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The work described in this dissertation started in 2013 and focuses on the activation of 

cap-dependent mRNA translation and regulation of the translation inhibitor protein 4E-

BP1 during mitosis. By investigating the viral oncoprotein Merkel cell polyomavirus 

small T antigen (MCV sT), an alternative pathway for cap-dependent mRNA translation 

regulation through the CDK1 kinase was discovered. In addition, a novel 

phosphorylation site of 4E-BP1—Ser83—was identified in mitotic cells, and a polyclonal 

antibody against this phosphorylation site was generated. The phospho-Ser83 4E-BP1 

antibody is a useful tool that can be used as a bona fide mitotic marker by various 

assays: immunoblotting, immunofluorescence, and flow cytometry. Overall, this work 

provokes a reassessment of protein synthesis regulation during cell division, hints at 

additional undescribed functions for 4E-BP1, and suggests that certain mRNAs 

translated in this phase of the cell cycle may contribute to cell proliferation and 

tumorigenesis.  
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1.0  INTRODUCTION 

1.1 REGULATION OF TRANSLATION INITIATION 

Eukaryotic messenger RNA (mRNA) translation is a complex process that is tightly 

regulated by various protein and non-protein components. mRNA translation undergoes 

regulation at each of its four distinct phases: initiation, elongation, termination, and 

ribosome recycling (1). Translation initiation is the most highly regulated and 

complicated phase, and thus, it is the rate-limiting step (2). It requires the highest 

number of protein factors in order to recruit the ribosome to the mRNA for protein 

synthesis (2). The 80S ribosome is assembled on the message through a canonical 

series of events as follows: mRNA 5’ cap binding by the eukaryotic initiation factor 4F 

(eIF4F) complex, 43S pre-initiation complex (PIC) formation, 40S ribosome recruitment 

to mRNA, start codon localization, and 60S ribosome joining. This introduction reviews 

the regulation of translation initiation and the role of the eukaryotic initiation factor 4E 

binding protein 1 (4E-BP1) in the context of cell cycle progression and viral and non-

viral induced tumorigenesis. 
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1.2 MECHANISMS OF TRANSLATION INITIATION 

In eukaryotic organisms, most mRNA translation follows the canonical cap-dependent 

mechanism of translation (3). A portion of cellular mRNAs rely on alternative 

mechanisms that bypass the canonical requirements for translation initiation (4, 5). 

Nonetheless, the objective of all these mechanisms is the same—recruiting the 

ribosome to the 5’ untranslated region to begin the synthesis of functional proteins. 

1.2.1 Cap-Dependent Translation 

Cap-dependent translation is the main mechanism by which most mRNAs are 

translated in eukaryotic cells. The term “cap-dependent” refers to the first step in this 

mechanism, where the translation initiation factors assemble at the 5’ cap of an mRNA 

and form the eukaryotic initiation factor 4F (eIF4F) complex (Figure 1). The cap-binding 

protein eIF4E directs translation initiation complex assembly at the 5’ untranslated 

region (5’ UTR) of an mRNA (6, 7). The 5’ cap-bound eIF4E protein then recruits the 

essential eIF4G protein, which serves as a large scaffold for the various cap complex 

members (8, 9). This scaffold protein performs several functions: it binds eIF4A, an 

RNA helicase that resolves secondary RNA structures near the 5’-cap (10); it recruits 

the 43S pre-initiation complex (containing the 40S ribosome subunit, initiator Met-tRNA, 

and ribosome binding proteins eIF2 and eIF3) (11-18); and it circularizes and facilitates 

translation of mRNA by interacting with the 3’ end poly-adenine (poly(A)) binding protein 

(PABP) (19, 20). The 43S pre-initiation complex then scans the 5’ UTR, in the 5’ to 3’ 

direction, to find the start codon and attract the 60S ribosomal subunit to initiate 
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translation (21). The translation initiation factors dissociate from the 40S ribosomal 

subunit and allow it to complex with the 60S subunit, forming the full 80S ribosome 

loaded with the initiation Met-tRNA (10). Polypeptide chain elongation begins with the 

addition of amino acids to the start methionine at the AUG codon, and peptide synthesis 

is terminated when the 80S ribosome meets a stop codon (21). 

 

 

Figure 1. Mechanism of Cap-Dependent mRNA Translation 

Cap-dependent mRNA translation is initiated by the formation of the eIF4F complex on 

the 5’ cap of mRNA, which recruits the 43S pre-initiation complex that forms between 

the 40S ribosomal subunit, eIF2, and eIF3. The full initiation complex scans for the first 

start codon and recruits the 60S ribosomal subunit upon encountering it, forming the 

80S ribosome to begin translation (From López-Lastra et al. 2005 (22)). 

1.2.2 Cap-Independent Translation 

Internal Ribosome Entry Site (IRES)-Mediated Translation 

Some mRNAs are not translated through the cap-dependent translation mechanism and 

rely mainly on internal ribosome entry site (IRES)-mediated translation. IRESes are 

structured RNA elements found at 5’ UTRs that allow mRNAs to be translated through 
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an alternative mechanism under conditions that suppress cap-dependent protein 

synthesis, such as viral infection (23-25), stress (26, 27), apoptosis (28), and mitosis 

(29, 30).  

While most eukaryotic transcripts contain a 5’ cap and a poly(A) tail, IRES-

containing cellular mRNAs are mainly translated through IRES-mediated translation but 

can also be translated, albeit less efficiently, through cap-dependent translation (31-33). 

First identified in the single-stranded positive-sense RNA poliovirus genome, IRES 

structures at mRNA 5’ UTRs recruit the ribosome and some translation initiation factors 

internally, bypassing the translation initiation complex eIF4F that forms at the 5’ cap 

(Figure 2) (23, 34). Some proto-oncogenes contain 5’ IRES sequences, such as c-Myc 

(35, 36), ornithine decarboxylase (ODC) (30), vascular endothelial growth factor (VEGF) 

(26), X-linked inhibitor of apoptosis (XIAP) (28), and fibroblast growth factor 2 (FGF-2) 

(37), which allow them to overcome cap-dependent translation regulation. 

The requirements for IRES-mediated translation vary across cellular and viral 

transcripts. Despite their similarities in function, IRES elements are not homologous in 

sequence nor structure and initiate translation by recruiting a plethora of different 

canonical and non-canonical factors (4, 38). A group of RNA-binding proteins, called 

IRES-trans-acting factors (ITAFs), are also reported to stimulate this translation 

mechanism by providing binding sites for some translation initiation factors (39).  
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Figure 2. Internal Ribosome Entry Site (IRES) Mediated Translation 

Internal translation initiation permits the 43S pre-initiation complex to be recruited 

directly to the structured 5’ UTR of some cellular mRNAs, circumventing the 5’ cap 

complex. Different IRESes require different translation initiation factors and ITAFs, to 

aid in their function to attract the ribosome and any other translation initiation 

components other than eIF4E (From López-Lastra et al. 2005 (22)). 

 

 

N6-methyladenosine (m6A)-Mediated Translation 

A novel mechanism for eukaryotic translation initiation—N6-methyladenosine-mediated 

translation—has been proposed in recent years. Similar to IRES structures, N6-

methyladenosine (m6A) modifications in mRNA can also initiate translation internally by 

recruiting the ribosome to the message. m6A is the most abundant internal modification 

in the mammalian transcriptome, found predominantly in the 3’ UTR of more than 7,000 

human transcripts (40, 41). In 2015 Wang et al. reported that m6A modifications in the 

3’ UTR provide a binding site for the YTH domain-containing protein YTHDF1 (42). 

YTHDF1 interacts with eIF3 and thus attracts the 43S pre-initiation complex directly to 

the 5’ UTR, forming a closed-loop mRNA structure (42). A couple of concurrent studies 

showed that uncapped mRNAs containing a single m6A in their 5’ UTR can be 
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translated in vitro unlike their unmodified counterparts (5, 43). m6A modifications 

located in the 5’ UTR of mRNAs provide a binding site for eIF3, which can be reversed 

by overexpression of the mRNA demethylase FTO and knockdown of the N6-

adenosine-methyltransferase METTL3 (5, 43, 44). Furthermore, mRNA with 5’ UTR 

m6A modifications can still be translated efficiently under heat stress conditions that 

suppress cap-dependent translation (43). This novel mechanism of mRNA translation 

initiation suggests that alternative mechanisms, besides IRES-mediated translation, 

take over protein synthesis control under abnormal cellular conditions and allow cells to 

survive until normal conditions are restored. 
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1.3 CIS-ACTING RNA FACTORS 

Translation initiation efficiency is regulated by the intrinsic composition of the mRNA 

(cis-acting factors) and initiation protein factor availability (trans-acting factors) (10, 45-

49). Cis-acting features outside of the mRNA main open reading frame (ORF), such as 

the 7-methyl-guanine cap, poly-adenine tail, and 5’ and 3’ UTRs (Figure 3), contain 

primary sequence and secondary structure elements that control its accessibility to the 

eIF4F complex and can be unique to the message or family of messages (45).  

 

 

Figure 3. Anatomy of a Eukaryotic Messenger RNA 

Eukaryotic mRNAs are modified post-transcriptionally with a 7-methyl-guanine cap at 

the 5’ end and with a poly-adenine tail at the 3’ end. The protein coding sequence is 

found in a region called the main ORF, which begins at the AUG start codon and ends 

with a stop codon, UGA, UAA, or UAG. The 5’ and 3’ UTRs flank the main ORF. 

1.3.1 5’ 7-Methyl-Guanine Cap and 3’ Poly-Adenine Tail 

Mature cellular mRNAs contain a 7-methyl-guanine cap structure at their 5’ end (50, 

51), which is added post-transcriptionally by the RNA guanylyltransferase 5′ 

triphosphatase RNGTT and the RNA guanine-7-methyltransferase RNMT (52-54). The 

7-methyl-guanine cap serves multiple purposes: it protects the message from 5’ 

exonuclease-mediated degradation (55, 56), facilitates nuclear export (57-59), 

increases polyadenylation efficiency (60), and attracts the translation initiation complex 

(7). The eukaryotic initiation factor 4E (eIF4E) binds this cap structure and attracts the 
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trans-acting elements required to start translation (7, 61). The 5’ cap consists of a 

guanine nucleotide methylated at the 7’ position (62) and connected to the mRNA by a 

5’-to-5’ triphosphate linkage (63). While the 7-methyl-guanine cap is necessary for 

efficient mRNA translation, it is dispensable in some mRNAs that rely on other structural 

features to recruit the ribosome (64). 

Another post-transcriptional modification found in mature mRNAs is the poly-

adenine (poly(A)) tail, which is added on the 3’ end of all cellular transcripts but those 

encoding histones (65). Like the 5’ cap structure, the poly(A) tail protects mRNA from 

exonuclease-mediated degradation and enhances translation by interacting with the 5’ 

cap-associated eukaryotic initiation factor 4G (eIF4G) protein through the poly(A)-

binding protein (PABP) (19, 66, 67). This interaction forms a stable closed-loop mRNA 

structure that facilitates translation in vitro (20, 68, 69). 

1.3.2 Untranslated Regions 

Translation begins when the ribosome recognizes the first AUG triplet on the mRNA, 

termed the start codon. Although the rate of translation initiation depends largely on the 

availability of trans-acting initiation factors that allow the ribosome to find the start codon 

(70), sequence and structural features in the non-coding regions can also determine 

how efficiently an mRNA is translated (71, 72).   

 

Sequence 

The length and composition of the 5’ UTR affects the translation efficiency of a 

message. The shorter the 5’ UTR of an mRNA is, the more efficiently it can be 
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translated by the ribosome (73). The nucleotide sequence composition of the 5’ UTR 

can also affect mRNA translation efficiency. For instance, genes that are critical for 

protein synthesis and ribosomal biogenesis contain a short stretch of pyrimidine 

nucleotides at the beginning of their 5’ UTR that facilitates their translation (74). This 

sequence, called the 5’ terminal oligopyrimidine (TOP) motif, is composed of 6-12 

pyrimidines at the 5’ end of the mRNA (75). Transcripts encoding translation initiation 

and elongation factors and ribosomal proteins are known to contain 5’ TOP motifs (76-

78). These are reported to be mainly sensitive to cell proliferation signaling by mTORC1 

(79, 80). When mTORC1 signaling is inhibited pharmacologically, the levels of proteins 

translated from 5’ TOP-containing mRNAs decreases. 

Another regulatory sequence found in the 5’ UTR, upstream open reading frames 

(uORFs) prevent translation of the downstream main ORF (81). Normally, eukaryotic 

translation begins at the first AUG start codon found in the optimal Kozak consensus 

sequence context GCC(A/G)CCAUGG (21, 82, 83). Transcripts that contain uORFs, on 

the other hand, initiate translation through alternative start codons, mainly the cognate 

CUG triplet (21, 84, 85). The primary function of uORFs seems to be reducing the 

synthesis of physiologically functional proteins by encoding short non-functional 

peptides that are 5-30 amino acids in length (81). 

The 3’ UTR is another regulatory region located downstream of the protein 

coding sequence of every mRNA, which includes the poly(A) tail (2, 86, 87). While the 5’ 

UTR plays a prominent role in regulating translation initiation, the 3’ UTR regulates 

primarily the stability of the mRNA (87). The only clear impact that the 3’ UTR may have 

on translation initiation is through the poly(A) tail. This tract of adenines provides a 
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binding site for several PABP molecules (68), which enhance in vitro translation 

initiation by interacting with the 5’ cap complex protein eIF4G (88). 

 

Structure 

Secondary RNA structures at the 5’ UTR also regulate translation initiation. Secondary 

structures form when complementary regions of RNA form base pairs and adopt stable 

hairpin structures (89). These structures sterically hinder the 43S ribosome pre-initiation 

complex from finding the start codon since the 40S ribosome subunit can only 

accommodate single-stranded RNA (89, 90). In order to translate highly structured 5’ 

UTR mRNAs, the translation initiation complex relies on the activity of its RNA helicase 

eIF4A to resolve the secondary structures, which retards the ribosome from reaching 

the start codon and thus decreases the translation rate of the mRNA (10).  

Some mRNAs, on the other hand, possess an IRES structure that permits their 

translation by an alternative process. This specialized secondary RNA structure allows 

capped or uncapped mRNAs to recruit the translation machinery to an internal site 

upstream of their coding region, bypassing the translation initiation complex assembled 

at their 5’ end (23, 91-93). IRES elements are present in the 5’ UTR of 3-5% of all 

cellular mRNAs (64, 94). Secondary structures have also been identified in the 3’ UTR 

of various transcripts, but whether they affect translation initiation is unknown (95). 
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1.4 TRANS-ACTING PROTEIN FACTORS 

Translation initiation is also regulated by trans-acting factors, which mainly consist of 

the eukaryotic initiation factor 4 (eIF4) proteins eIF4E, eIF4G, and eIF4A (1). Together 

these three proteins and several other accessory proteins form the eIF4F translation 

initiation complex and are responsible for recruiting the ribosome to the mRNA. The 

molecular interactions between these proteins and the 5’ UTR of mRNAs are modular 

and allow for rapid regulation of gene expression (2).  

1.4.1 Eukaryotic Initiation Factor 4E  

The eukaryotic initiation factor 4E (eIF4E) is the eIF4F complex protein that interacts 

directly with the 7-methyl-guanine cap at the 5’ end of mRNA (7). eIF4E has a molecular 

weight of 24 kDa, and it is the least abundant translation initiation factor and thus the 

limiting one (6). eIF4E is highly conserved in eukaryotic organisms, and mammalian 

organisms possess three isoforms: eIF4E-1 (eIF4E), eIF4E-2 (or 4EHP), and eIF4E-3 

(96). eIF4E-1 is the predominant 4E family member and binds to the 5’ cap with much 

higher affinity than eIF4E-2 and eIF4E-3 (97, 98). Thus, eIF4E-1 is the most studied 

cap-binding protein and is simply referred to as eIF4E. 

The cap-binding protein eIF4E has two main binding partners: the eukaryotic 

initiation factor 4G (eIF4G) and the eukaryotic initiation factor 4E binding proteins (4E-

BPs) (99, 100). The canonical binding site for eIF4G and 4E-binding proteins (4E-BPs) 

is found on the eIF4E dorsal region, near residue W73 of human eIF4E (101). When 

this residue is mutated to alanine, the interaction with eIF4G is completely ablated and 
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the translation initiation complex cannot assemble on the cap structure (101). Unlike 

eIF4E-1, eIF4E-2 cannot interact with eIF4G and eIF4E-3 cannot interact with 4E-BPs 

(96). Given its inability to associate with eIF4G, eIF4E-2 is suspected to inhibit mRNA 

translation by competing with eIF4E-1 for cap-binding. A recent study has shown that 3’ 

UTR-associated RNA-induced silencing complexes (RISCs) recruit eIF4E-2 to the 5’ 

cap through the deadenylating complex CCR4-NOT, forming a closed-loop structure 

that inhibits the translation initiation complex assembly (102).  

The interaction between eIF4E and eIF4G is inhibited by the 4E-BPs, which are 

molecular mimics of eIF4G (100, 103). Sharing the conserved eIF4E binding sequence 

as is found in eIF4G, YXXXXLΦ (where X is any amino acid residue and Φ is a 

hydrophobic residue) (100), 4E-BPs (4E-BP1-3) compete with eIF4G for eIF4E 

occupancy on the dorsal binding pocket and prevent the formation of the translation 

initiation complex, thereby inhibiting protein synthesis (103, 104). In addition to 

interacting with eIF4E dorsally, 4E-BP1 binds the lateral surface of eIF4E through a 

novel motif consisting of residues 79PGVTS83 (105-107).  

eIF4E engages the 5’ cap of mRNA through two tryptophan residues, W56 and 

W102, located on its ventral side (101). Mutation of W56 to alanine abolishes eIF4E 

interaction with the 5’ cap structure (101). eIF4G binding to eIF4E seems to 

allosterically increase the affinity of eIF4E for the 5’ cap. Studies in yeast have shown 

that interaction with eIF4G induces a conformational change in eIF4E that tightens its 

grip on the 7-methyl-guanine cap (108, 109).  
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1.4.2 Eukaryotic Initiation Factor 4G 

The eukaryotic initiation factor protein 4G (eIF4G) is the largest protein in the eIF4F 

complex and serves as a scaffold with docking sites for the multiple proteins that make 

up the translation initiation complex (110-113). It has a molecular weight of 220 kDa 

(114), and it binds eIF4E, the RNA helicase eIF4A, the poly(A) binding protein PABP, 

and eIF3, which connects the eIF4F-mRNA complex to the 43S ribosome pre-initiation 

complex (110). In mammals, two functionally redundant eIF4G isoforms exist, eIF4G I 

and eIF4G II. Two smaller eIF4G isoforms also exist—the PABP interacting protein-1 

(Paip-1) and the death-associated protein-5 (Dap-5)—that lack the conserved eIF4E 

binding site and only share homologous eIF4A and eIF3 binding sites (110). The former 

has been shown to bind eIF3 and enhance translation initiation (9, 115), while the latter 

appears to promote IRES-mediated translation (116). 

eIF4G has multiple docking sites for protein factors necessary for translation 

initiation activation (Figure 4). The N-terminus of the eIF4G protein contains the binding 

sites for eIF4E and PABP (117-119). The eIF4E binding site is located in this region at 

amino acids 572-578, and its human sequence is the conserved YDREFLL (100). The 

PABP binding site is located at amino acids 172-200 (120), and allows the 5’ end-

associated eIF4G to form a closed-loop mRNA structure with the 3’ poly(A)-bound 

PABP proteins (19, 20). Circularization of mRNA by the eIF4G-PABP interaction 

enhances mRNA translation in vitro, but this has yet to be confirmed in vivo.  

Like many other large complex scaffold proteins, eIF4G possesses multiple 

HEAT (Huntingtin, EF3, PP2A, and TOR) repeats located in its central and C-terminal 

regions (Figure 4) (121). These fragments encompass binding sites for the eukaryotic 
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initiation factor 4A (eIF4A) between amino acids 650-1000 and amino acids 1200-1400 

(8, 118, 122), the eukaryotic initiation factor 3 (eIF3) between amino acids 1000-1100 

(8, 11), and the MNK1/2 kinases between amino acids 1400-1600 (123, 124). 

Interaction of eIF4G to the RNA helicase eIF4A aids in resolving secondary RNA 

structures in the 5’ UTR (125), while interaction with eIF3 recruits the 40S ribosome 

subunit (9). eIF4G recruits the MNK1/2 kinases through its C-terminal end to 

phosphorylate cap-bound eIF4E at S209, whose function remains unclear (123, 124). 

Additionally, eIF4G is also able to bind RNA directly through a central RNA recognition 

motif (RRM) that lies between amino acids 740-940 (25, 111).  

 

 

Figure 4. Architecture of the Scaffold Protein eIF4G 

The schematic shows the amino acid positions of the various binding sites on eIF4G for 

PABP, eIF4E, eIF3, eIF4A, and MNK1/2 kinases located at HEAT repeats, and for RNA 

at the RNA recognition motif (RRM). 

1.4.3 Eukaryotic Initiation Factor 4A 

eIF4A is the only member of the eIF4F complex possessing enzymatic activity—RNA-

dependent ATPase activity (126). It has a molecular weight of 46 kDa (127), and it acts 

as an RNA helicase. eIF4A unwinds secondary RNA structures at the 5’ UTR of mRNA 



 15 

to permit ribosome binding and scanning for the start codon (128-131). In mammals, 

there are three eIF4A isoforms—eIF4A I, eIF4A II, and eIF4A III—which are members of 

the Aspartate-Glutamine-Alanine-Aspartate (DEAD)-box family (132-134). The first two, 

eIF4A I and eIF4A II, are functionally redundant and homologous (135). eIF4A interacts 

with eIF4G through a recombinase A-like domain located in its C-terminus (136). By 

stabilizing the interaction of eIF4A with RNA, eIF4G enhances the helicase activity of 

eIF4A (9, 136, 137). Two accessory proteins, eIF4B and eIF4H, have also been 

identified to stimulate eIF4A RNA processing (138, 139).  
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1.5 EUKARYOTIC INITIATION FACTOR 4E BINDING PROTEIN 1 

Sonenberg et al. discovered a set of three small binding proteins, called eIF4E(4E)-BPs 

(4E-BP1, 4E-BP2, and 4E-BP3), that inhibit cap-dependent translation by interacting 

with the mRNA 5’-cap-binding eukaryotic initiation factor eIF4E (7, 99, 104). 4E-BP1 

and 4E-BP2 are functionally redundant in terms of their impact on translation initiation 

and are regulated in a similar manner (100, 140, 141). However, very little is known 

about 4E-BP3 (142), and most studies have focused on 4E-BP1 and a few on 4E-BP2 

(140, 141, 143).  

1.5.1 Expression 

mRNA expression of 4E-BP1 and 4E-BP2 is ubiquitous in mammals, but their 

expression level appears to vary across different tissues (144). For instance, 4E-BP1 is 

found to be highly expressed in the pancreas, skeletal muscle, and white adipose 

tissue, while 4E-BP2 is predominantly expressed in the central nervous system (2, 145, 

146). Some transcription factors have been identified to regulate 4E-BP1 gene 

expression in human cells. Transcription factors ATF4 and SMAD4 upregulate 4E-BP1 

transcription to protect pancreatic cells from endoplasmic reticulum stress and inhibit 

cell proliferation, respectively (145, 147). In prostate cancer cells, the transcription factor 

c-Myc induces 4E-BP1 mRNA expression upon treatment with the mTOR inhibitor 

rapamycin (148). The one transcription factor that has been identified to downregulate 

4E-BP1 transcription is the p38/MAPK- and PI3K-dependent transcription factor EGR1, 

which promotes cell proliferation in hematopoietic stem cells (149, 150). 
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1.5.2 Regulation of 4E-BP1 Translation Inhibition  

The best characterized eIF4E binding protein is 4E-BP1, and it has a molecular weight 

of 15 kDa (151). 4E-BP1 competes with eIF4G for eIF4E binding, preventing the 

recruitment of the translation initiation machinery to the 5’ UTR of mRNA (152). The 

interaction between 4E-BP1 and eIF4E thus inhibits cap-dependent protein synthesis. 

However, this interaction is reversible, and it is regulated through phosphorylation 

mediated canonically by the mammalian target of rapamycin (mTOR) kinase in 

response to metabolic and growth-related signaling (Figure 5) (153).  

 

 

Figure 5. Schematic of the PI3K-AKT-mTOR Pathway 

The PI3K-AKT pathway activates the mTORC/Raptor (mTORC1) kinase complex that 

phosphorylates and activates S6K and phosphorylates and inhibits 4E-BP1, which 

prevents 4E-BP1 from binding eIF4E and inhibiting cap-dependent translation initiation.  
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The phosphatidylinositol-3 kinase (PI3K)-AKT pathway regulates the repressor 

function of 4E-BP1 by activating the mammalian target of rapamycin (mTOR) kinase 

(Figure 5) (154-158). The mTOR kinase forms two complexes, mTORC1 and 

mTORC2, in association with adaptor proteins Raptor and Rictor, respectively, which 

aid in substrate recognition (159-162). Activated mTORC1 phosphorylates 4E-BP1 at 

various serine and threonine residues and releases eIF4E from sequestration (163).  

 

 

Figure 6. Architecture of Human 4E-Binding Proteins 1, 2, and 3 

The eIF4E-binding site (blue) and the Raptor binding TOS motif (purple) are conserved 

in all human 4E-BPs. The Raptor binding regulatory RAIP motif is absent in 4E-BP3. 

Threonine (T) and serine (S) residues identified on these proteins are indicated in red, 

where T37, T46, S65, and T70 are shared across all human 4E-BPs (Reprinted and 

adapted by permission from Macmillan Publishers Ltd: Oncogene 32(6):671-677, 2013, 

Martineau et al. (144)). 

 

 

4E-BP1 has two short mTORC1 binding motifs, the C-terminal mTOR signaling 

(TOS) motif and the N-terminal RAIP motif, which regulate Raptor association (Figure 

6) (164-169). All 4E-BPs—1, 2, and 3—share the TOS motif that serves as a docking 

site for the mTOR adaptor protein Raptor and is also present in another mTORC1 
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substrate, the ribosomal protein S6 kinase S6K1 (Figure 5) (100, 169). Raptor 

interaction with the TOS motif allows the mTOR kinase to phosphorylate 4E-BP1 at 

residues T37, T46, S65, and T70 (153, 163, 165). 4E-BP1 and 4E-BP2 contain an N-

terminal RAIP motif, which is also important for Raptor interaction and is absent in 4E-

BP3 (164, 166, 167). Intact mTORC1 binding motifs are crucial for 4E-BP1 

phosphorylation and cap-dependent translation activation. Alanine substitutions of the 

TOS and RAIP motifs (F114A and I15A, respectively) abrogate mTORC1 binding and 

inhibit 4E-BP1 phosphorylation (164, 167).  

 

 
 

Figure 7. Sequential Phosphorylation of 4E-BP1 by mTORC1 

Priming phosphorylation of 4E-BP1 at residues T37 and T46 by mTORC1 allows for 

sequential phosphorylation at S65 and T70 (153), which leads to its dissociation from 

eIF4E and cap-dependent translation activation (Reprinted and adapted by permission 

from American Society for Clinical Investigation: J Clin Invest 121(9):3623-3634, 2011, 

Shuda et al. (170)). 

 

 

Furthermore, human 4E-BP1 interacts with eIF4E through two binding motifs. 4E-

BP1 binds eIF4E mainly through the canonical binding site 54YDRKFLM60, located 
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between mTOR-targeted phosphorylation sites T46 and S65, which contacts the dorsal 

surface of eIF4E (122, 171). 4E-BP1 shares this binding site with eIF4G—the 

conserved eIF4E-binding motif YXXXXLΦ (100). Mutation of key residues Y54 and L59 

to alanines abolish 4E-BP1 binding to eIF4E (165). Recent studies have reported that 

4E-BP1 also interacts with the lateral surface of eIF4E through the secondary binding 

site 79PGVTS83 (106), which confers to 4E-BP1 a competitive advantage over eIF4G 

and contributes to its translation inhibitory function (105). Priming phosphorylation at 

4E-BP1 T37 and T46 near the canonical binding site (Figure 8) allows for subsequent 

phosphorylation at T70 and S65 (Figure 7) (153). Sequential phosphorylation of 4E-

BP1 at these four residues decreases its affinity for eIF4E and allows eIF4G docking to 

eIF4E to bring the translational machinery to the mRNA (172, 173). Double alanine 

substitutions of critical T37 and T46 phosphorylation sites of 4E-BP1 inhibit its 

hyperphosphorylation, rendering a constitutively active 4E-BP1 that strongly binds 

eIF4E and is insensitive to mTOR inhibition (156, 174).  

Three additional 4E-BP1 phosphorylation sites have also been identified—S83, 

S101, and S112—whose regulation mechanism has remained unknown, except for that 

of the first one in recent years (Figure 6) (154, 175, 176). S83 is phosphorylated during 

mitosis by the CDK1 kinase and is located in the non-canonical binding motif that 

interacts with eIF4E (Figure 8) (177). Whether phosphorylation of this residue affects 

the interaction between 4E-BP1 and eIF4E has yet to be determined. 

 



 21 

 

Figure 8. Relative Position of Phosphorylation Sites on eIF4E-Bound 4E-BP1 

(Modified from Igreja et al. 2014 (107)). 

 

1.5.3 Signaling Pathways 

4E-BP1 phosphorylation is affected by various signaling pathways that converge on 

mTORC1, such as metabolic signaling, stress conditions, and growth factors and 

cytokines (178-180). Regulation of 4E-BP1 activity through various stimuli allows the 

cell to regulate protein synthesis as needed. 

 

Metabolic Signaling 

Metabolic inputs, such as ATP, oxygen, amino acids, glucose, and lipids, regulate 4E-

BP1 phosphorylation and mRNA translation through mTORC1 modulation (Figure 9). 

Protein synthesis is an energy-intensive process, and for that reason, cells need to 

regulate their energy expenditure when ATP levels are low (181-183). The 5’-AMP-
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regulated kinase AMPK, detect the ratios of cellular AMP:ATP and ADP:ATP (184). 

When ATP levels are low, AMPK inhibits mTORC1 by phosphorylating the adaptor 

protein Raptor and activating the tuberous sclerosis proteins 1 and 2 (TSC1/2), which 

inhibit mTORC1 indirectly by stimulating the GTPase activity of the Ras homolog 

enriched in brain protein (Rheb) (185, 186). When ATP levels are restored, mTORC1 is 

activated and increases ATP production by increasing mitochondrial biogenesis in a 

positive feedback loop (187).  

Amino acid, glucose, and lipid signaling also regulates 4E-BP1 phosphorylation 

through mTORC1 (Figure 9). Amino acids are essential for protein synthesis and cell 

proliferation (188). The presence of amino acids inside lysosomes activates the GTP-

binding protein Rheb on the lysosomal membrane, and in turn, recruits and activates 

mTORC1 through Raptor interaction (189-191). Similar to amino acid signaling, glucose 

recruits mTORC1 to the lysosomal membrane through Rag GTPases that allow for 

mTORC1 to interact with the GTP-bound Rheb (192). Furthermore, lipid signaling via 

phosphatidic acids (PAs) stabilizes the assembly and activity of the mTOR-Raptor 

(mTORC1) and mTOR-Rictor (mTORC2) complexes (162, 193). All these metabolic 

pathways converge by increasing 4E-BP1 phosphorylation through mTORC1 activation, 

thus coupling increased protein synthesis to increased nutrient availability. 

 

Stress Conditions 

Certain stress conditions, such as hypoxia, genotoxicity, and apoptosis, lead to 

mTORC1 inactivation and result in decreased 4E-BP1 phosphorylation and inhibited 

cap-dependent mRNA translation (Figure 9) (178). Low levels of oxygen—hypoxia—
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leads to mTORC1 inactivation by decreasing cellular ATP levels and consequently 

activating AMPK (194-199). Low oxygen also stimulates transcription of the stress and 

hypoxia inducible gene REDD1, another negative regulator of mTORC1 that activates 

TSC2 and prevents association of Rheb with mTORC1 (195, 198, 199). Genotoxic 

stress activates the DNA-damage responsive transcription factor p53 and contributes to 

AMPK activation and increased phosphatase and tensin homolog (PTEN) expression, 

which negatively regulates the PI3K-AKT signaling pathway (200, 201). p53 activation 

leads to dephosphorylation and truncation of 4E-BP1, which cannot be phosphorylated 

and binds eIF4E with higher affinity than the full-length protein (202, 203). Furthermore, 

apoptosis signaling also blocks translation initiation through 4E-BP1 dephosphorylation 

by mTORC1 inhibition and caspase-cleavage of the N-terminal RAIP motif of 4E-BP1 

(204, 205). As in conditions of p53 activation, the truncated 4E-BP1 protein cannot be 

phosphorylated effectively and becomes a dominant inhibitor of mRNA translation. 

Unlike metabolic signaling, these stress conditions shut off cap-dependent translation 

by decreasing 4E-BP1 phosphorylation. 

 

Growth Factors and Cytokines 

Extracellular signaling through growth factors and cytokines promotes mTORC1 activity. 

Insulin promotes cell proliferation by stimulating growth factor receptors on the cell 

surface that activate downstream intracellular signaling pathways, including the PI3K-

AKT-mTOR pathway, which leads to increased 4E-BP1 phosphorylation and protein 

synthesis (104, 175). Pro-inflammatory cytokines TNFα and IκB kinase-β (IKKβ) also 

induce 4E-BP1 phosphorylation by interacting with and inactivating the mTORC1 
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inhibitor TSC2 (206). These observations have suggested that other intracellular 

pathways may target 4E-BP1 through kinases other than mTORC1. 

 

Non-Canonical 4E-BP1 Kinases 

In recent years various groups have identified kinases, other than mTORC1, that 

phosphorylate 4E-BP1: CDK1 (177, 207-209), PLK1 (210), Pim 2 (211), GSK3-β (212, 

213), p38MAPK (212, 213), ERK1/2 (155, 214), LRRK2 (215, 216), ATM (217), and 

CK1ε (218). The mitotic cyclin-dependent kinase 1 (CDK1) phosphorylates 4E-BP1 at 

T70 only in mitotic cells (207, 208). CDK1 can also phosphorylate mTOR-targeted 

residues T37, T46, and S65, and also the novel S83, which is not regulated by mTOR 

(177, 209). Another mitotic kinase, polo-like kinase 1 (PLK1), is able to phosphorylate 

4E-BP1 in vitro, but the exact phosphorylation sites have not been determined (210). 

The Pim 1/2/3 kinases have been shown to be active in cells resistant to mTOR inhibitor 

rapamycin treatment (212, 213), and Pim 2, specifically, phosphorylates 4E-BP1 at S65 

(211). Furthermore, the glycogen synthase kinase 3 β (GSK3-β) phosphorylates 4E-

BP1 at its priming sites T37 and T46 and promotes cap-dependent protein synthesis 

and cell proliferation (219). In response to UV irradiation, apoptosis, and viral infection, 

the mitogen-activated protein kinase p38 (p38MAPK) phosphorylates mouse 4E-BP1 at 

T36, T45, S64, and T69 (220-222). Related to the p38MAPK kinase, the ERK1/2 

kinases also phosphorylate 4E-BP1 at S65 and increase mTORC1 activity by inhibiting 

the mTORC1-suppressing TSC1/2 proteins (155, 214). Furthermore, the leucine-rich 

repeat kinase 2 (LRRK2) phosphorylates 4E-BP1 at the T37 and T46 sites (215, 216). 

Interestingly, a couple of enzymes that phosphorylate at non-mTORC1-regulated sites 
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have also been identified. First, the ataxia-telangiectasia mutated kinase (ATM) is 

normally activated by ionizing radiation and double-stranded DNA breaks and also 

phosphorylates 4E-BP1 at S112 following insulin stimulation (217). Second, the casein 

kinase 1ε (CK1ε) phosphorylates 4E-BP1 at T41 and T50 in breast cancer cells and 

appears to promote mRNA translation (218). The existence of other 4E-BP1 kinases 

could explain mTOR inhibitor resistance in cancer cells of various tumor types (223-

225), and it also suggests that several signaling pathways converge on 4E-BP1 and 

regulate its function independently of mTORC1. 
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Figure 9. Signaling Pathways Targeting the mTORC1-4E-BP1 Axis 

mTORC1 kinase activity inhibits 4E-BP1 by phosphorylation, thereby activating cap-

dependent mRNA translation. Multiple upstream regulators, such as growth factors, 

nutrients, and stress, stimulate mTORC1 and regulate protein synthesis and cell 

proliferation via 4E-BP1 (Reprinted and adapted by permission from Macmillan 

Publishers Ltd: Oncogene 35(36):4675-4688, 2016, Musa et al. (143)). 
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1.5.4 Cell Cycle Progression 

The PI3K-AKT-mTORC1 pathway is well known to regulate both cell growth and cell 

cycle progression, which are necessary for cell proliferation (226). mTORC1 inhibition 

by rapamycin blocks cell cycle progression and preferentially arrests cells transiting 

through the G1 phase (160, 227). Furthermore, raptor knockdown and serum starvation 

impair G1/S progression by inhibiting mTORC1 activity (228, 229). Some reports 

indicate that mTORC1 exerts its influence on cell cycle progression by modulating the 

activity of cyclin-dependent kinases, the gatekeepers of the cell cycle (230, 231). Cells 

from dTOR (Drosophila target of rapamycin)-null fruit flies express lower levels of cyclin 

E than the wild type cells and, as a result, are arrested in the G1/S transition (231). 

Downstream of mTORC1, 4E-BP1 hyperphosphorylation has been linked to an increase 

in CDK1 and CDK2 and cyclin E, D1, and B1 protein levels, which can be reversed by 

mTOR inhibition (230). Furthermore, overexpression of a non-phosphorylatable 4E-BP1 

mutant also leads to G1/S phase arrest, decreased cell size, and thus decreased cell 

proliferation (174, 232). Conversely, eIF4E overexpression and increased S6K1 activity 

contributes to S phase progression and increased cell size (10, 141, 233, 234). These 

observations indicate the mTORC1, through 4E-BP1 targeting, is regulating not only cell 

growth but also cell cycle progression. Translation inhibition by 4E-BP1 of mRNAs 

encoding pro-proliferative genes, such as c-Myc, ODC, VEGF, cyclins, and CDKs, could 

explain this phenomenon (141, 230). 
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Translation During Mitosis 

Global mRNA translation has long been assumed to be inhibited during mitosis. Several 

studies have shown that protein synthesis is decreased in HeLa cells (235, 236) and 

Chinese hamster ovary (CHO) cells (237) that were arrested in mitosis by treatment 

with nocodazole, a drug that destabilizes microtubules. One report shows that 4E-BP1 

is dephosphorylated in nocodazole-arrested mitosis cells and provides additional 

evidence that translation is suppressed (236). Interestingly, IRES-containing poliovirus 

mRNA translation was unaffected in mitosis-arrested HeLa cells (238, 239), and 

mTORC1 activity was preserved during mitosis (229). These findings indicated that a 

subset of the global mRNA population, transcripts containing IRES structures in their 5’ 

UTR, can escape the global translational suppression during mitosis. To determine 

whether cellular mRNAs containing IRES structures could escape the observed 

translational suppression, subsequent studies examined the translation of the ornithine 

decarboxylase enzyme (ODC), important for polyamine biosynthesis (30). ODC 

expression is translationally regulated in a cell cycle-dependent manner, peaking at the 

G1/S transition and at the G2/M transition (240). Like the poliovirus transcripts, ODC 

mRNA translation is not suppressed during mitosis and does not depend on eIF4E (30). 

The p53-activated tumor suppressor protein 14-3-3σ has been reported to enhance the 

cap-independent translation of the IRES-containing p58 PITSLRE and p27 Kip1 

transcripts during mitosis by targeting the translation initiation factors eIF4B and eIF2 

(241). One of the eIF4F complex members crucial for cap-dependent translation, eIF4G, 

is phosphorylated at Ser1232 by CDK1 during mitosis, which prevents its association 

with eIF4A and may also explain the observed translational suppression (242). 
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In recent years, the idea that cap-dependent mRNA translation is suppressed 

during mitosis has been challenged by various groups and work presented in the 

following chapters (177, 209, 243, 244). Emerging ribosomal profiling studies (79, 80, 

244) and sensitive single-cell metabolic labeling assays (209) have shown that mitotic 

mRNA translation is predominantly cap-dependent. In line with these observations, 

multiple studies have shown that 4E-BP1 is in fact hyperphosphorylated and inactivated 

during mitosis (177, 207-209, 243). The discrepancy between previous and recent 

studies has been attributed to the cell cycle synchronization method employed to arrest 

cells in mitosis. Previous studies utilized microtubule-destabilizing drugs, such as 

nocodazole, which has been reported to inhibit global mRNA translation (243). This 

would explain why only IRES-containing transcripts were able to be translated in the 

mitotic cell population. On the other hand, recent studies have resorted to mild 

synchronization methods to enrich mitotic cells, such as manual mitotic shake-off, S-

phase arrest and release by double-thymidine block, and G2/M arrest and release by 

CDK inhibitor RO-3306 treatment (177, 209, 243-245).  
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1.6 TRANSLATION IN CANCER 

Dysregulation of cap-dependent mRNA translation has been recognized to play an 

important role in cancer cell proliferation and survival (159). The signaling pathway 

responsible for activating protein synthesis, the PI3K-AKT-mTOR, is often overactivated 

in tumorigenesis, and has indicated that cap-dependent mRNA translation is increased 

in cancer cells, resulting in the overproduction of proteins that support cell proliferation 

and protect from cell death (246). This kind of dysregulation is attributed to the 

modulation of translation initiation effectors eIF4E and 4E-BP1 in favor of increased 

mRNA translation (143). Over the last couple of decades, the level of expression and 

phosphorylation of the cap-binding protein eIF4E and translation inhibitor 4E-BP1 have 

been identified as useful prognostics for multiple cancers (247-249). Interestingly, some 

tumor viruses, particularly the Merkel cell polyomavirus, have been shown to target 4E-

BP1 to activate mRNA translation (170, 250-253), which highlights the importance of 

translational dyscontrol in non-viral and viral induced cancers alike. 
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1.6.1 eIF4E Overexpression 

Due to its importance for cap-dependent mRNA translation of genes necessary for cell 

proliferation, eIF4E has been shown to act as a proto-oncogene (234, 254). eIF4E 

overexpression and upregulation lead to malignant transformation of rodent fibroblasts 

induced by other oncogenes, such as E1A, v-myc, and Ras (233, 234, 255-257). 

Knockdown of eIF4E reverses the tumorigenic phenotype of these transformed cells 

(258, 259). eIF4E is also overexpressed in various human cancers (260) and is 

regulated transcriptionally by c-Myc (261) and post-translationally by trans-acting 

translation initiation protein factors (262), ubiquitin-mediated protein degradation (263), 

and MNK1/2-mediated phosphorylation (123).  

Mitogen-activated protein kinases (MAPK)-interacting protein kinases MNK1 and 

MNK2 bind eIF4G and phosphorylate human eIF4E at S209 (123, 146, 264, 265). The 

function of this phosphorylation is not yet clear, as it has not yet been determined 

whether it affects the affinity of eIF4E for the 5’ cap or translation initiation. MNK1/2 

double knockout in lymphoma and glioma mouse models does not exhibit any effects on 

cell growth when eIF4E S209 is not phosphorylated, but it appears to prevent cells from 

undergoing transformation (146). In line with this observation, phospho-defective eIF4E 

S209A knock-in mouse cells are resistant to transformation (266). The MNK1/2 kinases 

are able to phosphorylate eIF4E by binding to the C-terminus of eIF4G, which is bound 

to eIF4E when the eIF4F translation initiation complex has assembled on the 5’ cap 

(123, 267). These observations suggest that eIF4E S209 phosphorylation may enhance 

cap-dependent translation in tumorigenesis, which may be disrupted upon 4E-BP1 

displacing eIF4G and, in turn, preventing MNK1/2 from phosphorylating eIF4E. 
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1.6.2 4E-BP1 Hyperphosphorylation 

Multiple signaling pathways that are dysregulated in cancer, such as the PI3K-AKT-

mTOR and RAS-MAPK pathways, have been found to inactivate 4E-BP1 by 

phosphorylation. Increased protein synthesis through eIF4F-mediated translation leads 

to increased cell growth and proliferation. Thus, 4E-BP1 is a critical contributor to cell 

transformation, which has been shown to be dependent on sufficient eIF4F activity 

(268). In particular, eIF4F promotes cap-dependent translation of mRNAs encoding 

proteins that play a vital role in cell survival, proliferation, and migration (262). 

The PI3K-AKT-mTOR pathway is commonly dysregulated in cancers and leads 

to increased 4E-BP1 phosphorylation and enhanced cap-dependent translation (141). 

Interestingly, phosphorylated 4E-BP1 protein levels are augmented in tumors in 

response to this signaling (248). Moreover, expression of a non-phosphorylatable 4E-

BP1 antagonizes the tumorigenic phenotype of cancer cells in which the PI3K-AKT-

mTOR pathway is constitutively activated (269). Double knockout of 4E-BP1 and 4E-

BP2 in mouse embryonic fibroblasts leads to increased cell proliferation and renders the 

cells insensitive to mTOR inhibitor treatment (223). By phosphorylating 4E-BP1, the 

PI3K-AKT-mTOR frees its ultimate target eIF4E and allows it to recruit the rest of the 

translation initiation machinery to synthesize pro-proliferative proteins.  

Another pathway that is activated in cancer is the RAS-MAPK pathway, which 

activates the MNK1/2 kinases that phosphorylate eIF4E at S209 (223, 264, 265). 

MNK1/2 can only phosphorylate eIF4E when eIF4G is bound to it (123). Expression of a 

non-phosphorylatable 4E-BP1 mutant in non-small cell lung cancer cells inhibits eIF4E 

phosphorylation by displacing eIF4G and preventing the recruitment of MNK1/2 (270). 
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RAS-MAPK signaling also appears to induce 4E-BP1 phosphorylation independently of 

PI3K-AKT signaling (223, 271). In tumor cells in which the two pathways are activated, 

4E-BP1 phosphorylation is only abrogated when both pathways are inhibited (223). 

Notably, colon cancer cells become insensitive to RAS-MAPK and PI3K-AKT signaling 

when eIF4E is overexpressed or 4E-BP1 is knocked down (223). These findings 

suggest that the PI3K-AKT-mTOR and RAS-MAPK signaling pathways work together to 

activate both 4E-BP1 and eIF4E phosphorylation. 

Finally, the tumor suppressor p53, which induces cell cycle arrest, DNA repair, 

senescence, and apoptosis, downregulates protein synthesis by inhibiting mTORC1 

activity, which leads to 4E-BP1 dephosphorylation and truncation and thus increases 

the interaction between 4E-BP1 and eIF4E (200, 204, 205). The p53 gene is often 

mutated in various cancers, and some studies performed in cells with a p53 defect show 

that the acquisition of a tumorigenic phenotype is attributed to eIF4E overexpression or 

loss of 4E-BP1/2 expression and activity (214, 272). These results suggest that 

mutations that inhibit the tumor suppressor function of p53 allow for the phosphorylation 

and inactivation of 4E-BP1 through a dysregulated PI3K-AKT-mTOR pathway. 

1.6.3 Tumor Viruses  

Some cancer-causing viruses—HPV, HCV, KSHV, and MCV—are known to target the 

cap-dependent translation initiation machinery to promote the synthesis of their own 

proteins (273). The cervical cancer-causing human papilloma virus (HPV) encodes two 

major oncoproteins E6 and E7 (274). Essential for HPV replication and transformation, 

HPV E7 mRNA translation is activated by mTOR-mediated phosphorylation and 
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inactivation of the translation inhibitor 4E-BP1 (251). Furthermore, E6 upregulates the 

transcription of the 5’ cap-binding protein eIF4E, which contributes to its tumorigenic 

activity (250). The hepatitis C virus (HCV), which causes hepatocellular carcinoma, 

encodes the nonstructural protein 5A (NS5A) that activates the mTORC1 kinase and 

induces 4E-BP1 phosphorylation and inactivation (253).  

The two most recently discovered tumor viruses, KSHV and MCV, cause cancers 

associated with immunosuppression and also target cap-dependent mRNA translation 

initiation. The Kaposi sarcoma-associated herpesvirus (KSHV) causes Kaposi sarcoma 

(275) and activates mRNA translation by inducing 4E-BP1 phosphorylation (252), which 

leads to the synthesis of paracrine signaling proteins that are essential for tumor growth, 

namely VEGF-A and interleukin 6 (IL-6) (276). The Merkel cell polyomavirus (MCV) 

(277), which causes most Merkel cell carcinomas, encodes a small T antigen (sT) 

oncoprotein that also induces 4E-BP1 phosphorylation and activates cap-dependent 

translation (170, 209). Cap-dependent mRNA translation activation, thus, appears to be 

a critical target for the synthesis of tumor virus proteins and their transforming activities. 

1.6.4 Merkel Cell Polyomavirus 

Hundreds of thousands of viruses have been discovered, but only seven viruses are 

known to cause human cancers (278). Identifying a novel virus that causes a human 

cancer provides a new model to understand tumorigenesis. Nearly a decade ago, a 

novel cancer virus was discovered in Merkel cell carcinoma. Merkel cell carcinoma 

(MCC) is a very rare and aggressive skin cancer with a mortality rate of ~30% and an 

incidence of at least 1,500 cases per year in the United States, which has tripled in the 
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last two decades (279-281). MCC appears to arise from transformed Merkel cells, which 

are mechanoreceptor cells found in the basal layer of the epidermis (282). It is more 

prevalent in the elderly population, and risk factors for MCC occurrence include UV 

exposure and immunosuppression, particularly due to organ transplantation and the 

acquired immunodeficiency syndrome (AIDS) (283-285).  

Due to its association with immunosuppression, the origin of MCC was 

suspected to be infectious. In 2008 a bioinformatics technique called digital 

transcriptome subtraction (DTS) was developed to search for viral sequences in cDNA 

libraries generated from MCC tumors (277). After transcripts that corresponded to 

human sequences were subtracted, databases containing only sequences of infectious 

origin remained. A non-human sequence that was highly homologous to the African 

green monkey lymphotrophic polyomavirus was identified (277). Rapid amplification of 

cDNA ends (3’-RACE) revealed that a polyomavirus genome, eventually termed Merkel 

cell polyomavirus (MCV), was clonally integrated into the genome of 80% of the MCC 

tumors tested (277). Studies performed four years later with enhanced detection 

methods showed that 97% of MCCs are associated with this virus, suggesting that 

possibly all MCCs are caused by MCV (286). 

Animal polyomavirus research has been central in cancer research. The first two 

polyomaviruses that were identified—the simian virus 40 (SV40) and the mouse 

polyomavirus (MPyV)—transform cells and can cause cancer in animals. Research on 

the SV40 large T antigen revealed the importance of two host cell tumor suppressor 

proteins, p53 and Rb (287). Studies on the SV40 small T antigen found the tumor 

suppressor function of the protein phosphatase PP2A, which is a negative regulator of 
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the AKT-mTOR pathway (288). Furthermore, mouse polyomavirus research on its 

middle T antigen revealed the critical role of the proto-oncogenic PI3K signaling 

pathway, which also targets the AKT-mTOR pathway (289). However, these viruses are 

not oncogenic in humans (290). Various polyomaviruses besides MCV have been 

identified in humans besides MCV. Although these viruses have a high seroprevalence 

in various human populations, they are not implicated in cancer (291-294), expect for 

the BK virus that is associated with some genitourinary tumors in transplant patients 

(295). MCV is the first and only polyomavirus known to cause human cancer and has 

become a novel model to understand how cancers arise.  

 

Genome  

MCV, like other polyomaviruses, possesses a characteristic circular double-stranded 

DNA genome (approximately 5.4 kb) with an early region encoding two major 

overlapping tumor (T) antigens, small T (sT) and large T (LT), and a late region 

encoding three capsid proteins, VP1, VP2, and VP3 (Figure 10) (284). The tumor 

antigens LT and sT are the major oncoproteins encoded by MCV and are expressed in 

MCC tumors. Expression of these T antigens is required for MCC tumor cell growth, 

proliferation, and survival (296, 297). In addition to the major LT and sT, the early region 

also encodes the understudied 57kT antigen and the alternate frame of the LT ORF 

protein (ALTO) (298). Early and late coding regions are a common feature of DNA 

viruses and provide temporal regulation for viral gene expression. Polyomavirus tumor 

antigen genes are expressed upon viral entry to start viral DNA replication, after which 

the late viral capsid genes are expressed to produce new virions (299). MCV genome 
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has a non-coding regulatory region (NCRR) that separates the early and late genes and 

contains the viral origin of replication (Ori) and bidirectional transcription promoters for 

the two regions (300). In addition to these genes, MCV encodes a 22-nt microRNA, 

named MCPyV-miR-M1-5p, that has been identified in 50% of MCV-positive MCCs and 

may play a role in viral replication regulation and immune invasion (301, 302). 

 

 

Figure 10. Wild-Type Merkel Cell Polyomavirus Genome  

The wild-type Merkel cell polyomavirus genome is 5,387 bp long and contains early and 

late coding regions separated by the noncoding regulatory region (NCRR) that has an 

origin of replication (red) and promoters for bidirectional transcription. The early region 

encodes the early proteins large T antigen (LT), small T antigen (sT), and 57-kT 

antigen. The late region encodes the capsid viral protein genes 1, 2, and 3 (VP1, VP2, 

and VP3) (From Chang and Moore 2012 (284)). 
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Capsid Proteins  

The MCV late region encodes the major capsid proteins VP1 and VP2 (Figure 10) 

(303). Expression of VP1 alone is sufficient for virus-like particle (VLP) production, 

which are ~40-55 nm in size, but assembly of both VP1 and VP2 is necessary for in 

vitro infection (304-306). Unlike the VP1 and VP2 genes, the VP3 gene is not expressed 

in MCV infection (304, 307). While the cell surface receptor for other polyomaviruses 

has been determined to be the ganglioside Gt1b sialic acids (308, 309), MCV 

pseudovirions rely on heparan sulfate, a sulfated glycosaminoglycan, for viral entry 

(306). Structural studies on VP1 protein complexes indicate that MCV uses primarily 

glycosaminoglycans for attachment and a sialylated glycan for internalization, which 

suggests a two-step entry process that is different from other polyomaviruses (310). 

 

Large Tumor Antigen  

The proteins encoded by DNA virus early genes target host cell cycle regulators and 

tumor suppressors in order to promote viral DNA replication (287, 288, 311, 312). The 

full-length MCV large T antigen (LT) is a large protein consisting of 817 amino acids and 

has various domains whose functions are important for MCV replication (Figure 11) 

(313). The DnaJ and CR1 domains in the N-terminus of LT bind the transcription 

inactivating chaperone protein Hsc70 (314, 315). This interaction between LT and 

Hsc70 has been shown to be permissive for MCV replication in vitro (316). Additionally, 

the LT antigen has a nuclear localization signal (NLS) and a conserved Rb-binding motif 

(LXCXE) between amino acids 100-300—a region different from other polyomaviruses 

and unique to MCV (317). Termed the MCV T antigen unique region (MUR), this stretch 
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of amino acids has been shown to interact with the vacuolar sorting protein Vam6p, 

which leads to nuclear translocation of this protein and lysosomal clustering (318). 

Expression of a Vam6p binding mutant LT enhances viral replication, while 

overexpression of human Vam6p inhibits this process (300). These findings suggest 

that the interaction between LT and Vam6p may help establish latency in the host cell. 

 

 

Figure 11. MCV Large T and Small T Antigen Domain Architecture 

The full-length MCV LT schematic shows the location of its different domains, 

particularly its Rb-binding and origin-binding (OBD) domains. The MCV sT shares the 

DnaJ binding domain with LT and possesses a PP2A binding site (Modified from Chang 

and Moore 2012 (284)). 

 

 

As in other polyomavirus T antigens, the conserved LXCXE motif allows MCV LT 

to bind the tumor suppressor retinoblastoma protein Rb (315, 319). This interaction is 

important to drive the cells into S phase by upregulating the transcription of E2F target 

genes, particularly cyclin-dependent kinases, cyclins, checkpoint regulators, and DNA 
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repair and replication proteins (317, 320, 321). An intact LXCXE is critical for MCC cell 

growth, as expression of an Rb-binding mutant LT in MCV LT-knockdown MCC cells 

cannot rescue their growth (322). Furthermore, expression of a LT protein with an intact 

LXCXE motif upregulates the expression of anti-apoptotic protein survivin, whose 

pharmacological inhibition in MCC xenograft mice increases their survival (321, 323). 

The regions necessary for viral replication are found in the MCV LT C-terminal 

half (Figure 11). The origin binding domain (OBD) recognizes and binds the 71-bp 

origin of replication located in the NCRR (324). Two phosphorylation sites, T297 and 

T299, regulate the ability of LT to start DNA replication in opposite ways (325). 

Phosphorylation of T297 inhibits LT interaction with the origin of replication. On the 

other hand, phosphorylation of T299 is necessary for LT to initiate replication. Also on 

the C-terminal half of LT resides a helicase domain, between amino acids 441-817, that 

is required for LT oligomerization and replication initiation at the origin in the NCRR 

(320). Interestingly, the LT C-terminus is found to be truncated in MCC tumors, which 

eliminates the replication function of LT (315, 326). Recent findings have shed light on 

the anti-proliferative potential of the MCV LT C-terminus and may provide an additional 

explanation for its truncation in tumors. The helicase domain of LT is reportedly capable 

of inducing the host DNA-damage response (327). Phosphorylation of S816 in this 

domain by DNA-damage response ATM kinase induces apoptosis (328). Furthermore, 

the growth of MCC cells and SV40-immortalized human fibroblasts is suppressed by the 

expression of a fragment containing the last 100 residues of the LT C-terminus (329). 
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Small Tumor Antigen  

The MCV small T antigen (sT) is the second major protein encoded by the MCV early 

region, and it shares the first 78 amino acids of the LT N-terminus and has a length of 

186 amino acids (Figure 11) (313). Unlike LT in MCC, MCV sT is unaffected by tumor 

mutations, and its coding region is found intact (315). In the SV40 model of 

transformation, LT is the primary oncoprotein (290), whereas MCV-driven tumorigenesis 

relies mainly on sT, whose expression alone is sufficient to transform rodent fibroblasts 

(170) and induces tumor formation in transgenic mouse models (330, 331). 

The C-terminus of MCV sT possesses a protein phosphatase 2A binding site that 

is conserved across polyomavirus sT antigens (288). For instance, the SV40 sT 

interacts with PP2A and inhibits the dephosphorylation of AKT, constitutively activating 

its downstream targets (332-334). While MCV sT can bind PP2A subunits and PP4C 

(335, 336), its transformation activity is independent of this interaction (170). Expression 

of this viral protein has modest effects on AKT-activating S473 phosphorylation but no 

effect on mTOR expression (170). On the other hand, the interaction of MCV sT and 

PP4C has been shown to inhibit the nuclear translocation of NF-κB essential modulator 

(NEMO), which consequently blocks host inflammatory signaling (335). Another 

reported consequence of this interaction is facilitating cell migration by destabilizing 

microtubules through targeting of the cytoskeletal regulator stathmin (337).  

MCV sT also promotes viral replication by stabilizing the LT protein (300, 316). 

sT inhibits the E3 ubiquitin ligase SCF Fbw7, which targets LT for proteasomal 

degradation and thus inhibits MCV replication (338). In addition, sT also stabilizes other 

Fbw7 substrates, cyclin E and c-Myc, that are contributors to cell transformation (338). 
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The LT stabilizing domain (LSD), mapped between amino acids 91-95, is important not 

only for MCV sT binding and inactivating of Fbw7, but also for its transformation activity 

(330, 338). MCV sT has also been shown to coordinate iron/sulfur clusters through two 

CXCXXC cysteine motifs, which are required for LT-mediated viral replication (339). 

Furthermore, MCV sT targets host cap-dependent translation by inducing the 

hyperphosphorylation-inactivation of cap-dependent translation inhibitor 4E-BP1 in an 

mTOR-independent manner (170). It is speculated that the known consequences of 4E-

BP1 inactivation, such as increased eIF4E activity and cap-dependent translation, might 

be key contributors to tumorigenesis caused by MCV (170). Knockdown of MCV sT in 

MCV-positive MCC cell lines decreases translation initiation complex assembly at the 7-

methyl-guanine cap (170). Moreover, expression of a constitutively active, non-

phosphorylatable 4E-BP1 abolishes MCV sT-induced rodent fibroblast transformation, 

indicating that 4E-BP1 inhibition is required for sT cell transformation activity (170).  

Recent studies, included in the subsequent chapters of this dissertation, have 

clarified the mechanism of MCV sT targeting of 4E-BP1. MCV sT promotes mitogenesis 

by inhibiting another E3 ubiquitin ligase, the mitotic checkpoint APC/C cdc20 (209). This 

results in the activation of the mitotic CDK1 kinase to hyperphosphorylate 4E-BP1 and 

activate cap-dependent translation (209). MCV sT induction of mitosis revealed that 

mitotic cells in general express a unique hyperphosphorylated form of 4E-BP1, that 

contains a novel phosphorylation at S83 (177). Expression of an alanine mutant of S83 

modestly reverses MCV sT-induced cell transformation (177). These findings suggest 

that mitotic cap-dependent mRNA translation activated by CDK1 phosphorylation of 4E-



 43 

BP1 is permissive for viral-induced tumorigenesis and possibly for non-viral-induced 

tumorigenesis as well.  
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The studies presented in this dissertation focused on the regulation of cap-dependent 

mRNA translation inhibitor protein 4E-BP1 during normal mitosis and mitosis enforced 

by the MCV sT oncoprotein. Chapter 2 shows that: 1) MCV sT increases mitogenesis by 

targeting the cellular anaphase promoting complex E3 ligase; 2) MCV sT induces 

mTOR-independent 4E-BP1 hyperphosphorylation; 3) CDK1 directly phosphorylates 

4E-BP1 at T37, T46, S65, and T70 during mitosis, forming a high molecular weight δ 

phospho-species; 4) δ-4E-BP1 is induced in mitosis during normal cell cycling; and 5) 

CDK1 activates cap-dependent translation during mitosis. Chapter 3 shows that: 1) δ-

4E-BP1 hyperphosphorylation is a feature of mitosis across multiple cancer cell lines; 2) 

CDK1 phosphorylates 4E-BP1 at S83; 3) S83-phosphorylated 4E-BP1 colocalizes with 

centrosomes during mitosis and peaks at metaphase; and 4) mutation of 4E-BP1 S83 

does not affect global cap-dependent translation but partially reverses MCV sT-induced 

rodent cell transformation. Both studies provide evidence that cap-dependent mRNA 

translation is active during mitosis and reveal the role of CDK1 as a novel regulator of 

the protein synthesis gate-keeper 4E-BP1. 
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2.0  CDK1 SUBSTITUTES FOR MTOR KINASE TO ACTIVATE CAP-DEPENDENT 

PROTEIN TRANSLATION DURING MITOSIS 

Work described in this chapter was published in the Proceedings of the Academy of 

Sciences 

 

Proc Natl Acad Sci U S A. 2015 May 12;112(19):5875-82 

with authors Masahiro Shuda, Celestino Velásquez, Erdong Cheng, Daniel 

G. Cordek, Hyun Jin Kwun, Yuan Chang, and Patrick S. Moore 

 

Masahiro Shuda, Celestino Velásquez, Erdong Cheng, Daniel G. Cordek, and Hyun Jin 

Kwun performed experiments and analyzed the data. Masahiro Shuda, Celestino 

Velásquez, Erdong Cheng, Daniel G. Cordek, Hyun Jin Kwun, Yuan Chang, and Patrick 

S. Moore designed experiments. Masahiro Shuda, Celestino Velásquez, Erdong Cheng, 

Yuan Chang, and Patrick S. Moore wrote the manuscript. 
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This chapter describes an alternative control mechanism for maintaining cap-dependent 

translation during mitosis revealed by a viral oncoprotein, the Merkel cell polyomavirus 

small T antigen (MCV sT). We find MCV sT to be a promiscuous E3 ligase inhibitor 

targeting the anaphase promoting complex, which increases cell mitogenesis.  MCV sT 

binds through its LSD region to Cdc20 and, possibly, Cdh1 E3 ligase adapters. This 

activates cyclin-dependent kinase 1/Cyclin B1 (CDK1/CYCB1) to directly 

hyperphosphorylate 4E-BP1 at authentic sites, generating a mitosis-specific, mTOR-

inhibitor resistant δ phospho-isoform not present in G1-arrested cells.  Recombinant 4E-

BP1 inhibits capped mRNA reticulocyte translation, which is partially reversed by 

CDK1/CYCB1 phosphorylation of 4E-BP1. eIF4G binding to the eIF4E-m7GTP cap 

complex is resistant to mTOR inhibition during mitosis but sensitive during interphase. 

Flow cytometry, with and without sT, reveals an orthogonal pH3S10+ mitotic cell 

population having higher inactive p4E-BP1T37/T46+ saturation levels than pH3S10- 

interphase cells. Using a Click-iT flow cytometric assay to directly measure mitotic 

protein synthesis, we find that most new protein synthesis during mitosis is cap-

dependent, a result confirmed using the eIF4E/4G-inhibitor drug 4E1RCat. For most cell 

lines tested, cap-dependent translation levels were generally similar between mitotic 

and interphase cells and the majority of new mitotic protein synthesis was cap-

dependent. Mitosis is commonly thought to be associated with reduced cap-dependent 

protein translation. These findings suggest that mitotic cap-dependent translation is 

generally sustained during mitosis by CDK1 phosphorylation of 4E-BP1 even under 

conditions of reduced mTOR signaling. 
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2.1 INTRODUCTION 

Eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, is a principal target for 

mTORC1 (mechanistic target of rapamycin complex (159, 223, 269). mTOR regulates a 

variety of metabolic signaling pathways related to ribosomal biosynthesis and 

autophagy that contribute to cancer cell survival (159, 223, 246, 248, 340). Increasing 

evidence indicates that direct mTORC1 phosphorylation of 4E-BP1 may be the key 

event in mTOR-associated tumorigenesis (269). In the absence of activated mTOR, 

hypophosphorylated 4E-BP1 sequesters eIF4E to prevent assembly of eIF4F complex 

components onto capped mRNA, inhibiting cap-dependent translation.  When 4E-BP1 is 

phosphorylated by mTOR (156), first at critical priming threonine (T)37 and T46 

residues and then at other sites, 4E-BP1 is inactivated and releases eIF4E to allow 

initiation of cap-dependent translation (172). Other non-mTOR kinases, including cyclin-

dependent kinase 1 (CDK1), have been shown to be able to phosphorylate 4E-BP1 

(163, 207, 210, 219) but have not been extensively examined in vivo for their effects on 

4E-BP1 regulated cap-dependent translation.  

Protein synthesis has been described to decrease during mitosis relative to 

interphase in reports dating back to the 1960s (341, 342). There are two issues, 

however, with this conclusion:  1) Mitotic cells represent less than 1% of the total cell 

population in bulk culture and even under stringent conditions, high levels of interphase 

cell contamination can occur. 2) Many studies of mitotic cap-dependent translation rely 

on cell cycle synchronization studies with microtubule inhibitors, e.g., nocodazole, which 

are also mitotic translation inhibitors (243). Under these conditions, comparisons of 

interphase and mitotic translation can be imprecise.  Single-cell measurements, such as 
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flow cytometry, can potentially overcome these concerns. Additionally, a highly 

hyperphosphorylated 4E-BP1 isoform called δ-4E-BP1 is present in mitotic cells (207, 

208). This hyperphosphorylated isoform is predicted to promote rather than inhibit cap-

dependent protein translation and is therefore inconsistent with the standard model.  

Our studies on Merkel cell polyomavirus (MCV) provide insights into these 

issues. MCV is a small double-stranded DNA virus discovered in 2008 by our lab that 

causes most cases of the human skin cancer, Merkel cell carcinoma (MCC) ((277); for 

review see (284, 303, 343)). The 19-kDa MCV small T (sT) antigen is a transforming 

oncoprotein required for MCC cell growth (170, 296). A region of the sT protein 

spanning amino acid residues 91-95 called the LSD (Large T stabilization domain), 

promotes δ-4E-BP1 hyperphosphorylation (336), rodent cell transformation (338) and 

fibroblast proliferation in a mouse transgenic model (170, 330). Expression of the 

phosphorylation-defective, dominant-positive (DP)-4E-BP1 (153) with alanine 

substitution mutations at priming T37/T46 (4E-BP1T37A/T46A) reverses sT-induced rodent 

fibroblast transformation, suggesting a direct link between 4E-BP1 phosphorylation 

status and sT-induced transformation (170). Surprisingly, sT-induced δ-4E-BP1 

hyperphosphorylation is not dependent on mTOR activity (170). The sT LSD region is 

known to bind the Fbw7 E3 ligase to promote cell proliferation but Fbw7 targeting is not 

sufficient to explain either cell transformation or 4E-BP1 hyperphosphorylation (338). 

We show here that MCV sT, through its LSD domain, also promotes mitogenesis 

and 4E-BP1 hyperphosphorylation by functioning as a promiscuous E3 ligase inhibitor 

that also targets cellular anaphase-promoting complex/cyclosome (APC/C) E3 ligase 

activity. During sT-induced mitosis, sT-induced CDK1/CYCB1 rather than mTOR 



 49 

directly phosphorylates 4E-BP1 to the mitosis-specific δ isoform. Using a flow 

cytometry-based method to directly measure mitotic cap-dependent protein synthesis 

for the first time, we do not detect a general shift from cap-dependent to cap-

independent protein translation in mitotic cells compared to interphase cells. Mitotic 

cells actually show higher saturation levels of p4E-BP1T37/T46+, consistent with 4E-BP1 

inactivation, than interphase cells. Consistent with this, and in contrast to previous 

studies, we find that δ-4E-BP1 positive mitotic cells show high levels of cap-dependent 

protein translation that is reduced by the cap translation inhibitor 4E1RCat. When 

accentuated or sustained high levels of mitotic cap-dependent protein translation may 

play a role in cancer cell transformation and contribute to mTOR-inhibitor resistance in 

subsets of cancers.   
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2.2 MATERIALS AND METHODS 

2.2.1 Cell Culture and Transfection/Transduction 

293, 293FT, U2OS, HeLa and BJ-tert (BJ-T) cells were maintained in DMEM (Corning 

Cellgro) supplemented with 10% FBS. 293 and 293FT cells were transfected using 

Lipofectamine 2000 (Invitrogen) and harvested after 48 h.  

2.2.2 Kinase Inhibitors 

The following active-site kinase inhibitors were dissolved in DMSO and used for kinase 

inhibition and in vitro phosphorylation experiments: mTOR kinase inhibitor PP242 

(Selleckchem), CDK1 kinase inhibitor RO-3306 (Calbiochem) and pan Aurora kinase 

inhibitor VX-680 (Selleckchem). 

2.2.3 Plasmids and Transfections 

Plasmids pcDNA6.sTco (wild-type MCV sT, codon optimized) and pcDNA6.sTmLSD 

that were used for transient transfection experiments are previously described (170, 

338). To efficiently express SV40 sT, codon-optimized SV40 sT (GenBank accession 

number KM359729 (336)) was generated by overlapping PCR. 
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2.2.4 Immunoblotting and Antibodies 

Cells were lysed in lysis buffer (50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 1% Triton X-100, 

2 mM Na3VO4, 2 mM NaF and 0.1% SDS) containing protease inhibitors (Roche). 

Lysates were resolved by 12% SDS-PAGE and transferred to nitrocellulose. 

Membranes were blocked with 5% milk in 1X TBS and incubated with primary 

antibodies overnight at 4 °C. Blots were subsequently incubated with IRDye-labeled 

anti-rabbit or anti-mouse secondary antibodies and analyzed on the Odyssey infrared 

scanner (LI-COR Biosciences). The following primary antibodies were used in this 

study: total 4E-BP1, phospho-4E-BP1T37/T46, phospho-4E-BP1T70, phospho-4E-BP1S65, 

eIF4E, eIF4G, phospho-S6S242/S244, total S6, phospho-Histone H3S10, total Histone H3, 

cdc25C, phospho-Aurora A/B/C, total Aurora A, total Aurora B, Skp2, Cdc20, Plk1, 

Claspin (Cell Signaling), total Aurora C, phospho-MPM2 (Millipore), Cdh1 (Calbiochem), 

cyclin A, cyclin D1, cMyc (Santa Cruz Biotechnology), HA (Covance), FLAG (Sigma 

Aldrich), 800CW goat polyclonal anti-rabbit IgG and 680CW goat polyclonal anti-mouse 

IgG (LI-COR Biosciences). Previously described CM8E6 (338) and CM5E1 (170) were 

used to detect MCV sT. For cycloheximide (CHX) chase assays, BJ-T cells were treated 

with 100 µg/mL CHX and harvested at different time points for immunoblotting. 

2.2.5 Immunoprecipitation 

293 cells co-transfected with sT constructs and myc-cdh1, HA-cdc20 or pcDNA6 empty 

vector were harvested after 48 h and lysed in IP lysis buffer (50 mM Tris-HCl pH 7.4, 

0.15 M NaCl, 1% Triton X-100, 2 mM Na3VO4 and 2 mM NaF) supplemented with 
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protease inhibitors (Roche). Pre-cleared lysates were incubated with either anti-myc tag 

or anti-HA antibodies overnight at 4 °C. Immune complexes were precipitated with 

protein A/G sepharose beads (Santa Cruz) for 1 h at 4 °C. Beads were collected, 

washed with lysis buffer and boiled in 1X SDS loading buffer. Samples were subjected 

to SDS-PAGE and immunoblotting. 

2.2.6 Two-Dimensional Electrophoresis 

293 cells were lysed using lysis buffer (50 mM Tris-HCl, pH 7.4, 0.15 M NaCl, 1% Triton 

X-100, 2 mM Na3VO4, 2 mM NaF) supplemented with protease inhibitors (Roche). 

Clarified lysates were focused using immobilized pH 3-6 gradient strips (Bio-Rad) with 

linear voltage ramping for 2 h at 200 V, 2 h at 500 V and 16 h at 800 V. Focused 

proteins were then subjected to SDS-PAGE for two-dimensional resolution and detected 

by immunoblotting.  

2.2.7 Flow Cytometry 

293 and BJ-T cells were trypsinized and fixed in 70% ethanol for DNA staining or in 

10% buffered formalin for AHA incorporation assays. Fixed cells were washed with PBS 

containing 1% FBS and permeabilized with 0.25% Triton X-100 for 30 min on ice. For 

cell cycle analysis, cells were resuspended in PI/RNase staining solution (0.05 mg/mL 

propidium iodide, 0.1 mg/mL RNase A in 1X PBS) and incubated for 30 min at room 

temperature. For phospho-histone H3S10, phospho-MPM2, and phospho-4E-BP1T37/T46 
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analysis, cells were incubated with the corresponding fluorophore-conjugated antibodies 

for 2 h at room temperature. 

2.2.8 Cell Cycle Synchronization and Mitotic Cell Enrichment 

293 cells were treated with medium containing 0.5 μM nocodazole or 0.5 mM L-

mimosine for 16 h to induce mitotic arrest or G1 arrest, respectively. Mitotic cells were 

enriched by double-thymidine block (2 mM) and release using 293 and U2OS cells or by 

mitotic shake-off (344) using BJ-T cells stably expressing wild-type MCV sT. To block 

cell cycle at late G2, HeLa and U2OS cells were incubated in medium containing CDK1 

inhibitor RO-3306 (10 μM) for 24 h. Cell cycle entry from G2 to mitosis was induced by 

RO-3306 washout. Cells arrested by nocodazole and released from RO-3306 arrest 

were treated with 10 μM of proteasome inhibitor MG132 for 30 min prior to kinase 

inhibitor treatment to retain cells in mitosis. 

2.2.9 In vitro Phosphorylation Assays 

Recombinant GST-4E-BP1 (0.2 μg) (SignalChem) was incubated in a 24-μL reaction 

containing 1X protein kinase buffer (NEB) and 20 units of recombinant CDK1/CYCB1 

(NEB) or 10 μg of mitotic HeLa cell lysate, supplemented with 200 μM ATP and/or 5 μM 

active site kinase inhibitors, for 30 min at 30 °C. HeLa cells were arrested in mitosis by 

treatment with 0.5 μM nocodazole for 16 h and enriched by mechanical shake-off for 

lysis in non-denaturing lysis buffer (50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 1% Triton X-

100, 2 mM Na3VO4 and 2 mM NaF). The reactions were stopped by adding 5X SDS 
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sample buffer to 1X concentration and boiling for 5 min. Reaction samples were then 

subjected to SDS-PAGE and immunoblotting. For in vitro protein dephosphorylation, 

293 cell extracts were incubated with lambda phosphatase in protein 

metallophosphatase reaction buffer (NEB) supplemented with 2 mM MnCl2 for 30 min at 

37 °C. Reactions were stopped by adding 2X SDS sample buffer and then subjected to 

SDS-PAGE and immunoblotting. 

2.2.10 m7GTP Cap Binding Assay 

Shake-off (mitosis-enriched) and adherent cells (mitotic-depleted) from MCV sT-

transduced BJ-T cells or asynchronous BJ-T cells were lysed in buffer (50 mM Tris-HCl, 

pH 7.4, 0.15 M NaCl, 1% Triton X-100, 2 mM Na3VO4 and 2mM NaF) supplemented 

with protease inhibitors (Roche). Lysates (30 μg of total protein) were incubated with 5.0 

μL m7GTP sepharose beads (GE Healthcare) for overnight at 4 °C. Beads were 

collected, washed with lysis buffer, and subjected to SDS-PAGE and immunoblotting. 

25 μg of total protein was loaded as input control (83%). 

2.2.11 In vitro mRNA Synthesis and Translation 

Capped FLuc reporter mRNA was synthesized by the MessageMAX T7 ARCA-Capped 

message transcription kit (Cell Script) using 1 μg pCD-V5-FLuc linearized by MscI as 

template. Purified RNA was polyadenylated using the A-Plus Poly (A) polymerase tailing 

kit (Cell Script). Translation reactions were performed in a final volume of 10 μL 

consisting of 7 μL of nuclease treated rabbit reticulocyte lysate (RRL) (Promega), 0.8 
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pmol of capped and polyadenylated reporter mRNAs and amino acids mixture (50 μM 

each).  GST-4E-BP1 was incubated with either CDK1 or 1 μg/mL BSA in the presence 

of DMSO or 10 μM RO-3306 (see reaction setup for previous section). As a control, 

PBS alone was incubated with the same amount of either DMSO or 10 μM RO-3306. 

Either buffer or pre-treated GST-4E-BP1 (12.4 μL) was added to the rabbit reticulocyte 

lysate reaction mixture. The prepared RRL mixture was incubated for 15 min at 30 °C. 

The reaction was then stopped by adding 10 μL of luciferase lysis buffer to the mixture. 

Translation was measured as firefly luciferase activity.  

2.2.12 Nascent Protein Synthesis Analysis 

BJ-T sT stable cells were labeled with an azide-linked methionine analog, L-

azidohomoalanine (AHA) (Life Technologies) at 25 μM for 45 min in the presence or 

absence of PP242 (5 μM), followed by mitotic shake-off to separate mitotic cells and 

interphase cells. To analyze mitotic cap-dependent translation in U2OS and HeLa cells, 

cells were arrested G2/M boundary by 10 μM RO-3306 treatment for 24 h (345).  After 

30 min of RO-3306 removal, cells were labeled with AHA (25 μM) for 90 min in 

methionine-depleted DMEM medium (Corning Cellgro) after optimization of pre-

experiments. Translation inhibitors (4E1RCat (50 μM) or cycloheximide (100 μg/ml)) or 

DMSO (0.1%) were added to cells with AHA. Cells were trypsinized and fixed in 10% 

formalin for 5 min. Fixed cells were permeabilized in PBS containing 0.1% saponin and 

1% FBS for 30 min at room temperature. Cells were harvested and labeled with the 

Alexa Fluor 488 alkyne using the Click-iT cell reaction buffer kit (Life Technologies). 
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AHA incorporation in cells was analyzed by flow cytometry as a measure for nascent 

protein synthesis in interphase and mitotic cells.  

2.2.13 Statistical Analysis 

One-sided t-test was performed for densitometric analysis of m7GTP pull-down assays 

and two-sided t-test (unequal variances) for in vitro translation assays. A p-value less 

than 0.05 was considered to be significant. 
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2.3 RESULTS 

2.3.1 MCV sT increases mitogenesis by targeting the cellular anaphase 

promoting complex E3 ligase.  

To search for factors contributing to MCV sT-induced transformation, the viral 

oncoprotein was expressed in primary immortalized BJ-tert (BJ-T) fibroblasts. These 

cells displayed a rounded phenotype in culture with increased phospho-histone H3 

serine 10 (pH3S10) phosphorylation, characteristic for mitosis (Figure 12A). Increased 

pH3S10 and increased expression of mitotic markers (including cyclin B1 (CYCB1) and 

phospho-aurora kinase B (pAURKB)) were also observed in 293 cells expressing MCV 

sT (Figure 13). Immunoprecipitation of sT revealed an in vivo complex with the APC/C 

substrate recognition subunit, Cdc20 that was dependent on an intact LSD (Figure 

12B).  MCV sT also interacted with another APC/C substrate recognition subunit, Cdh1, 

but substantial Cdh1-binding occurred with sTmLSD having alanine substitutions at 

residues 91-95, suggesting that sT may bind Cdh1 at other sites in addition to the LSD. 

In line with these results, known APC/C E3 targets, including aurora kinase A (AURKA) 

and AURKB, Skp2, polo-like kinase 1 (Plk1) and CYC A2, showed markedly reduced 

turnover in the presence of sT on cycloheximide (CHX) chase immunoblotting (Figure 

12C). These APC/C E3 targets retained rapid turnover in the presence of empty vector 

or sTmLSD expression. CYCD1, which is not directly regulated by APC/C (346) was 

unaffected by MCV sT or sTmLSD expression. Similarly, MCV sT expression stabilized 

FLAG-tagged AURKA and endogenous CYCB1, but not CYCD1, after nocodazole-

release of 293 cells whereas MCV sTmLSD expression did not (Figure 14).   
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Figure 12. MCV sT increases mitotic entry by targeting APC/C E3-ubiquitin 
ligases. 
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Figure 12 (continued) 

(A) MCV sT induces cellular mitogenesis. BJ-tert (BJ-T) cells stably transduced with 

MCV sT have increased mitotic rounding and a 6 to 18-fold increase in pH3S10+ mitotic 

cells compared to empty vector or sTmLSD transduced cells. (B) MCV sT interacts with 

APC/C E3 ligase substrate recognition subunit Cdc20 and Cdh1 proteins. HA-tagged 

Cdc20 or myc-tagged Cdh1 expression plasmids were co-transfected with MCV sT, 

MCV sTmLSD, or SV40 sT expression plasmids into 293 cells, and immunoprecipitated 

48 h later with anti-HA or anti-myc antibodies, followed by immunoblotting using mixed 

anti-MCV sT (CM8E6) and anti-SV40 sT (PAb419) antibodies. Cdc20 interaction with 

MCV sT was nearly eliminated in the sTmLSD mutant protein while partial interaction was 

retained between MCV sTmLSD and myc-Cdh1 proteins. Weak interaction between SV40 

sT and myc-Cdh1 only was detected. Asterisk indicates immunoglobulin heavy chain. 

(C) APC/C target proteins (AURKA/B, Cdc20, Skp2, Plk1, cyclin A, and claspin) are 

stabilized by MCV sT expression. BJ-T cells were treated with cycloheximide (100 

µg/mL) to inhibit new protein synthesis and harvested at the indicated time points. The 

half-lives of proteins regulated by APC/C are extended by expression of MCV sT but not 

empty vector or MCV sTmLSD controls. Cyclin D is not directly regulated by Cdh1 and its 

half-life was unchanged by MCV sT expression. A representative α-tubulin loading 

control is shown. Representative results are shown from three independent 

experiments.  
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Figure 13. MCV sT increases mitogenesis in 293 cells. 
(A) MCV sT expression increases phospho-histone H3S10 (pH3S10) positive mitotic cells. 

(B) MCV sT expression in 293 cells increases mitotic marker expression including 

pAURKA, pAURKB, CYCB1, and pH3S10. Transfected 293 cells were split into two 

fractions for cell cycle profile (A) and mitosis marker immunoblotting (B). 

 

 

Figure 14. MCV sT stabilizes APC/C targets (AURKA and CYCB1) in nocodazole-

arrested 293 cells. 

293 cells co-transfected with FLAG-tagged AURKA and MCV sT, sTmLSD, or empty 

vector, were arrested with nocodazole (0.5 μM) for 15 h, and then treated with CHX 

after nocodazole washout and harvested at different time points for immunoblotting. 

Asynchronous cells for each transfection were used as a control for nocodazole arrest. 

MCV sT, but not sTmLSD or empty vector stabilizes AURKA and CYCB1 proteins in 

metaphase-arrested 293 cells. MCV sT increased FLAG-AURKA and CYCB1 

expression in asynchronous cells, consistent with sT induction of increased 

mitogenesis. 
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2.3.2 MCV sT induces mTOR-independent 4E-BP1 phosphorylation. 

 

Figure 15. MCV sT induces cellular 4E-BP1 hyperphosphorylation. 

(A) MCV sT induces p4E-BP1T37/T46 and p4E-BP1S65/S101 phosphorylation. 4E-BP1 

phosphospecies are named α through δ according to molecular mass. Higher molecular 

mass isoforms, particularly β, γ, and δ were increased following sT expression in 293 

cells and include authentic phosphorylation sites as detected by phospho-specific 

antibodies. A 2D gel fractionation of these same lysates (pH 3-6 isoelectric 

focusing/SDS-PAGE) were aligned to the 1D gel. Arrow heads indicate new 4E-BP1 

isoelectric focusing spots after sT expression detected by p4E-BP1T37/T46, p4E-

BP1S65/S101, and total 4E-BP1 antibodies. (B) MCV sT-induced 4E-BP1 phosphorylation 

is partially resistant to mTOR inhibition. 293 cells were transfected with MCV sT, sTmLSD, 

or empty vector expression plasmids for 48 h, treated with the mTOR-inhibitor PP242 

and harvested at the indicated time points. MCV sT depends on an intact LSD region to 

maintain PP242-resistant 4E-BP1 phosphorylation. Representative results are shown 

from three independent experiments. 
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We next examined the role of MCV sT in 4E-BP1 hyperphosphorylation. 4E-BP1 

hyperphosphorylation isoforms are named α through δ according to ascending 

molecular mass (Figure 15A) (157). Most notable was the appearance of the highest 

molecular mass form, δ, containing phosphorylation marks at T37/T46 and S65/S101, 

after transfection of the sT expression vector into 293 cells, as previously described 

(170). A two-dimensional (2D) gel immunoblot (Figure 15A, right panel) aligned to the 

corresponding 1D SDS PAGE immunoblot shows that during MCV sT expression, a 

new phospho-isoform appears at the δ position (arrows) staining for p4E-BP1T37/T46 and 

p4E-BP1S65/S101. MCV sT expression prolonged 4E-BP1 phosphorylation (Figure 15B) 

in the presence of the mTOR inhibitor PP242 (347) compared to empty vector control 

and sTmLSD transfected cells, indicating that δ-4E-BP1 phosphorylation may be 

independent of mTOR kinase activity. 

2.3.3 CDK1/CYCB1 directly phosphorylates 4E-BP1, in the presence and absence 

of sT, to the δ isoform during mitosis.   

4E-BP1 phosphorylation is induced by microtubule assembly inhibitors such as 

nocodazole and paclitaxel that arrest cells in mitosis (208, 243). To assess the role of 

various kinases on mitotic 4E-BP1 phosphorylation, nocodazole-treated HeLa mitotic 

cell lysates were reacted with recombinant GST-4E-BP1 and kinase inhibitors, including 

PP242 (mTORC1 and mTORC2), RO-3306 (CDK1), and VX-680 (pan AURK) (Figure 

16A). GST-4E-BP1 was robustly phosphorylated at authentic sites by mitotic HeLa 

lysates, and this was reversed by inhibition of CDK1 but not by mTOR or AURK 

inhibition.   
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Figure 16. CDK1/CYCB1 phosphorylates 4E-BP1 during mitosis. 
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Figure 16 (continued) 

(A) CDK1 inhibition in mitotic lysates reduces 4E-BP1 phosphorylation. Mitotic HeLa cell 

lysates (10 µg) enriched by nocodazole arrest, were mixed with 0.2 µg GST-4E-BP1, 

reacted for 30 min at 30 °C in the presence or absence of 5 µM mTOR (PP242), CDK1 

(RO-3306), or AURK (VX-680) kinase inhibitors and then immunoblotted with antibodies 

as shown. ATP-dependent 4E-BP1 phosphorylation was sensitive to CDK1 inhibitor but 

resistant to mTOR and AURK inhibitors. Equal loading of total 4E-BP1, CYCB1, and α-

tubulin is shown. Representative results are shown from three independent 

experiments. (B) Recombinant CDK1/CYCB1 kinase phosphorylates GST-4E-BP1 at 

the known regulatory residues T37/T46, S65/S101, and T70. CDK1/CYCB1 (20 units) 

was mixed with bacterial expressed GST-4E-BP1 in kinase reaction buffer for 30 min at 

30 °C, and immunoblotted with phospho-specific antibodies. ATP-dependent 4E-BP1 

phosphorylation by CDK1/CYCB1 occurred at phospho-specific sites and was sensitive 

to the CDK1 active site inhibitor RO-3306. Representative results shown from two 

independent experiments. (C) δ-4E-BP1 is induced during mitosis and inhibited by a 

CDK1 inhibitor. 293 cells were transfected with empty vector or MCV sT, and arrested 

for 20 h with DMSO (asynchronous), nocodazole (prometaphase), and mimosine (late 

G1). Cells treated were treated at 16 h with kinase inhibitors (5 µM PP242 or 10 µM 

RO-3306 + 10 µM MG132) as indicated. MCV sT induces δ-4E-BP1 in asynchronous 

cells sensitive to RO-3306 but not PP242. Nocodazole-arrest induces similarly RO-3306 

sensitive and PP242 resistant δ-4E-BP1 even in the absence of sT, whereas δ-4E-BP1 

is only weakly induced by sT in mimosine-arrested cells. Markers for mitosis (pH3S10, 

CYCB1), a CDK1 substrate (cdc25C), and an mTORC1 downstream substrate 

(pS6S242/S244) showed active drug treatments. Representative results are shown from 

two independent experiments. (D) δ-4E-BP1 phosphorylation during mitosis occurs in 

the absence of active mTOR. U2OS cells were arrested at G2/M boundary with 10 µM 

RO-3306 for 24 h, released by washing and harvested at the time points shown. Cells 

were treated for 3 h pre-release with DMSO or 5 µM PP242. In the absence of mTOR 

inhibition, no δ-4E-BP1 is found at 0 h but accumulates, together with β and γ isoforms, 

during mitotic transit. During PP242 inhibition, δ-4E-BP1 still accumulates during mitosis 

but lower molecular mass (β and γ) isoforms are reduced. Results shown from a single 

experiment. 
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Evidence that CDK1 is responsible for δ-4E-BP1 mitotic phosphorylation was 

also obtained by treatment of nocodazole-arrested HeLa cells with the CDK1 inhibitor 

RO-3306 (Figure 17A). δ-4E-BP1 hyperphosphorylation could not be fully restored by 

RO-3306/MG132 co-treatment. A technical issue in using mitotic kinase inhibitors to 

assess 4E-BP1 phosphorylation is the occurrence of mitotic slippage, a side effect of 

kinase inhibition concurrently causing enforced exit from mitosis with general loss of 

mitotic kinase activities (345, 348). Mitotic slippage can be prevented by simultaneous 

inhibition of APC/C-mediated protein degradation with the proteasome inhibitor MG132, 

which in effect “freezes” the mitotic phenotype. Like RO-3306, treatment of nocodazole-

arrested HeLa cells with the AURK inhibitor VX-680 also eliminated δ-4E-BP1 

phosphorylation (Figure 17B). Unlike RO-3306, however, this was completely reversed 

by co-treatment with VX-680/MG132, suggesting that AURK inhibition effects on 4E-

BP1 phosphorylation are due to mitotic slippage. Extensive in vitro phosphorylation 

studies also failed to reveal evidence for direct 4E-BP1 phosphorylation by purified 

AURKB (pers. comm., SMA Lens and RCC Hengeveld, UMC-Utrecht). To confirm direct 

4E-BP1 phosphorylation by CDK1/CYCB1, we generated an in vitro phosphorylation 

reaction using purified CDK1/CYCB1 and GST-4E-BP1 (Figure 16B). CDK1 

phosphorylation of 4E-BP1 was ATP-dependent and inhibitable by RO-3306. CDK1 

phosphorylation occurred at the previously-described T70 residue (207) as well as at 

authentic 4E-BP1 phosphorylation sites, including T37/T46, S65/S101 that are known to 

regulate 4E-BP1 binding to eIF4E.  
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Figure 17. Mitotic slippage with mitotic kinase inhibition. 

(A) CDK1 inhibition during nocodazole/MG132 treatment fails to fully restore δ-4E-BP1 

hyperphosphorylation. Notably, residual 4E-BP1 phosphorylation during RO-3306 

treatment is further reduced by PP242 treatment suggesting that mTOR 

phosphorylation may partially restore 4E-BP1 phosphorylation under conditions of 

CDK1 inhibition. Cdc25C is a direct phosphorylation target for CDK1. (B) The same 

experiment as in (A) was repeated using the pan-AURK inhibitor VX-680. Treatment 

with VX-680 reduces 4E-BP1 hyperphosphorylation in nocodazole-arrested HeLa cells 

by inducing mitotic exit. When HeLa cells were arrested with nocodazole (0.5 μM) for 16 

h and treated with the proteasome inhibitor MG132 (10 μM) to prevent APC/C-mediated 

mitotic exit, VX-680 no longer prevents 4E-BP1 hyperphosphorylation but does inhibit 

AURKB-mediated phosphorylation of H3S10. 

 

Mitotic δ-4E-BP1 phosphorylation was also examined in nocodazole-arrested 

293 cells in the presence of CDK1 and mTOR inhibitors (Figure 16C). MG132 was 

added to nocodazole-arrested cells 30 min before RO-3306 treatment to prevent CDK1 

inhibition-induced mitotic slippage (348). In this experiment, pH3S10+ mitotic cells 

comprised ~0.9% of the total asynchronous (no cell cycle arrest) cell population (Figure 

16C, left panel and Figure 13). MCV sT expression promotes formation of PP242-

resistant δ-4E-BP1 that is lost after treatment with RO-3306. Notably, S6S242/244 

phosphorylation, a known phosphorylation mark for mTORC1 kinase activity (349, 350), 
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is nearly ablated by PP242 but not by RO-3306. These results are consistent with sT 

induction of δ-4E-BP1 through CDK1 rather than mTOR kinase activity.   

Distinctive 4E-BP1 phosphorylation patterns were seen during nocodazole 

(prometaphase) and mimosine (late G1) cell cycle arrest (Figure 16C). During 

nocodazole arrest, the δ-4E-BP1 isoforms became prominent even in the absence of 

MCV sT expression. In contrast, δ-4E-BP1 isoforms were nearly absent under all 

conditions for cells arrested in G1 by mimosine. Whereas δ-4E-BP1 was resistant to 

mTOR inhibition, CDK1 inhibition during nocodazole mitotic arrest ablated δ-4E-BP1. 

These results were confirmed in HeLa cells treated with nocodazole and kinase 

inhibitors (Figure 17). 

 

Figure 18. δ-4E-BP1 phospho-isoform expression in sT-expressing mitotic cells. 

(A) BJ-T cells transduced with MCV sT can be enriched for mitotic and non-mitotic cell 

populations by mechanical shake-off. Non-adherent cells are enriched for pH3S10 

positivity from 1.8% to 66% after shake-off, while remaining pH3S10 positivity was 

reduced to less than 1% for adherent cells. (B) Immunoblotting for δ-4E-BP1 reveals 

that δ-4E-BP1 is present only in the mitotic fraction, confirmed by mitotic markers 

pAURKA, pAURKB, pH3S10, and pMPM2. Adherent cells, positive for CYCE1, are 

negative for δ-4E-BP1. Representative result is shown of three independent 

experiments. 
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To confirm these findings in the absence of chemical inhibitors, we used 

mechanical shake-off to isolate mitotic cells from sT-expressing BJ-T cells (Figure 18). 

This maneuver enriched the mitotic cell fraction from ~2% to ~66% as determined by 

flow cytometry with propidium iodide (PI) and pH3S10 staining (Figure 18A). Shake-off 

cells exclusively expressed the δ isoform whereas adherent cells expressed only α, β, 

and γ isoforms of 4E-BP1 (Figure 18B). In vitro lambda phosphatase treatment of sT-

expressing and nocodazole-arrested 293 cell lysates showed that the high molecular 

mass 4E-BP1 isoforms, including the α, β, γ, and δ isoforms, are formed as a result of 

phosphorylation rather than another type of post-translational modification (Figure 19). 

 

PP242 (5 mM) 

Lambda PP -    +     -     +    -     +    -     + 
-     -     +    +    -     -     +    + 

Empty MCV sT 

total 4E-BP1 

MCV sT 

aTubulin 

p4E-BP1T37/T46 

p4E-BP1S65/S101 

-    +     -     +    -     +    -     + 
-     -     +    +    -     -     +    + 

Mock Nocodazole 

a
b

d
g

a
b

d
g

a
b

d
g

 

Figure 19. 4E-BP1 β, γ, and δ isoforms are completely lost after lambda 

phosphatase treatment. 

 

Although PP242-inhibitable mTOR kinase activity contributes to mitotic 4E-BP1 

phosphorylation, particularly for lower molecular mass α and β forms (Figure 16C), 

mTOR may be dispensable for mitotic 4E-BP1 hyperphosphorylation under some 

conditions. U2OS cells were arrested at the G2/M boundary for 24 h using 10 μM RO-

3306 (345, 351) (Figure 16D). After RO-3306 removal, cells progressed through mitosis 
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with most exiting mitosis 3 h after RO-3306 release. PP242 pre-treatment markedly 

reduced pS6S242/244 but not δ-4E-BP1, consistent with mTOR-independent 

phosphorylation of 4E-BP1 during mitosis. Similar results were seen with HeLa cells 

(data not shown) while 293 cells failed to arrest in G2 with RO-3306 and could not be 

examined. 

2.3.4 δ 4E-BP1 is induced in mitosis during normal cell cycling. 

Nocodazole-arrest experiments suggest that δ-4E-BP1 accumulates during mitosis 

even in the absence of MCV sT expression. To confirm this in the absence of drug 

treatment, 293 cells were synchronized by double-thymidine block and release, 

harvested at sequential time points and immunostained for pH3S10 and p4E-BP1T37/T46 

(Figure 20A). For each time point after release, cells were pre-treated with PP242 or 

DMSO vehicle control 1 h prior to harvesting.   

Flow cytometry showed peak pH3S10+ mitotic entry occurring reproducibly at 10 h, 

which began to diminish by 12 h after release (Figure 20A and Figure 21). This same 

pattern occurred with PP242 pre-treatment, although mitotic entry was more abundant 

at 8 h post-release. Unexpectedly, pH3S10+ mitotic 293 cells formed an orthogonal 

population with the highest per cell saturation levels of p4E-BP1T37/T46 compared to any 

other stage of the cell cycle. PP242 pre-treatment reduced p4E-BP1T37/T46+ staining for 

interphase cells at 2-8 h (note leftward shift for p4E-BP1T37/T46+ staining among pH3S10- 

cells) consistent with mTOR regulation of 4E-BP1. At peak mitotic entry (8-10 h post 

release), however, pH3S10+ cells were resistant to loss of p4E-BP1T37/T46+ staining with 

PP242 treatment.   
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Figure 20. 4E-BP1 is hyperphosphorylated to the δ isoform during mitosis. 

(A) pH3S10+ mitotic 293 cells have higher levels of p4E-BP1T37/T46+ saturation than cells 

in other portions of the cell cycle. Dual flow cytometry staining for pH3S10 and p4E-

BP1T37/T46 was performed on 293 cells synchronized by double-thymidine block and 

release, which show peak mitotic entry at 10 h post-release. Vertical bar represents the 

centroid for p4E-BP1T37/T46+ fluorescence staining at time 0 h. To determine if 4E-BP1 

phosphorylation depends on mTOR activity, cells were also treated 1 h prior to 

harvesting with 5 µM PP242. Mitotic cells formed an orthogonal pH3S10+/p4E-BP1T37/T46+ 

population having high levels of inactivated (phosphorylated) 4E-BP1 that were not 

dependent on mTOR activity. In contrast, interphase pH3S10- cells were largely mTOR-

inhibition sensitive. PP242 treatment increases mitotic entry at 8 h post-release. (B) 

PP242-resistant δ-4E-BP1 is formed during peak mitotic entry. Protein lysates were 

collected from cells in (A) and immunoblotted for phospho-4E-BP1 and phospho-H3S10. 

Representative results are shown from three independent experiments. 
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Figure 21. Flow cytometry, with PI and phospho-H3S10 staining, of 293 cells 

synchronized by double-thymidine release. 

 

Immunoblots performed on these same cell fractions at each time point (Figure 

20B) showed prominent α-γ 4E-BP1 phosphorylation at early time points (0-6 h), which 

was sensitive to mTOR inhibition. The δ isoform emerged 8-12 h after release, 

corresponding to maximum pH3S10+ and p4E-BP1T37/T46+ staining, and was resistant to 

PP242 inhibition. Similar results, but with a less abundant orthogonal pH3S10+/p4E-

BP1T37/T46+ cell population, were seen in U2OS cells (Figure 22).  
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Figure 22. δ-4E-BP1 induction during mitosis in synchronized U2OS cells. 

(A) Flow cytometry, with PI and phospho-H3S10 staining, of U2OS cells synchronized by 

double-thymidine release indicates maximum mitotic entry 10 h post-release, in the 

presence and absence of mTOR inhibition by PP242. Dual phospho-H3S10 and 

phospho-4E-BP1T37/T46 positive mitotic cells form an orthogonal cell population that 

peaks at 10 h and is reduced by 12 h post-release. (B) Protein lysates from (A) were 

immunoblotted for phospho-4E-BP1 and phospho-H3S10. The δ-4E-BP1 isoform is 

apparent 6-12 hours after release, corresponding to pH3S10 positivity. This 4E-BP1 

isoform is resistant to PP242 in U2OS cells.   
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2.3.5 CDK1 activates cap-dependent translation during mitosis. 

According to the existing model for 4E-BP1-regulated protein synthesis, high levels of 

p4E-BP1T37/T46 are predicted to promote cap-dependent translation during pH3S10+ 

mitosis (30). We directly examined this by using cap-binding assays for mitosis-enriched 

and -depleted cells and by employing a new flow cytometry method designed to directly 

measure single-cell cap-dependent protein synthesis.   

We performed m7GTP cap resin pulldown assays to assess the functional 

correlates of our flow cytometry and western blot findings. Highly-enriched mitotic BJ-T 

cells expressing MCV sT, isolated by shake-off (non-adherent), showed m7GTP cap 

binding to eIF4G that was unaffected by PP242 treatment (Figure 23A). In contrast, 

although interphase-enriched BJ-T cells (adherent), had comparable levels of eIF4G, 

eIF4G cap binding remained sensitive to PP242. Input 4E-BP1 protein from mitosis-

enriched cells was almost exclusively in the δ-4E-BP1 isoform. This is consistent with 

mTOR-independent cap-binding during mitosis and mTOR-dependent cap-binding 

during interphase. Qualitatively similar results were found for HeLa cells using G2/M 

arrest enrichment and shake-off (Figure 24). For mitosis-enriched HeLa cells, modest 

but reproducible reduction in eIF4G-m7GTP cap association was present with RO-3306 

treatment alone but not PP242 treatment alone. Combined RO-3306 and PP242 

treatment nearly eliminated eIF4G association to m7GTP. These results were confirmed 

by metabolic labeling using the Click-IT methionine analog L-azidohomoalanine (AHA) 

to measure nascent protein synthesis (Figure 23B). In this assay, cells were incubated 

with AHA for 90 min (352), in the absence or presence of PP242, in methionine-

depleted medium, and then subjected to mitotic shake-off. Newly synthesized protein 
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was then labeled with Alexa Fluor 488-alkyne by the copper(I)-catalyzed azide-alkyne [3 

+ 2] cycloaddition (Click-iT) reaction (353)) and measured by flow cytometry. Co-

staining for pH3S10 allowed segregation of individual cells into “mitotic” (pH3S10+) and 

“interphase” (pH3S10-) populations. Up to 74% of DMSO-treated mitotic cells were AHA 

positive in comparison to 91% of DMSO-treated interphase cells with AHA positivity. 

PP242 treatment reduced new protein synthesis for pH3S10- interphase BJ-T cells but 

had no effect on protein synthesis for pH3S10+ mitotic BJ-T cells (Figure 23B). Similar 

analyses using double thymidine block and release synchronization of 293 cells, 

however, revealed that PP242 reduced new protein synthesis for both mitotic and 

interphase cells (Figure 25), suggesting that PP242 resistance may be cell line specific.   

We next generated capped, polyadenylated luciferase reporter mRNA using T7 

polymerase (354, 355) and performed in vitro translation in commercial rabbit 

reticulocyte lysates to measure cap-dependent translation (Figure 23C). Addition of 

4E1RCat (356), a cap-dependent translation inhibitor that prevents eIF4F formation, 

virtually abolished translation. Addition of recombinant GST-4E-BP1 reduced cap-

dependent translation in the reticulocyte lysates to ~20% of buffer control (Figure 23C). 

This inhibition was reduced to 45% of buffer control when GST-4E-BP1 was 

phosphorylated (p4E-BP1) by a CDK1/CYCB1 kinase reaction. This reversal of 

inhibition was antagonized by the CDK1 inhibitor RO-3306. 
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Figure 23. eIF4F formation on the m7GTP cap and direct measurement of cap-

dependent protein translation during mitosis (M) and interphase (I). 

(A) eIF4F formation on the m7GTP cap is PP242 independent for mitosis-enriched cells 

but PP242 sensitive for mitosis-depleted cells. BJ-T cells expressing MCV sT were 

harvested by mitotic shake-off to enrich for mitotic (non-adherent) and non-mitotic 

(adherent) populations, and compared to asynchronous empty vector BJ-T cells without 

shake-off. Lysates were bound to m7GTP-resin, precipitated and immunoblotted.  
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Figure 23 (continued) 

Mitosis-enriched cell eIF4G-binding, as well as 4E-BP1-binding, to the eIF4E/cap 

complex was unaffected by mTOR inhibition. For mitosis-depleted cells, eIF4G-binding 

was reduced and 4E-BP1-binding was increased by mTOR inhibition. Representative 

results from two independent experiments are shown. (B) Nascent protein synthesis 

during mitosis is resistant to mTOR inhibition in BJ-T cells.  BJ-T cells stably expressing 

sT were labeled with azido-homoalanine (AHA) for 45 min in methionine-depleted 

media, separated by mitotic shake-off as in (A), reacted with Click-iT Alexa Fluor 488 

alkyne after permeabilization, and new protein synthesis measured by flow cytometry.  

Relative mitotic protein synthesis was determined by dividing percentage of pH3S10+-

AHA+ cells by percentage of total pH3S10+ cells.  Likewise, interphase protein synthesis 

was determined by dividing percentage of pH3S10--AHA+ cells by percentage of total 

pH3S10- cells. Approximately 91% of pH3S10- adherent interphase cells showed AHA 

incorporation that was sensitive to mTOR inhibition. Only 74% of pH3S10+ positive 

mitotic cells were positive for AHA uptake but this new protein synthesis was resistant to 

PP242 treatment. Baseline fluorescence was determined in asynchronous BJ-T cells 

without AHA incubation. (C) In vitro capped mRNA translation is inhibited by 4E1RCat 

and activated by CDK1/CYCB1. Capped and polyadenylated luciferase mRNA was 

generated in a T7 polymerase reaction and used to generate luciferase protein in a 

rabbit reticulocyte lysate. 4E1RCat abolished luciferase translation while addition of 

GST-4E-BP1 reduced translation to 15% of buffer control (averages for three 

independent experiments with SEM shown). When GST-4E-BP1 was phosphorylated 

by CDK1/CYCB1 in kinase reaction buffer, translation increased to 43% of buffer 

control. This effect was eliminated by RO-3306 pre-treatment. Insert shows GST-4E-

BP1 phosphorylation immunoblot. (D) Mitotic translation is primarily cap-dependent for 

HeLa and U2OS. HeLa or U2OS cells were synchronized for 24 h at the G2/M 

boundary, released by washing and incubated with the 25 µM of AHA for 90 min in 

methionine-depleted media, and then harvested 2 h after release. Harvested cells were 

permeabilized and reacted with Alexa Fluor-488 alkyne to measure AHA incorporation 

into protein. DMSO vehicle control, CHX (100 µg/ml) or 4E1RCat (50 µM) were added 

together with AHA 30 min after release. M: mitotic pH3S10+ cells; I: interphase pH3S10- 

cells. Vertical bar represents maximum AHA incorporation after CHX translation 

inhibition. Fewer mitotic (26%) than interphase (42%) HeLa cells were positive for new 

protein synthesis but all cells were sensitive to 4E1RCat inhibition of cap-dependent 

translation. For U2OS, cell numbers positive for total mitotic and interphase translation 

were identical (42%) and cap-dependent translation represented 73% and 85% of 

mitotic and interphase translation, respectively. Bottom panel shows 4N gated AHA 

positivity for treated cells shows that 4E1RCat inhibition (cap-dependent) is similar to 

CHX (total) translation inhibition. Representative results are shown for one of three 

repeated experiments. 
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Figure 24. eIF4F formation on the m7GTP cap is inhibited by CDK1 inhibition in 

mitosis-enriched HeLa cells. 

HeLa cells were enriched or depleted for mitosis by G2/M boundary arrest 

synchronization and shake-off. For mitosis-enriched cells, 4E-BP1 binding to the 

m7GTP resin was increased by RO-3306 treatment alone. RO-3306 but not PP242 

significantly inhibits eIF4G pulldown by m7GTP resin in HeLa cells. Near-complete 

inhibition, however, was present with combined PP242 and RO-3306 (PP+RO), 

suggesting cooperativity for mTOR and CDK1 in mitosis-enriched cells. For mitosis-

depleted HeLa, PP242 alone inhibits eIF4G binding and activates 4E-BP1 binding to the 

m7GTP resin. Error bars are SEM, asterisks denote significant comparisons by one-

sided t test with p < 0.05 while n.s. denotes non-significant change. Quantitative LICOR 

immunoblotting shown is representative for one of three independent experiments used 

to generate average and SEM values for cap-binding. 
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Figure 25. The 293 cell-nascent protein synthesis is sensitive to PP242. 

Double-thymidine release was performed for 293 cells. Drug treatment (PP242 at 5 μM 

and CHX at 100 μg/mL) was given at 8.5 h and AHA (25 μM) at 9 h, 15 min post-

release, and then cells were harvested at 10 h. The protein synthesis inhibitor CHX 

served as a negative control for AHA incorporation, and pH3S10 was used to measure 

mitotic activity. New protein synthesis is similar for both phospho-pH3S10–positive and 

phospho-pH3S10–negative mock-treated cells, indicating that protein synthesis is not 

inhibited during mitosis for 293 cells. Unlike BJ-T, PP242 reduced AHA incorporation for 

both mitotic and non-mitotic populations. 

 

Measurement of cap-dependent protein synthesis during mitosis was directly 

determined for HeLa and U2OS cells after G2 release and synchronization using our 

AHA assay in cells treated with 4E1RCat (Figure 23D). Co-staining for pH3S10 allowed 

segregation of cells into mitotic (pH3S10+) and interphase (pH3S10-) populations. 

Nonspecific AHA incorporation was determined using the ribosome translation 

elongation inhibitor CHX (Figure 23D, vertical lines) and new protein synthesis was 

reflected by AHA fluorescence above this baseline.   
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Figure 26. Nocodazole inhibits mitotic protein translation. 

AHA incorporation is present for both mitotic (pH3S10+) and interphase (pH3S10-) 293 

cells but is markedly reduced when pH3S10+ cells are treated with 0.5 µM nocodazole.  

No significant change in AHA incorporation was noted for pH3S10- cells with nocodazole 

treatment. Dotted lines represent threshold between pH3S10+ and pH3S10- cells, with 

active or inhibited new protein synthesis. M: mitotic pH3S10+ cells; I: interphase pH3S10- 

cells. 

 

Like BJ-T cells, fewer (27%) mitotic HeLa cells were positive for new protein 

synthesis compared to interphase (46%) HeLa cells (Figure 23D). In contrast, 

percentages of mitotic and interphase U2OS cells with new protein synthesis were 

identical (42% of mitotic and interphase cells). For both cell lines, however, nearly all 

new protein synthesis in both mitosis and interphase was cap-dependent and sensitive 

to 4E1RCat treatment. Preliminary analyses revealed that MG132 treatment 

nonspecifically inhibited protein synthesis as previously reported (357), preventing us 

from accurately measuring the effects of CDK1 inhibition on mitotic translation under 

conditions that inhibit mitotic slippage. Using direct AHA uptake, however, we could 

confirm that nocodazole treatment inhibits mitotic protein synthesis (Figure 26).  
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2.4 DISCUSSION 

Tumor viruses have been central to cell biology because their oncogenes allow 

interrogation of specific cell proliferation and survival pathways. Among many critical 

findings, viral oncoproteins have been essential to the discovery of cellular oncogenes 

(358) and the tumor suppressor p53 (287, 311, 359); the characterization of the G1/S 

checkpoint (312) and the Akt-mTOR pathway (360); and identification of common innate 

immune and tumor suppressor signaling networks (361). MCV sT, an oncoprotein for 

MCC, induces mTOR-resistant 4E-BP1 hyperphosphorylation and cell transformation 

(170), which led us to investigate mTOR-independent 4E-BP1 signaling and cap-

dependent translation in mitosis. 

In addition to targeting Fbw7 (338), MCV sT inhibits APC/C E3 ligases, as well as 

other specific E3 ligases (unpublished), and induces mitogenesis in sT-expressing cells. 

One consequence of this is increased mitotic CDK1/CYCB1 activity that is responsible 

for 4E-BP1 phosphorylation and δ-4E-BP1 formation. Caution is appropriate in 

interpreting our data since mitotic kinase inhibition can cause mitotic slippage and exit 

from the mitotic phenotype. Considerable effort by our group was devoted to evaluating 

AURKA and AURKB as potential 4E-BP1 mitotic kinases since AURK inhibitors (e.g. 

VX-680, MK-5108 and AZD-1152) also reduce 4E-BP1 hyperphosphorylation during 

mitosis. This was reversible, however, by co-treatment with MG132 to prevent APC/C-

mediated mitotic egress and we have no evidence that AURKs are directly responsible 

for 4E-BP1 phosphorylation. In contrast, there is considerable evidence from this study 

and others (207, 208) to indicate that CDK1/CYCB1 is a bona fide kinase for 4E-BP1.  
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This study suggests an alternative pathway for CDK1/CYCB1 regulated cap-

dependent translation during mitosis (Figure 27). We find that mitotic 4E-BP1 is highly 

phosphorylated at the priming residues T37 and T46 in pH3S10+ cells, which runs 

counter to what would be predicted if cap-dependent translation is reduced during 

mitosis through an mTOR-related mechanism. The high molecular mass δ-4E-BP1 

isoform is specific to mitosis and our data indicates that this results from CDK1-

mediated phosphorylation. While δ-4E-BP1 can form under mitotic conditions in which 

mTOR is inhibited, it seems likely that mTOR cooperates with CDK1/CYCB1 to 

generate the mitotic δ-4E-BP1 by phosphorylating lower molecular mass α, β, and γ 

isoforms that may be precursors to the δ-4E-BP1 isoform. Another limitation to our 

study is that we measure only 4E-BP1 phosphorylation but not δ-4E-BP1 

dephosphorylation or turnover. These are likely to affect steady-state p4E-BP1 levels as 

well.   

Our findings contrast with studies suggesting that loss of mTOR activity leads to 

inhibition of mitotic eIF4G cap-association and cap-dependent translation. We see that 

cap-dependent protein translation is sustained during mitosis using a pulse flow 

cytometry approach. Pharmacological (4E1RCat) cap-dependent translation inhibitor 

used on three cell lines under two different mitotic-enrichment conditions provide 

evidence that this effect is generalizable. To our knowledge, our AHA incorporation 

assays are the first time that cap-dependent translation has been directly measured in 

mitotic and interphase cells. Like [35S]-methionine incorporation studies, AHA 

incorporation measurements required incubation of cells in low methionine media. While 



 82 

most mitotic translation is cap-dependent in all of the cell lines tested, differences in 

relative mitotic and interphase translation were present between cell lines.  

 

 

Figure 27. Model for cell cycle dependent 4E-BP1 regulation of cap-dependent 

mRNA translation. 

Interphase 4E-BP1 is inhibited by mTORC1 kinase, whereas CDK1/CYCB1 is primarily 

responsible for δ-4E-BP1 inactivation during mitosis. 

 

We suspect that technical issues, that have only recently been resolved, explain 

differences between our studies and those of others. Measurement of mitotic protein 

translation (both cap-dependent and independent) has relied on separation of mitotic 

and interphase cells in bulk culture, often using nocodazole-induced mitotic enrichment. 

We confirm that nocodazole inhibits mitotic translation for synchronized 293 cells. This 

has been ascribed by Coldwell et al. (243) to inhibitory phosphorylation of eIF2 and 

eIF4GII by nocodazole downstream to 4E-BP1 regulation. This is consistent with our 
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findings that nocodazole both promotes δ-4E-BP1 and inhibits mitotic translation. We 

have not tested other mitotic-arrest compounds (e.g., paclitaxel) to determine if they 

have similar limitations. A second technical challenge is that mitotic cells represent a 

small fraction of the total cell population. Contamination with interphase cells is nearly 

inevitable in mitotic enrichment protocols and will dramatically alter conclusions such as 

the role of mTOR in regulating 4E-BP1 during mitosis. In our experience, flow cytometry 

can help to resolve this dilemma by directly measuring mitotic status (pH3S10 or pMPM2 

status) in cells while simultaneously determining translation regulator status, such as 

p4E-BP1T37/T46. Finally, newly-developed classes of cap-dependent translation 

inhibitors, such as 4E1RCat, now allow direct determination of cap-dependent 

translation. When used in combination with AHA incorporation, direct measurement of 

mitotic cap-dependent translation can be determined.  

Both nocodazole and PP242 are nonetheless important inhibitors to measure 4E-

BP1 phosphorylation and translation during mitosis. As indicated, nocodazole does not 

interfere with δ-4E-BP1 formation and is useful for accentuating mitotic regulation of 4E-

BP1. mTOR regulates translation through ribosomal biosynthesis as well as direct 

phosphorylation of translation machinery components downstream from 4E-BP1, such 

as eIF4B (362) and eEF2 elongation factor (363). Further, eIF4B regulation by 14-3-3σ 

may also play a role in later stages of mitotic protein translation and may be missed in 

our study of early mitosis (241). Thus, PP242 may affect mitotic translation by acting 

downstream to 4E-BP1. We also find evidence that in most cells mTOR typically acts in 

concert with CDK1/CYCB1 to promote mitotic cap-dependent translation.   
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Cap-dependent translation of preformed mRNAs provides rapid regulation of 

gene expression that may be required for rapid cellular responses, such as transit 

through mitosis. These changes generally cannot be accurately measured by standard 

mRNA expression techniques. Mounting evidence suggests that dysregulated cap-

dependent translation from aberrant PI3K-Akt-mTOR and MEF-RAF-MEK-ERK 

signaling contributes to cancer cell transformation (223, 271). Regardless of the 

contribution of activated cap-dependent translation to cancer cell transformation, such 

as in MCV-positive MCC, our findings point towards the possibility that combined mTOR 

and CDK1/CYCB1 inhibition may prove useful for cancer treatment, particularly for 

mTOR-inhibitor resistant cancers.    
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3.0  MITOTIC PROTEIN KINASE CDK1 PHOSPHORYLATION OF MESSENGER 

RNA TRANSLATION REGULATOR 4E-BP1 SER83 MAY CONTRIBUTE TO CELL 

TRANSFORMATION 

Work described in this chapter was published in the Proceedings of the Academy of 

Sciences 

 

Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8466-71 

with authors Celestino Velásquez, Erdong Cheng, Masahiro Shuda, Paula J. 

Lee-Oesterreich, Lisa Pogge von Strandmann, Marina A. Gritsenko, Jon M. 

Jacobs, Patrick S. Moore, and Yuan Chang 

 

 

Celestino Velásquez, Erdong Cheng, Masahiro Shuda, Paula J. Lee-Oesterreich, Lisa 

Pogge von Strandmann, Marina A. Gritsenko, and Jon M. Jacobs performed 

experiments and analyzed the data. Celestino Velásquez, Erdong Cheng, Masahiro 

Shuda, Jon M. Jacobs, Patrick S. Moore, and Yuan Chang designed experiments. 

Celestino Velásquez, Erdong Cheng, Masahiro Shuda, Jon M. Jacobs, Patrick S. 

Moore, and Yuan Chang wrote the manuscript.  
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This chapter demonstrates that 4E-BP1 hyperphosphorylation is a generalizable 

phenomenon in mitotic cells and describes the novel phosphorylation of 4E-BP1 Ser83 

by the mitotic CDK1 kinase and its potential contribution to cell transformation. mTOR-

directed 4E-BP1 phosphorylation promotes cap-dependent translation and 

tumorigenesis. During mitosis, CDK1 substitutes for mTOR and fully phosphorylates 4E-

BP1 at canonical sites (T37, T46, S65, and T70) as well the non-canonical S83 site 

resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with 

a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation 

accumulates at centrosomes during prophase, peaks at metaphase, and decreases 

through telophase. While S83 phosphorylation of 4E-BP1 does not affect general cap-

dependent translation, expression of an alanine substitution mutant 4E-BP1.S83A 

partially reverses rodent cell transformation induced by Merkel cell polyomavirus (MCV) 

small T (sT) antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 

phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of 

δ-4E-BP1 may yield a gain-of-function, distinct from translation regulation, that may be 

important in tumorigenesis and mitotic centrosome function.  
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3.1 INTRODUCTION 

Eukaryotic cells synthesize proteins primarily through cap-dependent mRNA translation. 

This process is mediated by a complex of eukaryotic translation initiation factors, eIF4F, 

which assemble on the 7-methyl-guanosine cap of mRNA (3). eIF4E occupation of the 

5’ cap of mRNA results in the recruitment of eIF4F complex members—mainly eIF4G, 

eIF4A, and eIF3—which in turn attract the 40S ribosome and the rest of the translation 

machinery (3). A set of small binding proteins called eIF4E-binding proteins (4E-BPs)—

4E-BP1, 4E-BP2, and 4E-BP3—inhibit cap-dependent translation by interacting with the 

cap-bound eIF4E (144). The best-characterized and predominant eIF4E binding protein 

is 4E-BP1, which has a molecular weight of 15 kDa and is expressed in most tissues 

(144). 4E-BP1 competes with the complex scaffold protein eIF4G for the same binding 

site on eIF4E and prevents eIF4F cap complex assembly and ribosome recruitment 

(144).  

 The PI3K-AKT pathway regulates the translation repressor function of 4E-BP1 by 

activating the mammalian target of rapamycin (mTOR) kinase (144). Stimulated by 

metabolic and growth-related signals, mTOR phosphorylates 4E-BP1 and decreases its 

affinity for eIF4E in favor of translation (143). Priming phosphorylations at Thr(T)37 and 

T46 are required for subsequent phosphorylations at T70 and Ser(S)65 (143). Double 

alanine substitutions of the critical T37 and T46 priming sites render a constitutively 

active protein that strongly binds eIF4E and is insensitive to mTOR inhibition (153). 

Three additional potential phosphorylation sites have been identified—S83, S101, and 

S112—whose regulation mechanisms remain unclear (154, 175, 176). 
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 Accumulating evidence indicates that dysregulation of cap-dependent translation 

through 4E-BP1 inactivation contributes to malignant transformation (143, 144). 

Frequently activated in cancers, the PI3K-AKT-mTOR pathway leads to enhanced 4E-

BP1 phosphorylation and, thus, diminished translation repression activity (159, 246, 

340); and multiple reports have found expression of high levels of phosphorylated 4E-

BP1 in tumors (143). Overexpression of eIF4E transforms cells by enhancing translation 

of oncogenic mRNA, which can be reversed by ectopic expression of a non-

phosphorylatable 4E-BP1 priming site mutant (254, 257, 268). Resistance of various 

cancers to mTOR inhibitor treatment indicates that other pathways are implicated in 4E-

BP1 inactivation (364). Several serine/threonine kinases have been shown to 

phosphorylate 4E-BP1, such as p38 MAPK, ERK, PIM2, ATM, CDK1, PLK1, LRRK2, 

GSK3β, and CK1ε (163, 207, 210, 211, 215, 217-219, 222). We recently demonstrated 

that CDK1 phosphorylates 4E-BP1 at canonical sites T37, T46, S65, and T70 during 

mitosis and generates a high molecular weight phospho-isoform called δ-4E-BP1, even 

in the absence of mTOR activity (209). Although we have observed active cap-

dependent translation during mitosis, the function of hyperphosphorylated δ-4E-BP1 

and its contribution to tumorigenesis remain unknown.  

 Here we identify a CDK1 phosphorylation site, S83, that is unique to mitotic δ-4E-

BP1.  4E-BP1 S83 phosphorylation does not participate in regulation of general cap-

dependent translation or eIF4F complex formation. Instead, S83-phosphorylated δ-4E-

BP1 preferentially localizes to mitotic centrosomes and peaks during metaphase.  When 

S83 is substituted with alanine, 4E-BP1.S83A, to prevent δ-4E-BP1 formation, the 
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mutant 4E-BP1 partially inhibits cell transformation induced by the viral oncoprotein 

Merkel cell polyomavirus (MCV) small T (sT) antigen.   
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3.2 MATERIALS AND METHODS 

3.2.1 Cell Culture and Transfection/Transduction 

293, 293FT, HeLa, U2OS, U87, U251, and Rat-1 cells (ATCC) were maintained in 

DMEM (Corning Cellgro) supplemented with 10% FBS. HCT116 cells (ATCC) were 

maintained in McCoy’s medium (Sigma) supplemented with 10% FBS. 293 and 293FT 

cells were transfected using Lipofectamine 2000 (Invitrogen) and harvested after 48 h. 

Rat-1 cells were transduced by lentiviral infection and harvested after 5-10 days. 

3.2.2 Plasmids 

FLAG-HA-HA tagged 4E-BP1 open reading frame was excised from pBabe HA-4E-BP1 

(170) and cloned into pCMVtag2B vector to generate pCMVtag2B.HA-4EBP1. HA-4E-

BP1 mutants (T37A/T46A, S83A, S83D, S83E, S65A/S101A, T70A, I15A/F114, and 

T37E/T46E/S65E/T70E) were generated from pCMVtag2B.HA-4EBP1 wild type 

construct by the QuikChange Lightning site-directed mutagenesis kit (Agilent 

Technologies). pLVX EF.puro was modified from pLVX-puro vector (Clontech) by 

replacing CMV promoter with elongation factor-1alpha (EF) promoter (170). Codon-

optimized MCV sT and HA-4E-BP1 sequences were inserted into pLVX EF.puro using 

AfeI and SbfI sites. The primers used for each site-directed mutagenesis are listed on 

Table 1, and the plasmids constructs are listed on Table 2. 
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Table 1. Primers used for in vitro site-directed mutagenesis of HA-tagged 4E-BP1. 
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Table 2. Plasmids constructs used for HA-tagged 4E-BP1 and MCV sT expression. 

 

3.2.3 Fluorescence Quantification 

Single channel image generated by fluorescence microscope was opened in ImageJ. 

Each fluorescent cell was selected by in a 45-pixel diameter circle, and the intensity 

value of each circle was measured. Background subtraction was done by subtracting 

the value measured with the same size circle placed on the background of the image. 

3.2.4 In vitro Translation Assay 

TNT quick coupled transcription/translation system was used for in vitro protein 

synthesis per manufacturer instructions (Promega). DNA template for the TNT was 

generated from plasmid pFR_CrVP_xb (Addgene) by primers with a 5’ flanking T7 

promoter sequence as described in the previous chapter (209). Reaction was performed 
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in a 20-μl volume containing 0.5 μg of bicistronic reporter DNA template in the presence 

of varying concentrations of either untreated or CDK1-treated GST or GST-4E-BP1 or in 

the presence of 0.5 μM m7GTP cap-analog (Promega). GST-4E-BP1 or GST alone (2 

μg) was pre-incubated with either 10 units of CDK1/Cyclin B1 (NEB) or 1 μg/mL BSA for 

1 h at 30 °C. Reaction mix was incubated at 30 °C for 1 h. Luciferase assay was 

performed by dual luciferase assay kit (Promega). 

3.2.5 Lentiviral Transduction 

Codon-optimized MCV sT and HA-4E-BP1 sequences were inserted into pLVX EF.puro 

using AfeI and SbfI sites. For lentivirus production, 293FT (Invitrogen) cells were 

transfected with the pLVX lentivirus vector and the two psPAX2 and pMD2.G packaging 

vectors. Lentivirus infection was performed in the presence of 6 μg/ml polybrene. 

Infected cells were selected with puromycin (2 μg/ml). 

3.2.6 Immunoblotting and Antibodies 

Cells were lysed in buffer (50 mM Tris-HCl, pH 7.4; 0.15 M NaCl; 1% Triton X-100; 2 

mM Na3VO4; 2 mM NaF; 0.1% SDS) containing protease inhibitors (Roche). Lysates 

were resolved by 12% (5-20% for cap-binding assay) SDS-PAGE and transferred to 

nitrocellulose. Membranes were blocked with 5% milk in 1X TBS and incubated with 

primary antibodies overnight at 4 °C. Blots were subsequently incubated with IRDye-

labeled anti-rabbit or anti-mouse secondary antibodies and analyzed on the Odyssey 

infrared scanner (LI-COR Biosciences). The following primary antibodies were used in 



 94 

this study: phospho-4E-BP1S83 antiserum, phospho-4E-BP1T70, phospho-4E-BP1S65/S101, 

phospho-4E-BP1T37/T46, total 4E-BP1, phospho-Histone H3S10, eIF4E, eIF4G, eIF4A, γ-

tubulin (Cell Signaling), α tubulin (DSHB), HA (Covance), 800CW goat polyclonal anti-

rabbit IgG, and 680CW goat polyclonal anti-mouse IgG (LI-COR Biosciences). 

3.2.7 Cell Cycle Synchronization 

HeLa, HCT116, U87, U251, U2OS, and 293 cells (ATCC) were synchronized as 

described in the previous chapter (209). 

3.2.8 Kinase Inhibitors 

Active site kinase inhibitors were used in cell culture as follows: 5 μM PP242 (mTOR) 

and 9 μM RO-3306 (CDK1). Proteasome inhibitor MG132 (10 μM) was co-incubated 

with RO-3306 for in vivo CDK1 inhibition. PP242, RO-3306, VX-680 (AURK), and BI-

6727 (PLK1) kinase inhibitors were used at 5 μM for in vitro phosphorylation assays. 

Phospho-Ser83 4E-BP1 Polyclonal Antibody Production. Rabbits were immunized with 

4E-BP1 synthetic phospho-peptide 77TIPGVT(pS)PSSDEP89. Antiserum was 

periodically collected after multiple immunization boosts. 

3.2.9 Flow Cytometry 

Asynchronous U2OS, U87, HeLa, and 293 cells were trypsinized, fixed in 10% buffered 

formalin, and permeabilized with 0.1% saponin in 1% FBS/PBS for 15 min at RT.  Cells 



 95 

were stained with p4E-BP1T37/T46 antibody or rabbit IgG control antibody for 3 h at 

RT. After washing three times with 1% FBS/PBS, cells were reacted with anti-rabbit 

Alexa 488-labeled IgG (Invitrogen) for 1 h at RT. For phospho-histone H3S10 staining, 

cells were permeabilized with 1% FBS/PBS containing 0.25% Triton X-100 for 3 min at 

RT. Alexa 647-labeled pH3S10 antibody (Cell Signaling) or control Alexa 647-labeled 

rabbit IgG (Cell Signaling) were reacted with cells for 1 h at RT. After washing three 

times with 1% FBS/PBS, DNA was stained with 1% FBS/PBS containing 50 μg/mL 

propidium iodide (PI) and 40 μg/mL RNase A (Sigma) for 30 min. For p4E-BP1S83 flow 

cytometry analysis, U2OS and HeLa cells were treated with growth medium containing 

0.5 μM nocodazole or DMSO for 20 h. p4E-BP1S83 antiserum or pre-immune serum in 

1% FBS/PBS were used. Cells were analyzed by the BD Accuri C6TM cell analyzer (BD 

Biosciences). 

3.2.10 Mass Spectrometry 

HeLa cells were disrupted, proteins tryptically digested, phosphopeptide enriched, 

TMT10-labeled, and high mass accuracy LC-MS/MS analyzed as previously described 

(365). Variations include use of TMT10 instead of iTRAQ labeling, cell lysate versus 

tissue disruption, and use of Q Exactive Orbitrap MS. 293 cell LC-MS/MS analyses 

were performed identically, except for quantitation which used label-free approaches as 

previously described (366).   
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3.2.11 Two-Dimensional Electrophoresis 

HeLa cells were lysed in non-denaturing lysis buffer supplemented with protease 

inhibitors (Roche). Lysates were isoelectrically focused as described in the previous 

chapter (209). 

3.2.12 In Vitro Protein Phosphorylation Assay 

Recombinant GST-4E-BP1 was incubated in a reaction containing 1X protein kinase 

buffer (NEB) and mitotic HeLa cell lysate as described in the previous chapter (209). 

3.2.13 Immunofluorescence 

293, HeLa, U2OS, or U87 cells (0.3 x 106) were seeded onto poly-L-lysine treated glass 

coverslips. The next day, cells were washed with ice-cold 1X PBS and fixed with 2% 

paraformaldehyde for 15 min at RT, followed by permeabilization with cold MetOH for 

10 min at -20 °C. Cells were blocked with 10% normal goat serum (Cell Signaling) for 1 

h at RT and then stained with p4E-BP1S83 antiserum pre-absorbed with 

unphosphorylated 77TIPGVTSPSSDEP89, together with γ-tubulin or phospho-histone 

H3S10 antibodies (Cell Signaling) for 2 h at RT. Cells were then washed with cold 1X 

PBS three times for 5 min each and incubated with Alexa 488-labeled anti-rabbit 

secondary antibody and Alexa 568-labeled anti-mouse antibody (Invitrogen) at RT for 1 

h. Cells were examined by fluorescence microscopy (Olympus). Confocal microscopy 
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was performed with Leica TCS SP2 upright confocal microscope. Intensity of 

fluorescence staining was measured by ImageJ.  

3.2.14 m7GTP Cap Binding Assay 

293 were lysed in non-denaturing lysis buffer supplemented with protease inhibitors 

(Roche). Lysates were incubated with m7GTP sepharose beads (Jena Bioscience) as 

described in the previous chapter (209). 

3.2.15 Foci Formation Assays 

Rat-1 cells were infected with recombinant lentiviruses and grown for two weeks in 6-

well plates for foci formation assay. To determine viral titer and establish stable cell 

lines, cells were selected with puromycin (2 μg/ml) for pLVX EF vectors. After two 

weeks, foci were stained with crystal violet (0.025% in 1X PBS), and plates were photo-

graphed and scanned with Odyssey scanner (LI-COR) for quantification. 
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3.3 RESULTS 

3.3.1 δ-4E-BP1 hyperphosphorylation is a feature of mitosis across multiple 

cancer cell lines. 

 

Figure 28. δ-4E-BP1 hyperphosphorylation is a common feature of mitosis across 

multiple cancer cell lines. 

(A) Mitotic arrest of various cancer cell lines induces δ-4E-BP1. 293, HeLa, HCT116, 

U2OS, U87, and U251 cells were arrested for 20 h with DMSO or nocodazole 

(prometaphase). Cells were treated at 16 h with mTOR kinase active-site inhibitor 

PP242 (5 μM). Nocodazole arrest induces PP242-resistant δ-4E-BP1 (black arrowhead) 

in all cell lines tested. (B) pH3S10+ mitotic cells have higher levels of 4E-BP1T37/T46 

phosphorylation than interphase cells. Dual flow cytometry staining for pH3S10 and p4E-

BP1T37/T46 was performed on asynchronous 293, HeLa, U2OS, and U87 cells. Increased 

pH3S10+ fluorescence was correlated to increased p4E-BP1T37/T46+ fluorescence for all 

cell lines. 

 

4E-BP1 has four discernible gel isoforms named α, β, γ, and δ based on ascending 

molecular weight and phosphorylation (157). To determine the generalizability of δ-4E-

BP1 expression during mitosis, six cell lines—293, HeLa, HCT116, U2OS, U87, and 
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U251—were arrested in prometaphase with nocodazole and examined for 4E-BP1 

phosphorylation. Hyperphosphorylated δ-4E-BP1 was the predominant isoform in 

mitotic cells from all cell lines and is resistant to the mTOR inhibitor PP242 (Figure 

28A). Asynchronous cells expressed mainly α, β, and γ 4E-BP1 isoforms that were 

sensitive to mTOR inhibition. Expression of α, β, and γ forms was variably detectable 

and sensitive to PP242 in nocodazole-arrested cells, which is consistent with non-

mitotic cell contamination. In addition, flow cytometry revealed a correlation between 

phospho-4E-BP1T37/T46 (p4E-BP1T37/T46) and mitotic marker phospho-histone H3S10 

(pH3S10), indicating that mitotic cells tend to have a high level of 4E-BP1 

phosphorylation (Figure 28B).  

3.3.2 S83 phosphorylation is a component of δ-4E-BP1 and is mediated by 

CDK1/CYCB.  

The phosphorylation of 4E-BP1 is hierarchical, with mTOR-directed priming 

phosphorylations at T37 and T46 being essential for additional phosphorylations at T70 

and S65 (172). S65 phosphorylation is abundant in the γ-isoform in asynchronous cells 

as well as the higher molecular weight δ-isoform during mitosis (Figure 28A). Lambda 

phosphatase treatment collapses all 4E-BP1 isoforms to the unphosphorylated form 

(209). These data are consistent with the δ-isoform having a unique phosphorylation 

site in addition to phosphorylations at other known sites. To identify additional 

phosphorylation sites responsible for the slower migration of the δ-isoform, HeLa and 

293 cells arrested in mitosis, compared to asynchronous populations, were examined 

by liquid chromatography-tandem mass spectrometry (LC-MS/MS) based quantitative 
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phosphoproteome analysis. The phospho-S83 site represented by the digested peptide, 

74DLPTIPGVT(pS)PSSDEPPMEASQSHLR99, was quantitatively identified only in mitotic 

cells (Figure 29). 

 

Figure 29. LC-MS/MS spectrum for phospho-S83 4E-BP1 peptide identified only in 

mitotic HeLa cells. 

HeLa cells were disrupted, proteins tryptically digested, phosphopeptide enriched, 

TMT10-labeled, and high mass accuracy LC-MS/MS analyzed as previously described 

(365). Variations include use of TMT10 instead of iTRAQ labeling, cell lysate versus 

tissue disruption, and use of Q Exactive Orbitrap MS. 

 

 

 To confirm that phosphorylation at S83 is a bona fide component of the δ-4E-

BP1 isoform, a phospho-specific antibody was raised in rabbits by immunizing with a 

synthetic 4E-BP1 peptide having S83 phosphorylated (77TIPGVT(pS)PSSDEP89). This 

antiserum is specific for phospho-S83 but also has weak reactivity to non-

phosphorylated 4E-BP1 that requires pre-absorption or peptide blocking to reduce. 

Rabbit antiserum was screened by immunoblotting against lysates from asynchronous 
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and mitotic 293 cells expressing HA-tagged 4E-BP1 variants—wild-type, T37A/T46A, 

S65A/S101A, T70A, and S83A. Immunoblotting showed loss of reactivity against only 

4E-BP1.S83A expressed in mitotic cells, confirming the specificity of the antibody 

(Figure 30).  Phosphorylation of endogenous 4E-BP1 at T37, T46, S65, and T70 was 

present in α, β, and γ isoforms in asynchronous HeLa cells but not at S83 (Figure 31A). 

S83 phosphorylation, however, was abundant only in the δ-4E-BP1 isoform of HeLa 

cells arrested with nocodazole. Reactivity of the δ-isoform with the other 4E-BP1 

phospho-specific antibodies in the presence and absence of PP242 indicated that S83 

phosphorylation occurs in addition to phosphorylation at other sites in δ-4E-BP1, and is 

resistant to mTOR inhibition. Asynchronous and mitotic HeLa cell lysates from Figure 

31A were also fractionated by two-dimensional electrophoresis (Figure 31B). S83 

phosphorylation of 4E-BP1 was detected on the slowest-migrating isoelectric focusing 

spot corresponding to δ-4E-BP1 (white arrowheads) and a second spot (black 

arrowheads) below it that is absent in p4E-BP1T37/T46 staining. In addition, a 4E-

BP1.T37A/T46A priming-site mutant protein was phosphorylated at S83 but not at S65 

in mitotic cells, indicating that phosphorylation at S83, in contrast to S65, may not be 

dependent on T37/T46 phosphorylation (Figure 31C). Furthermore, S83 

phosphorylation of 4E-BP1 in mitotic cells was confirmed by flow cytometry staining with 

pH3S10 and p4E-BP1S83 antiserum. U2OS (Figure 31D) and HeLa (Figure 32) cells 

showed p4E-BP1S83 positivity exclusively for pH3S10+ mitotic cells. When U2OS cells 

were arrested with nocodazole (Figure 31D), mitotic cells formed a discrete p4E-

BP1S83+/pH3S10+ population indicating that nearly all mitotic cells express the δ-4E-BP1 

isoform. 
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Figure 30. p4E-BP1S83 rabbit antiserum specificity screen against 4E-BP1 

phosphorylation mutants. 

293 cells were transfected with wild-type HA-4E-BP1 and phospho-defective mutants 

T37A/T46A, S65A/S101A, T70A, and S83A and were arrested with nocodazole (0.5 

μM) for 16h and harvested for immunoblotting with p4E-BP1S83 rabbit antiserum. 

Mutation of S83 to alanine eliminated the p4E-BP1S83 signal from nocodazole-arrested 

293 cells (arrow). However, mutations at canonical phosphorylation sites still showed 

the S83 phosphorylation mark despite the relatively faster migration of mutant proteins 

due to the loss of phosphorylation at mutated sites. Slow migrating bands (asterisks) 

may represent minor protein population from triple-tagged vector FLAG-HA-HA-4E-BP1. 

Increased cyclin B1 in nocodazole-treated conditions confirms mitotic arrest with 

nocodazole treatment. 
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Figure 31. S83 phosphorylation is a component of δ-4E-BP1 and is mediated by 

CDK1/CYCB. 

(A) Polyclonal anti-p4E-BP1S83 rabbit antiserum detects S83 phosphorylation in mitotic 

δ-4E-BP1. HeLa lysates from asynchronous and nocodazole arrest conditions were 

immunoblotted with p4E-BP1S83 antiserum. p4E-BP1S83 was found only in the δ-4E-BP1 

isoform in mitotic cells and was resistant to mTOR inhibition by PP242. (B) HeLa cell 

lysates from (A) were fractionated by isoelectric focusing (pH 3-6), followed by 

immunoblotting with phospho-specific and total 4E-BP1 antibodies. White arrowheads  
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Figure 31 (continued) 

indicate the isoelectric focusing spot corresponding to δ-4E-BP1, and black arrowheads 

indicate a second spot revealed by p4E-BP1S83 staining. (C) Priming-site mutation of 

T37/T46 to alanine does not inhibit S83 phosphorylation during mitosis. Wild-type and 

T37A/T46A mutant HA-4E-BP1 expression plasmids were transfected into 293 cells. 

Cells were arrested for 20 h with DMSO or nocodazole 48 h post-transfection. Cells 

were treated at 16 h with mTOR kinase active-site inhibitor PP242 (5 µM). Mutation of 

4E-BP1 at T37/T46 blocked S65 phosphorylation but did not prevent S83 

phosphorylation during mitosis. (D) pH3S10+ mitotic cells are positive for 4E-BP1S83 

phosphorylation. Dual flow cytometry staining for pH3S10 and p4E-BP1S83 was 

performed on asynchronous and nocodazole-arrested U2OS cells. pH3S10 fluorescence 

was correlated to p4E-BP1S83. (E) CDK1 inhibition by RO-3306 ablates S83 

phosphorylation in mitotic cells. HeLa cells were arrested in G1 by L-mimosine 

treatment and mitosis by nocodazole treatment for 20 h. Cells were subsequently 

treated with kinase inhibitors PP242 (mTOR, 5 μM) and RO-3306 (CDK1, 9 μM) for 4 

hours, supplemented with 10 μM MG132 proteasome inhibitor to prevent mitotic 

exit/slippage. 4E-BP1S83 phosphorylation was abolished by RO-3306 treatment, along 

with δ-4E-BP1, in mitotic cells. Combined PP242 and RO-3306 erased most mitotic 4E-

BP1 phosphorylation in these cells. S83 phosphorylation and δ-4E-BP1 were absent in 

G1-arrested cells, as expected. (F) Mitotic lysate phosphorylates GST-4E-BP1 at S83. 

Mitotic HeLa cell lysates enriched by nocodazole arrest were incubated with GST-4E-

BP1 and reacted in buffer containing 200 μM ATP for 30 min at 30 °C in the presence or 

absence of mTOR (PP242), RO-3306 (CDK1), VX-680 (AURK A/B/C), and BI-6727 

(PLK1) kinase inhibitors (5 μM). GST-4E-BP1 was phosphorylated at S83 and the other 

known regulatory sites. CDK1 inhibition by RO-3306 treatment reduces S83 

phosphorylation, consistent with the other phosphorylation sites. Treatment with kinase 

inhibitors against other mitotic kinases AURK A/B/C and PLK1 did not inhibit S83 

phosphorylation. 
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Figure 32. p4E-BP1S83 flow cytometry staining of HeLa cells. 

Dual flow cytometry-stained pH3S10+ mitotic HeLa cells are positive for p4E-BP1S83. 

 

We have previously shown that proline-directed, serine/threonine kinase 

CDK1/CYCB phosphorylates 4E-BP1 during mitosis at T37/T46, S65/S101, and T70, all 

which share the minimal consensus S/T-P sequence (209, 367). To determine whether 

CDK1 also phosphorylates S83, HeLa cells were arrested in G1 by L-mimosine 

treatment or in mitosis by nocodazole treatment and then treated with CDK1 active site 

inhibitor RO-3306, supplemented with MG132 proteasome inhibitor to prevent mitotic 

slippage (345, 368). CDK1 inhibition by RO-3306 abolished S83 phosphorylation and δ-

4E-BP1 formation, in addition to reducing phosphorylation at the other phosphorylation 

sites (Figure 31E). G1-arrested cells had low levels of phosphorylated 4E-BP1 that was 

sensitive to mTOR inhibition by PP242 but insensitive to RO-3306 (347). To confirm 

whether CDK1 directly phosphorylates S83, recombinant GST-4E-BP1 was mixed with 

mitotic HeLa lysate in an in vitro phosphorylation assay. Mitotic lysate phosphorylated 

GST-4E-BP1 at S83, which was reversed by addition of RO-3306 but not of PP242, VX-

680 (pan-AURK inhibitor), or BI-6727 (PLK1 inhibitor) (Figure 31F). Taken together, 

these findings demonstrate that CDK1 phosphorylates 4E-BP1 at S83 during mitosis. 
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3.3.3 S83-phosphorylated 4E-BP1 colocalizes with centrosomes during mitosis 

and peaks at metaphase. 

S83 phosphorylation of 4E-BP1 in mitotic cells was also confirmed by 

immunofluorescence microscopy. Staining of 293 (Figure 33A), HeLa, U87, and U2OS 

(Figure 34) cells showed p4E-BP1S83 positivity in all mitotic cells, which are also 

positive for pH3S10, with the exception of telophase cells whose chromosomes are 

decondensed and hence negative for pH3S10 (369). In addition to a diffuse staining 

pattern in mitotic cells, p4E-BP1S83 also formed two distinct puncta near condensed 

chromosomes, which colocalized with centrosomal marker γ-tubulin as detected by 

confocal microscopy (Figure 33B). To show that this binding is phospho-specific, we 

performed a phospho-peptide competition assay for the staining (Figure 35A). These 

data suggest that a portion of p4E-BP1S83 may colocalize with centrosomes during 

mitosis. To further dissect the kinetics of mitotic 4E-BP1 S83 phosphorylation, 

asynchronous 293 cells were counted in each of the phases of mitosis (pH3S10+) and in 

interphase (pH3S10-) based on their morphology and chromosome condensation. pH3S10 

is present throughout mitosis but declines in telophase due to chromosome 

decondensation (369), and p4E-BP1S83 is low in prophase, peaks at metaphase, and 

also declines in telophase (Figure 33C). Cells were also stained for p4E-BP1T37/T46 and 

did not exhibit substantial differences across most phases (Figure 36). Altogether, 

these data demonstrate that the phosphorylation of 4E-BP1 at S83 is regulated 

throughout mitosis.  
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Figure 33. S83-phosphorylated 4E-BP1 colocalizes with centrosomes during 

mitosis and peaks at metaphase. 
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Figure 33 (continued) 

(A) Immunofluorescence staining shows the presence of p4E-BP1S83 only in mitotic 

cells. Asynchronous 293 cells were fixed, and dual-stained with p4E-BP1S83 antiserum 

(green) and pH3S10 (red) antibodies. Nuclear DAPI stain is shown in blue. (B) p4E-

BP1S83 staining colocalizes with γ-tubulin staining to centrosomes in mitotic nuclei of 

293 cells. Asynchronous 293 cells were fixed and dual-stained with p4E-BP1S83 

antiserum (green) and γ-tubulin (red) antibodies. Nuclear DRAQ5 stain is shown in blue. 

Stained cells were observed by confocal microscopy for colocalization studies. (C) 4E-

BP1 S83 phosphorylation peaks at metaphase and declines in telophase. 

Asynchronous 293 cells were fixed and dual-stained with p4E-BP1S83 antiserum (green) 

and pH3S10 (red) antibodies. Nuclear DAPI stain is shown in blue. Cells in interphase 

and in different phases of mitosis (prophase, metaphase, anaphase, and telophase) 

were identified by morphology and chromosome condensation. Intensity of p4E-BP1S83 

staining for cells in each phase was quantified by ImageJ. Thirty cells for each phase 

were quantified, and plot and error bars were obtained from three independent 

experiments. 

 

 

 

 



 109 

 

Figure 34. p4E-BP1S83 immunofluorescence staining of U2OS cells. 

U2OS cells were arrested and released as in Figure 30, fixed, and dual-stained with 

p4E-BP1S83 antiserum (green) and pH3S10 (red) antibodies. Nuclear DAPI stain is 

shown in blue. Immunofluorescence staining shows the presence of p4E-BP1S83 only in 

pH3S10+ mitotic cells. Similar results were obtained with HeLa and U87 cells. p4E-

BP1S83 was pre-absorbed with control non-phosphorylated peptide antigen 
77TIPGVTSPSSDEP89. 
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Figure 35. Epitope competition assays with antigen pre-absorbed p4E-BP1S83 

antiserum. 

(A) Confocal microscopy staining of 293 cells with phosphorylated peptide and non-

phosphorylated peptide pre-absorbed p4E-BP1S83 antiserum. p4E-BP1S83 antiserum 

was incubated with non-phosphorylated (non-phospho) or phosphorylated (phospho) 

4E-BP1 S83 peptide (77TIPGVTSPSSDEP89) prior to immunofluorescence staining and 

confocal microscopy. Asynchronous 293 cells were fixed and dual-stained with p4E-

BP1S83 antiserum (green) and γ-tubulin (red) antibodies. Nuclear DRAQ5 stain is shown 

in blue. Non-phosphorylated peptide pre-absorbed p4E-BP1S83 staining colocalizes with 

γ-tubulin staining to centrosomes, which is ablated with phosphorylated peptide 

preabsorption. (B) Immunoblotting staining of unreacted and phosphorylated GST-4E-

BP1 with dephosphorylated GST-4E-BP1 pre-absorbed p4E-BP1S83 antiserum. p4E-

BP1S83 antiserum was incubated with lambda phosphatase-treated GST-4E-BP1 and 

purified with glutathione sepharose beads prior to immunoblotting staining. 

Dephosphorylated GST-4E-BP1 pre-absorbed p4E-BP1S83 antiserum stains only GST-

4E-BP1 phosphorylated by mitotic HeLa cell lysate. 



 111 

 

Figure 36. p4E-BP1T37/T46 phosphorylation is maintained during interphase and 

mitosis. 

Asynchronous 293 cells were fixed and dual-stained with p4E-BP1T37/T46 (green) and 

pH3S10 (red) antibodies. Nuclear DAPI stain is shown in blue. Cells in interphase and in 

different phases of mitosis were identified by morphology and chromosome 

condensation. Thirty cells for each phase were counted from three experiments. 
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3.3.4 Mutation of 4E-BP1 at S83 does not affect general cap-dependent 

translation but partially reverses MCV sT-induced Rat-1 cell transformation. 

4E-BP1 possesses an amino acid motif necessary for interaction with eIF4E, containing 

the sequence 54YDRKFLM60 (100). The consensus binding motif Y(X)4LΦ (where X is 

any amino acid residue and Φ is a hydrophobic residue) is shared by other 4E-BPs and 

translation initiation factor eIF4G. Recently, a C-terminal loop region of 4E-BP1, 

79PGVTS83, was reported to also play an auxiliary role in binding eIF4E at a 

hydrophobic pocket separate from the canonical 54YDRKFLM60 binding pocket (105, 

106, 370, 371). If S83 phosphorylation destabilizes this auxiliary domain, it may affect 

4E-BP1:eIF4E interaction and cap-dependent initiation and translation. 

 To assess this, in vitro translation reactions were performed using using TNT 

transcription/translation coupled system using a bicistronic reporter with a firefly 

luciferase gene driven by cap-dependent translation followed by a renilla luciferase 

gene driven by cricket paralysis virus (CrPV) IRES-mediated translation. Recombinant 

GST-tagged 4E-BP1.S83A decreased cap-dependent translation to similar levels as 

wild-type GST-tagged 4E-BP1, and CDK1 phosphorylation of this protein rescued 

translation (Figure 37A). GST-4E-BP1.T37A/T46A having substitutions at priming sites 

inhibited translation despite CDK1 treatment. IRES-mediated translation, however, was 

unaffected by GST-4E-BP1 as expected (Figure 37B). Similarly, 4E-BP1.S83A had no 

detectable effect on m7GTP cap resin pull-down assays compared to wild-type 4E-BP1 

protein (372). Compared to wild-type 4E-BP1, S83A, (or phosphomimetic mutants S83D 

and S83E) did not differ significantly in binding cap-bound eIF4E and did not 

significantly affect cap-complex formation, as measured by eIF4G and eIF4A pull-down 
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(Figure 38A). Unlike 4E-BP1.S83A, phosphorylation-defective and mTORC1 binding 

mutants (T37A/T46A and I15A/F114A) efficiently inhibited eIF4G binding to eIF4E and 

in vitro cap-dependent translation (100, 164, 165, 167), suggesting that S83 

phosphorylation does not play a significant role in general cap-dependent translation 

regulation. 

MCV sT transforms Rat-1 and NIH3T3 cells through a novel mechanism 

requiring 4E-BP1 phosphorylation that can be reversed by expression of a constitutively 

active 4E-BP1.T37A/T46A mutant (170, 209). To determine whether S83 

phosphorylation is required for the transformation activity of this viral oncoprotein, we 

performed foci formation assays with Rat-1 co-expressing MCV sT and 4E-BP1 

variants. Cells were first stably transduced with empty vector, wild-type 4E-BP1, 4E-

BP1.T37A/T46A, 4E-BP1.I15A/F114A, or 4E-BP1.S83A, followed by transduction with 

empty vector or MCV sT. MCV sT transformed Rat-1 cells expressing either empty-

vector control or wild-type 4E-BP1, and this was reversed by co-expression of non-

phosphorylatable 4E-BP1.T37A/T46A and 4E-BP1.I15A/F114A mutant proteins (Figure 

38B). 4E-BP1.S83A mutant expression partially but reproducibly decreased sT-induced 

transformation to ~51% of empty vector control and ~66% of wild-type 4E-BP1. 

Immunoblotting of lysates from these cells show comparable protein levels of wild-type 

4E-BP1 and 4E-BP1.S83A; therefore, the negative effect on foci formation did not result 

from enhanced expression of the latter (Figure 39). Low protein levels were predictably 

observed for 4E-BP1.T37A/T46A and 4E-BP1.I15A/F114A mutants because they inhibit 

their own translation. 
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Figure 37. Mutation of 4E-BP1 at S83 does not affect general cap-dependent 

translation initiation complex formation. 
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Figure 37 (continued) 

In vitro cap-dependent translation is not inhibited by blocking S83 phosphorylation. A 

bicistronic luciferase reporter was used in a TNT quick coupled transcription/translation 

system to produce firefly and renilla luciferase through cap-dependent and cricket 

paralysis virus (CrPV) IRES-mediated translation, respectively. (A) Addition of GST-4E-

BP1 wild-type or S83A mutant decreased translation to similar levels; however, when 

these were phosphorylated by CDK1 in kinase buffer, translation was rescued. Addition 

of unphosphorylatable GST-4E-BP1 T37A/T46A inhibited translation even when reacted 

with CDK1. Translation was unaffected by GST protein alone. Cap-dependent 

translation specific inhibition by m7GTP cap analog incubation was used as a negative 

control. Luciferase activity was measured in relative light units (RLU). (B) IRES cap-

independent translation using a CrPV IRES renilla luciferase reporter was unaffected by 

addition of GST-4E-BP1 as expected. (C) Recombinant GST-4E-BP1 and GST protein 

added in each translation reaction was immunoblotted with phospho-4E-BP1 antibodies. 
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Figure 38. Mutation of 4E-BP1 at S83 does not affect general cap-dependent 

translation initiation complex formation but partially reverses MCV sT-induced 

Rat-1 cell transformation. 
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Figure 38 (continued) 

(A) eIF4F cap-binding is not affected by S83 phosphorylation. 293 cells were 

transfected with wild-type HA-tagged 4E-BP1 and mutants T37A/T46A, S83A, S83D, 

S83E, I15A/F114A, and T37E/T46E/S65E/T70E (EEEE). After 48 h, cells were treated 

with DMSO or nocodazole for 20 h and harvested. Cell lysates were either directly 

immunoblotted (input) or mixed with m7GTP coupled sepharose beads, precipitated, 

and immunoblotted. S83A, S83D, and S83D mutants did not differ from wild-type 4E-

BP1 in their binding to cap-bound eIF4E and did not affect eIF4G and eIF4A association 

to eIF4E. HA-4E-BP1 phosphorylation mutant T37A/T46A and mTORC1-binding mutant 

I15A/F114A reduced eIF4G and eIF4A binding, whereas the opposite pattern was found 

for negative control phosphomimetic mutant EEEE. Comparable amounts of eIF4G and 

eIF4A were pulled down with m7GTP beads for both asynchronous and mitotic cells. (B) 

A representative foci formation assay with the MCV sT viral oncoprotein in Rat-1 cells 

stably expressing HA-tagged 4E-BP1 wild type (WT), T37A/T46A, I15A/F114A, S83A 

mutants, and empty vector. Foci formed two weeks after MCV sT lentivirus transduction 

were stained with 0.5% crystal violet. Crystal violet staining intensity was measured 

using the LICOR infrared scanner. For each stable cell line, crystal violet staining 

intensity of empty vector-transduced cells was subtracted from that of sT-transduced 

cells, and relative intensity to empty vector control was determined for each HA-4E-BP1 

mutant. Results are mean ± SD from three-independent experiments. 
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Figure 39. Expression of HA-tagged 4E-BP1 in Rat-1 cells used for transformation 

assays. 

Rat-1 cells stably transduced with HA-tagged 4E-BP1 wild type (WT), T37A/T46A, 

I15A/F114A, S83A mutants, and empty vector were harvested prior to transformation 

assays and subjected to immunoblotting. Protein levels of WT and S83A-mutated 4E-

BP1 were comparable, while expression of non-phosphorylatable mutants T37A/T46A 

and I15A/F114A was lower in comparison, as expected since they inhibit their own 

translation. 
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3.4 DISCUSSION 

During mitosis, 4E-BP1 is hyperphosphorylated, rendering it inactive as a cap-

dependent translation gate keeper (209). Our current studies show that S83-

phosphorylated δ-4E-BP1 is specific to mitosis and is a result of CDK1 activity.  When 

S83 is mutated to a non-phosphorylatable alanine, no changes in cap-binding or cap-

dependent translation were detected. Instead, loss of this phosphorylation site partially 

reverses cell transformation caused by MCV small T oncoprotein. Unlike α-γ 

phosphorylated 4E-BP1 isoforms, δ-4E-BP1 preferentially accumulates at centrosomes 

during mitosis. Unlike 4E-BP1 phosphorylation by mTOR kinase at canonical sites, 

CDK1 phosphorylation of 4E-BP1 at S83 may lead to a gain-of-function for this 

hyperphosphorylated protein (Figure 40).  

 

Figure 40. Novel mitosis-specific phosphorylation of 4E-BP1 Ser83 by CDK1. 

 

 Our findings confirm previous studies showing δ-4E-BP1 expression in multiple 

cell lines synchronized in mitosis by chemical or mechanical means (207, 208). 

Treatment with nocodazole, a microtubule-destabilizing drug, induced δ-4E-BP1 across 
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all cell lines. While mTOR inhibition by PP242 eliminates most phosphorylated 4E-BP1 

isoforms in asynchronous cells, it does not affect δ-4E-BP1. The appearance of α, β, 

and γ forms of 4E-BP1 in nocodazole-arrested cells is likely due to interphase cell 

contamination resulting from differences in synchronization efficiency between cell lines. 

This would explain their sensitivity to PP242 treatment. As predicted by immunoblotting, 

flow cytometry analysis of all cell lines tested shows that pH3S10+ mitotic cells exhibit 

higher levels of p4E-BP1T37/T46+ than pH3S10- interphase cells.  

 Because of its low abundance in asynchronous cells, S83 phosphorylation has 

not been thus far amenable to investigation in contrast to the canonical mTOR-

regulated sites—T37, T46, S65, and T70 (154). We hypothesized that δ-4E-BP1 from 

mitotic cells has additional phosphorylation sites that have been missed in previous 

analyses where mitotic cells comprise less than 1% of all cells in bulk culture. We 

subjected interphase (mitosis-depleted) and mitotic (mitosis-enriched) HeLa and 293 

cells for mass spectrometric analysis, and although our results were not quantitative, we 

identified S83 phosphorylation exclusively in mitotic cells. Mutation of mTOR priming 

sites T37A/T46A did not inhibit S83 phosphorylation in mitotic cells, suggesting that S83 

targeting may not rely on mTOR activity as also evidenced by PP242-mediated mTOR 

inhibition. Our epitope-tagged 4E-BP1 construct does not migrate the same way as 

endogenous 4E-BP1 and makes it difficult to assess each phospho-isoform discretely. 

Nonetheless, we are confident that the highest molecular weight form of HA-tagged 4E-

BP1 induced during mitosis represents δ-4E-BP1.  

By generating a polyclonal antibody against p4E-BP1S83, we were able to confirm 

that δ-4E-BP1 is phosphorylated at S83 and that this antibody can be used as a mitotic 
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marker for immunoblotting, immunofluorescence, and flow cytometry. We were also 

able to localize a portion of S83-phosphorylated 4E-BP1 at the centrosomes consistent 

with a previous report, which shows that 4E-BP1 knockdown leads to multipolar 

spindles and misaligned chromosomes (210). Further, S83 phosphorylation increased 

from prophase to metaphase and decreased thereafter, which is in agreement with 

nocodazole synchronization results and with the timing of CDK1 activity (367). 

The p4E-BP1S83 antibody also enabled us to determine that CDK1 is the first 

kinase known to phosphorylate 4E-BP1 at the five phospho-residues (T37, T46, S65, 

T70, and S83) conserved in all three 4E-BPs—4E-BP1, 2, and 3 (144). The polyclonal 

p4E-BP1S83 antiserum has cross-reactivity against non-phosphorylated S83 that 

requires pre-absorption or peptide blocking, which would explain why unreacted GST-

4E-BP1 can still be detected in our in vitro phosphorylation assays. However, the 

substantial increase in p4E-BP1S83 signal in ATP-supplemented reactions confirms our 

in vivo results. Epitope competition assay with dephosphorylated GST-4E-BP1 also 

shows that the antiserum is specific for S83-phosphorylated 4E-BP1 (Figure 35B). 

Nevertheless, all immunofluorescence colocalization studies were performed using 

antiserum pre-absorbed with non-phosphorylated peptide 77TIPGVTSPSSDEP89. 

 Others have reported and established modulation of cap-dependent translation 

through 4E-BP1 phosphorylation at mTOR-targeted sites. Using in vitro translation and 

m7GTP cap-affinity pulldown assays, we do not find general cap-dependent translation 

regulation by 4E-BP1 S83 phosphorylation. However, we cannot exclude the possibility 

that mRNA subpopulations might be regulated at the translational level by S83-

phosphorylated 4E-BP1, such as terminal oligopyrimidine tract (TOP)-containing 
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mRNAs that are reported to be translationally active during mitosis (208). A recent study 

shows that the interaction be-tween the C-terminal loop with eIF4E is required for eIF4F 

complex formation and translation repression in vivo using 4E-BP1 truncation mutants, 

which, in light of our results, prompts the examination of other loop residues (105). 

Expression of full-length 4E-BP1 constructs with mutations at canonical and non-

canonical eIF4E binding motifs would provide robust evidence for this phenomenon in 

cells. 

 Overexpression of constitutively active 4E-BP1 or 4E-BP2 antagonizes cell 

transformation induced by eIF4E, v-Src, H-Ras, and MCV sT expression, indicating that 

4E-BP1 acts as a tumor suppressor (170, 223, 373). Expression of S65A and T70A 

have also been reported to decrease CREF colony formation, but these results were not 

confirmed in the presence of an oncogene (374). Our work showing partial reversal of 

sT-mediated foci formation suggests that 4E-BP1 phosphorylation site S83 contributes 

to that MCV sT cell transformation activity. sT transformation is eliminated by a raptor-

binding mutant of 4E-BP1 (164, 165, 167), suggesting that mTOR and CDK1 

cooperatively promote sT-induced cell transformation. These findings hint at the 

possibility that this residue is also permissive for cell transformation induced by other 

oncoproteins. 

 Hyperphosphorylation of 4E-BP1 in various cancers has been strongly 

suggestive of uncontrolled protein synthesis. However, our study provokes a 

reassessment of the role of 4E-BP1 in cells, particularly during mitosis. It is possible that 

the S83-phosphorylated δ-4E-BP1 isoform has a previously undescribed gain-of-

function role in mitosis. 
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4.0  CONCLUSION AND PERSPECTIVES 

The work presented in this dissertation provokes a reexamination of mitotic cap-

dependent translational control and raises the possibility for novel functions and 

regulation of the translation repressor protein 4E-BP1 (177, 209). mRNA translation has 

been assumed to be repressed during mitosis, until recent studies, including the ones in 

the previous chapters, have come to challenge this dogma (177, 207-209, 243). In 

previous studies, cells had been arrested in mitosis using microtubule destabilizers, 

which inadvertently inhibited cap-dependent translation. As the number of studies that 

use cell cycle synchronization methods that do not affect mRNA translation increases, 

the old paradigm will have to shift (243). This work also raises the hypothesis that cap-

dependent mRNA translation is activated during mitosis to allow for the synthesis of 

proteins required for re-entry into the cell cycle. In tumorigenesis, it is feasible that the 

increased mitogenesis of cancer cells facilitates the translation of proto-oncogenes 

during mitosis, especially those encoded by tumor viruses like MCV. This work indicates 

that one of the principal events in this process is the hyperphosphorylation-inactivation 

of 4E-BP1 by the mitotic CDK1 kinase. 
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4.1 CDK1 REGULATION OF CAP-DEPENDENT TRANSLATION 

Apart from challenging the mitotic translation dogma, this work identified a novel 

pathway that regulates cap-dependent mRNA translation through the mitotic CDK1 

kinase. CDK1 takes over for mTOR kinase to activate cap-dependent mRNA translation 

by targeting 4E-BP1. CDK1 phosphorylates the canonical mTOR-regulated sites T37, 

T46, S65, and T70 of mitotic δ-4E-BP1 and also the novel S83 during mitosis. CDK1-

inhibition by RO-3306 treatment in vivo and in vitro ablates δ-4E-BP1 phosphorylation at 

all sites. Interestingly, S83 phosphorylation is independent of priming T37/T46 

phosphorylation, unlike S65 and T70, which indicates that CDK1 phosphorylates 4E-

BP1 in a unique mode that is different from mTOR. 

A recent report also indicates that cap-dependent translation is regulated in a 

similar manner during meiosis of human, mouse, and bovine oocytes (375). Although 

the authors claim that CDK1 activates mTOR to phosphorylate 4E-BP1 at S65 and T70 

in this study, their data also suggest that CDK1 directly phosphorylates meiotic 4E-BP1, 

in line with our studies on mitotic 4E-BP1 and those of other groups (177, 207-209, 

243). This is perhaps a common translation regulatory pathway in general cell division. 

Moreover, these results encourage further investigation to determine whether other 

CDKs regulate mRNA translation in other phases of the cell cycle. Identifying non-

canonical, alternative pathways for cap-dependent mRNA translation regulation may 

explain resistance to mTOR-targeted therapies in cancer.  

In addition, this work also hints at the existence of novel translational functions 

for 4E-BP1. Recent structural studies have shown that human eIF4E binds 4E-BP1 not 

only through its canonical dorsal surface, but also through its lateral surface. Both 
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human eIF4G and 4E-BP1 compete for dorsal eIF4E binding through their conserved 

YXXXXLΦ binding motif (103). 4E-BP1, however, has been shown to possess a 

secondary eIF4E-binding motif, 79PGVTS83, that forms a loop structure that contacts the 

lateral surface of eIF4E (Figure 41) (105-107, 370). S83 phosphorylation of 4E-BP1 

may regulate the interaction of this loop with the lateral pocket of eIF4E, which may 

allosterically modulate the occupancy of eIF4G at the dorsal pocket. Whether eIF4G 

interacts with this non-canonical pocket on eIF4E remains unclear, as differences in 

protein solubilizing methods have yielded conflicting results (106, 107, 376).  

 

Figure 41. 4E-BP1 S83 is part of the loop binding the lateral pocket of eIF4E. 

The secondary eIF4E binding site of 4E-BP1 (residues in red), composed of residues 
79PGVTS83, makes hydrophobic contacts and hydrogen bonds with the eIF4E residues 

(in blue) within its lateral binding surface (Modified from Sekiyama et al. 2015 (105)). 

 

Therefore, in this dissertation the effects of S83 phosphorylation on cap-

dependent translation regulation by 4E-BP1 were also investigated. In vitro translation 

reactions with a recombinant GST-4E-BP1 S83A mutant did not affect cap-dependent 

translation compared to wild-type 4E-BP1. Cap-binding assays that measure translation 

initiation complex formation in cells did not show a significant difference between wild-

type 4E-BP1 and the S83A mutant. This was unexpected in light of the presence of S83 
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on the secondary eIF4E binding motif recently identified on 4E-BP1. Interestingly, MCV 

sT-induced cell transformation of Rat1 cells was partially reversed by expression of the 

4E-BP1 S83A mutant. Although no significant change in global cap-dependent mRNA 

translation was observed, these results suggest that S83 phosphorylation contributes to 

MCV sT-induced transformation. 

It cannot be ruled out, however, that 4E-BP1 S83 phosphorylation modulates the 

translation of mRNA subpopulations with different 5’ UTR compositions. Ribosomal 

profiling studies have identified that mRNAs that contain a terminal oligopyrimidine 

(TOP) tract in their 5’ UTR are regulated by mTORC1 and are associated with 

increased 4E-BP1 phosphorylation (79, 80). Interestingly, TOP-containing mRNAs 

encoding ribosomal proteins and translation factors have also been reported to be 

actively translated during mitosis (244). It is possible that CDK1, instead of mTOR, 

activates the translation of these messages during mitosis. During mitosis, 4E-BP1 is 

phosphorylated by CDK1 near its canonical and non-canonical eIF4E binding motifs. In 

interphase, on the other hand, 4E-BP1 is not phosphorylated at the non-canonical loop 

containing S83, with which it could exert some inhibitory impact on eIF4E and mRNA 

translation that is absent during mitosis. Thus, 4E-BP1 S83 phosphorylation may 

regulate the translation of mRNA subpopulations, such as those containing TOP motifs, 

which can be distinguished from global mRNA translation using ribosomal profiling. 

Recent studies, however, have identified the La-related protein 1 (LARP1) as the main 

regulator of TOP mRNA translation in asynchronous cell populations (377). LARP1 

binds the 5’ cap of TOP messages and thus blocks eIF4F complex assembly (378). 

Activated mTORC1 sequesters LARP1 through its Raptor subunit to activate TOP 
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mRNA translation (379), which would explain the observed decreased translation of 

TOP mRNAs upon mTORC1 inhibition in the ribosomal profiling studies. Whether CDK1 

or 4E-BP1 substitute for or work with LARP1 during mitosis remains to be explored. 

4.2 S83-PHOSPHORYLATED 4E-BP1 AND MITOTIC TRANSIT 

This work also demonstrates that δ-4E-BP1 is a common feature of mitotic cells. 

Multiple cancer cell lines that were arrested in mitosis expressed the δ-4E-BP1 

phospho-isoform, which was unaffected by treatment with the mTOR inhibitor PP242. 

These mitotic cells had the highest level of 4E-BP1 phosphorylation as compared to 

corresponding interphase cells, supporting the notion that 4E-BP1 is fully inactivated 

during mitosis. Mass spectrometry analysis of 293 and HeLa cells identified a non-

canonical phospho-S83 4E-BP1 peptide found only in mitotic cells, which led to the 

generation of a rabbit polyclonal antibody against this phospho-peptide. When tested by 

immunoblotting, the antibody recognized only δ-4E-BP1 in mitotic cell lysates, showing 

that S83 phosphorylation is a component of this phospho-species. Dual flow cytometry 

staining for mitotic marker phospho-S10 histone H3 and phospho-S83 4E-BP1 

confirmed that only mitotic cells express S83-phosphorylated 4E-BP1.  

Immunofluorescence assays also demonstrated that phospho-S83 4E-BP1 is a 

unique marker of mitotic cells by co-staining with phospho-S10 histone H3. S83 

phosphorylation is low in prophase, peaks at metaphase, and declines in telophase, 

which is consistent with the timing of CDK1 activity (345) (Figure 42). Confocal 

microscopy showed that a fraction of phospho-S83 4E-BP1 colocalizes with 
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centrosomal protein γ-tubulin in mitotic cells. The presence of S83-phosphorylated 4E-

BP1 at centrosomes provides clues on a potential novel function for δ-4E-BP1 during 

mitosis, such as regulating centrosome function. Sheng et al. also reported that 4E-BP1 

localizes at centrosomes and plays a role in maintaining normal mitotic transit (210). 

Interestingly, abnormal spindle formation is observed when 4E-BP1 is depleted (210). 

The aforementioned study on mammalian oocytes shows that 4E-BP1 phosphorylated 

at S65 colocalizes with centrosomes and 4E-BP1 phosphorylated at T70 colocalizes 

with spindle fibers (375). Spindle defects are also observed in meiotic cells expressing a 

non-phosphorylatable 4E-BP1 mutant (375). These findings suggest that 4E-BP1 

serves an important role in cell division of somatic and germ cells alike, where S83 

phosphorylation might be a critical switch in this process. 

 

Figure 42. S83-phosphorylated 4E-BP1 is a novel mitotic marker. 

This diagram shows the cell cycle timing of phospho-S83 4E-BP1 (green) compared to 

that of mitotic markers phospho-S10 histone H3 (purple) and cyclin B (blue). Phospho-

S83 4E-BP1 is not present in interphase centrosomes (red dots) but colocalizes with 

mitotic centrosomes (yellow dots). 
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4.3 TUMOR VIRUS INDUCTION OF MITOTIC TRANSLATION 

Human tumor viruses have been shown to manipulate the cell cycle by targeting mitotic 

E3 ligases in order to enhance the expression and stability of their own proteins. Four 

human tumor viruses—HBV, HTLV-1, HPV, and MCV—encode proteins that have no 

role in infection (Tax, X, E2, and sT, respectively) but target the mitotic anaphase-

promoting complex/cyclosome (APC/C) checkpoint (380). The Merkel cell polyomavirus 

(MCV) viral oncoprotein small T antigen (sT) inhibits the APC/C cdc20 E3 ligase and 

promotes mitotic arrest, similar to the cellular APC/C inhibitor Emi1 (209, 245). In 

addition, MCV sT induces the hyperphosphorylation and inactivation of cap-dependent 

translation inhibitor 4E-BP1 during mitosis, which is required for the transforming activity 

of MCV sT (170). While mTOR regulates 4E-BP1 during interphase, MCV sT-activated 

mitotic kinase CDK1 hyperphosphorylates 4E-BP1 to generate the high molecular 

weight δ-4E-BP1 phospho-isoform. Studies with MCV sT revealed that cap-dependent 

translation is active during mitosis and suggest that mRNA translation is regulated at 

different phases of the cell cycle. In support of this notion, recent studies have shown 

that translation of APC/C inhibitor Emi1 is repressed during mitosis (245), while TOP-

containing mRNAs are actively translated in this phase of the cell cycle (244). 

This work opens up the possibility that the cell cycle is coupled to the regulation 

of translation, in addition to transcription. MCV appears to manipulate the cell cycle by 

targeting APC/C, possibly to promote a state where cap-dependent translation remains 

active even in mitosis. As a consequence, synthesis of viral proteins would proceed 

unhindered, yet this manipulation may also inadvertently lead to unscheduled, abnormal 

mitosis and tumorigenesis. S83-phosphorylated δ-4E-BP1 may be contributing to 
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malignant transformation during viral APC-targeting induced mitosis. Other viruses, 

such as adenovirus, orf virus, CAV, and HCMV, have also been reported to target APC 

(380). Just as some viruses induce S phase entry to replicate their DNA, some may also 

induce mitotic entry to translate their mRNA.  

4.4 FUTURE DIRECTIONS 

Collectively, the studies presented in this dissertation describe a novel regulatory 

mechanism for cap-dependent mRNA translation during mitosis. Future work to 

understand this mechanism will focus primarily on the following objectives: 1) identifying 

mRNAs that are preferentially translated during mitosis through CDK1 phosphorylation 

of 4E-BP1 and 2) determining whether 4E-BP1 S83 phosphorylation modulates its 

interaction with the lateral surface of eIF4E and affects mitotic spindle function.  

To address the first research objective, RNA-immunoprecipitation-coupled 

sequencing (RIP-seq) and ribosomal profiling analyses will be employed (381, 382). 

Through RIP-seq analysis, mRNAs that co-purify with endogenous 4E-BP1 from 

interphase and mitotic cells will be identified and compared. Given the possibility that 

S83 phosphorylation may abolish the interaction between 4E-BP1 and eIF4E, 

transcripts that are translationally activated by this S83 modification during mitosis are 

expected to co-purify with 4E-BP1 from interphase cells, where they are translationally 

repressed. To confirm these results, ribosomal profiling will be used as in previous 

studies (244, 245) to identify ribosome-protected, translationally active mRNAs from 

interphase and mitotic cells. Additionally, ribosomal profiling studies will examine 
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translation regulation by 4E-BP1 S83 mutants. For this purpose, 4E-BP1 knockout cell 

lines will be used to stably express wild-type 4E-BP1 and phospho-defective and 

phospho-mimetic S83 mutants. It is anticipated that differences in translation of mRNAs 

across wild-type and S83 mutant cell lines will reflect differences observed in mitotic 

and interphase parental cell populations. Through these studies, mRNA subpopulations 

that are regulated by CDK1 through 4E-BP1 phosphorylation will be identified, and it is 

expected that some of these genes may contribute to tumorigenesis. 

To address the second objective, pull-down assays will be used to investigate the 

interaction of the 4E-BP1 79PGVTS83 binding motif with eIF4E, and immunofluorescence 

assays will be used to investigate the connection between 4E-BP1 and mitotic spindle 

function. The 7-methyl-guanine cap pull-down assays shown in the previous chapter 

showed that 4E-BP1 S83 phosphorylation mutants did not differ significantly from the 

wild-type protein in their interaction with cap-bound eIF4E. Immunoprecipitation and 

tandem-affinity purification (TAP) assays will be used to pull down wild-type 4E-BP1 and 

S83 mutants directly to determine whether there are indeed no significant differences 

between these proteins (383). 4E-BP1 mutants that cannot bind eIF4E through its 

dorsal surface, with alanine mutations at Y54 and L59, will be included to confirm these 

results. To determine the role of 4E-BP1 in mitotic spindle function, 4E-BP1 knockout 

cell lines will also be used as in the previous objective. Immunofluorescence assays 

staining for tubulin will show any differences in spindle assembly across mitotic cells 

expressing wild-type 4E-BP1 and S83 phosphorylation mutants. It is expected that cells 

expressing 4E-BP1 S83A will exhibit spindle defects similar to studies in oocytes (375). 

All in all, these experiments will hopefully uncover novel functional aspects of 4E-BP1. 
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