
SEQUENTIAL BILEVEL LINEAR PROGRAMMING

WITH INCOMPLETE INFORMATION AND

LEARNING

by

Juan Sebastián Borrero

B.Sc., Universidad de los Andes, 2008

M.Sc., Universidad de los Andes, 2010

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Juan Sebastián Borrero

It was defended on

June 15th 2017

and approved by

Oleg A. Prokopyev, Ph.D., Associate Professor, Department of Industrial Engineering

Denis Sauré, Ph.D., Assistant Professor, Department of Industrial Engineering,

Universidad de Chile

Jayant Rajgopal, Ph.D., Professor, Department of Industrial Engineering

Pavlo Krokhmal, Ph.D., Professor, Department of Systems & Industrial Engineering,

University of Arizona

Bo Zeng, Ph.D., Assistant Professor, Department of Industrial Engineering

Dissertation Director: Oleg A. Prokopyev, Ph.D., Associate Professor, Department of

Industrial Engineering

ii

SEQUENTIAL BILEVEL LINEAR PROGRAMMING WITH INCOMPLETE

INFORMATION AND LEARNING

Juan Sebastián Borrero, PhD

University of Pittsburgh, 2017

We present a framework for a class of sequential decision-making problems in the context

of bilevel linear programming, where a leader and a follower repeatedly interact. At each

period, the leader allocates resources that can modify the performance of the follower (e.g.,

as in interdiction or defender-attacker problems). The follower, in turn, optimizes some cost

function over a set of activities that depends on the leader’s decision. While the follower

has complete knowledge of his problem, the leader, who decides as to optimize her objective

function, has only partial information. As such, she needs to learn about the cost parameters,

available resources, and the follower’s activities from the feedback generated by the follower’s

actions. We measure the performance of any given leader’s decision-making policy in terms

of its time-stability, defined as the number of periods it takes the policy to match the actions

of an oracle decision-maker with complete information of the bilevel problem.

Three types of bilevel models are considered: Shortest path interdiction, max-min bilevel

linear problems, and asymmetric bilevel linear problems. For shortest path interdiction we

discuss greedy and pessimistic policies, and show that their time stability is upper-bounded

by the number of arcs in the network; moreover, these policies are not dominated by any non-

greedy or non-pessimistic policy. We refine these ideas into the more general max-min bilevel

problems. Here we show that there is a class of greedy and robust policies that have the best

possible worst-case performance, eventually match the oracle’s actions, provide a real-time

optimality certificate, and can be computed using mixed-integer linear programming. These

policies, however, do not retain their features for asymmetric bilevel problems. For this set-

iii

ting we study the performance of greedy and best-case policies and show that they keep many

of the attractive properties that the greedy and robust policies have for the max-min case.

By performing computational experiments under different configurations, we show that

the proposed policies compare favorably against different benchmark policies. Moreover,

they perform reasonably close to the semi-oracle, that is a novel decision-maker we intro-

duce that provides a lower bound on the time-stability of any policy.

Keywords: Bilevel optimization, Online Optimization, Robust Optimization, Interdiction,

Learning.

iv

TABLE OF CONTENTS

PREFACE . x

1.0 INTRODUCTION . 1

2.0 SEQUENTIAL SHORTEST PATH INTERDICTION WITH INCOM-

PLETE INFORMATION AND LEARNING 6

2.1 Introduction . 6

2.2 Problem Formulation . 10

2.3 Efficient Interdiction Policies . 17

2.3.1 Efficient Policies When Â0 = ∅ . 18

2.3.2 Efficient Policies When Â0 6= ∅ . 26

2.4 Lower Bounds for Policy Performance . 30

2.4.1 Semi-oracle Policies . 30

2.4.2 Lower Bound for Regret . 32

2.4.3 Lower Bound for Time-Stability . 37

2.5 Computational Study . 38

2.5.1 Test Instances, Benchmark Policies and Implementation Details . . 38

2.5.2 Computation of the Oracle-based Policy 39

2.5.3 Comparison to Benchmark Policies 40

2.5.4 Policy Performance: Sensitivity with Respect to |Ã0| 44

2.5.5 Policy Performance: Sensitivity with Respect to Quality of Bounds

in Â0 . 47

2.6 Concluding Remarks . 50

v

3.0 SEQUENTIAL MAX-MIN BILEVEL LINEAR PROGRAMMING

WITH INCOMPLETE INFORMATION AND LEARNING 53

3.1 Introduction . 53

3.2 Basic Model: Cost Uncertainty . 57

3.2.1 Feedback . 63

3.2.2 Optimality Criteria . 67

3.3 Greedy and Robust Policies . 71

3.3.1 General Results for Standard Feedback 71

3.3.2 Policies in Λ Under Value–Perfect Feedback 73

3.3.3 Policies in Λ Under Response–Perfect Feedback 77

3.4 Model for Matrix Uncertainty . 79

3.4.1 Assumptions and Feedback in the Matrix Model 79

3.4.2 Extended Greedy and Robust Policies 81

3.4.2.1 Policies in ΛE under Standard and Value–Perfect Feedback 82

3.4.2.2 Policies in ΛE under Response–Perfect Feedback 82

3.5 Semi-Oracle Lower Bounds . 84

3.6 Computational Study . 87

3.7 Concluding Remarks . 93

4.0 SEQUENTIAL ASYMMETRIC BILEVEL LINEAR PROGRAM-

MING WITH INCOMPLETE INFORMATION AND LEARNING . . 95

4.1 Introduction . 95

4.2 Problem Formulation . 97

4.3 Greedy and Robust Policies . 99

4.4 Greedy and Best–Case Policies . 108

4.4.1 Definition and General Convergence Results 108

4.4.2 The Basic Uncertainty Set Update 112

4.4.3 The Convex Uncertainty Set Update 114

4.4.4 The Non-Convex Uncertainty Set Update 117

4.5 Computational Study . 121

4.6 Concluding Remarks . 127

vi

5.0 CONCLUSIONS . 129

APPENDIX A. SUPPLEMENT FOR CHAPTER 2 132

A.1 Basic properties of k-most vital arcs . 132

A.2 Additional proofs . 133

A.3 Additional graphs . 136

APPENDIX B. SUPPLEMENT FOR CHAPTER 3 140

B.1 Proofs of the results for the basic cost model 140

B.2 Proofs of the results for the matrix model 144

B.3 Additional Results and Complementary Material 152

B.3.1 Semi-Oracle Algorithm . 152

B.3.2 Numerical Computation of Policies in Λ 155

B.3.3 Sequential Assignment Interdiction 158

BIBLIOGRAPHY . 161

vii

LIST OF TABLES

1 Brief summary of the key notation used in Chapter 2. 16

2 Running times (in seconds) to solve LB. The entry “-” implies that an optimal

solution was not found within one hour. 40

3 Average cumulative regret (×102) and MAD (in parenthesis) for k = 6. . . . 41

4 Average time-stability and MAD (in parenthesis) for k = 6. 41

5 Average running times (in seconds) per replication and MAD (in parenthesis)

for computing πoracle using Algorithm 2 (regret performance metric), which

correspond to the results reported in Table 3. Average times for computing γ

are below 5 seconds across all configurations. 42

6 Average running times (in seconds) per replication and MAD (in parenthesis)

for computing πoracle using Algorithm 3 (time-stability performance metric),

which correspond to the results reported in Table 4. Values of time-stability

for γ are computed instantly given the regret. 42

7 Average regret (×102) and MAD (in parenthesis) for k = 6. Among the entries

denoting regret, the entry in bold is the best value, and the other entries indicate

the difference with respect to the best value. 43

8 Average time-stability and MAD (in parenthesis) for k = 6. Among entries denoting

time-stability, the entry in bold is the best value, and the other entries indicate the

difference with respect to the best value. The entries in italic and “−” mean that

the policy did not attain time-stability for some instances. 44

9 Average regret (×103) and time-stability, and MAD (in parenthesis) for k = 15.

The entries in bold denote the best value. 48

viii

10 Time-stability mean and MAD for the hypercube uncertainty model and Value

Perfect feedback. 90

11 Time-stability mean and MAD for the hypercube uncertainty model and Re-

sponse Perfect feedback. 91

12 Time-stability mean and MAD for the general uncertainty model and Value

Perfect feedback. 91

13 Time-stability mean and MAD for the general uncertainty model and Response

Perfect feedback. 92

14 Mean for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 1.123

15 Mean for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 2.124

16 Mean for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 3.124

17 MAD for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 1.125

18 MAD for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 2.125

19 MAD for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 3.126

20 Number of replications for which optimality is guaranteed, k = 1 126

21 Number of replications for which optimality is guaranteed, k = 2 126

22 Number of replications for which optimality is guaranteed, k = 3 127

ix

LIST OF FIGURES

1 Networks used in Remark 1. 15

2 Networks used in Remark 2. 19

3 Networks used in Remark 3. 20

4 Networks used in Remark 4. 21

5 Networks used in the proof of Lemma 3. 23

6 Networks used in Remark 5. 24

7 Network G used for the proof of Proposition 1, qku = (u− 1)(k + 2) + 1. . . . 25

8 Network used in Remark 7. 29

9 Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as pc increases. The cost distribution is right-skewed

and pa = 1/2. 45

10 Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as pc increases. The cost distribution is symmetric and

pa = 1/2. 46

11 Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as the cost intervals widen for the case of pa = 2/3 and

pc = 1/3. Given the interval-width multiplier m, the lower and upper bounds

of the arc costs in Â0 are la = ca −mxa and ua = ca +mya, respectively. . . . 49

12 Example of an instance when wt,δ > wt,∗R . The labeling of the arcs is given by

[`a, ua], ca, da. 102

13 Example of an instance when wt,δ < wt,∗R . The labeling of the arcs is given by

[`a, ua], ca, da. 103

x

14 Example of an instance when w∗ < wt,∗R . The labeling of the arcs is given by

[`a, ua], ca, da. 104

15 Example of an instance when wt,δ = wt,∗R does not imply that wt,δ = w∗, and

where wt,δR < w∗. The labeling of the arcs is given by [`a, ua], ca, da. 105

16 Example of an instance when zt,δ = zt,∗R does not imply that wt,δ = w∗. The

labeling of the arcs is given by [`a, ua], ca, da. 106

17 A layered network with two layers and four nodes per layer. It has |N | = 10

nodes and |A| = 24 directed arcs. 122

18 Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as pc increases. The cost distribution is left-skewed and

pa = 1/2. 137

19 Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as the cost intervals widen for the case of pa = 2/3 and

pc = 0. Given the interval-width multiplier m, the lower and upper bounds of

the arc cost in Â0 are la = ca −mxa and ua = ca +mya, respectively. 138

20 Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as the cost intervals widen for the case of pa = 2/3 and

pc = 2/3. Given the interval-width multiplier m, the lower and upper bounds

of the arc costs in Â0 are la = ca −mxa and ua = ca +mya, respectively. . . . 139

xi

PREFACE

Thanks to God for always showing me the way.

I would like to thank my advisor Dr. Oleg Prokopyev. His motivation, energy, and

knowledge are exceptional, and I deeply appreciate his advice, ideas, and support throughout

all these years. I am also grateful for all the opportunities he provided me, for his patience,

and for always being available and in a good mood.

Special thanks to Dr. Denis Sauré for his continuous support, motivation, and his in-

valuable insights. His contributions were fundamental for the successful completion of this

dissertation.

I would also like to thank all the committee members Dr. Jayant Rajgopal, Dr. Pavlo

Krokhmal, and Dr. Bo Zeng for their suggestions, their time, and their encouragement, as

well as Dr. Bopaya Bidanda for believing in me and giving me the opportunity to pursue my

graduate studies at the University of Pittsburgh.

I am grateful to all my friends at the Department of Industrial Engineering, in particular

to Arnab Bhattacharya, David Abdul-Malak, Ruichen Sun, Jung Lim, Colin Gillen, and

Hosein Zare who made these years much more interesting and easier to navigate.

Many thanks to my family, my parents Victor and Nubia, my brother Victor, and my

sister Maria Antonieta. This dissertation would not have been possible without their love

and constant support throughout all my life

xii

1.0 INTRODUCTION

Bilevel programming deals with optimization problems where one part of the decisions to be

made (referred as lower-level decisions) are constrained to be solutions of a mathematical

program that depends on the remaining upper-level decisions. This general structure makes

bilevel programs useful to model hierarchical decision-making problems between two actors,

usually casted as a leader, or an upper-level decision-maker, and as a follower, or a lower-level

decision-maker (Dempe 2002). In this perspective, the leader solves an optimization problem

that depends on the optimal decision of the follower’s problem, and this latter problem is,

in turn, parameterized by the decisions of the leader. As such, bilevel programs have many

applications in different fields such as defense (Brown et al. 2006), economics (Sherali et al.

1983), transportation (Lucotte and Nguyen 2013), among many others (see Dempe (2002),

Colson et al. (2007a), Migdalas et al. (2013) and the references therein).

In the typical bilevel formulation it is assumed that the leader and the follower only inter-

act once, and that the leader knows with certainty all the parameters of the problem solved

by the follower. There are settings, however, where they interact sequentially during a given

time horizon, and where the leader has incomplete information regarding the optimization

problem the follower faces at each period. As an example, consider a law enforcement force

that patrols smuggling activities over a national border (see e.g., Brown et al. (2006), Morton

et al. (2007), Gift (2010)). In this problem, the smugglers continuously attempt to bring

inside the country illegal immigrants or illegal goods at the highest possible efficiency using

different routes and means of transportation. Law enforcement, on the other hand, have to

periodically reallocate their resources to patrol and block the routes used by the smugglers.

The effectiveness of their decisions is limited, however, since they do not have all the informa-

tion regarding some of the routes the smugglers use. This setting can be framed as a network

1

interdiction bilevel problem, where the follower corresponds to the smugglers, who at each

time solve a shortest-path problem on the network that remains after arcs are interdicted.

On the other hand, law enforcement are the leader, who must decide what arcs to interdict

at each time, albeit not having complete knowledge of the network used by the follower.

Alternatively, consider a sequential version of a typical bilevel pricing (or tariff) model

(see Labbé et al. (1998), Van Hoesel (2008)). In here, at each period the leader determines

the price (or tariff) for a set of follower’s activities with the objective to maximize the revenue

that results after the follower performs such activities. After the prices are set, the follower

decides upon the level of tariffed and untariffed activities to perform, subject to certain

operational constraints, with the objective to minimize the operational costs associated with

both types of activities. In certain applications of such models, the leader might be forced to

set prices even though she does not know all the information related to the activities she does

not tax. For instance, in Bouhtou et al. (2007), the leader is a telecommunications network

operator who sets tariffs for links under her ownership (competing companies control the

remaining links of the network). The network users correspond to the follower, and they

choose what links of the network to use in order to minimize their operational costs. In this

setting, the leader might have incomplete information regarding the real costs (or operational

constraints) the users incur by using links that belong to the competition, and hence the

leader decides without knowing with certainty all the entries of the constraint matrix and

the costs vector of the follower’s problem.

In this dissertation we study such sequential bilevel programming problems with incom-

plete information (SBPI). Specifically, our objective is to formalize the problem, to establish

useful optimality criteria, and to derive solution methodologies that are theoretically sound,

and implementable in practice. Observe that SBPI fall under the umbrella of sequential

decision-making under uncertainty; however, they cannot be tackled using standard meth-

ods, e.g., Markov decision processes (MDP), stochastic programming (SP) or ever adaptive

robust optimization (ARO). For one, in SBPI the leader has a very poor characterization

of uncertainty as most of the data related to the follower’s activities cannot be directly col-

lected or estimated. Moreover, the relationship between the leader’s and followers’ decision

variables is generally non-convex (Dempe 2002).

2

These observations motivate us to pursue the objectives of this dissertation by fram-

ing SBPI within the methods of online optimization. In these models, at each period a

decision-maker has to choose a solution from a fixed action set, incurring a cost that de-

pends on the chosen solution. The objective of the decision-maker is to minimize the costs

she faces across all time periods, however, she does not know the probability distributions

from which the costs are drawn, or the rules, if any, they follow (Cesa-Bianchi and Lugosi

2006a, Bubeck and Cesa-Bianchi 2012). As such, online optimization is useful to tackle

sequential decision-making problems where the decision-maker has very limited knowledge

regarding the structure of uncertainty (Hazan 2015), and/or where there are no functional

assumptions that relate the actions with the costs.

Different from classical methods such as MDP, SP and ARO, where a single optimization

problem is solved by taking into consideration all possible future scenarios (see e.g., Puterman

(2014), Birge and Louveaux (2011), Ben-Tal et al. (2009)), in online models the decision

policies solve a new optimization problem at each period. Moreover, due to the lack of

reasonable estimates for future uncertainty, these optimization problems incorporate only

information from past observations. Under this perspective, the main goal is to find policies

that provide good bounds on the regret : the difference between the performance faced by the

decision-maker (the leader in our case) and the performance of an idealized oracle decision-

maker that has all the problem’s information beforehand (Cesa-Bianchi and Lugosi 2006a).

A crucial question is thus how to use the information the decision-maker collects from her

observations to attain low regret values (i.e., the exploration-exploitation dilemma see, e.g.,

Bubeck and Cesa-Bianchi (2012)), which in our context translates in determining the best

way to incorporate the feedback, i.e, the information the leader gets from the follower’s

responses, into the bilevel framework.

There are several different type of online optimization models in the literature that

consider diverse assumptions on the action set, on whether the rewards are stochastic or

deterministic, and on the particular type of feedback, see, for instance, Auer et al. (1995),

Freund and Schapire (1997), Cesa-Bianchi et al. (1997), Auer, Cesa-Bianchi, Freund and

Schapire (2002), Auer, Cesa-Bianchi and Fischer (2002a), Kalai and Vempala (2005), Koolen

et al. (2010), Neu and Bartók (2013), Cesa-Bianchi and Lugosi (2006a), Bubeck and Cesa-

3

Bianchi (2012) and the references given therein. There are, however, three major drawbacks

of existing online optimization methods that make them unfit to solve the class of SBPI:

(i) Current models consider a fixed amount of possible actions (with the exception

of Kleinberg et al. (2010), that does not adequately specialize to our class of problems).

That is, in most existing models the set of actions available to the decision-maker at each

time is always the same, independent of any new information that is discovered. Hence, such

models cannot handle the fact that the leader might learn new means to affect the follower’s

actions (e.g., new routes in the smuggling interdiction setting) from observing the latter.

(ii) Naively using existing online policies, such as those applied to multi-armed ban-

dit settings (see, e.g. Cesa-Bianchi et al. (1997), Auer, Cesa-Bianchi, Freund and Schapire

(2002), Audibert and Bubeck (2009), Cesa-Bianchi and Lugosi (2006a)), would result in re-

gret bounds that are exponential in the primitives of the problem (i.e., the number of variables

and constraints). Specifically, general multi-armed bandit policies provide bounds that are

proportional to the number of possible actions available to the decision-maker. In our context

the number of possible actions corresponds to the number of feasible solutions in the upper-

level (leader’s) optimization problem, and it is well-known (see, e.g., Dempe (2002)) that

said number is typically exponential in the number of the leader’s variables and constraints.

(iii) Online methods that explicitly consider problems with combinatorial structure (e.g.

Cesa-Bianchi and Lugosi (2012), Audibert et al. (2013), Kalai and Vempala (2005), Gyorgy

et al. (2007)), or infinitely many solutions, as in online convex optimization (e.g. Zinkevich

(2003), Kalai and Vempala (2005), Awerbuch and Kleinberg (2004a), Hazan et al. (2007),

Hazan (2015)), assume a single-level relationship between the decision-maker’s actions and

the costs she observes. Consequently, these models cannot address the hierarchical relation-

ship between the leader and follower that is present in bilevel optimization models.

We divide this dissertation into three models for SBPI. In the first chapter, we consider

that the bilevel problem corresponds to a shortest-path network interdiction problem (Israeli

and Wood 2002), where the leader initially has no information for some of the arcs of the

network the evader uses, as well as the real costs of some of the arcs she observes (for which

she only knows that they lie in some given intervals). For this setting we propose a set of

policies based on blocking a k-most vital arcs solution of the network the leader observes at

4

each time (Ball et al. 1989). Under certain assumptions on the feedback, we prove that these

policies bound the regret linearly in the number of arcs of the network, detect optimality in

real time, and are easily computable using state-of-the-art MIP solvers.

In the second chapter we generalize the concepts and results of shortest path interdiction

to general adversarial (max-min) bilevel problems. In this setting, the leader does not know

some of the follower’s variables and constraints, and might not know with certainty all the

values of the data of the lower-level problem for those variables and constraint she observes.

Nonetheless, the leader knows that this data belongs to a given polyhedral set. For this

setting, we propose a set of policies that are greedy and robust, which depending on the type

of feedback, can bound the regret linearly with the number of total variables and constraints

the follower uses. Moreover, these policies are weakly optimal, in the sense that they have

the best possible worst–case performance across all instances of the problem. In addition, as

in the shortest path case, these policies detect optimality in real time; and by using robust

and bilevel optimization techniques, we show how the policies can be computed using MIPs.

In the last chapter, we consider the asymmetric bilevel problem. Here, the objective of

the leader is not necessarily to maximize the disruption of the follower’s performance and she

might optimize some other objective function. We show that greedy and robust policies are

no longer able to guarantee finite time-stability bounds nor provide certificates of optimality.

Subsequently, we study a class of alternative greedy and ‘best’–case policies that can provide

a finite upper-bound for the time-stability across all instances, and generate certificates of

optimality in real time. In addition, under certain updating mechanisms, these policies have

an MIP formulation which can be viewed as the extensive form of a two-stage stochastic

mixed-integer problem. Hence, these policies can be computing either by using state-of-the-

art MIP solvers or decomposition techniques from the stochastic programming literature.

5

2.0 SEQUENTIAL SHORTEST PATH INTERDICTION WITH

INCOMPLETE INFORMATION AND LEARNING

2.1 INTRODUCTION

In network interdiction, an interdictor or leader selects a series of interdiction measures

that change the structure of a network with the objective of disrupting or stopping an

evader’s (follower’s) movement through the network. The problem, initially studied in the

context of military applications, has received considerable attention during the past decades,

considering various objectives for the interdictor, from maximizing the shortest path in the

interdicted network, see, for instance, Fulkerson and Harding (1977), Corley and Sha (1982),

Malik et al. (1989), Israeli and Wood (2002), to minimizing the maximum flow between given

nodes as in Wollmer (1964), McMasters and Mustin (1970), Ghare et al. (1971), Corley and

Chang (1974), Ratliff et al. (1975), Wood (1993), to minimizing the maximum probability

of successful evasion as in, e.g., Washburn and Wood (1995), Morton et al. (2007) and Pan

and Morton (2008). Stochastic variations of these problems have also been considered by

Cormican et al. (1998), Hemmecke et al. (2003), Janjarassuk and Linderoth (2008), as well

as multicommodity versions, by Lim and Smith (2007). See also Smith and Lim (2008) for

a survey on several types of interdiction and fortification models.

In addition to these classical settings, recent work in the area focuses on critical node/edge

detection problems, where the objective is to remove a set of nodes/edges in order to maxi-

mally degrade some connectivity measure of the remaining network. Such measures include,

for instance, the total number of pairwise connections, the size of the largest connected com-

ponent, and the total number of connected components (Walteros and Pardalos 2012). In

particular, the shortest path between two (or more) fixed nodes can be viewed as a special

6

case of such a connectivity measure, see Veremyev, Boginski and Pasiliao (2014). We also

refer to Shen et al. (2012a), Granata et al. (2013), Veremyev, Prokopyev and Pasiliao (2014),

Veremyev et al. (2015), Shen and Smith (2012), a survey in Walteros and Pardalos (2012)

and the references given therein.

While most studies assume complete knowledge of the network structure and costs, in

many applications areas, like in military settings, the interdictor operates (at least initially)

with limited information about the conditions on the ground. The same holds true for ap-

plications in drug and nuclear material smuggling, which have been casted as interdiction

problems, see, e.g., Wood (1993) and Morton et al. (2007). In this work, we envision shortest

path interdiction as a sequential process, where the interdictor initially has partial knowl-

edge about the structure and costs of the network, and may adapt the interdiction actions as

new information is collected from observing the evader’s reaction to previous actions. More

specifically, we focus our attention on a specific setting, where the interdictor knows that

(the evader’s) arc costs are deterministic and belong to a given set. In each time period, the

interdictor blocks at most k arcs from the network (only for the duration of the period), and

the evader then travels along a shortest 1− n path of the interdicted network, where nodes

1 and n are assumed to be the same in all time periods, arbitrary and fixed. Subsequently,

the interdictor observes each arc on said path and its cost, and, hence, learns about the

structure and costs of the network, and adjusts its actions so as to maximize the cumulative

cost incurred by the evader.

Our modeling approach is motivated by interdiction and evasion dynamics arising, for

instance, when monitoring and patrolling illegal activities. In this context, Gift (2010) con-

siders an interdictor (e.g., a U.S. law-enforcement or military task force) that periodically

re-allocates resources such as ships, planes, helicopters and land units, over different geo-

graphical zones of known routes, so as to capture drug smugglers. The smugglers, on the

other hand, learn by trial and error the route with highest probability of successful evasion

for any given allocation; in particular, it is assumed that the smugglers solve the evasion

learning problem via index-based (Gittin’s) heuristics. Similarly, Morton et al. (2007) and

Brown et al. (2006) consider the problem of detecting illegal material or immigrants enter-

ing through a border (their base models assume that the probabilities of successful evasion

7

are known upfront) when the interdictor allocates surveillance resources to modify detection

probabilities throughout a network. The evader, who observes such an allocation, chooses a

path of minimum detection probability. Assuming common (shared) information, Malaviya

et al. (2012) study sequential allocation of police officers within an urban region (who mon-

itor criminals and their trade links) so as to minimize the maximum flow of illegal drugs

within a time horizon. In this work, learning is incorporated by means of side constraints

(e.g. criminals are arrested only after being monitored for a number of time epochs, and/or

if they have been denounced by lower ranked criminals). The studies above share distinctive

features: the interdictor’s problems are formulated using a bi-level framework; and are solved

by using mixed-integer programming techniques. (Moreover, note that maximum probability

path interdiction can be casted as a shortest path interdiction on the same graph with costs

set to the logarithm of the reciprocal of the evasion probability).

Sequential attacker-defender and defender-attacker problems have been analyzed using

game theory. Assuming perfect information, Hausken and Zhuang (2011) study how the

government should balance defensive investments over time. Zhuang et al. (2010) study to

what extent a defender with private information must be deceptive or secretive towards an

attacker who updates its beliefs about the defender’s “toughness” whenever a confrontation

takes place. In a similar setting, albeit single-period, Xu and Zhuang (2014) study the at-

tacker’s trade-off between investing resources in either attacking or learning the defender’s

vulnerability. Non-sequential adversarial decision models where the attacker is uncertain

about the defender’s actions have been considered as well, see, e.g., McLay et al. (2012), and

the references given therein.

The network interdiction and attacker-defender models above do not capture the partic-

ular model-learning component that arises in our setting. In this sense, sequential decision-

making problems that involve both generic model uncertainty and learning are usually casted

as multi-armed bandits (Robbins (1952)). However, the typical bandit formulation focuses on

stochastic feedback, as in Lai and Robbins (1985), Auer, Cesa-Bianchi and Fischer (2002b),

or models of adversarial nature, such as Auer et al. (2003), consider a trivial mapping be-

tween decisions and feedback. We also refer to the work by Modaresi et al. (2012) and

Cesa-Bianchi and Lugosi (2012) for bandit settings with combinatorial structure. A salient

8

feature of our model, which distinguishes it from previous work, is that the feedback collected

is not directly selected by the decision-maker, but can be used to infer the cost structure of

the setting.

Our model makes several assumptions. Consistent with the literature discussed above

(see, e.g., Israeli and Wood (2002)), we assume that the interdictor’s objective is to max-

imize the cumulative cost incurred by the evader, thus implying that both agents perceive

costs equally (a notable exception is Bayrak and Bailey (2008)). This might accommodate

settings, for example, where costs represent travel times, and the interdictor adjusts time

estimates after observing the evader go through a particular route. Note that we implicitly

assume that the evader does not react strategically to the interdictor’s actions, i.e., he/she

always chooses a shortest 1−n path. We assume that all costs are deterministic and that arc

costs are observed by the interdictor once these are used by the evader. These assumptions

aim at isolating a first-order effect of model uncertainty: the cost of recovering the optimal

interdiction action.1 Note that absent uncertainty, when the evader and the interdictor only

interact once, our problem reduces to the k-most vital arcs problem2(Corley and Sha 1982,

Malik et al. 1989), which is a special case of shortest-path maximization, see, e.g. Israeli and

Wood (2002). In this latter problem, arcs might be interdicted “partially,” which increases

their traversing costs by some amount that depends on the interdiction effort.

In this chapter we analyze the performance of a simple policy in which the interdictor,

at each period, removes a set of k-most vital arcs of the observed network, and separate the

analysis for the cases when: (i) the costs of all initially observed arcs are known; and (ii) the

costs of some initially observed arcs are unknown, but are in a known range. In this regard,

the proposed policies are greedy, and pessimistic in that they assume a worst-case realization

of the costs in setting (ii). The k-most vital arcs problem is NP-hard, as shown in Ball

et al. (1989), but effective solution approaches are available in practice, see, e.g., Israeli and

Wood (2002). Following similar work in sequential decision-making under uncertainty (see,

e.g., Cesa-Bianchi and Lugosi (2006b)), we measure policy performance in terms of the re-

1Consider that under stochastic feedback, repeated implementation of an action should lead to reliable
cost estimates, thus our model can be viewed as a certainty equivalent version of a model with stochastic
feedback where actions are changed at a maximum frequency.

2A set of k-most vital arcs in graph G consists of (at most) k arcs whose removal from G results in the
greatest increase in the length of the shortest path between two specified nodes.

9

gret, which is the cumulative loss in cost incurred by a policy relative to that achieved by

an oracle interdictor with prior knowledge of the network’s structure and arc costs, and on

the time stability of a policy, which is the number of periods before the interdiction actions

match those taken by said oracle.

The contribution of the chapter is two-fold. First, we show that the proposed class of

policies is efficient (we define the concept of efficiency in the next section). In doing so, we

identify attractive features of these policies: their regrets admit a finite horizon-independent

upper bound; and they detect in real time when their actions match those taken by the or-

acle policy (thus, indicating that both regret and time stability not longer grow with time).

In addition, we show that the pessimistic nature of the proposed policies in the case of un-

certain arc costs is crucial for attaining a finite regret. Second, we propose a semi-oracle

performance benchmark that contrasts cumulative cost against that induced by an oracle

with advance knowledge of the cost vector, but that must not signal that such knowledge

is available. We argue that this measure provides a better fit to the setting, relative to the

cumulative regret, which is arguably impractical when feedback is deterministic. In addition,

we perform numerical experiments to assess efficiency of the proposed policies.

The remainder of this chapter is organized as follows. Section 3.2 provides a detailed and

more formal description of the problem as well as a definition of efficiency of an interdiction

policy. In Section 2.3 we propose a simple class of interdiction policies and establish their

efficiency. Section 2.4 develops fundamental lower bounds for policy performance, and Sec-

tion 2.5 presents our numerical experiments. Finally, Section 2.6 presents our conclusions

and highlights possible directions for future research.

2.2 PROBLEM FORMULATION

We begin this section by introducing some notation. Let G := (N,A,C) be a directed net-

work, where N and A denote nodes and arcs, respectively, and C := (ca)a∈A is a nonnegative

cost vector, where ca is the cost or length of arc a ∈ A. Let n = |N |. For A′ ⊆ A, we define

the graph G[A′] := (N,A′, C), where it is understood that only the information in C about

10

arcs in A′ is available. We denote by S(G) the set of all shortest 1 − n paths in G, where

nodes 1 and n are arbitrary, fixed and given. Observe that the set S(G) can be defined by:

S(G) := arg min

{∑
a∈P

ca : P is an 1− n path in G

}
,

and let z(G) denote the cost of a path in S(G). Finally, for any path P in G, let `(P) denote

the cost of the path, i.e., `(P) :=
∑

a∈P ca.

Consider an interdictor that initially observes a subnetwork G[A0] of G = (N,A,C), and

knows that the cost vector C lies in the set

C0 :=
{(
c′1, · · · , c′|N×N |

)
∈ R|N×N |+ : c′a = ca for a ∈ Ã0 and `a ≤ c′a ≤ ua for a ∈ Â0

}
,

for given sets Ã0 ⊆ A0 and Â0 ⊆ A0, where 0 ≤ `a < ua < ∞ for all a ∈ Â0 and A0 ⊆ A

(with Ã0 ∩ Â0 = ∅). That is, the interdictor is aware of arcs in A0, she/he knows the costs

of those in Ã0, and has some prior information about the costs (specifically, lower and upper

bounds) of arcs in Â0. We refer to C0 as the initial information available to the interdictor,

as it contains her/his initial knowledge about the structure and costs of the network (we

assume that the set of nodes N is known to the interdictor upfront including the evader’s

source and destination nodes 1 and n, respectively).

In each time period t ∈ T := {0, 1, . . . , T}, the following sequence of events takes place:

(1) The interdictor blocks a set of arcs It ⊆ At only for the duration of period t, with |It| ≤ k,

where At denotes the set of arcs the interdictor is aware of at the beginning of period t,

and the constant k denotes the maximum number of arcs that can be removed in any

time period.

(2) The evader traverses through path Pt ∈ S (G[A \ It]), incurring a cost of z (G[A \ It]) and

revealing the arcs in Pt as well as their costs to the interdictor, so that At+1 := At ∪ Pt
and

Ct+1 := {C ′ ∈ Ct : c′a = ca for a ∈ Pt} ,

where Ct denotes the set of cost vectors that are consistent with the information available

to the interdictor at the beginning of period t ∈ T .

11

In the above, and throughout the chapter, we made the following assumptions:

A1. Each time period t ∈ T the interdictor observes path Pt and cost ca of each arc a ∈ Pt
used by the evader.

A2. The evader acts myopically, always selecting a shortest 1 − n path in the interdicted

network. Also, the evader observes the interdictor’s actions before choosing a path.

(A3). If there is more than one possible choice for Pt, then the evader chooses a path following

a well-defined deterministic rule. Furthermore, this rule is consistent, in the sense that

if Pt is chosen from a collection of paths P , then it is also chosen from any collection

P̃ ⊆ P containing Pt.

(A1). I0 = ∅ and It 6= ∅ for all t ≥ 1; furthermore, A0 = Ã0 ∪ Â0, and G is not “trivially”

k-separable.3

Assumption A1 can be viewed as an instance of perfect (or transparent) feedback, which is

common in the learning theory literature, see, e.g., Cesa-Bianchi and Lugosi (2006b) and re-

quires some degree of monitoring of the evader’s actions, thus its validity ultimately depends

on the details of a particular application. In this regard, this assumption might accommo-

date situations when the interdictor observes the evader’s actions, e.g., by using a satellite or

a drone, but cannot immediately act upon those actions. Such situations occur, for example,

when the interdiction actions require relocation of the interdictor’s resources, e.g., ships, or

land units, over different geographical zones. Furthermore, assumption A1 naturally occurs

when the information from the monitoring devices (e.g., satellite images) is of sufficiently

good quality, but cannot be immediately used for interdiction, e.g., due to the need of its

additional interpretation.

Furthermore, one can interpret this assumption in the context of a repeated interaction

between the evader and the interdictor in a stochastic environment, as mentioned in the pre-

vious section. For example, consider the application to drug smuggling or illegal immigration

detection, where evaders repeatedly choose a path of minimum detection probability (which

can be formulated as a shortest path interdiction). In this setting, repeated interaction

3We refer to a directed network G as “trivially” k-separable if any set of k arcs in G forms an 1-n cut.

12

between the evader and the interdictor would account for successful as well as failed smug-

gling/trespassing attempts, thus providing the interdictor with some information regarding

the success probability of the aforementioned path.

Admittedly, while this assumption simplifies our theoretical analysis, it is somewhat lim-

iting as it also implies that our model cannot be applied directly to some practical settings

where there are limited monitoring capabilities, e.g., when the interdictor observes only the

total length of the path used by the evader, or a subset of the arcs used. Nonetheless, relax-

ing this assumption is an interesting topic of future research (see our additional discussion

in Section 2.6). For example, one could potentially adapt the concept of the barycentric

spanners used by Awerbuch and Kleinberg (2004b) for such generalizations (referred to as

the opaque feedback case).

With regard to the first part of A2, this assumption imposes a rather simple behavior

on the evader. However, one can show that the proposed policies are robust (with respect

to their convergence) in settings with strategic evaders. Regarding the second part of A2,

the assumption is that the evader has some degree of monitoring of the interdictor’s actions.

As outlined previously, it is possible to interpret this assumption in the context of repeated

interactions in a stochastic setting, in which such monitoring might arise naturally from a

process of learning by trial and error on the evader’s side. Please see Section 6 for further

discussion.

Assumption (A3) ensures that the evader’s decisions are consistent with his/her past

decisions. Intuitively, one can think that the evader ranks all paths in the network based on

their costs (resolving ties according to any criteria, or even randomly) in advance. In each

time period the evader selects the highest-rank unblocked (shortest) path from such a list.

Generally speaking, this assumption prevents the evader from using randomized algorithms

during the evasion process.

Assumption (A1) is technical and made without loss of generality. Its first part implies

that the evader acts first and always interdicts at least one arc. The second part simply

states that the interdictor knows valid lower and upper bounds on the cost of any arc

he/she is initially aware of (note that this assumption is not limiting as such lower and

upper bounds can be set at zero and at an arbitrarily large value, respectively). Finally,

13

the non-k-separability condition implies that the problem does not admit a trivial solution.

As a consequence, there are sets consisting of k arcs whose removal do not disconnect the

network.

Considering A1 and (A1), for t ∈ T \ {T}, we define recursively Ãt+1 := Ãt ∪ Pt, and

Ât+1 := Ât \ Pt, hence At = Ãt ∪ Ât for all t ∈ T .

An interdiction policy is a deterministic sequence of set functions π := (πt, t ∈ T), such

that for each t ≥ 1, Iπt = πt(Fπt) represents the set of arcs blocked in period t, and Iπt ⊆ At,

where Fπt summarizes the initial information and history of the interdiction process up to

time t− 1. That is,

Fπt :=
(
C0, I

π
0 , P0, I

π
1 , P1, · · · , Iπt−1, Pt−1

)
,

where Iπ0 = ∅ by Assumption (A1). As Pt, Ât, Ãt, and At depend on Iπs for all s < t, we

add a π superscript to these sets to denote dependence in policy π, when necessary.

Let Π denote the set of all feasible interdiction policies. Given G and C0, from assumption

(A3), applying policy π ∈ Π results in a unique sequence {(Iπt , P π
t) : t ∈ T } of blocking and

evasion decisions. We define the cumulative regret incurred by policy π by time t as

Rπ
t (G, C0) :=

∑
s≤t

(z∗(G)− z (G[A \ Iπs])) ,

where z∗(G) denotes the optimal cost in the k-most vital arcs problem on G, i.e.

z∗(G) := max {z (G[A \ I]) : I ⊆ A s.t. |I| ≤ k} .

The regret represents the cumulative loss in cost incurred by a policy, relative to that of

an oracle interdictor with prior knowledge of G. For a given graph G, regret minimization

is equivalent to cumulative cost maximization. We say that (z∗(G)− z (G[A \ Iπt])) is the

instantaneous regret incurred by policy π at time t ∈ T . Note that when G is k-separable,

then z∗(G) = +∞, and z (G[A \ Iπt]) = +∞ when Iπt is an 1-n cut. Thus, in such cases, we

take the convention that (z∗(G)− z (G[A \ Iπt])) = 0.

Alternatively, one might instead focus on recovering the solution to the underlying k-

most vital arcs problem as soon as possible, which is not necessarily aligned with the goal

of regret minimization. Hence, we define the time-stability of policy π ∈ Π as

τπ (G, C0) := min {t ∈ T : z (G[A \ Iπs]) = z∗(G) for all s ≥ t} , (2.1)

14

1

2

3

4

5

6

7

1
1

3

1

1
1

4

1 1
1

(a) Network G

1

2

3

4

5

6

7

1
1

3

1

1

1

4

1

1

(b) Network G′

1

2

3

4

5

6

7

1

(c) What π1 and π2 observe for both
G and G′ at time t = 1

1

2

3

4

5

6

7

1

1

1
1

(d) What π1 and π2 observe for both
G and G′ at time t = 2

Figure 1: Networks used in Remark 1.

where we assume the convention that min {∅} = T + 1. The time-stability of policy π

corresponds to the first time period by which regret is made zero from there on, i.e., it is the

earliest period by which for any t ≥ τπ (G, C0) the set Iπt is a set of k-most vital arcs of G.

Observe that minimizing time-stability, rather than regret, would be preferable in settings

where the interdictor is willing to sacrifice the regret performance during the first τπ−1 time

periods in order to guarantee that the best solution is found as early as possible. Moreover,

time-stability is still a useful measure of performance in cases where the last time period

T is not known in advance (and the total regret would be ill-defined) or it is known to be

large. Indeed, in such settings time-stability represents the earliest time period in which

a k-most vital arc solution is implemented from there on, and this interpretation can be

handled mathematically by setting T =∞ in equation (2.1).

15

We summarize the notation used in the chapter in Table 1.

Table 1: Brief summary of the key notation used in Chapter 2.

G Underlying directed graph `(P) Cost of 1− n path P
G[A′] Subgraph including only the arcs in

A′
T Time horizon

S(G) Set of all 1− n shortest paths in G Pt Path chosen by the evader in period
t

z(G) Cost of a shortest 1− n path in G It Set of arcs removed during period t
z∗(G) Optimal cost of the k-most vital arcs (la, ua) Lower and upper bounds (known to

problem on G evader) on cost of arc a ∈ A
Ãt Arcs with known cost in period t Πµ Policies efficient with respect to µ

Ât Arcs with known cost interval in pe-
riod t

Fπt History up to time t under policy π

Ct Cost vectors consistent with k Maximum number of arcs that can
be

information in period t interdicted in a time period
xπ First period evader incurs a cost

predicted by π
τπt Time-stability of policy π by time t

G(C0) Graphs compatible with initial in-
formation C0

Rπt Regret of policy π by time t

Ideally, we would like to find a policy π′ ∈ Π that performs better than any other policy

for any graph G that is consistent with the initial information in C0. That is, given C0, we

aim to find π′ such that Rπ′
T (G, C0) ≤ Rπ

T (G, C0) and τπ
′
(G, C0) ≤ τπ (G, C0), for all π ∈ Π

and G ∈ G(C0), where

G(C0) := {G : G = (N,A,C), A ⊆ N ×N, C ∈ C0} .

As shown in Remark 1 below, this is not always possible.

Remark 1. Consider networks G = (N,A,C) and G′ = (N,A′, C ′) depicted in Figures 1(a)

and 1(b), respectively. Set k = 2, T = 2, and assume that A0 = A′0 = ∅ (thus, C0 = C ′0 =

R|N×N |+). Because I0 = ∅ and I1 6= ∅ (by assumption (A1)), then P0 = 1−7, I1 = {(1, 7)} and

P1 = 1−3−6−7 for both networks under all policies. Define π1 so that Iπ
1

2 = {(1, 7), (3, 6)},

and π2 so that Iπ
2

2 = {(1, 7), (6, 7)}. Figures 1(c) and 1(d) depict the networks observed by

the interdictor at times t = 1 and t = 2 for both G and G
′
. Observe that z∗(G) = z∗(G′) = 7,

16

and thus for policy π1 we have that on (G, C0) the total regret is Rπ1

T (G, C0) =(7-1)+(7-3)+(7-

7)=10, while on (G′, C ′0) the total regret is Rπ1

T (G′, C ′0) =(7-1)+(7-3)+(7-4)=13. Similarly,

for policy π2, Rπ2

T (G, C0) = 13 and Rπ2

T (G′, C ′0) = 10. Moreover, one can check that, for

any policy π ∈ Π, Rπ1

T (G, C0) = 10 ≤ Rπ
T (G, C0) and Rπ2

T (G′, C ′0) = 10 ≤ Rπ
T (G′, C ′0). In

particular, Rπ1

T (G, C0) < Rπ2

T (G, C0) and Rπ2

T (G′, C ′0) < Rπ1

T (G′, C ′0). Similar arguments can

also be applied to time-stability.

In light of the discussion above, consider the properties that one would expect efficient

policies to have. Generally speaking, for any policy π, let µπT (G, C0) be a measure of perfor-

mance (e.g., cumulative regret, time-stability) that depends on T , G and C0. We say that

a subset of feasible policies Π∗µ ⊆ Π is efficient with respect to µ if the following conditions

hold:

C1: Any policy π ∈ Π∗µ eventually finds and maintains a solution to the underlying k-most

vital arcs problem for all T above some finite instance-dependent threshold.

C2: Π∗µ is a homogeneous set in the sense that for any policy in Π∗µ there is no other policy in Π∗µ

that is better, or worse, across all instances. Formally, for any policy π ∈ Π∗µ there exist

another policy π′ ∈ Π∗µ, C0 and networks G,G
′ ∈ G(C0) such that µπT (G, C0) < µπ

′
T (G, C0)

and µπT (G
′
, C0) > µπ

′
T (G

′
, C0).

C3: Π∗µ is not dominated by another class of policies. That is, for any C0 and π′ ∈ Π \ Π∗µ,

there exist π ∈ Π∗µ, G ∈ G(C0) and T such that µπT (G, C0) < µπ
′
T (G, C0) .

In the next section we show that such class of policies exists for the case when µ is either

cumulative regret Rπ
T (G, C0) or time-stability τπ(G, C0). Moreover, we show that Π∗R∩Π∗τ 6= ∅.

2.3 EFFICIENT INTERDICTION POLICIES

Guided by the discussion above, in this section we analyze a class of policies that are efficient

with respect to regret and time-stability. First, in Section 2.3.1 we analyze the somewhat

simpler case of Â0 = ∅, i.e., when there is no uncertainty with respect to the costs of arcs

known to the interdictor at time t = 0. This setting reveals the greedy nature of the proposed

17

policies: in each period they remove a set of k-most vital arcs from the observed network.

Later, in Section 2.3.2 we extend such policies for where Â0 6= ∅, i.e., the case with possible

cost uncertainty of the initially known arcs. This extension reveals the pessimistic nature of

the proposed policies: when faced with uncertain costs on the observed arcs, they operate

as in the case of Â0 = ∅, by using known upper bounds as proxies for unknown costs.

Later, we complement our theoretical analysis of these policies with numerical experi-

ments, which demonstrate that their theoretical efficiency also translates into good regret

and time-stability performance across different instances when compared to other benchmark

policies.

2.3.1 Efficient Policies When Â0 = ∅

Assume that Â0 = ∅, which implies that At = Ãt for all t ∈ T . For any policy π ∈ Π, C0

and G ∈ G(C0), define

xπ(G, C0) := min{t ∈ T : z(G[Aπt \ Iπt]) = z(G[A \ Iπt])}, (2.2)

the first time period in which the evader uses a path whose length is expected by the

interdictor (who follows policy π). Additionally, observe that, by the end of period t, the

interdictor is aware of whether or not any time period t corresponds to xπ. Define Γ as the

class of policies that at any time period t prior to xπ interdict a set of k-most vital arcs of

G[Aπt], and then keep removing the same set of k-most vital arcs (used at time xπ) until T .

That is, γ ∈ Γ ⊂ Π if and only if

Iγt ∈ arg max {z(G[Aγt \ I]) : I ⊆ Aγt , |I| ≤ k} for t ≤ xγ, Iγt = Iγxγ for t > xγ. (2.3)

As we discuss later (see Lemma 1), regardless of any new information provided by path P γ
t for

any time period t > xγ, Iγxγ remains a set of k-most vital arcs of G[Aγt] for t > xγ. Hence, the

policies in Γ always interdict a set of k-most vital arcs of the observed network. Furthermore,

by the definition of an interdiction policy given in Section 3.2, Iγt is a deterministic function.

Thus, whenever a policy γ ∈ Γ faces a tie at some time period (i.e., whenever there are

multiple sets of k-most vital arcs in the observed network), the tie is broken in a deterministic

18

1

2

3

4

5

6

7

3

1

1

4
7

1

2

2

1

2

(a) Network G

1

2

3

4

5

6

7

3

1

7

1 1

1

2

2

(b) Network G[Aγ0]

Figure 2: Networks used in Remark 2.

fashion. This observation is similar in spirit to assumption (A3) describing the evader’s

behavior, in the sense that the leader has to be consistent with and cannot decide randomly.

Remark 2. One might expect that if the interdictor uses policies in Γ, then the lengths of

the shortest paths used by the evader, i.e., {z(G[A \ Iγt]) : t ∈ T }, define a non-decreasing

sequence in t. However, it turns out not to be the case in general. For example, let k = 2,

and assume that G = (N,A,C) is as depicted in Figure 2(a), while G[Aγ0] is given in Figure

2(b). Observe that P γ
0 = 1− 3− 5− 7 (this is a shortest path in G = G[A \ Iγ0], recall that

Iγ0 = ∅), and that Iγ1 = {(1, 3), (1, 4)} (this is a 2-most vital arc solution for G[Aγ1]). Next,

P γ
1 = 1−2−5−7 is a unique shortest path in G[A\Iγ1]. Suppose now that Iγ2 = {(1, 4), (5, 7)}

(this is a 2-most vital arc solution in G[Aγ2]), which implies that P γ
2 = 1− 3− 6− 7 (this is a

unique shortest path in G[A\Iγ2]). Therefore, we have that z(G[A\Iγ0]) = 3, z(G[A\Iγ1]) = 8,

and z(G[A \ Iγ2]) = 5, yielding the desired counterexample.

In general, removing the same subset of arcs from a network with fewer arcs results

in longer shortest paths, i.e. if L ⊆ A′ ⊆ A, then z(G[A′ \ L]) ≥ z(G[A \ L]) (because

(A′ \ L) ⊆ (A \ L)). However, it is possible that such an action results in the same shortest

path lengths in both networks. This observation motivates the following definition.

19

1

2

3

4

5

6

7

8

1

1

1

5

1

1

8

1
3

6

1

2

(a) Network G

1

2

3

4

5

6

7

8

1

1

1

5

1

1

8

1

6

1

2

(b) Network G[A′]

Figure 3: Networks used in Remark 3.

Definition 1. Given G = (N,A,C), L and A′ such that L ⊆ A′ ⊆ A, the network G[A′] is

called L-spare (with respect to G) if z(G[A′ \L]) = z(G[A \L]). Moreover, if L is also a set

of k-most vital arcs of G[A′], then the pair (G[A′], L) is called k-complete (with respect to

G), and L is referred to as a k-set of G[A′].

Observe that if, for a given policy π ∈ Π, time t is the first period in which G[Aπt] is

Iπt -spare, then t = xπ. The importance of the notion of k-completeness is illustrated by the

following result.

LEMMA 1. Given G = (N,A,C), let L and A′ be such that L ⊆ A′ ⊆ A and (G[A′], L) is

k-complete. Then L is a set of k-most vital arcs of G[U] for all U such that A′ ⊆ U ⊆ A.

Proof. See Appendix A.2.

The practical importance of Lemma 1 lies in the fact that if one is to discover a k-

complete solution of a partially observed graph, then one has indeed found a k-most vital

arcs solution for the full network. This observation will play a role in showing the efficiency

of the proposed policies.

Remark 3. Note that when (G[A′], L) is k-complete it is not necessarily the case that every

set of k-most vital arcs of G[A′] is a k-set of G[A′] (see Definition 1). That is, if (G[A′], L) is k-

20

1

2

3

4

5

6

7

1
2

3

10

11

1
2

3

10

11

(a) Network G

1

2

3

4

5

6

7

1
2

10

1
2

10

(b) Network G[Aπt]

Figure 4: Networks used in Remark 4.

complete there might exist a set of k-most vital arcs L̃ of G[A′] such that G[A′] is not L̃-spare,

i.e., such that z(G[A′ \ L̃]) > z(G[A \ L̃]). For example, consider k = 2 and G = (N,A,C)

in Figure 3(a), and assume that G[A′] is as shown in Figure 3(b). Set L = {(1, 2), (1, 4)}

and observe that (G[A′], L) is 2-complete. On the other hand, L̃ = {(6, 8), (7, 8)} is a set of

2-most vital arcs of G[A′], but L̃ is not a 2-set as G[A′] is not L̃-spare. Indeed, 1− 4− 8 is a

shortest path in G[A \ L̃] and z(G[A \ L̃]) = 4, while 1− 5− 8 is a shortest path in G[A′ \ L̃]

and z(G[A′ \ L̃]) = 11.

The next two lemmas establish that the class Γ defined by (2.3) satisfies properties C1

and C2 (both with respect to cumulative regret and with respect to time-stability).

LEMMA 2. Let γ ∈ Γ. Then for any C0 and G ∈ G(C0):

1. τ γ(G, C0) ≤ xγ(G, C0);

2. if T > |A| then τ γ(G, C0) ≤ |A|.

Proof. See Appendix A.2.

Loosely speaking, the results above follow from noting that: (i) if k-completeness is

satisfied, then one has found a k-most vital arcs solution, per Lemma 1; and (ii) while

k-completeness is not met, new arcs are discovered in each period.

21

Remark 4. In general, for π ∈ Π the fact that G[Aπt] is Iπt -spare does not necessarily

guarantee that z(G[A \ Iπt]) = z∗(G). To see this, consider the following example. Set

k = 2, and consider G and G[Aπt] in Figures 4(a) and 4(b), respectively. Suppose that

Iπt = {(1, 2), (1, 5)} (so that P π
t = 1− 3− 7). Note that G[Aπt] is Iπt -spare as z(G[Aπt \ Iπt]) =

z(G[A \ Iπt]) = 4, but z(G[A \ Iπt]) < z∗(G) = 6. The reason for this is that Iπt is not a set of

2-most vital arcs of G[Aπt]. This observation further highlights the necessity of interdicting

a set of k-most vital arcs in order to achieve an instantaneous regret of zero.

LEMMA 3. If Â0 = ∅, then Γ is a homogenous set both with respect to cumulative regret and

with respect to time-stability.

Proof. Let k ≥ 2, |N | ≥ k + 2 and C0 be given by Figure 5(c),4 where for simplicity we

only show k + 2 nodes. Consider networks G and G
′

depicted in Figures 5(a) and 5(b),

respectively, and observe that G,G
′ ∈ G(C0). Clearly, P π

0 = {(1, n)}.

Let Fπ1 = (C0, ∅, P π
0). Observe that for the considered networks the set Fπ1 is the same

for all policies and the dependence on π can be dropped. Therefore, the set of policies Γ

can be partitioned as Γ = Γ1 ∪ Γ2, where Γ1 ∩ Γ2 = ∅, Γ1 =
{
γ : (3, n) ∈ Iγ1 = π1(F1)

}
and Γ2 =

{
γ : (1, 3) ∈ Iγ1 = π1(F1)

}
. Note that for any γ ∈ Γ1, τ γ(G, C0) = 1 and

τ γ(G′, C0) = 2, while for any γ ∈ Γ2, τ γ(G, C0) = 2 and τ γ(G
′
, C0) = 1. Likewise, if γ ∈ Γ1

then Rγ
1(G, C0) = 0 and Rγ

1(G
′
, C0) = +∞, and if γ ∈ Γ2, then Rγ

1(G, C0) = +∞ and

Rγ
1(G

′
, C0) = 0. These observations provide the result.

We have proven that there exist sets of initial information C0 for which there is no policy

in Γ that is better (or worse) than all other policies in Γ across all G ∈ G(C0). A natural

question at this point is if this result can be extended for any given C0. The answer is

negative for both regret and time-stability as illustrated by Remark 5.

Remark 5. Consider C0 and G ∈ G(C0) as given in Figure 6. Let T = 2. At time t = 1

there are two sets of 2-most vital arcs: Iγ1 = {(3, 4), (1, 4)} and Iγ
′

1 = {(1, 3), (1, 4)}. Observe

that P γ
1 = 1− 3− 2− 4 with cost `(P γ

1) = 6, while P γ′

1 = 1− 2− 3− 4 with cost `(P γ′

1) = 4.

Moreover, xγ(G, C0) = 1 (thus, τ γ(G, C0) = 1) and Rγ
2(G, C0) = 5. On the other hand,

τ γ
′
(G, C0) = 2, and Rγ′

2 (G, C0) = 7.

4for k = 1 the same arguments apply after removing arc (1, n) from C0, G and G
′
.

22

1

2

3

4

· · ·

k + 1

n

1

1

1

1

1

1
1

1

1

(a) Network G

1

2

3

4

· · ·

k + 1

n

1

1

1

1

1

1
1

1

1

(b) Network G
′

1

2

3

4

· · ·

k + 1

n
1

1

1

1

1

1

1

(c) Initial information C0

Figure 5: Networks used in the proof of Lemma 3.

Consider any other G′ ∈ G(C0) different from G. Note that adding arcs (3, 1), (2, 1), (4, 2)

and/or (4, 3) to G does not affect P γ
1 and P γ′

1 . Therefore, the only possible modification is

to change the cost of (2, 3). However, independent of this cost, z(G′[A \ Iγ
′

1]) ≤ 6. Thus, for

any other G′ ∈ G(C0) it follows that τ γ
′
(G′, C0) ≥ τ γ(G′, C0) and Rγ′

2 (G′, C0) ≥ Rγ
2(G′, C0).

Accordingly, we conclude that γ ∈ Γ is better than (or at least as good as) any other policy

in Γ for all G ∈ G(C0).

In view of the discussion above, it seems reasonable to define, for any given initial infor-

mation C0, a subset of policies Γ∗ ⊆ Γ that contains all the policies that best resolve ties.

Formally, for any set C0 we define

Γ∗(C0) =
{
γ ∈ Γ: Rγ

T (G, C0) ≤ Rγ′

T (G, C0), ∀G ∈ G(C0), ∀γ′ ∈ Γ
}
. (2.4)

Observe that depending on C0 the set Γ∗(C0) might be equal to Γ. Setting C∗ = {C0 : Γ∗(C0) 6=

Γ}, define Γ∗ as the set of policies that interdict using any k-most vital arc set of the observed

network if C0 6∈ C∗, and that use the element of Γ∗(C0) if C0 ∈ C∗.

We note, however, that the set Γ∗ is devoid of interest from a practical perspective. This

follows as for any t ∈ T breaking a tie in advance requires the interdictor to consider, at

least, all the potential replies P γ
t over (N,N ×N) that are consistent with Fγt . Clearly, this

is a task that is computationally prohibitive in general.

23

1

2

3

4

2

1

1

4

1

1

(a) Initial information
C0

1

2

3

4

2

1

1

4

11

1

(b) Network G

Figure 6: Networks used in Remark 5.

Next, we establish the main result of this section:

THEOREM 1. If Â0 = ∅, then Γ ⊆ Π∗τ ∩ Π∗R.

Proof. From Lemmas 2 and 3, Γ satisfies C1 and C2 (both with respect to cumulative

regret and with respect to time-stability). We show next that Γ also satisfies C3.

Specifically, fix π ∈ Π \ Γ and C0, and select T and G ∈ G(C0) such that at some t0 ∈ T

the set Iπt0 is not a set of k-most vital arcs of G[Aπt0]. Let t0 denote the earliest among

such periods. Define Ḡ := G[Aπt0], i.e., the arc set of Ḡ is given by Ā := Aπt0 , and note

that Ḡ ∈ G(C0). Also, let (Iπt , P
π
t)t∈T and (Īπt , P̄

π
t)t∈T be the unique sequences of blocking

and evasion decisions generated by π for graphs G and Ḡ, respectively. By the consistency

assumption, namely, (A3), it must hold that P π
t = P̄ π

t and Iπt = Īπt for 0 ≤ t ≤ t0−1. Thus,

G[Aπt] = Ḡ[Āπt] for all 0 ≤ t ≤ t0. Moreover, as the interdictor acts first, then Iπt0 = Īπt0.

Finally, set T̄ = t0 and define T̄ = {0, 1, . . . , T̄}.

By our construction there exists γ ∈ Γ such that Īγt = Iπt for 0 ≤ t ≤ t0 − 1, which also

implies that Āγt = Āπt for 0 ≤ t ≤ t0. Also, π is such that set Iπt0 (which coincides with Īπt0)

is not a set of k-most vital arcs of Ḡ. Therefore:

z(Ḡ[Āπt0 \ Īπt0)) = z(Ḡ[Ā \ Īπt0)) < z∗(Ḡ). (2.5)

Note that, because γ ∈ Γ, one has that Īγt0 is a set of k-most vital arcs of Ḡ[Āγt0]. Therefore,

one has that z(Ḡ[Āγt0 \ Ī
γ
t0]) = z∗(Ḡ). Moreover, xγ(Ḡ, C0) ≤ t0 and, by Lemma 2, τ γ(Ḡ, C0) ≤

24

t0. In addition, from equation (2.5), we have that τπ(Ḡ, C0) > t0. Thus, τ γ(Ḡ, C0) <

τπ(Ḡ, C0). Therefore, C3 holds for Γ with respect to time-stability. Finally, as the regret

incurred for both π and γ from t = 0 to t = t0−1 is the same, the previous observations also

imply that Rγ

T̄
(Ḡ, C0) < Rπ

T̄
(Ḡ, C0) and Γ satisfies C3 with respect to cumulative regret.

Remark 6. We note that in addition of having Γ ⊆ Π∗τ ∩Π∗R, an implicit important feature

of policies in Γ is that they provide the interdictor with a certificate of optimality, i.e.,

whenever t = xγ (which by Lemma 2 happens at a time period bounded from above by |A|)

the interdictor has the certificate that Iγt is a set of k-most vital arcs of G.

Theorem 1 states that, despite its relative simplicity, the class of policies Γ defined by

(2.3) is efficient with respect to regret and time-stability (i.e., it satisfies conditions C1-C3).

In particular, such policies eventually attain an instantaneous regret of zero for sufficiently

large values of T . However, as demonstrated next, the speed of convergence of policies in Γ

may not be fast, and the bound implied in Lemma 3 may actually be tight.

PROPOSITION 1. There exists C0, G ∈ G(C0) and ζ > 0 such that if T ≥ |A|, then τ γ(G, C0) ≥

ζ|A|. Moreover, the value of Rγ
T (G, C0) can be made arbitrarily large.

Proof. Consider G in Figure 7. There, we have that |A| = 2(k + 1)u, for some positive

integer u.

1

2

3

k+2

· · ·
k+3

k+4

k+5

2k+4

· · ·
2k+5

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

qku

qku+1

qku+2

qku+k+1

· · ·

n

M
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1

1

1

1

1

1

Figure 7: Network G used for the proof of Proposition 1, qku = (u− 1)(k + 2) + 1.

Suppose that M > 1 and A0 = ∅. Without loss of generality assume that P γ
0 = 1-

(k + 2)-(k + 3)-(2k + 4)-· · · -(qku + k + 1)-n (note that (1, 2) /∈ P γ
0)), so that Aγ1 = P γ

0 .

25

Suppose that we select Iγ1 = {(qku + k + 1, n)} (which is a set of k-most vital arcs) and that

P γ
1 = 1-(k + 2)-(k + 3)-(2k + 4)-· · · -(qku + k)-n, so that Aγ2 = P γ

0 ∪ {(qku, qku + k), (qku +

k, n)}. Next, we select Iγ2 = {(qku + k + 1, n), (qku + k, n)}, a set of k-most vital arcs,

and P γ
3 is a new shortest path. Proceeding in this way, by the kth period one has that

Aγk = P γ
0 ∪ {(qku, qku + k), (qku + k, n), · · · , (qku, qku + 2), (qku + 2, n)}, so we select Iγk =

{(qku + k+ 1, n), (qku + k, n), · · · , (qku + 2, n)}, which is a set of k-most vital because it is an

1-n cut with k arcs in Aγk.

Note that at this point, P γ
k includes arc (qku + 1, n), and, thus, Aγk+1 = Aγk ∪ {(qku, qku +

1), (qku+1, n)}. While Iγk ∪{(qku+1, n)} is an 1-n cut, it is no longer a feasible interdiction as

this set contains k+1 arcs. However, we can select Iγk+1 = Iγk∪{(qku−1, qku)}\{(qku+k+1, n)},

which is an 1-n cut with k arcs, and thus, a set of k-most vital arcs. After removing

those arcs, P γ
k+1 is of the form 1-(k + 2)-(k + 3)-(2k + 4)-· · · -(qku − 2)-qku-(qku + k + 1)-

n, so that Aγk+2 = Aγk+1 ∪ {(qk(u−1), qku − 2), (qku − 2, qku)}. Then, we can select Iγk+2 =

Iγk+1 ∪ {(qku − 2, qku)} \ {(qku + k, n)}, which is a set k-most vital arcs. Proceeding in this

fashion, each period (except the first one) we recover the costs of two arcs. The cost of

the arc (1, 2) is recovered at period ku. This implies that τ γ(G, C0) = ku and hence, if

ζ ≤ k/(2k + 2), then τ γ(G, C0) ≥ ζ|A|. While the latter fact depends on the selection of

{(It, Pt) : t < uk}, one can see that, for any such selection, one can simply assign the cost M

to the arc discovered last. Thus, the result holds true, independent of our selection. Finally,

we observe that Rγ
T (G, C0) can be made arbitrarily large by choosing the proper value of M .

Recall from Lemma 2 that τ γ(G, C0) ≤ |A| for any C0 and G ∈ G(C0). This result,

in conjunction with Proposition 1, implies, loosely speaking, that τ γ(G, C0) is a Θ(|A|)

function.5

2.3.2 Efficient Policies When Â0 6= ∅

In this section we assume that, in addition to Ã0, the interdictor is aware of another subset of

arcs Â0 ⊆ A0 (Ã0 ∩ Â0 = ∅) for which only partial information is available. Specifically, the

interdictor knows that ca ∈ [la, ua] for some la and ua, la < ua, known upfront, for all a ∈ Â0.

5The definition of the Θ notation is given, for instance, in Ahuja et al. (1993).

26

Fix C0 and π ∈ Π, and let (Iπt , P
π
t)t∈T denote the unique sequence of blocking and evasion

actions associated with (G, C0) and π. Define a sequence of networks
{
Gπ
t := (N,Aπt , Ĉ

π
t) :

t ∈ T
}

, where for t ∈ T , Ĉπ
t := {ĉa, a ∈ Aπt } is given by

ĉa :=

ca if a ∈ Ãπt ,

ua if a ∈ Âπt .

(2.6)

In other words, for network Gπ
t , the costs of arcs in Ãπt are at their known values, while the

costs of arcs in Âπt are at their upper bounds (this information is part of C0). Note that,

in general, Gπ
t 6= G[Aπt]. Similar to Section 2.3.1, for any policy π ∈ Π, C0 and G ∈ G(C0),

define x̂π(G, C0) as

x̂π(G, C0) := min{t ∈ T : z(Gπ
t [Aπt \ Iπt]) = z(G[A \ Iπt])}. (2.7)

Also, as in the previous section, define Λ as the class of policies that at time t interdict a set

of k-most vital arcs of Gπ
t . That is, λ ∈ Λ if and only if

Iλt ∈ arg max
{
z(Gλ

t [A
λ
t \ I]) : I ⊆ Aλt , |I| ≤ k

}
for t ≤ x̂λ, Iλt = Iλx̂λ for t > x̂λ. (2.8)

Note that x̂π(G, C0) and Iλt are obtained by replacing the terms G[Aπt \ Iπt] and G[Aγt \ I]

by Gπ
t [Aπt \ Iπt] and Gλ

t [A
λ
t \ I] in equations (2.2) and (2.3), respectively. Simply speaking,

according to the policies in Λ the interdictor should act conservatively by assuming that

the costs of arcs in Âλt are at their upper bounds, and then apply the same approach as in

Section 2.3.1. Next, we show that Λ preserves the attractive features (namely, properties

C1-C3) of the policies described in Section 2.3.1. For this, we need the following technical

lemma, whose proof is given in Appendix A.2.

LEMMA 4. Suppose that t ∈ T is such that z(Gλ
t [A

λ
t \ Iλt]) = z(G[A \ Iλt]), then (G[Aλt], I

λ
t)

is k-complete (with respect to G). Moreover, Iλt is a set of k-most vital arcs of G[U] for all

U such that Aλt ⊆ U ⊆ A.

27

The next results, namely, Lemmas 5 and 6 and Theorem 2 generalize the results of

Lemmas 2 and 3, and Theorem 1, respectively, for Â 6= ∅ and the class of policies Λ. The

proofs of the lemmas are similar to those of their counterparts in the previous section: see

the details in Appendix A.2.

LEMMA 5. Let λ ∈ Λ. Then for any C0 and G ∈ G(C0):

1. τλ(G, C0) ≤ x̂λ(G, C0);

2. if T ≥ |A|, then τλ(G, C0) ≤ |A|.

LEMMA 6. Λ is a homogeneous set both with respect to cumulative regret and with respect to

time-stability.

THEOREM 2. Λ ⊆ Π∗τ ∩ Π∗R.

Proof. From Lemmas 5 and 6, Λ satisfies conditions C1 and C2 (both with respect to

cumulative regret and with respect to time-stability). To show that Λ also satisfies condition

C3, we use the same construction as in the proof of Theorem 1. However, there is a subtle

difference (explained in detail below, see equation (2.9) and the related discussion) due to

existence of uncertain arc costs.

Fix π ∈ Π \ Λ and C0. As in the proof of Theorem 1, select T such that at some t0 ∈ T

the set Iπt0 is not a set of k-most vital arcs of Gπ
t0[Aπt0], and let t0 be the earliest time period

among such periods. Define Ḡ := Gπ
t0[Aπt0], i.e., the arc set of Ḡ is given by Ā := Aπt0 , and

its costs by Ĉπ
t0

. (Note that Ḡ ∈ G(C0).) Also, let (Iπt , P
π
t)t∈T and (Īπt , P̄

π
t)t∈T be the unique

sequences of blocking and evasions decisions generated by π for graphs G and Ḡ, respectively.

Next, we need to show that

Iπt = Īπt and P π
t = P̄ π

t for 0 ≤ t ≤ t0 − 1. (2.9)

However, unlike in the proof of Theorem 1, the costs of arcs in Âπt0 for G do not necessarily

coincide with those for Ḡ. We prove next (by contradiction) that (2.9) holds.

Let t′ be the latest time period such that 0 ≤ t′ ≤ t0 − 1 and (2.9) holds only for

0 ≤ t ≤ t′ − 1. Because the interdictor acts first, it follows that Īπt′ = Iπt′ . Then it must be

the case that P π
t′ 6= P̄ π

t′ . As t′ ≤ t0 − 1, P π
t′ does not contain arcs from Âπt0 . Therefore, P π

t′ is

28

1 3

2

4

5

8

[4,18]

12

8

12

12

Figure 8: Network used in Remark 7.

also a shortest path in Ḡ[Ā \ Īπt′] (recall that in Ḡ we increase only the costs of arcs in Âπt0).

However, by Assumption (A3), this implies that P π
t′ = P̄ π

t′ , and we arrive at a contradiction.

Thus, (2.9) holds. The remainder of the proof is similar to the proof of Theorem 1.

Remark 7. Suppose that instead of a conservative approach, we set the costs of arcs in Ât to

some other values (i.e., not upper bounds) when defining Ĉt. As we illustrate next, this leads

to policies that do not necessarily converge, thus, violating C1. Consider the network de-

picted in Figure 8, and assume that the interdictor is aware of all the costs except for c13 = 16.

However, its lower and upper bounds are known to the interdictor and given by `13 = 4 and

u13 = 18, respectively. Set k = 2 and consider the policies that assign either (i) the lower

bound, or (ii) the average of the upper and lower bounds to arcs with unknown costs. Observe

that such policies assign the cost of 16 and 23 to path 1−3−5, respectively. Thus, the interdic-

tor would always remove one arc of this path and another one of path 1−2−5. Note that the

instantaneous regret associated with such interdiction is 4 and that if the interdiction decision

does not change, the real cost of arc (1, 3) would never be revealed, implying that condition

C1 is not satisfied when the actual cost of (1, 3) is c13 > 12. Furthermore, one can see that

the example extends to any value used by the interdictor, other than the upper bound.

One can show that Remarks 2, 4, and 5 also hold in this setting (via similar counterex-

amples); likewise policies in Λ also provide a certificate of optimality for the interdictor, as

in Remark 6. In addition, Proposition 1 can also be extended to the case of Â0 6= ∅, as we

show next.

29

PROPOSITION 2. There exists C0, G ∈ G(C0) and ζ > 0 such that if T ≥ |A|, then τλ(G, C0) ≥

ζ|A|. Moreover, the value of Rλ
T (G, C0) can be made arbitrarily large.

Proof. See Appendix A.2.

2.4 LOWER BOUNDS FOR POLICY PERFORMANCE

In the previous section we established the existence of efficient policies. A natural question

arising at this point is that of how close is the total regret and time-stability performance

of these policies to the performance of a best “practical” and “implementable” policy. This

section is devoted to answering such question. First, in Section 2.4.1 we argue that additional

restrictions must be imposed on how the decisions are made by these policies in the complete

information setting, which leads to the definition of semi-oracle policies. Later, in Sections

2.4.2 and 2.4.3, we detail how semi-oracle policies can be computed for the case of regret

and time-stability, respectively, and propose algorithms to improve the performance of their

computation.

2.4.1 Semi-oracle Policies

To measure policy performance, the classical theory in sequential prediction often postulates

a probabilistic model of uncertainty and computes, for example, the expected cost incurred

by a policy, thus allowing one to search for an efficient policy based on this well-defined

criterion. Assuming that such probabilistic model is initially unknown, the learning literature

focuses instead, for the most part, on the concept of regret, namely, the cumulative loss in

cost relative to that of an oracle (i.e., an oracle interdictor in our setting) with advanced

knowledge of the underlying probabilistic model, see Cesa-Bianchi and Lugosi (2006b). In

our problem such information consists of the structure and arc costs of the network.

In most situations the assumption of existence of such an oracle is impractical, as feasible

policies do not posses such advanced information. Nonetheless, an oracle-based benchmark

can be used for normalization (i.e., preventing optimal performance to grow with the time

30

horizon), and also for bounding the opportunity cost of missing information. While the first

use also applies to our problem, the second one can be improved upon. Indeed, the oracle

policy in our setting would block a set of k-most vital arcs of G in each period, i.e.,

Ioracle
t ∈ arg max {z (G[A \ I]) : I ⊆ A s.t. |I| ≤ k} , t ∈ T .

However, this might imply using information that is not available to any feasible policy

because, in general, A0 6= A. Thus, in our setting the bound on the opportunity cost

of information is trivial (note, for example, that τ oracle(G, C0) = 0) and not particularly

meaningful. Fortunately, it is possible to tighten such a bound by asking the oracle not to

signal the availability of advanced information through its actions. That is, we impose that

Ioracle
t ⊆ At for all t ∈ T . We refer to such interdictor as a semi-oracle interdictor.

Simply speaking, the semi-oracle is an interdictor, who, while having complete knowledge

of all the arcs and costs in the network, at any given time period can only remove either arcs

that have been observed so far, i.e., those used in earlier time periods by the evader, or that lie

withinA0. Note that because the semi-oracle interdictor knowsG, it is capable of anticipating

the evader’s actions and feedback for any sequence of blocking decisions. Therefore, the semi-

oracle is also capable of evaluating with certainty the cost incurred by the evader across all

time periods for any such sequence, and as a result his/her actions are not necessarily adapted

to the history of the process (see Remark 8). Moreover, one can show that the semi-oracle

in fact uses the best non-adapted policy. Note that while the existence of such semi-oracle

is still impractical, its actions for a given instance can be matched by some feasible adapted

policies, and thus it serves as a more reasonable benchmark, relative to a traditional oracle.

(Please see some additional discussion in Section 2.4.2, in particular, Remark 8.)

Finally, although the semi-oracle’s actions are the result of computations far more com-

plex than those of an oracle, it is still possible to formulate mathematically the decision

problem faced by the semi-oracle interdictor, and to reconstruct its actions. In the following

sections, we formulate such a problem as a mixed integer program (MIP), first, for the case of

cumulative regret (Section 2.4.2), and then for time-stability (Section 2.4.3). In the remain-

der of the section we assume that Â0 = ∅. Also, to simplify the exposition and shorten the

31

notation we refer to the semi-oracle interdictor as an oracle interdictor, or simply, an oracle.

Similarly, the resulting policies are referred to as oracle-based instead of semi-oracle-based.

2.4.2 Lower Bound for Regret

Given C0, G ∈ G(C0) and T , suppose the oracle interdictor knows G at time t = 0, aims at

maximizing the evader’s cumulative cost over T , but is restricted to selecting It ⊆ At for

0 ≤ t ≤ T . That is, the oracle interdictor solves the following bilevel (max-min) optimization

problem:

LB(G, C0, T) : max
∑
t∈T

`(Pt) (2.10a)

s.t. Pt ∈ arg min

{∑
a∈P

ca : P is a path in G[A \ It]

}
∀t ∈ T , (2.10b)

I0 = ∅, It ⊆ At, |It| ≤ k, At = At−1 ∪ Pt ∀t ∈ T \ {0}. (2.10c)

Note that in order to produce a valid lower bound, the bilevel problem (2.10) is optimistic

in the sense that the interdictor has some degree of control over the decisions made by the

evader. Specifically, if (2.10b) has multiple optimal solutions (i.e., multiple shortest paths),

then the evader delegates the decision to the oracle interdictor (otherwise, it is potentially

possible to improve upon the interdictor’s actions). While this modeling assumption is com-

mon in the bilevel optimization literature (see, e.g., Beheshti et al. (2015), Colson et al.

(2007b) and references therein), in our setting it is necessary to obtain valid lower bounds

for the performance (with respect to regret) of any policy in Π.

In order to solve (2.10) we observe that the evader’s (lower-level) problem (2.10b) is the

shortest path problem, which admits a compact linear programming (LP) formulation, see

Ahuja et al. (1993). Consequently, the initial bilevel problem (2.10) can be reformulated as

a single-level mixed integer program by exploiting the LP duality. We should note that this

is a standard approach in the bilevel optimization literature (Colson et al. 2007b), which can

be applied as long as the lower-level optimization problem can be replaced by its necessary

and sufficient optimality conditions.

32

For any arc (i, j) ∈ A and period t ∈ T , define rtij = 1 if arc (i, j) is blocked at time t,

and rtij = 0 otherwise. Similarly, define ptij = 1 if the evader travels along arc (i, j) at time

t, and ptij = 0, otherwise. For t ∈ T , define {yti}i∈N as the variables in the dual of the LP

formulation of (2.10b). Then we have the following alternative formulation of (2.10):

LB(G, C0, T) : max
T∑
t=0

(yt1 − ytn)

s.t. yti − ytj ≤ cij +M rtij ∀t ∈ T , ∀(i, j) ∈ A, (2.11a)

∑
j:(i,j)∈A

ptij −
∑

j:(j,i)∈A

ptji =


−1 i = 1

1 i = n

0 otherwise

∀t ∈ T , (2.11b)

∑
(i,j)∈A

cij p
t
ij = yt1 − ytn ∀t ∈ T , (2.11c)

rtij ≤
t−1∑
s=0

psij ∀t ∈ T \ {0} , ∀(i, j) ∈ A \ A0, (2.11d)

ptij ≤ 1− rtij ∀(i, j) ∈ A, ∀t ∈ T , (2.11e)∑
(i,j)∈A

rtij ≤ k ∀t ∈ T , (2.11f)

r0
ij = 0 ∀(i, j) ∈ A, (2.11g)

rtij, p
t
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀t ∈ T , (2.11h)

where M is a sufficiently large constant parameter. Constraints (2.11a) and (2.11b) corre-

spond to the dual and primal constraints of the LP formulation of the shortest path problem

in the interdicted network, respectively. Note that the right-hand side of (2.11c) is the length

of the shortest path in G[A \ It]. Thus, if suffices to consider M = (n− 1) ·max{ca | a ∈ A}

(we do so in our numerical experiments). Constraints (2.11c) enforce strong duality at all

times, so that
{
ptij : (i, j) ∈ A

}
corresponds to a shortest path in the interdicted network at

time t. Constraints (2.11d) ensure that the blocking decision at time t includes only the arcs

that have been observed prior to time t, and constraints (2.11e) prevent the evader from

using blocked arcs. Finally, constraints (2.11f) impose that at most k arcs are interdicted in

any period.

33

Let (r∗, p∗, y∗) denote an optimal solution to (2.11). We have that

I∗t (G, C0, T) :=
{

(i, j) ∈ A : r∗tij = 1
}

and P ∗t (G, C0, T) :=
{

(i, j) ∈ A : p∗tij = 1
}
, t ∈ T

is a feasible sequence of blocking and evasion decisions, which we refer to as the oracle-based

policy.

Note that the oracle-based policy does not belong to Π, as it is not adapted to the history

of the process, see Remark 8. However, its performance serves as a lower-bound for regret of

any policy because each policy in Π can be mapped to a feasible solution to (2.11). Therefore:

∑
t≤T

(z∗(G)− z(G[A \ I∗t (G, C0, T)])) ≤ Rπ
T (G, C0), π ∈ Π, (2.12)

for any C0, G ∈ G(C0) and T .

Remark 8. Recall that for any π ∈ Π there is a unique set Iπt associated with each sequence

Fπt . The oracle-based policy, however, might choose different sets I∗t for the same sequence

F∗t because its actions are allowed to depend on G. For instance, consider the networks G =

(N,A,C) and G
′

= (N,A
′
, C
′
) depicted in Figure 1(a) and (b), respectively, set k = 2, and

assume that A0 = {(1, 7)}. For both G and G
′

the oracle-based policy yields I∗1 = {(1, 7)},

which implies that F∗2 = (C0, ∅, P0, (1, 7), P1), where P0 = 1 − 7, and P1 = 1 − 3 − 6 − 7.

One can check that the oracle policy satisfies that I∗2 = {(1, 7), (3, 6)} for (G, C0), while

I∗2 = {(1, 7), (6, 7)} for (G
′
, C0). Hence, the oracle policy determines two different interdiction

actions at time t = 2 for the same F∗2 .

The oracle problem LB can be shown to be NP-hard using the reduction from the k-most

vital arcs problem (Ball et al. 1989). Nevertheless, MIP formulation (2.11) can be effectively

tackled by state-of-the-art solvers for small values of T and k (see Section 2.5). However,

for larger values of T and k, a significant portion of the solver’s running-time is invested

into finding a feasible solution to LB. With this in mind, and considering that the total

solution time typically depends on the quality of such solutions, we develop Algorithm 1,

which constructs an initial feasible solution of (2.11).

The algorithm begins by finding a set of k-most vital arcs in G, and then solves a sequence

of at most k shortest path problems. Thus, its practical complexity is that of the k-most vital

34

arcs problem, for which there exist effective solution algorithms (Israeli and Wood 2002).

The intuition behind the algorithm is based on the following observation. Suppose I∗ is a

set of k-most vital arcs of G. Then, starting from the set I1 = A0∩I∗, the evader’s response

each time period must reveal at least one arc in I∗ \ It. Thus, one can reconstruct I∗ in at

most k time periods simply by solving a shortest path in each period, and adding the newly

revealed elements of I∗ into the blocking action.

The pseudo-code of the approach is provided in Algorithm 1, where MostVitalArcs(G,k)

returns a set of k most vital arcs in G and the length of the optimal solution, and Shortest–

Path(G) returns the primal and dual solution to the LP formulation of the shortest path

problem, as well as the optimal path length. Also, 1 {·} denotes the indicator function.

Algorithm 1 Finding a feasible solution for LB(G, C0, T)

Require: G = (N,A,C), A0, k, and T

[I∗, z∗] =MostVitalArcs(G,k)

I0 = ∅, [p0, y0, z0] =ShortestPath(G \ I0), t = 0

while z∗ > zt and t ≤ T do

t = t+ 1

It = It−1 ∪
({

(i, j) ∈ I∗ : pt−1
ij = 1

})
[pt, yt, zt] =ShortestPath(G \ It)

end while

Set rsij := 1 {(i, j) ∈ Is} ∀s ≤ t, and rs = rt, ps = pt, ys = yt ∀s > t.

return {(rt, pt, yt) : t ∈ T }

Feeding the initial feasible solution given by Algorithm 1 to the MIP solver decreases

the overall solution time of LB (see, for example, the results in Section 2.5). However, for

sufficiently large values of T any MIP-oriented solution approach is not effective.6 Note,

however, that Algorithm 1 provides an approach for finding a feasible solution of LB, which

identifies a set of k-most vital arcs within k time periods, and then, these k-most vital arcs

are successively repeated until time T . This observation suggests that it might be possible to

solve LB for a relatively short time horizon and extend the solution to a larger time horizon.

6Increasing T by ∆t increases the number of variables and constraints of LB by a factor of Θ(∆t× |A|),
which translates into an exponential increase in the worst-case time performance for any MIP solver based
on branch-and-bound ideas.

35

(Note that this is not always possible, as there exist networks such that the optimal solution

of LB does not involve discovering a set of k-most vital arcs sufficiently early, or even at all.)

Algorithm 2 incorporates the ideas above. There, T0 corresponds to the time period in

which a k-most vital arc solution is first discovered in Algorithm 1. The algorithm iterates

from time T ′ = T0 to time T ′ = T , solving LB(G, C′, T ′) at each time. If the solution of

LB(G, C′, T ′) involves discovering a set of k-most vital arcs, then it is optimal to extend such

set up to time T . Otherwise, the algorithm sets T ′ = T ′ + 1, and LB(G, C′, T ′) is solved

again.

Algorithm 2 Solving LB(G, C0, T)

Require: G = (N,A,C), A0, k, T

Use Algorithm 1 to find z∗ and T0

if T0 ≥ T then

Solve LB(G, C′, T) via formulation (2.11)

else

Set T ′ = T0

Solve LB(G, C′, T ′) via formulation (2.11) and denote by
{

(r̃t, p̃t, ỹt) : ∀t ≤ T ′
}

its so-

lution

while z∗ > yT
′

1 − yT
′

n and T ′ < T do

Set T ′ = T ′ + 1

Solve LB(G, C′, T ′) via formulation (2.11) and denote by
{

(r̃t, p̃t, ỹt) : t ≤ T ′
}

its so-

lution

end while

Set (rt, pt, yt) = (r̃t, p̃t, ỹt) for all t ≤ T ′, and (rt, pt, yt) = (r̃T
′
, p̃T

′
, ỹT

′
) for all t > T ′

end if

return {(rt, pt, yt) : t ∈ T }

(Note: efficiency of the algorithm is improved by providing an initial feasible solution

of (2.11) to the MIP solver each time it is called. Such solutions can easily be constructed

initially from Algorithm 1, and later from the solution of (2.11) in the previous iteration.)

PROPOSITION 3. Algorithm 2 correctly solves LB(G, C′, T).

Proof. See Appendix A.2.

36

2.4.3 Lower Bound for Time-Stability

We extend the ideas in the previous section to the case of time-stability. In particular, for

C0, G ∈ G(C0) and T , the oracle interdictor solves the following MIP:

TS(G, C0, T) : min
T∑
t=0

wt

s.t. z∗(1− wt) ≤ yt1 − ytn ∀t ∈ T , (2.13a)

wt ∈ {0, 1} ∀t ∈ T , (2.13b)

and constraints (2.11a) to (2.11h).

In this formulation, wt indicates whether the blocking decision in period t, t ∈ T , is a set of

k-most vital arcs for G or not. Note that constraints (2.13a) force wt = 1 when the evader’s

path length at period t is lower than z∗ (otherwise, wt = 0 due to the objective function) for

t ∈ T . Let (r∗, p∗, y∗, w∗) denote an optimal solution to (2.13). As in the previous section,

denote by

I∗t (G, C0, T) :=
{

(i, j) ∈ A : r∗tij = 1
}

and P ∗t (G, C0, T) :=
{

(i, j) ∈ A : p∗tij = 1
}
, t ∈ T

the oracle-based policy (for time-stability). (Note that this policy is not necessarily in Π;

recall Remark 8, which can be extended for the case of time-stability). Also, as in the

previous section, we have that time-stability of the oracle based policy is a lower bound for

time-stability of policies in Π. That is, for any C0, G ∈ G(C0) and T :

∑
t∈T

w∗t ≤ τπ(G, C0), π ∈ Π. (2.14)

Solving (2.13) entails the same difficulties that are faced when solving LB. In this regard,

Algorithm 1 also provides a feasible solution to the formulation above, provided one sets

wt = 1 for all t < T0, and wt = 0, otherwise. Note, however, that unlike in the case of regret

minimization, T0 provides an upper bound to the time-stability of the oracle-based policy.

Thus, it is sufficient to solve TS(G, C0, T0) to generate an optimal solution for TS(G, C0, T),

where T ≥ T0. The solution procedure is summarized in Algorithm 3. Its correctness follows

from the fact that T0 is an upper bound for time-stability of the oracle-based policy.

37

Algorithm 3 Solving TS(G, C0, T)

Require: G = (N,A,C), A0, k, T

Use Algorithm 1 to find z∗ and T0

if T0 ≥ T then

Solve TS(G, C0, T) via formulation (2.13)

else

Solve TS(G, C0, T0) via formulation (2.13) and denote by {(r̃t, p̃t, ỹt, w̃t) : t ≤ T0} its

solution

Set (rt, pt, yt, wt) = (r̃t, p̃t, ỹt, w̃t) for t ≤ T0, and (rt, pt, yt, wt) = (r̃T0 , p̃T0 , ỹT0 , 0) for

t > T0

end if

return {(rt, pt, yt, wt) : t ∈ T }

2.5 COMPUTATIONAL STUDY

In this section, we study the practical performance of the proposed policies and algorithms.

First, in Section 2.5.1 we describe our test instances, three additional benchmark policies

and the implementation details. Then in Section 2.5.2 we briefly analyze the performance of

Algorithms 1 and 2 for computation of the oracle-based policies introduced in Section 2.4. In

Section 2.5.3 we compare the performance of the efficient policies discussed in Sections 2.3.1

and 2.3.2 (namely, Γ and Λ, respectively) against different benchmark policies (including

oracle-based). We also conduct sensitivity analysis of the policies in Λ with respect to the

amount and the quality of information initially available to the interdictor in Sections 2.5.4

and 2.5.5, respectively.

2.5.1 Test Instances, Benchmark Policies and Implementation Details

Network Structure and Arc Costs. We test our policies using the class of uniform

random graphs (uniform graphs) of Erdös and Rényi (1959). The cost structure of each graph

instance is generated as follows. First, for each arc a ∈ A, the bounds la and ua are drawn

38

randomly (in sequence) from uniform distributions U(0, 500) and U(la, 500), respectively.

Then cost ca is set to la + (ua − la)xa, where xa is drawn from a Beta(α, β) distribution. As

policy performance might be sensitive to the relative location of ca in [la, ua], we consider left-

skewed, symmetric and right-skewed cost distributions by setting (α, β) to (2, 10), (10, 10)

and (10, 2), respectively.

Benchmark Policies. We consider three additional benchmark policies:

(i) The lower bound policy πL interdicts a set of k-most vital arcs in the observed network,

assuming that the cost of a ∈ Ât is ca = la. That is, the policy operates as a policy in Λ,

but uses the lower bound la instead of ua in equation (2.6).

(ii) The mean bound policy πM interdicts a set of k-most vital arcs in the observed

network, assuming that the cost of a ∈ Ât is ca = (la + ua)/2.

(iii) The random bound policy πR interdicts a set of k-most vital arcs in the observed

network, assuming that the cost of a ∈ Ât is either ca = la or ca = ua with equal probability.

Initial Information. We design instances, where a fraction pa ∈ [0, 1] of the arcs from A

is included into A0, and a fraction pc ∈ [0, 1] of A0 is included into Ã0. Specifically, for a

given pair (pa, pc), starting from A0 = ∅, arcs are selected randomly (uniformly) without

replacement from A and added to A0, until |A0| = b|A| × pac. Then, starting from Ã0 = ∅,

arcs are selected randomly (uniformly) without replacement from A0 and added to Ã0, until

|Ã0| = b|A0| × pcc. We construct these sets in a nested fashion, i.e., the set A0 generated for

pa is a subset of that generated for p′a > pa. The same applies for Ã0.

Implementation Details. The algorithms are coded in Matlab R2012b and all the ex-

periments are performed on a Windows PC with 3.7GHz CPU and 32GB RAM. We solve

(2.11) and (2.13) using CPLEX 12.4. For finding a k-most vital arc solution we use the basic

covering decomposition algorithm from Israeli and Wood (2002).

2.5.2 Computation of the Oracle-based Policy

In this section we demonstrate performance of Algorithms 1 and 2 by comparing three

different approaches for solving LB. In the first approach, referred to as “MIP,” we feed

formulation (2.11) directly to a state-of-the-art MIP solver. In the second, which we denote

39

as “MIP i.s.,” we use Algorithm 1 to generate an initial feasible solution to LB, which is

then fed to the MIP solver together with (2.11). In the third, which we refer to as “Alg.,”

we use Algorithm 2. We test efficiency of these three solution procedures using 10 randomly

generated uniform graphs, each considering n = 40, p = 0.5, pa = pc = 0 and T = 15.

Costs are drawn from the symmetric distribution. Table 2 summarizes the running-time (in

seconds) of each solution approach, where k ∈ {2, 4, 6, 8}. We set a time limit of an hour for

all methods.

Table 2: Running times (in seconds) to solve LB. The entry “-” implies that an optimal

solution was not found within one hour.

k=2 k=4 k=6 k=8
Alg. MIP i.s. MIP Alg. MIP i.s. MIP Alg. MIP i.s. MIP Alg. MIP i.s. MIP
1.5 17.9 29.9 5.4 59.0 124.5 35.9 707.4 - - - -
0.6 4.8 40.1 2.2 22.1 63.3 4.7 169.4 205.6 - - -
1.5 9.6 33.3 3.1 122.1 641.1 22.5 1658.8 - 534.9 - -
1.4 215.5 - 14.7 1799.5 2626.7 15.1 - - 93.1 - -
1.2 6.4 21.0 3.1 19.3 57.0 8.9 285.9 697.0 29.2 729.7 711.8
1.3 6.4 90.1 5.1 48.8 74.3 15.1 447.2 447.8 41.4 - -
1.1 5.5 24.3 8.2 476.2 1742.1 36.7 - - - - -
1.0 4.5 20.7 1.8 12.9 95.7 3.1 115.4 591.3 130.6 - 2244.6
1.4 9.4 72.3 16.1 685.4 1425.1 33.5 - - 190.4 - -
1.3 35.3 2842.9 9.5 1104.3 - 9.4 1166.1 - 18.5 - -

We observe that, in general, the solution time of Algorithm 2 is between one or two orders

of magnitude less than that of the MIP solver. Also, we note that while providing an initial

feasible solution to the solver improves its performance, Algorithm 2 is still significantly

faster than the other methods. This suggests that the practical efficiency of Algorithm 2 can

be mostly attributed to the idea of extending the solution of LB with a shorter time horizon

(recall our discussion in Section 2.4.2).

2.5.3 Comparison to Benchmark Policies

In this section we compare the performance of λ ∈ Λ and γ ∈ Γ against the benchmark poli-

cies. For each pair (pa, pc), where pa, pc ∈ {0, 1/3, 2/3, 1}, we generate 20 random networks

along with subsets A0 and Ã0, and for each of them we generate three different cost vectors

corresponding to each cost distribution. We also set n = 40, p = 0.5, k = 6 and T = 21.

40

First, we consider the settings from Section 2.3.1, where Â0 = ∅ (i.e., pc = 1). (Note

that in this case, classes Γ, Λ, πL, πM and πR are equivalent.) Tables 3 and 4 summarize

the regret and time-stability for each setting, respectively. There, γ denotes a policy in Γ,

and each entry represents the average performance among all 20 instances and the mean

absolute deviation (MAD), in parenthesis. To quantify the value of the initial information

(in particular, the size of A0), we include the performance of the oracle-based policy for the

corresponding performance metrics (regret and time-stability), πoracle.

Table 3: Average cumulative regret (×102) and MAD (in parenthesis) for k = 6.

Left-Skewed Symmetric Right-Skewed

pa γ πoracle γ πoracle γ πoracle

0 5.83 (2.12) 2.27 (0.64) 6.55 (2.57) 3.72 (1.20) 9.42 (3.32) 4.70 (1.46)
1/3 4.28 (1.19) 1.19 (0.49) 5.41 (1.94) 1.95 (0.82) 8.10 (2.72) 2.39 (1.03)
2/3 1.78 (1.03) 0.31 (0.34) 2.29 (1.04) 0.29 (0.32) 3.47 (1.49) 0.87 (0.76)

Table 4: Average time-stability and MAD (in parenthesis) for k = 6.

Left-Skewed Symmetric Right-Skewed

pa γ πoracle γ πoracle γ πoracle

0 12.55 (2.55) 4.95 (0.57) 9.60 (1.86) 5.40 (0.60) 10.50 (1.10) 5.05 (0.48)
1/3 9.75 (2.05) 3.15 (0.70) 8.30 (1.66) 3.65 (0.86) 8.95 (1.76) 3.70 (0.94)
2/3 5.15 (1.87) 1.80 (0.56) 4.30 (1.53) 1.65 (0.52) 5.10 (1.22) 2.2 (0.86)

We observe that the performance of policy γ ∈ Γ is roughly between 2 to 4 times that

of the oracle-based policy. Given that πoracle has complete information about the network

structure and arc costs, the difference in the performance of the policies is reasonably modest.

(For example, in the experiments discussed below λ ∈ Λ performs orders of magnitude better

than the other benchmark policies, namely, πL, πM and πR, in a number of test instances.)

As one would expect, as the value of pa increases (i.e., the size of the initially known arc

subset A0 increases), the performance of both policies improves; indeed, observe that the

mean regret and time-stability as well as the regret and time-stability MAD decrease as

pa increases. Also, it is worth noting that the performance of the oracle policy differs

significantly from zero, the value it would obtain if it was possible to signal availability of

complete initial information.

41

Table 5 depicts the running-time statistics for computation of πoracle (under the regret

performance metric, thus, using Algorithm 2), which correspond to the results reported in

Table 3. Similarly, in Table 6 we report the running-time statistics for computation of πoracle

(under the time-stability performance metric, thus, using Algorithm 3), which correspond

to the results reported in Table 4. (The running time for computation of γ is not reported

as for all instances it is less than 5 and 1 seconds for the regret and time-stability metrics,

respectively.) It can be observed that, in general, the left-skewed case is significantly more

time consuming. Furthermore, it is interesting to note that computing the oracle-based

policy is more challenging for the regret performance metric than for time-stability.

Table 5: Average running times (in seconds) per replication and MAD (in parenthesis) for

computing πoracle using Algorithm 2 (regret performance metric), which correspond to the

results reported in Table 3. Average times for computing γ are below 5 seconds across all

configurations.

pa Left Skewed Symmetric Right Skewed

0 177.81 (255.77) 99.87 (153.27) 27.05 (21.24)
1/3 447.02 (756.74) 59.46 (32.97) 66.93 (30.91)
2/3 639.82 (1175.40) 22.88 (13.41) 48.92 (36.51)

Table 6: Average running times (in seconds) per replication and MAD (in parenthesis) for

computing πoracle using Algorithm 3 (time-stability performance metric), which correspond

to the results reported in Table 4. Values of time-stability for γ are computed instantly given

the regret.

pa Left Skewed Symmetric Right Skewed

0 41.86 (50.50) 13.53 (9.77) 12.16 (7.52)
1/3 25.95 (19.60) 29.57 (17.02) 32.32 (17.69)
2/3 10.69 (5.71) 10.32 (5.32) 18.52 (10.84)

Next, we consider instances with Â0 6= ∅ and pc ∈ {0, 1/3, 2/3}. Tables 7 and 8 sum-

marize the regret and time-stability for each setting, respectively. There, γ and λ denote

42

policies in Γ and Λ, respectively. As before, each entry represents the average performance

among all 20 instances and MAD, in parenthesis. Note that because the policies in Γ are

defined for settings where Â0 = ∅, these type of policies discard any information in the set

Â0.

Table 7: Average regret (×102) and MAD (in parenthesis) for k = 6. Among the entries denoting
regret, the entry in bold is the best value, and the other entries indicate the difference with respect
to the best value.

Left-Skewed Symmetric Right-Skewed

(pa, pc) λ πL πM πR γ λ πL πM πR γ λ πL πM πR γ

(1
3
, 0) 0.54 0.93 5.17 0.87 0.67 0.32 7.70 5.58 2.98 0.97 8.52 17.26 3.03 6.98 0.90

(1.42) (3.54) (1.49) (1.93) (2.12) (2.04) (4.80) (1.88) (2.54) (2.57) (3.10) (9.85) (4.40) (3.49) (3.32)

(1
3
, 1
3
) 0.27 0.26 5.16 0.27 0.35 0.52 3.96 5.53 1.61 1.37 8.37 6.97 1.61 3.43 1.15

(1.51) (2.39) (1.46) (1.79) (1.81) (2.11) (4.12) (1.95) (2.05) (2.29) (2.95) (5.93) (3.92) (4.20) (3.62)

(1
3
, 2

3
) 0.72 4.28 0.48 0.62 1.01 0.13 1.76 5.62 0.93 0.44 8.58 3.37 0.81 2.29 0.63

(1.44) (1.09) (1.29) (1.53) (1.82) (1.71) (2.17) (1.94) (1.74) (1.96) (3.14) (5.13) (3.81) (3.78) (3.72)

(2
3
,0) 0.62 5.51 4.68 1.49 1.16 1.63 23.18 3.05 11.05 3.50 4.71 35.69 6.58 23.53 4.71

(1.59) (5.05) (1.70) (2.06) (2.12) (1.47) (9.64) (1.35) (5.12) (2.57) (1.49) (14.14) (5.93) (5.44) (3.32)

(2
3
, 1
3
) 0.61 3.44 3.63 0.90 1.51 1.22 15.13 2.99 7.77 3.49 4.16 28.47 4.73 15.76 4.74

(1.57) (3.63) (1.44) (1.75) (1.77) (1.63) (5.00) (1.46) (3.25) (2.21) (1.73) (9.88) (5.57) (5.21) (3.21)

(2
3
, 2
3
) 0.53 1.82 2.82 0.90 0.87 0.59 9.09 2.52 3.69 1.82 3.84 16.24 1.49 8.74 3.05

(1.45) (2.77) (1.33) (2.09) (1.51) (1.31) (5.87) (1.16) (2.83) (2.04) (1.76) (8.20) (2.80) (4.68) (3.04)

(1,0) 1.32 10.20 3.27 3.99 2.57 1.87 28.72 1.30 17.21 5.24 0.89 46.13 10.08 33.05 8.53

(1.27) (5.37) (1.03) (2.65) (2.12) (1.14) (8.87) (1.48) (5.20) (2.57) (0.46) (15.06) (7.11) (7.15) (3.32)

(1, 1
3
) 1.35 6.15 2.38 2.65 2.37 1.35 21.22 1.04 12.77 4.66 0.45 32.11 9.87 25.58 7.08

(1.38) (4.37) (0.98) (2.32) (1.59) (1.03) (9.07) (1.38) (4.55) (2.14) (0.29) (12.83) (5.74) (5.87) (2.52)

(1, 2
3
) 0.46 4.03 1.05 1.29 0.52 0.45 15.17 0.47 7.90 1.97 0.25 25.46 5.88 14.87 3.11

(0.58) (3.72) (0.55) (1.00) (0.76) (0.61) (5.31) (0.63) (3.60) (1.28) (0.26) (10.09) (5.16) (5.80) (1.69)

Observe that, in general, policies λ and πM yield the best results with respect to regret

and time-stability, while the performance of πL and πR is significantly worse. For left-skewed

and symmetric structures policy πM is generally the best one, while performance of λ is not

far behind and very close to πM . For the right-skewed cost structure λ is the best policy, get-

ting a significant difference for regret with respect to all other policies (including πM). The

difference is highly amplified when considering time-stability, as the other policies, except γ,

get very close to the worst possible value (τ ≈ 22). Moreover, for many instances policies

πM , πL and πR fail to identify a set of k-most vital arcs. Recall that unless one assumes

that arc costs are at their upper bounds, there is no guarantee that a policy achieves zero

instantaneous regret (see Remark 7).

Our experimental observations corroborate our theoretical results: it is crucial for the

interdictor to have a pessimistic attitude regarding the unobserved costs, i.e., it is better

to overestimate the real costs of the arcs whose real costs are unknown rather than under-

estimate them. The results also suggest that policy λ is robust in the sense that it has a

43

Table 8: Average time-stability and MAD (in parenthesis) for k = 6. Among entries denoting
time-stability, the entry in bold is the best value, and the other entries indicate the difference
with respect to the best value. The entries in italic and “−” mean that the policy did not attain
time-stability for some instances.

Left-Skewed Symmetric Right-Skewed

(pa, pc) λ πL πM πR γ λ πL πM πR γ λ πL πM πR γ

(1
3
,0) 1.1 3.35 11.9 3.25 0.65 0.5 12.1 9.05 9.1 0.55 9.75 12.25 7.8 12.25 0.75

(1.60) (6.83) (1.73) (3.68) (2.55) (1.31) (-) (2.27) (4.04) (1.86) (1.85) (-) (6.23) (-) (1.10)

(1
3
, 1
3
) 0.55 2.4 11.7 1.9 0.5 0.8 9.35 8.95 6.3 1.3 9.35 12.65 5.8 10.1 1.3

(1.95) (6.41) (2.10) (3.34) (1.96) (1.65) (5.55) (2.64) (5.48) (1.65) (1.86) (-) (6.85) (3.58) (1.78)

(1
3
, 2
3
) 1.05 10.5 0.5 1.3 1.35 0.3 6.05 9.05 4.55 0.5 9.4 10.35 4.4 9.25 0.85

(2.05) (3.40) (1.80) (2.04) (2.28) (1.49) (6.90) (2.37) (4.68) (1.96) (1.78) (3.83) (6.58) (5.03) (2.08)

(2
3
,0) 0.8 9.55 11.4 6.8 1.15 2.35 15.25 6.75 15.25 2.85 7.3 14.7 12.75 14.7 3.2

(1.72) (2.00) (2.20) (4.36) (2.55) (1.23) (-) (2.58) (-) (1.86) (1.29) (-) (-) (-) (1.10)

(2
3
, 1
3
) 1.05 10.9 9.2 7 2.5 1.05 14.9 7.1 14.2 2.7 6.6 15.4 11.65 15.4 3.25

(2.23) (3.42) (1.90) (5.06) (1.76) (1.20) (-) (3.44) (-) (1.72) (1.26) (-) (6.00) (-) (1.94)

(2
3
, 2
3
) 0.55 9.8 7.7 4 0.9 1.15 16 5 11.65 2.3 5.75 15.35 6.65 15.8 2.15

(1.75) (6.75) (1.77) (5.84) (1.92) (1.60) (-) (1.50) (6.76) (1.66) (1.45) (-) (8.64) (-) (1.51)

(1,0) 2.1 12.8 9.2 11.1 3.35 7.8 14.2 1.2 13.6 1.8 4.4 17.6 15.5 17.6 6.1

(1.39) (-) (1.70) (-) (2.55) (1.26) (-) (9.10) (-) (1.86) (1.30) (-) (3.78) (-) (1.10)

(1, 1
3
) 1.85 14.7 7.3 11.15 3.35 6.3 15.7 1.4 15.7 2.4 3 17.95 15.85 19 6.05

(1.35) (-) (1.60) (4.27) (1.75) (1.47) (-) (8.58) (-) (1.97) (1.10) (-) (5.36) (-) (1.27)

(1, 2
3
) 0.95 17.25 3.7 11.85 0.75 3.45 18.55 1.2 17.4 1.15 1.8 20.2 14.95 20.2 2.9

(1.52) (-) (1.44) (5.90) (1.64) (1.23) (-) (5.21) (1.97) (1.12) (0.72) (-) (7.88) (-) (1.33)

consistently good performance across all cost settings, although not always yields the best re-

sult. We also note that policy γ has the same type of robust behavior, although it is typically

outperformed by λ, which signals that it is valuable to exploit the cost bounds information.

2.5.4 Policy Performance: Sensitivity with Respect to |Ã0|

In this section we study the performance of policies in Λ as a function of the number of arcs

for which the real cost is initially known (i.e., the amount of initial information). We also

consider policy πM as a benchmark, due to its consistent performance in the experiments in

Section 2.5.3.

We set pa = 1/2 and consider pc ∈ {i/10: 1 ≤ i ≤ 10}. As before, for every pair (pa, pc)

we generate 20 networks with different cost structures (right-skewed, symmetric and left-

skewed). Also, we set n = 40, p = 0.7 (giving us an average of 1089.8 arcs), k = 8

and T = 28. Figures 9 and 10 depict the results for the right-skewed and symmetric cost

structure, respectively. The results for the left-skewed case are in Figure 18 in Appendix A.3.

For the right-skewed case we observe that λ is roughly constant at low values across all

measures, indicating its good and consistent performance. On the other hand, performance of

44

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
600

700

800

900

1000

1100

1200

1300

1400

1500

p
c

T
o
ta

l
R

e
g
re

t

p
c
 vs Total regret, p

a
=50%, Right Skewed

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8

10

12

14

16

18

20

22

24

26

p
c

T
im

e
−

s
ta

b
ili

ty

p
c
 vs Time−stability, p

a
=50%, Right Skewed

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100

200

300

400

500

600

700

p
c

T
o
ta

l
R

e
g
re

t
M

A
D

p
c
 vs Total regret MAD, p

a
=50%, Right Skewed

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

10

11

p
c

T
im

e
−

s
ta

b
ili

ty
 M

A
D

p
c
 vs Time−stability MAD, p

a
=50%, Right Skewed

λ

π
M

Figure 9: Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as pc increases. The cost distribution is right-skewed and pa = 1/2.

πM improves as there is more initial information of the network available, but is significantly

worse than the one from λ. Also, note that time-stability MAD for πM has a parabolic

behavior, which points out that for low (high) amounts of initial information the time-

stability of πM is consistently high (low), while high variability is observed for intermediate

values of initial information.

For the symmetric distribution, both the average regret and time-stability of λ and πM

decrease as more information is available (λ’s regret has a subtle increase at one point due

to the occurrence of an instance in which it performed significantly bad). In this setting πM

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
550

600

650

700

750

800

p
c

T
o
ta

l
R

e
g
re

t

p
c
 vs Total regret, p

a
=50%, Symmetric

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
9

10

11

12

13

14

15

16

17

p
c

T
im

e
−

s
ta

b
ili

ty

p
c
 vs Time−stability, p

a
=50%, Symmetric

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
180

190

200

210

220

230

240

p
c

T
o
ta

l
R

e
g
re

t
M

A
D

p
c
 vs Total regret MAD, p

a
=50%, Symmetric

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

p
c

T
im

e
−

s
ta

b
ili

ty
 M

A
D

p
c
 vs Time−stability MAD, p

a
=50%, Symmetric

λ

π
M

Figure 10: Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as pc increases. The cost distribution is symmetric and pa = 1/2.

outperforms λ in terms of regret, however their difference is not so great when compared

to the right-skewed case (observe the scale of the y-axis). Regarding time-stability, it can

be seen that πM is slightly better than λ for low amounts of initial information while the

opposite is observed for large amounts. On the other hand, both λ’s and πM ’s regret MADs

do not show any particular pattern (however, it can be considered relatively constant after

noting that its scale is significantly smaller than the one in the right-skewed case), while λ’s

time-stability MAD is constant at low values and that of πM tends to improve.

46

These observations confirm our previous conclusions regarding the robustness property

of policy λ. They also suggest that different from πM , performance of λ is highly consistent

with respect to changes in the amount of initial information. Moreover, it is observed that

the sensitivity of λ to the amount of initial information depends on the location of the true

cost between the lower and upper bounds: if it is close to the upper bound (right-skewed),

the performance tends to be fairly unsensitive, while for the other cases it tends to improve

as more information is initially available.

It is important to note that, unlike for policies in Λ, the regret of the benchmark policies

πL, πM and πR may not converge in some instances (recall our Remark 7), thus in the

long run (i.e., for sufficiently large values of T , e.g., T ≥ |A|) the proposed policies might

outperform the benchmark policies with certainty. However, such a feature does not rule

out that: (i) the benchmark policies may converge for many instances and (ii) the regret of

the benchmark policies may be smaller than the regret attained by the convergent policies,

particularly in the case of finite horizons, as it can be observed for some instances in Tables 7

and 8 as well as in Figures 10 and 18.

2.5.5 Policy Performance: Sensitivity with Respect to Quality of Bounds in Â0

We conclude our numerical experiments by studying the performance of the policies in Λ

and πM as the quality of the initial information deteriorates, i.e., as ua − la increases for

all a ∈ Â0. To this end, in this set of experiments we generate a cost vector by drawing

ca uniformly from U(500, 1000) for each a ∈ A. We consider three sets of cost bounds:

(ca − xa, ca + ya), (ca − 5xa, ca + 5ya) and (ca − 25xa, ca + 25ya), where xa and ya are drawn

uniformly from [1, 20] for all a ∈ A. We refer to these three intervals as “I. #1,” “I. #2,”

and “I. #3,” respectively.

As in the previous experiments, for each pair (pa, pc) we generate 20 random networks

along with subsets A0 and Ã0, and for each of them we generate the cost vector (ca)a∈A

and xa, ya for all a ∈ Â0. We consider n = 50 nodes, p = 0.5 (the mean number of arcs is

1216.35.), k = 15 and T = 53. Table 9 summarizes the obtained results.

47

Table 9: Average regret (×103) and time-stability, and MAD (in parenthesis) for k = 15.

The entries in bold denote the best value.

Mean regret Mean time-stability

Policy λ Policy πM Policy λ Policy πM

(pa, pc) I. #1 I. #2 I. #3 I. #1 I. #2 I. #3 I. #1 I. #2 I. #3 I. #1 I. #2 I. #3

(0,0) 49.95 49.95 49.95 49.95 49.95 49.95 20.65 20.65 20.65 20.65 20.65 20.65

(8.83) (8.83) (8.83) (8.83) (8.83) (8.83) (3.15) (3.15) (3.15) (3.15) (3.15) (3.15)

(1
3
,0) 44.52 45.31 48.24 44.61 44.61 47.37 19.40 20.15 22.00 19.00 20.45 31.90

(9.07) (9.93) (9.36) (9.07) (9.23) (11.13) (3.08) (3.27) (3.40) (2.90) (4.83) (16.88)

(1
3
, 1
3
) 44.39 44.80 46.69 44.71 44.46 47.39 19.20 19.80 20.70 20.40 20.40 31.75

(8.96) (9.46) (9.67) (9.16) (9.26) (11.64) (3.26) (3.18) (3.24) (4.52) (4.86) (17.00)

(1
3
, 2
3
) 44.58 44.42 44.69 44.84 44.70 45.01 19.20 19.40 19.30 19.25 19.05 22.30

(9.19) (8.88) (9.00) (9.25) (9.10) (9.82) (3.26) (2.88) (3.29) (3.20) (2.86) (7.68)

(1
3
,1) 44.74 44.74 44.74 44.74 44.74 44.74 19.15 19.15 19.15 19.15 19.15 19.15

(9.14) (9.14) (9.14) (9.14) (9.14) (9.14) (3.20) (3.20) (3.20) (3.20) (3.20) (3.20)

(2
3
,0) 25.99 27.94 39.32 25.49 25.79 38.34 12.55 15.30 20.00 13.40 13.40 38.60

(8.23) (8.60) (7.55) (8.25) (8.22) (16.29) (2.85) (3.13) (3.00) (4.76) (4.70) (18.72)

(2
3
, 1
3
) 25.74 26.58 34.02 25.42 26.97 37.29 12.15 13.30 16.80 13.30 17.60 36.30

(8.65) (7.99) (8.35) (8.19) (9.53) (13.69) (2.95) (2.84) (2.60) (4.62) (10.76) (20.04)

(2
3
, 2
3
) 25.67 26.14 30.25 25.35 25.38 29.04 11.75 12.25 14.15 11.15 13.20 25.60

(8.11) (8.78) (8.63) (8.34) (8.51) (9.58) (2.50) (2.65) (2.62) (2.45) (4.60) (19.18)

(2
3
,1) 25.31 25.31 25.31 25.31 25.31 25.31 11.00 11.00 11.00 11.00 11.00 11.00

(8.36) (8.36) (8.36) (8.36) (8.36) (8.36) (2.30) (2.30) (2.30) (2.30) (2.30) (2.30)

(1,0) 0.20 3.78 25.61 0.19 1.58 32.84 3.15 7.60 17.05 6.35 12.10 43.35

(0.17) (1.59) (3.69) (0.33) (2.25) (21.15) (1.47) (2.04) (2.07) (9.33) (16.36) (15.44)

(1, 1
3
) 0.07 1.91 17.90 0.21 2.34 23.60 2.25 5.15 12.65 9.00 19.45 38.05

(0.06) (1.00) (3.53) (0.35) (3.17) (19.03) (1.10) (1.90) (2.22) (13.20) (23.49) (20.93)

(1, 2
3
) 0.05 0.93 8.66 0.08 0.63 8.33 1.75 3.60 7.05 6.35 11.65 22.40

(0.05) (0.63) (3.44) (0.14) (0.97) (10.91) (0.68) (1.44) (1.85) (9.33) (16.54) (24.48)

We observe that both λ and πM are sensitive to changes in the quality of the information:

as the intervals widen, performance deteriorates. Note that this effect is significantly more

pronounced if the interdictor has more initial information available, i.e., for larger values of

pa and pc. Policy πM tends to be better than λ in regret for narrow cost intervals, i.e., in

the cases with good information quality. However, λ is better (in particular, with respect to

MAD values) as the intervals widen and the values of pa increase. Similarly, πM and λ are

roughly similar for time-stability for narrow cost intervals, but λ is significantly better as

these intervals widen and pa increases. These results point out again at the robust behavior

of the policies in Λ, i.e., they have a good performance across all instances, although they

are not always the best.

In order to further validate the aforementioned conclusions, we design a similar exper-

iment with more quality levels. Specifically, we pick pa = 2/3, pc ∈ {0, 1/3, 2/3} and gen-

erate the cost vector by drawing ca from U(100, 200). We consider 10 sets of costs bounds

(ca−mxa, ca +mya), where m is referred to as the interval-width multiplier. We change the

value of m from 1 to 10, while xa and ya are drawn uniformly from [1, 10].

48

For each pair (pa, pc) we generate 30 different networks along with A0, Ã0, the cost

vector (ca)a∈A and xa, ya for all a ∈ Â0. We set n = 40, p = 0.8 (the mean number of arcs of

1248.73), k = 10 and T = 36. Figure 11 depicts the results for the case pc = 1/3. Additional

results for other values of pa and pc are available in Appendix A.3.

1 2 3 4 5 6 7 8 9 10
120

140

160

180

200

220

240

260

280

300

Interval width multiplier

T
o
ta

l
R

e
g
re

t

Interval width vs Total regret, p
a
=2/3, p

c
=1/3

λ

π
M

1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

18

20

22

24

Interval width multiplier

T
im

e
−

s
ta

b
ili

ty

Interval width vs Time−stability, p
a
=2/3, p

c
=1/3

λ

π
M

1 2 3 4 5 6 7 8 9 10
45

50

55

60

65

70

75

80

Interval width multiplier

T
o
ta

l
R

e
g
re

t
M

A
D

Interval width vs Total regret MAD, p
a
=2/3, p

c
=1/3

λ

π
M

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Interval width multiplier

T
im

e
−

s
ta

b
ili

ty
 M

A
D

Interval width vs Time−stability MAD, p
a
=2/3, p

c
=1/3

λ

π
M

Figure 11: Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as the cost intervals widen for the case of pa = 2/3 and pc = 1/3.

Given the interval-width multiplier m, the lower and upper bounds of the arc costs in Â0

are la = ca −mxa and ua = ca +mya, respectively.

The results in Figure 11 illustrate in greater detail the performance of λ and πM as the

quality of cost information worsens. In particular, one observes that, with respect to the

total regret, the performance of both policies degrades at a similar rate. This conclusion is

49

not true, however, when considering the total regret MAD as it tends to increase for πM ,

while remaining relatively constant for λ. With respect to the time-stability metric, it is

observed that although the performance of λ deteriorates, it does so at a much slower rate

than πM , and that its time-stability MAD remains virtually constant as the intervals widens.

These results reinforce the conclusions of our previous experiments regarding robustness of

the proposed policies. Moreover, they show that λ can be considered somewhat insensitive to

the quality of the initial information, while the performance of πM can significantly degrade

if the quality of the initial information is not sufficiently good.

2.6 CONCLUDING REMARKS

In this chapter we study sequential interdiction of a directed network when the interdictor

has incomplete initial information about the network. By observing the evader’s actions

(who travels along shortest paths in each time period), the interdictor learns about the

structure and costs of the network and adjusts its actions so as to maximize the cumulative

cost incurred by the evader. We formally define the concept of efficient interdiction policies

and propose a class of simple interdiction policies that are efficient both with respect to

regret and time-stability.

Our theoretical results are supported by numerical experiments which suggest that the

proposed policies are robust, in the sense that they yield good results across various levels of

the initial information. Aligned with intuition, our interdiction policies get better results as

the quality of the information improves. One important conclusion of our work is that it is

crucial for the interdictor to have a pessimistic attitude regarding unobserved arc costs, i.e.,

it is better to overestimate the real costs of the arcs whose real costs are unknown rather than

underestimate them. Otherwise, as we demonstrate both theoretically and computationally,

the interdictor is not guaranteed to converge to an optimal k-most vital arc solution, i.e., an

interdiction solution with an instantaneous regret of zero. Finally, we propose a semi-oracle

benchmark policy that serves as a lower bound on the performance of any feasible interdiction

policy. We formulate it as an MIP and describe an algorithmic approach for its computation.

50

Our work considers myopic evaders (recall assumption A2), who always traverse along

shortest paths of the interdicted network. Consider now a strategic evader who does not

necessarily travel via shortest paths in each time period, but rather desires to minimize the

total costs of moving through the network over time horizon T , i.e.,
∑

t∈T `(Pt), and suppose

that Â0 = ∅ and that the interdictor uses policies in Γ (similar arguments apply for the more

general case). The same type of analysis can be applied to the setting in which the evader

does not observe the actions of the interdictor upfront, and needs to learn them in real time.

Using an approach similar to the one used in the proof of Lemma 2, it can be shown that

if the evader desires to incur a cost less than z(G[Aγt \ I
γ
t]) at time period t, then at least one

new arc must be revealed to the interdictor in P γ
t . Thus, we conclude that Lemma 2 holds

for any reasonable decision-making process of the evader, i.e., the evader cannot avoid the

convergence of policies in Γ.

Therefore, our initial assumption that the evader moves through shortest paths in G[A\Iγt]

turns out to be not too restrictive (at least for the property C1 to hold for the proposed poli-

cies). Moreover, for many instances, this myopic approach might yield the best performance.

However, in general there may be a trade-off for the evader between using shortest paths

and using alternative paths that, although are not the shortest ones, might improve the

performance over the whole time horizon. While the evader’s decision-making problem can

be casted as sequential mixed-integer bilevel program, as such, it might be intractable in

practice. Nevertheless, it presents an interesting avenue for future research.

There are several other research directions that remain open at this point. An immediate

one relates to whether our results can be extended or serve as the basis for studying settings,

where we relax assumptions A1 and (A3). In particular, relaxing the former one results in

decision-making problems with alternative feedbacks, where, for example, only a noisy signal

of the evader cost is revealed in each time period, or only some components of the evader

action are revealed.

Note that if the source and destination nodes are not known initially to the interdictor,

then they would be inferred immediately from the evader’s actions due to our assumptions of

the perfect feedback. Thus, our model also accommodates the setting where the interdictor

is not initially aware of such information. Similarly, our model would directly extend to

51

settings, where source and destination nodes are chosen from a given set. In this regard,

an interesting extension would be cases, where the source and destination nodes are chosen

randomly in each time period according to some distribution. In particular, we believe that

our methods are not trivially extendable to problems, where the source and destination nodes

location distribution is initially unknown (observe that the interdictor would not be able to

state the objective function upfront under this scenario).

We should also note that our methods can be extended to the setting, where each block-

ing action does not fully eliminate an arc but rather increases its cost. In such a case, the

interdictor might have a budget that must be allocated across arcs. Consequently, in each

time period our policies would solve an instance of the Maximizing the Shortest Path (MXSP)

problem from Israeli and Wood (2002).

Finally, with regard to more general interdiction models in the literature, it is possible

to device computational procedures similar to the one proposed in this work. In the inter-

diction literature, such setups might include evaders that aim to maximize the flow of illegal

materials (or desire to minimize their transportation costs) in the network with capacity con-

straints on its arcs. Ultimately, the suitability of our approach would rest on the nature of

each specific interdiction model (e.g., whether it admits a tractable solution approach in the

case of complete information), and, more importantly, the type of the feedback obtained by

the interdictor. Generalizing our approach for generic bilevel interdiction models is outside

the scope of this work, and constitutes an interesting line for future research.

52

3.0 SEQUENTIAL MAX-MIN BILEVEL LINEAR PROGRAMMING

WITH INCOMPLETE INFORMATION AND LEARNING

3.1 INTRODUCTION

An important class of bilevel programs, known as max-min problems, deals with settings

where the leader and follower are adversaries and the leader’s objective is to maximally de-

grade the performance of the follower. As an example, consider network flow interdiction

problems, which have applications in military and smuggling prevention settings (Fulkerson

and Harding 1977, Corley and Chang 1974, Israeli and Wood 2002, Wollmer 1964, McMas-

ters and Mustin 1970, Ghare et al. 1971, Corley and Chang 1974, Ratliff et al. 1975, Wood

1993, Chern and Lin 1995, Smith and Lim 2008). The leader, by using the resources at her

disposition, can block (either totally or partially) a limited number of arcs and nodes in the

network. Depending on the specific application, the objective of the leader is to allocate her

resources so as to maximize the length of the follower’s shortest path, minimize the maxi-

mum flow, or maximize the minimum cost incurred by the follower. These types of models

are also used in surveillance settings, where the leader places resources (e.g., sensors) in a

network so as to minimize the follower’s probability of evasion, see Morton et al. (2007).

Network interdiction models belong to a larger class of Attacker-Defender (AD) or

Defender-Attacker (DA) models (Brown et al. 2006, Wood 2011). In a typical AD setting, an

attacker (the leader) and a defender (the follower) interact during a war-time confrontation:

the attacker allocates her forces so as to disable assets of the defender’s infrastructure; the

defender decides how to operate his system at minimum cost given the restrictions set by

the leader’s attack. The leader decides her allocation with the objective to maximize the

defender’s operational costs. Conversely, in a DA model, a defender (the leader) allocates her

53

limited defensive resources to protect her assets, and an attacker (the follower), for a given

defensive configuration, seeks for the most effective attacks. Here, the defender’s objective

is to allocate her resources so as to minimize the effectiveness of the attacks. In general, AD

and DA models can be casted as max-min bilevel programs to model decisions in a broad

range of application areas: see, e.g., Salmeron et al. (2004), Brown et al. (2006), Zenklusen

(2010), Shen et al. (2012b), Brown et al. (2005).

Typical formulations of max-min bilevel problems in the literature assume a single in-

teraction between the leader and the follower, and that either the leader knows all the

parameters of the follower’s problem (as in the references discussed above), or that she

knows a probability distribution over the set of problem configurations and parameters (see

e.g., Hemmecke et al. (2003), Held et al. (2005), Held and Woodruff (2005), Janjarassuk and

Linderoth (2008)). Hence, these models solve a single (possibly stochastic) max-min bilevel

problem, assuming that even if the leader and the follower interact across several periods,

the leader would implement the resulting full-information solution at every time period. In

contrast, many applications inherently involve multiple interactions between the leader and

the follower (e.g., as in smuggling interdiction and AD-DA problems). More importantly,

in these problems the leader does not always know with certainty the system that the fol-

lower operates, and cannot estimate it (a priori) reliably due to the adversarial nature of

their confrontation. Consequently, she has incomplete information of the problem solved by

the follower at each time period, and has to learn about it through time by observing the

follower’s reactions to her actions.

Departing from the existing literature, this chapter studies sequential max-min problems

with incomplete information (SMPI). In these problems, the leader and follower interact

repeatedly : at each stage the leader implements a set of actions and then observes the fol-

lower’s reaction; from the information, or feedback, she gets from the follower’s response, the

leader (potentially) updates her knowledge of the follower’s problem, and incorporates this

information into her decision-making process. Observe that in SMPI, besides determining

how to allocate her resources, the leader faces additional questions outside the scope of tra-

ditional bilevel models, as she needs to recognize whether a given upper-level solution is the

best possible, she needs to force the follower to disclose as much information as possible,

54

and needs to exploit this newly learned information to best re-allocate their resources in

future periods. Therefore, given the leader’s limited knowledge of the follower’s problem,

at each time period she faces a form of the exploitation vs. exploration trade-off : she must

choose either to exploit the current information so as to maximize her immediate reward, or

to explore solutions that albeit not being maximally rewarding, may reveal new information

that can be used to implement better solutions in future periods.

In SMPIs we represent the leader’s and follower’s decisions in terms of resources and

activities, respectively. Initially, the leader does not know all the follower’s activities and

constraints, and as such, she might not know all of her resources or constraints. The leader

learns about an unknown follower’s activity as soon as she observes him performing it, and

at the same time learns about all the lower-level constraints that restrict this activity, all the

leader’s resources that interfere with that activity, and all upper-level constraints associated

with the newly learned resources.

From a technical point of view, we first make the assumption that for every activity,

resource, and constraint she knows, the leader also knows the corresponding entries in the

upper and lower-level constraint matrices and the right-hand side vectors in a typical bilevel

programming formulation of the full-information problem. However, we suppose that the

leader does not know with certainty the components of the follower’s cost vector for the

activities she knows; she only knows that they belong to certain (polyhedral) uncertainty

set. Furthermore, in Section 3.4 we analyze a more general uncertainty model, where the

uncertainty extends beyond the follower’s cost vector.

Besides learning new activities, resources, and constraints, the leader can also observe

additional information of the follower’s problem from his response. In this sense, we introduce

the notions of Standard feedback, and its specializations, Value–Perfect and Response–Perfect

feedbacks. In Standard feedback, the leader observes the total cost the follower incurs at each

time period; in Value–Perfect feedback she also observes the cost coefficient associated with

each activity used by the follower at that time, while in Response–Perfect feedback she also

observes the value of the decision vector for the activities performed by the follower.

We measure the performance of the leader’s decision-making policy in terms of its time-

stability, i.e., the first time period by which the costs the follower incurs coincides with the

55

maximum possible cost an oracle leader with complete knowledge of the bilevel problem

attains. Time-stability is closely related to the regret (in particular, any upper bound on

the time-stability of a policy implies an upper bound in the regret on that policy), a more

common measure of performance in online optimization settings (Bubeck and Cesa-Bianchi

2012, Hazan 2015).

In this chapter we analyze a set of greedy and robust policies, which we denote by Λ. The

policies are greedy because at any time they exploit the leader’s information of the follower’s

problem so as to maximize the follower’s costs at the current time period, and they are robust

because they assume that the follower’s cost vector realizes its worst case for the leader. For

these reasons, implementing the policies in Λ involve solving at each time a max-min bilevel

problem with lower-level robustness constraints, and as such their computation involves

both bilevel and robust optimization techniques: we develop a method that first replaces the

lower-level robust optimization problem by its equivalent linear program counterpart (Ben-

Tal et al. 2009), and then reformulates the resulting linear bilevel program as a one-level

mixed integer program (Audet et al. 1997).

We demonstrate that the time-stability of the policies in Λ under Value–Perfect and

Response–Perfect feedback is upper bounded by the number of follower’s activities. We

show that these policies are optimal in the sense that they attain the best possible worst-case

time-stability across all possible problem instances. Furthermore, they provide a certificate

of optimality in real time. We also develop a method to provide a lower bound for the

time-stability of any policy based on the concept of a semi-oracle. The semi-oracle has full

information of the problem beforehand, but cannot signal it through her actions. As such,

the semi-oracle combines the knowledge of the standard oracle with the practical limitations

of the leader. Our numerical results show that the policies in Λ consistently outperform

reasonable benchmark, and perform reasonably close to the semi-oracle.

The remainder of the chapter is organized as follows. In Section 3.2 we provide a math-

ematical formulation of the problem, and illustrate it with examples of the minimum-cost

flow interdiction and the Attacker-Defender knapsack problems. Section 3.3 discusses greedy

and robust policies along with their main properties, while Section 3.4 extends most of the

results of greedy and robust policies for the case of uncertainty in the lower-level constraint

56

matrix. Section 3.5 discusses the semi-oracle benchmark and Section 3.6 presents numerical

experiments. In Section 3.7 we give conclusions and directions for future work. Most proofs

and supporting material are relegated to Appendix B.

3.2 BASIC MODEL: COST UNCERTAINTY

We consider a sequential and adversarial decision-making process where at each time t ∈

T := {0, 1, · · · , T} a leader and a follower interact. At the beginning of time t ∈ T , in the

complete information setting, the leader can use any resource i ∈ I, |I| < ∞, and for each

i ∈ I she chooses a value xi ≥ 0 such that x := (xi : i ∈ I) ∈ X, where X denotes the set

of feasible resource levels. We let CL denote the set of constraints faced by the leader and

assume that X is given by

X := {x ∈ Zk+ × R|I|−k+ : Hx ≤ h},

where 0 ≤ k ≤ |I|, H := (Hdi : d ∈ CL, i ∈ I) ∈ R|CL|×|I| and h := (hd, d ∈ CL) ∈ R|CL|.

The follower, on the other hand, reacts after the leader chooses x. He can pick different

levels among his activities in a finite set A: we let ya denote the level by which activity a

is performed, and define y := (ya : a ∈ A). By performing activity a at level ya the follower

incurs a cost of caya, and hence he desires to select y so as to minimize his total costs. His

choices for y are limited, however, as y should satisfy all the constraints in a set CF and

should also be feasible given the leader’s decision x. Therefore, at time t the follower selects

vector y(x), where for any x ∈ X

y(x) ∈ arg min{c>y : y ∈ Y (x)},

c := (ca : a ∈ A) ∈ R|A|, and where for any x ∈ Zk+×R
|I|−k
+ the set Y (x) denotes the follower’s

set of feasible actions given the leader decision x. We assume that

Y (x) :=
{
y ∈ R|A|+ : F y +Lx ≤ f

}
.

57

In the above, F := (Fda : d ∈ CF , a ∈ A) belongs to R|CF |×|A|, L := (Ldi : d ∈ CF , i ∈ I)

belongs to R|CF |×|I| and f := (fd, d ∈ CF) ∈ R|CF |. The objective of the leader is to choose

x ∈ X so as to maximize the cumulative cost the follower faces through T . Note that, had

the leader full information about the problem, at each time t ∈ T she would implement a

solution to the bilevel problem

z∗ := max{z(x) : x ∈ X}, (3.1)

where for any x ∈ X,

z(x) := min{c>y : y ∈ Y (x)}.

Throughout this chapter, we assume that at all times the follower has the information

needed to compute y(x), but that this is not the case for the leader : we assume that at time

t = 0 the leader does not fully know the set of activities A, and hence potentially neither

CF , nor the value of all the data defining region Y (x). Moreover, as some leader’s resources

might be only available if some of the follower’s activities are known, she might have only

partial information regarding I, CL and the set X. Specifically, at the beginning of each time

t ∈ T the leader is aware of the subset of the follower’s activities At ⊆ A, the subset of the

leader’s resources I t ⊆ I, the upper-level constraints Ct
L ⊆ CL and the lower-level constraints

Ct
F ⊆ CF . Furthermore, the leader’s knowledge of the follower’s lower-level problem data is

limited, and in this direction we make the following assumptions:

(A1): At any time t ∈ T the leader knows with certainty the values of F t := (Fda : a ∈

Ct
F , a ∈ At) and f t := (fd : d ∈ Ct

F). In addition, the leader knows with certainty all

her data (both upper-level and lower-level) with respect to the resources in I t, that

is, at time t she knows with certainty H t := (Hdi : d ∈ Ct
L, i ∈ I t), ht := (hd : d ∈ Ct

L)

and Lt := (Ldi : d ∈ Ct
F , i ∈ I t).

(A2): The leader does not know with certainty all the entries of c but she knows that

ct := (ca : a ∈ At) ∈ U t, with

U t := {ĉt ∈ R|At| : Gtĉt ≤ gt}.

If Ct
U is the set of constraints of polyhedron U t, then Gt ∈ R|CtU |×|At| and gt ∈ R|CtU |.

We assume that both Gt and gt are known with certainty to the leader at time t.

58

(A3): The matrix H and vector h take non-negative values.

(A4): For any x ∈ X, Lx ≤ f .

Assumption (A1) implies that, with the exception of the cost vector, the leader knows

with certainty all the problem data in (3.1) that is associated with activities in At, resources

in I t, and constraints in Ct
F and Ct

L. Particularly, the latter part of this assumption stems

from the idea that the leader is always certain about her operational capabilities (hence,

she always knows H and h for all activities and constraints known to her), and about the

effect that her actions have on the follower (hence, she always knows L for all activities

and constraints known to her). We note that the assumption regarding the leader’s certain

knowledge of the values of F t can be relaxed, and most of the results can be extended to

this more general setting, see Section 3.4.

Assumption (A2) states that the leader has a polyhedral uncertainty set for ct. Poly-

hedral sets capture many important classes of uncertainty for the data in ct such as lower

and upper bounds, linear relationships between the entries, 1-norms, infinity norms, among

others, see Ben-Tal et al. (2009). Assumption (A3) reflects the fact that the leader aims

to optimally use her assets subject to budgetary constraints. (Note that this assumption

holds for broad classes of standard max-min bilevel problems arising in interdiction, AD

and DA models.) This follows due to our convention that the upper-level vectors in X are

non-negative. Thus, by using resource i ∈ I at level xi, the leader consumes Hdixi units of

asset d, d ∈ CL, and the total amount of such asset available to her at any given time is

given by hd. Finally, assumption (A4) is technical and is made to ensure that the follower’s

problem is not trivially infeasible.

Given the framework above, at any given time t ∈ T the following sequence of events

takes place:

1. The leader chooses xt ∈ X t, where

X t := {x ∈ R|I
t|

+ : H tx ≤ ht, x ≥ 0}. (3.2)

59

2. The follower solves the linear program z(x̄t), where x̄t is defined as x̄ti := xti if i ∈ I t, and

x̄ti := 0 if i ∈ I \ I t. That is, he solves

z(x̄t) = min
y≥0

c>y (3.3)

s.t. F y +
∑
i∈It

Lix
t
i ≤ f ,

where Li is the i-th column of L. For notational convenience, we set yt := y(x̄t) and

zt := z(x̄t).

3. The response of the follower generates feedback F t. The leader observes the information

in F t and exploits it to update her current knowledge to I t+1, Ct+1
L , At+1, Ct+1

F and

U t+1 (thus, potentially updating H t+1, ht+1, F t+1, Lt+1 and f t+1 as well as ca for any

new activity learned).

The next section elaborates on the information update in F t. Before that, we illustrate

the assumptions above and the flexibility of the framework through the following examples.

Example 1. Consider a smuggling interdiction problem where a smuggler (the follower)

operates over a directed network G = (V,E) and is required to satisfy the demand for illegal

goods across different locations. At each time period, the smuggler moves goods from supply

vertices VS ⊆ V to demand vertices VD ⊆ V . Some of the vertices are temporary depots

(i.e., transshipment vertices) and we denote them by VN . Denote by b(v) the amount of

goods that vertex v supplies/demands, where b(v) > 0 for v ∈ VS and b(v) < 0 for v ∈ VD.

We assume that b(v) = 0 for vertices in VN , and that
∑

v∈VS b(v) =
∑

v∈VD b(v).

For any e = (v, w) ∈ E, it costs the smuggler ce to ship one unit of the illegal good from

vertex v to vertex w through link e, and due to the transportation limitations (e.g., the fleet

or infrastructure size) he can move at most ue units from v to w at any given time. The

smuggler’s objective is to ship the goods across the network at each time period in order to

minimize the shipment costs, subject to the requirement of supplying all demand.

Consider the follower’s minimum cost flow problem over G. Let M be the node-arc

adjacency matrix of G, so M is a |V | × |E| matrix, where for any v ∈ V , Mve = 1 for all

e ∈ E such that e = (v, w) for some w ∈ V , and Mve = −1 for all e ∈ E such that e = (w, v)

60

for some w ∈ V . Let b be the vector given by bv = b(v) for all v ∈ V , c and u be the cost

and upper-bound vectors, respectively. For any e ∈ E define ye as the amount of goods the

smuggler ships through edge e. Then, without the leader’s intervention the follower would

solve the min-cost flow problem of the form:

y∗ ∈ arg min
y

{
c>y : My ≤ b,−My ≤ −b, Iy ≤ u, y ∈ R|E|+

}
,

where I is a |E| × |E| identity matrix. Observe that y∗ above can be thought as always

taking only integer values (as long as u and b are integers) as the constraint matrix is totally

unimodular, see Wolsey and Nemhauser (2014).

Law enforcement, on the other hand, acts as the leader. She assigns patrolling and in-

terdicting vehicles to links in G. We assume that there are K types of vehicles capable of

interdicting any edge. The leader controls rk units of type k vehicles, each of which reduces

the shipment capacity of arc e by dke units when assigned to the said arc. For any k ∈ K

and e ∈ E, define xke as the number of vehicles type k the leader sends to edge e. We

assume that the values of x should satisfy the constraints
∑

e∈E xke ≤ rk for all k ∈ K,∑
k∈K dkexke ≤ ue for all e ∈ E, and xke ∈ Z+ for all k ∈ K and e ∈ E. Observe that

this problem can be viewed as a generalization of the typical minimum cost flow interdiction

problem (Chern and Lin 1995, Smith and Lim 2008).

We can model the setting above within our framework as follows. The set of the follower’s

activities corresponds to E (i.e., A = E). For each vertex there are two flow constraints and

for each edge of E there is an upper bounding constraint. Thus, |CF | = 2|V |+ |E|. Matrix

F is given by F = (M ;−M ; I), the right-hand side vector is f = (b;−b;u), and the cost

vector c is precisely the cost vector of the network. On the other hand, we model the set of

the leader’s resources by I = K × E, where each leader resource is represented by a vehicle

type and an edge. Note that there is constraint associated with each vehicle type and each

edge in the leader’s problem, hence |CL| = |K| + |E|. Henceforth, if the leader has all the

information of the network, we have H = (O D), where O is the |K| × |K||E| matrix given

by Ok,(k,e) = 1 for all e ∈ E, and zero otherwise; and D is the |E| × |K||E| matrix defined

by De,(k,e) = dke for all k ∈ K, and zero otherwise. Vector h, on the other hand, is given

by h = (r;u), where the vector r is defined by r = (rk : k ∈ K). Finally, observe that by

61

the definition of the interdiction activities, matrix L is given by L = (0;D), where 0 is a

matrix of zeros of size 2|V | × |K||E| as we assume that the leader cannot interdict nodes.

Assume next that at time t = 0 the leader does not know all the edges nor all the

nodes in G. For each vertex she observes, she knows whether it is supply or demand node,

and knows with certainty the value of b(v), while for each edge e ∈ A0 she knows with

certainty its shipment capacity ue, however she does not know its shipment cost ce. For

each e ∈ A0 she estimates the cost to be in the interval [`e,me], `e ≤ me, and hence

U0 = {ĉ0 ∈ R|A0| : `e ≤ ĉ0
e ≤ me ∀e ∈ A0}, so G0 = [I;−I] and g0 = (m; `), with

m = (me : e ∈ A0) and ` = (`e : e ∈ A0).

Example 2. We consider a simple class of the attacker-defender linear models, which

can be viewed as an adversarial knapsack problem (DeNegre 2011, Caprara et al. 2013). The

defender has n > 0 assets; operating asset a during a time period costs him ba and produces

a profit of pa. He has an operational budget of B per period, and has to decide a level

ya ∈ [0, 1] at which the operation of asset a is performed for all a = 1, · · · , n. Hence, at each

period the follower would ideally solve the following knapsack problem absent the actions of

the leader

y∗ ∈ arg max
y
{p>y : b>y ≤ B, 0 ≤ ya ≤ 1 ∀a = 1, · · · , n},

where p := (pa : a = 1, · · · , n) and b := (ba : a = 1, · · · , n).

The attacker, on the other hand, can temporarily disable some of the defender’s assets.

Disabling asset a during any given period costs her ra, and the attacker has a budget of R per

period. Moreover, if an asset is disabled then the follower cannot operate it. In this setting,

A = I = {1, · · · , n}, CF consist of n + 1 constraints, and hence F = (b>; I), where I is a

n× n identity matrix. Here, the lower-level right-hand side vector is given by f = (B; 1) (1

is a vector of ones of size n) and the cost vector satisfies c = −p. On the other hand, CL is

a singleton that contains the leader budgetary constraint, so H = r>, with r = (ra : a ∈ I),

and h = (R). Observe that matrix L in this setting is given by L = (0>; I) where 0 is a

vector of zeros.

At time t = 0, we make the assumption that the attacker does not know all the as-

sets operated by the defender, nor the corresponding profits. For those assets A0 ⊆ A

62

she knows, she has interval estimates `e ≤ ce ≤ me for the profits, which implies that

U0 = {ĉ0 ∈ R|A0| : `e ≤ ĉ0
e ≤ me ∀e ∈ A0}. Thus, G0 = [I;−I] and g0 = (m; `), with

m = (me : e ∈ A0) and ` = (`e : e ∈ A0).

Example 3. See Section B.3.3 of the Appendix for an example in assignment interdic-

tion.

3.2.1 Feedback

Depending on the particular application, the feedback F := (F t, t ∈ T) might include data

from the follower’s problem as well as from his response yt, some information regarding the

follower’s activities and constraints that were unknown to the leader, as well as the leader’s

resources that were previously unavailable. In order to formalize these notions we introduce

the following terminology:

Definition 2. Let time t ∈ T be given and consider the bilevel problem (3.1).

• We say that the follower performs activity a ∈ A (leader uses resource i ∈ I) at time t

if and only if yta > 0 (xti > 0).

• We say that a lower-level (upper-level) constraint d ∈ CF (d ∈ CL) restricts follower’s

activity a ∈ A (leader’s resource i ∈ I) if and only if Fda 6= 0 (Hdi 6= 0), and we denote

by CF (a) (CL(i)) the set of constraints that restrict a ∈ A (i ∈ I).

• We say that a leader resource i ∈ I interferes with follower activity a ∈ A if and only

if there exists a lower-level constraint d ∈ CF , such that d ∈ CF (a) and Ldi 6= 0. We

denote by I(a) the set of all leader’s activities that interfere with a ∈ A.

The first of the above definitions reflects the intuitive fact that if the follower’s variable

ya takes the value 0 then it does not have an effect in his cost or constraints, and hence

this can be interpreted as if activity a ∈ A is not performed. The second definition is a

consequence of the fact that if Fda = 0 for a given a ∈ A, then ya can take arbitrarily large

values without compromising the satisfiability of constraint d; the remaining definitions are

also inspired by the same observations.

63

Example 1 (continued). In this example, the follower performs activity e ∈ A as

long as he ships goods through edge e. Similarly, the leader uses resource (k, e) ∈ I as

long as she sends a vehicle type k to interdict edge e. Associated with activity (edge)

e = (v, w) ∈ A there are five constraints in CF (e). The first four constraints correspond to

the supply/demand restrictions at v and w, while the additional constraint corresponds to the

maximum shipment capacity constraint of edge e. Additionally, for any resource (k, e) ∈ I

we have that CL(k, e) consists of two constraints. One of them restricts the amount of

vehicles type k that can be used across all edges (i.e.,
∑

e∈E xke ≤ rk), and the other one

corresponds to the maximum interdiction allowed across all vehicle types on edge e (i.e.,∑
k∈K dkexke ≤ ue). Finally, for each edge e ∈ A, we have I(e) = {(1, e), (2, e), · · · , (|K|, e)},

that is, I(e) consists of |K| leader resources, one for each type of vehicle that can interdict

edge e ∈ A.

Example 2 (continued). In the AD knapsack example, the follower performs activity

a ∈ A if he operates asset a. The leader uses resource a ∈ A if she disables asset a (hence,

I = A). For any a ∈ A, CF (a) consists of the defender’s budget constraint and on the

constraint ya ≤ 1. On the other hand, for any a ∈ I it is clear that CL(a) = CL. Moreover,

observe that in this setting, for any asset a ∈ A, we have that I(a) = {a}.

We are now in position to define a standard feedback :

Definition 3. We say that feedback F is standard if and only if for any t ∈ T

S1: The leader observes the total cost zt incurred by the follower.

S2: The leader observes the activities performed by the follower, that is, she can determine

that the follower performed activity a ∈ A at time t as long as yta > 0. If yta > 0 and

a 6∈ At, the leader learns about the existence of a ∈ A, and of all the leader resources

that can restrict a ∈ A. Therefore,

At+1 = At ∪
⋃

a : yta>0

{a}, I t+1 = I t ∪
⋃

a : yta>0

I(a).

S3: For every new follower’s activity a ∈ A learned by the leader, she learns all the lower-

level constraints in CF (a), and all the upper-level constraints CL(i), for all i ∈ I(a).

64

Henceforth,

Ct+1
F = Ct

F ∪
⋃

a∈At+1\At
CF (a), Ct+1

L = Ct
L ∪

⋃
i∈It+1\It

CL(i).

S4: For any newly learned activity a ∈ A: the leader learns the value of Fda for all

d ∈ CF (a)∪Ct
F ; for any i ∈ I(a)∩I t the leader learns the value ofHdi for all d ∈ CL(i)\Ct

L

and the value of Ldi for all d ∈ CF (a) \ Ct
F ; for any i ∈ I(a) \ I t the leader learns the

value of Hdi for all d ∈ CL(i) ∪ Ct
L and the value of Ldi for all d ∈ CF (a) ∪ Ct

F . Finally,

for any d ∈ CF (a) \Ct
F the leader learns the value of fd, and for any i ∈ I(a) the leader

learns the value of hd for all d ∈ CL(i) \ Ct
L.

Hereafter, we make the assumption that the feedback is always standard and that the

above conditions also hold for the initial information known by the leader before any inter-

action takes place (see also Section 3.2.2). Therefore, at any given time t ∈ T the matrices

F , L and H can be partitioned in submatrices as follows:

F =


At A \ At

Ct
F F1 F2

CF \ Ct
F 0 F3

, L =


I t I \ I t

Ct
F L1 0

CF \ Ct
F L2 L3

, (3.4a)

H =


I t I \ I t

Ct
L H1 H2

CL \ Ct
L 0 H3

, (3.4b)

and it is clear that, in the notation of the above structure, the leader is only aware of F1,

L1 and H1 at the beginning of time t ∈ T . In particular, note that F t = F1, Lt = L1, and

H t = H1.

Assumption S1 on the standard feedback is typical in the online optimization literature

(Cesa-Bianchi and Lugosi 2006a) and can be seen as a minimum requirement to perform

any optimization analysis. The role of the other assumptions, namely, S2-S4 is to deter-

mine what information the leader gains when a new activity is learned; specifically, these

assumptions ensure that at any time t the leader has the structural information of a version

of problem (3.1). That is: (i) the leader always observes all the constraints associated with

65

the resources/activities she knows, and hence, if she ignores the existence of a constraint

(lower-level or upper-level) then she must ignore the existence of all the resources/activities

associated with it; (ii) the leader is always aware of all the resources in I that can restrict

the follower’s activities she knows, and hence, if the leader ignores a resource at any given

time, then it must be that said resource cannot interfere with the follower’s activities that

she already knows.

It is important to note that our assumptions on standard feedback do not rule out the

possibility that there might exist resources that the leader knows at time t that might restrict

the follower’s activities she does not know at time t. In this sense, some of the leader’s feasible

vectors at time t might ‘involuntarily’ restrict the follower’s activities.

Example 1 (continued). Consider standard feedback in the smuggling example, which

implies that the leader observes the total cost incurred by the smuggler at each period. In

addition, if the smuggler ships goods through an edge e = (v, w) ∈ A that the leader was not

aware of, then the leader learns about the existence of that edge. Moreover, as she learns

CF (e), she becomes aware about the existence of vertices v and w as well as the value of the

supply/demand bv and bw. She also learns the maximum shipment capacity ue of edge e.

On the other hand, the leader also observes I(e). Thus, she can now send vehicles to

interdict edge e. Consequently, she learns about all the vehicle resources/capacity constraints

in CL(k, e) for all (k, e) ∈ I(e); and as she learns Ldi for all d ∈ CF (a) and all i ∈ I(a), then

she also learns about the value of the capacity restrictions dke for all vehicle types k ∈ K.

Example 2 (continued). In the AD knapsack example, by assuming standard feedback,

at each time t the leader observes the profit the follower receives from operating his assets. If

the follower uses an asset unknown to the leader, then the leader learns about the existence

of this asset, its cost ba and the operating level upper bound. In addition, she discovers that

she can disable the asset and that it costs her ra to do so.

Observe that the assumptions on standard feedback impose no conditions on the values

that are observed from the follower’s response nor on the follower’s cost vector. In this sense,

stronger assumptions can be made to guarantee that the leader learns the follower’s data in

c or his response yt with more accuracy. In this chapter we consider the following two cases.

66

Definition 4. Let F be standard. We say F is:

• Value–Perfect if and only if at any time t ∈ T the leader learns the value of ca for all

a ∈ A such that yta > 0.

• Response–Perfect if and only if at any time t ∈ T the leader learns the value of yta for all

a ∈ A such that yta > 0.

Standard feedback, as well as its Value–Perfect feedback version, can be viewed as adap-

tations of similar notions in the online optimization literature. For example, suppose that

A = A0 (hence, the leader knows all the follower’s activities at time t = 0). In this case,

standard feedback only requires the leader to observe the value of zt at each t ∈ T , and thus

it parallels to the notion of bandit feedback that appears in the online convex and combinato-

rial optimization (see e.g., Bubeck and Cesa-Bianchi (2012), Hazan (2015) and the references

therein). Similarly, Value–Perfect feedback parallels the notion of semi-bandit feedback in

the online combinatorial optimization (Audibert et al. 2013).

Example 1 (continued). In the smuggling setting, Value–Perfect feedback means that

if at period t ∈ T the smuggler ships goods through edge e, then the leader learns ce, the

cost of shipping one unit of the illegal good through e. On the other hand, Response–Perfect

feedback means that the leader observes yte, the amount of goods shipped by the smuggler

through e at time t ∈ T .

Example 2 (continued). In the AD knapsack setting, under Value–Perfect feedback,

at each period the leader observes the follower’s profit from the assets operated during the

period. Under Response–Perfect feedback, she observes the corresponding values of y’s.

3.2.2 Optimality Criteria

In this section we define what constitutes a ‘good’ decision-making policy for the leader. In

contrast with most work in online optimization, we measure the performance of a policy in

terms of its time-stability rather than of its regret. The time-stability of a policy corresponds

to the first time period by which the actions prescribed by the policy coincide with the actions

of an oracle decision-maker. This implies that from the this time period onwards, the policy

67

prescribes the same decision that the oracle prescribes. Recall that the oracle has all the

information about the problem and thus, implements the best possible decision starting at

time t = 0. As it will be seen below, any upper bound on time-stability implies an upper

bound on regret.

To formally introduce time-stability and the concept of optimality, we first define what

we consider a problem’s instance for the leader. The initial information of the problem is

the collection D0, where

D0 := (A0, I0, C0
F , C

0
L,U0,H0,h0,F 0,L0,f 0).

Note that given some initial information D0, there might be several different bilevel problems

of the form (3.1) that agree with the information contained in D0. In view of this, we define

G(D0) to be the collection that contains all possible bilevel problems given that the leader

knows D0:

G(D0) := {(A, I, CF , CL, c,H ,h,F ,L,f) : conditions C1-C5 below are satisfied},

where

C1: A0 ⊆ A, I0 ⊆ I, C0
F ⊆ CF , C0

L ⊆ CL.

C2: I0 = ∪a∈A0I(a), C0
L = ∪i∈I0CL(i), C0

F = ∪a∈A0CF (a).

C3: U0 has valid upper and lower bounds for all ca, a ∈ A0.

C4: (ca : a ∈ A0) ∈ U0.

C5: H0, h0, F 0, L0, f 0, are submatrices of H , h, F , L, f .

Note that conditions C2-C3 state that the information that the leader initially knows

satisfies the standard feedback conditions at time t = 0. Using collection G(D0), we define

an instance of the problem as a pair (D0,D), where D ∈ G(D0). We denote by G the set of

all possible instances.

A decision-making policy π is a sequence of set functions π = (π1, · · · , πT), such that

xt = πt(Ht(D0,D)), and Ht(D0,D) denotes the history of both the leader and follower

decision-making process up to time t:

Ht(D0,D) := (D0, x0,F0, · · · , xt−1,F t−1), t ≥ 1.

68

The set of all policies is denoted by Π. When discussing a particular policy π, we include a

superscript π on xt and in all other other quantities depending on it, and denote them by

xt,π, yt,π, zt,π, I t,π, At,π, U t,π and F t,π.

Let an instance (D0,D) be given. We define the time-stability of a policy on (D0,D),

denoted by τπ(D0,D), as the first time in T such that z∗ is equal to zt,π from there on, i.e.,

τπ(D0,D) := min{t ∈ T : zs,π = z∗ for all s ≥ t}.

There is a clear connection between time-stability and regret. Indeed, the regret Rπ
T0

(D0,D)

of policy π on the pair (D0,D) until time T0 ≥ 0 is defined as

Rπ
T0

(D0,D) :=
∑

0≤t≤T0

(z∗ − c>yt,π).

If U is an upper bound on the value of (z∗ − c>yt,π) for any t ∈ T , then it immediately

follows that

Rπ
T0

(D0,D) ≤ U · τπ(D0,D),

for any T0 ≤ T as long as the time-stability is finite. Consequently, any finite upper bound

on the time-stability provides a finite upper bound on the regret.

The leader would like to find an “optimal” time-stability policy, i.e., a policy that has a

lower time-stability than any other policy across all instances. To this end, let us say that

policy π is absolutely better than policy π′ if and only if τπ(D0,D) ≤ τπ
′
(D0,D) for any

instance (D0,D), and that π∗ is absolutely optimal if it is absolutely better than any other

policy. Unfortunately, absolute optimality is a very strong notion, and, in general, absolute

optimal policies do not exist, see e.g., Remark 1 in Borrero et al. (2016) for the sequential

shortest-path interdiction problem with incomplete information, which can be viewed as an

example in our general setting.

Henceforth, we study an alternative optimality notion referred to as weak optimality.

Roughly speaking, π is weakly better than π′ if the worst-case time-stability of π across all

possible instances is at most the worst-case time-stability of π′ across all possible instances,

that is, if:

sup
(D0,D)∈G

τπ(D0,D) ≤ sup
(D0,D)∈G

τπ
′
(D0,D). (3.5)

69

A policy π would be weakly optimal if it is weakly better than any other policy. It turns

out, however, that the above definition is not meaningful as the suprema in (3.5) are infinity.

Certainly, for any policy it can be readily checked that there are instances where the time-

stability increases linearly with |A|, see e.g., Proposition 5 in Section 3.3.2.

In order to address this issue, we take the suprema in equation (3.5) over instances of

a fixed size, which we assume is given in terms of the follower’s problem. Specifically, we

define the size of an instance (D0,D) as the vector (|A|, |A0|), and define Gs as the collection

of instances of size s = (n, n0) (with n ≥ n0):

Gs := {(D0,D) ∈ G : (|A|, |A0|) = s}.

Observe that any direct information on U0 in the definition of s is not included. This

follows as, from the worst-case analysis perspective, any reasonable notion of size of U0 is

likely to be a function of n0. Given the above considerations, we say that policy π is weakly

better than π′ if

max
(D0,D)∈Gs

τπ(D0,D) ≤ max
(D0,D)∈Gs

τπ
′
(D0,D) for all s ∈ S,

where S := {(n, n0) ∈ Z2
+ : n ≥ n0}. We say that π∗ is weakly optimal if it is weakly better

than any other policy, that is, if

π∗ ∈ arg min
π∈Π

max
(D0,D)∈Gs

τπ(D0,D) for all s ∈ S.

It should be clear that the notion of weak optimality is an adaptation of the notion on

min/max optimal policies used in the online optimization literature, specifically, in the multi-

armed bandit settings, see Audibert and Bubeck (2009), Audibert et al. (2013).

70

3.3 GREEDY AND ROBUST POLICIES

In this section we introduce a set of leader’s policies Λ that are greedy and robust. These

policies are greedy in the sense that at each t ∈ T they aim to maximize the immediate cost

that the follower faces at time t, and robust in the sense that they exploit the cost information

in U t in a worst-case scenario approach. Under the Value–Perfect and Response–Perfect

conditions on the feedback F , we show that these policies’ time-stability are upper-bounded

by |A|, and moreover, that they are weakly optimal. Also, we show that these policies also

have additional features, such as that they can identify the value of time-stability in real

time, yielding a certificate of optimality. Note that the proposed policies can be viewed, in a

sense, as natural generalizations of known results for the shortest-path network interdiction

problem, see Borrero et al. (2016). Throughout this section we omit any dependence on the

instance (D0,D) unless necessary to avoid confusion.

3.3.1 General Results for Standard Feedback

In order to define the set of greedy and robust policies, Λ, some additional concepts have to

be introduced. For any t ∈ T , and given any x ∈ X t, define region Y t(x) as

Y t(x) :=
{
y ∈ R|A

t|
+ : F ty +Ltx ≤ f t

}
.

Observe that, in contrast to Y (x), the leader completely knows Y t(x) at time t. More im-

portantly, Y t(x) can be considered as the “best guess” the leader makes about the follower’s

feasible region, given that she decides x. For any x ∈ X t, define ztR(x) as the value of the

robust linear program

ztR(x) := min
y

{
max
ĉt∈Ut
{(ĉ)> y} : y ∈ Y t(x)

}
.

Note that ztR(x) is the cost that the leader expects the follower would incur if she chooses

vector x and if the follower’s worst-case scenario over U t is realized. Let zt,∗R be the value

71

that corresponds to the best possible decision the leader can take at time t if she estimates

the follower’s response using the robust approach above, that is,

zt,∗R := max{ztR(x) : x ∈ X t} ∀t ∈ T .

Finally, for any policy π define ξπ := ξπ(D0,D) as,

ξπ := min{t ∈ T : zt,∗R = zt,π}.

We define policies in Λ as those policies that greedily optimize in a robust fashion from

time t = 0 until time ξλ. From ξλ onwards, policies in Λ repeat the same solution used at

time ξλ. Formally:

Definition 5. We say that λ ∈ Λ ⊆ Π if and only if

xt,λ ∈ arg max{ztR(x) : x ∈ X t} ∀t ≤ ξλ, (3.6)

and xt,λ = xξ
λ,λ for all ξλ < t ≤ T .

It is important to note that policies in Λ can be computed by standard mixed integer

programming (MIP) solvers as robust bilevel problem (3.6) can be reduced to a single-level

MIP, see Appendix B.3.2 for further details.

The following result lists the main properties of the policies in Λ under the assumption

of standard feedback. It establishes a simple relationship between the cost of the optimal

oracle solution (z∗), the cost that the follower faces at t (zt,λ), and the cost the leader expects

that the follower incurs (zt,∗R). In addition, it reveals the importance that time period ξλ has

for time-stability.

THEOREM 3. Let t ∈ T be given and let λ ∈ Λ be arbitrary. Then, zt,λ ≤ z∗ ≤ zt,∗R and

τλ ≤ ξλ.

Theorem 3 has important practical implications. Note that the leader is always aware

of the value of zt,∗R , and (by standard feedback) always observes the value of zt,λ. Therefore,

she can determine whether a given period t is equal to ξλ. Let t ∈ T be given such that

t− 1 < ξλ, then at time t exactly one of the following scenarios may occur:

72

(i) The follower faces the cost the leader expected (zt,λ = zt,∗R). In this case, t = ξλ, and

Theorem 3 implies that the solution implemented by the leader at time t is an optimal

solution of the full-information problem.

(ii) The follower faces a cost less than that the leader expects (zt,λ < zt,∗R). In this case

nothing can be said in general by only assuming standard feedback. However, if the

stronger notions of either Value–Perfect or Response–Perfect feedback are assumed, it

is shown in the following sections that the leader must learn new information of the

follower’s problem.

Particularly, observation (i) implies that policies in Λ provide certificates of optimality

in real-time. That is, as soon as t = ξλ, the leader is sure that the best possible solution

has been found. Given the importance of ξλ for greedy and robust policies, next we derive

a sufficient condition in terms of the uncertainty set U t that establishes whether a given

time t ∈ T corresponds to ξλ. The condition is given in terms of the polyhedral dimension

dim(U t) of U t, which is the maximum number of affine independent points within U t. In

particular, if dim(U t) = 0, then it consists only of one point. That is, if dim(U t) = 0, then

U t = {ct}.

PROPOSITION 4. Suppose t ∈ T satisfies that dim(U t) = 0 and assume that yta = 0 for all

a 6∈ At. Then ξλ ≤ t, and, in particular, τλ ≤ t.

In other words, whenever there is no uncertainty in U t, if the leader decides by using

a policy in Λ, and the follower does not reveal any new activity, then the leader can be

sure that the best solution has been found. We use this result in the following sections to

establish upper bounds on ξλ (and hence, on τλ) under Value–Perfect and Response–Perfect

feedbacks.

3.3.2 Policies in Λ Under Value–Perfect Feedback

Recall that feedback F is Value–Perfect if the leader observes the value of ca for all activities

a ∈ A such that yta > 0. Under this feedback the leader should update the uncertainty set

73

U t to U t+1 as

U t+1 = {ĉ ∈ R|At+1| : (ĉa)a∈At ∈ U t, ĉa = ca for all a s.t. yta > 0}.

For convenience we partition At as At = Ãt ∪ Āt, where for any follower action a ∈ Ãt the

leader knows with certainty the value of ca, that is

Ãt := {a ∈ At : ĉa = ca ∀ĉ ∈ U t},

and Āt := At \ Ãt. The next lemma establishes that if the cost the follower incurs is different

from the one expected by the leader, then the leader must learn the real cost of a follower’s

activity.

LEMMA 7. Suppose λ ∈ Λ and that feedback F is Value–Perfect. If zt,λ < zt,∗R then Ãt+1\Ãt 6=

∅. In particular, if yta = 0 for all a 6∈ At, then dim(U t+1) < dim(U t).

A direct consequence of the above result is that, in conjunction with Proposition 4, it

provides an upper bound for the time-stability for any policy in Λ:

THEOREM 4. Let λ ∈ Λ and suppose that F is Value–Perfect. Then,

τλ ≤ ξλ ≤ |A \ Ã0|.

Proof. Let t ∈ T be given such that zt,λ < zt,∗R . Lemma 7 implies that Ãt+1 \ Ãt 6= ∅. Hence,

Ãt 6= A can happen at most for |A \ Ã0| periods. Also, if t ∈ T satisfies Ãt = A, then

dim(U t) = 0 and Proposition 4 implies that ξλ ≤ t. Therefore, ξλ ≤ |A \ Ã0| and the result

follows.

The previous results shed light into the importance of greedy and robust policies for

solving the exploitation vs. exploration dilemma. Simply speaking, it states that as long

as the leader is being robust with respect to uncertainty, then exploitation (i.e., deciding

greedily) always implies exploration (i.e., discovering new information). We emphasize that

the key is robustness, as if the leader uses another approach to deal with uncertainty, then

she might not discover any new information; see Remark 7 in Borrero et al. (2016) for an

example in the context of shortest path interdiction.

74

Next, we prove that the upper bound in Theorem 4 is tight across all instances and, more

importantly, across all policies. In other words, we establish that policies in Λ are weakly

optimal.

PROPOSITION 5. Consider λ ∈ Λ and suppose that F is Value–Perfect. Then, for any

s = (n, n0) ∈ S

max
(D0,D)∈Gs

τλ(D0,D) ≤ n. (3.7)

Moreover, λ is weakly optimal.

Proof. First, observe that equation (3.7) is an immediate consequence of Theorem 4. In

order to prove weak optimality, we show that for any given policy π and any s = (n, n0) ∈ S

there exists an instance (D0,D)π of size s such that τπ((D0,D)π) ≥ n.

Let A = {1, 2 · · · , n0, n0 + 1, · · · , n}, A0 = {1, · · · , n0} and I = A, I0 = A0. Let X (and

hence H and h) be given by

X =
{
x ∈ Zn+ :

∑
j∈I0

xj = n0 − 1,
∑
j∈I

xj ≤ n− 1, xj ≤ 1 ∀j = 1, · · · , n
}
,

and let X0 (and hence, H0 and h0) be given by

X0 =
{
x ∈ Zn+ :

∑
j∈I0

xj = n0 − 1, xj ≤ 1 ∀j = 1, · · · , n0
}
.

On the other hand, for any x ∈ X define Y (x) as

Y (x) :=
{
y ∈ Rn

+ :
n∑
j=1

yj ≤ 1, yj + xj ≤ 1 ∀j = 1, · · · , n
}
.

That is, F = [1>; I] and L = [0>; I], where I is an identity matrix of size n, and f is a

column vector of ones. Define F 0, L0 and f 0 as the corresponding submatrices of F , L and

f associated with j = 1, · · · , n0. Finally, consider c to be such that cn0+q < cn0+q+1, for

q = 1, . . . n−n0− 1, and for the cost coefficients of the first n0 activities we assume that the

leader knows that they belong to U0, where U0 = {ĉ0 ∈ Rn0
: ` ≤ ĉ0

j ≤ u, j = 1, . . . , n0},

where in addition we assume that cn < ` < u < 0.

In order to adequately define the instance, a particular ĉ0 in U0 has to be fixed. However,

independent of which specific ĉ0 is chosen (which will depend on the policy, see below), the

75

above defined data constitutes an instance, i.e., Dπ ∈ G((D0)π), and its size is given by

(n, n0). Particularly, note that from the leader perspective, the problem consist of blocking

those n − 1 activities that are most profitable to the follower, constrained to the fact the

she always need to block exactly n0 − 1 out of the n0 activities she knows at time t = 0. In

addition, from the assumptions on c, the follower’s profit from any of the n − n0 activities

that the leader does not initially know is better than the profit generated by any activity

that the leader initially knows.

From the definition of (D0,D) it is clear that if x∗ is an optimal oracle decision, then

x∗j = 1 for j = n0 + 1, . . . , n, which implies that the leader must learn all those activities

before implementing a solution where zt,π = z∗. Hence, if t0 denotes the first time after which

the leader learns all activities from A \A0, it is clear from the structure of the instance that

t0 ≥ n − n0. In addition, note that until t0 the follower has only used activities in A \ A0,

so by Value–Perfect feedback, he has not revealed to the leader any of the real costs of the

activities in A0.

In order to prove weak optimality we show that for any given policy π there is a cost

vector c0 ∈ U0 such that it takes the leader at least another n0 time periods to consistently

implement x∗ (this would imply that τπ((D0,D)π) ≥ n, yielding the desired result). First,

assume that π does not repeat any solution from time t0, until time tn = t0 + n0 − 1. For

any t = t0, · · · , tn, let jπ,t be the (unique) follower activity in A0 that xt,π does not block at

time t, and choose the values of c1, . . . , cn0 such that

` < cjπ,t0+1 < cjπ,t0+2 < . . . < cjπ,tn < cjπ,t0 < u,

and note that the above defined values are admitted by U0. Observe that fixing the costs of

the actions in A0 in this way, we have that x∗ satisfies x∗j = 1, for j 6= jπ,t0 and x∗jπ,t0 = 0,

and that z∗ = cjπ,t0 . On the other hand, for t = t0 + 1, · · · , tn,

zt,π ≤ cjπ,t < z∗ (3.8)

(we note the first inequality above is, in general, not an equality, as it is not necessary

for xt,π to block all the activities j with j > n0). Henceforth, equation (3.8) implies that

τπ((D0,D)π) > tn, and hence, as t0 ≥ n− n0, τπ((D0,D)π) ≥ n, and the result follows.

76

Now, suppose that π repeats a solution once between t0 and tn, i.e., there exist t0 ≤ u <

v ≤ tn such that xu,π = xv,π. In this case jπ,u = jπ,v, and there exist 1 ≤ b ≤ n0 such that

b 6= jt,π for all t = 0, · · · , n. Let c0 satisfy

` < cjπ,t < cjπ,t+1 t = t0, · · · , v − 2, cjπ,t < cjπ,t+1 t = v + 1, · · · , tn,

and assume that cjπ,tn < cb < u. Observe that the above defined c0 belongs to U0, and hence

(D0,D)π is a valid instance, and moreover, x∗ is given by x∗j = 1 for all j 6= b, x∗b = 0, with

z∗ = cb. In addition, it is seen that for t = t0, · · · , tn

zt,π ≤ cjπ,t < z∗,

and hence τπ((D0,D)π) ≥ n, as desired. Also, note that if π repeats a solution between t0

and tn, then the same argument as above yields the result.

3.3.3 Policies in Λ Under Response–Perfect Feedback

Next, we establish convergence and weak optimality under Response–Perfect feedback. Re-

call that under this feedback the leader always observe the value of yta for all a ∈ A such that

yta > 0. In this setting, the leader should update the uncertainty set U t to U t+1 by including

the linear equality ∑
a∈At+1

yt,λa ĉa = zt,λ.

That is,

U t+1 =
{
ĉ ∈ R|At+1| : (ĉa)a∈At ∈ U t,

∑
a∈At+1

yt,λa ĉa = zt,λ
}
. (3.9)

Observe that if At+1 = At, i.e., if the leader does not learn any new activity at time t, then

U t+1 has the same number of variables as U t, and moreover, equation (3.9) implies that

U t+1 ⊆ U t.

In Response–Perfect feedback, as in the Value–Perfect setting, by using a policy in Λ the

follower must be forced to reveal new information whenever zt,λ < zt,∗R . Specifically, if yta = 0

for all a 6∈ At, then it must be the case that dim(U t+1) < dim(U t). This inequality follows

because in this case dim(U t) cannot increase (since U t+1 ⊆ U t), and, more importantly, from

77

the fact that the linear equality
∑

a∈At+1 yt,λa ĉa = zt,λ is linearly independent from all the

linear equalities in U t. These observations are formalized in the following result, which can

be considered analogous to Lemma 7:

LEMMA 8. Let λ ∈ Λ and suppose feedback F is Response–Perfect. If zt,λ < zt,∗R and yta = 0

for all a 6∈ At then

dim(U t+1) < dim(U t).

On the other hand, if the leader learns new activities at t, then U t+1 has |At+1 \At| more

variables than U t. The addition of the corresponding new variables potentially increases the

dimension of U t+1 with respect to U t by |At+1\At|. However, it is readily seen that the linear

equality
∑

a∈At+1 yt,λa ĉa = zt,λ is trivially linearly independent of previous inequalities in U t,

and as such if the leader learns new activities at t it can be concluded that dim(U t+1) ≤

dim(U t) + |At+1 \ At| − 1. This observation, in conjunction with Lemma 8 immediately

provides the following upper bound:

THEOREM 5. Let λ ∈ Λ be given. Then, under Response–Perfect feedback,

τλ ≤ ξλ ≤ dim(U0) + |A \ A0|.

The above results, as in the case of Value–Perfect feedback, have the same implications

regarding the exploitation vs. exploration dilemma. That is, exploitation always implies

exploration as long as the leader decides robustly. In addition, for Response–Perfect feed-

back weak optimality also holds. The proof of this fact applies the same arguments as in

Proposition 5. Thus, its proof is omitted.

PROPOSITION 6. Let λ ∈ Λ be given and suppose that F is Response–Perfect. Then, for any

s ∈ S

max
(D0,D)∈Gs

τλ(D0,D) ≤ n.

Moreover, λ is weakly optimal.

78

3.4 MODEL FOR MATRIX UNCERTAINTY

In this section we consider a more general model referred to as the matrix model for the

uncertainty of the leader regarding the data of the follower’s problem. We assume that she

knows with certainty the value of ct at the beginning of time t, but that she does not know

with certainty the values of matrix F t. We emphasize the generality of this model: if in

a given problem ct is uncertain as well, then it can be included in F t w.l.o.g., see Remark

9 below. In this setup, and under the appropriate extensions of certain assumptions and

feedback definitions, we show that the results for standard feedback for the basic model of

Section 3.2 (which, in view of the current discussion, can be referred to as simply the cost

model) are also valid. Moreover, we show that for the Value–Perfect feedback case, the

time-stability upper bound of Theorem 4 also holds, while for Response–Perfect feedback,

an extension of the upper bound in Theorem 5 holds under certain assumptions.

Remark 9. Consider the case where there is uncertainty regarding the cost function c. In

this case the problem min{c>y : y ∈ Y (x)} can be equivalently posed as min{y0 : (y0, y) ∈

Y ′(x)} where

Y ′(x) := {(y0, y) ∈ R|A|+1 : F ′(y0; y) +L′x ≤ (0;f)},

F ′ :=

−1 c>

0 F

 , L′ :=

0>

L

 ,

and in each case 0 is a column vector of zeros of appropriate dimensions. Observe that this

new formulation has an additional variable but there is no uncertainty regarding any cost

coefficient (it is always one for the new variable and zero for the rest).

3.4.1 Assumptions and Feedback in the Matrix Model

In this model we assume that the leader knows ct with certainty, but only knows that F t

belongs to an uncertainty set U t. For any d ∈ Ct
F let us denote by ntd the number of the

follower’s activities in At that d restricts, that is

ntd := |{a ∈ At : d ∈ CF (a)}|.

We replace assumption (A2) from Section 3.2 with the following:

79

A2E: The leader does not know with certainty all entries of F but she knows that F t ∈ U t,

with

U t = {F̂ t ∈ R
∑
d∈Ct

F
ntd : GtF̂ t ≤ gt},

where we make the convention that

F̂ t = (F11, . . . , F1nt1
, F21, . . . , F2nt2

, . . . , F|CtF |1, . . . , F|CtF |nt|Ct
F
|
)>.

If Ct
U is the set of constraints of polyhedron U t, then Gt ∈ R|C

t
U |×

∑
d∈Ct

F
ntd and

gt ∈ R|CtU |. We assume that both Gt and gt are known by the leader at time t.

We also modify the definition of standard feedback; specifically we replace S4 by S4E:

S4E: For any new learned activity a ∈ A, the leader learns the value of ca (instead of

learning the value of Fda for all d ∈ CF (a)∪Ct
F). The rest of the assumption is as S4.

Moreover, in this setting Value–Perfect feedback is extended to account for the values of

the constraint matrix. That is, we refine the concept of Value–Perfect feedback as follows

Definition 6. In the context of the matrix model, standard feedback F is called Value–

Perfect if and only if at any time t ∈ T the leader learns the value of Fda for all a such that

yta > 0 and d ∈ Ct
F ∪ CF (a).

Note that the definition of Value–Perfect feedback in the previous sections is a particular

case of the above. On the other hand, we do not make additional assumptions on Response–

Perfect feedback.

Finally, we modify the definition of an instance. The initial information in this setting

consists of the vector D0 := (A0, I0, C0
F , C

0
L,U0,H0,h0,L0,f 0, c0), and G(D0) becomes

G(D0) := {(A, I, CF , CL,F ,H ,h,L,f , c) : conditions C1,C2 and C3E-C5E below hold},

where

C3E: U0 has valid upper and lower bounds for all Fda, d ∈ C0
F , a ∈ A0.

C4E: (Fda : d ∈ C0
F , a ∈ A0) ∈ U0.

C5E: H0, h0, L0, f 0, c0 are submatrices and subvectors of H , h, L, f , c.

80

The above definitions are straightforward extensions of the assumptions and definitions of

the basic cost model in Section 3.2. Using them, we extend most of the results in the next

sections.

3.4.2 Extended Greedy and Robust Policies

In what follows we generalize the greedy and robust policies in Λ to the matrix model which

we denote by ΛE. Policies in ΛE are greedy because they maximize the follower’s costs at

the next time period, and they are robust because they consider all possible realizations of

F̂ t over U t. As shown below, these policies share most properties of the policies in Λ under

the different modes of feedback.

For any t ∈ T , and given any x ∈ X t define the “robust” region Y t
E(x) as

Y t
E(x) :=

{
y ∈ R|A

t|
+ : F̂ ty +Ltx ≤ f t ∀F̂ t ∈ U t

}
.

The robustness of Y t
E(x) follows from the fact that any element of this set must be feasible

for any possible realization of the uncertain data in U t. Define

ztE(x) := min
{(
ct
)>
y : y ∈ Y t

E(x)
}
, x ∈ X t and zt,∗E := max{ztE(x) : x ∈ X t} t ∈ T .

Additionally, for any policy π define ξπE := ξπ(D0,D) as,

ξπE := min{t ∈ T : zt,∗E = zt,π}.

Definition 7. We say that λ ∈ ΛE ⊆ Π if and only if

xt,λ ∈ arg max{ztE(x) : x ∈ X t} ∀t ≤ ξλ,

and xt,λ = xξ
λ,λ for all ξλE < t ≤ T .

As before, ξλE is the first time period when the follower uses a solution with the cost

expected by the leader. Finally, from ξλE onwards, policies in ΛE repeat the same solution

used at time ξλE.

81

3.4.2.1 Policies in ΛE under Standard and Value–Perfect Feedback The following

proposition states that the standard feedback results that hold for Λ in Section 3.3.1, (i.e.,

Theorem 3 and Proposition 4) also hold for ΛE.

PROPOSITION 7. Let λ ∈ ΛE be given and assume that F is standard. Then,

(i) For any given t ∈ T it follows that zt,λ ≤ z∗ ≤ zt,∗E .

(ii) τλ ≤ ξλE.

(iii) Given t ∈ T , if dim(U t) = 0 and yta = 0 for all a 6∈ At, then ξλE ≤ t, and, in particular,

τλ ≤ t.

In addition, given the extended definition of Value–Perfect feedback, Lemma 7 and The-

orem 4 can be generalized in a straightforward fashion for the policies in ΛE. Indeed, define

ÃtE as the set of the follower’s activities for which the leader knows (with certainty) the

values of the columns of A associated with them, that is,

ÃtE := {a ∈ At : ∀F̂ ∈ U t F̂da = Fda ∀d ∈ Ct
F}.

PROPOSITION 8. Suppose λ ∈ ΛE and that feedback F is Value–Perfect. Then,

(i) If zt,λ < zt,∗E then Ãt+1
E \ ÃtE 6= ∅.

(ii) τλ ≤ ξλE ≤ |A \ Ã0
E|.

3.4.2.2 Policies in ΛE under Response–Perfect Feedback In this section we estab-

lish convergence under Response–Perfect feedback for policies in ΛE. In contrast with the

Value–Perfect case, the extended results are more involved. We begin with the following

observation.

LEMMA 9. Let λ ∈ ΛE, and suppose that zt,λ < zt,∗E and that yta = 0 for all a 6∈ At. Then

there exist a F̃ t ∈ U t and a lower-level constraint d ∈ Ct
F such that

(
F̃ t
d

)>
yt,λ > fd −

(
Ltd
)>
xt,λ. (3.10)

82

The above result implies that the leader can remove matrix F̃ t from the uncertainty set

at time t, as equation (3.10) means that F̃ t 6= F t. For any given t ∈ T and λ ∈ ΛE, let us

define Dt,λ as the set of constraints for which equation (3.10) holds at time t, that is

Dt,λ :=
{
d ∈ Ct

F : ∃F̃ t ∈ U t s.t.
(
F̃ t
d

)>
yt,λ > fd −

(
Ltd
)>
xt,λ
}
.

Suppose that zt,λ < zt,∗E and yta = 0 for all a 6∈ At. Under the assumption of Response–

Perfect feedback, one direct way to remove those elements of U t that satisfy equation (3.10)

is to define U t+1 as

U t+1 = {F̂ t ∈ U t :
(
F̂ t
d

)>
yt,λ ≤ fd −

(
Ltd
)>
xt,λ ∀d ∈ Dt,λ}, (3.11)

where we note that U t+1 ⊂ U t by Lemma 9. On the other hand, if yta > 0 for some a 6∈ At,

then, in general, the existence of a F̃ t such that (3.10) holds cannot be guaranteed, and

hence the update in equation (3.11) can be vacuous (i.e., U t+1 = U t).

From the above discussion it is clear that whenever the leader does not learn a new

follower activity, then her uncertainty set reduces its size. However, the update defined by

(3.11) does not necessarily reduce the dimension of U t, and hence an upper bound similar

to that of Theorem 5 cannot be proved in this setting by using the polyhedral dimension

arguments. However, if we make additional assumptions about the lower-level problem

or about the leader’s ability to observe the said problem, a finite upper bound can be

established. These assumptions guarantee that the uncertainty update reduces the dimension

of the uncertainty polyhedron at least by one.

PROPOSITION 9. Let λ ∈ ΛE and suppose that F is Response–Perfect.

(i) If all constraints of the lower-level problem are equalities, then

τλ ≤ ξλ ≤ dim(U0) +
∑

a∈A\A0

|CF (a)|.

(ii) If for any period t ∈ T such that yta = 0 for all a 6∈ At the leader observes the slack

associated with at least one of the constraints in Dt,λ, then

τλ ≤ ξλ ≤ dim(U0) +
∑

a∈A\A0

(
|CF (a)|+ 1

)
.

83

Observe that all of the upper-bound results for policies in Λ (or ΛE) proved so far rely

on the fact that whenever the leader does not learn a new activity, then the dimension of

U t+1 can be made strictly less than the dimension of U t. For the matrix model and under

Response–Perfect feedback, if no additional assumptions are made, then this reduction in

dimension cannot be guaranteed. In this general setting, however, we can prove that every

time U t is updated, the difference in ‘size’ between U t+1 and U t is sufficiently large.

PROPOSITION 10. Let ε > 0, λ ∈ ΛE, and t ∈ T be given. Assume that yta = 0 for all a 6∈ At

and define ∆t := U t \ U t+1. If z∗E − zt,λ > ε, then there exist K > 0 (independent of ε) such

that

diam(∆t) >
−‖yt,λ‖+

√
‖yt,λ‖2 + 4Kε2‖ct‖−2

2K
,

where diam(∆t) denotes the diameter of polyhedron ∆t, i.e., diam(∆t) = maxF ′,F ′′∈∆t ‖F ′−

F ′′‖.

3.5 SEMI-ORACLE LOWER BOUNDS

In online optimization, the performance of a policy is compared against that of an oracle,

who represents an ideal decision-maker who has all information of the problem beforehand,

see Cesa-Bianchi and Lugosi (2006a). Such an oracle faces no uncertainty and is able to

make the best possible decision. In our problem setting, the oracle solves problem (3.1) at

every period, and thus always attains a time-stability of zero. Unfortunately, such a lower

bound is rather trivial and of not particular interest.

Consider instead a weaker oracle that, albeit knowing all the information of the problem

in advance, has restrictions in the way she can use this information. Specifically, at any period

such a weaker oracle can only use resources that she initially knows at time t = 0, or that have

been revealed to her by the follower in previous periods. Hence, this semi-oracle, see Borrero

et al. (2016), represents a decision-maker that combines both the practical limitations of the

leader, with all the knowledge of the traditional oracle. Specifically, the semi-oracle solves:

min
∑
t∈T

1{c>yt<z∗} (3.12a)

84

s.t. xt ∈ X t ∈ T (3.12b)

yt ∈ arg min{c>y : y ∈ Y (xt)} t ∈ T (3.12c)

xti = 0 i ∈ I \ I t, t ∈ T (3.12d)

I t+1 = I t ∪
⋃

a : yta>0

I(a) t ∈ T \ {T}, (3.12e)

where constraint (3.12d) prevents the semi-oracle from using activities which she does not

know by time t. Observe that absent this constraint, the formulation corresponds to what

the oracle (with full information) would solve. Constraints (3.12b) and (3.12c), on the other

hand, imply that the semi-oracle has all the information of the problem. As a consequence,

the leader cannot be expected to formulate nor optimally solve (at least, consistently) the

problem given by (3.12) in practice.

There are two main advantages of using the notion of the semi-oracle, rather than the

oracle, as a benchmark. First, it yields a more informative lower bound on the performance

of any policy: the time-stability attained by the semi-oracle is not always zero; moreover, by

using it we can evaluate the effect that the initial information has on the performance of any

policy. Second, for any given instance, there is always a policy that attains the time-stability

of the semi-oracle policy. Specifically, for any policy, any interaction between the leader and

the follower can be mapped into a feasible solution of (3.12), and more importantly, given

a fixed instance, there must exist a policy that yields the same values of xt and yt as an

optimal solution of (3.12).

It is important to note, however, that the semi-oracle decision process does not con-

stitute a feasible policy: given a same history Ht(D0,D), the semi-oracle might determine

two different values for xt for different instances, see an example for the sequential shortest

path interdiction in Borrero et al. (2016). This, because problem (3.12) is a function of the

instance (D0,D), rather than a function of the history (as it is the case with any admissible

policies; recall their definition in Section 3.2.2).

It can be readily seen that the semi-oracle optimization problem (3.12) isNP -hard. Small

and moderately sized instances of the problem, however, can be tackled by state-of-the-art

85

MIP solvers. Indeed, a single-level MIP reformulation of (3.12) is given by:

min
u,v,w,y,x,θ

∑
t∈T

wt (3.13a)

s.t. Hxt ≤ h t ∈ T (3.13b)

F yt +Lxt ≤ f , −F>θt ≤ c t ∈ T (3.13c)

θt ≤M θtut, yt ≤M ytvt t ∈ T (3.13d)

f − F yt −Lxt ≤M pt(1− ut) t ∈ T (3.13e)

c+ F>θt ≤M qt(1− vt) t ∈ T (3.13f)

xti ≤Mxi

t−1∑
s=0

∑
a∈A(i)\A0

ysa t ∈ T , i ∈ I \ I0 (3.13g)

z∗(1−Mwwt) ≤ c>yt t ∈ T (3.13h)

ut ∈ {0, 1}|CF |, vt ∈ {0, 1}|A|, wt ∈ {0, 1} t ∈ T (3.13i)

yt ∈ R|A|+ , xt ∈ R|I|−k+ × Zk+, θt ∈ R|CF |+ t ∈ T , (3.13j)

where xt is the solution of the semi-oracle at time t, and yt is the solution of the follower

at time t ∈ T . The fact that yt ∈ arg min{c>y : y ∈ Y (xt)} is represented by its linear

programming (LP) optimality conditions via constraints (3.13c) (primal and dual feasibil-

ity) and (3.13d), (3.13e), and (3.13f) (the linearized complementary slackness conditions). In

these constraints, M θt , M pt , M yt , and M qt are diagonal matrices that are upper bounds on

θt, f −F yt−Lxt, yt, and c+F>θt, respectively. We refer the reader to Audet et al. (1997)

for more details on single-level MIP reformulations of bilevel problems with the lower-level

problem given by an LP.

Variable wt is binary and takes the value of zero if c>yt = z∗, i.e., if the optimal semi-

oracle solution is used at time t, see constraint (3.13h). Here, Mw = (z∗ − `)/z∗ and `

is a valid lower bound on the value of c>y for any feasible y. Finally, constraint (3.13g)

implies that a resource cannot be used if it has not been revealed by the follower or if it is

not in I0. In this constraint, A(i) is the set of follower activities that i interferes with, i.e.,

A(i) = {a ∈ A : i ∈ I(a)}, and Mxi = ui/`i, where ui is an upper bound on the value of the

i-th entry of any x ∈ X, and `i is a strictly positive lower bound on the value that any ya,

86

a ∈ A(i), can take whenever ya > 0. In general, the computation of these lower bounds can

be highly involved, but for specific applications they can be computed rather efficiently from

the problem’s data, see Section 3.6 for an example.

We close this section by noting that although MIP problem (3.13) can be solved directly

for moderately sized instances, it might require lengthy computational times due to the large

number of variables and constraints, particularly if T is large. It turns out, however, that

this problem can be made somewhat less “dependent” on the time horizon T by feeding

to the solver an initial feasible solution. This approach can drastically reduce the size of

the resulting MIP, and thus lead to shorter computational times; see the discussion on this

approach in Appendix B.3.1.

3.6 COMPUTATIONAL STUDY

In this section we demonstrate the numerical performance of the policies in Λ. For this, we

use the AD Knapsack problem of Example 2. We consider both Value–Perfect and Response–

Perfect feedbacks as well as two different models for the initial uncertainty set. In order to

provide a broader picture of the performance of the policies in Λ, we compare them against

reasonable benchmark policies in the context of SMPI, and with respect to the semi-oracle

lower-bounding procedure of the previous section. Our results show that the policies in Λ

outperform the benchmark, and compare rather favorably with respect to the semi-oracle

lower bound.

The decisions generated by the policies in Λ are computed by solving a one-level MIP

reformulation of the bilevel problem (3.6), see Section B.3.2 of the Appendix for further

details. Generally speaking, the transformation of optimization problem (3.6) into an MIP

involves application of methods from bilevel optimization (to transform the hierarchical prob-

lem into a single-level problem) and robust optimization (to adequately optimize over the

uncertainty set U t) areas. We note that, in general, problem (3.6) is NP -hard, as bilevel

linear optimization is its special case.

87

Test Instances. We consider the AD knapsack problem from Example 2, where the

defender has n = 12 assets, b = r = 1, and B = R = 4. We consider two models of initial

uncertainty sets, namely, hypercube uncertainty and general uncertainty:

• In the hypercube model the defender’s profits satisfy pa ∈ [`a, `a + ma], a ∈ A, where

`a is drawn at random from uniform discrete U(1, 5) distribution and ma is drawn from

U(1, 15) distribution.

• For the general uncertainty model we generate a non-negative polytope with CU = 3

inequalities. The polytope is given by P := {p : Gp ≤ g, p ≥ 0}, where Gu,j is drawn

at random from U(1, 10) distribution for j ∈ {4(u− 1) + 1, 4u}, and Gu,j = 0 otherwise,

while gu is drawn at random from U(1, 20) distribution, for u = 1, 2, 3.

Given a polytope P , we generate the follower’s profit vector p by using the following

approach. First, we compute the barycenter (or analytical center) of the polytope by solving

the following convex problem (see, e.g., Bertsimas and Tsitsiklis (1997)):

pb ∈ arg min
(p̂,q̂)≥0

{
−

n∑
j=1

log(p̂j)−
|CU |∑
u=1

log(q̂u) : Gp̂+ q̂ = g, p̂ ≥ 0
}
.

Next, we randomly construct an extreme point of P by first generating a vector ` of size n

(where each entry is zero or one with the same probability) and then solving an LP of the

form:

pe ∈ arg max
p̂
{`>p̂ : Gp̂ ≤ g, p̂ ≥ 0}.

Finally, we combine the barycenter with the obtained extreme point by p = (pb + 7pe)/8, to

generate an interior point of the polytope P , and hence ensuring that pa > 0 for all a ∈ A.

For each uncertainty model, we generated at random N = 30 instances, considering both

Value–Perfect and Response–Perfect feedbacks. We consider three sets of initial information

A0: in the first, the leader knows four activities of the follower; in the second, she knows

eight activities; and in the last, she knows all activities. Finally, we set T = 24.

88

Benchmark Policies. In addition to policies in Λ, we consider the following bench-

marks:

• The barycenter policy πb: At each time t ∈ T the policy computes xt,πb by solving the

deterministic bilevel problem

xt,πb ∈ arg max
x∈Xt

{(ct)>b y : y ∈ Y t(x)}, (3.14)

where ctb = −ptb, and ptb is the barycenter of the polytope U t.

• The random policy πr: At each time t ∈ T the policy computes xt,πr by solving

problem (3.14) with ctr used instead of ctb. We have ctr = −ptr, and ptr is a ran-

domly generated extreme point of U t that is obtained by solving the linear program

ptr ∈ arg max{`t,T p̂ : p̂ ∈ U t}. In this problem, at each time t ∈ T each entry of vector `t

is drawn at random from a Bernoulli distribution with parameter 1/2, i.e., each entry is

zero or one with equal probability.

• The “stopped” random policy πs: At each time t ∈ T the policy computes xt,πs in the

same manner as policy πr. However, whenever the leader observes a follower’s response

that she has observed in the earlier time periods, then the policy keeps using the same

solution thereafter. That is, if time t′ is the earliest period such that zt
′,πs = zt,πs for

some t < t′, then xt,πs = xt
′,πs for all t ≥ t′.

• We also consider the lower bound provided by the semi-oracle approach discussed in Sec-

tion 3.5. While it is not an admissible policy, with a slight abuse of notation we denote

it by π∗ hereafter.

Results and Discussion. For each uncertainty model we compute its time-stability

across N = 30 replications by using each of the policies described above. Tables 10 and

11 report the mean time-stability and mean absolute deviation (MAD) for the hypercube

uncertainty model under Value–Perfect and Response–Perfect feedbacks, respectively. Sim-

ilarly, Tables 12 and 13 show the same results for the general uncertainty model. For the

sake of reporting averages, policies that do not find an optimal solution within the first 24

periods of an instance are assigned the value τπ = T = 24.

89

Table 10: Time-stability mean and MAD for the hypercube uncertainty model and Value

Perfect feedback.

(a) Value–Perfect: time-stability mean

A0 λ πb πr πs π∗

{1, · · · , 4} 2.13 20.17 21.70 21.70 1

{1, · · · , 8} 2.93 21.73 23.20 23.20 0.93

A 3.03 21.77 24.00 24.00 0

(b) Value–Perfect: time-stability MAD

A0 λ πb πr πs π∗

{1, · · · , 4} 0.29 6.39 4.14 4.14 0.00

{1, · · · , 8} 0.50 4.08 1.55 1.55 0.12

A 0.59 4.02 0.00 0.00 0

We observe that the proposed policies λ ∈ Λ consistently outperform the benchmark

except for the semi-oracle lower bound π∗, which is expected. For most instances in the

hypercube model, policies πb, πr and πs yield very poor time-stability results, not being

able to find an optimal solution for most cases within the time horizon. Their performance

improves, however, for the general uncertainty model. These results reflect one of the key

advantages of the greedy and robust nature of the policies in Λ, namely, the fact that the

leader is guaranteed to eventually find an optimal solution to the full information problem.

Furthermore, we observe that the performance of the proposed policies is better for the

case of Value–Perfect feedback when compared to Response–Perfect feedback, by a factor of

at least two, under both uncertainty models. This is to be expected: under Value–Perfect

feedback more linearly independent equations are added on average to U t at each time

period. It is also noticeable that the amount of initial information does not seem to have

any significant impact on policy performance under both feedback types and uncertainty

models. Although this behavior is rather counter-intuitive, it might stem from the fact

90

Table 11: Time-stability mean and MAD for the hypercube uncertainty model and Response

Perfect feedback.

(a) Response–Perfect: time-stability mean

A0 λ πb πr πs π∗

{1, · · · , 4} 7.77 23.23 21.10 21.87 1

{1, · · · , 8} 8.00 23.20 23.20 23.20 0.93

A 7.93 24.00 24.00 24.00 0

(b) Response–Perfect: time-stability MAD

A0 λ πb πr πs π∗

{1, · · · , 4} 2.21 1.48 4.64 3.84 0.00

{1, · · · , 8} 1.87 1.55 1.55 1.55 0.12

A 1.74 0.00 0.00 0.00 0

Table 12: Time-stability mean and MAD for the general uncertainty model and Value Perfect

feedback.

(a) Value–Perfect: time-stability mean

A0 λ πb πr πs π∗

{1, . . . , 4} 2 14.20 4.43 3.07 1

{1, . . . , 8} 1 10.27 5.20 4.30 0.97

A 1 9.37 7.67 6.67 0

(b) Value–Perfect: time-stability MAD

A0 λ πb πr πs π∗

{1, . . . , 4} 0 11.11 2.77 1.52 0.00

{1, . . . , 8} 0 10.99 3.73 3.94 0.06

A 0 10.73 6.56 6.93 0

that in this particular bilevel setting, the follower’s activities are fairly independent of each

other (they are interrelated only through the follower’s budget constraint). Hence, partial

knowledge of the follower activities does not implicitly reveal much information about the

remaining unknown activities. We note that in more complex bilevel settings the amount of

initial information does have a very important effect (see, e.g., discussion in Borrero et al.

91

Table 13: Time-stability mean and MAD for the general uncertainty model and Response

Perfect feedback.

(a) Response–Perfect: time-stability mean

A0 λ πb πr πs π∗

{1, . . . , 4} 6.90 14.23 9.10 11.37 1

{1, . . . , 8} 7.50 17.30 14.53 12.97 0.97

A 7.73 16.77 17.73 11.93 0

(b) Response–Perfect: time-stability MAD

A0 λ πb πr πs π∗

{1, · · · , 4} 0.30 11.07 3.87 8.42 0.00

{1, · · · , 8} 0.53 9.38 7.37 9.56 0.06

A 0.41 9.64 7.14 8.85 0

(2016) for an example in the context of the shortest path interdiction).

An important feature of the policies in Λ is their low variability. This is especially

true in the general uncertainty model, where the policies yield no variability in the Value–

Perfect setting, and a very low variability in the Response–Perfect setting. In contrast, the

benchmark policies are orders of magnitude more variable in the general uncertainty setting.

While these policies have low MAD values in Tables 10(b) and 11(b) for the hypercube

uncertainty, this is due to the fact that for most instances their time-stability is infinity

(recall our earlier remark that policies that do not find an optimal solution within the first

24 periods of an instance are assigned the value τπ = T = 24).

92

3.7 CONCLUDING REMARKS

This chapter presents a framework for addressing SMPI where at each period a leader allo-

cates a series of resources so as to degrade the performance of a follower, who in turn aims at

minimizing a cost function by performing a series of activities. The interaction at each time

period is modeled as a bilevel program. We assume that, unlike the follower, the leader has

incomplete information about the variables, constraints, and cost function of the follower’s

problem and has to learn them by observing the feedback generated by the follower’s actions.

Such feedback includes the total cost incurred by the follower, the activities performed, and

any resource that might interfere with the said activities. Such settings naturally arise in

military and law enforcement applications, e.g., attacker-defender and interdiction problems,

which are often modeled as max-min bilevel problems.

We propose a class of policies Λ that are both greedy and robust, as they optimize the

immediate performance considering worst-case realizations of the instance among those that

are consistent with the information at hand. Under reasonable assumptions on the informa-

tion that the leader collects from the follower’s response, our theoretical results show that

in SMPI exploitation always implies exploration as long as the leader is using policies in Λ,

and moreover, their greediness and robustness are sufficient to guarantee weak optimality.

Particularly, we show that the time-stability of policies in Λ is upper-bounded by the num-

ber of the follower’s activities and the dimension of the cost’s uncertainty polyhedron, which

implies that they are guaranteed to eventually match the actions of the oracle with prior

knowledge of the instance. Moreover, we show that these policies provide the leader with a

real-time certificate of optimality.

We also consider a more general setting where the leader has uncertainty regarding the

follower’s constraint matrix. We demonstrate that the extension of greedy and robust policies

preserves most of the attractive features of their cost-model counterparts. Particularly, no

extra assumptions are required to extend the time-stability upper bounds under Value–

Perfect feedback, while only mild assumptions are required to preserve the upper bounds

under Response–Perfect feedback.

93

Implementation of the proposed policies requires solving a linear MIP in each period:

these problems can be solved by available commercial solvers. We also present a lower bound

on the best possible achievable performance based on the actions of a semi-oracle that possess

full information about the setting, but cannot signal it through her actions. We show that

the said bound can also be computed via an MIP. Our theoretical results are supported by a

series of numerical experiments that show that the proposed policies consistently outperform

reasonable benchmark.

Several questions remain open at this point with regard to sequential bilevel problems

with incomplete information. One of the the most relevant is to study up to what point

the results in this work can be extended to general (i.e., not necessarily max-min) bilevel

programs. Also, models with more general assumptions on uncertainty, where, for instance,

the leader is not certain about her upper-level data, provide an attractive avenue of future

research. Regarding SMPI, the question of determining whether finite time-stability upper

bounds can be proved for the matrix model under Response–Perfect feedback with no extra

assumptions remains open, as well as to determine alternative feedback settings where finite

bounds, and weak optimality, can be also be attained.

94

4.0 SEQUENTIAL ASYMMETRIC BILEVEL LINEAR PROGRAM-

MING WITH INCOMPLETE INFORMATION AND LEARNING

4.1 INTRODUCTION

Several applications of bilevel programming involve non-adversarial decision-makers where

the follower’s objective function might be unrelated to the objective function of the leader.

Therefore, by optimizing her objective the leader does not necessarily seeks to degrade the

follower’s performance, see Colson et al. (2007a), Dempe (2002), Saharidis et al. (2013).

Moreover, similar to the adversarial problems studied in the previous chapters, there are

examples of this class of asymmetric bilevel problems where the assumption that the leader

has complete information about the follower’s problem does not hold. As a consequence,

the leader is forced to learn about the structure and data of the follower’s problem from her

interactions with him.

As an example, consider a plant selection problem in a decentralized manufacturing

environment (Cao and Chen 2006). Here, the leader is a principal firm that has to hire

auxiliary plants (managed by the follower) to manufacture a set of given products. The

leader’s objective is to minimize the costs of opening the plants and of unused utilization.

Given the plants selected by the leader, the follower must configure their operation in order to

minimize the operational cost of each plant. Since the auxiliary plants are independent of the

principal firm, the leader might not know the precise information the follower uses to operate

them, and moreover, the follower might not have any incentive to reveal this information to

the principal firm. Hence, the leader must learn this undisclosed information by observing

the follower’s reactions to her decisions each time a contract renegotiation takes place.

95

Alternatively, recall the repeated version of a network pricing (or tariff) problem studied

in Bouhtou et al. (2007) that is discussed in the Introduction. There, the leader has no

access to the follower’s problem information as it involves information on competing firms

that might not be publicly available. Moreover, the follower, being the network user, has no

incentive to disclose this information to the leader; such disclosure might impair his ability

to optimize his objective function.

In this chapter we study such sequential asymmetric bilevel linear problems with incom-

plete information within the framework developed for the max-min bilevel case in Chapter 3.

We assume that the leader and the follower interact across a set of given time periods, that

the problems are given in terms of selecting the levels of resources to be used and of activ-

ities to be performed, and that the leader knows that the follower’s cost vector belongs to

a certain uncertainty set. In addition, we assume that the decision-making process of the

leader is given in terms of policies, and we measure their performance by using time-stability.

Particularly, as we discuss in Section 4.2, our focus is to find weakly optimal time-stability

policies, that is, we seek to find the leader’s decision-making policies that attain the best

possible worst-case performance across all instances.

In the present study we consider two classes of policies. The first one, presented in Sec-

tion 4.3, is the adaptation of the greedy and robust policies of Chapter 3 to the asymmetric

setting. We show that these policies do not retain the properties that lead to weak opti-

mality. Moreover, they can get stuck in sub-optimal solutions and they might be unable to

provide certificates of optimality in real time. On the other hand, in Section 4.4 we discuss a

class of greedy and ‘best’-case policies. We show that these policies can provide a finite upper

bound on the time-stability, and always provide a certificate of optimality in real time.

Importantly, the greedy and ‘best’-case policies allow for more flexibility (compared to

the greedy and robust policies) in the way that the uncertainty set can be updated. As such,

we study different updating mechanisms for this class of policies under the different feedback

modes, and show how the decisions prescribed by these policies can be computed using mixed

integer programming (MIP) formulations. Particularly, these formulations can be viewed as

the extensive form of a two-stage stochastic MIP. Hence, different decomposition techniques

from the stochastic programming literature might be used to compute larger instances.

96

In Section 4.5 we perform computational experiments that study the time-stability of the

greedy and best-case policies under various configurations of the feedback and the updating

mechanisms. We show that for most of the configurations these policies greatly outperform

the worst-case theoretical time-stability upper bound. Moreover, the results show that for

most cases the time-stability is upper bounded by the number of actions of the follower,

which suggests that under certain assumptions on the feedback and the updating mecha-

nisms, the greedy and best-case policies might be weakly optimal. Finally, in Section 4.6 we

provide conclusions and possible directions of future research.

4.2 PROBLEM FORMULATION

Consider the full-information leader’s problem given by

w∗ = max{w(x) : x ∈ X}, (4.1)

where

X = {x ∈ R|I|−k+ × Zk+ : Hx ≤ h}, (4.2)

and for any x ∈ X

w(x) = max{d>y : y ∈ Z(x)}, (4.3)

with d ∈ R|A| being a given vector. For any given x ∈ X the set Z(x) is defined as

Z(x) = arg min{c>y : y ∈ Y (x)}, (4.4)

where for any x ∈ X we have

Y (x) = {y ∈ R|A|+ : F y +Lx ≤ f}. (4.5)

We make the assumption that the leader does not know vector c with certainty, but

knows that it lies within an uncertainty set U0, where U0 is assumed to be a polyhedron

given by

U0 = {ĉ ∈ R|A| : G0ĉ ≤ g0}. (4.6)

97

In contrast with the max-min model, we make the simplifying assumption that the leader

knows all the variables and constraints and all the remaining data. Thus, A0 = A, I0 = I,

C0
F = CF , and C0

L = CL. Importantly, we also make the assumption of a bilevel opti-

mistic approach, that is, the follower cooperates with the leader if there are multiple optimal

solutions for the follower’s problem, see, e.g., Dempe (2002).

We assume that the leader knows the upper-level vector d with certainty; which reflects

the fact that she is aware of her resources and capabilities. A further generalization would

assume that her knowledge of d is also subject to uncertainty, i.e., d ∈ Ũ0 for some uncer-

tainty set Ũ0. Such model generalizes the max-min problem studied in Chapter 3 (by setting

d = c and Ũ0 = U0) as well as the model we study in this chapter (by setting Ũ0 = {d}).

We leave the study of such model outside this thesis as the subject of further research.

Given this set-up, at each time t ∈ T = {1, 2, . . . , T} the following sequence of events

take place:

1. The leader chooses xt ∈ X.

2. The follower solves the following linear program:

z(xt) = min{c>y : y ∈ Y (xt)}. (4.7)

For notational convenience, we set yt := y(xt) and zt := z(xt), where we recall that y(xt)

is the vector the follower chooses at time t if the leader implements xt.

3. The leader receives the profit wt = d>yt.

4. The response of the follower generates a feedback F t. The leader observes the information

in F t and exploits it to update her current knowledge of the uncertainty set to U t+1.

In this setting, the Standard, Value–Perfect, and Response–Perfect feedbacks are defined as

in Section 3.2.1. We make the convention that for this problem all these feedback types also

reveal the value of wt to the leader at each time t ∈ T .

The leader decides in terms of policies (cf. Section 3.2.2; in particular we use a superscript

π to discuss vectors and quantities associated with policy π), and her objective is to find

98

a weakly optimal time-stability policy (see Section 3.2.2). The time-stability of policy π is

defined as τπ, where

τπ = min{t ∈ T : ws,π = w∗ for all s ≥ t}. (4.8)

Observe that time-stability has the same interpretation as before, being the first time period

by which the leader implements the optimal full-information bilevel solution from there on.

4.3 GREEDY AND ROBUST POLICIES

Following the developments in Sections 2.3 and 3.3 for the shortest-path interdiction and

max-min bilevel problems, in this section we consider greedy and robust policies. If ∆ is such

set of policies, then we say δ ∈ ∆ if and only if

xt,δ ∈ arg max
{
d>y : y ∈ arg min

{
max{ĉ>y′ : ĉ ∈ U t} : y′ ∈ Y (x)

}
, x ∈ X

}
. (4.9)

When the leader decides using a policy δ ∈ ∆, then she expects her profit at period t to be

wtR(xt,δ) = d>y, y ∈ W t
R(xt,δ), (4.10)

where for any x ∈ X we denote

W t
R(x) = arg max{d>y : y ∈ Zt

R(x)}, (4.11)

and for any x ∈ X the set Zt
R(x) is defined as:

Zt
R(x) = arg min

{
max{ĉ>y : ĉ ∈ U t} : y ∈ Y (x)

}
. (4.12)

Also, if the leader is using policy δ ∈ ∆, then the cost the leader expects the follower incurs

at t is given by ztR(xt,δ), where for any x ∈ X (c.f. Section 3.3.1)

ztR(x) = max{ĉ>y : ĉ ∈ U t}, y ∈ Zt
R(x). (4.13)

One the main properties of the greedy and robust policies in the max-min context is that

whenever the leader’s expectations are different from what she observes, then the follower

99

must reveal new information to the leader. This result holds here as well as the following

lemma shows. (For notational simplicity let us write wt,δR for wtR(xt,δ) from here on and let

wt,δ be the profit the leader observes at period t is she is using policy δ.)

LEMMA 10. Suppose that δ ∈ ∆ and that feedback is Value–Perfect or Response–Perfect. If

wt,δ 6= wt,δR then dim(U t+1) < dim(U t).

Proof. First, for Value–Perfect feedback, assume that wt,δ > wt,δR . This implies that yt,δ 6∈

W t
R(xt,δ), and this implies that either (i) yt,δ 6∈ Zt

R(xt,δ), or that (ii) yt,δ ∈ Zt
R(xt,δ) and that

there exist y ∈ Zt
R(xt,δ) such that d>y > d>yt,δ.

Suppose that (i) holds. As yt,δ ∈ Y (xt,δ), then it must be the case that there exist

ỹ ∈ Y (xt,δ) such that max{ĉ>ỹ : ĉ ∈ U t} < max{ĉ>yt,δ : ĉ ∈ U t}. Suppose that yt,δa = 0 for

all a ∈ A \ Ãt. Then max{ĉ>yt,δ : ĉ ∈ U t} =
∑

a∈Ãt cay
t,δ
a , and hence

∑
a∈A

caỹa ≤ max{ĉ>ỹ : ĉ ∈ U t} <
∑
a∈Ãt

cay
t,δ
a =

∑
a∈A

cay
t,δ
a . (4.14)

Hence, yt,δ 6∈ Z(xt,δ), which contradicts the definition of yt,δ. So it follows that yt,δa > 0

for some a ∈ A \ Ãt, and the result follows. Finally, observe that (ii) cannot hold as it

immediately contradicts the definition of wR(xt,δ).

Now, suppose that wt,δ < wt,δR , then there are two possibilities: (i) as before and (ii ’)

yt,δ ∈ Zt
R(xt,δ) and there exist y ∈ Zt

R(xt,δ), such that d>yt,δ < d>y. If (i) holds then the

results holds for the same arguments. Finally, (ii ’) cannot hold in this setting as it would

contradict the optimistic assumption of the bilevel problem.

For Response–Perfect feedback, first assume that wt,δ > wt,δR . Then, by the same rea-

soning either (i) yt,δ 6∈ Zt
R(xt,δ), or (ii) yt,δ ∈ Zt

R(xt,δ) and that there exist y ∈ Zt
R(xt,δ)

such that d>y > d>yt,δ. For (i) suppose that [yt,δ; zt,δ] is linearly dependent with all the

rows of [Gt,=, gt,=] (see Lemma 8 in Section 3.3.3). This implies that {ĉ : Gt,=ĉ = gt,=} =

{ĉ : Gt,=ĉ = gt,=, yt,δ,>ĉ = zt,δ}. Thus, for any ĉ ∈ U t it follows that yt,δ,>ĉ = zt,δ. In

particular, max{ĉ>yt,δ : ĉ ∈ U t} = zt,δ, and we can conclude that yt,δ 6∈ Z(xt,δ) by using the

same chain of inequalities in (4.14). This gives the desired contradiction. Also, as before

(ii) cannot hold from the definition of wR(xt,δ), and it is also readily seen that the same

arguments of the proof for Value–Perfect feedback apply for the case where wt,δ < wt,δR .

100

Remark 10. Note that the proof on Lemma 10 does not use the fact that the δ policies are

greedy. Hence, the lemma holds for a broader class of robust policies.

In contrast with the max-min setting, in the asymmetric case the ‘sandwich’ theorem

does not hold (cf. Theorem 3 in Section 3.3), i.e, we do not have that the chain of inequal-

ities wt,δ ≤ w∗ ≤ wt,δR holds in general. In fact, it is possible to come with examples, see

Remark 11, where

• wt,δ > wt,δR (and thus w∗ > wt,δR as well),

• wt,δ < wt,δR ,

• w∗ < wt,δR ,

• If wt,δ = wt,δR , then it might happen that xt,δ is not the optimal solution of the asymmetric

bilevel problem.

(However, note that it is straightforward that wt,δ ≤ w∗ for all t ∈ T). Moreover, if the

leader ignores the upper-level feedback and focuses only on the follower’s costs, the fact

that zt,δ = zt,δR does not give any information about the optimality of xt,δ in general, see

Remark 12.

The above observations imply that nothing can be said in general about the optimality

of xt,δ whenever the profit the leader observes is the same as the one she was expecting.

The same holds true for the expected follower’s costs versus the actual costs he incurs. This

behavior is very troublesome as it implies that a policy δ ∈ ∆ might not find the optimal

solution, and might not provide a certificate of optimality in real time.

Moreover, if zt,δ = zt,δR and the solution used by the follower does not reveal any new

information (e.g., yta = 0 for all a ∈ A \ Ãt), then the leader does not learn anything new

(see Remark 12) and hence at time t + 1 the decision of time t is going to be repeated. In

other words, policies in ∆ might stall, i.e., might repeat a suboptimal solution at all time

periods indefinitely without forcing the follower to reveal any new information.

Remark 11. In this remark we give various counterexamples that show that, in contrast to

the max-min problem, in the asymmetric case the greedy and robust policies do not yield

the relationships of the ‘sandwich’ theorem. The bilevel problem we use is the asymmetric

101

shortest path interdiction problem (ASPI), see Bayrak and Bailey (2008). Here, the follower’s

objective is to move between two fixed nodes at a minimum cost, while the objective of the

leader is to maximize the profit of the shortest path that the follower uses. The follower

incurs a cost of ca if he uses arc a, while the leader gets a profit of da if the follower uses uses

arc a. The leader does not know the real costs c the follower uses to decide, but she knows

that the cost of arc a lies in the interval ca ∈ [`a, ua].

Figure 12 shows an example of an instance of the ASPI where wt,δ > wt,∗R and where

w∗ > wt,∗R . Here (and in the remaining counterexamples), the objective of the follower is

to move between nodes 1 and 7. Observe that if the leader is deciding robustly, then she

assumes that the cost that the follower incurs by traversing an arc is given by ua. Hence,

the solution for any policy δ ∈ ∆ is to block arcs (1, 2) and (1, 3) (or more generally to block

the two upper-most paths). Given this, the leader expects that the follower uses path 1–4–7,

and hence she expects a profit of wt,δR = 60. However, observe that if the leader blocks (1, 2)

and (1, 3), then the path that the follower uses is 1–6–7, which yields a profit of wt,δ = 80 to

the leader. Observe moreover, that w∗ = wt,δ, so this example also shows that wt,δR < w∗.

1 4

3

2

5

6

7

[1
,1

0]
,5

,2
0

[1,11],4,18

[1,12],3,30

[1,13],2,17[1,14],1,40

[1,10],5,20[1,11],4,18

[1,12],3,30

[1,13],2,17

[1
,1

4]
,1

,4
0

Figure 12: Example of an instance when wt,δ > wt,∗R . The labeling of the arcs is given by

[`a, ua], ca, da.

102

Conversely, Figure 13 shows an example of an instance of the ASPI where wt,δ < wt,∗R .

Here, the solution for any policy δ ∈ ∆ is to block again arcs (1, 2) and (1, 3), and as

before, the leader expects that the follower uses path 1–4–7. This yields an expected profit

of wt,δR = 60. However, observe that if the leader blocks (1, 2) and (1, 3), the path that the

follower uses is 1–5–7, which yields a profit of wt,δ = 34 to the leader.

1 4

3

2

5

6

7

[1
,1

0]
,5

,2
0

[1,11],4,18

[1,12],3,30

[1,13],1,17[1,14],2,40

[1,10],5,20[1,11],4,18

[1,12],3,30

[1,13],1,17

[1
,1

4]
,2

,4
0

Figure 13: Example of an instance when wt,δ < wt,∗R . The labeling of the arcs is given by

[`a, ua], ca, da.

Figure 14 shows an example of an instance of the ASPI where w∗ < wt,∗R . Here, the

solution for any policy δ ∈ ∆ is to block again arcs (1, 2) and (1, 3), and as before, the leader

expects that the follower uses path 1–4–7. This yields an expected profit of wt,δR = 60. The

full-information optimal solution, however, is to remove (1, 3) and (1, 5). This makes the

follower use path 1–2–7, and yields a profit of w∗ = 40, hence w∗ < wt,δR .

Finally, Figure 15 shows an example of an instance of the ASPI where the main conclusion

of ‘sandwich’ theorem fails to hold, i.e., where the fact that wt,δ = wt,∗R does not imply that

wt,δ = w∗. Here, it is readily checked that the solution for any policy δ ∈ ∆ is to block

arcs (1, 2) and (1, 3). The leader expects that the follower uses path 1–4–7, which yields an

expected profit of wt,δR = 60. In this case, it is seen that the the response of the follower is

indeed as expected by the leader, that is, to use 1–4–7, and hence wt,δ = 60 = wt,δR . However,

103

1 4

3

2

5

6

7

[1
,1

0]
,3

,2
0

[1,11],2,18

[1,12],4,30

[1,13],1,17[1,14],5,40

[1,10],3,20[1,11],2,18

[1,12],4,30

[1,13],1,17

[1
,1

4]
,5

,4
0

Figure 14: Example of an instance when w∗ < wt,∗R . The labeling of the arcs is given by

[`a, ua], ca, da.

note that the optimal full-information solution for the leader is to remove the arcs (1, 4) and

(1, 5), as this implies that the follower would use path 1–6–7, which gives an optimal profit

of w∗ = 80.

Remark 12. Figure 16 shows an example in the ASPI where the fact that zt,δ = zt,δR does

not imply that wt,δ = w∗. Observe that any policy in δ blocks any two arcs among (1, 2),

(1, 3), (2,7) and (3,7), and hence she expects that the follower use path 1–4–7 at a cost of

zt,δR = 14. Given the real costs of arcs (1,4) and (4,7), then the follower will use the same

path 1–4–7, with zt,δ = 14 as well, which yields a profit of wt,δ = 6 for the leader. However,

it is seen that the optimal full-information solution is to remove (1,3) and (1,4), which makes

the follower use path 1–5–7, and yields a profit of w∗ = 8 to the leader.

Regardless of the fact that in general the ‘sandwich’ theorem does not hold, it is possible

to characterize whenever the equation wt,δ = wt,δR implies that the optimal solution of the

full-information problem has been found. To this end, define X t,δ
P as the following set of

leader’s solutions: x ∈ X t,δ
P if and only if

104

1 4

3

2

5

6

7

[1
,1

0]
,6

,2
0

[1,11],5,18

[1,12],2,30

[1,13],3,17[1,14],4,40

[1,10],6,20[1,11],5,18

[1,12],2,30

[1,13],3,17

[1
,1

4]
,4

,4
0

Figure 15: Example of an instance when wt,δ = wt,∗R does not imply that wt,δ = w∗, and

where wt,δR < w∗. The labeling of the arcs is given by [`a, ua], ca, da.

C.1. There exist ŷ ∈ Z(x) ∩ (Zt
R(x))c, where Ac denotes the complement of A.

C.2. The inequality d>y < d>ŷ holds for any y ∈ Zt
R(xt,δ).

Simply speaking, x ∈ X t,δ
P if, after implementing x, then the follower can implement a

solution ŷ that has a better objective value than any solution that the leader expects by

using δ (at time t). Let us define the set of all those solutions ŷ as Y t,δ
P (x), i.e.,

Y t,δ
P (x) = {ŷ ∈ Z(x) : ŷ 6∈ Zt

R(x), d>y < d>ŷ ∀y ∈ Zt
R(xt,δ)}.

Finally, let Y t,δ
P be the set of all follower’s responses associated with the solutions in X t,δ

P :

Y t,δ
P =

⋃
x∈Xt,δ

P

Y t,δ
P (x). (4.15)

We have the following result:

LEMMA 11. Assume that wt,δ = wt,δR . Then, xt,δ is an optimal solution of the full information

problem (i.e., wt,δ = w∗) iff Y t,δ
P = ∅.

105

1 4

3

2

5

6

7

[1
,1

0]
,9

,1

[1,4],4,2

[1,7],7,3

[1,20],8,4
[1,30],9,5

[1,10],9,1
[1,4],4,2

[1,7],7,3

[1,20],8,4

[1
,3

0]
,9

,5

Figure 16: Example of an instance when zt,δ = zt,∗R does not imply that wt,δ = w∗. The

labeling of the arcs is given by [`a, ua], ca, da.

Proof. Assume that Y t,δ
P 6= ∅, then there exist x such that Y t,δ

P (x) 6= ∅, and this immediately

implies that wt,δR < w∗. Hence, since by assumption wt,δ = wt,δR , then wt,δ < w∗ and xt,δ

cannot be an optimal solution of the full-information problem. Conversely, suppose xt,δ is

not an optimal full information solution. Then, as wt,δ = wt,δR , it follows that wt,δR < w∗,

and hence there exist ŷ ∈ Z(x∗) such that d>y < d>ŷ for all Zt
R(xt,δ). In addition, it must

be the case that ŷ 6∈ Zt
R(x∗); as if ŷ ∈ Zt

R(x∗), then xt,δ is not a greedy solution at time t,

contradicting the fact that δ ∈ ∆. It can be concluded that ŷ ∈ Y t,δ
P (x∗), as desired.

Although Lemma 11 gives necessary and sufficient conditions for the ‘sandwich’ theorem

to hold, identifying when this conditions hold (i.e., whether Y t,δ
P is empty or not) requires

the knowledge of Z(x), which in turn requires a precise knowledge of c. Hence, in gen-

eral, determining whether wt,δ = wt,δR implies convergence to the optimal solution has no

straightforward answer. Moreover, even finding sufficient conditions for Y t,δ
P to be empty

(or non-empty) is not straightforward, see Remark 13. Nevertheless, if it turns out that for

106

a particular instance or for a particular class of problems it is possible to compute Y t,δ
P at

each time t ∈ T , then one can obtain a policy that has a time-stability that is linearly upper

bounded, see Remark 14.

Remark 13. A sufficient condition for the set Y t,δ
P to be empty can be given by determining

whether a finite (although exponentially large) sequence of sets are empty. To this end,

assume that U t is bounded, let the set of its extreme points be ext(U t) = {c(1), . . . , c(U)}

and let Y t,δ
P (c(j)) be defined as Y t,δ

P by replacing c by c(j) in the definition of Z(x). Then,

since U t is a bounded polytope, Y t,δ
P = ∅ if

⋃U
j=1 Y

t,δ
P (c(j)) = ∅. Therefore, if Y t,δ

P (c(j)) = ∅

for all j = 1, . . . , U , then Y t,δ
P = ∅.

Remark 14. Assume that for certain instance or class of problem it is possible to determine

whether or not Y t,δ
P = ∅. Then the following result holds:

LEMMA 12. Let δ ∈ ∆ and t ∈ T be given, assume that wt,δ = wt,δR , and suppose that

Y t,δ
P 6= ∅. Let π ∈ Π be a policy such that πs = δs for all s ≤ t and xt+1,π ∈ X t,δ

P . Then,

dim(U t+2) < dim(U t+1).

Proof. Observe that if the leader implements xt+1,π then the follower, by the optimistic

assumption, implements at time t + 1 a solution ŷ ∈ Y t,δ
P . By C.1, ŷ 6∈ Zt

R(xt+1,δ), which

implies, by the same arguments of Lemma 10, that ŷa > 0 for some a 6∈ Ãt+1. This gives the

desired result.

Let t ∈ T be such that a policy δ ∈ ∆ stalls. Two things can occur: First, if Y t,δ
P = ∅,

then xt,δ is the optimal solution, and the leader can keep implementing that solution from

there on. Otherwise, the leader can implement a solution in X t,δ
P and the follower is forced

to reveal new information.

These observations motivate us to define a new set of policies Φ. We say that φ ∈ Φ if

and only if

xt,φ ∈


X t−1,φ
P , if Ãt \ Ãt−1 = ∅ and X t−1,φ

P 6= ∅,

{xt−1,φ}, if Ãt \ Ãt−1 = ∅ and X t−1,φ
P = ∅ ,

arg max
{
wtR(x) : x ∈ X

}
, otherwise.

(4.16)

107

In the above definition we make the convention that Ã0 \ Ã−1 6= ∅ and that X t,φ is defined in

the same way as X t,δ for any t ∈ T . We note that the set of policies φ is well-defined as it is

readily seen that if the leader implements a solution of X t−1,φ
P at time t, then Ãt \ Ãt−1 6= ∅

by Lemma 12.

From Lemmas 10 and 12, and the usual sufficiency condition when dim(U t) = 0 (cf.

Proposition 4) we have the following result:

THEOREM 6. Let φ ∈ Φ be given. Then τφ ≤ 2|A|. Moreover, policies in φ provide a real

time certificate of optimality.

Therefore, policies in Φ have a linear time-stability performance.

4.4 GREEDY AND BEST–CASE POLICIES

In this section we present a class of deterministic policies that are able to provide a certifi-

cate of optimality in real time, and can provide a finite upper bound on the time-stability.

Although in general the bound is worst-case exponential, in practice the policies find an

optimal solution in far less time periods. In addition, these policies can handle a broad class

of uncertainty sets without compromising the tractability of the model. In particular, it can

be assumed that the uncertainty set is non-convex and still get tractable mixed–integer pro-

gramming formulations. This flexibility contrasts with robust (i.e., worst-case) approaches,

where uncertainty sets must be convex (Ben-Tal et al. 2009).

4.4.1 Definition and General Convergence Results

Consider the following mathematical program

wt,E = max
x,y,ĉ

d>y (4.17a)

s.t. x ∈ X (4.17b)

ĉ ∈ U t (4.17c)

y ∈ arg min{ĉ>y′ : y′ ∈ Y (x)}, (4.17d)

108

and let St be the set of optimal solutions, i.e., St = arg max{d>y : (4.17b)–(4.17d) hold}.

We define the time ξ ∈ T as the first time that the best observed solution coincides with the

solution the leader ‘expects’ if she solves the above mathematical program:

ξ = min{t ∈ T : W t = wt,E} (4.18)

where W t = max{ws : s ≤ t} (with W 0 = −∞), and we let s(ξ) ≤ ξ be the time attaining

the maximum in W ξ. We define the set of policies Ψ as follows:

Definition 8. We say that ψ ∈ Ψ if and only if xt,ψ ∈Projy,ĉ(St) for all t ≤ ξ, and xt,ψ =

xs(ξ),ψ for all t > ξ.

Observe that if the leader implements xt,ψ, then there exists a point (xt,ψ, yt,E, ct,E) ∈ St

such that wt,E = d>yt,E. We call yt,E the response that the leader expects the follower will use

at time t, and ct,E the estimated cost vector at time t. In addition, we define zt,E = (ct,E)>yt,E

as the cost of the follower’s problem the leader expects at time t. Note that there might be

many optimal solutions of (4.17a)–(4.17d); hence, we make the assumption that when this

is the case the leader selects (xt,ψ, yt,E, ct,E) according to some fixed rule.

Policies in the set Ψ can be considered as greedy and best-case policies. They are greedy,

since as with policies in ∆, they seek to optimize the leader’s immediate performance. They

are best-case, as the leader assumes that the follower’s cost vector realizes its best possible

value from her point of view. We note that this is similar to what policies in Λ do in the

max-min setting. Specifically, by using any policy in λ the leader implicitly assumes that the

follower’s cost vector realizes its worst case for the follower. Given the max-min relationship

between the leader’s and follower’s objective function, this is the same as saying that the

cost vector realizes its best-case for the leader.

THEOREM 7. Suppose ψ ∈ Ψ is given, let W t,ψ = max{wt′,ψ : t′ ≤ t} for all t ≥ 1 (with

W 0 = −∞), and let s be the time-period where the maximum in W t,ψ is attained. If wt,E ≤

W t,ψ, then xs,ψ is an optimal solution of the full-information problem (4.1).

Proof. Let x∗ ∈ X and y∗ ∈ arg min{c>y : y ∈ Y (x∗)} be such that d>y∗ = w∗. That is,

(x∗, y∗) is an optimal solution of the full-information bilevel problem. Since c ∈ U t for all

t ∈ T , then (x∗, y∗, c) ∈ St, and thus, w∗ ≤ wE,t for all t ∈ T . In addition, since xt
′,ψ ∈ X

109

for all t′ ∈ T , then, from the definition of x∗, we have that wt
′,ψ ≤ w∗ for any given t′ ∈ T .

These observations imply that for any t, t′ ∈ T we have the following chain of inequalities

(or ‘sandwich’ result)

wt
′,ψ ≤ w∗ ≤ wE,t. (4.19)

Hence, since wE,t ≤ W t,ψ, then wE,t ≤ ws,ψ, and Equation (4.19) implies that ws,ψ = w∗,

which gives the desired result.

Theorem 7 can be viewed as an analogous of the ‘sandwich’ theorem for the max-min

case (cf. Theorem 3 in Section 3.3.1). Importantly, it implies that by using policies in Ψ the

leader can get a certificate of optimality in real time, as by Standard Feedback, she is aware

of the value of W t,ψ for all t ∈ T . Hence, as soon as time ξ happens, the leader can be made

sure that xs(ξ),ψ is an optimal solution of the full-information problem.

One of the main disadvantages of using a policy in Ψ is that a suboptimal solution xs,ψ

can be repeated at a later point in time. From the leader’s standpoint, it makes sense to

repeat xs,ψ at time t > s as long as wt,E = ws,ψ. If this is the case, then wt,E = W t,ψ

and convergence can be assured. Unfortunately, in general it is easy to come with examples

where xs,ψ is repeated at a point t, and it holds that both wt,E > ws,ψ and wt,E > W t,ψ.

Hence, in such settings it is reasonable for the leader to avoid implementing xs,ψ at time t.

In order for policies in ψ to avoid repeating solutions in the way described above, we

include the following constraint in the definition of the policies in Ψ for t ≥ 1:

d>y − ws,ψ ≤ D‖x− xs,ψ‖1 ∀ s = 1, . . . , t− 1. (4.20)

In this constraint, D is a sufficiently large constant such that D‖x − xs,ψ‖1 upper bounds

d>y − ws,ψ. Constraint (4.20) can be enforced without adding any new variables if X is a

binary set; in any other case it can be enforced using typical integer programming modeling

techniques by adding (at most |A| of each) constraints and binary variables.

We note that constraint (4.20) is valid as it does not remove the real cost vector c from

the feasible region St. To see why, note that if x 6= xs,ψ, then (x, y, ĉ) satisfies (4.17a)–(4.17d)

if and only if it satisfies (4.17a)–(4.17d) and (4.20). On the other hand, if x = xs,ψ, then by

the optimistic assumption and the definition of ws,ψ, it must be the case that d>y−ws,ψ ≤ 0

for all y ∈ arg min{c>y′ : y′ ∈ Y (x)}.

110

Importantly, it can be readily seen that if a policy in ψ repeats a previous solution at

time t ≤ ξ, then it must be the case that t = ξ, and optimality can be guaranteed. For this

reason, from now on, we assume that the constraints defined in (4.20) are included in the

mathematical program (4.17a)–(4.17d).

Clearly, the optimization problem (4.17a)–(4.17d) is a non-convex, NP-hard problem, as

it is a bilinear bilevel problem. However, if the lower-level problem Y (x) is continuous, and

the uncertainty sets U t can be represented via linear constraints, then the decisions of policy

ψ can be computed by solving a mixed-integer problem (MIP).

PROPOSITION 11. Assume that the follower’s variables are continuous and that for any

x ∈ X and ĉ ∈ U0 the follower’s problem has an optimal solution. In addition, suppose that

for any t ∈ T the set U t is polyhedral, that is,

U t = {ĉ ∈ R|A| : ∃v ∈ Rbt−nt × Znt s.t. Gtĉ+ J tv ≤ gt}, (4.21)

where bt, nt ≥ 0, Gt and J t are matrices of sizes ut× |A| and ut× bt, respectively. Then the

mathematical program (4.17a)–(4.17d) (along with (4.20)) can be formulated as the following

MIP:

max d>y (4.22a)

s.t. Hx ≤ h (4.22b)

Gtĉ+ J tv ≤ gt (4.22c)

Equation (4.20)

F y +Lx ≤ f (4.22d)

− F>p− ĉ ≤ 0 (4.22e)

f −Lx− F y ≤M pû (4.22f)

p ≤M p(1− û) (4.22g)

ĉ+ F>p ≤M yv̂ (4.22h)

y ≤M y(1− v̂) (4.22i)

y ∈ R|A|+ , p ∈ R|CF |+ , x ∈ R|I|−k+ × Zk+, ĉ ∈ R|A| (4.22j)

û ∈ {0, 1}|CF |, v̂ ∈ {0, 1}|A|, ` ∈ Rbt−nt × Znt . (4.22k)

111

In this formulation M p is a diagonal matrix of the appropriate dimensions, where max{pd,

(f − Lx − F y)d} ≤ M p
d for all d ∈ CF and all feasible p, y and x. Similarly, M y is a

diagonal matrix of the appropriate dimensions, where max{ya, (ĉ + F>p)a} ≤ M y
a for all

a ∈ A and all feasible p and ĉ.

Proof. The result follows by replacing the follower’s problem by its Karush-Kuhn-Tucker

(KKT) conditions, i.e., by enforcing the lower-level primal feasibility, dual feasibility, and

complementary slackness, see, e.g., Dempe (2002).

Under the assumptions of Proposition 11, and from the previous discussion regarding

the repetition of solutions, we have the following finite upper bound on the time-stability of

policies in Ψ:

THEOREM 8. Suppose ψ ∈ Ψ and that the assumptions of Proposition 11 hold. Then τψ ≤

|ext(conv(X))|, where ext(A) is the set of extreme points of set A.

It is important to observe that the derivation of this bound is largely independent of the

way the uncertainty set is updated. In the following sections, we discuss how more specific

updating mechanisms can lead to improvements in the time-stability of the policies in Ψ.

In this sense, we begin our discussion with what we call the basic update, where at each

time the set U t is updated by adding to it a linear constraint. Subsequently we discuss

more general convex and non-convex updates, where U t is updated using more complicated

mechanisms.

4.4.2 The Basic Uncertainty Set Update

Assume that the leader uses a policy ψ ∈ Ψ and suppose that she has only Standard Feedback

available, thus she only observes the values of wt,ψ and zt,ψ at each time t. We define the

basic update at the end of time t by

U t+1 = U t ∩ Lt, where Lt = {ĉ ∈ R|A| : (yt,E)>ĉ > zt,ψ}. (4.23)

We have the following simple observation.

LEMMA 13. Let t ∈ T be given such that t < ξ (thus, W t,ψ < wt,E), then c ∈ Lt. Moreover,

if zt,E ≤ zt,ψ, then ct,E 6∈ Lt.

112

Proof. Observe that as wt,ψ < wt,E, then yt,E 6∈ Z(xt,ψ). This follows by contradiction: If

yt,E ∈ Z(xt,ψ), then by the optimistic assumption it would follow that wt,E = wt,ψ, yielding

a contradiction. Hence, it can be concluded that c>yt,E > zt,ψ as desired. On the other

hand, if zt,E ≤ zt,ψ, then by definition (ct,E)>yt,E ≤ zt,ψ and it is clear that this implies that

ct,E 6∈ Lt.

The previous lemma implies that the basic update is valid (as it does not remove the

real cost vector c), and it ‘shrinks’ the leader’s uncertainty by removing ct,E from the set of

possible cost vectors, as long as zt,E ≤ zt,ψ. Unfortunately, it is readily seen that it does not

remove ct,E whenever zt,E > zt,ψ.

One potential drawback of using the basic update is that it is given by an open inequality,

and as such, it cannot be handled directly by most optimization solvers. This issue can be

overcome easily if zt,E < zt,ψ. In this case putting a ‘≥’ sign in the definition of Lt makes the

update equally valid and it also removes ct,E. On the other hand, in general, one can put a

‘≥’ sign in the definition of Lt by adding a small-enough term εt in the right-hand side. The

value of such εt depends on the specific problem and might be easy to obtain. For instance,

if it is known from the structure of the problem at hand that zt,ψ is integer for any possible

values of t, then εt = 1 for all t ∈ T .

Now consider that the leader has access to Value–Perfect or Response–Perfect feedback.

In such settings, the uncertainty set can be further updated by adding the following linear

constraints in addition to Lt

U t+1 = U t ∩ Lt ∩ V t, (for Value–Perfect feedback), (4.24)

U t+1 = U t ∩ Lt ∩Rt, (for Response–Perfect feedback), (4.25)

where we define V t and Rt as

V t = {ĉ ∈ R|A| : ĉa = ca ∀a s.t. yta > 0}, (4.26)

Rt = {ĉ ∈ R|A| : (yt)>ĉ = zt,ψ}. (4.27)

The additional feedback, either Value–Perfect or Response–Perfect, assures that U t+1 \

U t 6= ∅, i.e., the leader’s uncertainty always shrink independent of the value of zt,ψ. These

assertions are proven below.

113

LEMMA 14. Let ψ ∈ Ψ, suppose that t < ξ, and that feedback is Value–Perfect. Define

Ãt = {a ∈ A : ĉa = ca for all ĉ ∈ U t}. If zt,E > zt,ψ then there exist an a 6∈ Ãt such that

yta > 0. Moreover, ct,E 6∈ V t.

Proof. The proof is by contradiction. Suppose that yta = 0 for all a 6∈ Ãt. Then, for any

ĉ ∈ U t, ĉ>yt = c>yt = zt,ψ. In particular cE,t ∈ U t, hence we would have that (ct,E)>yt =

zt,ψ < zt,E = (ct,E)>yt,E. This implies that, yt,E 6∈ Z(xt,ψ), which is a contradiction. Finally,

observe that the same argument shows that the fact that ct,E ∈ V t yields a contradiction.

Simply speaking, the previous lemma states that if zt,ψ < zt,E, then the follower must

reveal the cost of an activity with his response of time t. Unfortunately, it is easy to come

with examples where this result does not hold when zt,E ≤ zt,ψ. This implies that Lemma 7

in Section 3.3.2 of the max-min setting does not apply for this class of bilevel problems.

LEMMA 15. Let ψ ∈ Ψ, suppose that t < ξ, and that feedback is Response–Perfect. If

zt,E > zt,ψ, then dim(U t+1) < dim(U t). Moreover, ct,E 6∈ Rt.

Proof. Suppose that the result does not hold, thus dim(U t+1) = dim(U t). This implies that

yt is linearly dependent of y1, . . . , yt−1 and hence

{ĉ ∈ R|A| : (ys)>ĉ = zs,ψ, s ≤ t− 1} = {ĉ ∈ R|A| : (ys)>ĉ = zs,ψ, s ≤ t}. (4.28)

In particular, since ct,E ∈ U t, then ĉ ∈ {ĉ ∈ R|A| : (ys)>ĉ = zs,ψ, s ≤ t − 1}, and by

Equation (4.28) it follows that (ct,E)>yt = zt,ψ. Now, as we are assuming that zt,E > zt,ψ, it

follows that (ct,E)>yt,E > ct,E,>yt, i.e., that yt,E 6∈ arg min{(ct,E)>y : y ∈ Y (xt,ψ)}, which is

a contradiction. Finally, observe that the above arguments imply that ct,E 6∈ Rt.

Observe that as with Value–Perfect feedback update, if zt,E ≤ zt,ψ, then nothing can be

said with respect to the reduction of dimension of the uncertainty set.

4.4.3 The Convex Uncertainty Set Update

In this section we discuss an additional updating mechanism that can potentially improve the

efficacy of the linear update by better exploiting the information that zt,ψ gives. Specifically,

note that if the leader observes the value of zt,ψ, then she can be made sure that zt,ψ ≤

min{c>y : y ∈ Y (xt,ψ)} (in fact she can be made sure that the inequality holds as an equality,

114

this is the subject of the next section). This observation motivates the following updating

procedure, which we refer to as the convex update:

U t+1 = U t ∩ Lt ∩ Ct, (4.29)

where

Ct = {ĉ ∈ R|A| : zt,ψ ≤ ĉ>y ∀ y ∈ Y (xt,ψ)}. (4.30)

Clearly, Ct is a convex set as it is the intersection of (possibly infinite number of) linear

inequalities.

In general, the set Ct can be considered as a system of semi-infinite linear constraints,

as Y (xt,ψ) might be a set of infinite cardinality. We note that Ct is a polyhedron (as one can

only consider the extreme points of Y (xt,ψ) with out loss of generality). However, the set of

extreme points of Y (xt,ψ) is exponentially large in |A| and |CF | in general.

It turns out that the set Ct can be represented by only considering 1+|A| linear con-

straints, by adding |CF | new continuous variables:

LEMMA 16. Let t ∈ T be given and suppose that the follower’s problem has an optimal

solution for any x ∈ X. Then

Ct = {ĉ ∈ R|A| : ∃qt ∈ R|CF |+ s.t. (Lxt,ψ − f)>qt ≥ zt,ψ,−F>qt − ĉ ≤ 0}. (4.31)

Proof. Observe that ĉ ∈ Ct if and only if

zt,ψ ≤ min{ĉ>y : y ∈ Y (xt,ψ)}, (4.32)

and by strong duality, this is equivalent to

zt,ψ ≤ max{(Lxt,ψ − f)>qt : − F>qt − ĉ ≤ 0, qt ≥ 0}. (4.33)

Moreover, the previous equation holds if and only if there exists a point qt feasible in the

dual program such that zt,ψ ≤ (Lxt,ψ − f)>qt.

From the above result, it follows that if the uncertainty set is updated by using the

convex update, then U t is polyhedral for all t. Particularly, its representation in terms of

115

matrixes Gt and J t, as given by Equation (4.21) yields that Gt is a (u0 + t(2 + |A|))× |A|

matrix given by

Gt =
(
G0;−(y1,E)>;−(y2,E)>; . . . ;−(yt,E)>;−I ′;−I ′; . . . ;−I ′

)
(4.34)

with I ′ = (0>; I), where 0> is a 1× |A| vector of zeros and I is a |A| × |A| identity matrix.

In addition, matrix J t is given by J t = (0; J̃ t), where 0 is a (u0 + t) × t|CF | matrix of

zeros, and J̃ t is a block-diagonal matrix with t blocks, where the s-th block, 1 ≤ s ≤ t, is a

(1 + |A|)× |CF | matrix given by
(
−(Lxs,ψ − f)>;−F>

)
. The right-hand side vector of the

representation satisfies

gt = (g0;−z1,ψ − ε1;−z2,ψ − ε2; . . . ;−zt,ψ − εt; 01; 02; . . . ; 0t) (4.35)

where 0s = (−zs,ψ; 0), with 0 being a |A| × 1 vector of all zeros.

Interestingly, given the structure of the above linear representation of the uncertainty

set, the MIP (4.22a)–(4.22k) can be viewed as the extensive form a two-stage stochastic

mixed-integer problem (SMIP) with continuous second-stage variables, and mixed-integer

first-stage variables. Indeed, note that (4.22a)–(4.22k) can be formulated as

max d>y + E[g(ĉ, ξ)] (4.36a)

s.t. Hx ≤ h, G0ĉ ≤ g0, F y +Lx ≤ f , −F>p− ĉ ≤ 0 (4.36b)

f −Lx− F y ≤M pû, p ≤M p(1− û) (4.36c)

ĉ+ F>p ≤M yv̂, y ≤M y(1− v̂) (4.36d)

û ∈ {0, 1}|CF |, v̂ ∈ {0, 1}|A|, y ∈ R|A|+ , p ∈ R|CF |+ (4.36e)

x ∈ R|I|−k+ × Zk+, ĉ ∈ R|A|, (4.36f)

where ξ is a ‘random’ vector that takes values on the discrete set

ξ ∈
{

(xs,ψ, zs,ψ, ys,E) : s ≤ t− 1
}
. (4.37)

For a given realization ξs of the random vector, the second-stage problem function g(ĉ, ξs)

is given by

g
(
ĉ, ξs

)
= max 0 (4.38a)

116

s.t. (Lxs,ψ − f)>q = zs,ψ (4.38b)

− F>q − ĉ ≤ 0 (4.38c)

ĉ>ys,E ≥ zs,ψ + εs (4.38d)

q ∈ R|CF |+ . (4.38e)

Note that from the standpoint of the SMIP formulation, the distribution function of ξ is

irrelevant as the second-stage value is always zero or −∞ (in case of infeasibility) for any

realization of ξ.

We note that the SMIP equivalence suggests that SMIP techniques can be used to solve

the MIP (4.22a)–(4.22k). In particular, decomposition techniques, such as Bender’s, can

provide algorithmic advantages over directly feeding the extensive form formulation into an

MIP solver.

To close this section, observe that we can enhance the convex update by assuming Value–

Perfect or Response–Perfect feedbacks. If such feedbacks are assumed, then the update

becomes

U t+1 = U t ∩ Lt ∩ Ct ∩ V t and U t+1 = U t ∩ Lt ∩ Ct ∩Rt, (4.39)

for Value–Perfect and Response–Perfect feedback, respectively, where V t and Rt are defined

as in equations (4.26)–(4.27).

4.4.4 The Non-Convex Uncertainty Set Update

The non-convex update generalizes the convex update discussed in the previous section.

Note that at any given time t ∈ T , the leader knows by definition that the real cost vector

c satisfies zt,ψ = min{c>y : y ∈ Y (xt,ψ)}. Hence, c belongs to a set given by

Ñ t =
{
ĉ ∈ R|A| : zt,ψ = min{ĉ>y : y ∈ Y (xt,ψ)}

}
. (4.40)

Equivalently, this set can be represented as

Ñ t =
{
ĉ ∈ R|A| : ∃y ∈ arg min{ĉ>y′ : y′ ∈ Y (xt,ψ)} s.t. zt,ψ = ĉ>y

}
. (4.41)

117

Moreover, given that it is known that d>yt = wt,ψ, the above set can be further restricted

to

N t =
{
ĉ ∈ R|A| : ∃y ∈ arg min{ĉ>y′ : y′ ∈ Y (xt,ψ)} s.t. zt,ψ = ĉ>y,d>y = wt,ψ

}
. (4.42)

The non-convex update is defined as

U t+1 = U t ∩ Lt ∩N t ∀t ∈ T . (4.43)

Clearly, the update defined by Equation (4.43) is valid and generalizes the convex update in

the sense that N t ⊆ Ct. Unfortunately, it makes the computation of U t significantly more

challenging, as determining U t via this update requires solving a non-convex optimization

problem (hence the name). Indeed, assuming that the follower’s problem has an optimal so-

lution for any ĉ ∈ U0 and x ∈ X, and using strong duality, we have that ĉ ∈ Ñ t if and only if

zt,ψ = max{(Lxt,ψ − f)>qt : − F>p− ĉ ≤ 0}. (4.44)

In contrast with Equation (4.33), the above assertion cannot be replaced by one assuring the

existence of one qt that is dual feasible due to the equality sign. Hence, in order to remove

the maximization in equation (4.44) we can use the KKT conditions. As such, the set N t

can be represented as

N t =
⋃

Et⊆A,Dt⊆CF

N t(Et, Dt), (4.45)

where for any given Et ⊆ A, Dt ⊆ CF , the set N t(Et, Dt) is defined by

N t(Et, Dt) =
{
ĉ ∈ R|A| : ∃rt ∈ R|A|+ , qt ∈ R|CF |+ s.t.

F rt ≤ f −Lxt,ψ

− F>qt − ĉ ≤ 0

(Lxt,ψ − f)>qt = zt,ψ

d>rt = wt,ψ

rta = 0 ∀ a ∈ Et

ĉa + F>a q
t = 0 ∀ a ∈ A \ Et

qtd = 0 ∀ d ∈ Dt

118

Fdr
t = fd −Ldxt,ψ ∀ d ∈ CF \Dt

}
.

In the above definition, F>a is the a-th row of the matrix F>, while Fd and Ld are the d-th

row of the matrices F and L respectively. Importantly, in general it is not possible to provide

a polynomially-sized convex representation of the non-convex update, unless NP = P . This

follows from the fact that the inverse optimal value problem is NP–complete, see Ahmed

and Guan (2005).

The computation of the ψ policies via the non-convex update can be formulated as the

following mixed-integer problem

wt,E = max d>y (4.46a)

s.t. Hx ≤ h, Gĉ ≤ g, F y +Lx ≤ f , −F>p− ĉ ≤ 0 (4.46b)

f −Lx− F y ≤M pû, p ≤M p(1− û) (4.46c)

ĉ+ F>p ≤M yv̂, y ≤M y(1− v̂) (4.46d)

F rs ≤ f −Lxs,ψ, −F>qs − ĉ ≤ 0 ∀s ≤ t− 1 (4.46e)

f − F rs ≤M pus +Lxs,ψ, qs ≤M p(1− us) ∀s ≤ t− 1 (4.46f)

ĉ+ F>qs ≤M yvs, rs ≤M y(1− vs) ∀s ≤ t− 1 (4.46g)

d>rs = ws,ψ ∀s ≤ t− 1 (4.46h)

(Lxs,ψ − f)>rs = zs,ψ ∀s ≤ t− 1 (4.46i)

ĉ>ys,E ≥ zs,ψ + εs ∀s ≤ t− 1 (4.46j)

û, us ∈ {0, 1}|CF |, v̂, vs ∈ {0, 1}|A|, ∀s ≤ t− 1 (4.46k)

y, rs ∈ R|A|+ , p, qs ∈ R|CF |+ , ∀s ≤ t− 1 (4.46l)

x ∈ R|I|−k+ × Zk+, ĉ ∈ R|A|, (4.46m)

whereM p is a diagonal matrix of the appropriate dimensions, and max{pd, (f−Lx−F y)d} ≤

M p
d for all d ∈ CF and all feasible p, y and x. Similarly, M y is a diagonal matrix of the

appropriate dimensions where max{ya, (ĉ + F>p)a} ≤ M y
a for all a ∈ A and all feasible p

and ĉ.

Similarly with the convex case, the MIP formulation of the non-convex update can be

viewed as a two-stage mixed-integer stochastic program (SMIP), and hence, it can be solved

119

via its extensive form, i.e., by solving the MIP directly, or by more specific decomposition and

branch and cut algorithms for SMIPs, see e.g., Sen and Sherali (2006). Indeed, problem (4.46)

is given by:

max d>y + E[g(ĉ, ξ)] (4.47a)

s.t. Hx ≤ h, Gĉ ≤ g, F y +Lx ≤ f , −F>p− ĉ ≤ 0 (4.47b)

f −Lx− F y ≤M pû, p ≤M p(1− û) (4.47c)

ĉ+ F>p ≤M yv̂, y ≤M y(1− v̂) (4.47d)

û ∈ {0, 1}|CF |, v̂ ∈ {0, 1}|A|, y ∈ R|A|+ , p ∈ R|CF |+ (4.47e)

x ∈ R|I|−k+ × Zk+, ĉ ∈ R|A|, (4.47f)

where the g(ĉ, ξ) is the second-stage value function given the first-stage decision variable ĉ.

Here, the ‘random vector’ ξ takes its values on the discrete set

ξ ∈
{

(xs,ψ, zs,ψ, ws,ψ, ys,E) : s ≤ t− 1
}
. (4.48)

For any given realization of ξs = (xs,ψ, zs,ψ, ws,ψ, ys,E), we have that g(ĉ, ξs) is the value of

the following MIP

g
(
ĉ, ξs

)
= max 0 (4.49a)

s.t. F r ≤ f −Lxs,ψ, −F>q − ĉ ≤ 0 (4.49b)

f − F r ≤M pu+Lxs,ψ, p ≤M p(1− u) (4.49c)

ĉ+ F>q ≤M yv, r ≤M y(1− v) (4.49d)

d>r = ws,ψ (4.49e)

(Lxs,ψ − f)>r = zs,ψ (4.49f)

ĉ>ys,E ≥ zs,ψ + εs (4.49g)

u ∈ {0, 1}|CF |, v ∈ {0, 1}|A|, r ∈ R|A|+ , q ∈ R|CF |+ . (4.49h)

As before, note that from the standpoint of the SMIP formulation, the distribution function

of ξ is irrelevant as the second-stage value is always zero or −∞ (in case of infeasibility) for

any realization of ξ.

120

Finally, observe that we can enhance the convex update by assuming Value–Perfect or

Response–Perfect feedback. If such feedbacks are assumed, then the update becomes

U t+1 = U t ∩ Lt ∩N t ∩ V t and U t+1 = U t ∩ Lt ∩N t ∩Rt, (4.50)

for Value–Perfect and Response–Perfect feedback, respectively, where V t and Rt are defined

as in equations (4.26)–(4.27).

4.5 COMPUTATIONAL STUDY

In this section we perform preliminary computational experiments to observe the perfor-

mance of the time-stability, as well as of the regret, for the policies in ψ under the various

feedback and update scenarios. The bilevel problem we use is the Asymmetric Shortest

Path Interdiction Bilevel Problem (ASPI), as described in Remark 11. The full-information

formulation of this problem, under the optimistic assumption, is given by

max d>y (4.51a)

s.t. 1>x = k (4.51b)

y ∈ arg min{c>y′ : My′ = b, y′ ≤ 1− x, y′ ≥ 0} (4.51c)

x ∈ {0, 1}|A|. (4.51d)

In this formulation, matrix M is the node-arc adjacency matrix of the directed network

G = (N,A). Vector b ∈ R|CF | satisfies that b1 = 1 and bm = −1, where node d = 1 is

the source node and node d = m is the sink node, and 1 is a |A| × 1 vector of ones. The

leader’s decision variables x are binary valued, and xa takes the value 1 if and only if arc a

is interdicted.

We note that in the specific case of the ASPI, the follower’s problem in Equations (4.51a)–

(4.51d) has an alternative formulation given by (see Israeli and Wood (2002))

y ∈ arg min{(c+Qx)>y′ : My′ = b, y′ ≥ 0}, (4.52)

121

where Q is a sufficiently large positive constant (e.g., Q = |A|max{ca : a ∈ A}). Using the

formulation given in (4.52) instead of the one in (4.51a)–(4.51d) is slightly better from the

computational point of view. Specifically, note that if the formulation (4.51a)–(4.51d) is

used, then |CF | = |A| + |N |, and hence there are |A| + |N | dual variables that have to be

introduced in the formulation (4.22a)–(4.22k), as well as at each time t, for the convex and

non-convex updates. This implies that (|A|+ |N |)(t+ 1) binary variables are introduced due

to the follower’s problem constraints in this approach.

In contrast, if formulation (4.52) is used, then |CF | = |N |. Here, ĉ becomes ĉ+Qx in all

formulations (which does not introduce any non-linearity), and only |N | dual variables are

introduced in (4.22a)–(4.22k), as well as each time t, for the convex and non-convex updates.

This obviously yields a reduction in the continuous variables, but more importantly, results

in a reduction of (1 + t)|A| binary variables for the non-convex update approach.

Description of the Instances: We consider layered networks with two layers and four

nodes per layer. The generic structure is depicted in Figure 17. The values of the profit

vector d are drawn at random from a Uniform(1,80) discrete random variable. We assume

that the initial uncertainty set U0 is an hypercube, hence G0 = [I;−I], where I is a |A|×|A|

identity matrix, and g0 = [u;−`], with u = (ua : a ∈ A) is the vector of upper bounds for c

and ` = (`a : a ∈ A) is the vector of lower bounds for c.

1

2

3

4

5

6

7

8

9

10

Figure 17: A layered network with two layers and four nodes per layer. It has |N | = 10

nodes and |A| = 24 directed arcs.

122

For each a ∈ A, the values of ua, `a and ca are drawn independently at random from a

Uniform(1,40) distribution, and then organized accordingly. For the experiments we select

a time horizon of T = 15, and we select the value of k, the number of arcs to be interdicted,

to belong in {1, 2, 3}.

We compute the decisions of a policy ψ ∈ Ψ under five different updating mechanisms.

Specifically, we choose the basic update, the convex update, and the non-convex update, as

described in sections 4.4.2–4.4.4. In addition, we consider the weak convex update and the

weak non-convex update. The weak convex update is defined as the regular convex update,

with the exception that the basic update is no longer included, i.e., Ct replaces Lt ∩ Ct. The

weak non-convex update is defined in a similar way.

For each of the updating mechanisms discussed above, we consider four different feed-

back types. Those are Standard, Value–Perfect, Response–Perfect, and Value–Perfect plus

Response–Perfect feedback. As the name suggests, in this latter feedback type we con-

sider both Value–Perfect and Response–Perfect feedback simultaneously (hence, e.g., U t+1 =

U t ∩ Lt ∩ V t ∩Rt for the basic update).

Results and Discussion: For each updating mechanisms and feedback type we generate

30 different independent replications. The resulting mean time-stability and regret are given

in Tables 14, 15, and 16, for k = 1, 2, 3 respectively. We measure dispersion using the mean

absolute deviation (MAD), and the resulting MAD for time-stability and regret are given

in Tables 17, 18, and 19, for k = 1, 2, 3 respectively. In reporting the results we make the

convention that if time-stability cannot be guaranteed before time T , then τψ = T .

Table 14: Mean for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 1.

Standard Feedback RP Feedback VP Feedback RP+VP Feedback

τψ RψT τψ RψT τψ RψT τψ RψT

Basic 12.10 410.90 4.40 99.50 4.13 88.93 3.77 76.33
Convex 10.90 347.90 3.27 67.57 3.07 59.63 3.07 59.63

Non-convex 3.70 69.47 3.40 65.70 3.13 59.70 3.13 59.70

Weak convex 10.67 346.67 3.90 92.30 4.03 104.30 4.03 104.30
Weak non-convex 4.57 98.97 4.27 99.07 4.07 108.33 4.07 108.33

123

Table 15: Mean for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 2.

Standard Feedback RP Feedback VP Feedback RP+VP Feedback

τψ RψT τψ RψT τψ RψT τψ RψT

Basic 13.67 589.53 6.80 218.83 6.53 209.50 5.83 177.53
Convex 13.53 548.80 5.43 175.07 5.13 157.27 5.13 157.27

Non-convex 8.37 304.57 5.33 162.80 5.07 161.20 5.07 161.20

Weak convex 13.57 559.43 8.80 308.20 8.00 240.20 8.00 240.20
Weak non-convex 7.60 254.40 7.83 244.30 6.73 223.27 6.73 223.27

We make the following observations regarding the results for mean time-stability and

regret:

• For standard feedback, the non-convex update clearly outperforms the other updating

mechanisms across all configurations.

• For the other specialized feedback types (Value–Perfect, Response–Perfect, and Value–

Perfect+Response–Perfect), both the convex and non-convex updates slightly improve

the performance of the basic update. In general, the non-convex update usually has

better performance than the convex update.

• The introduction of specialized feedbacks greatly improves the performance of the policy.

In particular, Value–Perfect plus Response–Perfect is slightly better than Value–Perfect

feedback. In turn, Value–Perfect is slightly better than the Response–Perfect feedback.

Table 16: Mean for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 3.

Standard Feedback RP Feedback VP Feedback RP+VP Feedback

τψ RψT τψ RψT τψ RψT τψ RψT

Basic 11.43 523.37 5.70 211.93 5.27 189.93 5.13 184.30
Convex 10.63 470.17 4.90 165.63 4.77 170.43 4.77 170.43

Non-convex 5.27 182.13 5.03 178.07 4.43 151.07 4.43 151.07

Weak convex 10.93 489.60 8.70 339.80 7.60 287.17 7.60 287.17
Weak non-convex 6.97 236.67 7.20 241.60 6.80 261.10 6.80 261.10

124

• When the basic update is not included into the convex and non-convex updates, these

mechanisms produce slightly worse results under the specialized feedbacks than the basic

update. For standard feedback, the non-convex update remains the best.

• Mean time-stability and mean regret are clearly correlated. In general, the higher the

time-stability the higher the regret, and viceversa.

These observations suggest the following conclusions. In the presence of specialized feed-

back it is not necessary to use any sophisticated updating mechanism, i.e., the basic update is

a simple and sufficient mechanism to incorporate new information. However, if only standard

feedback is available, then the non-convex update is the clear updating mechanism of choice.

On the other hand, regarding dispersion, we note that the observations and conclusions for

the means largely apply to the MAD as well.

Table 17: MAD for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 1.

Standard Feedback RP Feedback VP Feedback RP+VP Feedback

τψ RψT τψ RψT τψ RψT τψ RψT

Basic 3.67 292.83 1.79 61.07 1.57 48.39 1.42 37.38
Convex 4.45 270.76 0.94 30.87 0.88 28.94 0.88 28.94

Non-convex 1.25 31.60 1.08 29.55 0.98 28.35 0.98 28.35

Weak convex 4.73 274.31 1.18 60.93 1.65 92.06 1.65 92.06
Weak non-convex 1.32 55.63 1.11 61.02 1.23 81.91 1.23 81.91

Table 18: MAD for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 2.

Standard Feedback RP Feedback VP Feedback RP+VP Feedback

τψ RψT τψ RψT τψ RψT τψ RψT

Basic 1.98 360.37 2.85 122.86 2.77 125.13 2.34 101.94
Convex 2.21 335.48 1.70 85.54 1.38 77.87 1.38 77.87

Non-convex 3.53 202.16 1.64 84.11 1.42 89.65 1.42 89.65

Weak convex 2.19 333.55 3.03 164.99 3.40 152.92 3.40 152.92
Weak non-convex 2.67 140.79 3.29 146.23 2.58 133.52 2.58 133.52

Finally, we compare the updating mechanisms and the feedback types by counting in how

many replications optimality can be guaranteed via the ‘sandwich’ Theorem (cf. Theorem 7).

These results are shown in Tables 20, 21 and 22 for k = 1, 2, 3, respectively.

125

Table 19: MAD for the time-stability (τψ) and regret (Rψ
T) for a policy ψ ∈ Ψ when k = 3.

Standard Feedback RP Feedback VP Feedback RP+VP Feedback

τψ RψT τψ RψT τψ RψT τψ RψT

Basic 5.23 341.48 2.81 146.79 2.60 126.39 2.48 130.89
Convex 5.82 335.52 2.38 105.83 2.20 115.16 2.20 115.16

Non-convex 2.75 121.37 2.63 120.22 2.13 103.48 2.13 103.48

Weak convex 5.42 332.01 5.19 268.55 4.51 229.82 4.51 229.82
Weak non-convex 4.23 177.11 4.07 187.49 3.71 194.40 3.71 194.40

Table 20: Number of replications for which optimality is guaranteed, k = 1

SF RPF VPF RPF+VPF

Basic 12 30 30 30

Convex 15 30 30 30

Non-convex 30 30 30 30

Weak convex 15 30 30 30

Weak non-convex 30 30 30 30

Table 21: Number of replications for which optimality is guaranteed, k = 2

SF RPF VPF RPF+VPF

Basic 8 30 29 30

Convex 8 30 30 30

Non-convex 24 30 30 30

Weak convex 8 27 27 27

Weak non-convex 29 25 28 28

126

Table 22: Number of replications for which optimality is guaranteed, k = 3

SF RPF VPF RPF+VPF

Basic 8 30 30 30

Convex 10 30 30 30

Non-convex 30 30 30 30

Weak convex 10 21 25 25

Weak non-convex 27 27 26 26

These results confirm the conclusions of the analysis for the mean time-stability and

regret. In particular, it is remarkable that under standard feedback both the basic and

convex updating mechanisms can guarantee optimality in less than a third of the cases,

while the non-convex update guarantees optimality in virtually all cases. Moreover, under a

specialized feedback, optimality can be guaranteed in all cases. However, surprisingly, this

is no longer true in the weak convex and non-convex updating mechanisms, where it can be

seen that optimality cannot be guaranteed in 10 to 20% of the replications for k = 2, 3.

In addition, we observe that under the specialized feedback, or under Standard feed-

back with the non-convex update, the time-stability is, on average, far less than the upper

bound of Theorem 8. Indeed, for the instances we consider in the experiments we have that

|ext(conv(X))| is 24, 274 and 2024 for k = 1, 2, 3, respectively. Such behavior suggests that

the theoretical upper bound for the time-stability for the policies in Ψ can be significantly

tightened for the specialized feedback, and perhaps more interestingly, for the Standard

feedback with the non-convex update.

4.6 CONCLUDING REMARKS

In this chapter we study the asymmetric bilevel linear problem with incomplete information

and learning. In this problem, in contrast with the SMPI problem of Chapter 3, and the

127

shortest path interdiction problem with incomplete information of Chapter 2, the follower’s

objective function is independent of the objective function of the leader. We show how

the greedy and robust policies, that are weakly optimal and efficient for these problems,

respectively, no longer have a desirable performance in this setting. Importantly, greedy and

robust policies might stall, and might not provide a certificate of optimality in real time.

We then consider a class of greedy and ‘best’–case policies and show that they can

guarantee a finite (albeit exponentially large) upper bound on time-stability. In addition,

they provide a certificate of optimality in real time, and can be computed using mixed-integer

programming. For this class of policies we consider different updating mechanisms, and show

that there is an interesting connection between the resulting MIP formulations and certain

types of two-stage stochastic programming problems. Such a connection is highly important

because stochastic programming algorithms can be employed to compute the decisions that

the policies yield.

Our numerical experience shows that the performance of the greedy and ‘best’–case

policies is highly dependent on the updating mechanisms and the type of feedback that

is used. Remarkably, the non-convex updating mechanism gives a very good performance

under Standard feedback, which is the most complicated feedback type. In contrast, both the

non-convex and convex mechanisms, do not produce significant improvements over the basic

linear updating mechanism when considering Value–Perfect or Response–Perfect feedbacks.

At this point, the question of whether the policies can provide a linear upper bound on

the time-stability (in the parameters of the full-information bilevel problem) remains open.

Also, the question of whether these policies are weakly optimal for the asymmetric setting is

also open, and further research is required to determine the conditions (if any) under which

this type of optimality can be guaranteed.

128

5.0 CONCLUSIONS

This dissertation considered SBPI, a class of sequential hierarchical problems where the

leader decision-maker has incomplete knowledge about the information that the follower

decision-maker uses to decide. As a consequence, in order to improve the quality of her

decisions, the leader has to learn the information of the follower’s problem by observing his

reactions to her actions. In the dissertation we study three particular models within this

framework: the shortest path interdiction problem, the max-min bilevel linear problem, and

the asymmetric bilevel linear problem.

We show that whenever the leader’s goal is to maximally degrade the follower’s perfor-

mance, as in shortest path interdiction or max-min bilevel linear programming, the leader

should base her decisions on greedy and robust decision-making policies. These policies are

greedy as they seek to maximize the immediate disruption to the follower, regardless of the

future, and they are robust, as they assume that the uncertain data of the follower’s problem

realizes its worst case scenario from the follower’s perspective.

The greedy and robust policies have many important theoretical properties under spe-

cific types of feedback such as Value–Perfect or Response–Perfect. On the one hand, for the

shortest path interdiction problem, we show that they are efficient, which means that they

find the full-information optimal solution within a finite time horizon, are homogeneous be-

tween them, and are not dominated by any non-robust or non-greedy policy. We refine this

concept for the max-min bilevel setting, where we show that the policies are optimal in the

weak sense, i.e., they have the best possible worst-case time-stability performance across all

possible instances. The time-stability of these policies, moreover, is bounded by the number

of variables of the follower’s problem.

129

In addition, the greedy and robust policies have two important practical advantages.

First, the decisions that they prescribe involve solving max-min bilevel linear programming

problems with robust lower-level constraints. These problems can be formulated as mixed-

integer programs, which implies that the policies can be readily computed using off-the-shelf

MIP solvers. Second, the policies provide a certificate of optimality in real time, namely, at

any given time period the leader can determine whether an optimal full-information solution

has been found by comparing the feedback she gets from the follower with the cost that the

policies predict.

For the asymmetric bilevel linear problem the leader’s decisions do not necessarily seek

to maximize the disruption of the follower’s problem. In fact, in these problems the leader’s

costs (or profits) are measured independently from the performance of the follower. In this

setting, the greedy and robust policies no longer have all the desirable theoretical and prac-

tical advantages they have for the symmetric cases. Thus, to address this issue, we study a

class of greedy policies and ‘best’–case policies.

We show how these best-case policies retain most of the important features of the greedy

and robust policies for the asymmetric case. Particularly, they have bounded time-stability

upper bounds, provide certificates of optimality in real-time, and can be computed using

MIPs. In addition, they allow more generality for the structure of the uncertainty set of the

follower’s data, which leads to the concepts of convex and non-convex updating mechanisms.

Besides the above considerations, the research in this dissertation shows important con-

nections between three important classes of optimization problems under uncertainty. The

SBPI belongs to the class of online optimization models, as the leader has very limited knowl-

edge on the uncertain information and cannot make reliable estimates of future outcomes.

Nevertheless, if she is dealing with max-min problems and assumes a robust view on the

uncertainty, as in the class of robust optimization models, she is guaranteed to make the

best decision possible, as per weak-optimality. In contrast, in asymmetric problems, she has

to assume a different ‘anti’-robust view on uncertainty, and this leads to MIP formulations

that fit within the two-stage stochastic programming paradigm.

Several important questions arise as a product of this research. The most immediate one

relates to be able to guarantee weak optimality for models where the there is uncertainty in

130

the follower’s constraints. This question also arises for the asymmetric bilevel linear model.

Subsequently, it is natural to consider a broader class of bilevel problems under uncertainty,

where the leader might also have incomplete information regarding her own objective function

and constraints. From a different perspective, the problem we study can be viewed as a non-

convex, combinatorial, online optimization problem. As such it belongs to a class of problems

scarcely studied in the literature, and it is a matter of future research if the methods devel-

oped in this dissertation, can be generalized to this broader class of decision-making models.

131

APPENDIX A

SUPPLEMENT FOR CHAPTER 2

This appendix contains some proofs and additional numerical results for Chapter 2.

A.1 BASIC PROPERTIES OF K-MOST VITAL ARCS

Let G = (N,A,C) be a directed network. Recall that a set of k-most vital arcs of G is a

subset L ⊆ A that satisfies

L ∈ arg max
{L⊆A : |L|≤k}

z(G[A \ L]).

PROPOSITION 12. Given G = (N,A,C), let Y ⊆ X ⊆ A. If LX and LY are sets of k-most

vital arcs of G[X] and G[Y], respectively, then z(G[X \ LX]) ≤ z(G[Y \ LY]).

Proof. Let U = Y ∩ LX . Then by the definition of LX and LY :

z(G[Y \ LY]) ≥ z(G[Y \ U]) = z(G[Y \ LX]) ≥ z(G[X \ LX]), (A.1)

which concludes the proof.

PROPOSITION 13. Let G = (N,A,C) and G′ = (N,A,C ′) be networks such that ca ≤ c′a for

all a ∈ A. If LA and L′A are sets of k-most vital arcs of G and G′, respectively, then

z(G[A \ LA]) ≤ z(G′[A \ L′A]). (A.2)

Proof. Since ca ≤ c′a for all a ∈ A, then z(G[A\LA]) ≤ z(G′[A\LA]). Then by the definition

of L′A, it must hold that z(G′[A \ LA]) ≤ z(G′[A \ L′A]), which concludes the proof.

132

A.2 ADDITIONAL PROOFS

In this appendix we provide proofs for some of the lemmas and for Propositions 2 and 3.

Lemma 1. Given G = (N,A,C), let L and A′ be such that L ⊆ A′ ⊆ A and (G[A′], L) is

k-complete. Then L is a set of k-most vital arcs of G[U] for all U such that A′ ⊆ U ⊆ A.

Proof. Since G[A′] is L-spare, we have that

z(G[A′ \ L]) = z(G[A \ L]). (A.3)

Let LU be a set of k-most vital arcs of G[U], where A′ ⊆ U ⊆ A. Then

z(G[A \ L]) ≤ z(G[U \ L]) ≤ z(G[U \ LU]) ≤ z(G[A′ \ L]). (A.4)

The first inequality is due to the fact that (U \L) ⊆ (A \L), the second from the definition

of LU , and the last one from Proposition 12 (in Appendix A.1) and the fact that L is a

set of k-most vital arcs of G[A′]. Therefore, from equations (A.3) and (A.4) we have that

z(G[U \ L]) = z(G[U \ LU]), which implies that L is a set of k-most vital arcs of G[U].

Lemma 2. Let γ ∈ Γ. Then for any C0 and G ∈ G(C0):

1. τ γ(G, C0) ≤ xγ(G, C0);

2. if T > |A| then τ γ(G, C0) ≤ |A|.

Proof. To simplify the notation, let x ≡ xγ. Note that by the definition of x, G[Aγx] is a

Iγx -spare network. As Iγx is also a set of k-most vital arcs of G[Aγx], it follows that (G[Aγx], I
γ
x)

is k-complete and z(G[Aγx \ Iγx]) = z∗(G) by Lemma 1. Moreover, by the definition of Γ, we

have that Iγt = Iγx for t > x. Hence, z(G[Aγt \ I
γ
t]) = z∗(G) for all t > x and the first claim

of the proposition follows.

To prove the second claim, we consider two possible cases. Specifically, one has thatG[Aγt]

is either Iγt -spare for some t ≤ |A| or not. In the former case, the arguments above imply

that τ γ(G, C0) ≤ |A| and the result follows. In the latter case, because `(P γ
t) = z(G[A \ Iγt])

for all t, by equation (A.4) we have that

z(G[Aγt \ I
γ
t]) > z(G[A \ Iγt]) t ≤ |A| . (A.5)

133

The above implies that P γ
t * Aγt for all t ≤ |A|. Indeed, suppose that this is not the case.

Since P γ
t ∩ I

γ
t = ∅ and Iγt is a set of k-most vital arcs of G[Aγt], then P γ

t ⊆ Aγt implies that

`(P γ
t) ≥ z(G[Aγt \ I

γ
t]). Thus, from equation (A.5) we have that

`(P γ
t) > z(G[A \ Iγt]), (A.6)

which contradicts the fact that P γ
t is a shortest path in G[A \ Iγt]. We conclude that Aγt ⊂

Aγt+1, which implies the required result.

Lemma 4. Suppose that t ∈ T is such that z(Gλ
t [A

λ
t \ Iλt]) = z(G[A \ Iλt]), then (G[Aλt], I

λ
t)

is k-complete (with respect to G). Moreover, Iλt is a set of k-most vital arcs of G[U] for all

U such that Aλt ⊆ U ⊆ A.

Proof. Let LA and L be sets of k-most vital arcs of G and G[Aλt], respectively. We have

that

z(G[A \ Iλt]) ≤ z(G[A \ LA])
(a)

≤ z(G[Aλt \ L])
(b)

≤ z(Gλ
t [A

λ
t \ Iλt]), (A.7)

where (a) and (b) follow from Propositions 12 and 13, respectively (see Appendix A.1). This,

and the condition that z(G[A \ Iλt]) = z(Gλ
t [A

λ
t \ Iλt]) implies that

z(G[A \ Iλt]) = z(G[A \ LA]) = z(G[Aλt \ L]) = z(Gλ
t [A

λ
t \ Iλt]). (A.8)

On the other hand, because Aλt ⊆ A the following inequalities hold

z(G[A \ Iλt]) ≤ z(G[Aλt \ Iλt]) ≤ z(G[Aλt \ L]), (A.9)

thus, implying that z(G[A \ Iλt]) = z(G[Aλt \ Iλt]) = z(G[Aλt \ L]). Hence, G[Aλt] is Iλt -spare.

Moreover, because L is a set of k-most vital arcs of G[Aλt], the fact that z(G[Aλt \ Iλt]) =

z(G[Aλt \L]) implies that Iλt is also a set of k-most vital arcs of G[Aλt], and the first statement

of the proposition follows. The second statement follows directly from Lemma 1.

Lemma 5. Let λ ∈ Λ. Then for any C0 and G ∈ G(C0):

1. τλ(G, C0) ≤ x̂λ(G, C0);

2. if T ≥ |A|, then τλ(G, C0) ≤ |A|.

134

Proof. To simplify the notation let x = x̂λ. Because z(Gλ
x[A

λ
x \Iλx]) = z(G[A\Iλx]), Lemma 4

implies that Iλx is a set of k-most vital arcs of G. Thus, z(G[A\Iλx]) = z∗(G). Moreover, from

the definition of Λ,we have that Iλt = Iλx for all t > x, and the first claim of the proposition

follows. The proof of the second statement follows from the arguments in proof of the second

statement in Lemma 2, with (A.7) playing the role of (A.4).

Lemma 6. Λ is a homogeneous set both with respect to cumulative regret and with respect

to time-stability.

Proof. We slightly modify the proof of Lemma 3. Consider again C0, G and G
′

as given

by Figure 5. However, assume that the cost of arc (1, n) in C0 is not known exactly, but is

known to be within range [1,M], where M ≥ 2, i.e., (1, n) /∈ Ã0, but (1, n) ∈ Â0. At the

first time period the evader travels along the arc (1, n) and its cost becomes known to the

interdictor. The result then follows by mimicking the proof of Lemma 3.

Proposition 2. There exists C0, G ∈ G(C0) and ζ > 0 such that if T ≥ |A|, then τλ(G, C0) ≥

ζ|A|. Moreover, the value of Rλ
T (G, C0) can be made arbitrarily large.

Proof. Consider the same network as in Proposition 1, but with Ãλ0 = ∅, and Âλ0 = A. Let

cij = 1 for all (i, j) ∈ A, except for (1, 2) with c12 = M ≥ 2, and assume that `ij = 1 and

uij = M + 1 for all (i, j) ∈ A. Proceeding in a similar fashion as in Proposition 1, arc (1, 2)

is revealed after ζ|A| time periods, where ζ ≤ k/(2k + 2).

Proposition 3. Algorithm 2 correctly solves LB(G, C′, T).

Proof. Note that only the case when T0 < T is relevant. Upon convergence one has that

either T ′ = T or T ′ < T . In the first case, LB(G, C′, T) is solved using formulation (2.11)

and the result follows. For the second case suppose that {(rt, pt, yt) : t ∈ T } is not optimal,

and consider a solution {(r̄t, p̄t, ȳt) : t ∈ T } feasible for LB(G, C′, T) such that

T∑
t=0

ȳt1 − ȳtn >
T∑
t=0

yt1 − ytn. (A.10)

135

Because T ′ < T it is necessarily the case that z∗ = yts − ytt for all t ≥ T ′. Therefore, (A.10)

implies that
T ′∑
t=0

ȳt1 − ȳtn >
T ′∑
t=0

yt1 − ytn.

However, {(r̄t, p̄t, ȳt) : t ≤ T ′} is feasible for LB(G, C′, T ′). Thus, the equation above contra-

dicts the fact that {(rt, pt, yt) : t ≤ T ′} is an optimal solution of LB(G, C′, T ′). This proves

the result.

A.3 ADDITIONAL GRAPHS

We provide additional results for the computational experiments described in Section 2.5.

Figure 18 corresponds to the discussion in Section 2.5.4 for the left-skewed distributed costs.

Figures 19 and 20 are the complementary figures for the second experiment in Section 2.5.5,

setting pc = 0 and pc = 2/3 respectively.

136

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
400

450

500

550

600

650

700

750

p
c

T
o
ta

l
R

e
g
re

t

p
c
 vs Total regret, p

a
=50%, Left Skewed

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

11

12

13

14

15

16

17

p
c

T
im

e
−

s
ta

b
ili

ty

p
c
 vs Time−stability, p

a
=50%, Left Skewed

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
80

100

120

140

160

180

200

220

240

260

p
c

T
o
ta

l
R

e
g
re

t
M

A
D

p
c
 vs Total regret MAD, p

a
=50%, Left Skewed

λ

π
M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

p
c

T
im

e
−

s
ta

b
ili

ty
 M

A
D

p
c
 vs Time−stability MAD, p

a
=50%, Left Skewed

λ

π
M

Figure 18: Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as pc increases. The cost distribution is left-skewed and pa = 1/2.

137

1 2 3 4 5 6 7 8 9 10
120

140

160

180

200

220

240

260

280

300

Interval width multiplier

T
o
ta

l
R

e
g
re

t

Interval width vs Total regret, p
a
=2/3, p

c
=0

λ

π
M

1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

18

20

22

24

26

Interval width multiplier

T
im

e
−

s
ta

b
ili

ty

Interval width vs Time−stability, p
a
=2/3, p

c
=0

λ

π
M

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

110

120

130

140

Interval width multiplier

T
o
ta

l
R

e
g
re

t
M

A
D

Interval width vs Total regret MAD, p
a
=2/3, p

c
=0

λ

π
M

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Interval width multiplier

T
im

e
−

s
ta

b
ili

ty
 M

A
D

Interval width vs Time−stability MAD, p
a
=2/3, p

c
=0

λ

π
M

Figure 19: Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as the cost intervals widen for the case of pa = 2/3 and pc = 0.

Given the interval-width multiplier m, the lower and upper bounds of the arc cost in Â0 are

la = ca −mxa and ua = ca +mya, respectively.

138

1 2 3 4 5 6 7 8 9 10
120

140

160

180

200

220

240

260

280

300

Interval width multiplier

T
o
ta

l
R

e
g
re

t

Interval width vs Total regret, p
a
=2/3, p

c
=2/3

λ

π
M

1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

18

20

22

24

Interval width multiplier

T
im

e
−

s
ta

b
ili

ty

Interval width vs Time−stability, p
a
=2/3, p

c
=2/3

λ

π
M

1 2 3 4 5 6 7 8 9 10
45

50

55

60

65

70

75

80

Interval width multiplier

T
o
ta

l
R

e
g
re

t
M

A
D

Interval width vs Total regret MAD, p
a
=2/3, p

c
=2/3

λ

π
M

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Interval width multiplier

T
im

e
−

s
ta

b
ili

ty
 M

A
D

Interval width vs Time−stability MAD, p
a
=2/3, p

c
=2/3

λ

π
M

Figure 20: Behavior of the average time-stability, average total regret, time-stability MAD

and total regret MAD as the cost intervals widen for the case of pa = 2/3 and pc = 2/3.

Given the interval-width multiplier m, the lower and upper bounds of the arc costs in Â0

are la = ca −mxa and ua = ca +mya, respectively.

139

APPENDIX B

SUPPLEMENT FOR CHAPTER 3

This appendix contains most of the proofs and additional example for Chapter 3.

B.1 PROOFS OF THE RESULTS FOR THE BASIC COST MODEL

We first introduce some auxiliary results. We have the following basic observation:

LEMMA 17. For any t ∈ T and x ∈ X t,

ztR(x) = min
y′
{
(
dt
)>
y′ : y′ ∈ Y t

R(x)} (B.1)

where dt = (1, 0, . . . , 0)> and

Y t
R(x) :=

{
(y0, y) ∈ R× R|A

t|
+ : − y0 +

(
ct
)>
y ≤ 0 ∀ĉt ∈ U t, y ∈ Y t(x)

}
.

Proof. Note that ztR(x) can be equivalently posed as

min
y0,y

y0

s.t. y0 ≥ max
ĉt∈Ut

(
ĉt
)>
y

F ty +Ltx ≤ f t

y ≥ 0.

140

The result follows after noting that (y0, y) satisfies the first of the above constraints if and

only if y0 ≥ (ct)
>
y for all ĉt ∈ U t.

In all the proofs that follow we use the representation of ztR(x) given by equation (B.1)

instead of the representation given by the original definition.

Proof of Theorem 3. (i) We first prove the statement that zt,λ ≤ z∗ ≤ zt,∗R . For the

leftmost inequality, the result follows from the definition of both z∗ and zt,λ (see equations

(3.1) and (4.7)) because x̄t,λ ∈ X, the feedback is standard, and Assumption (A3) holds.

For the rightmost inequality, let x∗ be an element of X that attains z∗. Partition x∗ as

x∗ = (x̂, x̃), where x̂ = (x∗i)i∈It and x̃ = (x∗i)i∈I\It . Recall the definition of the partition of

matrices given by (3.4). Therefore, because x∗ ∈ X and (A3) holds, one has that x̂ ∈ X t.

Now, suppose that Y t
R(x̂) is non-empty (if it is empty then it must be the case that

zt,∗R = +∞ and the result holds) and let (y0, ŷ) be such that

(y0, ŷ) ∈ arg min{
(
dt
)>
y′ : y′ ∈ Y t

R(x̂)},

hence (ct)
>
ŷ = ztR(x̂). By the definition of zt,∗R we have that

(
ct
)>
ŷ ≤ zt,∗R . (B.2)

Define ȳ as ȳa := ŷa if a ∈ At, and ȳa := 0 if a ∈ A \ At. Since F is standard, Assumption

(A4) holds, and ŷ ∈ Y t(x̂), it follows that ȳ ∈ Y (x∗). Therefore,

z∗ ≤ c>ȳ. (B.3)

As c>ȳ = (ct)
>
ŷ, equations (B.2) and (B.3) yield the desired result.

(ii) Next, we show that τλ ≤ ξλ. Recall the definition of x̄t,λ (see equations (3.2) and

(4.7)), i.e., x̄t,λi = xt,λi if i ∈ I t and x̄t,λi = 0 if i 6∈ I t. For notational convenience, let ξ = ξλ

in the remainder of the proof. We claim that x̄ξ,λ ∈ arg max{z(x) : x ∈ X}. Indeed, the

fact that the feedback is standard (recall equation (3.4)) implies that x̄ξ,λ ∈ X. Since by

definition of ξ we have that zξ,λ = zξ,∗R , part (i) implies that (recall that by definition we

have zt,λ = z(x̄t,λ) for any period t)

z(x̄ξ,λ) = z∗,

141

and therefore the claim follows. Now, by definition of λ, for all s ≥ t it must be the case that

xs,λ = xξ,λ. We claim that this implies that zs,λ = z∗ for all s ≥ t, and hence that τλ ≤ ξλ.

In order to arrive at a contradiction, assume that zs,λ < z∗ for s > ξλ. As xs,λ = xξ,λ, one

has that ys,λ ∈ Y (xξ,λ), and by the definition of yξ,λ it would follow that zξ,λ ≤ zs,λ < z∗,

which contradicts the fact that zξ,λ = z∗. The desired claim follows.

Proof of Proposition 4. As yt,λ ∈ Y (xt,λ) and yta = 0 for all a 6∈ At, it follows that

∑
a∈At

Fday
t,λ
a +

∑
i∈It

Ldix
t,λ
i ≤ fd ∀d ∈ Ct

F ,

which implies that (yt,λa)a∈At ∈ Y t(xt,λ). On the other hand, as U t has dimension zero, the

set Y t
R(xt,λ) becomes

Y t
R(xt,λ) = {(y0, y) ∈ R|A

t|
+ : − y0 +

(
ct
)>
y ≤ 0, y ∈ Y (xt,λ)},

and hence, ztR(xt,λ) ≤ (ct)
>

(yt,λ)a∈At . Therefore, from the first set of inequalities of Theorem

3 (see part (i) in its proof above) and as ztR(xt,λ) = zt,∗R by definition of xt,λ, we have that

zt,λ ≤ zt,∗R ≤
(
ct
)>

(yt,λ)a∈At (B.4)

but on the other hand, from the definition of yt,λ we have that

zt,λ =
(
ct
)>

(yt,λ)a∈At . (B.5)

Equations (B.4) and (B.5) imply that zt,λ = zt,∗R , and hence ξλ ≤ t as desired. The later part

of the proposition is a consequence of the above result and the second set of inequalities of

Theorem 3 (see part (ii) in its proof above).

Proof of Lemma 7. First, note that if yt,λa > 0 for some a 6∈ At, then the result follows from

the assumptions of Value–Perfect feedback. Therefore, suppose that yt,λa = 0 for all a 6∈ At.

We claim that there exists an activity a ∈ At \ Ãt such that yt,λa > 0; the existence of such an

activity implies the desired result from the assumptions of Value–Perfect feedback. Indeed,

to proceed by contradiction, suppose that this is not the case, i.e., yt,λa = 0 for all a ∈ At \ Ãt.

142

As yt,λ ∈ Y (x̄t,λ) and yta = 0 for all a 6∈ At, then it must be that (yt,λa)a∈At ∈ Y t(xt,λ). Now,

because ĉa = ca for all a ∈ Ãt, one has that for all ĉt ∈ U t

(
ĉt
)>

(yt,λa)a∈At =
(
ct
)>

(yt,λa)a∈At ,

and therefore ((ct)
>

(yt,λa)a∈At , (y
t,λ
a)a∈At) ∈ Y t

R(xt,λ). Thus, by the definition of xt,λ we have

that

zt,∗R ≤
(
ct
)>

(yt,λa)a∈At . (B.6)

On the other hand, because yta = 0 for all a 6∈ At, one has that zt,λ = (ct)
>

(yt,λa)a∈At ,

and hence, by Theorem 3 along with (B.6), we have that zt,λ = zt,∗R , yielding the desired

contradiction.

Proof of Lemma 8. As zt,λ < zt,∗R there must exist c̃t ∈ U t such that

zt,λ <
(
c̃t
)>

(yt,λa)a∈At .

Because At+1 = At, we have that

U t+1 = {ĉt ∈ R|At| :
(
ĉt
)>

(yt,λa)a∈At = zt,λ, ĉt ∈ U t},

and therefore c̃t 6∈ U t+1.

Now, in view of equation above, Gt+1 = (Gt; (yt,λ)>) and gt+1 = (gt; zt,λ). For any t ∈ T

let us denote by Ct,=
U those inequalities in the definition of U t that must be satisfied as strict

equalities, i.e.,

j ∈ Ct,=
U ⇔ Gt

j ĉ
t = gj ∀ĉt ∈ U t,

where Gt
j denotes j-th row of Gt. Let us denote by Gt,= and gt,= the corresponding subma-

trix and subvector of Gt and gt associated with those elements in Ct,=
U . We have that (see

e.g., Wolsey and Nemhauser (2014))

dim(U t) = |At| − rank(Gt,=, gt,=). (B.7)

We claim that rank(Gt+1,=, gt+1,=) ≥ rank(Gt,=, gt,=)+1, and the desired result then follows

from equation (B.7). Indeed, arguing by contradiction, suppose that rank(Gt+1,=, gt+1,=) =

143

rank(Gt,=, gt,=). This implies that ((yt,λ)a∈At ; z
t,λ)> can be written as a linear combination

of the rows of (Gt,=, gt,=), and thus it is readily seen that

{ĉt : Gt+1,=ĉt = gt+1,=} = {ĉt : Gt,=ĉt = gt,=}.

Because c̃t ∈ U t, it belongs to {ĉt : Gt,=ĉt = gt,=}, which by the above equation implies

that it also belongs to {ĉt : Gt+1,=ĉt = gt+1,=} and thus to U t+1, which yields the desired

contradiction.

B.2 PROOFS OF THE RESULTS FOR THE MATRIX MODEL

Proof of Proposition 7. For (i), the leftmost inequality follows from the definition of

both z∗ and zt,λ (see equations (3.1) and (4.7)), the fact that the feedback standard, and

Assumption (A3) holds. For the rightmost inequality, let x∗ be an element of X that attains

z∗. Partition x∗ as x∗ = (x̂, x̃), where x̂ = (x∗i)i∈It and x̃ = (x∗i)i∈I\It . Recall the partition of

matrices given by (3.4). Therefore, because x∗ ∈ X and (A3) holds, one has that x̂ ∈ X t.

Now, suppose that Y t
E(x̂) is non-empty (if it is empty then it must be the case that zt,∗R =∞

and the result holds) and let ŷ be such that

ŷ ∈ arg min{
(
ct
)>
y : y ∈ Y t

E(x̂)},

hence (ct)
>
ŷ = ztE(x̂). By definition of zt,∗E we have that

(
ct
)>
ŷ ≤ zt,∗E . (B.1)

Define ȳ as ȳa := ŷa if a ∈ At, and ȳa := 0 if a ∈ A \At. Because F is standard, Assumption

(A4) hold, and ŷ ∈ Y t
E(x̂), it follows that ȳ ∈ Y (x∗). Therefore,

z∗ ≤ c>ȳ. (B.2)

As c>ȳ = (ct)
>
ŷ, equations (B.1) and (B.2) yield the desired result.

144

The proof of (ii) is the same as the proof of (ii) of Theorem 3. For (iii) note that

yt,λ ∈ Y (xt,λ) and yta = 0 for all a 6∈ At, hence it follows that

∑
a∈At

Fday
t,λ
a +

∑
i∈It

Ldix
t,λ
i ≤ fd ∀d ∈ Ct

F . (B.3)

On the other hand, as U t has dimension zero, the set Y t
E(xt,λ) becomes

Y t
E(xt,λ) = {y ∈ R|A

t|
+ : F ty +Ltxt,λ ≤ f t},

and hence, from equation (B.3) it follows that (yt,λ)a∈At ∈ Y t
E(xt,λ). Therefore, from part (i)

and the definition of zt,∗E we have that

zt,λ ≤ zt,∗E ≤
(
ct
)>

(yt,λ)a∈At , (B.4)

but on the other hand, from the definition of yt,λ we have that

zt,λ =
(
ct
)>

(yt,λ)a∈At . (B.5)

Equations (B.4) and (B.5) imply that zt,λ = zt,∗E , and hence ξλ ≤ t as desired. The later part

of the proposition is a consequence of the above result and part (ii).

Proof of Proposition 8. For (i), note that if yt,λa > 0 for some a 6∈ At, then the result

follows from the assumptions of Value–Perfect feedback. Therefore, suppose that yt,λa = 0

for all a 6∈ At. We claim that there exists an activity a ∈ At \ Ãt such that yt,λa > 0; the

existence of such an activity implies the desired result. Indeed, to proceed by contradiction,

suppose that this is not the case, i.e., yt,λa = 0 for all a ∈ At \ Ãt. As yt,λ ∈ Y (x̄t,λ), this

assumption implies that

∑
a∈Ãt

Fday
t,λ
a +

∑
i∈It

Ldix
t,λ
i ≤ fd ∀d ∈ Ct

F . (B.6)

Define y′ ∈ R|A
t|

+ as y′a := yt,λa for all a ∈ At. For any F̂ ∈ U t, the vector y′ satisfies

∑
a∈Ãt

F̂day
′
a +

∑
i∈It

Ldix
t,λ
i ≤ fd ∀d ∈ Ct

F . (B.7)

145

Now, from the definition of Ãt, F̂da = Fda for all a ∈ Ãt and F̂ ∈ U t, hence equations (B.6)

and (B.7) imply that y′ ∈ Y t
E(xt,λ). Therefore, from the definition of zt,∗E we have that

zt,∗E ≤
(
ct
)>
y′, (B.8)

but because it is readily checked that zt,λ = (ct)
>
y′, and, moreover, that zt,λ ≤ zt,∗E by part (i)

of Proposition 7, Equation (B.8) implies that zt,λ = zt,∗E , yielding the desired contradiction.

The proof of (ii) is the same as the proof of Theorem 4.

Proof of Lemma 9. It is clear that because zt,λ < zt,∗E , it must be that yt,λ 6∈ Y t
E(xt,λ). By

definition of Y t
E(xt,λ), this means that there exist F̃ t ∈ U t and d ∈ Ct

F such that
(
F̃ t
)>
d
yt,λ >

fd − (Lt)
>
d x

t,λ, as desired.

Before proceeding with the proof of Proposition 9, additional notation, concepts and

results need to be introduced. In the discussion that follows, let us suppose that in Response–

Perfect feedback, besides observing the values of yta the leader is also able to observe the

value of the left-hand side (or, equivalently, the slack qtd) for all constraints d ∈ Ct+1
F . For

simplicity, let us denote rtd :=
∑

a : yta>0 Fday
t
a = fd−qtd−L>d xt. Then, by using the information

from the feedback, the leader updates U t by including the linear constraints∑
a∈yta>0

ytaF̂da = rtd for all d ∈ Ct+1
F , (B.9)

in the definition of polyhedron U t+1. Recall that for any d ∈ Ct
F , ntd denotes the number of

the follower’s activities in At that d restricts, that is

ntd := |{a ∈ At : d ∈ CF (a)}|.

For any given time t ∈ T we have that

U t ⊆ R
∑
d∈Ct

F
ntd .

Suppose that mt = |Ct
F | and let us write Ct

F = {d1, · · · , dmt}. We organize the elements of

U t into blocks, so that F̂ ∈ U t is given by

F̂ = [F̂ d1 ; F̂ d2 ; · · · ; F̂ dmt],

146

where F̂ d ∈ Rntd for all d ∈ Ct
F . We also assume that the columns of matrix Gt are organized

in this way. Using the conventions above, for any d ∈ Ct+1
F , constraint (B.9) can be rewritten

as

v>d F̂ = rtd, (B.10)

where vector vd is divided in subvectors as vd := [vd1d ;vd2d ; · · · ;v
dmt+1

d], and each subvector

v
dj
d ∈ Rnt+1

dj . If d 6= dj, then v
dj
d is a vector of zeros, i.e., v

dj
d = 0>

nt+1
dj

. Otherwise, if d = dj,

then it has the information of yt,λ for those activities in At+1 that are restricted by d, i.e,

(vdd)a = yt,λa for all a ∈ At+1 such that d ∈ CF (a).

Let D0 and D ∈ G(D0) be given, and suppose that T is sufficiently large. For any

π, define Sπ(D0,D) := {t ∈ T : ∃a 6∈ At s.t. yta > 0}, that is, Sπ(D0,D) is the set of time

periods when at least a new activity is learned by the leader (who is using policy π). Suppose

that Sπ(D0,D) = {s1, s2, · · · , sp}, where w.l.o.g. we suppose that sk < sk+1 for all k ≤ p− 1

(observe p depends on π, we drop it for the notation for simplicity). In addition, for any

k = 1, · · · , p, define Nk := {a ∈ A \ Ask : yska > 0}, i.e., Nk is the set of activities the leader

learns by the end of time period sk.

LEMMA 18. Let λ ∈ Λ, suppose that feedback F is Response–Perfect and that the leader

observes the values of all the slack variables of the follower problem at any time t ∈ T . If

ξλ > sp then,

dim(U t+1)− dim(U t) ≤


∑

a∈Nk |CF (a)| −
∣∣∣⋃a∈Nk CF (a)

∣∣∣, if t = sk for some k ≤ p,

−1, otherwise.

(B.11)

Proof. Let k < p be given. Observe that at the end of period sk the leader learns all the

activities in Nk, and as such introduces a new variable F̂da into U sk+1 for all d ∈ CF (a) and

a ∈ Nk. Hence, U sk+1 has
∑

a∈Nk |CF (a)| more variables (columns) than U sk (observe that

there is no new variable F̂da for a ∈ At from the standard feedback assumption). On the

other hand, for every d ∈
⋃
a∈Nk CF (a) the leader includes the linear constraint (B.10) into

U sk+1 (in addition to the potentially new constraints associated with each d ∈ Ct
F).

From the definition of vd in equation (B.10), it is readily seen that if d 6= d′, and both

d, d′ ∈
⋃
a∈Nk CF (a), then (vd; r

sk
d) and (vd′ ; r

sk
d′) are linearly independent. Moreover, it

147

is also readily observed that these vectors are linearly independent of all the other (ex-

panded) vectors that give equality constraints in U sk . This analysis implies that, with

respect to dim(U sk), dim(U sk+1) increases by
∑

a∈Nk |CF (a)| because of the new variables,

but dim(U sk+1) decreases by (at least) ∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣

because of the newly introduced linearly independent equality constraints. In other words,

dim(U sk+1) ≤ dim(U sk) +
∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣. (B.12)

On the other hand, let t < ξλ such that t 6∈ Sλ; i.e., yta = 0 for all a 6∈ At. Note that

because ξλ > t one has that c>yt,λ < ztR (by part (i) of Proposition 7). We claim that (recall

from the proof of Lemma 8 the definition of Gt,= and gt,=)

rank([Gt+1,=, gt,=]) > rank([Gt,=, gt,=]).

Indeed, because the assumptions of Lemma 9 hold, let F̃ t such that(
F̃ t
)>
d
yt,λ > fd −

(
Lt
)>
d
xt,λ.

Now consider U t after adding the equation v>d F̂ = rtd. Because qtd ≥ 0, one has that

F̃ T
d y

t,λ > fd − (Lt)
>
d x

t − qtd and hence F̃ 6∈ U t+1. Therefore, F̃ t ∈ U t \ U t+1 and, by the

same arguments of Lemma 8, the vector (vd; kd) must be linearly independent from all the

rows of (Gt, gt). Therefore, the desired claim follows and we can conclude that

dim(U t+1) ≤ dim(U t)− 1,

as desired.

LEMMA 19. Let λ ∈ Λ be given, suppose that the feedback F is Response–Perfect and that

the leader observes the values of all the slack variables of the follower’s problem at any time

t ∈ T . Then, s1 + dim(U s1) ≤ dim(U0), and

sk+1 + dim(U sk+1) ≤ sk + dim(U sk) + 1 +
∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣ k = 1, · · · , p− 1.

148

Proof. By the definition of s1, at periods t = 0, 1, 2, · · · , s1 − 1 we have that the leader

does not learn any activity and hence, by Lemma 18, dim(U t) − dim(U t−1) ≤ −1 for t =

1, · · · , s1. This implies that dim(U s1) ≤ dim(U0) − s1 and the result follows. Suppose that

k = 1, · · · , p − 1 is given. By definition of sk+1, from t = sk + 1, · · · , sk+1 − 1 the leader

does not learn any activity and Lemma 18 again implies that dim(U t) − dim(U t−1) ≤ −1,

t = sk + 2, · · · , sk+1. This observation implies that

dim(U sk+1) ≤ dim(U sk+1)− (sk+1 − sk − 1).

Now, the above equation along with equation (B.12) imply that

dim(U sk+1) ≤ dim(U sk) +
∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣− sk+1 + sk + 1,

which yields the desired result.

Using the above Lemma 19 we have the following important result.

LEMMA 20. Let λ ∈ Λ be given, suppose that the feedback F is Response–Perfect and that

the leader observes the values of all the slack variables of the follower problem at any time

t ∈ T . Then,

τλ ≤ ξλ ≤ dim(U0) + p+

p∑
k=1

(∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣). (B.13)

Proof. By repeated application of Lemma 19 it is verified that

sp + dim(U sp) ≤ dim(U0) + (p− 1) +

p−1∑
k=1

(∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣). (B.14)

Because by definition no new action is learned after sp, dim(U t) − dim(U t−1) ≤ −1 for t ≥

sp+2. This implies that at most by time sp+t̃, where t̃ :=
∑

a∈Np |CF (a)|−
∣∣∣⋃a∈Np CF (a)

∣∣∣+1,

it must be the case that dim(U sp+t̃) = 0. Henceforth, part (iii) of Proposition 7 implies that

ξλ ≤ sp + t̃, and hence equation (B.14) and the selection of t yield the desired result.

149

Proof of Proposition 9. Suppose first that (i) holds, i.e., that all the constraints are

equality constraints, thus the leader always knows that their slack is zero. Hence, a direct

application of Lemma 20 implies that

τλ ≤ ξλ ≤ dim(U0) + p+

p∑
k=1

(∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣).

The desired result follows by noting that
∑p

k=1

∑
a∈Nk |CF (a)| =

∑
a∈A\A0 |CF (a)| and that∣∣∣⋃a∈Nk CF (a)

∣∣∣ ≥ 1. On the other hand, consider (ii), i.e., that the leader observes the slack

of one of the constraints in Dt,λ at every period t ∈ T such that yta = 0 for all a 6∈ At. In

this case, following the same arguments as in Lemma 18, equation (B.11) can be simplified

to:

dim(U t+1)− dim(U t) ≤


∑

a∈Nk |CF (a)|, if t = sk, for some k ≤ p,

−1, otherwise.

The result follows from Lemma 20, after mimicking the proofs of the previous results, as in

this case equation (B.13) becomes

τλ ≤ ξλ ≤ dim(U0) + p+

p∑
k=1

∑
a∈Nk

|CF (a)|.

Proof of Proposition 10. Observe that as ztR−c>yt,λ > 0, then Dt 6= ∅. Pick an arbitrary

d ∈ Dt, and let yt,∗ be

yt,∗ ∈ arg min{
(
ct
)>
y : y ∈ Y t

E(xt,λ)},

hence yt,∗ is (one of) the solution(s) the leader expects from the follower after deciding xt,λ.

Now, let F̃ be given by

F̃ ∈ arg max{(yt,∗)>F̂d : F̂ ∈ U t}

thus, F̃ is (one of) the value(s) the leader assigns to the row d of the follower lower-level

matrix by deciding robustly (i.e., by using policy λ). Observe that because d ∈ Dt it follows

that

F̃>d y
t,λ > fd −L>d xt,λ,

150

and, henceforth, F̃ ∈ ∆t. Now, define the hyperplane P as

P := {F̂ ∈ R
∑
d∈Ct

F
ntd : v>d F̂ = fd −L>d xt,λ},

and observe that U t+1 is at one side of P while F̃ is at the other side. That is, P separates

U t+1 and F̃ . Let F ′ ∈ U t+1 be the closest point of U t+1 to F̃ . It is clear that F ′ ∈ P , hence

‖F̃ − F ′‖ is the distance from F̃ to P , which by standard linear algebra is given by the

projection of F̃ − F ′ onto the vector vd; that is

‖F̃ − F ′‖ =
(F̃ − F ′)>vTd
‖yt,λ‖

=
(F̃d − F ′d)>yt,λ

‖yt,λ‖
.

Observe that

‖F̃ − F ′‖ =
(F̃d − F ′d)>yt,λ

‖yt,λ‖
(B.15a)

=
(F̃d − F ′d)>yt,λ + F

′T
d yt,∗ − F ′Td yt,∗

‖yt,λ‖
(B.15b)

=
F
′T
d (yt,∗ − yt,λ) + F̃>d y

t,λ − F ′Td yt,∗

‖yt,λ‖
(B.15c)

≥ F
′T
d (yt,∗ − yt,λ) + F̃>d (yt,λ − yt,∗)

‖yt,λ‖
(B.15d)

=
(yt,∗ − yt,λ)>(F

′

d − F̃d)
‖yt,λ‖

, (B.15e)

where the inequality follows because F
′ ∈ U t. From the definition of F̃ we have that

F
′T
d yt,∗ ≤ F̃ T

d y
t,∗.

Now, let U be given by

U := max
{a∈At : F

′
d,a−F̃d,a 6=0}

∣∣∣ yt,∗a − yt,λa
F
′
d,a − F̃d,a

∣∣∣,
therefore, if K = (U + 1)U , then the Diaz-Metcalf inequality (see e.g Diaz and Metcalf

(1964)) implies that

(yt,∗ − yt,λ)>(F
′

d − F̃d) ≥ ‖yt,∗ − yt,λ‖2 −K‖F ′d − F̃d‖2. (B.16)

151

Inequalities in (B.15e) and (B.16) imply that

‖F̃ − F ′‖ ≥ ‖y
t,∗ − yt,λ‖2 −K‖F ′d − F̃d‖2

‖yt,λ‖
,

and henceforth

K‖F̃ − F ′‖2 + ‖yt,λ‖‖F̃ − F ′‖ ≥ ‖yt,∗ − yt,λ‖2.

Now, because ztR− c>yt,λ = c>(yt,∗− yt,λ) > ε, the Cauchy-Schwartz inequality implies that

‖yt,∗ − yt,λ‖ > ε

‖c‖
,

and hence

K‖F̃ − F ′‖2 + ‖yt,λ‖‖F̃ − F ′‖ ≥ ε2‖c‖−2.

Because K ≥ 0, the above inequality implies the desired result.

B.3 ADDITIONAL RESULTS AND COMPLEMENTARY MATERIAL

B.3.1 Semi-Oracle Algorithm

In this section we discuss an algorithm that speeds-up the solution of problem (3.13) and that

is particularly useful to determine the semi-oracle decisions for instances where T is large.

The algorithm works by computing a time-stability upper bound, which is constructed by

forcing the follower to reveal an ‘optimal’ set of resources I∗ as soon as possible. Once this

upper bound is computed, MIP (3.13) is solved by truncating the time to T 0, which, as it

will be seen, can be bounded by the cardinality of I∗. Then, the optimal solution of the

original MIP is obtained by extending the truncated solution until time T .

Before proceeding, we introduce some additional notation. Let x∗ be an optimal solution

of the full-information problem, and let I∗ := {i ∈ I : x∗i > 0} be the set of resources that x∗

uses. For any J ⊆ I∗ define x∗,J as x∗,Ji := x∗i if i ∈ J and zero otherwise, thus x∗,J is the

152

restriction of x∗ to the resources in J . In addition, for any y define I(y) is the set of resources

that interfere with the activities that y performs (i.e., with a slight abuse of notation)

I(y) :=
⋃

a : ya>0

I(a).

The computation of the upper bound T 0 is based on the two following observations: (i)

as soon as the semi-oracle enforces the follower to reveal all the resources in I∗, then she can

implement the optimal solution x∗; (ii) if for a given J ⊂ I∗ the semi-oracle implements x∗,J ,

then the response of the follower must reveal a new resource in I∗ \ J , or else the response

yields the optimal value z∗. While the proof of the first observation is straightforward, the

proof of the second is a consequence of the following lemma.

LEMMA 21. Let J ⊆ I∗ and suppose that yJ ∈ arg min{c>y : y ∈ Y (x∗,J)}. If I(yJ)∩I∗ ⊆ J ,

then z∗ ≤ c>yJ .

Proof. We proceed to prove that yJ ∈ Y (x∗). Note that if this holds, then z∗ ≤ c>yJ by

the definition of z∗. Indeed, let d ∈ CF and note that∑
a∈A

Fday
J
a +

∑
i∈I∗

Ldix
∗
i =

∑
a∈A

Fday
J
a +

∑
i∈J

Ldix
∗
i +

∑
i∈I∗\J

Ldix
∗
i

=
∑
a∈A

Fday
J
a +

∑
i∈J

Ldix
∗
i +

∑
i∈K1

Ldix
∗
i +

∑
i∈K2

Ldix
∗
i , (B.1)

where in the last equation K1 = (I∗ \ J) ∩ I(yJ) and K2 = (I∗ \ J) \ I(yJ). Our objective

is to prove that the expression in equation (B.1) is at most fd for all d ∈ CF , from this the

desired result follows.

First, suppose that d ∈ CF satisfies that
∑

a∈A Fday
J
a = 0; then (B.1) is at most fd by

Assumption A4. Hence, suppose that d ∈ CF satisfies that
∑

a∈A Fday
J
a 6= 0. Note that

K1 = I∗ ∩ (I \ J)∩ I(yJ) = (I \ J)∩ (I(yJ)∩ I∗) = ∅, because by hypothesis I(yJ)∩ I∗ ⊆ J ;

therefore,
∑

i∈K1
Ldix

∗
i = 0. On the other hand, suppose that i ∈ K2. Then i 6∈ I(yJ) and,

since
∑

a∈A Fday
J
a 6= 0, it must be the case that Ldi = 0. As this holds for any i ∈ K2, we

have that
∑

i∈K2
Ldix

∗
i = 0.

From the above observations, it follows that if
∑

a∈A Fday
J
a 6= 0 then∑

a∈A

Fday
J
a +

∑
i∈I∗

Ldix
∗
i =

∑
a∈A

Fday
J
a +

∑
i∈J

Ldix
∗
i ≤ fd,

153

where the inequality in the above expression follows from the assumption that yJ ∈ Y (x∗,J).

Thus, (B.1) is at most fd for any d ∈ CF and hence yJ ∈ Y (x∗), as desired.

Supported by the observations above, Algorithm 4 outputs an initial feasible solution.

It starts by computing x∗ and z∗. At any time t, it implements the solution x∗,J
t
, with

J t = I∗ ∩ I t. If the follower’s solution at t yields a value less than z∗, then, per observation

(ii), the semi-oracle can use a new resource in I∗ at the next time period; otherwise, the

solution implemented at t is optimal. The value of T 0 is set to be the first time that z∗ is equal

to the follower’s cost. We note that T 0 is upper-bounded by |I∗| since in at most |I∗| periods

the semi-oracle discovers all the resources in I∗, and once these resources are available, the

solution of the semi-oracle is optimal, per observation (i). The above considerations are

formalized in Lemma 22.

Algorithm 4 Finding an initial feasible solution to (3.13).

Require: (D0,D), T

Compute x∗ and z∗

J0 = I0 ∩ I∗, y0 ∈ arg min{c>y : y ∈ Y (x∗,J
0
)}, z0 = c>y0

t = 0

while z∗ > zt and t ≤ T do

J t+1 = J t ∪ (I(yt) ∩ I∗)

yt+1 ∈ arg min{c>y : y ∈ Y (x∗,J
t+1

)}, zt+1 = c>yt+1

t = t+ 1

end while

if z∗ = zt then

T 0 = t, zs = z∗, x∗,J
s

= x∗, ys = yt for s = t+ 1, · · · , T

else

T 0 =∞

end if

return T 0, z∗, {(x∗,Jt , yt) : t ∈ T }

LEMMA 22. Let T 0 be as computed by Algorithm 4. Then, T 0 is an upper bound on the

optimal value of problem (3.13), and if |I∗ \ I0| ≤ T , then T 0 ≤ |I∗ \ I0|.

154

Proof. First, if the algorithm outputs T 0 = ∞, the results holds trivially. Hence, suppose

T 0 < ∞. In this case, it is readily checked that T 0 is an upper bound as the solution

{(x∗,Jt , yt) : t ∈ T } output by Algorithm 4 is feasible in (3.13) and yields an objective value

of T 0.

On the other hand, suppose that |I∗ \ I0| ≤ T and let s ∈ T \ {0} be given such that

z∗ > zr for all r ≤ s. Because Js ⊆ I∗, ys ∈ arg min{c>y : y ∈ Y (x∗,J
s
)}, and zs = c>ys,

Lemma 21 implies that there exist i ∈ I(ys)∩I∗ such that i 6∈ Js. Henceforth, |Js+1\Js| ≥ 1.

In order to arrive at a contradiction, suppose that T 0 > |I∗ \ I0|. This implies that if we

let t = |I∗ \ I0|, then z∗ > zs for all s ≤ t, and,

|J t| = |J0|+
|I∗\I0|∑
s=1

|Js \ Js−1| ≥ |J0|+ |I∗ \ I0| = |I∗ ∩ I0|+ |I∗ \ I0| = |I∗|. (B.2)

where the inequality follows as |Js \ Js−1| ≥ 1 for all s ≤ t. By construction, we have that

J t ⊆ I∗ for any t, thus inequality (B.2) implies that J t = I∗, and hence, by observation (i)

that zt = z∗; which yields the desired contradiction.

By using Algorithm 4, an optimal solution of (3.13) can be readily computed via Algo-

rithm 5. The correctness of Algorithm 5 follows from noting that T 0 is an upper bound for

the time-stability. Hence, we have the following result, which we state without proof.

PROPOSITION 14. Algorithm 5 correctly solves program (3.13).

B.3.2 Numerical Computation of Policies in Λ

The following result establishes that xt,λ and zt,∗R can be computed by solving a mixed-integer

linear problem.

LEMMA 23. Let t ∈ T be given and suppose that for all x ∈ X t the problem ztR(x) has an

optimal solution. Then,

zt,∗R = max
(
gt
)>
p (B.3a)

s.t. H tx ≤ ht (B.3b)(
Gt
)>
p− y = 0 (B.3c)

155

Algorithm 5 Finding an optimal solution to (3.13)

Require: (D0,D), T

Compute (T 0, z∗, {(xt, yt) : t ∈ T }) by calling Algorithm 4 using ((D0,D), T)

if T 0 ≤ T then

Solve program (3.13) until time T 0 passing {(xt, yt) : t = 0, · · · , T 0} as an initial feasible

solution, let τ ∗ be the objective value

else

Solve program (3.13) until time T passing {(xt, yt) : t = 0, · · · , T} as an initial feasible

solution, let τ ∗ be the objective value

if τ ∗ = T + 1 then

τ ∗ =∞

end if

end if

return τ ∗

F ty +Ltx ≤ f t (B.3d)

Gtĉt ≤ gt (B.3e)

−
(
F t
)>
q − ĉt ≤ 0 (B.3f)

q ≤M qv1, f t − F ty −Ltx ≤M q(1− v1) (B.3g)

p ≤M pv2, gt −Gtĉt ≤M p(1− v2) (B.3h)

y ≤M yv3,
(
F t
)>
q + ĉt ≤M y(1− v3) (B.3i)

y ∈ R|A
t|

+ , ĉt ∈ R|At|, q ∈ R|C
t
F |

+ (B.3j)

p ∈ R|C
t
U |

+ , x ∈ R|I
t|−kt

+ × Zkt (B.3k)

v1 ∈ {0, 1}|CtF |, v2 ∈ {0, 1}|CtU |, v3 ∈ {0, 1}|At|. (B.3l)

where in the above equations M q, M p, and M y are diagonal matrices whose elements are

large enough numbers. Specifically, if (x, q, p, y, ĉt) satisfies equations (B.3b)–(B.3f), then

the matrix M q is such that max{qd,f td − F t
dy − Ltdx} ≤ M

q
dd for any given d ∈ Ct

F (the

156

matrices M p and M y are defined in an analogous manner). Moreover, the vector xt,λ can be

computed as xt,λ = x̃ where (x̃, q̃, p̃, ỹ, c̃) is an optimal solution of the program (B.3a)–(B.3l).

Proof. The optimization problem max{ztR(x) : x ∈ X t} can be written as

max
x∈Xt

min
y0,y

y0 (B.4a)

s.t.
(
ĉt
)>
y ≤ y0 ∀ĉt ∈ U t (B.4b)

− F ty ≥ Ltx− f t (B.4c)

y ≥ 0 (B.4d)

Recall that U t = {ĉt : Gtĉt ≤ gt}. The vector y satisfies the robust constraint (ĉt)
>
y ≤

y0 ∀ĉt ∈ U t if and only if there exist p ∈ R|C
t
U |

+ such that

(
gt
)>
p ≤ y0 and

(
Gt
)>
p = y

(see e.g., Ben-Tal et al. (2009)). Moreover, due to the objective function and to the fact that

there are no other constraints on y0, problem (B.4) is equivalent to

max
x∈Xt

min
y

(
gt
)>
p

s.t. − y +
(
Gt
)>
p = 0

− F ty ≥ Ltx− f t

y ≥ 0

Because for any x ∈ X t it is assumed that ztR(x) has an optimal solution, any optimal

solution y of the inner minimization problem satisfies its Karush-Kuhn-Tucker (KKT) opti-

mality conditions (and vice-versa). Hence, replacing the minimization problem by the KKT

conditions yields

max
x∈Xt

(
gt
)>
p (B.5a)

s.t. − y +
(
Gt
)>
p = 0 (B.5b)

− F ty ≥ Ltx− f t (B.5c)

−
(
F t
)>
q − ĉt ≤ 0 (B.5d)

157

Gtĉt ≤ gt (B.5e)

(f t − F t −Ltx)>q = 0 (B.5f)

(gt −Gtĉt)>p = 0 (B.5g)

(
(
F t
)>
q + ĉt)>y = 0 (B.5h)

y ≥ 0, q ≥ 0, p ≥ 0, ĉt free. (B.5i)

Observe that problem (B.5) is a non-linear mixed-integer problem (due to the non-linear

complementary slackness constraints). However, it can be linearized by introducing 0-1

variables. Indeed, q, y and x satisfy the constraint (f t−F t−Ltx)>q = 0 if and only if there

exists v1 ∈ {0, 1}|CtF | such that (see, e.g., Audet et al. (1997))

q ≤M qv1 and f − F ty −Ltx ≤M q(1− v1).

A similar equivalence exists between the other two set of complementary slackness constraints

in problem (B.5). The desired result follows.

B.3.3 Sequential Assignment Interdiction

We complement the example applications presented in Section 3.2 by modeling an interdic-

tion assignment problem. Consider the problem discussed in Zenklusen (2010). Here the

enemy is the follower, who at each time has to assign each agent in a set V to exactly one

job in a set W at minimum cost; assigning agent v ∈ V to job w ∈ W costs the follower

cvw. Define yvw as 1 if v is assigned to w, and zero otherwise. The follower, absent the

interventions of the leader, solves the following minimum-weighted matching (assignment)

problem on the bipartite graph G = (V ∪W,E), with E := V ×W :

y∗ ∈ arg min
y
{c>y : MV y ≤ 1,MWy ≤ 1,−MWy ≤ −1, y ∈ {0, 1}|E|}.

In this formulation MV is a |V | × |E| (undirected) vertex-edge adjacency matrix, where

Mv,(v,w) = 1 for all v ∈ V , and zero otherwise; similarly, MW is a |W | × |E| matrix where

Mw,(v,w) = 1 for all w ∈ W , and 1 is a vector of ones. Observe that the constraints enforce

MWy = 1, which means that each job must be taken by some agent. Also, note that while

158

the above program is binary, the binary restrictions can be relaxed as the constraint matrix

is totally unimodular, and hence it can be replaced by its linear programming relaxation.

The leader, on the other hand, has the ability to disable agents in V (the settings where

she can disable assignments in E or jobs in W follow similar lines). Disabling agent v during

each time period costs her bv and she has a total budget of B at each period. Thus, if we

let xv take the value 1 if the leader disables v and zero otherwise, she faces the constraints∑
v∈V bvxv ≤ B, and xv ∈ {0, 1} for all v ∈ V at each time period.

The above problem can be modeled within our framework as follows: the set of follower

activities is E, thus A = E, and the set of follower constraints CF consist of the restrictions

regarding the assignment at each vertex, so |CF | = |V | + 2|W |. It is readily seen that

F = [MV ;MW ;−MW], f = [1; 1;−1], and that the cost vector c is given by the assignment

costs, thus c = (ce : e ∈ E).

The leader resources are given by I = V and CL is a singleton consisting on the budgetary

constraint, hence H = b>, where b = (bv : v ∈ V) and h = B. Matrix L, on the other hand,

has the agent-disabling constraints. Thus, L = (I; 0), where I is a |V | × |V | identity matrix

and 0 is a 2|W | × |V | matrix of zeros.

Initially, the leader has knowledge about all the jobs W , but potentially ignores all

possible agents as well as some of the possible assignments and their corresponding cost.

For those assignments A0 ⊆ E she knows, she has interval estimates `e ≤ ce ≤ me, hence

U0 = {ĉ0 ∈ RA0
: `e ≤ ĉ0

e ≤ me ∀e ∈ A0}, thus G0 = [I;−I] and g0 = (m; `), with

m = (me : e ∈ A0) and ` = (`e : e ∈ A0).

Note that in this example the follower performs activity e = (u,w) ∈ A whenever

agent u is assigned to job w. The leader uses resource v if she disables agent v. The

set CF (v, w) consist of the three constraints
∑

(v,w′)∈E y(v,w′) ≤ 1,
∑

(v′,w)∈E y(v′,w) ≤ 1 and

−
∑

(v′,w)∈E y(v′,w) ≤ −1, while for any v ∈ I there is only one constraint in CL(v) which

corresponds to the budgetary constraint, thus CL(v) = CL for all v ∈ I. For any (v, w) ∈ A,

the set I(v, w) corresponds to that agent whose disabling stops assignment of agent v to job

w, i.e., I(v, w) = {v}.

In this example, standard feedback implies that at each time t ∈ T the leader always

observes the cost incurred by the follower at time t. If the follower makes an assignment

159

(v, w) ∈ A that the leader did not observe before, then the leader learns that the assignment

between agent v and job w is possible. Moreover, she learns CF (v, w), and as such, if agent

v was never used before by the follower, she also learns about the existence of agent v. Also,

the leader learns I(v, w) and Ldi for all d ∈ CF (a) and all i ∈ I(a), and as such, she learns

that by disabling agent v she can disable the assignment (v, w). Finally, she also learns that

disabling v costs her bv.

Finally, in this setting, as the follower responses are binary, then by assumption S2,

standard feedback is automatically Response–Perfect. On the other hand, in Value–Perfect

feedback, the leader, besides observing the assignments, also observes the costs incurred by

the follower when performing each of the assignments made at time t ∈ T .

160

BIBLIOGRAPHY

Ahmed, S. and Guan, Y. (2005), ‘The inverse optimal value problem’, Mathematical programming
102(1), 91–110.

Ahuja, R., Magnanti, T. and Orlin, J. (1993), Network flows: Theory, algorithms, and applications,
Prentice-Hall.

Audet, C., Hansen, P., Jaumard, B. and Savard, G. (1997), ‘Links between linear bilevel and mixed
0–1 programming problems’, Journal of Optimization Theory and Applications 93(2), 273–300.

Audibert, J.-Y. and Bubeck, S. (2009), Minimax policies for adversarial and stochastic bandits,
in S. Dasgupta and A. Klivans, eds, ‘Proceedings of the 21st Annual Conference on Learning
Theory (COLT)’, Omnipress, pp. 217–226.

Audibert, J.-Y., Bubeck, S. and Lugosi, G. (2013), ‘Regret in online combinatorial optimization’,
Mathematics of Operations Research 39(1), 31–45.

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002a), ‘Finite-time analysis of the multiarmed bandit
problem’, Machine Learning 47(2-3), 235–256.

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002b), ‘Finite-time analysis of the multiarmed bandit
problem’, Machine Learning 47(2-3), 235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. E. (1995), Gambling in a rigged casino:
The adversarial multi-armed bandit problem, in P. Ragbavan, ed., ‘Proceedings of 36th Annual
Symposium on Foundations of Computer Science’, IEEE, pp. 322–331.

Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. E. (2002), ‘The nonstochastic multiarmed
bandit problem’, SIAM Journal on Computing 32(1), 48–77.

Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. E. (2003), ‘The non-stochastic multi-armed
bandit problem’, SIAM Journal on Computing 32, 48–77.

Awerbuch, B. and Kleinberg, R. D. (2004a), Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches, in L. Babai, ed., ‘Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing’, ACM, pp. 45–53.

Awerbuch, B. and Kleinberg, R. D. (2004b), Adaptive routing with end-to-end feedback: distributed
learning and geometric approaches, in ‘Proceedings of the thirty-sixth annual ACM symposium
on Theory of computing’, STOC ’04, ACM, New York, NY, USA, pp. 45–53.

Ball, M., Golden, B. and Vohra, R. (1989), ‘Finding the most vital arcs in a network’, Operations
Research Letters 8(2), 73–76.

161

Bayrak, H. and Bailey, M. (2008), ‘Shortest path network interdiction with asymmetric informa-
tion’, Networks 52(3), 133–140.

Beheshti, B., Özaltın, O. Y., Zare, M. H. and Prokopyev, O. A. (2015), ‘Exact solution approach for
a class of nonlinear bilevel knapsack problems’, Journal of Global Optimization 61(2), 291–310.

Ben-Tal, A., El Ghaoui, L. and Nemirovski, A. (2009), Robust optimization, Princeton University
Press.

Bertsimas, D. and Tsitsiklis, J. N. (1997), Introduction to linear optimization, Vol. 6, Athena
Scientific Belmont, MA.

Birge, J. R. and Louveaux, F. (2011), Introduction to stochastic programming, Springer Science &
Business Media.

Borrero, J. S., Prokopyev, O. A. and Sauré, D. (2016), ‘Sequential shortest path interdiction with
incomplete information’, Decision Analysis 13(1), 68–98.

Bouhtou, M., Grigoriev, A., Hoesel, S. v., van der Kraaij, A. F., Spieksma, F. C. and Uetz, M.
(2007), ‘Pricing bridges to cross a river’, Naval Research Logistics 54(4), 411–420.

Brown, G., Carlyle, M., Diehl, D., Kline, J. and Wood, K. (2005), ‘A two-sided optimization for
theater ballistic missile defense’, Operations Research 53(5), 745–763.

Brown, G., Carlyle, M., Salmerón, J. and Wood, K. (2006), ‘Defending critical infrastructure’,
Interfaces 36(6), 530–544.

Bubeck, S. and Cesa-Bianchi, N. (2012), ‘Regret analysis of stochastic and nonstochastic multi-
armed bandit problems’, CoRR abs/1204.5721.
URL: http://arxiv.org/abs/1204.5721

Cao, D. and Chen, M. (2006), ‘Capacitated plant selection in a decentralized manufacturing environ-
ment: a bilevel optimization approach’, European Journal of Operational Research 169(1), 97–
110.

Caprara, A., Carvalho, M., Lodi, A. and Woeginger, G. J. (2013), A complexity and approx-
imability study of the bilevel knapsack problem, in ‘Integer programming and combinatorial
optimization’, Springer, pp. 98–109.

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire, R. E. and Warmuth, M. K.
(1997), ‘How to use expert advice’, Journal of the ACM 44(3), 427–485.

Cesa-Bianchi, N. and Lugosi, G. (2006a), Prediction, learning, and games, Cambridge University
Press.

Cesa-Bianchi, N. and Lugosi, G. (2006b), Prediction, Learning, and Games, Cambridge University
Press.

Cesa-Bianchi, N. and Lugosi, G. (2012), ‘Combinatorial bandits’, Journal of Computer and System
Sciences 78(5), 1404–1422.

Chern, M. and Lin, K. (1995), ‘Interdicting the activities of a linear programa parametric analysis’,
European Journal of Operational Research 86(3), 580–591.

162

Colson, B., Marcotte, P. and Savard, G. (2007a), ‘An overview of bilevel optimization’, Annals of
Operations Research 153(1), 235–256.

Colson, B., Marcotte, P. and Savard, G. (2007b), ‘An overview of bilevel optimization’, Annals of
Operations Research 153(1), 235–256.

Corley, H. and Chang, H. (1974), ‘Finding the n most vital nodes in a flow network’, Management
Science 21(3), 362–364.

Corley, H. and Sha, D. (1982), ‘Most vital links and nodes in weighted networks’, Operations
Research Letters 1(4), 157–160.

Cormican, K., Morton, D. and Wood, R. (1998), ‘Stochastic network interdiction’, Operations
Research 46(2), 184–197.

Dempe, S. (2002), Foundations of bilevel programming, Springer Science & Business Media.

DeNegre, S. (2011), Interdiction and discrete bilevel linear programming, PhD thesis, Lehigh Uni-
versity.

Diaz, J. B. and Metcalf, F. T. (1964), ‘Complementary inequalities i: Inequalities complemen-
tary to cauchy’s inequality for sums of real numbers’, Journal of Mathematical Analysis and
Applications 9(1), 59–74.

Erdös, P. and Rényi, A. (1959), ‘On random graphs, I’, Publicationes Mathematicae (Debrecen)
6, 290–297.

Freund, Y. and Schapire, R. E. (1997), ‘A decision-theoretic generalization of on-line learning and
an application to boosting’, Journal of Computer and System Sciences pp. 119–139.

Fulkerson, D. and Harding, G. (1977), ‘Maximizing the minimum source-sink path subject to a
budget constraint’, Mathematical Programming 13(1), 116–118.

Ghare, P., Montgomery, D. and Turner, W. (1971), ‘Optimal interdiction policy for a flow network’,
Naval Research Logistics Quarterly 18(1), 37–45.

Gift, P. D. (2010), Planning for an adaptive evader with application to drug interdiction operations,
Master’s thesis, Monterey, California. Naval Postgraduate School.

Granata, D., Steeger, G. and Rebennack, S. (2013), ‘Network interdiction via a critical disruption
path: Branch-and-price algorithms’, Computers & Operations Research 40(11), 2689–2702.

Gyorgy, A., Linder, T., Lugosi, G. and Ottucsak, G. (2007), ‘The on-line shortest path problem
under partial monitoring’, Journal of Machine Learning Research 8(10), 2369–2403.

Hausken, K. and Zhuang, J. (2011), ‘Governments’ and terrorists’ defense and attack in a t-period
game’, Decision Analysis 8(1), 46–70.

Hazan, E. (2015), ‘Introduction to online convex optimization (Draft)’, Foundations and Trends in
Optimization.
URL: http://ocobook.cs.princeton.edu/OCObook.pdf

Hazan, E., Agarwal, A. and Kale, S. (2007), ‘Logarithmic regret algorithms for online convex
optimization’, Machine Learning 69(2), 169–192.

163

Held, H., Hemmecke, R. and Woodruff, D. (2005), ‘A decomposition algorithm applied to planning
the interdiction of stochastic networks’, Naval Research Logistics 52(4), 321–328.

Held, H. and Woodruff, D. (2005), ‘Heuristics for multi-stage interdiction of stochastic networks’,
Journal of Heuristics 11(5-6), 483–500.

Hemmecke, R., Schultz, R. and Woodruff, D. L. (2003), Interdicting stochastic networks with binary
interdiction effort, in ‘Network Interdiction and Stochastic Integer Programming’, Springer,
pp. 69–84.

Israeli, E. and Wood, R. (2002), ‘Shortest-path network interdiction’, Networks 40(2), 97–111.

Janjarassuk, U. and Linderoth, J. (2008), ‘Reformulation and sampling to solve a stochastic network
interdiction problem’, Networks 52(3), 120–132.

Kalai, A. and Vempala, S. (2005), ‘Efficient algorithms for online decision problems’, Journal of
Computer and System Sciences 71(3), 291–307.

Kleinberg, R., Niculescu-Mizil, A. and Sharma, Y. (2010), ‘Regret bounds for sleeping experts and
bandits’, Machine Learning 80(2-3), 245–272.

Koolen, W. M., Warmuth, M. K. and Kivinen, J. (2010), Hedging structured concepts, in A. T.
Kalai and M. Mohri, eds, ‘Proceedings of the 23rd Annual Conference on Learning Theory
(COLT)’, Omnipress, pp. 93–105.

Labbé, M., Marcotte, P. and Savard, G. (1998), ‘A bilevel model of taxation and its application to
optimal highway pricing’, Management Science 44(12), 1608–1622.

Lai, T. L. and Robbins, H. (1985), ‘Asymptotically efficient adaptive allocation rules’, Advances in
Applied Mathematics 6(1), 4–22.

Lim, C. and Smith, J. C. (2007), ‘Algorithms for discrete and continuous multicommodity flow
network interdiction problems’, IIE Transactions 39(1), 15–26.

Lucotte, M. and Nguyen, S. (2013), Equilibrium and advanced transportation modelling, Springer
Science & Business Media.

Malaviya, A., Rainwater, C. and Sharkey, T. (2012), ‘Multi-period network interdiction problems
with applications to city-level drug enforcement’, IIE Transactions 44(5), 368–380.

Malik, K., Mittal, A. and Gupta, S. (1989), ‘The k-most vital arcs in the shortest path problem’,
Operations Research Letters 8(4), 223–227.

McLay, L., Rothschild, C. and Guikema, S. (2012), ‘Robust adversarial risk analysis: a level-k
approach’, Decision Analysis 9(1), 41–54.

McMasters, A. and Mustin, T. (1970), ‘Optimal interdiction of a supply network’, Naval Research
Logistics Quarterly 17(3), 261–268.

Migdalas, A., Pardalos, P. M. and Värbrand, P. (2013), Multilevel optimization: algorithms and
applications, Vol. 20, Springer Science & Business Media.

Modaresi, S., Saure, D. and Vielma, J. (2012), Learning in combinatorial optimization: What and
how to explore. Working paper.

164

Morton, D., Pan, F. and Saeger, K. (2007), ‘Models for nuclear smuggling interdiction’, IIE Trans-
actions 39(1), 3–14.

Neu, G. and Bartók, G. (2013), An efficient algorithm for learning with semi-bandit feedback, in
S. Jain, R. Munos, F. Stephan and T. Zeugmann, eds, ‘Algorithmic Learning Theory’, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 234–248.

Pan, F. and Morton, D. (2008), ‘Minimizing a stochastic maximum-reliability path’, Networks
52(3), 111–119.

Puterman, M. L. (2014), Markov decision processes: discrete stochastic dynamic programming,
John Wiley & Sons.

Ratliff, H., Sicilia, G. and Lubore, S. (1975), ‘Finding the n most vital links in flow networks’,
Management Science 21(5), 531–539.

Robbins, H. (1952), ‘Some aspects of the sequential design of experiments’, Bulletin of the American
Mathematical Society 58, 527–535.

Saharidis, G. K., Conejo, A. J. and Kozanidis, G. (2013), Exact solution methodologies for lin-
ear and (mixed) integer bilevel programming, in ‘Metaheuristics for Bi-level Optimization’,
Springer, pp. 221–245.

Salmeron, J., Wood, K. and Baldick, R. (2004), ‘Analysis of electric grid security under terrorist
threat’, IEEE Transactions on Power Systems 19(2), 905–912.

Sen, S. and Sherali, H. D. (2006), ‘Decomposition with branch-and-cut approaches for two-stage
stochastic mixed-integer programming’, Mathematical Programming 106(2), 203–223.

Shen, S. and Smith, J. C. (2012), ‘Polynomial-time algorithms for solving a class of critical node
problems on trees and series-parallel graphs’, Networks 60(2), 103–119.

Shen, S., Smith, J. C. and Goli, R. (2012a), ‘Exact interdiction models and algorithms for discon-
necting networks via node deletions’, Discrete Optimization 9(3), 172–188.

Shen, S., Smith, J. and Goli, R. (2012b), ‘Exact interdiction models and algorithms for disconnecting
networks via node deletions’, Discrete Optimization 9(3), 172–188.

Sherali, H. D., Soyster, A. L. and Murphy, F. H. (1983), ‘Stackelberg-Nash-Cournot equilibria:
characterizations and computations’, Operations Research 31(2), 253–276.

Smith, J. C. and Lim, C. (2008), Algorithms for network interdiction and fortification games, in
‘Pareto optimality, game theory and equilibria’, Springer, pp. 609–644.

Van Hoesel, S. (2008), ‘An overview of Stackelberg pricing in networks’, European Journal of
Operational Research 189(3), 1393–1402.

Veremyev, A., Boginski, V. and Pasiliao, E. L. (2014), ‘Exact identification of critical nodes in
sparse networks via new compact formulations’, Optimization Letters 8(4), 1245–1259.

Veremyev, A., Prokopyev, O. A. and Pasiliao, E. L. (2014), ‘An integer programming framework for
critical elements detection in graphs’, Journal of Combinatorial Optimization 28(1), 233–273.

Veremyev, A., Prokopyev, O. A. and Pasiliao, E. L. (2015), ‘Critical nodes for distance-based
connectivity and related problems in graphs’, Networks 66(3), 170–195.

165

Walteros, J. L. and Pardalos, P. M. (2012), Selected topics in critical element detection, in N. J.
Daras, ed., ‘Applications of Mathematics and Informatics in Military Science’, Vol. 71 of
Springer Optimization and Its Applications, Springer New York, pp. 9–26.

Washburn, A. and Wood, R. (1995), ‘Two-person zero-sum games for network interdiction’, Oper-
ations Research 43(2), 243–251.

Wollmer, R. (1964), ‘Removing arcs from a network’, Operations Research 12(6), 934–940.

Wolsey, L. A. and Nemhauser, G. L. (2014), Integer and combinatorial optimization, John Wiley
& Sons.

Wood, R. K. (1993), ‘Deterministic network interdiction’, Mathematical and Computer Modelling
17(2), 1–18.

Wood, R. K. (2011), ‘Bilevel network interdiction models: Formulations and solutions’, Wiley
Encyclopedia of Operations Research and Management Science .

Xu, J. and Zhuang, J. (2014), ‘Modeling costly learning and counter-learning in a defender-attacker
game with private defender information’, Annals of Operations Research . Forthcoming.

Zenklusen, R. (2010), ‘Matching interdiction’, Discrete Applied Mathematics 158(15), 1676–1690.

Zhuang, J., Bier, V. M. and Alagoz, O. (2010), ‘Modeling secrecy and deception in a multiple-period
attacker–defender signaling game’, European Journal of Operational Research 203(2), 409–418.

Zinkevich, M. (2003), Online convex programming and generalized infinitesimal gradient ascent,
in T. Fawcett and N. Mishra, eds, ‘Proceedings of the Twentieth International Conference on
Machine Learning’, AAAI, pp. 928–936.

166

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Brief summary of the key notation used in Chapter 2.
	2. Running times (in seconds) to solve LB. The entry ``-'' implies that an optimal solution was not found within one hour.
	3. Average cumulative regret (102) and MAD (in parenthesis) for k=6.
	4. Average time-stability and MAD (in parenthesis) for k=6.
	5. Average running times (in seconds) per replication and MAD (in parenthesis) for computing oracle using Algorithm 2 (regret performance metric), which correspond to the results reported in Table 3. Average times for computing are below 5 seconds across all configurations.
	6. Average running times (in seconds) per replication and MAD (in parenthesis) for computing oracle using Algorithm 3 (time-stability performance metric), which correspond to the results reported in Table 4. Values of time-stability for are computed instantly given the regret.
	7. 1Average regret (102) and MAD (in parenthesis) for k=6. Among the entries denoting regret, the entry in bold is the best value, and the other entries indicate the difference with respect to the best value.
	8. 1Average time-stability and MAD (in parenthesis) for k=6. Among entries denoting time-stability, the entry in bold is the best value, and the other entries indicate the difference with respect to the best value. The entries in italic and ``-'' mean that the policy did not attain time-stability for some instances.
	9. Average regret (103) and time-stability, and MAD (in parenthesis) for k=15. The entries in bold denote the best value.
	10. Time-stability mean and MAD for the hypercube uncertainty model and Value Perfect feedback.
	(a). Value–Perfect: time-stability mean
	(b). Value–Perfect: time-stability MAD
	11. Time-stability mean and MAD for the hypercube uncertainty model and Response Perfect feedback.
	(a). Response–Perfect: time-stability mean
	(b). Response–Perfect: time-stability MAD
	12. Time-stability mean and MAD for the general uncertainty model and Value Perfect feedback.
	(a). Value–Perfect: time-stability mean
	(b). Value–Perfect: time-stability MAD
	13. Time-stability mean and MAD for the general uncertainty model and Response Perfect feedback.
	(a). Response–Perfect: time-stability mean
	(b). Response–Perfect: time-stability MAD
	14. Mean for the time-stability () and regret (RT) for a policy when k=1.
	15. Mean for the time-stability () and regret (RT) for a policy when k=2.
	16. Mean for the time-stability () and regret (RT) for a policy when k=3.
	17. MAD for the time-stability () and regret (RT) for a policy when k=1.
	18. MAD for the time-stability () and regret (RT) for a policy when k=2.
	19. MAD for the time-stability () and regret (RT) for a policy when k=3.
	20. Number of replications for which optimality is guaranteed, k=1
	21. Number of replications for which optimality is guaranteed, k=2
	22. Number of replications for which optimality is guaranteed, k=3

	LIST OF FIGURES
	1. Networks used in Remark 1.
	(a). Network G
	(b). Network G'
	(c). What 1 and 2 observe for both G and G' at time t=1
	(d). What 1 and 2 observe for both G and G' at time t=2
	2. Networks used in Remark 2.
	(a). Network G
	(b). Network G[A0]
	3. Networks used in Remark 3.
	(a). Network G
	(b). Network G[A']
	4. Networks used in Remark 4.
	(a). Network G
	(b). Network G[At]
	5. Networks used in the proof of Lemma 3.
	(a). Network G
	(b). Network G'
	(c). Initial information C0
	6. Networks used in Remark 5.
	(a). Initial information C0
	(b). Network G
	7. Network G used for the proof of Proposition 1, qku=(u-1)(k+2)+1.
	8. Network used in Remark 7.
	9. Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD as pc increases. The cost distribution is right-skewed and pa=1/2.
	10. Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD as pc increases. The cost distribution is symmetric and pa=1/2.
	11. Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD as the cost intervals widen for the case of pa=2/3 and pc=1/3. Given the interval-width multiplier m, the lower and upper bounds of the arc costs in A"0362A0 are la=ca-mxa and ua=ca+mya, respectively.
	12. Example of an instance when wt,>wRt,*. The labeling of the arcs is given by [a,ua],ca,da.
	13. Example of an instance when wt,<wRt,*. The labeling of the arcs is given by [a,ua],ca,da.
	14. Example of an instance when w*<wRt,*. The labeling of the arcs is given by [a,ua],ca,da.
	15. Example of an instance when wt,=wRt,* does not imply that wt,=w*, and where wt,R<w*. The labeling of the arcs is given by [a,ua],ca,da.
	16. Example of an instance when zt,=zRt,* does not imply that wt,=w*. The labeling of the arcs is given by [a,ua],ca,da.
	17. A layered network with two layers and four nodes per layer. It has |N|=10 nodes and |A|=24 directed arcs.
	18. Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD as pc increases. The cost distribution is left-skewed and pa=1/2.
	19. Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD as the cost intervals widen for the case of pa=2/3 and pc=0. Given the interval-width multiplier m, the lower and upper bounds of the arc cost in A"0362A0 are la=ca-mxa and ua=ca+mya, respectively.
	20. Behavior of the average time-stability, average total regret, time-stability MAD and total regret MAD as the cost intervals widen for the case of pa=2/3 and pc=2/3. Given the interval-width multiplier m, the lower and upper bounds of the arc costs in A"0362A0 are la=ca-mxa and ua=ca+mya, respectively.

	PREFACE
	1.0 INTRODUCTION
	2.0 SEQUENTIAL SHORTEST PATH INTERDICTION WITH INCOMPLETE INFORMATION AND LEARNING
	2.1 Introduction
	2.2 Problem Formulation
	2.3 Efficient Interdiction Policies
	2.3.1 Efficient Policies When A"0362A0=
	2.3.2 Efficient Policies When A"0362A0=

	2.4 Lower Bounds for Policy Performance
	2.4.1 Semi-oracle Policies
	2.4.2 Lower Bound for Regret
	2.4.3 Lower Bound for Time-Stability

	2.5 Computational Study
	2.5.1 Test Instances, Benchmark Policies and Implementation Details
	2.5.2 Computation of the Oracle-based Policy
	2.5.3 Comparison to Benchmark Policies
	2.5.4 Policy Performance: Sensitivity with Respect to |A"0365A0|
	2.5.5 Policy Performance: Sensitivity with Respect to Quality of Bounds in A"0362A0

	2.6 Concluding Remarks

	3.0 SEQUENTIAL MAX-MIN BILEVEL LINEAR PROGRAMMING WITH INCOMPLETE INFORMATION AND LEARNING
	3.1 Introduction
	3.2 Basic Model: Cost Uncertainty
	3.2.1 Feedback
	3.2.2 Optimality Criteria

	3.3 Greedy and Robust Policies
	3.3.1 General Results for Standard Feedback
	3.3.2 Policies in Under Value–Perfect Feedback
	3.3.3 Policies in Under Response–Perfect Feedback

	3.4 Model for Matrix Uncertainty
	3.4.1 Assumptions and Feedback in the Matrix Model
	3.4.2 Extended Greedy and Robust Policies
	3.4.2.1 Policies in E under Standard and Value–Perfect Feedback
	3.4.2.2 Policies in E under Response–Perfect Feedback

	3.5 Semi-Oracle Lower Bounds
	3.6 Computational Study
	3.7 Concluding Remarks

	4.0 SEQUENTIAL ASYMMETRIC BILEVEL LINEAR PROGRAM- MING WITH INCOMPLETE INFORMATION AND LEARNING
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Greedy and Robust Policies
	4.4 Greedy and Best–Case Policies
	4.4.1 Definition and General Convergence Results
	4.4.2 The Basic Uncertainty Set Update
	4.4.3 The Convex Uncertainty Set Update
	4.4.4 The Non-Convex Uncertainty Set Update

	4.5 Computational Study
	4.6 Concluding Remarks

	5.0 CONCLUSIONS
	APPENDIX A. SUPPLEMENT FOR CHAPTER 2
	 A.1 Basic properties of k-most vital arcs
	 A.2 Additional proofs
	 A.3 Additional graphs

	APPENDIX B. SUPPLEMENT FOR CHAPTER 3
	 B.1 Proofs of the results for the basic cost model
	 B.2 Proofs of the results for the matrix model
	 B.3 Additional Results and Complementary Material
	 B.3.1 Semi-Oracle Algorithm
	 B.3.2 Numerical Computation of Policies in
	 B.3.3 Sequential Assignment Interdiction

	BIBLIOGRAPHY

