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Abstract—The problem of determining a path between two
nodes in a network that must visit specific intermediate nodes
arises in a number of contexts. For example, one might require
traffic to visit nodes where it can be monitored by deep packet
inspection for security reasons. In this paper a new recursive
heuristic is proposed for finding the shortest loopless path, from
a source node to a target node, that visits a specified set of
nodes in a network. In order to provide survivability to failures
along the path, the proposed heuristic is modified to ensure
that the calculated path can be protected by a node-disjoint
backup path. The performance of the heuristic, calculating a
path with and without protection, is evaluated by comparing with
an integer linear programming (ILP) formulation for each of the
considered problems. The ILP solver may fail to obtain a solution
in a reasonable amount of time, especially in large networks,
which justifies the need for effective, computationally efficient
heuristics for solving these problems. Our numerical results are
also compared with previous heuristics in the literature.
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I. INTRODUCTION

Communication networks are a key infrastructure of every-
day life, and they should provide uninterrupted service in the
presence of various challenges [1]. An architectural framework
for resilience and survivability in communication networks
can be found in [2]. Network service providers, depending on
service level agreements, may need to ensure distinct levels of
resiliency per service, which led to the introduction of the con-
cept of Quality of Resiliency classes [3]–[5]. Network recovery
can be ensured using protection (pre-designed restoration) or
rerouting (restoration after fault detection).

Routing with path protection seeks to obtain a pair of
node (or arc) disjoint paths (the active path and the protection
path). Sometimes it is necessary to establish a path with
specified nodes. These nodes may have been chosen due to
inter-operators agreements, or to other network management
constraints, such as transiting nodes where traffic can be
inspected for security.

Very few works address the problem of calculating the
shortest path from a source node to a target node that visits a
given set of nodes. The earliest attempt to solve this problem
is due to Saksena and Kumar [6], where the authors sought
to develop an exact algorithm, using Bellmans’s optimality
principle, for calculating the shortest path (possibly with

cycles) that visits a specified set of nodes. In their approach,
they consider the optimal path must be composed of segments
that belong to the set of shortest paths between the nodes in
the set of specified nodes and the shortest paths between the
specified nodes and the source and target nodes. However their
algorithm (designated hereafter SK66) is not correct. Dreyfus
in [7] questioned their approach because it did not necessarily
obtain the minimum cost solution.

In [8] the authors evaluated the GeoDivRP routing protocol
with minimum-cost and the delay-skew requirement. The geo-
diverse routes required by this protocol are calculated by the
heuristic iWPSP. These routes are a set of geodiverse k paths,
where each path is separated by a distance d, with a limit on
the additional number of hops with respect to the reference
shortest path, while ensuring the skew value (the difference in
delay time across the set of paths) is satisfied. To achieve this
goal, and using (initially) the shortest path as reference, iWPSP
selects an intermediate node (waypoint) where an additional
path must pass, for ensuring geodiversity.

Ibaraki in [9] considered separately the problem of calculat-
ing the shortest loopless path that visits a given set of nodes
and the shortest path (possibly with cycles) that visits a set
of specified nodes. Two approaches for obtaining the shortest
loopless path visiting a given set of nodes, one based on
dynamic programming and the other based on the branch and
bound principle, are proposed by Ibaraki [9]. Computational
results in [9] suggest that the algorithm based on dynamic
programming is less efficient than the algorithm based on
branch and bound principle.

Andrade in [10] developed new formulations for addressing
the determination of a shortest loopless path, without cycles,
from a source node s to a destination node t, that visits
only once all nodes of a specified set. The numerical results
presented in [10], show that the new primal-dual based mixed
integer formulation, designated Q3, is the the most effective.

In [7], Dreyfus proposes an approach for obtaining the
shortest path (possibly with cycles), from a source node to
a target node that visits a given set of nodes, and concludes
that the problem can not be easier than the traveling salesman
problem of dimension k, where k − 2 is the number of given
nodes to be visited.

In [11] algorithm SK66 was adapted to ensure only loopless
paths were considered admissible, and some modifications



were introduced to improve the original algorithm effectiveness
in the context of loopless path calculation; this new improved
version was designated SK. The problem of finding a protected
loopless path visiting a given set of nodes was also addressed
in [11]. Based on SK two new heuristics were proposed (ASK
and BSK); having verified that ASK was computationally more
effective than BSK, but that BSK often found solutions ASK
was unable to obtain, algorithm ABSK [11] was proposed,
where ASK is used followed by BSK if necessary.

In [12] the algorithm VSN was proposed for visiting a
set S of nodes (in a path from s to t). The main idea of
algorithm VSN is to build an auxiliary graph, with node set
{s, t} ∪ S, where the shortest paths visiting all nodes in the
graph can be obtained using a k-shortest path enumeration
algorithm like Yen’s [13]. A solution can only be found in a
short time if the the number of nodes of S if small (less than 9),
otherwise generating paths until finding paths visiting all nodes
cant take a very long time. The obtained path is expanded
into a path in the original network. If the resulting expanded
path does not contain any cycle it is a feasible solution to
the min-cost loopless path visiting specified nodes, and the
algorithm ends. If the obtained path contains a cycle, the k-
shortest paths method keeps generating paths as long as they
have the same minimum cost. If these actions do not result in
finding a loopless path visiting all nodes in S, then the strategy
is to successively delete one arc from the original network, and
repeat the above procedure (which starts by recomputing the
auxiliary graph) until a solution is found, or n arcs have been
deleted, or no paths from s to t can be obtained in the auxiliary
graph.

The remainder fo the paper is structured as follows. In
Section II the notation is introduced and the routing problem
is formalized. In Section III a new and effective heuristic is
proposed for the computation of a loopless path with specified
nodes. The algorithm is then modified to take into account
the constraint that the obtained path must be protected by
node-disjoint path. Computational results are presented in
Section IV. Section V concludes the paper.

II. NOTATION AND PROBLEMS FORMULATION

This work addresses two problems. The first one is the
calculation of the shortest loopless path, from a source to a
destination node, visiting a given set of nodes, designated as
problem P1. The second problem, designated as problem P2,
consists in solving P1 with the constraint that the obtained
path can be protected by a node-disjoint path. A loopless path
must visit each node only once. Hence, unless explicitly stated
otherwise, all paths are considered to be loopless.

A. Notation

The heuristics proposed in section III use the following
notation. A directed graph G = (V,A) is defined by a set of
vertices (or nodes) V = {v1, . . . , vn}, and a set of directed
arcs A = {a1, . . . , am}, where n and m are the number of
nodes and arcs, respectively, of G. Each arc ak = (vi, vj),
with vi, vj ∈ V (vi 6= vj), is an ordered pair of elements
belonging to V ; vi is the tail (or source) of the arc and vj is
its head (or destination). Arc (vi, vj) is said to be emergent
from node vi and incident on node vj .

A path from a source node, s, to a destination node t,
(s, t ∈ V ), is represented by p = 〈s ≡ v1, v2, . . . , vk ≡ t〉,
where (vi, vi+1) ∈ A,∀i ∈ {1, . . . , k − 1}, where k is the
number of different nodes in the path. A path from a node
vi to a node vj may also be represented by pvivj . If a path
between a given pair of nodes does not exist, it is represented
by the empty set (∅). A segment is a continuous sequence of
nodes that are part of a path.

The sets of nodes of path p will be represented by Vp. The
concatenation of paths pvivj and pvjvl is the path, pvivj �pvjvl

,
from vi to vl, which coincides with pvivj from vi to vj and
with pvjvl from vj to vl; Let p and p̂ be two paths such that
the first (last) node of p is the last (first) node of p̂. Let p©� p̂
represent the concatenation of those paths which will coincide
with p� p̂ or (exclusive) p̂�p. Moreover p©� ∅ (or ∅©� p) results
in p. Given a path p, such that p = p̂©� ṗ, the operation of
removing p̂ from p, resulting in path ṗ will be represented by
p 6©� p̂ or by p̂ 6©� p.

A pair of paths from s to t is represented by (p, q). The
paths are node-disjoint if and only if Vp ∩ Vq = {s, t}. Two
paths that can be concatenated, like pvivj and pvkvi are node-
disjoint if Vpvivj

∩ Vpvkvi
= {vi}, that is if they only share

the possible concatenation node. Each arc (vi, vj) ∈ A is
associated with a strictly positive cost, w(vi, vj), and the cost
of a path, Dp, is the sum of the costs of the arcs constituting
the path: Dp =

∑
(vi,vj)∈Ap

w(vi, vj).

Let Pst represent the set of all paths from s to t in the
network. The set of nodes that must be visited by the active
path is designated by S.

The algorithms require the following additional notation.
Let Pp designate the set of shortest paths between each distinct
pair of nodes in S, excluding all other nodes in S and in {s, t}.
Also, Pp contains the shortest path from s to the nodes in S
and the shortest paths from the nodes in S to t, in both cases
calculated excluding all other nodes in S together with t and
s, respectively. The elements of Pp are, potentially, segments
of the solution of the problem P1. The rest of the notation,
closely related with algorithms will be defined as needed.

B. Problems formulation

Problem P1, finding the shortest loopless path, from s to
v, visiting a set of nodes S, can be stated as follows:

p∗1 = arg min
(p1)∈Pst

Dp1
(1)

subject to: Vp1
∩ S = S (2)

The Integer Linear Programming formulation Q3, for obtaining
p∗1, can be found in [10] and is used in the numerical results
section for comparative evaluation of the heuristics.

Problem P2, seeks to obtain the shortest path, visiting the
set of nodes S, such that it can be protected by a node-disjoint
path, and can be written as:

(p∗1, p
∗
2) = arg min

p1,p2∈Pst

Dp1
(3)

subject to: Vp1
∩ S = S, Vp1

∩ Vp2
= {s, t} (4)

An Integer Linear Programming formulation for obtaining
(p∗1, p

∗
2) can be found in [11], which is an adaptation of the



formulation Q3 in [10] with the additional constraint that the
obtained path can be protected by a node-disjoint path. The
exact results obtained using the formulation in [11] will be
used to evaluate the performance of the heuristics.

III. HEURISTIC FOR THE COMPUTATION OF A PATH WITH
SPECIFIED NODES, WITH OR WITHOUT PROTECTION

The main idea of the heuristic is to recursively construct
the path p′, which starts with a segment which is the minimal
cost path among the elements of Pp (set of paths between
the nodes in S or between these nodes and s and t). Then the
heuristic builds the rest of the path by successive concatenation
of shortest paths in P ′p (initially a copy of Pp), such that, in
each iteration, the new added segment is the one with the
lowest cost among those that can be concatenated with the
current segment of p′. This approach may fail because the path
under construction can not lead to a valid solution. In this case
the algorithm backtracks, removing the last added segment to
the path under construction. This segment will be forbidden,
from this point onwards, for the rest of construction of the
path. As this strategy does not ensure a good solution, several
elements in Pp are tried out (up to a chosen value Upperbound)
to be the starting segment of p′, as can be seen in Algorithm 1.
Notice that Algorithm 1 makes extensive use of a shortest
path calculation denoted shortestPath and we utilize Dijkstra’s
algorithm for the calculation. In function shortestPath the first
two arguments are the source node and target node, and the
third argument is the set of nodes that induces the subgraph
of G where the shortest path is calculated.

Algorithm 1 (PSN) first calculates Pp. Specifically, the first
for loop in Algorithm 1 (lines 3-7) determines the shortest
routes between nodes in S. The second outer for loop (lines
8-13) finds the shortest paths from s and t to the nodes in S.
These paths are added to the set of shortest routes between
nodes in S to form the set Pp. The following while loop in
Algorithm 1 (lines 18-30) determines the set of all valid paths
Pst, by selecting the starting segment of p′, and initializes the
input parameters of the recursive function Pcompute defined
by Algorithm 2. Note that the calculated path p′, obtained in
line 26, is the concatenation of the initial chosen segment with
the output of recursive function Pcompute. The algorithm ends
(line 32) by selecting the lowest cost path in set Pst.

As already mentioned, Algorithm 2 (function Pcompute),
builds the path from source node s to destination node t,
by successive concatenation of segments, or ends with an
incomplete path which can be the empty path. Let p′(r),
represent a segment of the final path obtained through the
concatenation of r segments; V ′S is the set of mandatory nodes
not in p′(r), including s and t nodes; FP is the set containing
sets FP (r) of segments that are forbidden in the solution of
p′(r); P ′p is the set containing sets P ′p(r) of available segments
not used in the concatenation of r segments of p′(r).

The stopping conditions of Algorithm 2 are in lines 2-4: all
the specified nodes are in the path or it is no longer possible
to find a valid path. Then the algorithm enters in a cycle
(lines 6-16) to determine the next segment to be concatenated
with p′(r). The selected segment in each iteration, the one
of minimum cost among possible candidates (see line 15)
is evaluated by functions existsCycle and goodSeg. These
functions are described by Algorithms 3 and 4, respectively.

Algorithm 1: Heuristic for the computation of a Path
with Specified Nodes (PSN) or a Protected Path with
Specified Nodes (PPSN)

Data: G = (V,A), s, t, S ⊂ V .
Result: p∗st, lowest cost path in Pst visiting S.

1 begin
2 Pst ← ∅, Ps ← ∅, counter ← 0, p∗st ← ∅
3 for vi ∈ S do
4 Pvi ← ∅
5 for vj ∈ S ∧ vj 6= vi do
6 pvivj ←

shortestPath(vi, vj , V \S \{s, t}∪{vi, vj})
7 Pvi ← Pvi ∪ {pvivj}

8 for vi ∈ S do
9 if Pvi = ∅ then return

10 psvi ← shortestPath(s, vi, V \ S \ {t} ∪ {vi})
11 pvit ← shortestPath(vi, t, V \ S \ {s} ∪ {vi})
12 Pvi ← Pvi ∪ {pvit}
13 Ps ← Ps ∪ {psvi}
14 if Ps = ∅ ∨ ∀vi ∈ S 6 ∃pvit ∈ Pvi then
15 return
16 Pp ← ∪vi∈S∪{s}Pvi

17 P ′p(1)← Pp

18 while Pp 6= ∅ ∨ counter < UpperBound do
19 pvivj ←

argminpvivj
∈Pp

∑
(vm,vn)∈pvivj

w(vm, vn)

20 p′(1)← pvivj
21 Pp ← Pp \ {pvivj}
22 V ′S ← S ∪ {s, t} \ {vi, vj}
23 P ′p(1)← P ′p(1) \ {pvivj}
24 FP (r)← ∅, r = 1, 2, . . . , |S| − 1
25 P ′p (r)← ∅, r = 2, . . . , |S| − 1
26 p′ ← pvivj©� Pcompute(p′(1), s, t, V ′S , P

′
p, FP )

27 P ′p(1)← P ′p(1) ∪ {pvivj}
28 if p′ is a valid path from s to t then
29 Pst ← Pst ∪ {p′}
30 counter ← counter + 1

31 if Pst 6= ∅ then
32 p∗st ← argminpst∈Pst

∑
(vm,vn)∈pst

w(vm, vn)

33 return

If the while cycle ends with an empty path, i.e. no segment
was found to concatenate with p′(r), Algorithm 2 backtracks
– see lines 22-27 – removing the last added segment from the
solution being built, not before adding the segment to the set
FP (r−1) of forbidden segments for p′(r−1). Otherwise the
obtained segment is concatenated with p′(r), creating p′(r+1)
and the relevant sets are be updated.

In Algorithm 3 (function existCycle), given a candidate
path segment, pvivj , to be concatenated with p′(r), returns
false if the resulting path does not contains a cycle; otherwise,
if a new segment from vi to vj , node-disjoint with p′(r), is
successfully calculated then it replaces the previous segment
in P ′p(r); if no such path could be obtained, the segment from
vi to vj becomes a forbidden segment (is moved from P ′p(r)



Algorithm 2: Pcompute
(
p′(r), s, t, V ′S , P

′
p(r), FP

)
Data: G = (V,A); s and t; p′(r) which is the

concatenation of r segments; V ′S ; FP , set of sets
FP (r) of forbidden concatenation segments for
p′(r); P ′p, set of sets P ′p(r) of candidate
concatenation segments of p′(r).

Result: The concatenation of each segment of p′ with
a first selected segment till p′ becomes: a path
starting at node s, passing through all nodes in
S without cycles, and ending at node t with a
disjoint path for protection (if required); or an
incomplete path which could not be ended.

1 begin
2 if V ′S = ∅ then return ∅
3 pvlvk ← p′(r)
4 if 6 ∃ pvivl ∨ pvkvj ∈ P ′p(1) \ FP (1) then return ∅
5 cycles← true
6 while cycles /* search feasible segment */
7 do
8 if vl 6= s ∧ vk 6= t then
9 P ′′p ←

{
pvivj ∈ P ′p(r) \ FP (r) :

10 (vi = vk ∧ vj ∈ V ′S) ∨ (vl = vj ∧ vi ∈ V ′S)}
11 if vl = s then
12 P ′′p ←

{
pvkvj ∈ P ′p(r) \ FP (r) : vj ∈ V ′S

}
13 if vk = t then
14 P ′′p ←

{
pvivl ∈ P ′p(r) \ FP (r) : vi ∈ V ′S

}
15 pvivj ← argminP ′′

p

∑
(vm,vn)∈pvivj

w(vm, vn)

16 if pvivj = ∅∨(
¬existCycle(pvivj , p′(r), s, t, V ′S , P ′p, FP )∧

17 goodSeg(pvivj , p
′(r), s, t, V ′S , P

′
p, FP )

)
then

18 cycles← false

19 if pvivj
= ∅ ∧ r = 1 then return ∅

20 if pvivj
= ∅ /* backtracking */

21 then
22 pvlvk ← p′(r) \ p′(r − 1)
23 FP (r − 1)← FP (r − 1) ∪ {pvlvk}
24 FP (r)← ∅
25 if vl ∈ Vp′(r−1) then V ′S ← V ′S ∪ {vk}
26 else V ′S ← V ′S ∪ {vl}
27 return

pvivj 6©� Pcompute
(
p′(r − 1), s, t, V ′S , P

′
p, FP

)
28 else
29 if vi ∈ V ′S then V ′S ← V ′S \ {vi}
30 else V ′S ← V ′S \ {vj}
31 P ′p(r + 1)← P ′p(r) \ {pvivj}
32 p′(r+1)← pvivj©� p′(r) /* add segment */
33 return

pvivj©� Pcompute
(
p′(r + 1), s, t, V ′S , P

′
p, FP

)

to FP (r)).

Algorithm 4 (function goodSeg) evaluates if the concatena-
tion of pvivj with p′(r), will prevent a path from s to t to be
obtained. If that is the case pvivj is moved from P ′p to FP (r).
Furthermore, if P2 is the problem being solved, this function

Algorithm 3: existCycle
(
pvivj , p

′(r), s, t, V ′S , P
′
p, FP

)
Data: G = (V,A); s and t; p′(r), path with r

segments; V ′S ; P ′p, set of sets P ′p(r); FP , set of
sets FP (r); pvivj , candidate segment under
evaluation.

Result: False, if the new segment pvivj is node-disjoint
with p′(r), otherwise is true. In the later case, if
a new segment from vi to vj can be computed
then P ′p(r) is updated, otherwise pvivj becomes
forbidden (both P ′p(r) and FP (r) are updated).

1 begin
2 if ∃vk 6= vi, vj : vk ∈ pvivj ∧ vk ∈ p′(r) then
3 p′vivj ←

shortestPath(vi, vj , V \ V ′S \ Vpvivj
∪ {vi, vj})

4 P ′p(r) ← P ′p(r) \ {pvivj}
5 if p′vivi = ∅ then FP (r)← FP (r) ∪ {pvivj}
6 else P ′p(r) ← P ′p(r) ∪ {p′vivj}
7 return true /* there was a cycle */

8 else return false /* no cycle */
9

Algorithm 4: goodSeg
(
pvivj , p

′(r), s, t, V ′S , P
′
p, FP

)
Data: G = (V,A); s and t; p′(r), path with r

segments; V ′S , set of mandatory nodes to be
included; P ′p, set of sets P ′p(r); FP , set of sets
FP (r); pvivj , to be evaluated

Result: True, if the new segment pvivj concatenated
with p′(r) may possibly lead to a solution,
otherwise is false and P ′p(r), FP (r) are
updated.

1 begin
2 pvlvk ← pvivj©� p′(r)
3 if (vl = s ∧ vk = t ∧ |V ′S | − 1 6= 0)
4 ∨(vl 6= s∧
5 shortestPath(s, vl, V \ V ′S \ Vpvlvk

∪ {vl, s}) = ∅)
6 ∨ (vk 6= t∧
7 shortestPath(vk, t, V \ V ′S \ Vpvlvk

∪ {vk, t}) = ∅)
8 ∨ (path requires protection∧
9 shortestPath(s, t, V \ V ′S \ Vpvlvk

∪ {s, t}) = ∅)
10 then
11 P ′p(r)← P ′p(r) \ {pvivj}
12 FP (r)← FP (r) ∪ {pvivj}
13 return false /* not good */

14 else
15 return true /* possibly good */

also evaluates if the segment resulting from the concatenation
of pvivj and p′(r), allows to obtain a path from s to t which
is node-disjoint with the path being built. The inclusion of
this additional test converts algorithm PSN into the algorithm
that calculates Protected Path with Specified Nodes (PPSN).
In this case, at the end of the algorithm the backup path can
be calculated as the shortest path node-disjoint with the path
constructed by PPSN.

In Figure 1 an illustrative example of the algorithm is
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Fig. 1: Illustrative path construction example

presented, with s = 0, t = 5 and S = {1, 4}. On the left
and right side of each figure is the the original graph and
the subgraph, respectively. The arcs selected to be in the path
are chosen in the subgraph and marked by a full line in both
graphs. In Fig. 1a each arc of the subgraph corresponds to the
paths in Pp (see line 16 of Algorithm 1). Then, according to
line 19 of Algorithm 1), the first selected arc in the subgraph
is the one of minimum cost, arc (4, 5) – see Fig. 1b. Then
function Pcompute is called to build the remaining path. This
function seeks for the next minimum cost arc that can be
concatenated (at left or right) with the existing sub-path. The
first candidate arc would result in a path with a cycle – see

Fig. 1c. Function existCycle (Algorithm 3) tries to find and
alternative path from node 1 to node 4, avoiding nodes 0, 2,
3, 5, but no such path exists; arc (1, 4) is marked as leading
to no solution and Pcompute returns an empty path, because
the remaining arc entering node 4, arc (0, 4), prevents node 1
from being in the solution (as can be seen in line 3 of function
goodSeg). The second iteration of the while cycle (see lines
18-30 of Algorithm 1) starts, using the second shortest arc in
the subgraph, arc (1, 4) – see Fig. 1d. Next Pcompute selects
arc (4, 5), the next minimum cost arc that can be concatenated
(at left or right) with the existing sub-path; this results in path
with a cycle – see Fig. 1e. Function existCycle (Algorithm
3) recalculates the path from node 4 to 5 avoiding nodes 0,
1, 3, and obtains the path 〈4, 2, 5〉 with cost 8, which is still
minimum – see Fig. 1f. Then Pcompute is called once again to
finish the path, obtaining the solution shown in Fig.1g, which
in this case is the optimal solution, 〈0, 1, 3, 4, 2, 5〉 of cost 22.

IV. RESULTS

Networks newyork, norway, india35, pioro40 and ger-
many50, from the SNDlib [14] repository, were used to
evaluate the heuristics; the cost of each edge was the first
module cost as given in SNDlib. A second set of networks
was generated with the Doar-Leslie model [15] using Georgia
Tech Internetwork Topology Models software (GT-ITM) [16]
(http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html). Five
networks with 500 nodes, arc cost between 1 and 100 and
with an average degree of around 7 (sum of the in and out
degree) were generated. If the generated networks contained
spurs, they were removed before solving problems P1 and
P2 (this resulted in removing between 4 and 8 nodes), thus
ensuring the networks studied were biconnected.

The number of specified nodes was considered to be equal
to 2, 4, 10 and 20, corresponding to a small, medium and
large size of S. The elements in each set S where randomly
generated, considering 20 different seeds. For each set S
of given nodes, 100 node pairs were randomly generated
for each network. However, for newyork and norway, only
|S| = 2, 4 was considered, due the smaller number of nodes
in these networks; also for india35, pioro40 and germany50
the maximum value of |S| was 10 and only for the 500 nodes
networks was the value |S| = 20 considered. Note that since
the nodes in S are randomly generated, if |S| + |{s, t}| is
a significant percentage of the total number of nodes, many
of the problems will have no solution. Although in optical
networks the size of S will in general be small in other contexts
(for example wireless sensor networks) the number of given
nodes may be larger.

Twenty samples were obtained for each network, and
95% confidence intervals around the estimated mean were
calculated, appearing in the graphs as error bars. First, the
new proposed heuristic (algorithm PSN) and algorithm SK [11]
are compared, regarding their efficiency solving problem P1.
Then results are presented regarding algorithm PPSN and
ABSK [11]; this last algorithm was selected, because in [11]
it was considered the best compromise heuristic for solving
Problem P2.

In PSN and PPSN, the recursive function PCompute was
implemented in iterative form, and the backtracking was



limited, depending on |S| and network size, seeking to attain
compromise between the resolution ratio and accuracy of the
solutions.

Results are presented regarding the percentage of prob-
lems solved (optimally or sub-optimally) with respect to the
(optimal or sub-optimal) solutions obtained by the CPLEX
solver. In order to evaluate the quality of the solutions (of the
heuristics), the relative error of the cost of the (active) path
obtained by the heuristics, for which CPLEX also found an
optimal solution, was calculated.

The computational platform was a Desktop with 16 GB
of RAM and an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
processor, with Kubuntu 14.04 and the CPLEX solver, version
12.6 [17]. In a some problem instances, CPLEX could take a
very long time. For example, in network india35, for a node
pair (with |S| = 2), after 8 hours in a Laptop (i7-3520M,
2.9 GH) no solution was found for problem P1. Hence, it
was decided, in order obtain solutions in a reasonable time, to
establish a limit of 5 minutes per node pair for the CPLEX
solver.

For some networks and a given |S| no results are shown
for algorithms SK and ABSK because, in at least one of the
20 instances of specified nodes, the corresponding algorithm
was unable to find a solution (for any of the 100 node pairs).

A. Results regarding solving Problem P1

The results obtained solving Problem P1 are shown in
Figs. 2 for the networks from SNDlib [14].

The number of feasible solutions found by solving problem
P1 for the five SNDlib networks is very close to 100% for
PSN – see Fig. 2a. In contrast, Algorithm SK has a poor
performance, namely for |S| = 10. SK is a very greedy
algorithm: it only considers shortest paths as possible building
segments of the final path, therefore reducing the possibilities
of finding a solution.

Regarding the accuracy of the obtained solutions, the
relative error (with respect to the solution found by the ILP
solver) is shown in Fig. 2b, where PSN and SK have less than
5% relative error for |S| = 2, 4; for S = 10 the error grows
for both heuristics: it is always below 10% for PSN but it it
reaches 20% for SK in pioro40 network.

The CPU time of both heuristics is similar (with some
advantage for SK) and is always, at least, one order of
magnitude smaller than the CPU time required by CPLEX –
see Fig. 2c.

In Fig. 3 results obtained using the 500 node networks,
labeled 500 i with i = 0, 1, 2, 3, 4, can be found for PSN and
SK. Note that when |S| = 10 and |S| = 20, for one network
(500 4) and two networks (500 0 and 500 4), respectively, no
results are shown for algorithm SK.

Regarding the feasible solution ratio of PSN it is very close
to 100% (in fact it is 100% in most tested cases). The solution
ratio for SK is now between 40% and 80% in average, and its
performance degrades for |S| = 10, 20.

The relative error of the solutions found is (in general)
below 5% for |S| = 2, 4 but when |S| = 10, 20 both heuristics
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Fig. 2: Loopless path with specified nodes, results for five
SNDlib [14] networks

have an increase in the relative error, but it is much more
pronounced for SK. Regarding the CPU time both heuristics
perform quite well with respect to the CPLEX solver, being at
least an order of magnitude faster. For |S| = 20 they both
require less than a second of CPU time in average, while
CPLEX may require tens of seconds. Note that, in a few
instances, CPLEX ended due to the imposed CPU time limit
of 5 minutes, while both SK and PSN were able to find a
solution.

In conclusion, PSN has a larger feasible solution ratio,
smaller relative error (for |S| = 10, 20) than SK, and it requires
a CPU time similar to SK, therefore one can conclude that it
outperforms SK.

B. Results regarding solving Problem P2

The results obtained solving Problem P2 for the networks
from SNDlib [14] with the proposed heuristics PPSN and
ABSK are shown in Figs. 4. ABSK has a much better relative
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Fig. 3: Loopless path with specified nodes, results for five 500
nodes networks

performance than SK because ABSK is a combination of two
algorithms and, when no solution is found, the initial and last
segments of the final candidate active paths are recalculated –
no equivalent efforts are done in SK.

In Fig. 4a, for |S| = 2, 4 the two heuristics presents (in
most cases) similar results regarding the feasible solution ratio.
However, for |S| = 10 the advantage of PPSN over ABSK
becomes clear. In Fig. 4b, it can be observed that the error
of the calculated solutions is below 10% on average, when
|S| = 2, 4, but when |S| = 10, the error of PPSN remains
below 10%, while for pioro40 the error of ABSK gets to 20%.
In Fig. 4c, presenting the CPU time, the observed values (for
the heuristics) are only slightly larger than in Fig. 2c, with the
exception of germany50 when |S| = 10, due to the relatively
larger number of unsolved problems in this network (the most
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Fig. 4: Protected loopless path with specified nodes, results for
five SNDlib [14] networks

sparse network in the considered set).

The results for the 500 node networks created using the GT-
ITM software are given in Fig. 5. For the 500 node networks,
the feasible solution ratio is very close to 100% for PPSN
and in general above 80% for ABSK – see Fig. 5a. Note that
ABSK (like SK) can’t find a solution for all cases (e.g., |S| =
10, |S| = 20 for network 500 4). The relative error of the
feasible solutions increases with the number of specified nodes
to visit, as can be seen in Figure 5b, being more marked in
the case of ABSK. The CPU time per node pair required by
CPLEX in the 500 node networks , is on average around 10
seconds for |S| = 20 – see Fig. 5c. Note that SK, for |S| = 20
requires more CPU time than CPLEX. For |S| = 2, 4 both
heuristics have small CPU times, with a clear advantage to
PPSN. For |S| = 10, 20 the CPU time of PPSN is below 0.1
and 1 second, respectively, while the CPU time of ABSK is
significantly larger.

In summary, the performance of PPSN is superior to the
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Fig. 5: Protected loopless path with specified nodes, results for
five 500 nodes networks

performance of ABSK, particularly for larger values of |S|.

V. CONCLUSIONS AND FUTURE WORK

The problem of calculating the shortest path that visits a
given set of nodes is a difficult problem. In this paper a new
recursive heuristic (PSN) is proposed for finding the shortest
loopless path, that visits a specified set of nodes in a directed
graph. Further the extension of PSN to provide a node disjoint
backup path PPSN is given.

Extensive numerical results clearly show the better per-
formance of PSN and PPSN with respect to SK and ABSK
heuristics from the literature. The accuracy of the solutions,
evaluated using an optimization problem solution, diminished

with increasing |S|. Nevertheless algorithm PSN presents a
very high number of feasible solutions with reasonable relative
error and algorithm PPSN is also quite effective. The CPU time
with respect to the optimization problem solver was always
almost an order of magnitude smaller. The heuristics can obtain
solutions for instances that may require too much time to solve
by an integer linear programming optimization problem solver.
Future work will be extending the heuristic for calculating a
node-disjoint path pair, each with a different set of specified
nodes.

ACKNOWLEDGMENT

Lúcia Martins and Teresa Gomes acknowledge financial
support by Fundação para a Ciência e a Tecnologia (FCT)
under project grant UID/MULTI/00308/2013.

REFERENCES

[1] J. Rak, Resilient Routing in Communication Networks. Springer, 2015.
[2] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
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