

APPLICATIONS OF EMERGING MEMORY IN MODERN COMPUTER SYSTEMS:
STORAGE AND ACCELERATION

by

Xiaoxiao Liu

Bachelor of Electrical Engineering, Beihang University, 2005

Master of Software Engineering, Beihang University, 2009

Master of Electrical Engineering, Florida International University, 2009

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

 ii

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Xiaoxiao Liu

It was defended on

May 31, 2017

and approved by

Yiran Chen, Ph.D., Adjunct Associate Professor, Department of Electrical and Computer Engineering

Hai Li, Ph.D., Adjunct Associate Professor, Department of Electrical and Computer Engineering

Rami Melhem, Ph.D., Professor, Department of Computer Science

William Stanchina, Ph.D., Professor, Department of Electrical and Computer Engineering

Murat Akcakaya, Ph.D., Assistant Professor, Department of Electrical and Computer Engineering

 Dissertation Director:

Yiran Chen, Ph.D., Associate Professor, Departmental of Electrical and Computer Engineering

 iii

Copyright © by Xiaoxiao Liu

2017

 iv

In recent year, heterogeneous architecture emerges as a promising technology to conquer the

constraints in homogeneous multi-core architecture, such as supply voltage scaling, off-chip

communication bandwidth, and application parallelism. Various forms of accelerators, e.g., GPU

and ASIC, have been extensively studied for their tradeoffs between computation efficiency and

adaptively. But with the increasing demand of the capacity and the technology scaling,

accelerators also face limitations on cost-efficiency due to the use of traditional memory

technologies and architecture design.

Emerging memory has become a promising memory technology to inspire some new

designs by replacing traditional memory technologies in modern computer system. In this

dissertation, I will first summarize my research on the application of Spin-transfer torque random

access memory (STT-RAM) in GPU memory hierarchy, which offers simple cell structure and

non-volatility to enable much smaller cell area than SRAM and almost zero standby power. Then

I will introduce my research about memristor implementation as the computation component in

the neuromorphic computing accelerator, which has the similarity between the programmable

APPLICATIONS OF EMERGING MEMORY IN MODERN COMPUTER SYSTEMS:

STORAGE AND ACCELERATION

Xiaoxiao Liu, PhD

University of Pittsburgh, 2017

 v

resistance state of memristors and the variable synaptic strengths of biological synapses to

simplify the realization of neural network model. At last, a dedicated interconnection network

design for multicore neuromorphic computing system will be presented to reduce the prominent

average latency and power consumption brought by NoC in a large size neuromorphic

computing system.

 vi

TABLE OF CONTENTS

PREFACE ... XIV

ACKNOWLEDGEMENTS .. XVI

1.0 INTRODUCTION .. 1

2.0 EMERGING MEMORY APPLICATION FOR STORAGE 6

2.1 PRELIMINARY ... 6

2.1.1 STT-RAM basic ... 6

2.1.2 STT-RAM with differential sensing ... 6

2.1.3 Multi-level cell STT-RAM .. 7

2.2 STD-TLB: A STT-RAM-BASED DYNAMICALLY-CONFIGURABLE

TRANSLATION LOOKASIDE BUFFER FOR GPU ARCHITECTURES 9

2.2.1 Background and motivation ... 9

2.2.2 TLB design with STT-RAM ... 11

2.2.2.1 Standard STT-RAM TLB design .. 11

2.2.2.2 STT-RAM-based dynamically-configurable TLB............................. 12

2.2.2.3 Organization of STD-TLB ... 14

2.2.2.4 TLB working mode management ... 15

 vii

2.2.3 Evaluation .. 16

2.2.3.1 System Configuration and Workloads ... 17

2.2.3.2 Experimental Results ... 18

2.3 MLC STT-RAM BASED REGISTER FILE ... 24

2.3.1 Modern GPU register file .. 24

2.3.2 MLC STT-RAM based register file ... 26

2.3.2.1 MLC-aware Remapping Strategy ... 28

2.3.2.2 Warp Rescheduling .. 30

2.3.3 Evaluation .. 32

2.3.3.1 Evaluation Setup .. 32

2.3.3.2 System Performance .. 33

2.3.3.3 Effectiveness of Remapping and Rescheduling 36

2.3.3.4 Energy Consumption and Energy Efficiency 37

3.0 EMERGING MEMORY APPLICATION FOR ACCELERATION 39

3.1 PRELIMENARY .. 39

3.1.1 Artificial neural network .. 39

3.1.2 Memristor and memristor-based crossbar (MBC)..................................... 41

3.2 THE RENO ARCHITECTURE .. 42

3.2.1 Hierarchical structure of MBC arrays .. 43

3.2.2 Mixed-signal interconnection network (M-Net) ... 44

 viii

3.2.2.1 Digital, analog, or mixed-signal? .. 44

3.2.2.2 Router design .. 46

3.2.2.3 Routing management ... 48

3.3 EXPERIMENTAL METHDOLOGY ... 49

3.3.1 Circuit level implementation and simulation .. 49

3.3.2 Benchmarks .. 51

3.3.3 Architecture level simulation setup.. 52

3.3.4 Implementation of other design alternatives... 53

3.4 EXPERIMENTAL RESULTS ... 55

3.4.1 MBC training effort... 55

3.4.2 Impact of device variations and signal fluctuations 57

3.4.3 Impact of MBC sizes.. 58

3.4.4 Comparison to other design alternatives ... 60

3.5 NOC CHALLENGES IN NEUROMORPHIC ACCELERATION SYSTEM . 63

3.5.1 Background and motivation ... 63

3.5.1.1 Neural networks (NN) and neuromorphic acceleration system 63

3.5.1.2 Motivation of our work .. 66

3.5.2 Implementation of Neu-NoC... 68

3.5.2.1 Hierarchical structure of Neu-NoC .. 68

3.5.2.2 NN-aware NoC mapping ... 70

3.5.2.3 Sparsity-aware traffic reduction ... 76

 ix

3.5.3 Experimental methodology ... 77

3.5.4 Experimental results.. 78

3.5.4.1 Impact of concentration degree .. 78

3.5.4.2 Impact of feature map sparsity ... 80

3.5.4.3 Effectiveness of NN-aware mapping ... 81

3.5.4.4 Effectiveness of multicast ... 82

3.5.4.5 Evaluation of Neu-NoC .. 83

4.0 CONCLUSION AND FUTURE WORK ... 85

BIBLIOGRAPHY ... 88

 x

 LIST OF TABLES

Table 1. Comparison of SRAM and STT-RAM based TLB .. 12

Table 2. System configuration .. 17

Table 3. Characteristics of GPU benchmarks (instruction number (in)) 18

Table 4. Comparison of SRAM and STT-RAM based register banks ... 28

Table 5. GPGPU-sim configuration .. 32

Table 6. Characteristics and register file usage statistics of 10 selected GPU benchmarks 33

Table 7. The simulation platforms .. 50

Table 8. The Description and Implementation Details of the Seven Selected Benchmarks 52

Table 9. The Simulation Platforms ... 53

Table 10. GPGPU-SIM CONFIGURATION ... 65

Table 11. The description and implementation details of the selected benchmarks 74

Table 12. The system simulation configuration ... 78

 xi

LIST OF FIGURES

Figure 1. STT-RAM cell structure and operation diagram. (a) multi-level cell (MLC) using serial
stacking structure. (b,c) 2-step read and write operation of MLC-STT. ... 8

Figure 2. Virtual memory with multi-level TLBs in GPUs. ... 10

Figure 3. Comparison of write ratio for data cache and TLB. .. 11

Figure 4. Reconfigurable differential sensing circuit. .. 13

Figure 5. Unbalanced TLB accesses in GPU. ... 14

Figure 6. Organization of STD-TLB design. .. 15

Figure 7. Percentage of correct mode configuration for TLB entries. .. 20

Figure 8. TLB miss rate in form of off chip misses compared to all accesses. 21

Figure 9. TLB translation performance improvement. ... 21

Figure 10. Dynamic and leakage power consumptions for different TLBs. 22

Figure 11. Energy delay product improvements (normalized to SRAM TLB). 23

Figure 12. Overall system performance speedup comparison of different TLBs. 24

Figure 13. GPU architecture and the register file design in GPU. .. 26

Figure 14. MLC STT-RAM-based register file. ... 27

 xii

Figure 15 (a) The register bank address remapping algorithm. (b) The hardware implementation
diagram of remapping. (c) Warp rescheduling. .. 29

Figure 16. System performance comparison under different register file configurations. All the
results are normalized to that of SRAM baseline design. ... 34

Figure 17. The statistics of soft-/hard-bit row accesses with/without remapping. 35

Figure 18. Rescheduling influence on timescore of issued warps. ... 36

Figure 19. Register Energy consumption under different register file configurations. All the
results are normalized to that of SRAM baseline design. ... 37

Figure 20. Normalized energy efficiency. .. 38

Figure 21. (a) A 3-layer MLP; (b) A 1-layer AAM with 4 neurons. .. 40

Figure 22 (a) A 4x4 MBC array; (b) the neuron logic. ... 41

Figure 23 RENO architecture. .. 43

Figure 24 The mixed-signal router design: (a) architecture; (b) the digital controller. 45

Figure 25. The analog component design in the mixed-signal router: (a) the transmission path;
(b) the crossbar-based multiplexer. ... 47

Figure 26. Routing information format. .. 48

Figure 27. A D-NPU design built with digital PEs in [68]. .. 54

Figure 28. The normalized classification rates of (a) MLP and (b) AAM under different MBC
training efforts. The DAC/ADC resolution is set to 4-bit. .. 56

Figure 29. The impact of device variations and signal fluctuations on computation accuracy: (a)
MLP, (b) AAM. .. 58

Figure 30. The normalized RENO performance at different MBC sizes in (a) MLP and (b) AAM
implementations. The results of 64x64 MBC is used as normalization baseline. The classification
rate at different MBC sizes in (c) MLP and (d) AAM. ... 59

Figure 31. The performance speedup, energy efficiency and classification rate of three ANN
accelerator designs with MLP (a,c,e) and AAM (b,d,f) implementations 61

 xiii

Figure 32. Hardware utilization of each layer in DNN. .. 64

Figure 33. Baseline design of a neuromorphic computing system with NoC. 66

Figure 34. The volume of data packages transmitted over different channels; (b) The ratio of
duplicated data packages. .. 67

Figure 35. Different Neu NoC organizations of different configuration. 69

Figure 36. (a) Hierarchical Neu-NoC; (b) Ring router; (c) Package format. 70

Figure 37. Different PE group placement in Neu-NoC for mnist_mlp_2. (a) NN-aware mapping,
(b) Sequential mapping (MLP topology after mapping: 8-4-1). ... 71

Figure 38. MLP topology after mapping: 8-4-1 Multicast and Packet Header Example. 76

Figure 39. Impact of concentration degree (n=m). ... 79

Figure 40. Accuracy impact of feature map sparsity (y-axis: sparsity). 80

Figure 41. Average packet latency of different mappings (x-axis: injection rate). 82

Figure 42. Average packet latency of before and after applying multicast (x-axis: injection rate).
... 83

Figure 43. Normalized average packet latency and energy of all the NoC designs. 84

 xiv

PREFACE

This dissertation is submitted in partial fulfillment of the requirements for Xiaoxiao Liu’s

degree of Doctor of Philosophy in Electrical and Computer Engineering. It contains the work

done from January 2013 to May 2017. My advisor is Yiran Chen, University of Pittsburgh, 2013

– present.

The work is to the best of my knowledge original, except where acknowledgement and

reference are made to the previous work. There is no similar dissertation that has been submitted

for any other degree at any other university.

Part of the work has been published in the conference:

1. DAC2015: Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Hai Li, Yiran Chen, Boxun Li, Yu Wang, Hao

Jiang, Mark Barnell, Qing Wu, Jianhua Yang, “RENO: A high-efficient reconfigurable

neuromorphic computing accelerator design,” Design Automation Conference (DAC), pp. 1-6,

2015.

2. HPEC2014: Xiaoxiao Liu, Mengjie Mao, Hai Li, Yiran Chen, Hao Jiang, J.J. Yang, Qing Wu, M.

BarnellX. Li, T. Huang, Q. Wu, M. Barnell, H. Li, Y. Chen, “A heterogeneous computing system

with memristor-based neuromorphic accelerators,” High Performance Extreme Computing

Conference (HPEC), pp. 1-6, 2014.

http://ieeexplore.ieee.org/abstract/document/7167250/
http://ieeexplore.ieee.org/abstract/document/7167250/
http://ieeexplore.ieee.org/abstract/document/7040986/
http://ieeexplore.ieee.org/abstract/document/7040986/

 xv

3. ASPDAC2015: Xiaoxiao Liu, Mengjie Mao, Xiuyuan Bi, Hai Li, Yiran Chen, “An efficient STT-

RAM-based register file in GPU architectures,” Asia and South Pacific Design Automation

Conference (ASPDAC), pp. 490-495, 2015.

4. ASPDAC2014: Xiaoxiao Liu, Yong Li, Yaojun Zhang, Alex K Jones, Yiran Chen, “STD-TLB: A

STT-RAM-based dynamically-configurable translation lookaside buffer for GPU architectures,”

Asia and South Pacific Design Automation Conference (ASPDAC), pp. 355-360, 2014.

5. ICCAD2017: Xiaoxiao Liu, Wei Wen, Hai Li, Yiran Chen, "Neu-NoC: A High-efficient

Interconnection Network for Accelerated Neuromorphic Systems," International Conference

on Computer-Aided Design (ICCAD), 2017, Submitted.

Part of the work has been published in journal publications:

1. Xiaoxiao Liu, Mengjie Mao, Beiye Liu, Bosun Li, Yu Wang, Hao Jiang, Mark Barnell, Qing Wu,

Jianhua Yang, Hai Li, Yiran Chen, “Harmonica: A Framework of Heterogeneous Computing

Systems With Memristor-Based Neuromorphic Computing Accelerators,” IEEE Transactions

on Circuits and Systems I, vol. 63, Issue 5, pp. 617-628, 2016.

http://ieeexplore.ieee.org/abstract/document/7059054/
http://ieeexplore.ieee.org/abstract/document/7059054/
http://ieeexplore.ieee.org/abstract/document/6742915/
http://ieeexplore.ieee.org/abstract/document/6742915/
http://ieeexplore.ieee.org/abstract/document/7498580/
http://ieeexplore.ieee.org/abstract/document/7498580/

 xvi

ACKNOWLEDGEMENTS

I would like to acknowledge the support of my advisors, Dr. Yiran Chen and Dr. Hai Li,

who made this work possible. Dr. Chen led me into the world of research, and Dr. Li has always

been a role model to me as a female scientist. During the past four years, they gave me numerous

insightful guidance, and their supports helped me overcome all the difficulties during my PhD

study. I also would like to thank the committee members, Dr. Rami Melhem, Dr. William E

Stanchina, and Dr. Murat Akcakaya, for their help ameliorating for this dissertation.

Besides, I’d like to express my gratitude to the members from Evolutional Intelligent (EI)

lab at Swanson School of Engineering for their consistent supports during my research. Finally,

I’d like to thank my family for their great encouragement. I dedicate this PhD thesis to my

husband, Ling Zhang, who always believes me and stands by me, and my son, Mo, who bring the

greatest joy to my life every day.

 1

1.0 INTRODUCTION

Homogeneous multi-core architecture was proposed in microprocessor designs to fully

utilize silicon area and overcome the obstacles of frequency up-scaling caused by the rapidly

increased wire delay and circuit power consumption [1][2]. However, the constraints on supply

voltage scaling, off-chip communication bandwidth, and application parallelism severely hinder

the pace of increasing the number of CPU cores on a single chip, and consequently, limit the

overall computational capacity [3]. In recent years, heterogeneous architecture emerges as a

promising technology to conquer the above challenges [4]. Various forms of off-chip

accelerators, e.g., ASIC, FPGA, and GPU, have been extensively studied [5][6][7] for their

tradeoffs between computation efficiency and adaptivity.

Graphic processing unit (GPU) has become the most widely utilized off-chip accelerator

in general purpose computing acceleration for high throughput and power efficiency. Thousands

of parallel threads are processed simultaneously so that the long access latency of off-chip

memory can be effectively hidden. The extremely high parallelism requires large on-chip

memories in GPU, like translation look-aside buffer (TLB) which has more than 20x capacity of

TLB in CPU to retain enough physical page addresses on chip to handle a large volume of

parallel processing threads[20][21], and register file (RF) with a few megabytes capacity to hold

the data for thousands active threads used to maintain the extremely high parallelism in

GPU[11]. On-chip memories are commonly implemented with SRAM cells to satisfy the

 2

capacity and performance needs. However, the capacity and power consumption of GPU on-chip

memories are often constrained by the large cell area and high leakage current of SRAM and has

become one of the major bottlenecks of GPU performance and energy efficiency [10].

Besides off-chip accelerators, many practices [12][13][14][15] were also conducted to

integrate general-purpose CPU cores with processing elements that are designed to accelerate the

execution of some special codes (called target codes), e.g., the codes producing approximated

results. Many target codes of approximate computing (e.g., approximated calculation, rendering

methodology and statistical representation) have been identified in a large variety of applications

such as pattern recognition, computer vision, data mining, signal processing etc. [16][50].

Artificial neural network (ANN) can be also considered as one kind of approximate computing

with high adaptivity to many high-performance applications [50]. The inherent resilience to soft

and hard errors in computation makes ANN a promising solution to conquer the aggravated

system reliability issue under the highly-scaled technology nodes [52]. Software-based ANN

realizations, however, are often associated with extremely high hardware cost required by

emulating the complex connection in the neural network. Tradition CMOS-based

implementations of ANN also suffer from the inefficiency in power/area due to the large cell

area, high leakage current and volatility [16][68].

Emerging memory technologies have been studied as the promising next generation

nanoscale technologies to conquer the scaling issue and high leakage current in traditional

technologies, like CMOS. They usually do not rely on charging and discharging their electronic

storage devices to store data and, hence are not impacted by the storage device size shrinks and

loss of power. Spin-transfer torque random access memory (STT-RAM) is a popular new

memory technology [25][26] featuring high integration density, nanosecond read access time,

 3

and low leakage power consumption. However, the well-known STT-RAM drawbacks of long

write latency and high write energy impose constraints on STT-RAM’s application in last-level

cache and main memory of CPUs [27][28][29] and GPUs [30]. In this work, we demonstrate that

TLB in GPUs is an ideal application of STT-RAM due to relatively large memory footprints of

GPU applications and infrequent updates of the stored contents. Hence, the large volume of

address translation accesses could greatly benefit from the increased TLB capacity by using

STTRAM and achieve an improved hit rate. Additionally, the low write pressure typically

observed by the TLB naturally mitigates the negative impact of STT-RAM in write performance

and energy. Furthermore, by leveraging differential sensing technique [18], we are able to

improve the read performance of STT-RAM-based TLB whenever read access latency becomes

critical. A novel TLB architecture – STD-TLB: STT-RAM-based dynamically-configurable

translation lookaside buffer, is proposed to dynamically balance the access performance and

capacity of the TLB upon run-time TLB access requirements.

Moreover, the recent invention of multilevel cell (MLC) design [20] doubles the storage

density of STT-RAM. The use of MLC STT-RAM (MLC-STT) in last level cache of CPUs has

been widely investigated for energy efficiency enhancement [21][22]. We extends the

application of MLC-STT to RF in GPUs in this work. Beyond the near zero leakage power, the

potential of implementing larger capacity will effectively relax the limitation on active thread

number in register-hungry GPGPU applications and hence, improve system performance.

However, the hard and the soft bits in a MLC-STT cell demonstrate very different access time

requirements. Thus, we propose a remapping strategy to relocate data based on its access

frequency and the register usage requirement of the application. Particularly, the frequently-

accessed data is always mapped to the fast rows built with the soft bits while the slow rows

 4

composed of the hard bits are used only when a larger capacity is needed. A runtime warp

rescheduling scheme is also developed to reorder the issuing of the ready warps to minimize the

access stall induced by the long write operations of MLC-STT.

Besides the off-chip accelerators, the rediscovery of memristor [63] motivates an exciting

approach of implementing neuromorphic systems, which denotes the VLSI realization of ANN

computation. Compared to the design of traditional CMOS-based digital and analog

neuromorphic accelerators [16][68], the similarity between the programmable resistance state of

memristors and the variable synaptic strengths of biological synapses dramatically simplifies the

structure of neural network circuits [63]. In this work, we propose RENO, a novel highly-

efficient reconfigurable neuromorphic computing accelerator with on-chip memristor-based

crossbar (MBC) arrays as perceptron network, aiming at the acceleration of ANNs computations.

Unlike many neuromorphic systems that perform the computations on pure digital ALUs or

analog approximate computing units with AD/DA interface, our design adopts a hybrid method

in data representation: the computation within the MBC arrays and the signal communications

among the MBC arrays are conducted in analog form, while the control information remains as

digital signals. To suppress the accuracy degradation incurred by the memristor resistance

shifting during execution, an inline calibration scheme is also developed with negligible

performance overhead.

Even with the efficiency coming from the emerging memory applications, in a large scale

neuromorphic acceleration system, interconnection network on chip (NoC) has become to

consume a major part of energy consumption and delay. Because of the data-intensity and

direction-intensity of neuromorphic data traffic between neurons in different layers, the

traditional designs of NoC in general purpose multi-core system do not work well in

 5

neuromorphic acceleration system. For instance, the data communication may count for more

than 30% computation cost in a deep learning accelerator and grows up rapidly with the increase

of the system scale [89]. Meanwhile, about 26% chip area and more than 10% total energy

consumption comes from the NoC [89]. The non-uniformity of the transmission data size over

the connections, the redundancy of the data transmission between the neural network layers, and

the local congestions all significantly degrade the efficacy of the NoC in a neuromorphic

acceleration system. Ring topology has been recently used in the NOC design of some multicore

systems for its simplicity, i.e., Intel Nehalem [90]. But its implementation in a large system is

doubtful by taking into account the increased hop count and long wire delay. In this work, we

propose a hybrid ring-mesh NoC architecture (namely, Neu-NoC) that can adapt to the unique

communication patterns in neuromorphic acceleration systems to achieve better performance,

less energy, and smaller area.

 6

2.0 EMERGING MEMORY APPLICATION FOR STORAGE

2.1 PRELIMINARY

2.1.1 STT-RAM basic

Data is stored in an STT-RAM cell as the resistance of a magnetic tunneling junction

(MTJ) device. A MTJ consists of two ferromagnetic layers which sandwich a MgO layer. The

magnetization direction of one ferromagnetic layer (fixed layer) is pinned while that of the other

ferromagnetic layer (free layer) can be flipped by passing a spin-polarized current. When the

magnetization direction of the two layers are anti-parallel, the MTJ resistance is at high state

(𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ); otherwise, the MTJ resistance is at low state (𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙), as shown in Fig. 1(a)[17],

respectively. Figure 1(a) depicts the popular “1T1J” STT-RAM cell structure where the MTJ

switching current is supplied by a connected NMOS transistor. The STT-RAM cell area is

mainly determined by the NMOS transistor size.

2.1.2 STT-RAM with differential sensing

A differential sensing STT-RAM architecture is recently proposed [18] to offer better

read performance, same write latency and lower error rate than the 1T1J cell. Differential sensing

technique can improve the readability of STT-RAM cells by trading off the memory capacity as

 7

follows: In addition to writing the data to one STT-RAM cell, the inversion of the data is written

into an adjacent cell. Rather than comparing the cell states to a reference, the stored data is read

out by comparing the resistance of these two complimentary cells. The sense margin is increased

from 1
2

(𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ − 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙) to(𝑅𝑅ℎ𝑖𝑖𝑖𝑖ℎ − 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙), considerably reducing the corresponding read latency

with the improved read reliability. We refer to the cell structure of differential sensing as “2T2J”,

which is indeed composed of two 1T1J cells. Compared to a 1T1J cell, the dynamic read energy

of a 2T2J cell remains constant, while the write dynamic energy of a 2T2J cell essentially

doubles as writing the data and its complement into neighboring cells.

2.1.3 Multi-level cell STT-RAM

To further enhance the density, MLC-STT technology was proposed by virtually

integrating two MTJs in a cell [19] [20]. Figure 1(a) illustrates a popular serial structure which is

composed of a small MTJ and a large MTJ. The combinations of the resistance states of the two

MTJs construct four different resistance levels, representing a 2-bit data. The bits determined by

the resistance states of the large and small MTJs are normally denoted as “hard bit” and “soft

bit”, respectively.

As the two MTJs are connected in serial and driven by the same NMOS access transistor,

the same current passes through both MTJs during read and write operations. When applying a

large switching current to program the large MTJ, the small MTJ encounters an even larger

switching current density and hence will turn to the same resistance state as the large MTJ.

Therefore, an additional programming step with a small write current is required to program the

soft-bit to the target value, which only flips the resistance state of the small MTJ. Such a 2-step

write operation of MLC-STT cells is depicted in Figure 1(b). Similarly, a 2-step read operation is

 8

required to detect the soft and the hard bits in sequence, as shown in Figure 1(c). Notably,

programming or detecting only the soft bit can be completed in one step.

Figure 1. STT-RAM cell structure and operation diagram. (a) multi-level cell (MLC) using serial
stacking structure. (b,c) 2-step read and write operation of MLC-STT.

When implementing memory with MLC-STT cells, the hard and soft bits can be

separately grouped into different data sets [21]. For instance, a row of MLC-STT cells in a

physical array can be regarded as two logic rows that respectively consist of the hard bits and

soft bits of these MLC-STT cells. As such, reading or writing the soft-bit row requires only one

step. Accessing a hard-bit row, in contrast, need a two-step operation, resulting in much longer

access latency and higher energy consumption. Such performance difference between hard-bit

and soft-bit rows motivates us to propose a remapping strategy in the designs of MLC-STT-base

memory hierarchy.

 9

2.2 STD-TLB: A STT-RAM-BASED DYNAMICALLY-CONFIGURABLE

TRANSLATION LOOKASIDE BUFFER FOR GPU ARCHITECTURES

2.2.1 Background and motivation

In 2009, Nvidia announced the first GPU to support unified address space – Fermi [23].

Later in 2010, AMD also announced Graphic Core Next (GCN) architecture with a virtual

memory system to offer x86 addressing with unified address space for both CPU and GPU [24].

In these two architectures, GPU memories are mapped into a continuous 64-bit address space.

General instructions can access local scratchpad memory, global memory and system memory

addresses defined within the unified address space.

Figure 2 illustrates the overview of the virtual memory system in GPU architectures. The

translation from virtual address to physical address is conducted by the memory management

unit (MMU) through a multi-level TLB hierarchy. Upon an L1 TLB miss, the corresponding

page table entry (PTE) will be loaded from the L2 TLB, which is usually significantly larger than

the L1 TLB and stores more cached PTEs.

 10

Figure 2. Virtual memory with multi-level TLBs in GPUs.

One important observation that motivates our work is that TLB entries are not modified

as frequently as cache blocks. This difference is caused by the function of TLBs: A TLB

primarily caches virtual to physical address mappings, which change only upon extremely

infrequent OS events, e.g., page re-mapping, page swaps, context switches, and privilege

changes. From an application’s perspective, the TLB entry is updated only when an old mapping

needs to be evicted and a new entry is filled into the TLB. The infrequent writing to the TLB

entries makes TLBs particularly well suited to be built with STT-RAM, which usually has a long

write latency but relatively short read latency. To verify this observation, we examine various

GPU benchmarks and found that out of 13 benchmarks, only one benchmark (SAD) has

similarly large write ratio (total number of writes divided by total number of reads) in both the

data cache and TLBs. For all other benchmarks, the TLB write ratio is significantly lower than

the cache write ratio, as illustrated in Figure 3 For example, in TLB, more than 40% of the data

cache accesses are writes while less than 10% of the TLB accesses are writes. Based on this

observation, a TLB implemented with STT-RAM is less harmed by the influence of the

 11

expensive writes but can still take advantage of the improved read speed from differential

sensing and larger same-area replacement capacity to achieve better performance and lower

energy consumption.

Figure 3. Comparison of write ratio for data cache and TLB.

2.2.2 TLB design with STT-RAM

2.2.2.1 Standard STT-RAM TLB design

Due to the structural simplicity, STT-RAM has much higher integration density than

SRAM. Table I compares the design parameters of two SRAM-based and STT-RAM-based TLB

configurations based on ITRS 2011 [25] and NVSIM [33] simulation results. In each

configuration, the three designs with different memory technologies (i.e., SRAM, 1T1J and

2T2J) share similar area while the capacity of the standard STT-RAM TLB (1T1J) is 4× as large

as that of SRAM TLB. The capacity of an entirely differential sensing design (2T2J) is between

 12

that of the SRAM and standard STT-RAM since it trades half of its capacity for faster read

access.

Table 1. Comparison of SRAM and STT-RAM based TLB

2.2.2.2 STT-RAM-based dynamically-configurable TLB

A standard STT-RAM TLB configured for 1T1J access provides the best capacity and

energy advantages among all TLB designs. The differential sensing design (2T2J) improves read

performance, but increases miss rate due to the reduced capacity. As part of this work, we

propose a STT-RAM-based dynamically-configurable TLB (STD-TLB) design that leverages the

differential sensing technique to improve the read performance of selected memory blocks in a

TLB while retaining the capacity advantage available in standard STT-RAM TLB design as

much as possible.

 13

Figure 4 shows the memory structure of our STD-TLB design: In mode 0 (high-capacity

mode), the stored data is read out by comparing the resistance of the memory cell to a reference

cell; in mode 1 (high-performance mode), the resistances of the complimentary memory cells are

compared to each other. Since the sense margin in mode 1 is 2× that in mode 0, the read access

time is reduced. However, two memory cells are now occupied to store a single entry in mode 1.

Figure 4. Reconfigurable differential sensing circuit.

We note that the read accesses to TLB have very unbalanced patterns. We study different

TLB entries and group them into “hot” and “cold” based on their frequency of accesses. As an

example shown in Figure 5, the distributions of the read accesses across different TLB entries is

highly skewed in benchmarks STO, NN, CUTCP and MRI-Q. Other benchmarks experience less

but still noticeable uneven distributions. Generally, there are far more accesses occurring on the

 14

hot TLB entries (more than 75% on average). Hence, it is desirable to switch the selected cache

blocks of STD-TLB to high-performance mode only when the corresponding memory addresses

are hot. As illustrated in Figure 5, these active memory blocks experience frequent read accesses

but only occupy a relatively small portion of the total memory blocks. Therefore, mode 1 can be

effectively applied to a small number of TLB blocks during the operation, resulting in a marginal

degradation on the total capacity and hit rate.

Figure 5. Unbalanced TLB accesses in GPU.

2.2.2.3 Organization of STD-TLB

Figure 6 shows the organization of the proposed STD-TLB design. Each two adjacent

cache blocks form a complimentary block pair when any of them switches to high-performance

mode. Each cache block is augmented with a 1-bit mode flag (S) and a n-bit read counter (C) and

can function independently in high-capacity mode (S = 0). When the paired cache blocks are in

 15

high-performance mode, both blocks’ mode flags will be set to 1. The read counter is used to

record the number of read accesses to the cache block.

Figure 6. Organization of STD-TLB design.

2.2.2.4 TLB working mode management

Through execution analysis we discovered that the page size of a data accessed by a GPU

is directly linked to its access patterns. A large page size corresponding to a wide accessible data

range from one PTE typically results in more accesses over time. Based on our observation on 13

GPU benchmarks, the PTEs of large pages always have more accesses than that of small pages.

Therefore, our TLB working mode management is set heuristically as follows: when a new PTE

is loaded into the TLB, we first check the wildcard bits of the PTE to retrieve the page size

 16

information. If the page size is bigger than 4KByte (i.e., wildcard > 0), the PTE will be written

into the paired cache blocks in high-performance mode; otherwise, the PTE will be saved in the

cache block in high-capacity mode.

Although this heuristic scheme works reasonably well, there are still some frequently

accessed small pages that could not be covered by the scheme. To discover these pages, we

utilize the augmented counter in each cache block to record how heavily the PTE is accessed.

When a PTE is loaded into the TLB, the corresponding read counter is cleared to 0. The value of

the counter increments upon each read access. The mode of the cache block is then dynamically

reconfigured based on how intensively the page has been accessed: if the counter exceeds a

threshold, the empty corresponding entry will be elevated to high-performance mode. In contrast,

the entry set to high-performance mode (based on its page size) can be “demoted” to high-

capacity mode during evictions: A high performance TLB entry which is planned to be retired by

the replacement policy (e.g., least-recently-used) will switch to high-capacity mode first rather

than being evicted from the TLB immediately. Only the entries in high-capacity mode can be

evicted from the TLB directly.

2.2.3 Evaluation

We created a STT-RAM device model based on an industrial prototype. We assume the

MTJ switching time is 10ns [34] and the sense margins of the STT-RAM cell in high-capacity

and high-performance modes are 40mV and 80mV, respectively. A modified CACTI [31] tool is

used to derive the peripheral circuitry latencies of various TLB designs at 45nm technology [35].

The timing parameters of sense amplifiers are derived from SPICE simulations. All TLB design

parameters are summarized in Table 1.

 17

2.2.3.1 System Configuration and Workloads

We verify our architectural design through functional and timing simulations on

GPGPUsim [36], a cycle accurate GPU performance simulator. We modified the baseline GPU

architecture in GPGPU-sim based on Nvidia Quadro FX5800 [37] by adding virtual memory

mapping support. In particular, we implemented a two-level TLB hierarchy including first-level

private TLBs with small capacity and short translation latency, and a second-level TLB with

much larger capacity and long translation latency, which is shared across all memory banks. We

assume a dual-sized paging system with both small page (4K bytes) and large page (128K bytes).

A large page is usually used for the applications with large memory footprint, e.g., enormous

texture or color data.

Table 2. System configuration

We use SRAM TLB as the baseline implementation. Our proposed STT-RAM TLB

implementations assume the same area replacement associated with an increased capacity. The

detailed parameters and system configuration are summarized in Table 2. Because the cache

blocks in STD-TLB can independently operate in high-capacity or high-performance mode, the

maximum and minimum capacities of the STDTLB are listed as 1T1J and 2T2J in the Table,

respectively. In practice the effective capacity will be somewhere in between. In our evaluations,

 18

we utilize a wide range of GPU workloads selected from the Parboil [38] and ISPASS2009

benchmark suite. Our intent is to primarily focus on the workloads which have high memory

access intensity and thus could potentially benefit from STT-RAM-based TLBs. However, we

also include some less access intensive workloads to test the potential impact of STT-RAM-

based TLBs in different scenarios. The characteristics of the adopted workloads are listed in

Table 3.

Table 3. Characteristics of GPU benchmarks (instruction number (in))

2.2.3.2 Experimental Results

To demonstrate the influences of using STT-RAM to implement TLB in GPUs, we study

the mode configuration accuracy, TLB miss rate, translation runtime performance, energy

 19

consumption, energy-delay product etc., and compare them with the SRAM baseline. We also

evaluate the performance and energy improvement of STD-TLB over the standard STT-RAM

TLB. Finally, we evaluate the overall system performance improvement and summarize the

general rules of applying STD-TLB.

1) Mode Configuration Accuracy: We verify if the TLB entry of a small page is

configured in an appropriate mode by using a counter to track its read accesses and comparing

the value of the counter with a threshold. Ideally, the TLB entry corresponding to a small page

shall be set to high capacity mode and has a low counter value, i.e., smaller than a threshold.

Otherwise, the TLB performance may be adversely impacted because of its poor read speed.

Heuristically, we set the threshold of defining a “hot” small page to 900. The configuration

accuracy of the TLB entry of a large page is also measured by the probability of being demoted

to high capacity mode. Figure 7 shows that our page-size-only mode selection mechanism

captures averagely 83% of “cold” small pages and 90% of “hot” large pages. NN is an outlier

and exhibits heavy reads for both small and large pages. On average, our page-size-only mode

selection mechanism introduces a mode prediction accuracy from 40%∼100% for both small and

large pages. To improve the address translation efficiency, the promote/demote scheme is

applied to STD-TLB atop the page-size-only mode selection mechanism, as presented in 2.2.2.4.

 20

Figure 7. Percentage of correct mode configuration for TLB entries.

2) TLB Miss Rate: Figure 8 depicts the normalized overall miss rate of the TLB hierarchy

for the tested benchmarks. Due to the larger capacity, standard STT-RAM TLB and STD-TLB

exhibit significantly lower miss rates than SRAM TLB in 10 out of the 13 benchmarks. In NQU

and SGEMM, all three designs perform closely because the kernels of these benchmarks exercise

small working sets that can be effectively accommodated by a small TLB. For MUM, BFS, LIB

and SAD, standard STT-RAM TLB drastically reduces the miss rate. STD-TLB also

considerably reduces the miss rate of BFS, LIB, and SAD. But the reduction is less significant

than standard STT-RAM TLB because of the smaller runtime effective capacity. Under these

scenarios, the applications typically utilize more large pages with intensively accessed TLB

entries. On average, standard STT-RAM TLB reduces the miss rate by 38% while STD-TLB

reduces the miss rate by 30%, compared to the SRAM baseline.

 21

Figure 8. TLB miss rate in form of off chip misses compared to all accesses.

3) Performance: The address translation runtime performance improvements [39] of

different designs are presented in Figure 9 Standard STT-RAM TLB achieves a significant

speedup because of the prominent miss rate reduction. Although STD-TLB has a higher miss

rate, STD-TLB further improves the runtime performance by performing a faster address

translation for most accesses. We can see that other than two benchmarks – NQU and SGEMM,

which have relatively small data sets, all other benchmarks experience remarkable runtime

performance improvements under STD-TLB. On average, standard STT-RAM TLB improves

the translation performance by 32% over SRAM baseline while STD-TLB further improves it by

55% and 15% compared to SRAM TLB and standard STT-RAM TLB, respectively.

Figure 9. TLB translation performance improvement.

 22

4) Energy: The energy comparison of all designs is shown in Figure 10. Both standard

STT-RAM TLB and STD-TLB achieve over 70% leakage energy reduction compared to SRAM

TLB. STD-TLB has slightly higher dynamic energy due to the higher write energy consumption

in high-performance mode. For benchmarks that exhibit heavy write loads, e.g., NN and SAD,

STD-TLB consumes considerably more dynamic energy than standard STT-RAM TLB.

However, dynamic energy increases are negligible for other benchmarks. On average, standard

STT-RAM TLB and STD-TLB achieve 57% and 49% energy savings over SRAM TLB,

respectively.

Figure 10. Dynamic and leakage power consumptions for different TLBs.

5) Energy Delay Product: The overall benefit by both translation performance and energy

is often denoted by energy delay product (EDP). As illustrated in Figure 11, standard STTRAM

TLB achieves over 75% EDP reduction w.r.t. SRAM TLB while STD-TLB further boosts it to

nearly 80%. The significant improvement is mainly from: 1) low leakage power induced by

STT-RAM technology; 2) low miss rate as a result of the increased TLB capacity; and 3)

 23

reduced translation latency. STD-TLB further achieves 13% EDP improvement over STT-RAM

TLB regardless its nominally increased energy consumption. STD-TLB performs worse than

standard STT-RAM TLB only in SAD because of the increased dynamic energy and translation

latency induced by the heavy write loads and high miss rate.

Figure 11. Energy delay product improvements (normalized to SRAM TLB).

6) System Performance: As shown in Figure 12, standard STT-RAM TLB achieves very

moderate performance improvement in many benchmarks. It is because modern GPU designs

intent to hide memory latency, which is the main optimization goal of our proposed techniques.

However, significant performance improvements are still achieved in some benchmarks like BFS

(9.2%) and LIB (10.8%). After employing STD-TLB, significant GPU system performance

improvement is achieved in MUM and STENCIL, say, 15% and 6%, respectively. On average,

STD-TLB achieves 4% and 2% system performance speedup compared to SRAM TLB and

standard STT-RAM TLB, respectively.

 24

Figure 12. Overall system performance speedup comparison of different TLBs.

2.3 MLC STT-RAM BASED REGISTER FILE

2.3.1 Modern GPU register file

Threads are executed in single instruction multiple thread (SIMT) fashion in GPUs to

maximize computation parallelism and throughput. Without loss of generality, in this work, we

adopt the terminologies of Nvidia and use GTX480 [41] in Fermi family as the baseline model.

A GPU is composed of 16 streaming multiprocessors (SMs), each of which includes one

GPU processing pipeline. GPU kernel is instantiated with a grid of parallel thread blocks. The

maximum number of the threads that can be concurrently executed in one thread block is 1024

with maximum 63 32-bit registers assigned to each thread. 32 threads in one block are grouped

as a warp to be issued. Before launching a thread block, the CUDA compiler checks the number

of available registers: if it is smaller than the total register number requested by the thread block,

the launching will be suspended.

 25

As illustrated in Figure 13(a), a GPU processing pipeline includes Instruction Unit,

Register Address Unit, Register File (RF), and Execution Unit [43]. Instruction Unit decodes

instructions, and schedules the execution based on additional information like priority and data

dependency. The instructions selected in a round-robin fashion are sent to Register Address Unit

at the end of every clock cycle. Accordingly, Register Address Unit accesses the registers in the

RF.

The RF in a SM contains 32,768 32-bit registers to hold the instruction operands. Highly

banked architecture is usually utilized to realize multi-port access in the RF implementation. In

Fermi architecture, one SM integrates 16 banks, each of which contains 64 entries of 1,024

single-port SRAM cells (i.e., 32 registers). As shown in Figure 13(b), an operand collector in RF

is used to collect and dispatch the active warps to available banks. When all the operands have

been acquired, instructions and operands are output to Execution Unit.

Very recently, Emerging memories is discussed to be used to implement a much denser

RF and other types of GPU on-chip memory for power and performance improvement

[44][45][46][47]. Our proposed MLC-STT-based RF not only further enlarges the potential of

RF capacity, also successfully overcomes the long write operation and the unbalanced accesses

to different MLC bits, and demonstrates both power and performance improvement as presented

in our evaluation.

 26

Figure 13. GPU architecture and the register file design in GPU.

2.3.2 MLC STT-RAM based register file

Figure 14 illustrates the proposed MLC-STT based register file (MLC-RF) in Fermi

architecture. Each RF entry contains 1,024 MLC-STT cells, corresponding to 2,048 data bits,

which can be further divided into two logic entries, a fast row with 1,024 soft-bits and a slow

row with 1,024 hard-bits. A row decoder is also implemented to support the accesses to the logic

rows by employing the lowest address bit to control the access to the soft or the hard bits of each

physical entry.

 27

Figure 14. MLC STT-RAM-based register file.

 Table 4 summarizes the design parameters of 64Kb register banks built with SRAM and

MLC-STT at 32nm technology node. The results are simulated by CACTI [31] and HSpice with

PTM [32] under 32nm technology. In MLC-STT design, we assume the area of the big MTJ

(hard bit) is twice as that of the small MTJ (soft bit), which achieves the best robustness in read

and write operations [20]. The timing information of sense amplifier is derived from SPICE

simulations. The adopted RF configuration and area information is obtained through a modified

NVsim [33]. The area of MLC-STT design is only about 13.8% of that of SRAM design.

 Write Buffers are adopted in Arbiters to alleviate the impact of slow access time of MLC-

STT design. Each register bank requires one Write Buffer. The Write Buffer temporally holds

the writeback data until the former write is completed and releases write port. The needed

number of write buffer entries is determined by the cycles and frequency of MLC-STT write

 28

access. Based on the evaluation of the selected benchmarks, a 4-entry Write Buffer is sufficient

to remove the overflow since writebacks occur infrequently and the RF is highly banked.

Table 4. Comparison of SRAM and STT-RAM based register banks

 In the original arbiter design in Fermi architecture, a read queue is assigned to each

register bank to arrange all the read requests from different Operand Collectors in a row. The

Read Queue structure remains unchanged in our proposed MLCRF, holding read requests when

awaiting the slow MLC write operations to finish. The introduction of Write Buffer incurs 15%

increase in MLC-RF bank area. Nonetheless, the overall area of a MLC-RF bank is still less than

30% of the one of SRAM implementation, mainly benefiting from the high data storage density

of MLC-STT.

2.3.2.1 MLC-aware Remapping Strategy

 Write Buffers enhance the response time of RF but cannot help on reducing the long read

and write latencies of MLCSTT banks. As aforementioned in 2.1.3, MLC-STT contains soft- and

 29

hard-bit rows which have very distinctive read and write performance. It can be beneficial if the

GPU maximizes the usage of soft-bit rows for sake of system performance and energy

consumption. In other words, the data (especially the one being accessed frequently) shall be

mapped to the soft-bit rows before considering the hard-bit rows. In the implementation, run-

time information such as how many registers to be accessed and how many times they will be

accessed can be obtained from the compiler. During compilation, we first perform profiling on

the access frequency of all the registers involved during the execution of a kernel. A bitmap

vector is then generated to record whether a register will be placed in soft-bit row or hard-bit

row. Once the kernel is offloaded to SMs, such a bitmap vector is copied to a special register and

guide the register mapping.

Figure 15 (a) The register bank address remapping algorithm. (b) The hardware implementation

diagram of remapping. (c) Warp rescheduling.

 Figure 15(a) depicted the corresponding register file remapping algorithm, which requires

the support of two mapping tables and one register address unit (RAU), as shown in Figure

15(b). Remapping is activated only when the register demand exceeds the half capacity of the

MLC-STT register bank. Otherwise, hard-bit rows will not be utilized. When more than half

 30

capacity of the MLC-STT register bank is requested, the frequent-accessed registers will be

mapped to the soft-bit rows first while the rest will go to the hard-bit rows. The relationship

between the original address and the mapped physical address is retained in a remapping table.

Each remapping table entry corresponds to one row in the register bank, including 1 valid bit and

6-bit mapped address if RF is configured as Fermi architecture. Hence, the size of the remapping

table is small and the incurred area overhead is negligible.

2.3.2.2 Warp Rescheduling

 The long write latency of STT cells (even in the soft-bit rows of MLC-STT) may severely

degrade the system performance by blocking other accesses to the same register bank. Figure

15(c) describes such an example, where two warps – W0 and W1, are waiting in the instruction

buffer in a serial Round Robin manner. Their register requests are mapped to different banks and

they do not have data dependency with the current warps being executed. When the access to the

register bank thatW0 requests is held by a writeback from the previous warp, the operand

fetching of W0 has to wait. Since all the available entries in Scoreboard, Operand Collector, and

Read Queue have been held by W0, the processing of W1 is stalled at the issue stage even the

register bank to be accessed by W1 is free. In such a case, we may swap the issue sequence of

W0 and W1 to avoid the stalling of W1. Based on the above observation, we propose a warp

rescheduling scheme to minimize the waiting time of the issued warps for register bank access.

The rescheduling tends to rearrange the issue order of the ready warps by prioritizing the

accesses to the free register banks. The effectiveness of rescheduling is mainly determined by the

availabilities of the free register banks and the warps ready to be issued, which are generally

large in GPU execution. A parameter, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , for each warp is defined to guide warp

rescheduling as:

 31

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑎𝑎𝑥𝑥[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖] &𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖]] (1)

Here 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 indicates the remaining cycles to complete the current write operation

of the register bank, and valid denotes whether the warp has a register request from this bank.

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖 labels the register bank and is determined by the identifier of the register (𝑟𝑟𝑟𝑟𝑟𝑟_𝑖𝑖𝑖𝑖) by:

𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃_𝒊𝒊𝒊𝒊 = reg_id % bank_number (2)

Here 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the total number of register banks in one SM, which is 16 in

Fermi architecture. As shown in Figure 15(c), a bank status table is added in Instruction Unit to

assist acquiring the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of each register bank. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is updated by RF whenever

new write requests arrive and automatically counts down every cycle.

During scheduling, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 will be checked whenever warps are going to scoreboard

for data dependency check. As shown in Eq. (1), the maximum 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 will be chosen as the

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 of a warp. The warp will be managed to issue only when its 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 smaller than

a threshold. If a warp failed to pass the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 checking, it will remain in Instruction Buffer

and wait for next round check. The scheduler will continue to check the next available warp until

one available warp is issued successfully. Note that data dependency checking and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

checking can be performed simultaneously. Hence, no timing overhead on scheduling step is

introduced. We run extensive experiments and found that 5 is the optimal value of the

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 threshold which maximizes the system performance and energy efficiency of our

design.

 32

2.3.3 Evaluation

2.3.3.1 Evaluation Setup

We implement all the designs on GPGPU-sim [36], a cycle accurate GPU performance

simulator, for system functionality verification and performance evaluation. The baseline GPU is

configured as Nvidia GTX480 [41]. Table 2 summarizes the parameters of our system

configuration. Loose round-robin (LRR) scheduler, which is widely adopted in GPU warp

scheduling, is selected as the basic scheduler. The SM operating frequency is set to 700MHz.

The parameters of the RF are generated from a modified NVsim [33] at 32nm technology node.

The STT device parameters from [32][42] are adopted for cell area estimation. The detailed

configurations of register banks can refer to Table 5.

Table 5. GPGPU-sim configuration

 33

Ten GPU workloads from [36][40] are selected in our performance evaluations. Table 6

shows that the register file usages of the selected workloads vary from 27.2% to 92.9%, which

offers a good coverage on all representative cases.

Table 6. Characteristics and register file usage statistics of 10 selected GPU benchmarks

2.3.3.2 System Performance

 Figure 16 summarizes the GPU performance with different register file configurations

over the selected benchmarks. All the results are normalized to that of the baseline with SRAM

register file (“SRAM”). As the area of MLC-STT implementation only occupies 13.85% of

SRAM, it explores the possibility of a larger register file to support more threads operating at the

same time. We build a same-sized (2MB), a 2x (4MB) and a 4x (8MB) RFs to find the proper

configuration. It shows that simply replacing SRAM with same-sized MLC-STT without any

optimizations (“MLC”) result in an average 11.4% performance degradation. In particular,

 34

significant system performance degradation (>14%) was observed in the applications that have

intensive register file accesses, e.g., MRI-Q and BLK, due to the long read and write access

latencies of MLC-STT. As increasing RF size, some benchmarks with high register file usage

archive better performance due to more threads operating at the same time. HOT, LBM, and BP

even outperform the SRAM baseline. But the performance stops improving when the capacity of

RF is larger than 4MB since the number of concurrently executed threads is limited by other

resources like shared memory. Hence, we use 4MB RF configuration in the following

experiments.

Figure 16. System performance comparison under different register file configurations. All the

results are normalized to that of SRAM baseline design.

 Interestingly, NN also shows performance improvement even its RF usage is only 27.2%

across all kernels. Our detailed analysis found that the RF usage of NN is concentrated on only

one kernel. Hence, the increased RF capacity greatly raises the number of the threads that can be

issued on that kernel, resulting in considerable performance improvement.

 35

When remapping strategy is applied (“MLC+RM”), the twostep read and write operations of

MLC-STT RF are minimized, introducing on average 3.59% enhancement in system

performance compared to “MLC”. Remapping is particularly effective in the benchmarks

sensitive to RF access latency: In SC and HOT, for example, the performance improvements

w.r.t. “MLC” are as high as 7.5% and 7.01%, respectively.

 After applying the rescheduling scheme (“MLC+RM+RS”), the GPU performance

substantially improves 7.35% compared to “MLC+RM”. Among five register-hungry

benchmarks (MRI-Q, HOT, NN, LBM, and BP), MLC+RM+RS even outperforms SRAM

baseline quite significantly, say, on average 10.4% speedup! Across all benchmarks,

MLC+RM+RS still outperform SRAM baseline by 3.28%.

Figure 17. The statistics of soft-/hard-bit row accesses with/without remapping.

 36

2.3.3.3 Effectiveness of Remapping and Rescheduling

To further evaluate the effectiveness of the proposed remapping strategy, we compare the

ratio of the accesses and the usage of the hard-bit and soft-bit rows in each benchmark before

and after the remapping strategy is applied. Figure 17 shows the statistical results. Without

remapping, on average 53.3% of accesses fall on soft-bit rows, accounting for 50.2% of register

bank entries in use , while the RF accesses are evenly distributed to soft-bit and hard-bit rows.

The situation changes dramatically after applying the remapping strategy: the accesses to soft-bit

rows are greatly promoted to 96.6% as averagely 94.1% of overall soft-bit rows are occupied.

The effectiveness of the proposed rescheduling scheme can be represented by 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

of each warp after it is issued. As shown in Figure 18, originally majority (>80%) of issued

warps need to wait for more than one cycle before successfully retrieving the operands from the

RF. After applying the rescheduling, more than 50% warps can immediately access the RF while

the maximum 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of all the warps reduces from more than 12 cycles down to 5 cycles.

Figure 18. Rescheduling influence on timescore of issued warps.

 37

2.3.3.4 Energy Consumption and Energy Efficiency

Figure 19 shows the energy consumption of the RF with different configurations

normalized to SRAM baseline, including both dynamic and leakage energies. The leakage

energy consumption of the RF dramatically reduces when MLC-STT is directly applied thanks to

the non-volatility of STT-RAM, but dynamic energy consumption is increased due to the

complex 2-step write and read operations. On average, MLC increases the total energy

consumption by 16.2%.

In general, the dynamic energy of MLC-STT RF dramatically reduces when remapping

strategy is applied: On average, MLC+RM consumes 9.48% less energy than SRAM. Note that

rescheduling scheme does not reduce the number of write operations. Hence, it does not affect

energy dissipation visibly. All the simulations above have taken into account the energy

consumed on the additional control circuits.

Figure 19. Register Energy consumption under different register file configurations. All the results

are normalized to that of SRAM baseline design.

 38

Figure 20. Normalized energy efficiency.

In this work, we use the ratio of the normalized performance over energy from [48] to

measure the energy efficiency of our proposed MLC-STT RF design. Figure 20 shows the

normalized energy efficiency of various RF configurations with and without optimizations. Our

design, i.e., MLC-STT RF with remapping strategy and rescheduling scheme (“MLC+RM+RS”),

achieves the best energy efficiency in 7 out of 10 benchmarks. On average, it is 38.9% more

efficient than SRAM baseline.

 39

3.0 EMERGING MEMORY APPLICATION FOR ACCELERATION

3.1 PRELIMENARY

3.1.1 Artificial neural network

Artificial neural network (ANN) can be also considered as one kind of approximate computing

with high adaptivity to many high-performance applications [51]. The inherent resilience to soft

and hard errors in computation makes ANN a promising solution to conquer the aggravated

system reliability issue under the highly-scaled technology nodes [52].

MLP belongs to feedforward ANNs that have been widely utilized in approximate

computing [49][50]. It maps a set of input data to outputs through multiple layers of nodes in a

directed graph, in which every layer is fully connected to the next layer. Figure 21(a) shows an

example of 3-layer MLP implementation. The input nodes collect and convey the input bits to

the following layer through the weighted connections. A weighted connection (or synapse) is

associated with a preset weight to modulate the carried signal. Except for the input nodes, each

node represents a neuron with a nonlinear activation function, e.g., a sigmoid function 𝑓𝑓(𝑥𝑥) =

1
1+𝑒𝑒𝑥𝑥

 on the sum of all the signals it receives.

AAM is normally used as recurrent neural networks, performing pattern recognition and

completion [53]. Figure 21(b) shows a Hopfield network acting as an AAM. Each pair of

 40

neurons in the network are bridged through a weighted connection. An input vector distorted by

noises or other randomness will go through the network iteratively and converge to the closest

version of the vector pattern. In general, the non-iterative MLP implementation executes faster

than the iterative AAM implementation while the latter is much more dependable due to its

inherent fault tolerance characteristic.

Figure 21. (a) A 3-layer MLP; (b) A 1-layer AAM with 4 neurons.

As an important operation of ANN, training determines the weight associated with each

connection and prepares the ANN to properly respond to certain unseen data with desired

outputs. The completion of training makes the ANN properly respond to certain unseen data with

the desired outputs. In this work, we adopt back-propagation and delta rule [54] to perform the

training of MLP and AAM. Our architecture level contributions mainly focus on the

testing/computation process of the ANN by assuming the RENO has been trained by supervised

algorithms for specific applications. No further modification on the configuration of RENOs is

required during the computation except for the inline.

 41

3.1.2 Memristor and memristor-based crossbar (MBC)

Memristor is defined as the 4th fundamental circuit element whose resistance

(memristance) is determined by the total electric charge/flux through itself [55]. The existence of

memristor was predicted in theory by Professor Chua in 1971 [55]. In 2008, HP Labs first

reported a memristor device based on a TiO2 structure [56]. Afterwards, the memristive

characteristic was observed in many other materials. In theory, a memristor can be programmed

to any arbitrary resistance within its lowest and highest bounds by appropriately controlling the

amplitude and duration of the programming current/voltage [57][58]. The recent research has

obtained 7-bit programming resolution on a single memristor device [59] with sophisticated

peripheral circuit.

Figure 22 (a) A 4x4 MBC array; (b) the neuron logic.

Similar to biological synapses, a memristor device can “record” the historical profile of

the applied excitations as its resistance change. This feature inspired many studies on memristor-

 42

based synapse designs [60][61][62]. For example, memristors can be employed in spiking

networks and trained by using spike timing dependent plasticity (STDP) learning rule

[61][62][63][64]. Moreover, the recent studies presented the use of MBCs in perceptron network

construction [65][66], and demonstrated extremely efficient, accurate, and fast ANN

implementations. Figure 22 depicts the diagram of a MBC which represents the connections

between two layers in a MLP. The relationship between the input voltages (𝑉𝑉𝑖𝑖) and output

voltages (𝑉𝑉𝑜𝑜) can be defined as:

𝑽𝑽𝒐𝒐 = 𝑪𝑪×𝑽𝑽𝒊𝒊 (3)

Here 𝐶𝐶 is the connection matrix. In a real design, due to the existence of sensing circuits

at the outputs of the MBC, the relationship between the connection matrix and the resistance

matrix of a MBC is not a direct one-to-one mapping but an approximation. The implementation

of a N-layer MLP requires 𝑁𝑁 − 1 MBC arrays connected in series. A large volume of ANN

computations (i.e., weight multiplications) can be simultaneously performed by the MBC in

analog form without any internal control logics. In this work, we adopt the MBC programming

method in [66] where an adaptive write driver [59][58] is used to program the memristors to

particular resistance states and many memristors on the same row are tuned simultaneously. In

such a design, the sneak path issue is significantly suppressed.

3.2 THE RENO ARCHITECTURE

Figure 23 depicts the proposed RENO structure. It works as a complementary functional

unit to CPU and particularly accelerates ANN-relevant executions. In the design, memristor-

based crossbar (MBC) arrays are used to perform analog neuromorphic computation. And a

 43

mixed-signal interconnection network (M-net) is developed to connect the MBC arrays and

conduct the topological reconfiguration of RENO. To receive command and data and send result

back to processor in digital form, input, output and configuration FIFOs are located at the

interface of RENO.

Figure 23 RENO architecture.

3.2.1 Hierarchical structure of MBC arrays

The hierarchical MBC array structure adopted in the RENO is depicted in Figure 23.

MBC arrays are arranged in a metamorphous centralized mesh (MCMesh) manner to minimize

the cost of the interconnection network [70]. A RENO is composed of four array groups, each of

which is formed with four MBC arrays connected through a group router. Here an MBC array is

partitioned into four sub-crossbars to implement the multiplication of the combination of the

signed signals and the signed synaptic weights. In this work, the optimized MBC design has 64

 44

rows and 64 columns. As we shall show in Section 6.4, such a design offers a good compromise

between performance and reliability. Moreover, it covers the majority of learning applications

where 80% of them have less than 60 neurons in the input layer [52]. Applications requiring

larger connection matrices can be partitioned into smaller tasks and executed on multiple MBC

arrays simultaneously or sequentially.

 Without losing generality, we use a connection matrix 𝑀𝑀𝑛𝑛×𝑚𝑚 as an example to explain how

to map a connection matrix to the MBC arrays. Here n and m denote the numbers of neurons in

the input and output layers of the connection matrix, respectively. If max (𝑛𝑛,𝑚𝑚) ≤ 64, 𝑀𝑀𝑛𝑛×𝑚𝑚

can be directly mapped to a 64×64 MBC array; if 64 < 𝑛𝑛 ≤ 128 and 𝑚𝑚 ≤ 64 or if 64 < 𝑚𝑚 ≤

128 and 𝑛𝑛 ≤ 64 , 𝑀𝑀𝑛𝑛×𝑚𝑚 can be mapped to two MBC arrays; an even larger 𝑀𝑀𝑛𝑛×𝑚𝑚 need be

partitioned into more MBC arrays and mapped into different MBC groups.

3.2.2 Mixed-signal interconnection network (M-Net)

3.2.2.1 Digital, analog, or mixed-signal?

The signal transmission within a RENO can be realized in either digital or analog form.

Digital signal transfer has good controllability and supports high-frequency operations. However,

as the computation of MBC arrays is in analog form, DA/AD conversions are required at the

interface of MBC arrays and routers, which inevitably degrades the signal precision and results

in significant area and power overheads. The small footprint of the MBC arrays limits the data

communication distance, e.g., within 0:53mm, making it possible to transfer the computational

signals in analog form. Moreover, the impact of signal distortion generated during the analog

signal transmission on computation reliability can be tolerated by the intrinsic high fault

resistance of ANN algorithms.

 45

We propose a mixed-signal interconnection network called M-Net to assist the task

mapping and data migration in the MBC arrays. M-Net maintains the data in analog form while

transfers the control and routing information in digital form so as to simplify the synchronization

and communication between CPU and routers. More specific, the signal communication is fully

conducted through routers, each of which is divided into digital control logic and analog data

path.

Figure 23 also shows the centralized hierarchical MBC array architecture where the data

communication is performed at both inter-group and intra-group levels. The central router

connects to the CPU and all the group routers. Each group router talks to the four local MBC

arrays within the group, three other group routers, and the central router. Such a centralized

scheme maximizes the number of parties that each router communicates with, minimizes the

effective communication distance and the hop count, mitigates the bottleneck effect of the central

router, and simplifies the control complexity.

Figure 24 The mixed-signal router design: (a) architecture; (b) the digital controller.

 46

3.2.2.2 Router design

Figure 24(a) shows the group router design. Its analog data path consists of input buffers

and data multiplexer/switches. Each input port can receive up to 64 analog signals corresponding

to a set of the inputs/outputs of a MBC array, referred as a packet. During RENO operations, a

switched-op-amp (SOP) based sample-and-hold (S/H) circuit (see Figure 24(a) [72]) serves as an

analog buffer, which holds and passes the analog data to the next destined MBC array or router.

The S/H circuit adopts a pseudo-differential topology and turns off the transistor in saturation

region. Such a design substantially minimizes the nonlinear distortion of the stored analog data

caused by charge injection and clock feedthrough error, maintaining a good signal quality [72].

Figure 24(b) depicts the conceptual implementation of a 8×8 multiplexer based on

transmission-gate based analog crossbar switches. The multiplexer can dynamically establish the

routing path from one input port to one output port under the guidance of the digital control logic.

64 copies of such a multiplexer are required at each port of a group router to transmit a packet of

up to 64 signals simultaneously.

 47

Figure 25. The analog component design in the mixed-signal router: (a) the transmission path; (b)

the crossbar-based multiplexer.

The digital controller of a router is shown in Figure 25(b). The routers in the RENO are

responsible for not only data transferring as traditional Network-on-Chip (NoC) does, but also

routing information processing. Thus, a work queue (WQ) is introduced. Once the WQ receives

the routing information of a data packet, it will decode the information to generate the control

signals of other components in the router. The routing path configuration in the multiplexer is

controlled through a switch allocator (SA). Each WQ entry is associated with a multi-bit

computing counter (CO) to monitor the computation status of a local MBC array by counting the

number of the executed loops. In this work, we utilize a 7-bit CO (supporting up to 128 loops)

because all the selected benchmarks can complete executions within 100 loops. As a local MBC

array approaches to the end of its computation, the CO notifies its WQ. The computation result

 48

will be sent to the CPU or another MBC group with the routing information generated by packet

generator (PG). At this time, the corresponding WQ entry is released and the updated routing

information remains in the group router. Status recorder (SR) logs and broadcasts the availability

of a local MBC array to all the connected routers.

The central router design is similar to that of the group router except that the central

router is only responsible for establishing the data paths between the CPU and the four group

routers. Although the group routers work independently, all the MBC arrays can perform

computation simultaneously.

3.2.2.3 Routing management

 Figure 26 shows the format of the routing information adopted in RENO, including 1-bit

valid bit (V), 1-bit routing field (H), address field (Addri), and looping field (Loop). An address

field contains 5 bits: Addri [1:0] identifies the group router, Addri[3:2] denotes a MBC array

within the group, and Addri [4] indicates if the data shall be sent back to CPU. Corresponding to

the CO design, the looping field contains 7 bits supporting up to 128 loops.

Figure 26. Routing information format.

 49

Bit H represents the type of ANN implementations (MLP or AAM) and determines the

format of routing information. The MLP configuration does not require looping field. The

address fields of MLP include the addresses of the MBC arrays that the data will go through and

the address representing the CPU. The AAM configuration needs both address and looping fields

to guide the destined router address and the related number of computation loops, respectively. A

routing information always ends at CPU address, indicating the completion of data transmission.

Once an input data packet goes through the corresponding router, these address and looping

fields can be recycled by the PG.

3.3 EXPERIMENTAL METHDOLOGY

3.3.1 Circuit level implementation and simulation

We created a Verilog-A memristor model by adopting the device parameters from [64]

and scaling them to 65nm node based on the resistance and device area relation revealed by the

physical experiments in [73]. All the RENO circuit components, including MBC, analog buffer,

switch, sum amplifier, and sigmoid circuit, are designed with SMIC 65nm technology [74]. To

achieve high-speed and small form factor, we adopt the flash analog-digital converter (ADC) and

current steering digital-analog converter (DAC) [75] in our design. The resolution of DAC/ADC

is set to 4-bit to comply with the data resolution required by the selected benchmarks. As

depicted in Figure 23(a), a MBC array receives input data from the DAC and sends the

computation result to the ADC. The DAC at the input side is coupled with a cascoded current to

boost the output impedance. At the output side of the MBC array, a signal passes through an

 50

amplifier (Amp) and a sample-and-hold (S/H) before reaching the ADC. The Amp boosts up the

input signal to match with the ADC input window and performs correlated-double-sampling

(CDS) to mitigate the DC offset caused by mismatch [76], while the S/H ensures a stable input

during the analog-to-digital conversion. We estimate the delay and power of all these

components and extract the layout areas under Cadence Virtuoso environment [77]. The detailed

design parameters and area estimation can be found in Table 7.

The area of a RENO is mainly occupied by the routers. An analog signal transmission

model is created to simulate the analog signal transmission in the concerned distance, e.g.,

among the routers. Our simulation shows that a voltage swing between 0V and 1V can be

transferred from one end of an interconnection of 0.53mm to the other end in 0.5ns, after

considering signal fluctuations.

Table 7. The simulation platforms

All the major noise resources, including 1= f noise in amplifier, thermal noise produced

by memristor and amplifier, and quantization noise caused by ADC, have been evaluated. The

result shows that the quantization noise up to 18mV dominates the overall noise while the other

 51

two noises are negligible. Such noise magnitude is much smaller than the resolution of 4-bit

DAC/ADC (62.5mV) so that the introduced impact remains under a tolerable level in RENO

operations. Finally, the device mismatch can be calibrated by a predetermined look-up table [78].

Reliability analysis is conducted using Monte-Carlo simulations. We assume both the

resistance of the memristors and the analog inputs of the MBCs follow normal distributions. In

each Monte-Carlo simulation, the initial memristor resistance of a MBC sample is fixed as it is

decided by the offline training. Instead, the signal fluctuation is generated on-the-fly during the

entire RENO execution.

3.3.2 Benchmarks

 We choose seven representative learning benchmarks in our evaluations, as summarized in

Table 8. Cancer, gene, mushroom and thyroid are selected from Proben1 [79]. connect-4 and

lymphography from UCI machine learning repository [80] are tailored for neural network

implementation. MNIST [81] is a widely-used benchmark of learning and recognition

algorithms1.

 We implement all the selected benchmarks by using MLP and AAM models and measure

the execution quality in classification rate. These benchmarks naturally come with training and

testing inputs, and we further divide the training vector into an actual training set and a so-called

validation set which is used to evaluate the quality of a network.

 ANN topology for each application is optimized based on FANN library [82] by

comprising training time, computation accuracy, and network size. The enhanced device

variation and signal noise aware MBC training scheme [54] is utilized to ensure training

robustness. We define training error as the mean square error (MSE) between the actual and

 52

target outputs under the training vectors. Table 8 summarizes the implementation details and the

initial training errors.

Table 8. The Description and Implementation Details of the Seven Selected Benchmarks

3.3.3 Architecture level simulation setup

We modify MacSim [83], a PIN-based [84] cycle-level X86 simulator, by adding a cycle-

accurate RENO module to conduct architecture level evaluations. The CPU is configured as an

Intel Atom [85]-liked processor. The RENO-supported functions within a target code shall be

identified and translated to RENO instructions. During trace generation, the modified PIN tool

generates the simulation trace by replacing the RENO-supported functions with the

corresponding RENO instructions according to the selected ANN topology in the specific

application. Since all the selected benchmarks are ANN oriented, on average, 99% of execution

time is consumed on running the target codes. Thus, in the following evaluations, the execution

time of the target codes is used to represent the overall performance. Table 7 summarizes the

parameters of our simulation platform.

 53

Table 9. The Simulation Platforms

The energy consumption of the CPU core is estimated using McPAT [86]. We generate a

detailed log of RENO utilization during the execution so that the energy consumption of the

RENO can be calculated based on the characterized results from our circuit level simulations.

The data traffic and the power consumption of the M-Net within the RENO are simulated by a

modified Booksim simulator [87].

3.3.4 Implementation of other design alternatives

 We also explore the potential of RENO by comparing with other ANN accelerator designs.

First, we construct a digital neural processing unit (D-NPU) which adopts the RENO topology

but replaces MBC arrays with digital processing elements (PEs) [68], as shown in Figure 27.

Accordingly, the interconnect network is designed in digital format (namely, D-Net). To perform

a fair comparison, the input/output FIFO and weight cache of each PE are scaled up to match the

computational capacity of a MBC array. The latency and power of a PE are extracted from a

 54

Verilog-HDL model synthesized with SMIC 65nm library using VCS and Design Compiler. The

detailed D-NPU configuration is summarized in Table 7.

Figure 27. A D-NPU design built with digital PEs in [68].

 To study the efficacy of M-Net, we construct an alternative design by solely replacing the

M-Net in RENO with D-Net. The MBC arrays remain as the computing units. D-Net keeps the

same topology and function as M-Net by transmitting both data and control signals between CPU

and MBC arrays in digital format. To minimize the design cost of data bus while maintaining the

same bandwidth, digital data can be packed and transmitted at a higher frequency. The

evaluation in Booksim [87] shows that operating the D-Net with input buffers at 1.332GHz

offers the similar transmission capacity as M-Net. Essentially, the boundary of digital and analog

domains moves from CPU↔RENO to D-Net↔MBC arrays in such a “MBCs+D-Net” design. In

other words, DAC/ADC pairs are required at the interface of each router and frequent DA/AD

conversions before/after any MBC-based computation are indispensable. Compared to M-Net,

digital transmission on D-Net suppresses signal precision loss and simplifies router design.

 55

However, the increased number of DA/AD converters dramatically increases the design area and

power consumption overheads of the non-computing parts, as illustrated in Table 5.

3.4 EXPERIMENTAL RESULTS

We investigate the design and optimization of RENO by thoroughly evaluating the

impacts of MBC training effort, device variations and signal fluctuations, MBC array size, and

memristor resistance shifting. The potentials of RENO from the perspectives of computation

accuracy, performance, and energy consumption are also comprehensively explored by

comparing to the general-purpose CPU and two other ANN accelerators: D-NPU and MBCs+D-

Net.

3.4.1 MBC training effort

The computation accuracy and energy consumption of the RENO are greatly influenced

by the precision of the input signal and the training effort which can be measured by the size of

training data set used in MBC array training. The resolutions of the computation data are

naturally provided in the selected benchmarks, which are all less than or equal to 4-bit. Thus, we

fix the DAC/ADC resolution to 4-bit and focus on the impact of the training effort in the

following evaluations.

 56

Figure 28. The normalized classification rates of (a) MLP and (b) AAM under different MBC

training efforts. The DAC/ADC resolution is set to 4-bit.

 For a specific benchmark, the computation accuracy can be improved by increasing the

size of training data set. However, the computation accuracy will saturate to level when the

number of the training data reaches a threshold, i.e., the saturated training data set size. Figure

28. The normalized classification rates of (a) MLP and (b) AAM under different MBC training

efforts. The DAC/ADC resolution is set to 4-bit. Figure 28 (a) and (b) respectively compare the

computation accuracy (i.e., the classification rate) degradations of MLP and AAM

implementations under different training efforts. The classification rates have been normalized to

the ideal case that the execution is performed by the floating-point unit of the CPU. Here the

training effort is normalized to the saturated training data set size of each benchmark. Applying

100% training effort will produce a normalized classification rate very close to the ideal case.

The classification rate decreases as the training effort reduces due to the degraded training

 57

accuracy. Generally, the MLP implementation is more sensitive to the variation of training effort.

In particular, gene, mnist and mushroom experience considerable reduction in classification rate

due to their large network scale. When the training effort is set to 70%, the normalized

classification rate is maintained above 86% for all benchmarks. Further reducing the size of

training data set will quickly deteriorate the RENO computation accuracy.

Benefiting from the iterative feedback loop, the AAM implementation demonstrates

much better computation accuracy than the MLP implementation under the same training

accuracy. For the AAM implementations, the average classification rate of all benchmarks keep

above 83% even the training effort is as low as 50%. In the following evaluations, we set a

training effort of 70% which can simultaneously satisfy the computation accuracy requirements

of both MLP and AAM implementations with reasonable hardware and performance overheads

of training.

3.4.2 Impact of device variations and signal fluctuations

Figure 29 illustrates the impacts of device variations and signal fluctuations on the

computation accuracy of RENOs. Here 𝜎𝜎𝑝𝑝 denotes the standard deviation of memristor resistance

incurred by process variations; sf denotes the standard deviation of the magnitude of the analog

signals generated from DA/AD conversion, routing/buffering, sum-amplifier and sigmoid

function. Since 𝜎𝜎𝑓𝑓 has greater impact on the computation accuracy of MBCs than 𝜎𝜎𝑝𝑝 [54], we

choose very pessimistic settings of sf in our simulations to cover even the very extreme cases.

As expected, the increase of device variations and signal fluctuations generally degrades

the computation accuracy of the RENO with both MLP and AAM implementations.

Interestingly, the normalized classification rate of mnist degrades slightly faster than other

 58

benchmarks, indicating a less robust ANN topology. Nonetheless, both MLP and AAM

implementations maintain a very moderate computation accuracy deterioration when 𝜎𝜎𝑝𝑝 and 𝜎𝜎𝑓𝑓

are within a realistic range, i.e., 𝜎𝜎𝑝𝑝 =0.05 and 𝜎𝜎𝑓𝑓 =0.1. Again, the AAM implementation

demonstrates better tolerance to process variations and signal fluctuations than the MLP. We

note that after this section, all the simulations are performed by considering only a nominal case.

However, the statistical analysis can be easily conducted by following the same flow that

generates Figure 28.

Figure 29. The impact of device variations and signal fluctuations on computation accuracy: (a)

MLP, (b) AAM.

3.4.3 Impact of MBC sizes

On one hand, increasing MBC size improves the computation efficiency of the RENO as

more calculations can be performed simultaneously. It also helps to reduce the overheads of the

 59

computation partitioning and the signal routing among MBCs if the scale of the ANN topology is

larger than the MBC size. On the other hand, a larger MBC is more vulnerable to process

variations and signal fluctuations, resulting in a worse programming quality. Moreover, when the

MBC size exceeds the scale of the ANN topology, part of power consumption and computation

capacity of the RENO will be wasted.

Figure 30. The normalized RENO performance at different MBC sizes in (a) MLP and (b) AAM

implementations. The results of 64x64 MBC is used as normalization baseline. The classification rate at

different MBC sizes in (c) MLP and (d) AAM.

In Figure 30, we compare the execution time and the classification rate of all benchmarks

when the MBC size varies from 16x16 to 128x128. For a fair comparison, we keep the same

computation capacity under all simulated MBC size configurations and adjust the routing

 60

topology accordingly. For example, when 32x32 MBC is used, a RENO contains 64 MBC arrays

and extends M-Net to connect all the arrays accordingly. Here sp and sf are set to 0.05 and 0.1,

respectively. As the MBC size increases, the RENO performance of a particular benchmark

keeps improving until the MBC size exceeds the largest scale of the ANN topology. Therefore,

continuing to increase the MBC size does not further enhance the RENO performance.

Nonetheless, the aggravated vulnerability of the RENO to process variations and signal

fluctuations at a large MBC size causes slight degradation on the classification rate, as shown in

Figure 30(c,d). Thus, in this work, we selected 64x64 MBCs as the optimized configuration that

offers the balanced computation efficiency and accuracy.

3.4.4 Comparison to other design alternatives

Figure 31 compares the performance, energy efficiency, and classification rate of three

ANN accelerator designs: D-NPU, MBC+D-Net, and RENO. Here, the energy efficiency is

defined as the inverse of system energy consumption. The performance and energy efficiency are

normalized to those obtained from the baseline CPU execution, which is, running the MLP/AAM

implementation exclusively on the CPU based on FANN library. The results show that all the

three ANN accelerators dramatically speedup the execution of the selected ANN benchmarks

with slight degradation in computation accuracy compared to the baseline CPU.

As shown in Figure 31 (a,b), the geometric mean speedup (GMS) achieved by D-NPU in

digital format is 11.9x or 1.7x for MLP or AAM implementation, respectively. As a PE can

process only one multiply-add operation per cycle, the computation bandwidth of D-NPU is

relatively limited compared to the other two designs. MBCs+D-Nets utilizes MBC arrays for

analog computation, which dramatically boosts the GMS of its MLP and AAM implementations

 61

to 117.2x and 20.1x, respectively. Compared with MBCs+D-Nets, the proposed RENO

minimizes the costly DA/AD conversions and hence demonstrates even higher speedup: The

corresponding GMS values further rise to 178.41x (MLP) and 27.06x (AAM). Relatively

speaking, the AAM implementations obtain less speedup due to the costly iterations during the

computation. The MLP implementations, however, achieve much faster execution because all the

inputs traverse the network only once.

Figure 31. The performance speedup, energy efficiency and classification rate of three ANN

accelerator designs with MLP (a,c,e) and AAM (b,d,f) implementations

 62

Figure 31 (c,d) compare the energy efficiency result of each design, which demonstrates

a trend very similar trend in the performance results. Compared to the baseline CPU architecture,

MLP and AMM implementations of RENO achieve on average 184.24x and 25.23x energy

savings, respectively. The energy efficiency of RENO is more than 2x higher than that of

MBC+D-Net due to the dramatically reduced DA/AD conversion overhead. Note that in MLP,

the energy efficiency of D-NPU under MNIST is higher than that of MBCs+D-Net. It is because

the partitioning of MNIST onto multiple MBCs introduces considerably large amount of data

traffic among the MBCs and hence, significantly raises the AD/DA energy consumption in

MBCs+D-Net.

Figure 31 (e,f) compare the classification rate of each designs. In MLP implementations,

RENO demonstrates the lowest computation accuracy. The computation accuracy is enhanced in

MBC+D-Net design by utilizing digital network for signal transmission. As expected, the full

digital implementation of D-NPU achieves the highest classification rate in all benchmarks. In

AAM implementations, the three designs all obtain very high (i.e., 92%) classification rate in all

benchmarks. The classification rates achieved in each design are also very close, say, with a

variation less than 2.8%. This is because AAM can automatically compensate the adverse impact

of the less reliable executions in each loop on the computation accuracy, by paying the cost of

more iterations. As shown in Figure 31(a,b), compared to MBC+D-Net, the performance

speedup achieved by RENO in the AAM implementation is only 1.3x, which is less than the 1.5x

speedup achieved in the MLP implementation. In short, RENO exhibits extremely high

performance and power efficiency while well maintaining the computation accuracy within an

acceptable level. Moreover, MLP and AAM implementations present different tradeoffs between

the computation efficiency and accuracy, offering valuable design flexibility adaptive to the

 63

nature of the particular applications. For example, when using application (mushroom) to

discriminate the poisonous mushroom, a user may be willing to tolerate the high computation

cost of the AAM implementation to achieve a more confident result. In contrast, MLP could be a

better choice when implementing (connect-4) because the response time is more critical to the

player.

3.5 NOC CHALLENGES IN NEUROMORPHIC ACCELERATION SYSTEM

3.5.1 Background and motivation

3.5.1.1 Neural networks (NN) and neuromorphic acceleration system

In this work, we mainly focus on Multilayer Perceptron (MLP), which is a feedforward

artificial neural network that widely utilized in classification algorithms such as the classification

layer in deep neural networks (DNN) [95] and convolutional neural networks (CNN)[96], and

approximate computing[50]. MLP presents not only the basic computation patterns of DNN, i.e.,

matrix multiplication followed by nonlinear activation functions (e.g., sigmoid etc.) at each

layer, but also the intensive communications within the layers. Figure 32 depicts the hardware

utilization of Alexnet [97] running on Nvidia GeForce GTX TITAN X GPU [98] where MLP

processes the largest memory-to-computing ratio. As such a memory-to-computing ratio directly

links to the traffic intensity of the NoC on a neuromorphic system, we choose MLP as the target

in our study: the performance of MLP on each design reflects the worst-case efficacy of the

NoC.

 64

Figure 32. Hardware utilization of each layer in DNN.

Hardware acceleration for neural networks has been extensively studied on not only

general-purpose platforms, e.g., graphic processing units (GPUs), but also domain-specific

hardware such as field-programmable gate arrays (FPGAs) and custom chip (e.g., TrueNorth)

[92]. On a neuromorphic computing system, data are stored in a distributed manner (i.e., the

weights of synapses) and participates in the computation through local neurons. Although these

architectures greatly mitigate the requirement of memory bandwidth, long-range connectivity

across computation cores emerges as a new challenge in hardware development. For example, in

IBM TrueNorth system, the local neuronal execution within a neurosynaptic core is extremely

efficient, while the energy consumption of core-to-core communication increases rapidly with

the distance between source and destination[100]: an inter-core data transmission could consume

224X energy of an intra-core one (i.e., 894pJ vs. 4pJ per spike per hop)[100]. As the scale and

density of the NN increase, more inter-core interconnections are introduced; the effect of long-

range connectivity and communication quickly becomes a severe design challenge.

65

Table 10. GPGPU-SIM configuration

To overcome this challenge in NN acceleration, both hardware and software solutions are

explored. The hardware approaches attempt to build a specialized circuit and/or architecture

including some customized network models. These new models, however, are often inconsistent

with their state-of-the-art version, resulting in low inference accuracy. In TrueNorth, for

example, the NNs constructed in the tiled neurosynaptic cores could cause accuracy degeneration

[99]. On the contrary, the software approaches mainly focus on reducing the scale and

connectivity of DNN models while still retaining the accuracy [101]. However, implementing

such pruned models on hardware can be very challenging. Such sparse NNs often generate

scattered memory access patterns so that the realistic speedup can be very limited [102].

 66

Figure 33. Baseline design of a neuromorphic computing system with NoC.

3.5.1.2 Motivation of our work

NoC is a critical part in neuromorphic computing system designs because their data tra_c

patterns are significantly different from that in conventional multicore systems. Figure 33 depicts

a neuromorphic computing system that composed of 648 processing engine (PE) [88]. A 9x9

Mesh NoC, which is the most widely used NoC design in multicore systems, connect these PEs

and serve as our baseline. The weights are stored in the distributed local memories and fetched

through a specific high-throughput memory bus within a short distance. The matching relations

between neuron outputs and weights are stored as the source address information in head flit and

also the sequential order of fits in a package.

 67

Figure 34. The volume of data packages transmitted over different channels; (b) The ratio of

duplicated data packages.

In MLP, the neurons in one layer only communicate with the neurons in the next adjacent

layer. As an initial study, we stimulate the data traffic of 6 selected NN benchmarks running on

the NoC of the neuromorphic computing system depicted in Figure 33. More details about these

benchmarks can be found in Table 11. Figure 34(a) shows the result of running mnist_mlp_1 that

on average, 57.6% of the total data packages travel through only 29% of total channels during

the NN computation. The data traffic is particularly concentrated on the transmission channels

that connecting two adjacent layers while the channels between the neurons in one layer are idle

 68

most of the time. Obviously such communication pattern leads to very unbalanced traffic

patterns and causes congestions over the NoC.

In addition, every neuron in a layer of the NN sends the same value to its connected

neurons in the next layer. It means that a node of a NoC could broadcast/send multiple packets

containing the same data to a set of nodes. In our initial study about the 6 fully-connected

networks, we compare the number of the packets with unique data and the number of the packets

with the same data but sent to different destination nodes. The results in Figure 34(b) show that a

significant number of packets are indeed used to deliver the same data to different nodes. Such

traffic pattern is rare in a conventional computing model and offers a great improvement

opportunity for the NoC design in neuromorphic computing systems.

3.5.2 Implementation of Neu-NoC

3.5.2.1 Hierarchical structure of Neu-NoC

Our initial analysis of the traffic patterns on traditional mesh NoC in neuromorphic

systems inspired us to propose Neu-NoC -- an efficient NoC architecture that can suppress

unnecessary data transfers of the same data and reduce the bandwidth consumption by

consolidating neurons on the same neural network layer into local nodes.

 69

Figure 35. Different Neu NoC organizations of different configuration.

Figure 35 presents the overview of Neu-NoC architecture. The topology of Neu-NoC is a

hybrid ring-mesh NoC structure. It consists of local rings and a global mesh that interconnects all

the local rings. For convenience, here we inherit conventional notation like k-array n-cube [103]

to describe the proposed hybrid ring-mesh NoC. 𝑘𝑘 is the number of the nodes in a local ring; 𝑛𝑛

and 𝑚𝑚 represent the numbers of columns and rows of the global mesh, respectively. Figure 35

shows two configuration examples (𝑘𝑘 = 4 and 𝑘𝑘 = 8) in a neuromorphic system with 64 PEs. In

Neu-NoC, we use rings to cluster the neurons in the same layer to reduce the number of the data

packages contenting the same data that need to be transferred: the neurons connected by one ring

only send one copy of their data to the rings that connect the neurons in the next layer.

The local ring topology consists of two channels - a channel to receive data and a channel

to pass the neuron output to the next layer, as shown in Figure 36(a). As a result, the output

transferring of the neurons does not need to wait until the ring is idle. The traffic stalls are

greatly reduced. Neu-NoC consists of two types of routers - a ring router connected to the PEs in

each local ring and a mesh router connected to each local ring and other four mesh routers on its

four neighbor directions. A block diagram of the router's microarchitecture is shown in Figure

 70

36(b). The ring router consists of a 2-to-1 multiplexers, buffers, and function blocks for

pack/unpacking data packages. Additionally, the ring router supports the arbitration with

different priorities in Allocation function block, i.e., data packets in-fight always have a higher

priority than the newly-injected packages. We adopt the typical mesh router design with

Wormhole flit-based flow control for the global mesh network to maintain high edibility of

mapping different NN topologies.

Figure 36. (a) Hierarchical Neu-NoC; (b) Ring router; (c) Package format.

3.5.2.2 NN-aware NoC mapping

a) Effect of NoC mapping

As the data transmission requirement (e.g., the source and destination neurons, amount of

data) in a NN will not change during the computation, the data routing path is decided by NN-to-

NoC mapping and routing algorithm. However, normal direct-mapping or random-mapping may

not be optimal: if the connected neurons are allocated too far away from each other on the NoC,

a high hop count may be introduced; also, if a large ratio of data packages go through the same

 71

paths and follow the same direction, some of the paths may have serious congestion more likely

than others and become bottleneck of data transmission.

As we use dimension order routing, only one possible path exists between each pair of

the connected PEs. We assume that the row and the column numbers of the 𝑥𝑥𝑡𝑡ℎ PE are 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛,𝑥𝑥

and 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛,𝑥𝑥 , respectively. Correspondingly, 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛+1,𝑦𝑦 and 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛+1,𝑦𝑦 are the row and the column

numbers of the 𝑦𝑦𝑡𝑡ℎ connected PE in the adjacent layer. In a 𝑀𝑀×𝑀𝑀 mesh network that is mapped

from a MLP, the average number of hops between one layer with 𝑃𝑃 neurons and the adjacent

layer with 𝑄𝑄 neurons ((𝑃𝑃 + 𝑄𝑄) < (𝑀𝑀×𝑀𝑀)) can be estimated by:

𝑯𝑯𝒂𝒂𝒂𝒂𝒂𝒂 =
∑(𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉+𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉)

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
=
∑ ∑ |𝒓𝒓𝒓𝒓𝒓𝒓𝒏𝒏+𝟏𝟏,𝒚𝒚−𝒓𝒓𝒓𝒓𝒓𝒓𝒏𝒏,𝒙𝒙|+|𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏+𝟏𝟏,𝒚𝒚−𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏,𝒙𝒙|𝑷𝑷

𝒙𝒙=𝟏𝟏
𝑸𝑸
𝒚𝒚=𝟏𝟏

𝑴𝑴𝟐𝟐(𝑴𝑴−𝟏𝟏)

(4)

The traffic load in each path can be measured by the number of the packages pass through during

the NN computation, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠. If any of the paths has more packages need to pass than the

others, it more likely become the bottleneck of the computation.

Figure 37. Different PE group placement in Neu-NoC for mnist_mlp_2. (a) NN-aware mapping, (b)

Sequential mapping (MLP topology after mapping: 8-4-1).

 72

Here we use an example to illustrate how different mapping schemes influences the

average hop count and the congestion of the data traffic. Figure 37. Different PE group

placement in Neu-NoC for mnist_mlp_2. (a) NN-aware mapping, (b) Sequential mapping (MLP

topology after mapping: 8-4-1). Figure 37 shows the comparison between a random mapping and

our proposed NN-aware mapping based on the NN topology. Here each square represents a local

ring network and the number in each square labels the NN layers that the ring network resides on.

The narrows show the path between routers, and the number on each narrow represents how

many packages pass through the path at a moment of MLP computation. In direct or random

mapping scheme, the layers are placed sequentially on the NoC, which may lead to a very high

number of hops between the PEs in the adjacent layers. Our NN-ware mapping scheme, however,

allows more PEs to access the PEs in adjacent layers with fewer hops.

To obtain the minimum hop counts and more balanced NoC, we design a NN-aware

mapping which leads to the mapping solution with significantly reduced routing distance and

distributed data traffic among the NoC. As the average distance of data transferring and tra_c

congestions reduce, the average network latency will decrease too.

b) Problem formulation and definition

The problem of mapping a NN onto a NoC is a NP problem. We introduce the following

definitions to help to formulate the problem that our proposed N-aware mapping algorithm is

facing to find the optimal NoC mapping solution of the NN:

Definition 1: A Neural Network Communication Graph (NNCG) is a directed graph

denoted by 𝐺𝐺(𝑁𝑁,𝐴𝐴), in which each vertex 𝑛𝑛𝑖𝑖 represent one neuron in the NN, and each directed

 73

arch 𝑎𝑎𝑖𝑖,𝑗𝑗 models a communication ow from one neuron 𝑛𝑛𝑖𝑖 to one of its connected neurons 𝑛𝑛𝑗𝑗 in

the next NN layer.

Definition 2: An architecture characterization graph (ARCG) 𝐺𝐺′(𝑈𝑈, 𝐿𝐿) is also a directed

graph that represents the physical NoC, where each vertex 𝑢𝑢𝑖𝑖 denotes a node in the NoC and

each edge 𝑙𝑙𝑖𝑖 represents a physical link.

Definition 3: For an ARCG 𝐺𝐺(𝑈𝑈, 𝐿𝐿), a deterministic routing function Ɍ:𝑅𝑅 → 𝑃𝑃 maps 𝑟𝑟𝑖𝑖,𝑗𝑗

to one routing path 𝑝𝑝𝑖𝑖,𝑗𝑗, where 𝑝𝑝𝑖𝑖,𝑗𝑗 ∈ 𝑃𝑃𝑖𝑖,𝑗𝑗 .

Based on these definitions, the problem of the NN-aware mapping can be formulated as

follow: Give an NNCG and an ARCG, we need to find a mapping function 𝑚𝑚𝑎𝑎𝑎𝑎() which

satisfies:

𝐦𝐦𝐦𝐦𝐦𝐦 {𝑻𝑻𝑵𝑵𝑵𝑵𝑵𝑵 =
∑ ∑ �𝒓𝒓𝒓𝒓𝒓𝒓𝒏𝒏+𝟏𝟏,𝒚𝒚−𝒓𝒓𝒓𝒓𝒓𝒓𝒏𝒏,𝒙𝒙�+�𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏+𝟏𝟏,𝒚𝒚−𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏,𝒙𝒙�𝑷𝑷

𝒙𝒙=𝟏𝟏
𝑸𝑸
𝒚𝒚=𝟏𝟏

𝑴𝑴𝟐𝟐(𝑴𝑴−𝟏𝟏)
+ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔𝒔𝒔𝒔𝒔} (5)

such that:

𝟑𝟑∀𝒏𝒏𝒊𝒊 ∈ 𝑵𝑵,𝒎𝒎𝒎𝒎𝒎𝒎(𝒖𝒖𝒊𝒊) ∈ 𝑼𝑼 (6)

∀𝒏𝒏𝒊𝒊 ≠ 𝒏𝒏𝒊𝒊 ∈ 𝑵𝑵,𝒎𝒎𝒎𝒎𝒎𝒎(𝒖𝒖𝒊𝒊) ≠ 𝒎𝒎𝒎𝒎𝒎𝒎(𝒖𝒖𝒋𝒋) (7)

∀𝒂𝒂𝒊𝒊,𝒋𝒋 ∈ 𝑨𝑨,𝒑𝒑𝒊𝒊,𝒋𝒋 ∈ 𝑷𝑷𝒊𝒊,𝒋𝒋 (8)

The proposed algorithm is shown in Algorithm 1. The results of the hop count and max data load

of the selected 6 benchmarks using the proposed NN-aware mapping algorithm are summarized

in Algorithm 1, which is included and discussed in the next section.

 74

Algorithm 1. NN-aware mapping algorithm.

Table 11. The description and implementation details of the selected benchmarks

 75

c) Multicast transmission

As shown in Figure 37, some of the data packets sent from one neuron to its adjacent

neurons in the next layer share the same routing path on NoC. For example, all the data packets

that sent from router 1 to router 10 always go through router9 first and all the data packets sent

from router 1 to router 11 always go through router 12 first. Since each neuron sends the same

data to all its connected neurons in the next layer and the corresponding routing path is fixed due

to xy routing topology, we design a multicast type of data transmission to combine the data

packets from the same source node into one data packet, which will take same path during

routing. For simplicity of the hardware, only the data packets that are completely contained by a

other packet will be merged to the latter one. Table 11 shows the total number of the hops that all

the generated data packets pass through in an NN computation before and after multicast

transmission is applied.

To support the multicast transmission, we redesign the header of packet by introducing a

bit string encoding scheme to carry multiple destination nodes and add a decoding and bit reset

function in the router, as shown in Figure 38. In bit string encoding [8], each destination can be

represented by only one bit. Figure 38 depicts an example of a multicast and its corresponding

packet header. The length of the encode bit string in the header equals the number of nodes in the

Mesh NoC; each bit represents a node and setting the bit to 1'b1 means that the node is one of the

destinations. When a packet arrives at one of its destination, the bit corresponding to the

destination will be reset to 1'b0. Note that here the packet itself carries all the routing information,

which must be computed before the packet starts to transfer. Among all the selected benchmarks,

the longest routing path is 16 links, which exists in alexnet_cnn_cla.

 76

Figure 38. MLP topology after mapping: 8-4-1 Multicast and Packet Header Example.

3.5.2.3 Sparsity-aware traffic reduction

A DNN learns the object's features in a hierarchical way: concepts represented by the

feature map of a DNN layer becomes more and more abstract when the layer goes deeper, e.g.,

from edges, shapes, object parts, to objects. As many prior-arts have proven, such highly

abstracted feature map can be very sparse [104]. Very recently, pruning techniques [105] were

also proposed to obtain sparse NN for computation cost reduction while still retaining the

accuracy. The sparsity of the DNN can also help to reduce the traffic on the NoC.

We introduce a new type of it, namely, all-zero flit, to present a sequence of 0`s in the

data. The all-zero it can be sent in any order between the head it and the tail flit in a packet. Such

a scheme allow only one it indicate multiple sequential its of 0`s in the original it designs: We

add one bit as a ag to denote if the packet is packed with all zero data, and use the payload area

to denote the number of the continuous 0`s. We implement a function block at each input/output

 77

port that connecting the mesh and the local ring to pack/unpack all-zero its, as shown in Figure

36. The original unpacked data only exists on the local ring bus in order to keep the bus interface

simple and to reduce the buffer usage of the input/output virtual channel. In the packing block,

we use a counter to detect the sequence of 0`s and a “pack" signal will be asserted if packing is

needed. Similarly, in the unpacking block, as soon as an all-zero it is detected, the router will

unpack the all-zero its and restore the sequence of 0's. The packing/unpacking blocks only

introduce 3.1% area overhead to the router design.

Figure 36(c) depicts the format of a data packet. We add a new flit type – “PP” to

represent the all-zero it in which the 2-bit head is 2'b11 and the “body" gives the number of 0`s.

The formats of the other flits are similar to that in conventional wormhole flit-based flow control

NoC.

3.5.3 Experimental methodology

In our experiments, we use MLP on MNIST database and the classification layer of

AlexNet on ImageNet as our NN examples. Structures like those in [106] are also adopted in our

MLP designs. The only modification is the dimensions of input images: we use the standard

28x28 images as the 784 input neurons instead of using the distorted 29x29 images in [106].

MLPs on MNIST are trained without data augmentation and AlexNet [97] is trained using Caffe.

During the forwarding of the NNs, we zero out the activations propagated to the hidden layers

when their absolute values are smaller than a predetermined threshold. We define the accuracy as

the mean square error (MSE) between the actual and target outputs under the training vectors.

Table 11 gives the benchmark information such as the implementation details, the initial training

accuracy, and the accuracy and data traffic information after feature maps are pruned.

 78

We modify Booksim [87] -- a cycle-accurate NoC simulator, by adding NN types of

traffic module to mimic the data transfer in neuromorphic acceleration systems during the

operations. Each Node is assumed to be a processing engine (PE) that has the design and

computing ability similar to the one in [88]. A constant delay is added as the calculation delay

before the output packages are generated when all the input data from the previous layer are

collected. Table 12 summarizes the parameters of our simulation platforms. The energy

consumption of the NoC is estimated by also Booksim with 45nm technology.

Table 12. The system simulation configuration

3.5.4 Experimental results

3.5.4.1 Impact of concentration degree

Allocating more PEs on each ring network not only reduces the redundant data packages

sent to the PEs of the next NN layer but also reduces the latency and energy overhead of the

 79

routing on the global mesh. However, increasing the length of the ring network will also increase

the wire delay. Figure 39 compares the execution times of all the NN benchmarks using a Neu-

NoC with ring and mesh configurations. Here the total number of the PE is set to 648. When the

number of PEs located in the same ring increases from 1 to 8, the NoC performance keeps

improving due to the reduction of the global hops count. However, such trend stops when the

scale of the ring network is too large (i.e., 16 PEs) so that the increase of the local wire delay has

surpassed the reduction of the global hops count. Among all the tested benchmarks,

alexnet_cnn_cla is most sensitive to the scale of the ring network because its large hidden layers

(with 4096 neurons) fully occupies all the PEs in each ring. In the following experiments, we

chose 𝑘𝑘 = 8,𝑛𝑛 = 9 as our default configuration which demonstrates the best balance between

the local wire latency and global hops count.

Figure 39. Impact of concentration degree (n=m).

 80

3.5.4.2 Impact of feature map sparsity

We also evaluate the impact of the NN sparsity on the efficacy of Neu-NoC. Here the

sparsity is defined as the percentage of 0's in the feature map. It is known that increasing the

sparsity will degrade the accuracy of the NN. However, as shown in Figure 40, the accuracy

degradation of all the benchmarks can be maintained at a very low level even the corresponding

NN sparsity is very high: In alexnet_cnn_cla, which is the worst case, the average sparsity is

78.6% across three feature maps while the incurred accuracy is less than 1%. Figure 40 also

illustrates the tradeoffs between the sparsity of the NN and its accuracy. In Neu-NoC, we can

dynamically sparsify the NN by zeroing out any features smaller than a pre-determined threshold

€. The columns of “Accuracy drop 1%” “Accuracy drop 2%” of Table 11 show the occurrence

percentages of 4, 8, and 16 0's in sequence after NN pruning with 1% accuracy drop. The ratios

between the corresponding traffic and the baseline traffic.

Figure 40. Accuracy impact of feature map sparsity (y-axis: sparsity).

 81

3.5.4.3 Effectiveness of NN-aware mapping

Figure 41 illustrates the impacts of different NN mapping schemes on the average latency

of packet transmission in Neu-NoC in the simulated neuromorphic acceleration system. Here x-

axis is the data injection rate of the input neurons of the first layer, which is defined as the

number of packets are inputted in each node in every cycle. The injection of the data

transmission between the NN layers is triggered after the neuron collects all the inputs from the

previous layer. To illustrate the effectiveness of our proposed NN-aware mapping, we compare

the average packet latency of NN-aware mapping with that of a random mapping which

randomly map the neurons to the accelerators and a naive sequence mapping places the neurons

in the sequence of the accelerators' addresses. As shown in Figure 41, NN-aware mapping

always achieves the best performance in all 6 tested benchmarks as well as the best tolerance to

the traffic load (data injection rate) increase. For example, in 5 out of 6 benchmarks, the average

packet latency of NN-mapping maintains low until the data injection rate exceeds about 0.09

while that of the other two mapping schemes starts to rocket when the data injection rate reaches

about 0.05. In addition, NN-aware mapping demonstrates great scalability by showing more

significant average packet latency reduction when the network scale is large, e.g., in

alexnet_cnn_cla (see Figure 41(f)).

 82

Figure 41. Average packet latency of different mappings (x-axis: injection rate).

3.5.4.4 Effectiveness of multicast

Figure 42 compares the average packet latencies before and after applying multicast in 5

benchmarks: mnist_mlp_2 ~ mnist_mlp_5 and alexnet_cnn_cla. Note that here we did not

include mnist_mlp_1 because mnist_mlp_1 does not have any data packet can be represented by

other packets which share the same source node and contain its routing path. The result shows

multicast successfully reduces that the average packet latency in all 5 benchmarks, especially in

Alexnet_cnn_cla and mnist_mlp_2 which have less layers and hence, less complicated mapping

and routing paths than mnist_mlp_3 ~ mnist_mlp_5. The packet counts of each benchmark before

and after applying multicast are depicted in Table 12.

 83

Figure 42. Average packet latency of before and after applying multicast (x-axis: injection rate).

3.5.4.5 Evaluation of Neu-NoC

We compare the execution time and energy consumption of three NoC designs: 2D Mesh,

Fattree-Mesh [89], and Neu-NoC (including the design with and without zero flit design) for the

6 benchmarks, as depicted in Figure 43. All the results have been normalized to the baseline

Mesh NoC design. Compared to Mesh NoC, Neu-NoC averagely reduce the average packet

latency and energy consumption of the NoC by 23.2% and 31.1%, respectively. Compared to

Fattree-Mesh NoC [89] which has been used in a neuromorphic acceleration system, Neu-NoC

achieves on average 6% average packet latency reduction and 13% energy consumption saving,

respectively. If we allow 1% accuracy degradation of NN (See Table 11), Neu-NoC with zero flit

 84

design can further reduce the average packet latency and energy consumption of the NoC by 11.7%

and 21.19%, respectively, compared to Fattree-Mesh NoC.

Figure 43. Normalized average packet latency and energy of all the NoC designs.

 85

4.0 CONCLUSION AND FUTURE WORK

Emerging memory is a promising solution to combat the well-known memory bottleneck

in both storage and computation systems of modern processor design. In this paper, we propose

the use of STT-RAM in TLB for new virtually addressed GPUs. STT-RAM-based TLB

introduces significant energy and performance advantages over SRAM implementation by

realizing larger TLB capacity within the same area. We also present a novel STT-RAM-based

dynamically-configurable TLB (STD-TLB) that leverages high read speed of STT-RAM

differential sensing and dynamic configuration policy to retain the reduced miss rate from

standard STT-RAM TLB while improving the translation performance of the heavily accessed

pages. Compared to SRAM baseline, STD-TLB reduces TLB miss rate by 30%, boosts

translation runtime performance by 55%, and improves the energy delay product by ∼80%. As

more systems employ on-board GPUs and more general purpose applications are mapped to

these processors, alleviating the performance impact introduced by address mapping will become

very difficult in GPU system design. For these applications, we expect STD-TLB will provide a

dramatic system benefit (e.g., 10% performance improvement over standard STT-RAM TLB in

MUM) by dynamically switching between high-performance and high-capacity mode based on

real-time application needs.

In this work, we also first propose a MLC-STT register file (RF) design to overcome the

limited scalability of SRAM-based RF in GPU architecture. By leveraging high integration

 86

density and non-volatility of MLC-STT, our design dramatically reduces the area and leakage

power. To overcome the performance degradation due to the slow access to MLC-STT cells, we

propose a remapping strategy that allocates frequently-accessed registers into the faster soft-bit

rows whenever it is possible, and a bank-status-aware-scheduling scheme to reorder the warp

issuing to minimize the access stalls induced by the long write accesses. Experimental results

show that the MLC-STT-RF design delivers a better system performance than that of

conventional SRAM-based RF while achieving significant area reduction and system energy

efficiency improvement.

Moreover, with the rediscovery of memristor, we propose a memristor-based

neuromorphic computing accelerator (RENO) which tightly coupled with the general-purpose

pipeline to largely improve the performance and energy efficiency of neuromorphic computing.

Compared to conventional CPU, RENO achieves on average 177.67x (27.2x) performance

speedup and 184.71x (25.18x) energy reduction over the simulated benchmarks processed by

MLP (AAM) neural networks. AAM generally show better computation accuracy than MLP by

performing a costly iterative computation. Nonetheless, the computation accuracy degradation is

well constrained within a reasonably low range in RENO. The high computation and energy

efficiency of RENO mainly come from: 1) the high-throughput of the mixed-signal NCA

computation; 2) the excellent re-configurability of the hierarchical memristor crossbar array

structure in the NCA; 3) the low data transmission overhead on the mixed-signal interconnection

network (called M-Net); and 4) the concise coordination interface between the general-purpose

pipeline and the NCA. An inline calibration scheme is also developed to control the run-time

NCA computation accuracy degradation incurred by memristor resistance shift. Although only

two ANN implementations are presented and discussed in our work, RENO can support a variety

 87

of ANN types by properly reconfiguring the M-Net in the NCA and guiding the data routing

among the MBC arrays. In our future research, we plan to extend RENO to multicore platform

for broader ANN and learning applications, and investigate the design optimization of task

partitioning and scheduling. The techniques to enhance the run-time robustness of RENO in

training and testing procedures will be also studied. Finally, we will explore the compatibility of

RENO to other existing neuromorphic computing practices, e.g., the spiking-based computation

model like STDP.

We also analysis the features of the data traffic in neural networks and demonstrated the

bottleneck of using traditional NoC for neuromorphic acceleration system. A dedicated NoC

architecture is designed to optimize the traffic in neuromorphic computing systems. A set of

techniques, i.e., NN-aware mapping, multicast, and sparsity-aware traffic reduction, are proposed

to reduce average hops account and the redundant traffics. Our results show that Neu-NoC can

effectively reduce the average packet latency and energy consumption in the tested 6 MLP

benchmarks by on average 23.2% and 31.1%, respectively without incurring any accuracy

degradations. Moreover, slightly relaxing the accuracy requirement of the benchmarks by 2%

can further save the average packet latency and energy consumption by 28.5% and 39.2%,

respectively. Our future work will focus on applying Neu-NoC to accelerate other components of

DNNs such as convolutional and pooling layers.

 88

BIBLIOGRAPHY

[1] O. Temam, “The rebirth of neural networks,” In ISCA, 2010.

[2] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate versus ipc: the
end of the road for conventional microarchitectures,” in ISCA, 2000, pp. 248–259.

[3] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE Computer, vol.
41, no. 7, pp. 33–38, 2008.

[4] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. G. Dreslinski, T. F. Wenisch,
and S. A. Mahlke, “Composite cores: Pushing heterogeneity into a core,” in MICRO,
2012, pp. 317–328.

[5] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke, “Bridging the computation gap between
programmable processors and hardwired accelerators,” in HPCA, 2009, pp. 313–322.

[6] A. R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan, “Chimps: A high-
level compilation flow for hybrid cpu-fpga architectures,” in FPGA, 2008, pp. 261–261.

[7] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix computations on
heterogeneous multi-core and multi-gpu systems,” in Supercomputing, 2012, pp. 365–
376.

[8] H. Wong et al., “Demystifying gpu microarchitecture through microbenchmarking,” in
ISPASS, 2010, pp. 235–246.

[9] Intel, Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500
processors, http://software.intel.com/sites/products/collateral/hpc/vtune/performance
analysis guide.pdf.

[10] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth, and J. S. Vetter, “The tradeoffs
of fused memory hierarchies in heterogeneous computing architectures,” in CF, 2012, pp.
103–112.

[11] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.
Reddi, “Gpuwattch: Enabling energy optimizations in gpgpus,” in ISCA, 2013, pp. 487–
498.

 89

[12] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S. Swanson, and M. B. Taylor,
“Efficient complex operators for irregular codes,” in HPCA, 2011, pp. 491–502.

[13] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S.
Swanson, and M. B. Taylor, “Conservation cores: Reducing the energy of mature
computations,” in ASPLOS, 2010, pp. 205–218.

[14] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically specialized datapaths
for energy efficient computing,” in HPCA, 2011, pp. 503–514.

[15] S. Gupta, S. Feng, A. Ansari, S. A. Mahlke, and D. I. August, “Bundled execution of
recurring traces for energy-efficient general purpose processing,” in MICRO, 2011, pp.
12–23.

[16] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous real-world inputs
can open up alternative accelerator designs,” in ISCA, 2013, pp. 1–12.

[17] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada,
M. Shoji, H. Hachino, C. Fukumoto et al., “A novel nonvolatile memory with spin torque
transfer magnetization switching: Spin-ram,” in Electron Devices Meeting, 2005, pp.
459–462.

[18] Y. Zhang, I. Bayram, Y. Wang, H. Li, and Y. Chen, “ADAMS: Asymmetric differential
STT-RAM cell structure for reliable and high-performance applications”, in ICCAD, pp.
9-16, 2013.

[19] Y. Chen, X. Wang, W. Zhu, H. Li, Z. Sun, G. Sun, and Y. Xie, “Access scheme of multi-
level cell spin-transfer torque random access memory and its optimization,” in
MWSCAS, 2010, pp. 1109–1112.

[20] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-level cell stt-ram: Is it
realistic or just a dream?” in ICCAD, 2012, pp. 526–532.

[21] X. Bi, M. Mao, D. Wang, and H. Li, “Unleashing the potential of mlc stt-ram caches,” in
ICCAD, 2013, pp. 429–436.

[22] L. Jiang, B. Zhao, Y. Zhang, and J. Yang, “Constructing large and fast multi-level cell
stt-mram based cache for embedded processors,” in DAC, 2012, pp. 907–912.

[23] Nvidia, Fermi specifications, http://www.nvidia.com/object/fermiarchitecture.html.

[24] AMD, GCN Architecture, http://www.amd.com/us/products/technologies/gcn/Pages/gcn-
architecture.aspx.

[25] www.itrs.net, in International Techonology Roadmap for Semiconductors, 2011.

[26] W. Wen et al., “PS3-RAM: A fast portable and scalable statistical STTRAM reliability
analysis method,” 2012, pp. 1187–1192.

 90

[27] Z. Sun et al., “Multi retention level stt-ram cache designs with a dynamic refresh
scheme,” in MICRO, 2011, pp. 329–338.

[28] X. Wu et al., “Hybrid cache architecture with disparate memory technologies,” in ISCA,
2009, pp. 34–45.

[29] Y. Chen et al., “On-chip caches built on multilevel spin-transfer torque RAM cells and its
optimizations,” J. Emerg. Technol. Comput. Syst., vol. 9, no. 2, pp. 16:1–16:22, 2013.

[30] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics memory with hybrid
memory technologies and adaptive data migration,” in ICCAD, 2012, pp. 81–87.

[31] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and area
model,” Technical Report 2001/2, Compaq Computer Corporation, Tech. Rep., 2001.

[32] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm
early design exploration,” Electron Devices, vol. 53, no. 11, pp. 2816–2823, 2006.

[33] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory,” TCAD, vol. 31, no. 7, pp. 994–1007,
2012.

[34] C. Xu et al., “Device-architecture co-optimization of stt-ram based memory for low
power embedded systems,” in ICCAD, 2011, pp. 463–470, 2011.

[35] W. Zhao and Y. Cao, New Generation of Predictive Technology Model for Sub-45nm
Early Design Exploration, 2006, vol. 53.

[36] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing cuda
workloads using a detailed gpu simulator,” in ISPASS, 2009, pp. 163–174.

[37] Nvidia,QuadroSpecifications,http://www.nvidia.com/object/product_quadro_fx_5800_us.
html.

[38] J. A. Stratton et al., “Parboil: A revised benchmark suite for scientific and commercial
throughput computing,” in IMPACT Technical Report, 2012.

[39] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative tlb for chip multiprocessors,”
in ASPLOS, pp. 359–370, 2010.

[40] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu,
“Optimization principles and application performance evaluation of a multithreaded gpu
using cuda,” in PPoPP, 2008, pp. 73–82.

[41] Nvidia, GeForce GTX 480, http://www.geforce.com/hardware/desktopgpus/geforce-gtx-
480/specifications.

 91

[42] R. Dorrance, F. Ren, Y. Toriyama, A. A. Hafez, C.-K. Yang, and D. Markovic,
“Scalability and design-space analysis of a 1t-1mtj memory cell for stt-rams,” Electron
Devices, vol. 59, no. 4, pp. 878–887, 2012.

[43] B. W. Coon, J. E. Lindholm, S. Liu, S. F. Oberman, and M. Y. Siu, “Operand collector
architecture,” Nov. 16 2010, US Patent 7,834,881.

[44] N. Goswami, B. Cao, and T. Li, “Power-performance co-optimization of throughput core
architecture using resistive memory,” in HPCA, 2013, pp. 342–353.

[45] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. H. Li, “Exploration of gpgpu register file
architecture using domain-wall-shift-write based racetrack memory,” in DAC, 2014, pp.
1–6.

[46] X. Liu, Y. Li, Y. Zhang, A. K. Jones, and Y. Chen, “Std-tlb: A sttram-based dynamically-
configurable translation lookaside buffer for gpu architectures.” in ASP-DAC, 2014, pp.
355–360.

[47] R. Venkatesan, S. G. Ramasubramanian, S. Venkataramani, K. Roy, and A.
Raghunathan, “Stag: Spintronic-tape architecture for gpgpu cache hierarchies,” in ISCA,
2014, pp. 253–264.

[48] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M. Guo, R. Canal, and X. Liang, “An
energy-efficient and scalable edram-based register file architecture for gpgpu,” in ISCA,
2013, pp. 344–355.

[49] S. O. Haykin, Neural Networks and Learning Machines. London: Prentice Hall, 2008.

[50] K. Hornik, M. B. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[51] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. H. Lipasti, A. Nere, S. Qiu, M.
Sebag, and O. Temam, “Benchnn: On the broad potential application scope of hardware
neural network accelerators,” in IISWC, 2012, pp. 36–45.

[52] O. Temam, “A defect-tolerant accelerator for emerging high-performance applications,”
in ISCA, 2012, pp. 356–367.

[53] H. Wang, Y. Wu, B. Zhang, and K. L. Du, “Recurrent neural networks: Associative
memory and optimization,” J Inform Tech Soft Engg, 2011.

[54] B. Liu, M. Hu, H. Li, and Y. chen, “Digital assisted noise eliminating training for
memristor crossbar based analog neuromorphic computing engine,” in DAC, 2013.

[55] L. O. Chua, “Memristor-the missing circuit element,” IEEE Transactions on Circuit
Theory, vol. 18, no. 5, pp. 507–519, 1971.

 92

[56] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor
found,” Nature, vol. 453, pp. 80–83, 2008.

[57] S. Shin, K. Kim, and S.-M. Kang, “Memristor applications for programmable analog ics,”
IEEE Transactions on Nanotechnology, vol. 10, no. 2, pp. 266–274, 2011.

[58] W. Yi, F. Perner, M. S. Qureshi, H. Abdalla, M. D. Pickett, J. Yang, M.-X. M. Zhang, G.
Medeiros-Ribeiro, and R. S. Williams, “Feedback write scheme for memristive switching
devices,” Applied Physics A, vol. 102, no. 4, pp. 973–982, 2011.

[59] F. Alibart, L. Gao, B. D.Hoskins, and D. B.Strukov, “High precision tuning of state for
memristive devices by adaptable variation-tolerant algorithm,” Nanotechnology, vol. 23,
no. 7, 2012.

[60] L. O. Chua and S.-M. Kang, “Memristive devices and systems,” Proceedings of the
IEEE, vol. 64, no. 2, pp. 209–223, 1976.

[61] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale
memristor device as synapse in neuromorphic systems,” Nano letters, vol. 10, no. 4, pp.
1297–1301, 2010.

[62] K. K. Likharev, “Crossnets: Neuromorphic hybrid cmos/nanoelectronic networks,”
Science of Advanced Materials, vol. 3, no. 3, pp. 322–331, 2011.

[63] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis,
“Integration of nanoscale memristor synapses in neuromorphic computing architectures,”
Nanotechnology, 2013.

[64] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W.
Lu, “A functional hybrid memristor crossbararray/cmos system for data storage and
neuromorphic applications,” Nano letters, vol. 12, no. 1, pp. 389–395, 2011.

[65] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by memristive
crossbar circuits using ex situ and in situ training,” Nature communications, vol. 4, 2013.

[66] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb recall function using
memristor crossbar arrays,” in DAC, 2012, pp. 498–503.

[67] A. Joubert, B. Belhadj, O. Temam, and R. Heliot, “Hardware spiking neurons design:
analog or digital?” in International Joint Conference on Neural Networks, 2010.

[68] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for general-
purpose approximate programs,” in MICRO, 2012, pp. 449–460.

[69] S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the switching dynamics and multilevel
capability of bipolar metal oxide resistive switching memory,” Applied Physics Letters,
vol. 98, no. 10, pp. 103 514–103 514–3, 2011.

 93

[70] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip networks,” in ICS,
2006, pp. 187 – 198.

[71] O. Temam, “A defect-tolerant accelerator for emerging high-performance applications,”
in ISCA, 2012, pp. 356–367.

[72] L. Dai and R. Harjani, “Cmos switched-op-amp-based sample-andhold circuit,” in
SOLID-STATE CIRCUITS, 2000.

[73] B. J. Choi, A. B. Chen, X. Yang, and I.-W. Chen, “Purely electronic switching with high
uniformity, resistance tunability, and good retention in pt-dispersed sio2 thin films for
reram,” Advanced Materials, vol. 23, no. 33, pp. 3847–3852, 2011.

[74] W. Zhao and Y. Cao, “Predictive technology model for nano-cmos design exploration,”
JETC, vol. 3, no. 1, p. 1, 2007.

[75] M. Gustavsson, J. J. Wikner, and N. Tan, CMOS data converters for communications,
2000.

[76] F. Krummenacher, “Micropower switched capacitor biquadratic cell,” Solid-State
Circuits, vol. 17, no. 3, pp. 507–512, 1982.

[77] “Virtuoso,” http://www.cadence.com/products/cic/pages/default.aspx.

[78] S. Shapero and P. Hasler, “Mismatch characterization and calibration for accurate and
automated analog design,” Circuits and Systems, vol. 60, no. 3, pp. 548–556, 2013.

[79] L. Prechelt, “Proben1-a set of neural network benchmark problems and benchmarking
rules,” University of Karlsruhe, Tech. Rep., 1994.

[80] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/.

[81] “The mnist database of handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[82] S. Nissen, “Implementation of a fast artificial neural network library (fann),” Department
of Computer Science, University of Copenhagen, Tech. Rep., 2003.

[83] “Macsim,” http://code.google.com/p/macsim/.

[84] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood, “Pin: building customized program analysis tools with dynamic
instrumentation,” in PLDI, 2005, pp. 190–200.

[85] “Intel atom proccesor,” http://ark.intel.com/products/family/29035/.

[86] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “Mcpat:
an integrated power, area, and timing modeling framework for multicore and manycore
architectures,” in MICRO, 2009, pp. 469–480.

http://archive.ics.uci.edu/ml/
http://code.google.com/p/macsim/
http://ark.intel.com/products/family/29035/

 94

[87] N. Jian, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, J. Kim, andW. J.
Dally, “A detailed and flexible cycle-accurate networkon-chip simulator,” 2013.

[88] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A small-
footprint high-throughput accelerator for ubiquitous machine-learning,” in ASPLOS,
2014.

[89] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun et al.,
“Dadiannao: A machine-learning supercomputer,” in MICRO, 2014, pp. 609–622.

[90] C. Park, R. Badeau, L. Biro, J. Chang, T. Singh, J. Vash, B. Wang, and T. Wang, \A 1.2 tb/s on-
chip ring interconnect for 45nm 8-core enterprise xeon R processor," in ISSCC, 2010.

[91] B. Grigorian, N. Farahpour, and G. Reinman, “BRAINIAC: Bringing reliable accuracy
into neurally-implemented approximate computing,” in the 21st IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp. 615-626, 2015.

[92] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the ACM International Conference on Multimedia, pp. 675-678, 2014.

[93] LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.

[94] R. Das, A. K. Mishra, C. Nicopoulos, D. Park, V. Narayanan, R. Iyer, M. S. Yousif, and
C. R. Das, “Performance and power optimization through data compression in network-
on-chip architectures,” in the 14th IEEE International Symposium on High Performance
Computer Architecture, pp. 215-225, 2008.

[95] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups," Signal Processing, vol.
29, no. 6, pp. 82-97, 2012.

[96] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolutional
neural networks for lvcsr," in ASSP, pp. 8614-8618, 2013.

[97] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi_cation with deep
convolutional neural networks," in Advances in neural information processing systems,
pp. 1097-1105, 2012.

[98] “GTX titan x," http: //www.geforce.com/hardware/10series/titan-x-pascal.

[99] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir, J. Arthur, A.
Cassidy, M. Flickner, P. Merolla et al., “Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores," in IJCNN, pp. 1-10, 2013.

 95

[100] F. Akopyan, et al., “Truenorth: Design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip," ICS, vol. 34, no. 10, pp. 1537-1557, 2015.

[101] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model
size," arXiv preprint arXiv:1602.07360, 2016.

[102] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse convolutional neural
networks," in CVPR, pp. 806-814, 2015.

[103] W. J. Dally and B. P. Towles, Principles and practices of interconnection networks.
Morgan Kaufmann Inc, 2004.

[104] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation," in CVPR, June 2014.

[105] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks," in NIPS, pp. 2074-2082, 2016.

[106] D. C. Cire_san, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep big multilayer
perceptrons for digit recognition," in Neural Networks: Tricks of the Trade, pp. 581-598,
2012.

	TITLE PAGE
	COMMITTEE PAGE
	COPYRIGHT
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Comparison of SRAM and STT-RAM based TLB
	Table 2. System configuration
	Table 3. Characteristics of GPU benchmarks (instruction number (in))
	Table 4. Comparison of SRAM and STT-RAM based register banks
	Table 5. GPGPU-sim configuration
	Table 6. Characteristics and register file usage statistics of 10 selected GPU benchmarks
	Table 7. The simulation platforms
	Table 8. The Description and Implementation Details of the Seven Selected Benchmarks
	Table 9. The Simulation Platforms
	Table 10. GPGPU-SIM configuration
	Table 11. The description and implementation details of the selected benchmarks
	Table 12. The system simulation configuration

	LIST OF FIGURES
	Figure 1. STT-RAM cell structure and operation diagram. (a) multi-level cell (MLC) using serial stacking structure. (b,c) 2-step read and write operation of MLC-STT.
	Figure 2. Virtual memory with multi-level TLBs in GPUs.
	Figure 3. Comparison of write ratio for data cache and TLB.
	Figure 4. Reconfigurable differential sensing circuit.
	Figure 5. Unbalanced TLB accesses in GPU.
	Figure 6. Organization of STD-TLB design.
	Figure 7. Percentage of correct mode configuration for TLB entries.
	Figure 8. TLB miss rate in form of off chip misses compared to all accesses.
	Figure 9. TLB translation performance improvement.
	Figure 10. Dynamic and leakage power consumptions for different TLBs.
	Figure 11. Energy delay product improvements (normalized to SRAM TLB).
	Figure 12. Overall system performance speedup comparison of different TLBs.
	Figure 13. GPU architecture and the register file design in GPU.
	Figure 14. MLC STT-RAM-based register file.
	Figure 15 (a) The register bank address remapping algorithm. (b) The hardware implementation diagram of remapping. (c) Warp rescheduling.
	Figure 16. System performance comparison under different register file configurations. All the results are normalized to that of SRAM baseline design.
	Figure 17. The statistics of soft-/hard-bit row accesses with/without remapping.
	Figure 18. Rescheduling influence on timescore of issued warps.
	Figure 19. Register Energy consumption under different register file configurations. All the results are normalized to that of SRAM baseline design.
	Figure 20. Normalized energy efficiency.
	Figure 21. (a) A 3-layer MLP; (b) A 1-layer AAM with 4 neurons.
	Figure 22 (a) A 4x4 MBC array; (b) the neuron logic.
	Figure 23 RENO architecture.
	Figure 24 The mixed-signal router design: (a) architecture; (b) the digital controller.
	Figure 25. The analog component design in the mixed-signal router: (a) the transmission path; (b) the crossbar-based multiplexer.
	Figure 26. Routing information format.
	Figure 27. A D-NPU design built with digital PEs in [68].
	Figure 28. The normalized classification rates of (a) MLP and (b) AAM under different MBC training efforts. The DAC/ADC resolution is set to 4-bit.
	Figure 29. The impact of device variations and signal fluctuations on computation accuracy: (a) MLP, (b) AAM.
	Figure 30. The normalized RENO performance at different MBC sizes in (a) MLP and (b) AAM implementations. The results of 64x64 MBC is used as normalization baseline. The classification rate at different MBC sizes in (c) MLP and (d) AAM.
	Figure 31. The performance speedup, energy efficiency and classification rate of three ANN accelerator designs with MLP (a,c,e) and AAM (b,d,f) implementations
	Figure 32. Hardware utilization of each layer in DNN.
	Figure 33. Baseline design of a neuromorphic computing system with NoC.
	Figure 34. The volume of data packages transmitted over different channels; (b) The ratio of duplicated data packages.
	Figure 35. Different Neu NoC organizations of different configuration.
	Figure 36. (a) Hierarchical Neu-NoC; (b) Ring router; (c) Package format.
	Figure 37. Different PE group placement in Neu-NoC for mnist_mlp_2. (a) NN-aware mapping, (b) Sequential mapping (MLP topology after mapping: 8-4-1).
	Figure 38. MLP topology after mapping: 8-4-1 Multicast and Packet Header Example.
	Figure 39. Impact of concentration degree (n=m).
	Figure 40. Accuracy impact of feature map sparsity (y-axis: sparsity).
	Figure 41. Average packet latency of different mappings (x-axis: injection rate).
	Figure 42. Average packet latency of before and after applying multicast (x-axis: injection rate).
	Figure 43. Normalized average packet latency and energy of all the NoC designs.

	PREFACE
	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	2.0 EMERGING MEMORY APPLICATION FOR STORAGE
	2.1 PRELIMINARY
	2.1.1 STT-RAM basic
	2.1.2 STT-RAM with differential sensing
	2.1.3 Multi-level cell STT-RAM

	2.2 STD-TLB: A STT-RAM-BASED DYNAMICALLY-CONFIGURABLE TRANSLATION LOOKASIDE BUFFER FOR GPU ARCHITECTURES
	2.2.1 Background and motivation
	2.2.2 TLB design with STT-RAM
	2.2.2.1 Standard STT-RAM TLB design
	2.2.2.2 STT-RAM-based dynamically-configurable TLB
	2.2.2.3 Organization of STD-TLB
	2.2.2.4 TLB working mode management

	2.2.3 Evaluation
	2.2.3.1 System Configuration and Workloads
	2.2.3.2 Experimental Results

	2.3 MLC STT-RAM BASED REGISTER FILE
	2.3.1 Modern GPU register file
	2.3.2 MLC STT-RAM based register file
	2.3.2.1 MLC-aware Remapping Strategy
	2.3.2.2 Warp Rescheduling

	2.3.3 Evaluation
	2.3.3.1 Evaluation Setup
	2.3.3.2 System Performance
	2.3.3.3 Effectiveness of Remapping and Rescheduling
	2.3.3.4 Energy Consumption and Energy Efficiency

	3.0 EMERGING MEMORY APPLICATION FOR ACCELERATION
	3.1 PRELIMENARY
	3.1.1 Artificial neural network
	3.1.2 Memristor and memristor-based crossbar (MBC)

	3.2 THE RENO ARCHITECTURE
	3.2.1 Hierarchical structure of MBC arrays
	3.2.2 Mixed-signal interconnection network (M-Net)
	3.2.2.1 Digital, analog, or mixed-signal?
	3.2.2.2 Router design
	3.2.2.3 Routing management

	3.3 EXPERIMENTAL METHDOLOGY
	3.3.1 Circuit level implementation and simulation
	3.3.2 Benchmarks
	3.3.3 Architecture level simulation setup
	3.3.4 Implementation of other design alternatives

	3.4 EXPERIMENTAL RESULTS
	3.4.1 MBC training effort
	3.4.2 Impact of device variations and signal fluctuations
	3.4.3 Impact of MBC sizes
	3.4.4 Comparison to other design alternatives

	3.5 NOC CHALLENGES IN NEUROMORPHIC ACCELERATION SYSTEM
	3.5.1 Background and motivation
	3.5.1.1 Neural networks (NN) and neuromorphic acceleration system
	3.5.1.2 Motivation of our work

	3.5.2 Implementation of Neu-NoC
	3.5.2.1 Hierarchical structure of Neu-NoC
	3.5.2.2 NN-aware NoC mapping
	a) Effect of NoC mapping
	b) Problem formulation and definition
	c) Multicast transmission

	3.5.2.3 Sparsity-aware traffic reduction

	3.5.3 Experimental methodology
	3.5.4 Experimental results
	3.5.4.1 Impact of concentration degree
	3.5.4.2 Impact of feature map sparsity
	3.5.4.3 Effectiveness of NN-aware mapping
	3.5.4.4 Effectiveness of multicast
	3.5.4.5 Evaluation of Neu-NoC

	4.0 CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY

