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THE STRUCTURE AND INTERPRETATION

OF QUANTUM FIELD THEORY

Michael E. Miller, PhD

University of Pittsburgh, 2017

Quantum field theory accurately describes the world on the finest scales to which

we have empirical access. There has been significant disagreement, however,

about which mathematical structures ought to be taken as constitutive of the

theory, and thus over which structures should serve as the basis for its interpre-

tation. Perturbative methods allow for successful empirical prediction but re-

quire mathematical manipulations that are at odds with the canonical approach

to interpreting physical theories that has been passed down from the logical

positivists. Axiomatic characterizations of the theory, on the other hand, have

not been shown to admit empirically interesting models. This dissertation shows

how to understand the empirical success of quantum field theory by reconsidering

widely held commitments about how physical meaning accrues to mathematical

structure.
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1.0 INTRODUCTION

Quantum field theory originally arose from efforts to develop a relativistic and quantum

mechanical theory of electromagnetic phenomena. This work resulted in quantum electrody-

namics, as well as a general framework for describing systems of interacting quantum fields.

The modern version of this perturbative Lagrangian formalism is the one presented in in-

troductory textbooks on quantum field theory.1 The Standard Model of particle physics,

which is cast in the perturbative formalism, provides a description of the strong, weak, and

electromagnetic forces and the elementary particles that experience them. In this way, quan-

tum field theory plays a central role in describing the contents and behavior of the physical

world on the finest scales to which we have empirical access. Philosophers interested in

the fundamental material constituents of the world have thus reasonably turned to quan-

tum field theory for guidance. This philosophical project is complicated, however, by the

mathematical structure of the theory.

Despite the widely accepted empirical and theoretical successes achieved using the stan-

dard perturbative formalism, the mathematical character of the theory remains, at least in

certain respects, poorly understood. Frequently cited deficiencies of the perturbative formal-

ism include the facts that the interaction picture in which scattering theory calculations are

carried out provably does not exist, individual orders of perturbation theory yield infinite

values due to the ultraviolet and infrared regime of the theory, and the measures of path

integrals are not always well-defined. Perhaps most worryingly, even when renormalized to

all orders, the perturbative expansions for physical quantities are widely believed, and in

1See, for example, (Peskin and Schroeder, 1995).
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some cases have been conclusively shown, to be divergent. Mathematical techniques to over-

come these deficiencies are available. Regulators are imposed and perturbative expansions

are truncated at low-order. However, these techniques produce what seem to be physically

significant differences and philosophers have questioned whether the mathematical structure

of the theory is sufficiently well-specified to support philosophical interpretation.

The mathematical deficiencies of the perturbative approach have motivated the devel-

opment of alternative formalisms for characterizing the structure of quantum field theory.

Writing in 1959, Irving Segal claimed that: “just what is a quantum field theory . . . is a

difficult question, since at present what we have after thirty years of intensive effort, is a

collection of partially heuristic technical developments in search of a theory; but it is a nat-

ural one to examine axiomatically” (Segal, 1959, p. 341). In response to the problems with

the standard approach, mathematical physicists have developed several axiomatic systems

to capture the physical principles that are assumed to obtain in the standard perturbative

formalism. Axiomatizations of quantum field theory provide an explicit characterization of

the expected non-perturbative structure of models of the theory. This allows for the proof

of theorems, satisfying the standard of rigor accepted by mathematicians, that apply to

any quantum field theory that satisfies the axioms. The CPT and spin-statistics theorems

are paradigmatic examples. The project of generating such theorems is the central task of

axiomatic quantum field theory.

Once a set of axioms has been established, models of those axioms can be constructed. So-

phisticated mathematical methods, often inspired by techniques originally developed within

the perturbative formalism, have been used to produce increasingly physically realistic mod-

els of the axioms. With explicit models constructed, further properties of those models such

as their scattering behavior can be explored. These are the central tasks of what is commonly

referred to as constructive quantum field theory. Though much progress has been made in

the half century since Segal was writing, the models available are all defined either in reduced

spacetime dimension or without interactions. The 4-dimensional local gauge theories that

2



make up the empirically successful Standard Model have not been shown to be models of

any of the sets of axioms.

Philosophers interested in interpreting quantum field theory thus face the following ten-

sion.2 The empirical successes of the theory are achieved using mathematical structures that

do not conform to the philosophical accounts of how theories capture information about the

world. Axiomatic and constructive field theory provide structures that do conform to philo-

sophical accounts of the structure of theories, but have not been shown to admit the models

that are empirically successful. Moreover, in conceptual analysis based on the axiomatic and

constructive approaches, there often is no direct argument available for why the conclusions

should also apply in the case of empirically adequate models. For this reason it is not clear

how such analysis informs our understanding of the actual world. This dilemma is captured

nicely in the following remark of Ruetsche:

Given a theory T , . . . we confront the exemplary interpretive question of how
exactly to establish a correspondence between T ’s models and worlds possible
according to T . That is, we confront that question if T is the sort of thing
that has models. ‘A collection of partially heuristic technical developments’ isn’t
readily attributed a set of models about whose underlying ontology or principles
of individuation philosophical questions immediately arise. This isn’t to say
that ‘a collection of partially heuristic technical developments’ is unworthy of
philosophical attention. It is in itself a philosophically provocative circumstance
that such a collection can enjoy stunning empirical success. (Ruetsche, 2011, p.
102-103)

In order to understand what the empirical success of quantum field theory tells us about

the fundamental material constituents of the world, an account of how that success is pos-

sible despite the mathematical deficiencies of the perturbative formalism is required. This

dissertation aims to provide such an account.

The first step toward such an account is to recognize that the characterization of per-

turbative field theory as a “collection of partially heuristic technical developments” is overly

2This tension is the topic of a recent debate between Fraser and Wallace. Their positions nicely capture
a gulf that is reflected throughout the literature on the interpretation of quantum field theory (Fraser, 2011;
Wallace, 2011).
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pessimistic. There are three legitimate problems with the mathematical structure of pertur-

bative field theory. Each is a class of divergences that results in the theory predicting infinite

probabilities for physical processes. However, these ultraviolet, infrared, and large-order di-

vergences exhaust the mathematical deficiencies of the theory. If conceptually adequate

resolutions to these problems can be found, then the theory can be rendered well-defined.

And in fact, practitioners of perturbative field theory have developed methods that lead to

conceptually adequate resolutions to each of the classes of divergences. Systematic analy-

sis of these methods provides what is required to take up the philosophically provocative

circumstance that Reutsche identifies and to provide an account of why the theory is so

successful despite its mathematical shortcomings.

What this analysis shows is that we were wrong to think that the presence of divergences

is an obstacle to interpretation. Instead, divergences are actually critical hints about how

mathematical structure holds physical meaning: they tell us how we should go about inter-

preting the theory. When one takes these hints seriously, what one finds is that there are

assumptions involved in standard philosophical approaches to interpretation that are unten-

able in empirically adequate models of quantum field theory. The methods used to insulate

such models from the divergences that they contain all result in theoretical characterizations

of empirical content that are inexact. That is not to say that the theory is ill-defined. The

sense in which it makes inexact predictions can be made completely precise. If one is willing

to make relatively mild modifications to standard philosophical approaches to interpretation

then this inexactness can be incorporated into a new account of interpretation that can be

used to treat empirically adequate models of quantum field theory. The central aim of this

dissertation is use this strategy to provide an alternative approach to interpretation which

allows for coherent attributions of physical meaning to the models of quantum field theory

that actually make contact with the world.
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1.1 STRUCTURE AND INTERPRETATION

The problem of interpreting a physical theory is the problem of associating physical meaning

with the mathematical structure of the theory. Much of the work in the philosophy of physics

has been dedicated to providing such interpretations for special and general relativity, ther-

modynamics, statistical mechanics, non-relativistic quantum mechanics, and quantum field

theory. Accounts of how to interpret a physical theory have developed in conjunction with,

and in several important cases are attendant to, accounts of the structure of scientific theo-

ries. In other cases novel commitments about interpretation are tacitly adopted in the work

of those interpreting particular physical theories. There are significant differences between

views about how to go about the project of interpretation. However, many approaches to

interpretation share a common set of commitments about the relationship between mathe-

matical structure and physical meaning. In particular, they all take the physical meaning

of mathematically expressed theories to derive from the existence of a map from the exactly

specified mathematical structure of the theory to statements about the world itself. When

I refer to standard intepretation, I mean to include any approach that adopts this commit-

ment. Going forward it will be helpful to provide some examples of standard approaches to

interpretation. I will make no attempt to be exhaustive at this stage. Rather, my aim is

simply to show that whether one is committed to a syntactic or semantic view of theories,

or realism or anti-realism about physical theories, there still is a shared commitment about

the nature of the relationship between mathematical structure and physical meaning.

The first attempt to explicitly reconstruct the structure of scientific theories can be found

in the work of the logical positivists. For them, theories were taken to be collections of axioms

written in a formal language.3 This articulation of the content of a theory admits a natural

notion of a what it is to be a model of the theory. In particular, the models of the theory are

3The formal language, L, was taken to include the logical connectives, constants, functions, and relations.
The set of axioms for the theory, Σ, consists of sentences in this language.
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just its models in the strictly logical sense.4 A structure is a model of the theory if each axiom

of the theory is satisfied by the structure, where satisfaction is understood in the Tarskian

sense. The positivists assumed the vocabulary of the language to be neatly divisible into

collections of theoretical and observational terms. On this approach, the characterization of

the models as physical occurs intrinsically to the theory through correspondence rules that

reduce theoretical terms to sentences involving only the observational part of the language.

The positivists’ syntactic view of the content of theories has largely been supplanted

by semantic views which identify a theory with its class of models.5 Proponents of these

semantic views have relaxed the requirement that the content of the theory is captured in

formal logical language and have instead allowed for theories to be characterized in terms of

the mathematical structures that are natural for representing the domain in question. The

models of general relativity, for example, consist of differentiable manifolds that represent

spacetimes and tensors defined on those manifolds that represent matter and energy. The

syntactically expressed laws of the theory determine whether or not a particular manifold

and associated collection of tensors are models of the theory. While the structures in question

are no longer explicitly set-theoretic, what it is to be a model of the theory is still to stand

in the exact satisfaction relation with the syntactic expression of the theory.

Following work of Beth, van Fraassen introduced a semantic approach to interpretation

based on the state-space of a theory.6 According to this proposal, models of the theory

are trajectories in state-space that exactly satisfy the syntactic expression of the dynamical

equations of the theory. The characterization of the models as physical occurs through rules

connecting physically measurable quantities to states of the system represented in state-

space. The rules are expressed through a collection of statements, U(m, r, t), ascribing a

4Recall that in this context models are pairs 〈A, I〉, where A is the domain of objects and I is an
interpretation function that maps symbols in the language to the domain, I : L → A. A structure is a model
of the theory, A ∈ Mod(T ), if for each σ ∈ Σ, |=A σ.

5A detailed elaboration of the reasons for abandoning the syntactic view in favor of the semantic view
is given in (Suppe, 1974). For important recent clarification of the connection between the syntactic and
semantic views see (Halvorson, 2012, 2013; Glymour, 2013; van Fraassen, 2014).

6The view is introduced and discussed in (Beth, 1960; van Fraassen, 1967, 1970; Arntzenius, 1991).
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physical magnitude, m, a definite value, r, at a specific time, t. The truth values of the

U(m, r, t) depend on the state of the physical system. For each U there is a region of the

state-space, h(U) such that U is true just in case the physical state of the system is accurately

represented by an element of h(U). The map h connects the mathematical model to physical

quantities in a way that is compatible with van Fraassen’s constructive empiricism.

Unique accounts of interpretation have also developed from attempts to interpret par-

ticular theories. A currently popular example is provided in the work of the structural

realists.7 One of the central motivations for this program is to refrain from metaphysical

commitment to a view of the world consisting of objects that bear properties. This radical

move is motivated by an effort to accommodate quantum phenomena. In place of an ontol-

ogy of objects, the view promotes the role of mathematical structure to a metaphysical one.

This is achieved by starting from the mathematically expressed models of the theory and

characterizing them as physical by stipulating that they stand in the relation of isomorphism

or partial isomorphism with the structure of the world. Another approach to interpretation

that has developed in efforts to address quantum phenomena, originally proposed by Albert,

is captured in a view called wave function realism.8 On this view the role of the state-space

of quantum mechanics gets promoted to a metaphysical one.

While the approaches to interpretation introduced here clearly differ in important re-

spects, they can all be seen to be instances of standard interpretation. In each case one

begins by fixing on a particular collection of structures which are models of the theory that

exactly satisfy its syntactically expressed dynamical equations. Once the collection of models

is delimited, rules for associating physical meaning to those models are developed, and in

each case these rules take the form of maps from the models of the theory to a target. De-

pending on the account, the target might be the world itself, the phenomena as they present

themselves to us, or a model of the data from an experiment. On some of the accounts the

7There is an extensive literature elaborating this view, parts of which deviate significantly from the
characterization given here. See, for example, (French, 2014; da Costa and French, 2003).

8The view is introduced in (Albert, 1996). Additional discussion can be found in (Ney and Albert, 2013).
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nature of the map is explicitly stipulated to be an isomorphism, a partial isomorphism, or

an embedding. In others the nature of the map is left less explicit. The common assumption

adopted by all of these approaches that will be critical for my argument is that the models

of the theory must always exactly satisfy the dynamical equations. This turns out to be

untenable if one wants to interpret the empirically adequate models of quantum field theory.

If you consult any textbook on quantum field theory, you will find an expression for the

n-point functions of a model, or a related expression for the S-matrix, that looks like:

〈Ω|T (φ(x1)φ(x2) . . . φ(xn))|Ω〉 =
∞∑
j=0

(−i)j

j!

∫
〈0|T (φ(x1)φ(x2) . . . φ(xn)) (1.1)

·H(y1)H(y2) . . . H(yj)|0〉d4y1 . . . d
4yj.

This is a perturbative expansion in powers of the coupling constant. If this equation was

exactly satisfied in empirically adequate models, there would be no obstacle to applying any

of the standard approaches to interpretation described above. The n-point functions encode

the empirical content of the theory and so are the relevant kind of mathematical structure

to feed into an interpretation. However, in empirically adequate models this equation is not

exactly satisfied for three distinct reasons. Individual terms in the expansion are infinite

because of the behavior of the theory in both the short and long distance regimes. These are

the ultraviolet and infrared divergences of the theory. The individual terms can be rendered

finite through regularization and renormalization procedures, but the resulting formal power

series does not converge. This is the large-order divergence of the theory. In order to assign

meaningful empirical content to the theory, methods for handling each of these classes of

divergences are required. Fortunately, such methods are available and if they are employed

carefully they provide everything that is required to define the n-point functions (or the

S-matrix) up to a small finite error term. To interpret the empirically adequate models,

we simply need to develop the resources to understand this finite level of precision in the

empirical content of the theory.
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1.2 THE ARGUMENT OF THE THESIS

The remainder of this dissertation consists of five self-contained chapters and brief concluding

remarks.9 The argument proceeds in two parts. The first part, consisting of Chapters Two,

Three, and Four, addresses the problem of structure specification for quantum field theory. In

particular, these chapters consider the ultraviolet, infrared, and large-order problems with the

theory, respectively. The second part, consisting of Chapters Five and Six, addresses issues

about how physical meaning can be associated with the kind of mathematical structures that

result from insulating the theory from each of these classes of divergences. Chapter Seven

suggests some further applications of the argument of the thesis.

Chapter Two considers the problem of ultraviolet divergences. The renormalization group

provides a physically motivated method for rendering models ultraviolet finite and studying

the scaling behavior of the theory. As this scaling behavior is now a confirmed empirical

prediction of the Standard Model of particle physics, it would be reasonable to think that

the renormalization of the theory plays an indispensable role in its empirical success. How-

ever, by attending to the mathematical details of empirically adequate models, one finds an

alternative perspective about the ultraviolet behavior of the theory. In particular, ultravi-

olet divergences can be seen to be the result of incorrectly handling the multiplication of

distributions. When the distributional character of field operators is correctly attended to,

an alternative procedure for recovering the empirically adequate scaling behavior presents

itself. This clarifies why the renormalization group is able to produce empirically adequate

predictions despite deploying mathematical structures that are not always well-defined.

An often cited mathematical problem with perturbative quantum field theory is cap-

tured by Haag’s theorem. In Chapter Three I consider this theorem which results from

the infrared divergences of the theory. The result seems to show that the collection of as-

sumptions required to form the interaction picture and establish the empirical adequacy of

9In the interest of making the chapters independently readable some relevant technical background is
repeated in several of the chapters.
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the theory are mathematically inconsistent. I argue that this does not render the empirical

information acquired using the interaction picture unreliable. The regularization and renor-

malization techniques required to control ultraviolet and infrared divergences render some

of the assumptions required to prove the theorem false. The argument of this chapter thus

establishes that the output of perturbative renormalization theory is a set of well-defined

formal power series. As a result, it motivates consideration of whether or not the formal

power series converge and thus capture exact non-perturbative structure.

Chapter Four takes up the problem of specifying how perturbative data is related to the

exact non-perturbative structures picked out by axiomatic characterizations of the content of

the theory. In many models, the formal power series are demonstrably divergent. However,

there are precisely specifiable mathematical conditions under which the divergent expansions

of the perturbative formalism can be used to uniquely reconstruct an exact model of one

of the axiomatic articulations of the theory. Analysis of these conditions reveals that in

every case where a model of axiomatic field theory is available, the perturbative formalism

exactly and uniquely determines that model. This shows that it is not correct to view

the perturbative and axiomatic formalisms as completely distinct, or as competing research

programs.

This analysis also shows why empirically adequate models do not satisfy the currently

available axiomatizations of the theory. They contain large-order divergences that prevent

unique reconstruction to an exact model. I argue that this does not make their perturbative

expansions unrigorous. Truncating the expansions at low-order generates accurate values for

observables, but there is not a unique exact model lying behind this empirical success. There

is a class of such exact models and truncation introduces a finite level of precision into the

empirical content of the theory. This limited precision can be constrained in a completely

rigorous manner by finding bounds on the error introduced by the truncation.

In Chapter Five I turn to the problem of assessing how the problematic aspects of struc-

ture specification for quantum field theory discussed in Chapters Two, Three, and Four affect

10



the project of associating physical meaning with the structure of the theory. As a first step

toward addressing the problem I consider one particular proposal concerning how meaning

attaches to mathematical structure, namely, the state-space semantics originally developed

by Beth and van Fraassen. I argue that when perturbation theory gives rise to cover-

gent expansions their proposal adequately captures the semantics of the theory. However,

their proposal fails to capture the empirical meaning derived from truncations of divergent

asymptotic expansions. I then provide a modification of state-space semantics that is able to

capture this meaning. I argue that this shows that divergent perturbation theory provides a

novel connection between mathematical structure and physical meaning. I provide examples

from classical mechanics, non-relativistic quantum mechanics, and quantum field theory. In

each case, one obtains divergent asymptotic expansions for important physical observables.

I apply the proposal for the assignment of physical content outlined in the chapter to show

that it successfully accounts for these cases. In this sense, the argument of the chapter is

relevant to the interpretation of mathematically expressed scientific theories in general, and

not just quantum field theory in particular.

In Chapter Six I consider one additional respect in which the structure specification

provided by perturbative quantum field theory gives rise to a novel challenge for attributions

of physical meaning. In particular, I argue that the syntax of perturbative field theory is

ambiguous between multiple different structural realizations. I call this the problem of

ambiguous structure. There are two standard methods for breaking structural ambiguity

that provide possible routes to addressing this problem. The first route is to stipulate

that among the class of ambiguous structures, there is one true type of structure that is a

candidate for mapping onto the world. The second route is to claim that there is a unique

common type of structure shared between the ambiguous class which is a candidate for

mapping onto the world. If either of these approaches could be shown to be successful, the

core commitments of standard approaches could be preserved. I argue that neither of these

routes can underwrite the assignment of meaning to empirically adequate models in a way

11



that reflects the nature of the empirical evidence for the theory. I provide a different solution

that reflects the nature of the empirical evidence for the theory and which clarifies the role

that exact models play in underwriting the physical meaningfulness of quantum field theory.

Taken together, the chapters of the dissertation resolve the tension between perturbative

and axiomatic field theory. That is, they show that we can understand how perturbative

quantum field theory achieves its successes, and they show how the lessons learned from

the available models of axiomatic field theory bear on empirically adequate models. The

concluding remarks in Chapter Seven suggest that the resolution of this tension opens the

way for a new approach to interpretive questions about quantum field theory. Establishing

perturbative field theory as an adequate mathematical foundation for philosophical analysis

provides a new perspective on many of the issues that have been debated in the philosophy

of quantum field theory. Moreover, it opens up additional core problems of physical practice

to philosophical analysis. This chapter points to some of these additional applications of the

perspective advocated in the thesis.
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2.0 WHY ARE THERE ULTRAVIOLET DIVERGENCES AT ALL?

One of the central alleged obstacles to the interpretation of perturbative quantum field theory

is the presence of ultraviolet divergences in empirically adequate models. While the presence

of ultraviolet divergences has been taken to be an inevitable consequence of representing

realistic field interactions, I argue that they are in fact an artifact of the failure to correctly

handle to distributional character of field operators in standard characterizations of quantum

field theory. By appealing to techniques from causal perturbation theory, I show that when

the multiplication of distributions is handled correctly, ultraviolet divergences are avoided

and hence renormalization is not necessary. Moreover, this solution to the ultraviolet problem

can be incorporated into axiomatic approaches to quantum field theory. This analysis shows

that what differentiates perturbative and axiomatic field theory is not their treatment of

arbitrarily short distances.

2.1 INTRODUCTION

Ultraviolet divergences have plagued quantum field theory since the very beginning of the

development of quantum electrodynamics. Their presence was first recognized in Pauli and

Heisenberg’s calculation of the second order contribution to the self-energy of the electron

(Heisenberg and Pauli, 1929). This led to persistent worries throughout the 1930’s and

1940’s that the theory was not consistent. The development of covariant renormalization

theory by Schwinger, Feynman, Tomonaga, and Dyson at the end of the 1940’s assuaged

these worries to some extent, but many regarded the procedure of infinite subtractions
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as ad hoc and conceptually unsatisfactory. In the late 1960’s, Wilson’s development of

the renormalization group provided the necessary machinery to give a more conceptually

satisfactory approach to renormalization. This led to the prediction of the scaling behavior

of asymptotic freedom which was subsequently discovered experimentally. It also led to the

interpretation of quantum field theories as effective field theories.

Despite these theoretical and experimental achievements, the philosophy of physics lit-

erature still harbors the nagging suspicion that perturbative quantum field theory is insuf-

ficiently mathematically well-defined to serve as the basis for philosophical investigation.

Ultraviolet divergences and the need for renormalization are often cited as reasons for this

suspicion. Recently, however, a number of authors have developed a different attitude toward

the significance of renormalization for philosophical investigation.1 These renormalization

group realists have advocated that effective field theory actually holds important philosoph-

ical lessons about how theories successfully represent the world. For them, renormalization

is not fundamentally about canceling ultraviolet divergences, but rather it is about studying

how the structure of the theory changes with the energy scale. To be empirically adequate, a

formulation of quantum field theory must have the resources to recover this scaling behavior.

My aim in this chapter is to address the following question: if renormalization is about

describing a real physical process, and not about removing divergences, why are the di-

vergences present in the mathematical structure of the theory at all? Causal perturbation

theory, an axiomatic approach to quantum field theory, provides the necessary resources to

answer this question. I will argue that perturbatively renormalizable theories can be cast

in a way where no ultraviolet divergences arise, and which still recovers the correct scaling

behavior. It follows that there is no problem with the mathematical characterization of

perturbatively renormalizable theories in the ultraviolet region. This conclusion shows that

what differentiates perturbative and axiomatic treatments of quantum field theory is not

their representation of arbitrarily short distances.

1(Wallace, 2011; Fraser, 2016; Williams, 2016)
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The argument proceeds as follows. In Section Two I recall the standard method for iden-

tifying ultraviolet divergences. I then provide an alternative explanation of their presence:

they result from improper multiplications of distributions. The third section shows that by

properly accounting for the distributional character of field operators, causal perturbation

theory leads to a characterization of perturbatively renormalizable theories in which no ul-

traviolet divergences arise and the appropriate scaling behavior can be recovered. I also note

that this resolution to the ultraviolet problem can also be incorporated into algebraic quan-

tum field theory. The fifth concluding section reiterates that taken together, the arguments

of this chapter show that what differentiates axiomatic and perturbative field theory is not

their mathematical treatment of arbitrarily short distances.

2.2 WHENCE THE ULTRAVIOLET PROBLEM?

Ultraviolet divergences are typically diagnosed as resulting from integration over arbitrarily

large momenta in closed internal loops of Feynman graphs. To take a concrete example,

consider the first loop graph contributing to 2-2 scattering in the φ4 model. The contribution

to the amplitude from this graph is:

I(p1, p2, p3, p4) =

∫ ∞
0

ddk

(2π)d
1

(k2 +m2)

1

((p1 + p2 − k)2 +m2)
(2.1)

In the large momentum regime where k � m, pi, this simplifies to:

I(p1, p2, p3, p4) ∝
∫ Λ

0

kd−1

k4
dk =

∫ Λ

0

kd−5dk, (2.2)

where Λ is an ultraviolet regulator. If d < 4, the integral is convergent as Λ→∞, if d = 4,

the integral diverges like ln(Λ), and if d > 4 the integral diverges like powers of Λ. Let

D ≡ d − 4 be the superficial degree of divergence. By counting the powers of the momenta
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in the numerator, denominator, and the integration measure, this quantity can be used to

determine when a Feynman graph contains an ultraviolet divergence. In Minkowski space,

where d = 4, Equation (2.1) is ultraviolet divergent.

This standard approach to identifying ultraviolet divergences in perturbative field theory

is captured with more generality by Weinberg’s power counting theorem (Weinberg, 1960).2

Consider an arbitrary loop Feynman graph with external momenta p1, p2, . . . , pE, and loop

momenta, k1, k2, . . . , kL, in a spacetime of dimension d. The contribution to the amplitude

from such a graph is:

I(p1, . . . pE) =

∫
ddk1 . . . d

dkL
(2π)dL

· N (p1, . . . pE, k1, . . . , kL)

D(p1, . . . pE, k1, . . . , kL)
, (2.3)

where the numerator and the denominator are products of the momenta and propagators.

Weinberg was able to show that integrals are ultraviolet finite if and only if the corresponding

superficial degree of divergence is negative.

This result is helpful because it indicates when renormalization is required. When D ≥ 0,

the behavior of the theory as Λ → ∞ can be studied, and redefinitions of the charges

and masses that render the theory ultraviolet finite can be determined. In perturbatively

renormalizable theories, only a finite number of redefinitions are required, and these need

to be fixed with experimental data. Assuming infrared divergences are also adequately

addressed during this process, the output of this procedure is a well-defined formal power

series the early terms of which can be compared to experiments.

The power counting explanation of the presence of ultraviolet divergences leads to ques-

tions about the interpretation of the ultraviolet regulator. Does it indicate that spacetime

is a lattice? Does it express ignorance of physics above some energy scale? Have we done

irreparable damage to the spacetime symmetries of the theory? In the remainder of this

section my aim is to provide an alternative explanation of the presence of ultraviolet diver-

gences that circumvents these questions and provides a more illuminating account of why

2Helpful discussion of the theorem can be found in (Duncan, 2012, p. 613).
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some models of quantum field theory contain ultraviolet divergences.

The alternative explanation that I have in mind begins by noting that the Feynman

integrals being evaluated contain multiplications of distributions in the integrand. The

operation of multiplication of distributions is not always well-defined. Whether or not it can

be defined is very sensitive to the supports of the distributions. Recall that distributions, φ,

take test functions, f , and give back numbers:

Tf : φ[f ]→
∫ ∞
−∞

φ(x)f(x)dx (2.4)

The space of compact support test functions, D(Rn), is the space C∞Ω (Rn). The space of

regular distributions, D′(Rn), is defined to be:

{T : D(Rn)→ C | T is linear and continuous}. (2.5)

To be in D′(Rn), φ must satisfy,

∫ ∞
−∞

φ(x)f(x)dx <∞, (2.6)

∀f ∈ D(Rn). This is equivalent to requiring that:

∫
Ω

|φ(x)|dx <∞, (2.7)

∀Ω ⊂ Rn, which is just to say φ(x) ∈ L1
Ω(Rn).

This condition shows why pointwise multiplication, (f ·g)(x) = f(x) ·g(x), does not carry

over to regular distributions in general. For it to be the case that f ∈ L1
Ω, f must not have

any singularities that grow faster than 1
xn

, for n ≥ 1. However, if f, g ∈ L1
Ω, and both have

overlapping singularities like 1
xn/2 , f · g has a singularity that goes like 1

xn
so f · g /∈ L1

Ω. In

this case, even though f and g are regular distributions, f · g is not a regular distribution.
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The moral is that one cannot simply multiply distributions without carefully checking their

supports and expect to always get mathematically well-defined results. If you integrate a

product of distributions that is not well-defined, you produce a divergence.

The Feynman integrals discussed above arise in perturbative evaluation of expressions

for the S-matrix that have the form:

S-matrix =
∞∑
n=0

−in

n!

∫
T (φ(x1) · · ·φ(xn))d4x1 . . . d

4xn (2.8)

However, φ(x) is a bounded operator valued function nowhere in spacetime and so the φ(x)

only have mathematical meaning in the sense of distributions. Moreover, the time-ordering

is executed by multiplication by the discontinuous Heaviside function. Thus, the right hand

side of Equation (2.8) contains many products of distributions, but we have not checked

that this operation is well-defined for the φ(x). It turns out that it is not and this, I claim,

is why ultraviolet divergences are present in standard perturbative field theory. This might

seem to make the project of understanding the meaningfulness of perturbative evaluation

hopeless, but in fact, identifying the source of the problem is the first step in the direction

of a solution.

2.3 CAUSAL PERTURBATION THEORY

Causal perturbation theory is an axiomatic approach to quantum field theory that has grown

out of the seminal paper of Epstein and Glaser (Epstein and Glaser, 1973).3 Scharf explains

the motivation for the formalism as follows:

One must only adopt the following two rules. First, use well-defined quantities
only, for example free fields. Second, make justified operations only in the calcu-
lations; in particular do not multiply certain distributions by discontinuous step

3The formalism is clearly developed in (Scharf, 1989) and (Scharf, 2001). The presentation given here is
based on the discussion in (Prange, 1999; Helling, 2012; Bain, 2013).
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functions. If one really follows these rules, then no infinity can appear and life is
beautiful. (Scharf, 1989, p. V)

In perturbative quantum field theory, the quantity being evaluated is:

S-matrix =
∞∑
n=0

−in

n!

∫
T (φ(x1) · · ·φ(xn))d4x1 . . . d

4xn. (2.9)

In causal perturbation theory a few modifications are made to this expression:

S-matrix =
∞∑
n=0

−in

n!

∫
T (T (x1) · · ·T (xn))g(x1) . . . g(xn)d4x1 . . . d

4xn (2.10)

First, the distributional character of the field operators is explicitly noted. Second, the

g(x1) . . . g(xn) are test functions that cure the infrared divergences of the theory.4

The aim of causal perturbation theory is to produce an order-by-order construction of the

S-matrix where each term, Sn, is a well-defined operator valued distribution corresponding

to a linear operator on a separable Hilbert space. What you find when you produce this

construction is that

Sn ∈ D′(Rn \ {0}) = {T : D(R \ {0})→ C} (2.11)

where,

D(R \ {0}) = {f ∈ D(Rn)|0 /∈ supp(f)} (2.12)

In other words, the construction almost results in regular distributions, but not quite. This

immediately leads one to wonder if a T 0 ∈ D′(Rn \ {0}) can be uniquely extended to a

T ∈ D′(Rn)? That is, can we uniquely reconstruct regular distributions? To answer this

question, we need a measure of the singularity of a distribution at the origin. The scaling

4In fact, this is really just a stopgap measure to make the infrared region sufficiently well-defined to
meaningfully analyze the ultraviolet region. Analysis of the infrared problem is given in Chapter Three.
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degree of T ∈ D′(Rn) at x = 0 is given by:

sd(T ) = inf{ω ∈ R|λωT (λ)
λ→0−→ 0} (2.13)

The power counting arguments of standard perturbative field theory can be thought of as

estimating this scaling degree. If T 0 ∈ D′(Rn \ {0}) is a distribution with sd(T 0) < n, there

is a unique distribution T ∈ D′(Rn) with sd(T ) = sd(T 0) extending T 0. When sd(T 0) ≥ n,

there is not a unique extension. However, there is a unique extension of:

T 0 +
∑

α≤sd(T 0)

Cα∂
αδ(x) (2.14)

This means that to produce a unique extension we need to fix a finite set of numbers, the Cα.

These are analogs of the renormalization corrections of standard perturbative field theory.

You can even recover the scaling behavior in this formalism (Prange, 1999). This means that

causal perturbation theory recovers everything that is required to treat empirically adequate

models, and no ultraviolet divergence appears in the theory.

The criticism of axiomatic field theory in (Wallace, 2011) focuses on the structure of

the theory at arbitrarily short distances. However, I have argued that a close analog of the

Wightman formalism is capable of treating arbitrarily short distances just as well as standard

perturbative quantum field theory. The resolution to the ultraviolet problem provided by

causal perturbation theory can also be smoothly incorporated into algebraic quantum field

theory.

Although this work does not provide quantum field models satisfying the HAK
or Wightman axioms, it falls comfortably within the framework of AQFT, since
the primary objects are, again, nets of local ∗-algebras generated by observables
which are Poincaré covariant and satisfy Einstein causality and, again, the work
is carried out with complete mathematical rigor. However, when these authors
speak of representations in Hilbert spaces, the Hilbert spaces are vector spaces
over the field C[[λ]], not over C. So taking expectations of observables in states
in this approach results in a formal complex power series, not a complex number.
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Hence, in order to make the connection to experiments one must deliberately
consider a partial sum of this series, i.e. consider the perturbation series only to
a finite order, as is done in heuristic QFT. Since these series are not convergent,
one is returned to the question ‘Is there an exact model?’ (Summers, 2012, pp.
47-48)

The moral that should be drawn from this analysis is that what differentiates perturbative

and axiomatic field theory is not their treatment of arbitrarily short distances.

2.4 CONCLUSION

Causal perturbation theory provides the machinery required to characterize empirically ad-

equate models of quantum field theory in an entirely ultraviolet finite way. This shows that

what differentiates perturbative and axiomatic field theory is not their treatment of the very

high energy regime. It should be noted that I am not advocating abandoning standard

perturbative field theory for causal perturbation theory. Rather, my claim is that causal

perturbation theory provides an illuminating account of why perturbative renormalization

theory is necessary and effective. The remaining problems with perturbative field theory are

infrared and large-order divergences. These problems are discussed in Chapter Three and

Chapter Four, respectively.
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3.0 HAAG’S THEOREM, APPARENT INCONSISTENCY, AND THE

EMPIRICAL ADEQUACY OF QUANTUM FIELD THEORY

Haag’s theorem demonstrates the inconsistency of a collection of assumptions adopted in the

perturbative approach to quantum field theory. The theorem results from infrared problems

with the theory and presents a seemingly intractable problem for perturbative quantum field

theory. Earman and Fraser have clarified how it is possible to give mathematically consistent

calculations in scattering theory despite the theorem by appealing to results from axiomatic

and constructive field theory. However, their analysis does not fully address the worry raised

by the result. In particular, I argue that their approach fails to be a complete explanation of

why Haag’s theorem does not undermine claims about the empirical adequacy of particular

quantum field theories. I then show that such empirical adequacy claims are protected from

Haag’s result by the techniques that are required to obtain theoretical predictions for real-

istic experimental observables. The regularization and renormalization techniques required

to insulate models from their ultraviolet and infrared divergences break the assumptions re-

quired to prove the theorem. As a result, the output of perturbative renormalization theory

is a collection of well-defined formal power series. Recognizing this motivates analysis of the

convergence behavior of these series, a task I take up in Chapter Four.

3.1 INTRODUCTION

Despite the often noted empirical successes of the Standard Model of particle physics, the

quantum field theories on which it is based have been shown to be mathematically ques-
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tionable in a number of respects. One such mathematical problem is captured by a result

originally proved by Haag1, and subsequently generalized by Hall and Wightman2.3 Haag’s

theorem has received significant attention because it raises the specter of inconsistency in

the context of interacting quantum field theories. For example, Teller claims that because of

the theorem “. . . there appears to be no known consistent formalism within which interacting

quantum field theory can be expressed” (Teller, 1995, p. 115).4 If this claim was correct,

then it would be difficult to understand how so much empirical evidence for the interacting

quantum field theories that make up the Standard Model has been accumulated. Roughly,

the theorem shows that the assumptions required to form the interaction picture in which

scattering theory calculations are carried out are consistent only in the case of non-interacting

theories. In this sense, the theorem does establish the inconsistency of a set of assumptions

that are sometimes simultaneously assumed to hold in interacting quantum field theories.

In this paper I show why this does not undermine the empirical adequacy claims that are

taken to support the quantum field theories that make up the Standard Model.

Earman and Fraser have made progress in this direction by arguing that previous at-

tempts to articulate the foundational significance of the theorem tend toward “overstate-

ment” and even “hyperventilation” (Earman and Fraser, 2006, p. 305, p. 323). Their

analysis leads them to three central conclusions. First, the theorem emphasizes the im-

portance of unitarily inequivalent representations of the canonical commutation relations,

whose existence in quantum field theory distinguish it from non-relativistic quantum me-

chanics. Second, it makes it clear that non-Fock representations have an important role to

play in quantum field theory. Finally they claim that the theorem undermines the standard

interaction picture formalism and the approaches to scattering theory that depend on it.

In particular they claim that “. . . while Haag’s theorem does not show that no quantum

1(Haag, 1955)
2(Hall and Wightman, 1957)
3The complex historical development of the theorem is recounted in (Lupher, 2005).
4Earman and Fraser note that similar claims can be found in (Barton, 1963, p. 157), (Huggett and

Weingard, 1994, p. 376), and (Sklar, 2000, p. 28).

23



field theory exists which differs from a free field theory, it does pose problems for some of

the techniques used in textbook physics for extracting physical predictions from the theory”

(Earman and Fraser, 2006, p. 306). They diagnose the strong reaction to the theorem in

the literature as referring to this fact (Earman and Fraser, 2006, pp. 306-307). While I

agree with the first two conclusions that they draw concerning the importance of the the-

orem, this paper provides further analysis of the third. This further analysis is necessary

in order to properly understand how Haag’s theorem bears on the issues of consistency and

empirical adequacy for quantum field theory.5 The textbook calculations they refer to have

played an important role in establishing the empirical adequacy of particular models of the

theory. If Haag’s theorem shows such calculations to be predicated on an inconsistent set of

assumptions, then those empirical adequacy claims are unreliable.

Scattering theory calculations are the basis for comparison between quantum field the-

ories and experiments, and thus some explanation for why field-theoretic scattering theory

matches empirical data, despite Haag’s result, is required. In order to explain this success

Earman and Fraser appeal to a mathematically rigorous formalism for scattering theory

due to Haag and Ruelle which circumvents Haag’s theorem. While this formalism does

demonstrate that scattering theory can be formalized in a mathematically consistent man-

ner, the existence of such a formalism does not fully resolve the worry raised by Haag’s

theorem because it does not explain why theoretical predictions for realistic experimental

observables give empirically adequate results. There is, however, a clear reason why such

theoretical calculations are not undermined by Haag’s theorem; namely, in those cases where

the interaction picture is employed the calculational techniques that are required to extract

predictions from empirically adequate field theories violate some of the assumptions required

to prove the theorem. In other cases, the theoretical calculations that are used to compare

to experiments simply do not use the interaction picture in any way. It is these facts that ex-

plain why Haag’s theorem does not directly undermine claims about the empirical adequacy

5Earman and Fraser agree as they note that their analysis leaves “. . . unfinished business in explaining
why perturbation theory works as well as it does” (Earman and Fraser, 2006, pp. 306-307).
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of quantum field theories.

This situation shows that Haag’s theorem is illustrative of a general tension which exists

in much of the literature that is engaged with the philosophical appraisal of the foundations

of quantum field theory. It is often unclear how fully mathematically rigorous models inform

claims about the actual world because they are defined in reduced spacetime dimension or

do not represent realistic interactions. Conversely, it is often not obvious whether or not

one should assign interpretive significance to the changes to the mathematical formalism

that are required to render calculations of physical observables well-defined. A complete

understanding of the significance of Haag’s theorem requires analysis of how it bears on

both of these problems. I argue that Haag’s theorem should be understood as a constraint

on the nature of the relation between results obtained in perturbation theory and exact

non-perturbative characterizations of quantum field theories, in the sense that it rules out

one particular method for forming the infrared limit of a fully regularized theory.

My argument proceeds as follows. The second section briefly introduces the interaction

picture formalism for scattering theory and explains how Haag’s theorem shows that it is

predicated on an inconsistent set of assumptions. In the third section I consider Earman

and Fraser’s explanation of the success of scattering theory and show that it does not resolve

the worry that empirical adequacy claims are undermined by the result. The fourth section

shows how the calculational techniques required to obtain empirical predictions avoid Haag’s

theorem by considering examples of calculations in quantum electrodynamics and quantum

chromodynamics. In the concluding section I address how Haag’s theorem bears on the

relation between perturbative calculations and exact non-perturbative structure.

3.2 HAAG’S THEOREM AND THE INTERACTION PICTURE

Haag’s theorem undermines the interaction picture and the standard approach to scattering

theory. It does so by showing that the assumptions required to formulate the interaction
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picture are inconsistent with the presence of a non-trivial interaction in the theory. Thus,

when the interaction picture is used for calculations in theories like quantum electrodynam-

ics which contain interactions, the calculations possess an apparent mathematical inconsis-

tency. Furthermore, there is good reason to worry that this renders empirical adequacy

claims for particular field theories unreliable. Scattering theory provides the critical connec-

tion between a quantum field theory and experimental observables such as cross-sections.

Empirical adequacy claims for quantum field theories are based on the agreement between

cross-sections calculated with scattering theory and cross-sections observed in experiments

at particle accelerators. When the quantum field theories of the Standard Model are used

in such calculations they yield results that closely match the observed values for the quan-

tities. Much of the direct evidence for the empirical adequacy of the Standard Model is

derived, either directly or indirectly, from comparisons of this sort. In some cases, these

theoretical calculations use the interaction picture formalism which is undermined by Haag’s

theorem. In this way, the theorem seems to show that the formalism that has produced

what can be counted among the most precisely confirmed predictions of any physical theory

is mathematically inconsistent.

The interaction picture is an intermediate between the Schrödinger picture, in which

states evolve in time under the full Hamiltonian and operators are stationary, and the Heisen-

berg picture, in which states are stationary and operators evolve under the full Hamiltonian.6

States and operators in the interaction picture are given the subscript, I. The time evolu-

tion of operators in the Heisenberg picture is determined by the Heisenberg equation of

motion: ∂OH(t)/∂t = −i [OH(t), H]. Operators in the Schrödinger picture are related to the

Heisenberg picture by the transformation, OS = e−iHtOH(t)eiHt, and the states are related

by, ψS(t) = e−iHtψH . These transformations leave the matrix elements of corresponding

6Throughout, the subscripts, H, and, S, denote the Heisenberg and Schrödinger picture, respectively.
The Hamiltonian is the same in the Heisenberg and Schrödinger pictures and thus does not need a subscript.
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operators invariant,

H〈ψ|OH(t)|φ〉H = H〈ψ|eiHte−iHtOH(t)eiHte−iHt|ψ〉H (3.1)

= S〈ψ(t)|OS|φ(t)〉S,

and in this sense they are empirically equivalent. The interaction picture is formed by

writing the full Hamiltonian as H = H0 + H1, where H0 is the free Hamiltonian and H1

characterizes the interaction. The interaction picture is then defined by letting the evolution

of the operators be implemented by H0 and the evolution of the states be implemented by H1.

It is connected to the Schrödinger picture by the transformations, OI(t) = eiH
0
StOSe

−iH0
St,

and, ψI(t) = eiH
0
StψS(t). All three pictures agree at t = 0, as ψI(0) = ψS(O) = ψH and

OI(0) = OH(0) = OS.

These relations allow for the perturbative expansion of the time evolution operator which

is defined by the relation ψ(t1) = U(t1, t0)ψI(t0). Using the transformations connecting the

pictures it can be shown that,

U(t, t0) =
∞∑
n=0

(−i)n

n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT (H1
I (t1) . . . H1

I (tn)). (3.2)

The S-matrix can then be defined in terms of the time evolution operator by,

Sjk = lim
t2→∞

lim
t1→−∞

〈φk|U(t2, t1)|φj〉, (3.3)

and thus, inserting the expansion for the time evolution operator yields the Dyson expansion

for the S-matrix,

S =
∞∑
n=0

(−i)n

n!

∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtnT (H1
I (t1) . . . H1

I (tn)), (3.4)

where the time ordered product rearranges the operators in the order of descending time
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argument. In general, H1
I is a product of free field operators describing the interaction

between the fields. Evaluating the time ordered product of these products of field operators

in the Dyson expansion can be simplified through an application of Wick’s theorem. This

theorem allows for the time ordered products in the expansion to be rewritten as a sum of

contracted normal products, which are vacuum expectation values of time ordered interaction

picture field operators.7 This technique allows for the perturbative evaluation of S-matrix

elements for processes involving particular initial and final states. The interaction picture

is essential for this perturbative evaluation because for t = ±∞, in the interaction picture

the Hilbert space representation is simply the Fock representation for the free field. This

makes it possible to explicitly calculate vacuum expectation values of products of interaction

picture field operators.8

There are three primary obstacles to the well-definedness of this approach to the per-

turbative evaluation of field theoretic quantities, only one of which is related to Haag’s

theorem.9 The first two problems with the perturbative evaluation of Equation (3.4) come

from the presence of ultraviolet and infrared divergences, respectively. Both types of diver-

gences render individual terms in the sum infinite and thus the whole expression ill-defined.

There are techniques for isolating and controlling these divergences. These methods, and

how they restore the validity of perturbative evaluation of Equation (3.4) will be discussed

in Section 4. The third problem is that one is considering the sum of an infinite set of terms

and it must be determined whether or not that sum converges. There is reason to think that

in empirically interesting models it does not.10 The final section of this paper explains an

approach to understanding the meaningfulness of perturbation theory in face of this third

problem. Of the three obstacles to assigning meaning to the expression for the S-matrix,

only the presence of infrared divergences is related to Haag’s theorem. This class of diver-

7A detailed explanation can be found in, for example, (Greiner and Reinhardt, 1996).
8This is not clear in the other pictures because one does not have an explicit representation of the field

operators at asymptotic times.
9A clear discussion of all three problems can be found in (Haag, 1992a, pp. 70-71).

10There are arguments going back to (Dyson, 1952) that suggest that the expansion in fact diverges in
empirically interesting models. This has been confirmed rigorously in some simplified models.
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gences prevents the establishment of a global unitary transformation between the free and

interacting fields, a critical assumption required for forming the interaction picture.

Earman and Fraser provide a clear exposition of Haag’s original argument and explain

how Hall and Wightman generalized the theorem.11 My aim here is to review some of the

standard assumptions that go into the proof of the theorem and to show how the theorem

undermines the existence of a global unitary transformation connecting the free and interact-

ing fields. As Earman and Fraser correctly note, all of the assumptions required for the proof

of the theorem are adopted in the approach to scattering theory based on the interaction

picture. Many of these assumptions are also taken as axioms in the Wightman formalism

for quantum field theory.12 Others are introduced specifically for the construction of the

interaction picture for the perturbative evaluation of observables. The Wightman formalism

consists of a set of statements about the properties of a collection of vacuum expectation

values for a theory which together exhaust its physical content. They capture physical prin-

ciples that are assumed to obtain for the objects described by the perturbative evaluation

of field theoretic quantities. As Duncan explains, the proof of Haag’s theorem can be un-

derstood as proceeding in two stages (Duncan, 2012, p. 366). In the first stage it is shown

that if two collections of field operators are globally unitarily equivalent, then the vacuum

expectation values of products of those field operators at equal times must be identical. The

second step is to show that this equality extends to arbitrary spacetime arguments of the

fields. An application of the Wightman reconstruction theorem then ensures that the con-

clusion for field theories characterized in terms of vacuum expectation values also applies to

field theories characterized in terms of operators acting on a Hilbert space.

Consider two neutral scalar fields φj, j = 1, 2, with conjugate momenta πj, where for

each j, (φj, πj) is an irreducible representation of the equal time canonical commutation

11Haag’s original version of the theorem fails to be fully general since it restricts attention to a particular
class of Hamiltonians. The generalization due to Hall and Wightman closes this gap by extending Haag’s
result to cover all Hamiltonians. Additional helpful exposition can be found in (Duncan, 2012).

12For the details of this approach see, for example, (Streater and Wightman, 1964, pp. 96-102).
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relations,

[φj(~x, t), πj(~x
′, t)] = iδ(~x− ~x ′) j = 1, 2 (3.5)

[φj(~x, t), φj(~x
′, t)] = [πj(~x, t), πj(~x

′, t)] = 0.

Suppose further that the Euclidean transformations consisting of translations, ~a, and rota-

tions, R, are implemented by unitary operators Uj(~a,R),

Uj(~a,R)φj(~x, t)U
−1
j (~a,R) = φj(R~x+ ~a, t) (3.6)

Uj(~a,R)πj(~x, t)U
−1
j (~a,R) = πj(R~x+ ~a, t).

These are standard assumptions used in perturbative calculations and in the Wightman for-

malism. Finally suppose that at some time t the fields are related by a unitary transformation

V (t),

φ2(~x, t) = V (t)φ1(~x, t)V −1(t), π2(~x, t) = V (t)π1(~x, t)V −1(t). (3.7)

This is an assumption necessary for the construction of the interaction picture. These as-

sumptions are sufficient to show that if there are unique normalizable Euclidean invariant

states |0j〉,13 then they must be related by, c|02〉 = V (t)|01〉 where |c| = ±1. From this,

the equality of the vacuum expectation values for products of equal time field operators

follows directly.14 The extension of this equality to arbitrary spacetime arguments requires

additional assumptions. Critically, the extension requires the full Poincaré invariance of

the theory. Specifically, if (~a,Λ) are Poincaré transformations implemented by the unitary

13Earman and Fraser note that this assumption follows from the classification of representations of the
inhomogeneous Lorentz group (Earman and Fraser, 2006, pp. 321-322).

14The details of the calculation are given in (Duncan, 2012, pp. 367-368).
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operators Tj(~a,Λ), then the fields transform as,

Tj(~a,Λ)φj(x) = φj(Λ~x+ ~a), (3.8)

and the |0j〉 satisfy,

Tj(~a,Λ)|0j〉 = |0j〉. (3.9)

The content of Hall and Wightman’s generalization of Haag’s argument is that on these

assumptions, if φ1 is a free field then its vacuum expectation values are equal to those of φ2.

This entails that they will also agree on all of their S-matrix elements.

Another way to state the content of the theorem is that if one assumes that the fields

belong to the same Hilbert space representation, then if one of the fields is free, they are

both free. It follows that free and interacting fields cannot belong to the same Hilbert space

representation, an assumption on which the perturbative evaluation of field theoretic quanti-

ties in the interaction picture is predicated. For this reason, Haag’s theorem undermines the

approach to scattering theory based on the interaction picture in any theory satisfying the

conditions of the theorem. Earman and Fraser claim that “. . . the problem brought to light

by Haag’s theorem is not directly related to the employment of perturbation theory as an

approximation method; all of the assumptions of [Haag’s] theorem are embraced before the

perturbation series is even introduced” (Earman and Fraser, 2006, p. 322). This is a point

which merits further clarification. They are correct that the theorem is not concerned with

the expansion of field theoretic quantities in a power series in general. What Haag’s theo-

rem undermines is precisely the pertubative evaluation of field theoretic observables in the

interaction picture in particular. This is undermined by the theorem because the strategy

that this method adopts for perturbative evaluation of observables requires the existence of

a global unitary transformation connecting the free and interacting fields that the theorem

shows not to exist.
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The Hall and Wightman generalization of the theorem holds for any pair of neutral

scalar fields fields and any Hamiltonian satisfying the conditions of the theorem. In order

to determine whether more physically relevant theories are plagued by an analogous result

requires determining whether or not the result applies in the case of theories involving higher

spin fields and in theories that couple different kinds of fields together. Generalizations of

the theorem show that the interaction picture does not exist in essentially all cases in which

the free and interacting Hamiltonians are defined on a continuum spacetime with the full

Poincaré group as its spacetime symmetries and differ non-trivially. For the case of uncharged

scalar fields, this level of generality is already present in the Hall-Wightman version of the

theorem introduced here. Duncan has argued that as the complexity of the interaction

in a theory grows, it is increasingly likely that there will fail to be unitary transformations

connecting the Fock states of the free and interacting theories, and thus when more physically

relevant interactions are considered, there is good reason to expect that an analog of Haag’s

theorem will obtain.15 For this reason, the theorem seems to show that empirical adequacy

claims based on interaction picture calculations are unreliable.

3.3 EARMAN AND FRASER ON SCATTERING THEORY

This section considers how Earman and Fraser attempt to explain the success of scatter-

ing theory despite Haag’s theorem. Their two part explanation appeals to techniques from

axiomatic and constructive field theory. More specifically, they appeal to Haag-Ruelle scat-

tering theory and theorems which establish the existence of local unitary equivalence between

free and interacting theories. It should be made clear that they do not present their explana-

tion as a full answer to the question of why the interaction picture and perturbation theory

work. Instead they “point to what [they] believe is a critical piece in the overall scheme”

(Earman and Fraser, 2006, p. 322), and later they claim to have “indicated one route to such

15For a more detailed discussion of the generalization of the theorem see (Duncan, 2012, pp. 363-369).
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an explanation” (Earman and Fraser, 2006, p. 333). They are not explicit about what, in

their view, is missing from their account. This section explicitly identifies a critical respect

in which their explanation of the success of perturbative calculations in scattering theory is

deficient.

The first part of Earman and Fraser’s explanation relies on the fact that Haag’s the-

orem spoils global unitary equivalence, but it does not necessarily rule out local unitary

equivalence. In some cases local unitary equivalence can be established, and they claim that

when this is the case it underwrites a “. . . a perfectly good sense in which the interaction

picture and perturbation theory do work . . . at least for physical quantities that matter for

explaining experimental outcomes” (Earman and Fraser, 2006, pp. 323-324). They seem to

have in mind that what actually gets measured are observables corresponding to localized

spacetime regions. To illustrate how this explanation works they consider the example of a

theory of two free scalar fields with different masses, φm1 , and φm2 , with the masses related

by m2 = m1 + δm. In this case they note that local unitary equivalence can be rigorously

established.16

For Earman and Fraser, this shows why perturbation theory can be used to explain the

results of experiments on local observables using such a theory. They note that this solution

to the problem is also a viable one in the case of (φ4)2 theory, the theory of a self-interacting

neutral scalar field in one space and one time dimension. While this is a more physically

relevant interaction than the mass shift in their first example, it is highly simplified in that

it is defined in reduced spacetime dimension. Many of the models which have successfully

been constructed are defined in fewer than four spacetime dimensions because such models

tend to have less severe divergences. Earman and Fraser explain that since (φ4)2 theory

does not have ultraviolet divergences and the restriction to bounded regions of spacetime

involved in the definition of local unitary equivalence removes the possibility of infrared

16The precise sense of local unitary equivalence that they appeal to is the following one: “Given any
bounded region B ⊂ R3 and the free fields φm1

, πm1
and φm2

, πm2
acting on the respective Hilbert spaces,

H1 and H2, there is a unitary map VB : H1 → H2 such that VBφm1
(f)V −1

B = φm2
(f) and VBπm1

(f)V −1
B =

πm2
(f) for all suitable test functions f with support in B” (Reed and Simon, 1975, p. 329).
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divergences, it was to be expected that local unitary equivalence could be established in

this case. They then note that in higher spacetime dimensions the ultraviolet problems

become worse, the full power of renormalization methods are required for the theory to be

well-defined, and local unitary equivalence is spoiled. Earman and Fraser then declare that

“. . . Haag’s theorem is not responsible for the problems created by ultraviolet divergences,

so solving them is beyond the scope of this paper” (Earman and Fraser, 2006, p. 323).

It is true that Haag’s theorem captures a mathematical problem associated with infrared

and not ultraviolet divergences. However, in the next section I will argue that, in order to

understand the success of the perturbative evaluation of scattering matrix elements, all three

mathematical problems with Equation (3.4) introduced above need to be resolved. In this

sense, the solution to the problem of ultraviolet divergences does play a role in restoring the

validity of the interaction picture. What should be noted at this point is that the solution of

the problem by appeal to local unitary equivalence is only demonstrably valid in the case of

a handful of simplified models, and not in the field theories in four-dimensional Minkowski

space that make up the Standard Model. Since such realistic theories all contain ultraviolet

divergences, there is good reason to expect that local unitary equivalence will be spoiled in

those cases as well.

The second part of Earman and Fraser’s explanation is an appeal to the formalism for

scattering theory developed by Haag and Ruelle.17 This framework begins by assuming that

the theory in question satisfies the Wightman axioms and then stipulates that they also

satisfy an additional condition on the spectrum of the Hamiltonian to ensure the existence

of a mass gap.18 The central idea of their framework is to rigorously construct the Hilbert

spaces Hin and Hout spanned by the states before and after the scattering using elements

from the full Hilbert space, H, in the asymptotic limit where t→ ±∞. Earman and Fraser

note that “This formalism is not subject to Haag’s theorem because - unlike the interaction

17(Haag, 1958; Ruelle, 1962)
18That is, it is required that the operator P 2 = PµP

µ has an isolated eigenvalue m2 > 0, corresponding
to the single particle states, and the remaining part of the spectrum is continuous, beginning at (2m)2. See,
for example, (Iagolnitzer, 1993, p. 72) for further discussion.
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picture - it neither posits nor entails the existence of a unitary transformation connecting

H (or Hin or Hout) to HF that relates the interacting field to a free field” (Earman and

Fraser, 2006, p. 326). This approach thus seems to afford the possibility of circumventing

the problem raised by Haag’s theorem entirely.19

With respect to the interpretive significance of this formalism Earman and Fraser note

that “. . . the Haag-Ruelle approach shows how to maneuver around [Haag’s theorem] to

obtain in QFT analogues for most of the significant features of ordinary scattering theory”

(Earman and Fraser, 2006, p. 326). They do not raise any particular features as examples,

but it is certainly true that for the models to which the Haag-Ruelle theory applies, the

formalism shows how to obtain many of the features of standard scattering theory without

running afoul of Haag’s theorem. One of the central benefits of the constructive approach

to scattering theory is that it goes even further and affords explanations for features of

the perturbative treatment of the theory that typically must be taken as assumptions.20

Moreover, since explicit models can be constructed, it is clear that the Haag-Ruelle theory

is based on a mathematically consistent framework.

This part of Earman and Fraser’s explanation of the success of scattering theory is limited

in very much the same way as the first part. In particular, it can only be shown to be valid

in certain simplified models21 and it is not clear that the explanatory significance can be

exported from those models to cases of experimental interest. There is no known model of

a field theory with local gauge symmetry defined in four-dimensional Minkowski space that

satisfies the Wightman axioms and exhibits a mass gap. The field theories that make up

the Standard Model are all, however, local gauge theories. This undermines the ability of

19It is not unique in this respect. As Bain has emphasized, the LSZ formalism is also able to escape the
force of Haag’s result in a related way (Bain, 2000).

20These features include the presence of the clustering property. While in perturbative treatments of the
theory this property is simply assumed as a phenomenological constraint which rules out dependence between
far separated scattering experiments, in the Haag-Ruelle formalism it can be recovered as a consequence of
the Wightman framework for quantum field theory. Another such feature is the existence of the asymptotic
states. Whereas in the LSZ formalism asymptotic completeness is assumed, this feature is recovered as a
theorem in the Haag-Ruelle formalism. See (Strocchi, 2013, p. 123) for further discussion.

21The models in which the Haag-Ruelle theory can be shown to apply include weakly coupled P (φ)2, φ43,
and sine-Gordon2 theories. See (Summers, 2012, pp. 11-12, 16-17, 24) for discussion.
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the Haag-Ruelle theory to explain the success of scattering theory in realistic theories in a

straightforward way.

At this stage one might object that none of the discussion up to this point rules out

the possibility that more physically relevant theories will be shown to satisfy the Wightman

axioms or some modified set of axioms characterizing the non-perturbative content of the

theory. This is certainly an open possibility, and if it was accomplished then empirically

adequate theories could be treated using Haag-Ruelle theory or some close analog for the

new axiomatization. Moreover, if this were achieved then Earman and Fraser would have

provided an adequate explanation for how scattering theory can be done in a mathematically

consistent manner despite Haag’s theorem. However, there remains a clear sense in which

their explanation is deficient as a response to the question of why scattering theory works

despite Haag’s theorem.

In order to show that empirical adequacy claims for particular quantum field theories are

safe from the theorem, it must be shown that the theoretical predictions that are actually

used to match with data are not affected by Haag’s result. For Earman and Fraser’s response

to the theorem to be helpful for this task, it would need to be the case that the theoretical

predictions are calculated using the constructive formalism to which they appeal. I have

already noted the reason why this cannot be the case: the techniques they appeal to are

not demonstrably applicable in the cases of the theories of experimental interest. In some

cases, theoretical predictions have been calculated using the interaction picture formalism

whose validity Haag’s result casts into doubt. Other techniques for obtaining theoretical

predictions are also used, but they are not the constructive techniques to which Earman

and Fraser appeal. For these reasons I claim that Earman and Fraser have not provided an

explanation of why empirical adequacy claims for quantum field theory are not undermined

by the theorem. As a result, a complete explanation for why scattering theory works is

still lacking. In the next section I argue that the techniques employed in the calculation of

realistic experimental observables render some of the assumptions of Haag’s theorem false.
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It is on this basis that one can conclude that Haag’s theorem does not undermine empirical

adequacy claims.

3.4 HAAG’S THEOREM AND EMPIRICAL ADEQUACY

If the theoretical calculations that are used to compare with experiments were in fact shown

to be invalid by Haag’s theorem, it would undermine much of the direct evidence for the

Standard Model. The concern about inconsistency raised by the theorem can, however, be

resolved by looking to the techniques that are used in the calculations that are compared with

experiments. In some calculations the interaction picture is not used. In other calculations

regularization and renormalization techniques render some of the assumptions of Haag’s

theorem false and thus show how it is possible to obtain meaningful answers using the

interaction picture formalism. In both cases I submit that there is no stage in the calculation

at which the quantities in question are ill-defined because of Haag’s theorem and it is this

fact that grounds the reliability of empirical adequacy claims in the face of the theorem.

In theories with strong coupling, such as quantum chromodynamics at low energies, the

interaction picture formalism is not used. Since the coupling is strong, the parameter in which

one is expanding is large and perturbation theory cannot be expected to give meaningful

answers.22 In this case a different approach to generating predictions is necessary. Strongly

coupled theories can be regularized by placement on a Euclidean lattice, and contributions

to expressions for physical observables can be approximated numerically. Realistic modern

experiments frequently have contributions from quantum chromodynamic processes, and thus

empirical adequacy claims are dependent on these calculational techniques.23 Of course, in

22Quantum chromodynamics at high energy can be treated perturbatively because the coupling runs to
smaller values. However, this perturbative treatment requires that a lattice regularization is imposed. The
significance of Haag’s theorem for perturbative evaluation of a fully regularized theory is addressed below.

23There is a sense in which these calculations are non-perturbative; namely, numerical values are extracted
from the theory by a method other than perturbation theory. Note that this is a different sense of ‘non-
perturbative’ from the one used throughout this dissertation. I have reserved this term for exact continuum
models of axiomatic articulations of the content of the theory.
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this case, the interaction picture simply is not employed at any point in the calculation, and

Haag’s theorem provides no obstacle to the calculation of experimental observables.

There are, however, cases in which the interaction picture is used to calculate physical

observables. This is the context in which Haag’s theorem raises a legitimate concern about

empirical adequacy claims. The interaction picture was first introduced by Schwinger in

(Schwinger, 1948b). One of the motivations for its introduction was to facilitate the calcula-

tion of the anomalous magnetic moment of the electron and thus to provide a critical test of

the empirical adequacy of quantum electrodynamics. Since its introduction, the perturbative

evaluation of vacuum expectation values and S-matrix elements for weakly coupled theories

like quantum electrodynamics has relied on the interaction picture formalism. An adequate

explanation of the success of scattering theory must show why such calculations give values

that match empirical data despite Haag’s theorem.

Rendering the perturbative evaluation of S-matrix elements for interacting quantum field

theories well-defined requires that all three problems with Equation (3.4) by addressed. Reg-

ularization and renormalization techniques are used to isolate and control the infrared and

ultraviolet divergences in the theory. There are several different regularization schemes which

can be used to control ultraviolet divergences. The simplest example of such an ultraviolet

regularization is the imposition of a short distance, or equivalently large momentum, cutoff.24

When a long distance cutoff is also imposed to control the infrared divergences, the theory

is reduced to a finite number of degrees of freedom. Once a regularization is in place, the

theory can be renormalized. At the end of a calculation the regularizations can be removed

by taking the limit where the spacetime approaches continuous and infinite Minkowski space,

thus restoring the full symmetry properties of the theory.

The full regularization that is imposed to control ultraviolet and infrared divergences

breaks the Poincaré invariance of the theory. Recall that this an essential assumption re-

quired to prove Haag’s theorem. In the fully regularized theory, each contribution to the

24The details of regularization and renormalization techniques can be found in most standard texts on
quantum field theory. For a more comprehensive presentation see (Collins, 1984).
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perturbative expansion is thus well-defined when it is evaluated. With the regularization in

place the perturbative expansion for the S-matrix elements defined by Equation (3.4) can

proceed order by order. The number of terms that must be summed to obtain the contribu-

tion from each order grows rapidly, and thus the state of the art only allows for perturbation

theory calculations at a few orders for most important observables. The essential thing to

note is that what gets compared to experimental data is the sum of the first few terms of

the expansion. Since all of the terms in the sum are well-defined when they are calculated,

there simply is no problem caused by Haag’s theorem. The perspective that I am advocat-

ing has recently been argued for by Duncan.25 He claims that “...the proper response to

Haag’s theorem is simply a frank admission that the same regularizations needed to make

proper mathematical sense of the dynamics of an interacting field theory at each stage of a

perturbative calculation will do double duty in restoring the applicability of the interaction

picture at intermediate stages of the calculation” (Duncan, 2012, p. 370).26 I agree with

Duncan that the regularizations used to control the ultraviolet and infrared divergences are

what preserves the reliability of perturbative calculations in the face of Haag’s theorem, but

there is one further concern that must be addressed.

One might worry that this resolution to the problem is not completely general. In par-

ticular, there is more than one approach to regularizing and renormalizing field theories.

Moreover, each method has different effects on the symmetries of the theory. Some methods

break Poincaré invariance and others break gauge invariance. Which technique gets used for

a particular calculation depends on which properties of the theory one wants to preserve.

Thus, to put the worry precisely, one might wonder if some of these techniques leave the full

Poincaré symmetry intact.27 If this were the case then it would seem that such calculations

are still subject to Haag’s theorem. Consider, for example, the technique of dimensional reg-

ularization. Rather than imposing cutoffs one continues the spacetime dimension to 4 − ε.
25Butterfield’s review of Duncan’s book draws attention to the importance of this argument (Butterfield,

2015).
26A similar perspective can also be found in (Strocchi, 2013, p. 52).
27I am grateful to Kerry McKenzie for pressing me on this point.
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This has the benefit of preserving gauge invariance. The question of Poincaré invariance

is more sensitive as the exact spacetime symmetries of Minkowski space are not restored

until the dimension is continued back to 4. However, for the purposes of my argument what

is critical to note is that dimensional regularization also affords the capability to control

infrared divergences.28 In order to achieve reliable perturbative results using dimensional

regularization, the infrared divergences must be addressed using such techniques.

In practice, empirical adequacy claims often involve sums of contributions to different

orders obtained using different regularization techniques. Consider, for example, the calcu-

lation of the anomalous magnetic moment of the electron. The best theoretical calculation

of this observable matches experimental data to more than 10 decimal places. The first or-

der contribution to this quantity was originally calculated by Schwinger (Schwinger, 1949).

During the process of the calculation, he encounters an infrared divergence. To control it he

introduces a minimum wave number for the photons in the theory, which is equivalent to the

imposition of a maximum wavelength and thus a long distance cutoff.29 Since this quantity

provides such a critical precision test of the theory, significant effort has been dedicated

to calculating additional orders of perturbation theory beyond the leading term.30 Some

intermediate orders can be calculated analytically, but this analytic evaluation requires reg-

ularizations that break Poincaré invariance. The highest orders require the computation of a

very large number of complicated terms and must be computed numerically. This of course

requires that the theory be reduced to a finite number of degrees of freedom and so again

Haag’s theorem is rendered inapplicable.

The real difficulty raised by Haag’s theorem then, is to understand why contributions

from the first few orders of perturbation theory give empirically adequate results, even though

when the full symmetries are restored by taking the infinite volume limit and removing the

ultraviolet regularization, the formalism used to obtain those results becomes ill-defined.

28For the details of this approach see (Gastmans and Meuldermans, 1973) and (Marciano and Sirlin, 1975).
29See equation 1.107 of (Schwinger, 1949, p. 801).
30(Kinoshita, 1990; Roskies et al., 1990; Aoyama et al., 2012; Kinoshita, 2014)
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The best available explanation of this fact is that the observables that get compared to

exeriment are insensitive to the removal of the infrared cutoff.31 Through regularization

and renormalization, perturbation theory provides well-defined formal power-series for such

observables. The third problem with Equation (3.4) is the problem of determining whether

or not these formal power-series converge and thus correspond to exact non-perturbative

objects. Haag’s theorem is related to this issue only in that it is an obstacle to the well-

definedness of the individual terms of the perturbative expansion, and I have argued that it

is an obstacle that is overcome through regularization and renormalization.

In this sense, part of the significance of Haag’s theorem is that it complicates the relation-

ship between the perturbative content of the theory and our best available characterizations

of its non-perturbative structure. Note however, that the result is not unique in this respect.

The question of how numerical data from fully regularized theories is related to exact non-

perturbative structure is a very general one, and about which much information is available

from sources other than Haag’s theorem. Even in quantum chromodynamics, where the in-

teraction picture is not used and there is no problem with Haag’s theorem, a similar question

arises. Results are calculated on a lattice and in some cases give empirically adequate results.

However, the full continuum theory corresponding to the limits in which the regularizations

are removed has not been shown to be an exact model of the axioms that characterize the

structure of the theory.

3.5 CONCLUSION

I have argued that empirical adequacy claims are not undermined by Haag’s theorem because

the regularizations and renormalization required to give clear meaning to the perturbative

31Such observables are called infrared safe. In quantum electrodynamics, the KLN theorem (Kinoshita,
1962; Lee and Nauenberg, 1964), motivated by work of Bloch and Nordsieck (Bloch and Nordsieck, 1937),
ensures that observables are infrared safe. In the case of quantum chromodynamics, determining which
observables are infrared safe is more difficult. See (Muta, 2010) for a detailed discussion.
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evaluation of vacuum expectation values and S-matrix elements also quell the problems

associated with the infrared divergences implicated in Haag’s theorem. The constructive

approach to field theory takes as its starting point physical assumptions that are believed to

obtain in the empirically adequate models that can currently only be treated perturbatively.

According to this perspective, axiomatic articulations of the non-perturbative structure of

the theory amount to expressions of the basic physical properties that need to be satisfied

in the continuum and infinite volume limits in order to have what can properly be counted

as a relativistic quantum field theory. However, as I have stressed above, the theories of the

Standard Model cannot be shown to satisfy the axioms. Obtaining numerical information

from them for comparison with experiment requires that they be regularized in ways that

render some of the conclusions that can be reached in the unregularized theory, including

Haag’s theorem, inapplicable. It follows that achieving a complete understanding of why

scattering theory does work requires a resolution to the tension between the mathematical

characterization of the non-perturbative structure of the theory and the techniques that are

required to obtain successful empirical predictions using that structure.

Reactions to Haag’s theorem are illustrative of a general tension which exists among

much of the literature that attempts to address the interpretation of quantum field theory.

It is not obvious what the rigorous models have to do with the actual world because they

are defined in a spacetime with dimension other than four or without realistic interactions.

At the same time, the modifications to the mathematical formalism required to render the

expressions characterizing empirically relevant models well-defined seem to correspond to

physically substantive changes according to standard approaches to interpretation. There

are two ways that this tension might be resolved. First, it could be that further work will

lead to existence proofs for more physically relevant models. If this were achieved then the

Haag-Ruelle formalism that Earman and Fraser appeal to could underwrite the success of

scattering theory directly. Much of the literature appraising the philosophical significance of

quantum field theory seems to be predicated on the hope that this goal will be achieved. In
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fact, some authors seem to think that this is a necessary condition for quantum field theory

to be a foundationally respectable theory, and that absent such a development claims about

perturbative field theory are mathematically unintelligible. However, there is no assurance

that physically relevant theories are in fact models of the axioms. If they are not, then

one could appropriately view the inability to construct models of the axioms as a source

of physical information. In this case, the success of scattering theory would need to be

accounted for in a more elaborate way.

Further evidence that a more elaborate account is necessary comes from attempts to

address the third, and in my opinion, the most important problem with perturbative expan-

sions for empirically adequate models. Even though the first few terms in the expansion give

a result which agrees closely with experiment, when the contributions from higher orders of

perturbation theory are included, the series goes on to diverge. The divergence in question

is independent from the ultraviolet and infrared divergences that are controlled with regu-

larization and renormalization. The perturbation series itself diverges, even once the theory

has been renormalized to render each term in the expansion finite. This problem is not

related to Haag’s theorem, which I have argued is only a challenge to providing well-defined

formal power series. The question is whether these formal power series correspond to exact

objects, and the divergence of perturbation suggests that they do not.32 An explanation of

the success of scattering theory should also account for the fact that taking the first few

terms of what are widely believed to be divergent expansions give such remarkably accurate

results.

The empirical adequacy of the first partial sums despite the eventual divergence when

the series is summed to all orders can, in fact, be explained. The explanation is provided by

the conjecture that empirically successful perturbative expansions are asymptotic to exact

solutions of a theory that generates them. Asymptoticity is a precisely defined relation

32The reason divergence is only suggestive is that it does not rule out that the expansion can be summed
by a method such as Borel-summation which uniquely assosciates a divergent expansion with an exactly
determined object.
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between a series expansion and the function being expanded. The condition ensures that

the differences between the exact value of the function and the partial sums of the series

are appropriately small for each fixed order of perturbation theory. When series satisfying

this condition are summed to all orders they typically diverge. However, their first partial

sums often approximate the exact value of the function to many decimal places of accuracy.

It is in this sense that the conjecture that empirically adequate expansions are asymptotic

to some unknow exact theory that generates them accounts for their success despite their

divergence.33

Many non-perturbative structures can yield the same asymptotic expansion. Thus, the

conjecture that perturbation theory for a quantum field theory yields asymptotic expansions

does not uniquely fix what non-perturbative structure lies behind the empirical success of

the theory. The more elaborate account I have in mind must address how well perturbative

data can constrain the non-perturbative structure of the theory, as well as the fact that the

empirical information that we glean from experiments seems to exhibit a level of insensitivity

to the exact non-perturbative structure. The analysis of this chapter shows that Haag’s the-

orem does not undermine empirical adequacy claims, and it also shows that the theorem does

not undermine the use of perturbation theory as a guide to determining non-perturbative

structure.

33The condition of asymptoticity is explained in detail in Chapter Four.
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4.0 ON THE COMMON STRUCTURE OF PERTURBATIVE AND

AXIOMATIC FIELD THEORY IN BOREL SUMMABLE MODELS

Chapters Two and Three considered what seemed to be insurmountable obstacles to the

interpretation of perturbative quantum field theory. Individual orders of the perturbative

expansion are infinite because of the short and long distance regimes of the theory. How-

ever, the terms can be regularized and renormalized in a way that produces a collection

of well-defined formal power series. This motivates a close examination of the convergence

properties of these series. That is the task I take up in this chapter. The analysis shows that

the series are divergent, but nevertheless, asymptotic to exact structures. Noting this shows

that in every case where a model of axiomatic quantum field theory has been shown to exist,

the perturbative treatment of that model exactly and uniquely determines the constructive

model. In other words, perturbative and axiomatic field theory share a common structure

for a restricted class of models. This class fails to extend, however, to empirically adequate

models. The empirically adequate models contain additional large-order singularities that

inhibit their unique reconstruction from perturbative data. Despite this I show that a rigor-

ous characterization of the empirical content of the theory can still be recovered from their

divergent perturbative expansions. What differentiates this characterization of the empirical

content of the theory from those required in standard accounts of interpretation is that it

has precisely defined, but limited, precision. What differentiates axiomatic and perturbative

field theory is not their respective levels of mathematical rigor, but rather that perturbative

field theory avails itself of the expressive resources of statements of empirical content with

limited precision that result from truncating perturbative expansions at low-order.
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4.1 INTRODUCTION

Efforts to discern what successful theoretical representations reveal about the world are

complicated by the presence of structural underdetermination. Such underdetermination

can take a variety of forms, each of which pose unique challenges to interpreters of a given

theory.1 The particular form of structural underdetermination that will be addressed in

this chapter results from the existence of multiple formalisms for capturing the content

of a theory. This situation is common in the practice of physics. The Hamiltonian and

Lagrangian formalism provide distinct structural realizations of classical mechanics, and

wave mechanics and matrix mechanics provide distinct structural realizations of quantum

mechanics, for example. In situations where more than one formalism is available, intepreters

have two options: either show that the formalisms give equivalent descriptions of the domain

that they represent, or find grounds for privileging one of the formalisms to serve as the basis

for interpretation.

The received wisdom in the philosophy of physics literature is that the first option is not

available in the case of quantum field theory. Smeenk and Myrvold express this received

wisdom when they claim that:

A gulf separates axiomatic treatments from the methods used by most working
physicists. And in this case the gulf is deeper than the usual divide between
physicists’ relaxed standards of rigor and the sophistication of the mathemati-
cians. History of physics offers several examples where apparently quite different
formulations turned out to be equivalent versions of a single theory. But in this
case it is clear that such a reconciliation of different approaches cannot be easily
achieved. (Smeenk and Myrvold, 2011)

The question of which formalism is more appropriate for serving as the basis for interpre-

tive conclusions is the subject of a recent debate between Fraser (Fraser, 2011) and Wallace

(Wallace, 2011). They both contend that the perturbative and axiomatic approaches should

1A reasonably comprehensive survey of the various forms of structural underdetermination claims, as well
as discussion of how they arise in quantum field theory, can be found in (French, 2014).
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be viewed as competing research programs. Wallace, for example, defends the claim that

they “. . . should be understood as rival programs to resolve the mathematical and physical

pathologies of renormalization theory, and that [perturbative field theory] has succeeded in

this task and AQFT has failed” (Wallace, 2011, p. 116). Fraser agrees with the character-

ization in terms of rival research programs but argues for favoring axiomatic approaches to

characterizing the content of the theory(Fraser, 2011, p. 126).

The second option of privileging one formalism is most attractive when all of the senses of

success of the theory can be achieved within the privileged formalism. Quantum field theory

is successful in two distinct senses. First, it provides theoretical predictions for cross sections

that match experimental data to unprecedented accuracy. Second, it provides a unification

of the successful theoretical frameworks on which it is based; namely, quantum mechanics

and special relativity. The project of interpreting quantum field theory is complicated by

the fact that its empirical and theoretical successes are difficult to achieve simultaneously.

The empirical successes of the theory are achieved within the standard perturbative formal-

ism, whereas the theoretical unification is usually best captured by axiomatic approaches

to characterizing the content of the theory. What inhibits the simultaneous achievement of

both senses of success is that the empirically successful models of the perturbative formalism

have not been shown to be models of any of the axiomatic frameworks.

In support of the perturbative formalism Wallace notes that it provides models that

have produced the most stringently tested predictions of any physical theory in history.

Moreover, he notes that the axiomatic approach has yet to provide any physically relevant

models. Wallace claims that the two programs are “conceptually incompatible” approaches

to the problem of renormalization (Wallace, 2011, p. 119). In support of the axiomatic

approach, Fraser argues that all of its constructions are mathematically well-defined, and

it can reasonably be hoped that further progress will yield physically relevant models. On

the other hand, Fraser claims that the success of renormalization group methods at the

conceptual core of the program Wallace defends “. . . illuminates the empirical content of
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QFT, but not the theoretical content” (Fraser, 2011, p. 126). Moreover she notes that the

perturbative approach of physicists requires mathematical operations that are not rigorous.

Their debate thus arrives at an alleged forced choice between empirical adequacy on the one

hand, and mathematical rigor and conceptual clarity on the other.

In this chapter I will argue against this alleged forced choice by showing that option one

can actually be profitably pursued. In section two I introduce a condition of full intertrans-

latability of formalisms, and I show that a number of axiomatic formalisms for quantum

field theory, including the Wightman axioms, satisfy the condition. In section three I intro-

duce a condition of partial intertranslatability and I show that this condition obtains for the

perturbative formalism and the Osterwalder-Schrader axioms. The most important conse-

quence of this argument is that it shows that in every case where a model of the Wightman

axioms is available, perturbative treatment of that model exactly and uniquely recovers the

axiomatically characterized model. This section also clarifies the nature of the connection

between algebraic quantum field theory and the Wightman axioms. In the fourth section

I explain why perturbative field theory and axiomatic field theory are not fully intertrans-

latable. In particular, I show that what differentiate the formalisms is not their respective

levels of mathematical rigor. Rather what differentiates them is that perturbative field theory

avails itself of the expressive resources of statements of empirical content that have precisely

defined, but limited, precision. The final section shows how the arguments of the paper

restore the possibility of pursuing option one, and thus opens a route to a new approach to

interpretation that can be applied to empirically adequate models.

4.2 FULL INTERTRANSLATABILITY

There are several different axiomatic formulations of the non-perturbative content of quan-

tum field theory. This section provides an account of the interrelationships between three ax-

iomatic formalisms; the Wightman-G̊arding axioms, the Wightman axioms, and the Osterwalder-
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Schrader axioms. The central aim of this section to show that all three of these formalisms

provide fully intertranslatable characterizations of the domain of local, relativistic, quantum

fields. Two formalisms F1 and F2 are fully intertranslatable just in case the existence of an

arbitrary model of F1 guarantees the existence of a unique model of F2.2 A series of re-

construction theorems underwrite the full intertranslatability of these axiomatic formalisms.

The Wightman reconstruction theorem establishes the intertranslatability of the Wightman-

G̊arding axioms and the Wightman axioms, while the Osterwalder-Schrader reconstruction

theorem serves the same purpose for the Wightman axioms and the Osterwalder-Schrader

axioms.

Of all of the systems of axioms for quantum field theory, the Wightman-G̊arding ax-

ioms provide what is most readily identifiable as a relativistic quantum theory.3 The basic

mathematical objects which the axioms characterize are a concrete Hilbert space, a set of

field operators that act on a common dense domain of the Hilbert space, and a unitary

representation of the Poincaré group. A spectrum condition is imposed along with the re-

quirement of the uniqueness of the vacuum, and microcausality.4 The G̊arding-Wightman

axioms and the Wightman axioms are connected by the Wightman reconstruction theorem.

The Wightman axioms are not stated directly in terms of a Hilbert space. Rather, they

are conditions on a set of Wightman distributions {Wn}, which are elements of the space

of tempered distributions. These are the basic mathematical objects in this axiomatization

of the theory.5 The reconstruction theorem holds that if {Wn}∞n=0 is a sequence satisfying

the Wightman axioms, then there exists a unique model obeying the Wightman-G̊arding ax-

ioms. This shows that from a set of Wightman distributions one is able to recover the more

familiar Hilbert space formalism through the reconstruction theorem. This reconstruction

theorem establishes a full intertranslatability between the two formalisms as the existence

2This is a slightly weaker notion of intertranslatability than the one given in (Glymour, 1977).
3The presentation here follows the one in (Simon, 1974). This article provides explicit statements of the

Wightman-G̊arding, Wightman, and Osterwalder-Schrader axioms in a consistent notation.
4These are conditions GW1-GW6 of (Simon, 1974).
5They are given by conditions W1-W6 of (Simon, 1974).
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of a model of one formalism guarantees the existence of a model of the other.

The Wightman axioms are also connected to the axiomatization of Osterwalder and

Schrader (Osterwalder and Schrader, 1973, 1975). In their formalism, the basic mathe-

matical objects are the Schwinger functions. These functions are related to the Wightman

distributions by a transformation which takes the Minkowski spacetime point arguments of

the Wightman distributions to points in Euclidean space. If x = (x0, x1, x2, x3) is a point

in Minkowski space, let xE = (−ix0, x1, x2, x3) be the corresponding point in Euclidean

space. Then the Schwinger functions are given by, Sn(x1, . . . , xn) = Wn(xE1 , . . . , x
E
n ). This

transformation to Euclidean space is more commonly known in the standard perturbative

formalism as Wick rotation. The idea of the Wick rotation is to transform the Minkowski

space metric into the Euclidean metric, by allowing the Minkowski time coordinate, x0, to

take on complex values. In this case, the Minkowski metric becomes the Euclidean metric

when the time is restricted to the imaginary axis. Problems in Minkowski space are thus

transformed into problems in Euclidean space by making the substitution x0 → −ix0.

By determining a set of conditions on Schwinger functions,6 Osterwalder and Schrader

were able to prove the following reconstruction theorem. To a given sequence of Wight-

man distributions satisfying the Wightman axioms, there corresponds a unique sequence of

Schwinger functions satisfying the Osterwalder-Schrader axioms. Moreover, to a given se-

quence of Schwinger functions satisfying the Osterwalder-Schrader axioms, there corresponds

a unique sequence of Wightman distributions satisfying the Wightman axioms.7 Just as in

the previous case, the existence of a model of one formalism guarantees the existence of a

model of the other and so establishes full intertranslatability.

6Conditions OS1-OS5 of (Simon, 1974).
7There was an error in the original proof of the second part of this theorem. Osterwalder and Schrader

corrected the problem by modifying their condition specifying the temperedness of their functions. Both
versions of the condition, OS1 and OS1’ are stated in (Simon, 1974).
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4.3 PARTIAL INTERTRANSLATABILITY

The condition for full intertranslatability of formalisms introduced in the previous section

appealed to arbitrary models, that is, arbitrary collections of mathematical structures sat-

isfying the axioms. A weaker condition of intertranslatability can be given if one allows for

appeal to model dependent features. If a model of F2 can exactly and uniquely be recon-

structed from a particular model of F1, F1 and F2 share a common structure for that model.

For my purposes, F1 and F2 are partially intertranslatable if F1 and F2 share a common

structure for at least one model. In this section I will argue that perturbative quantum field

theory and the Osterwalder-Schrader axioms are partially intertranslatable in this sense:

they share a common structure for a non-empty set of models. As a consequence of the full

intertranslatabilities established in the last section it follows that the perturbative formalism

is partially intertranslatable with the Wightman axioms and the Wightman-G̊arding axioms

as well.

Though it is not often expressed in these terms, in setting up a perturbative calculation

one begins with a conjecture about the non-perturbative structure of the theory. The stan-

dard perturbative formalism proceeds from an assumed non-perturbative structure much

like the one characterized by the Wightman axioms. After Wick rotation the assumed non-

perturbative structure is the one characterized by the Osterwalder-Schrader axioms. If the

perturbative evaluation of the assumed non-perturbative structure resulted in convergent

expansions, then perturbation theory would yield an exact model of the conjectured non-

perturbative structure. However, in the case of empirically interesting models perturbation

theory yields divergent expansions. Dyson produced the first argument for the large-order

divergence of perturbation theory for quantum electrodynamics (Dyson, 1952). Let,

F (e2) = a0 + a2e
2 + a4e

4 + . . . , (4.1)
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be a formal power series expansion for a quantity in the theory. Dyson’s argument proceeds

by supposing that this expansion converges for some small positive value of e2, the coupling

determining the strength of the interaction in the theory. Then F (e2) is an analytic function

at e = 0, so for sufficiently small values of e, F (−e2) will also be an analytic function

with convergent power series expansion. He then notes that the −e2 case corresponds to a

world in which like charges attract. This results in an unphysical instability of the vacuum,

as states of lower energy can be created out of the vacuum by pair production with two

large like-charge collections moving to far separated regions of the universe. This instability

of the vacuum is not compatible with analyticity of the function being expanded, so he

concludes that the expansion cannot converge for this negative value of the coupling. Thus,

he concludes that the expansion for F (e2) cannot converge either. Concerning the validity of

the argument he notes that “The argument here presented is lacking in mathematical rigor

and in physical precision. It is intended only to be suggestive, to serve as a basis for further,

discussions” (Dyson, 1952, p. 631). This is of course correct, but the argument is deeply

suggestive and it motivated further attempts to understand the convergence properties of

quantum field theories.

In the year following the publication of Dyson’s argument, Hurst, Thirring, and Pe-

termann all produced additional arguments for the divergence of perturbation theory in a

particular simplified field theory models (Hurst, 1952; Thirring, 1953; Petermann, 1953).

They each found lower bounds for the contributions from sub-collections of the set of terms

in the expansion that were relatively simple to evaluate and showed that those alone were

sufficient to make the series divergent. These arguments are also inconclusive because there

is no assurance that the terms not considered provide sufficient cancellation to render the

whole expansion convergent. This illustrates one of the central difficulties in understanding

the large-order convergence properties of perturbation theory. Namely, one needs a precise

understanding of the large-order terms in the expansion. In quantum field theory, renor-

malization often results in changes to the large order terms in a non-uniform way, creating
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unreliable patterns of alternating signs. This makes it difficult to understand to what ex-

tent there is cancellation between the terms, which makes it hard to rigorously establish

divergence. Models in reduced spacetime dimension and without interactions have simpler

renormalized expansions and so it is in this context that constructive field theorists have

been able to rigorously demonstrate that perturbation theory is in fact divergent. It is

widely believed that perturbation theory diverges in the case of empirically adequate models

as well, though this remains to be proved.

Before providing his argument, Dyson notes that had it been possible to show that the

perturbative expansions were all convergent, “then the theoretical framework of quantum

electrodynamics could have been considered closed, being within its limits a complete and

consistent theory” (Dyson, 1952, p. 631). On the other hand he claims that “The divergence

[of perturbation theory in QED] in no way restricts the accuracy of practical calculations

that can be made with the theory, but raises important questions of principle concerning the

nature of the physical concepts upon which the theory is built” (Dyson, 1952, p. 631). For

Dyson, the divergence of perturbation theory resulted in a lack of clarity about the concepts

employed in the theory which undermined its claims to completeness and consistency. In-

terestingly, he thought that this did not necessarily undermine the predictive success of the

theory. This is an exceedingly important point, and one which is neglected in the philosophy

of physics literature. The most difficult obstacle to the well-definedness of perturbative field

theory is not the ultraviolet divergences that have been the locus of attention, but rather

the large-order divergence of perturbation theory.

At the end of his paper, Dyson explains that the success of the first few terms of the

expansion at matching with experiment can be explained by the conjecture that the per-

turbative expansion is asymptotic to some as yet undetermined function. To this day, our

best explanation of the success of quantum electrodynamics and quantum chromodynam-

ics remains the asymptotic nature of their perturbative expansions. In the regime of small

coupling, as in quantum electrodynamics or quantum chromodynamics at high energy, this
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would produce the following expected behavior.8 When a series is asymptotic to a function,

the partial sums of the first few terms in the series yield increasingly accurate approxima-

tions to the function. After the smallest term in the series the terms begin to grow and

the partial sums rapidly deviate from the close approximation as those larger orders are in-

cluded. When all orders are included the series yields an infinite value and thus an infinitely

bad approximation to the function. This is precisely the observed behavior of perturbation

theory for empirically adequate models of quantum field theory and it is in this sense that

Dyson’s conjecture of asympoticity accounts for the empirical success of perturbative field

theory.

The property of asymptoticity turns out to be the critical key for understanding how

perturbative field theory is related to the Osterwalder-Schrader axioms.9

Definition 4.1. For f(z) a function defined in a sector of the complex plane S = {z | 0 <

|z| < B; | arg z| ≤ θ}, the series
∑∞

n=0 anz
n is asymptotic to f(z) uniformly in the sector as

|z| ↓ 0 iff for every fixed N ,

lim
z↓0

| arg z|≤θ

f(z)−
∑N

n=0 anz
n

zN
= 0. (4.2)

It follows immediately from this definition that each function has a unique asymptotic ex-

pansion, since if the limit exists it is unique. However, two different functions can have the

same asymptotic expansion. To see this consider f(z) = exp(−z−1) with z > 0. In this case

z−nf(z)→ 0 as z ↓ 0, and thus this f(z) has the series with all zero coefficients as its asymp-

totic series. Since such small exponentials can be added to a function without changing the

asymptotic series, it follows that knowledge of an asymptotic series for a function g(z) gives

no information about the exact value of g(z) for any nonzero z.

8At low energies or correspondingly long distances, QCD becomes strongly coupled and perturbation
theory is known not to be informative. In this case a nonperturbative lattice regularization is necessary to
obtain meaningful numerical information from the theory.

9The presentation here follows the one given in Reed and Simon (1978).
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One might reasonably wonder if there is some condition stronger than that the series is

asymptotic to the function, but weaker than that the series is convergent, which determines

the function uniquely. The following definition specifies just such a condition.

Definition 4.2. A function f(z), which is analytic in S = {zz | 0 < |z| < B; | arg z| <
1
2
π + ε}, is said to obey the strong asymptotic condition and has

∑∞
n=0 anz

n as its strong

asymptotic series if there exist C and σ such that

∣∣∣∣∣f(z)−
N∑
n=0

anz
n

∣∣∣∣∣ ≤ CσN+1(N + 1)!|z|N+1 (4.3)

for all N and z ∈ S.

This definition furnishes the desired theorem.

Theorem 4.3. Suppose
∑∞

n=0 anz
n is a strong asymptotic series for analytic functions f(z)

and g(z) in S. Then f(z) = g(z) ∀z ∈ S .

Moreover, if one knows the strong asymptotic series of a function, then the function can be

uniquely reconstructed by Borel resummation. This is captured by the following theorem.

Theorem 4.4. Suppose that
∑∞

n=0 anz
n is a strong asymptotic series for f(z) in S = {z | 0 <

|z| < B; | arg z| < 1
2
π + ε}. Consider the Borel transform:

g(z′) =
∞∑
n=0

an
n!
z′n, (4.4)

which is analytic in some circle around z′ = 0 because of the strong asymptotic condition.

Then, if |z| < B and | arg z| < ε, then

f(z) =

∫ ∞
0

g(z′z)e−z
′
dz′. (4.5)

When a divergent perturbative expansion is strongly asymptotic to a function, the expansion

exactly and uniquely determines that function.
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This result makes it possible to show that perturbative field theory and the Osterwalder-

Schrader axioms are partially intertranslatable. Recall that two formalism are partially

intertranslatable if they share a common structure for at least one model. In fact, Borel

summation has been used to show that perturbative field theory exactly and uniquely recov-

ers the P (φ)2 models, the φ4
3 model, and the Y2 model.10 One might object that this class

of common structure only includes superrenormalizable models and that the real failure of

intertranslatability should be expected only in strictly renormalizable models. There are two

available replies. The first is to note that Borel summability has been established for GN2,

a strictly renormalizable model.11 The second, and more pertinent, reply is that the real

wedge between axiomatic and perturbative field theory is not in their treatment of arbitrarily

short distances as emphasized in Chapter Two. The wedge is how they treat the large-order

divergences of perturbation theory. The cases of Borel summability show that in many of the

situations where a constructive model is available, perturbative and axiomatic field theory

agree on the large-order behavior of the model. In this sense, the perturbative formalism

and the Osterwalder-Schrader axioms are partially intertranslatable. The full intertranslata-

bilities established in the last section show that the results introduced here establish the

partial intertranslatability of the perturbative formalism and the Wightman axioms and the

Wightman-G̊arding axioms as well.

These results provide a significant clarification to the nature of the relationship between

perturbative and axiomatic field theory. Moreover, they clarify the mathematical status of

the empirically adequate models. I have already noted that the best explanation of the em-

pirical success of the low-orders of perturbation theory is best explained by the conjecture

that the perturbative expansion is asymptotic to an exact model. One might reasonably

wonder if the expansions are strongly asymptotic and thus can be uniquely associated with

an exact model through Borel summation. Interestingly, the answer to this question turns

out to be negative. In quantum electrodynamics and quantum chromodynamics there are

10(Eckmann et al., 1975; Magnen and Sénéor, 1977; Renouard, 1979)
11(Feldman et al., 1986)
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singularities along the positive real axis of the Borel plane which make the unique recon-

struction of the function impossible, by disrupting the integration required to reconstruct

the function.12 These singularities result from field configurations corresponding to what

are called instantons, the number of which grow like n!, and renormalons, individual graphs

that contain n bubble insertions, for n the order of perturbation theory. The division by n!

in the Borel transform is insufficient to completely tame this large-order divergent behavior.

This does not mean that the empirically adequate models are mathematically ill-defined.

Rather, they hold information about the world in a different way than we have grown accus-

tomed to. The situation is captured nicely in the following remark of Magnen and Rivasseau:

Constructive field theory builds functions whose Taylor expansion is perturba-
tive field theory. Any formal power series being asymptotic to infinitely many
smooth functions, perturbative field theory alone does not give any well defined
mathematical recipe to compute to arbitrary accuracy any physical number, so
in a deep sense it is no theory at all. (Magnen and Rivasseau, 2008, p. 403, my
emphasis)

The first part of this remark is a restatement of the claim I have argued for in this section.

When constructive models are available, perturbative treatment of the model exactly and

uniquely recovers the model. When the strong asymptotic condition fails and the model is

not uniquely recoverable from the perturbative data, further analysis is required. At this

stage I will simply note that the inference from the fact that empirically adequate models do

not determine their empirical content to arbitrary precision, to the claim that they cannot

be construed as theories, strikes me as unnecessarily drastic. In Chapter Five I will develop

approach according to which non Borel summable models can be construed as theories, whose

characterization of their empirical content is inexact.

12Details can be found in ’t Hooft’s contribution to (Zichichi, 1979).
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4.4 CONCLUSION

Clarifying the connections between the different formalisms has important consequences for

the project of interpreting the theory. As there are multiple formalisms for quantum field

theory, interpreters seem to face a choice of which formalism should serve as the basis for

interpretive conclusions. The importance of axiomatic approaches for interpretive questions

is typically motivated by the claim that they provide the only available mathematically

rigorous characterization of the theory. Consider, for example, the following remark of

Halvorson concerning the algebraic approach13 to axiomatic quantum field theory:

...philosophers of physics have taken their object of study to be theories, where
theories correspond to mathematical objects (perhaps sets of models). But it is
not so clear where “quantum field theory” can be located in the mathematical
universe. In the absence of some sort of mathematically intelligible description
of QFT, the philosopher of physics has two options: either find a new way to
understand the task of interpretation, or remain silent about the interpretation
of quantum field theory.

It is for this reason that AQFT is of particular interest for the foundations of
quantum field theory. In short, AQFT is our best story about where QFT lives
in the mathematical universe, and so is a natural starting point for foundational
inquires. (Halvorson and Muger, 2006, pp.731-732)

It should be clear at this stage of my argument that the mathematical situation with the

theory is in fact significantly more subtle than Halvorson makes it out to be. First, there

are axiomatic formalisms other than the algebraic axioms of Haag and Kastler which are

indisputably mathematically intelligible. These include the Wightman-G̊arding axioms, the

Wightman axioms, and the Osterwalder-Schrader axioms. Second, and more interestingly,

the perturbative formalism on which Halvorson is casting aspersions turns out to be equally

mathematically intelligible. In those instances where models of axiomatic field theory are

13The statement of the algebraic axioms can be found, for example, in (Haag, 1992b). There exists a series
of results which capture the conditions under which the existence of a model of the Haag-Kastler axioms
guarantees the existence of a model of the Wightman axioms, and vice versa. See, for example, (Borchers and
Yngvason, 1975, 1990, 1992; Buchholz, 1990; Driessler et al., 1986; Fredenhagen and Hertel, 1981; Summers,
1987; Wollenberg, 1985, 1986, 1988; Yngvason, 1989).

58



available, the perturbative treatment of those models exactly and uniquely recovers the

models of axiomatic field theory. There remain interesting questions about how to inter-

pret perturbatively characterized empirically adequate models, and those questions are the

subject of Chapter Five and Chapter Six.
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5.0 MATHEMATICAL STRUCTURE AND EMPIRICAL CONTENT

In this chapter I argue that while standard accounts of interpretation adequately address

meaning relations when exact models are available or perturbation theory converges, they

do not fare as well for models that give rise to divergent perturbative expansions. Since

truncations of divergent perturbative expansions often play a critical role in establishing

the empirical adequacy of a theory, this is a serious deficiency. I show how to augment

state-space semantics, a view developed by Beth and van Fraassen, to capture perturba-

tively evaluated observables even in cases where perturbation theory is divergent. This new

approach to interpretation establishes a sense in which the calculations that underwrite the

empirical adequacy of a theory are both meaningful and true, but requires departure from

the assumption that physical meaning is captured entirely by the exact models of a theory.

5.1 INTRODUCTION

Accounts of the interpretation of physical theories have developed in conjunction with, and

in several important cases are attendant to, accounts of the structure of scientific theories.

In other cases novel commitments about interpretation are tacitly adopted in the work of

those interpreting particular physical theories. While there are significant differences between

the accounts, many share a common set of commitments. Ruetsche has provided a helpful

characterization of what is shared between the standard approaches. She explains that

according to them, “. . . to interpret a theory is to characterize the worlds possible according

to it. These worlds are (i) models (in something like the logician’s sense) of the theory, and
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(ii) characterized as physical” (Ruetsche, 2011, p. 7). Standard approaches to interpretation

consist in an account of how physical meaning accrues to the mathematical structure of the

theory.

Even amongst standard approaches, commitments about the second step in Ruetsche’s

schema are widely variegated. Some accounts explicitly take the connection between math-

ematical structure and empirical content to be a map of a particular sort, such as an iso-

morphism, a partial isomorphism, or an embedding. On other accounts the connection is

specified less formally and consists of a metaphysical articulation of the structure of the

worlds picked out by the theory, with the mathematical structure functioning as a guide.

Commitments about the first step of Ruetsche’s schema are comparatively well-regimented.

To specify the models of the theory, one must stipulate the states, dynamics, and kinematics

characteristic of its structure. Ruetsche’s caveat that these structures are models of the the-

ory “in something like the logician’s sense” is required because physicists are more permissive

about structure specification than logicians.1 Axiomatizations in mathematical physics typ-

ically are given in terms of the mathematical objects most natural for the description of the

domain in question, whether they be those of differential geometry, functional analysis, or

some other branch of mathematics.2 This is what differentiates axiomatically characterized

models of mathematical physics from the models of formal logical systems. Standard inter-

preters all agree about the norms of structure specification in that they all require models

to exactly satisfy the dynamical equations of the theory, or the axioms that characterize its

content.

The aim of this chapter is to consider a different approach to structure specification.

Perturbation theory characterizes models as small deviations from models whose structure

can be characterized exactly. This technique is used widely in physical practice, and some-

times it is resorted to as a matter of calculational convenience. For this reason, it is not

1(L. Ruetsche, personal communication, 18 September 2016)
2For example, triples 〈M,Tab, Gab〉 that exactly satisfy the Einstein field equations are models of general

relativity, and the collection of n-point functions for the φ42 field theory is a model of quantum field theory
because they can be shown to exactly satisfy the the Wightman axioms.
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typically regarded by philosophers as a method of structure specification, but instead as a

useful approximation scheme for extracting numerical predictions from exact models. How-

ever, in a number of important cases including quantum field theory and string theory, the

best available characterization of the structure of empirically adequate models is provided by

perturbation theory. This creates tension with the norms of structure specification accepted

by standard interpreters because in these cases no exact model is available. The absence of

an exact model results from the fact that resorting to perturbation theory often results in

divergence. The approximation does not converge to a new exact model. For this reason it

is not clear how to apply standard accounts of interpretation to empirically adequate models

of quantum field theory. In face of this problem it is typically assumed, though often only

tacitly, that there is some exact divergence-free structure to which we currently do not have

access lying behind the success of the theory. On this view, structures satisfying the standard

interpreters’ norms of structure specification are supposed to underly the empirical success

and physical meaningfulness of the theory.

This chapter pursues a different response to the divergences of perturbation theory. I

argue that perturbation theory should not be regarded as an approximation scheme, but

instead that it provides a novel connection between the mathematical structure of a theory

and its empirical content. The strategy I pursue to argue for this claim is to fix on one

explicitly articulated approach to interpretation, the state-space semantics view developed

by Beth and van Fraassen.3 I argue that state-space semantics exemplifies Ruetsche’s char-

acterization of the standard approach to interpretation. While focusing on one particular

approach to interpretation limits the generality of the conclusions established, state-space

semantics exhibits a core feature of most standard accounts by taking meaning relations to

derive from the existence of maps from the exact structure of the theory to statements ex-

pressing its empirical content. I argue that while state-space semantics adequately captures

cases in which perturbation is convergent, it fails to adequately capture the empirical success

3(Beth, 1960; van Fraassen, 1970)
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resulting from truncations of a large class of divergent perturbative expansions.4 I show that

this class cannot be interpreted as an approximation to an exact model. This observation

motivates taking seriously the idea that the empirical content of a theory can have limited

precision, that is, that empirical content can be inexact. I provide an alternative semantics

that does capture the empirical success of truncated divergent expansions by articulating

principled limits on their precision. Exact models play a privileged role in attributions of

physical meaning to the mathematical structure of theories in standard approaches to inter-

pretation. This has had the adverse effect of preventing physical meaning from accruing to

empirically adequate models of quantum field theory. I provide an alternative approach to

interpretation which allows for meaningful attributions of physical content to the models of

the theory that actually make contact with the world.

The argument proceeds as follows. In the second section I consider an example of diver-

gent perturbation theory in quantum field theory. I then review the necessary elements of

the mathematical theory of divergent perturbative expansions. In the third section I argue

that state-space semantics adequately captures the case in which perturbation theory yields

convergent expansions for observables, but fails to do so for divergent perturbation theory.

While truncations of convergent expansions can naturally be interpreted as approximations,

the same is not true of divergent expansions. The aim is not to demonstrate a deficiency of

state-space semantics in particular. Rather, its role in the argument is simply to provide a

concrete target which is explicitly formulated. The assumptions it adopts are also adopted in

many other prominent approaches to the attribution of physical meaning to mathematically

expressed theories. As such, the criticism I provide of state-space semantics in this chapter

applies to many standard accounts.5 The third section also illustrates the limitations of

state-space semantics using examples from classical mechanics and non-relativistic quantum

mechanics.6 These are cases in which truncations of divergent perturbative expansions have

4A truncation of an infinite expansion is the sum of a finite initial segment of the series.
5The details of the argument for that claim will be left to future work.
6The large-order divergences I am concerned with have mistakenly been thought to be a special feature

of quantum field theory. The argument is actually applicable to a wide variety of physical theories.
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been an important factor in establishing the empirical adequacy of a theory. Such cases

require a semantics different from state-space semantics and I provide such an alternative

in Section Four. The final section concludes by emphasizing that dismissing divergent per-

turbation theory as merely an approximation scheme has the pernicious effect of divorcing

physical meaning from empirically adequate models of quantum field theory.

5.2 THE DIVERGENCE OF PERTURBATION THEORY

Perturbation theory is the predominant method for deriving empirical information from phys-

ical theories.7 Suppose one wants to evaluate an expression in a theory involving a function,

f(x), whose exact structure is not necessarily known.8 The function can be perturbatively

evaluated by substituting f(x)→
∑∞

n=0 cnx
n. For this procedure to be effective, x must be

a small parameter describing a deviation from a model that can be characterized exactly.

Perturbation theory converges if the sequence of partial sums SN =
∑N

n=0 cnx
n converges to

a finite limit, that is, limN→∞ SN <∞. Of course, if the limit exists it is unique and so when

perturbation theory converges it uniquely determines the exact value of the function it is

being used to characterize. Perturbation theory is said to diverge if the sequence of partial

sums diverges, that is, limN→∞ SN =∞. In either case, the series can be truncated at some

order N , and early terms in the series can be summed,
∑N

n=0 cnx
n, to give a finite estimate

of the value of the function.

While convergent expansions are considered mathematically well-understood, divergent

expansions have widely been regarded with suspicion since their discovery. This suspicion

is often motivated by appeal to the following remark of Abel: “Divergent series are the

invention of the devil, and it is shameful to base on them any demonstration whatsoever

7Comparatively little philosophical attention has been dedicated to this method. Noteable exceptions
include (Batterman, 1997, 2002, 2007).

8The object being perturbatively evaluated need not be a function. Whether it is a function, an eigenvalue,
an S-matrix element, an n-point function, or some other structure, the discussion below applies equally well.
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. . . ” (Abel and Holmboe, 1839). This section addresses how convergent and divergent

perturbation theory differ as attempts to specify the structure of a theory.

Before turning directly to this task, it is instructive to consider the following example.

The magnetic moment of the electron, g, is a property of electrons when they are exposed to

an external magnetic field. Its value according to the Dirac equation, which treats electrons

as relativistic particles, is exactly 2. In 1947, experimental evidence revealed that the value of

g deviated just slightly from this exact value.9 This evidence motivated physicists to search

for a theoretical prediction of the anomalous magnetic moment of the electron, ae = (g−2)/2.

As noted above, the value of this observable can be calculated in quantum electrodynamics,

a perturbatively characterized model of quantum field theory. Schwinger calculated the first

term in the perturbative expansion which generated a value that correctly predicted the

value of ae within experimental error.10 This successful empirical prediction played a critical

role in convincing physicists to pursue relativistic quantum field theory as the framework

for describing elementary particle physics.11 It is important to note that what provided the

theoretical prediction in this case was the truncation of an infinite perturbative expansion

at its very first term.

The calculation of terms beyond the first order of perturbation theory becomes increas-

ingly difficult.12 The anomalous electron magnetic moment continues to function as a pre-

cision test of quantum electrodynamics and the Standard Model of particle physics, and so

considerable effort has been dedicated to calculating additional orders.13 The difficulty of

the calculation is so great that the current state of the art only allows for the determination

of five orders.14 When these five terms are summed and compared to the experimentally

9(Kusch and Foley, 1947)
10(Schwinger, 1948a, 1949)
11The history of the role of this calculation in demonstrating the empirical adequacy of quantum electro-

dynamics is recounted in detail in (Schweber, 1994).
12This is the case because the number of Feynman graphs contributing to an individual order grows

approximately factorially in the order. The complexity of the integral corresponding to each graph also
grows with the order.

13(Kinoshita, 2014)
14More specifically, it is fifth-order in the fine structure constant which is proportional to the square of

the coupling, so it is tenth-order in the coupling.
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measured value one finds that:

ae (theory) = 0.001159652180(73)15

ae (experiment) = 0.001159652181(78).16

Agreement between theory and experiment to ten decimal places is an indication that the

theory gets something about the world profoundly correct. This agreement is often cited as

evidence that quantum electrodynamics is the most empirically successful physical theory

ever created, and for good reason. Feynman famously explained that the success of this

calculation is tantamount to theoretically determining the distance between Los Angeles

and New York to the width of a human hair (Feynman, 1985, p. 7).

There is, however, a serious problem lurking in the background. There are compelling

arguments going back to (Dyson, 1952) that suggest that the perturbative calculation di-

verges if summed to all orders.17 This means that as additional orders of perturbation theory

are added to the sum, eventually the theoretical prediction will not only deviate from the

experimentally determined value, but it will become infinite. The theory, it seems, is not

empirically adequate at all: it is infinitely wrong about the value of ae. Abel’s caution about

using such series thus seems to have been warranted. Trusting truncations of divergent series

at low orders seems to lead to serious errors. In fact, immediately following his cautionary

note, Abel remarks that: “. . . That most of these things [truncation of divergent series] are

correct, in spite of that, is extraordinarily surprising. I am trying to find a reason for this;

it is an exceedingly interesting question” Abel and Holmboe (1839). The sense in which the

truncations work is that the sum of the low orders of divergent perturbation theory often

yield values in close agreement with empirically determined values. In the century following

15(Aoyama et al., 2012)
16(Hanneke et al., 2008)
17In particular, the arguments suggest that it diverges even after regularization and renormalization tech-

niques are employed to render every individual term of the series finite. This additional complication is
discussed in more detail in Section 4.
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Abel’s remarks, mathematicians developed a completely rigorous theory of divergent expan-

sions. While this mathematical theory provides many critical pieces of the explanation of

their empirical success, below I argue there is an additional philosophical problem which

needs to be resolved in order to understand how they hold empirical content.

When divergent perturbation theory is empirically successful, it is usually an indication

that the perturbative series in question is asymptotic to some exact structure.18 Recall that

a function f(x) is asymptotic to the series
∑∞

n=0 anx
n, f(x) ∼

∑∞
n=0 anx

n, as x → 0 if and

only if for every fixed N ,

lim
x→0

f(x)−
∑N

n=0 anx
n

xN
= 0. (5.1)

Asymptoticity is a condition that requires that the difference between the exact value of the

function and the partial sum of the series that is asymptotic to it is appropriately small,

but not necessarily zero, for every order of perturbation theory. This is a different type of

condition than the one required for convergence to the exact value of a function. Convergence

requires that in the limit where all orders of perturbation theory are included, the difference

between the partial sums of the series and the exact value of the function becomes exactly

zero.

The order-by-order representation of the function provided by an asymptotic series ex-

hibits qualitatively different behavior from that provided by a convergent series. When a

series is convergent to a function, typically the first few partial sums give a rather poor

approximation to the function. As additional orders are included, the approximation even-

tually become better, and as the series is convergent, in the limit where all of the terms are

included the approximation becomes an exact representation of the function. Asymptotic

series behave differently. Their first few partial sums typically give very close agreement with

the exact value of the function. However, when additional orders are included eventually

the partial sums begin to exhibit increasingly poor agreement with the exact value. In the

18This explanation of the success of the anomalous electron magnetic moment calculation was offered by
Dyson immediately upon arguing for the divergence of the calculation (Dyson, 1952).
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limit where all of the terms are included, since the asymptotic series is typically divergent, it

gives a value that is infinitely different from the exact value. This is precisely the behavior

of the series representation of the anomalous electron magnetic moment. It is in this sense

that the conjecture that the first few partial sums come from an asymptotic series explains

the empirical success of the ultimately divergent expansion.

The effectiveness of the truncation of a convergent expansion at approximating a function

is accounted for by the fact that the expansion uniquely determines the function when

summed to all orders. It is natural to wonder if asymptotic expansions similarly constrain

the exact structure lying behind their success. To answer this question, the first relevant

observation to make is that each function has a unique asymptotic expansion: if the limit

in the definition of asymptoticity exists, it follows immediately that it is unique. However,

two different functions can have the same asymptotic expansion. To see why this is the case,

consider f(x) = e−1/x for x > 0. Then f(x) · x−N → 0 as x → 0, so f(x) is asymptotic to

the series that has all zero coefficients. It follows that f(x) can be added to another function

g(x) with non-trivial asymptotic expansion to generate a new function h(x) = f(x) + g(x),

which has the same non-trivial asymptotic expansion as g(x). Repeated application of this

argument can, of course, generate an infinite collection of functions which do not agree

on their exact value anywhere, but which all share the same asymptotic expansion. Thus,

the conjecture that a perturbative expansion is asymptotic to an exact structure does not

uniquely specify what structure that happens to be.

Recall, however, that in chapter four we saw that there is a condition stronger than that

the series is asymptotic to the function, but weaker than that the series is convergent, that

does determine the function uniquely. This is the strong asymptotic condition. A function

f(z), which is analytic in a sector of the complex plane,

S = {z | 0 < |z| < B; | arg z| < 1

2
π + ε},
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is said to obey the strong asymptotic condition and have
∑∞

n=0 anz
n as its strong asymptotic

series if there exist C and σ such that,

∣∣∣∣∣f(z)−
N∑
n=0

anz
n

∣∣∣∣∣ ≤ CσN+1(N + 1)!|z|N+1, (5.2)

for all N and z ∈ S.19 Strong asymptoticity, like asymptoticity, is a condition that requires

the differences between the exact value of the function and its series representation be appro-

priately small for every order of perturbation theory. This condition is important because if∑∞
n=0 anz

n is a strong asymptotic series for analytic functions f(z) and g(z) in a sector S, it

follows that f(z) = g(z) for all z ∈ S. The strong asymptotic series of a function uniquely

determines the function, just as a convergent series does. If one knows the strong asymptotic

series of a function, then the function can be uniquely reconstructed by Borel summation.

Suppose that
∑∞

n=0 anz
n is a strong asymptotic series for f(z) in the sector S, as defined

above. The Borel transform,

g(z′) =
∞∑
n=0

an
n!
z′n, (5.3)

can be used to produce the unique reconstruction of f(z) from its strong asymptotic series,

because for all z such that |z| < B and | arg z| < ε,

f(z) =

∫ ∞
0

g(z′z)e−z
′
dz′. (5.4)

A series is Borel summable if and only if it is strongly asymptotic to a function. When a

series is Borel summable in this manner, the series uniquely determines the function just as

in the case of convergent expansions.

These results are of central importance for assessing the extent to which structure spec-

ification is possible using perturbation theory. When perturbation theory is convergent, the

perturbative expansion provides what is necessary for exact structure specification. The dis-

19Discussion of the origin of the motivation for this bound can be found in (Reed and Simon, 1978).
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cussion of this section shows that when perturbation theory diverges, this question is more

subtle. If the series resulting from the perturbative characterization of a model satisfies the

strong asymptotic condition, the series suffices to exactly specify the structure of the theory.

One is naturally led to wonder whether all instances of empirically successful truncations of

divergent perturbation theory, including the calculation of ae, can be explained using this

fact. If the strong asymptotic condition is not satisfied, the series by itself does not suffice

to pin down the exact structure of the theory. If this is the case for the expansion for ae, it

is not at all clear what the truncated series tells us about the exact model underwriting this

empirically successful calculation.

5.3 STATE-SPACE SEMANTICS

State-space semantics, a view due to Beth and van Fraassen, exemplifies the standard account

of how mathematical structure supports the meaning of physical claims.20 This section

investigates whether or not state-space semantics adequately captures the truth conditions

for models that are characterized perturbatively. I show that the answer is negative in the

case of models that are not Borel-summable. It should be noted though that this is not

intended as a critique of only state-space semantics. My aim is to make plausible that a

similar problem faces all approaches to interpretation that rely on a map from an exact

mathematical structure to empirical content. The role of state-space semantics is simply

to provide a concrete proposal in which exact and perturbative models can be directly

compared.

The semantics consists of three ingredients; a state-space, a collection of elementary phys-

ical statements, and a satisfaction function. Many physical theories introduce an abstract

20The view is introduced and discussed in (Beth, 1960; van Fraassen, 1967, 1970; Arntzenius, 1991).
Debates concerning the semantics of scientific theories in general have largely been supplanted by debates
about the interpretation of particular theories, but as I noted, van Fraassen’s state-space semantics view
exemplifies Ruetsche’s characterization of the standard approach to interpretation.
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mathematical state-space, S, to represent physical quantities in space and time. Models of

the theory are trajectories in the state-space that exactly satisfy the syntactic expression of

the dynamical equations of the theory. The elementary physical statements are a collection

of sentences, U(m, r, t), expressing the empirical content of the theory. Each U(m, r, t) as-

cribes a physical magnitude, m, a definite value, r, at a specific time, t. The truth values

of the U(m, r, t) depend on the state of the actual physical system being represented. This

dependence is captured by a map h, the satisfaction function, which connects the mathemat-

ical model to the expression of the empirical content of the theory. van Fraassen explains

that: “For each elementary statement U there is a region h(U) of the state-space [S] such

that U is true if and only if the system’s actual state is represented by an element of h(U)”

(van Fraassen, 1970, p. 328).21 The system’s actual state is represented by U if measure-

ment of the quantity m at time t would yield precisely the value r ascribed to it by U .

In other words, if measurement would yield a value, r̄, the satisfaction function is the one

that assigns “true” to those U(m; r; t) with r = r̄ and “false” to the others. The region

h(U) is the collection of states that yield r = r̄. Note that this abstract characterization of

the semantics straightforwardly exemplifies both stages of Ruetsche’s account of standard

approaches to interpretation. Structure specification consists of fixing on the trajectories in

state-space that exactly satisfy the relevant dynamical equations of motion, and the kine-

matic constraints. The characterization of the models as physical occurs through a rule

connecting statements expressing the empirical content of the theory to states of the system

represented in state-space.

Applying this abstract characterization of the semantics to a particular theory requires

choosing the appropriate state-space, elementary physical statements, and satisfaction func-

tion for the theory in question. To represent the motions of masses interacting through

forces, classical mechanics employs an abstract state-space which encodes the positions,

qk = (qx, qy, qz), and momenta, pk = (px, py, pz), of each mass. The state-space is thus R6n

21I have changed van Fraassen’s notation for the state-space to avoid confusion below.
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for n the number of masses. The dynamics of the theory are defined by a Hamiltonian, H,

which expresses the nature of the interaction between the masses. Models of the theory are

trajectories in state-space that exactly satisfy the canonical equations of motion:

dqk
dt

=
∂H

∂pk

dpk
dt

= −∂H
∂qk

. (5.5)

All of the physical observables described by the theory are functions of the qk and pk.

The elementary physical statements ascribe values to these observables. For example, one

particular U(m, r, t) is the sentence ascribing to a particular physical mass a particular

position in space at a particular time. The satisfaction function is the one that assigns

“true” to those states in state-space that yield that exact value at the appropriate time, and

“false” to the other states.

This semantics adequately captures truth conditions for truncations of convergent per-

turbation theory. Consider a classical mechanical system of two masses interacting gravi-

tationally. In this case an exact solution to the dynamical equations of the theory can be

found, and state-space semantics can be straightforwardly applied. Moreover, perturbative

treatment of such models yields convergent expansions whose limits agree by necessity with

the exact solutions to the dynamical equations. This makes it possible to treat truncations of

the series representation of the exact solutions as approximations to those solutions. For my

purposes, a mathematical object O1, can be treated as an approximation of another mathe-

matical object O2 if O1 is appropriately close to O2 in some sense that is appropriate for the

context. It is a relation that obtains between two mathematical objects, independent of their

physical interpretation.22 When the objects in question are a function and a truncation of a

22There exists a vast literature on approximation and idealization which does not always carefully distin-
guish between the terms. (McMullin, 1985) provides an account of many of the relevant distinctions. The
notion of approximation I employ agrees with the one articulated in (Norton, 2012). It also agrees with
the one articulated by Frigg and Hartmann, who hold up truncations of series expansions as a paradigmatic
example of approximation: “One mathematical item is an approximation of another one if it is close to it
in some relevant sense. What this item is may vary. Sometimes we want to approximate one curve with
another one. This happens when we expand a function into a power series and only keep the first two or
three terms. . . . The salient point is that the issue of physical interpretation need not arise. Unlike Galilean
idealization, which involves a distortion of a real system, approximation is a purely formal matter.” (Frigg
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series representation of that function, a measure of the relevant notion of closeness is given

by |f(x) −
∑N

n=0 anx
n|. Truncations of perturbative expansions for solutions of two-body

gravitational systems are approximations of the exact solutions that they converge to when

summed to all orders. When they are interpreted as approximations, the empirical success of

such truncations is accounted for by state-space semantics. The exactly true physical claim

with respect to the semantics is the one generated by the mapping from the exact solution.

The numerical value provided by the truncation of the perturbative expansion approximates

this exact numerical value, and the empirical content of this truncation is underwritten by

the exact solution.

More, as usual, is different. When an additional mass is added to the system being rep-

resented, an exact solution to the dynamical equations for all time is not currently available.

Under certain conditions, the existence of an exact solution can be shown to exist, but its

exact form has not been explicitly constructed.23 This is an obstacle to the application of

state-space semantics: in the absence of an explicitly constructed exact solution, it is not

possible to explicitly construct a satisfaction function to connect the mathematical structure

of the theory with its empirical content. This is not a mere mathematical curiosity, but

rather a critical problem of physical practice. Three-body gravitational systems such as the

Sun, Earth, and Moon, and the Sun, Saturn, and Jupiter played an important role in inves-

tigations of celestial mechanics in the 19th century. In the absence of explicitly constructed

exact solutions, the perturbative treatment of the three-body problem took on a role of in-

creased importance. It was the only method available to generate numerical information to

compare with the available empirical data. The addition of the third mass can be treated as

a perturbation of the exact solution for two gravitating bodies. Perturbative evaluation of

the first few partial sums for the trajectories of the planets generated empirical values that

and Hartmann, 2012).
23This is an over-simplification. No closed form analytic solution is available, but Sundman was able to

construct an exact solution in terms of convergent infinite series. For discussion of Sundman’s results see
(Barrow-Green, 2010; Saari, 1990; Siegel, 1941). I am grateful to Gordon Belot for bringing this work to my
attention. Unfortunately, Sundman’s solution requires far too many terms to generate sufficient accuracy to
be of any use for comparison with empirical data.
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matched closely with the available astronomical data. However, it also became clear that

when summed to all orders, the expansions diverge.24

This case reveals a potentially serious problem for state-space semantics. The perturba-

tive calculation yields infinity for the value of a measurable physical observable and so the

semantics regards the theoretical value generated by the perturbative calculation as false.

It does not have the resources to assign meaningfulness to the empirically adequate early

partial sums. But the problem is actually worse than assigning “false” to the calculations

that demonstrated the empirical adequacy of the theory: an argument can be made that it

actually treats such calculations as meaningless. Recall that divergent perturbation series do

not uniquely correspond to a function. Even when a series can be shown to be asymptotic

to a function, there are an infinite collection of other functions to which the series is also

asymptotic. This inhibits interpreting the perturbative expansion as an approximation, as

the object to which it is supposed to be an approximation is indeterminate. Put simply, the

problem for state-space semantics is that it renders the statements that express the empirical

adequacy of the theory as at best false, and at worst meaningless. There is, however, an

escape option available to the defender of state-space semantics that is very much worth con-

sidering. In particular, if the relevant perturbative expansions could be shown to satisfy the

strong asymptotic condition and be uniquely associated with a function, the interpretation

as an approximation would once again become viable.25

An example from non-relativistic quantum mechanics serves to illustrate how this escape

option for the state-space semanticist might proceed. The state-space of non-relativistic

quantum mechanics is a Hilbert space, and the dynamics of the theory is given by the

24The second volume of Poincaré’s The New Methods of Celestial Mechanics is largely a collection of
theorems establishing the divergence of all of the different perturbative methods in use at the time (Poincaré,
1993). In fact, this analysis led Poincaré to develop the notion of asymptoticity introduced in the previous
section.

25Unfortunately, the strong asymptotic condition was not developed until long after the period during
which celestial mechanics was developed, and as a consequence the Borel summability of the relevant expan-
sions remain, to my knowledge, unchecked.
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Schrödinger equation,

i~
∂Ψ

∂t
= HΨ, (5.6)

where H is the Hamiltonian. The physically measurable quantities described by the theory

are represented by Hermitian operators on the Hilbert space in which the wavefunction, Ψ, is

defined. The U(m, r, t) are thus sentences assigning a particular eigenvalue r to a particular

Hermitian operator m at particular time. The satisfaction function h(U) assigns “true” to

the collection of states yielding the correct eigenvalue for the operator, and “false” to the

others. As in the classical case, this semantics can be straightforwardly applied when exact

solutions to the Schrödinger equation are available.

The difficulties for state-space semantics arise when exact solutions are not available

and appeal must be made to perturbation theory to gain information about systems of

interest. An interesting example is provided by the Stark effect which describes the splitting

of atomic energy levels in the presence of an external electric field. It is described naturally

by the standard formalism for non-relativistic quantum mechanics, with the Hamiltonian

H = −∆− Z/r + 2Fx3, where

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

, r = (x2
1 + x2

2 + x2
3)1/2, (5.7)

Z is the atomic number, and F defines the strength of the field along the x3 direction. The

problem can be treated as a perturbation around the exact solution for the case where the

external field is zero. Calculation of the first few orders of perturbation theory yields close

agreement with the experimentally observed splittings in atomic spectra. The measurement

of this effect played an important role in motivating the transition from the old quantum

theory to its modern formulation.26 But just as in the previous cases I have discussed in

this chapter, it can be shown that when summed to all orders the perturbative expansions

that provide empirical success at low orders ultimately diverge. State-space semantics thus

26The role of the Stark effect in the history of this transition is recounted in detail in (Duncan and Janssen,
2014).
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seems to face the same problem in this case as it did in the case of three-body classical

gravitating systems. That is, the statements that express the empirical success of the theory

come out as either false or meaningless with respect to the semantics. What differentiates

this case from the previous one is that perturbation theory for eigenvalues of the Stark effect

Hamiltonian have been rigorously shown to satisfy the strong asymptotic condition. They

can be Borel summed and uniquely associated with an exact value.27 As noted above, this

restores the viability of treating the empirically successful truncations as approximations to

the exact eigenvalues. On this view, the existence of the exact eigenvalues underwrites the

physical meaningfulness of the perturbative calculation.

The analysis of this section shows that state-space semantics is well-suited for capturing

truth conditions for statements expressing the empirical content of a theory in some circum-

stances. Specifically, it is completely adequate when the structure specification of the theory

conforms to the norms of structure specification insisted upon by Ruetsche’s standard inter-

preter. However, when structure is specified perturbatively I have argued that the status of

state-space semantics requires careful scrutiny. Analysis of the case of the Stark effect raises

the hope that all perturbative expansions that generate empirical success satisfy the strong

asymptotic condition. If this were the case, then the success resulting from the truncation

of divergent series would always be underwritten by an exact model which the truncation

approximates.

Unfortunately, this hope is dashed in the case of empirically adequate models of quantum

field theory.28 The cause of the failure of Borel summability in quantum field theory is

the presence of singularities in the Borel transform due to instantons and renormalons.29

These singularities result from Feynman graphs which produce growth in the amplitude

27Borel summability was originally shown in (Graffi and Grecchi, 1978). Additional discussion and refer-
ences can be found in (Simon, 1982).

28For discussion see (Duncan, 2012). He explains that “. . . the property of Borel summability is an ex-
tremely fragile one, and one which we can hardly ever expect to be present in interesting relativistic field
theories” (Duncan, 2012, p. 403).

29Detailed discussion of the significance of these singularities for the problem of structure specification is
provided in (Miller, 2016c).
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proportional to n! for n the order of perturbation theory. The presence of such singularities

on the positive real axis of the Borel transform inhibits the integration required to Borel sum a

divergent asymptotic series.30 The retreat to treating truncations of perturbative expansions

as approximations is thus not available in empirically adequate models of quantum field

theory. This means that the calculations that establish the empirical adequacy of quantum

electrodynamics, such as the determination of ae, cannot be treated as approximations.

Accounting for their success requires departure from standard accounts of how mathematical

structure underwrites physical meaning.

5.4 SEMANTICS FOR DIVERGENT PERTURBATION THEORY

The task of interpreting quantum field theory has been thought to be especially difficult

because in its empirically adequate formulation, the norms of structure specification accepted

by standard interpreters are not satisfied. In the previous chapter we saw that Halvorson

claim that:

...philosophers of physics have taken their object of study to be theories, where
theories correspond to mathematical objects (perhaps sets of models). But it is
not so clear where “quantum field theory” can be located in the mathematical
universe. In the absence of some sort of mathematically intelligible description
of QFT, the philosopher of physics has two options: either find a new way to
understand the task of interpretation, or remain silent about the interpretation
of quantum field theory. (Halvorson and Muger, 2006, pp. 731-732)

In Halvorson’s view, the only available mathematically intelligible characterization of the

structure of quantum field theory is provided by axiomatization. The particular axioma-

tization that he prefers enjoys the property that its models satisfy the norms of structure

specification accepted by standard interpreters. However, the models that generate empiri-

cal success when characterized perturbatively have not been shown to satisfy the axioms. If

30Preliminary investigation of simplified models of string theory suggest that the situation is similar in
that context (Pasquetti and Schiappa, 2010).
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one wants to interpret these perturbatively characterized empirically adequate models, one

must depart from standard approaches to interpretation. The previous chapter also noted a

similar sentiment expressed by Ruetsche:

Given a theory T , . . . we confront the exemplary interpretive question of how
exactly to establish a correspondence between T ’s models and worlds possible
according to T . That is, we confront that question if T is the sort of thing
that has models. ‘A collection of partially heuristic technical developments’ isn’t
readily attributed a set of models about whose underlying ontology or principles
of individuation philosophical questions immediately arise. This isn’t to say
that ‘a collection of partially heuristic technical developments’ is unworthy of
philosophical attention. It is in itself a philosophically provocative circumstance
that such a collection can enjoy stunning empirical success.31 (Ruetsche, 2011,
p. 102-103)

The remarks of both Halvorson and Ruetsche amount to insistence that structure specifica-

tion meets the norms of standard interpreters.32 Pace Halvorson and Ruetsche, in my view

an adequate approach to interpretation must show how a theory’s expression of physical

content underwrites its stunning empirical success. The interpretation of physical theories is

of philosophical interest because it informs our understanding of the actual world, not possi-

ble worlds that differ essentially from our own. That standard approaches to interpretation

are unable to accommodate this success is a sign of their inadequacy for establishing how

physical meaning attaches to mathematical structure.

There is a response available to defenders of standard interpretation: they can attribute

the empirical success of perturbative field theory to the existence of an exact mathematical

structure to which we simply do not currently have access. One might reasonably hope to

gain access to such a structure in one of the following ways. First, it could turn out that

additional work by constructive field theorists will show empirically adequate perturbatively

characterized models to satisfy an existing axiomatization of quantum field theory. There

exists evidence that they do not, but none of it is definitive and so this remains an open pos-

31The characterization of perturbative field theory as “a collection of partially heuristic technical develop-
ments” is a reference to a remark of Segal aimed at motivating axiomatic approaches to the theory (Segal,
1959, p. 341).

32A similar perspective has also been articulated by Fraser in (Fraser, 2009, 2011).
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sibility. Alternatively, a new axiomatization of quantum field theory could be developed and

empirically adequate models could be shown to exactly satisfy this new axiomatization.33

For standard interpreters, showing that quantum field theory underwrites the greatest em-

pirical successes ever achieved with a physical theory is predicated on the hope that such a

structure will be discovered.

The argument of the previous section lays the foundation for a departure from stan-

dard interpretation according to which physical meaning can be associated with empirically

successful perturbatively characterized models, without appealing to hoped for exact math-

ematical structures. Pursuing this alternative approach requires first recognizing that per-

turbatively characterized models are entirely mathematically intelligible, and are not merely

“a collection of partially heuristic technical developments.” The formalism for perturbative

evaluation is subject to a number of well-known mathematical problems that have led to

pessimism about its mathematical meaningfulness. These problems including infrared and

ultraviolet divergences, which render individual orders of perturbation theory infinite. How-

ever, it is essential to note that for renormalizable theories like quantum electrodynamics,

perturbative renormalization theory provides a conceptually clear and physically motivated

procedure for rendering every individual order of perturbation theory finite.34 Furthermore,

the output of this procedure is a mathematically well-defined formal power series which one

can attempt to sum.35 The convergence properties of the series when summed to all or-

ders are thus the only legitimate challenge to the structure specification of perturbatively

characterized models.36

33Realizing either of these possibilities would likely amount to solving the Clay Mathematics Institute
Millenium Problem on quantum Yang-Mills theory with a mass gap. The problem is stated in (Jaffe and
Witten, 2000), and additional discussion can be found in (Douglas, 2004).

34For discussion of infrared divergences and how they are related to the problem of structure specification
see (Earman and Fraser, 2006) and (Miller, 2016a). Ultraviolet divergences are addressed in (Wallace,
2006), (Wallace, 2011), (?), and (Fraser, 2016). The approach of Wallace, Williams, and Fraser resolves the
problem of ultraviolet divergences by treating empirically adequate field theories as effective theories whose
empirical content is confined to a limited scale. I develop an approach to resolving the problem for structure
specification raised by ultraviolet divergences in a manner which is compatible with an effective field theory
interpretation, but which does not require one, in (Miller, 2016b).

35If the reader doubts this claim I encourage them to consult (Wightman, 1986).
36Note that I am not claiming that all calculations found in the physics literature on quantum field theory
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Accounting for how mathematical structure holds empirical content in face of large-order

divergences that are not Borel summable requires departure from the norms of structure

specification accepted by standard interpreters. In my view, divergent perturbation the-

ory provides a novel connection between mathematical structure and physical meaning that

should be incorporated into the semantics of a theory.37 State-space semantics can be modi-

fied in a way that captures this novel connection. The new semantics retains the core aspects

of state-space semantics. The role of the state-space and the elementary physical statements

remain unchanged. Modifications are only required for the definition of the satisfaction

function.

The first observation at the heart of the modification is that van Fraassen’s articulation

of state-space semantics relies on an unrealistic characterization of measurements.38 Actual

measurements never determine the exact value of a quantity. Agreement between theory

and experiment instead takes the form of comparisons of a theoretically determined value,

r, and an experimentally determined value, r̄, with some associated measurement error

εm. Theoretically determined values are empirically adequate not just when r = r̄, but

when r ∈ (r̄ − εm, r̄ + εm). The first required modification to the semantics is to redefine

the satisfaction function so that it returns “true” not just when r = r̄, but also when

r ∈ (r̄ − εm, r̄ + εm).

The core issue for state-space semantics raised by the divergence of perturbation theory

concerns the role of the theoretically determined value in the semantics. The nature of the

modification to the measured value suggests that there is some freedom in the theoretical

values that are compatible with measurement results. This freedom can be exploited to

are rigorous. The claim is that there is a subset of such calculations that suffice to run my argument that
can be made rigorous.

37A number of other authors have recently called into question standard assumptions about how physical
content accrues to mathematical structure (Curiel, 2011; Ruetsche, 2011; Wilson, 2006). The departures
from standard interpretation that they argue for are not directly connected to the one I advocate in this
chapter, however.

38I believe van Fraassen would agree. He explains that “The exact relation between U(m; r; t) and the
outcome of an actual experiment is the subject of an auxiliary theory of measurement, of which the notion
of ‘correspondence rule’ gives only the shallowest characterization (van Fraassen, 1970, p. 329).”
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provide a new semantics that adequately captures the empirical success of truncations of

perturbative expansions that are convergent, strongly asymptotic, and even those that are

not Borel summable. The details are different for each case, but the central idea is to

provide a well-defined bound on the error introduced by truncating the expansion, εt. If

that bound can be shown to be compatible with the freedom resulting from the presence

of the measurement error, εm, the truncation error can be seamlessly incorporated into the

semantics.

For convergent and strongly asymptotic series, finding such a principled bound is typically

straightforward. In the case of convergent Taylor series for example, the relevant bounds can

be provided by results related to Taylor’s theorem. Consider the Taylor series of f(x) about

the point a,
∑∞

n=0 cn(x−a)n for cn = f (n)/n!. If |f (n+1)(x)| ≤M for all x ∈ (a−r, a+r) with

some r > 0, then the error from truncation at the Nth term, f(x)−
∑N

n=0 cn(x−a)n ≡ RN(x),

is bounded by

|RN(x)| ≤M
|x− a|N+1

(N + 1)!
. (5.8)

The truncation error, εt, can be taken to be,

εt = M
|x− a|N+1

(N + 1)!
. (5.9)

Similarly, it has already been noted in the Section Two that for a series that is strongly

asymptotic to a function in the sector S, there exist C and σ such that,

∣∣∣∣∣f(z)−
N∑
n=0

anz
n

∣∣∣∣∣ ≤ CσN+1(N + 1)!|z|N+1, (5.10)

for all N and z ∈ S. In this case we can take,

εt = CσN+1(N + 1)!|z|N+1. (5.11)

There are also principled methods for assigning error bounds to truncations of divergent
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asymptotic expansions that are not Borel summable. Suppose f(x) ∼
∑∞

n=0 anx
n. The

optimal truncation rule dictates that the series should be truncated at the smallest term of

the series, Nmin, so that the value of the truncation is
∑Nmin

n=0 anx
n. This rule is justified by

the fact that the minimal error is typically achieved with this truncation. Moreover, the error

is typically bounded by the magnitude of the value of the least term, |f(x)−
∑Nmin

n=0 anx
n| ≤

|aNmin
xNmin|. The caveat “typically” is important, and both properties must be rigorously

confirmed for each individual case. But in those situations where they can be confirmed we

can take,

εt = aNmin
xNmin . (5.12)

These rigorously established bounds on the truncation error provide the critical ingredient

to complete the modified semantics. The satisfaction function must be redefined so that in

addition to accounting for the measurement error, it is also ensured that the truncation error

is not greater than the freedom allowed in the theoretical value by the measurement error.

This is the case when (r− εt, r+ εt) ⊂ (r̄− εm, r̄+ εm). The satisfaction function thus needs

to be redefined so that the U(m, r, t) are true when (r − εt, r + εt) ⊂ (r̄ − εm, r̄ + εm) and

false otherwise. A new feature of the view is that the empirical content of a theory can come

with precisely defined, but limited precision.

A number of remarks are in order. In the previous section I argued that truncations of

convergent and strongly asymptotic expansions can be interpreted as approximations. When

this approach is taken, all of the physical meaning derives from the exact model, and the

truncation simply approximates the exact value. But, the proposal of this section makes it

clear that it is not necessary to view such truncations as approximations. On the alternative

view developed here, convergent and strongly asymptotic expansions are not interpreted as

approximations. They are to be interpreted in just the same way as truncations of series that

are not Borel summable for which the interpretation as an approximation is not available. It

is these limited precision comparisons to experiments that convinced physicists of the truth

of the theory in each of the cases introduced above. For this reason I believe this is the best
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way to capture the semantics of divergent perturbation theory, even in cases where Borel

summability is retroactively established. Another important thing to note is that nothing

about this proposed modification to state-space semantics involves a lack of mathematical

rigor. When the bounds used for εt are established by the means discussed above, their

existence is proved by the standards of rigor accepted by mathematicians.

The most important advantage of this proposal is that it allows us to treat the most

empirically successful theories as providing meaningful claims about the world. Moreover,

it does so by making minimal, and, in my view, natural modifications to an approach to

interpretation that exemplifies the core commitments of standard interpretation. The mod-

ifications are minimal as all that is involved is a redefinition of the satisfaction function.

They are natural in the sense that the modification that is made is directly motivated by

the nature of the empirical support for the theory being interpreted. Rather than adhering

to philosophical commitments about how theories ought to hold physical meaning in their

mathematical expression, the account captures how they actually do hold empirical content

in physical practice.

There are two counterintuitive consequences of the modified state-space semantics that I

have developed in this section which must be weighed against the advantages just articulated.

The first is explained in the following remark of Magnen and Rivasseau:

Constructive field theory builds functions whose Taylor expansion is perturba-
tive field theory. Any formal power series being asymptotic to infinitely many
smooth functions, perturbative field theory alone does not give any well defined
mathematical recipe to compute to arbitrary accuracy any physical number, so
in a deep sense it is no theory at all. (Magnen and Rivasseau, 2008, p. 403)

Perturbative field theory is not a theory in the sense that it cannot be given a state-space

semantics, or any interpretation that requires that there be physical facts of the matter about

the exact value of physical observables. On my view, the empirical content of the theory

simply has a limited, but rigorously established, precision. This is counterintuitive, but I

think it is worth asking why we default to the assumption that there is a physical fact of
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the matter about the trillionth decimal place of physical observables, let alone the 101000th

decimal place. I am not aware of any physical observable for which there are empirical

grounds for commitment to this level of precision. Defenders of standard interpretation

owe an explanation for their tacit commitment to this view, and it should be one based on

something other than philosophical preconceptions about the structure of scientific theories.

The second counterintuitive consequence is that the truth values vary with experimental

precision. The modified satisfaction function requires that (r− εt, r+ εt) ⊂ (r̄− εm, r̄+ εm),

and over the course of time, εm can be made smaller with improvements in experimental

techniques. This points to another important difference between convergent and divergent

expansions. For convergent expansions, εt can always be made arbitrarily small by summing

additional orders of perturbation theory. This is not the case for divergent asymptotic

expansions, whether they are strongly asymptotic to a function or not. Asymptoticity and

strong asymptoticity only assure that the error induced by truncation at a particular order

is small, and there is some order for which this error is minimized. If the measurement

error is eventually reduced beyond this minimum truncation error, on my view the theory

no longer expresses the empirical content of the theory sufficiently precisely to be confirmed

by experiments. I am not aware of any case in actual physical practice where this possibility

has been realized, but such a case would certainly warrant careful analysis. While both of

these counterintuitive consequences merit further discussion, I believe the advantages of the

modified semantics developed here outweigh any negative considerations they bring to bear

on my view.

5.5 CONCLUSION

Consider once more Abel’s question: why do truncations of perturbative expansions gener-

ate empirically adequate values? Defenders of standard interpretation naturally resort to

treating truncations as approximations to exact models. However, this route is not available
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in cases where perturbation theory is not Borel summable. To account for the empirical

success of quantum electrodynamics, for example, they have no choice but to wait for some

new exact structure to underwrite the success of calculations of observables like ae. If the

norms of structure specification accepted by standard interpreters are to be met, this is the

only option.

I have offered an alternative approach to answering Abel’s question. On my view, per-

turbation theory presents a genuinely novel connection between mathematical structure and

physical meaning. By incorporating this connection directly into the semantics for physical

theories, we can meaningfully account for the empirical successes of quantum field theory.

Rather than hoped-for structure, I have advocated that we look to the methodologies used

in physical practice. In one sense this is conservative. The modification to state-space se-

mantics that I advocate is minimal in the sense that it preserves most of the features of

the view as expressed by van Fraassen. It is natural in the sense that the modifications to

state-space semantics are motivated by the nature of the empirical support for the theory in

question. But in another sense it is radical. It requires that we accept that expressions of

the empirical content of physical theories can have in principle limits on their precision, and

that the truth values of statements expressing that empirical content might vary with the

precision of measurements. In my view, the benefits of having a firm sense of how theories

as we actually have them make contact with the world far outweigh the luxury of rigidly

maintaining philosophical commitments about the structure of theories.
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6.0 EXACT MODELS AND AMBIGUOUS STRUCTURE

The previous chapter provided a concrete proposal concerning how physical meaning can be

associated with the mathematical structure of perturbative field theory. In this chapter I

identify one additional puzzling feature of the structure of perturbative field theory which

has led some to question whether or not quantum field theory really describes an ontology

based on quantum fields. In particular, I show that the syntax of the theory does not un-

ambiguously delimit its possible structural realizations. It is well known that field operators

cannot be defined at points, but this leaves open the question of what kind of mathematical

object can possibly be used to represent quantum fields. The Wightman axioms provide one

answer by taking the fields to be represented by operator-valued distributions. This answer,

however, turns out not to be unique. There are other viable options, and the nature of the

empirical evidence for the theory does not decide between the different structural realiza-

tions of the field operator syntax. I call this the problem of ambiguous structure. I suggest

a resolution to this problem based on the nature of the empirical evidence for those models

that do make contact with the world. I argue that this resolution clarifies the role that exact

models play in underwriting the physical meaningfulness of empirically adequate models,

and provides a sense in which quantum field theory can be understood to be a theory about

quantum fields after all.
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6.1 INTRODUCTION

I have argued that meaningful empirical content can be extracted from perturbatively char-

acterized empirically adequate models of quantum field theory. This raises the question of

how we should understand the role of axiomatic characterizations of the theory. We have seen

that one attractive feature of the axiomatic approach to the theory is that it provides struc-

tures that fit naturally with standard approaches to interpretation. However, empirically

adequate models have not been shown to satisfy the axioms and so one might reasonably

wonder if I am advocating that we abandon the axiomatic approach entirely. In fact, I

think that to do so would be a serious mistake. Axiomatic treatments provide important

information about why perturbative field theory works as well as it does, but they do so in

different way than is assumed in the philosophy of quantum field theory literature focused

on axiomatic approaches.

A reasonable place to look for an account of how to understand the role of axiomatiza-

tion in specifying the content of quantum field theories is in the work of the mathematical

physicists that use the axiomatic approach. For example, at the outset of one of the seminal

textbooks on axiomatic and constructive field theory, Bogolubov, Logunov, and Todorov

remark that:

It is widely believed that axiomatization is a kind of polishing, which is applied
to an area of science after it has been, for all practical purposes, completed. This
is not true, even in pure mathematics. Admittedly, the modern axiomatization
of arithmetic and Euclidean geometry marked the completion of these disciplines
(although at the same time it stimulated a new science – mathematical logic, or
metamathematics). For most areas of contemporary mathematics, however, such
as functional analysis, axiomatization is a fundamental method of exploration, a
starting point (of course, the system of axioms may be modified as the subject
develops.) In theoretical physics, since the time of Newton, the axiomatic method
has served not only for the systematization of results previously obtained, but
also in the discovery of new results. (Bogolubov et al., 1975, p. 1)

They go on to note that the principle motivation for the axiomatization of quantum field
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theory was to give an unambiguous articulation of the core principles of empirically successful

perturbative field theories. This attitude can be seen, for example, they claim that:

The original problem of axiomatic field theory, which has not yet been fully
solved, was to pick out and to formulate unambiguously the more trustworthy
features of the formal apparatus associated with the Lagrangian or Hamiltonian
formalism. (Bogolubov et al., 1975, pp. 7-8)

A similar reaction to the limitations of the axiomatic approach is articulated in Horuzhy’s

book on algebraic quantum field theory where he claims that:

The whole complex of the results of Chapter 1 is still too poor for the needs of
describing concrete models and processes of interaction of elementary particles.
It lacks a wide range of notions and properties inherent in quantum field systems
. . . . As a result, the Haag-Araki or Haag-Kastler theory, like other axiomatic
approaches, provides an essentially incomplete formulation of quantum field the-
ory and should not be considered as a self-contained ‘axiomatic theory’ in the
strict sense of axiomatic theories in mathematics. It is rather a starting ground,
a base set of firmly established facts, which still needs to be expanded and com-
plemented (obviously, on some other principles, not purely axiomatic any more).
(Horuzhy, 1990, p. 121)

Both Bogolubov, Logunov, and Todorov, and Horuzhy suggest that the axiomatization of the

theory functions as a starting point which stands in need of supplementation with additional

information. If this is the proper role for axiomatic articulations of the theory, then it seems

like we would be mistaken to press the models of the theory into the service of functioning

as the basis for interpretation. To do so is to use those models for a purpose other than the

one for which they were designed.

In this chapter I develop an account of the role of axiomatic articulations of the theory

according to which their purpose really is to break an ambiguity in the perturbative formalism

as Bogolubov, Logunov, and Todorov claim. In the second section I identify an ambiguity

associated with standard field operator syntax. This gives rise to what I call the problem of

ambiguous structure. In the third section I consider two standard approaches to breaking

structural ambiguities that are common in the philosophy of quantum field theory literature
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and show that they are unfit for resolving the ambiguity of the field operator syntax. The

fourth section provides my resolution to the problem and the final section contains concluding

remarks.

6.2 THE PROBLEM OF AMBIGUOUS STRUCTURE

According to standard approaches to interpretation, physical meaning derives from the ex-

istence of a map from the mathematical structure of the theory to the world. As a result,

standard approaches require a structurally unambiguous characterization of the models of

the theory. This is necessary in order for the models to serve as the domain of the map from

the theory to the world. In this section I argue that the syntax of perturbative field theory

does not unambiguously delimit its models. This demonstrates an additional reason for the

inapplicability of standard interpretation to perturbative field theory.

A quantum field is typically presented as an association of a quantum mechanical operator

to each point in Minkowski space, {φ(xi) | xi ∈M}. The operators are intended to act on a

Hilbert space, H. The physical content of a quantum field theory is encoded in a collection

of quantities defined in terms of the field operators, namely the vacuum expectation values

of products of field operators 〈0|φ(x1)φ(x2) · · ·φ(xn)|0〉. From these quantities it is possible

to calculate the probability of a transition between any arbitrary quantum state and any

other arbitrary quantum state.

One of the earliest results in axiomatic field theory showed that the idea that field oper-

ators can defined for every spacetime point cannot be exactly correct. In fact, by assuming

other principles critical to the perturbative formalism, Wightman showed that there is no

point in Minkowski space for which φ(xi) is a bounded operator valued function (Wightman,

1964). This makes it impossible to give a straightforward reading to the syntax for quan-

tum fields and the vacuum expectation values, 〈0|φ(x1)φ(x2) . . . φ(xn)|0〉, defined in terms

of those fields. The initially intended structural realization of the field operator syntax is

89



demonstrably untenable. This has lead interpreters to question the physical meaningfulness

of claims about quantum fields.1

Wightman found a way to modify the basic content of the theory so that the field operator

syntax does have a concrete structural realization. By using Schwartz’s theory of distribu-

tions, a mathematical development that he judged to be “providential” for the development

of quantum field theory, he showed that the φ(xi) have a concrete structural realization when

their values are smeared over small regions of spacetime (Wightman, 1981). His idea was to

treat the φ(xi) as operator valued distributions:

φ(f) =

∫
f(x)φ(x) d4x. (6.1)

By modifying the basic objects in this way, the vacuum expectation values are reconceived

as a collection of Wightman distributions:

WN(f) =

∫
f(x1, . . . , xn)〈0|φ(x1)φ(x2) . . . φ(xn)|0〉 d4x1 · · · d4xn, (6.2)

where f denotes an arbitrary test function. These became the basic objects of the Wightman

axiomatization of quantum field theory. Once this modification is made to the perturbative

formalism it is possible to construct exact Wightman distributions for some simple models

in reduced spacetime dimension or without interactions. These models show the Wightman

axioms to be consistent as they admit a class of models that exactly satisfy their syntactic

expression.

Empirically interesting models have not, however, been shown to be exact models of

the Wightman axioms. That the expansions for empirically adequate models do not seem to

satisfy the Wightman axioms has led to pessimism about their mathematical meaningfulness.

This pessimism is, however, premature. There are spaces of generalized functions other

than the space of Schwartz distributions that Wightman initially employed, and one can

1Claims of this type can be found in both (Arntzenius, 2003) and (Halvorson and Muger, 2006).
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reasonably hope that they contain exact structures that underwrite the meaningfulness of

perturbative field theory. Different classes of generalized functions are defined by what class

of test functions they are required to be integrable against. For different classes of test

functions, one can define the space of tempered distributions, ultradistributions, Fourier

hyperfunctions, or Solovev distributions. And in fact, axiomatizations of quantum field

theory based on these spaces have been developed.2 In each of the axiomatizations, the

fields are realized as structurally distinct objects. The axiomatizations that capture these

alternative objects amount to what count, on either the syntactic or semantic view, as distinct

theories. One can reasonably hope that the field operator syntax of empirically successful

field theories works because it is picking out an exact structure in one of these spaces.

Recall that the perturbative treatment of empirically adequate models gives rise to large-

order divergent expansions. The only non-conspiratorial explanation of the agreement of

the low-orders of perturbation theory with experiment, despite its eventual divergence, is

that perturbation theory is asymptotic to some exact structure. This raises the question:

in what space are those exact structures defined? It is an intriguing fact that the low-order

perturbative data that generates the empirical success of the theory does not seem to resolve

this question. To see this note that:

Until recently, the principal source of information about quantum field theory
lay in the renormalized perturbation series for Lagrangean field theories with
polynomial interactions. These are formal power series in some coupling con-
stant, and it is an elementary consequence of the polynomial character of the
interaction that the terms of the series for the basic quantities of the theories
[the vacuum expectation values] are tempered distributions in the space–time
variables. Needless to say, this does not imply that the solutions to which the
the formal power series are asymptotic, supposing they exist, are also tempered
distributions. (Wightman, 1981, p. 774)

The syntax of perturbative field theory is ambiguous between different exact structural

realizations of the content of the theory, and the empirical support for the theory does not

2(Wightman, 1956, 1977; Wightman and Garding, 1965; Wightman, 1986, 1996; Moschella and Strocchi,
1992; Nagamachi and Bruning, 2003; Nagamachi and Mugibayashi, 1977, 1976c,b,a; Constantinescu and
Thalheimer, 1979; Solovev, 1995; Schmidt, 1997; Wightman, 1981)
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decide between these different structural realizations. This is the problem of ambiguous

structure.

6.3 BREAKING STRUCTURAL AMBIGUITY

Structural ambiguity has arisen before in attempts to interpret particular theories. In fact,

several forms of structural ambiguity distinct from the ambiguity introduced in the previous

section have already presented themselves in efforts to interpret quantum field theory. In

particular, the presence of gauge freedom3 and unitarily inequivalent representations of the

canonical commutation relations4 can be thought of as providing instances of ambiguous

structure in quantum field theory. In the face of these problems, interpreters have developed

two standard approaches to resolving structural ambiguity. One might reasonably wonder

if one of these solutions can be applied to the ambiguity introduced in the previous section,

thus preserving the core commitments of standard approaches to interpretation.

According to the first method, there is one unique common structure shared between

the alternative structures. If this common structure can be identified, then it can serve as a

candidate for mapping onto the world. This strategy has been adopted explicitly in theories

with gauge freedom which is often viewed as a descriptive redundancy in the structure of the

theory. Earman exemplifies commitment to this approach in his discussion of gauge freedom

and the Higgs mechanism by claiming that in a theory with gauge freedom, only the gauge

invariant observables are acceptable candidates for mapping onto the world.5

The second method reifies one of the structures and adopts it as the unique correct type

of structure which is a candidate for mapping onto the world. As a consequence of the infinite

3An overview can be found in (Earman, 2002).
4See (Ruetsche, 2011, Chapter 9 and 10) for a philosophical discussion.
5In particular, he claims that “. . . a genuine property like mass cannot be gained by eating descriptive

fluff, which is just what gauge is. Philosophers of science should be asking the Nozick question: What is the
objective (i.e., gauge invariant) structure of the world corresponding to the gauge theory presented in the
Higgs mechanism” (Earman, 2004).
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number of degrees of freedom in models of quantum field theory, quantization does not yield

one unique particle concept. Rather, there are unitarily inequivalent representations of the

canonical commutation relations that each generate incommensurable particle notions. If

one is committed to the second method for resolving ambiguity then they will favor one

representation of the commutation relations, and hence one particle notion, as the unique

correct one. The others, according to this perspective, can be dismissed as spurious.

Both of these solutions seem as though they may be of use in resolving the structural

ambiguity introduced in the previous section, however, this initial promise turns out to

be illusory. I argued that the syntax φ(x) is ambiguous between a number of structural

realizations of the domain of quantum fields. It seems possible that one of the structures

is the correct one, or that they all share a common structure, but there are straightforward

reasons to think that these approaches do not help to resolve the problem of ambiguous

structure for quantum field theory. This is because if there is an articulation of the theory

according to which empirically adequate models are exact, nothing about the empirical

support for quantum field theory indicates which articulation that is. Similarly, even if

there is a common structure shared between all of the structures that the empirical data

is compatible with, this common structure has not been explicitly articulated and so it has

played no role in the empirical success of the theory. Nothing about having access to the

invariant or one true structure has been important for generating the empirical success of

quantum field theory. I am not advancing an argument against the in principle realizability

of either of these resolutions to the problem, as I doubt such an argument exists. Rather, I

am emphasizing that if the physical meaning of the terms in our best theories is supposed

to reflect the extent of our empirical support for the structures we take to represent the

physical world, then neither of these approaches serve to underwrite the physical meaning

of terms like “quantum field” in empirically adequate models.
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6.4 SEMANTIC CONTENT ACCRUES TO CLASSES OF STRUCTURES

Standard approaches to interpretation presume there is a collection of models that stand

in the exact satisfaction relation to the syntactic expression of the theory. I have argued

that standard interpretation of quantum field theory is inhibited by the fact that the syntax

leading to empirically adequate models of quantum field theory is ambiguous. The syntax can

be given concrete mathematical meaning in more than one way, each of which delimits its own

class of models. The empirical support for the theory, however, only warrants commitment

to the claim that empirically confirmed perturbative expansions are asymptotic to one of

the models in this structurally heterogeneous class. Interpretation, therefore, should not

proceed only from an axiomatic articulation of the theory and the exact models of those

axioms alone. Doing so makes it impossible to use the information about the world provided

by the divergent, asymptotic expansions of empirically adequate models. I also have argued

that to do so is to press the axiomatic approach into a service for which is was not designed,

as indicated in the introduction.

The analysis up to this point suggests a natural resolution to the problem of assigning

physical meaning to the ambiguous field operator syntax. This resolution shares with stan-

dard approaches the commitment to identifying those elements in the formalism that are

candidates for corresponding to stable entities in the world. It differs, however, in that one

must allow semantic content to accrue to classes of structures delimited by an appropriate

constraint. In the case of the term “quantum field,” the appropriate constraint is agreement

on low-order perturbative data. One can proceed by finding a representative of the class

of structures: the representative in the case in question can be taken to be the Wightman

axioms. Having such a representative ensures that the class includes non-trivial models. The

other members of the class, {T2}, {T3}, . . . , are the other axiom systems that treat fields as

elements of spaces of more singular generalized functions. Each collection of axioms delimit

distinct classes of mathematical models which enter into the exact satisfaction relation with
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the syntactic expression of the axioms.

Once the relevant empirical constraint is identified, those parts of the theory that have

analogs in each of its structural realizations must be identified. In each of the structural

realizations of quantum field theory there are natural analogs of the fields, φ{T1}, φ{T2},

. . . . The central difference between this method and standard approaches is that truth

conditions for physical statements are given to the syntax that generates empirically adequate

expansions. While the syntax for quantum fields is ambiguous between different structural

realizations, this syntax remains a perfectly respectable candidate to which physical meaning

can accrue. This is accomplished by treating the physical meaning of “quantum field” as

insensitive to exact mathematical structure in a precisely constrained way. Once the analogs

are identified, they are lumped together, [φ{Ti}], into a class of structural realizations of the

term “quantum field” that are all taken to have the same physical meaning. On this view,

the way to understand the success of ambiguous quantum field syntax is that it is ambiguous

between structural representations of the phenomena that should have been thought of all

along as referring to the same stable entity in the world. I believe that this practice is

already implicitly adopted when physicists refer to quantum fields in the case of empirically

adequate models like quantum electrodynamics. These claims can be construed as physically

meaningful if they are understood in the way that I have reconstructed them here.

This procedure has features common with one of the approaches discussed in the last

section. It may seem, in particular, that the idea is to find in some sense a common structure.

However, this is a misreading of what I am proposing. My proposal does not require the

expression, or even the existence, of a syntax that admits a class of models that share the

common structure. Rather, the idea is that physical meaning attaches uniformly to analogous

terms in all structures that satisfy the relevant empirical constraint, some of which have

been explicitly articulated, and some of which have not. It is also worth reiterating that the

asymptotic nature of perturbation theory for empirically adequate models is conjectured,

not proved. The conjecture suggests that there is an element of the delimited space that
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is the exact model. While this is conjectural, it is principled, and it accurately reflects the

nature of the empirical support for the theory.

Different axiomatic articulations of quantum field theory have distinct structural real-

izations. According to the canonical approach to interpretation, the differences between

these structurally distinct realizations typically amount to physically significant differences.

On the approach outlined here, however, these differences should be treated as physically

insignificant. In this sense the account provides a strict criterion for when we have good

reason to think that differences in mathematical structure amount to physical differences in

the world. It will have the consequence that interpretive conclusions established in some

particular axiomatic formalism may come out counting as physically insignificant. Given

that the proposal provides a way for physical meaning to attach to the actual world, I think

that this is a consequence that may well be worth this cost.

6.5 CONCLUSION

Standard approaches to the interpretation of theories are overly rigid in their demands on

the mathematical structure in which physical meaning is supposed to inhere. If one insists on

this approach, it has the consequence of restricting interpretations to exact models, and thus

does not allow for interpretation of empirically adequate models of quantum field theory.

I have provided an alternative approach to delimiting structure which is less rigid and can

allow for attributions of physical meaning in empirically adequate models. I have shown

that this alternative approach is necessary if the physical meaning of terms like “quantum

field” are to derive from the empirical success of our theories. Mathematics has the capacity

to make sharper distinctions than those required to represent physical phenomena. This

has important consequences for attributions of physical meaning to mathematical structures

that have not been appreciated by extant approaches to interpretation. What I have argued

in this paper is that the meaning of the theoretical term “quantum field” can profitably
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be understood as having this feature. The success of the syntax φ(x) results from physical

meaning that is insensitive to differences between classes of distinct mathematical structures,

all of which agree on their low-order perturbative data. In this way, axiomatic articulations

of the content of the theory function as a guide for the attribution of physical meaning to the

syntax in which empirically adequate models are cast. The solution shows how ambiguous

mathematical syntax, when interpreted correctly, can have genuine physical meaning. It

thus allows the project of interpreting quantum field theory to inform our understanding of

the meaning of claims about the fundamental constituents of matter in the actual world.
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7.0 CONCLUDING REMARKS

Recall that perturbative quantum field theory attempts to evaluate expressions for n-point

functions that take the form of a perturbative expansion in powers of the coupling constant:

〈Ω|T (φ(x1)φ(x2) . . . φ(xn))|Ω〉 =
∞∑
j=0

(−i)j

j!

∫
〈0|T (φ(x1)φ(x2) . . . φ(xn)) (7.1)

·H(y1)H(y2) . . . H(yj)|0〉d4y1 . . . d
4yj.

This procedure fails to provide what is required to generate a standard interpretation of the

theory because the right hand side of the equation contains ultraviolet, infrared, and large-

order divergences. I have argued that these obstacles to the interpretation can be overcome.

The meaningful empirical content of the theory can be isolated from the ultraviolet and

infrared divergences through the use of regularization and renormalization schemes, and

the restriction to infrared-safe observables. The large-order divergences can be overcome

by developing principled justifications for truncating the expansion at a particular order of

perturbation theory.

The result of these procedures is a rigorous characterization of the empirical content of

empirically adequate models of quantum field theory. Establishing perturbative field theory

as a sufficiently structurally well-specified foundation for philosophical interpretation has

significant consequences for debates in the philosophy of quantum field theory. Many of the

questions about the interpretation of quantum field theory have previously only been carried

out in contexts that have not been shown to admit empirically adequate models. These

debates include the interpretation of gauge symmetry, unitarily inequivalent representations
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of the canonical commutation relations, and spontaneous symmetry breaking.

As one example of how debates look different when considered from the perspective of

perturbatively characterized empirically adequate models, consider whether the theory un-

derwrites commitment to a particle ontology. A number of authors have argued that particle

interpretations are untenable, thus rendering opaque the connection between quantum field

theory and “particle physics”. These arguments are based on axiomatic treatments of the

theory. The question that has resulted from the debate is the question of how much local-

ization is required to appropriately recover particle phenomenology. The axiomatic results

do not, however, provide adequate resources to answer this question. If one consults the

perturbative field theory literature on how to identify the long distance stable structures

that are measured in particle physics experiments, one can find methodologically motivated

guidance. The restriction to infrared safe observables introduces the energy resolution of the

detector as an appropriate measure of localization. Attention to perturbative field theory

can show what ought to count as an adequate resolution to the problem.

In addition to providing a novel perspective on existing debates in the philosophy of

quantum field theory, the perspective articulated in this dissertation opens up core problems

of physical practice to philosophical analysis. Some such problems include, the proton spin

crisis, the significance of Landau poles, the triviality of the Higgs field, and the nature

of quark confinement. Establishing perturbative field theory as a sufficiently well-defined

basis for philosophical interpretation brings these issues into the realm of those that can

be subject to analysis by philosophers. Of course, as I have indicated, taking perturbative

field theory requires departure from standard interpretation and the assumption that exact

models alone underwrite the meaningfulness of the theory. But the advantage of bring

philosophical attention to quantum field theory back into contact with the actual world

seems to indicate that the alternative proposal advocated here at the very least warrants

further consideration.
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Eckmann, J. P., J. Magnen, and R. Sénéor (1975, December). Decay properties and borel

summability for the Schwinger functions in P (φ)2 theories. Communications in Mathe-

matical Physics 39 (4), 251–271.

Epstein, H. and V. Glaser (1973). The Role of locality in perturbation theory. Annales

Poincare Phys. Theor. A19, 211–295.

Feldman, J., J. Magnen, V. Rivasseau, and R. Seneor (1986). A Renormalizable Field Theory:

The Massive Gross-Neveu Model in Two-dimensions. Commun. Math. Phys. 103, 67–103.

Feynman, R. (1985). QED: The Strange Theory of Light and Matter. Penguin Books.

Fraser, D. (2009). Quantum Field Theory : Underdetermination, Inconsistency, and Ideal-

ization. Philosophy of Science 76 (4), 536–567.

Fraser, D. (2011). How to take particle physics seriously: A further defence of axiomatic

quantum field theory. Studies in History and Philosophy of Science Part B: Studies in

History and Philosophy of Modern Physics 42 (2), 126–135.

Fraser, J. D. (2016). What is Quantum Field Theory?: Idealisation, Explanation, and Real-

ism in High Energy Physics. Ph. D. thesis, University of Leeds.

103



Fredenhagen, K. and J. Hertel (1981). Local algebras of observables and pointlike localized

fields. Communications in Mathematical Physics 80 (4), 555–561.

French, S. (2014). The Structure of the World: Metaphysics and Representation. OUP

Oxford.

Frigg, R. and S. Hartmann (2012). Models in science. In E. N. Zalta (Ed.), The Stanford

Encyclopedia of Philosophy (Fall 2012 ed.).

Gastmans, R. and R. Meuldermans (1973). Dimensional regularization of the infrared prob-

lem. Nucl.Phys. B63, 277–284.

Glymour, C. (1977). The epistemology of geometry. Noûs 11 (3), 227–251.
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