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The paleo-Lake Magadi was one of five sites selected by the Hominin Sites and 

Paleolakes Drilling Project (HSPDP), with the goal of establishing high resolution, multi-proxy 

reconstructions of climate and environmental change adjacent to established hominin sites.  The 

overall goal of the HSPDP is to provide a context of climate and environmental change for many 

of the milestones in hominin adaptation and evolution, spatially adjacent to where hominins 

lived, and temporally resolved to evolutionary (orbital to sub-millennial) timescales.  The core 

recovered from Lake Magadi is estimated to represent the past 1.08 Ma, during which several 

significant hominin adaptation and evolutionary events occurred.  Based on initial chronology 

efforts by HSPDP collaborators, the Magadi core can be separated into four sections: 0-26 kyr, 

26-165 kyr, 165-242.8 kyr, and 242.8 kyr to 1.08 Ma.  We estimate the future biomarker 

potential for the four sections, and determine Lake Magadi to have particularly exciting promise 

for the 0-26 kyr and 26-165 kyr sections. 

To that end, 68 pilot samples were analyzed for leaf waxes (n-alkanes and fatty acids) 

and glycerol dialkyl glycerol tetraethers (GDGTs), to evaluate the potential to reconstruct 

vegetation regime, precipitation, and temperature from Magadi.  The n-alkanes were determined 

to have a better potential to yield compound specific carbon and hydrogen isotope data than fatty 

acids due to better chemical separation, and approximately 70% of samples analyzed for n-

alkanes recorded a robust terrestrial signal.  The TetraEther indeX with 86 carbon atoms (TEX86) 
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temperature proxy was established for ~90% of samples analyzed for isoprenoid GDGTs, 

however the Methane Index and Ring Index suggest that the TEX86 is not applicable to 

temperature reconstruction at Magadi. Additionally, no samples contained the complete suite of 

branched GDGTs necessary to construct the Methylation of Branched Tetraethers and 

Cyclisation of Branched Tetraethers (MBT/CBT) temperature proxy. 

Initial reconstruction of Lake Magadi paleoclimate shows an oscillating vegetation 

regime from mid-Pleistocene to present, but a directional trend towards a cooler and drier 

climate. Plotted alongside δ18O data from the GRIP-2 ice core, our climate data demonstrate a 

potentially interesting correlation between climate at Lake Magadi and ice volume in the Arctic.   

 

 



 vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .................................................................................................. XVII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 CLIMATE AND HOMININ EVOLUTION ..................................................... 1 

1.2 PLIO-PLEISTOCENE CLIMATE IN EAST AFRICA .................................. 4 

1.3 HOMININ SITES AND PALEOLAKES DRILLING PROJECT ................. 8 

1.4 STUDY SITE ........................................................................................................ 9 

1.5 PALEOCLIMATE PROXIES .......................................................................... 14 

1.5.1 Leaf Waxes .................................................................................................. 14 

1.5.2 Glycerol Dialkyl Glycerol Tetraethers ...................................................... 18 

1.6 THESIS OBJECTIVES..................................................................................... 23 

2.0 MATERIALS AND METHODS .............................................................................. 24 

2.1 CORE STRATIGRAPHY AND CORE DATA .............................................. 24 

2.2 EXTRACTION AND SEPARATION ............................................................. 25 

2.3 INSTRUMENTAL ANALYSES ...................................................................... 28 

2.3.1 Leaf waxes.................................................................................................... 29 

2.3.2 GDGTs ......................................................................................................... 30 

3.0 RESULTS ................................................................................................................... 31 

3.1 LEAF WAXES ................................................................................................... 31 



 vii 

3.1.1 n-alkanes abundances and distributions ................................................... 31 

3.1.2 Fatty acid methyl esters (FAMEs) abundances and distributions ......... 32 

3.1.3 n-alkane δ13C and δD .................................................................................. 32 

3.2 TEMPERATURE PROXIES ........................................................................... 35 

3.2.1 GDGTs ......................................................................................................... 35 

4.0 DISCUSSION ............................................................................................................. 38 

4.1 EVALUATION OF LEAF WAXES ................................................................ 38 

4.1.1 n-alkane CPI, TARHC, and Paq ................................................................... 38 

4.1.2 Unresolved complex mixtures (UCM) ....................................................... 39 

4.2 EVALUATION OF TEMPERATURE PROXIES ......................................... 42 

4.2.1 TEX86 validation and calibrations ............................................................. 42 

4.3 PRELIMINARY ASSESSMENT OF MID-PLEISTOCENE 

PALEOENVIRONMENTAL HISTORY IN THE MAGADI-NATRON BASIN........ 48 

4.3.1 n-alkane ACL and vegetation regime ....................................................... 48 

4.3.2 Comparison of n-alkane ACL and TEX86 ................................................ 49 

4.4 FUTURE DIRECTIONS................................................................................... 54 

4.4.1 n-alkane δ13C and vegetation shifts ........................................................... 54 

4.4.2 n-alkane δD record of past precipitation .................................................. 56 

4.4.3 Future core sampling and promising core sections ................................. 57 

5.0 CONCLUSIONS ........................................................................................................ 67 

APPENDIX A .............................................................................................................................. 69 

APPENDIX B .............................................................................................................................. 70 

APPENDIX C .............................................................................................................................. 73 



 viii 

APPENDIX D .............................................................................................................................. 76 

APPENDIX E .............................................................................................................................. 79 

APPENDIX F .............................................................................................................................. 81 

APPENDIX G .............................................................................................................................. 86 

APPENDIX H .............................................................................................................................. 88 

BIBLIOGRAPHY ....................................................................................................................... 90 



 ix 

 LIST OF TABLES 

 

Table 1 – A table adapted from Maslin et al. (2014) showing various climate-evolution 

hypotheses involving hominins.  The hypotheses are separated by their type of climate stress and 

evolutionary mechanism. ................................................................................................................ 2 

Table 2 – A summary of the indices for n-alkanes (upper section) and GDGTs (lower section) 

that are used in this thesis. ............................................................................................................ 23 

Table 3 – A table showing the presence of the UCM hump in Magadi samples as well as values 

for the Methane Index (Zhang et al., 2011) and the Ring Index (Zhang et al., 2016).  The number 

of good samples (<0.5 for MI, <|0.3| for ∆RI) and bad samples for both MI and ∆RI are also 

shown. ........................................................................................................................................... 44 

Table 4 – A table containing the sample depths of every potential sample for biomarker analysis, 

based on the results of this pilot study.  Samples are included if they have the potential to provide 

robust data for n-alkanes or GDGTs, though not all samples listed here have a high probability of 

providing both.  Core sections are split into four sections, delineated by the initial four dates 

associated with core 2A (transition between sections marked by a bolded cell border). ............. 63 

Table 5 - A summary of the data presented in Table 4, describing the potential of organic 

biomarkers through the four sections of Magadi core 2A. ........................................................... 66 



 x 

Table 6 – Summary of paleoanthropological events covered by the Magadi core, and proxy 

evaluation for each of these events. .............................................................................................. 66 

Table 7 – Drill core recovery data from the 2014 HSPDP Magadi drilling excursion. ................ 76 

Table 8 – Raw leaf wax abundance data. ...................................................................................... 83 

Table 9 – Calculated leaf wax indices (Equations 1-4 found in Appendix A). ............................ 85 

Table 10 – Raw abundance data from isoGDGTs. ....................................................................... 89 



 xi 

LIST OF FIGURES 

 

Figure 1 – A figure from Maslin and Christensen (2007) showing the relative temporal and 

spatial scales of climate factors that may have impacted hominin evolution. ................................ 5 

Figure 2 – A figure from Cohen et al. (2016) showing the five sites chosen and drilled by the 

Hominin Sites and Paleolakes Drilling Project.  Lake Magadi (site LM) is the southernmost of 

the sites, located just north of the Kenya-Tanzania border. .......................................................... 10 

Figure 3 – A map adapted from http://humanorigins.si.edu/research/east-african-research-

projects/olorgesailie-drilling-project, the Smithsonian page for the Olorgesailie Drilling Project.  

The Magadi 2A Drill site is shown with a white dot, and the red square outlines the spatial extent 

of Figure 4.  The core used in the Olorgesailie Drilling Project was obtained from the red dot 

labeled “Drill Core Area”.  Map scale is approximate. ................................................................ 11 

Figure 4 – A figure from McNulty et al. (2016) showing the modern layout of paleolake Magadi.  

The drilling area for cores 1A, 1B, and 1C are shown by the green box, and the drill site for core 

2A is represented by the magenta dot. .......................................................................................... 12 

Figure 5 – A figure adapted from Maslin et al. (2014) showing a side view of the EARS.  Lake 

Magadi sits in the Magadi-Natron Basin, in the south section of the rift. .................................... 13 



 xii 

Figure 6 – A figure from Freeman and Pancost (2014) showing examples of the various molecule 

types that are identified in the cuticle of vascular plants.  This study focused on the n-alkanes and 

the fatty acids, which includes alkanols and alkanoic acids. ........................................................ 14 

Figure 7 – A figure from Castañeda and Schouten (2011) showing the structures of common 

isoprenoid and branched glycerol dialkyl glycerol tetraethers. .................................................... 19 

Figure 8 – The extraction and separation scheme for the first set (21) of pilot samples.  

Compounds of interest are in fractions designated by green coloring. ......................................... 27 

Figure 9 – The extraction and separation scheme for the second set (47) of pilot samples.  

FAMEs were not collected and a new fraction potentially containing alkenones, another organic 

temperature proxy, was collected. ................................................................................................ 28 

Figure 10 – The four n-alkane indices (from the left: TARHC, CPI, Paq, and ACL) plotted against 

depth, including all possible data points.  The TARHC has only 19 points as many of the lower 

chain (C15-C19) n-alkanes were difficult to identify and quantify due to the presence of a hump in 

the chromatogram caused by unresolved complex mixture (UCM; see Discussion below).  In the 

ACL plot (and for all plots of ACL in this thesis) the red dotted line represents a three-point 

moving average, and the magenta dashed line represents a five-point moving average.  Four ages 

along the core have been identified by Alan Deino at the Berkeley Geochronology Center, and 

those four dates are included on all plots in this thesis, though no age model has been completed 

to date. ........................................................................................................................................... 33 

Figure 11 – The CPI, Paq, and ACL plotted with all data points where CPI<3 (10 in total) 

removed.  Though somewhat interspersed throughout the core, seven of the ten samples removed 

came from depths of ~130-165 m and core top to ~35 m.  Both of those sections had poor core 



 xiii 

recovery (Appendix D, Figure 24) with increased chances of contamination from drilling fluid, 

which may have contributed to the low CPI values. ..................................................................... 34 

Figure 12 - Of the remaining data points (after removal of the 10 with CPI<3), five have CPI 

values between 3 and 4, and correspond to the highest remaining values among Paq as well.  

Though these values are both within an acceptable range to be considered terrestrial signals, they 

are marked in this figure with a filled-in symbol to denote that they may not record a terrestrial 

signal with the same fidelity as the rest of the samples. ............................................................... 35 

Figure 13 – This figure shows the TEX86 (Appendix C, Equation 8) plotted vs. depth, and the 

three TEX86 temperature calibrations (note that the Kim et al., [2010] TEXH
86 calibration relies 

on a different TEX86 calculation, which is not represented in the plot; Appendix C, Equation 13).  

The three temperature reconstructions generally agree with each other, but in several intervals 

where temperatures decrease (e.g. ~120-130 m, or ~60 m depth), the Kim et al. (2010) 

calibration gives warmer (and more realistic) temperatures.  On those grounds, the Kim et al. 

(2010) temperature calibration was chosen to apply to Lake Magadi. ......................................... 37 

Figure 14 – A sample chromatogram from Magadi core section 2A-17Y-2 showing a pronounced 

baseline disruption (UCM hump). ................................................................................................ 40 

Figure 15 – Magadi TEX86 plotted versus the Methane Index (Zhang et al., 2011) and the Ring 

Index (Zhang et al., 2016), showing no correlation with either.  This suggests that shifts in 

microbial community shown by both the MI and RI are not reflected in recorded TEX86 values.  

Both the MI and RI indices indicate that TEX86 shouldn’t be used for temperature reconstruction 

at Lake Magadi, however TEX86 shows apparent agreement with other climate parameters and 

records (see Figures 18 and 19). ................................................................................................... 46 



 xiv 

Figure 16 – Average chain length from Lake Magadi pilot samples plotted over depth.  Longer 

chain lengths can either be indicative of a warmer climate (Rommerskirchen et al., 2003), or 

greater C3 plant input.  However in East Africa, warmer climate is associated with wetter, C4 

plant-dominated environments...................................................................................................... 49 

Figure 17 – The upper plots show Magadi core 2A ACL next to the Kim et al. (2010) TEXH
86 

temperature reconstruction.  The lower plots show Magadi core 2A ACL plotted against the Kim 

et al. (2010) TEXH
86 temperature reconstruction, showing no correlation below 90 m depth, and a 

(non-significant) weak, positive correlation above 90 m depth. ................................................... 51 

Figure 18 – Magadi core 2A n-alkane ACL and Kim et al. (2010) TEXH
86 temperature plotted 

alongside the GRIP-2 ice δ18O data from 242.8-26 kyr.  There are apparent similarities between 

ACL, the TEX86 temperature reconstruction by Kim et al. (2010) and the GRIP-2 ice core 

isotope data, specifically the positive excursion after 165 kyr showing northern hemisphere 

deglaciation and simultaneous warming at tropical Lake Magadi................................................ 53 

Figure 19 – Magadi core 2A n-alkane ACL and Kim et al. (2010) TEXH
86 temperature plotted 

alongside the GRIP-2 ice δ18O data from 165-26 kyr.  Similar to Figure 18, this figure shows an 

apparent relationship between climate at Magadi and arctic glaciation/deglaciation.  A more 

robust age model for the Magadi cores will better elucidate the nature of this relationship. ....... 54 

Figure 20 – A figure from Magill et al. (2013b) showing the methodology for reconstruction of 

vegetation regime from sedimentary leaf wax δ13C due to its average 9‰ isotopic offset from 

soil organic matter δ13C (based on the C31 alkane). ...................................................................... 55 

Figure 21 – A comparison between the two major metabolic pathways in higher plants, C3 and 

C4 (Tipple and Pagani, 2007). ....................................................................................................... 71 

Figure 22 – The proposed biosynthesis of leaf waxes (Jetter and Kunst, 2008). ......................... 72 



 xv 

Figure 23 – The lithologic key for the stratigraphy columns presented in Figure 24. .................. 77 

Figure 24  – The stratigraphy column for Lake Magadi cores 1A and 2A.  Lithologic key shown 

in Figure 23.  Core 2A was used for all sampling and analyses in this thesis. ............................. 78 

Figure 25 – Sample n-alkane chromatogram. ............................................................................... 79 

Figure 26 – Sample FAMEs chromatogram. ................................................................................ 80 

Figure 27 – Sample GDGT chromatogram with the isoGDGTs used in indices (Appendix C) 

labeled. .......................................................................................................................................... 86 

Figure 28 – A visually "questionable" isoGDGT sample characterized by extraneous peaks and 

small crenarchaeol peaks. ............................................................................................................. 87 

Figure 29 – A visually "discarded" sample characterized by small peaks, and almost undetectable 

crenarchaeol regioisomer. ............................................................................................................. 87 



 xvi 

LIST OF EQUATIONS 

Equation 1 – Carbon Preference Index (Marzi et al., 1993). ........................................................ 69 

Equation 2 – Fraction Aquatic (Ficken et al., 2000). .................................................................... 69 

Equation 3 – Terrestrial Aquatic Ratio for Hydrocarbons (Meyers et al., 1997). ........................ 69 

Equation 4 – Average Chain Length modified from Freeman and Pancost (2014). ..................... 69 

Equation 5 – The Branched to Isoprenoid Tetraethers index. ...................................................... 73 

Equation 6 – The Methylation of Branched Tetraethers index. .................................................... 73 

Equation 7 – The Cyclisation of Branched Tetraethers index. ..................................................... 74 

Equation 8 – The TetraEther indeX with 86 carbon atoms. ......................................................... 74 

Equation 9 – The Methane Index (Zhang et al., 2011). ................................................................ 74 

Equation 10 – The Ring Index (Zhang et al., 2016). .................................................................... 74 

Equation 11 – The relationship between global core top RI values and TEX86. .......................... 74 

Equation 12 – ∆RI, established from RI (Equation 10) and RITEX (Equation 11). ....................... 74 

Equation 13 – The log TEX86 function used for the Kim et al. (2010) temperature calibration. . 75 

Equation 14 – The Powers et al. (2010) temperature calibration equation. .................................. 75 

Equation 15 – The Tierney et al. (2010) temperature calibration equation. ................................. 75 

Equation 16 – The Kim et al. (2010) temperature calibration equation. ...................................... 75 

 



 xvii 

ACKNOWLEDGEMENTS 

I would like to take this section to thank the numerous people without whom this thesis 

would not have been possible.  No man is an island, and I am certainly no exception - nor would 

I want to be. More now than ever, both science and life are collaborative efforts, where triumphs 

as well as failures are shared, and made all the sweeter (or less bitter) for it.  I am fortunate to 

have a great many collaborators, scientific and otherwise, to help me along my way.  To all those 

mentioned, and those not, thank you. 

Firstly, I’d like to thank my family.  They’ve supported me, and my involvement in 

science not only during my Master’s but for my entire life - especially my mother, Amy, and my 

sisters, Paige and Grace.  I know I haven’t always been the best son and brother, but you guys 

have never given up on me.  

 Thank you to Alan Reed, Mallory Hudson, Marc Khouzami, Rachel Orlando, Daniel 

Rinkus, and of course, Joseph DeShane, for being my Pittsburgh (and abroad) family.  You’ve 

all been the stalwarts of my personal life, and a support system that has provided me the strength 

to get back up again after being knocked down.  You all are amazing friends, and though I’ll be 

moving on to the next chapter in my life, I can’t wait to have you with me along the way. 

 To my fellow graduate students at Pitt, notably Robert Rossi, Justin Coughlin, Nick, 

Weidhass, Angela Mullins, Marja Copeland, Irene Wallrich, Angela Chung, and James 

Thompson - thank you for always being a shoulder to lean on, a friend to celebrate with, an ear 



 xviii 

for frustrations, and encouragement on rainy days.  I know I’ll keep in touch with all of you, and 

I hope the best for your futures. 

 To Joe Werne, thank you for being an advisor but also a friend.  Your open door has led 

to so many good discussions, and you even bought me a drink every now and then.  To Dervla 

Kumar, my ever-smiling commiserate, I cherish our friendship and I earnestly hope you find 

yourself back in academia one day.  To Arielle Woods, wry compatriot and friend – thank you 

for the long lab nights, struggling through classes, and access to your back scratcher.  You’ve all 

made this experience unforgettable for me. 

 To Isla Castañeda, my academic sibling, thank you for being like a secondary advisor to 

me.  I hope the future holds opportunities for us to continue to work together.  To Jim Russell, 

Anders Noren, Anne Billingsley, and Chris Campisano, along with the other HSPDP folk, thank 

you for supporting my work on Lake Magadi – see you at the next workshop. 

 Finally, thank you to Molly O’Beirne.  If there could only be one person 

acknowledged here, it would be you.  Over the past two years, no one has been more of a 

mentor, teacher, or friend than you have.  I truly feel indebted to you for believing in me, though 

along the way I’ve given you every reason not to.  Thank you for the tough love, and for helping 

me get hard, but also for knowing when I need patience and a hug.  Thank you for teaching me 

how to be a scientist, and for making me a more critically-thinking and self-assured person.  I 

look forward to writing our book, to getting punched by you every time I try to hug you at a 

conference, and to all the spoils that our friendship is bound to yield in the years to come.  Thank 

you again and again.   

This research was supported by NSF grant EAR-1338553. 



 1 

1.0  INTRODUCTION 

Homo sapiens is a unique species in Earth’s history – a species that has expanded 

globally, and has the innovative capacity to develop tools and technologies, rendering it capable 

of intelligently modifying its environment.  To the extent of current knowledge, Homo sapiens is 

the most intelligent, dominant, and intentionally world-altering species to have existed on Earth. 

However, there is still much debate about what led to the evolution of the species.  Due to the 

density and dating of both hominin fossils and artifacts in the region, East Africa is considered 

the birthplace of the species, as many of the milestones in hominin evolution, both evolutionary 

and technological, originated in the region and proceeded to disperse outward.  For this reason, 

the East African region has been the focus of much research on hominins, their environment, and 

evolutionary events related to the origins and dispersal of Homo sapiens.   

 

1.1 CLIMATE AND HOMININ EVOLUTION 

The role of climate variability on the evolution and dispersal of hominins in East Africa 

has been a subject of much research, and though the extent and mechanisms of the relationship 

are still debated, the assumption that environmental parameters impacted hominin evolution is 

long-standing (Maslin and Christensen, 2007).  Potts (2013) and Maslin et al. (2014) summarize 
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several hypotheses put forward (see specific citations below) regarding the relationship between 

climate and hominin evolution.  These hypotheses (Table 1), developed over the past several 

decades, encompass several combinations of climate histories of East Africa and hominin 

evolutionary mechanisms. 

 

Table 1 – A table adapted from Maslin et al. (2014) showing various climate-evolution hypotheses 

involving hominins.  The hypotheses are separated by their type of climate stress and evolutionary 

mechanism.   

 

The Red Queen hypothesis (Van Valen, 1973) was a null hypothesis and stated that 

climate has no influence on evolution.  Instead, evolution is impacted exclusively by biotic 

events, such as competition for resources.  The Court Jester hypothesis (Bamosky, 2001) refuted 

the Red Queen hypothesis, stating abiotic factors (e.g. climate) can influence evolution.  

However, the Court Jester is not specific to climate, including abiotic events such as bolide 

impact, and provides no mechanism for the interaction between abiotic influences and evolution. 



 3 

Initially, Washburn (1960) established the iconic savannah hypothesis, positing that the 

onset of the savannah grassland fragmented what had previously been a tropical rainforest-

dominated central and East Africa.  This initial fragmentation, followed by the gradual takeover 

of the savannah grassland, caused a group apes to abandon their arboreal lifestyle, stand upright, 

and traverse this new habitat via bipedal locomotion.  Subsequently, Vrba (1988) developed the 

turnover pulse hypothesis, suggesting that abrupt, intense shifts in climate were responsible for 

speciation, extinction, and adaptation in ungulate (and other large mammalian) species.  A key 

observation of the turnover pulse hypothesis was that acute climate shifts caused more 

extinctions in specialist species (leading to more rapid allopatric speciation) than generalist 

species (leading to greater geographic ranges). These initial two hypotheses laid the framework 

for many subsequent hominin evolution theories. 

Refining the initial savannah hypothesis was the aridity hypothesis (deMenocal 1995, 

2004), which asserted that regional tectonic uplift caused long-term climate to trend towards a 

drier East Africa.  The aridity hypothesis states that this directional increase in aridity allowed 

for the propagation of the savannah biome, and had a significant impact on hominin evolution.  

The variability selection hypothesis (Potts 1998, 2013) was a refinement of the turnover pulse 

hypothesis, and suggested that over time, environmental variability played a role in selecting for 

adaptive, flexible behavioral and ecological traits.  The variability selection hypothesis posits 

that a species’ evolutionary success is correlated to its potential to adapt to an increasingly 

variable environment (with the overall trend of East African climate aridification towards the 

present day).  However, the variability selection hypothesis could not adequately justify the 

seemingly pulsed pattern of hominin evolutionary events suggested by recent 

paleoanthropological evidence. 
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Maslin and Trauth (2009) further refined the variability selection hypothesis to form the 

pulsed climate variability hypothesis, which emphasizes the impact of short periods of intense 

climate variability (not necessarily with a directionality) in East Africa on the evolution, 

extinction, and adaptation of hominins.  The pulsed climate variability hypothesis is currently 

one of the more popular theories, as many lines of paleoclimatic and paleoanthropological 

evidence fit well into its framework (Maslin et al., 2014). 

1.2 PLIO-PLEISTOCENE CLIMATE IN EAST AFRICA 

Understanding the effects of climate on hominin evolution is complex, as many climatic 

processes and events (from millennial- to tectonic-scale), have the potential to force evolutionary 

pressures (Figure 1).  A comprehensive overview of climatic processes and events important to 

hominin evolution is laid out below. 

The climate in East Africa has changed significantly over the last 40 Ma, and much of 

this climate change has been tectonically controlled.  The continual development of the East 

African Rift System (EARS) caused regional elevation changes that in turn resulted in changes in 

precipitation, aridity, and vegetation, as well as the formation and propagation of fault graben 

basins along the rift.  These basins functioned as catchments for lakes, many of which remain. 

Trauth et al. (2005, 2007) estimate that volcanism first began in the EARS between 45-33 

Ma in the Ethiopian section of the rift, with the initial uplift beginning between 38-35 Ma 

(Underwood et al., 2013).  Though the central and southern sections of the EARS lagged the 

northern section, with magmatic activity commencing in southern Kenya and Tanzania between 

15-8 Ma (George et al., 1998; Ebinger et al., 2000), progressive uplift established the relief of 
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Figure 1 – A figure from Maslin and Christensen (2007) showing the relative temporal and spatial 

scales of climate factors that may have impacted hominin evolution. 

 

much of the EARS beginning between 18-13 Ma (Wichura et al., 2010).  East-dipping faults 

formed in the northern Kenya section of the rift between 12 and 7 Ma, followed by normal 

faulting in the central and southern Kenya rift between 9 and 6 Ma (Ebinger et al., 2000).  

Continual faulting in central and southern Kenya formed, and later segmented, the full-graben 

morphology (Strecker et al., 1990) through the Pliocene.  Fragmentation of the lake basins in 

Kenya continued throughout the Pleistocene due to ongoing volcanism (McDougall et al., 2012). 

This tectonic activity resulted in significant biological changes as well.  Evidence from 

Couvreur et al. (2008) suggests that waves of endemic species emerged at 33, 16, and 8 Ma, due 

to fragmentation of the pan-African rainforest (previously connecting East Africa and the Congo) 
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following periods of major tectonic activity.  The progressive uplift-induced increase in aridity 

along the EARS also caused a vegetation shift from a C3 to C4 plant dominated environment 

during the Pliocene and Pleistocene, as indicated by paleorecords of soil carbonates (Levin et al., 

2004; Levin, 2013), marine sediment n-alkane carbon isotopes (Feakins et al., 2013), and fossil 

mammal teeth (Brachert et al., 2010).  The association between increased aridity and increased 

uplift has also been demonstrated with climate models of the EARS (Sepulchre et al., 2006; 

Prömmel et al., 2013) and indicates that increased elevation induces a rain shadow effect on the 

Rift Valley.  This generally agrees with the aridification trend identified in many paleorecords 

from the EARS, however Maslin et al. (2012) suggest that soil carbonate isotope records indicate 

an intensification of seasonality – increased aridity during dry periods, but similar levels of 

precipitation during wet periods.  Elsewhere, the cessation of constant El Niño-like conditions in 

East Africa due to the closing of the Indonesian Seaway and associated decrease in the sea-

surface temperatures in the Indian Ocean around 4 Ma may have additionally led to increased 

aridification (Cane and Molnar 2001, Molnar and Cane 2007) on tectonic timescales.   

On shorter timescales (i.e. 1 Ma – 100 kyr, Figure 1), other potential controls on climate 

in East Africa exist. Currently, it is thought that the onset of high-latitude glaciations (~2.7-2.5 

Ma; Haug et al., 1998), intensification of Walker circulation (1.9-1.7 Ma; Ravelo et al., 2004), 

and variability in El Niño-Southern Oscillation (ENSO)/Indian Ocean Dipole (IOD) (Berger et 

al., 1994) have played a role in East African aridity, affecting lake levels and seasonality.  Trauth 

et al. (2005, 2007, 2009) argue that variations in insolation have driven periods of wetter climate, 

expanded lakes, and greater seasonality at approximately ~2.8, 1.7 and 1.0 Ma (coinciding with 

the aforementioned climate events, see Figure 1), whereas deMenocal (2004) suggest that these 

intervals experienced step-like increases in regional aridity and climate variability in East Africa. 
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On even shorter timescales (i.e. Milankovich: ~100, 40, and 20 kyr), the relationships 

among climatic parameters and evolutionary pressures become more tangible, but the number of 

potentially influential climatic pressures increase - including the effects of orbital forcing (Magill 

et al., 2013b), air-mass boundary positions (Tierney et al., 2011), and other high-latitude events 

(Kingston et al. 2007; Joordens et al. 2011).  These environmental cycles are thought to have 

impacted ecological parameters such as the distribution of resources (food, water, shelter, etc.) 

that would have affected early hominins (Armitage et al. 2011; Reed 1997).  

Paleoclimate records from East Africa have been established to elucidate Milankovich-

scale climate effects on the region.  Early studies of Mediterranean sapropels (Rossignol-Strick 

1985; Kroon et al., 1998) and the Gulf of Aden (deMenocal et al., 1995) suggested a strong 

cyclical relationship between monsoonal precipitation/aridity and insolation/global ice volume.  

More recent records show that the expansion and contraction of many East African lakes 

oscillates on precessional cycles, with some influence from eccentricity as well (Magill et al., 

2013b; Joordens et al., 2011).  The influence of eccentricity on an otherwise precession-driven 

precipitation cycle causes some unpredictability, which both Trauth et al. (2007) and deMenocal 

et al. (2000) suggested may be due to an established insolation threshold that must be reached 

before significant precipitation changes occur.  Trauth et al. (2009) argues however, that 

discrepancies between marine and terrestrial records highlight the ineffectiveness of continental-

scale records to track regional or local responses to insolation forcings, and thus consequently, 

fail to record the environmental variability actually experienced by hominins in East Africa. 
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1.3 HOMININ SITES AND PALEOLAKES DRILLING PROJECT 

Hominin evolution, and particularly the role climate may have played in it, is challenging 

to study for several reasons.   Climate records must be established near sites where hominins 

lived – localities and outcrops where fossils have been found and studied.  However, many of the 

climate records of East Africa come from much further away, such as marine cores from the Gulf 

of Aden (deMenocal et al., 1995; and others previously mentioned).  These records, though 

important, may record too broad a signal of regional or continental climate to correlate to basin-

scale evolutionary events (Trauth et al., 2009).  Establishing paleorecords from the same sites, or 

sites adjacent to hominin fossils, can clarify climate forcings and move the field forward. 

The second challenge is achieving sufficient resolution in paleoclimate data reconstructed 

from outcrop samples.  Though much more adjacent to hominin sites than other types of records 

(e.g. marine cores), paleorecords taken from local outcrops are often highly weathered, resulting 

in low temporal resolution that limits the precise application of outcrop records to hominin 

evolution questions.  Paleorecords resolved on sub-millennial timescales are necessary to reveal 

changes in climate that potentially impact the biologic factors influencing hominin evolution 

(such as food and water availability, shelter, etc.).  Lake bed outcrops are subject to significant 

and unpredictable degradation of organic matter (Petsch et al., 2000).  In contrast, lake sediments 

can remain relatively undisturbed, a necessary condition for recovering paleorecords from 

organic matter (especially biomarkers) at temporal resolutions useful for advancing climate-

hominin evolution research. 

The Hominin Sites and Paleolakes Drilling Project (HSPDP) was established to address 

these two issues.  In 2013 and 2014, five paleolake sites (Figure 2) were selected for their 

proximity to hominin sites and drilled to recover the lake sediment.  The goal of the HSPDP is to 
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use these lake sediments to reconstruct high-resolution, multi-proxy records of climate from 

these paleolake sites.  Proxies for the initial project funding include pollen, carbonates, elemental 

analyses (XRF/XRD), diatoms, phytoliths, and organic biomarkers – leaf waxes and 

archaeal/bacterial membrane lipids.  Together, this collection of proxies may provide a robust 

reconstruction of the past climate and environment adjacent to hominin sites, providing 

unprecedented ability to test climate-evolution hypotheses. 

1.4 STUDY SITE 

Lake Magadi is a present-day saline/alkaline pan located ~20 km northwest of the Koora 

Plain (the sister project, the Olorgesailie Drilling Project, is located 25 km north of the Koora 

Plain, Figures 3 and 4) along the southern Kenya Rift in East Africa.  Lake Magadi has existed as 

a series of paleolakes back through the early Pleistocene (Cohen et al. 2016).  The paleolake 

Magadi was a regional sump for water and sediment in the Magadi/Natron Basin (Figure 5), 

making it a potentially promising site for the preservation of the proxies identified by the 

HSPDP.  Magadi is known to have relatively thick underlying sequences of lake sediments based 

on cores recovered decades ago (Surdam and Eugster 1976) and more recent geophysical 

probing (Simiyu and Keller 2001).  The oldest sediments from these previous studies are thought 

to be ~0.8 Ma, deposited in a large lake setting, after which Lake Magadi went through a series 

of drying and rewetting events, becoming progressively more saline (Cohen et al., 2016). 
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Figure 2 – A figure from Cohen et al. (2016) showing the five sites chosen and drilled by the Hominin 

Sites and Paleolakes Drilling Project.  Lake Magadi (site LM) is the southernmost of the sites, located just 

north of the Kenya-Tanzania border. 

 

Lake Magadi was initially targeted by the HSPDP not only because of its early 

characterization as a Pleistocene-modern depocenter, but also because of the decades of 

archaeological work that has been done nearby.   From the Olorgesailie Formation there are 

abundant artifacts detailing the transition from Acheulean (large cutting tools, from local 

sources) to Middle Stone Age technology (more diverse tools, often from more distant rock 

sources) (Potts et al., 1999, Behrensmeyer et al., 2002).  This transition is a major behavioral 

event in hominin evolution.  Paleoenvironmental reconstruction during this transition may begin 

to elucidate some evolutionary pressures that resulted in the emergence of this new behavior. 
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Figure 3 – A map adapted from http://humanorigins.si.edu/research/east-african-research-

projects/olorgesailie-drilling-project, the Smithsonian page for the Olorgesailie Drilling Project.  The Magadi 

2A Drill site is shown with a white dot, and the red square outlines the spatial extent of Figure 4.  The core 

used in the Olorgesailie Drilling Project was obtained from the red dot labeled “Drill Core Area”.  Map scale 

is approximate. 

http://humanorigins.si.edu/research/east-african-research-projects/olorgesailie-drilling-project
http://humanorigins.si.edu/research/east-african-research-projects/olorgesailie-drilling-project


 12 

 

Figure 4 – A figure from McNulty et al. (2016) showing the modern layout of paleolake Magadi.  The 

drilling area for cores 1A, 1B, and 1C are shown by the green box, and the drill site for core 2A is represented 

by the magenta dot. 
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Figure 5 – A figure adapted from Maslin et al. (2014) showing a side view of the EARS.  Lake 

Magadi sits in the Magadi-Natron Basin, in the south section of the rift. 
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1.5 PALEOCLIMATE PROXIES 

1.5.1 Leaf Waxes 

Leaf waxes, the n-alkyl compounds that are a major component of the cuticle of vascular 

plants (Eglinton et al., 1962), can be excellent recorders of climatic variables such as 

precipitation and vegetation regime in lacustrine environments (e.g. Castañeda et al., 2009a).  

This class of compounds includes n-alkanes, n-alkanols, n-alkanoic acids, and wax esters, whose 

structures are shown in Figure 6.  Leaf waxes have been the focus of many terrestrial climate 

paleoreconstructions because they generally resist degradation and preserve well in sediments 

(Cranwell, 1981). 

 

Figure 6 – A figure from Freeman and Pancost (2014) showing examples of the various molecule 

types that are identified in the cuticle of vascular plants.  This study focused on the n-alkanes and the fatty 

acids, which includes alkanols and alkanoic acids. 

 

Leaf waxes are useful two-fold – their abundances can provide information on the 

relative proportion of terrestrial plant to aquatic plant to bacterial input to the sedimentary 
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record, as well as an estimate of contributions of C3 and C4 plants to the record.  Generally, n-

alkanes with carbon chain length from C27 to C35 are considered to be terrestrially sourced.  Mid-

length (C21-C25) n-alkanes are considered to be produced by aquatic macrophytes, and the Paq 

ratio (Ficken et al., 2000; Appendix A, Equation 2) can be used to determine relative input.  The 

Paq ratio ranges from zero to one, with higher values representing increased aquatic macrophyte 

input (e.g. Magill et al., 2013b).  Short-length (C15-C19) n-alkanes, whose relative input is 

expressed by the terrestrial and aquatic hydrocarbon ratio (TARHC, Meyers et al., 1997; 

Appendix A, Equation 3), are indicative of algae (Cranwell et al., 1987) or thermal/biotic 

degradation. The TARHC ranges from zero to one, where a value of zero represents purely 

aquatic input and a value of one is purely terrestrial (Meyers et al., 1997).  The carbon preference 

index (CPI, Marzi et al., 1993; Appendix A, Equation 1) is a measure of odd- or even-chain 

length predominance in n-alkanes.  The CPI is not bound between zero and one – the higher the 

value, the more robustly it resembles a terrestrial plant wax distribution (predominance of odd-

chain length n-alkanes; CPI>4), whereas a CPI<3 suggests microbial/algal input, degradation, or 

both (Marzi et al., 1993; Freeman and Pancost, 2014).  These indices are summarized below in 

Table 2. 

Leaf wax production in higher plants is affected by phylogeny (Diefendorf et al., 2011), 

ontogeny (the development and growth of an organism; Sachse et al., 2009), environmental 

variables and stresses (Shepherd and Griffiths, 2006).  Diefendorf et al. (2011) demonstrated that 

angiosperms produce far greater quantities of n-alkanes than gymnosperms, with evergreen 

angiosperms producing the largest quantities on average.  Paleoenvironmental reconstructions 

using n-alkanes therefore have a tendency to bias towards angiosperms (specifically evergreen 

angiosperms), a problem that can arise when using leaf wax abundances to make environmental 
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inferences.  Measuring the isotopic composition of hydrogen (δD) and carbon (δ13C) of leaf 

waxes can lead to a more robust paleo-reconstruction than just using leaf wax abundances as 

discussed below.  However, due to the effect photosynthetic pathway has on leaf wax 

distributions (C4 plants generally produce longer [i.e. more C33 and C35] than C3), some studies 

(Castañeda et al., 2009a) have shown a strong correlation between n-alkane average chain length 

(ACL; Appendix A, Equation 4) and paleotemperature, as C4 grasses tend to outcompete C3 

woody plants (e.g. deciduous trees) in warmer environments. 

As previously mentioned, compound specific isotope measurements are a useful, 

complementary tool to the abundances of leaf waxes for paleoenvironmental studies.  The 

isotopic composition of hydrogen and carbon in n-alkanes and fatty acids is sensitive to changes 

in the source and amount of past precipitation (Sachse et al., 2009) and plant metabolic pathway 

(Hayes et al., 1990), respectively.  The H isotope composition (δD) of leaf waxes are first and 

foremost controlled by the H isotope composition of the water used by plants for biosynthesis, 

and is typically driven by regional precipitation H isotope composition, but is also subject to 

further isotopic fractionation.  Isotopic fractionation is any process (physical or chemical) that 

alters the isotopic composition between reactant pool and product pool, and is apparent only 

when the chemical reaction or physical transport is incomplete. There are many fractionations 

that occur during the pathway from hydrogen in precipitation to hydrogen in leaf wax, including 

evaporation, transport of rain water into the soil, from the soil to plant roots, from the roots up 

through the xylem of plants, transpiration, and the biosynthetic incorporation of water into the 

leaf waxes (acetyl Co-A biosynthetic pathway is utilized for leaf wax compounds; Appendix B, 

Figures 21 and 22) (Ehleringer and Dawson 1992, Tipple and Pagani, 2007).  The total apparent 

fractionation (ε) from precipitation to leaf wax has been studied extensively, but can’t be applied 
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universally, due to phylogenetic differences in plant-water utilization.  Near Lake Magadi (i.e. 

Olduvai Gorge), modern plants have been used to calibrate paleorecords (Magill et al., 2013a) 

and establish a framework for quantitatively estimating past precipitation amount in the region. 

The C isotope composition (δ13C) of leaf waxes can be used to estimate plant community 

composition (C3 woody plants versus C4 grasses) in an environment over time (e.g. Castañeda et 

al., 2009b).  For reconstructions, the C29-C33 n-alkanes are often used because they are in 

relatively high abundance, and have a primarily terrestrial higher plant source.  Though the 

carbon in leaf waxes is sourced from atmospheric CO2, the δ13C composition of individual leaf 

waxes is poorly correlated (r2=0.34) with past atmospheric δ13C-CO2 (and paleo-pCO2) 

measurements (Pancost and Boot, 2004, and references therein).  The ε between atmospheric 

CO2 and leaf wax carbon is susceptible to multiple fractionations, including photosynthetic 

pathway, plant water availability/stress, stomatal conductance, pCO2, and leaf height (e.g. the 

canopy effect, Baldocchi et al., 1993) (Hayes et al., 1990; Bowling et al., 2001; Prentice et al., 

2011; Farquhar et al., 1989).  Despite these competing factors to consider, the application of δ13C 

to sedimentary leaf waxes has worked well in East Africa, where measured leaf wax δ13C values 

have been used to reconstruct a paleo-vegetation (Magill et al., 2013b, Cerling et al., 2011).  

Although beyond the scope of this thesis, measuring both δD and δ13C from sedimentary leaf 

waxes in Lake Magadi will allow a more robust interpretation of paleoclimate and environment, 

and provide a point of comparison between Magadi and nearby sites (e.g. Olorgesailie [Potts et 

al., unpublished] and Olduvai [Magill et al., 2013a, 2013b]).  
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1.5.2 Glycerol Dialkyl Glycerol Tetraethers  

Glycerol dialkyl glycerol tetraethers (GDGTs) are microbial membrane lipids that have 

been used as a proxy for paleotemperature (Schouten et al., 2002; Castañeda and Schouten, 

2011).  These compounds are separated into two categories, isoprenoid GDGTs (isoGDGTs) and 

branched GDGTs (brGDGTs), by both their source organisms and their skeleton unit structure.  

The isoGDGTs have a backbone comprised of isoprenoid units and are Archaeal (Karner et al., 

2001; Lipp et al., 2008) whereas brGDGTs have a straight-chained alkyl backbone and are 

thought to be produced primarily by anaerobic soil bacteria (for structures see Figure 7) (Weijers 

et al., 2006a). 

The isoGDGTs are found ubiquitously in marine sediments, and in many lacustrine 

sediments as well.  These compounds contain anywhere from zero to three cyclopentane rings 

(GDGTs 0-3, Figure 7) and are of interest in paleo studies (mainly the TetraEther indeX with 86 

carbon atoms [TEX86]; Appendix C, Equation 8) as cyclization is thought to increase with 

temperature (Schouten et al., 2002).  Currently, it is understood that several groups within the 

domain Archaea produce isoGDGTs (Schouten et al., 2007).  16S rRNA data from marine waters 

have identified Thaumarchaeota and Group 2 Euryarchaeota as potentially large contributors to 

isoGDGT production (Delong, 1992).  “Crenarchaeol” (GDGT 4, consisting of four 

cyclopentane rings and one cyclohexane ring, see Figure 7) is often abundant in marine 

sediments, and is thought to be produced exclusively by Thaumarchaeota (Pitcher et al., 2011).  

The isoGDGTs and crenarchaeol are present in lake waters and sediments (Sinninghe-Damsté et 

al., 2009) and 16S rRNA data suggests that the same Thaumarchaeota present in marine 

environments may also be producing isoGDGTs in lakes (Keough et al., 2003; Sinninghe-

Damsté et al., 2009). 
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Figure 7 – A figure from Castañeda and Schouten (2011) showing the structures of common 

isoprenoid and branched glycerol dialkyl glycerol tetraethers. 
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The brGDGTs are comprised of a C28 n-alkyl skeleton that additionally has 4, 5, or 6 

methyl groups (brGDGTs I, II, and III, respectively) incorporated along the skeleton (see Figure 

7).  Like the isoGDGTs, these compounds are also of interest as a paleotemperature proxy (the 

Methylation of Branched Tetraethers [MBT] and Cyclisation of Branched Tetraethers [CBT] 

proxies; Appendix C, Equations 6 and 7), potentially recording the mean annual soil temperature 

from their growing environment, as well as soil pH (Weijers et al., 2007).  Though the source 

organisms are still unknown, it is suggested that brGDGTs are mainly produced by anaerobic 

soil bacteria (Weijers et al., 2006a), as they are both ubiquitous and abundant in soils (Weijers et 

al., 2006b). 

The Branched and Isoprenoid Tetraether (BIT) index is a ratio (Appendix C, Equation 5) 

established by Hopmans et al. (2004) to estimate the relative abundance of soil-derived GDGTs 

(i.e. brGDGTs I, II and III) to those produced in the water column (isoGDGTs), of which 

crenarchaeol is assumed to be representative.  BIT values can range from 0 to 1, with low values 

indicating greater input from aquatic sources, and high values indicating greater soil organic 

matter input (Hopmans et al., 2004). Crenarchaeol has been found in some soils, so while BIT 

values of 0 are taken to represent purely aquatic input, BIT values of >0.9 are generally seen as 

solely soil input (Weijers et al., 2006b).   The BIT index is relatively easy to construct (i.e. the 

GDGTs involved are usually present in sediments) and can provide useful information on soil 

organic matter input into aquatic systems. 

The MBT and CBT proxies are the two most commonly utilized proxies based on 

brGDGTs, serving as proxies for mean annual soil temperature (which is similar to mean annual 

air temperature [MAAT] in many cases) and soil pH, respectively (Weijers et al., 2007).  As the 

MBT proxy also weakly correlates to soil pH, CBT can be used to correct MBT for soil pH 
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influence, yielding the MBT/CBT temperature proxy that better correlates to MAAT (Weijers et 

al. 2007).  Weijers et al. (2007) established global soil calibrations for the MBT and CBT 

proxies, with uncertainties of ~±1 pH unit from CBT and ~5°C for absolute MAAT from 

MBT/CBT, though local and regional calibrations have yielded better correlations to absolute 

MAAT than the global calibrations (Sinninghe Damsté et al., 2008; e.g. Loomis et al. 2012, 

Tierney et al., 2010).  These indices are summarized below in Table 2. 

The TEX86 (Schouten et al., 2002) is a paleothermometer based on the relative 

abundances of isoGDGTs produced by Thaumarchaeota (excluding GDGT-0 and crenarchaeol, 

the two most abundant GDGTs) and reflects the number of cyclopentane rings incorporated into 

the lipids increases with growth temperature.  The exclusion of GDGT-0 and crenarchaeol in 

TEX86 is to avoid their potentially overwhelming influence on the ratio due to their high relative 

abundances, but also because GDGT-0 is produced by methanogenic and methanotrophic 

Euryarchaeota (in addition to Thaumarchaeota) living in sedimentary environments (Schouten 

et al., 2007) that could obfuscate the TEX86 temperature signal.  

The Methane Index and Ring Index (Appendix C, Equations 9-12) have both been 

established to validate the TEX86 for temperature reconstructions (Zhang et al., 2011; Zhang et 

al., 2016).  The Methane Index (Zhang et al., 2011) ranges from 0-1 and quantifies the relative 

contributions of methanotrophic Euryarchaeota versus non-methanotrophic marine 

Crenarchaeota.  Values closer to zero correspond to abundant crenarchaeol and its regioisomer, 

and represent a predominance of Crenarchaeota.  A dominance of GDGT-1, -2 and -3 over 

crenarchaeol is indicative of greater influence from methanotrophic Euryarchaeota.  Samples 

with a Methane Index value of >0.5 are unsuitable for paleoclimate reconstruction with TEX86 

(Zhang et al., 2011).  The Ring Index (Zhang et al., 2016) was developed to determine if TEX86 
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values are influenced by environmental parameters other than temperature or deviate from 

modern calibration studies.  The Ring Index (Appendix C, Equation 10) incorporates 

contributions of isoGDGTs weighted by their number of rings, and is significantly correlated 

with the TEX86 indices from published global core top data sets (Zhang et al., 2016; Appendix C, 

Equation 11).  The ∆RI (Appendix C, Equation 12) evaluates the extent that a given sample’s RI 

value deviates from the established RI-TEX86 relationship (Appendix C, Equation 11).  Samples 

with ∆RI of <|0.3| have TEX86 values that robustly record temperature.   

Several temperature calibrations have been applied to the TEX86 (Castañeda and 

Schouten, 2011) (Appendix C, Equations 14-16).  Kim et al. (2010) established a marine 

calibration incorporating 426 core top samples.  As crenarchaeol is unresponsive to temperature 

variability in polar waters, two equations were established to differentiate between polar and 

temperate/tropical waters, referred to as TEXL
86 (surface water temperatures <15 °C) and 

TEXH
86 (surface water temperatures >15 °C) (Appendix C, Equation 13).  Additionally, several 

lacustrine calibrations for TEX86 have been constructed (e.g. Powers et al., 2010; Tierney et al., 

2008).  The Powers et al. (2010) calibration incorporated a small number of samples (n=12) from 

medium to large lakes (with BIT<0.5).  The Tierney et al. (2010) calibration added five 

additional samples (all with temperatures >23°C) to the Powers et al. (2010) calibration, and 

removed lake samples with temperatures <10°C to create a temperate/tropical lacustrine 

calibration.  It should be noted that combing the Powers et al. (2010) and Tierney et al. (2010) 

calibrations together also yields a calibration with a good correlation to temperature.  More 

calibrations exist, but the three highlighted above were described because they were applied to 

the Lake Magadi TEX86 record to attempt to reconstruct paleotemperature. 
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Table 2 – A summary of the indices for n-alkanes (upper section) and GDGTs (lower section) that are 

used in this thesis. 

1.6 THESIS OBJECTIVES 

The aim of this thesis is to determine the potential to produce a climate record from leaf 

waxes and GDGTs at Lake Magadi.  This involves the identification of n-alkyl and GDGT 

compounds and data assessment to determine how robustly these proxies represent the past 

precipitation/vegetation regime and temperature, respectively.  Additionally this thesis outlines 

the potential future sample yield from the core and evaluates whether the achievable temporal 

resolution for organic proxies in Magadi matches the goals of the HSPDP. 
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2.0  MATERIALS AND METHODS 

2.1 CORE STRATIGRAPHY AND CORE DATA 

Lake Magadi was drilled in 2014 by the HSPDP, recovering four cores (1A, 1B, 1C, and 

2A) from Lake Magadi.  Core recovery was poor, as interbedded hard and soft layers throughout 

the sediment proved difficult for drilling (Cohen et al., 2016; Appendix D, Table 7).  The four 

cores were transported to and stored at the National Lacustrine Core Repository (LacCore) at the 

University of Minnesota, in Minneapolis, MN. 

The Lake Magadi core stratigraphy (Appendix D, Figure 24) was mapped and detailed by 

HSPDP collaborators Emma McNulty and Dr. Tim Lowenstein at the State University of New 

York – Binghamton (McNulty et al., 2016).  Due to poor recovery during drilling (Appendix D, 

Table 7), there are significant gaps throughout the core.  However, the sedimentological core 

description, along with initial loss on ignition (LOI [at 550°C]) data, allowed us to target 

potential biomarker-rich sediments. 

Within the HSPDP project, other proxy work is being done on the Lake Magadi cores, 

including pollen analysis, inorganic geochemical analyses, phytolith analysis, and diatom assays, 

as well as various dating methods.  Pollen and diatom assemblages are being constructed by Dr. 

Bernie Owen and Veronica Mwihaki at Hong Kong Baptist University.  Core mineralogy was 

established by Nate Rabideaux at Georgia State University (Rabideaux et al., unpublished) and 



 25 

sulfur isotopes are being analyzed by Dr. Jonathan Wynn at the University of South Florida.  At 

the University of Arizona, phytolith data is being processed by Chad Yost; charcoal is being 

analyzed by Chenyu Wang and Brant Davis; loss on ignition data has been completed by Julia 

Richter; and Shangde Luo and Dr. Andrew Cohen are working on uranium series and 14C dating. 

Additionally, Dr. Mark Sier from Utrecht University is working on paleomagnetism data.  

Though these data sets are not the focus of this thesis, this complementary work demonstrates the 

rich, multi-proxy environmental reconstruction from the Lake Magadi core site. 

2.2 EXTRACTION AND SEPARATION 

Samples for biomarker analysis were selected from facies determined by McNulty et al. 

(2016) to be high in organic content and relatively undisturbed.  Sampling protocol at LacCore 

included the use of gloves and acetone-washed tools for sample collection.  Each sample was 

collected from the center of the core to avoid potential contamination from drilling fluids. 

Sediment samples were freeze-dried and homogenized, then extracted sonically with 2:1 

DCM/MeOH to generate the total lipid extract (TLE).  Activated copper shot was added to the 

TLE to remove elemental sulfur.  For the initial 21 samples, the TLE was separated by solid 

phase extraction (SPE) using an aminopropyl stationary phase, collecting three fractions: a 

neutral/polar fraction (2:1 DCM/IPA), a free fatty acid fraction (4% glacial acetic acid in ethyl 

ether), and a phospholipid fatty acid fraction (MeOH).  The n-alkanes and GDGTs eluted first in 

the neutral/polar fraction, and the fatty acids eluted in the free fatty acid fraction.  No compounds 

of interest to this study eluted in the phospholipid fatty acid fraction.  The TLE from the second 

set of 47 samples did not go through SPE aminopropyl stationary phase, instead going straight to 
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the alumina column chromatography separation (Figure 9).  This decision was made to attempt 

to isolate lacustrine alkenones (another biomarker, thought to record surface water temperature 

in oceans and some lakes) that could be present in Lake Magadi due to its saline nature (e.g. 

D’Andrea and Huang, 2005; Pearson E.J. et al., 2008). 

After running the TLE (from the first 21 samples; Figure 8) through the aminopropyl SPE 

columns, the free fatty acid fractions (and a palmitic acid standard) were methylated with BF3-

methanol to convert the fatty acids to fatty acid methyl esters (FAMEs) and prevent adsorption to 

the gas chromatograph column during analysis.   

The neutral/polar fractions from the aminopropyl SPE (containing the n-alkanes and 

GDGTs) from the first 21 samples were separated by alumina column chromatography into 

another three fractions: apolar (9:1 hexane/DCM), polar 1 (1:1 DCM/MeOH), and polar 2 

(MeOH). The n-alkanes eluted in the apolar fraction, and the GDGTs eluted in the polar 1 

fraction (Figure 8).  The TLE from the second set of samples was split into apolar 1 (9:1 

hexane/DCM), apolar 2 (1:1 hexane/DCM), and polar 1 (1:1 DCM/MeOH) fractions.  In this 

separation, the apolar fraction was split into apolar 1 (containing n-alkanes) and apolar 2 

(lacustrine alkenones would elute in this fraction, if present), while the GDGTs still eluted in the 

polar 1 fraction (Figure 9).  The apolar (and apolar 1) fractions were passed through a silver 

silica column to remove unsaturated compounds (e.g. n-alkenes), separating into a saturated 

fraction (pure hexane solvent) and an unsaturated fraction (pure ethyl acetate solvent).  
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Figure 8 – The extraction and separation scheme for the first set (21) of pilot samples.  Compounds of 

interest are in fractions designated by green coloring. 
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Figure 9 – The extraction and separation scheme for the second set (47) of pilot samples.  FAMEs 

were not collected and a new fraction potentially containing alkenones, another organic temperature proxy, 

was collected. 

2.3 INSTRUMENTAL ANALYSES 

None of the samples analyzed in this thesis were run in duplicate.  Leaf wax abundances 

are consistently reproducible (e.g. Castañeda et al., 2009a), and other studies have reported 

uncertainties in isoGDGT-derived TEX86 of ~0.0076 corresponding to a 2σ temperature range of 

0.8°C (e.g. Johnson et al, 2016). 
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2.3.1 Leaf waxes 

The BF3-methylated free fatty acid fractions (from the first 21 samples; Figure 8) were 

analyzed by gas chromatography (GC) coupled with flame ionization detection (FID) and mass 

spectrometry (MS) for abundances and identification of FAMEs (same settings as described 

below) in the Werne Organic Geochemistry Lab at the University of Pittsburgh.  Due to crowded 

chromatograms from the first set of pilot samples, FAMEs were not analyzed from the second set 

of samples. 

The apolar fraction (from the first 21 samples) and the apolar 1 fraction (from the second 

set of 47 samples) were then analyzed by GC-FID and GC-MS for quantification and 

identification of the n-alkanes (Figures 8 and 9).  Samples were analyzed on a Thermo Scientific 

Trace 1310 GC, equipped with an Agilent DB-5 column (30m x 0.320 mm, 0.25 µm film) with 

an FID detector, and a Thermo Scientific ISQ QD Single Quadrupole Mass Spectrometer 

(separate runs necessary due to loss of sample from FID).  The GC injector temperature was set 

to 250°C, and the column oven held at 70°C for 1 min, ramped to 130°C over 6 min at a rate of 

10°C/min, and then ramped again to 320°C over 57.5 minutes at a rate of 4°C/min.  The column 

carrier gas used was helium (He), and the gas flow to the FID was a mixture of 350 mL/min air, 

20 mL/min He, and 35 mL/min hydrogen.  The MS transfer line temperature was maintained at 

300°C, the ion source temperature was 275°C, and the MS method followed the “acquisition-

general” setting.  These same samples will be run through GC-coupled isotope ratio mass 

spectrometry (IRMS) for isotopic analysis of the n-alkanes.   
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2.3.2 GDGTs 

From both sample sets, the polar 1 fraction after alumina column chromatography was 

filtered using a 0.47 µm syringe filter.  The samples were then analyzed for isoprenoid and 

branched GDGTs using liquid chromatography coupled with mass spectrometry (LC-MS) on an 

Agilent 1260 series Single Quad LC (with an autoinjector) and an Agilent 6120 series Mass 

Selective Detector (MSD) by collaborator Dr. Isla Castañeda at the University of Massachusetts 

– Amherst.  The instrument conditions follow those outlined in Hopmans et al. (2016), such that 

a 2.1 x 5 mm pre-column (BEH HILIC columns, 2.1 x 5 mm, 1.7 µm; Waters) was followed by 

two UHPLC silica columns (BEH HILIC columns, 2.1 x 150 mm, 1.7 µm; Waters) in series.  

These columns were kept at 30°C, and used to separate GDGT compounds.  At a flow rate of 0.2 

mL/min, the compounds were eluted for 25 min with 18% B, then linearly increased to 35% B 

over 25 min, followed by another linear increase to 100% B over 30 min, where A is pure hexane 

and B is hexane:isopropanol (9:1, v/v).   Due to relatively low concentrations of GDGTs in many 

of the samples, very large injection sizes (generally 15-20 µL, but up to 25 µL for some samples) 

were necessary to achieve a large enough instrument response to quantify the compounds. 
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3.0  RESULTS 

3.1 LEAF WAXES 

3.1.1 n-alkanes abundances and distributions 

Of the 68 samples analyzed for leaf waxes, 57 of them (83.8%) yielded measurable data 

for n-alkanes.  A sample chromatogram of the n-alkanes can be found in Appendix E (Figure 

25).  The n-alkane concentrations spanned a wide range, from 0.06 µg/g to 143.46 µg/g 

sediment.  The samples have an average of 19.63 µg n-alkanes/g sediment, with a standard 

deviation of ±15.82 µg/g sediment.  Raw abundance data can be found in Appendix F (Table 8).   

The n-alkane indices previously mentioned (section 1.5.1) are plotted as a function of 

core depth in Figure 10.  The TARHC shows predominantly terrestrial input throughout the core, 

with all but one sample lying above a value of 0.8.  Ten samples, representing 17.5% of the 57 

samples yielding n-alkane data, produced CPI values of less than 3 and indicate potentially 

extensive degradation (three samples from ~130-165 m depth, four samples from core top to ~35 

m depth), and were subsequently discarded (Figure 11).  All samples produced Paq values of 

<0.5, though many of the samples with the highest Paq values also had CPI values of <3.  Five 

samples with Paq values >0.2 and CPI values from 3-4, though not omitted, were marked (as 

shown in Figure 12) and are less certain than the remaining data points.  Average chain length 
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was plotted alongside the other proxies in Figures 10, 11, and 12 to show the effect of removing 

bad or questionable data points from the n-alkane record. 

3.1.2 Fatty acid methyl esters (FAMEs) abundances and distributions 

All 20 of the samples analyzed for FAMEs contained the fatty acid compounds of interest 

(sample chromatogram in Appendix E, Figure 26).  FAMEs were only examined in the first set 

of pilot samples (20 samples), as the chromatography of the n-alkanes was cleaner and had better 

peak separation, and thus had a greater chance of producing compound specific isotope 

measurements.  The FAMEs chromatograms exhibit the expected even over odd predominance 

(the opposite of the n-alkane samples), indicating a primarily terrestrial source with minimal 

degradation.  The FAMEs had high abundances, ranging from 0.012-31.05 µg total FAMEs/g 

sediment, with an average of 6.80 µg/g sediment and a standard deviation of 8.46 µg/g sediment.  

After further chemical separation (to clean up the chromatograms and better isolate compounds 

of interest), the FAMEs have the potential to be useful for future environmental reconstruction, 

but are not pursued further in the present study. 

3.1.3 n-alkane δ13C and δD 

Isotopic measurements have not yet been completed on the pilot n-alkane samples from 

Lake Magadi.  However, many environmental reconstructions from compound specific analysis 

of δD and δ13C focus on the C29 (e.g. Tierney et al., 2017) and C31 (e.g. Magill et al., 2013b) n-

alkanes.  In Appendix F (Table 8), the abundances of the C29 and C31 n-alkanes are presented and 

indicate their potential to provide good isotopic data in the future. 
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Figure 10 – The four n-alkane indices (from the left: TARHC, CPI, Paq, and ACL) plotted against 

depth, including all possible data points.  The TARHC has only 19 points as many of the lower chain (C15-C19) 

n-alkanes were difficult to identify and quantify due to the presence of a hump in the chromatogram caused 

by unresolved complex mixture (UCM; see Discussion below).  In the ACL plot (and for all plots of ACL in 

this thesis) the red dotted line represents a three-point moving average, and the magenta dashed line 

represents a five-point moving average.  Four ages along the core have been identified by Alan Deino at the 

Berkeley Geochronology Center, and those four dates are included on all plots in this thesis, though no age 

model has been completed to date. 
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Figure 11 – The CPI, Paq, and ACL plotted with all data points where CPI<3 (10 in total) removed.  

Though somewhat interspersed throughout the core, seven of the ten samples removed came from depths of 

~130-165 m and core top to ~35 m.  Both of those sections had poor core recovery (Appendix D, Figure 24) 

with increased chances of contamination from drilling fluid, which may have contributed to the low CPI 

values.   
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Figure 12 - Of the remaining data points (after removal of the 10 with CPI<3), five have CPI values 

between 3 and 4, and correspond to the highest remaining values among Paq as well.  Though these values are 

both within an acceptable range to be considered terrestrial signals, they are marked in this figure with a 

filled-in symbol to denote that they may not record a terrestrial signal with the same fidelity as the rest of the 

samples. 

3.2 TEMPERATURE PROXIES 

3.2.1 GDGTs 

In total, 64 samples were analyzed for both brGDGTs and isoGDGTs, of which 62 

samples had all the isoGDGTs necessary to calculate the TEX86 (Appendix C, Equation 8; 

Appendix H, Table 10 for the raw GDGT data).  The full suite of brGDGT compounds (to 
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calculate MBT/CBT) were not present in any of the samples, though occasionally singular 

brGDGTs were identified.  Sample GDGT chromatograms are shown in Appendix G (Figures 

27-29).  Seven of the 64 total samples either lacked the isoGDGTs for TEX86 (2 samples), or had 

a poorly resolved chromatogram with many additional peaks (5 samples; all 7 samples were 

discarded).  An additional 26 samples had all the peaks, but included extra peaks as well, and 

often had a small GDGT-1 peak.  The remaining 31 samples with chromatograms resembling 

“typical” marine isoGDGT distributions are considered potentially suitable for paleotemperature 

reconstruction. 

The TEX86 and three temperature calibrations are plotted in Figure 13.  The data points 

representing the 26 questionable samples mentioned previously are marked as filled in points.  

The temperature calibrations, Kim et al. (2010), Powers et al. (2010), and Tierney et al. (2010) 

all show similar temperature trends (Figure 13).  The Kim et al. (2010) calibration is constructed 

with marine samples, whereas the Powers et al. (2010) and Tierney et al. (2010) calibrations are 

both lacustrine.  Though Magadi is a lake, it was often very saline (McNulty et al., 2016; Cohen 

et al., 2016), making the Kim et al. (2010) marine calibration potentially a better fit for the site. 
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Figure 13 – This figure shows the TEX86 (Appendix C, Equation 8) plotted vs. depth, and the three 

TEX86 temperature calibrations (note that the Kim et al., [2010] TEXH86 calibration relies on a different 

TEX86 calculation, which is not represented in the plot; Appendix C, Equation 13).  The three temperature 

reconstructions generally agree with each other, but in several intervals where temperatures decrease (e.g. 

~120-130 m, or ~60 m depth), the Kim et al. (2010) calibration gives warmer (and more realistic) 

temperatures.  On those grounds, the Kim et al. (2010) temperature calibration was chosen to apply to Lake 

Magadi. 
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4.0  DISCUSSION 

4.1 EVALUATION OF LEAF WAXES 

4.1.1 n-alkane CPI, TARHC, and Paq 

The n-alkane indices are plotted together in Figures 10, 11, and 12.  The TARHC for the 

first set of pilot samples shows that throughout the core n-alkane distributions from Lake Magadi 

indicate high terrestrial input relative to aquatic (algal) input.  However, TARHC was difficult to 

construct in the second set of samples due to the presence of a UCM hump in the beginning of 

many samples (see Figure 14).  The CPI and Paq corroborate this, as 82.5% of samples with n-

alkanes present had a CPI greater than 3, and all samples had a Paq less than 0.5.  An additional 5 

samples had a combined lower CPI (~4) and higher Paq (>0.2).  Though these samples fall within 

an acceptable range for both proxies (Freeman and Pancost, 2014), they are close to the 

threshold, and therefore potentially not the most robust recorders of terrestrial n-alkanes.  From 

the 68 total samples analyzed for n-alkanes, 42 of them (61.8%) robustly recorded a terrestrial 

signal, while another 5 samples (7.4%) also suggest a terrestrial origin.  Approximately 70% of 

all samples analyzed for n-alkanes record a viable terrestrial signal with the potential to yield the 

paleoclimate data desired by the HSPDP. 
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Though ~70% of total analyzed samples yielded n-alkanes, evaluating the pilot samples 

over intervals of interest will help determine how well biomarker analysis at Lake Magadi can 

achieve and further the goals of the HSPDP.  Outlined in Campisano et al. (2017), there are five 

hominin evolutionary events that fall within the timespan (~1 Ma to present) represented by 

sediments at Lake Magadi, including the existence of Bodo cranium (~0.60 Ma), the first 

appearance of Middle Stone Age technology (0.280-0.272 Ma), the first appearance of Homo 

sapiens (0.198-0.194 Ma), Homo sapiens dispersal out of Africa (0.08-0.05 Ma), and the first 

appearance of Late Stone Age technology (0.0617-0.0521 Ma).  Four of these evolutionary 

events occur from ~0.280 Ma to present.  Based on the four preliminary dates on the Magadi 2A 

core (26 kyr at 40 m, 165 kyr at 77 m, 242.8 kyr at 88 m, and 1.08 Ma at 197 m depth), the four 

hominin evolutionary events that occur from 280 kyr to present likely all occur in the top 100 m 

of Magadi core 2A.  Of the 46 samples analyzed between 0-100 m depth, 38 (82.6%) of the 

samples yielded n-alkanes and 32 (69.6%) of the samples had an odd over even predominance 

suggesting little to no degradation (CPI>3).  It should be noted that 100 m depth was arbitrarily 

selected to represent core material encompassing the past 300 kyr.  When examining samples 

from 0-88 m (the depth corresponding to 242.8 kyr), 80.5% of samples yield n-alkanes, and 

70.7% of samples have a CPI>3.  Over intervals of interest to the HSPDP, ~70% of samples 

analyzed yield robust paleoclimate data and are promising for future analysis. 

4.1.2 Unresolved complex mixtures (UCM) 

Of the 68 samples analyzed for leaf waxes, 11 of them (16.2%) did not yield quantifiable 

data for n-alkanes.  This was due to either none of the n-alkanes being present (or in too low 

abundance to measure) or due to baseline disruption (a “hump”, see Figure 14) resulting from an 
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unresolved complex mixture (UCM) that obscured the desired peaks in the chromatogram.  Due 

to interference from the UCM, the C15-C22 n-alkanes were unable to be quantified, making 

calculation of the TARHC ratio impossible for UCM-containing samples. 

 

Figure 14 – A sample chromatogram from Magadi core section 2A-17Y-2 showing a pronounced 

baseline disruption (UCM hump). 

 

None of the samples from the first set (21 samples) contained a UCM hump – all samples 

containing the UCM hump were from the second set of samples (47 samples).  This suggests that 

the presence of the UCM baseline disruption may be related to differences in the extraction 

scheme between two samples (e.g. due to the lack of aminopropyl SPE in the second set of 

samples).  It may be the case that the UCM consists of compounds that would have been 

separated into the free fatty acid fraction during aminopropyl SPE.  However, this is unlikely, as 

compounds that have an affinity for the free fatty acid fraction (a solvent mixture of 4% glacial 

acetic acid in ethyl ether) would have been too polar to elute in the alumina column 
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chromatography apolar 1 fraction of the second set of samples (9:1 hexane/DCM solvent) and 

more likely would have eluted in the apolar 2 (1:1 hexane/DCM solvent) or polar 1 (1:1 

DCM/MeOH solvent) fractions.   

More likely is that the presence of the UCM hump is related to the effectiveness of the 

silver silica columns in the second set of samples. Several samples in the n-alkane (apolar) 

fraction in the first set had many extraneous peaks (though nothing resembling the UCM present 

in many samples in the second set) and caused the silver silica column chromatography to be 

added to the chemical work up method.  However, silver silica must be activated prior to use (via 

dehydration in an oven at 90°C for 16 hours) and can slowly become deactivated if exposed to 

light (silver nitrate silica MSDS).  If the silver silica chromatography was less effective at 

removing unsaturated compounds (e.g. n-alkenes) for the second set of samples due to reagent 

deactivation, it could have resulted in the UCM not being separated from the saturated fraction 

containing the n-alkanes.  In this scenario, the compounds comprising the UCM are of the 

correct polarity to be present in the n-alkane (apolar 1) fraction after alumina column 

chromatography.  As such it is more likely that the UCM resulted deactivated silver silica, than 

skipping the aminopropyl SPE in the second set of samples.  In the future, rerunning a subset of 

samples through a second round of silver silica column chromatography could determine 

whether ineffective reagent was the source of the UCM hump. 

The UCM hump is predominantly present in the top of the core, sections 2A-17Y-1 

through 2A-24Y-1, though found throughout the core and as deep as 2A-60Y-2 (Table 3).  The 

presence of a UCM hump could also imply oxic degradation of the sample from exposure to 

either oxygenated pore water or atmospheric oxygen, suggesting Lake Magadi n-alkanes are 

recording the drying of the paleolake.  As Magadi progressively dried out, perhaps due to 
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increasing aridity (see section 4.3.2 below), deposited sediments would become increasingly 

exposed to oxygen.  The presence of the UCM humps, under this interpretation, could shed light 

on the dynamic between precipitation and lake level with future study.  However, due to general 

presence of the UCM from the second set of samples and lack of UCM from the first set of 

samples it seems most likely that the UCM is an analytical artifact. 

4.2 EVALUATION OF TEMPERATURE PROXIES 

4.2.1 TEX86 validation and calibrations 

As discussed in the Results, brGDGTs were generally absent from samples.  While there 

were a few exceptions, they contained only singular brGDGTs, rather than the full suite needed 

to calculate the MBT or CBT proxies.  The isoGDGTs were present in 62 of 64 samples (96.9%) 

analyzed for GDGTs.  Five of these samples were either missing one of the isoGDGTs (usually 

the crenarchaeol isomer, GDGT-4’) needed to construct the TEX86 or had a chromatogram with 

many extra peaks, resulting in seven total samples being discarded.  This resulted in 57 of 64 

samples (89.1%) yielding a TEX86 value.   

Initial validation of isoGDGT data and the TEX86 was qualitative.  During data 

collection, samples were separated into three categories based on the distribution of isoGDGTs 

in their chromatogram.  The first category consisted of the seven discarded samples that either 

had missing isoGDGTs or had a very abnormal chromatogram, or both.  The second category 

was comprised of questionable samples (26 in total), defined as samples that had all the 

isoGDGTs needed to calculate the TEX86 but had extra peaks.  Finally, the third category (31 
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samples) consisted of samples that appeared to be typical marine samples where the isoGDGTs 

used in the TEX86 were by far the most prominent compounds (Appendix G, Figures 27, 28 and 

29 for sample chromatograms from each category).  Both the second and third categories’ 

samples were used in the preliminary temperature reconstruction in Figure 13, though the 

questionable samples are designated by filled-in markers. 
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Table 3 – A table showing the presence of the UCM hump in Magadi samples as well as values for the 

Methane Index (Zhang et al., 2011) and the Ring Index (Zhang et al., 2016).  The number of good samples 

(<0.5 for MI, <|0.3| for ∆RI) and bad samples for both MI and ∆RI are also shown. 
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Calculated MI and ∆RI values from the Magadi pilot samples were much more 

discriminating than the visual assessment of the chromatograms during data collection.  Table 3 

shows the number of good samples and discarded samples from both indices.  Based on the MI 

25 of 65 samples (38.5%) can be used for TEX86 and based on the ∆RI with a 95%-confidence 

value of |0.3|, only 10 of 55 samples (18.2%).  Only 58% of samples determined visually to be 

good for TEX86 had predominantly Thaumarchaeota input based on MI values.  Samples 

validated by MI and ∆RI are not interspersed amongst the core but occur in several groups from 

32-35, 70-76, and 103-104 m depth (Table 3).  Both MI and ∆RI were plotted against the TEX86 

values and neither show correlation (Figure 15), with r2 values of 0.0059 for MI and 0.0803 for 

∆RI. Together the MI and ∆RI indicate that TEX86 is only valid for temperature reconstruction 

through limited sections of the core.   

Both the MI and ∆RI validate TEX86 through comparison to typical marine samples.  

Though differentiation from typical marine TEX86 values indicates TEX86 should not be used for 

temperature reconstruction in many Magadi samples, the variable distributions of isoGDGTs 

does indicate shifting microbial communities.  Intervals where MI values are >0.5 imply a 

significant presence of methanotrophic Euryarchaeota and similarly, ∆RI values of >|0.3| 

indicate an abnormal community compared to modern marine environments (Zhang et al., 2011; 

Zhang et al., 2016).  The TEX86 does not provide continuous, robust temperature data throughout 

core 2A at Lake Magadi but the GDGT data still shows changes in microbial community that 

may be environmentally influenced.  Only a combined 34 of 62 samples (54.8%) have either a 

UCM hump and an MI value of >0.5, or no UCM hump and an MI value <0.5 throughout the 

core.  This suggests no relationship between drying of the paleolake (if the UCM hump is a 

proxy for lake drying) and changing microbial communities.  However, surface sediments from 
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the modern Lake Nasikie Engida (see Figure 4) have been obtained from collaborator Gijs De 

Cort at Ghent University.  The modern samples may provide insight into the present-day 

microbial community and associated GDGT distributions that could then be used to better 

understand past changes in microbial communities from isoGDGTs at Lake Magadi. 

 

Figure 15 – Magadi TEX86 plotted versus the Methane Index (Zhang et al., 2011) and the Ring Index 

(Zhang et al., 2016), showing no correlation with either.  This suggests that shifts in microbial community 

shown by both the MI and RI are not reflected in recorded TEX86 values.  Both the MI and RI indices 

indicate that TEX86 shouldn’t be used for temperature reconstruction at Lake Magadi, however TEX86 shows 

apparent agreement with other climate parameters and records (see Figures 18 and 19). 

 

Three different temperature calibrations were applied to the TEX86 data (Appendix C, 

Equations 14, 15 and 16).  Both the Powers et al. (2010) and the Tierney et al. (2010) 

calibrations are based on lacustrine samples, whereas the Kim et al. (2010) calibration is 

established from marine samples.  All three calibrations are plotted with the TEX86 in Figure 13 
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and show similar temperature trends.  However, the Kim et al. (2010) calibration tends to yield 

warmer temperatures (~2°C warmer) than the two lacustrine calibrations. This is particularly true 

in “cooler” sections of the core where the Powers et al. (2010) and Tierney et al. (2010) 

calibrations produce temperatures as low as 12.1 and 14.8°C, respectively, compared to 16.3°C 

by Kim et al. (2010).  A notable exception is at the top of the core (sample 2A-11Y-1 at a depth 

of 22.65 m).  This sample presents an anomalously cold temperature relative to all three 

calibrations.  For this sample, the Tierney et al. (2010) calibration produces a warmer 

temperature than Kim et al. (2010) (4.6°C from Powers et al. [2010], 6.3°C from Kim et al. 

[2010] and 9.6°C from Tierney et al. [2010]).  TEX86-produced temperatures are not absolute 

measurements of MAAT, however the relative temperature trends through time are still 

interesting and useful data for paleoclimate studies.  However, at tropical sites like Lake Magadi, 

the temperature calibration yielding the warmest (or least cool, in this case) temperatures may be 

the most appropriate to use.  As mentioned previously, the Kim et al. (2010) calibration, though 

based on marine core top samples, may be a good fit for Lake Magadi due to Magadi’s saline 

nature (Cohen et al. 2016). 
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4.3 PRELIMINARY ASSESSMENT OF MID-PLEISTOCENE 

PALEOENVIRONMENTAL HISTORY IN THE MAGADI-NATRON BASIN 

4.3.1 n-alkane ACL and vegetation regime 

The ACL was calculated for n-alkane chain lengths C27 to C33 (even chain lengths 

omitted, modified from Eglinton and Hamilton, 1967), and is plotted alongside the other n-

alkane indices in Figures 10, 11, and 12.  Though Diefendorf et al. (2011) showed that there is 

significant phylogenetic variability in the leaf wax distributions produced by vascular plants, 

multiple studies (e.g. Schefuß et al. 2003; Krull et al., 2006) have shown ACL correlates with 

changes in vegetation regime (i.e. C4 grass-dominated versus C3 tree-dominated ecosystem).  

Carbon isotope analysis of the n-alkanes will provide further insight into the vegetative history at 

Lake Magadi, though it remains likely that variations in ACL record changing vegetation.  

Figure 16 shows ACL plotted versus depth in the core, with its three-point (red) and five-

point (magenta) moving average.  In modern East Africa, vegetation (woody cover) varies 

strongly with precipitation (i.e. aridity), resulting in predominantly C3 (e.g. trees) vegetation in 

wetter environments, and C4 (e.g. grasses) vegetation in more arid environments (Sankaran et al., 

2005) due to higher water-use efficiency in C4 plants (Raven et al., 1999). Schefuß et al. (2003) 

suggest that ACL (as a proxy for vegetation regime) and aridity are also strongly related, though 

other studies (e.g. Castañeda et al., 2009a) find no correlation between the two.  Future analysis 

of the H isotope composition of the n-alkane samples will help determine whether ACL varies 

with precipitation at this site. 
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Figure 16 – Average chain length from Lake Magadi pilot samples plotted over depth.  Longer chain 

lengths can either be indicative of a warmer climate (Rommerskirchen et al., 2003), or greater C3 plant input.  

However in East Africa, warmer climate is associated with wetter, C4 plant-dominated environments. 

 

4.3.2 Comparison of n-alkane ACL and TEX86 

Castañeda et al. (2009a) suggest that average chain length correlates well with GDGT-

constructed temperature in Lake Malawi.  Figure 17 (data from the present study) shows n-

alkane ACL plotted alongside a TEXH
86 temperature reconstruction (Kim et al., 2010) where 

there appear to be two different relationships between ACL and temperature throughout the core.  
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From the core bottom to ~90 m depth, ACL and temperature are not correlated, but from ~90 m 

to core top, temperature tracks ACL well (Figure 17).  The relationship between vegetation 

regime and temperature is dependent on precipitation in East Africa as well, where higher 

temperatures cause greater evaporation (leading to more precipitation), and lower temperatures 

lead to lower levels of precipitation.  A higher ACL value can indicate either a warmer or drier 

climate (or both; indication of warmth as suggested by Rommerskirchen et al., 2003) and lower 

ACL values should represent cooler, wetter climates.  However, the predominant trend in East 

Africa is increased aridity in cooler climates (drier and cooler), and wetter periods with increased 

temperatures (wetter and warmer).  Periods where a disagreement between ACL and temperature 

exists (i.e. 1.08-0.2428 Ma) implies an interesting local climate story, where either precipitation 

or vegetation (or both) is controlled by some other parameter in addition to temperature. 

The transition from no correlation to weak, positive correlation between the ACL and 

temperature records at ~90 m depth is interesting but doesn’t have an immediate climate 

explanation.  The emergence and spread of the C4-dominated biome had already occurred ~7 Ma 

(Maslin and Christensen, 2007).  The onset of northern hemisphere glaciation (~2.5 Ma) and 

intensification of Walker Circulation (~1.9 Ma) also happened before the time period represented 

by sedimentary record at Lake Magadi.  However, glacial-interglacial climate may play a role in 

this transition, as it roughly aligns with glacial termination III (Lisiecki and Raymo, 2005), a 

rapid deglaciation of the northern hemisphere.  Additionally, there could be more local climate 

parameters affecting the relationship between temperature and vegetation regime, such as 

changes in local weather patterns (e.g. similar mean annual precipitation, but a more pronounced 

wet-dry seasonality). 
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Figure 17 – The upper plots show Magadi core 2A ACL next to the Kim et al. (2010) TEXH86 

temperature reconstruction.  The lower plots show Magadi core 2A ACL plotted against the Kim et al. (2010) 

TEXH86 temperature reconstruction, showing no correlation below 90 m depth, and a (non-significant) weak, 

positive correlation above 90 m depth. 
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It is possible that climate dynamics at tropical Lake Magadi could be influenced by 

northern hemisphere glaciation (and deglaciation).  In Figures 18 and 19, n-alkane ACL and 

temperature from Lake Magadi are plotted next to δ18O data from the second Greenland Ice Core 

Project (GRIP-2) to compare trends between climate parameters at Lake Magadi and the Arctic 

(Figure 18 displays data from 26-242.8 kyr, Figure 19 from 26-165 kyr).  Figure 19 suggests that 

temperature and vegetation at Lake Magadi were potentially affected by global climate (e.g. 

glacial-interglacial cycles).  There is apparent agreement between the δ18O record and 

temperature/vegetation at Magadi – as ACL and temperature sharply increase (~70 m depth), 

GRIP-2 δ18O increases as well, recording northern hemisphere deglaciation.  Due to the lack of 

age model from Lake Magadi, the connection between northern hemisphere deglaciation and 

climate at Lake Magadi is not clear.  However, these results provide a strong indication that Lake 

Magadi has the potential to elucidate the relationship between local/regional East African and 

global climate. 

In Figure 16, the ACL oscillates through time, lacking a long-term directionality, 

showing that this pilot data supports climate-evolution hypotheses centered around an oscillating, 

variable climate (e.g. the pulsed climate variability hypothesis, see section 1.1). However, the 

temporal resolution of the data is still be too low to provide definite support in favor of 

oscillating climate. The GDGT-based temperature reconstruction (e.g. Figure 17) appears to have 

a directionality (again, with low temporal resolution) and suggests a cooling trend and increasing 

aridity at Lake Magadi over the past ~500 kyr based on the depths of the four age points 

established for core 2A thus far.  This temperature trend, with internal variability amongst the 

directionality, provides some support for the hypotheses of climate variability underlain by 
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increasing aridity impacting hominin evolution in East Africa (deMenocal et al., 2004; Maslin 

and Trauth, 2009; Maslin et al., 2014). 

 

Figure 18 – Magadi core 2A n-alkane ACL and Kim et al. (2010) TEXH86 temperature plotted 

alongside the GRIP-2 ice δ18O data from 242.8-26 kyr.  There are apparent similarities between ACL, the 

TEX86 temperature reconstruction by Kim et al. (2010) and the GRIP-2 ice core isotope data, specifically the 

positive excursion after 165 kyr showing northern hemisphere deglaciation and simultaneous warming at 

tropical Lake Magadi. 



 54 

 

Figure 19 – Magadi core 2A n-alkane ACL and Kim et al. (2010) TEXH86 temperature plotted 

alongside the GRIP-2 ice δ18O data from 165-26 kyr.  Similar to Figure 18, this figure shows an apparent 

relationship between climate at Magadi and arctic glaciation/deglaciation.  A more robust age model for the 

Magadi cores will better elucidate the nature of this relationship. 

4.4 FUTURE DIRECTIONS 

4.4.1 n-alkane δ13C and vegetation shifts 

The n-alkane samples are in the process of being analyzed for compound-specific carbon 

and hydrogen isotope composition in the Werne Organic Geochemistry Lab at the University of 

Pittsburgh.  When complete this data will clarify historical vegetation and precipitation changes 

at Lake Magadi.  Previous studies (Magill et al., 2013b) at nearby Olduvai Gorge (Figure 5) used 
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sedimentary n-alkane δ13C to reconstruct vegetation-biome changes by establishing the apparent 

carbon-isotope fractionation between leaf tissue, soil organic matter (SOM), and leaf lipids.  

Magill et al. (2013b) found that in modern C3 and C4 plant soil systems, there is an apparent 

carbon-isotope fractionation of 9‰ between SOM and the C31 alkane, allowing reconstruction of 

the carbon isotope composition of SOM from sedimentary n-alkanes (Figure 20).  As SOM 

carbon isotope data has been established as a proxy for woody cover (Cerling et al., 2011), this 

link between sedimentary n-alkanes and SOM allows for estimation of woody cover from n-

alkanes.  The relationship between leaf lipids and SOM is based on data from xeric woodlands, 

scrublands, tropical deciduous forests, and C4 grasslands, but because Lake Magadi is so 

geographically close to paleolake Olduvai, local vegetation should be similar, allowing 

application of the same relationship between sedimentary n-alkanes and SOM. 

 

Figure 20 – A figure from Magill et al. (2013b) showing the methodology for reconstruction of 

vegetation regime from sedimentary leaf wax δ13C due to its average 9‰ isotopic offset from soil organic 

matter δ13C (based on the C31 alkane). 
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4.4.2 n-alkane δD record of past precipitation 

As mentioned above, the n-alkane samples from Lake Magadi are being analyzed for 

their compound-specific hydrogen isotope composition.  Upon analysis, there are several 

methods to calculate precipitation from n-alkane H isotope composition (Magill et al., 2013a; 

Tierney et al., 2017), that are described below. 

Tierney et al. (2017) combined C- and H-isotope analysis on fatty acids (C30) to attempt 

to quantitatively reconstruct precipitation in the western Sahara through the Holocene.  Tierney 

et al. (2017) use end member values for the C isotope composition of C3 and C4 plants (-33.4 and 

-19.8‰, respectively; Garcin et al., 2014) to estimate the C3 and C4 plant isotopic offset between 

leaf wax (δDwax) and precipitation (δDprecipitation) (average values of -113‰ for εC3, -126‰ for 

εC4; Sachse et al., 2012).  Data from the Online Isotopes in Precipitation Calculator (OIPC) and 

core top leaf wax-derived δDprecipitation estimates were used to establish the non-linear (Rayleigh 

distribution) relationship between δDprecipitation and precipitation amount.  From this relationship, 

paleo-precipitation amounts were estimated from δDwax, and Bayesian methods used to estimate 

uncertainties (there was greater uncertainty at higher precipitation amounts, as the δDwax-

precipitation regression was logarithmic). 

Magill et al. (2013a) used a different approach to estimate the apparent fractionation 

between leaf waxes (the C31 alkane) and modeled precipitation for the site, termed εlipid/model 

(precipitation isotopes modeled from Bowen and Revenaugh, 2003; International Atomic Energy 

Agency [2006] Isotope Hydrology Information System [www.iaea.org/water]).  Estimations of 

εlipid/model were based on common plant functional types (PFTs) for the site, including C4 

graminoids (εlipid/model of -146‰), C3 herbs (εlipid/model of -124‰), and C3 woody plants (εlipid/model 
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of -109‰).  Relative PFT abundance was determined by the leaf wax C isotope composition (see 

Figure 20), and the PFT εlipid/models were multiplied by the relative PFT abundance to establish an 

apparent isotope fraction for the landscape, dubbed εlandscape (Magill et al., 2013a).  The εlandscape 

is used to infer the H isotope composition of soil water (δDsoil), as no significant fractionation 

results from root uptake and stem-water tends to have similar H isotope composition to soil 

water (Ehleringer and Dawson, 1992).  Magill et al. (2013a) acknowledge that the importance of 

stem-water versus leaf-water for leaf wax biosynthesis is unknown (McInerney et al., 2011) and 

leaf-water H isotope composition can be drastically different from that of soil-water (Farquhar et 

al., 2007).  Magill et al. (2013a) then use a modern regional meteoric water line (RMWL) to 

estimate the range of δDsoil, and determine the percentage of variability in δDsoil caused by 

precipitation amount, calculating mean annual precipitation from reconstructed δDsoil. 

Though both methods yield quantitative estimates of past precipitation, the Magill et al. 

(2013a) approach may be better suited to Lake Magadi.  Due to their proximity (Figure 5), 

Magadi and Olduvai not only have similar vegetation (PFT), but also experience similar climate 

patterns (a bimodal wet season caused by the intersection of the Intertropical Convergence Zone 

[ITCZ] and the Interoceanic Confluence [IOC]).  However, regardless of method chosen, both n-

alkane C and H isotopes are needed to quantitatively reconstruct past precipitation. 

4.4.3 Future core sampling and promising core sections 

Aside from evaluating the potential of leaf waxes and GDGTs to reconstruct past 

environmental conditions at Lake Magadi, the other objective of this thesis is to determine the 

feasible temporal resolution achievable for future biomarker analyses.  Below, Table 4 shows the 
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core section, depths, and number of potential samples, as well as any notes on the stratigraphy 

(Initial Core Description Booklet, LacCore, 2014) for samples that could be analyzed for 

biomarkers in the future.  Table 4 is split into four sections, defined by the dates currently 

established for the core (0-40 m depth representing 26 kyr to present; 40-77 m depth for 26-165 

kyr, 77-88 m depth for 165-242.8 kyr, and 88-197 m for 242.8-1080 kyr).  These sections are 

delineated by a bold cell border. 

Previously analyzed samples for biomarkers are omitted from Table 4 and core sections 

that have been used for other analyses (e.g. phytolith analysis) have not been taken into account, 

so the number of potential samples remains an estimate.  However, this estimate can still provide 

insight into the temporal resolution achievable through some sections of the core. 

The data presented in Table 4 is summarized in Table 5 and suggests that there is marked 

potential for future biomarker work from Lake Magadi drill core 2A.  From the first section, 

representing 26 kyr to present, there are a potential 214 biomarker samples.  Including the 12 

pilot samples already run in this section, there is a potential for just over century scale resolution 

(~115 yr per sample).  Of the pilot samples analyzed in this section, only a quarter produced 

usable n-alkane data, but 92% of samples produced robust GDGT data (according to the MI).  

This would result in a temporal resolution of ~460 yr/sample for leaf wax data, and ~125 

yr/sample for GDGT temperature data.  Though none of the hominin evolution event goals for 

the Magadi site, outlined by Campisano et al. (2017), are represented by this section, the 

potential for a high-resolution East African Holocene record is still exciting. 
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Table 4 – A table containing the sample depths of every potential sample for biomarker analysis, 

based on the results of this pilot study.  Samples are included if they have the potential to provide robust data 

for n-alkanes or GDGTs, though not all samples listed here have a high probability of providing both.  Core 

sections are split into four sections, delineated by the initial four dates associated with core 2A (transition 

between sections marked by a bolded cell border). 

 

 The second section, representing 26-165 kyr, there are 125 future samples that look 

promising for biomarker analysis.  Combined with 26 samples that have already been analyzed 

in this study, there is potential for sub-millennial scale temporal resolution (~920 yr/sample).  

Through this section, 24 of 25 (96%) of the pilot samples analyzed for n-alkanes produced robust 

data, and 7 of 26 GDGT samples (26.9%, according to the MI) yielded temperature data.  The 

future temporal resolution of climate data in this section would still be sub-millennial (~965 

yr/sample) for n-alkanes, and over millennial (~3,375 yr/sample) for GDGTs.  This section (26-

165 kyr) is particularly exciting, as two of the four hominin evolution events encompassed by the 
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Magadi 2A core fall within this time period – the Homo sapiens dispersal out of Africa (80-50 

kyr) and the first appearance of Late Stone Age technology (61.7-52.1 kyr) (Capisano et al., 

2017).  Moreover, these events both fall within the span of 30 kyr (80-50 kyr).  Better temporal 

resolution than estimated above may be possible, depending on which core sections represent 

this 30 kyr interval, but this will only be determinable after an age model is refined for the core.  

A linear age interpolation between a depth of 40 m (26 kyr) and 77 m (165 kyr) places the 50-80 

kyr period between the approximate depths of 46-55 m, represented by core sections 2A-23Y-1, 

2A-23Y-2, and 2A-24Y-1, which contain a combined 39 future samples (46 total samples, 

including the 8 samples already taken from these three sections).  Of the pilot samples from these 

sections, all 7 analyzed produced usable n-alkane but none have produced usable GDGT data.  

However, if these sections indeed represent the 50-80 kyr period, then the achievable temporal 

resolution for leaf wax climate data through this interval may be as good as ~650 yr/sample. 

 The third section (165-242.8 kyr) is the narrowest section of the core, spanning from 77-

88 m depth, comprised principally of core sections 2A-39Y-1 and 2A-40Y-1.  From this section, 

there are 19 potential samples for biomarker analysis, plus 2 pilot samples analyzed in this study, 

for a total of 21 samples.  Both pilot samples yielded robust n-alkane data, though only one of 

the samples produced usable GDGT data.  The potential temporal resolution for n-alkane climate 

data through this section is projected to be ~3,700 yr/sample, while the resolution for 

temperature data may be only ~7,400 yr/sample.  The first appearance of Homo sapiens (198-194 

kyr) is the only hominin evolution event during this period (Capisano et al., 2017, and references 

therein).  Linear age interpolation over this core section estimates that the interval of interest 

(194-198 kyr) should fall between 81.1-81.67 m depth, a range that is not represented by any 
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potential future samples.  When an age model is established for the core, the potential for this 

section may improve, but as of now, it is not recommended as a target of future study. 

 The final section of the core spans from 88-197 m depth, representing the time interval of 

242.8 kyr to 1.08 Ma.  A potential 197 future samples have been identified through this section, 

totaling 226 total samples (including 29 pilot samples, 25 of which were analyzed in this study), 

resulting in an initial estimated temporal resolution of ~3,700 yr/sample.  It should be noted that 

the future samples are skewed towards the younger sections from this interval – there are no 

future samples selected from deeper than 146 m depth, due to lack of material to sample as well 

as pilot samples from below that depth proving unusable for both leaf waxes and GDGTs.  For n-

alkanes, 17 of the 25 (68%) pilot samples produced robust data, while 6 of the GDGT samples 

(based on the MI) produced good climate data.  In this section, the first appearance of Middle 

Stone Age technology is estimated to have occurred between 272-280 kyr (Capisano et al., 

2017).  Linear age interpolation places the interval of 272-280 kyr to fall within 91.8-92.8 m 

depth.  Just as with section three, there are no future samples that fall within this meter of core.  

As mentioned above, prospects for this section may improve when an age model is produced for 

the core, however no further analysis in this section with the goal of describing climate during 

the 272-280 kyr interval is recommended. 

The HSPDP’s four paleoanthropological goals for Lake Magadi include events such as 

the transitions between Acheulean and Middle Stone Age technology, the transition between 

Middle Stone Age and Late Stone Age technology, the appearance of Homo sapiens, and the 

dispersal of Homo sapiens out of Africa (Table 6).  The potential to establish a high-resolution 
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Table 5 - A summary of the data presented in Table 4, describing the potential of organic biomarkers 

through the four sections of Magadi core 2A. 

 

climate record from organic proxies at Lake Magadi is summarized in Tables 5 and 6.  Leaf wax 

n-alkanes have good potential for sections 1 and 2, poor potential for section 3 and fair potential 

for section 4.  GDGTs have fair potential for section 1 and poor potential for all other sections.  

Section 2 is the most promising for future study as two of the highlighted paleoanthropological 

events are in the section. 

 

 

Table 6 – Summary of paleoanthropological events covered by the Magadi core, and proxy 

evaluation for each of these events. 
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5.0  CONCLUSIONS 

The objective of this thesis was to evaluate the potential to produce a climate record from 

the biomarker proxies, leaf waxes and GDGTs, from a lake core recovered from Lake Magadi, 

Kenya.  This site was one of five selected by the Hominin Sites and Paleolakes Drilling Project, 

with the goal of establishing high resolution, multi-proxy climate reconstructions adjacent to 

established hominin sites.  To that end, 68 pilot samples were selected and analyzed for n-

alkanes, fatty acids, and GDGTs.  Approximately 70% of samples analyzed for n-alkanes 

recorded a robust terrestrial signal, and the TEX86 was established for nearly 90% of samples 

analyzed for GDGTs, however the Methane Index and Ring Index suggest that the TEX86 is not 

applicable to temperature reconstruction for large sections of Magadi core 2A.  The n-alkanes 

were determined to have a better potential to yield compound specific carbon and hydrogen 

isotope data than fatty acids.  Additionally, no samples contained the suite of brGDGTs 

necessary to construct the MBT/CBT temperature proxy. 

Initial construction of Lake Magadi paleoclimate using n-alkane average chain length, 

and the Kim et al. (2010) TEXH
86 temperature calibration show an oscillating vegetation regime, 

but a more directional temperature trend towards a cooler and drier climate.  There is a transition 

at ~90 m core depth – older ACL and temperature data are not correlated (r2 = 0.0356), but in 

younger samples the ACL and temperature data show a non-significant, weak positive 

correlation (r2 = 0.1864) with one another.  Plotted alongside δ18O data from the GRIP-2 ice 
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core, our climate data demonstrate a potentially interesting correlation between climate at Lake 

Magadi and ice volume in the Arctic.   

The overall goal of the HSPDP is to provide an environmental and climate context for 

many of the milestones in hominin adaptation and evolution, spatially adjacent to where 

hominins lived, and temporally resolved to evolutionary (orbital to sub-millennial) timescales.  

The core recovered from Lake Magadi is estimated to represent the time interval from 1.08 Ma 

to present, during which four predominant hominin adaptation and evolutionary events 

happened.  Based on initial chronology efforts by HSPDP collaborators, Magadi core 2A can be 

separated into four sections: 0-26 kyr, 26-165 kyr, 165-242.8 kyr, and 242.8 kyr to 1.08 Ma.  We 

estimate the future biomarker potential for the four sections and determine Lake Magadi to have 

particularly exciting promise for the 0-26 kyr and 26-165 kyr sections.   
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APPENDIX A 

LEAF WAX INDICES 

 

Equation 1 – Carbon Preference Index (Marzi et al., 1993). 

 

 

Equation 2 – Fraction Aquatic (Ficken et al., 2000). 

 

 

Equation 3 – Terrestrial Aquatic Ratio for Hydrocarbons (Meyers et al., 1997). 

 

 

Equation 4 – Average Chain Length modified from Freeman and Pancost (2014). 
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APPENDIX B 

PLANT METABOLISM AND LEAF WAX BIOSYNTHESIS 

 Plant metabolism and leaf wax biosynthesis both impart large isotopic fractionations and 

are a significant portion of the ε between water and leaf wax δD, as well as carbon dioxide and 

leaf wax δ13C.  Below are figures detailing the C3 and C4 photosynthetic pathways (Tipple and 

Pagani, 2007), as well as the acetyl CoA pathway for leaf wax biosynthesis (Jetter and Kunst, 

2008). 
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Figure 21 – A comparison between the two major metabolic pathways in higher plants, C3 and C4 

(Tipple and Pagani, 2007). 
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Figure 22 – The proposed biosynthesis of leaf waxes (Jetter and Kunst, 2008). 
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APPENDIX C 

GDGT INDICES 

 The equations for the various GDGT indices mentioned in section 1.5.2 are listed below 

here.  This includes the BIT, MBT, CBT, MI and RI proxies, as well as TEX86, and the various 

temperature calibrations used for TEX86 (Tierney et al., 2010; Powers et al., 2010; Kim et al., 

2010).  All references to GDGTs in the MBT and CBT equations are to brGDGTs, and 

references to GDGTs in MI, RI and TEX86 are to isoGDGTs. 

 

 

Equation 5 – The Branched to Isoprenoid Tetraethers index. 

 

 

Equation 6 – The Methylation of Branched Tetraethers index. 

 



 74 

 

Equation 7 – The Cyclisation of Branched Tetraethers index. 

 

 

Equation 8 – The TetraEther indeX with 86 carbon atoms. 

 

 

Equation 9 – The Methane Index (Zhang et al., 2011). 

 

 

 
Equation 10 – The Ring Index (Zhang et al., 2016). 

 

 

Equation 11 – The relationship between global core top RI values and TEX86. 

 

 

Equation 12 – ∆RI, established from RI (Equation 10) and RITEX (Equation 11). 
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The TEX86 calibration shown above is used in both the Powers et al. (2010) and Tierney 

et al. (2010) temperature calibrations from lake surface sediments.  The Kim et al. (2010) 

calibration from marine sediments uses a log equation for TEX86 called TEXH
86 (shown below).  

There is also TEXL
86, but as it is calibrated for polar waters, it is not applied to tropical Lake 

Magadi. 

 

Equation 13 – The log TEX86 function used for the Kim et al. (2010) temperature calibration. 

 

The MBT/CBT temperature calibrations are omitted here, as none of the samples 

contained all the brGDGTs needed for the proxies.  Below are the equations for the temperature 

calibrations applied to TEX86 in Lake Magadi: 

 

 

Equation 14 – The Powers et al. (2010) temperature calibration equation. 

 

 

Equation 15 – The Tierney et al. (2010) temperature calibration equation. 

 

 

Equation 16 – The Kim et al. (2010) temperature calibration equation. 
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APPENDIX D 

CORE DATA AND STRATIGRAPHY 

 The core stratigraphy and description was performed by Emma McNulty and Tim 

Lowenstein at the SUNY – Binghamton.  Below is a table showing the Lake Magadi drill core 

recovery, as well as the color-coded stratigraphy of cores 1A and 2A (the core used in this thesis) 

Cohen et al. (2016).  

 

 

Table 7 – Drill core recovery data from the 2014 HSPDP Magadi drilling excursion. 
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Figure 23 – The lithologic key for the stratigraphy columns presented in Figure 24. 
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Figure 24  – The stratigraphy column for Lake Magadi cores 1A and 2A.  Lithologic key shown in 

Figure 23.  Core 2A was used for all sampling and analyses in this thesis. 
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APPENDIX E 

LEAF WAX CHROMATOGRAMS 

 Below are sample GC-FID chromatograms of n-alkanes and FAMEs from Lake Magadi.  

The n-alkane chromatograms generally had fewer extraneous peaks than the FAMEs 

chromatograms.  The chromatograms show intensity on the y-axis, and retention time on the x-

axis.  The terrestrial leaf wax compounds generally found on the right of the chromatogram.  

 

Figure 25 – Sample n-alkane chromatogram. 
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Figure 26 – Sample FAMEs chromatogram. 
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APPENDIX F 

RAW LEAF WAX ABUNDANCE DATA 

 Below is the raw leaf wax abundance data (Table 8), showing masses of the individual n-

alkane compounds used to calculate the n-alkane indices presented in Appendix A (Equations 1 

through 4).  Also included is a table with the values calculated from the raw data for each index 

(Table 9). 
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Table 8 – Raw leaf wax abundance data. 
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Table 9 – Calculated leaf wax indices (Equations 1-4 found in Appendix A). 



 86 

APPENDIX G 

GDGT SAMPLE CHROMATOGRAMS 

 Below are three chromatograms of isoGDGT samples – one with a isoGDGT distribution 

like a “normal” marine sample, and shows high promise for temperature reconstructions in Lake 

Magadi, and two others, from the “questionable” and “discard” categories (see Results). 

 

 

Figure 27 – Sample GDGT chromatogram with the isoGDGTs used in indices (Appendix C) labeled. 
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Figure 28 – A visually "questionable" isoGDGT sample characterized by extraneous peaks and small 

crenarchaeol peaks. 

 

 

Figure 29 – A visually "discarded" sample characterized by small peaks, and almost undetectable 

crenarchaeol regioisomer. 
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APPENDIX H 

RAW GDGT ABUNDANCE DATA 
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Table 10 – Raw abundance data from isoGDGTs. 



 90 

BIBLIOGRAPHY 

Armitage, Simon J., et al. "The southern route “out of Africa”: evidence for an early expansion 
of modern humans into Arabia." Science 331.6016 (2011): 453-456. 

Baldocchi, Dennis D. "Scaling water vapor and carbon dioxide exchange from leaves to a 
canopy: rules and tools." Scaling physiological processes: leaf to globe. Academic Press, 
San Diego (1993): 77-114. 

Behrensmeyer, Anna K., et al. "Geology and geochronology of the middle Miocene Kipsaramon 
site complex, Muruyur beds, Tugen Hills, Kenya." Journal of Human Evolution 42.1-2 
(2002): 11-38. 

Berger, Wolfgang H., and Eystein Jansen. "Mid‐pleistocene climate shift‐the Nansen 
connection." The polar oceans and their role in shaping the global environment (1994): 
295-311. 

Bowen, Gabriel J., and Justin Revenaugh. "Interpolating the isotopic composition of modern 
meteoric precipitation." Water Resources Research39.10 (2003). 

Bowling, David R., Pieter P. Tans, and Russell K. Monson. "Partitioning net ecosystem carbon 
exchange with isotopic fluxes of CO2." Global Change Biology 7.2 (2001): 127-145. 

Brachert, Thomas Christian, et al. "Stable isotope variation in tooth enamel from Neogene 
hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine 
Rift, Uganda." International Journal of Earth Sciences 99.7 (2010): 1663-1675. 

Campisano, Christopher J., et al. "The Hominin Sites and Paleolakes Drilling Project: High-
Resolution Paleoclimate Records from the East African Rift System and Their 
Implications for Understanding the Environmental Context of Hominin 
Evolution." PaleoAnthropology 1 (2017): 43. 

Cane, Mark A., and Peter Molnar. "Closing of the Indonesian seaway as a precursor to east 
African aridification around 3–4 million years ago." Nature411.6834 (2001): 157-162. 

Castañeda, Isla S., et al. "Late Quaternary vegetation history of southeast Africa: the molecular 
isotopic record from Lake Malawi." Palaeogeography, Palaeoclimatology, 
Palaeoecology 275.1 (2009a): 100-112. 

Castañeda, Isla S., et al. "Wet phases in the Sahara/Sahel region and human migration patterns in 
North Africa." Proceedings of the National Academy of Sciences 106.48 (2009b): 20159-
20163. 



 91 

Castañeda, Isla S., and Stefan Schouten. "A review of molecular organic proxies for examining 
modern and ancient lacustrine environments." Quaternary Science Reviews 30.21 (2011): 
2851-2891. 

Cerling, Thure E., et al. "Woody cover and hominin environments in the past 6 [thinsp] million 
years." Nature 476.7358 (2011): 51-56. 

Cohen, A., et al. "The Hominin Sites and Paleolakes Drilling Project: inferring the environmental 
context of human evolution from eastern African rift lake deposits." Scientific Drilling 21 
(2016): 1. 

Couvreur, Thomas LP, et al. "Molecular phylogenetics reveal multiple tertiary vicariance origins 
of the African rain forest trees." Bmc Biology 6.1 (2008): 54. 

Cranwell, P. A. "Diagenesis of free and bound lipids in terrestrial detritus deposited in a 
lacustrine sediment." Organic Geochemistry 3.3 (1981): 79-89. 

Cranwell, P. A., G. Eglinton, and N. Robinson. "Lipids of aquatic organisms as potential 
contributors to lacustrine sediments—II." Organic Geochemistry11.6 (1987): 513-527. 

D’Andrea, William J., and Yongsong Huang. "Long chain alkenones in Greenland lake 
sediments: Low δ 13 C values and exceptional abundance." Organic Geochemistry 36.9 
(2005): 1234-1241. 

DeLong, Edward F. "Archaea in coastal marine environments." Proceedings of the National 
Academy of Sciences 89.12 (1992): 5685-5689. 

deMenocal, Peter B. "Plio-Pleistocene African climate." Science (New York, NY) 270.5233 
(1995): 53-59. 

deMenocal, Peter B., et al. "Abrupt onset and termination of the African Humid Period: rapid 
climate responses to gradual insolation forcing." Quaternary science reviews 19.1 (2000): 
347-361. 

deMenocal, Peter B. "African climate change and faunal evolution during the Pliocene–
Pleistocene." Earth and Planetary Science Letters 220.1-2 (2004): 3-24. 

Diefendorf, Aaron F., et al. "Production of n-alkyl lipids in living plants and implications for the 
geologic past." Geochimica et Cosmochimica Acta 75.23 (2011): 7472-7485. 

Ebinger, C. J., et al. "Rift deflection, migration, and propagation: Linkage of the Ethiopian and 
Eastern rifts, Africa." Geological Society of America Bulletin 112.2 (2000): 163-176. 

Eglinton, Geoffrey, et al. "Hydrocarbon constituents of the wax coatings of plant leaves: a 
taxonomic survey." Phytochemistry 1.2 (1962): 89-102. 

Ehleringer, J. R., and T. E. Dawson. "Water uptake by plants: perspectives from stable isotope 
composition." Plant, Cell & Environment 15.9 (1992): 1073-1082. 

Farquhar, Graham D., James R. Ehleringer, and Kerry T. Hubick. "Carbon isotope discrimination 
and photosynthesis." Annual review of plant biology40.1 (1989): 503-537. 

Farquhar, Graham D., Lucas A. Cernusak, and Belinda Barnes. "Heavy water fractionation 
during transpiration." Plant Physiology 143.1 (2007): 11-18. 

Feakins, Sarah J., et al. "Northeast African vegetation change over 12 my." Geology 41.3 (2013): 
295-298. 



 92 

Ficken, Katherine J., et al. "An n-alkane proxy for the sedimentary input of submerged/floating 
freshwater aquatic macrophytes." Organic geochemistry31.7 (2000): 745-749. 

Freeman, K. H., and R. D. Pancost. "Biomarkers for terrestrial plants and climate." Falkowski, P. 
and Freeman, K., Treatise on Geochemistry, Elsevier, Amsterdam 12 (2014): 395-416. 

Garcin, Yannick, et al. "Reconstructing C 3 and C 4 vegetation cover using n-alkane carbon 
isotope ratios in recent lake sediments from Cameroon, Western Central 
Africa." Geochimica et Cosmochimica Acta 142 (2014): 482-500. 

George, Rhiannon, Nick Rogers, and Simon Kelley. "Earliest magmatism in Ethiopia: evidence 
for two mantle plumes in one flood basalt province." Geology 26.10 (1998): 923-926. 

Haug, Gerald H., and Ralf Tiedemann. "Effect of the formation of the Isthmus of Panama on 
Atlantic Ocean thermohaline circulation." Nature 393.6686 (1998): 673-676. 

Hayes, J. M., et al. "Compound-specific isotopic analyses: a novel tool for reconstruction of 
ancient biogeochemical processes." Organic Geochemistry16.4-6 (1990): 1115-1128. 

Hopmans, Ellen C., et al. "A novel proxy for terrestrial organic matter in sediments based on 
branched and isoprenoid tetraether lipids." Earth and Planetary Science Letters 224.1 
(2004): 107-116. 

Hopmans, Ellen C., Stefan Schouten, and Jaap S. Sinninghe Damsté. "The effect of improved 
chromatography on GDGT-based palaeoproxies." Organic Geochemistry 93 (2016): 1-6. 

Jetter, Reinhard, and Ljerka Kunst. "Plant surface lipid biosynthetic pathways and their utility for 
metabolic engineering of waxes and hydrocarbon biofuels." The Plant Journal 54.4 
(2008): 670-683. 

Johnson, T. C., et al. "A progressively wetter climate in southern East Africa over the past 1.3 
million years." Nature 537.7619 (2016): 220-224. 

Joordens, Josephine CA, et al. "An astronomically-tuned climate framework for hominins in the 
Turkana Basin." Earth and Planetary Science Letters307.1 (2011): 1-8. 

Karner, Markus B., Edward F. DeLong, and David M. Karl. "Archaeal dominance in the 
mesopelagic zone of the Pacific Ocean." Nature 409.6819 (2001): 507-510. 

Keough, B. P., T. M. Schmidt, and R. E. Hicks. "Archaeal nucleic acids in picoplankton from 
great lakes on three continents." Microbial Ecology 46.2 (2003): 238-248. 

Kim, Jung-Hyun, et al. "New indices and calibrations derived from the distribution of 
crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature 
reconstructions." Geochimica et Cosmochimica Acta 74.16 (2010): 4639-4654. 

Kingston, John D., et al. "Astronomically forced climate change in the Kenyan Rift Valley 2.7–
2.55 Ma: implications for the evolution of early hominin ecosystems." Journal of Human 
Evolution 53.5 (2007): 487-503. 

Kroon, Dick, et al. "Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean 
during the last 3.2 million years." Proceedings of the Ocean Drilling Program, Scientific 
Results, Vol. 160; Chapter 14 (1998). 

Krull, Evelyn, et al. "Compound-specific δ 13 C and δ 2 H analyses of plant and soil organic 
matter: a preliminary assessment of the effects of vegetation change on ecosystem 
hydrology." Soil Biology and Biochemistry 38.11 (2006): 3211-3221. 



 93 

Levin, Naomi E., et al. "Isotopic evidence for Plio–Pleistocene environmental change at Gona, 
Ethiopia." Earth and Planetary Science Letters 219.1 (2004): 93-110. 

Levin, N. E. "Compilation of East Africa soil carbonate stable isotope data." Integrated Earth 
Data Applications (2013). 

Lipp, Julius S., et al. "Significant contribution of Archaea to extant biomass in marine subsurface 
sediments." Nature 454.7207 (2008): 991-994. 

Lisiecki, Lorraine E., and Maureen E. Raymo. "A Pliocene‐Pleistocene stack of 57 globally 
distributed benthic δ18O records." Paleoceanography 20.1 (2005). 

Loomis, Shannon E., et al. "Calibration and application of the branched GDGT temperature 
proxy on East African lake sediments." Earth and Planetary Science Letters 357 (2012): 
277-288. 

Magill, Clayton R., Gail M. Ashley, and Katherine H. Freeman. "Water, plants, and early human 
habitats in eastern Africa." Proceedings of the National Academy of Sciences 110.4 
(2013a): 1175-1180. 

Magill, Clayton R., Gail M. Ashley, and Katherine H. Freeman. "Ecosystem variability and early 
human habitats in eastern Africa." Proceedings of the National Academy of 
Sciences 110.4 (2013b): 1167-1174. 

Marzi, R., B. E. Torkelson, and R. K. Olson. "A revised carbon preference index." Organic 
Geochemistry 20.8 (1993): 1303-1306. 

Maslin, Mark A., and Beth Christensen. "Tectonics, orbital forcing, global climate change, and 
human evolution in Africa: introduction to the African paleoclimate special 
volume." Journal of human evolution 53.5 (2007): 443-464. 

Maslin, Mark A., and Martin H. Trauth. "Plio-Pleistocene East African pulsed climate variability 
and its influence on early human evolution." The First Humans–Origin and Early 
Evolution of the Genus Homo (2009): 151-158. 

Maslin, Mark A., et al. "Three and half million year history of moisture availability of South 
West Africa: evidence from ODP site 1085 biomarker records." Palaeogeography, 
Palaeoclimatology, Palaeoecology 317 (2012): 41-47. 

Maslin, Mark A., et al. "East African climate pulses and early human evolution." Quaternary 
Science Reviews 101 (2014): 1-17. 

McDougall, Ian, et al. "New single crystal 40Ar/39Ar ages improve time scale for deposition of 
the Omo Group, Omo–Turkana Basin, East Africa." Journal of the Geological 
Society 169.2 (2012): 213-226. 

McInerney, Francesca A., Brent R. Helliker, and Katherine H. Freeman. "Hydrogen isotope 
ratios of leaf wax n-alkanes in grasses are insensitive to transpiration." Geochimica et 
Cosmochimica Acta 75.2 (2011): 541-554. 

McNulty, E.P., Lowenstein, T.K., Owen, R.B., Renaut, R.W., Deocampo, D., Cohen, A.S., 
Muiruri, V.M., Leet, K., Rabideaux, N.M., Billingsley, A.L., and Mbuthia, A. (2016) The 
sedimentary record of the Lake Magadi Basin: Core analysis from HSPDP-MAG14 
Cores 1A, 1C and 2A. Geo. Soc. Amer. Ann. Mtg., Denver, CO 26-29 Sept., 2016 



 94 

Meyers, Philip A. "Organic geochemical proxies of paleoceanographic, paleolimnologic, and 
paleoclimatic processes." Organic geochemistry 27.5 (1997): 213-250. 

Molnar, Peter, and Mark A. Cane. "Early Pliocene (pre–Ice Age) El Niño–like global climate: 
Which El Niño?." Geosphere 3.5 (2007): 337-365. 

Pancost, Richard D., and Christopher S. Boot. "The palaeoclimatic utility of terrestrial 
biomarkers in marine sediments." Marine Chemistry 92.1 (2004): 239-261. 

Pearson, Emma J., Steve Juggins, and Paul Farrimond. "Distribution and significance of long-
chain alkenones as salinity and temperature indicators in Spanish saline lake 
sediments." Geochimica et Cosmochimica Acta 72.16 (2008): 4035-4046. 

Petsch, S. T., R. A. Berner, and T. I. Eglinton. "A field study of the chemical weathering of 
ancient sedimentary organic matter." Organic Geochemistry31.5 (2000): 475-487. 

Pitcher, Angela, et al. "Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of 
ammonia-oxidizing archaea enriched from marine and estuarine sediments." Applied and 
Environmental Microbiology 77.10 (2011): 3468-3477. 

Potts, Richard. "Variability selection in hominid evolution." Evolutionary Anthropology: Issues, 
News, and Reviews 7.3 (1998): 81-96. 

Potts, Richard, Anna K. Behrensmeyer, and Peter Ditchfield. "Paleolandscape variation and 
Early Pleistocene hominid activities: members 1 and 7, Olorgesailie Formation, 
Kenya." Journal of human evolution 37.5 (1999): 747-788. 

Potts, Richard. "Hominin evolution in settings of strong environmental variability." Quaternary 
Science Reviews 73 (2013): 1-13. 

Powers, Lindsay, et al. "Applicability and calibration of the TEX 86 paleothermometer in 
lakes." Organic Geochemistry 41.4 (2010): 404-413. 

Prentice, I. Colin, et al. "Evidence of a universal scaling relationship for leaf CO2 drawdown 
along an aridity gradient." New Phytologist 190.1 (2011): 169-180. 

Prömmel, Kerstin, Ulrich Cubasch, and Frank Kaspar. "A regional climate model study of the 
impact of tectonic and orbital forcing on African precipitation and 
vegetation." Palaeogeography, Palaeoclimatology, Palaeoecology 369 (2013): 154-162. 

Ravelo, Ana Christina, et al. "Regional climate shifts caused by gradual global cooling in the 
Pliocene epoch." Nature 429.6989 (2004): 263-267. 

Raven, P.H., Event, R.F., Eichnorn, S.E., 1999. Biology of Plants. W.H. Freeman and Company, 
New York. 875 p. 

Reed, Kaye E. "Early hominid evolution and ecological change through the African Plio-
Pleistocene." Journal of human evolution 32.2-3 (1997): 289-322. 

Rommerskirchen, Florian, et al. "A north to south transect of Holocene southeast Atlantic 
continental margin sediments: Relationship between aerosol transport and 
compound‐specific δ13C land plant biomarker and pollen records." Geochemistry, 
Geophysics, Geosystems 4.12 (2003). 



 95 

Rossignol-Strick, Martine. "Mediterranean Quaternary sapropels, an immediate response of the 
African monsoon to variation of insolation." Palaeogeography, palaeoclimatology, 
palaeoecology 49.3 (1985): 237-263. 

Sachse, Dirk, Ansgar Kahmen, and Gerd Gleixner. "Significant seasonal variation in the 
hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems 
(Fagus sylvativa and Acerpseudoplatanus)." Organic Geochemistry 40.6 (2009): 732-
742. 

Sachse, Dirk, et al. "Molecular paleohydrology: interpreting the hydrogen-isotopic composition 
of lipid biomarkers from photosynthesizing organisms." Annual Review of Earth and 
Planetary Sciences 40 (2012). 

Sankaran, Mahesh, et al. "Determinants of woody cover in African savannas." Nature 438.7069 
(2005): 846-849. 

Schefuß, Enno, et al. "African vegetation controlled by tropical sea surface temperatures in the 
mid-Pleistocene period." Nature 422.6930 (2003): 418-421. 

Schouten, Stefan, et al. "Distributional variations in marine crenarchaeotal membrane lipids: a 
new tool for reconstructing ancient sea water temperatures?." Earth and Planetary 
Science Letters 204.1 (2002): 265-274. 

Schouten, Stefan, et al. "Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot 
springs of Yellowstone National Park." Applied and Environmental Microbiology 73.19 
(2007): 6181-6191. 

Sepulchre, Pierre, et al. "Tectonic uplift and Eastern Africa aridification." Science 313.5792 
(2006): 1419-1423. 

Shepherd, Tom, and D. Wynne Griffiths. "The effects of stress on plant cuticular waxes." New 
Phytologist 171.3 (2006): 469-499. 

Simiyu, Silas M., and G. Randy Keller. "An integrated geophysical analysis of the upper crust of 
the southern Kenya rift." Geophysical Journal International147.3 (2001): 543-561. 

Sinninghe-Damsté, Jaap S., et al. "Altitudinal shifts in the branched tetraether lipid distribution 
in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental 
palaeothermometer." Organic Geochemistry 39.8 (2008): 1072-1076. 

Sinninghe-Damsté, Jaap S., et al. "Fluxes and distribution of tetraether lipids in an equatorial 
African lake: constraints on the application of the TEX 86 palaeothermometer and BIT 
index in lacustrine settings." Geochimica et Cosmochimica Acta 73.14 (2009): 4232-
4249. 

Strecker, M. R., P. M. Blisniuk, and G. H. Eisbacher. "Rotation of extension direction in the 
central Kenya Rift." Geology 18.4 (1990): 299-302. 

Surdam, Ronald C., and Hans P. Eugster. "Mineral reactions in the sedimentary deposits of the 
Lake Magadi region, Kenya." Geological Society of America Bulletin 87.12 (1976): 
1739-1752. 

Tierney, Jessica E., et al. "Northern hemisphere controls on tropical southeast African climate 
during the past 60,000 years." Science 322.5899 (2008): 252-255. 



 96 

Tierney, Jessica E., et al. "Late-twentieth-century warming in Lake Tanganyika unprecedented 
since AD 500." Nature Geoscience 3.6 (2010): 422-425. 

Tierney, Jessica E., et al. "Late Quaternary behavior of the East African monsoon and the 
importance of the Congo Air Boundary." Quaternary Science Reviews 30.7 (2011): 798-
807. 

Tierney, Jessica E., and Francesco SR Pausata. "Rainfall regimes of the Green Sahara." Science 
advances 3.1 (2017): e1601503. 

Tipple, Brett J., and Mark Pagani. "The early origins of terrestrial C4 photosynthesis." Annu. 
Rev. Earth Planet. Sci. 35 (2007): 435-461. 

Trauth, Martin H., et al. "Late cenozoic moisture history of East Africa." Science 309.5743 
(2005): 2051-2053. 

Trauth, Martin H., et al. "High-and low-latitude forcing of Plio-Pleistocene East African climate 
and human evolution." Journal of Human Evolution 53.5 (2007): 475-486. 

Trauth, Martin H., Juan C. Larrasoaña, and Manfred Mudelsee. "Trends, rhythms and events in 
Plio-Pleistocene African climate." Quaternary Science Reviews 28.5 (2009): 399-411. 

Underwood, Charlie J., Chris King, and Etienne Steurbaut. "Eocene initiation of Nile drainage 
due to East African uplift." Palaeogeography, Palaeoclimatology, Palaeoecology 392 
(2013): 138-145. 

Vrba, Elisabeth S. "Late Pliocene climatic events and hominid evolution." Evolutionary history 
of the “robust” australopithecines. Aldine de Gruyter, New York (1988): 405-426. 

Washburn, Sherwood L. "Tools and human evolution." Scientific American203 (1960): 62-75. 
Weijers, Johan WH, et al. "Membrane lipids of mesophilic anaerobic bacteria thriving in peats 

have typical archaeal traits." Environmental Microbiology 8.4 (2006a): 648-657. 
Weijers, Johan WH, et al. "Occurrence and distribution of tetraether membrane lipids in soils: 

implications for the use of the TEX 86 proxy and the BIT index." Organic 
Geochemistry 37.12 (2006b): 1680-1693. 

Weijers, Johan WH, et al. "Environmental controls on bacterial tetraether membrane lipid 
distribution in soils." Geochimica et Cosmochimica Acta 71.3 (2007): 703-713. 

Wichura, Henry, et al. "Evidence for middle Miocene uplift of the East African 
Plateau." Geology 38.6 (2010): 543-546. 

Zhang, Yi Ge, et al. "Methane Index: A tetraether archaeal lipid biomarker indicator for 
detecting the instability of marine gas hydrates." Earth and Planetary Science 
Letters 307.3 (2011): 525-534. 

Zhang, Yi Ge, Mark Pagani, and Zhengrong Wang. "Ring Index: A new strategy to evaluate the 
integrity of TEX86 paleothermometry." Paleoceanography 31.2 (2016): 220-232. 

 


	TITLE PAGE
	COMMITTEE MEMBERS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF EQUATIONS
	ACKNOWLEDGEMENTS
	1.0  INTRODUCTION
	1.1 Climate and Hominin Evolution
	1.2 Plio-Pleistocene Climate in East Africa
	1.3 Hominin Sites and Paleolakes Drilling Project
	1.4 Study Site
	1.5 Paleoclimate Proxies
	1.5.1 Leaf Waxes
	1.5.2 Glycerol Dialkyl Glycerol Tetraethers

	1.6 thesis objectives

	2.0  MATERIALS AND METHODS
	2.1 Core Stratigraphy and Core data
	2.2 Extraction and Separation
	2.3 Instrumental Analyses
	2.3.1 Leaf waxes
	2.3.2 GDGTs


	3.0  RESULTS
	3.1 Leaf Waxes
	3.1.1 n-alkanes abundances and distributions
	3.1.2 Fatty acid methyl esters (FAMEs) abundances and distributions
	3.1.3 n-alkane (13C and (D

	3.2 temperature proxies
	3.2.1 GDGTs


	4.0  DISCUSSION
	4.1 Evaluation of leaf waxes
	4.1.1 n-alkane CPI, TARHC, and Paq
	4.1.2 Unresolved complex mixtures (UCM)

	4.2 Evaluation of Temperature Proxies
	4.2.1 TEX86 validation and calibrations

	4.3 Preliminary assessment of mid-pleistocene Paleoenvironmental History in the Magadi-Natron Basin
	4.3.1 n-alkane ACL and vegetation regime
	4.3.2 Comparison of n-alkane ACL and TEX86

	4.4 future directions
	4.4.1 n-alkane (13C and vegetation shifts
	4.4.2 n-alkane (D record of past precipitation
	4.4.3 Future core sampling and promising core sections


	5.0  Conclusions
	APPENDIX A: Leaf Wax indices
	APPENDIX B: Plant Metabolism and Leaf Wax Biosynthesis
	APPENDIX C: GDGT Indices
	APPENDIX D: Core Data and Stratigraphy
	APPENDIX E: Leaf Wax Chromatograms
	APPENDIX F: Raw Leaf Wax Abundance Data
	APPENDIX G: GDGT Sample Chromatograms
	APPENDIX H: Raw GDGT Abundance Data
	BIBLIOGRAPHY

