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ABSTRACT 

Among the main challenges of public-health policy makers is reducing gaps in the delivery 

of care, given limited human and monetary resources. In a public health setting, decision-analysis 

tools such as simulation models can be used to inform decision-makers in answering what-if policy 

questions in order to improve public health and clinical practice, optimize resource allocation, or 

guide funding and reimbursement decisions. Of the main public-health challenges in the United 

States is the burden of chronic infectious diseases. The prevalence and associated cost of chronic 

infectious diseases, such as hepatitis C virus (HCV) and sexually transmitted diseases (STDs) has 

increased in the United States due to rising life expectancy and social changes. Many of these 

diseases have effective therapies, but there are gaps in research on effective mitigation strategies. 

The public health significance of this dissertation was to apply rigorous decision-sciences methods 

using computer simulations in health services research and to expand the application of existing 

methods to answer real-world questions in health policy of chronic infectious diseases. 

In the first section of this dissertation, I quantified the effects of new HCV therapies and 

updated screening guidelines on the burden of HCV and associated disease outcomes in the United 

States using an individual-level state-transition microsimulation model. The second section of this 

dissertation, estimated the status of HCV disease burden and the potential budget impact of various 
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treatment strategies in the Pennsylvania Medicaid population using the HCV microsimulation 

model that was calibrated to Pennsylvania Medicaid according to the claims data from 2007–2012. 

The last section of this dissertation, included the development and maintenance of sexual 

partnership networks using an agent-based simulation modeling approach, according to serial 

cross-sectional data obtained from the 2007–2014 National Health and Nutrition Examination 

Survey. This study provides a tool for understanding the dynamics of sexual partnership networks 

which is critical to improve the impacts of STD mitigation strategies that focus on the sexual 

behaviors of individuals. In conclusion, this dissertation provided the details of two computer-

simulation applications in health-related multi-disciplinary policy research, and delivers insights 

on how to use computer simulation in medical decision-sciences and policy problems. 

 

 



 vi 

TABLE OF CONTENTS 

PREFACE ................................................................................................................................... XV 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 THE CHANGING BURDEN OF HEPATITIS C INFECTION IN THE UNITED 

STATES: MODEL-BASED PREDICTIONS ............................................................................ 4 

2.1 BACKGROUND .................................................................................................. 4 

2.2 METHODS ........................................................................................................... 5 

2.2.1 HCV-Infected Population Characterization............................................... 5 

2.2.2 Natural History of HCV ............................................................................... 7 

2.2.3 Simulation Scenario: Current Clinical Practice ........................................ 7 

2.2.4 Simulation Scenario: Ideal Case ................................................................ 12 

2.2.5 Simulation Scenario: Pre-DAA and Natural-History .............................. 12 

2.2.6 Model Outcomes.......................................................................................... 13 

2.2.7 Model Validation ......................................................................................... 13 

2.2.8 Sensitivity Analyses ..................................................................................... 14 

2.3 RESULTS ........................................................................................................... 15 

2.3.1 Validation..................................................................................................... 15 

2.3.2 HCV Disease Burden .................................................................................. 15 

2.3.3 Ideal Scenario .............................................................................................. 18 

2.3.4 Pre-DAA Scenario ....................................................................................... 18 

2.3.5 Sensitivity analyses...................................................................................... 19 

2.4 DISCUSSION ..................................................................................................... 20 



 vii 

3.0 LONG-TERM DISEASE AND ECONOMIC OUTCOMES OF PRIOR 

AUTHORIZATION CRITERIA FOR HEPATITIS C TREATMENT IN PENNSYLVANIA 

MEDICAID ................................................................................................................................. 24 

3.1 BACKGROUND ................................................................................................ 24 

3.2 METHODS ......................................................................................................... 25 

3.2.1 Analysis of Pennsylvania Medicaid Claims Data ..................................... 26 

3.2.2 Microsimulation Model for Pennsylvania Medicaid ............................... 26 

3.2.2.1 Coverage Scenarios ............................................................................. 27 

3.2.2.2 Cost ....................................................................................................... 28 

3.2.2.3 Model Outputs ..................................................................................... 28 

3.2.2.4 Medicare Outputs for Transitions between Medicaid and Medicare  

  ............................................................................................................... 28 

3.2.2.5 Sensitivity analyses .............................................................................. 29 

3.3 RESULTS ........................................................................................................... 29 

3.3.1 Diagnosed HCV Population in Claims Data ............................................. 29 

3.3.2 Model Validation ......................................................................................... 30 

3.3.3 HCV Burden in Pennsylvania Medicaid - Model Predictions ................ 32 

3.3.4 HCV Burden in Transitions from Medicaid to Medicare ....................... 35 

3.3.5 Sensitivity Analyses ..................................................................................... 36 

3.4 DISCUSSION ..................................................................................................... 39 

4.0 CREATING A SEXUAL PARTNERSHIP NETWORK IN AN AGENT-BASED 

MODELING PLATFORM USING SURVEY DATA............................................................. 43 

4.1 BACKGROUND ................................................................................................ 43 



 viii 

4.2 METHODS ......................................................................................................... 45 

4.2.1 NHANES Data ............................................................................................. 45 

4.2.2 Initiation of Sexual Partnership Network................................................. 47 

4.2.2.1 Partnerships formation....................................................................... 48 

4.2.2.2 Partnership duration, concurrency, and sexual acts ....................... 49 

4.2.3 Dynamics of Sexual Partnership Network ................................................ 50 

4.2.4 Model Outputs and Sensitivity Analyses .................................................. 53 

4.3 RESULTS ........................................................................................................... 54 

4.3.1 Sensitivity analyses...................................................................................... 55 

4.4 DISCUSSION ..................................................................................................... 58 

APPENDIX A : THE CHANGING BURDEN OF HEPATITIS C INFECTION IN THE 

UNITED STATES: MODEL-BASED PREDICTIONS .......................................................... 63 

APPENDIX B : LONG-TERM DISEASE AND ECONOMIC OUTCOMES OF PRIOR 

AUTHORIZATION CRITERIA FOR HEPATITIS C TREATMENT IN PENNSYLVANIA 

MEDICAID ................................................................................................................................. 88 

APPENDIX C : CREATING A SEXUAL PARTNERSHIP NETWORK IN AN AGENT-

BASED MODELING PLATFORM USING SURVEY DATA ............................................ 112 

BIBLIOGRAPHY ..................................................................................................................... 129 



 ix 

 LIST OF TABLES 

Table 2.1. Estimated Effectiveness of Treatment for Hepatitis C in the United States from 2001 to 

2050................................................................................................................................................. 9 

Table 2.2. Default Characteristics of the Scenarios in Our Model of Hepatitis C Disease Burden 

in the United States, from 2001 to 2050. ...................................................................................... 13 

Table 2.3. Estimated Effect of Each Scenario on the Outcomes of Advanced-Stage Hepatitis C 

Outcomes According to Our Model of Hepatitis C Disease Burden in the United States from 2014 

to 2050. ......................................................................................................................................... 19 

Table 3.1. HCV-diagnosed population in the Pennsylvania Medicaid claims, 2007–2012, 

excluding Medicare dual eligibles. ............................................................................................... 31 

Table 3.2. Estimated prevalence of HCV infected patients in Pennsylvania Medicaid in 2007–

2015 and the number of new episodes of decompensated cirrhosis, hepatocellular carcinoma, and 

liver transplant. ............................................................................................................................. 32 

Table 3.3. Cumulative incidence of HCV outcomes and costs in 2015–2050 under each coverage 

scenario (Panel A) and with different treatment penetration rates under base-case coverage (Panel 

B)................................................................................................................................................... 35 

Table 3.4. Cumulative incidence of HCV outcomes and costs in 2015–2050 under various 

coverage scenarios, altering the maximum number of individuals treated annually in 2015 and 

beyond. .......................................................................................................................................... 38 

Table 4.1. Variable Names and Questions used from the sexual behavior NHANES data files. 45 



 x 

Table 4.2. The percentage of individuals with different number of partners in lifetime and in the 

past 12 months by age according to NHANES 2009–2010 data, on average among males and 

females. ......................................................................................................................................... 47 

Table 4.3. Age-mixing patterns among heterosexual adults based on sex. .................................. 48 

Table 4.4. Probability of first marriage among men aged 18–44 years, by specified age and 

selected characteristics: United States, 2006–2010. ..................................................................... 49 

Table A. 1. Model Parameter Values. .......................................................................................... 65 

Table A. 2. The Estimated Annual Incidence of Hepatitis C in the United States, from 2001–2050.

....................................................................................................................................................... 67 

Table A. 3. The Annual Probability of Becoming Aware of Hepatitis C Infection in Each Disease 

Stage. ............................................................................................................................................. 67 

Table A. 4. The Base-Case Scenario Values and Range of Parameters Used in 1-Way Sensitivity 

Analyses. ....................................................................................................................................... 68 

Table A. 5. The Base-Case Scenario Values and Range of Group Parameters in 1-Way Sensitivity 

Analyses. ....................................................................................................................................... 69 

Table A. 6. Annual Hepatitis C Treatment Capacity in the United States from 2001–2007 and Its 

Effect on Advanced-Stage Hepatitis C Outcomes. ....................................................................... 71 

Table A. 7. Comparison of Model Estimations to Published Data and Modeling Studies. ......... 72 

Table A. 8. Validation of the Natural History of Our Model Predicting Disease Burden of Hepatitis 

C in the United States. .................................................................................................................. 73 

Table A. 9. The Effect of Hepatitis C Treatment Efficacies on Advanced-Stage Hepatitis C 

Outcomes. ..................................................................................................................................... 74 



 xi 

Table A. 10. The Effect of Possible Delays in the Launch of Future Therapies According to the 

Base-Case Scenario* on Advanced-Stage Hepatitis C Outcomes. ............................................... 76 

Table A. 11. 1-Way Sensitivity Analyses of the Ratio of Patients in F0–F3 States who Choose to 

Wait for Better Therapies before 2014 According to the Base-Case Scenario. ............................ 77 

Table A. 12. Results of 1-Way Sensitivity Analyses. .................................................................. 78 

Table A. 13. Results of 1-Way Sensitivity Analyses for Group Parameters*. ............................ 80 

Table A. 14. The Effect of Changing Annual Incidence on Advanced-Stage Hepatitis C Outcomes.

....................................................................................................................................................... 83 

Table B. 1. ICD-9 codes, including Hepatitis C and related conditions. ..................................... 90 

Table B. 2. Annual transition probabilities between health states. .............................................. 93 

Table B. 3. Model input parameters for the HCV-infected population characteristics, distribution 

of hepatitis C genotype, treatment history in interferon-based treatment era, and the sustained 

virologic response rates of new therapies according to genotype and treatment history. ............. 95 

Table B. 4. Annual hepatitis C virus infection incidence in Pennsylvania Medicaid. ................. 97 

Table B. 5. Maximum number of HCV-infected individuals treated annually in Medicaid. ....... 98 

Table B. 6. Weekly and 12-week cost of HCV therapies. ........................................................... 99 

Table B. 7. Annual health state cost in chronic hepatitis C infection. ......................................... 99 

Table B. 8. The number of individuals eligible to receive hepatitis C treatment, and the individuals 

who received hepatitis C treatment in each fibrosis score in the base-case treatment scenario 

(coverage for F2–F4 fibrosis), during each year under various treatment penetration rates. ..... 103 

Table B. 9. Cumulative incidence of HCV outcomes and costs in 2015–2050 under various 

scenarios, altering the timing of expanding treatment to F2 fibrosis levels and treatment penetration 

rates. ............................................................................................................................................ 110 



 xii 

Table B. 10.  Impact of input parameter on model results through sensitivity analyses............ 111 

Table C. 1. The percentage of males categorized by the duration of partnerships in each age group 

(204 males).................................................................................................................................. 118 

Table C. 2. Probability that a first marriage will remain intact (survive) at specified durations 

among men aged 15–44 years, age at first marriage: United State, 2006–2010. ........................ 118 

Table C. 3. Duration of concurrent partnership according to number of partners and their 

corresponding duration. .............................................................................................................. 121 

Table C. 4. Average number of sexual acts for adult males and females based on age category.

..................................................................................................................................................... 122 

Table C. 5. Model results for the the cross-sectional distribution of the individuals with different 

number of partners in lifetime by age group over 10 simulation years. ..................................... 123 

Table C. 6. The difference in the percentages of people in each partner in lifetime category, 

between model results over 10 years and NHANES 2009–2010. .............................................. 124 

Table C. 7. Model results for the the cross-sectional distribution of the individuals with different 

number of partners in a year by age group over 10 simulation years. ........................................ 125 

Table C. 8. The difference in the percentages of people in each partner per year category, between 

model results over 10 years and NHANES 2009–2010.............................................................. 126 

Table C. 9. The percentage points differences by changing the probabilities of individuals moving 

from one partner-in-lifetime category to the next partner-in-lifetime category on the percentage of 

individuals in different partner categories at the end of 10 years. .............................................. 127 



 xiii 

LIST OF FIGURES 

Figure 2.1. State-transition diagram showing states of the hepatitis C disease-burden model. ..... 6 

Figure 2.2. The estimated prevalence of chronic hepatitis C virus cases in the United States from 

2001 to 2050 under different simulation scenarios. ...................................................................... 16 

Figure 2.3. Model results according to the base-case scenario (column A) and the ideal scenario 

(column B) of hepatitis C disease burden in the United States from 2001 to 2050. ..................... 17 

Figure 3.1. The projected prevalence of hepatitis C in Pennsylvania Medicaid categorized by 

diagnosed and undiagnosed cases in 2007–2050. ......................................................................... 33 

Figure 4.1. Steps for updating the sexual partnership network on each day in the simulation. ... 51 

Figure 4.2. Mechanism of updating the number of partners in each year for 15–19 age group. . 53 

Figure 4.3. Model results and the 2007–2014 NHANES data for the distribution of number of 

partners in lifetime by age group. ................................................................................................. 57 

Figure A. 1. Treatment options with the existing and future drugs for patients with (A): HCV 

genotype 1; (B): HCV genotype 2; (C): HCV genotype 3; (D): HCV genotypes 4–6. ................ 86 

Figure A. 2. Model results according to the natural-history (column A) and the pre-DAA (column 

B) scenarios from 2001 to 2050. ................................................................................................... 87 

Figure B. 1. The progression of hepatitis C disease according to Metavir scoring system. ........ 92 

Figure B. 2. Number of liver transplants in Pennsylvania Medicaid based on analyses of claims 

data and model projections. ........................................................................................................ 102 

Figure B. 3. The annual cost of hepatitis C treatment in Pennsylvania Medicaid under different 

treatment coverage scenarios (Panel A), and various treatment penetration rates in the base-case 

treatment scenario (coverage for F2–F4 fibrosis) (Panel B). ...................................................... 105 



 xiv 

Figure B. 4. Prevalence of compensated cirrhosis (F4) (panel A), incidence of decompensated 

cirrhosis (panel B), incidence of hepatocellular carcinoma (panel C), and number of liver 

transplants (panel D) in the base-case scenario under different rates of treatment penetration rates.

..................................................................................................................................................... 108 

Figure C. 1. The percentage of individuals with different number of partners in lifetime by sex 

and age. ....................................................................................................................................... 114 

Figure C. 2. The probability of starting a long-term relationship for adult males by age. ........ 117 

Figure C. 3. Fitted exponential probability distributions of marriage duration by age at first 

marriage. ..................................................................................................................................... 119 



 xv 

PREFACE 

I dedicate my dissertation work to my parents, Ali and Minoo, for their unconditional love 

and words of encouragement, and to my beloved husband, Kai, for his endless support, kindness, 

and patience. You have been my best cheerleader! I also dedicate this dissertation to my many 

friends who have supported me throughout this journey. 



1 

1.0  INTRODUCTION 

Among the main challenges of public-health policy makers is reducing gaps in the delivery 

of care, given limited human and monetary resources. In a public health setting, decision-analysis 

tools such as simulation models can be used to inform decision-makers in answering what-if policy 

questions in order to improve public health and clinical practice, optimize resource allocation, or 

guide funding and reimbursement decisions. The objectives of this research were to apply rigorous 

decision-sciences methods in health services research and to expand the application of existing 

methods to answer real-world questions in health policy.  

Of the main public-health challenges in all countries including the United States is the 

burden of chronic infectious diseases. The prevalence and associated cost of chronic infectious 

diseases has increased in the United States due to rising life expectancy and social changes. Many 

of these diseases such as hepatitis C virus (HCV) and sexually transmitted diseases (STDs) have 

effective therapies, but there are gaps in research on effective mitigation strategies. In my 

dissertation, I chose to focus on two simulation-modeling approaches in order to discuss policy 

decisions around HCV-infected population and the study of sexual networks for STDs.  

The first dissertation paper, titled “The Changing Burden of Hepatitis C Virus Infection in 

the United States: Model-Based Predictions [1],” focused on the effects of new HCV therapies and 

updated screening guidelines on the burden of HCV and associated disease outcomes in the United 

States. This individual-level state-transition microsimulation models HCV disease progression, 
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treatment and screening of the infected population starting in 2001 and was validated with several 

published studies. The results of this paper showed that HCV currently affects around 2.3 million 

individuals. With existing treatment rates, HCV could become a rare disease in the next 22 years. 

New therapies for HCV infection and widespread implementation of screening and treatment will 

play an important role in reducing the burden of HCV disease. More aggressive screening 

recommendations are also needed to identify a large pool of infected patients. 

In the second dissertation paper, “Estimating the Prevalence and Economic Burden of 

Hepatitis C in Pennsylvania Medicaid Using Simulation Model [2],” I estimated the number of 

people infected with HCV, the prevalence of HCV genotypes, the distribution of disease severity, 

and the potential budget impact of various treatment strategies for HCV in the Pennsylvania 

Medicaid population using Pennsylvania Medicaid claims data from 2007–2012 and a 

microsimulation model. In this research, I used the results of claims data analysis to calibrate and 

validate the HCV microsimulation model developed in Paper 1. This model was then used to 

project the future prevalence and economic burden of HCV in Pennsylvania Medicaid.  

The objective of the third dissertation paper, titled “Creating a Sexual Partnership Network 

in an Agent-Based Modeling Platform Using Survey Data” was to develop an agent-based 

simulation model to construct a sexual partnership network of individuals, as a tool to investigate 

future mitigation strategies targeting STDs. The main innovative component of this model was the 

development of a social network through which the disease transmits, according to serial cross-

sectional survey data of sexual behaviors. In this research, I instantiate and maintained a 

heterosexual partnership network according to data obtained from the National Health and 

Nutrition Examination Survey (NHANES) and by defining the characteristics of sexual behaviors 



3 

for agents (individuals) in the agent-based simulation model. The results of this model were then 

validated against NHANES sexual partnership data. 

These works would be valuable in providing insights to HCV- and STD-related policy 

decisions. The results of HCV research would identify the gaps in national management of HCV 

screening and treatment, and identify key points to make HCV a rare disease earlier. The results 

of modeling HCV in Pennsylvania Medicaid would focus on improving the commonwealth to 

better provide individuals with HCV care, and inform coverage decisions. In the third paper, 

creating a practical basis to model the transmission of STDs in an agent-based model through 

sexual networks not only provides us with a tool to test STD mitigation strategies, but also a basis 

for the simulation of other infectious-disease transmission that depend on social interactions.  
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2.0  THE CHANGING BURDEN OF HEPATITIS C INFECTION IN THE UNITED 

STATES: MODEL-BASED PREDICTIONS 

2.1 BACKGROUND 

Chronic hepatitis C virus (HCV) infection is a major health problem in the United States 

(US) affecting 3.2 million people [3]. HCV is the leading cause of chronic liver disease and 

hepatocellular carcinoma (HCC) and is the leading indication for liver transplantation in the US 

[4]. The number of deaths from HCV in the US surpassed those from human immunodeficiency 

virus infection in 2007 [5]. In 2011, the economic burden associated with chronic HCV infection 

in the US was estimated at $6.5 billion [6]. 

HCV treatment has rapidly evolved over the past 2 decades. The launch of direct-acting 

antivirals (DAAs) in 2011 and recent availability of first all-oral HCV regimens, represent a 

significant shift in HCV treatment paradigm [7]. The sustained virologic response (SVR) rates for 

certain patients increased to 97% [8]. New treatments currently under investigation have shown 

potential to further increase response rates, decrease treatment duration, and improve side effect 

profiles. These therapies are being studied as combinations of DAAs, with and without ribavirin 

and interferon [9, 10]. 

In addition to advances in treatment, key changes in HCV screening recommendation have 

taken place. The Centers for Disease Control and Prevention (CDC) and the US Preventive 

Services Task Force (USPSTF) expanded their HCV screening recommendation to include 1-time 

screening for anyone born between 1945 and 1965 [11, 12]. Modeling studies have shown that this 

screening strategy can be cost-effective and can reduce the burden of HCV disease [13-15]. 

http://www.cdc.gov/
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Finally, the Patient Protection and Affordable Care Act might facilitate the implementation of 

recommended HCV screening strategies and the link to care and treatment [16]. 

The launch of DAAs along with the combination of the new screening recommendations 

are collectively expected to substantially reduce the burden of HCV in the US; however, the effect 

of these changes has not yet been quantified. Previous studies did not project the burden of HCV 

infection under these changing dynamics but instead limited the studies’ analyses to the old 

standard of care (SOC)—peginterferon and ribavirin (PEG-RBV) without HCV screening [6, 

17]—or evaluated only the cost-effectiveness of HCV screening without projecting the changing 

burden of HCV [13, 18, 19]. Finally, the effect of limited treatment capacity on the burden of HCV 

disease also has not been studied. Our objective was thus to project the burden of HCV disease in 

the US by considering recent therapeutic advances, treatment capacity, and the implementation of 

a 1-time birth-cohort or universal screening.  

2.2 METHODS 

2.2.1 HCV-Infected Population Characterization 

We developed an individual-level state-transition model [20] that simulated the HCV-

infected population of the US from 2001 to 2050. We used a nationally representative distribution 

of patients’ age, gender, HCV awareness status, HCV genotype, stage of disease, and treatment 

history, using data from the National Health and Nutrition Examination Survey (NHANES, 1999–

2002) and published clinical studies (Table A. 1) [13, 17, 21-24]. We added new HCV infections 

in the model based on the annual new HCV infections reported by the CDC (Table A. 2) [25]. 
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Each newly infected patient was added as an acute case that could progress to the chronic phase 

[21]. Patients could become aware of their HCV status in the course of disease progression (Table 

A. 3). At any given time, patients occupied one of the health states (Figure 2.1), and could 

transition to another state with a predefined probability depending on their current state (Table A. 

4). 

 

 

Figure 2.1. State-transition diagram showing states of the hepatitis C disease-burden model. 

At any given time, a patient is represented by one of the health states, which are shown by squares. Arrows between 
states represent possible transitions based on annual probabilities (Table A. 1). Patients who are successfully treated 
transition to the “SVR” state. Patients who achieve SVR from F0–F3 states are assumed to be cured; however, F4 
patients after a successful treatment transition to “F4-SVR” state and they could develop further complications. 
Patients in HCC, DC, and LT have a higher mortality than the general population, therefore can transition to “Liver-
Related Death” state. All other patients have the same mortality risk as the general population.  
Abbreviations: HCV = hepatitis C virus; F0 = METAVIR stage for no liver fibrosis; F1 = METAVIR stage for portal 
fibrosis without septa; F2 = METAVIR stage for portal fibrosis with few septa; F3 = METAVIR stage for numerous 
septa without cirrhosis; F4 = METAVIR stage for cirrhosis; SVR = sustained virologic response; DC = decompensated 
cirrhosis; HCC = hepatocellular carcinoma; LT = liver transplant. Note: the probability of death from other causes 
exists in every state, but deaths from other causes are not shown in this figure. 
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2.2.2 Natural History of HCV 

The chronic phase of the infection was defined using the METAVIR scoring system: no 

fibrosis of the liver (F0), portal fibrosis without septa (F1), portal fibrosis with few septa (F2), 

numerous septa without cirrhosis (F3), and cirrhosis (F4). Patients could further progress to 

decompensated cirrhosis (DC) or to HCC, receive a liver transplant, or die from liver-related 

complications (Figure 2.1). The model assumed a liver-transplantation age limit of 75 years [26]. 

All disease progression probabilities are presented in Table A. 1. Patients who achieved SVR in 

F0–F3 states were assumed to be cured of HCV; however, those who achieved SVR in F4 state 

could further progress to DC and/or HCC, though at a slower rate than HCV-infected patients. 

2.2.3 Simulation Scenario: Current Clinical Practice 

We simulated the current clinical practice as our base case, i.e., 1-time birth-cohort HCV 

screening starting in 2013 and treatment with PEG-RBV or PI-based triple therapy before 2014, 

sofosbuvir- and simeprevir-based therapies starting in 2014, and future drugs as they become 

available. 

We implemented 1-time birth-cohort HCV screening of people born between 1945 and 

1965 that detected unaware prevalent cases. We also included risk-based screening under this 

scenario. We assumed that 91% of these patients would accept screening and 90% of those who 

tested positive would receive those results [13]. We assigned the uptake of screening such that the 

majority of these patients would receive screening gradually during 5 years beginning in 2013.  

We estimated that 80% of the patients aware of their HCV status would initiate HCV 

treatment [13, 27-30]. Treatment regimens were assigned based on patients’ prior treatment 
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history, HCV genotype, contraindication to interferon, and the standard-of-care at the time of 

treatment. 

For genotype 1 patients, we assigned PEG-RBV during 2001–2011, followed by a 

combination of a first-generation protease inhibitor (PI)—boceprevir or telaprevir, and PEG-RBV 

in 2012–2013. For non-genotype 1 patients, we assigned PEG-RBV during the entire period of 

2001–2013. We assumed that the patients who failed PEG-RBV treatment could be retreated at 

most once with PEG-RBV or PI-based therapy. We also assumed that patients who failed PI-based 

therapy were not eligible for retreatment with the same drug class.  

On the basis of recently published evidence, we expect higher treatment response rates in 

all patients after 2013 owing to the availability of new therapies, albeit at different intervals [31-

43]. Therefore, we assumed that these therapies could be divided into 2 major waves on the basis 

of therapy availability, cure rates and target populations (Table 2.1). We assumed that during 

2011–2013, 75% of the eligible patients with mild fibrosis (F0–F2) and 25% of the eligible patients 

with bridging fibrosis (F3) waited for newer therapies [44]. 
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Table 2.1. Estimated Effectiveness of Treatment for Hepatitis C in the United States from 2001 to 2050. 

Treatment history 
/ Genotype 

HCV 
state 

PEG-
RBV 

BOC/TE
L+PR 

Wave 1 
(2014) 

Wave 2 
(2017) 

Reference  

Naïve 
  

  
  

Genotype 1 
  

  
 

[32, 37-39, 43, 45-52]   
F0–F2 0.54 0.75 0.90 -- 

 

 F3 0.54 0.62 0.90 --   
F4 0.36 0.62 0.80 0.90 

 

Genotype 2 
  

  
 

[46, 53-55]  
F0–F3 0.82 -- 0.90 -- 

 

 F4 0.64 -- 0.80 0.90  
Genotype 3      [46, 53, 54, 56]   

F0–F3 0.70 -- 0.90 -- 
 

 
F4 0.49 -- 0.80 0.90 

 

Genotype 4/5/6      [46, 50, 57] 
 F0–F3 0.58 -- 0.90 --   

F4 0.32 -- 0.80 0.90 
 

Relapser      
 

Genotype 1      [22, 31, 34, 38, 39, 49, 52, 
55, 58, 59] 

 F0–F2 0.27 0.87 0.90 --  
 F3 0.27 0.85 0.90 --  
 F4 0.13 0.84 0.80 0.90  
Genotype 2 

  
  

 
[23, 55, 60, 61]  

F0–F3 0.71 -- 0.90 -- 
 

 F4 0.56 -- 0.70 0.90  
Genotype 3      [23, 56, 60, 61]   

F0–F3 0.66 -- 0.85 -- 
 

 
F4 0.52 -- 0.60 0.90 

 

Genotype 4/5/6      [23, 46, 50, 57] 
 F0–F3 0.31 -- 0.90 --   

F4 0.24 -- 0.75 0.90 
 

Partial responder      
 

Genotype 1      [22, 31, 34, 38, 39, 49, 52, 
55, 58, 59] 

 F0–F2 0.18 0.72 0.90 --  
 F3 0.18 0.56 0.90 --  
 F4 0.10 0.34 0.75 0.90  
Genotype 2 

  
  

 
[23, 55, 60, 61]  

F0–F3 0.69 -- 0.90 -- 
 

 F4 0.55 -- 0.70 0.90  
Genotype 3      [23, 56, 60, 61]   

F0–F3 0.64 -- 0.85 -- 
 

 
F4 0.51 -- 0.60 0.90 

 

Genotype 4/5/6      [23, 46, 50, 57] 
 F0–F3 0.31 -- 0.90 --   

F4 0.24 -- 0.75 0.90 
 

Null responder      
 

Genotype 1      [22, 31, 34, 38, 39, 49, 52, 
55, 58, 59] 

 F0–F2 0.10 0.41 0.90 --  
 F3 0.10 0.39 0.90 --  
 F4 0.05 0.14 0.75 0.90 

 
 



10 

Treatment history 
/ Genotype 

HCV 
state 

PEG-
RBV 

BOC/TE
L+PR 

Wave 1 
(2014) 

Wave 2 
(2017) 

Reference  

Genotype 2 
  

  
 

[23, 55, 60, 61]  
F0–F3 0.54 -- 0.90 -- 

 

 F4 0.42 -- 0.70 0.90  
Genotype 3      [23, 56, 60, 61]  

F0–F3 0.50 -- 0.85 -- 
 

 
F4 0.39 -- 0.60 0.90 

 

Genotype 4/5/6      [23, 46, 50, 57] 
 F0–F3 0.31 -- 0.90 --   

F4 0.24 -- 0.75 0.90 
 

Contraindicated with modifiable reasons 
Genotype 1      [22, 32, 38, 49, 55] - expert 

opinion  
 F0–F2 -- -- 0.90 --  
 F3 0.43 0.50 0.90 --  
 F4 0.28 0.36 0.70 0.90  
Genotype 2 

  
  

 
[55, 60] - expert opinion  

F0–F3 0.66 -- 0.90 -- 
 

 F4 0.51 -- 0.70 0.90  
Genotype 3      [56, 60, 61] - expert opinion  

F0–F3 0.56 -- 0.90 -- 
 

 
F4 0.40 -- 0.60 0.90 

 

Genotype 4/5/6      [57] - expert opinion 
 F0–F3 0.46 -- 0.90 --   

F4 0.26 -- 0.70 0.90 
 

Contraindicated with non-modifiable reasons 
Genotype 1/2/4/5/6 

  
  

 
[32, 38, 55, 60] - expert 
opinion  

F0–F3 -- -- 0.90 -- 
 

 F4 -- -- 0.70 0.90  
Genotype 3      [56, 60, 61] - expert opinion  

F0–F3 -- -- 0.90 -- 
 

 
F4 -- -- 0.60 0.90 

 

Failed triple 
therapy 

     
 

Genotype 1 
  

  
 

[49] - expert opinion  
F0–F3 -- -- 0.95 -- 

 

 F4 -- -- 0.75 0.90  
Wave 1 = new therapies launched in 2014 for all patients that increased treatment response rates to 90% in non-
cirrhotic patients and 60%–80% in cirrhotic patients; Wave 2 = future therapies that we assumed would be launched 
in 2017 and increase treatment response rates to 90% in cirrhotic patients; Relapser = a patient whose HCV RNA 
became undetectable during treatment with PEG-RBV, but reappeared after the end of treatment; Partial responder = 
a patient whose HCV RNA level decreased by 2 log IU/mL or more at week 12 of treatment with PEG-RBV, but was 
detectable at week 24; Null responder = a patient whose HCV RNA level decreased less than 2 log IU/mL at week 12 
of treatment with PEG-RBV; Contraindicated with modifiable reasons = a patient who had contraindications to 
regiments that included pegylated interferon and ribavirin such as anemia, depression, and substance abuse, that were 
modifiable by medical or psychiatric interventions; Contraindicated with non-modifiable reasons = a patient who had 
contraindications to regiments that include pegylated interferon and ribavirin such as autoimmune disease, coronary 
artery disease, retinopathy, etc., that were not modifiable by medical or psychiatric interventions; Failed triple therapy 
= a patient whose HCV RNA level detectable after the treatment with boceprevir or telaprevir combined with a first-
generation protease inhibitor. 
* The SVR rates were either derived directly from the references or were indirectly inferred on the basis of the 
mentioned references. 

Table 2.1 continued 
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HCV = hepatitis C virus; F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without 
septa; F2 = METAVIR stage for portal fibrosis with few septa; F3 = METAVIR stage for numerous septa without 
cirrhosis; F4 = METAVIR stage for cirrhosis; PEG-RBV = peginterferon and ribavirin; BOC/TEL+PR = boceprevir 
or telaprevir plus peginterferon and ribavirin. 
 

Wave 1 of new treatments was assumed to start in 2014; we also assumed that with Wave 

1 the SVR rates would increase up to 90% in the groups of genotype 1–6 non-cirrhotic patients 

(Table 2.1). Though the reported SVR rates were as high as 97% in some patients, we used a 

conservative estimate of 90% in some patients to account for lower SVR rates in real-life [62]. The 

first wave included therapies for genotype 1–6 cirrhotic patients as well, but we assumed that the 

response rates among these would still remain suboptimal (Figure A. 1) [60]. We assumed that 

Wave 2 of treatment would begin in 2017 and increase the response rates up to 90% in all patients. 

We included the retreatment of patients who failed PEG-RBV or PI-based therapy before 2014 

with Wave 1 or Wave 2 therapies. The SVR rates by treatment history, genotype, fibrosis stage, 

and interferon contraindication are presented in Table 2.1 and Appendix. Figure A. 1 illustrates 

the treatment used for each category of patients at different time intervals. 

Since it is impracticable to treat all HCV-infected patients within a year, we introduced an 

annual constraint on the number of people who could access HCV treatment. Our rationale was to 

model the effect of limited treatment uptake as well as limited resources (budget, physicians, etc.) 

available to treat all eligible patients. For our base case, we used historic data to determine the 

national treatment uptake [63] and performed sensitivity analyses.  

Table 2.1 continued 
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2.2.4 Simulation Scenario: Ideal Case 

We simulated the effect of a hypothetically ideal scenario that represented an upper limit 

of the benefits that could be achieved by ongoing advancements in therapies and policy-level 

changes. We simulated best possible combination of 1-time universal screening in all adults, 

adoption of new drugs as they become available and unlimited treatment capacity. We distributed 

the uptake of screening proportionally over the period of 5 years beginning 2013.  

2.2.5 Simulation Scenario: Pre-DAA and Natural-History 

For the purpose of estimating the incremental benefits of therapeutic advancements and 

policy-level changes, we simulated two comparator scenarios: Pre-DAA scenario and natural-

history scenario. The Pre-DAA scenario represented screening and treatment practice until the 

launch of DAAs. It simulated HCV treatment with PEG-RBV only, from 2001 onwards, with risk-

based screening only. The natural-history scenario simulated the HCV disease burden under no 

screening and no treatment. The characteristics of each simulation scenario are presented in Table 

2.2. 
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Table 2.2. Default Characteristics of the Scenarios in Our Model of Hepatitis C Disease Burden in the United States, 

from 2001 to 2050. 

 Characteristics 
Scenario HCV treatment (time period) Screening Treatment capacity 
Natural 
history No treatment No screening N/A 

Pre-DAA PEG-RBV (2001–2050) Risk-based 
Variant based on historic data  
(2001–2007) 
Constant at 83 270 (2008–2050) 

Base case  

PEG-RBV (2001–2011) 
BOC/TEL+PR (2012–2013) 
Wave 1 (2014–2016) 
Wave 2 (2017–2050) 

Risk-based and 
Birth-cohort 

Variant based on historic data  
(2001–2007) 
Constant at 83 270 (2008–2050) 

Ideal  

PEG-RBV (2001–2011) 
BOC/TEL+PR (2012–2013) 
Wave 1 (2014–2016) 
Wave 2 (2017–2050) 

Universal Unlimited treatment capacity 

Natural history = simulation scenario with no screening and no treatment; Pre-DAA = simulation scenario with risk-
based screening and peginterferon and ribavirin treatment; Base case = simulation scenario with risk-based and birth-
cohort screening, treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and future 
therapies starting in 2014, and limited treatment capacity; Ideal = simulation scenario with universal screening, 
treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and future therapies starting 
in 2014, and unlimited treatment capacity. 
HCV = hepatitis C virus; PEG-RBV = peginterferon and ribavirin; BOC/TEL+PR = boceprevir or telaprevir plus 
peginterferon and ribavirin; DAA = direct-acting antiviral agent; Wave 1 = new therapies launched in 2014 for all 
patients that increased treatment response rates to 90% in non-cirrhotic patients and 60%–80% in cirrhotic patients; 
Wave 2 = future therapies that we assumed would be launched in 2017 and increase treatment response rates to 90% 
in cirrhotic patients. 

2.2.6 Model Outcomes 

We projected the prevalence of HCV from 2001 to 2050. In addition, we projected the 

prevalence and incidence of early stages of HCV—fibrosis scores F0–F4, advanced stages of 

disease—DC, HCC, and the number of liver-transplants and liver-related deaths. 

2.2.7 Model Validation  

Using the model outcomes from 2001 to 2013, we validated our model with several 

published studies. First, we compared the predicted prevalence of HCV with a recently published 
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NHANES 2003–2010 study [64]. Second, we compared the predicted incidence and prevalence 

by stages of HCV disease with published studies and CDC reports [17, 22, 65-67]. Third, we 

compared our model’s natural history of HCV with the results of a multicenter follow-up study of 

patients with advanced fibrosis [68]. Finally, we cross-validated our model with earlier modeling 

studies [6, 17] by comparing the results of the natural-history and pre-DAA scenarios.  

2.2.8 Sensitivity Analyses 

We tested the effect of the SVR rates, the timing of the availability of future therapies, 

treatment capacity, patients’ decision to wait for new drugs, and changing annual HCV incidence 

on the burden of HCV disease. We performed deterministic sensitivity analyses on the natural 

history parameters of HCV and patient characteristics (Table A. 4–5). 

We also evaluated the effect of treatment capacity on HCV disease burden by simulating 

4 scenarios: (1) increased treatment capacity by 10% after the launch of DAAs in 2012 and 

additional increased capacity by 50% after the launch of new therapies in 2014; (2) increased 

capacity by 10% in 2012 but decreased by 20% after the launch of new therapies in 2014 due to 

high drug cost; and (3) unlimited treatment capacity (Table A. 6). 
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2.3 RESULTS 

2.3.1 Validation 

Our model projected that the average number of chronic HCV cases in 2003–2010 were 

2.7 million, which is equal to the reported values in NHANES 2003–2010 study [64] (Table A. 

7). The projected average prevalence of HCC in 2001–2004 was within 3% of the reported values 

[65]. The incidence of HCC and liver-related deaths in 2005 were within 1–15% of the reported 

values [22]. The projected distribution of different stages of chronic HCV closely matched that of 

another modeling study [17]. Finally, our model’s 10-year cumulative incidence rates of DC, HCC, 

and combined liver-related mortality and liver transplants closely matched the results of a recently 

published multicenter follow-up study (Table A. 8) [68]. 

2.3.2 HCV Disease Burden 

Our model projected that the chronic HCV cases in the US decreased from 3.2 million in 

2001 to 2.3 million in 2013 (Figure 2.2). From 2001 to 2013, 157 300 HCV-infected people died 

because of liver-related complications, 415 000 died because of other reasons, and 589 100 

achieved SVR. During the same period 251 000 new people got chronically infected with HCV. 

Considering the population growth in the US [69], we projected that HCV would become a rare 

disease by 2036, i.e. affecting about 1 in 1500 people [70]. Under the ideal scenario, HCV could 

become a rare disease by 2026. 
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Figure 2.2. The estimated prevalence of chronic hepatitis C virus cases in the United States from 2001 to 2050 

under different simulation scenarios. 

The rare-disease region is calculated based on the definition of a rare disease, and adjusted to the United States 
population. Based on the Rare Disease Act of 2002 [68], a rare disease affects about 1 in 1500 people. The rare-disease 
region is increasing with time because of population growth. Natural history = simulation scenario with no screening 
and no treatment; Pre-DAA = simulation scenario with risk-based screening and peginterferon and ribavirin treatment; 
Base case = simulation scenario with risk-based and birth-cohort screening, treatment with peginterferon and ribavirin 
and/or DAAs before 2014, and newly approved and future therapies starting in 2014, and limited treatment capacity; 
Ideal = simulation scenario with 1-time universal screening, treatment with peginterferon and ribavirin and/or DAAs 
before 2014, and newly approved and future therapies starting in 2014, and unlimited treatment capacity; DAA = 
direct-acting antiviral agent. 

 

In 2001, 682 400 people were chronically infected with HCV who were born between 1945 

and 1965 and unaware of their disease. However, by 2013, only 531 200 HCV infected patients 

(24% of the total HCV infection in the US) were eligible for birth-cohort screening, i.e., unaware 

of their disease status and still between fibrosis scores F0–F4. The implementation of 1-time birth-

cohort screening beginning 2013 is expected to identify 487 000 additional HCV cases in this 

cohort in the next 10 years. 
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Under the base-case scenario, our model projected that the prevalence of DC and HCC, 

and liver-related deaths will reach their peak values during 2019–2020 and start declining 

afterwards (Figure 2.3). 

 

Figure 2.3. Model results according to the base-case scenario (column A) and the ideal scenario (column B) of 

hepatitis C disease burden in the United States from 2001 to 2050. 

Row 1: the prevalence of fibrosis stages; Row 2: the prevalence of DC and HCC; Row 3: the incidence of DC, DCC, 
LRD, and LT. Note: The results of the natural-history and pre-DAA scenarios are presented in Figure A. 2. Natural 
history = simulation scenario with no screening and no treatment; Pre-DAA = simulation scenario with risk-based 
screening and peginterferon and ribavirin treatment; Base case = simulation scenario with risk-based and birth-cohort 
screening, treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and future 
therapies starting in 2014, and limited treatment capacity; Ideal = simulation scenario with universal screening, 
treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and future therapies starting 
in 2014, and unlimited treatment capacity. Abbreviations: DC = decompensated cirrhosis; HCC = hepatocellular 
carcinoma; LRD = liver-related deaths; LT = liver transplants; DAA = direct-acting antiviral agent. 
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2.3.3 Ideal Scenario 

Under the ideal scenario, HCV can become a rare disease by 2026, i.e. 10 years earlier than 

that with the base case (Figure 2.2). The implementation of 1-time universal screening could 

identify 933 700 HCV cases in the next 10 years. Compared with the base case (current clinical 

practice), ideal scenario could reduce the total number of DC cases, HCC cases, liver-related 

deaths, and liver-transplants by 135 800 (46%), 96 300 (40%), 161 500 (37%), and 13 900 (37%), 

respectively during 2014–2050 (Table 2.3).  

2.3.4 Pre-DAA Scenario 

Under the Pre-DAA scenario, HCV did not become a rare disease. Compared with the base-

case, Pre-DAA scenario would have increased the number of DC cases, HCC cases, liver-related 

deaths, and liver-transplants by 124 200 (30%), 78 700 (25%), 126 500 (23%), and 9900 (21%), 

respectively, during 2014–2050 (Table 2.3). 



19 

Table 2.3. Estimated Effect of Each Scenario on the Outcomes of Advanced-Stage Hepatitis C Outcomes According 

to Our Model of Hepatitis C Disease Burden in the United States from 2014 to 2050. 

  Scenario   

Advanced-stage disease outcomes Natural 
history Pre-DAA Base case Ideal 

Decompensated cirrhosis     
Cumulative incidence (2014–2050) 647 000 418 100 293 900 158 100 
Peak annual prevalence 90 700 68 000 62 700 56 000 
Year of peak annual prevalence 2025 2022 2019 2014 
Peak annual incidence 22 800 16 800 15 300 12 000 
Year of peak annual incidence 2023 2020 2014 2014 
Hepatocellular carcinoma     
Cumulative incidence (2014–2050) 473 000 318 900 240 200 143 900 
Peak annual prevalence 33 200 25 000 23 200 20 800 
Year of peak annual prevalence 2025 2021 2019 2014 
Peak annual incidence 16 300 12 200 11 400 9 500 
Year of peak annual incidence 2025 2021 2019 2014 
Liver-related deaths     
Total deaths (2014–2050) 811 600 560 100 433 600 272 100 
Peak annual deaths 27 500 20 600 19 300 17 500 
Year of peak annual deaths 2025 2023 2020 2014 
Liver transplants     
Total transplants (2014–2050) 67 100 47 800 37 900 24 000 
Peak annual liver transplants 2700 2100 2100 2000 
Year of peak annual liver transplants 2024 2021 2016 2014 

 
Natural history = simulation scenario with no screening and no treatment; Pre-DAA = simulation scenario with risk-
based screening and peginterferon and ribavirin treatment; Base case = simulation scenario with risk-based and birth-
cohort screening, treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and future 
therapies starting in 2014, and limited treatment capacity; Ideal = simulation scenario with universal screening, 
treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and future therapies starting 
in 2014, and unlimited treatment capacity; DAA = direct-acting antiviral agent. 

2.3.5 Sensitivity analyses 

We evaluated the effect of increased treatment capacity on the burden of disease (Table A. 

6). Compared to the base case, 10% increase in treatment capacity in 2012 and 50% increase 

beyond 2014 (Scenario 1) would reduce the number of DC, HCC, liver-related deaths and liver 

transplants by 9–14%. Whereas, 20% decrease in treatment capacity beyond 2014 (Scenario 2) 

would increase the corresponding adverse outcomes by 16–22%. Compared to the base case, 
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unlimited treatment capacity from 2014 onwards (Scenario 3) would prevent 128 800 DC, 91 000 

HCC, and 153 200 liver-related deaths and 13 400 liver transplants. 

When the SVR rates of the available and future drugs were reduced by 10%, the cumulative 

incidence of DC and HCC, and liver-related deaths and liver transplants increased by 4% to 23%, 

depending on the simulation scenario (Table A. 9). Delayed or early launch of Wave 2 of HCV 

therapies did not substantially change the disease burden (Table A. 10). In addition, we found that 

the results were not sensitive to the percentages of patients in F0–F3 who might choose to wait for 

future therapies instead of initiating treatment with PI-based therapies (Table A. 11). Among the 

natural-history parameters, we found that the probability of developing DC and HCC in cirrhotic 

patients had the greatest effect on the disease burden.  

We also performed a sensitivity analysis on the prevalence of HCV. Assuming 4.9 million 

people were infected with HCV in 2001 which was the 95% CI upper limit NHANES 1999–2002 

estimate [21], the cumulative incidence of DC, HCC, and liver-related mortality increased by 23–

25% in comparison with the base-case scenario (Table A. 12–13). Finally, we evaluated the impact 

of decreasing and increasing annual HCV incidence and found no substantial effect on the 

outcomes (Table A. 14). 

2.4 DISCUSSION 

Our model estimated that 2.3 million people were chronically infected in the beginning of 

2013, as compared with 3.2 million people in 2001. With the implementation of birth-cohort 

screening and the availability of highly effective new therapies, HCV could become a rare disease 
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by 2036. In addition, these changes could substantially decrease the overall clinical burden 

associated with HCV in the US.  

Our study also identified trends in the HCV disease burden that have not been previously 

reported. As corroborated by recently published NHANES 2003–2010 data [64], we estimated that 

the current number of chronic HCV cases in the US is actually lower than the commonly reported 

3.2 million estimate. The HCV prevalence decreased mainly because of deaths and successful 

treatments in this cohort. Also, our model projected that fewer patients are eligible for birth-cohort 

screening than estimated in a previously published study [13]. Our results differed because we 

accounted for the possibility that birth-cohort patients progressed beyond cirrhosis or became 

aware of their disease before the implementation of screening in 2013.  

Our study underscores the need for more aggressive screening strategies and higher 

treatment capacity to further reduce the burden of HCV. Birth-cohort screening, though impactful, 

would fail to identify a large pool of existing HCV patients who could advance to severe disease 

stages without treatment. In addition, the number of patients who are able to receive treatment 

greatly affects the potential disease burden. This number is dependent on the treatment capacity, 

availability of new drugs, treatment cost, and insurance coverage. With the launch of all-oral drugs 

that can simplify treatment, primary care physicians or infectious disease specialists also may take 

on the role of treating HCV patients, thus alleviating the burden on specialists [71]. In addition, 

programs like the Extension for Community Healthcare Outcomes can further help to increase the 

treatment capacity by improving access to care for underserved populations [72]. However, the 

high price of new therapies could become a barrier to timely HCV treatment, thus inhibit the full 

potential of therapeutic advances and screening recommendations [73].  
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Our study has several limitations. The historic number of HCV cases in the model is based 

on NHANES 1999–2002 data that underestimate the prevalence of HCV in the US by excluding 

the institutionalized population. However, we tested its effect on the future HCV burden in a 

sensitivity analysis. Second, we estimated the total patients who received treatment from drug 

prescription data reported by insurance companies [63], which may underestimate the number of 

patients who got treated. Third, our model does not account for co-infections and other risk factors, 

such as alcohol consumption, that affect disease progression [74, 75]. These limitations may have 

resulted in an underestimation of the projected burden of HCV disease. Fourth, we do not consider 

the potential effect of treatment on disease transmission. Although improved treatment would be 

expected to decrease HCV transmission, new cases are a very small proportion of the existing 

HCV cases.  

Information about SVR rates and the launch time of new therapies is limited. Our SVR 

rates were based on results from several phase 2 and 3 clinical studies, but the real-life SVR rates 

may be different. Our assumptions about the launch time of new therapies were based on the end 

dates of clinical trials. Finally, due to the lack of knowledge in the retreatment of patients who will 

fail recently approved and future therapies, the analysis of the retreatment of these patients is 

beyond the scope of our analysis. 

In conclusion, we evaluated the effect of the launch of DAAs, recently approved and other 

potential future therapies, and changes in HCV-screening recommendations on the future burden 

of HCV disease in the US. We found that with ongoing therapeutic advancements and screening 

policy changes, HCV could become a rare disease within the next 22 years. We also found that the 

current screening recommendations are helpful in decreasing the future burden of HCV, but more 
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aggressive recommendations should be proposed in conjunction with an increase in HCV 

treatment capacity. 
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3.0  LONG-TERM DISEASE AND ECONOMIC OUTCOMES OF PRIOR 

AUTHORIZATION CRITERIA FOR HEPATITIS C TREATMENT IN 

PENNSYLVANIA MEDICAID 

3.1 BACKGROUND 

Chronic hepatitis C virus (HCV) infection is a major, and costly, health problem in the 

United States, affecting 2.7–3.2 million people [64] with the majority unaware of their disease [6]. 

Beginning in 2014, interferon-free HCV therapies, such as sofosbuvir, simeprevir, ledipasvir [76], 

were introduced, leading to substantially improved sustained virologic response (SVR) rates – a 

surrogate for cure – as high as 98% [77], with shorter treatment duration and few adverse effects. 

However, their high prices ($40,000–$94,500 for 12-week therapy) in combination with a large 

number of treatment candidates translates into substantial budgetary impact for health-care payers.  

The prevalence of HCV is higher among low-income populations, who are often enrolled 

in Medicaid [78]. Although state Medicaid programs are eligible to receive at least a 23.1% rebate 

off average manufacturer prices, they spent $1.1 billion on treating HCV-infected individuals in 

2014 [79-81]. Pennsylvania Medicaid, which is the 5th largest Medicaid program by health 

expenditures and the 6th largest by enrollment in the United States [82, 83], spent about 4% of its 

2014 prescription drug expenditures on sofosbuvir alone [84].  

Facing high costs of treatment and operating within budgetary constraints, 36 state 

Medicaid programs have developed treatment authorization guidelines [85] to prioritize HCV 

treatment to patients with more advanced disease. These decisions have been criticized by patient 

advocacy groups and the Centers for Medicare and Medicaid Services [86, 87]. Nevertheless, only 
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seven out of these 36 states had expanded treatment to patients with mild fibrosis scores as of 

February 2015 [88]. Pennsylvania expanded treatment to patients with F2 fibrosis score in July of 

2015 [89] and is currently considering further expansions. 

State Medicaid coverage decisions are complicated by the absence of reasonable estimates 

of HCV prevalence. Such estimates are difficult to generate given that roughly half of patients are 

unaware of infection [13]. Medicaid programs also lack fibrosis scores and genotype information 

in their administrative data, which are required for treatment planning [83]. Additionally, the 

impact of Medicaid treatment strategies on long-term disease and cost outcomes is difficult to 

measure. Since chronic HCV is a slowly progressive disease, Medicaid’s decisions could impact 

downstream HCV spending in Medicare once individuals reach age 65 or become dually enrolled 

due to disability.  

Many of these challenges can be addressed with the use of simulation modeling. The 

objective of our study was twofold: (I) To use a well-validated national HCV simulation model to 

estimate the number of people currently infected with HCV in Pennsylvania Medicaid along with 

their disease characteristics; and (II) to use the model to project the economic and disease impact 

of different prior authorization criteria for treatment in Pennsylvania Medicaid. 

3.2 METHODS 

We used a three-step approach to address the above objectives. First, we estimated the 

observed HCV burden in Pennsylvania Medicaid using claims data from 2007–2012. Second, we 

adapted our previously developed and validated HCV disease burden model (HEP-SIM) [1, 90] to 

Pennsylvania Medicaid using claims data and other published studies. Finally, we used HEP-SIM 
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to estimate the disease burden (both observed and unobserved) of HCV and evaluated the long-

term disease and economic impact of different prior authorization guidelines for treatment in 

Pennsylvania Medicaid. 

3.2.1 Analysis of Pennsylvania Medicaid Claims Data 

We obtained data from the Pennsylvania Medicaid program for paid claims and encounters 

covering services rendered in 2007–2012 for enrollees both in fee-for-service Medicaid and in 

Medicaid managed-care-organizations. We identified individuals diagnosed with HCV for the 

purposes of model validation, defined by the presence of at least one paid inpatient, outpatient or 

professional claim with an ICD-9 diagnosis code for HCV (Table B. 1). Among HCV-diagnosed 

individuals, we identified those with potential treatment contraindications, HCV-related 

complications, liver transplants and rates of HCV treatment, for use as inputs in the 

microsimulation model (Appendix B.1). 

3.2.2 Microsimulation Model for Pennsylvania Medicaid 

HEP-SIM has been extensively validated with the National Health and Nutrition 

Examination Surveys and several published data sources [1, 21, 64, 68]. The natural history of 

HCV in the model was defined using the Metavir scoring system for fibrosis stages: F0 for no 

fibrosis, F1 for portal fibrosis without septa, F2 for portal fibrosis with few septa, F3 for numerous 

septa without cirrhosis, and F4 for compensated cirrhosis (Figure B. 1 and Table B. 2 of 

Appendix B.2). Patients in the F4 stage could further progress to decompensated cirrhosis or 

hepatocellular carcinoma, receive a liver transplant, or die from liver-related complications. 
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We incorporated Pennsylvania Medicaid’s population characteristics into the HEP-SIM 

model, including demographics, HCV incidence, new enrollments in Medicaid, HCV screening 

(both risk-based and birth-cohort) rate, and historic HCV treatment rate. Appendix B.2 and Table 

B. 3–4 provide detailed descriptions of model parameters and how the model was adapted to fit 

Pennsylvania, using a combination of prior literature, publically available data sources, and the 

Medicaid claims data.  

3.2.2.1 Coverage Scenarios 

We simulated three coverage scenarios according to different treatment authorization 

guidelines starting in 2014: (I) Our base-case scenario, in which HCV treatment is available to 

patients with a fibrosis score of F2–F4, consistent with the recent Pennsylvania Medicaid HCV 

treatment authorization criteria[89]; (II) the scenario to expand treatment to all diagnosed HCV 

patients; and (III) the scenario to limit treatment to F3–F4 patients only, consistent with the 

treatment authorization criteria in Pennsylvania Medicaid prior to July 2015, and in several other 

states.  

In each scenario, we assumed that 40% of diagnosed HCV-infected individuals who are 

treatment candidates received treatment each year after 2014 - defined in our model as ‘treatment 

penetration rate’ - in order to account for limitations in provider availability and patient’s 

preference (Table B. 5). Using a 40% treatment penetration rate across scenarios, we assumed that 

a larger number of individuals could be treated annually under F0–F4 coverage (8,200 patients) 

than with F3–F4 (2,500 patients). We address this assumption in more detail in the sensitivity 

analyses. Note that a treatment penetration rate of 40% is greater than the actual treatment rate in 

Pennsylvania Medicaid in 2014. 
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3.2.2.2 Cost 

We set the weekly costs of older HCV therapies, peginterferon, ribavirin, boceprevir, and 

telaprevir, at  $587, $309, $1100, and $4100, respectively [91]. We set the weekly costs of 

sofosbuvir at $7000, ledipasvir/sofosbuvir at $7875, and paritaprevir, ritonavir, ombitasvir, and 

dasabuvir at $6,943 [91, 92]. We applied 23% and 46% discounts to the available average 

wholesale drug costs in 2014 and in 2015 and beyond, respectively, according to the average 

reported discounts and rebates provided to health-care payers [93] (Table B. 6). We also included 

the cost of managing early and advanced stages of HCV including hepatocellular carcinoma and 

liver transplantation, which were obtained from prior literature (Table B. 7) [94, 95].  

3.2.2.3 Model Outputs 

We projected the temporal trends in the prevalence of HCV, number of people aware and 

unaware of their infection, and distribution of fibrosis scores. Since HCV is a slow-progressive 

disease and the benefits of HCV treatment will accrue years later, we simulated our model for a 

long time horizon, from 2015 to 2050. Under each coverage scenario described above, we 

projected the incidence of advanced liver disease, number of liver transplants, and liver-related 

deaths in 2015–2050. We also estimated the long-term cost of chronic HCV management until 

2050.  Because of variable HCV treatment costs in the future, we also estimated the short-term 

budget impact on Medicaid from 2015–2025.  

3.2.2.4 Medicare Outputs for Transitions between Medicaid and Medicare 

Since several benefits of HCV treatment will accrue after some patients have transitioned 

from Medicaid-only coverage to Medicare-only or dual coverage, we estimated the impact of 

Medicaid’s coverage decisions on the disease and cost outcomes in Medicare. In all scenarios, we 
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assumed that patients who did not receive or failed to respond to HCV treatment in Medicaid 

would transition to Medicare at the age of 61, a transition age calculated according to our claims-

based analyses and a published study [96]. We assumed that all patients who transitioned to 

Medicare, who were aware of their infection, and eligible for treatment, would receive treatment 

irrespective of their fibrosis score once in Medicare. 

3.2.2.5 Sensitivity analyses 

Using one-way deterministic sensitivity analysis, we analyzed the effect of model 

parameters on the incidence of advanced-stage liver diseases and budget needed for disease 

management and treatment costs (Appendix B.3). We examined the impact of expanded treatment 

coverage scenarios on model outcomes assuming there is a fixed maximum number of patients 

who can be treated in a given year (because of the number of liver specialists, availability of 

appointments, etc.), instead of a variable treatment penetration rate. We assessed the effect of 

alternative treatment penetration rates on model outcomes in the base case (F2–F4 treatment), and 

also added scenarios in which the expansion of treatment to F2 patients might be delayed until 

2017 or 2020, instead of 2015 in the base case. 

3.3 RESULTS 

3.3.1 Diagnosed HCV Population in Claims Data 

The number of enrollees who had a claim with one or more HCV diagnosis codes increased 

steadily from 18,955 (882 per 100,000) in 2007 to 26,432 (1,023 per 100,000) in 2012 (Table 3.1 
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and Appendix B.4). The number of enrollees who initiated medication therapy increased from 797 

in 2007 to 1,025 in 2012; however, the proportion of individuals who initiated treatment during 

this period remained nearly constant (4%). Pennsylvania Medicaid covered twelve liver transplants 

performed on enrollees with HCV on average each year in 2007–2012. 

3.3.2 Model Validation 

The model-based estimates of the number of patients who were aware of their HCV 

infection in 2007–2012 matched closely the number of HCV-diagnosed enrollees in claims data 

(Table 3.2). The model predicted in 2012 a total of 49,500 patients with HCV (including those 

unaware/undiagnosed), with 14 liver transplants. The projected trend in the number of liver 

transplants from the model was comparable to the trend observed in claims data (Figure B. 2 in 

Appendix B.5). In addition, the projected percentage of individuals with cirrhosis who were aware 

of their disease during 2007–2012 was within 5% of the number of enrollees diagnosed with 

cirrhosis in the analyses of claims data. These findings indicate that the model was appropriately 

calibrated to approximate the characteristics of the Pennsylvania Medicaid population. 
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Table 3.1. HCV-diagnosed population in the Pennsylvania Medicaid claims, 2007–2012, excluding Medicare dual 

eligibles. 

Parameter 2007 2008 2009 2010 2011 2012 
Number of hepatitis C-infected 
individuals 18,955 20,242 23,234 24,352 26,061 26,432 

Mean age 44.7 44.9 45.0 45.4 45.8 46.3 

Sex (%)       
Female  46.7 46.5 46.2 46.0 45.8 46.1 
Male 53.3 53.5 53.8 54.0 54.2 53.9 

Age distribution (%)       
<18 1.0 1.1 1.1 1.1 1.0 0.9 
18–29 14.6 14.8 15.0 14.6 13.4 12.4 
30–39 13.1 13.4 13.8 14.1 15.5 17.0 
40–49 30.4 28.3 26.0 23.9 21.8 19.7 
50–60 35.3 36.0 37.1 38.5 39.2 39.7 
61–64 4.2 4.9 5.5 6.2 7.0 8.0 
65+ 1.5 1.5 1.5 1.7 2.1 2.4 

Number of months enrolled in Medicaid (%)*      

<2  3.3 2.9 2.7 2.2 2.7 2.6 
2-6 11.5 10.2 10.2 9.4 9.0 8.6 
6+ 85.2 86.9 87.1 88.5 88.3 88.7 

Eligibility type (%)        

General assistance 42.5 41.7 42.0 40.9 40.0 36.8 
Supplemental Security Income  43.3 44.3 44.4 45.2 47.0 49.7 
Temporary assistance for needy 
families  14.2 14.0 13.6 13.9 13.1 13.4 

Waiver 0.0 0.0 0.1 0.1 0.0 0.1 

Number (%) of individuals with any 
interferon contraindication (substance 
abuse/depression) 

7,302 
(39%) 

7,999 
(40%) 

9,956 
(43%) 

10,693 
(44%) 

11,771 
(45%) 

12,337 
(47%) 

Number (%) of people who initiated 
treatment 

797 
(4.2%) 

863 
(4.3%) 

977 
(4.2%) 

855 
(3.5%) 

807 
(3.1%) 

1,025 
(3.9%) 

Source: Authors’ analysis of Pennsylvania Medicaid claims data of 2007–2012.  
* Enrolled during the calendar year, not the total number of months ever enrolled. 
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Table 3.2. Estimated prevalence of HCV infected patients in Pennsylvania Medicaid in 2007–2015 and the number 

of new episodes of decompensated cirrhosis, hepatocellular carcinoma, and liver transplant. 

Year HCV cases in 
Claims data* Model-based HCV-infected population in Medicaid† 

  Total with 
diagnoses Total aware  Total DC incidence  HCC 

incidence 
Liver 
transplants  

2001 - 19,700 50,000 50 57 12 
2002 - 19,600 50,000 40 43 14 
2003 - 19,600 50,000 56 51 11 
2004 - 19,500 49,800 70 59 9 
2005 - 19,700 50,200 81 49 10 
2006 - 19,900 50,000 94 57 11 
2007 18,955 20,400 49,500 101 60 12 
2008 20,242 21,800 50,800 111 65 11 
2009 23,234 22,800 50,400 120 66 12 
2010 24,352 24,000 50,200 129 70 13 
2011 26,061 25,400 49,900 141 79 14 
2012 26,432 26,700 49,500 149 83 14 
2013 - 28,500 48,400 143 84 15 
2014 - 30,100 47,700 139 86 15 
2015   31,200 46,700 108 78 16 

Source: Simulation model results  
* The numbers of HCV cases identified from claims data are included for comparison in the highlighted column.  
† The model-based results for each year indicate values at the end of the calendar year.  
Abbreviations: HCV = hepatitis C virus; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma. 
 

3.3.3 HCV Burden in Pennsylvania Medicaid - Model Predictions 

The model projected the HCV-infected population at the end of 2015 at 46,700, with 

31,200 (67%) aware of their diagnosis (Table 3.2).  In the base case (treatment for F2–F4), the 

overall burden of HCV in Pennsylvania Medicaid and the prevalence of undiagnosed cases are 

projected to decrease by 23% and 50% from 2015 to 2025, respectively (Figure 3.1). 
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Figure 3.1. The projected prevalence of hepatitis C in Pennsylvania Medicaid categorized by diagnosed and 

undiagnosed cases in 2007–2050. 

Note: After 2014, the projection of HCV prevalence was calculated under the coverage scenario of treating patients 
with F2–F4 fibrosis levels. 

 

Table 3.3 shows the projected cumulative incidence of advance liver diseases, liver-related 

mortality, chronic disease cost in 2015–2050, and cumulative antiviral treatment cost in 2015–

2025 under each scenario. With a base-case treatment penetration rate of 40%, up to 4,300 HCV-

infected individuals were treated annually in 2015 and beyond (Table B. 8). Compared to the base 

case, limiting treatment coverage to F3–F4 with a 40% treatment penetration rate (treating up to 

2,500 HCV-infected individuals annually) would reduce cumulative treatment cost from $955 

million to $682 million ($274 million reduction) during the next decade (Table 3.3, Panel A), 

incur 15% ($60 million) increase in downstream cumulative chronic disease cost from 2015–2050, 

but minimally affect the cumulative incidence of liver complications and liver-related mortality in 
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Pennsylvania Medicaid through 2050. Compared to the base-case coverage scenario (F2–F4 

treatment), the further coverage expansion to F0 and F1 fibrosis scores (treating up to 8,200 HCV-

infected individuals annually) would increase the cumulative cost of treatment by an additional 

$693 million by 2025, reduce the long-term cost incurred by chronic HCV cases by 35% ($116 

million), but not substantially decrease the overall burden of liver complications in Medicaid 

through 2050. The majority of the 10-year cumulative cost of treatment among these coverage 

scenarios occurred in the first 5 years, a period when the majority of HCV patients received 

treatment (Figure B. 3, Panel A). 
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Table 3.3. Cumulative incidence of HCV outcomes and costs in 2015–2050 under each coverage scenario (Panel A) 

and with different treatment penetration rates under base-case coverage (Panel B). 

  Cumulative results in Pennsylvania Medicaid Cumulative results incurred to Medicare 

 Incidence 2015–2050 Cost ($million) Incidence 2015–2050 Cost ($million) 

  DC HCC LT LRD 
Chronic 
disease 
2015–2050* 

Treatment 
2015–2025† DC HCC LT LRD 

Chronic 
disease 
2015–2050* 

Treatment 
2015–2025† 

Panel A. Coverage 
Scenarios 

          

F3–F4 708 645 138 1,360 392 682 840 721 106 1,440 175 702 
F2–F4 
(base 
case) 

696 636 136 1,351 331 955 830 714 104 1,482 173 619 

F0–F4 688 633 136 1,340 215 1,648 823 703 102 1,452 170 475 

Panel B. Treatment Penetration 
Rate in PA Medicaid‡           

20% 950 783 161 1,595 387 838 1,025 859 123 1,796 219 613 
40% 696 636 136 1,351 331 955 830 714 104 1,482 173 619 
60% 625 588 126 1,261 311 975 786 681 98 1,505 163 616 
80% 595 576 125 1,241 305 986 779 681 98 1,449 162 610 
100% 570 560 121 1,212 299 995 775 673 95 1,432 161 605 

* Chronic disease cost is the cost incurred by chronic stages of hepatitis C virus and the cost of managing associated 
liver complications. 
 † Cost of HCV treatment with new oral antiviral therapies. 
‡ Panel B presents the results of different annual penetration rates, assuming treatment of F2–F4 after 2015. Treatment 
penetration rate is the annual percentage of treatment-eligible Medicaid enrollees who receive treatment. This 
parameter could be affected by the number of physicians to provide HCV treatment, and individuals’ care-seeking 
behavior. 
Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = 
Metavir stage for portal fibrosis with few septa; F3 = Metavir stage for numerous septa without cirrhosis; F4 = Metavir 
stage for cirrhosis; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma; LT = liver transplant; LRD = 
liver-related death. 

3.3.4 HCV Burden in Transitions from Medicaid to Medicare 

Under Medicaid’s F2–F4 treatment coverage and 40% treatment penetration rate (base-

case), HCV-infected individuals who failed treatment in Medicaid or transitioned to Medicare at 

61 years old without receiving treatment would incur an economic disease burden of $173 million 

in 2015–2050 and treatment cost burden of $619 million in 2015–2025 (Table 3.3, Panel A). 

Expanding treatment to include F0 and F1 fibrosis scores in Pennsylvania Medicaid reduced the 
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costs for treatment in Medicare by 23%, or $144 million (from $619 million to $475 million) 

through 2025 and reduced the number of individuals receiving treatment in Medicare from 2015–

2050 by 46%, from 6,600 to 3,500. Changes in treatment coverage in Medicaid, however, did not 

substantially impact the burden of new cases of decompensated cirrhosis, hepatocellular carcinoma 

or liver transplant in Medicare. 

3.3.5 Sensitivity Analyses 

Variations in treatment penetration rate in Pennsylvania Medicaid would have a substantial 

impact on the annual HCV treatment costs (Figure B. 3, Panel B) and the incidence of advanced 

liver disease (Table 3.3, Panel B, and Figure B. 4). For example, if all treatment-eligible patients 

(100%) were to receive treatment under F2–F4 coverage, costs of therapy would increase by $40 

million (4%) in the next decade when compared to a 40% treatment penetration rate (i.e. 955 

million to 995 million) (Table 3.3, Panel B). However, the incidence of liver transplant would 

drop by 11% (15 fewer liver transplants) through 2050 and liver-related death decrease by 10% 

(139 deaths). 

Setting a maximum number of individuals who could be treated annually in 2015 and 

beyond (instead of setting a treatment penetration rate) substantially altered model outputs in 

different coverage scenarios (Table 3.4). Compared to F2–F4 coverage, expanding treatment to 

F0 and F1 fibrosis when only 2,200 patients can be treated annually increased the cumulative 

incidence of advanced liver diseases and liver-related deaths by 30%. It was only in a scenario of 

unlimited treatment capacity that expansion to F0–F4 did not increase the incidence of liver 

complications and death. 
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The impact of delaying the inclusion of F2 fibrosis levels in treatment coverage depended 

on the treatment penetration rate. Waiting until 2017 or 2020 to expand treatment to F2 (compared 

to expanding in 2015) would have beneficial effects on liver-related outcomes if treatment 

penetration is limited, while it would have a modest negative impact if treatment penetration is 

100% (Table B. 9). Overall, model projections were robust to changes in other model parameters 

(Table B. 10).  
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Table 3.4. Cumulative incidence of HCV outcomes and costs in 2015–2050 under various coverage scenarios, altering the maximum number of individuals treated annually 

in 2015 and beyond. 

    Cumulative results in Pennsylvania Medicaid Cumulative results incurred to Medicare 
  Incidence 2015–2050 Cost ($million) Incidence 2015–2050 Cost ($million) 
Maximum 
individuals treated 
annually in 2015 
and beyond Coverage Scenario DC HCC LT LRD 

Chronic 
disease 
2015–2050* 

Treatment 
2015–2025** DC HCC LT LRD 

Chronic 
disease 
2015–2050* 

Treatment 
2015–2025** 

2,200 

Panel A.                    
F3–F4 744 659 140 1,382 396 660 873 750 108 1,631 184 696 
F2–F4 (base case) 957 784 163 1,600 386 838 1,020 855 125 1,839 219 611 
F0–F4 1,424 1,050 212 2,061 399 1,004 1,409 1,117 159 2,443 296 425 

4,300 

Panel B.              

F3–F4 614 585 125 1,257 369 702 782 688 98 1,470 163 704 
F2–F4 (base case) 696 636 136 1,351 331 955 830 714 104 1,482 173 619 
F0–F4 896 742 155 1,531 269 1,489 972 818 119 1,795 207 503 

6,400 

Panel C.              

F3–F4 572 563 121 1,214 361 712 782 682 97 1,487 161 699 
F2–F4 (base case) 623 587 129 1,259 311 975 784 687 98 1,487 164 616 
F0–F4 742 660 141 1,381 229 1,592 859 741 108 1,603 181 486 

8,500 

Panel D.              

F3–F4 576 560 120 1,214 361 712 774 677 97 1,415 162 699 
F2–F4 (base case) 595 575 124 1,240 305 985 782 675 99 1,456 162 610 
F0–F4 672 621 132 1,310 208 1,642 816 704 102 1,519 170 475 

Unlimited 

Panel E.              

F3–F4 584 567 121 1,224 362 712 781 677 97 1,398 162 698 
F2–F4 (base case) 575 559 121 1,214 300 996 771 673 97 1,403 161 604 
F0–F4 574 556 122 1,210 180 1,718 775 673 96 1,465 160 447 

* Chronic disease cost is the cost incurred by chronic stages of hepatitis C virus and the cost of managing associated liver complications. 
** Cost of HCV treatment with new antiviral therapies. 
Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = Metavir stage for portal fibrosis with few septa; F3 = Metavir 
stage for numerous septa without cirrhosis; F4 = Metavir stage for cirrhosis; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma; LT = liver transplant; LRD = 
liver-related death. 
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3.4 DISCUSSION 

Our study applied microsimulation modeling to estimate the prevalence of HCV in 

Pennsylvania Medicaid and analyze the cost and disease burden impact of broadening treatment 

coverage. We projected that including F2 fibrosis patients in treatment coverage - something only 

seven states had done as of February 2016 - compared to limiting treatment to F3–F4 patients only, 

would increase the cumulative treatment cost by $274 million in 2015–2025, decrease long-term 

chronic HCV cost by $60 million in 2015–2050, but would not substantially decrease the incidence 

of advanced liver diseases or liver-related death in the Medicaid population in Pennsylvania. 

Expanding treatment in Medicaid would decrease treatment costs in Medicare – an impact that is 

not fully considered in policy discussions or prior literature [97]. Furthermore, our findings 

highlight the critical importance of treatment penetration rate in estimating the impact of coverage 

scenarios; in settings of limited treatment penetration or capacity, expansion of eligibility could 

potentially worsen liver related outcomes. 

Our study uses a novel approach of combining claims-based analyses and validated 

microsimulation modeling to estimate the impact of treatment coverage scenarios on HCV disease 

and cost burden in the future. Importantly, our analyses do not measure cost-effectiveness, as in 

prior studies [98], but focus on treatment costs and liver-related outcomes for one payer 

(Pennsylvania Medicaid), uniquely accounting for treatment capacity and for the transition in 

insurance between Medicaid and Medicare.  

Treatment penetration rate is an especially important variable in Pennsylvania, where 

Medicaid guidelines stipulate that HCV therapies should be prescribed by physicians specialized 
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in infectious disease, gastroenterology, hepatology, or transplantation [89]. The limited availability 

of these specialists in some areas could limit the number of enrollees who are able to pursue 

treatment and result in low treatment penetration rate [99], although opportunities exist to expand 

access to specialists through telemedicine. Our findings suggest that within the base-case scenario 

(treatment of F2–F4), expanding the treatment penetration rate improved liver-related outcomes 

while increasing cost. However, with a fixed treatment rate and limits on the maximum number of 

annually treated individuals, expanding treatment to lower fibrosis levels may potentially lead to 

F0–F2 patients being treated before F3–F4 patients and worse outcomes. In fact, with a low 

treatment penetration rate among enrollees, the state could potentially benefit by delaying the 

expansion of treatment, thus ensuring that more severe cases are treated before less severe ones.  

The expanded treatment coverage in 2015 would be beneficial only if the treatment penetration 

rate were 80% or higher – a rate that may potentially exceed provider capacity - highlighting the 

policy significance of ensuring adequate system capacity for treating all HCV patients before 

eligibility criteria are expanded.  

Our results show that expanded HCV treatment policies in Medicaid may not substantially 

decrease the incidence of liver complications and death in this population. Patients may be 

successfully treated as they progress to more advanced fibrosis levels while in Medicaid, and 

others still in early fibrosis stages (F0 or F1) may transition out of Medicaid into Medicare, which 

offers treatment to all eligible patients in our model regardless of fibrosis levels.  Our analysis 

highlights the potential tradeoffs between Medicaid and Medicare - expanded treatment coverage 

and the rates of treatment penetration in Medicaid would impact the future disease burden and 

costs incurred to Medicare when patients transition in coverage. While important, these results can 

be considered estimates only, given the limitations of the model in precisely defining the moment 
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of transition from Medicaid to Medicare. Nonetheless, our analyses document the importance of 

expanding the discussion about costs and impacts of treatment beyond Medicaid only for 

conditions with slow rates of progression like HCV.     

One final consideration in evaluating the potential impact of HCV treatment coverage 

decisions is the expected future drop in drug prices [100]. For example, the Department of Veterans 

Affairs was able to end treatment prioritization and expand HCV treatment to all Veterans 

regardless of disease severity in February 2016 [101], due to their ability to lower prices and due 

to an infusion of funds from Congress. Our model is based on current pricing data and will 

overestimate costs if HCV drug prices for Medicaid fall substantially in the future. Costs, however, 

will not change the impact of a given coverage decision for HCV on future liver-related health 

outcomes. 

Our study has several limitations. First, our model cannot fully account for transitions from 

Medicaid coverage only to dual eligibility for Medicare, a transition potentially related to the onset 

of advanced liver disease. However, our claims-based analyses and a published study [96] suggests 

that most individuals with HCV transition to Medicare by age 61; thus we assumed Medicare 

became the primary payer after that age. We also assumed that all patients are treated in Medicare 

once leaving Medicaid regardless of fibrosis level. Second, we did not analyze the potential effect 

of treatment on the transmission of HCV in the Medicaid population. However, since the 

magnitude of HCV incidence did not affect the projected prevalence of HCV according to our 

sensitivity analyses, we do not expect this omission to substantially change the findings. Third, the 

costs of chronic disease management were not drawn from Medicaid or Medicare data due to 

limited data availability. As a result, we mainly focused on the relative (rather than absolute) 

differences in projected disease management costs between different coverage scenarios. Fourth, 
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our analysis did not incorporate potential benefits of treatment on improved quality of life and 

increased economic productivity [86]. Finally, we did not consider the impact of Medicaid 

expansion, which was implemented in Pennsylvania in 2015, for which there was no available 

information on changes in population clinical characteristics at the time of our study. 

In conclusion, the expansion of treatment prior authorization criteria would significantly 

increase the economic burden of HCV treatment and somewhat reduce the cost of chronic HCV in 

Pennsylvania, but would not substantially decrease HCV-related complications among infected 

Medicaid enrollees. Concurrent with patient prioritization policies, the issue of treatment 

accessibility and treatment penetration rate among eligible patients should also be a focus of policy 

efforts. Expanding eligibility for hepatitis C treatment could potentially be counterproductive if 

patients with less severe liver disease are treated before those whose disease is more advanced.  
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4.0  CREATING A SEXUAL PARTNERSHIP NETWORK IN AN AGENT-BASED 

MODELING PLATFORM USING SURVEY DATA 

4.1 BACKGROUND 

Sexually transmitted diseases (STDs) have a large human and economic burden in the 

United States. Using the National Health and Nutrition Examination Survey (NHANES), the 

Centers for Disease Control and Prevention (CDC) estimated about 20 million new STD infections 

and an overall 110 million prevalent STD cases in the United States in 2008 with an estimated $16 

billion in direct medical costs annually [102]. Sexual transmissions account for the majority of 

new chronic disease infections with various routs of transmission, such as human 

immunodeficiency virus (HIV) [103]. For example, men who have sex with men, heterosexuals, 

and injection drug users accounted for 63%, 25%, and 8% of new HIV infections [104]. More than 

half of these new infections are due to transmission by the individuals who are unaware of their 

disease [105].  

Improving public health programs to tackle the burden of STDs is challenging due to large 

health disparities among various risk groups, mainly driven by social and behavioral factors. The 

structure of sexual networks and including socioeconomic factors of individuals in the formation 

of social and sexual networks at a population level directly impacts the transmission of sexually 

transmitted diseases [106, 107]. The studies of social networks have been evolving since 1970s 

[108], though surveys and questionnaires have remained as the main sources of obtaining sexual 

network data. Researchers have published several studies about STD’s transmission and care 

management using evidence-based approaches with limited datasets of social networks [109-120]. 
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These studies mostly targeted specific healthcare settings, or a certain infected sub-population with 

static network contacts, and lacked the dynamics of sexual interactions. Computer simulations 

have also been recently used to study social network structures and sexual transmission [121-123], 

though an analysis of a generic sexual transmission network with a sexual-network design using 

public survey data has not been presented yet. 

In this study, we aimed to create a mechanism to instantiate and maintain a sexual 

partnership network according to publicly available survey data in an agent-based simulation 

model. Agent-based computer simulation modeling is a relatively new tool in public health 

decision analysis and policy.  An agent-based model is an informative flexible tool to simulate the 

dynamics of a complex system with discrete micro-entities known as agents. Using an agent-based 

model, we can model the interactions of agents and their environment, as well as the interactions 

among agents.  The characteristics of agents and environment in an agent-based model could be 

designed to represent realistic information such as geographic and socio-economic factors with a 

capacity of including necessary sources of heterogeneity [124]. The objective of this study is to 

add the development and maintenance of sexual networks in the Framework for Reconstruction of 

Epidemiological Diseases (FRED), an agent-based modeling platform. Our study focused on the 

heterosexual network of individuals and serves as a first developmental step to simulate the 

transmission of STDs through a dynamic sexual transmission network. 
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4.2 METHODS 

4.2.1 NHANES Data 

In order to instantiate a sexual partnership network, we analyzed the individual-level data 

entries of NHANES 2007–2014 data files [79]. We obtained age and sex records from the 

demographics files and the number of sexual partners over an individual’s lifetime and in the past 

12 months from the sexual behavior files, using the variable codes shown in Table 4.1. Entries 

with missing values and response codes of “refused” and “don’t know” were excluded from the 

analysis. We defined the categories of number of partners as 0, 1, 2, 3 or more, and divided the 3-

or-more partner category to three subcategories of 3–6, 7–14, and 15 or more partners. We 

calculated the distribution of individuals for these categories by age group and sex. Figure C. 1 

includes the distribution of the number of partners in lifetime for the analyzed NHANES data files. 

 

Table 4.1. Variable Names and Questions used from the sexual behavior NHANES data files.  

Variable Codes and Question* Target Age 

Females respondents  
SXQ700 - Ever had vaginal sex with a man 18–69 years 

SXQ706 - Ever had anal sex with a man 18–69 years 

SXD101 ‐ Number of male sex partners/lifetime  18–69 years 

SXD450 ‐ Number of male sex partners/year (past 12 months) 18–59 years 

Male respondents   

SXQ800 - Ever had vaginal sex with a woman 18–69 years 

SXQ806 - Ever had anal sex with a woman 18–69 years 

SXD171 - Number of female sex partners/lifetime 18–69 years 

SXD510 - Number of female sex partners/year (past 12 months) 18–59 years 
* Variable codes are shown for NHANES 2009–2010. Some variable codes differed in different years of NHANES 
data. The target age in NAHENS 2001–2002 and 2005–2006 was chosen as 20–59 years. 
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The analysis of four serial cross-sectional NHANES data in 2007–2014 indicated that the 

distribution of the total number of partners in individuals’ lifetime differed considerably by sex, 

whereas in theory, these distributions should be similar. This data discrepancy indicated the known 

systematic and egocentric bias in behavior-related survey data and the over-perception of the 

number of sexual partners by males [108, 125-127].  Specifically, Brown and colleagues reported 

that men’s estimates of the number of sexual partners in lifetime are two to four times greater that 

the estimates reported by women since estimation strategies vary by sex [126]. As a result, we 

used the average of the distributions for the number of partners in lifetime and per year among 

males and females by age group in our study. We chose NHANES 2009–2010 results (Table 4.2) 

as the basis of implementing sexual partnership status in our model, since it provided enough 

follow-up time from the initiation of the model to the present year, and also included individuals 

younger than 20 years, as opposed to NHANES data prior to 2008. 

  



47 

Table 4.2. The percentage of individuals with different number of partners in lifetime and in the past 12 months by 

age according to NHANES 2009–2010 data, on average among males and females. 

 Number of opposite-sex partners in lifetime 

 Age 0 1 2 3 or more 3–6 7–14 15 or more 
15–19 22.3 19.7 10.3 47.7 62.0 26.3 11.8 
20–24 11.7 12.0 8.7 67.6 46.5 31.9 21.6 
25–29 6.3 11.7 10.0 72.0 38.5 32.4 29.1 
30–34 1.2 13.5 9.8 75.5 39.6 31.2 29.1 
35–39 2.6 12.8 6.3 78.3 36.0 34.0 30.0 
40–44 2.4 12.6 7.0 78.0 41.2 28.3 30.6 
45–49 2.8 13.4 5.1 78.7 41.7 21.2 37.1 
50–54 3.9 11.8 8.3 76.0 44.0 26.4 29.6 
55–59 5.8 12.4 10.2 71.6 46.3 24.7 29.1 
 Number of opposite-sex partners in the past 12 months 

Age 0 1 2 3 or more 3–6 7–14 15 or more 
15–19 28.0 36.9 15.4 19.7 83.3 9.5 7.2 
20–24 17.4 49.2 13.0 20.4 86.3 7.4 6.3 
25–29 11.8 66.1 13.5 8.6 67.5 30.0 2.5 
30–34 9.0 72.8 9.5 8.7 82.1 12.5 5.4 
35–39 9.1 78.7 4.6 7.7 90.0 10.0 0.0 
40–44 10.9 76.3 6.0 6.8 83.1 14.6 2.3 
45–49 15.7 71.9 6.8 5.6 75.0 17.5 7.5 
50–54 26.7 61.4 6.5 5.3 85.7 7.1 7.1 
55–59 33.1 59.0 4.9 2.9 52.8 22.2 25.0 

 

4.2.2 Initiation of Sexual Partnership Network 

We used the Framework for Reconstruction of Epidemiological Diseases (FRED), an open-

source large-scale agent-based simulation model developed by the Public Health Dynamics 

Laboratory of University of Pittsburgh, as our agent-based modeling platform to create a 

heterosexual partnership network. FRED uses a census-based synthetic population that includes 

sociodemographic information of the population and specific geographical locations, household, 

workplace and school information [128]. We chose the United States synthetic population of 

Allegheny County, Pennsylvania [129, 130] aged between 15–75 years available in FRED, as the 

baseline population in the simulation. We excluded the individuals who were labeled as unattended 
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minors or were in households defined as same-sex couples or families (Appendix C.2). The 

population aged between 15–59 years were the focus of our analysis due to availability of 

NHANES data for this age range, but we included the individuals in 60–75 age range to allow for 

the continuation of established partnerships as adults aged in our simulation. 

We initiated the sexual partnerships for males and females of different age groups in two 

main steps: first, we labeled individuals according to the number of partners during a year 

according to their sex and age group, and matched male and females according to their labeled 

number of partners and age-mixing patterns observed in data. Second, we assigned the duration of 

partnerships and the probability of sexual contact. The details of each step are described in the 

following sections.  

4.2.2.1 Partnerships formation 

We assigned the initial number of desired partners to individuals according to the cross-

sectional distribution of partners in a year observed in NHANES 2009–2010 data (Table 4.2) [79, 

131]. We then matched males and females according to their desired number of partners and age-

mixing patterns presented in Table 4.3 [132]. The details of partnership matching process are 

available in Appendix C. 3. 

 

Table 4.3. Age-mixing patterns among heterosexual adults based on sex. 

      Partner, %       
Age (years) <19   20–29   30 or older   
 Women  Men Women  Men Women  Men 
<19 48.1 83.3 50.3 16.1 1.6 0.5 
20–29 5.8 22.7 72.3 64.5 21.9 12.8 
30 or older 1.9 2.9 26.2 44.3 71.8 52.9 
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4.2.2.2 Partnership duration, concurrency, and sexual acts 

We categorized sexual partnerships into two types of long term and short term, and 

assumed that short-term partnerships lasted less than three years. We calculated partnership type 

and duration for adult males, and assigned the same duration and type to their female partners. 

Using the probability of first marriage among adult males by age, derived from a survival analysis 

based on 2006–2010 National Survey of Family Growth (Table 4.4) [84], we calculated the hazard 

rate of entering a long-term relationship for males over all ages (Figure C. 2) in the simulation 

model in order to select the duration type of  partnership. We assumed that each individual could 

have at most one long-term partnership at each point in time.  

 

Table 4.4. Probability of first marriage among men aged 18–44 years, by specified age and selected characteristics: 

United States, 2006–2010. 

By age Probability of first marriage 
 Value Standard Error 
20 0.05 0.004 
25 0.31 0.011 
30 0.56 0.013 
35 0.71 0.013 
40 0.78 0.013 

 

We used the data provided by How Couples Meet and Stay Together (HCMST) study [133] 

to categorize the short-term partnership durations to two groups of less than one year and one to 

three years, (Table C. 1). We assigned individuals to these short-term partnership categories 

according to the data, and then calculated the duration using the uniform distribution.  

The duration of long-term partnerships were calculated according to another survival 

analysis in the 2006–2010 National Survey of Family Growth [84]. In this study, individuals were 

categorized into three ‘age at first marriage’ categories: under 20 years, 20–24 years, and 25 years 
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and older. This study also provided the probability of first marriages remaining intact for 5, 10, 15 

and 20 years, for each age at first marriage categories (Table C. 2). Using these probabilities, we 

fitted exponential probability distributions of marriage duration, for each category of age at first 

marriage (Figure C. 3) and used them to calculate the duration of long-term partnerships, in an 

individual were assigned to start one in a given year. Appendix C. 4 includes detailed information 

on calculating the duration of partnerships in the model. 

We included partnership concurrency for individuals with two or more partners, defined as 

the overlapping duration of partnerships, according to the number of partners and duration of each 

partnership (Appendix C. 5). We used the estimated number of sexual acts for American males 

from a published study [134] (Appendix C. 6) to calculate the daily probability of having a sexual 

act for males with partners. We randomly picked a partner if a male had more than two partners 

on the day that a sexual act was scheduled. 

4.2.3 Dynamics of Sexual Partnership Network 

Subsequent to network initiation, the dynamics of sexual partnership network were used to 

simulate individuals and their partnerships through their lifetime. We constructed the dynamics of 

the sexual partnership network based on two main components: 1) the overall population dynamics 

as individuals entered and exited the simulation model due to births and deaths, and 2) the 

evolution of individuals’ partnerships over time. 

For the first component, we included FRED’s capabilities for creating the incoming cohorts 

of individuals using birth rates and allowed individuals to enter the sexual partnership network on 

their 15th birthday.  We also simulated the outgoing population if they aged past 75 years, or in 

case of death using all-cause mortality rates in the synthetic population. 
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The second component of network dynamics involved setting rules for updating sexual 

partnerships and calibrating the model to produce network characteristics similar to that in the 

NHAHES data. On each day, the simulation updated the duration left in partnerships, removed the 

partnerships that had no duration left, updated the number of partnerships for individuals whose 

birthdays were on the same day, matched individuals who needed new partners after the update, 

and removed the individuals from the network according to their age or mortality rates (Figure 

4.1).  

 

Figure 4.1. Steps for updating the sexual partnership network on each day in the simulation. 
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The mechanism of updating an individual’s number of partnerships in each year was 

according to the individual’s partnership history. For this purpose, we defined the probabilities of 

starting new partnerships so that an individual could go from one category of number of partners 

in lifetime, to another category, given the individual’s age, current number of partners, and the 

total number of partners in his/her lifetime. These probabilities were defined for each age group 

and the category of the number of partners. For example, five probabilities were defined for 15–

20 year-old individuals with one partners in their lifetime: the probability of having no new 

partners (staying in the category of one partner in lifetime), the probability of having one new 

partners (moving to the category of two partners in lifetime), probability of having 2–5 new 

partners (moving to the category of 3–6 partners in lifetime), probability of having 6–13 new 

partners (moving to the category of 7–14  partners in lifetime),  and probability of having  14 or 

more new partners (moving to the category of 15 or more partners in lifetime). Figure 4.2 

illustrates these probabilities for age groups 15–19 and 20–24. Note that the probabilities of 

moving to ≥ 3 partner categories are not all shown for simplicity. 

We aimed to calibrate our model by distributing preference characteristics across our 

synthetic population in such a way to reproduce and maintain population network characteristics 

of number partners in lifetime and per year in NHANES data. Our model calibration included 

adjusting the probabilities used for updating the number of partnerships in each age group as 

described above. 
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Figure 4.2. Mechanism of updating the number of partners in each year for 15–19 age group. 

Note: The black and grey arrows indicate the transition probabilities between partner categories within the same age 
group. The blue dashed arrows indicate the movement of individuals between age groups on their birthday. For 
example, a 19-year-old individual with one partner in his lifetime, would transition to a 20-year-old individual with 
one partner in lifetime on his birthday. 
 

4.2.4 Model Outputs and Sensitivity Analyses 

We projected the distribution of number of partners in lifetime and per year for adults aged 

15–59 years in the sexual partnership network at the end of each simulated year in FRED over 10 

years.  We also studied the impact of changes (± 0.05) in the probabilities of having new partners 

for individuals based on the history of their partnerships, on the overall distribution of number of 

partners in lifetime among adults. These probabilities were defined as: p1: probability of moving 

from no partner in lifetime to one partner in lifetime in a year; p2: probability of moving from one 

partner in lifetime to two partners in lifetime in a year; p3: probability of moving from two partners 
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in lifetime to ≥ 3 partners in lifetime in a year; p4: probability of moving from 3–6 partners in 

lifetime to 7–14 partners in lifetime in a year; and p5: probability of moving from 7–14 partners 

in lifetime to ≥ 15 partners in lifetime in a year. 

4.3 RESULTS 

Our mechanism for instantiating and maintaining a heterosexual partnership network, 

generated the distribution of number of partners in a lifetime and per year by age group over 10 

years. During our model calibration process for adjusting the probability of new partnerships, we 

recreated the distribution of number of partners similar to our target values, the observed 

distribution found in NHANES 2009–2010 data. Table C. 5 present the cross-sectional 

distribution of the individuals with different number of partners in their lifetime, at the end of each 

year in the simulation. Ninety-three percent of the projected values for the percentage of 

individuals in categories of 0, 1, 2 or ≥ 3 partners in lifetime were within five percentage points of 

the values in NAHNES 2009–2010 on average over 10 simulation years. Table C. 6 presents the 

difference in the percentages of people in each partner category, between model results over 10 

years and NHANES 2009–2010. Our model results were the most different from NHANES 2009–

2010 values for the projected values for the sub-categories of ≥ 3 partners, i.e. 3–6, 7–14 and ≥ 15 

partners in lifetime, for 45–49, 50–54 and 55–59 age groups. 

The percentages of individuals for partner in lifetime categories of 0, 1, 2, and ≥ 3 obtained 

from model results over eight years, and NHANES 2007–2014 are presented in  Figure 4.3. Each 

graph in the left column of this figure represents a cross-sectional image of the network 

characteristics in FRED at the end of two years, and each graph in the right column represents the 
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results of data analysis of the number of partners in lifetime for four NHANES datasets. In this 

figure, we observe that the FRED’s overall projected patterns of partnership network 

characteristics in the synthetic population were similar to the network characteristics found in this 

series of cross-sectional NHANES data. 

Our model also projected the distribution of the number of partners per year among 

heterosexual adults (Table C. 7). Table C. 8 presents the difference in the percentages of people 

in each partner-in-year category, between model results over 10 years and NHANES 2009–2010. 

Our model projected the percentages of individuals with two or ≥ 3 partners in year, similar to the 

observed values in NHANES 2009–2010. However, the simulation projected consistently higher 

number of single individuals, and lower number of individuals in monogamous partnerships 

compared to the values obtained in the NHANES 2009–2010 data. In addition, our model produced 

a similar proportion of individuals who had ≥ 15 partners in a given year, but produced lower 

percentages of individuals with 3–6 and higher percentages of individuals with 7–14 partners in a 

year compared to NHANES data. 

4.3.1 Sensitivity analyses 

Table C. 9 presents the results of our sensitivity analyses on changing five probabilities of 

individuals moving from one partner-in-lifetime category to the next partner-in-lifetime category 

on the percentage of individuals in different partner categories in the model, at the end of 10 years. 

The distribution of the number of individuals in with different categories partners in lifetime were 

the most sensitive to changes in parameters used in 15–19, 20–24, and 25–29 age groups. 

Specifically, changing the parameters used in these age groups modified the distribution in the 

same age groups (15–19, 20–24, and 25–29) rather than those in older age groups.  
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 Figure 4.3. Model results and the 2007–2014 NHANES data for the distribution of number of partners in lifetime by age group. 
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4.4 DISCUSSION 

The objective of our study was to develop a mechanism to use a serial cross-sectional 

survey of sexual behavior to instantiate and maintain a network of sexual partnerships. We 

designed the principal methods by which we go from serial survey result data by setting the 

behaviors of adults in an agent-based modeling platform, FRED, to produce the observed cross-

sectional network characteristics. Our methods incorporate important components to represent an 

individual’s sexual behavior, such as the individual’s history of sexual partnerships, sexual mixing 

patterns based on age, concurrent partners with different partnership durations, and the frequency 

of sexual acts.  

Our mechanism for structuring a sexual partnership network resulted in distribution of 

number of partners in lifetime and in a year by age, similar to those reported in NHANES 2009–

2010 survey data. The NHANES surveys include serial cross-sectional data on nationally 

representative samples of individuals in two-year intervals, although the individuals in these 

samples differ in each survey.  However, the design of our simulation model is inherently different. 

Our model includes a synthetic population of individuals, with incoming and outgoing cohorts 

based on birth and death rates, respectively.  Our model updates this dynamic synthetic population 

as they age through the simulation, and our results represent the cross-sectional status of the same 

population at the end of each year. In other words, our results represent serial cross-sectional data 

of a longitudinally simulated synthetic population. Therefore, we could interpret our results as to 

how the actual network characteristics would be if the NHANES included the same sample of 

individuals over time, and its participants responded accurately and without bias.  
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We faced two main challenges in developing the methods to instantiate and maintain the 

partnership network. First, due to data discrepancies in the number of partners in a lifetime and a 

year for males and females in the 2009–2010 NHANES survey of sexual behaviors, we used the 

average values of the percentage of individuals with different number of partners in a lifetime as 

calibration targets in our model over a 10-year period. Second, the serial cross-sectional surveys 

from NHANES data presented an over-identification problem. We could not choose both 

distributions of partners in lifetime and partners in a year from NHANES data as calibration 

targets, since matching our results to either of these distributions resulted in large differences 

between NHAHES data and our model results for the other distribution. Focusing on matching the 

distribution of partners in a year resulted in significant differences in the other distribution, leaving 

more than 90% of the individuals in ≥ 15 partners-in-lifetime category. Therefore, we focused on 

maintaining the distribution of the number of partners in lifetime in the model calibration process. 

Our current simulation model uses a synthetic population that represents the population of 

our target geographical location, Allegheny county, Pennsylvania. However, our model calibration 

process of adjusting a matrix of probabilities of having different numbers of new partners given 

an individual’s age and previous number of partners in lifetime, could accommodate the 

adjustments to represent other populations with different network partnership characteristics. The 

structures needed to simulate other partnership networks would be the distributions of partners in 

lifetime and in a year by age and sex. Other useful inputs that would make the model calibration 

process easier are more granulated age-mixing patterns and duration of partnerships, and 

individual’s preferences on starting new partnerships after their first long-term partnership ends 

due to divorce or partner’s death. 
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Reducing the number of STD transmissions through prevention interventions has been a 

focus of health policy strategies for decades [135]. Understanding the dynamics of sexual 

partnership networks is critical to improve the impacts of interventions that focus on individual 

behaviors, since these dynamics are representative of individual behaviors and the leading factors 

of STD transmissions. Most large-scale microsimulation models developed for the analysis of 

STDs’ health interventions and policy, however, lack integrated models for sexual transmission 

through partnership networks. In these models, the estimated number of transmissions are usually 

obtained from the literature, or calculated in a separate compartmental model of differential 

equations1 and fed into the microsimulation. Both of these approaches exclude the dynamics of 

sexual partnerships with respect to duration and concurrency of partnerships. Moreover, the 

compartmental models have limited flexibility in incorporating the details of individual 

characteristics, behavior, and interventions. Our simulation model, however, incorporated a 

detailed mechanism for developing a sexual partnerships networks in a flexible stochastic agent-

based modeling platform, which has the capacity of simulating every individual through his 

lifetime, incorporating infectious diseases natural history and treatments at patient level, and 

accounting for sexual transmission simultaneously.  

Our agent-based modeling platform offers several research applications in the study of 

STD epidemics. Given that the agent-modeling platform can accommodate the details of multiple 

infectious diseases, our simulation can be used to test the impact of various biological or behavioral 

interventions on STD epidemics by instantiating, maintaining, and projecting the evolution of STD 

epidemics in the future using the sexual partnership network. We focused on generating a generic 

                                                 

1 Compartmental models usually estimate the number of people in susceptible, exposed, infected, and recovered states 
of an infection given an initial number of patients in each state 



61 

sexual network structure with age mixing patterns, partnership status and durations as the key 

determinants for sexual partnership formations and dissolutions. As a result, our model has the 

potential of representing other sexual networks such as a network of homosexual partnerships. 

Our study has several limitations. First, limited data on the sexual behaviors and number 

of partners for heterosexual population was our main challenge in developing this tool. Data 

sources that provide detailed information on the structure of a sexual partnership network are 

related to studies of cross-sectional STD outbreaks with a small sample size. As a result, we chose 

NHANES sexual behavior survey data for model calibration since it is a nationally representative, 

longitudinal survey that includes larger sample sizes compared to other cross-sectional studies, 

and made several assumptions due to the survey data discrepancy issues. Moreover, the 

unavailability of a detailed large-scale dataset of sexual contacts makes the simulation model 

susceptible to over- or under-estimating the status of STD prevalence and transmission in the 

population. We speculate that a number of undiagnosed people are not included in STD-related 

statistics, which also contributes to estimation biases. Second, the topography of a sexual network 

depends on geographical location and the characteristics of the people involved in big network 

components. However, due to unavailability of large-scale real-world data, we cannot verify the 

topography of sexual networks in the model. Third, our simulation does not include race, an 

important factor in sexual and social mixing patterns, due to limited time and resources for this 

project. Though given the availability of data and resources, our flexible modeling mechanism has 

the capability of adjusting sexual partnership networks by race.  

In conclusion, we developed the principal methods of using cross-sectional sexual behavior 

survey data to instantiate and maintain a sexual partnership network in an agent-based modeling 

platform. Given the flexibility of agent-based models in individual-level simulations of biological 
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and behavioral features, our study is a significant developmental step to have a comprehensive tool 

to study the interventions aimed at reducing the burden of sexually transmitted infections. 
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APPENDIX A: THE CHANGING BURDEN OF HEPATITIS C INFECTION IN THE 

UNITED STATES: MODEL-BASED PREDICTIONS 

This appendix provides data and supporting results, including validation, sensitivity 

analyses, and additional clinical scenarios for the first section. 

A.1 MODEL IMPLEMENTATION 

We developed our individual-level state-transition model using C++, a general-purpose 

programming language, to make computational simulation experiments efficient for the entire 

hepatitis C virus (HCV)-infected population in the United States (US). 
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A.2 MODEL INPUTS FOR PATIENTS WITH INTERFERON 

CONTRAINDICATION 

Treatment with regimens that include pegylated interferon and ribavirin (PEG-RBV) is 

limited by medical and psychiatric contraindications. Some of these contraindications are 

considered modifiable by medical or psychiatric interventions, such as anemia, depression, and 

substance abuse. We assumed that 34.6% of patients with HCV infection had contraindications to 

therapy and that 67% of these contra-indications were modifiable [13], and if there was an urgency 

to treat a patient's hepatitis C due to advanced fibrosis (F3–F4), those patients could be treated. 

We were not able to determine a response rate to PEG-RBV treatment in such patients, but 

assumed that the response rate for patients with modifiable contraindications to interferon would 

be 20% lower than treatment-naïve patients with similar degrees of fibrosis but no 

contraindications. Wave 1 and Wave 2 treatment response rates in non-cirrhotic patients with 

contraindications to interferon were assumed to be similar to those without the contraindication.  

However, the response rates in cirrhotic patients with contraindications to interferon were assumed 

to be lower than those without the contraindication.  
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A.3 MODEL INPUTS 

Several model input parameters values and their descriptions are as following: 

Table A. 1. Model Parameter Values. 

Variable Value References 
Natural history transition probabilities*   
F0 to F1 0.117 [136] 
F1 to F2 0.085 [136] 
F2 to F3 0.120 [136] 
F3 to F4 0.116 [136] 
F4 to DC 0.029 [137] 
F4 to HCC 0.014 [137] 
SVR F4 to DC 0.008 [138] 
SVR F4 to HCC 0.005 [138] 
DC to HCC 0.068 [139] 
DC to liver transplantation 0.023 [17, 140] 
DC (first year) to liver-related death 0.182 [139] 
DC (>1 year) to liver-related death 0.112 [139] 
HCC to liver transplantation 0.040 [67, 141] 
HCC to liver-related death 0.427 [137] 
Liver transplantation (first year) to liver-related death 0.116 [142] 
HCV-infected population characteristics   
Total active HCV-infected population in 2001 (million) 3.2 [21] 
Chronic-infection ratio (%)† 75 [13] 
Percentage of patients unaware of their HCV infection 60 [13, 15, 143-147]  
Chronic contraindication (%)‡ 34.6 [13] 
Sex (%)  [21] 
Male  64.22  
Female 35.78  
HCV genotype (%)  [25] 
1 73  
2 14  
3 8  
Other 5  
Stage distribution of HCV-infected population in 2001 (%)  [17] 
F0 27.20  
F1 33.39   
F2 17.11   
F3 11.08   
F4 9.61   
DC 1.43   
HCC 0.18   
Age distribution of HCV-infected population in 2001 (%)  [21] 
18–19 1.78  
20–29 10.67   
30–39 22.67   
40–49 28.89   
50–59 20.44   
60–69 9.33  
70–100 6.22   
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Variable Value References 
Age distribution of the new HCV infections (%)  [22] 
18–19 3.2  
20–29 26.3   
30–39 27.7   
40–49 24.9   
50–59 13.4   
60–69 4.4  
70–100 0.1   
Distribution of treatment-experienced patients (%)   
Genotype 1   
Relapsers 53 [22]  
Partial responders  19 [22]  
Null responders 28 [22]  
Genotype 2–6   
Relapsers 47 [23]  
Partial responders  16 [23]  
Null responders 37 [23]  

F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage 
for portal fibrosis with few septa; F3 = METAVIR stage for numerous septa without cirrhosis; F4 = METAVIR stage 
for cirrhosis; HCV = hepatitis C virus; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma; SVR = 
sustained virologic response. 
*Reported values are annual transition probabilities. 
†The percentage of infected patients who develop chronic infection.  
‡The ratio of patients with contraindication (with modifiable and non-modifiable reasons) amongst chronically 
infected patients. 
 

 

  

Table A. 1 continued 
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Table A. 2. The Estimated Annual Incidence of Hepatitis C in the United States, from 2001–2050. 

Year Estimated Incidence 
2001 24 000 
2002 29 000 
2003 28 000 
2004 26 000 
2005 21 000 
2006 19 000 
2007 17 000 
2008 18 000 
2009 16 000 
2010 17 000 
2011–2050* 18 000 

*Annual HCV incidence in 2001–2010 are based on a report by the Centers for Disease Control and Prevention [112], 
and we assumed the annual HCV incidence to be constant beyond 2011 at 18 000 cases in all clinical scenarios. 
 
 
 
 
 
 

Table A. 3. The Annual Probability of Becoming Aware of Hepatitis C Infection in Each Disease Stage. 

Stage Probability of becoming aware 
(assumption) 

Estimated average years 
spent in stage 

Probability of becoming aware 
within a year 

F0 0.25 4.04 0.06940 
F1 0.25 4.99  0.05591 
F2 0.25 3.47 0.07891 
F3 0.25 3.15 0.08598 
F4 0.75 4.47 0.26513 
DC 0.95 3.36 0.56489 

Note: We assumed that all patients with hepatocellular carcinoma would be aware of their disease. DC = 
decompensated cirrhosis. 
F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage 
for portal fibrosis with few septa; F3 = METAVIR stage for numerous septa without cirrhosis; and F4 = METAVIR 
stage for cirrhosis. 
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Table A. 4. The Base-Case Scenario Values and Range of Parameters Used in 1-Way Sensitivity Analyses. 

Parameter Base-case 
value 

Lower 
value 

Upper 
value Reference 

Natural history transition probabilities*     
F0 to F1 0.117 0.104 0.130 [136] 
F1 to F2 0.085 0.075 0.096 [136] 
F2 to F3 0.120 0.109 0.133 [136] 
F3 to F4 0.116 0.104 0.129 [136] 
F4 to DC 0.029 0.010 0.039 [137] 
F4 to HCC 0.013 0.010 0.079 [137] 
SVR F4 to DC 0.008 0.002 0.036 [138] 
SVR F4 to HCC 0.005 0.002 0.013 [138] 
DC to HCC 0.068 0.030 0.083 [139] 
DC to liver transplantation 0.023 0.010 0.062 [17, 140] 
DC (first year) to liver-related death 0.182 0.065 0.190 [139] 
DC (>1 year) to liver-related death 0.112 0.065 0.190 [139] 
HCC to liver transplantation 0.040 0.000 0.140 [67, 141] 
HCC to liver-related death 0.427 0.330 0.860 [137] 
Liver transplantation (first year) to liver-related 
death 0.116 0.060 0.420 [142] 

Liver transplantation (>1 year) to liver-related death 0.044 0.024 0.110 [142] 
HCV-infected population characteristics     

Total HCV-infected population in 2001 (million) 4.2 3.4 4.9 [21] 
Chronic infection ratio (%)† 78 70.4 86.6 [21] 
Percentage of patients unaware of their HCV 
infection 60 50 75 [13] 

Chronic contraindication (%)‡ 34.6 31.14 38.06 [13] 
Other  -10% +10%  

Percentage of patients who pursue treatment 80 72 88  
Percentage of patients who accept screening and 
receive correct results  81.9 73.71 90.09  

F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage 
for portal fibrosis with few septa; F3 = METAVIR stage for numerous septa without cirrhosis; F4 = METAVIR stage 
for cirrhosis; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma; SVR = sustained virologic response; 
HCV = hepatitis C virus. 
*Reported values are annual transition probabilities. 
†The percentage of infected patients who develop chronic infection.  
‡The ratio of patients with contraindication (with modifiable and non-modifiable reasons) amongst chronically 
infected patients. 
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Table A. 5. The Base-Case Scenario Values and Range of Group Parameters in 1-Way Sensitivity Analyses. 

Parameter Base-case 
value 

Lower 
value 
(-10%) 

Upper 
value 
(+10%) 

Reference 

HCV-infected population characteristics     
Sex (%)     
Male  64.22 58.03 67.90 [21] 
Female 35.78 41.97 32.10  
HCV genotype (%)*    [25, 148] 
1 73 65 83  
2 14 12.6 15.4  
3 8 7.2 8.8  
Other 5 4.5 5.5  
Stage distribution of HCV-infected population in 2001 (%)†  -10% +10% [17] 
F0 27.2 24.48 29.92  
F1 33.39 30.05 36.73  
F2 17.11 15.40 18.82  
F3 11.08 9.97 12.19  
F4 9.61 8.65 10.57  
DC 1.43 1.29 1.57  
HCC 0.18 0.20 0.16  
Age distribution for HCV-infected population in 2001 (%)‡  -10% +10%  
18–19 1.78 1.60 1.96  
20–29 10.67 9.60 11.74  
30–39 22.67 20.40 24.94  
40–49 28.89 26.00 31.78  
50–59 20.44 18.40 22.48  
60–69 9.33 8.40 10.26  
70–100 6.22 5.60 6.84  
Age distribution of the new HCV infections (%)  -10% +10%  
18–19 3.2 2.88 3.52  
20–29 26.3 23.67 28.93  
30–39 27.7 24.93 30.47  
40–49 24.9 22.41 27.39  
50–59 13.4 12.06 14.74  
60–69 4.4 3.96 4.84  
70-100 6.22 0.09 0.11  
Distribution of treatment-experienced patients (%)§  -10% +10%  
Genotype 1     

Relapsers 53 47.7 58.3 [22] 
Partial responders  19 17.1 20.9 [22] 
Null responders 28 25.2 30.8 [22] 

Genotype 2–6     
Relapsers 47 42.3 51.7 [23] 
Partial responders  16 14.4 17.6 [23] 
Null responders 37 33.3 40.7 [23] 

HCV = hepatitis C virus; F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without 
septa; F2 = METAVIR stage for portal fibrosis with few septa; F3 = METAVIR stage for numerous septa without 
cirrhosis; F4 = METAVIR stage for cirrhosis; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma. 
*For sensitivity analyses, all other values in this category were normalized such that the total percentage adds to 100%. 
†For sensitivity analyses of disease-stage distribution for the infected population, all other values in this category were 
normalized such that the total percentage adds to 100%. 



70 

‡For sensitivity analyses of age distribution of the infected population and annual new HCV infections, all other values 
in this category were normalized such that the total percentage adds to 100%. 
§For sensitivity analyses, all other values in this category were normalized such that the total percentage adds to 100%. 

Table A. 5 continued 
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A.4 MODEL OUTPUTS 

Table A. 6. Annual Hepatitis C Treatment Capacity in the United States from 2001–2007 and Its Effect on 

Advanced-Stage Hepatitis C Outcomes. 

 Year Treatment capacity in 2001–2007 [63] 
 2001 126 040 
 2002 126 040 
 2003 107 131 
 2004 144 276 
 2005 114 197 
 2006   88 083 
 2007   83 270 
Treatment capacity alternative data estimates 
Baseline: Base-case scenario* with constant treatment capacity beyond 2007 
 2008–2050 83 270 
Scenario 1: Base-case scenario with an increase in treatment capacity by 10% in 2012 and 50% in 2014  
 2008–2011 83 270 
 2012–2013 91 579 (10% increase) 
 2014–2050 124 905 (50% increase) 
Scenario 2: Base-case scenario with an increase in treatment capacity by 10% in 2012 and 20% decrease in 2014†  
 2008–2011 83 270 
 2012–2013 91 579 (10% increase) 
 2014–2050 66 616 (20% decrease) 
Scenario 3: Base-case scenario with an increase in treatment capacity by 10% in 2012 and unlimited capacity starting 
in 2014 
 2008–2011 83 270 
 2012–2013 91 579 (10% increase) 
 2014–2050 Unlimited 
 Treatment capacity scenarios 
Advance-stage disease outcomes  Baseline* Scenario 1 Scenario 2† Scenario 3 
Decompensated cirrhosis     

Cumulative incidence (2014–2050) 293 900 253 100 318 100 165 100 
Peak annual prevalence 62 700 61 300 63 300 55 600 
Year of peak annual prevalence 2019 2017 2019 2014 
Peak annual incidence 15 300 15 200 15 500 11 900 
Year of peak annual incidence 2014 2015 2017 2014 

Hepatocellular carcinoma     
Cumulative incidence (2014–2050) 240 200 211 900 255 700 149 200 
Peak annual prevalence 23 200 22 800 23 400 21 200 
Year of peak annual prevalence 2019 2017 2020 2014 
Peak annual incidence 11 400 11 100 11 400 9 800 
Year of peak annual incidence 2019 2017 2020 2014 

Liver-related deaths     
Total deaths (2014–2050) 433 600 385 900 458 900 280 400 
Peak annual deaths 19 300 18 900 19 300 17 500 
Year of peak annual deaths 2020 2018 2020 2014 
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 Treatment capacity scenarios 
Advance-stage disease outcomes  Baseline* Scenario 1 Scenario 2† Scenario 3 
Liver transplants     

Total transplants (2014–2050) 37 900 34 500 40 400 24 500 
Peak annual liver transplants 2100 2100 2100 2000 
Year of peak annual liver transplants 2016 2015 2017 2014 

*Base case scenario = simulation scenario with risk-based and birth-cohort screening, treatment with peginterferon 
and ribavirin and/or DAAs before 2014, and newly approved and future therapies starting in 2014, and limited 
treatment capacity. 
†Scenario 2 simulated decreased capacity beyond 2014 as a result of limited reimbursement of expensive HCV drugs. 
 
 
 

Table A. 7. Comparison of Model Estimations to Published Data and Modeling Studies. 

Output Model estimation (year) Published data (year) References 
Cross-validation with 
published data    

Chronic HCV cases 2.7 million  
(average in 2003–2010) 

2.7 million (2003–2010) [64] 

Hepatocellular carcinoma 
prevalence 

12 700 (average in 2001–2004) 12 300 (average in 2001–2004) [65] 

Hepatocellular carcinoma 
incidence 

7500 (2005) 6500 (2005) [66, 67] 

Liver-related deaths 11 900 (2005) 11 850 (2005) [22] 

Comparison with other 
modeling study – 2001 
projections 

Model estimation (% of total 
chronic HCV cases in 2001) 

Previously published modeling 
study estimation (% of total 
chronic HCV cases in 2001) 

 

Chronic HCV cases 3.2 million 3.5 million [17] 
F0 cases 864 700 (26.92) 970 000 (27.66) [17] 
F1 cases 1 098 600 (34.20) 1 190 000 (33.93) [17] 
F2 cases 558 800 (17.40) 610 000 (17.39) [17] 
F3 cases 378 600 (11.79) 395 000 (11.26) [17] 
F4 cases 311 400 (9.69) 342 500 (9.76) [17] 
Decompensated cirrhosis 
cases 33 100 (-) 47 000 (-) [17] 

Liver transplants  2100 (-) 1800 (-) [17] 
HCV = hepatitis C virus; F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without 
septa; F2 = METAVIR stage for portal fibrosis with few septa; F3 = METAVIR stage for numerous septa without 
cirrhosis; and F4 = METAVIR stage for cirrhosis. 
 

Table A. 6 continued 
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Table A. 8. Validation of the Natural History of Our Model Predicting Disease Burden of Hepatitis C in the United 

States. 

Initial treatment response Subsequent liver 
complication 

10-year cumulative incidence 

van der Meer et al. [68] Model 
prediction 

Patients who did not achieve 
SVR    

 DC 29.9% (95% CI: 24.3–35.5%) 33.6% 
 HCC 21.8% (95% CI: 16.6–27.0%) 20.7% 
 LRD plus LT 27.4% (95% CI: 22.0–32.8%) 29.6% 
Patients who achieved SVR    
 DC 2.1% (95% CI: 0–4.5%) 7.5% 
 HCC 5.1% (95% CI: 1.3–8.9%) 5.9% 
 LRD plus LT 1.9% (95% CI: 0–4.1%) 7.8% 

SVR = sustained virologic response; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma; LRD = liver-
related death; LT = liver transplant; CI = confidence interval. 
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Table A. 9. The Effect of Hepatitis C Treatment Efficacies on Advanced-Stage Hepatitis C Outcomes. 

Scenario Advance-stage disease outcomes Baseline 
10% relative 
decrease* (% 
change) 

5% relative 
increase† (% 
change) 

Pre-DAA Decompensated cirrhosis    
 Cumulative incidence (2014–2050) 418 100 439 800 (5%) 406 900 (-3%) 
 Peak annual prevalence 68 000 70 100 (3%) 67 200 (-1%) 
 Year of peak annual prevalence 2022 2022 2022 
 Peak annual incidence 16 800 17 500 (4%) 16 400 (-2%) 
 Year of peak annual incidence 2020 2019 2019 
 Hepatocellular carcinoma    
 Cumulative incidence (2014–2050) 318 900 334 600 (5%) 312 400 (-2%) 
 Peak annual prevalence 25 000 26 100 (4%) 24 700 (-1%) 
 Year of peak annual prevalence 2021 2022 2021 
 Peak annual incidence 12 200 12 800 (5%) 12 100 (-1%) 
 Year of peak annual incidence 2021 2021 2021 
 Liver-related deaths    
 Total deaths (2014–2050) 560 100 585 000 (4%) 548 400 (-2%) 
 Peak annual deaths 20 600 21 400 (4%) 20 300 (-1%) 
 Year of peak annual deaths 2023 2023 2023 
 Liver transplants    
 Total transplants (2014–2050) 47 800 49 500 (4%) 46 700 (-2%) 
 Peak annual liver transplants 2100 2200 (5%) 2100 (0%) 
 Year of peak annual liver transplants 2021 2020 2015 
Base Case Decompensated cirrhosis    
 Cumulative incidence (2014–2050) 293 900 326 400 (11%) 277 100 (-6%) 
 Peak annual prevalence 62 700 65 000 (4%) 61 400 (-2%) 
 Year of peak annual prevalence 2019 2019 2019 
 Peak annual incidence 15 300 15 900 (4%) 15 100 (-1%) 
 Year of peak annual incidence 2014 2016 2015 
 Hepatocellular carcinoma    
 Cumulative incidence (2014–2050) 240 200 261 700 (9%) 229 200 (-5%) 
 Peak annual prevalence 23 200 24 100 (4%) 23 300 (0%) 
 Year of peak annual prevalence 2019 2019 2018 
 Peak annual incidence 11 400 11 700 (3%) 11 500 (1%) 
 Year of peak annual incidence 2019 2018 2018 
 Liver-related deaths    
 Total deaths (2014–2050) 433 600 468 900 (8%) 414 900 (-4%) 
 Peak annual deaths 19 300 19 800 (3%) 18 900 (-2%) 
 Year of peak annual deaths 2020 2020 2019 
 Liver transplants    
 Total transplants (2014–2050) 37 900 41 000 (8%) 36 900 (-3%) 
 Peak annual liver transplants 2100 2100 (0%) 2000 (-5%) 
 Year of peak annual liver transplants 2016 2017 2018 
Ideal Decompensated cirrhosis    
 Cumulative incidence (2014–2050) 158 100 193 900 (23%) 139 400 (-12%) 
 Peak annual prevalence 56 000 57 200 (2%) 55 500 (-1%) 
 Year of peak annual prevalence 2014 2014 2014 
 Peak annual incidence 12 000 12 600 (5%) 11 800 (-2%) 
 Year of peak annual incidence 2014 2014 2014 

 



75 

Scenario Advance-stage disease outcomes Baseline 
10% relative 
decrease* (% 
change) 

5% relative 
increase† (% 
change) 

 Hepatocellular carcinoma    
 Cumulative incidence (2014–2050) 143 900 167 500 (16%) 130 900 (-9%) 
 Peak annual prevalence 20 800 21 000 (1%) 20 300 (-2%) 
 Year of peak annual prevalence 2014 2014 2014 
 Peak annual incidence 9500 9800 (3%) 9300 (-2%) 
 Year of peak annual incidence 2014 2014 2014 
 Liver-related deaths    
 Total deaths (2014–2050) 272 100 311 400 (14%) 251 800 (-7%) 
 Peak annual deaths 17 500 17 800 (2%) 17 400 (-1%) 
 Year of peak annual deaths 2014 2014 2014 
 Liver transplants    
 Total transplants (2014–2050) 24 000 26 900 (12%) 22 000 (-8%) 
 Peak annual liver transplants 2000 2100 (5%) 2000 (0%) 
 Year of peak annual liver transplants 2014 2014 2014 

*The treatment efficacy rates of all therapies used under each scenario were decreased relatively by 10%. For example, 
under the base-case scenario, the treatment efficacy of peginterferon and ribavirin (PEG-RBV) and the treatment 
efficacy of triple therapy (PRG-RBV plus boceprevir/telaprevir) were relatively reduced by 10% compared with the 
default values.  
†The treatment efficacy rates of all therapies used under each scenario were increased relatively by 5%.  
Pre-DAA = simulation scenario with risk-based screening and peginterferon and ribavirin treatment; Base case = 
simulation scenario with risk-based and birth-cohort screening, treatment with peginterferon and ribavirin and/or 
DAAs before 2014, and newly approved and future therapies starting in 2014, and limited treatment capacity; Ideal = 
simulation scenario with universal screening, treatment with peginterferon and ribavirin and/or DAAs before 2014, 
and newly approved and future therapies starting in 2014, and unlimited treatment capacity; DAA = direct-acting 
antiviral agent. 
Note: The year of peak annual prevalence or incidence is mostly similar in the baseline and sensitivity analyses results. 
In some cases, the year of peak annual prevalence or incidence in the baseline, though similar, did not fall between 
the projected values for sensitivity analyses because of first-order uncertainty in the model outcomes. 
 

Table A. 9 continued 
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Table A. 10. The Effect of Possible Delays in the Launch of Future Therapies According to the Base-Case 

Scenario* on Advanced-Stage Hepatitis C Outcomes. 

 Launch of future therapies (start year) 

Outcome (2014–2050) 
2-year early:  
Wave 1 (2014) 
Wave 2 (2015) 

Default: 
Wave 1 (2014) 
Wave 2 (2017) 

2-year delay: 
Wave 1 (2014) 
Wave 2 (2019) 

4-year delay:  
Wave 1 (2014) 
Wave 2 (2021) 

Cumulative incidence of 
decompensated cirrhosis 292 000 293 900 295 600 296 700 

Cumulative incidence of 
hepatocellular carcinoma 240 500 240 200 242 000 242 300 

Total liver-related deaths 432 100 433 600 434 700 436 300 

Total liver transplants 38 200 37 900 38 300 38 400 

*Base case scenario = simulation scenario with risk-based and birth-cohort screening, treatment with peginterferon 
and ribavirin and/or DAAs before 2014, and newly approved and future therapies starting in 2014, and limited 
treatment capacity. 
Wave 1 = new therapies launched in 2014 for all patients that increased treatment response rates to 90% in non-
cirrhotic patients and 60%–80% in cirrhotic patients; Wave 2 = future therapies that we assumed would be launched 
in 2017 and increase treatment response rates to 90% in cirrhotic patients. 
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Table A. 11. 1-Way Sensitivity Analyses of the Ratio of Patients in F0–F3 States who Choose to Wait for Better Therapies before 2014 According to the Base-

Case Scenario. 

   Cumulative incidence in 2014–2050 
(Percent difference from base-case) 

Peak annual incidence in 2014–2050 
(Percent difference from base-case) 

Combinations Wait in F0–F2 
states (%) 

Wait in F3 
state (%) DC HCC LRD Peak annual 

DC incidence 
Peak annual 
HCC incidence 

Peak annual 
LRD 

1 0 0 327 700 264 400 471 500 63 800 23 700 19 400 
2 25 0 326 600 263 600 470 500 63 200 23 600 19 400 
3 50 0 326 400 262 500 469 900 63 200 23 400 19 300 
4 75 0 324 900 263 200 468 500 62 400 23 700 19 200 
5 100 0 323 400 261 900 467 300 62 100 23 300 18 900 
6 25 25 326 700 263 200 470 000 63 600 23 600 19 300 
7 50 25 325 900 263 000 469 600 62 800 23 500 19 200 
8† 75 25 325 500 262 800 469 700 62 700 23 200 19 300 
9 100 25 325 100 263 000 468 600 62 100 23 100 19 100 
10 50 50 326 200 263 400 470 400 62 800 23 600 19 300 
11 75 50 326 300 263 200 469 600 62 800 23 400 19 200 
12 100 50 325 700 263 400 469 200 62 300 23 200 19 000 
13 75 75 326 800 265 000 471 400 62 500 23 500 19 100 
14 100 75 326 200 264 300 470 200 61 700 23 000 18 900 
15 100 100 326 600 264 700 471 000 62 200 23 200 18 900 

*Base case scenario = simulation scenario with risk-based and birth-cohort screening, treatment with peginterferon and ribavirin and/or DAAs before 2014, and 
newly approved and future therapies starting in 2014, and limited treatment capacity.  
†The results of the base-case scenario. 
F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage for portal fibrosis with few septa; F3 = 
METAVIR stage for numerous septa without cirrhosis; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma. 
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Table A. 12. Results of 1-Way Sensitivity Analyses. 

 Cumulative incidence in 2014–2050 
(Percent difference from base-case) 

Peak annual incidence in 2014–2050 
(Percent difference from base-case) 

Parameter DC HCC LRD Peak annual DC 
incidence 

Peak annual 
HCC incidence 

Peak annual 
LRD 

Base-case results 325 500 262 800 469 700 62 700 23 200 19 300 
Natural-history transition probabilities          
F0 to F1, 0.104 320 100 (-2) 258 100 (-2) 461 400 (-2) 61 500 (-2) 23 000 (-1) 18 700 (-3) 
F0 to F1, 0.130 330 900 (2) 267 500 (2) 476 400 (1) 63 800 (2) 23 600 (2) 19 400 (1) 
F1 to F2, 0.075 314 100 (-4) 253 000 (-4) 452 700 (-4) 60 300 (-4) 22 400 (-4) 18 500 (-4) 
F1 to F2, 0.096 338 100 (4) 272 900 (4) 486 300 (4) 65 300 (4) 24 400 (5) 20 200 (5) 
F2 to F3, 0.109 316 000 (-3) 254 600 (-3) 454 800 (-3) 60 300 (-4) 22 600 (-3) 18 500 (-4) 
F2 to F3, 0.133 335 500 (3) 270 600 (3) 483 900 (3) 65 000 (4) 24 000 (3) 19 700 (2) 
F3 to F4, 0.104 314 300 (-3) 253 500 (-4) 452 300 (-4) 60 100 (-4) 22 400 (-4) 18 300 (-5) 
F3 to F4, 0.129 335 000 (3) 271 200 (3) 484 100 (3) 65 200 (4) 24 400 (5) 19 800 (3) 
F4 to DC, 0.010 201 100 (-38) 257 900 (-2) 370 100 (-21) 29 900 (-52) 21 400 (-8) 13 600 (-30) 
F4 to DC, 0.039 368 500 (13) 262 800 (0) 504 900 (7) 76 100 (21) 24 200 (4) 21 400 (11) 
F4 to HCC, 0.010 336 300 (3) 244 300 (-7) 456 000 (-3) 64 000 (2) 21 000 (-9) 18 400 (-5) 
F4 to HCC, 0.079 180 800 (-44) 448 300 (71) 595 400 (27) 39 700 (-37) 57 700 (149) 31 200 (62) 
SVR F4 to DC, 0.002 268 100 (-18) 252 200 (-4) 429 400 (-9) 59 400 (-5) 22 900 (-1) 18 400 (-4) 
SVR F4 to DC, 0.036 508 900 (56) 299 400 (14) 599 000 (28) 78 800 (26) 24 700 (6) 21 800 (13) 
SVR F4 to HCC, 0.002 328 800 (1) 234 700 (-11) 445 400 (-5) 62 800 (0) 22 200 (-4) 18 600 (-3) 
SVR F4 to HCC, 0.013 319 100 (-2) 328 200 (25) 524 400 (12) 62 000 (-1) 26 100 (12) 20 200 (4) 
DC to HCC, 0.030 326 500 (0) 215 200 (-18) 464 200 (-1) 74 800 (19) 19 200 (-17) 18 800 (-2) 
DC to HCC, 0.083 325 000 (0) 278 000 (6) 470 600 (0) 58 700 (-6) 24 700 (6) 19 400 (0) 
DC to liver transplantation, 0.010 325 700 (0) 268 000 (2) 472 100 (0) 65 900 (5) 23 700 (2) 19 200 (0) 
DC to liver transplantation, 0.062 326 400 (0) 250 200 (-5) 460 900 (-2) 54 800 (-13) 22 200 (-4) 18 600 (-4) 
DC (first year) to liver-related death, 0.065 325 700 (0) 277 000 (5) 466 300 (-1) 70 600 (13) 24 500 (6) 18 900 (-2) 
DC (first year) to liver-related death, 0.190 325 900 (0) 262 700 (0) 470 300 (0) 62 000 (-1) 23 400 (1) 19 000 (-2) 
DC (>1 year) to liver-related death, 0.065 326 600 (0) 285 600 (9) 460 100 (-2) 74 300 (19) 25 000 (8) 18 300 (-5) 
DC (>1 year) to liver-related death, 0.190 325 400 (0) 242 100 (-8) 476 100 (1) 50 900 (-19) 21 600 (-7) 19 900 (3) 
HCC to liver transplantation, 0.000 326 200 (0) 262 800 (0) 475 400 (1) 62 500 (0) 25 400 (9) 19 600 (1) 
HCC to liver transplantation, 0.140 324 900 (0) 263 000 (0) 459 400 (-2) 62 500 (0) 20 000 (-14) 18 400 (-5) 
HCC to liver-related death, 0.330 325 400 (0) 262 700 (0) 466 300 (-1) 62 200 (-1) 29 000 (25) 18 800 (-3) 
HCC to liver-related death, 0.860 326 100 (0) 263 100 (0) 474 200 (1) 63 200 (1) 12 400 (-47) 19 600 (2) 
Liver transplantation (first year) to liver-related 
death, 0.060 

325 900 (0) 263 300 (0) 469 200 (0) 63 000 (0) 23 200 (0) 19 000 (-1) 
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 Cumulative incidence in 2014–2050 
(Percent difference from base-case) 

Peak annual incidence in 2014–2050 
(Percent difference from base-case) 

Parameter DC HCC LRD Peak annual DC 
incidence 

Peak annual 
HCC incidence 

Peak annual 
LRD 

Liver transplantation (first year) to liver-related 
death, 0.420 325 800 (0) 262 900 (0) 473 400 (1) 62 900 (0) 23 400 (1) 19 500 (1) 

Liver transplantation (>1 year) to liver-related 
death, 0.024 325 400 (0) 263 200 (0) 460 900 (-2) 62 600 (0) 23 200 (0) 18 800 (-2) 

Liver transplantation (>1 year) to liver-related 
death, 0.110 326 700 (0) 263 000 (0) 480 100 (2) 62 800 (0) 23 300 (0) 19 700 (2) 

HCV-infected population characteristics       
Total HCV-infected population in 2001, 3.4 million 237 400 (-27) 194 100 (-26) 347 800 (-26) 47 600 (-24) 17 800 (-23) 14 500 (-25) 
Total HCV-infected population in 2001, 4.9 million 407 500 (25) 325 800 (24) 579 100 (23) 75 900 (21) 28 300 (22) 23 300 (21) 
Chronic-infection ratio, 70.4% 275 200 (-15) 224 100 (-15) 400 800 (-15) 54 200 (-13) 20 300 (-12) 16 700 (-13) 
Chronic-infection ratio, 86.6% 383 800 (18) 308 600 (17) 548 400 (17) 71 600 (14) 26 800 (15) 21 900 (13) 
Percentage of patients unaware of their HCV 
infection, 50% 326 200 (0) 262 100 (0) 469 000 (0) 62 700 (0) 23 200 (0) 19 100 (-1) 

Percentage of patients unaware of their HCV 
infection, 75% 326 100 (0) 263 600 (0) 469 800 (0) 62 400 (0) 23 300 (0) 19 100 (-1) 

Chronic contraindication, 31.14% 325 600 (0) 262 900 (0) 468 900 (0) 62 600 (0) 23 400 (1) 19 100 (-1) 
Chronic contraindication, 38.06% 326 100 (0) 263 700 (0) 469 800 (0) 63 000 (1) 23 200 (0) 19 100 (-1) 
Other       
Percentage of patients who pursue treatment, 72% 325 200 (0) 263 700 (0) 470 300 (0) 62 600 (0) 23 400 (1) 19 100 (-1) 
Percentage of patients who pursue treatment, 88% 326 200 (0) 262 400 (0) 469 000 (0) 62 500 (0) 23 100 (0) 19 200 (0) 
Percentage of patients who accept screening and 
receive correct results, 73.71% 325 300 (0) 263 300 (0) 469 100 (0) 62 300 (-1) 23 300 (0) 19 200 (-1) 

Percentage of patients who accept screening and 
receive correct results, 90.09% 325 900 (0) 263 200 (0) 469 300 (0) 62 400 (-1) 23 400 (1) 19 100 (-1) 

HCV = hepatitis C virus; F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage for portal fibrosis 
with few septa; F3 = METAVIR stage for numerous septa without cirrhosis; F4 = METAVIR stage for cirrhosis; DC = decompensated cirrhosis; HCC = 
hepatocellular carcinoma; LRD = liver-related deaths; SVR = sustained virologic response. 

Table A. 12 continued 
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Table A. 13. Results of 1-Way Sensitivity Analyses for Group Parameters*. 

 Cumulative incidence in 2014–2050 
(Percent difference from base-case) 

Peak annual incidence in 2014–2050 
(Percent difference from base-case) 

Parameter DC HCC LRD 
Peak annual 

DC incidence 
Peak annual 

HCC incidence 
Peak annual 

LRD 
Base-case results 325 500 262 800 469 700 62 700 23 200 19 300 
HCV-infected population characteristics       
Sex (%)       

Male 58.03%, Female 41.97% 329 000 (1) 264 000 (0) 473 200 (1) 63 300 (1) 23 200 (0) 19 100 (-1) 
Male 67.90%, Female 32.10% 324 600 (0) 261 200 (-1) 466 700 (-1) 62 300 (-1) 23 300 (0) 19 100 (-1) 

HCV genotype (%)       
1, 65% 322 100 (-1) 260 500 (-1) 465 800 (-1) 62 100 (-1) 23 200 (0) 18 900 (-2) 
1, 83% 329 700 (1) 265 500 (1) 474 100 (1) 63 500 (1) 23 300 (1) 19 200 (-1) 
2, 12.6% 326 200 (0) 263 500 (0) 469 700 (0) 62 800 (0) 23 300 (0) 19 100 (-1) 
2, 15.4% 324 600 (0) 261 800 (0) 468 200 (0) 62 500 (0) 23 300 (0) 19 100 (-1) 
3, 7.2% 324 900 (0) 263 200 (0) 468 500 (0) 62 400 (0) 23 200 (0) 19 200 (-1) 
3, 8.8% 325 300 (0) 262 400 (0) 468 600 (0) 62 400 (0) 23 400 (1) 19 000 (-1) 
Other, 4.5% 325 700 (0) 262 900 (0) 469 900 (0) 62 700 (0) 23 100 (0) 19 100 (-1) 
Other, 5.5% 326 200 (0) 263 300 (0) 470 000 (0) 63 000 (1) 23 300 (1) 19 200 (-1) 

Stage distribution of HCV-infected 
population in 2001 (%) 

      

F0, 24.48% 360 300 (11) 295 500 (12) 541 400 (15) 77 500 (24) 28 600 (23) 23 700 (23) 
F0, 29.92% 350 500 (8) 286 600 (9) 521 900 (11) 73 600 (17) 27 100 (17) 22 300 (16) 
F1, 30.05% 357 100 (10) 293 100 (12) 536 900 (14) 77 100 (23) 28 600 (23) 23 500 (22) 
F1, 36.73% 354 200 (9) 290 600 (11) 528 000 (12) 73 900 (18) 27 700 (19) 22 500 (17) 
F2, 15.40% 353 200 (9) 289 400 (10) 528 700 (13) 75 100 (20) 27 500 (19) 22 600 (17) 
F2, 18.82% 358 900 (10) 295 400 (12) 537 600 (14) 76 300 (22) 28 400 (22) 23 100 (20) 
F3, 9.97% 354 600 (9) 289 000 (10) 527 800 (12) 74 200 (18) 27 400 (18) 22 600 (17) 
F3, 12.19% 357 100 (10) 293 800 (12) 536 000 (14) 76 200 (21) 28 300 (22) 23 200 (20) 
F4, 8.65% 354 100 (9) 290 600 (11) 529 100 (13) 74 200 (18) 27 700 (19) 22 700 (17) 
F4, 10.57% 354 900 (9) 292 800 (11) 534 200 (14) 76 300 (22) 28 100 (21) 23 000 (19) 
DC, 1.29% 357 100 (10) 291 800 (11) 533 000 (13) 75 500 (20) 28 000 (20) 23 000 (19) 
DC, 1.57% 354 600 (9) 291 500 (11) 531 600 (13) 75 600 (21) 27 800 (20) 22 900 (19) 
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 Cumulative incidence in 2014–2050 
(Percent difference from base-case) 

Peak annual incidence in 2014–2050 
(Percent difference from base-case) 

Parameter DC HCC LRD 
Peak annual 

DC incidence 
Peak annual 

HCC incidence 
Peak annual 

LRD 
HCC, 0.20% 355 000 (9) 291 200 (11) 531 400 (13) 75 100 (20) 27 800 (20) 22 900 (19) 
HCC, 0.16% 355 700 (9) 292 000 (11) 532 200 (13) 75 400 (20) 27 900 (20) 23 000 (19) 

Age distribution for HCV-infected 
population in 2001 (%) 

      

18–19, 1.60% 325 000 (0) 261 600 (0) 467 900 (0) 62 500 (0) 23 200 (0) 19 200 (-1) 
18–19, 1.96% 326 200 (0) 264 100 (0) 470 500 (0) 62 500 (0) 23 600 (2) 19 100 (-1) 
20–29, 9.60% 323 200 (-1) 260 100 (-1) 465 200 (-1) 62 500 (0) 23 400 (1) 19 200 (0) 
20–29, 11.74% 327 800 (1) 264 800 (1) 472 400 (1) 62 600 (0) 23 300 (1) 19 200 (-1) 
30–39, 20.40% 322 100 (-1) 259 300 (-1) 463 500 (-1) 62 100 (-1) 23 300 (0) 18 900 (-2) 
30–39, 24.94% 330 500 (2) 266 300 (1) 476 100 (1) 63 000 (0) 23 300 (0) 19 200 (-1) 
40–49, 26.00% 324 000 (0) 261 900 (0) 467 200 (-1) 62 400 (0) 23 200 (0) 19 000 (-2) 
40–49, 31.78% 328 000 (1) 264 200 (1) 471 700 (0) 63 500 (1) 23 400 (1) 19 200 (0) 
50–59, 18.40% 328 200 (1) 264 800 (1) 472 800 (1) 63 000 (0) 23 300 (1) 19 000 (-1) 
50–59, 22.48% 323 300 (-1) 261 000 (-1) 465 300 (-1) 62 800 (0) 23 300 (0) 18 900 (-2) 
60–69, 8.40% 329 300 (1) 265 500 (1) 474 000 (1) 63 000 (0) 23 400 (1) 19 300 (0) 
60–69, 10.26% 322 900 (-1) 260 700 (-1) 466 100 (-1) 62 700 (0) 23 600 (2) 19 200 (-1) 
70–100, 5.60% 328 600 (1) 265 200 (1) 472 900 (1) 63 300 (1) 23 600 (2) 19 400 (0) 
70–100, 6.84% 322 600 (-1) 260 800 (-1) 465 300 (-1) 62 100 (-1) 23 200 (0) 19 200 (-1) 

Age distribution of the new HCV 
infections (%) 

      

18–19, 2.88% 325 600 (0) 262 200 (0) 468 600 (0) 62 700 (0) 23 300 (0) 19 100 (-1) 
18–19, 3.52% 325 400 (0) 263 400 (0) 469 300 (0) 62 400 (0) 23 200 (0) 19 100 (-1) 
20–29, 23.67% 325 800 (0) 263 500 (0) 468 700 (0) 62 800 (0) 23 400 (1) 19 200 (-1) 
20–29, 28.93% 325 300 (0) 262 500 (0) 469 100 (0) 62 300 (-1) 23 300 (0) 19 200 (-1) 
30–39, 24.93% 325 200 (0) 262 700 (0) 468 800 (0) 62 400 (0) 23 300 (0) 19 100 (-1) 
30–39, 30.47% 325 900 (0) 262 400 (0) 468 900 (0) 62 800 (0) 23 400 (1) 19 200 (-1) 
40–49, 22.41% 325 400 (0) 262 400 (0) 468 900 (0) 62 900 (0) 23 200 (0) 19 100 (-1) 
       

Table A. 13 continued 
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 Cumulative incidence in 2014–2050 
(Percent difference from base-case) 

Peak annual incidence in 2014–2050 
(Percent difference from base-case) 

Parameter DC HCC LRD 
Peak annual 

DC incidence 
Peak annual 

HCC incidence 
Peak annual 

LRD 
40–49, 27.39% 325 700 (0) 262 700 (0) 468 600 (0) 62 700 (0) 23 300 (1) 19 200 (-1) 
50–59, 12.06% 325 300 (0) 263 600 (0) 469 400 (0) 62 400 (-1) 23 400 (1) 19 100 (-1) 
50–59, 14.74% 325 800 (0) 262 600 (0) 469 100 (0) 62 300 (-1) 23 300 (1) 19 000 (-1) 
60–69, 3.96% 325 700 (0) 263 400 (0) 469 800 (0) 62 800 (0) 23 200 (0) 19 100 (-1) 
60–69, 4.84% 325 000 (0) 262 700 (0) 468 600 (0) 62 900 (0) 23 300 (0) 19 100 (-1) 
70–100, 0.09% 325 200 (0) 261 600 (0) 467 600 (0) 62 600 (0) 23 100 (0) 19 000 (-2) 
70–100, 0.11% 326 000 (0) 262 800 (0) 469 800 (0) 62 600 (0) 23 200 (0) 19 300 (0) 

Distribution of treatment-experienced 
patients (%) 

      

Genotype 1       
Relapses, 42.93% 325 800 (0) 263 100 (0) 469 200 (0) 62 900 (0) 23 200 (0) 19 100 (-1) 
Relapses, 58.30% 325 200 (0) 262 600 (0) 468 900 (0) 62 600 (0) 23 100 (0) 19 100 (-1) 
Partial responses, 17.10% 324 900 (0) 263 700 (0) 469 400 (0) 63 000 (0) 23 600 (2) 19 200 (0) 
Partial responses, 20.90% 325 400 (0) 262 800 (0) 469 000 (0) 62 900 (0) 23 400 (1) 19 300 (0) 
Null responses, 25.20% 325 000 (0) 263 400 (0) 468 900 (0) 62 800 (0) 23 300 (0) 19 100 (-1) 
Null responses, 30.80% 326 600 (0) 262 700 (0) 469 700 (0) 62 800 (0) 23 400 (1) 19 100 (-1) 

Genotype 2–6       
Relapses, 42.30% 325 900 (0) 263 000 (0) 469 600 (0) 62 700 (0) 23 500 (1) 19 100 (-1) 
Relapses, 51.70% 326 300 (0) 263 000 (0) 469 700 (0) 62 900 (0) 23 300 (0) 19 300 (0) 
Partial responses, 14.40% 325 900 (0) 263 200 (0) 469 100 (0) 62 800 (0) 23 500 (1) 19 100 (-1) 
Partial responses, 17.60% 324 900 (0) 262 700 (0) 468 700 (0) 62 400 (0) 23 300 (0) 19 200 (-1) 
Null responses, 33.30% 325 600 (0) 262 700 (0) 468 500 (0) 62 700 (0) 23 500 (1) 19 200 (0) 
Null responses, 40.70% 325 800 (0) 263 000 (0) 469 100 (0) 62 400 (0) 23 700 (2) 19 000 (-2) 

*The value of each parameter in a group affects the values of the other parameters in the same group, since the total percentage of patients in each group should 
sum to 100%. These groups of parameters are related to patients’ sex, genotype, age groups and treatment history. In each 1-way sensitivity analysis, we adjusted 
the values of the other parameters in the same group, proportionate to the base-case settings. 
HCV = hepatitis C virus; F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage for portal fibrosis 
with few septa; F3 = METAVIR stage for numerous septa without cirrhosis; F4 = METAVIR stage for cirrhosis; DC = decompensated cirrhosis; HCC = 
hepatocellular carcinoma; LRD = liver-related deaths. 

Table A. 13 continued 
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Table A. 14. The Effect of Changing Annual Incidence on Advanced-Stage Hepatitis C Outcomes. 

  Scenario  

Advanced-stage disease outcomes Base case* Decreasing 
incidence†  

Increasing 
incidence‡ 

Decompensated cirrhosis    
Cumulative incidence (2014–2050) 293 900 292 100 297 000 
Peak annual prevalence 62 700 62 800 62 400 
Year of peak annual prevalence 2019 2019 2019 
Peak annual incidence 15 300 15 300 15 400 
Year of peak annual incidence 2014 2015 2018 
Hepatocellular carcinoma    
Cumulative incidence (2014–2050) 240 200 238 800 241 900 
Peak annual prevalence 23 200 23 300 23 200 
Year of peak annual prevalence 2019 2018 2020 
Peak annual incidence 11 400 11 500 11 300 
Year of peak annual incidence 2019 2017 2017 
Liver-related deaths    
Total deaths (2014–2050) 433 600 431 100 435 700 
Peak annual deaths 19 300 19 100 18 900 
Year of peak annual deaths 2020 2019 2018 
Liver transplants    
Total transplants (2014–2050) 37 900 38 100 38 300 
Peak annual liver transplants 2 100 2 100 2 000 
Year of peak annual liver transplants 2016 2018 2017 

*Base case scenario = simulation scenario with risk-based and birth-cohort screening, treatment with peginterferon and ribavirin and/or DAAs before 2014, and newly approved and 
future therapies starting in 2014, and limited treatment capacity. Hepatitis C annual incidence was assumed to be constant starting in 2011. 
†3.24% relative decrease in hepatitis C incidence during each year 
‡3.24% relative increase in hepatitis C incidence during each year 
Note: 3.24% relative decrease represented the decreasing rate of annual HCV incidence during 2001–2010 reported by CDC in Table A. 2. For consistency, we used the same rate 
for increase in HCV incidence. 
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Figure A. 1. Treatment options with the existing and future drugs for patients with (A): HCV genotype 1; (B): HCV genotype 2; (C): HCV genotype 3; (D): HCV genotypes 4–6. 

HCV = hepatitis C virus; F0 = METAVIR stage for no fibrosis; F1 = METAVIR stage for portal fibrosis without septa; F2 = METAVIR stage for portal fibrosis with few septa; F3 
= METAVIR stage for numerous septa without cirrhosis; F4 = METAVIR stage for cirrhosis; SVR = sustained virologic response; PEG-RBV = peginterferon and ribavirin; 
BOC/TEL+PR = boceprevir or telaprevir plus peginterferon and ribavirin; G1 = genotype 1; G2 = genotype 2; G3 = genotype 3; G4/5/6 = genotypes 4–6; Wave 1 = new therapies 
launched in 2014 for all patients that increased treatment response rates to 90% in non-cirrhotic patients and 60%–80% in cirrhotic patients; Wave 2 = future therapies that we 
assumed would be launched in 2017 and increase treatment response rates to 90% in cirrhotic patients. 
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Figure A. 2. Model results according to the natural-history (column A) and the pre-DAA (column B) scenarios from 

2001 to 2050. 

Row 1: the prevalence of fibrosis stages; Row 2: the prevalence of DC and HCC; Row 3: the incidence of DC, DCC, 
LRD, and LT. Natural history = simulation scenario with no screening and no treatment; Pre-DAA = simulation 
scenario with risk-based screening and peginterferon and ribavirin treatment; DC = decompensated cirrhosis; HCC = 
hepatocellular carcinoma; LRD = liver-related deaths; LT = liver transplants; DAA = direct-acting antiviral agent. 



88 

APPENDIX B: LONG-TERM DISEASE AND ECONOMIC OUTCOMES OF PRIOR 

AUTHORIZATION CRITERIA FOR HEPATITIS C TREATMENT IN 

PENNSYLVANIA MEDICAID 

This appendix accompanies the third chapter entitled, “Long-term Disease and Economic 

Outcomes of Prior Authorization Criteria for Hepatitis C Treatment in Pennsylvania Medicaid: A 

Microsimulation Model” and provides additional data and supporting results. 

B.1 CLAIMS-BASED ANALYSES 

We included Medicaid beneficiaries in both fee-for-service and managed care plans in our 

analysis. We searched inpatient, outpatient, and professional claims to identify individuals 

diagnosed with HCV using HCV ICD-9 codes (Table B. 1).  Patients dually eligible for Medicare 

were excluded from the analysis because Medicare would be the primary payer for these enrollees 

and we lacked access to Medicare paid claims. Using all ICD-9 codes for individuals diagnosed 

with HCV, we created indicators for potential treatment contraindication (for interferon-based 

therapies), including substance abuse and depression. In addition, we identified individuals with 

HCV complications including cirrhosis and liver cancer. In each year, we identified new episodes 

of decompensated cirrhosis and hepatocellular carcinoma among individuals enrolled in 

Pennsylvania Medicaid for two consecutive years (in order to identify new diagnoses among those 

without a diagnosis in the first year). We used CPT codes 47135 and 47136 to identify new liver 

transplants each year and used this information for model calibration.  
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In order to inform our simulation model of the estimated number of HCV patients who 

could receive treatment in Medicaid, we used rates of treatment found in the Pennsylvania 

Medicaid pharmacy claims for 2007–2012. Specifically, we identified the number of individuals 

who received HCV peginterferon and ribavirin (PEG-RBV) therapy, and PEG-RBV combined 

with a first-generation direct acting antiviral –boceprevir or telaprevir.  We defined treatment 

initiation as concurrently filling prescriptions for PEG-RBV with or without boceprevir and 

telaprevir, given no use of HCV medication in the preceding year. Given that our data extends 

only through 2012, we could not measure the number of patients receiving newer all-oral HCV 

therapies, although we received information on the overall number of patients treated with oral 

HCV therapy in 2014 directly from the Department of Human Services. 
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Table B. 1. ICD-9 codes, including Hepatitis C and related conditions. 

Condition ICD-9 codes 

Hepatitis C virus  07041,07044,07051,07054, V0262, 0707, 07070, 07071 
 

Substance abuse, non-
ETOH* codes 

292, 2920, 2921, 29211, 29212, 2922, 2928, 29281, 29282, 29283, 29284, 29285, 29289, 
2929, 304, 3040, 30400, 30401, 30402, 30403, 3041, 30410, 30411, 30412, 30413, 3042, 
30420, 30421, 30422, 30423, 3043, 30430, 30431, 30432, 30433, 3044, 30440, 30441, 
30442, 30443, 3045, 30450, 30451, 30452, 30453, 3046, 30460, 30461, 30462, 30463, 
3047, 30470, 30471, 30472 , 30473, 3048, 30480, 30481, 30482 , 30483,  3049, 30490 , 
30491, 30492 , 30493, 3052, 30520 , 30521, 30522, 30523, 3053, 30530, 30531, 30532, 
30533, 3054, 30540 , 30541, 30542, 30543, 3055, 30550, 30551 , 30552 , 30553 , 3056, 
30560, 30561 , 30562 , 30563, 3057, 30570, 30571, 30572, 30573, 3058, 30580, 30581, 
30582 , 30583 , 3059, 30590, 30591 , 30592 , 30593 , 3576, 76072 , 76073, 76075 , 7795, 
965, 9650, 96500, 96501, 96502, 96509, 967, 9670, 9671, 9672, 9673, 9674, 9675, 9676, 
9678, 9679,  9680, 9690, 96900, 96901, 96902, 96903, 96904, 96905, 96909, 9691, 9692, 
9693, 9694, 9695, 9696, 9697, 96970, 96971, 96972, 96973, 96979, 9698 , 9699 , 9700 , 
9701 , 9708 , 9709 

Substance abuse, 
ETOH codes 

2910, 2911, 2912, 2913, 2914, 2915, 2918, 29181, 29182, 29189, 2919, 303, 3030, 30300, 
30301, 30302, 30303, 3039, 30390, 30391, 30392, 30393, 3050, 30500, 30501, 30502, 
30503, 3575, 4255, 5353, 5710, 5711 , 5712 , 5713 , 76071, 7903, 9800, E8600, E8601 

Depression 
29620, 29621, 29622, 29623, 29624, 29625, 29626, 29630, 29631, 29632, 29633, 29634, 
29635, 29636, 29651, 29652, 29653, 29654, 29655, 29656, 29660, 29661, 29662, 29663, 
29664, 29665, 29666, 29689, 2980, 3004, 3091, 311 

Cirrhosis 5712, 5715, 5716 

Decompensated 
cirrhosis 

4560, 4561, 45620, 45621, 78951, 78959, 5722, 5723, 5724, 3483 
 

Hepatocellular 
carcinoma 1550 

*ETOH = Ethanol 
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B.2 MODEL INPUTS 

Figure B. 1 illustrates the progression of hepatitis C disease according to Metavir scoring 

system. At any given time, a patient is in one of these health states indicated in oval shapes. A 

patient could transition according to arrows between these health states based on annual 

probabilities (Table B. 2). We defined a health state for patients who achieved SVR in F0–F3 

assuming complete clearance of infection, and separated the patients who achieved SVR in F4 

since these patients could further progress to the advanced stages of liver disease. Patients in HCC, 

DC, and LT have a higher mortality than the general population and can transition to “Liver-

Related Death” state. All other patients have the same mortality risk as the general population. Our 

natural history model was previously validated based on a published multi-center study [68]. The 

model assumed a liver-transplantation upper age limit of 75 years [149].  
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Figure B. 1. The progression of hepatitis C disease according to Metavir scoring system. 

Abbreviations: HCV = hepatitis C virus; F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis 
without septa; F2 = Metavir stage for portal fibrosis with few septa; F3 = Metavir stage for numerous septa without 
cirrhosis; F4 = Metavir stage for cirrhosis; SVR = sustained virologic response; DC = decompensated cirrhosis; HCC 
= hepatocellular carcinoma; LT = liver transplant. 
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Table B. 2. Annual transition probabilities between health states. 

Variable Transition 
probabilities References 

F0 to F1 0.117 [136] 
F1 to F2 0.085 [136] 
F2 to F3 0.120 [136] 
F3 to F4 0.116 [136] 
F4 to DC 0.029 [137] 
F4 to HCC 0.014 [137] 
SVR F4 to DC 0.008 [138] 
SVR F4 to HCC 0.005 [138] 
DC to HCC 0.068 [139] 
DC to liver transplantation 0.021 [17, 140] 
DC (first year) to liver-related death 0.182 [139] 
DC (>1 year) to liver-related death 0.112 [139] 
HCC to liver transplantation 0.026 [67, 141] 
HCC to liver-related death 0.427 [137] 
Liver transplantation (first year) to liver-related 
death 0.116 [142] 

Abbreviations: HCV = hepatitis C virus; F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis 
without septa; F2 = Metavir stage for portal fibrosis with few septa; F3 = Metavir stage for numerous septa without 
cirrhosis; F4 = Metavir stage for cirrhosis; SVR = sustained virologic response; DC = decompensated cirrhosis; HCC 
= hepatocellular carcinoma; LT = liver transplant. Note: the probability of death from other causes exists in every 
state according to mortality rates of general population. 
 
 
 

We included the demographic characteristics (Table B. 3) and rate of contraindication to 

HCV therapy (pre all-oral therapy) based on claims analyses, and HCV genotypes and HCV 

awareness status based on national estimates (Table B. 3). We accounted for annual HCV 

incidence according to the Centers for Disease Control and Prevention (CDC) estimates of annual 

HCV incidence in Pennsylvania during 2006–2012 [150] and assumed that approximately 19% of 

new cases are in Medicaid [151] (Table B. 4). We also accounted for annual Medicaid enrollment 

fluctuations by adding new enrollees with chronic HCV infection in our model proportional to the 

enrollment changes in Medicaid during the period of study, adjusting for the decreasing trend in 

the overall national HCV prevalence over time. In addition to risk-based screening, we included 

the screening recommendations approved by the CDC and the U.S. Preventative Task Force of 

one-time screening for individuals born between 1945 and 1965 at a steadily increasing rate 
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starting in 2012 [46, 56, 57, 60, 120, 152-155]. HCV treatment in our model was based on HCV 

treatment guidelines since 2001 similar to that in our previously published model [1] and included 

the recent updates of HCV treatment guidelines in August 2015 published by the American 

Association for the Study of Liver Diseases and Infectious Disease Society of America [46, 56, 

57, 60, 120, 152-155]. Until 2015, we assumed that 80% of individuals eligible for treatment would 

seek therapy based on published literature [13, 27, 30]. In 2015 and later, we defined annual 

treatment penetration rate as the annual number of people who were treated in Pennsylvania 

Medicaid. We chose a penetration rate of 40% as our base case to match what we knew about 

actual rates of treatment in 2014 and provide for additional treatment capacity over time and 

performed sensitivity analysis to study the impact of different treatment penetration rates on model 

outcomes. 
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Table B. 3. Model input parameters for the HCV-infected population characteristics, distribution of hepatitis C 

genotype, treatment history in interferon-based treatment era, and the sustained virologic response rates of new 

therapies according to genotype and treatment history. 

Model Input Parameters Value Reference 
Total HCV-infected population in 2001* 49,900 Based on model validation 
Chronic-infection ratio (%) 75 [13] 
Percentage of patients unaware of their HCV infection in 
2001* 60 [13, 15, 144, 145, 147, 156, 157] 

Interferon contraindication (%) 42.77 Medicaid claims data 
HCV genotype (%)  [25] 

1 73  
2 14  
3 8  
Other 5  

Stage distribution of HCV-infected population in 2001 
(%)**  [17] 

F0 53.2  
F1 32.0  
F2 7.2  
F3 1.7  
F4 1.5  
Decompensated cirrhosis 1.7  
Hepatocellular carcinoma 0  

Age distribution of HCV-infected population in 2001 (%)  
Calibrated based on Medicaid 
claims data 

18–19 3.2  
20–29 26.3  
30–39 27.7  
40–49 24.9  
50–59 13.4  
60–69 4.4  
70–100 0  

Age distribution of the new HCV infections (%)  
Calibrated based on Medicaid 
claims data 

18–19 3.3  
20–29 26.4  
30–39 27.7  
40–49 24.9  
50–59 13.4  
60–69 4.4  
70–100 0  

Distribution of treatment-experienced patients with 
peginterferon-ribavirin treatment before 2014 (%) 

  

Genotype 1   
Relapsers*** 53 [158] 
Partial responders† 19 [158] 
Null responders§  28 [158] 

Genotype 2–6   
Relapsers 47 [23] 
Partial responders  16 [23] 
Null responders 37 [23] 
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Model Input Parameters Value Reference 
SVR rates of the new therapies (%)   
Treatment Naïve   [46, 56, 57, 60, 120, 152-155] 

Genotype 1–6 (fibrosis) 90  
Genotype 1–6 (cirrhosis) 80  

Relapser   
Genotype 1/2/4/5/6 (fibrosis) 90  
Genotype 3 (fibrosis) 85  
Genotype 1 (cirrhosis) 80  
Genotype 2 (cirrhosis) 70  
Genotype 3 (cirrhosis) 60  
Genotype 4/5/6 (cirrhosis) 75  

Partial and null responder   
Genotype 1/2/4/5/6 (fibrosis) 90  
Genotype 3 (fibrosis) 85  
Genotype 1 (cirrhosis) 75  
Genotype 2 (cirrhosis) 70  
Genotype 3 (cirrhosis) 60  
Genotype 4/5/6 (cirrhosis) 75  

* The total number of infected population and percentage of individuals who are unaware of their infection was used 
at the initiation of the simulation, which was chosen as 2001. These values changed in the microsimulation model 
over time based on screening rates, HCV treatments, and the incidence of HCV in Pennsylvania Medicaid. 
** The percentages of individuals in each fibrosis score was used at the initiation of the simulation, which was chosen 
as 2001. These percentages changed in the microsimulation model over time based on screening rates, HCV 
treatments, and the incidence of HCV in Pennsylvania Medicaid. 
*** Relapser = a patient whose HCV RNA became undetectable during treatment with peginterferon-ribavirin, but 
reappeared after the end of treatment. 
† Partial responder = a patient whose HCV RNA level decreased by 2 log IU/mL or more at week 12 of treatment 
with peginterferon-ribavirin, but was detectable at week 24. 
§ Null responder = a patient whose HCV RNA level decreased less than 2 log IU/mL at week 12 of treatment with 
peginterferon-ribavirin. 
Abbreviations: HCV = hepatitis C virus; F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis 
without septa; F2 = Metavir stage for portal fibrosis with few septa; F3 = Metavir stage for numerous septa without 
cirrhosis; F4 = Metavir stage for cirrhosis. 
  

Table B. 3 continued 
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Table B. 4. Annual hepatitis C virus infection incidence in Pennsylvania Medicaid. 

Year Incidence in 
Pennsylvania  Reference HCV Incidence in 

Pennsylvania Medicaid 

2001 900 Assumption 318 
2002 900 Assumption 281 
2003 900 Assumption 248 
2004 900 Assumption 219 
2005 900 Assumption 194 
2006 900 CDC 171 
2007 680 CDC 129 
2008 540 CDC 103 
2009 780 CDC 148 
2010 520 CDC 99 
2011 700 CDC 133 
2012 1,320 CDC 251 
2013 - Assumption* 251 
2014 - Assumption 251 

* We assumed that hepatitis C incidence in Pennsylvania Medicaid beyond 2013 was similar to that in 2012. 
 
 
 

We used the Medicaid prescription claims data to determine the maximum number treated 

during 2007–2012 (Table B. 5). In previous years, we assumed the number treated was similar to 

2007, given no additional data. We obtained the number of patients treated in 2014 from the 

Pennsylvania Department of Health Services. After 2014, we assumed that 40% of diagnosed 

HCV-infected individuals who are eligible for treatment would receive it. This rate is higher than 

the actual treatment rate in Pennsylvania Medicaid in 2014 under the base case (F2–F4 treatment), 

to account for limitations in provider availability and capacity, besides increased treatment demand 

due to the availability of highly effective treatments. 
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Table B. 5. Maximum number of HCV-infected individuals treated annually in Medicaid. 

Year Value Source  
2001 797 Assumption 
2002 797 Assumption 
2003 797 Assumption 
2004 797 Assumption 
2005 797 Assumption 
2006 797 Assumption 
2007 797 Medicaid claims data 
2008 863 Medicaid claims data 
2009 977 Medicaid claims data 
2010 855 Medicaid claims data 
2011 807 Medicaid claims data 
2012 1,025 Medicaid claims data 
2013 1,025 Assumption 
2014 1,350 Medicaid data  

 

 

We calculated the price of combined therapies based on disease stage and the 

recommended duration of treatment for each new all-oral therapy (Table B. 6). We assumed that 

drug manufacturers would offer wholesale discounts and rebates to Pennsylvania Medicaid 

program to remain in the competitive drug market, hence we used the average cost of therapy 

among different therapies in our cost analyses.  
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Table B. 6. Weekly and 12-week cost of HCV therapies. 

Treatment Treatment Cost Reference 
Regimens developed 
before 2014 Weekly 12-week 

therapy 
     

Peginterferon $587 $7,044         [122, 159] 
Ribavirin $309 $3,708     [122, 159] 
Boceprevir $1,100 $13,200         [122, 159] 
Telaprevir $4,100 $49,200     [122, 159] 

Regimens developed in 
2014 and beyond 

Base price Price in 2014 Price in 2015 and 
beyond 

 

Weekly 12-week 
therapy Weekly 12-week 

therapy Weekly 12-week 
therapy 

 

Sofosbuvir $7,000 $84,000 $5,320 $63,840 $3,780 $45,360 [91, 160] 
Sofosbuvir-Ledipasvir $7,875 $94,500 $5,985 $71,820 $4,253 $51,036 [91, 160] 

Paritaprevir, ritonavir, 
ombitasvir, and dasabuvir $6,943 $83,316 $5,277 $63,324 $3,749 $44,988 [124] 

 

 

 

Table B. 7. Annual health state cost in chronic hepatitis C infection. 

Health State Annual Cost Reference 
F0, F1 $728 [94, 95] 
F2 $737 [94, 95] 
F3 $1,496 [94, 95] 
F4 $1,745 [95] 
Decompensated cirrhosis $19,389 [95] 
Hepatocellular carcinoma $35,655 [95] 
Liver transplant (first year) $103,102 [95] 
Post Liver transplant  $27,057 [95] 

Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = 
Metavir stage for portal fibrosis with few septa; F3 = Metavir stage for numerous septa without cirrhosis; F4 = Metavir 
stage for cirrhosis.  
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B.3 SENSITIVITY ANALYSES 

We undertook a number of sensitivity analyses: 1) We varied HCV treatment penetrance 

from 20% to 100% and projected the number of prevented cases of decompensated cirrhosis, 

hepatocellular carcinoma and liver transplants. We varied HCV treatment penetration based on the 

assumption that the available number of providers able to treat HCV, and the acceptance of 

therapy, would not allow 100% of eligible individuals to be treated each year. 2) We varied the 

percentage of new cases of HCV in Pennsylvania that would be found in Medicaid to 14% and 

24% (from our base case of 19%). 3) To account for potential differences in the distribution of 

genotypes among HCV patient, we modified the proportion of each genotype by ±5%. 4) We 

repeated the analysis for fibrosis scores and age distributions by changing the percentage of each 

category by ±10%. 5) Finally, treatment efficacies of regimens were varied by ±10%. 
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B.4 RESULTS OF CLAIMS-BASED ANALYSES 

The proportion of individuals under the age of 30 decreased in 2007–2012, as did the 

proportion between 40 and 49 (Table 3.1 of main text). However, the proportions of 30–39 and 

over 50 age groups increased over time. During 2007–2012, more than 85% of the individuals 

were enrolled in Medicaid more than 6 months per year, and the percentage of male patients 

consistently stayed around 53%. The proportion of HCV-diagnosed patients enrolled through 

Supplemental Security Income (SSI) increased over time, representing almost 50% of the 

diagnosed HCV population in 2012. The proportion of enrollees with substance use disorder, 

diabetes or depression—major causes of treatment contraindication in the interferon era— 

increased from 38.5% in 2007 to almost half (46.7%) of the HCV-diagnosed population in 2012. 
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B.5 MODEL RESULTS 

 

Figure B. 2. Number of liver transplants in Pennsylvania Medicaid based on analyses of claims data and model 

projections 
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Table B. 8. The number of individuals eligible to receive hepatitis C treatment, and the individuals who received hepatitis C treatment in each fibrosis score in 

the base-case treatment scenario (coverage for F2–F4 fibrosis), during each year under various treatment penetration rates. 

 Number of treatment-eligible patients in fibrosis stage Number of treated patients in fibrosis stage 

20% treatment penetration rate          
Year  F0 F1 F2 F3 F4 F0 F1 F2 F3 F4 
2015 3,894 5,913 4,404 3,009 3,177 0 0 878 597 636 
2016 3,996 6,091 3,912 2,815 2,861 0 0 860 618 634 
2017 4,047 6,243 3,495 2,552 2,496 0 0 863 630 618 
2018 4,035 6,253 3,091 2,225 2,098 0 0 884 627 600 
2019 3,985 6,215 2,672 1,848 1,663 0 0 911 630 571 
2020 3,929 6,141 2,267 1,439 1,230 0 0 972 608 530 
2021 3,866 6,041 1,849 1,025 819 0 0 1,057 578 475 
2022 3,782 5,937 1,398 616 442 0 0 1,195 511 382 
2023 3,678 5,825 864 226 125 0 0 839 207 125 
2024 3,590 5,758 668 84 28 0 0 651 74 28 
2025 3,490 5,669 620 55 14 0 0 608 50 14 

40% treatment penetration rate          
Year  F0 F1 F2 F3 F4 F0 F1 F2 F3 F4 
2015 3,905 5,974 4,445 3,023 3,220 0 0 1,769 1,208 1,286 
2016 4,017 6,161 3,299 2,278 2,323 0 0 1,780 1,222 1,261 
2017 4,065 6,307 2,314 1,489 1,381 0 0 1,903 1,214 1,147 
2018 4,057 6,326 1,328 648 482 0 0 1,293 616 482 
2019 4,025 6,272 894 277 125 0 0 868 257 125 
2020 3,956 6,184 808 185 66 0 0 793 176 66 
2021 3,867 6,068 749 147 48 0 0 737 141 48 
2022 3,800 5,962 712 113 35 0 0 700 107 35 
2023 3,720 5,848 671 86 26 0 0 659 82 26 
2024 3,619 5,792 652 69 18 0 0 641 66 18 
2025 3,501 5,704 623 54 15 0 0 613 51 15 

60% treatment penetration rate          
Year  F0 F1 F2 F3 F4 F0 F1 F2 F3 F4 
2015 3,892 5,916 4,398 3,011 3,181 0 0 2,633 1,801 1,903 
2016 3,990 6,090 2,602 1,739 1,716 0 0 2,579 1,716 1,716 
2017 4,038 6,246 1,105 499 349 0 0 1,066 464 349 
2018 4,034 6,251 922 312 158 0 0 897 292 158 
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Table B. 8 continued 
 Number of treatment-eligible patients in fibrosis stage Number of treated patients in fibrosis stage 

 F0 F1 F2 F3 F4 F0 F1 F2 F3 F4 
2019 3,992 6,213 848 237 90 0 0 834 229 90 
2020 3,941 6,142 793 180 63 0 0 780 174 63 
2021 3,878 6,052 749 144 48 0 0 736 139 48 
2022 3,795 5,946 710 115 34 0 0 697 109 34 
2023 3,696 5,835 663 88 24 0 0 651 83 24 
2024 3,597 5,764 650 69 18 0 0 639 65 18 
2025 3,497 5,677 619 53 13 0 0 608 50 13 

80% treatment penetration rate          
Year  F0 F1 F2 F3 F4 F0 F1 F2 F3 F4 
2015 3,883 5,920 4,392 3,012 3,178 0 0 3,513 2,404 2,541 
2016 3,983 6,090 1,940 1,194 1,143 0 0 1,910 1,165 1,143 
2017 4,029 6,241 1,063 445 291 0 0 1,025 412 291 
2018 4,025 6,249 916 303 151 0 0 896 289 151 
2019 3,983 6,212 846 235 90 0 0 832 227 90 
2020 3,935 6,134 795 182 63 0 0 781 175 63 
2021 3,868 6,045 750 146 49 0 0 737 140 49 
2022 3,784 5,940 710 113 35 0 0 698 108 35 
2023 3,686 5,825 670 88 26 0 0 658 84 26 
2024 3,587 5,754 649 69 18 0 0 639 65 18 
2025 3,488 5,665 620 55 13 0 0 610 52 13 

100% treatment penetration rate          
Year  F0 F1 F2 F3 F4 F0 F1 F2 F3 F4 
2015 3,896 5,909 4,399 3,017 3,173 0 0 4,399 3,011 3,173 
2016 3,992 6,092 1,275 654 560 0 0 1,238 619 560 
2017 4,036 6,237 1,011 396 231 0 0 973 364 231 
2018 4,028 6,247 907 294 142 0 0 891 285 142 
2019 3,989 6,207 847 237 91 0 0 833 229 91 
2020 3,938 6,131 795 180 64 0 0 782 173 64 
2021 3,878 6,032 752 143 48 0 0 740 138 48 
2022 3,793 5,928 711 111 34 0 0 698 106 34 
2023 3,696 5,815 669 85 27 0 0 656 81 27 
2024 3,597 5,752 649 70 18 0 0 637 66 18 
2025 3,496 5,663 620 56 13 0 0 610 52 13 

Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = Metavir stage for portal fibrosis with few septa; 
F3 = Metavir stage for numerous septa without cirrhosis; F4 = Metavir stage for cirrhosis. 
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Figure B. 3. The annual cost of hepatitis C treatment in Pennsylvania Medicaid under different treatment cove rage 

scenarios (Panel A), and various treatment penetration rates in the base-case treatment scenario (coverage for F2–F4 

fibrosis) (Panel B). 

Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = 
Metavir stage for portal fibrosis with few septa; F3 = Metavir stage for numerous septa without cirrhosis; F4 = Metavir 
stage for cirrhosis. 
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Each panel of Figure B. 4 illustrates the prevalence of compensated cirrhosis, incidence of 

decompensated cirrhosis, incidence of hepatocellular carcinoma, and number of liver transplants 

are illustrated at the end of each year in the base-case scenario under different rates of treatment 

penetration rates. Hence the number of people eligible for treatment in compensated cirrhosis (in 

Table B. 8) is different from the number of people in compensated cirrhosis stage in Panel A of 

this exhibit. 
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Figure B. 4. Prevalence of compensated cirrhosis (F4) (panel A), incidence of decompensated cirrhosis (panel B), 

incidence of hepatocellular carcinoma (panel C), and number of liver transplants (panel D) in the base-case scenario 

under different rates of treatment penetration rates. 
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Delaying the inclusion of F2 fibrosis level until 2017 or 2020 would have limited impact 

on the incidence of decompensated cirrhosis, hepatocellular carcinoma, liver transplants and liver-

related deaths, and may have beneficial effects if the treatment penetration rate is constrained. For 

example, delaying the expansion to F2 treatment from 2015 until 2020 under 20% treatment 

penetration rate would increase chronic disease cost by 16%, but respectively decrease treatment 

cost and the total incidence of end-stage liver disease by 8% and 30% in Medicaid since some 

patients with F2 fibrosis would receive treatment instead of patients with F3 fibrosis. However, 

delaying F2 treatment from 2015 to 2020 under a high treatment penetration rate of 80% would 

increase chronic disease cost by 7%, and respectively decrease treatment cost and the total 

incidence of liver complications by 8% and 3%. 
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Table B. 9. Cumulative incidence of HCV outcomes and costs in 2015–2050 under various scenarios, altering the timing of expanding treatment to F2 fibrosis 

levels and treatment penetration rates. 

 
Year of F2 
treatment 
availability 
(treatment 
penetration 
rate)*** 

Cumulative results in Pennsylvania Medicaid Cumulative results incurred to Medicare 
Incidence 2015–2050 Cost ($million) Incidence 2015–2050 Cost ($million) 

DC HCC LT LRD 

Chronic 
disease 
2015–
2050* 

Treatment 
2015–2025 ** DC HCC LT LRD 

Chronic 
disease 
2015–
2050* 

Treatment 
2015–2025 ** 

2015 (20%) 947 778 160 1,591 385 839 1,025 854 123 1,798 218 613 
2017 (20%) 616 587 126 1,253 317 948 782 684 101 1,438 164 636 
2020 (20%) 616 585 126 1,250 316 950 783 684 97 1,388 163 669 

2015 (40%) 696 636 136 1,351 331 955 830 714 104 1,482 173 619 
2017 (40%) 620 583 127 1,253 317 948 792 686 99 1,397 164 636 
2020 (40%) 616 583 126 1,250 314 906 786 685 99 1,325 163 669 

2015 (60%) 618 586 128 1,264 311 974 781 682 98 1,363 163 615 
2017 (60%) 617 586 128 1,252 317 947 789 687 99 1,439 164 636 
2020 (60%) 617 588 126 1,253 327 906 789 687 100 1,473 164 668 

2015 (80%) 598 576 124 1,239 306 984 778 682 97 1,417 162 610 
2017 (80%) 615 587 125 1,257 316 947 783 684 98 1,469 163 636 
2020 (80%) 615 589 127 1,259 326 906 783 684 98 1,554 163 669 

2015 (100%) 569 561 120 1,205 299 996 771 674 98 1,407 161 605 
2017 (100%) 615 584 125 1,257 316 948 782 681 100 1,420 163 636 
2020 (100%) 616 585 126 1,259 326 906 786 683 99 1,473 163 669 

* Chronic disease cost is the cost incurred by chronic stages of hepatitis C virus and the cost of managing associated liver complications. 
** Cost of HCV treatment with new antiviral therapies. 
*** The base-case scenario was including F2 fibrosis level, besides F3 and F4, in the treatment coverage in 2015, with 40% treatment penetration among patients. 
Treatment penetration rate is the annual percentage of treatment-eligible Medicaid enrollees who receive treatment. This parameter could be affected by the number 
of physicians to provide HCV treatment, and individuals’ care-seeking behavior.  
Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = Metavir stage for portal fibrosis with few septa; 
F3 = Metavir stage for numerous septa without cirrhosis; F4 = Metavir stage for cirrhosis; DC = decompensated cirrhosis; HCC = hepatocellular carcinoma; LT = 
liver transplant; LRD = liver-related death. 
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Table B. 10.  Impact of input parameter on model results through sensitivity analyses. 

  Model outcomes (% difference from base case) 

Sensitivity 
analysis Parameter Total chronic 

aware in 2015 
Total chronic in 
2015 

DC cumulative 
incidence in 2015–
2050 

HCC cumulative 
incidence in 2015–
2050 

Cumulative LT 
in 2015–2050 

Cumulative 
LRD in 2015–
2050 

Cumulative 
cost of 
disease in 
2015–2050 

Cumulative 
cost of 
treatment in 
2015–2025 

 Base case 31,200 46,700 696 636 136 1,351 331 955 
Incidence 14% of PA incidence 30,300 (-3) 45,300 (-3) 684 (-2) 626 (-2) 133 (-2) 1,321 (-2) 316 (-5) 920 (-4) 
  24% of PA incidence 31,700 (2) 47,700 (2) 694 (-0) 631 (-1) 135 (-1) 1,338 (-1) 337 (2) 967 (1) 
Genotype 
distribution Genotype 1, -5% 31,000 (-1) 46,500 (-0) 688 (-1) 615 (-3) 134 (-2) 1,316 (-3) 327 (-1) 959 (0) 
  Genotype 1, +5% 31,000 (-1) 46,500 (-0) 692 (-1) 641 (1) 135 (-1) 1,345 (-0) 328 (-1) 934 (-2) 
 Genotype 2, -5% 31,000 (-1) 46,500 (-0) 690 (-1) 636 (0) 135 (-1) 1,333 (-1) 328 (-1) 952 (-0) 
  Genotype 2, +5% 31,000 (-1) 46,500 (-0) 686 (-1) 616 (-3) 131 (-4) 1,313 (-3) 325 (-2) 943 (-1) 
 Genotype 3, -5% 31,000 (-1) 46,500 (-0) 700 (1) 641 (1) 136 (-0) 1,346 (-0) 328 (-1) 905 (-5) 
  Genotype 3, +5% 31,000 (-1) 46,500 (-0) 680 (-2) 611 (-4) 131 (-4) 1,304 (-3) 326 (-2) 988 (3) 
 Genotype 4/5/6, -5% 31,000 (-1) 46,500 (-0) 689 (-1) 634 (-0) 135 (-1) 1,339 (-1) 328 (-1) 947 (-1) 
  Genotype 4/5/6, +5% 31,000 (-1) 46,500 (-0) 692 (-1) 617 (-3) 131 (-4) 1,317 (-3) 327 (-1) 945 (-1) 
Fibrosis distribution of initial population (-10% and +10% for each stage)      
 F0, 47.9% 31,000 (-1) 46,300 (-1) 711 (2) 645 (1) 139 (2) 1,380 (2) 334 (1) 946 (-1) 
  F0, 58.5% 31,100 (-0) 46,800 (0) 667 (-4) 602 (-5) 129 (-5) 1,267 (-6) 320 (-4) 944 (-1) 
 F1, 28.8% 31,000 (-1) 46,500 (-0) 681 (-2) 621 (-2) 132 (-3) 1,311 (-3) 326 (-2) 940 (-2) 
  F1, 35.2% 31,100 (-0) 46,600 (-0) 699 (0) 641 (1) 136 (-0) 1,346 (-0) 328 (-1) 953 (-0) 
 F2, 6.5% 31,000 (-1) 46,600 (-0) 683 (-2) 622 (-2) 133 (-2) 1,321 (-2) 326 (-2) 946 (-1) 
  F2, 7.9% 31,000 (-1) 46,500 (-0) 697 (0) 631 (-1) 136 (-0) 1,343 (-1) 329 (-1) 948 (-1) 
 F3, 1.6% 31,000 (-1) 46,500 (-0) 686 (-1) 627 (-1) 135 (-1) 1,327 (-2) 327 (-1) 946 (-1) 
  F3, 1.8% 31,000 (-1) 46,500 (-0) 690 (-1) 628 (-1) 135 (-1) 1,332 (-1) 328 (-1) 947 (-1) 
 F4, 1.4% 31,000 (-1) 46,600 (-0) 685 (-2) 626 (-2) 134 (-2) 1,321 (-2) 326 (-2) 947 (-1) 
  F4, 1.7% 31,000 (-1) 46,500 (-0) 689 (-1) 629 (-1) 136 (-0) 1,331 (-1) 328 (-1) 946 (-1) 
 DC, 4.0% 31,100 (-0) 46,600 (-0) 695 (-0) 634 (-0) 137 (1) 1,332 (-1) 327 (-1) 951 (-0) 
  DC, 4.9% 30,900 (-1) 46,400 (-1) 686 (-1) 624 (-2) 132 (-3) 1,322 (-2) 327 (-1) 941 (-2) 
Age distribution of initial population (-10% and +10% for each age group)      
 20–29, 28.80% 30,900 (-1) 45,700 (-2) 649 (-7) 585 (-8) 127 (-7) 1,247 (-8) 315 (-5) 919 (-4) 
  20–29, 35.20% 31,100 (-0) 47,400 (2) 727 (4) 666 (5) 139 (2) 1,400 (4) 338 (2) 973 (2) 
 30–39, 9.00% 30,900 (-1) 46,300 (-1) 684 (-2) 622 (-2) 133 (-2) 1,319 (-2) 326 (-2) 940 (-2) 
  30–39, 11.00% 31,200 (0) 46,700 (0) 694 (-0) 630 (-1) 135 (-1) 1,340 (-1) 329 (-1) 953 (-0) 
 40–49, 27.00% 30,400 (-3) 46,200 (-1) 709 (2) 641 (1) 135 (-1) 1,352 (0) 328 (-1) 943 (-1) 
  40–49, 33.00% 31,600 (1) 46,800 (0) 671 (-4) 613 (-4) 130 (-5) 1,300 (-4) 324 (-2) 950 (-1) 
 50–59, 16.14% 31,500 (1) 47,200 (1) 700 (1) 642 (1) 135 (-1) 1,353 (0) 332 (0) 966 (1) 
  50–59, 19.72% 30,600 (-2) 45,800 (-2) 679 (-2) 608 (-4) 130 (-5) 1,299 (-4) 321 (-3) 926 (-3) 
 60–69, 9.06% 31,300 (0) 47,000 (1) 698 (0) 637 (0) 135 (-1) 1,343 (-1) 331 (-0) 958 (0) 
  60–69, 11.08% 30,700 (-2) 46,100 (-1) 681 (-2) 622 (-2) 134 (-1) 1,314 (-3) 324 (-2) 934 (-2) 

Abbreviations: F0 = Metavir stage for no liver fibrosis; F1 = Metavir stage for portal fibrosis without septa; F2 = Metavir stage for portal fibrosis with few septa; 
F3 = Metavir stage for numerous septa without cirrhosis; F4 = Metavir stage for cirrhosis; SVR = sustained virologic response; DC = decompensated cirrhosis; 
HCC = hepatocellular carcinoma; LT = liver transplant; LRD = liver-related death; PA = Pennsylvania. 
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APPENDIX C: CREATING A SEXUAL PARTNERSHIP NETWORK IN AN AGENT-

BASED MODELING PLATFORM USING SURVEY DATA 

This appendix accompanies the fourth chapter entitled “Creating a Sexual Partnership 

Network in an Agent-Based Modeling Platform Using Survey Data”, providing additional data 

and supporting results. 

C.1 NUMBER OF SEXUAL PARTNERS 

We examined the individual-level demographics and sexual behavior data of multiple 

NHANES data files [79], in order to identify the number of sexual partners in lifetime by age and 

sex, using R software.  

Figure C. 1 summarizes the data on the number of sexual partners in lifetime for adults by 

sex and age for selected years of NHANES data. Table 4.2 of the main text summarizes the data 

for NHANES 2009–2010.  
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Panel A: Males 
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Figure C. 1. The percentage of individuals with different number of partners in lifetime by sex and age.  

Panel B: Females 
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C.2 SYNTHETIC POPULATION HOUSEHOLDS 

We included the information provided by the FRED’s synthetic population data on 

individual’s household types in labeling the individuals for their number of desired partners. The 

household types defined in FRED were as following: 

1. single-female 
2. single-male 
3. opp-sex-sim-age-pair 
4. opp-sex-dif-age-pair 
5. opp-sex-two-parent-family 
6. single-parent-family 
7. single-parent-multigen-family 
8. two-parent-multigen-family 
9. unattended_minors (Excluded) 
10. other-family 
11. young-roomies 
12. older-roomies 
13. mixed-roomies 
14. same-sex-sim-age-pair (Excluded) 
15. same-sex-dif-age-pair (Excluded) 
16. same-sex-two-parent-family (Excluded) 

 

Since our objective was to create a heterosexual transmission network, we excluded 

individuals in ‘same-sex-sim-age-pair’, ‘same-sex-dif-age-pair’, ‘same-sex-two-parent-family’ 

household types and ‘unattended minors’. We assumed that 90% of the individuals in family-type 

households (categories 3, 5, and 8) were monogamous, i.e. were assigned partnerships labels equal 

to one).  The individuals in other household types were assigned labels so that the overall 

population included in the simulation had desired partnership labels according to the results of 

NHANES analysis. 
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C.3 PARTNERSHIP FORMATION 

We matched individuals of opposite sex with respect to their desired number of partners 

(partnership labels) and age-mixing patterns following these steps:  

Step 1. Monogamous relationships: if a male and a female were in one household and 

both labeled as monogamous in household types 3, 5 and 8, we matched them in a monogamous 

relationship. Males and females in other household types who were labeled as monogamous, were 

assigned to a partner based on search algorithm according to sexual mixing patterns by age in 

Table 4.3 of the main text. 

Step 2. Non-monogamous relationships: We grouped all males and females, who were 

labeled to have 1, 2, and 3 or more partners who did not have enough matched partner yet, 

according to their age group. We randomly picked a male from the group of available males, chose 

the age group of a partner according to age-mixing patterns, and randomly matched him to a 

female(s) who were “available” in the corresponding age group. We continued this process until 

every male had enough matched partners according to their desired partnerships label. 
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C.4 PARTNERSHIP DURATION 

Using the probability of first marriage among adult males by age, derived from a survival 

analysis based on 2006–2010 National Survey of Family Growth (Table 4.4 of the main text) [84], 

we calculated the hazard rate of entering a long-term relationship for males over all ages. The 

probability of entering a long-term relationship was calculated according to this formula: 

 

Probability of entering a long-term relationship = 1- [ -ln(age)/0.07 + ln(3.357) ] 

 

 

Figure C. 2. The probability of starting a long-term relationship for adult males by age. 

 

We assigned the durations on short-term and long-term partnership durations after defining 

the partnership duration type, according to the following: 

 

 

 



118 

Short-term partnership duration 

Table C. 1. The percentage of males categorized by the duration of partnerships in each age group (204 males).  

Partnership Duration (%) Age Category 
 15–19 20–24 25–29 30–34 35–39 40–50 
<= 1 year 88.89 47.83 32.14 37.50 43.75 40.00 
More than 1 year and less than 
3 years 11.11 43.48 50.00 50.00 43.75 45.00 
3 years or more 0.00 8.70 17.86 12.50 12.50 15.00 

Data source: How Couples Meet and Stay Together (HCMST) [133] 
 

Long-term partnership duration 

If an individual started a long-term relationship in a year, we used the probability of first 

marriages remaining intact for specified durations, according to age at first marriage (Table C. 2) 

calculated based on a survival analysis in the 2006–2010 National Survey of Family Growth [84].   

 

Table C. 2. Probability that a first marriage will remain intact (survive) at specified durations among men aged 15–

44 years, age at first marriage: United State, 2006–2010. 

 Duration of marriage survival (years) 
Age at first marriage  5 10 15 20 
Under 20 years 0.66 0.48 0.46 0.41 
20–24 years 0.81 0.7 0.6 0.54 
25 years and over 0.84 0.76 0.68 N/A 

 

 

Using this data, we assigned the duration of long-term relationships, by fitting exponential 

probability distributions to the data for each category of age at first marriage (Figure C. 3). The 

formula for the duration of the long-term relationship in each category of ‘age at first marriage’, 

based on a random number drawn in the simulation (defined as x): 
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Age at first marriage: under 20 years 

 Duration = -ln(x)/0.037 + ln(0.824) 

Age at first marriage: 20-24 years 

 Duration = -ln(x)/0.027 + ln(0.9222) 

Age at first marriage: 25 years and older 

 Duration = -ln(x)/0.021 + ln(0.9353) 

 

 

Figure C. 3. Fitted exponential probability distributions of marriage duration by age at first marriage. 
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C.5 PARTNERSHIP CONCURRENCY 

We assumed the following in assigning partnership concurrencies:  

• Adults with 2 or more partners could have concurrent partnerships according to the duration 

of partnerships assigned to each of their partners.  

• If a new partner is assigned to an individual in a year, the start and end dates of the new 

partnership are assigned according to the concurrency duration with the individual’s other 

partners (if any).  

• At the beginning of each year, we identified the partner with the longest duration left in 

partnership, and calculated the concurrency duration for that partner with each of the other 

partners according to Table C. 3. 

• If a person had one or more matched partners, having a long-term partner was determined 

first.  

• If the person had a long-term partner, a partner was randomly picked for a long-term 

relationship from the matched partners. The duration of this partnership is calculated 

according to the long-term partnership distribution described in Appendix C. 3.  

• A person with multiple partners could have a long-term partnership only with one partner. 

i.e. maximum one long-term partnership at each point in time. 
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Table C. 3. Duration of concurrent partnership according to number of partners and their corresponding duration. 

Partner of an 
individual 

Duration of 
partnership 
left (in days) 

Number of concurrent days during the year 

Partner 1* ≥ 365 Concurrent days equal 365 days 
Partner 2 ≥ 365 

Partner 1 ≥ 365 Concurrent days equal the number of days left in Partner 2’s partnership 
this year. The partnership starts and ends days of partner 2 are randomly 
determined in the year. 

Partner 2 < 365 

Partner 1 < 365 If the sum of Partner 1 and partner 2’s days left in partnerships is greater 
than 365 days: 
The minimum number of concurrent days = number of days left in partner 
1’s partnership + number of days left in partner 2’s partnership - 365 
The maximum number of concurrent days = minimum of the number of 
days left in partner 1’s partnership and number of days left in partner 2’s 
partnership 
Concurrent days = uniform distribution with minimum and maximum 
limits described above 
Pick a partner randomly to start the partnership first, and assign her start 
and end partnership days randomly, given that both Partner 1 and Partner 
2’s relationships should fit in the same year. 
Calculate the start and end days of the other partner, given the number of 
concurrent days and duration left. 
If the sum of partner 1 and partner 2’s days left in partnerships is less than 
365 days, there MIGHT be no overlap between their partnerships. The 
probability of having a concurrent relationship among adult males was 
calculated at 15.2% [122]. First a random number was drawn and compared 
to 0.152. If the random number is less than 0.152 (to have overlapping 
days) 
The minimum number of concurrent days = 1 
The maximum number of concurrent days = minimum of the number of 
days left in partner 1’s partnership and number of days left in partner 2’s 
partnership 
Concurrent days = uniform distribution with minimum and maximum 
limits described above 
Pick a partner randomly to start the partnership first, and assign her start 
and end partnership days randomly, given that both Partner 1 and Partner 
2’s relationships should fit in the same year. 
Calculate the start and end days of the other partner, given the number of 
concurrent days and duration left. 
If the random number is greater than 0.152, concurrent days equal zero. 
Pick a partner randomly to start the partnership first, and assign her start 
and end partnership days randomly, given that both Partner 1 and Partner 
2’s relationships should fit in the same year. 
Calculate the start and end days of the other partner, given the duration left, 
and zero overlapping days. 

Partner 2 < 365 

* Assumption in table: Partner 1 has the longest duration of partnership left. 
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C.6 PROBABILITY OF SEXUAL ACT  

The number of sexual acts for American males and females were obtained from a study 

published by Smith [134]. Among American males aged 18–29, sexual acts frequency averages 

about 84 times per year. This then falls off steadily to 63.5 times per year for those in their 40s to 

10 times per year for those 70 and older. Table C. 4 presents the average number of sexual acts 

per year per gender and age category. The process of assigning a sexual act to a partnership on a 

given day was as following: 

1. Calculated the probability of a sexual act occurring on a day which equaled: the average 
number of sexual acts per year divided by 365 days 

2. Drew a random number each day for a person who had matched partners.  
3. If the random number was less than the probability of a sexual act, we assigned a sexual 

act to this person. 
4. Picked randomly among the matched partners of this person for the sexual act.  

 

 

Table C. 4. Average number of sexual acts for adult males and females based on age category. 

Age Mean number of sexual acts per year 
 Males Females 
18–29 84.4 83.6 
30–39 82.4 78.0 
40–49 68.1 59.7 
50–59 55.1 37.9 
60–69 36.1 19.6 
70+ 17.3 5.5 
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C.7 SEXUAL PARTNERSHIP NETWORK RESULTS 

Table C. 5. Model results for the the cross-sectional distribution of the individuals with different number of partners in lifetime by age 

group over 10 simulation years. 

Year 1              Year 6               

Age 0 1 2 
3 or 
more 3–6 7–14 

15 or 
more  Age 0 1 2 

3 or 
more 3–6 7–14 

15 or 
more 

15–19 25.1 13.4 17.5 44.0 45.0 19.7 35.3  15–19 18.5 20.3 9.8 51.5 74.9 16.4 8.7 
20–24 9.5 8.5 9.4 72.6 47.0 29.0 24.0  20–24 5.6 10.7 6.3 77.3 54.1 15.7 30.1 
25–29 3.8 17.8 7.5 71.0 47.5 29.4 23.1  25–29 4.9 3.1 4.9 87.1 49.2 21.8 29.0 
30–34 2.6 8.4 10.4 78.6 43.2 28.3 28.6  30–34 2.5 17.9 7.2 72.4 46.1 25.4 28.5 
35–39 4.7 7.9 5.5 81.9 34.1 33.0 33.0  35–39 2.2 8.1 9.6 80.1 41.5 24.4 34.1 
40–44 4.6 10.9 7.3 77.1 31.6 34.4 34.0  40–44 4.3 7.5 5.9 82.4 28.4 32.3 39.3 
45–49 5.8 10.6 5.7 77.9 80.1 16.9 3.1  45–49 4.9 10.6 7.0 77.5 50.7 29.0 20.3 
50–54 6.7 10.7 11.2 71.4 85.7 14.3 0.0  50–54 5.7 10.1 9.2 74.9 65.4 30.7 3.8 
55–59 7.3 10.8 11.8 70.1 86.5 13.5 0.0  55–59 6.3 10.4 12.1 71.2 65.9 31.0 3.1 
Year 2          Year 7         
15–19 21.1 19.4 13.0 46.6 59.7 14.5 25.7  15–19 17.4 20.8 9.9 51.8 76.5 15.7 7.8 
20–24 9.0 7.5 10.5 73.0 47.5 25.5 27.1  20–24 4.0 10.5 5.5 80.0 56.7 15.4 27.9 
25–29 2.5 14.3 6.9 76.2 46.8 28.9 24.3  25–29 6.3 5.2 5.5 83.0 50.2 19.6 30.2 
30–34 3.0 11.6 9.4 76.1 43.8 26.4 29.9  30–34 1.8 14.0 6.5 77.7 45.4 25.5 29.1 
35–39 4.0 7.1 6.8 82.1 35.9 29.9 34.1  35–39 2.4 10.9 9.1 77.6 42.0 24.1 34.0 
40–44 4.7 10.4 6.9 78.0 29.7 34.1 36.2  40–44 3.6 6.6 7.0 82.7 30.4 31.1 38.5 
45–49 5.6 10.6 6.1 77.8 71.8 21.6 6.5  45–49 4.8 10.5 7.1 77.6 47.6 29.7 22.7 
50–54 6.4 10.6 10.7 72.2 80.4 19.4 0.2  50–54 5.6 10.1 9.1 75.3 62.2 31.9 6.0 
55–59 7.1 10.8 11.9 70.3 80.9 18.9 0.2  55–59 6.2 10.3 11.9 71.6 63.2 32.7 4.1 
Year 3          Year 8         
15–19 18.3 20.3 10.5 50.9 67.1 12.0 20.9  15–19 26.5 16.8 8.7 48.0 76.7 16.1 7.2 
20–24 10.7 6.4 10.3 72.6 49.5 23.7 26.8  20–24 5.5 9.7 4.7 80.1 58.5 14.5 27.0 
25–29 4.2 10.1 6.2 79.5 46.5 27.8 25.7  25–29 7.2 8.6 6.2 78.0 52.0 18.2 29.8 
30–34 3.2 15.0 8.7 73.1 44.6 25.4 30.0  30–34 1.1 15.2 5.6 78.1 44.7 25.1 30.3 
35–39 3.3 6.4 8.1 82.3 37.8 28.3 34.0  35–39 2.6 13.8 8.9 74.7 42.9 23.8 33.3 
40–44 4.7 9.8 6.4 79.0 28.5 33.8 37.7  40–44 3.0 5.9 8.1 82.9 32.2 29.9 37.9 
45–49 5.4 10.6 6.3 77.7 65.1 24.7 10.2  45–49 4.8 10.4 7.1 77.7 45.0 30.3 24.6 
50–54 6.2 10.5 10.3 73.0 76.0 23.3 0.7  50–54 5.4 10.1 9.0 75.5 59.2 32.6 8.3 
55–59 6.9 10.7 11.9 70.5 76.2 23.0 0.8  55–59 6.0 10.2 11.7 72.1 60.8 34.1 5.2 
Year 4          Year 9         
15–19 25.4 16.5 8.6 49.6 72.9 16.6 10.5  15–19 22.2 17.8 9.5 50.5 75.8 15.7 8.6 
20–24 10.8 8.5 8.7 72.0 48.6 18.2 33.2  20–24 5.0 10.2 4.9 79.9 63.5 15.7 20.7 
25–29 3.8 11.3 5.4 79.5 46.5 26.5 27.0  25–29 7.0 10.8 6.3 75.9 50.3 14.7 35.0 
30–34 3.3 16.5 8.0 72.1 45.7 24.4 29.9  30–34 0.5 13.1 4.8 81.6 44.2 24.6 31.2 
35–39 2.5 5.6 9.4 82.5 39.5 26.6 33.9  35–39 2.7 16.5 8.7 72.1 44.3 23.2 32.5 
40–44 4.8 9.1 5.7 80.3 27.1 33.8 39.1  40–44 2.3 5.1 9.3 83.3 34.0 28.9 37.1 
45–49 5.2 10.6 6.6 77.6 59.5 26.7 13.8  45–49 4.7 10.2 7.0 78.0 42.9 30.8 26.3 
50–54 6.0 10.3 9.9 73.7 72.2 26.4 1.4  50–54 5.3 10.1 8.9 75.7 56.4 33.0 10.6 
55–59 6.7 10.6 12.0 70.7 72.2 26.3 1.5  55–59 5.9 10.1 11.4 72.6 58.6 35.1 6.3 
Year 5          Year 10         
15–19 21.1 17.9 9.5 51.5 74.1 16.9 9.0  15–19 18.3 19.8 9.8 52.1 75.0 16.6 8.4 
20–24 10.7 10.5 7.6 71.2 51.1 16.2 32.7  20–24 6.5 9.8 4.7 79.0 64.2 16.0 19.8 
25–29 4.7 8.2 5.5 81.6 47.2 24.8 28.0  25–29 6.6 12.8 6.4 74.2 52.2 13.5 34.3 
30–34 3.4 18.0 7.7 71.0 47.5 23.8 28.7  30–34 0.0 13.0 5.7 81.3 44.1 23.6 32.3 
35–39 1.8 4.9 10.4 82.8 41.3 25.0 33.7  35–39 2.8 15.6 8.7 72.9 46.0 22.9 31.1 
40–44 4.9 8.3 4.8 82.0 26.3 33.7 40.1  40–44 1.7 4.5 10.2 83.6 35.8 27.6 36.6 
45–49 5.0 10.6 6.9 77.5 54.5 28.0 17.5  45–49 4.7 10.1 6.9 78.3 41.1 31.2 27.7 
50–54 5.9 10.2 9.5 74.4 68.9 29.0 2.2  50–54 5.2 10.1 8.9 75.8 53.7 33.2 13.1 
55–59 6.5 10.5 12.1 70.8 68.9 28.8 2.3  55–59 5.7 10.0 11.1 73.1 56.7 35.8 7.6 



124 

Table C. 6. The difference in the percentages of people in each partner in lifetime category, between model results over 10 years and 

NHANES 2009–2010. 

Age 0 1 2 
3 or 

more 3–6 7–14 
15 or 
more 

15–19 0.9 1.3 -0.4 -1.7 -7.3 10.3 -3.0 
20–24 4.3 2.9 1.4 -8.7 -7.9 12.6 -4.7 
25–29 1.2 1.3 3.8 -6.3 -10.5 10.1 0.4 
30–34 -0.8 -0.4 2.4 -1.2 -5.0 5.8 -0.8 
35–39 -0.4 2.6 -2.0 -0.1 -4.4 7.8 -3.4 
40–44 -1.4 4.8 -0.4 -3.1 10.3 -3.5 -6.8 
45–49 -2.3 3.0 -1.6 0.9 -14.3 -5.6 19.8 
50–54 -1.9 1.6 -1.5 1.8 -23.9 -0.8 24.7 
55–59 -0.7 2.0 -1.6 0.3 -22.7 -3.1 25.9 

Note: Each value presents the average of differences (the value in NAHNES 2009–2010 minus the value in model results) over 10 years. 
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Table C. 7. Model results for the the cross-sectional distribution of the individuals with different number of partners in a year by age 

group over 10 simulation years. 

Year 1              Year 6               

Age 0 1 2 
3 or 

more 3–6 7–14 
15 or 
more  Age 0 1 2 

3 or 
more 3–6 7–14 

15 or 
more 

15–19 30.3 28.0 7.2 34.4 72.7 11.0 16.3  15–19 25.5 37.9 11.0 25.6 75.0 18.7 6.2 
20–24 14.3 42.3 5.6 37.8 59.9 32.9 7.2  20–24 34.6 40.1 4.1 21.2 39.0 49.5 11.5 
25–29 9.8 53.6 8.1 28.5 62.5 32.0 5.5  25–29 28.7 53.1 2.9 15.2 25.1 63.3 11.5 
30–34 22.1 56.0 4.7 17.2 68.5 31.0 0.5  30–34 30.0 57.2 2.5 10.3 42.4 55.7 1.9 
35–39 23.6 55.6 3.8 17.1 72.7 27.3 0.0  35–39 29.3 59.9 1.6 9.2 42.3 57.5 0.2 
40–44 20.8 62.4 4.0 12.8 73.0 27.0 0.0  40–44 25.1 63.1 1.5 10.3 43.9 55.8 0.2 
45–49 49.8 43.0 2.7 4.5 95.7 4.3 0.0  45–49 35.0 56.1 2.5 6.5 81.1 18.8 0.1 
50–54 58.7 34.3 2.6 4.4 97.9 2.2 0.0  50–54 46.5 43.1 3.1 7.3 92.9 7.1 0.0 
55–59 63.3 29.9 2.6 4.3 98.5 1.5 0.0  55–59 52.4 37.0 3.0 7.6 94.4 5.6 0.0 
Year 2          Year 7         
15–19 27.8 34.9 10.9 26.4 71.1 13.1 15.8  15–19 25.6 38.0 11.8 24.6 75.3 19.5 5.3 
20–24 24.4 47.6 5.9 22.1 53.7 36.5 9.8  20–24 35.0 40.3 4.3 20.4 39.9 49.5 10.6 
25–29 17.8 58.6 6.2 17.4 54.9 36.6 8.5  25–29 31.9 50.4 2.5 15.2 24.5 64.7 10.9 
30–34 25.2 59.8 3.9 11.2 63.7 35.2 1.1  30–34 29.1 57.4 2.3 11.3 40.8 57.3 2.0 
35–39 26.1 61.5 2.5 9.9 62.3 37.7 0.0  35–39 29.7 59.5 1.7 9.0 42.3 57.3 0.4 
40–44 22.6 66.1 2.2 9.1 61.8 38.2 0.0  40–44 25.6 62.9 1.4 10.1 43.0 56.9 0.1 
45–49 44.0 47.4 2.8 5.9 91.2 8.8 0.0  45–49 33.9 57.2 2.5 6.4 79.8 20.2 0.1 
50–54 53.0 38.3 2.8 5.9 94.8 5.2 0.0  50–54 45.4 44.2 3.0 7.3 91.3 8.7 0.1 
55–59 57.6 33.6 2.7 6.0 95.1 4.9 0.0  55–59 51.8 37.4 3.1 7.7 94.5 5.5 0.0 
Year 3          Year 8         
15–19 26.3 36.1 11.2 26.4 69.8 15.3 14.8  15–19 34.9 34.3 10.5 20.3 72.8 23.1 4.2 
20–24 30.4 45.4 4.9 19.4 48.3 40.8 10.9  20–24 34.6 40.6 4.1 20.8 40.6 49.4 10.0 
25–29 20.8 57.3 5.5 16.4 43.9 45.8 10.3  25–29 37.0 46.7 2.2 14.1 24.6 66.1 9.3 
30–34 26.5 59.1 3.5 10.8 58.7 40.2 1.1  30–34 28.2 57.0 2.3 12.6 40.0 58.2 1.8 
35–39 27.1 61.7 2.2 9.1 54.4 45.6 0.0  35–39 29.9 59.2 1.8 9.1 42.7 57.1 0.2 
40–44 23.2 65.5 2.1 9.2 55.6 44.4 0.0  40–44 25.9 62.5 1.4 10.2 44.2 55.7 0.2 
45–49 40.4 50.5 2.7 6.4 88.4 11.6 0.0  45–49 33.1 58.1 2.4 6.4 78.9 21.0 0.1 
50–54 49.7 40.6 2.9 6.8 93.9 6.1 0.0  50–54 44.4 45.5 3.0 7.2 89.8 10.1 0.1 
55–59 54.4 35.8 2.8 7.0 94.3 5.7 0.0  55–59 51.3 37.9 3.1 7.7 94.5 5.5 0.0 
Year 4          Year 9         
15–19 33.8 34.3 10.4 21.5 69.3 22.8 7.9  15–19 29.9 34.9 11.6 23.7 75.6 18.6 5.8 
20–24 34.6 39.9 4.0 21.5 43.1 40.0 17.0  20–24 37.2 41.2 4.4 17.2 45.3 46.6 8.1 
25–29 24.4 54.5 4.3 16.8 38.3 50.9 10.7  25–29 38.2 43.9 1.7 16.3 22.5 68.7 8.7 
30–34 30.4 55.5 3.1 11.0 57.9 40.9 1.2  30–34 27.0 56.6 2.3 14.1 38.9 59.7 1.4 
35–39 28.5 59.1 2.1 10.3 57.0 42.9 0.1  35–39 30.2 58.8 1.9 9.0 41.6 58.0 0.4 
40–44 24.2 62.5 2.2 11.2 56.9 43.0 0.1  40–44 26.2 62.4 1.3 10.1 44.4 55.4 0.2 
45–49 38.3 52.5 2.7 6.5 85.8 14.2 0.0  45–49 32.5 58.9 2.3 6.3 78.0 21.9 0.1 
50–54 48.3 41.7 3.0 7.1 93.9 6.1 0.0  50–54 43.2 46.7 2.9 7.1 88.4 11.6 0.1 
55–59 53.3 36.5 3.0 7.3 94.3 5.7 0.0  55–59 50.7 38.4 3.2 7.8 94.6 5.4 0.0 
Year 5          Year 10         
15–19 29.1 35.2 11.7 24.1 74.3 19.8 5.9  15–19 25.4 37.5 11.0 26.1 75.8 18.0 6.2 
20–24 36.7 38.3 3.8 21.1 39.6 46.9 13.5  20–24 37.7 41.1 4.5 16.8 45.8 45.4 8.8 
25–29 23.4 56.0 3.6 16.9 30.3 58.9 10.7  25–29 40.9 41.9 1.4 15.8 20.4 71.2 8.4 
30–34 30.9 56.5 2.7 9.8 46.4 52.5 1.1  30–34 26.0 56.4 2.2 15.4 38.2 60.4 1.4 
35–39 29.1 59.9 1.6 9.4 46.2 53.7 0.1  35–39 30.3 58.7 2.0 9.1 42.2 57.4 0.5 
40–44 24.4 63.2 1.7 10.8 46.0 53.8 0.2  40–44 26.6 62.0 1.3 10.2 44.1 55.8 0.2 
45–49 36.4 54.5 2.6 6.5 83.1 16.8 0.1  45–49 31.9 59.5 2.3 6.3 77.1 22.8 0.1 
50–54 47.4 42.3 3.0 7.2 93.9 6.1 0.0  50–54 42.0 48.1 2.8 7.0 86.8 13.1 0.1 
55–59 52.9 36.8 3.0 7.4 94.4 5.6 0.0  55–59 50.0 38.9 3.2 7.9 94.4 5.6 0.0 
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Table C. 8. The difference in the percentages of people in each partner per year category, between model results over 10 years and 

NHANES 2009–2010. 

Age 0 1 2 
3 or 

more 3–6 7–14 
15 or 
more 

15–19 -0.8 1.8 4.8 -5.8 10.3 -8.3 -1.9 
20–24 -14.0 7.1 8.4 -1.5 40.2 -36.0 -4.1 
25–29 -15.9 15.0 9.6 -8.7 32.3 -25.5 -6.8 
30–34 -18.2 15.6 6.5 -3.9 32.2 -36.2 4.0 
35–39 -19.2 19.3 2.4 -2.5 39.2 -39.0 -0.2 
40–44 -13.5 13.0 4.1 -3.6 31.2 -33.4 2.2 
45–49 -21.9 18.2 4.2 -0.6 -9.0 1.5 7.5 
50–54 -21.2 18.9 3.6 -1.3 -6.5 -0.6 7.1 
55–59 -20.7 22.8 2.0 -4.1 -42.2 17.2 25.0 

Note: Each value presents the average of differences (the value in NAHNES 2009–2010 minus the value in model results) over 10 years. 
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Table C. 9. The percentage points differences by changing the probabilities of individuals moving from one partner-in-lifetime 

category to the next partner-in-lifetime category on the percentage of individuals in different partner categories at the end of 10 years. 

    
Modified parameter and their impact on network characteristics at the end of 
10 years in the model. 

      p1*   p2*   p3*   p4*   p5* 
Parameter 
change in age 
category: 

Impact on 
values by age 
category 

p1-
0.05 

p1+ 
0.05 

p2-
0.05 

p2+ 
0.05 

p3-
0.05 

p3+ 
0.05 

p4-
0.05 

p4+ 
0.05 

p5-
0.05 

p5+ 
0.05 

15–19 15–19 8.8 9.1 16.3 3.3 34.6 22.5 20.2 47.5 49.7 43.7 
 20–24 20.5 32.4 33.5 7.6 47.1 36.4 76.1 20.6 48.7 51.1 
 25–29 3.8 7.0 8.4 4.8 2.6 3.3 2.4 2.5 4.7 3.0 
 30–34 1.2 2.5 2.2 3.6 3.0 3.4 2.6 4.3 2.9 2.9 
 35–39 6.0 8.7 3.3 6.5 3.8 9.6 6.5 5.4 6.2 5.3 
 40–44 3.7 3.3 3.2 3.7 3.1 3.3 3.1 4.6 4.4 3.9 
 45–49 1.1 1.3 1.5 1.8 1.8 2.0 1.5 1.4 0.8 0.6 
 50–54 1.7 1.6 2.5 1.9 2.4 1.8 1.5 1.4 3.1 2.7 
  55–59 2.0 1.4 2.3 1.9 4.8 2.4 1.6 2.4 6.2 3.1 
20–24 15–19 15.5 15.5 15.5 22.4 9.6 33.3 18.1 22.4 9.1 8.8 
 20–24 1.6 2.4 3.4 1.5 1.6 3.2 1.4 1.9 20.8 32.6 
 25–29 11.5 11.5 11.5 16.8 5.9 23.3 13.7 17.1 5.1 5.7 
 30–34 2.4 5.6 2.9 3.0 3.6 3.6 4.4 2.2 3.5 3.3 
 35–39 9.2 9.2 10.5 10.1 8.3 7.1 10.3 9.1 7.6 4.9 
 40–44 2.5 2.5 2.9 2.5 3.3 3.3 2.9 2.3 2.9 3.5 
 45–49 1.0 1.0 1.5 1.3 2.2 0.9 1.2 0.8 1.0 1.2 
 50–54 1.6 1.6 2.4 3.4 1.5 1.6 2.5 3.5 2.0 2.1 
  55–59 8.2 8.2 10.8 15.0 1.7 1.6 11.3 16.6 2.2 2.2 
25–29 15–19 10.3 15.5 15.6 22.3 15.6 22.5 18.0 22.4 15.5 15.5 
 20–24 63.2 11.3 11.3 18.8 11.3 18.7 13.8 18.7 11.3 11.3 
 25–29 7.6 11.3 11.5 16.9 11.6 16.9 13.4 17.0 11.8 11.8 
 30–34 4.5 2.1 2.8 1.5 2.4 2.2 3.9 1.8 2.6 2.3 
 35–39 8.9 9.6 4.5 9.8 7.8 12.3 9.8 9.2 5.8 5.8 
 40–44 2.1 2.9 3.2 2.7 3.4 3.0 3.0 2.2 2.8 2.8 
 45–49 1.7 1.5 1.1 1.2 1.0 0.8 1.3 1.0 1.3 1.3 
 50–54 1.2 2.6 2.2 3.9 3.0 3.4 2.6 4.3 2.9 2.9 
  55–59 6.9 11.6 9.8 15.7 11.3 15.2 11.4 15.8 10.4 10.4 
30–34 15–19 1.0 1.6 1.5 2.2 1.0 1.6 1.3 1.9 42.5 33.2 
 20–24 6.2 11.2 11.3 18.7 6.5 11.2 8.5 14.7 47.1 46.2 
 25–29 15.7 13.1 2.7 2.8 2.3 3.2 52.2 13.6 22.4 17.1 
 30–34 1.8 1.8 2.0 2.9 2.6 1.6 2.4 3.4 3.4 1.6 
 35–39 6.7 9.1 6.7 10.7 8.5 6.9 6.2 12.1 9.6 5.6 
 40–44 3.0 3.0 2.7 2.5 3.3 3.5 2.4 2.5 4.7 3.0 
 45–49 1.1 0.9 1.5 1.8 1.7 1.1 1.5 1.0 1.1 0.7 
 50–54 1.3 2.7 2.2 3.6 1.6 2.7 1.6 3.1 2.1 2.6 
  55–59 5.8 12.4 10.8 15.8 6.7 10.4 7.8 13.1 2.7 5.5 
35–39 15–19 1.3 1.9 1.0 1.0 1.0 1.6 1.3 1.9 43.0 34.2 
 20–24 8.6 14.6 6.3 6.3 6.2 11.2 8.4 14.6 48.7 45.8 
 25–29 1.0 1.4 0.8 0.8 0.7 1.1 1.0 1.4 21.1 18.3 
 30–34 1.0 4.0 3.2 3.0 1.6 2.4 3.4 1.5 1.6 3.2 
 35–39 7.6 9.8 6.3 6.3 10.5 9.1 7.6 6.5 5.4 8.3 
 40–44 2.9 3.0 3.6 3.6 4.4 2.2 3.5 3.3 3.5 3.8 
 45–49 0.6 1.3 1.3 1.3 1.1 1.4 1.3 1.3 1.5 1.8 
 50–54 2.6 3.3 1.3 1.3 1.3 2.4 2.0 3.1 1.9 2.0 
  55–59 9.4 12.5 6.7 6.7 6.0 10.3 9.0 11.1 3.1 3.9 
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Table C. 9 continued 

    
Modified parameter and their impact on network characteristics at the end of 
10 years in the model. 

      p1*   p2*   p3*   p4*   p5* 
Parameter 
change in age 
category: 

Impact on 
values by age 
category 

p1-
0.05 

p1+ 
0.05 

p2-
0.05 

p2+ 
0.05 

p3-
0.05 

p3+ 
0.05 

p4-
0.05 

p4+ 
0.05 

p5-
0.05 

p5+ 
0.05 

40–44 15–19 1.3 1.9 1.0 1.6 1.6 2.2 4.5 20.2 44.0 34.4 
 20–24 8.4 14.5 6.3 11.2 11.3 18.7 5.0 71.0 47.3 45.8 
 25–29 0.9 1.4 0.8 1.2 1.1 1.7 3.6 14.7 19.4 16.3 
 30–34 1.6 2.4 3.4 1.5 1.6 1.1 1.7 1.4 1.0 4.0 
 35–39 1.1 0.5 1.4 10.7 8.0 10.3 3.4 5.8 6.9 5.6 
 40–44 3.2 2.9 4.2 4.2 2.4 3.1 2.9 4.7 3.4 2.4 
 45–49 0.7 1.5 1.1 0.5 1.2 1.2 1.1 0.5 1.4 1.5 
 50–54 2.1 2.8 1.5 2.4 2.2 3.9 1.8 2.6 2.3 2.4 
  55–59 8.4 13.5 5.7 10.0 11.4 15.5 2.3 1.7 3.8 3.5 
45–49 15–19 1.3 1.9 1.0 1.6 1.6 2.2 4.0 21.0 42.1 33.9 
 20–24 8.5 14.6 6.3 11.2 11.2 18.8 5.2 73.0 45.8 49.8 
 25–29 1.0 1.4 0.7 1.2 1.2 1.7 3.8 15.1 19.5 18.8 
 30–34 4.2 4.0 1.0 4.0 3.2 2.9 4.2 4.2 2.4 3.1 
 35–39 8.5 10.9 6.5 9.8 8.9 12.1 6.5 5.1 7.8 9.2 
 40–44 3.3 2.7 2.9 3.2 3.7 2.8 3.9 3.2 3.0 2.4 
 45–49 1.0 1.3 1.5 1.6 0.9 1.1 1.6 1.6 1.3 1.2 
 50–54 2.1 2.8 1.3 2.6 2.3 3.1 1.3 2.4 2.1 2.4 
  55–59 7.5 11.5 7.7 10.4 9.8 14.4 1.3 2.1 3.5 3.9 
50–54 15–19 1.3 1.9 1.0 1.5 1.5 2.2 3.3 20.9 41.9 33.9 
 20–24 8.5 14.6 6.2 11.2 11.3 18.8 0.1 0.7 0.5 0.5 
 25–29 0.9 1.4 0.7 1.1 1.2 1.7 0.0 0.1 0.2 0.2 
 30–34 8.6 8.5 9.9 15.0 1.5 1.5 4.2 4.0 1.7 1.1 
 35–39 8.3 10.9 5.3 9.8 8.5 9.2 7.6 8.9 5.8 5.4 
 40–44 4.1 3.5 2.5 2.9 2.6 2.4 3.4 4.2 3.4 3.0 
 45–49 2.0 0.8 1.1 1.1 1.4 1.3 0.6 1.4 1.1 1.3 
 50–54 1.5 2.7 1.7 2.8 2.5 4.4 1.5 0.8 1.9 2.0 
  55–59 7.5 12.0 6.5 11.0 11.1 16.4 1.7 1.1 4.1 2.8 
55–59 15–19 1.3 1.9 1.3 1.9 1.6 2.2 3.3 3.3 41.6 33.9 
 20–24 8.4 14.6 8.6 14.6 2.4 3.7 5.3 5.3 45.8 47.8 
 25–29 0.9 1.4 1.0 1.4 1.1 1.7 4.1 4.1 19.0 15.7 
 30–34 2.8 3.9 3.2 3.0 2.4 4.7 3.4 0.5 1.2 1.2 
 35–39 8.5 9.6 7.2 7.8 1.1 0.5 1.4 6.5 9.2 6.0 
 40–44 2.1 3.2 2.3 2.8 3.0 2.8 2.7 2.7 2.4 3.7 
 45–49 1.3 1.4 1.7 1.4 1.0 1.1 0.7 0.7 1.6 1.8 
 50–54 1.6 3.0 1.6 2.8 2.3 3.2 2.0 2.0 2.8 2.3 
  55–59 7.1 12.5 8.6 12.2 9.9 15.0 1.5 1.5 4.2 4.0 

* p1 = probability of moving from no partner in lifetime to one partner in lifetime in a year; p2 = probability of moving from one partner 
in lifetime to two partners in lifetime in a year; p3 = probability of moving from two partners in lifetime to ≥ 3 partners in lifetime in a 
year; p4 = probability of moving from 3–6 partners in lifetime to 7–14 partners in lifetime in a year; p5 = probability of moving from 
7–14 partners in lifetime to ≥ 15 partners in lifetime in a year.  
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