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STRUCTURED ABSTRACT 

Background/Context: 

A large number of educational resources are now made available on the Web to 
support both regular classroom learning and online learning.  The abundance of 
available content has produced at least two problems: how to help students find the 
most appropriate resources and how to engage them into using these resources and 
benefit from them. Personalized and social learning have been suggested as potential 
ways to address these problems. Our work attempts to integrate these directions of 
research by combining ideas of adaptive navigation support and open student modeling 
with the ideas of social comparison and social visualization. We call our approach 
Open Social Student Modeling (OSSM). 

Objective/Research Questions: 

In this paper, we are trying to achieve two goals. First, we review a sequence of our 
earlier projects focused on Open Social Student Modeling for one kind of learning 
content and formulate several key design principles that contribute to the success of 
OSSM. Second, we present our exploration of OSSM in a more challenging context of 
modeling student progress for two kinds of learning content in parallel. This part aims to 
answer the following research questions: How do we design OSSM interfaces to 
support many kinds of learning content in parallel? Will current identified design 
principles (key features) confirm the power of the  learning community through 
OSSM with multiple learning resource collections? Will the OSSM visualization 
provide successful personalized guidance within a richer collection of educational 
resources?  

Research Design: 

Four classroom studies were designed to assess the value of different designs options for 
OSSM visualization for one and multiple kinds of learning content in the context of 
programming language learning. The authors examine comparative success of different 
design options to distill successful design patterns and other important lessons for the 
future developers of OSSM for personalized & social e-learning. 

Findings/Results: 

The results confirmed that the motivational impact of personalized social guidance 
provided by OSSM system in the target context. The interface encouraged students to 
explore more topics and motivated them to do some work ahead of the course schedule. 
Both strong and weak students worked with the appropriate levels of questions for their 



 

readiness, which yielded a consistent performance across different levels of complex 
problems. Additionally, providing more realistic content collection on the navigation 
supported open social student modeling visualizations resulted in uniform performance 
for the group. 

Conclusions/Recommendation: 

A sequence of studies of several Open Social Student Modeling interfaces confirmed that a 
combination of adaptive navigational support, open student modeling, and social 
visualization in the form of OSSM interface, could reinforce the navigational and 

motivational values of these approaches. In several contexts, OSSM interface demonstrated 
its ability to offer effective guidance helping students to locate the most relevant content at 

the right time while increasing student motivation to work with diverse learning content. 



 

Executive Summary 

Introduction 

The executive summary is organized into 4 sections: 1) the vision of the project, 2) 
description of the learning context, 3) educational technology – open social student 
modeling, 4) significance in education and lessons learned about learning technology 
design for personal and social e-learning. 

The Vision of the Project 

A large number of educational resources are now available on the Web to support both 
regular classroom learning and online learning. This abundance of available content 
produces at least two problems: how to help students find the most appropriate resources 
and how to engage them in using these resources and benefiting from them. Personalized 
learning and social learning technologies, among others, have been explored to address 
these problems. Personalized learning focuses mostly on guiding learners to good 
learning resources to help every learner find the most relevant and useful content given a 
learner’s current state of knowledge and interests. Social learning, among other positive 
impacts on the educational process, is known for its ability to increase motivation of 
students to learn. While each of these technologies has been explored in many research 
projects, very few attempts have been made to use these technologies in combination. 

We believe the integration of personalized and social learning technologies is a very 
promising research direction. These technologies have complementary strengths and 
could potentially reinforce each other when applied together. This paper reports the 
results of our exploration of one specific educational technology at the crossroads of 
personalized and social learning: Open Social Student Modeling. 

Description of the Learning Context 

In programming language learning, one usually learns by performing multiple kinds of 
activities and interacting with multiple types of learning content, i.e., reading textbooks, 
exploring program examples, writing programs, watching video lectures etc. In this 
work, we examined the value of open social student modeling as an interface to access 
one and two types of learning content: problem-solving quizzes and annotated examples. 
The content is offered online as non-compulsory learning resources for students to study, 
practice, and self assess their knowledge.  

Educational Technology - Open Social Student Modeling  

Open Social Student Modeling (OSSM) integrates adaptive navigation support and open 
student modeling, two prominent educational technologies in the field of personalized 
learning and social learning. OSSM can be considered a social extension of open student 
modeling, a technology to externalize student models that provides adaptation effects in 
an adaptive educational system. In this work, we review several iterations of OSSM 
design and classroom studies for single-content access, formulate key design principles 
for a successful OSSM educational system, and confirm these principles in a more 
complex OSSM interface for two types of learning content. The list of principles 
includes: 

• Content access: Direct access to the learning content through Open Social 
Student Modeling interfaces is important for leveraging the value of OSSM.  While 
classic open models offer no links to access content, our studies shows examining own 
or peer models students frequently discover lack of knowledge on a specific topic and 
want to act immediately by working with related content. To support this workflow, 



 

access to content should be provided from both personal and peer knowledge 
visualization. 

• Sequence: OSSM should leverage the natural sequence of course topics. A 
sequential content organization aligned with course topics, provides efficient learning 
guidance and allows students to interpret their progress in the course context 

• Identity: Comparing student feedback in QuizMap with its fragmented 
presentation of personal knowledge and Progressor with a clear concentrated 
representation of personal knowledge, we found the importance of identity in knowledge 
visualization. A successful visualization of personal knowledge should capture all 
information related to the target student and display it in a clear form. It allows students 
to identify themselves with the OSSM and easily compare their state of knowledge 
with each other. 

• Peer comparison: Enabling peer-level comparisons of students’ learning 
progress is important. It increases student motivation to work and achieve better 
performance. Peer comparison implies exposing student models not only to the target 
learner, but also to peers and provide an interface for its exploration. Our findings reveal 
that students view the openness of the personal model to peers positively. 

• Guidance: The organization of OSSM visualization should support personal and 
social guidance, i.e., helping students to identify most critical lack of knowledge by 
comparing their progress with class or peers and most relevant direction to expand 
knowledge given the current state of the course by following the crowd.  

Significance in Education and Lessons Learned 

• This work reviews and reports the value of OSSM, an approach that combines 
personalized and social learning technologies. It expands earlier work on OSSM by 
comparing several OSSM designs for single type of learning content and examining it in a 
more challenging context with two kinds of content. Altogether, the presented research 
confirms the navigational and motivational values of OSSM. Our results demonstrate the 
OSSM increases student motivation to work with practice learning content and increases 
problem-solving success in the domain of programming.  

• Based on the sequence of OSSM studies, this work formulates key design 
principles for successful application of open social student modeling in the context of 
programming courses.  

• This reported work suggests and explores a scalable approach to offer OSSM for 
realistic educational context where students are expected to work with several types of 
learning content. 

• This reported work suggests and explores a scalable approach to offer OSSM for 
realistic educational context where students are expected to work with several types of 
learning content. 

 

 

 

 



 

 

Guiding and motivating students through open social student 
modeling: lessons learned 
1. Introduction 

A large number of educational resources are now available on the Web to support both 
regular classroom learning and online learning. This abundance of available content 
produces at least two problems: how to help students find the most appropriate resources 
and how to engage them in using these resources and benefiting from them. Personalized 
learning and social learning technologies, among others, have been explored to address 
these problems. Personalized learning focuses mostly on guiding learners to good 
learning resources to help every learner find the most relevant and useful content given a 
learner’s current state of knowledge and interests  (Kay, 2008).  Social learning, among 
other positive impacts on the educational process, is known for its ability to increase 
motivation of students to learn (Barolli, 2006; Méndez, 2006; Vassileva & Sun, 2008). 
While each of these technologies has been explored in many research   projects, very few 
attempts have been made to use these technologies in combination. We believe, 
however, that the integration of personalized and social learning technologies is a very 
promising research direction. These technologies have complementary strengths and 
could potentially reinforce each other when applied together. This paper reports the 
results of our exploration of one specific technology at the crossroads of personalized 
and social learning: Open Social Student Modeling. 

Open Social Student Modeling (OSSM) integrates adaptive navigation support 
(Brusilovsky, 2007) and open student modeling (Bull & Kay, 2007), two prominent 
technologies in the field of personalized learning with social visualization, a popular 
approach in the field of social learning (Vassileva, 2008). OSSM can be considered a 
social extension of open student modeling. Open student modeling has been suggested as 
a way to externalize student models, the key component of any personalized learning 
systems. While in a traditional personalized learning system this model is usually hidden 
from the student and only used by the personalization engine to provide adaptation 
effects (Figure 1 left), systems with an open student model expose this model to the 
learner and provide an interface for its exploration and possible editing (Figure 1 right). 
Open student modeling is known for a number of positive effects. It increases the 
transparency of personalization, helps raise the students’ awareness of their learning 
performances, and supports meta-cognitive processes (Bull & Kay, 2013). In 
combination with adaptive navigation support, it can also efficiently guide students to 
the appropriate content QuizGuide (Brusilovsky, et al., 2004). In this context, the idea of 
Open Social Student Modeling is simply to make the content of individual and student 
models accessible not only to the target student herself, but to the a broader group of 
students, for example, students in the same class. The most natural way to do it is 
through social visualization that can visually present the content of multiple student 
models to the target student in a form that enables comparison of her own knowledge to 
the knowledge of her peers and the class as a whole. 

We have explored the idea of OSSM in a sequence of studies. While the OSSM idea 
itself is relatively straightforward, it took us several attempts to “do it right” (i.e., 
implement it in a form that delivers several benefits) in a simple context with one type of 
learning content. We went through a sequence of incrementally more powerful designs 
that also allowed us to learn some important lessons about OSSM design. Armed with 
the lessons learned, we also approached a more challenging context and implemented 
OSSM visualization for two kinds of learning content in parallel. 



 

 
 

This paper presents an account of our work on OSSM over the last several years. We 
start with a literature review of open user modeling, social visualization, and underlying 
theories such as self-regulated learning and social comparison. Following that, we briefly 
summarize a sequence of our studies with OSSM in one-content-type context. These 
studies have been published before; we review them here to illustrate the problems of 
OSSM design and to present lessons learned from these studies. Next, we present in 
greater detail our more recent study that evaluated the OSSM interface for two types of 
content. At the end of the paper we summarize the results and discuss the limitations and 
consider future work. 

 

 
 

Figure 1.  Traditional approach (left) vs. Integration of students’ models into the 
interface (right) 

 

2. Background 

2.1 Open Student Modeling 

An open student (learner) model is a special kind of student model that allows the 
student to access and possibly modify the model content. In traditional personalized 
learning systems, student models are hidden “under the hood” and used for the system’s 
internal needs (i.e., to make the education process personalized) (Figure 1 left). The 
proponents of open student models (Figure 1 right) argue that the ability to view and 
modify their models could be beneficial for the students for a number of reasons. A 
typical open learner model displays the modeled state of student knowledge, although 
the examples of models displaying interests (Ahn, et al., 2007) or learning styles 
(Triantafillou, et al., 2004) are also known. Open knowledge models can be presented in 
simple forms such as a skill meter, a part-shaded bar showing learner progress as a 
subset of expert knowledge (Bull & Kay, 2007; Weber & Brusilovsky, 2001); the 
probability that a learner knows a concept (Corbett, 1995); or a user's knowledge level 
compared to the combined knowledge of other groups of users (Linton, et al., 2000). 
Skill meters have been extended to show progress as a subset of material covered which 
is, in turn, a subset of expert knowledge (Mitrovic & Martin, 2007); or a further 
extension also allowing the existence of misconceptions and size of topic to be included 
in the skill meter  (Bull & Kay, 2007). 



 

There are two main streams of work on open student models. One stream focuses on 
the interfaces visualizing the model to support students’ self-reflection and planning; the 
other one encourages students to participate in the modeling process, such as engaging 
students through the negotiation or collaboration on construction of the model.  

Visual representations of the student model vary from displaying high-level 
summaries (such as skill meters) to complex concept maps or Bayesian networks. 
Corbett et al. (1995) described the ACT Programming Tutor interface that provides the 
learner with a skill meter showing the list of learning goals and the progress the learner 
has already made with respect to the goals. Mabbott and Bull (2004) elaborated on an 
interface providing students with four views over their learner models. These views 
visualize different aspects of the underlying domain knowledge model, namely the 
hierarchical structure of topics, lecture structure, semantic relationships among the 
topics, and the recommended sequence for learning the topics. The STyLE-OLM 
interface proposed by Dimitrova (2003) allows students to browse and navigate through 
their learner models using the visual notation of concept graphs. 

Dimitrova et al. (2001) explored interactive open learner modeling by engaging 
learners to negotiate with the system during the modeling process. Chen et al. (2007) 
investigated active open learner models in order to motivate learners to improve their 
academic performance. Both individual and group open learner models were studied 
and demonstrated an increase of reflection and helpful interactions among teammates. 
Bull & Kay (2007) described a framework to apply open user models in adaptive 
learning environments and provided many in-depth examples. Studies showed that 
students have a range of preferences for presentations on viewing their own knowledge 
in the open student modeling systems. Students highly value the options of having 
multiple views and being able to select one, which they are the most comfortable with. 
Such results are promising for potentially increasing the quality of reflection on their 
own knowledge (Mabbott & Bull, 2004). A range of benefits have been reported on 
opening the student models to the learners, such as increasing the learner’s awareness of 
the developing knowledge difficulties and the learning process, and students’ 
engagement, motivation, and knowledge reflection (Bull, 2004;  Mitrovic & Britland, 
2007; Zapata-Rivera & Greer, 2000) . In our own work on the QuizGuide system 
(Hsiao, et al., 2010) we embedded open learning models into adaptive link annotation 
and demonstrated that this arrangement can remarkably increase student motivation to 
work with non-mandatory educational content.  

2.2 Social Visualization and Social Navigation Support in E-learning 

Within a broader area of social learning, social navigation support and social 
visualizations are most directly related to the OSSM approach presented in the paper. 
Social navigation support captures a known social phenomenon by following the 
“footprints” of other people (Brusilovsky, et al., 2004; Dieberger, 1997, 2000; 
Wexelblat, 1999). The educational values have been confirmed in several studies 
(Brusilovsky, et al., 2009; Farzan & Brusilovsky, 2008; Kurhila, et al., 2006). Social 
visualization aims to represent or organize multiple students’ data in an informative way, 
for example, by producing visual representations of student groups. Group visualizations 
have been used to support the collaboration between learners among the same group, and 
to foster competition in a group of learners (Vassileva & Sun, 2007). Vassileva and Sun 
(2007) investigated community visualization in online communities. They summarized 
that social visualization allows peer-recognition and provides students the opportunity to 
build trust in others and in the group. CourseVis (Mazza & Dimitrova, 2007) was one of 
the pioneer systems providing graphical visualization of multiple groups of users to 
teachers and learners. It helped instructors to identify some common problems in 
distance learning. 



 

In our own work, we try to move beyond visual representations of learning analytics 
by moving from action visualization to knowledge visualization. We combined cognitive 
aspects of open student modeling with social and visual aspects of social visualization 
and social navigation support by allowing students to explore and interact each other’s 
models as well as a cumulative model of the class. This idea was first explored by Bull 
& Britland (2007), who used OLMlets to research the problem of facilitating group 
collaboration and competition. Their results showed that optionally releasing the models 
to their peers increases the discussion among students and encourages them to start 
working sooner. The Open Social Student Modeling approach presented in this paper 
moves these ideas further. A series of Open Social Student Modeling designs presented 
in the paper demonstrates several benefits that could be   obtained by merging open 
student modeling, social visualization, and social navigation support. 

2.3 Theoretical Background: Self-Regulated Learning and Social Comparison 

Theory 

The theoretical background for our work on open student modeling and social 
visualization is grounded in research on self-regulated learning and social comparison 
theory. 

Research in self-regulated learning examines students’ metacognitive strategies for 
planning, monitoring, and modifying their management and control of their effort on 
classroom academic tasks (Pintrich & De Groot, 1990). Self-regulated learning involves 
self-monitoring to optimally interpret feedback from their academic learning 
(Zimmerman, 1990). Azevedo, et al. (2004) investigated how self-regulated learning 
helped students acquire conceptual understanding. The results showed that students who 
gained higher conceptual understandings  (AKA: high jumpers) tended to be good at 
regulating their learning by using effective strategies, planning their learning by creating 
sub-goals and activating prior knowledge, monitoring their emerging understanding, and 
planning their time and effort. On the other hand, students who gained lower conceptual 
understandings (AKA: low jumpers) tended to handle task difficulties and demands by 
engaging mainly in help-seeking behavior, and did not spend much time monitoring their 
learning. Our work aims to leverage awareness, motivation, and content organization 
through social visualizations in the hopes of promoting students’ self-regulated learning 
behavior. 

Research in social comparison (Festinger, 1954) has demonstrated that people often 
determine appropriate behavior for themselves by examining the behavior of others, 
especially similar others (Buunk & Gibbons, 2007). Consequently, it has been shown 
that individuals tend to behave similarly to their friends and peers (Cialdini, et al., 1999). 
Researchers and designers of online systems have used the insights from social 
comparison research in the study of online social behavior.  In the educational domain, 
social comparison processes have been studied extensively (Darnon, et al., 2010; Kaplan 
& Maehr, 2007) and the positive impact on student performance has been examined in 
several papers (Light, et al., 2000; Huguet, et al., 2001). In online education 
environments, social comparisons were explored more recently (Vassileva, 2008), but no 
research to date has explored how social comparison-based adaptive systems can 
influence learning. Furthermore, while ample evidence points to the role of key personal 
attributes such as personality and culture in learning, little is known about how they 
impact learning in the context of adaptive learning systems or in environments in which 
social comparison is embedded. A synthesis review of many social comparison studies 
concluded that the upward comparisons in the classroom often lead to better 
performances (Dijkstra, et al., 2008). Over fifty years of social comparison theory 
literature, most of the research was done through qualitative studies using interviews, 



 

questionnaires and observation. In our research, we develop a set of quantitative 
measures for applying social comparison theory in the target context. 

 

3. Open Social Student Modeling: Studies with One Kind of 
Learning Content 

Our work on Open Social Student Modeling was motivated by the success of our two 
earlier projects, QuizGuide (Brusilovsky, et al., 2004) and Knowledge Sea II 
(Brusilovsky, et al., 2004). The QuizGuide system applied open student modeling 
adaptive navigation support technology to provide personalized access to a collection of 
programming problems. The Knowledge Sea II system uses social navigation support 
and map-based visualization to help students navigate to most relevant weekly readings. 
QuizGuide demonstrated excellent ability to improve student performance and engage 
students to work with non-mandatory content. Yet its knowledge-based guidance was 
relatively hard to build; it required considerable knowledge engineering efforts to create 
a prerequisite-based network of topics. On the other hand, Knowledge Sea II used no 
knowledge engineering and its power to guide students to relevant reading was based on 
“social wisdom” – processing traces of student work. OSSM was born as an attempt to 
replace QuizGuide’s original guidance approach based on labor- intensive knowledge 
engineering with self-organized social navigation that worked so well in Knowledge Sea 
II. We expected that by showing the state of the target student knowledge model, topic 
by topic, alongside student models of her peers will help the student to avoid topics that 
might be too easy or too hard to explore and focus on the most appropriate subset of 
programming problems. We also hoped that the engaging power of the open student 
model and the social comparisons provided by OSSM would work together in 
motivating students to do more work with non- mandatory learning content. 

As it appears, the main challenge of our work on OSSM was to find the right 
visualization approach that could present students’ own knowledge alongside peer 
knowledge in a form that promotes guidance and comparison. We had to go through 
three design iterations to build an OSSM interface able fulfill this promise. For each 
design iteration, we conducted at least one semester-long classroom study to evaluate the 
impact of OSSM on system usage and learning. Since the original idea of OSSM was to 
replace QuizGuide’s knowledge-based guidance, all interfaces were designed to provide 
access to the same set of programming problems. As a result, we were able to use a Java 
version of QuizGuide (JavaGuide) as a baseline. The analysis of students’ logs of their 
subjective opinions provided through questionnaires helped us to identify problems, 
learn important lessons, and informed the next design iteration. The following 
subsections describe the design rationales, setup and findings of three progressively 
improved OSSM interfaces. 

 

3.1 Exploring Open Social Student Modeling with QuizMap: adaptive navigation 
support of parameterized questions with TreeMap 

Our first attempt to design the OSSM interface was relatively close to the cell-based 
social navigation implementation in Knowledge Sea II. It used a space-filling TreeMap 
visualization approach (Shneiderman, 2004) and was promptly called QuizMap. The 
TreeMap approach was selected for its ability to efficiently represent hierarchical 
information and the map was built to represent three levels of hierarchy: (1) domain 
topics, (2) problems within each topic, and (3) the performance of individual students for 
each problem. Individual student performance for each problem was shown on the 
bottom level of the Treemap as a rectangle. The size of each rectangle (tile) represented 
the amount of work done by a specific student while the color indicated the amount of 



 

knowledge gained (increased with each successful answer). A student’s own 
performance and the peer student performance were presented in contrasting colors 
(orange and blue accordingly). The exact values of problem attempts and knowledge 
gain were available as mouseovers by hovering over each tile. Based on the contrast of 
sizes and colors, one can estimate his/her current knowledge, relative standing in the 
group, and relative amount of effort to catch up to more capable peers. The map also 
allowed students to distinguish between new and hard topics (little class work, little 
success) and older, relatively learned topics (a lot of work and success). The QuizMap 
interface is presented in Figure 2. Note that to support exploration of new topic that had 
very little activity and small cells (upper right corner) it was possible to zoom in on a 
specific topic or question. 

 
Figure 2.  QuizMap interface. 

An important design decision inherited from QuizGuide was the use of the map not 
just to visualize knowledge, but also to provide direct access to learning content. 
Following a mouse click in the area of a specific question, QuizMap presented a pop-up 
window to display the question.  The questions were provided by the QuizJET system  
(Hsiao, et al., 2010) and were the same as in the earlier QuizGuide. Each question asks 
the student to predict the results of execution of a specific Java program (i.e., mentally 
execute the program and enter the final value of some variable of the text to be printed 
by the program.) All questions are parameterized, i.e., include a random parameter, 
which the system instantiates when the question is delivered to a student. As a result, the 
student can attempt to answer the same question multiple times with different values of 
the parameter, which helps to achieve the mastery level. The implementation and 
functionalities of parameterized self-assessment quizzes were described in detail in 
(Hsiao, et al., 2010). 

Figure 3 left & right show two different zoom-in scenarios of students’ views. Figure 
3-left demonstrated that student A had consistent performance in terms of attempts and 
success rate across all questions  (jObject1~jObject5) in topic Object. Each cell grid size 
and color density shade is relatively similar. On the other hand, Figure 3-right showed 
that student B focused on working on certain questions at the expense of others. 
Considerable efforts were spent on jObject4 question, which reached relatively high 
attempts. She also had a considerable amount of work done in questions jObject2 and 
jObject3 but achieved a lower success rate (lighter orange color). With QuizMap, 
students were expected to identify the strengths and weaknesses of themselves and their 
peers and estimate their readiness for each available question. 



 

    

Figure 3. Student A (left); Student B (right). 

We conducted a semester-long classroom study with QuizMap. Using log data of 
students’ interactions with OSSM, we compared the usage of self-assessment questions 
in a non-adaptive course portal without social visualization, QuizGuide, and QuizMap  
(Table- 1). To our surprise, we found that students who worked with QuizMap made 
fewer attempts and explored fewer topics than in our earlier systems, which indicated a 
decrease of engaging power. Yet they achieved a much higher success rate that indicated 
the impact of the social guidance. We also discovered how the social guidance 
mechanism does its work: stronger students began to work on problems in QuizMap and 
left darker and larger tile visual traces among topics for less capable students to follow 
(Brusilovsky, et al., 2011). However, the decreased engagement was a clear sign of 
problems and the students’ feedback helped us to reveal some of these problems. While 
students expressed high satisfaction toward visualizing personal and peer performances 
as well as direct access to content, they felt frustrated with the crowded and cluttered 
interface. Indeed, as shown on Figure 2 upper right corner, questions from later topics 
were less likely to be attempted, making the tile sizes very small and thus the whole 
corner cluttered. Students were also confused by the lack of clear topic progression 
(TreeMap allocates topics by side, not in order) and the problems with comparing 
personal and peer knowledge (orange and blue colors were hard to compare). These 
results motivated us to the next study. 

 

3.2 Enhancing content organization via Parallel IntrospectiveViews: visualizing peer 
models through the OSSM interface 

 

Following QuizMap’s experience, we realized that we needed a different 
representation in order to have a clear picture of content and each individual student 
model. We selected an appealing IntrospectiveViews interface, which was originally 
used for visualization of user interest models (Bakalov, et al., 2010) and adapted it to the 
needs of representing knowledge and social comparison. We called this OSSM interface 
Parallel IntrospectiveViews (Figure 4) since it offered parallel views of two student 
models at a time, i.e., student’s own models vs. models of their peers or the class as a 
whole. 



 

 
 

 
Figure 4.  Parallel  IntrospectiveViews.  Left pane – visualization of the student’s own 
progress; right pane – visualization of a peer’s progress. The circular sectors represent 
the lectures and the annular sectors represent the topics of individual lectures. The 
shades of the sectors indicate whether the topic has been covered and for the covered 
ones, denote the progress the student has made. Color screenshots available at: 
http://www.minerva-portals.de/research/introspective-views/. (left); Parallel 
IntrospectiveViews. Quizzes of the selected topic (right). 

Figure 4 (left) shows the Parallel IntrospectiveViews interface. The visualization 
consists of two panes: the left pane displays the student’s own progress and the right one 
displays the progress of any class peer or the whole class, whichever is selected from a 
dropdown menu. Each pane visualizes the respective student’s progress as a pie chart. 
The pie chart representation visually conveys the chronological order of lectures while 
the size of a sector represents the number of problems for each lecture. A lecture may 
consist of one or several topics, which are represented as angular segments placed within 
the circular sector of the corresponding lecture. This representation allows the student to 
easily estimate the amount of work on each individual topic or lecture, while an apparent 
topical sequence provides a good picture of progress through the course. In addition to 
that, the ability to view someone else’s progress allows the student to quickly find the 
peers who can help with a difficult topic or quiz. For example, if the student experiences 
difficulties in completing some quizzes, using the parallel views, she can find a 
classmate who has already successfully completed those quizzes to ask for help. Finally, 
the ability to view the average progress of the entire class allows the student to relate her 
progress to that of the whole class and estimate whether she is ahead or behind of the 
class. 

We conducted a classroom study to assess the impact of the Parallel 
IntrospectiveViews OSSM interface on student learning and engagement (again, 
comparing it against two baselines – the non-adaptive course portal QuizJET and the 
adaptive JavaGuide). A summary of results is shown in Table- 1. We found a slight 
increase in student activity in Parallel IntrospectiveViews in comparison with non- 
adaptive QuizJet, yet not as large as in JavaGuide. It is attributed to the system’s strong 
orientation of comparing personal performance with the class average (which was a 
default comparison). While the access to social data apparently encouraged less active 
users to do more work, it could equally discourage stronger students from running too 
much ahead of the class. As a result, the difference between the most active and least 
active users is getting smaller. Evidence that this is really happening is the observed 25% 
decrease in standard deviations for the number of attempts. In turn, the class as a whole 
became a bit less adventurous than in the non-social JavaGuide, exploring fewer 
questions and topics (this is because the variety of topics come to some extent from more 



 

active users who run ahead of the class). On the other hand, the growth of the success 
rate demonstrates that knowledge-based and social guidance combined are more 
effective in guiding the students to appropriate questions that they are ready to handle 
than knowledge-based guidance alone. The community wisdom does matter. 

Parallel IntrospectiveViews followed our earlier systems in providing direct access to 
learning content through OSSM visualization. Clicking on a topic segment, a student can 
call a list of problems within this topic that was also socially annotated (Figure 4, right) 
Moreover, this click could be done on the student’s own knowledge map on the left as 
well on the class/peer knowledge map on the right. Students’ logs indicated from which 
part of the interface content access was made. These logs indicated that students quite 
actively accessed learning content from their peers’ models. This was a strong piece of 
evidence that students really used the social guidance provided by the interface. 
Moreover, we found a correlation between the frequency of peer model comparisons and 
the learning gain. The more the students used social guidance by accessing content on 
the peer side, the higher post-quiz scores they received (r= 0.34, p=0.004). Finally, in the 
subjective evaluation, students expressed positive gratitude toward the system (Hsiao, et 
al., 2011). Overall, the results demonstrated a promising impact of social visualization 
on students’ motivation and learning. We were inspired by the outcome and decided to 
investigate this visualization approach further while enhancing the peer comparison 
aspect that was apparently efficient. 

3.3 Progressor: Refined OSSM interface for personalized access to programming 
problems 

The enhanced version of Parallel IntrospectiveViews was named Progressor (Hsiao & 
Brusilovsky, 2012). It followed the holistic and easy-to-grasp view of knowledge 
progress used in the earlier systems while improving access to peer progress data. To 
achieve the latter goal, we implemented a sortable list of thumbnail previews of student 
peers’ models that replaced earlier “blind” menu. According to the small multiples 
principle (Tufte, 1990), the thumbnail peer models of the same shapes provide the visual 
constancy and allow focusing on the differences. To increase the power of social 
comparison, the visible part of the sorted list displayed the top three performers within 
the class. We believed that displaying the progress of top students could make the rest of 
the class more eager to catch up with them than the default comparison with a moderate 
class average in the earlier system. As before, the user can obtain a detailed view on the 
progress of any peer by clicking his/her thumbnail and switching to one-to-one 
comparison mode (Figure. 5-right). In this mode, the user can obtain detailed 
information about the peer’s progress, including the information about the progress on 
individual quizzes. To balance easy access to peer information, Progressor implemented 
privacy management. The user can grant and revoke access to his/her progress data for 
each peer individually. Ultimately, the OSSM design was aligned with the information 
seeking mantra – “overview first, zoom and filter, details on demand” (Shneiderman, 
1996).



 

 
 

 

 
Figure 5.  Progressor: Peers’ progress are displayed as thumbnails and listed at the side 
of the user’s own model (left); Progressor: Peers model comparison (right). 

From a semester-long study cross-compared with previous attempts to organize 
access to Java problems, we learned that the new design of the OSSM interface was very 
engaging. Students used Progressor extensively. On average, it achieved the highest 
system usage across all OSSM interfaces surpassing even the former champion, 
JavaGuide (Table 1). Progressor also engaged students to explore more topics and to 
work on more distinct questions. In addition, the amount of time spent on the system (in 
terms of the sessions) was doubled. However, can we really argue that the boost of usage 
could be credited to the new design? To answer this question we examined student 
interaction with the peer side of the Progressor interface such as re-sorting, scrolling, and 
accessing the peer list. As before, we found that students interacted with the peer side 
quite considerably, comparing their progress with the progress of peers and accessing a 
considerable volume of content from the peer side. Moreover, the more students engaged 
in interacting with the social features of Progressor, the more likely they were to achieve 
a higher success rate in answering the self-assessment questions. The findings were 
consistent with the subjective evaluation outcome, which demonstrated high satisfaction 
with Progressor. 

Table 1. OSSM studies statistics summary 

 Baseline OSSM 
QuizJET JavaGuide QuizMap PIV Progressor 

Attempts 80.81±22.06 125.50±20.04 45.55 ±6.67 113.05 ±15.17 205.73±40.46 
Success 

Rate 42.63%±1.99% 58.31%±7.92% 79.30%±1.94% 71.35%±3.39% 68.39%±4.32% 

Distinct 
Topics 7.81±1.64 11.77±1.19 4.55 ± 0.59 9.06±1.39 11.47±1.34 

Distinct 
Questions 33.37±6.50 46.18±5.15 17.07±2.78 36.5±5.69 52.7±6.92 

3.4 OSSM Design: Lessons Learned 

Through three progressions of OSSM interfaces design and studies, we learned that 
there are several important features for designing a successful educational social 
visualization system. 

• Interactivity and content access 

Interactivity is very important for OSSM as indicated by the large volume  of student 
interaction with it and the impact of interaction on performance. Interactivity can be 
implemented in several forms. In our OSSM interfaces, interactivity is implemented by 
allowing the student to access the learning content directly by clicking on the knowledge 



 

maps. The idea is simple and effective: the visualization of the user model is not just a 
widget, but also the main entrance to the learning content. Moreover, students are not 
only capable of interacting with the content, but they are also enabled to interact with 
their peers by communicating (requests), comparing and sorting. Other interactivity 
features are, for example, zooming to allow the user model visualization to deal with 
complexity and large topic domains (Shneiderman, 1996), and manipulation to allow the 
user to feel in control over his/her model (Kay, 1997). 

• Sequence 

Progressor uses a familiar sequence of lectures and topics (shown clockwise) instead 
of the random topic allocation used on QuizMap and we believe that it was important for 
its success. The presented sequence helped students to interpret their progress in the 
context of their class and provided guidance, yet it doesn’t restrict content access: 
students are allowed to explore ahead or redo already covered topics. Through the series 
of OSSM studies, we have found that strong students do tend to explore ahead of the 
class and weak students tend to follow them, even in topics that are beyond the current 
topic. We think that the ability of the interface to encourage strong students to move 
ahead of  the  class  is  important   because  it  fuels  the  social  navigation mechanism. 

• Identity 

Identity representation captures all the information belonging to the student and 
displays it in a clear form. It makes the students identify themselves with the model and 
allows them to easily compare with each other {Bull, 2007 #7}{Chen, 2007 #6}. We 
complement these ideas with the concept of unity proposing that the perception of 
identity is higher if the model represents unity. We believe that Progressor with its clear 
concentrated representation of students’ own knowledge better meets these 
characteristics than the failed, QuizMap that presented this model in a fragmented 
manner. 

• Easy Comparison 

Letting students compare their knowledge and progress with each other is the key for 
encouraging more work and better performance (Dijkstra, et al., 2008). Progressor is 
going further then earlier systems in this direction allowing students to compare 
themselves with others on two levels, macro- and micro- comparisons. While viewing 
her/his own model, s/he can see the thumbnails of her/his peers’ models. This is the 
macro-level comparison. It provides high-level comparisons, allowing fast mental 
overlapping of the colored areas between models. The idea aligns with the small 
multiples principle (Tufte, 1990), which provides the regularity for drawing attention to 
the data changes among the peer models. When the student clicks in the peer models, 
Progressor enters the micro-level comparison mode showing the user and the peer model 
in full size with greater detail. Both levels of comparisons allow students to perform 
social comparisons at will. 

• Transparency 

Comparison implies model exposure, which directly raises privacy issues. From our 
survey, there was no single extremely negative opinion regarding privacy and data 
sharing. Students loved the idea of sharing and comparing. We also found that the 
students actually had more persistent interactions with the system while they opted for 
model visibility. While privacy is always an important area in social systems, our study 
results provided us some insight that the openness of the personal model may be viewed 
by students positively in our target context. 

• Guidance 



 

Open social student modeling interfaces enable implicit guidance by allowing 
students to compare with their peers and explicit guidance by showing the best students 
at the top of the list of thumbnail models. In fact, the results of our studies show that 
students tended to follow the footprints of the most successful students in the class. This 
suggests several research opportunities in the future, such as recommender services. 

4. Open Social Student Modeling with Two Kind of Learning 
Content 

The experience with three OSSM systems presented above allowed us to examine the 
feasibility and the impact of a combined social visualization and open student modeling 
approach. We also learned several important lessons about the OSSM interface 
organization to maximize its potential impact. Yet, our earlier systems have one 
important limitation:  they used OSSM to provide personalized access to just one kind of 
learning content – parameterized programming questions for Java. This can’t be 
considered as a realistic case in the majority of domains.  Specifically, in programming 
language learning, one usually learns from multiple kinds activities and types of learning 
content, i.e., reading textbooks, exploring program examples, watching videos, writing 
programs, etc. In addition, more and more kinds of learning resources are made available 
online. 

These considerations defined our next challenge. So far, we have tested OSSM by 
using one of the representative content collections and summarized a set of important 
attributes to design effective OSSM. How do we design OSSM interfaces to support 
many kinds of learning content in parallel? Will current identified design principles (key 
features) confirm the power of the learning community through OSSM with multiple 
learning resource collections? Will the OSSM visualization provide successful 
personalized guidance within a richer collection of educational resources? A more recent 
study presented in the second part of the paper attempted to answer these questions. In 
other words, it addressed the OSSM scalability issue and focused on establishing a 
multi-content OSSM design and explored its impact on students’ engagement and 
learning.  In the next two sections we report our attempts to design a multi-content 
OSSM interface, Progressor+, following the principles  distilled  in our earlier work. We 
also present the result of a Progressor+ evaluation. 

4.1 System Design: Progressor+: an advanced OSSM interface for multiple content 
collections 

The goal of Progressor+ was to bring our earlier findings up to scale and explore the 
feasibility of open social student modeling in the context of more diverse learning 
content. To achieve this goal, we designed a new scalable tabular interface to 
accommodate diverse content. Figure 6 shows a conceptual diagram on the progression 
of OSSM interfaces and content coverage. 



 

 

 
Figure 6.  Open social student modeling interfaces progression and content coverage. 

 

We transferred all the features from the three earlier systems into the new design of 
Progressor+.  The interface is presented in Figure. 7. Each student’s model is represented 
as several rows of a large table with each row corresponding to one kind of learning 
content and each column corresponding to a course topic. We incorporate two sizable 
pools of learning content in Progressor+  – parameterized self-assessment questions and 
annotated code examples (thus Figure 7 shows two rows for each student – a quiz 
progress row and an example progress row), however, the tabular nature of the 
Progressor+ interface allows adding more kinds of content when necessary. Each cell is 
colored coded to show the student’s progress on the topic. We used a ten-color scheme 
to represent percentiles of the progress (Figure 7). The use of color-coding allows 
collapsing table rows that are out of focus, thus making it possible to present a progress 
picture of a large class in a relatively small space. This feature was inspired by the 
TableLens visualization, which is known as highly expressive and scalable (Rao & Card, 
1994). 

 

 
 



 

 
 

 
Figure 7.  Progressor+: the tabular open social student modeling visualization interfaces. 

 
 

Figure 8.    Ten-color shades representation of the summarized progress analytics.  

Essentially, all the rows are joined together and are presented in a single large table. 
In other words, all the student models are combined in the same big table. There are 
several other table layout options available for students, including a collapsed view, an 
expansion view and a filtered view. The collapsed and expansion views are used to focus 
on the target student model or the specific type of content. Students are able to 
manipulate the views for model comparisons or detail inspections. The filtered view 
requires a criterion selection to refine the exploration view. The filtering criteria include 
sorting the progress by content types and sorting by success rate. The default setting of 
Progressor+ is configured as fully expanded table rows of the whole community and 
sorted by average progress in descending order. To access the content, students interact 
directly with the Progressor+ table cells by clicking on the intersection of the topic and 
the content type (Figure 7 - right). Once this is selected, a panel of the lists of content 
will be presented along with usage details for each content item. For instance, how many 
attempts have there been on the question? How many times has the question been 
successfully solved? How many lines of annotations have been studied? 

 

4.2 Study design and procedure 

To achieve the objectives of this work, we designed a semester-long classroom study 
by providing the system as one of the supplemental course tools for the class. A 
semester-long classroom implementation will allow us to obtain a realistic longer-term 
case of the technology compared to the regular 2 hour lab study. It will also capture a 
more realistic scenario of the curriculum on all ranges of course topics. More 
importantly, it will allow us to measure the long-term student engagement. To validate 
the hypotheses, the study will be compared to three other classroom studies. All three 
other classroom studies featured the same classes, same kinds of students, same course 
materials (including textbooks, slides, assignments, exams), same course schedule, same 
pre-/post- tests and same set of self-assessment questions and annotated examples. 

The classroom studies were carried out in the undergraduate course “Fundamentals of 
Object-Oriented Programming” offered at School of Information Sciences at the 
University of Pittsburgh. This is a required course for the Information Science major. 
The students registered for this course were commonly a mixture of students with 
Information Sciences majors and undeclared students from the School of Arts and 
Sciences.  Only a few students from other sciences or engineering related degree 
programs registered for this course. QuizJET was introduced in the 2008 Spring 
semester; JavaGuide was introduced in the 2008 Fall semester; Progressor was 
introduced in the 2011 Spring semester and Progressor+ was introduced in the 2012 
Spring semester.  

The Progressor conditioned semester is consider as the primary baseline group, 



 

because the instructor was the same as the one in the Progressor+ case.  Due to QuizJET 
and JavaGuide semesters were taught by different teachers, therefore, they are 
considered as secondary baselines. It is essential to point out that the systems were used 
as non-mandatory tools for the course. In this work, we consider the groups of students 
who used the systems as the sample of volunteer subjects. Table 1 shows the 
composition of the conditions and the participants of all the classroom studies, including 
the number of students, male and female composition, weak and strong distribution, and 
average scores in the pre-tests. 

Table 2. Study conditions & participants 

 Conditions 
 Secondary Baselines Primary Baseline Experiment 

Semester 2008 Spring 2008 Fall 2011 Spring 2012 Spring 
Systems QuizJET JavaGuide Progressor Progressor

+ 

Content Quizzes
1
 Quizzes

1
 Quizzes

1 Quizzes, 
Examples 

Number of the students 
Overall 31 38 51 56 
Working with 
the system  16 (52%) 22 (58%) 30 (59%) 38 (68%) 

Male/Female student distribution 
Overall 25 / 6 27 / 11 36 / 15 44 / 12 
Working with 
the system 13 / 3 16 / 6 23 / 7 32 / 9 

Weak / Strong student distribution 
Overall 16 / 15 30 / 8 41 / 10 49 / 7 
Working with 
the system 6 / 9 14 / 52  26 / 4 34 / 4 

Average scores in pre-test 
Overall 10.18 4.97 3.53 3.20 
Working with 
the system 10.20 2.68 3.67 3.05 

IS majored / others (undeclared, mechanical engineering, biomedical informatics) 
Overall 25 / 6 21 / 17 23 / 28 23 /33 
Working with 
the system 12 / 4 10 / 12 8 / 22 17 / 21 

All four classes were given the same pre-test during the first week to collect their pre- 
knowledge of the course. The systems were introduced to the classes at the third week of 
each semester and were available for the students from then on, for an overall fifteen 
week time period. During the fifteen weeks, students voluntarily logged onto the systems 
and worked on the QuizJET exercises or/and the WebEx examples. Students were 
instructed on how to use the systems and advised to use the systems but such use was not 
mandatory for the course work. The post-tests were administrated at the 16th week of the 
classes to measure the students’ learning. A questionnaire survey was given shortly after 
the post-tests.  There were four exams including the final exam across each semester; 
they were the important evaluation time marks and scheduled at the 5th, 9th, 15th and 
17th week of the semester accordingly. To ensure that the student cohorts were 
comparable, we first examined the students’ pre-test scores. A one-way between-subjects 
analysis of variance was performed on the pre-test scores as a function of 4 different   

                                                             
1 Examples were also available to the class through a traditional course management portal instead of having the navigational support through the social visualization 

interface 
2 Three students working with the system in the Fall 2008 semester did not take the pre-test. 

3 That the students who used QuizJET had significant higher pre-tests scores could be attributed to two reasons. 1) there were stronger students used the system that term. 2) there 

were more Information Sciences majored students using the system. 3) there were more repeaters from previous semester, which had already been given the pre-tests once. 



 

interfaces (QuizJET,  JavaGuide,  Progressor,  and Progressor+).  We found the students 
who used the QuizJET (M=10.20, SE=0.048) system had significantly higher pre-
knowledge than the average of the other three systems  (M=3.13, SE=0.048),  F(3,  99)=  
3.258, p= 0.0253. The assumption of homogeneity of variance was met, Brown-Forsythe 
F(3, 99)= 2.750, p= .052. The assumption of normality was only met for the QuizJET 
group (Table 2). 

Table 2. Test of normality of the pre-test scores for each system 

System Shapiro-Wilk W df p 
QuizJET .923 16 .186 

JavaGuide .816 22 .002 
Progressor .838 30 .000 
Progressor+ .897 38 .002 

 

Table 3. Summary of all parameter statistics of self-assessment quizzes collection 

Quiz 
 Parameters QuizJET JavaGuide Progressor Progressor+ 

 Active 
users 16 22 30 38 

 

Average 

Attempt 80.81±22.06 

6 

125.5±25.66 

6 

205.73±40.46 

46 

190.42±21.20 

20 
Success 42.63%±1.99

% 

99% 

58.31%±2.74
% 

74% 

68.39%±4.32
% 

32% 

71.20%±4.49
% 

49% Session 3.75±0.53 4.14±0.65 8.4±1.39 5.18±0.55 

 

Coverage 

Distinct 
topics 7.81±1.64 11.77±1.07 11.47±1.34 12.92±0.90 

Distinct 
question
s 

33.37±6.50 46.18±6.11 52.70±6.92 61.84±4.49 

 

Table 4. Summary of all parameter statistics of annotated examples collection 

 Parameters QuizJET JavaGuide Progressor Progressor+ 
 Active users 21 20 7 35 
 

Average 
Example 10.86 19.75 28.71 27.37 
Line 104.24 116.6 219.71 184.18 
Session 4.42 5.35 5.50 4.94 

 
 
 
Coverage 

Distinct 
topics 

8.48 9.15 12.28 12.20 

Distinct 
examples 

10.86 17.3 25.125 27.37 

Distinct 
lines 

80.33 67.1 115.22 141.5 

We summarize the differences between the conditions and the main direction of the 
effects of this work that we anticipated discovering for both collections of content 
(Figure 9). In Table 3 and Table 4, we present all the parameters’ average statistics for 
both content collections in all the conditions. The table will be broken down and 
dissected in detail in the following subsections: 1) The impact on motivation and 
engagement; 2) The impact on students’ learning 3) The social mechanism; 4) The 
subjective evaluation. 



 

 
Figure 9.    Expected effects of the conditions 

 

4.3 Outcome variables 

We follow our prior work in examining OSSM interfaces and students’ learning 
effects; a set of variables and measurements are in Table 5. 

Table 5. Definitions for parameters used 

 

Parameter  Definition 

Questions  Number of questions that a student attempts to 
solve 

Success rate  Number of questions correctly answered divided 
by all attempts 

Examples  Number of examples that a student explores 

Lines  Number of lines that a student explores 

Exploration rate  Number of lines explored divided by all explored 
example lines 

Topic coverage  Distinct number of topics viewed 
Question coverage  Distinct number of questions attempted 
Example coverage  Distinct number of examples explored 

  Line coverage  Distinct number of lines explored   

Using these variables and other data we have developed several ways to measure the 
expected outcome. The outcome measurements are discussed below: 

• Motivation & Engagement: 

In investigating students’ motivation and engagement, we hypothesize that students 
are motivated and engaged in using Progressor+ and produce more quantities of 
interactions and higher coverage. Specifically, we expect the Attempts, Time and the 
diversity of the content explored will increase. 

First of all, we summarize the systems’ usage to gauge the students’ motivation and 
engagement. The independent variables include the question Attempts, the explored 
examples, the explored example lines, the course coverage (distinct topics, distinct 
questions and distinct examples) and the time spent on interacting with the systems. 

Secondly, following the topic-based personalization guidance, students are expected 
to focus on the “current” topics (Zone A – lecture stream zone in Figure 11) 
(Brusilovsky, et al. 2009). In Figure 18, the shaded areas in Zone C & D are the 
regions of the off-“current” course topic activities, which are the self- motivated 
activities performed by the students themselves. Thus, we measure the ratio of 



 

students’ activity performed outside the current course focus to the topic coverage 
that a student roams and works with in the system. The computational notation is 
presented in Equation 1, where m is denoted as motivation and i stands for each 
student.  We called this indicator the M-ratio. To better understand the depth of the 
intensity of students’ motivation, such a ratio can be further divided into two statistics, 
forward rm  and backward rm, where forward rm  represents the ratio of moving ahead 
of the current course focus and backward rm   represents revisiting past topics.  Both 
statistics explain the students’ self-motivation to work on the content through the 
systems. The canonical formula is presented in Equation 2. For the M-ratio, we used 
the number of actions in the Zone C & D divided by the total number of actions. To 
calculate the measure of forward rm, we used Zone A & D, where we used Zone A & 
C to calculate the measure of backward rm. 

Equation 1: M-ratio 

 

 
  

 

Equation 2: the canonical M-ratio 

€ 

mr = forward
mr

+ backward
mr
 

 
Figure 11. Projected self-motivated activities  

• Learning:  
In investigating students’ learning results, we hypothesize that students will benefit from 

Progressor+ and result in higher absolute knowledge gain. Meanwhile, we expect multiple 
collections of content will result in the highest normalized knowledge gain. Therefore, we use 
pre-test and post-test scores to measure the students’ knowledge gain. The canonical formula of 
the student’s Absolute Knowledge Gain is denoted as the differences between pre-test and post-
test scores (Equation 3). The normalized knowledge gain, also be computed based on Equation 
4.  

Equation 3: Absolute knowledge gain 

Knowledge Gain =  Scorepost-test -Scorepre-test 

€ 

mr = i
#outsideScopeTopic

i
#attemptedTopic



 

 

Equation 4: Normalized knowledge gain 

Normalized Knowledge Gain = PosttestScore - PretestScore 

1-PretestScore 

 



 

5.  Evaluation Results 

5.1 Impact on motivation and engagement 

If we can demonstrate that there is no significant difference in the amount of work done 
between Progressor and Progressor+ and that both are significantly higher than the non-adaptive 
system, QuizJet, we will conclude that Progressor+ will work in a scalable content framework. 
We performed a one-way between-subjects analysis of variance on the quantity of the work 
done as a function of system conditions. Table 5 summarizes the test results of two collections 
of work for three conditions. As we anticipated, we did not find significant differences in the 
amount of work done between Progressor and Progressor+. Progressor+ worked as well as 
Progressor. To prove that adaptive navigation support combined with the social visualization 
approach will work for a mixed collection of educational content, we have to show that this 
approach supports more educational activities than the non-adaptive system. The statistical 
analysis showed that, indeed, for both Progressor and Progressor+ students completed 
significantly higher amounts of work (questions, examples and lines) than for QuizJET, which 
verified that our approach motivated the students to put more effort in working with the 
systems. 

Table 5. The statistics for comparing the amount of work done among systems 

  F-stats p-value 
 
 
 

questions 

QuizJET (M=80.81, SE=27.13) 
vs. 
Progressor (M=205.73, SE=27.13) 

 
F(1, 44)=24.20 

 
<0.001 

QuizJET (M=80.81, SE=27.13) 
vs. 
Progressor+ (M=190.42, SE=27.13) 

 
F(1, 52)=23.72 

 
<0.001 

 
 
 

examples 

QuizJET (M=10.86, SE=4.22) 
vs. 
Progressor (M=28.71, SE=4.22) 

 
F(1, 26)=12.13 

 
<0.001 

QuizJET (M=10.86, SE=4.22) 
vs. 
Progressor+ (M=27.37, SE=4.22) 

 
F(1, 54)=11.89 

 
<0.001 

 
 
 

lines 

QuizJET (M=104.24, SE=21.32) 
vs. 
Progressor (M=219.71, SE=21.32) 

 
F(1, 26)=9.55 

 
<0.001 

QuizJET (M=104.24, SE=21.32) 
vs. 
Progressor+ (M=184.18, SE=21.32) 

 
F(1, 54)=7.11 

 
0.007 

Motivating students to do more work should lead to better performance. To confirm that 
the motivational effects of the adaptive navigational support and social visualization actually 
led to more positive outcomes, we examined the Course Coverage parameters and performed 
correlation analyses. To begin, we found that students worked significantly more distinct 
questions, studied more examples and lines in the combined approach systems than with no 
support at all. The Pearson correlation coefficient indicated that the more diverse the questions 
the students tried, the higher success rate they obtained (r=0.707, p<.01) and the more diverse 
the examples the students studied, the higher success rate they obtained (r=0.538, p<.01). We 
also looked at how frequently the students repeated the questions, examples and lines. We 
found that the more the students repeated the same questions and the more the students 
repeated studying the same lines the higher success rate they obtained (r=0.654, p<.01; 
r=0.528, p<.01). The analysis of motivational effects presented in this section has suggested 
that the combined approach can effectively enhance students’ motivation in the targeted 
learning context. In the next section, we continue analyzing the effects of such an approach on 
students’ engagement. 

In our pre-studies (section 3.3), we found that students doubled the time spent (in terms of 
sessions) in Progressor compared to QuizJET. However, we did not find this pattern in the 



 

same parameter when comparing Progressor+ and QuizJET. Nevertheless, the intensity of 
students’ work per session is actually higher in Progressor+. This suggested students might be 
spending more time in Progressor+ than in QuizJET but in fewer sessions. Therefore, we 
computed the actual average time spent for each content collection (Table 7). The results 
showed that students spent fewer sessions in Progressor+ in quizzes.  However, they did work 
longer per session. On average, they spent 3.72 and 4.94 times more minutes in Progressor and 
Progressor+ than in QuizJET.  There were no significant differences between Progressor and 
Progressor+ in total time spent on the quizzes. From the example collection, we found that 
students spent 4.13 and 3.23 times more minutes in studying the annotated examples in 
Progressor+ than in QuizJET and Progressor. These differences were both significant. With the 
adaptive navigation support and social visualizations combined, students studied more.  
Overall, each student averaged nearly 5 hours of work on the quizzes in Progressor+ and 5 
hours 20 minutes to study the annotated examples. These numbers alone demonstrated that our  
approach successfully engaged students in working on these non-mandatory systems. In 
addition, we found that the more time the students spent in one type of content in Progressor+, 
the more likely they were to spend more time in another type of content (r=0.81, p<.01).  Yet, 
does longer engagement lead to better learning? We will discuss the effects on students’ 
learning in the next section. 

Table 7. The intensity measures of students’ work for all conditions 

Intensity  QuizJET JavaGuide Progressor Progressor+ 
 
 
 

Quiz 

Time/session 
(minutes) 16.01 36.28 26.75 57.32** 

Total time 
(minutes) 60.04 150.19** 224.7** 296.9** 

Attempt/session 21.55 30.31 24.49 36.73 
 
 
Example 

Time/session 
(minutes) 15.73 22.66 20.12 65.00** 

Total time 
(minutes) 69.52 121.23 110.66 321.1** 

Example/session 2.45 3.69 4.56 5.54 

Lines/session 23.54 21.79 34.95 38.69 

5.2 Impact on student’ learning 

Our approach to educational innovation is not complete without an analysis of its impact on 
students’ learning. Our approach demonstrated an impressive motivational and engagement 
effect on students.  However, we are mindful that the students might learn a subject in many 
many ways, (e.g., labs, lectures, assignments). To demonstrate the efficacy of our approach, we 
need to show that students’ activities with the systems were transformed into learning gains. 
Therefore, in this subsection, we focus on the association of students’ interactions with 
Progressor+ and their learning results. We consider the results of pre- and post- tests scores to 
determine general learning gains. 

We performed paired sample t-tests to evaluate the significance of the students’ Absolute 
Knowledge Gain. We found that students who used Progressor+ indeed achieved post-test   
scores (M=15.0, SD=0.6) that were significantly higher than their pre-test scores (M=3.2, 
SD=0.5), t(37)= 17.276, p<.01. In addition, we performed a one-way between-subjects analysis 
of variance on the Normalized Knowledge Gain as a function of 4 different systems (QuizJET, 
JavaGuide, Progressor and Progressor+). We found that students obtained a significant 
Normalized Knowledge Gain by working on the self-assessment questions through Progressor+ 

(M= 0.581, SE= 0.050) compared to QuizJET (M= 0.361, SE= 0.050), F(1, 52)= 4.223, p<.05, 
η2=.025.  Following previous motivational and engagement analyses, we also found that the 
more the students studied (more lines), the more knowledge they gained (r=0.492, p<.01). The- 
more time the students spent on the content (quizzes and examples), the more knowledge they 



 

 
 

 
 

gained (r=0.563, p<.01; r=0.448, p<.01). 

 

Figure 10.  Students’ time spent on both examples and quizzes in Progressor+ sorted by 
the knowledge gain 

5.3 The mechanism of social guidance 

Our study demonstrated that social guidance could match or even surpass traditional 
knowledge-based guidance in its ability to guide students to the right content in the right time. 
But what is the mechanism of social guidance? Why is the progress data collected from the 
class and presented in visual form able to provide this remarkable quality of guidance, 
matching guidance based on expert knowledge? That was an important mechanism of our 
approach to provide social guidance where stronger students would leave traces for weaker 
ones to follow. However, that pattern was only found within the context of self-assessment 
quizzes. Do we find the same pattern among multiple collections of educational resources? Are 
the stronger students still capable of pioneering a good route for the class? Are there any other 
social mechanisms and effects derived from Progressor+? In this subsection, we summarize the 
findings of social visualizations and plot the system interactions for pattern discovery. 

 

 

Figure 11.  All quizzes attempts distribution by time and question complexity performed 
by the students in four systems. top-left: QuizJET(a); top-right: JavaGuide(b); bottom-
left: Progressor(c); bottom-right; Progressor+(d) 

In Figure 11, we plotted all the students’ activities on the four systems (QuizJET, 
JavaGuide, Progressor and Progressor+) by time and question complexity. The time of the 



 

interaction is marked on the X-axis and the question complexity goes from easy to complex on 
the Y-axis. Each data point represents an attempt at a question. The blue dots belong to the 
stronger students and the oranges ones belong to the weaker ones. By visualizing all the 
interactions performed on the systems, we observed several interesting findings. 

• There is a general pattern for all conditions, which is that the students were 
found actively working with the systems during exam preparation periods. They 
tended to work on the topics from past to current. During the final exam period, students 
tended to review the full range of the topics. Due to the fact that the subject is inherently 
cumulative in nature, we expect to find this pattern as a stable effect. 

• With topic-based personalization (b&c&d), there were noticeable trends 
indicating that students progressed, which resulted in more work done according to the 
lecture stream. This is an important message that students were focusing and beyond the 
current scope.  Without such personalization (a), students were only found to work on the 
systems for exam preparation, yielding a very skewed distribution of Attempts. 

• Differences in the amount of work (Attempts) were noticeable from the two 
figures (a & b) on the top row to the bottom two figures (c & d). The bottom two figures (c 
& d) represent the systems with the influence of social visualization, which resulted in a 
higher intensity of attempts. This not only demonstrated that the students were voluntarily 
engaging with the systems, but also showed the consistency of the motivational effect over 
time. 

• The timing for beginning work in the system was also revealed by the differences 
of pre-knowledge levels with the social visualization mediation, where the pre-knowledge  
levels  were determined by the pre-test  scores (ranging from a minimum of 0 to a 
maximum of 20, with the threshold at score 7); strong students scored 7 points or higher 
(7~13) and weak students scored less than 7 (0~6). The strong students tended to explore 
the questions ahead of the weaker ones (the blue dots go before the orange dots) in social 
visualization systems (c & d). In Table 10, we calculated the average time that the strong 
students attempted the question before the weak students did across all ranges of question 
complexities. On average, strong students worked on the questions 38.04 and 37.70 hours 
in advance of the weaker students. The effect was much more noticeable for the Complex 
questions. This indicates a useful pattern of implicit social guidance that stronger students 
left traces for weaker students to follow. Without the social guidance, there were no clear 
patterns found (a & b). Strong and weak students’ actions were mixed. Strong ones may be 
under challenged, while the weak ones may suffer from venturing too fast toward 
advanced questions. 

• A model exposure difference was found between the two social visualization 
systems (c & d). Both Progressor and Progressor+ users were exposed to the entire model, 
from each individual’s to the class. However, the pie shaped model in Progressor took a 
relatively bigger portion of the space on the screen compared to the table model in 
Progressor+. The model thumbnails preview was limited by the screen sizes and resulted 
in presenting only the top students from the class at a first glance in Progressor. Students 
had to scroll down the sorted model list to see the rest of the models. In Progressor+, on 
the other hand, there was less scrolling required to view the complete model list. In other 
words, the top students’ models seemed to stand out as highlighted models in Progressor. 
This may have given extra incentive for the top students, which resulted in encouraging 
competitiveness and hard work. Therefore, the model exposure   differences explained 
why the stronger students in Progressor tended to work more than in Progressor+. 

Table 10. Average Number of Hours that Stronger Students Attempted to Answer 
Questions Before Weaker Students Attempted to Answer Questions by Question 
Complexity and for the Progressor and Progressor+ Systems 

(hours) Easy Moderate Complex Average 
Progressor 17.15 13.39 83.59 38.04 
Progressor+ 9.17 19.63 84.30 37.70 

 



 

5.4 Subjective Evaluation 

In addition to the log analysis, we distributed questionnaires to collect students’ opinions of 
the Progressor+ system at the end of the classroom study. There were 24 students who filled out  
the  survey,  17  male  and  7  female.  In the survey, there were 23 questions,  ranging from  
the  usability  of  GUI  elements  to  the users’  satisfaction  with the interface in general. Users 
were asked to evaluate the questions on a 5-points Likert scale, 1 – Strongly Disagree; 2 – 
Disagree; 3 – No Strong Opinion; 4 – Agree; 5 – Strongly Agree. They were also advised to 
provide free-text comments as they wish. The 23 questions cover 5 categories, including 
Usefulness, Ease of Use, Ease of Learning, Satisfaction and Privacy & Data Sharing. A 
summary of the survey is shown in Figure 12. 

Students generally felt positively about all aspects, and were particularly appreciative of 
the Ease of Use, Ease of Learning and Privacy & Data Sharing dimensions. Additionally, 
students found the content provided valuable, given its being optional for the class. Despite the 
fact that there were various opinions on interface features, such as sorting and comparing, the 
overall attitude toward the system Usefulness was positive. The survey results support the 
design of the interface in terms of content organization. Students’ positive responses also 
reinforce the objective system usage data. We also found that some of the students expressed 
their appreciation explicitly other than through ratings. Some of them wished the tools were 
offered for other courses. Some even suggested the alignment of the content for exams or usage 
for participation or credits. 

 

Figure 12.  Summary of the subjective evaluation for each itemized survey question. 

6. Summary And Discussion 

To explore the value of open social student modeling, we developed several systems and 
conducted classroom studies to evaluate hypotheses and overall effectiveness. We learned from 
our experiences and improved the design for each implementation. 

6.1 Results Summary 

The classroom evaluation of our approach demonstrated that we achieved our main goal – 
helping students to navigate a rich collection of learning resources. Providing navigation 
support through open social student modeling visualizations helped students to locate the most 
relevant content and achieve a significantly higher programming problem-solving success rate.  
In addition, incorporating a mixed collection of content in the OSSM visualizations effectively 
led the students to work at the right level of questions. Both stronger and weaker students 
worked with the appropriate levels of questions for their readiness, which yielded a consistent 



 

performance across all three levels of complexities. Additionally, providing a more realistic 
content collection on the navigation supported open social student modeling visualizations 
resulted in uniform performance for the group. The classroom study revealed a clear pattern of 
social guidance, where the stronger students left traces for weaker ones to follow. This effect 
was much more noticeable, especially for the Complex problems. 

The analysis of our approach confirms that students spent more time on the system, 
attempted more self-assessment quizzes, and explored more annotated examples. They 
achieved a higher diversity in attempting the self-assessment questions and exploring the 
annotated examples. Students were motivated to do more work. They were engaged with the 
system; they spent about 5 hours for each collection. Moreover, they successfully achieved 
better learning results. Students obtained significantly higher knowledge gains than students 
without the support of the systems. 

The subjective evaluation results showed that student generally felt positively about all 
aspects of the tool, particularly in terms of Ease of Use, Ease of Learning and Privacy & Data 
Sharing. Additionally, students found the content provided was valuable. Despite the fact that 
there were various opinions on interface features, such as sorting and comparing, the overall 
attitude toward the system Usefulness was positive. These survey results confirm the design of 
the interface in terms of content organization. The students’ positive responses also 
complement the objective system usage data. 

6.2 Contribution to the education field 

In this paper, we presented a series of innovative open social student modeling interfaces to 
support the learning of online programming language. We summarized the lessons learned 
from the design and classroom studies. We observed the impact of each design. The first 
contribution of this project is combining the ideas of adaptive navigational support and social 
visualization by using an open social student modeling interface. The combined approach 
lowers the modeling complexity for knowledge-based personalization and increases the 
precision of social navigation support among the increasingly large and diverse number 
educational resources. This approach decreases the threshold for semantic-enriched online 
education. It also brings online education closer to the modern classroom. In addition, the 
approach has been proven to guide students effectively to the right content at the right time. It 
could be one of the pioneer works in the open social student modeling realm. 

Second, this work summarized the design principles for personalized guidance using open 
social student modeling visualization based on a series of pre-studies. 

Third, this work established a scalable framework based on the design principles. The 
implementation, Progressor+, was evaluated in this study. This framework allows extending the 
content collections to simulate a more realistic online learning environment. In addition to e-
Learning, the classroom study also demonstrated that the tool can also be used as a 
complementary tool for real classrooms. 

Forth, the underlying theories for adaptive navigational support and social visualization 
actually complement each other when brought together. According to learners’ choices and 
beliefs about self-testing studies, students are generally overconfident about their memories and 
underestimate the amount they will learn by studying (Kornell & Son, 2009). The 
overconfidence of understanding is more severe among less advanced learners  {Falchikov & 
Boud, 1989), who need most to be improved (Falchikov & Goldfinch, 2000). Therefore, this 
work unveiled the social comparison mechanism by providing comparative interfaces and 
demonstrating the stronger and weaker students’ performances through quantitative analyses 
with this approach. 

6.3 Limitations & future work 

All of the systems discussed were provided as supplemental tools for the same course. 
While we attempted to provide as realistic a scenario as possible by incorporating diverse 
learning objects for the learning environment, within the non-controlled classroom context 
students are still able to learn from the subject in many different  ways. (i.e., having  hands-on   



 

experiences   in   coding   plays   a   very   important   role   in   the programming language 
learning context. In our curriculum, students claim to benefit the most from the laboratory 
sessions.) The system used is just one of the factors that contributed to the learning. The 
content collections used in this work did not cover all the knowledge taught in the 
programming course. However, we took into account the semantics questions when measuring 
the students’ learning. 

The first open social student modeling interface was introduced in the spring semester of 
2010, while the latest system, Progressor+, was introduced in the spring semester of 2012. 
Because social technology is rapidly evolving, students could potentially have been exposed to 
mass social media within these two years and gradually become more comfortable with using 
social tools. Our study is not able to account for this phenomenon. 

In addition, we recognize that current design supports implicit guidance, while the adaptive   
navigation   support   provides   the   personalized   progress   guidance   and “wisdom of the 
crowd” leads the learning paths. In the future, we plan to enhance the explicit guidance, for 
example, by providing as recommendations. Using information about peers' prior success may 
allow us to recommended suitable topics to students where they have just failed. While the 
explicit recommendations in the user model visualization suggest more proactive personalized 
guidance, we will be facing the challenge of implementing this personalization without 
decreasing users' interest on making comparisons with their peers. However, we think that such 
issues can be addressed by enhancing the visualization, for example, by using different 
transparency levels to mark recommended and non-recommended topics. 
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