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ON SOLUTION FOR THE MOVING BOUNDARY PROBLEM DESCRIBING AN ERODING

VASCULAR GRAFT

Kai Jiao, M.S.

University of Pittsburgh, 2017

Synthetic accellular biodresorbable vascular grafts, which can degrade and vanish with time, are

an important type of tissue engineered vascular grafts (TEVGs) with great clinical potential for

blood vessel replacement surgeries. In order to study the in vitro degradation process of the graft

in stationary solvent, a mathematical model is established using mixture theory. Balance laws and

jump conditions across singular surfaces are used to determine the moving boundary conditions at

surfaces of the vascular graft. The resulting system of equations is a moving boundary problem in

the form of second order partial differential equations for the inner and outer domains. Regular

perturbation theory is applied for both problems and first order solutions for the two moving

boundaries are obtained. To test the accuracy of the approximate solutions, numerical solutions to

the full problem are obtained and compared with the perturbation solutions. In vivo, degradation

of the scaffold includes blood flow inside the inner domain. At the end of this thesis, we provide a

formulation of this more general case.
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1.0 INTRODUCTION

Cardiovascular diseases are the main cause of mortality and a leading cause of impaired quality of

life globally [1]. In spite of the development of advanced pharmacological and minimally-invasive

techniques [2], surgeries with blood vessel replacement remain the choice for a large amount of

patients [3], [4]. However, the autologous materials have a series of disadvantages including incon-

venience of harvesting and preparing the graft, insufficient availability in patients with vascular

diseases or in those who are receiving re-operations [5]. An alternative method that is receiving

increasing attention is to use tissue engineering to manufacture the vessel replacement outside the

human body, avoiding the need for material harvesting procedures for the patients.

Since Weinberg and Bell created the first well-recognized blood vessel substitute in 1986 [6],

the evolution of tissue engineered vascular grafts (TEVGs) has provided a promising future for

blood vessel replacement surgeries [7]–[9]. To date, there exists several types TEVGs including

endothelial cell seeded synthetic grafts, collagen and fibrin-based vessels, cell self-assembly vessels,

biodegradable synthetic vascular grafts, and decellularized scaffolds [10]. Among these approaches,

biodegradable synthetic vascular grafts provide initial structure and strength for cellular attachment

and infiltration and proliferation, and new blood vessels are reconstituted over time during the

degradation process of the grafts. This array of TEVGs has advantages of customizable material

property, low production cost, short production time, biocompatibility, and low risk of infection

and rejection [5], [11]–[14]. However, even with these advantages, a high compatibility is required

between the degradation of the grafts and the cellular growth and remodeling. If the degradation

speed is too slow, it possibly leads to scar formation; if the degradation speed is too fast, the grafts

may bulge out due to insufficient extracellular matrix (ECM). Moreover, Sugiura et al. [11] showed

that there is a negative correlation between degradation speed and calcification, which may lead to

thrombosis and graft rupture. Therefore the degradation process of biodegradable grafts need to

be studied.
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Mathematical models of the growth and remodeling process have been proposed to create pre-

diction tools to model this process. In this thesis, we study the in vitro problem for a acellular

biodegradable vascular graft eroded in stationary solvent. For the vascular degradation with cellu-

lar growth and remodeling, the framework of mixture theory is introduced to model this complex

bio-process. In Chapter 2, we start from the derivation of balance of mass, balance of momentum,

balance of energy as well as entropy inequality by following the works by Truesdell and Toupin

[15], Bowen [16], and Ateshian [17]. Based on the balance laws and entropy inequality, we give

the derivation for the jump conditions across singular surfaces. Many researchers have presented

the derivation in their studies [18]–[21]. In this thesis, we derive the jump conditions by using

the generalized Green-Gauss theorem and the generalized Reynolds’ transport theorem given by

Eringen [22].

In Chapter 3, we develop a mathematical model that describes the degradation process. We

propose that the dissolution of the graft is driven by the concentration gradient, and this assumption

is shown to be consistent with balance of mass for mixtures. According to Fick’s law, we have

F = −D∇C (1.1)

where F is the mass flux; C is the concentration; and D is the matrix of diffusivity. For convenience,

it is assumed that all materials we consider are isotropic with respect to diffusion and that D is

uniform and independent of C. Accordingly, Fick’s second law is given by

∂C

∂t
= D∇2C (1.2)

where D is a scalar for isotropic diffusion.

The difficulty of this problem lies in the moving boundaries of the vascular graft because both

the inner and outer radiuses of the graft are changing due to transfer of mass from the graft into the

surrounding solution. This kind of problem with moving boundaries is also called Stefan problem,

which was initially used to describe the melting of ice in water [23], [24]. For moving boundary

problems, two boundary conditions are required at the moving boundaries [25]. In Chapter 3, a

general governing equation is formulated for the problem by balance of mass, and jump conditions

are used to obtain the moving boundary conditions and the Noyes-Whitney constitutive equation

[26] is introduced as another boundary condition. Because of the existence of moving boundaries,

the problem is analytically unsolvable in closed form. However, as an alternative, approximate
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solutions are obtained by using perturbation theory. The key step for perturbation theory is to

choose a small parameter ε by which the original problem can be expressed by infinite equation

sets. If we make ε = 0, the original problem may be reduced to a easy problem which is the

zeroth order problem. By solving this problem and substituting the zeroth order solution into the

original equation, higher order problems can be solved recursively. Vrentas [27] showed that if the

parameters upon which the perturbation theory is based are small, the moving boundary moves

slowly or not far from its initial position, and the error is also small for the approximate solutions.

In Chapter 4, we obtain the zeroth order solution of the concentrations and the first order solutions

for the moving boundaries. A non-homogeneous linear partial differential equation set is given for

higher order solutions from which high order solutions can be obtained recursively.

In Chapter 5, an implicit finite difference method is applied to obtain the numerical solutions

to the full problem. Convergence is tested for the numerical approach to ensure the reliability. A

comparison is made between the first order perturbation solutions and the numerical solutions. It

is shown that the error of the first order solution for the moving boundaries are small. Therefore

the validity of the approximate solutions is confirmed. The influence of two degradation parameters

on the results is analyzed.

In Chapter 6, we consider the in vivo problem with blood flow inside the graft. The problem is

necessarily extended to 2-dimensions since transport with blood flow involves axial dependence in

addition to the radial dependence. By Fick’s law and mixture theory, the flow problem is expressed

by diffusion-convection equations based on a several assumptions. We also derived the moving

boundary condition based on the study of Patel [28]. Although the solution for the problem is not

obtained in this thesis, we present some valuable results from previous studies for this problem.
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2.0 BALANCE LAWS AND JUMP CONDITIONS

Mixtures are materials which consist of two or more constituents. Truesdell and Toupin [15] intro-

duced a theory for mixtures in 1960 including a derivation of balance laws. After that, Müller [18]

employed Lagrange multipliers for mixtures of fluids, and Eringen and Ingram [19] presented the

jump conditions for mixtures which consist of singular surfaces. For decades, mixture theory has

been shown to be a powerful tool for studying complex mixtures. Even though mixtures can be

described by simple continuum mechanics models, advantages of mixture theory arise if we need to

study the properties and mechanisms for individual constituents. For biological tissues that may

experience growth, breakdown, remodeling, and chemical reactions, mixture theory can simplify

this complex bio-process into balance laws for each constituent [29], [30]. In this chapter, we give

derivations for all balance laws, entropy inequality, and jump conditions in the forms following the

presentation by Ateshian [17].

Now, consider a deformable continuous body B consisting of N constituents moving in a Eu-

clidean space R. The motion of each constituent is given by

x = χα(Xα, t) (2.1)

where Xα (Xα ∈ B) is an arbitrary material point of constituent α at time t0; x is the position

vector that Xα occupies at time t. If we use V0 and V to denote the space occupied by B at time

t0 and t, respectively, the motion of the continuous body is shown in Figure 1.

The velocity of the material point Xα is given by

vα = ∂χα

∂t
(2.2)
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Accordingly, the acceleration is

aα = ∂2χα

∂t2
(2.3)

Xα

x3

x1

x2

V0
χα V

x

Figure 1: Motion of a continuous body B.

If we consider an arbitrary scalar property fα for constituent α, which is assumed to be described

by

fα = fα(x, t) (2.4)

the material derivative of property fα is defined by

Dfα

Dt
= ∂fα

∂t
+∇fα · v (2.5)

where v is the mean velocity of the mixture to be defined later. Likewise, the material derivative

of property fα following the motion of constituent α is given by

Dαfα

Dt
= ∂fα

∂t
+∇fα · vα (2.6)

In the following derivations in the balance laws and entropy inequality, we follow the derivation

process given by Bowen [16]. However, instead of using a control volume as shown in his study, we

use a material sub-region to make it consistent with the derivation of jump conditions presented

by Eringen and Ingram [19].
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2.1 BALANCE OF MASS

If chemical reactions are allowed, for an arbitrary material sub-region V ⊆ B, the mass variation

for an individual constituent α in V is dominated by chemical reactions or phase transitions. In

this case, the mass balance equation for the constituent α is given by [15]

d

dt

∫
Vα

ρα dv =
∫
Vα

ρ̂α dv (2.7)

where ρα is the apparent density of constituent α at x and t; ρ̂α is the mass supply rate to

constituent α from other constituents at x and t; Vα is the material subregion coincident with V

at time t proposed by Eringin and Ingram1. The total density of the subregion is defined by

ρ =
∑
α

ρα (2.8)

Therefore the mass of the subregion V is

M =
∫
V
ρ dv =

∑
α

∫
Vα

ρα dv (2.9)

If we take the summation of Eqn.(2.7) over all constituents, and make use of Eqn.(2.8) and (2.9),

we have

dM
dt

=
∫
Vα

∑
α

ρ̂α dv (2.10)

which represents the mass change rate of the subregion V. Moreover, according to the conservation

of mass for a material region, (2.9) is equal to zero. As a result, the mass supply rate ρ̂α is subjected

to

∑
α

ρ̂α = 0 (2.11)

1Some authors, for example, Bowen, are not using Vα in their research. We show the the definition of Vα given
by Eringen and Ingram [19] because it makes the presence of vα in Eqn.(2.12) more reasonable since we are using a
material region approach. Some authors use other explanations for the vα term while not using the definition of Vα.
Coussy [31] in his study used dα

dt

∫
V f dv as the particle derivative following the motion of constituent α, and same

result can be obtained.
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The Reynolds’ transport theorem corresponding to the subregion Vα may be written as

d

dt

∫
Vα

fα dv =
∫
Vα

[
∂fα

∂t
+∇ · (fαvα)

]
dv (2.12)

By use of equations (2.6), (2.7), and (2.12), the local form of balance of mass is obtained as

Dαρα

Dt
+ ρα∇ · vα = ρ̂α (2.13)

Moreover, if the relationship between a constituent property fα and its corresponding mixture

property f is described as

f = 1
ρ

∑
α

ραfα (2.14)

it can be shown that

ρ
Df

Dt
=
∑
α

ρα
Dαfα

Dt
−∇ · (ραfαuα) + ρ̂αfα (2.15)

where uα is the diffusion velocity of constituent α defined by

uα = vα − v (2.16)

The balance of mass for individual constituents must be consistent with the balance of mass

for the mixture. By taking the summation of Eqn.(2.13) over all constituents, we can show that it

becomes

Dρ

Dt
+ ρ∇ · v = 0 (2.17)

which is the well recognized local form of balance of mass in continuum physics, where the mean

velocity v of the mixture is defined by

v = 1
ρ

∑
α

ραvα (2.18)

7



2.2 BALANCE OF MOMENTUM

2.2.1 Balance of linear momentum

The balance of momentum for constituent α is given by [15]

d

dt

∫
Vα
ραvα dv =

∫
∂Vα

Tα · n da+
∫
Vα
ραbα dv +

∫
Vα

(p̂α + ρ̂αvα) dv (2.19)

where Tα is the Cauchy stress tensor of α, and the first term in the right hand side containing

Tα represents the contact force from the mixture surrounding Vα;
∫
Vα ραbα dv is the external

body force exerted on constituent α; p̂α is the momentum supply from other constituents inside

Vα; ρ̂αvα is the momentum supply due to mass supply from other constituents; and the term∫
Vα (p̂α + ρ̂αvα) dv represents the complete local interaction inside Vα. Moreover, the supply term

follows

∑
α

(p̂α + ρ̂αvα) = 0 (2.20)

For the left hand side of Eqn.(2.19), applying Reynolds transport theorem given in (2.12), we

get

d

dt

∫
Vα
ραvαdv =

∫
Vα

[
ραaα + vα(D

αρα

Dt
+ ρα∇ · vα)

]
dv (2.21)

By substituting (2.21) and (2.13) into Eqn.(2.19), if we apply Gauss’s divergence theorem to the

contact force term and rearrange terms, the local form of the the balance of momentum is obtained

as

ραaα −∇ ·Tα − ραbα − p̂α = 0 (2.22)

while the corresponding equation for the mixture is given by

ρa = ∇ ·T + ρb (2.23)

8



The mean acceleration a of the mixture is defined by

a = Dv
Dt

(2.24)

and the mean body force density of the mixture is defined by

b = 1
ρ

∑
α

ραbα (2.25)

The Cauchy stress tensor T of the mixture is given by Bowen [16] as

T = TI +
∑
α

ραuα ⊗ uα (2.26)

TI is called the inner part of the stress tensor defined by

TI =
∑
α

Tα (2.27)

T is necessarily symmetric to satisfy the balance of angular momentum. Moreover, because ραuα⊗

uα is symmetric, TI is also symmetric. It should be noted that Tα may not be symmetric due to

local interaction.

2.2.2 Balance of angular momentum

As proposed by Bowen [16], the balance of angular momentum for constituent α is given by

d

dt

∫
Vα

x× (ραvα) dv =
∫
∂Vα

x× (Tα · n) da+
∫
Vα

[x× (ραbα + p̂α + ρ̂αvα) + m̂α] dv (2.28)

where m̂α is the moment of momentum supply vector that is first suggested by Truesdell and Toupin

[15], then explored by Bowen [16]. The term
∫
∂Vα x × (Tα · n) da represents the momentum from

the contact force between Vα and the mixture around it. The term
∫
Vα [x× (p̂α + ρ̂αvα) + m̂α] dv

is the momentum caused by local interaction inside Vα. By applying Reynolds transport theorem

9



to the left hand side of Eqn.(2.28), we get

d

dt

∫
Vα

x× (ραvα) dv =
∫
Vα

[x× ∂

∂t
(ραvα) + (x× vα)(∇ρα · vα)

+ x× (ρα∇vα · vα) + (ρα∇ · vα)(x× vα)] dv (2.29)

By use of index notation, the first term inside integral in the right hand side of Eqn.(2.28) is written

as

∫
∂Vα

x× (Tα · n) da =
∫
∂Vα

εijkxiT
α
jlnlek da (2.30)

where εijk denotes the Levi-Civita symbol. For simplicity of discussion, a tensor A is defined

through Akl = εijkxiT
α
jl , so that

A · n = Aklnlek = εijkxiT
α
jlnlek (2.31)

Therefore we can apply Green-Gauss theorem to Eqn.(2.30), and it becomes

∫
∂Vα

A · nda =
∫
Vα
∇ ·A dv =

∫
Vα

(εijkTαjiek + εijkxi
∂Tαjl
∂xl

ek) dv (2.32)

Next, we define a new vector gα = εijkT
α
jiek. By substituting gα into (2.32), we have

∫
∂Vα

A · nda =
∫
Vα

(gα + x×∇ ·Tα) dv (2.33)

and

gα =


Tα32 − Tα23

Tα13 − Tα31

Tα21 − Tα12

 (2.34)

Hence, with the aid of (2.29) and (2.23), the balance law given in (2.28) may be written as

∫
Vα

[x× vα(D
αρα

Dt
+ ρα∇ · vα − ρ̂α) + x× (ραaα −∇ ·Tα − ραbα − p̂α)] dv

=
∫
Vα

(gα + m̂α) dv (2.35)

10



It can be seen that the left hand side of Eqn.(2.35) can be eliminated using the balance of mass

and the balance of linear momentum for individual constituents. Thus we obtain the local form of

the balance of angular momentum, as

m̂α = −gα (2.36)

As a result,

m̂α =


Tα23 − Tα32

Tα31 − Tα13

Tα12 − Tα21

 (2.37)

For convenience, let us define

M̂α = (Tα)T −Tα (2.38)

and M̂α is a skew-symmetric tensor, where

M̂α
32 = m̂α

1 (2.39)

M̂α
13 = m̂α

2 (2.40)

M̂α
21 = m̂α

3 (2.41)

with the identity

∑
α

M̂α = 0 (2.42)

2.3 BALANCE OF ENERGY

The balance of energy for a constituent α is given by

d

dt

∫
Vα

ρα(εα + 1
2vα · vα) dv =

∫
∂Vα

[vα · (Tα · n)− qα · n] da

+
∫
Vα

[vα · (ραbα) + vα · p̂α + ε̂+ ραγα + ρ̂α(εα + 1
2vα · vα)] dv

(2.43)

11



where εα is the internal energy density for constituent α; qα is the heat flux vector; γα is the

external heat supply; and ε̂α is the energy supply from other constituents. By use of the identity

vα · (Tα · n) = [(Tα)T · vα] · n (2.44)

applying Reynolds transport theorem and Gauss’s divergence theorem, Eqn.(2.43) becomes

∫
Vα

[(εα + 1
2vα · vα)(∂ρ

α

∂t
+ ρα∇ · vα + vα · ∇ρα − ρ̂α)

+ vα · (ρα∂vα

∂t
+ ρα∇vα · vα −∇ ·Tα − ραbα − p̂α)

+ ρα(∂ε
α

∂t
+ vα · ∇εα)−Tα : ∇vα +∇ · qα − ραγα − ε̂α] dv = 0 (2.45)

By using the balance of mass and the balance of linear momentum for individual constituents, the

first and the second terms in parenthesis in Eqn.(2.45) are identically zero. Thus we obtain the

local form of balance of energy for constituent α as

ρα
Dαεα

Dt
−Tα : ∇vα +∇ · qα − ραγα − ε̂α = 0 (2.46)

The balance of energy for the entire mixture is given by

ρ
Dε

Dt
= T : ∇v−∇ · q + ργ (2.47)

where ε is the mean internal energy density of the mixture; q represents the heat flux vector; and γ

represents the external heat supply. Like the stress tensor T, ε and q are not simple superposition

of the internal energy or heat fluxes of each constituent due to internal interaction. Following the

study by Bowen [16], we define

ε = εI + 1
ρ

∑
α

1
2ρ

αuα · uα (2.48)

q = qI + 1
2
∑
α

ρα(uα · uα)uα (2.49)

and

γ = 1
ρ

∑
α

ραγα (2.50)
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Returning to the definitions of q and ε, it is noticed that both of the properties contain two

parts. The first part is the internal part, and the second is the diffusion part related to diffusion

velocity uα. The inner part of of the internal energy density is given by

εI = 1
ρ

∑
α

ραεα (2.51)

while the inner part of the heat flux vector is defined by

qI =
∑
α

[qα − (Tα)T · uα + ραεαuα] (2.52)

The above-mentioned definitions have to be consistent with the balance of energy. Namely, if

we substitute (2.48)-(2.52) into the local form of the balance of energy of the mixture described

by Eqn.(2.47), it can be expanded to the form for individual constituents given in Eqn.(2.46).

Therefore that the diffusion velocity must yield

∑
α

ραuα = 0 (2.53)

Here, in particular, for the cases that the body force is uniform2 , namely

bα = b (2.54)

we may develop another way of describing the balance of energy. With the aid of (2.53), Eqn.(2.47)

may be written as

ρ
Dε

Dt
= T : ∇v−∇ · q + ργ + b ·

∑
α

ραuα (2.55)

It is noticed from (2.53) that the last term on the right of Eqn.(2.55) is zero. Next, if the body force

is uniform, which is reasonable since the body force acting on most mixtures that we consider is

gravity only, we may move b in the right hand side of Eqn.(2.55) inside the summation. Therefore

Eqn.(2.55) can be further written as

ρ
Dε

Dt
= T : ∇v−∇ · q + ργ +

∑
α

ραuα · bα (2.56)

2All the following equations are derived with the assumption that the body force is uniform. However, Ateshian
[17] showed same results without mentioning this assumption in his study.
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The left side of Eqn.(2.56) can be expanded using (2.48),

ρ
Dε

Dt
= ρ

DεI
Dt

+
∑
α

[
ραuα · D

αuα

Dt
−∇ · [(1

2ρ
αuα · uα)uα] + 1

2 ρ̂
αuα · uα

]
(2.57)

and the first term inside the parenthesis of (2.57) can be expressed as

∑
α

ραuα · D
αuα

Dt
=
∑
α

ρα[uα · aα −∇v : (uα ⊗ uα)] (2.58)

Then Eqn.(2.56) is expanded to

ρ
DεI
Dt

+
∑
α

[
ραuαaα −∇v : (uα ⊗ uα)−∇ · [(1

2ρ
αuα · uα)uα] + 1

2 ρ̂
αuα · uα

]
= (TI −

∑
α

ραuα ⊗ uα) : ∇v−∇ · [qI + 1
2ρ

αuα · uα)uα] +
∑
α

ραuα · bα + ργ (2.59)

For convenience, let us define a vector k, where

k =
∑
α

(qα + ραεαuα) (2.60)

and accordingly we have

TI : ∇v =
∑
α

Tα : ∇vα +
∑
α

uα · ∇ ·Tα −∇ · k +∇ · qI (2.61)

Now by substituting Eqn.(2.61) into (2.59), with the aid of the balance of linear momentum, we

have

ρ
DεI
Dt

=
∑
α

Tα : ∇vα −∇ · k + ργ −
∑
α

uα · p̂α − 1
2
∑
α

ρ̂αuα · uα (2.62)

2.4 ENTROPY INEQUALITY

In this section, following the presentation by Bowen [16], we formulate the entropy inequality

which represents the second axiom of thermodynamics. Unlike the balance of mass, momentum

and energy of mixtures, the entropy inequality is not postulated for individual constituents since

unrealistic constrains would be imposed on the mixture [17]. Based on the study by Bowen and
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Wiese [32], the inequality of entropy is given by

d

dt

∫
Vα
ρη dv > −

∫
∂Vα

∑
α

hα

θα
· n da+

∫
Vα

∑
α

ραγα

θα
dv (2.63)

where hα is an influx vector to be defined later, and θα is the temperature assigned to constituent

α at x, at t. If we apply Reynolds transport theorem with divergence theorem to (2.63) and get

rid of the integral symbol, the local form of the inequality can be obtained as

ρ
Dη

Dt
+
∑
α

∇ · hα

θα
−
∑
α

ραγα

θα
> 0 (2.64)

where η is the entropy density of the mixture defined by

η = 1
ρ

∑
α

ραηα (2.65)

and ηα is the entropy density for constituent α.

Using (2.65), Eqn.(2.64) may be expanded to

∑
α

[ραD
αηα

Dt
+∇ · (hα

θα
− ραηαuα)− ραγα

θα
+ ρ̂αηα] > 0 (2.66)

Next, with the aid of the local form of the balance of energy given in Eqn.(2.46), the term ραγα is

replaced in (2.66). Therefore Eqn.(2.66) becomes

∑
α

[
ρα
Dαηα

Dt
+ 1
θα
∇ · hα − hα · ∇θα

(θα)2 −∇ · (ραηαuα)

− 1
θα

[ραD
αεα

Dt
−Tα : ∇vα +∇ · qα − ε̂α] + ρ̂αηα

]
> 0 (2.67)

By introducing a new scalar êα which is defined by

êα = ε̂α + uα · p̂α + ρ̂α(εα + 1
2uα · uα) (2.68)

Eqn.(2.67) is written as

∑
α

1
θα

[ρα(θαD
αηα

Dt
− Dαεα

Dt
) + Tα : ∇vα − hα · ∇θα

θα
+∇ · (hα − qα)− θα∇ · (ραηαuα)

− ρ̂α(εα − θαηα + 1
2uα · uα) + êα − uα · p̂α] > 0 (2.69)
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At this point, the definition of the flux vector hα given by Bowen [16] is

hα = qα + θαραηαuα (2.70)

By substituting (2.70) into (2.63), the general form of the entropy inequality for individual con-

stituents is obtained, which is rewritten as

∫
Vα

∂

∂t
(ρη) dv > −

∫
∂Vα

∑
α

ραηαvα · n da−
∫
∂Vα

∑
α

qα

θα
· n da+

∫
Vα

∑
α

ραγα

θα
dv (2.71)

Moreover, inequality (2.69) may be written as

∑
α

1
θα

[ρα(θαD
αηα

Dt
− Dαηα

Dt
) + Tα : ∇vα−

1
θα

(qα · ∇θα) + êα − uα · p̂α − ρ̂α(εα − θαηα + 1
2uα · uα)] > 0 (2.72)

For mixtures subjected to a uniform temperature, we may obtain an alternative form of the in-

equality. To this end, we introduce the Helmholtz free energy which is defined by

ψα = εα − ηαθα (2.73)

and the material derivative of ψ following the motion of constituent α is

Dαψα

Dt
= Dαεα

Dt
− ηαD

αθα

Dt
− θαD

αηα

Dt
(2.74)

By substituting (2.74) back into Eqn.(2.72), with the understanding that θα = θ, we obtain

∑
α

[−ρα(D
αψα

Dt
+ ηα

Dαθ

Dt
)

+ Tα : ∇vα − 1
θ

(qα · ∇θ) + êα − uα · p̂α − ρ̂α(ψα + 1
2uα · uα)] > 0 (2.75)

Moreover, if the mixture is subjected to a uniform body force, it can be shown that

∑
α

êα = 0 (2.76)
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Therefore the entropy inequality is further reduced to

∑
α

[−ρα(D
αψα

Dt
+ ηα

Dαθ

Dt
) + Tα : ∇vα − 1

θ
(qα · ∇θ)− uα · p̂α − ρ̂α(ψα + 1

2uα · uα)] > 0 (2.77)

2.5 JUMP CONDITIONS

In the derivations of the balance of mass, momentum and energy, and the entropy inequality, we

utilize the Reynolds’ transport theorem and Green-Gauss divergence theorem to obtain the local

form. However, this requires that the properties of the mixture are continuous inside V. If, in

particular, some properties inside V suffer a discontinuity, we need more general expressions for

both the Reynolds’ transport theorem and the Green-Gauss theorem. Conventionally, we call the

surfaces, across which discontinuities happen, singular surfaces. In our problem, the surfaces of

the graft are considered to be singular surfaces since it suffers jumps in both density and material

velocity. Here, as defined by Casey [33], a singular surface is a mathematical representation of

infinitesimally narrow region across which changes occur in some field properties of the medium.

Those properties can be temperature, velocity, density, pressure, etc, though not motion. In other

words, a gap or overlap is not allowed inside V. Figure 2 shows the concept of a singular surface.

The singular surface Γ is defined to be a function of time. Normally, it is irrelevant to the motion of

V and not always material [33]. The approach for deriving jump conditions is to analyze properties

in V1 and V2 separately with the understanding that V is still a material region subjected to all the

balance laws and the entropy inequality [20], [21].
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n ∂V

V2 V1

Γ(t)

Figure 2: A singular surface Γ(t) divides a material region V into two subregions V1 and V2. ∂V is
the surface of V; n is the unit normal on Γ(t) which points into V2 side.

If numbers 1 and 2 are used to describe properties in V1 and V, the jump for an arbitrary field

property Φ is defined by

[[Φ]] = Φ2 − Φ1 (2.78)

For a region Vα with singular surface Γ(t), the generalized Green-Gauss theorem and Reynolds’

transport theorem are given by Eringen [22] as

∫
∂Vα

fα · n da =
∫
Vα1 +Vα2

∇ · fα dv +
∫

Γ(t)
[[fα]] · n da (2.79)

d

dt

∫
Vα

ραfα dv =
∫
Vα1 +Vα2

[
∂

∂t
(ραfα) +∇ · (ραfαvα)

]
dv +

∫
Γ(t)

[[ραfαuαΓ]] · n da (2.80)

where fα is an arbitrary scalar property and fα is an arbitrary tensor property, and

uαΓ = vα − vΓ (2.81)

where vΓ is the velocity of the singular surface.
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The following derivations follow the work by Eringen and Ingram [19] with some variations in

notations.

2.5.1 Jump of mass

Because the material region is divided by a singular surface, from now on, we analyze the jump

conditions by regarding V as two connected regions as shown in Figure 2. It is noticed that V1 and

V2 are not material regions and there are mass, momentum, and energy supplies generated on the

singular surface. Thus we can expand the mass supply rate for constituent α inside V as

∫
Vα

ρ̂α dv =
∫
Vα1 +Vα2

ρ̂α dv +
∫

Γ(t)
ρ̄α da (2.82)

Here, the physical meaning of ρ̄α is the mass supply rate per area to constituent α from other

constituents on the singular surface Γ(t). By taking the summation of (2.82) over all constituents

and using the balance of mass, we have

∑
α

ρ̄α = 0 (2.83)

One example is ice melting in liquid water, where the singular surface is the interface between ice

and water. There are two constituents which are ice and water. For the ice phase, particularly,

ρ̄α represents the mass removal of ice due to melting, while ρ̄α indicates the mass supply of liquid

water if α represents water. By use of the identity described in (2.80) and substituting (2.82) into

Eqn.(2.7), we have

∫
Vα1 +Vα2

[
∂ρα

∂t
+∇ · (ραvα)− ρ̂α

]
dv +

∫
Γ(t)

[[ραuαΓ]] · n da =
∫

Γ(t)
ρ̄α da (2.84)

It is noticed that the term in the parenthesis on the left of Eqn.(2.84) is just the local form of the

balance of mass for constituent α. Therefore we can get rid of the integral in the equation, and

obtain the jump condition of mass in local form, as3

[[ραuαΓ]] · n = ρ̄α (2.85)

3The signs here are different with that given by Ateshian [17] for the jump condition of mass as well as other jump
conditions because we are using an opposite direction for the unit normal n.
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The jump of mass for the mixture is then given by

[[ρuΓ]] · n = 0 (2.86)

where uΓ is the diffusion velocity of the mixture relative to the singular surface defined by

uΓ = v− vΓ (2.87)

2.5.2 Jump of momentum

Like the balance of linear momentum for individual constituents, the linear momentum supply

on the singular surface consists of two parts given by

s̄α = ρ̄αvα + p̄α (2.88)

where the first part is the momentum gained by the mass supply, and the second is the momentum

supply aside from chemical reaction or phase change. Moreover, similar to the mass supply ρ̄α on

Γ(t), the summation of s̄α over all constituents is zero, and so for all the surface supply terms in

the following text. By use of (2.79), (2.80), and (2.88), Eqn.(2.19) becomes

∫
Vα1 +Vα2

[
∂(ραvα)

∂t
+∇ · (ραvα ⊗ vα)−∇ ·Tα − ραbα − ρ̂αvα − p̂α

]
dv

+
∫

Γ(t)
[[ραvα ⊗ uαΓ]] · n da =

∫
Γ(t)

[[Tα]] · n da+
∫

Γ(t)
s̄α da (2.89)

Using the local form of the balance of momentum for individual constituents, the first term on the

left of the above equation is eliminated. We then obtain the jump condition of linear momentum

expressed as

[[ραvα ⊗ uαΓ −Tα]] · n = s̄α (2.90)

and the jump condition of linear momentum for the mixture is given by

[[ρv⊗ uΓ −T]] · n = 0 (2.91)
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Likewise, the angular momentum by the local interaction for constituent α given in Eqn.(2.28)

inside V containing a singular surface may be expanded to

∫
∂Vα

[x× (p̂α + ρ̂αvα) + m̂α] dv =
∫
Vα1 +Vα2

[x× (p̂α + ρ̂αvα) + m̂α] dv

+
∫

Γ(t)
(x× s̄α + n̄α) da (2.92)

where n̄α plays the same role as s̄α in Eqn.(2.88). With (2.79), (2.80), and (2.92), Eqn.2.28) is

expanded to

∫
Vα1 +Vα2

[x× vα(D
αρα

Dt
+ ρα∇ · vα − ρ̂α) + x× (ραaα −∇ ·Tα − ραbα − p̂α)] dv

−
∫
Vα1 +Vα2

(gα + m̂α) dv +
∫

Γ(t)
x× [[ραvα ⊗ uαΓ −Tα]] · n da =

∫
Γ(t)

(x× s̄α + n̄α) da (2.93)

By use of the local form of the balance of mass, the balance of linear momentum and the balance

of angular momentum for constituent α, Eqn.(2.93) becomes

x× ([[ραvα ⊗ uαΓ −Tα]] · n− s̄α) = n̄α (2.94)

where the term in parenthesis in the left is just the jump condition of linear momentum for con-

stituent α. Therefore once the jump of linear momentum is satisfied, we have

n̄α = 0 (2.95)

It is noticed that although the equations of jump of linear and angular momentum are not used for

the vascular graft degradation problem, we want to show them here because they play important

roles for problems with deformation or remodeling, which exist for most problems dealing with

biological tissues. Therefore the jump conditions of momentum are extremely valuable for future

research, and same for the jump of energy and entropy in the next section.
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2.5.3 Jump of energy and entropy

The rate of energy supply on the singular surface is given by

w̄α = ρ̄α(εα + 1
2vα · vα) + p̄α · vα + ε̄α (2.96)

where ρ̄α(εα + 1
2vα · vα) is the rate of energy supply brought by mass supply; p̄α · vα is the rate

of energy supply from momentum supply; and ε̄α rate of energy transferred by contact. Again, by

substituting (2.79) and (2.80) into Eqn.(2.43), we obtain the jump of energy for constituent α as

[[ρα(εα + 1
2vα · vα)uαΓ − (Tα)T · vα + qα]] · n = w̄α (2.97)

and the jump condition of energy for the mixture is

[[ρ(ε+ 1
2v · v)uΓ −TT · v + q]] · n = 0 (2.98)

Since the entropy inequality cannot be expressed strictly in local form, we only present the jump of

entropy for the mixture here. With the understanding that
∑
α(hα/θα) = h/θ and

∑
α(ραγα/θα) =

(ργ/θ), by use of (2.79) and (2.80), the inequality (2.63) becomes

∫
Vα1 +Vα2

[
∂(ρη)
∂t

+∇ · (ρηv) +∇ · (h
θ

)− ργ

θ

]
dv +

∫
Γ(t)

[[ρηuΓ + h
θ

]] · n da > 0 (2.99)

Because (2.99) is valid for all shapes of V, for a material region containing a singular surface shown

in Figure 2, if we compress V1 and V2 and make the ∂V approach and infinitely close to Γ(t),

∂V would coincide with Γ(t) and the volume of the material region would be approximately zero.

In this case, all properties inside (V1+V2) can be considered as zero. Therefore the first term in

Eqn.(2.99) can be eliminated [33]. We then obtain the local form of the jump of entropy, as

[[ρηuΓ + h
θ

]] · n > 0 (2.100)
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3.0 GOVERNING EQUATIONS AND MOVING BOUNDARY CONDITIONS

Now let us formulate the governing equations and boundary conditions for the degradation problem

of the vascular graft. Although there is no evidence showing that the degrading vascular graft is

highly asymmetric, for a general standpoint, we postulate that in vivo it is possible that the shape

of the graft could become irregular over time as shown in Figure 3. It is noticed that both the

two boundaries of the vascular graft are changing with time. Also, if blood flow occurs inside the

graft, there will also be a variation in the axial direction for the properties of the degrading graft.

Therefore, this becomes a three dimensional unsteady problem. For convenience, the following

equations are expressed in vector forms.

Time

Ω2 Ω2

Ω1 Ω1Γ1 Γ1

Γ2

Γ2

Figure 3: A cross section of an asymmetrically degrading biodegradable vascular graft over time.
Γ1 and Γ2 represent the inner and the outer surfaces of the graft, respectively; Ω1 represents the
inner domain; Ω2 represents the outer domain.
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3.1 GOVERNING EQUATION

In the experiment by our group, the vascular grafts are made of a single degradable material

such that only one solute need to be considered. Moreover, there is no chemical reaction between

the solute and the solvent. Therefore if we apply the idea of mixture theory to this problem, there

are overall three constituents that need to be considered: the solid s, the solute u, and the solvent

w. For the solute u, the balance of mass is

Duρu

Dt
+ ρu∇ · vu = ρ̂u in Ω1, Ω2 (3.1)

Since there is no chemical reaction or phase transition, by expanding the first term, Eqn.(3.1)

becomes

∂ρu

∂t
+ vu · ∇ρu + ρu∇ · vu = ∂ρu

∂t
+∇ · (ρuvu) = 0 in Ω1, Ω2 (3.2)

According to Fick’s law, the mass flux for the solute u is

F = −D∇C = C(vu − vw) in Ω1, Ω2 (3.3)

where C represents the concentration of u, which is also the apparent density of the solute. By

substituting the divergence of (3.3) into Eqn.(3.2), with the understanding that ∇ · vw = 04 for an

incompressible fluid, we obtain

∂C

∂t
+ vw · ∇C = ∇ · (D∇C) in Ω1, Ω2 (3.4)

and this is the general governing equation for the degradation process.

3.2 THE MOVING BOUNDARIES

As will be discussed below, the inner surface and the outer surface of the degrading graft are

both dependent on time, and two boundary conditions are required for each boundary to constrain
4 vw = v since the velocity of the mixture for the solution is the velocity of the solvent.
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the time dependent boundary. If n is defined as the unit normal that points into the solution

side on the interfaces between the solid and the solution, according to Noyes-Whitney constitutive

equation [26], which suggests that the mass supply rate at the boundary is proportional to the

difference between concentration C at time t and the saturation solubility Cs, the first boundary

condition is given by

−D∇C · n = h(Cs − C) at Γ1, Γ2 (3.5)

This is the Robin boundary condition that suggests that the mass flux at the boundary is propor-

tional to the difference between concentration C at time t and the saturation solubility Cs, where

h is a material coefficient.

The second boundary condition arises in this problem because of the moving boundary. Con-

ventionally, we call boundary conditions of this type the moving boundary conditions or Stefan

boundary conditions. Although the graft is highly porous, Gade et al. [34] showed that it lost mass

mainly by surface erosion and the apparent density barely changes. Therefore the effect of porosity

is ignored in deriving the moving boundary conditions. We denote the properties in the solution

with asterisk to distinguish them from the properties of the solid. At the surfaces of the graft, by

use of the jump condition given in Eqn.(2.85), for constituent s, we have

ρs∗(vs∗ − vΓ) · n− ρs(vs − vΓ) · n = ρ̄s at Γ1, Γ2 (3.6)

Since there is no solid in the solution, we have ρs∗ = 0. Moreover, if the graft is assumed to be fixed

in the space, vs is zero. Thus (3.6) is reduced to

ρsvΓ · n = ρ̄s at Γ1, Γ2 (3.7)

Again, by Noyes-Whitney constitutive equation, we have

ρ̄s = −h(Cs − C) at Γ1, Γ2 (3.8)

where the negative sign implies that the mass supply to solid s is negative.
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By use of (3.5), (3.7), and (3.8), the moving boundary condition is obtained as

ρsvΓ · n = D∇C · n at Γ1, Γ2 (3.9)
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4.0 MATHEMATICAL MODEL FOR THE IN VITRO DEGRADATION OF THE

VASCULAR GRAFT

In this chapter, we developed a mathematical model for the in vitro degradation problem, which

considers a vascular graft degrading in stationary solution. The purpose for this study is to un-

derstand the effect of degradation and extend the results to the in vivo problem which can not

be studied directly. The experiment related to this thesis has been conducted by our group. In

particular, Gade et al. [34] tested the effect of enzymatic degradation for vascular grafts made of

fast degrading poly (glycerol sebacate) (PGS) in a stationary solution. It was found that the mass

loss of the in vitro degradation can be predicted through two degradation constants h and D, which

enables the prediction of the in vivo mass loss by tuning the two constants. It should be noticed

cellular attachment and growth are not included for the problem in this chapter.

4.1 MATHEMATICAL MODEL

For the in vitro problem, it is reasonable to assume that the degradation is independent of

axial direction since there is no blood flow inside the inner domain. Also, we assume that the

graft remains axisymmetric over time. Thus the original problem is reduced to a one-dimensional

problems as shown in Figure 4, where the outside boundary Γ3 is an analogy to the wall of the

container in the experiment, at which

D∇C · n = 0 in Ω1, Ω2 (4.1)
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Also, radiuses of the moving boundaries R1 and R2 only depend on time. We have

vΓi · n = −dRi(t)
dt

i = 1, 2 at Γ1, Γ2 (4.2)

By substituting (4.2) into the moving boundary condition (3.9), we obtain

−ρsdRi(t)
dt

= D∇C · n i = 1, 2 at Γ1, Γ2 (4.3)

Ω1

Γ1Γ2Γ3 R2

R
3

R
1

Ω2

Figure 4: A cross section of the vascular graft. Γ1 and Γ2 represent the inner and the outer surfaces
of the graft, respectively; Γ3 is the outer boundary; Ω1 represents the inner domain; Ω2 represents
the outer domain.

We idealize the diffusion coefficient D is uniform and independent of C, and axial diffusion is

neglected. For the solute, although there are velocities in radial direction near the two moving

boundaries, we can assume that the solute is stationary since the motions of the two surfaces are

slow enough, which implies that vw = 0. Thus in cylinder coordinate, the governing equation given

in (3.4) is written as

∂C

∂t
= D

1
r

∂

∂r
(r∂C
∂r

) in Ω1, Ω2 (4.4)
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By using the boundary conditions given in (3.5) and (4.3), if we set the initial concentration to

be zero, for the inner domain Ω1, the equation set for C(r, t) is

∂C

∂t
= D

1
r

∂

∂r
(r∂C
∂r

) 0 < r < R1(t), t > 0 (4.5)

ρs
dR1(t)
dt

= D
∂C

∂r
r = R1(t), t > 0 (4.6)

D
∂C

∂r
= h(Cs − C) r = R1(t), t > 0 (4.7)

C(r, 0) = 0 0 < r < R1(t), t = 0 (4.8)

R1(0) = R0
1 t = 0 (4.9)

where R0
1 denotes the initial value of R1.

Likewise, for the outer domain Ω2, with boundary conditions (3.5), (4.1), and (4.3), the equation

set for C(r, t) is

∂C

∂t
= D

1
r

∂

∂r
(r∂C
∂r

) R2(t) < r < R3, t > 0 (4.10)

ρs
dR1(t)
dt

= D
∂C

∂r
r = R2(t), t > 0 (4.11)

−D∂C
∂r

= h(Cs − C) r = R2(t), t > 0 (4.12)

∂C

∂r
= 0 r = R3, t > 0 (4.13)

C(r, 0) = 0 R2(t) < r < R3, t = 0 (4.14)

R2(0) = R0
2 t = 0 (4.15)

where R0
2 denotes the initial value of R2.

4.2 SOLUTION TO THE IN VITRO PROBLEM

For the linear partial differential given in Eqn.(4.4), the moving boundary condition introduce

extra non-linearity into the problem [25]. Even though for some moving boundary problems with

infinite domain or semi-infinite domain, it is possible to find their closed form solutions in the form

of error functions by use of change of a variable, a solution in closed form may not exist for most

moving boundary problems with a finite domain. As a result, for this degradation problem with
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a finite domain, an approximate method have to be introduced. In this section, we will find the

approximate solution with the aid of regular perturbation theory.

4.2.1 Solution for the inner domain

The following dimensionless properties and parameters are introduced.

C̄ = Cs − C
Cs

ζ = r

R1(t) τ = Dt

R0
1

2

R̄ = R1(t)
R0

1
ε = Cs

ρs
β = hR0

1
D

(4.16)

With these expressions, the non-dimensional form of (4.5)-(4.9) is written as

R̄2∂C̄

∂τ
+ εζ

∂C̄

∂ζ

∣∣∣∣∣
ζ=1

∂C̄

∂ζ
= ∂2C̄

∂ζ2 + 1
ζ

∂C̄

∂ζ
0 < ζ < 1, τ > 0 (4.17)

∂C̄

∂ζ
= −βR̄C̄ ζ = 1, τ > 0 (4.18)

R̄
dR̄

dτ
= −ε∂C̄

∂ζ
ζ = 1, τ > 0 (4.19)

C̄ = 1 0 < ζ < 1, τ = 0 (4.20)

R̄ = 1 τ = 0 (4.21)

Thus in addition to rewriting the problem in a non-dimensional form, the inner domain with a

moving boundary is mapped to a fixed domain by non-dimensionalization.

In the experiment by Gade et al. [34], the value of the dimensionless parameter ε is small with

a magnitude of 10−4. As a result, ε is identified as the small parameter5 required by perturbation

theory. Thus we may expand C̄ and R̄ to

C̄ = C̄0 + εC̄1 + ε2C̄2 + · · · =
∑
n

εnC̄n (4.22)

R̄ = R̄0 + εR̄1 + ε2R̄2 + · · · =
∑
n

εnR̄n (4.23)

5For regular perturbation theory, ε is not necessarily to be a small number. In fact, there is a non-vanishing radius
of convergence. That is to say, the series solution obtained by regular perturbation theory is convergent even for
very large ε. We want ε to be small here because we can get the accurate approximate solution by only solving first
few order problems, otherwise we have to calculate high order solutions to obtain a satisfactory result if ε is large.
Sometimes if there is no such a small parameter, we can just introduce a parameter into the problem and let ε = 1
to recover the original problem after calculation [35].
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where C̄n and R̄n represents the nth order solution of C̄ and R̄, respectively. By substituting (4.22)

and (4.23) into the moving boundary condition (4.19) and rearranging terms, we get

R̄0
dR̄0
dτ

+ (R̄0
dR̄1
dτ

+ R̄1
dR̄0
dτ

+ ∂C̄0
∂ζ

∣∣∣∣∣
ζ=1

)ε+ (R̄0
dR̄2
dτ

+ R̄1
dR̄1
dτ

+ R̄2
dR̄0
dτ

+ ∂C̄1
∂ζ

∣∣∣∣∣
ζ=1

)ε2 + · · · = 0

(4.24)

Since Taylor expansion is unique for any convergent series, we may let every coefficients of εn in

Eqn.(4.24) to be zero, and get

R̄0
dR̄0
dτ

= 0 (4.25)

R̄0
dR̄1
dτ

+ R̄1
dR̄0
dτ

= −∂C̄0
∂ζ

∣∣∣∣∣
ζ=1

(4.26)

R̄0
dR̄2
dτ

+ R̄1
dR̄1
dτ

+ R̄2
dR̄0
dτ

= −∂C̄1
∂ζ

∣∣∣∣∣
ζ=1

(4.27)

...

Similarly, Eqn.(4.17) is expanded with the understating that R̄0 is constant. Again, we let the

coefficients of εn to be zero, and obtain

R̄2
0
∂C̄0
∂τ

= ∂2C̄0
∂ζ2 + 1

ζ

∂C̄0
∂ζ

(4.28)

R̄2
0
∂C̄1
∂τ

+ 2R̄0R̄1
∂C̄0
∂τ
− ζ dR̄1

dτ

∂C̄0
∂ζ

= ∂2C̄1
∂ζ2 + 1

ζ

∂C̄1
∂ζ

(4.29)

...

R̄2
0
∂C̄n
∂τ

+ F (ζ, τ) = ∂2C̄n
∂ζ2 + 1

ζ

∂C̄n
∂ζ

(4.30)

where

F (ζ, τ) = 2
[n−1

2 ]∑
i=0

n−i∑
j=i+1

R̄iR̄j
∂C̄n−i−j
∂τ

+
[n2 ]∑
i=1

R̄2
i

∂C̄n−2i
∂τ

− ζ
n−1∑
i=0

n−i∑
j=1

Ri
dR̄j
dτ

∂C̄n−i−j
∂ζ

(4.31)
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The parenthesis operation in (4.31) represents the function that round the number to the lower

integer. Moreover, the Robin boundary condition and the initial conditions of C̄ and R̄ imply that

∂C̄n
∂ζ

= −β
n∑
i=0

R̄iC̄n−i ζ = 1, τ > 0 (4.32)

R̄0 = 1, R̄n(0) = 0 (4.33)

C̄0(0) = 1, C̄n(0) = 0 (4.34)

Therefore the moving boundary problem is reduced to infinite boundary value problems in a fixed

domain. In addition, we notice that the inhomogeneous term F for problems in which n > 1 is

known as long as the lower order solutions of C̄n and R̄n are obtained. Such that theoretically the

problem can be solved recursively. The equation set for the 0th order problem6 is

∂C̄0
∂τ

= ∂2C̄0
∂ζ2 + 1

ζ

∂C̄0
∂ζ

0 < ζ < 1, τ > 0 (4.35)

∂C̄0
∂ζ

= −βC̄0 ζ = 1, τ > 0 (4.36)

C̄0 = 1 0 < ζ < 1, τ = 0 (4.37)

R̄0 = 1 τ ≥ 0 (4.38)

It can be seen that this 0th order problem is the simplification of the original problem under

the quasi-stationary assumption. By applying separation of variables, the solution is shown to be

C̄0 =
∞∑
n=1

2βJ0(αnζ)
(α2

n + β2)J0(αn)e
−αn2τ (4.39)

where αn are the roots of the eigenfunction

αnJ1(αn) = βJ0(αn) (4.40)

and J0 is the Bessel function of the first kind of 0th order; J1 is the Bessel function of the first kind

of first order. Therefore the 0th order solution C̄0 is obtained. Next, let us recall the relationship

between C̄0 and R̄1 described by (4.26). By substituting the zeroth order solution of the concen-
60th order problem is also called unperturbed problem. It can be obtained just by letting ε = 0.
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tration into Eqn.(4.26), the first order solution of the non-dimensional inner radius R̄1 is obtained

as

R̄1 =
∞∑
n=1

2β2

(α2
n + β2)α2

n

(1− e−αn2τ ) (4.41)

However, the first order problem for C̄1 is difficult to solve analytically because C̄0 and R̄1 are

infinite-series. Fortunately, the accuracy of the first order solution of R̄ is satisfactory and we will

prove it using numerical methods in the next chapter. Consequently, the approximate solution for

the radius of the inner domain with first order accuracy is

R̄ = R̄0 + εR̄1 = 1 + ε
∞∑
n=1

2β2

(α2
n + β2)α2

n

(1− e−αn2τ ) (4.42)

and therefore the mass loss per unit length for the inner domain is

∆m = 2πR1

∫ t

0
h(Cs − C) dt =

∞∑
n=1

4π(R0
1)2R̄β2Cs

(αn2 + β2)αn2 (1− e−αn2τ ) (4.43)

One interesting feature is that, if we substitute the solution of C̄0 into the moving boundary

condition (4.19) and integrate both sides with respect to τ , the same result as shown in Eqn.(4.42)

may also be obtained.

4.2.2 Solution for the outer domain

Likewise, we mapped the time dependent domain into a fixed domain by non-dimensionalization.

The dimensionless properties and parameters are described as follows.

C̄ = Cs − C
Cs

ζ = r −R2(t)
R3 −R2(t) τ = Dt

(R3 −R0
2)2 R̄ = R3 −R2(t)

R3 −R0
2

ε = Cs
ρs

β = h(R3 −R0
2)

D
ā = R0

2
R3 −R0

2
Rc = R2(t)

R3 −R2(t) (4.44)

where R0
2 represents the initial value of R2. Accordingly, the normalized problem is
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R̄2∂C̄

∂τ
− ε(ζ − 1) ∂C̄

∂ζ

∣∣∣∣∣
ζ=0

∂C̄

∂ζ
= ∂2C̄

∂ζ2 + 1
ζ +Rc

∂C̄

∂ζ
0 < ζ < 1, τ > 0 (4.45)

∂C̄

∂ζ
= βR̄C̄ ζ = 0, τ > 0 (4.46)

R̄
dR̄

dτ
= ε

∂C̄

∂ζ
ζ = 0, τ > 0 (4.47)

∂C̄

∂ζ
= 0 ζ = 1, τ > 0 (4.48)

C̄ = 1 0 < ζ < 1, τ = 0 (4.49)

R̄ = 1 τ = 0 (4.50)

By letting ε = 0, we obtain the 0th order problem which is written as

∂C̄0
∂τ

= ∂2C̄0
∂ζ2 + 1

ζ + ā

∂C̄0
∂ζ

0 < ζ < 1, τ > 0 (4.51)

∂C̄0
∂ζ

= βC̄0 ζ = 0, τ > 0 (4.52)

∂C̄0
∂ζ

= 0 ζ = 1, τ > 0 (4.53)

C̄0 = 1 0 < ζ < 1, τ = 0 (4.54)

Likewise, with the aid of separation of variables, the solution to this problem is

C̄0 =
∞∑
n=1

Dnφ[αn(ζ + ā)]e−α2
nτ (4.55)

where

φ[αn(ζ + ā)] = Y1(αnā+ αn)J0[αn(ζ + ā)]− J1(αnā+ αn)Y0[αn(ζ + ā)] (4.56)

and αn are eigenvalues of the eigenfunction
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Y1(αnā+ αn)J0(αnā)− J1(αnā+ αn)Y0(αnā) = αnY1(αnā)J1[αnā+ αn]− αnJ1(αnā)Y1[αnā+ αn]

(4.57)

which is obtained from boundary condition (4.46).

The coefficient Dn is given by

Dn = 2āβφ(āαn)
(1 + ā)2αn2φ2[αn(1 + ā)]− ā2(β2 + αn2)φ2(αnā) (4.58)

With the 0th order solution of concentration, the approximate solution of R̄ with first order accuracy

may be obtained as

R̄ = 1 + ε
∞∑
n=1

βDnφ(āαn)
α2
n

(1− e−αn2τ ) (4.59)

and the mass loss per unit length for the outer domain is

∆m = 2πR2

∫ t

0
h(Cs − C) dt

=
∞∑
n=1

2πCsβ[R3 − R̄(R3 −R0
2)](R3 −R0

2)Dnφ(āαn)
αn2 (1− e−αn2τ ) (4.60)
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5.0 NUMERICAL SOLUTIONS FOR THE IN VITRO PROBLEM

In order to test the solutions we obtained in the previous chapter, we will now analyze the moving

boundary problem numerically and compare the results to the approximate solutions.

5.1 NUMERICAL ANALYSIS FOR THE INNER DOMAIN

For convenience, we use R and C to represent the normalized and mapped inner radius R̄ and

the normalized concentration C̄, respectively. We notice that although the inner radius of the graft

is a function of time, the domain of the normalized problem remains fixed in time, which allows that

the grid size and position are independent of time. As a result, implicit finite difference method

can be applied here.

For the numerical approach, the first and second order derivatives with respect to ζ in Eqn.(4.17)

are represented by central difference approximations as

∂2C

∂ζ2 = Ci+1 − 2Ci + Ci−1
∆ζ2 ,

∂C

∂ζ
= Ci+1 − Ci−1

2∆ζ i = 0, 1, 2, 3, · · · N (5.1)

where Ci is the dimensionless concentration at the ith grid and ∆ζ is the grid size. The time

derivative term is approximated by a forward difference in time which is written as

∂C

∂τ
= Cn+1

i − Cni
∆τ n = 0, 1, 2, 3, · · · (5.2)

where n represents the time level and ∆τ is the time step. Now with these finite difference forms,

(4.17)-(4.21) which describe the in vitro degradation of the vascular graft from the inner side become
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(Rn+1)2C
n+1
i − Cni

∆τ − i∆ζεβRn+1Cn+1
N

Cn+1
i+1 − C

n+1
i−1

∆ζ =

Cn+1
i+1 − 2Cn+1

i + Cn+1
i−1

∆ζ2 + 1
i∆ζ

Cn+1
i+1 − C

n+1
i−1

2∆ζ i = 1, 2, 3, · · · N − 1 (5.3)

Cn+1
N+1 − C

n+1
N−1

2∆ζ = −βRn+1Cn+1
N (5.4)

Rn+1 −Rn

∆τ = εβCn+1
N (5.5)

C0
i = 1 i = 0, 1, 2, 3, · · · N (5.6)

R0 = 1 (5.7)

It is noticed that (N + 1) is a ghost point on which the values are constrained by the boundary

condition (5.4). Since the model is axisymmetric, the difference equation at i = 0 is given by

(Rn+1)2C
n+1
0 − Cn0

∆τ = 4C
n+1
1 − Cn+1

0
∆ζ2 (5.8)

By algebra operations, Eqn.(5.3) can be written as

a+ 2c
a︸ ︷︷ ︸Cn+1

i + b− c− d
a︸ ︷︷ ︸Cn+1

i+1 + d− c− b
a︸ ︷︷ ︸Cn+1

i−1 = Cni i = 1, 2, 3, · · · N − 1 (5.9)

A∗i B∗i C∗i

where

a = (Rn+1)2

∆τ b = −εζβR
n+1Cn+1

N

2∆ζ c = 1
∆ζ2 d = 1

2i∆ζ2 (5.10)

Thus if we use Cn+1 and Cn to represent the collection of concentrations at time (n+ 1) and time

n, respectively, the finite difference equation can be expressed in the following linear system.

ECn+1 = Cn (5.11)
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where the matrix E is

E =



A∗0 B∗0

C∗1 A∗1 B∗1
. . . . . . . . .

C∗N A∗N


(5.12)

and

A∗0 = 1 + 4
a∆ζ2 B∗0 = − 4

a∆ζ2 C∗N = −2c
a

A∗N = a+ b+ 2c
a

− 2∆ζβRn+1 b− c− d
a

(5.13)

At every time point n, the non-dimensional radius at the next time (n+1) denoted by Rn+1 is

assumed, and the concentration at (n + 1) can be obtained by Eqn.(5.11); next, Rn+1 is updated

using the moving boundary condition in (5.5); then the process is repeated until the iterated Rn+1

does not change significantly, and we may go to the next time point.

In order to make the implicit finite difference method valid, convergence of the scheme is tested

[36]. The Taylor expansions of Cn+1
i , Cni±1, and Rn+1 are

Cn+1
i = Cni +

(
∂C

∂τ

)∣∣∣∣n
i

∆τ +
(
∂2C

∂τ2

)∣∣∣∣∣
n

i

(∆τ)2

2 + · · · (5.14)

Cni±1 = Cni ±
(
∂C

∂ζ

)∣∣∣∣n
i

∆ζ +
(
∂2C

∂ζ2

)∣∣∣∣∣
n

i

(∆ζ)2

2 ± · · · (5.15)

Rn+1 = Rn +
(
∂R

∂τ

)∣∣∣∣n ∆τ +
(
∂2R

∂τ2

)∣∣∣∣∣
n (∆τ)2

2 + · · · (5.16)

Substituting (5.14)-(5.16) into the difference equation (5.3), we have

R̄2∂C̄

∂τ
+ εζ

∂C̄

∂ζ

∣∣∣∣∣
ζ=1

∂C̄

∂ζ
= ∂2C̄

∂ζ2 + 1
ζ

∂C̄

∂ζ
+O(∆τ, ∆ζ2) (5.17)

As ∆τ and ∆ζ approach zero, Eqn.(5.17) is reduced to the original PDE as given in Eqn.(4.17).

Therefore we say that this method is consistent and has the order of errors in ∆τ and ∆ζ2 .

Furthermore, because an implicit method is used for the finite difference method and there is no

negative diffusion, the approach is unconditionally stable. Therefore according to Lax equivalence

theorem [37], the consistency and stability imply that this numerical scheme is convergent.
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5.2 NUMERICAL ANALYSIS FOR THE OUTER DOMAIN

It is noticed that an additional convection term appears as a result of mapping for the partial

differential equations for both the inner domain and the outer domain. For the outer domain,

the additional convection term may generate a negative numerical diffusion if central difference is

applied, which can make the method unstable. As a result, the upwind method is applied to the

convection term in Eqn.(4.45), which is defined by

∂C

∂ζ
= Ci − Ci−1

∆ζ i = 0, 1, 2, 3, · · · N (5.18)

Therefore the finite difference forms of Eqn.(4.45)-(4.50) are given by

(Rn+1)2C
n+1
i − Cni

∆τ − (i∆ζ − 1)εβRn+1Cn+1
0

Cn+1
i − Cn+1

i−1
∆ζ =

Cn+1
i+1 − 2Cn+1

i + Cn+1
i−1

∆ζ2 + 1
i∆ζ +Rn+1

c

Cn+1
i+1 − C

n+1
i−1

2∆ζ i = 1, 2, 3, · · · N − 1 (5.19)

Cn+1
1 − Cn+1

−1
2∆ζ = βRn+1Cn+1

0 (5.20)

Rn+1 −Rn

∆τ = εβCn0 (5.21)

C0
i = 1 i = 0, 1, 2, 3, · · · N (5.22)

R0 = 1 (5.23)

where C−1 is the concentration at the ghost point i = −1. Likewise, we may express Eqn.(5.19) in

the following form, as

a+ b+ 2c
a︸ ︷︷ ︸Cn+1

i + −c− d
a︸ ︷︷ ︸Cn+1

i+1 + d− c− b
a︸ ︷︷ ︸Cn+1

i−1 = Cni i = 1, 2, 3, · · · N − 1 (5.24)

A∗i B∗i C∗i

where for the outer domain,

a = (Rn+1)2

∆τ b = ε(1− iζ)βRn+1Cn+1
0

∆ζ c = 1
∆ζ2 d = 1

2ζ(i∆ζ +Rn+1
c )

(5.25)
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Again, we can use the linear system given in Eqn.(5.11) to describe the problem. For the problem

of the outer domain, we have

A∗0 = a+ b+ 2c
a

− 2∆ζβRn+1d− c− b
a

B∗0 = −2c− b
a

C∗N = −2c− b
a

A∗N = a+ b+ 2c
a

(5.26)

Similar to the inner domain, we also need to test if this finite difference scheme is convergent.

By use of Taylor expansion, Eqn.(5.19) becomes

R̄2∂C̄

∂τ
− ε(ζ − 1) ∂C̄

∂ζ

∣∣∣∣∣
ζ=0

∂C̄

∂ζ
= ∂2C̄

∂ζ2 + 1
ζ +Rc

∂C̄

∂ζ
+O(∆τ, ∆ζ) (5.27)

It is shown that as ∆τ and ∆ζ approach zero, modified equation given in Eqn.(5.27) is reduced to

the original partial differential equation. As a result, this method is consistent. Also, according

to the unconditional stability of implicit method, we conclude that the implicit finite difference

method is convergent for any ∆τ and ∆ζ.

5.3 COMPARING THE NUMERICAL RESULTS WITH PERTURBATION SOLUTIONS

In this section, we compare the results by the numerical methods with the approximate solutions

obtained using perturbation theory. Values of the parameters are from the research by Gade et al.

[34]. The initial radius of the inner domain R0
1 is 0.8 mm; the initial radius of the outer domain R0

2

is 1.58 mm; the radius of the outer insulated boundary R3 is 10 mm; the saturation solubility Cs
is 0.25 g·ml−1, the density of the solid ρs = 285.06 g·ml−1, and the ratio ε = Cs/ρ

s = 8.77× 10−4;

the diffusion coefficient D = 2.123× 10−6 mm−2·s−1, and h = 1.053× 10−6 mm·s−1. Figure 5 and

Figure 6 show the first order approximate solutions by perturbation theory and the corresponding

numerical results for the inner and outer radiuses, respectively.
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Figure 5: Comparison of the first order perturbation solution with the numerical solution of the
non-dimensional inner radius. n is the numbers of terms of the perturbation solution; eigenvalues
are computed to four decimal places; ε = 8.77× 10−4; β = 0.4216; ∆ζ = 0.0078; ∆τ=0.0005; total
non-dimensional time=15.

Figure 6: Comparison of the first order perturbation solution with the numerical solution of the
non-dimensional outer radius. n is the numbers of terms of the perturbation solution; eigenvalues
are computed to four decimal places; ε = 8.77× 10−4; β = 4.1763; ∆ζ = 0.0156; ∆τ=0.0005; total
non-dimensional time=20.

As seen in these figures, the approximate solutions of the radiuses for both the inner and outer

domains are dominated by their first term of the solution. Moreover, for the small values of ε in the
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actual experiments, the difference between the first order approximate solutions and the numerical

solutions is negligible. This can be explained by the nature of the PDE. As ε approaches zero, the

second convection term in Eqn.(4.17) and that in Eqn.(4.45) vanish so that the moving boundary

problems are reduced to unperturbed problems. However, as ε becomes bigger, the difference

between approximate solution and numerical solution becomes noticeable. Figure 7 and Figure

8 compare the solutions by the two approaches with larger values of ε for the inner domain and

the outer domain, respectively. For the inner domain, it is shown that the first order approximate

solutions are close to the numerical solutions even for large ε. However, for the outer domain, the

difference between the approximate solutions and the numerical solutions becomes noticeable for

large ε. Physically, due to the larger space between R2 and R3, shown in Figure 4, the time for the

solution to reach its saturation concentration is longer than that for the inner domain. Therefore

the change of the outer radius is greater than the inner radius. Since the first order solution of R̄

is obtained using the zeroth order solution of C̄, which is obtained by making ε to be zero and the

R̄ to be immobile, the accuracy of lower order approximations may not be satisfactory for R̄ that

changes significantly over time.

In order to better show the accuracy of the approximate solutions, we use

P = max
∣∣∣∣∣R̄FDM − R̄Perturbation

R̄(0)

∣∣∣∣∣× 100% (5.28)

to represent the difference between the non-dimensional radius by perturbation theory and that

by finite different method for both the inner and the outer domain. Figure 9 and Figure 10 show

the relationship between P and ε for the inner and outer domains, respectively. Also, the effect of

values of β is also investigated.

As indicated in Figure 9 and Figure 10, P is shown to have an approximately positive correlation

with ε. Surprisingly, P goes down after it reaching a maximum value when β = 10 for the inner

domain. Moreover, it is suggested that there is no obvious relationship between P and β. The

error of the solutions by perturbation theory is shown to be small, and the maximum difference by

our calculations is 6%, which is acceptable for practical purposes.

42



(a) ε=0.1

(b) ε=0.5

Figure 7: Comparison of the first order perturbation solution with the numerical solution of the
non-dimensional inner radius for larger ε. n is the numbers of terms of the perturbation solution;
eigenvalues are computed to four decimal places; β = 0.4216; ∆ζ = 0.0078; ∆τ=0.0005; total
non-dimensional time=15.
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(a) ε=0.05

(b) ε=0.1

Figure 8: Comparison of the first order perturbation solution with the numerical solution of the
non-dimensional outer radius for larger ε. n is the numbers of terms of the perturbation solution;
eigenvalues are computed to four decimal places; β = 4.1763; ∆ζ = 0.0156; ∆τ=0.0005; total
non-dimensional time=20.
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Figure 9: Plot of P of the inner domain against ε for different values of β. β is a non-dimensional
parameter defined in (4.16); for the summation: number of terms of the perturbation solution
n = 100; eigenvalues are computed to four decimal places; ∆ζ = 0.0078; ∆τ=0.0005; total non-
dimensional time=15.

Figure 10: Plot of P of the outer domain against ε for different values of β. β is a non-dimensional
parameter defined in (4.44); for the summation: number of terms of the perturbation solution
n = 100; eigenvalues are computed to four decimal places; ∆ζ = 0.0156; ∆τ=0.0005; total non-
dimensional time=20.
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6.0 THE IN VIVO PROBLEM

In the above chapters, we deal with the in vitro problem that the vascular graft degrades in

stationary solvent. However, for the in vivo problem, the inner domain experiences blood flow

instead of stationary fluid. Moreover, blood vessel reconstitution is involved for the in vivo problem.

As a result, the problem becomes more complex.

For the outer domain, there is no insulated boundary outside the vascular graft since it is just

an analogy to the experimental condition for the in vitro problem. We assume that the degradation

process is still axisymmetric and governed by simple diffusion without axial effects, and the effect

of the cells is negligible for the diffusion process. Therefore the only difference between in vitro and

in vivo degradation for the outer domain is the existence of the outer boundary. Because of the

absence of the outer boundary, the problem of the outer domain is now in a semi-infinite region.

Although there exist closed form solutions for a few moving boundary problems in semi-infinite

regions, the solution to this problem is not found in our study due to the restriction from the

Robin boundary condition [24], [25], [38]. As for the in vitro problem, we still need to solve this

problem in a finite domain since three boundary conditions are required to solve this problem. To

this end, one approach is to assume that the gradient of C is zero at positions far from Γ2, where

an imaginary insulated boundary Γ3 is postulated to serve as a boundary condition.

Unlike the in vitro degradation, cellular attachment and growth have to be considered. As the

graft degrades, cells replace the position where the graft occupies initially and reconstitute a new

blood vessel over time. Figure 11 shows the cross section of a vascular graft containing a cell layer in

the inner domain. If we assume that the inner radius of the cell layer R1 is stationary, the velocity

profile inside the graft should remain unchanged. Such that the problem in the inner domain is

divided into two sub-problems: pure diffusion problem in the cell layer, and diffusion-convection

problem for the inner flow part.
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Ω1

Γ1Γ2Γ3
R2

R
′

R
1

Ω2 Ω′

Figure 11: A cross section of a vascular graft containing a cell layer in the inner domain. Γ1 and Γ2
represent the inner and the outer surface of the cell layer, respectively; Γ3 is the outer surface of the
graft; Ω1 represents the flow region; Ω′ represents the cell layer; Ω2 represents the outer domain.

6.1 PROBLEM FOR THE FLOW REGION

For the flow region where Ω1, the velocity profile is to be determined. Due to the nature of

living body, two features need to be concerned: the effect of flow pulsation caused by heart beats;

and the fact that blood is non-Newtonian fluid. These two features introduce more complicated

mechanism into the problem and we definitely need proper assumptions to simplify them. Caro

[39] in his experiment measured the concentration variation of an injected dye in both pulsatile and

steady flow. It showed that the effect of pulsation is not notable for bent tubes, and that is small

for straight tubes. Therefore in this problem, we neglect the effect of pulsation and assume the

flow is steady. Moreover, McDonald [40] showed that for blood with high flow rate (in the arteries,

for example), the flow of blood is effectively Newtonian. Therefore for this work, we will assume

the flow is axisymmetric and full developed, and the velocity profile follows the form of Poiseuille

flow, which is given by
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u = U0(1− r2

R1
2 ) 0 < r < R1 (6.1)

where U0 is the maximum velocity, which occurs at r = 0. By substituting (6.1) into (3.4), we

obtain the governing equation for the inner domain as

∂C

∂t
+ U0(1− r2

R1
2 )∂C
∂x

= D(1
r

∂C

∂r
+ ∂2C

∂r2 + ∂2C

∂x2 ) 0 < r < R1 (6.2)

where x is the axial coordinate.

If we use the following non-dimensional parameters and properties to normalize Eqn.(6.2)

C̄ = Cs − C
Cs

τ = U0t

R1
ζ = r

R1
η = x

R1
Pe = U0R1

D
(6.3)

it becomes

∂C̄

∂τ
+ (1− ζ2)∂C̄

∂η
= 1

Pe

(
1
ζ

∂C̄

∂ζ
+ ∂2C̄

∂ζ2 + ∂2C̄

∂η2

)
0 < r < R1 (6.4)

Since D as found experimentally to be relative small, the Peclet number Pe becomes much greater

than one for high-velocity blood flow such as in arteries. Therefore the effect of the diffusion terms

in Eqn.(6.4) may be considered as a small perturbation. By letting the right hand side tend to

zero, Eqn.(6.4) becomes

∂C̄

∂τ
+ (1− ζ2)∂C̄

∂η
= 0 0 < r < R1 (6.5)

and not surprisingly, this is just the pure convection. This conclusion is consistent with the results

from the experiment conducted by Bailey and Gogarty [41]. It was shown that for arteries, the

dispersion process is dominated by simple convection. Moreover, if the flow rate is high enough, we

may consider C(x, r, t) = 0 in the flow part for short vascular graft since the concentration profile

is close to the inflow in which C = 0. With this assumption, the diffusion problem in the cell layer

becomes one-dimensional and can be solved by the perturbation theory.

However for low flow rate, Griffiths [42] in his experiment showed that the distribution of

concentration over a cross section is almost constant. With this result, Taylor [43] developed a

dispersion model base on the mean concentration at every cross section defined by
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Cm = 2
R1

2

∫ R1

0
Cr dr (6.6)

which is valid for large values of t. Then Taylor’s dispersion model is generalized by Gill and

Sankarasubramanian [44] by making a series expansion, making it works for small values of time.

Lighthill [45] also made a complement to Taylor’s theory by giving a solution valid for small value

of t to illustrate the initial action for the diffusion-convection process.

6.2 PROBLEM FOR THE CELL LAYER

In the meantime, the concentration inside the cell layer Ω′ is not directly affected by the flow

and governed by diffusion only, which is written as

∂C ′

∂t
= D′(1

r

∂C ′

∂r
+ ∂2C ′

∂r2 + ∂2C ′

∂x2 ) R1 < r < R′ (6.7)

where D′ denotes the diffusion coefficient inside the cell layer; C ′ is the concentration inside the cell

layer. Similar to the problem in a quiescent fluid studies for the in vitro problem, Γ2 is constrained

by two boundary conditions, (3.5) and (3.9). The moving boundary condition at Γ2 is written as

D′∇C ′ · n = ρsvΓ2 · n (6.8)

where n is the unit normal to Γ2 that points inward. Fallowing earlier work by Patel [28], we

transform (6.8) to simplify the analysis. The radius of Γ2 is expressed as

r = R′(x, t) (6.9)

and if we define a new function F(x, r, t) to describe the position of Γ2, we may have

F = r −R′(x, t) = 0 (6.10)
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Moreover, it follows that

n = ∇F
|∇F|

= ∇C ′

|∇C ′|
(6.11)

∇C ′ · n = ∇C
′ · ∇F
|∇F|

= |∇C ′| (6.12)

v · n = v · ∇F
|∇F|

= v · ∇C ′

|∇C ′|
(6.13)

Taking the material derivative of F and combining (6.13), we have

v · n = −∂F/∂t
∇|F|

= −∂C
′/∂t

|∇C ′|
(6.14)

Next, by use of (6.12) and (6.14), Eqn.(6.8) becomes

−D′∇C ′ · ∇F = ρs
∂F
∂t

(6.15)

By the differentiation of C and F , we may obtain

∂C ′

∂x
= ∂F/∂x
∂F/∂r

∂C ′

∂r
(6.16)

With the aid of (6.16), Eqn.(6.15) is expanded to

−D′∂C
′

∂r
[1 + (∂F/∂x

∂F/∂r
)2] = ρs

∂F
∂t
/
∂F
∂r

(6.17)

Now, since F is a function defined by (6.10), Eqn.(6.17) is reduced to

D′
∂C ′

∂r
[1 + (∂R

′

∂x
)2] = ρs

∂R′

∂t
(6.18)
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If the diffusion coefficient of the blood is same as that of the cell layer, both C and ∂C/∂r are

consistent at the interface Γ1, which serve as implicit boundary conditions. Therefore the equation

set for C(r, x, t) for the full problem of the inner domain is

∂C

∂t
+ U0(1− r2

R1
2 )∂C
∂x

= D(1
r

∂C

∂r
+ ∂2C

∂r2 + ∂2C

∂x2 ) 0 < r < R1, t > 0 (6.19)

∂C ′

∂t
= D′(1

r

∂C ′

∂r
+ ∂2C ′

∂r2 + ∂2C ′

∂x2 ) R1 < r < R′(x, t), t > 0 (6.20)

D′
∂C ′

∂r
[1 + (∂R

′

∂x
)2] = ρs

∂R′

∂t
r = R′(x, t), t > 0 (6.21)

−D′∇C ′ · n = h(Cs − C ′) r = R′(x, t), t > 0 (6.22)

C ′(R1, x, t) = C(R1, x, t) r = R1, t > 0 (6.23)

D′
∂C ′

∂r
= D

∂C

∂r
r = R1, t > 0 (6.24)

C(r, x, 0) = 0 0 < r < R1, t = 0 (6.25)

R′(x, 0) = R1 t = 0 (6.26)

The solution to this problem is not going to be shown in this thesis since the 2-dimensional moving

boundary condition introduces extra difficulty into the problem. Numerical analysis is scheduled

to be conducted and the perturbation solution to this problem is also going to be investigated in

our future studies.
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7.0 DISCUSSION

In this thesis, we solve the in vitro problem for erosion of a vascular graft using both the perturbation

theory and the numerical methods. It is shown that mixture theory is a powerful tool to simplify

problems including biological tissues. In fact, the moving boundary conditions given in (4.6) and

(4.11) can also be derived by using the balance of mass without concerning individual constituents.

However, for mixtures with more than three constituents or for porous media, the advantage of

jump conditions for mixture in deriving moving boundary conditions is irreplaceable.

It is shown that the first order solutions of the radiuses for both the inner and the outer domain

are valid and satisfactory. Although we set the values of ε to be utmost 0.5, the real value of it is

much smaller. For our experiments using PGS as the material for the graft, our group found the

order of ε is of 10−4, such that the error of first order approximate solution should be less than

1%. One surprising finding is that the errors of the approximate solutions are not shown to have a

obvious relationship with β as expected. Especially in the case that β = 10 for the inner domain

shown in Figure 9, the difference between the approximate solutions and the numerical solutions

decreases after reaching a peak as ε becomes bigger. Although not shown in this thesis, we note

that the errors of the approximate solutions for the outer domain increase as the radius of outer

boundary R3 becomes bigger.

At the end of the thesis, the in vivo problem with blood flow inside the inner domain is discussed.

With several assumptions, the problem for the inner domain is divided into two sub-problems:

a simple diffusion process with moving boundary; and a diffusion-convection process in a fixed

domain. Prior work suggests that the problem can be reduced to pure convection for high flow

rates, while for small flow rates, it may be assumed that the concentration in the fluid part is

independent of r. The difficulty of this problem lies in the moving boundary for the cell layer. Since

this is an unsteady 2-dimensional problem, the function of the free boundary is now a function of
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both x and t. In the future, we will develop an approach for mapping the cell layer domain to a

fixed region as was done for the in vitro problem. However, if we use ζ = r/R′ to normalize the

radius, the axial dependence of R′ will make the dimensionless equation extraordinarily complex.

In the future, we will continue to explore methods to simplify the formulation. Numerical analysis

will be used to test the idealizations.
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APPENDIX A

LIST OF SYMBOLS

n̄α Angular momentum supply rate on singular surface to constituent α N/m

s̄α Linear momentum supply rate on singular surface to constituent α N/m2

ρ̄α Mass supply rate on singular surface to constituent α kg/(m2·s)

C̄ Dimensionless concentration

R̄ Dimensionless radius

w̄α Energy supply rate on singular surface to constituent α W/m2

χ Motion of Xα

∆m Mass loss per unit length kg/m

ε Ratio of ρs to Cs

η Entropy density J/ (kg·K)

ηα Entropy density of constituent α J/ (kg·K)

γ External heat supply W/ kg

γα External heat supply to constituent α W/ kg

m̂α Angular momentum supply to constituent α from other constituents N/ m2
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p̂α Momentum supply to constituent α from other constituents N/ m3

ρ̂α Mass supply rate to constituent α kg/(m3·s)

ε̂α Energy supply to constituent α from other constituents W/ m3

a Acceleration m/s2

aα Acceleration of constituent α m/s2

b Body force density N/ kg

bα Body force density of constituent α N/ kg

D Matrix of diffusion coefficient m2/s

F Mass flux vector kg/(m2· s)

q Heat flux vector W/ m3

qα Heat flux vector for constituent α W/ m3

qI Inner part of heat flux vector W/ m3

T Cauchy stress tensor N/ m3

Tα Cauchy stress tensor of constituent α N/ m3

TI Internal part of Cauchy stress tensor N/ m3

uα Diffusion velocity of constituent α m/s

v Velocity m/s

vα Velocity of constituent α m/s

vΓ Velocity of surface γ m/s

x The position vector of Xα

Xα A material point of constituent α

B A deformable continuous body

R A Euclidean space
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V An arbitrary material region

Vα The material region of constituent α coincident with V

ψ Helmholtz free energy of constituent α W/ m3

ρ Density kg/m3

ρα Apparent density of constituent α kg/m3

τ Dimensionless time

ε Internal energy density J/ kg

εα Internal energy density of constituent α J/ kg

ζ Dimensionless radical axis of cylinder coordinate

C Concentration kg/m3

Cs Saturation solubility kg/m3

D Diffusion coefficient m2/s

h Material coefficient used in boundary condition m/s

R Radius m

r, x Radical and axial axis of cylinder coordinate m

s Solid

t Time s

u Solute

V Current configuration of B

V0 Initial configuration of B

w Solvent
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APPENDIX B

GRID SENSITIVITY TEST FOR NUMERICAL METHODS

To ensure the mesh quality, grid sensitivity is analyzed for the numerical methods. Once a difference

method is proved to be convergent, the accuracy of the method is mainly determined by grids.

Generally, a finer grid gives more details than the coarser ones. However, formulations with higher

density mesh require more time to solve. Therefore we consider the mesh to be satisfactory when

the results in the same position at fixed time do not significantly change. In this one-dimensional

problem, the radius is divided into 2I grids evenly, where I = 1, 2, 3, .... The residual for the

numerical results is described by the second norm which is defined by

ReI = ||CI − CI+1|| =
[
N∑
i

(CIi − CI+1
i′ )2

]1/2

(B.1)

where i′ represents the same position that i occupies. The grid size and the time step are determined

in this way: first we choose an arbitrary time step ∆τ , and we find the optimized ζ by the residuals

between two discretization levels; then the grid size is fixed to ∆ζ that we find in the previous step,

and we determine the optimized time step. As shown in Figure 12 and Figure 13, the optimized

time step and the optimized grid size are 0.0005 and 1/27, respectively. Likewise, for the outer

domain, we determine the optimized time step and grid size to be 0.0005 and 1/26 according to

Figure 14 and 15.
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Figure 12: Relationship between the residual and ∆ζ for the inner domain. ε=0.05, ∆τ=0.01, total
non-dimensional time=5.

Figure 13: Relationship between the residual and ∆τ for the inner domain. ε=0.05, ∆ζ = 1/27,
total non-dimensional time=5.
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Figure 14: Relationship between the residual and ∆ζ for the outer domain. ε=0.05, ∆τ=0.01, total
non-dimensional time=5.

Figure 15: Relationship between the residual and ∆τ for the outer domain. ε=0.05, ∆ζ = 1/26,
total non-dimensional time=5.
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APPENDIX C

DERIVATION FOR (2.15)

According to (C.6), we have

ρ
Df

Dt
=
∑
α

D(ραfα)
Dt

(C.1)

By use of the identities in (2.5) and (2.6), we obtain

D(ραfα)
Dt

= Dα(ραfα)
Dt

−∇(ραfα) · vα +∇(ραfα) · v (C.2)

Therefore

ρ
Df

Dt
=
∑
α

[
Dα(ραfα)

Dt
−∇(ραfα) · vα +∇(ραfα) · v

]
(C.3)

With the aid of (2.13) and (2.16), by expanding the first term in the right of (C.3), we have

ρ
Df

Dt
=
∑
α

[
ρα
Dαfα

Dt
+ fα(ρ̂α − ρα∇ · vα)−∇(ραfα) · vα +∇(ραfα) · (vα − uα)

]
(C.4)

Since ∇ · v = 0 for incompressible fluid, we get

∇ · vα = ∇ · uα (C.5)
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Thus (C.4) is reduced to

ρ
Df

Dt
=
∑
α

ρα
Dαfα

Dt
−∇ · (ραfαuα) + ρ̂αfα (C.6)
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APPENDIX D

DERIVATION FOR (2.17)

By taking the summation of Eqn.(2.13) over all constituents, with the identity given in (2.11), we

obtain

∑
α

Dαρα

Dt
+
∑
α

ρα∇ · vα = 0 (D.1)

By use of (2.5) and (2.6), we have

Dαρα

Dt
= Dρα

Dt
−∇ρα · v +∇ρα · vα (D.2)

With (D.2) and (2.8), (D.1) can be written as

Dρ

Dt
−∇ρ · v +

∑
α

∇ · (ραvα) (D.3)

By use of the identity given in (2.18), (D.3) becomes

Dρ

Dt
+ ρ∇ · v = 0 (D.4)
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APPENDIX E

DERIVATION FOR (2.22)

With (2.5), (2.6) and (2.16), we shall have

Dvα

Dt
= Dαvα

Dt
− (∇vα) · uα (E.1)

By use of (2.18), ρa can be expanded to

ρa = ρ
Dv
Dt

= ρ
D 1
ρ

∑
α ρ

αvα

Dt

=
∑
α

[ραaα − ρα∇vα · uα + vα(ρ̂α − ρα∇ · vα − uα · ∇ρα)] (E.2)

Since

∑
α

vρ̂α = v
∑
α

ρ̂α = 0 (E.3)

(E.2) can be reduced to

ρa =
∑
α

[ραaα + ρ̂αuα −∇ · (ραvα ⊗ uα)] (E.4)
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The second term inside parenthesis in the right hand side of (E.4) can be expanded to

∇ · (ραvα ⊗ uα) = ∇ · (ραuα ⊗ uα) +∇ · (ραv⊗ uα) (E.5)

where according to the identity of incompressible fluid, it can be shown that

∑
α

∇ · (ραv⊗ uα) = 0

Thus we have

ρa =
∑
α

[ραaα + ρ̂αuα −∇ · (ραuα ⊗ uα)] (E.6)

By taking the summation of Eqn.(2.21) over all constituents, with (2.24)-(2.27), and (E.6), we get

ρa = ∇ ·T + ρb (E.7)
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APPENDIX F

DERIVATION FOR (2.67)

According to the definition given in (2.51), by use of identity (2.5), we have

ρ
DεI
Dt

=
∑
α

[ραD
αεα

Dt
−∇ · (ραεαuα) + ρ̂αεα] (F.1)

and therefore

∑
α

ρα
Dαεα

Dt
= ρ

DεI
Dt

+
∑
α

[∇ · (ραεαuα)− ρ̂αεα] (F.2)

Substituting (F.2) into (2.46) and taking the summation for both sides, we get

ρ
DεI
Dt

+
∑
α

[∇ · (ραεαuα + qα)]−
∑
α

ρ̂αεα =
∑
α

Tα : ∇vα + ρr +
∑
α

ε̂α (F.3)

and this can be written as

ρ
DεI
Dt
−
∑
α

ρ̂αεα −
∑
α

ε̂α =
∑
α

Tα : ∇vα −∇ · k + ρr (F.4)

If the body force is uniform, according to Eqn.(2.62), (F.4) becomes

∑
α

Tα : ∇vα −∇ · k + ρr = ρ
DεI
Dt

+
∑
α

uα · p̂α + 1
2
∑
α

ρ̂αuα · uα (F.5)
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By combining (F.4) and (F.5), we obtain

∑
α

[ε̂α + uα · p̂α + ρ̂α(ε̂α + 1
2uα · uα)] = 0 (F.6)

Namely, ∑
α

êα = 0 (F.7)
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APPENDIX G

DERIVATION FOR (4.39)

For the 0th order problem of the inner domain given in (4.35)-(4.38), by separation of variables, we

propose that

C̄0 = X(ζ)T (τ) (G.1)

By substituting this expression into (4.35), we have

T ′

T
= X ′′ +X ′/(ζ)

X
= −α2 (G.2)

Therefore

T (τ) = Ae−α
2τ (G.3)

X(ζ) = BJ0(αζ) + CY0(αζ) (G.4)

Because X(ζ) is bounded at ζ = 0,

C = 0 (G.5)

By applying the convective boundary condition, we get
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αnJ1(αn) = βJ0(αn) (G.6)

and this is th eigrnfunvtion for αns.

Therefore

C̄0 = T (τ)X(ζ) =
∞∑
n=1

DnJ0(αnζ)e−αn2τ (G.7)

By applying the initial condition into (G.7), we have

C̄0 =
∞∑
n=1

DnJ0(αζ) = 1 (G.8)

Next, by multiplying both sides of (G.8) by ζJ0(αmζ) and integrating the equation from 0 to

1, we have

∫ 1

0

∞∑
n=1

ζDnJ0(αnζ)J0(αmζ)dζ =
∫ 1

0
ζJ0(αmζ)dζ (G.9)

According to the orthogonal property of Bessel functions and the eigenfunction, we have

Dn = 2β
(αn2 + β2)J0(αn) (G.10)

Thus

C̄0 =
∞∑
n=1

2βJ0(αnζ)
(α2

n + β2)J0(αn)e
−αn2τ (G.11)
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APPENDIX H

DERIVATION FOR (4.55)

Following the same procedure in Appendix G, by separation of variables, assume that

C̄0 = X(ζ)T (τ) (H.1)

By substituting (H.1) into (4.51), we have

T ′

T
= X ′′ +X ′/(ζ + ā)

X
= −α2 (H.2)

Thus

T = Ee−α
2τ (H.3)

X = AJ0[α(ζ + ā)] +BY0[α(ζ + ā)] (H.4)

By using boundary condition (4.53), the relationship between the two coefficients A and B is

obtained as

B = −AJ1(αā+ α)
Y1(αā+ α) (H.5)

Therefore the expression of X can be rewritten as

69



X = AJ0[α(ζ + ā)]− AJ1(αā+ α)
Y1(αā+ α) Y0[α(ζ + ā)]

= E{Y1(αā+ α)J0[α(ζ + ā)]− J1(αā+ α)Y0[α(ζ + ā)]} (H.6)

By substituting (H.6) into the boundary condition in (4.52), we obtain the eigenfunction as

−αn[J1(ααn)Y1(αnā+ α)− Y1(ααn)J1(αnā+ α)] =

β[Y1(αnā+ α)J0(ααn)− J1(α+ αnā)Y0(ααn)] (H.7)

For convenience, let

φ[α(ζ + ā)] = Y1(αā+ α)J0[α(ζ + ā)]− J1(αā+ α)Y0[α(ζ + ā)] (H.8)

Therefore

C̄0 =
∞∑
n=1

XnTn =
∞∑
n=1

Dnφ[αn(ζ + ā)]e−α2
nτ (H.9)

Substituting the initial condition into (H.9), we get

∞∑
n=1

Dnφ[αn(ζ + ā)] = 1 (H.10)

Multiplying the equation by (ζ + ā)φ[αm(ζ + ā)] and integrating from 0 to 1, (H.10) becomes

∫ 1

0

∞∑
n=1

Dn(ζ + ā)φ[αn(ζ + ā)]φ[αm(ζ + ā)] dζ =
∫ 1

0
(ζ + ā)φ[αm(ζ + ā)] dζ (H.11)

and this equation can be simplified by the orthogonal properties of Bessel functions. To this end,

we define

u = φ[αn(ζ + ā)] (H.12)

v = φ[αm(ζ + ā)] (H.13)

where αn and αm are two of the roots of Eqn.(H.7). Moreover, according (H.2), u and v are
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subjected to

(ζ + ā)u′′ + u′ + αn
2ζu = 0 (H.14)

(ζ + ā)v′′ + v′ + αm
2ζv = 0 (H.15)

which is equivalent to

[(ζ + ā)u′]′ + αn
2(ζ + ā)u = 0 (H.16)

[(ζ + ā)v′]′ + αm
2(ζ + ā)v = 0 (H.17)

Multiplying (H.16) and (H.17) by v and u respectively, by subtracting the two equations and

rearranging terms, we have

(αn2 − αm2)(ζ + ā)uv = [u(ζ + ā)v′ − v(ζ + ā)u′]′ (H.18)

Next, by integrating (H.18) from 0 to 1, it becomes

(αn2 − αm2)
∫ 1

0
(ζ + ā)uv dζ = [u(ζ + ā)v′ − v(ζ + ā)u′ ]|10 (H.19)

The right hand side of (H.19) is

[u(ζ + ā)v′ − v(ζ + ā)u′ ]|10

= (1 + ā)u(1)v′(1)− (1 + ā)v(1)u′(1)− āu(0)v′(0) + āv(0)u′(0)

= 0 (H.20)

Thus for any αn 6= αm,
∫ 1

0 (ζ + ā)uv dζ is equal to 0. Namely,

∫ 1

0
(ζ + ā)φ[αn(ζ + ā)]φ[αm(ζ + ā)] dζ = 0 αn 6= αm (H.21)

Next, by multiplying (H.14) by 2u′(ζ + ā), we get

2(ζ + ā)2u′′u′ + 2(ζ + ā)u′2 + 2α2
n(ζ + ā)2uu′ = 0 (H.22)
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which can be rewritten as

[(ζ + ā)2u′
2 + (ζ + ā)2α2

nu
2]′ − 2(ζ + ā)α2

nu
2 = 0 (H.23)

By integrating (H.23) from 0 to 1, we obtain

[(ζ + ā)2u′
2 + (ζ + ā)2α2

nu
2]|10 = 2α2

n

∫ 1

0
(ζ + ā)u2 dζ (H.24)

Therefore we have

∫ 1

0
(ζ + ā)u2 dζ = (1 + ā)2αn

2u2[αn(1 + ā)]− ā2(β2 + αn
2)u2(αnā)

2α2
n

(H.25)

Namely,

∫ 1

0
(ζ + ā)φ2[αn(ζ + ā)] dζ = (1 + ā)2αn

2φ2[αn(1 + ā)]− ā2(β2 + αn
2)φ2(αnā)

2α2
n

(H.26)

Combining Eqn.(H.11), we have

Dn = 2āβφ(āαn)
(1 + ā)2αn2φ2[αn(1 + ā)]− ā2(β2 + αn2)φ2(αnā) (H.27)
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APPENDIX I

EIGENVALUES FOR THE APPROXIMATE SOLUTIONS

Table 1: First twenty eigenvalues of (4.40) for the in vitro approximate solutions of the inner
domain (β = 0.4216).

n αn Value of αn
1 α1 0.8720
2 α2 3.9398
3 α3 7.07540
4 α4 10.2148
5 α5 13.3553
6 α6 16.4962
7 α7 19.6373
8 α8 22.7786
9 α9 25.9199
10 α10 29.0613
11 α11 32.2028
12 α12 35.3442
13 α13 38.4857
14 α14 41.6272
15 α15 44.7687
16 α16 47.9103
17 α17 51.0518
18 α18 54.1933
19 α19 57.3349
20 α20 60.4764
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Table 2: First twenty eigenvalues of (4.57) for the in vitro approximate solutions of the outer
domain (β = 4.1763).

n αn Value of αn
1 α1 0.7646
2 α2 3.9185
3 α3 6.8983
4 α4 9.9151
5 α5 12.9673
6 α6 16.0443
7 α7 19.1380
8 α8 22.2429
9 α9 25.3558
10 α10 28.4744
11 α11 31.5971
12 α12 34.7230
13 α13 37.8514
14 α14 40.9817
15 α15 44.1135
16 α16 47.2466
17 α17 50.3807
18 α18 53.5157
19 α19 56.6513
20 α20 59.7876
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