to mW/E. Assuming that there is no large back-reaction

in the hard production matrix element (at least to O(m2
W )), contracting with the rescaled

off-shell polarization approximately reproduces the on-shell hard process. For the mixed di-

agram where the gauge field contracts with the splitting process, this decomposition would
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simply instruct us to compute the splitting amplitude with an effective on-shell εn. The

pure gauge exchange does not immediately fit this pattern, but it can be separated into

two pieces: 1/(k2 −m2
W ) = (m2

W/k
2)/(k2 −m2

W ) + 1/k2. The former piece has the correct

structure to provide mW/
√
k2 factors to each gauge polarization. The latter piece cancels

the
√
k2’s from each polarization vector, but leaves over no poles or mass factors. It therefore

produces a non-collinear interaction that goes as 1/E2 instead of 1/(k2 −m2
W ), and can be

grouped together with the neglected non-collinear diagrams. We can view all of the remain-

ing collinear contributions as a simple product of on-shell gauge+Goldsone production and

gauge+Goldstone splitting matrix elements, connected by the standard scalar propagator

i/(k2 −m2
W ).

Analogous results were obtained for the factorization of logarithmic virtual corrections to

external gauge/Goldsone bosons in [92] by working directly in Coulomb gauge, and in [53, 54]

by invoking the Goldstone Boson Equivalence Theorem in Feynman-’t Hooft gauge. Our own

approach directly exhibits the applicability of the Equivalence Theorem in the corresponding

real emission processes at tree-level, and extends them beyond the strict Goldstone limit to

O(mW/E).

79



APPENDIX B

COUPLINGS AND FEYNMAN RULES

B.1 LAGRANGIAN, COUPLINGS, AND CHARGE CONVENTIONS

In Goldstone Equivalence Gauge, each physical longitudinal gauge boson state is interpolated

by two fields: Vn and φV , where V = W±, Z. Unlike, e.g., in Rξ gauges, the relative

phases of Vn-mediated and φV -mediated processes must be explicitly kept track of. Here, we

first present the Lagrangian of the SM in GEG to set the conventions. Before electroweak

symmetry breaking (EWSB), the Lagrangian with the gauge fixing is written as

LGauge = −1

4
W aµνW a

µν −
1

4
(Bµν)

2 − 1

2ξ
(n ·W )(n∗ ·W )− 1

2ξ
(n ·B)(n∗ ·B),

Lfermion = iψ̄ /Dψ, (B.1)

LYukawa = −ydQ̄LHdR − yuεijQ̄i
LH
∗juR − yeL̄LHeR + h.c. ,

LHiggs = (DµH)†DµH −
λh
4

(
H†H − v2

2

)2

,

LGhost =
1

2
(−c̄anµDab

µ c
b + h.c.)

The flavor indices are suppressed since we do not consider the effects of flavor mixing. The

covariant derivative Dµ and SU(2)L field strength component W a
µν are defined as

Dµ = ∂µ − ig2W
a
µT

a − ig1Y Bµ, W a
µν = ∂µW

a
ν − ∂νW a

µ + g2f
abcW b

µW
c
ν . (B.2)
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The gauge-fixing vector nµ of Eq. (A.1) would here be treated as a differential operator of

schematic form (1,−i 1√
|∇2|
∇·). This becomes a well-defined operation in momentum-space.

We take the formal ξ → 0 limit in what follows.

After EWSB 〈H0〉 = v/
√

2, and particles acquire masses. The neutral gauge fields W µ
3

and Bµ mixing to form mass eigenstates Zµ and Aµ. Gauge and fermion masses go as

mW =
1

2
g2v, mZ =

1

2

√
g2

1 + g2
2 v, mγ = 0, mf =

1√
2
yfv, (B.3)

with g1 ≈ 0.36 and g2 ≈ 0.65 at the weak-scale, yt ≈ 1, and v ≈ 246 GeV. The Higgs field

self-coupling is normalized such that

m2
h =

1

2
λhv

2, (B.4)

such that λh ' 0.52 for mh ' 125 GeV.

As for the gauge-fermion interactions in a general basis, we denote them using gV as the

gauge coupling constant for a vector boson V = B0,W 0,W±, γ, Z,

igV γ
µ
∑
τ=L,R

gVτ Pτ , (B.5)

where the chirality projection operators are PR/L = 1
2
(1 ± γ5). They are all built up from

the underlying U(1)Y and SU(2)L gauge couplings. Specifically,

gB0 = g1, gW 0 = gW± = g2, gγ = e =
g1g2√
g2

1 + g2
2

, gZ =
√
g2

1 + g2
2. (B.6)

As usual, the weak mixing angle is defined as

cW ≡ cos θW =
g2

gZ
or sW ≡ sin θW =

g1

gZ
. (B.7)

We denote the gauge charge Q of a particle p (chiral fermion or scalar) under a given gauge

boson V by QV
p .1 We list the full set of charges in Table 9.

We now turn to the quadratic Lagrangian terms involving gauge fields and Goldstone

fields. The quadratic terms of Z and φZ Lagrangian are

LZ2 = −1

2
∂µZν∂µZν +

1

2
∂µZµ∂

νZν +
1

2
m2
ZZµZ

µ − 1

2ξ
(nµZµ)(n∗µZµ). (B.8)

1For V = W±, two different components of a left-handed doublet participate, but they can be assigned
a common charge of 1/

√
2, with either flavor plugged in.
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LφZZ = −mZZ
µ∂µφZ , Lφ2Z =

1

2
(∂µφZ)2. (B.9)

Note that the minus sign in LφZZ follows from the sign convention of the covariant derivative,

Eq. (B.2), as well as our expansion of the Higgs doublet in Eq. (3.1), namely H0 → (v+h−

iφ0)/
√

2. This in turn determines the phase factor of the polarization vector Zn. (Though

of course our convention choices ultimately have no effect on physical rates.) For W±
µ /φ

±,

the unmixed kinetic and mass terms are analogous, and the quadratic mixing term is given

by

LWφ = −imWW
+
µ ∂

µφ− + h.c. (B.10)

B.2 EXTERNAL POLARIZATIONS AND PROPAGATORS

We decompose all fermions and gauge bosons into helicity basis within the hard process CM

frame, including off-shell particles. We emphasize that in computing leading-order 1 → 2

splitting functions, all particle polarization states should be set on-shell, since the off-shell

corrections are strictly non-collinear. An on-shell polarization can be associated with an

off-shell momentum, for example, by adjusting the three-momentum at fixed energy.

The fermion external spinors are as usual, though to facilitate extraction of O(v) effects

we Taylor expand in mf/E = (yf/
√

2)(v/E). Explicitly, for fermions moving approximately

along the z-axis, possibly offset toward the x-axis by a small angle θ,

us=L '
√

2E



 −θ/2
1


mf

2E

 −θ/2
1



 , us=R '
√

2E


mf

2E

 1

θ/2


 1

θ/2



 . (B.11)

Propagators are also as usual, but given our approximate decomposition into on-shell spin

states, they fall into a factorizable form. For a generic off-shell kµ, we can build an effective

on-shell k̃µ by keeping k0 ≡ E fixed but changing

~k = k̂
√
E2 − k2 → k̂

√
E2 −m2

f = ~k +O((k2 −m2
f )/E). (B.12)
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We may then rewrite the propagator as

/k +mf

k2 −m2
f

=
(/̃k +mf ) + O((k2 −m2

f )/E)

k2 −m2
f

=

∑
s=L,R us(k̃) ūs(k̃)

k2 −m2
f

+ non-collinear terms, (B.13)

exploiting the fact that the leading correction away from a factorized numerator is set up to

cancel the propagator’s denominator. We ignore possible coherence effects between different

spin channels.

Transverse gauge bosons are also assigned their standard polarization vectors

εµ± '
1√
2

(
0; 1,±i,−θ

)
, (B.14)

with the complex-conjugate εµ∗± used for outgoing bosons. However, the longitudinal gauge/

Goldstone sector is treated somewhat unconventionally. Longitudinal gauge bosons can be

created by Goldstone/pseudo-scalar boson fields. We set our phase conventions so that these

creation and annihilation amplitudes are unity, maintaining continuity with the unbroken

theory. However, longitudinal bosons may also still be created by gauge fields, in association

with the “remainder” field component Vn expanded out in Eq. (A.2). Synchronizing these

component fields such that they also create/annihilate external bosons with unit amplitude,

their associated polarization vectors then carry nontrivial phases:

incoming Z : iεµn; outgoing Z : (iεµn)∗ = −iεµn; (B.15)

incoming/outgoing W± : ±εµn, (B.16)

with εµn = − mV

n · k
nµ ' mV

2E

(
− 1; θ, 0, 1

)
. (B.17)

The light-like gauge-fixing vector nµ is defined in Eq. (A.1). The corresponding propagators

are given in Eq. (A.6). Photons are subjected to the same gauge conditions, but this has little

practical bearing on their showering behavior. As usual, they have purely transverse external

polarization states, and only their transverse modes contribute to collinear-enhanced physics.

As discussed in Section 2.2.2, the transverse photon and Z propagators should be treated

coherently within a parton shower. The h and φ0/Zn propagators should also be treated

coherently. We will see an example of this, including the Zn component, in Appendix B.3.
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B.2.1 Feynman rules for three-point couplings

Feynman rules in GEG are largely similar to those of standard gauges. We list below many

of the relevant three-point vertex rules. For brevity, we omit four-point interactions, which

do not play a role in 1→ 2 splittings at this order.

Wherever explicitly referenced, we reckon all four-momenta as flowing into the vertex.

We use the small arrows next to a particle line to indicate the flow of the momenta as well

as the electric charge, where relevant. When no arrows labelled for the charged particles,

charge conservation is implied at each vertex for the particles involved.

Gauge field polarization vectors εµ are kept explicit at the vertices here, and can take

on three possible values associated with the propagating gauge degrees of freedom: the two

spacelike transverse polarizations εµ± (or εµxy), and the lightlike polarization ∝ εµn.2 The on-

shell values of these polarizations and a convenient phase convention have been provided at

the end of the preceding subsection as in Eq. (B.15). The extension to off-shell momenta

follows immediately. However, some care should be taken with respect to how these polar-

izations are oriented relative to momentum flows, whether a boson is reckoned as “incoming”

or “outgoing.” In particular, if the four-momentum k is measured outgoing from a vertex,

one should use ε(−k). (In many cases this is equivalent to ε(k)∗, but an exception occurs for

W±
n .) Including the polarization vectors in the vertices as such, the vector boson propagators

will not carry Lorentz indices, as given in Eq. (A.6).

= ieQEM
f /ε

2An off-shell photon does not have a physical pole associated with its εn polarization, and the phase of
that polarization can be set arbitrarily since there is no associated phase with the creation/annihilation of
asymptotic states. A simple default would be to follow the same convention as for the Z boson.
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= i
g2√

2
/εPL

= igZ/ε
(
(T 3

f −QEM
f s2

W )PL −QEM
f s2

WPR
)

= i (−ydPL + yuPR)

= i (yuPL − ydPR)

= (δfu − δfd)
yf√

2
γ5

= −i yf√
2
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= ig2cW εijk(εi · εj)
(
εk · (ki − kj)

)
[ε123 ≡ 1]

= ie εijk(εi · εj)
(
εk · (ki − kj)

)

= ±ig2

2
(q − p) · ε

=
gZ
2

(q − p) · ε

=
g2

2
(q − p) · ε

= igZ
c2W

2
(q − p) · ε
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= ie(q − p) · ε

= ig2mW εW+· εW−

= igZmZ εZ1· εZ2

= −iλhv
2

= −iλhv
2

= −i3λhv
2
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= −ig2s
2
WmZ εZ · εW

= iemW εγ · εW

The symbol ⊗ denotes the mass (or v) insertion from the EWSB.

B.3 EXAMPLE CALCULATIONS WITH GEG

Calculations in high energy processes involving longitudinal vector bosons can be compli-

cated in dealing with gauge artifacts, often exhibiting artificial “bad high energy behavior”

containing factors of E/v. Here we show some explicit examples to demonstrate how to

calculate ultra-collinear splitting amplitudes in GEG, where all such amplitudes are auto-

matically free of such artifacts and are simply proportional to the VEV. We focus in detail

on the specific massive fermion splitting ts → W+
L bs, where the fermion helicity s = L,R is

preserved. This calculation is also trivially adapted to cases where one or both fermion is a

massless flavor, such as the usual uL → W+
L dL, and is straightforward to extend to ZL boson

emission with appropriate replacements of couplings and remainder polarization phases. We

also outline below the diagrammatic construction of a few other processes for illustration.

We first reemphasize that the longitudinal gauge boson W+
L in GEG should be interpo-

lated by both the Goldstone field φ+ and the the remainder gauge field W+
n , leading us to

break up the splitting amplitude as

iM(ts → W+
L bs) = iM(ts → φ+bs) + iM(ts → W+

n bs). (B.18)
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Applying the three-point Feynman rules in Sec. B.2.1, and taking the exact collinear limit

(θ, kT → 0) to extract the leading behavior, we have for the LH process3

iM(tL → φ+bL) = i ū(bL)(ytPR − ybPL)u(tL)

' i yt
√

2Eb
mt√
2Et

− i yb
mb√
2Eb

√
2Et

' i v

(
y2
t√
2

√
z̄ − y2

b√
2

1√
z̄

)
,

iM(tL → W+
n bL) = i

g2√
2
ū(bL)

(
/εn(W )PL

)
u(tL)

' i
g2√

2
· 2
√

2Eb

(
− mW

2EW

)√
2Et

= −i v g
2
2√
2

√
z̄

z
. (B.19)

The full LH splitting amplitude is then

iM(tL → W+
L bL) = i v

1

z
√
z̄

(
1√
2

(y2
t z̄ − y2

b )z −
1√
2
g2

2 z̄

)
. (B.20)

Plugging this in Eq. (2.5), we have the splitting function

dPtL→W+
L bL

dz dk2
T

=
1

16π2

v2

k̃4
T

(
1

z

)(
1√
2

(y2
t z̄ − y2

b )z −
1√
2
g2

2 z̄

)2

. (B.21)

As for the RH transition tR → W+
L bR, there is no analogous amplitude for Wn at O(v)

due to the absence of RH charged-currents, so the amplitude is dominated by the Yukawa

contribution,

iM(tR → W+
L bR) ' iM(tR → φ+bR)

= i ū(bR)(ytPR − ybPL)u(tR)

' i yt
mb√
2Eb

√
2Et − i yb

√
2Eb

mt√
2Et

= i v
ytyb√

2

(
1√
z̄
−
√
z̄

)
= i v

ytyb√
2

z√
z̄
, (B.22)

3Note that for the charge-conjugate process, producing W−
n , we would instead use the remainder polar-

ization vector times (−1): −εn.
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and the splitting function is

dPtR→W+
L bR

dz dk2
T

=
1

16π2

v2

k̃4
T

z

(
1√
2
ytybz

)2

=
1

16π2

v2

k̃4
T

(
1

2
y2
t y

2
bz

3

)
. (B.23)

Of course, given the small value of yb, this process ends up becoming highly suppressed in

practice. The results in Eqs. (B.21) and (B.23) lead to some of the formulas in Table 4.

When combined with conventional collinear top quark splittings, the ultra-collinear split-

tings become important for modeling the approach to the top resonance peak. This includes

as well the process tR → W+
T bL. We show these individual shower contributions and their

continuity with a simple Breit-Wigner model of top decay (weighted by Γt(M(Wb))/Γt(mt))

in Fig. 13. Here we have taken 10 TeV top quarks of either helicity, zooming into near the

top quark pole, and set a decay/shower matching threshold of 187 GeV. All polarizations are

measured in “lab frame” (as opposed to the top’s rest frame). QCD and other electroweak

showering effects are not incorporated.

We have seen above how GEG allows us to organize the amplitude’s dependence on

EWSB by explicitly decomposing it into individual mass-insertion terms, or equivalently

VEV-insertion terms. External-state fermion mass insertions are found by Taylor-expanding

the fermion Dirac spinors, and external-state gauge boson mass insertions are found via

the remainder polarization εn. For more general processes, there may also be three-point

interactions that function as VEV-insertions, such as interactions between the scalars or the

hV µVµ vertices (listed in Sec. B.2.1). Generally, we may rather straightforwardly construct

any ultra-collinear amplitude at O(v) by adding together diagrams with exactly one mass-

insertion or EWSB interaction. Besides helping to organize a calculation, this approach

serves as a convenient tool for visualizing where different EWSB contributions arise in a

given amplitude. Figures ?? provide several examples, including

• Fig. 14a: tL → W+
L bL, representative calculation for Table 4;

• Fig. 14b: W±
T → W±

L ZT , representative calculation for Table 5;

• Fig. 15a: ZL → W+
LW

−
L , representative calculation for Table ??;

• Fig. 15b: h→ W+
LW

−
L , representative calculation for Table ??.
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QB0

p = Yp QW 0

p = T 3
p QW±

p Qγ
p = QEM

p QZ
p = T 3

p −QEM
p s2

W

p = uL 1/6 1/2 1/
√

2 2/3 1/2− (2/3)s2
W

uR 2/3 0 0 2/3 −(2/3)s2
W

dL 1/6 −1/2 1/
√

2 −1/3 −1/2 + (1/3)s2
W

dR −1/3 0 0 −1/3 (1/3)s2
W

νL −1/2 1/2 1/
√

2 0 1/2

eL −1/2 −1/2 1/
√

2 −1 −1/2 + s2
W

eR −1 0 0 −1 s2
W

φ+ 1/2 1/2 1/
√

2 1 1/2− s2
W

H0 = h+iφ0√
2

1/2 −1/2 1/
√

2 0 −1/2

Table 9: Gauge charges of chiral fermions and scalars in the Standard Model. For the

fermions, first generation is used, but charges for second and third generations follow the

same pattern.
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Figure 13: Invariant mass distributions for EW decay/splitting of a 10 TeV polarized top

quark for (a) conventional-collinear tL → W+
T bL and ultra-collinear tL → W+

L bL, and

(b) conventional-collinear tR → W+
L bL and ultra-collinear tR → W+

T bL. Decay and shower

are matched at 187 GeV (vertical dashed line). The conventional-collinear contributions

correspond to the upper histograms, while the ultra-collinear contributions correspond to

the lower histograms.
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(a) tL →W+
L bL

(b) W±T →W±L ZT

Figure 14: Representative ultra-collinear splittings with multiple contributing diagrams. The

effects of the VEV are indicated schematically by the symbol ⊗.
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(a) ZL →W+
LW

−
L

(b) h→W+
LW

−
L

Figure 15: Representative ultra-collinear splittings with multiple contributing diagrams. The

effects of the VEV are indicated schematically by the symbol ⊗.
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APPENDIX C

COHERENT SHOWERING

Showering involving superpositions of different particle species can be described using density

matrix formalism. The initial value of the density matrix is proportional to the outer product

of production amplitudes

ρij ∝M(prod)∗
i M(prod)

j ,

tracing out over other details of the rest of the event. Here, the indices run over the species.

We nominally assign the state its smallest possible kinematic mass (zero for γ/Z, mZ for

h/ZL), and subsequently reweight/veto the splitting probability and adjust the global kine-

matics as necessary (see Section 2.2.1). This prescription specifically becomes relevant when

evolving near kinematic thresholds.

The probability for an initial mixed quantum state to subsequently split into a specific

exclusive final state, e.g. γ/Z → e−Le
+
R or νLν̄R, must be computed by generalizing the

splitting functions to Hermitian splitting matrices dPij. The exclusive splitting rates are

then computed by tracing against the normalized density matrix:

dP =
ρij dPji

tr[ρ]
. (C.1)

If a boson is not split, the Sudakov evolution of ρ proceeds analogous to mixed-state ra-

dioactive decay:

dρij = −1

2

∑
channels

(ρikdPkj + dPikρkj). (C.2)
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As usual, this just represents the wave-function running, now applied to multi-component

states. The splitting matrices for an initial mixed quantum state are computed from outer

products of splitting amplitudes, convolved with the mixed propagators. Representing the

propagator matrix as Dij, and the amputated splitting amplitudes as M(split)
i , the general-

ization from single-state evolution is

dP ∝ 1

q4
|M(split)|2 → dPij ∝ M(split)∗

k D∗kiDjlM
(split)
l . (C.3)

Using the relativistic approximation q2 ' (k2
T + z̄m2

B + zm2
C)/zz̄ for final-state splitting, this

modifies Eq. (2.5) to the more complicated form[
dPA→B+C

dz dk2
T

]
ij

' 1

16π2

1

zz̄
M(split)∗

k D∗kiDjlM
(split)
l . (C.4)

In the massless limit with unmixed propagators, Dij = iδij/q
2, the form of the splitting

matrix reduces to dPij ∝M(split)∗
i M(split)

j /q4.

In more complete generality, a mixed state can split into another mixed state, leading

to an enlarged set of indices for the splitting matrices. However, in most cases, the final-

state density matrices are fully determined by the initial-state density matrices, such that

in practice a single pair of indices suffices.

While the formalism is basis-independent, we default to some standard bases in our EW

shower approach. Within the unbroken phase (Section 3), we present neutral gauge and

scalar splitting functions in the interaction basis (B0,W 0), (H0, H0∗). In the broken phase

(Section 4), we present them in the mass basis (γ, Z), (h, ZL). The corresponding propagator

matrices in the unbroken-phase basis, including the effects of EWSB, are1

DB0B0 =
i cos2 θW

q2
+
i sin2 θW
q2 −m2

Z

, DW 0W 0 =
i sin2 θW

q2
+
i cos2 θW
q2 −m2

Z

,

DB0W 0 = DW 0B0 =
i cos θW sin θW (−m2

Z)

q2(q2 −m2
Z)

(C.5)

1The shower formalism automatically accounts for logarithmic running effects in the wavefunction factors
for these propagators. We do not attempt to account for mass renormalization effects, as the masses are
anyway of power-suppressed importance at very high virtualities. Additional perturbative corrections near
the weak scale are also neglected.
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for the gauge bosons (θW is the weak mixing angle), and

DH0H0∗ = DH0∗H0 =
i/2

q2 −m2
h

+
i/2

q2 −m2
Z

,

DH0H0 = DH0∗H0∗ =
i/2

q2 −m2
h

− i/2

q2 −m2
Z

, (C.6)

for the neutral scalars. In the mass basis, the matrices are diagonal and have entries corre-

sponding to the usual poles:

Dγγ =
i

q2
, DZZ =

i

q2 −m2
Z

, DγZ = DZγ = 0 (C.7)

Dhh =
i

q2 −m2
h

, DZLZL
=

i

q2 −m2
Z

, DhZL
= DZLh = 0. (C.8)

Similar considerations apply in the application and generation of PDFs [61]. The γ/Z and

(in principle) h/ZL PDFs should each properly be treated as 2×2 matrices, and hard process

cross sections sourced by these PDFs computed by tracing against the hard matrix elements.

The PDF evolution equations involve matrix-valued splitting functions. In the high-kT/high-

virtuality limit, these follow straightforwardly from the splitting functions presented in the

Section 3. However, unless working well above the TeV-scale, mass effects can still be

important. The above propagator modifications must then be applied at the (spacelike)

virtual leg emerging from a splitting.
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APPENDIX D

FINAL-STATE SHOWER SIMULATION

In order to facilitate studies of final-state weak showering at the level of exclusive rates, we

have programmed a variation of the PYTHIA6 [86] timelike virtuality-ordered parton shower.

Basic collinear QCD is included by default, extended to the massive showering formalism

outlined in Section 2, and including purely ultra-collinear processes. In addition, the full set

of weak showering processes described in this paper has been added, with a number of novel

features compared to standard showering programs, outlined in the main text. In particular,

see Section 2.2. Here we describe a few additional technicalities of the implementation.

Splitting functions in the virtuality-ordered shower are simple to relate to those in the

kT -ordered shower, which we have used by default for most of the presentation. Using the

relativistic/collinear approximation for a splitting A→ B + C, we get

Q2 ' 1

zz̄
(k2
T + z̄m2

B + zm2
C) . (D.1)

Working in logQ, we can build the translation

dP
dz d logQ2

' 1

zz̄

Q2

(Q2 −m2
A)2

(
k̃4
T

dP
dz dk2

T

)
. (D.2)

The function in parentheses goes either as k2
T or as v2. For given Q, z, and daughter masses,

the former is simple to derive either by inverting the approximate Eq. (D.1) or by using exact

kinematics. For the energy-sharing variable z, we use CM-frame three-momentum fraction

|~kB|/(|~kB| + |~kC |). To approximately model the phase space effects in the nonrelativistic

limit, we further weight the splitting probabilities by a velocity factor |~kB||~kC |/EBEC . We
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also suppress splittings at angles larger than θ ≈ π/2, where the collinear shower would be

highly untrustworthy.

As in PYTHIA6, the input to the shower is a “hard” partonic configuration with some

characteristic virtuality scale, assumed here to be large compared to the weak scale. Evo-

lution is based on a simple recoiler method, whereby particles are showered in pairs. (At

the current level, no dipole coherence effects or color/isospin flows are incorporated, nor

are they strictly necessary at leading-log level, but they would be possible to include in

more advanced approaches.) Each particle in a pair undergoes a trial QCD/EW Sudakov

evolution, defined in the hard event’s rest frame, and ignoring the possible evolution of its

sister. In general, each particle may undergo a 1→ 2 splitting and acquire an off-shell mass.

Kinematics are then adjusted within the pair’s rest frame, by boosting each showered system

along the pair’s axis to preserve momentum and energy. If the summed masses from the

trial evolutions exceeds the original pair’s mass, the more off-shell splitting is vetoed, and

that particle’s evolution restarted. The procedure is easily recursed to build up completely

showered events, with the two daughters from a given splitting serving as paired sisters in

subsequent evolution.

Kinematic back-reaction effects are also incorporated, as discussed in Section 2.2.1 and

parametrized in Eq. 2.9. The kinematic re-arrangments required by setting a daughter off-

shell through its secondary showering can have a sizable effect on the mother’s splitting rate.

We introduce this back-reaction factor as an additional weight multiplying the daughter’s

splitting probability. In our virtuality-ordered implementation, the virtuality of the mother

(invariant mass of the daughter pair) remains unchanged, so Q∗ = Q. The Jacobian for

the transformation is then simply |dz∗/dz|, and its explicit form is tied to our kinematic

prescription above. Within the mother splitting A → B + C, assume that particle B with

momentum-fraction z is the one to be set off-shell: B → B∗. Within the A rest-frame, the

direction of B (C) is held at a fixed angle Θ (π − Θ) relative to A’s boost axis from the

CM-frame. The angle Θ has a one-to-one mapping to both the old z and the new z∗, and is

a useful intermediate variable. Another useful intermediate variable is the ratio Y ≡ z2/z̄2,

and the analogous Y ∗. The Jacobian can then be built up in pieces as∣∣∣∣dz∗dz
∣∣∣∣ =

∣∣∣∣dY ∗dz∗

∣∣∣∣−1 ∣∣∣∣dY ∗dΘ

∣∣∣∣ ∣∣∣∣dYdΘ

∣∣∣∣−1 ∣∣∣∣dYdz
∣∣∣∣ , (D.3)

99



where,
dY

dz
=

2z

z̄3
(D.4)

and
dY

d cos Θ
=
A(B̄ − B) cos2 Θ + 2A(C̄ − C) cos Θ + (BC̄ − B̄C)

(A cos2 Θ + B̄ cos Θ + C̄)2
. (D.5)

The symbols A, etc, here are shorthand for various quantities built out of A’s velocity βA,

and daughter kinematics in its rest-frame: the A-frame three-momentum magnitude of either

of the daughters P , and their individual A-frame energies and kinematic masses EB, EC ,

mB, mC . We have

A ≡ β2
AP

2 , B ≡ 2βAPEB , B̄ ≡ −2βAPEC ,

C ≡ P 2 + β2
Am

2
B , C̄ ≡ P 2 + β2

Am
2
C .

(D.6)

Analogous formulas hold with Y ∗ and z∗, defining the coefficients A, etc, using the A-frame

kinematic quantities redefined with B set off-shell. (Prescriptions yielding simpler analytic

formulas than ours almost certainly exist exist.) The differential splitting function of the

mother must also be re-evaluated using the off-shell daughter kinematics. This is much

simpler, as there the main effect is just the change in z. Explicit EWSB mass factors for the

daughters, which appear in the numerators of the ultra-collinear splitting functions, are not

adjusted from their on-shell values.

Angular-ordering may also be invoked. If the showering pair was itself produced from

a splitting, the event-frame angles of each daughter splitting and mother splitting can be

compared, and the former splitting(s) vetoed if it has a larger angle. This veto may be

applied selectively depending on the nature of the splitting and its parent splitting.

In our approach, parton shower evolution is automatically matched onto decay for W±,

Z, Higgs, and top. This matching is particularly simple in the virtuality-ordered shower.

Particles that survive down to their decay/shower matching scale are assigned masses drawn

from a Breit-Wigner distribution and final-state flavors assigned according to known branch-

ing fractions. In practice, we also weight the Breit-Wigner distribution accounting for the

different available decay phase space at different off-shell virtualities. Similar to a shower

splitting, the decays are then further weighted with back-reaction factors, if the decaying
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particle was itself produced in a splitting. The back-reaction factor here is applied as a

simple probabilistic veto.

Finally, we re-emphasize that the neutral bosons γ/ZT and h/ZL are produced and

evolved as general quantum mixed states. They are assigned initial kinematic masses of zero

andmZ , respectively, and given nontrivial 2×2 density matrices that evolve via matrix-valued

Sudakov factors. There is one major practical difference in implementing these Sudakovs

relative to simple number-valued Sudakovs. In the latter case, a given particle’s wavefunc-

tion decreases in magnitude as its evolution proceeds, but the surviving probability is an

automatic outcome of the differential splitting rates integrated via monte carlo. In practice,

these splitting rates are integrated over z with the expedient of over-estimator functions, and

vetoed-down to the true rates. In the matrix-valued case, however, the wavefunction can also

rotate, and capturing this effect using over-estimator functions and a veto algorithm does not

appear to be as straightforward. Instead, we use explicit formulas for the z-integrated split-

ting matrices at each virtuality step. These formulas are necessarily approximate, but we

have verified that they yield results similar to what would be obtained by costly brute-force

numerical integration.
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