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DATA-DRIVEN MANAGEMENT OF INTENSIVE CARE UNITS

Mehmet Yasin Ulukuş, PhD

University of Pittsburgh, 2017

An Intensive Care Unit (ICU) is a specialized section of a hospital that provides compre-

hensive and continuous care for patients in critical conditions. Around 20% of hospital

operating costs are due to ICUs, and this percentage has been increasing. Modeling patient

flow through an ICU is challenging due to significant heterogeneity of patient cases and high

variability of evolving patient conditions. Using a highly detailed data set of ICU patients

from a single health system, we build a stochastic and dynamic model of patient physiology

that can significantly improve ICU operations and predictions.

Scoring systems that assess the severity at admission or progression of severity during

the stay have been used to predict the outcome (mortality or readmission). Existing scores

are not sufficient to predict readmissions or mortalities after transferring to a lower level care

unit. We present ICU outcome prediction models that perform better than existing models

and could be used to benchmark ICU discharge policies and guide post-ICU resource needs.

We consider the transfer operations of patients to a downstream unit. In current practice,

downstream beds are requested once a patient is clinically ready to be transferred. We

investigate anticipative bed requests that can be made before a patient is ready for transfer.

Patient health is described via a novel transfer readiness score created using our readmission

prediction model that we incorporate into a Markov decision process model. Our numerical

results indicate that an anticipative transfer request policy can significantly improve the

system performance. We investigate the sensitivity of policy change upon cost parameter

estimation errors by using robust models, and demonstrate that proactive strategies are more

beneficial than reactive current policy in most scenarios.
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We present an explicit stochastic length of stay model considering patient physiology

modeled by the transfer readiness score as well as transfer delays. We characterize the

stochastic process under certain assumptions. We show that the model demonstrates a

moderate performance in fitting the underlying distribution of the length of stay, and im-

provements on the score will improve the predictive power of the model.

Keywords: Operations research, Markov decision processes, simulation, statistical data

analysis, classification models, intensive care unit, hospital operations, medical decision

making.
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1.0 INTRODUCTION

The healthcare industry is one of the largest and fastest growing industries in the United

States. In 2015, total healthcare expenditures amounted to $3.2 trillion (17.8% of gross

domestic product), which translates to $9,990 a year per person [85]. Healthcare costs are

growing faster than GDP. It accounted to 4% of income in 1960 compared to 6 percent in

2013 [36], and expected to grow 5.8% on average over the period 2015-2025 with the aging

population [85]. The U.S. ranks last in performance, e.g., efficiency, access, and equity,

among 11 industrialized countries (Australia, Canada, France, Germany, the Netherlands,

New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States),

despite having the highest healthcare costs [36].

Increasing costs have motivated significant research to address efficiency and effectiveness

issues in health care. Operations Research (OR) techniques present abundant opportunities

to improve such tasks. OR techniques have been applied to a wide variety of healthcare

problems. There is an extensive literature on models considering system design and planning,

health care operations management and medical decision making, e.g., [14, 41, 55, 63, 100,

109, 122, 123, 126, 130, 145].

This dissertation focuses on building a stochastic and dynamic model of patient physi-

ology to improve Intensive Care Unit (ICU) operations and predictions. To this end, we (1)

build models that can make better predictions of the outcome (mortality and readmission)

when a patient is transferred to a downstream unit, (2) develop a transfer readiness score

and employ the score via an optimization model to make anticipative bed requests (3) and

build a stochastic model of patient length of stay based on patient physiology and transfer

delay dynamics.
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1.1 BACKGROUND INFORMATION ON INTENSIVE CARE UNITS AND

MODELING CHALLENGES

An ICU is a specialized hospital department that provides temporary support to critically ill

patients. Patients require close monitoring and support to ensure stable health conditions.

The units are staffed by specialized doctors and nurses. Generally, ICUs have higher nurse-

to-patient ratios and more advanced equipment, e.g., ventilating machines, pulse oximeters,

cardiac monitors are available. ICU costs have been increasing significantly [32, 111], and

represent around 20% of all hospital operating costs [69]. The rate of increase in the number

ICU admissions tripled the rate of increase in general hospital admissions from 2002 to 2009

[10].

ICUs are tightly connected to other hospital units such as operating rooms and emer-

gency departments. Patients are transferred to an ICU from an emergency department

after surgery or from other units if their conditions deteriorate. Thus, improved ICU work-

flow management should improve patient flow in the entire hospital, reduce mortalities and

readmissions, and help reduce healthcare expenses. Improvements can be at the strategic

level, e.g., designing and locating the unit, or at the tactical level, e.g., staff scheduling,

or admission, discharge and routing control. No data-driven consensus criteria have been

developed for many practical decisions in critical care, including patient discharge; see, e.g.,

[20, 60, 152, 149].

Although the modeling and analysis of hospital units, like surgery rooms or emergency

departments, are well studied in the literature, ICU models are relatively unstudied. This

disparity is due to important modeling challenges common to ICUs: (1) Unlike patient

flow models for other parts of a hospital, a stochastic and dynamic model of physiology is

crucial. This is very challenging, and requires novel modeling techniques, as well as enormous

amounts of highly detailed data. (2) Patients in various conditions are admitted to the ICU

from different departments: patient cases are highly heterogeneous. This is evidenced by

the ICU length of stay (LOS) in our data set, in which the mean LOS is 171 hours and the

standard deviation is 265 hours. (3) Clinical practices and policies on admissions, transfers,

staff scheduling and bed availability have important impacts on patient outcomes. Models
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of ICUs must incorporate heterogeneous patient populations and evolving patient health

conditions, as well as interactions with other units. As a result, despite their importance,

ICUs remain less amenable to traditional modeling approaches. We briefly describe the

problem statements and contributions, which are later detailed in Chapters 3, 4 and 5.

1.2 PREDICTING INTENSIVE CARE UNIT READMISSION AND

MORTALITY

ICU readmissions are typically observed in 4% to 6% of discharged patients [15, 94], and

may be considerably higher in selected populations and environments [74, 80]. Patients

readmitted to the ICU are generally sicker [157], and incur increased hospital mortality and

length of stay [93]. Existing literature also suggests that many patients discharged from

the ICU will die prior to hospital discharge [74]. Additionally, ICU survivors do not revert

to a population-level risk of death [25, 26, 73]. Evidence-based ICU discharge guidelines

and follow-up care could lead to fewer readmissions and generally improved outcomes if

modifiable factors leading to readmission are accurately identified.

Accurate predictions are essential in providing guidelines for transfer decisions, family

decisions regarding end-of-life, and allocating resources dedicated to mitigating early hospital

readmission. However, the quality and performance of existing models [7, 48, 57, 93] of

ICU readmission risk are generally not robust and thus ongoing evaluation in larger data

sets. Moreover, current mortality prediction models have not focused on the population of

patients that have survived the ICU, let alone were discharged alive from the hospital. ICU

readmission rates can also be used as a benchmark of quality if appropriate allocation is

made for case-mix, as different environments of care vastly influence risk of readmission [74].

In Chapter 3, we develop ICU models that can make better predictions of the outcome

(mortality or readmission) when a patient is transferred to a downstream unit. To calibrate

these models, we employ a database from a major medical institution, which contains both

medical and bed flow information of many thousands of patients over a six-year period.

We can track the change of physiological indicators through patient stays and relate this

3



information to the outcomes (readmission or mortality) upon their transfers. We compare

the performance of the model with existing studies and show that our model predicts read-

missions or mortality much better than existing models in the literature. Furthermore, we

demonstrate that some commonly used scores are not sufficient in predicting readmissions or

mortalities after transferring to a lower level care unit. We also show that health evolution

plays a key role in patient outcomes and that there is a need for a better transfer score

capable of summarizing health evolution in the ICU.

1.3 PHYSIOLOGY-BASED ANTICIPATIVE INTENSIVE CARE UNIT

MANAGEMENT

In Chapter 4, we focus on the tactical decisions in the ICU, in which we seek to reduce

transfer delays, thereby reducing congestion without increasing capacity. We employ the

score described in Chapter 3 to demonstrate the operational advantages of a stochastic

understanding of health progression.

Patients are typically admitted to an ICU from other locations within the hospital, such

as the emergency department or post-operative recovery rooms. Upon discharge from the

ICU, patients are transferred to a downstream unit, e.g., stepdown units or floors (90% of

the patients in our data); see also [58]. Current practice in the ICU system we consider

herein is typical: when a patient is clinically ready to be transferred to a lower level of care,

a transfer request is made and the patient is usually physically moved after a considerable

amount of delay (an average of 9 hours and occasionally up to 24 hours in our data). This

delay may be caused by many factors, such as bed availability, personnel availability, or

bed cleaning. Patients typically stay in the ICU while transfer operations are conducted,

unnecessarily occupying a bed. In other words, transfer delay usually increases a patient’s

LOS in the relatively expensive ICU bed rather than a less costly downstream bed. This may

adversely affect hospital operations, including surgery cancellations and patient diversions.

Moreover, prolonged LOS may lead to nosocomial infections [34, 44, 151]. We propose an

anticipative transfer request policy where transfer requests are made before the patients

4



are medically ready to be transferred and necessary preparations in the downstream units

start after the request, so that patients can be immediately transferred to the downstream

units whenever they become medically ready. Figure 1.1 depicts both the current practice

and our proposed anticipative policy. To apply such an anticipative policy, we must model

Admission

Medical LOS

LOS(Current Policy)

Request

Transfer Delay

TransferAdaptive Request

Transfer Delay

Transfer
Rounds

...

LOS(Adaptive Policy)

Figure 1.1: Current practice versus anticipative request policy

the patients’ suitability for transfer, so that physicians can track and predict their health

conditions, and thus make proactive transfer decisions. There is no unified measure of the

severity of an ICU patient as it relates to transfer decisions. Patients are generally classified

by intensivists as “ready to be transferred” with an emphasis on stability of their conditions.

Stability can be defined as the likelihood of readmission or death upon transfer to a lower

stream unit at the assessment time. Hence, we employ ICU readmission model given in

Chapter 3 to generate a Transfer Readiness Score, which models patients’ health condition.

In Chapter 4, we build an infinite-horizon Markov Decision Process (MDP) based on the

scores to model the anticipative transfer request problem, with the objective of minimizing

the expected total cost of unnecessarily occupying ICU beds plus the cost of unnecessarily

reserving downstream beds. To illustrate the benefits of the anticipative transfer request

policy, we conduct a numerical study based on a large data set, and compare our results

with the current practice. The anticipative policy is very effective in reducing the transfer

delays (up to %50 reduction) and hence reducing the congestion in the ICU. We show that

the proposed policy increases the throughput of the system without decreasing the quality

of care as it does not discharge patients early. The benefit of applying the anticipative
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policy significantly increases as the ICU becomes more loaded. We further consider the case

where bed costs are in a sense intangible and unknowable in advance, as they largely reflect

the opportunity costs of beds, which may vary greatly. Thus, we build a robust dynamic

programming model, which considers parameter ambiguity. Our results indicate that the

anticipative policy performs better when the cost estimates are relatively accurate, and both

the anticipative and the robust policies perform better than the current practice except when

the cost of the downstream bed is much larger than expected.

We also explore a threshold-type policy structure for the multi-patient transfer request

problem. Due to the complexity of the MDP, it remains open to prove the existence and

optimality of a threshold policy. However, we conduct an experimental study where we

generate problem instances with random transition probability matrices and solve them to

optimality. We observe that optimal policies are of threshold type. On the other hand,

for the single-patient problem, we are able to prove the existence of an optimal threshold

policy under certain conditions, which states that a transfer request is made if and only if

the patient’s score is below a certain score.

1.4 AN EXPLICIT STOCHASTIC MODEL OF INTENSIVE CARE UNIT

LENGTH OF STAYS

ICU LOS is a key indicator for understanding the clinical and operational characteristics

of the system. An accurate LOS prediction model would enable managers and clinicians to

better plan interventions and utilize resources [6]. However, LOS is a complex metric that

is influenced by many factors including demographics, patient types, varying physical con-

ditions and treatment methods as well as discharge decisions and transfer delays. Typically,

the average LOS is used to quantify the performance, which is far from being sufficient for

planning purposes [112]. The LOS data generally has high variability, its distribution is

positively skewed and has a long tail [19, 104, 147]. This further complicates the predictions

and may lead to poor planning and hence poor use of expensive resources.
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In Chapter 5, we present a linear regression model to identify clinical factors influencing

LOS. We demonstrate that a simple statistical model is not sufficient to predict the LOS.

The classical approach of employing statistical models, which use Day 1 information, lacks

the highly dynamic nature of the patient physiology, ignores the fact that the whole LOS

cannot be attributed to medical reasons, considering long transfer delays. Furthermore, we

build a classification model to identify longer LOS’s. We show that our model presents a

good discrimination.

Understanding LOS dynamics can be considered as the core of understanding the ICU.

For that purpose, we present an explicit stochastic model of LOS that is a function of pa-

tient physiology, as well as the transfer delay dynamics. We characterize the LOS process

for different stochastic score processes; a discrete time Markov chain (DTMC) and a con-

tinuous time Markov chain (CTMC). Next, we test the estimation power of our model on

our data set. We compare the goodness of fit performance of our model with commonly

employed phase-type distribution, the Coxian. We show that the stochastic model slightly

underestimates the LOS, whereas it captures the shape of the LOS distribution. The Coxian

distribution provides the best performance in matching the moments and capturing the long

tail. Although there is room for improvement, we demonstrate that a single dimensional

descriptive stochastic model can moderately predict a highly complex outcome.

The remainder of this dissertation is organized as follows. In Chapter 2, we present the

relevant literature. In Chapter 3, we describe our prediction models to estimate readmission

and mortality. We present an optimization model and a numerical study comparing the

current practice with the anticipative transfer policy in Chapter 4 presents. We discuss

an explicit LOS model in Chapter 5, and conclude the dissertation by highlighting future

research directions in Chapter 6.
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2.0 LITERATURE REVIEW

In this chapter, we review the literature related to the problems and methodologies discussed

in this dissertation. In Section 2.1, we review outcome prediction models. We present

a survey of OR studies related to ICUs and other hospital units and a partial review of

approximate dynamic programming and robust dynamic programming techniques, in Section

2.2. We present relevant length of stay models in Section 2.3.

2.1 PREDICTION MODELS

There is an extensive medical literature that uses critical care scores to predict readmission

and mortality as well as other demographic information. These include:

• APACHE, an initial risk classification of severely ill hospitalized ICU patients [92].

• Simplified Acute Physiology Score (SAPS), which assesses admission severity [96].

• Sequential Organ Failure Assessment (SOFA), which tracks a patient’s status during the

stay in an ICU [150].

• Systemic Inflammatory Response Syndrome (SIRS), which models the severity of sepsis

and septic shock [12].

APACHE, SAPS and SOFA are shown to be good at predicting mortality [52, 91, 150, 152]

as well as other demographic information. SAPS II and APACHE are widely used score for

mortality prediction [152]. The APACHE score is updated to improve predictions [91, 92].

Vincent et al. [152] present a detailed comparison of scores. However, none of the models

focus on the population of patients that have survived the ICU, let alone were discharged

8



alive from the hospital. Our model provides an excellent discrimination and hence good

at predicting mortality. Admission prognostic score APACHE is found to be a significant

variable in predicting readmission [18, 57, 121] . Frost et al. [57], dos Santos et al. [45],

and Woldhek et al. [156] are examples of studies that employ SOFA score for predicting

readmission.

Readmission rates are proposed a benchmark measure for quality of care [93]. Age,

gender, severity of illnesses, patient type, and comorbidities have been identified as factors

influencing readmission [7, 30, 57, 159]. Other factors, e.g., the influence of discharging

patients at nights or weekends, or mechanical ventilation usage on the readmission rates

have attracted significant interest. Discharge at nights or weekends shown to lead more

readmission or death due to lower staffing [16, 28, 61, 137, 16, 121], however our results

indicate that they are not significant in predicting death or readmission. Similar to [2, 56,

153], we observe that mechanically ventilated patients have higher readmission and mortality

rates.

Almost all models use scores computed from the first day of ICU data, or medical infor-

mation at discharge, e.g., [7, 18, 81, 83, 98, 113, 121, 124, 159]. Most of these models do not

consider dynamic health except Clermont et al. [30], which employs simulation techniques

to estimate mortality and LOS, and Ferreira et al. [52], which shows that repeated measure-

ments of SOFA score improve mortality prediction. Le Gall et al. [95] and Rue et al. [136]

show that current day information is the most informative in predicting mortality, hence

updating information improves the evaluation of risk of death through the stay. Similarly,

we show that health evolution plays a key role in patient outcomes, and risk predictions at

admission are not sufficient. Our models differ from [18, 57, 121] that admission prognostic

score APACHE is no longer a significant variable as the information is carried by dynamic

changes of other clinical figures. Our results also verify [7, 18, 30, 121, 124, 156, 159] that

SOFA by itself is not enough to predict readmission.

Multivariate logistic regression is typically used for predicting readmission and death.

Our readmission model is better in discriminating readmission with existing models [7, 57,

18, 121]. We believe that the inclusion of dynamic data at least partially explains improved

performance. We do not set a time limit on readmission or post-ICU mortality in our predic-
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tion models, whereas [121, 156, 18] predict readmission over a predetermined duration after

discharge. Other machine learning techniques, e.g., Naive-Bayes, artificial neural networks

(ANN), support vector machines (SVM) are employed to predict mortality. Dybowski et al.

[47] and Nimgaonkar et al. [118] compare artificial neural networks and logistic regression

and conclude that ANN performs better in predicting mortality. However, Clermont et al.

[29] and Doig et al. [43] show that they perform similarly. Ribas et al. [132] report that

SVM performs significantly better in discriminating mortality than logistic regression. We

compare our logistic regression [75] models with Naive-Bayes models [46]. We show that

logistic regression performs better than Naive-Bayes approach in predicting both death and

mortality. We utilize Receiver Operating Characteristics curves (ROC), where the Area Un-

der Curve (AUC) measure is used to compare the discriminatory power of different models

[71, 125, 138], which is commonly accepted in the statistical learning community.

2.2 HOSPITAL OPERATION MODELS

Mathematical models of ICUs and other hospital units have gained increasing attention in

recent years. The dynamic, stochastic and complex nature of hospitals makes the problem

challenging. Two primary approaches are utilized to estimate performance measures and

answer design and policy questions: discrete event simulation and queueing models. Sim-

ulation models are the most common in the healthcare literature thanks to its ability to

capture complex dynamics (see Jacobson et al. [79] and the references therein). Design

alternatives and a small number of different policies can easily be evaluated via simulation.

Simulation models of an ICU can estimate the performance measures (e.g., bed utilizations,

expected waiting times, rejection probabilities, patient throughput, etc.), and thus, different

bed allocations, admission rules, elective patient schedules, or staffing policies are explored

with an objective to optimize patient flows or reduce costs while maintaining quality care

[31, 33, 70, 101, 102, 133, 143, 155]. However, previous studies do not consider the dynamics

of patients’ physiology in ICUs. Unlike simulation models, queueing models provide simple

analytical expressions that can be incorporated into optimization models, although queue-
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ing models often have stronger assumptions for analytical tractability. Green [65] provides

a survey of queueing models of hospital units. For the most part, while traditional queueing

models are found in the literature (e.g., [38, 64, 88, 110]), no existing queueing (network)

models consider physiological changes in patient flows.

Operational models considering admission, discharge or transfer decisions are less studied

than nurse scheduling, unit capacity planning or configuration models. Some examples of

ICU admission models are Armony et al. [89] and Shmueli et al. [144]. Discharge models

are closer to our approach. Lowery et al. [102] is the first to consider early discharges in

a simulation model. Dobson et al. [42] present a stochastic model of an ICU where early

discharge (bumping) can be used whenever the ICU is full. They determine the probability

of a patient being bumped and the expected remaining LOS for a bumped patient. In [42],

bumping decisions are based on the remaining LOS, i.e., the patient with the least remaining

LOS is chosen to be bumped. Instead, we employ patient health status as a proxy for taking

transfer decisions, hence the LOS is not endogenously modeled. Early discharges might

undesirably influence the patient’s health and hence she/he might have to be readmitted to

the ICU [7]. Chan et al. [22] study early discharge policies by considering the readmission

phenomenon. They use dynamic programming to demonstrate that a certain index rule

based on readmission risk is close to optimal. Chan et al. [24] present a fluid model of an

ICU with readmissions (Erlang-R system), in which the service rate (treatment rate in the

ICU) might be increased when the ICU is full, and they present the steady-state behavior

of the system. Recall that our model assumes that patients cannot be transferred unless

they are clinically cleared. This guarantees a certain quality of care and alleviates adverse

effects of early discharges such as increased readmissions and mortalities as shown in [84]

for some cardiac care units. Kim et al. [90] emphasize the importance of tracking patients’

health condition as they show patients in poorer acuity at the time of discharge have higher

mortality rates and post ICU LOS. Hence to accurately characterize ICU workload, patient

health conditions need to be considered.

ICUs should not be considered as isolated units, since congestions in the downstream

units have certain implications in the ICUs. Armony et al. [4] analyze the role of stepdown

units through a queueing network model, and examine the capacity tradeoff between the
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ICUs and the stepdown units. Although our approach does not explicitly model a capacity-

constrained stepdown unit, we implicitly model the downstream capacity through extended

delays, since the main cause of transfer delays is the congestions in the downstream units.

Although there is an extensive literature focusing on transfer delays when admitting to

the ICU, e.g., [21, 23, 134], almost no study focus on ICU transfer delays when discharging

patients to downstream units. Christensen [27] is the first to study transfer delay through

a simulation model, offering a policy to reduce transfer delay where the transfer operations

start as soon as the patient is clinically ready instead of watching whether other patients

need a downstream bed, and rolling a 24-hour medical clearance process. Mathews and Long

[107] also study an ICU-stepdown unit system through a simulation model, and show that

significant improvement can be attained through reducing transfer delays. Hu et al. [76]

examine proactive decisions where they consider transfers to the ICU from other units. They

provide a predictive model to identify patients staying in lower level of care units with risk

for deterioration, and employ a simulation model to study the benefits of proactive transfers.

Approximate dynamic programming (ADP) is a scheme for modeling and solving com-

plex, large-scale dynamic and generally stochastic problems, e.g., [1, 39, 40, 128, 158]. Re-

cently, these methods are employed in healthcare applications. Some examples include man-

agement of dialysis therapy [97], ambulance redeployment problem [108], and HIV drug

allocation [87]. Our method can be considered as a state aggregation method [39, 40, 128].

However, we generate an approximate policy directly, instead of using basis functions to

approximate the value function.

Robust dynamic programs are employed to model ambiguity in the parameters defining

a dynamic program. There is an increasing attention of numerous researchers on robust

dynamic programs since model parameters are not always accurately predictable in many

real life problems. White and Eldieb [154] obtain optimal policies for different realizations of

the uncertain rewards and determined non-dominated policies. Iyengar [78] and Nilim and

El-Ghaoui [117] study the problems where the uncertainty is on the transition probabilities.

Iyengar [78] and Nilim and El-Ghaoui [117] tackle the uncertainty by computing worst case

scenarios. In this dissertation, we modify the methods provided in [117] to solve the robust

problem.
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2.3 LENGTH OF STAY MODELS

Statistical models to predict LOS have received increasing attention in the medical literature

[8, 83, 124, 159]. Linear regression is one of the most commonly used techniques to identify

factors influencing LOS. In most of these models, physiology is limited to Day 1 information.

Such static statistical models ignore the dynamic nature and high variability of patient

conditions; exceptions include [30, 98]. Data-mining techniques (e.g., logistic regression,

Naive-Bayes, artificial neural networks, support vector machines) are also extensively used

to identify patients experiencing prolonged LOS [17, 54, 68, 72, 98, 114, 119]. These models

generally classify patients into disjoint sets of LOS ranges (e.g., short, medium, long) rather

than providing point estimates. Verburg et al. [148] presents a systematic review of ICU

LOS prediction models.

Various probabilistic models including classical distributions (exponential, lognormal,

gamma, etc.), phase-type distributions, and Markov models are proposed to characterize LOS

distribution. The exponential distribution is common in the operations research literature

to facilitate the analytical tractability of queueing models. However, Griffiths et al. [67] and

many other studies report that the exponential assumption is not valid for ICUs in practice.

Debruin et al. [37] and Griffiths et al. [67] employ the hyper-exponential distribution to

model LOS. Faddy [50] and Marazzi et al. [103] demonstrate that lognormal distribution is

a good fit and superior to Gamma and Weibull for modeling LOS.

Phase-type distributions describe the time to absorption of a finite state Markov chain

with an absorbing state and the process starts in a transient state [115]. The Coxian dis-

tribution [35] is special case of the phase-type distribution, in which the transient states

are ordered. Faddy and McClean [51] use the Coxian distribution to model LOS. Gener-

alized phase-type and conditional phase-type distributions are employed to model LOS for

geriatric patients in hospital [62, 105, 106]. Fackrell [49] fits a generalized phase-type distri-

bution with six transient states and compare it with other distributions, e.g., exponential,

hyper-exponential, generalized Erlang and the Coxian. He shows that generalized phase-type

distribution outperforms alternatives, whereas the performance of the Coxian distribution is

close. Garg et al. [59] model LOS in a stroke unit as phase-type distribution with multiple
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absorbing states. Although phase-type distributions provide better results, they have more

parameters to estimate and the estimation methods are complex. Moreover, there is no

standard package to carry estimation procedures, hence they are not extensively used. Our

stochastic model can also be considered as a phase-type distribution. The main difference

is that the parametrization of the Markov Chain is performed by the score model exoge-

nously, rather than a log-likelihood algorithm fitting the data. Furthermore, switching to

the absorbing state is determined by transfer delay dynamics and threshold policy. Almost

all models ignore the fact that not all LOS is due to health; patients might need to wait in

the ICU due to delays in the transfer process or blocking in the ICU. This might yield an

overestimation of LOS and hence lead to incorrect analysis. Bountourelis et al. [13] are first

to estimate medical LOS by decoupling it from LOS due to blocking delays.
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3.0 PREDICTING INTENSIVE CARE UNIT READMISSION AND

MORTALITY

3.1 INTRODUCTION

In this chapter, we develop and validate robust ICU readmission and mortality models based

on dynamic variables extracted from an electronic health record (EHR) from the University

of Pittsburgh Medical Center, which contains both medical and bed flow information of

16,059 patients over a six-year period that identifies potentially modifiable factors of read-

mission. The data set includes extensive medical information as extracted from a detailed

electronic health record from their admissions to their discharges. We track the changes of

physiological indicators dynamically through ICU stays, and leveraged this information to

predict readmission or mortality upon ICU discharge. We compare the performance of the

models with existing studies and show that our models predict much better than existing

models in the literature. We also develop and validate ICU mortality models, which when

externally validated in different settings, could contribute to decisions regarding intensity of

post-ICU care, hospital discharge decisions, and home-maintenance services requirements.

All studies in the literature use static medical information about the patient to estimate

the likelihood of readmission and mortality. Critical care scores (e.g., APACHE, SAPS,

SOFA, and SIRS) are the essential components of many of these models. The outcome of

the transfer depends on the history of the patient’s health while in the ICU and that there

is a need for a better transfer score capable of summarizing health evolution in the ICU.

We further show that some widely used scores such as APACHE, SOFA, and SIRS alone

are not sufficient to describe patients’ health, and are incapable of accurately predicting

readmissions or mortalities after transferring to a lower level care unit.
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The remainder of the chapter is organized as follows. In Section 3.2, we discuss statistical

techniques employed throughout the chapter and present a detailed description of our data

set. We present our prediction models and main results in Section 3.3. We give an extensive

discussion and presents some clinical insights in Section 3.4.

3.2 MATERIAL AND METHODS

3.2.1 Data Sources

We use the EHR-derived High DENsity Intensive Care (HIDENIC) database of all patients

admitted to one of 12 ICUs within the University of Pittsburgh Medical Center Health

System between 2001 and 2008. HIDENIC is a HIPAA compliant, limited data set that

contains detailed demographic, diagnostic, physiologic, laboratory, and drug administration

and outcome information on a source population of 54,811 ICU admissions [86, 99, 142,

146], linked to Social Security Death Master File (SSDMF) through 2014. The study is

conducted under proper approval of the University of Pittsburgh Institutional Review Board.

Vitals are typically available hourly in HIDENIC while a patient is in the ICU. We compute

SOFA scores across six organ systems (respiratory, cardiovascular, hepatic, coagulation, renal

and neurological) using a standard definition for every non-overlapping six hours interval

throughout ICU stays [52, 139, 150]. Patients for whom there is no data to generate SOFA

scores for a particular organ system are excluded from the study. Where data to generate

score exist, but are missing at a specific time point, we linearly interpolate missing SOFA

scores, but refrain from extrapolation. In case of multiple entries relevant to a system score

over a six-hour interval, we choose the value generating the highest (worst) score. We sum

the six system-specific SOFA scores in our analysis to compute total SOFA. For each patient

and for each system-specific SOFA, we compute the following five values to represent the

trend of the SOFA score; (1) the time average of the score through ICU stay, (2) the variance

of the score through ICU stay, (3) the initial score (first 6 hours of ICU admission), (4) the

highest score through ICU stay, and (5) the last score prior to discharge. We also implement
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an algorithm to compute a Physiologic Severity Score (APS) based on the acute physiology

components of the APACHE III score, which is updated every 8 hours through a patients ICU

stay. We further compute the SIRS score of each patient 48 hours prior to their discharge.

We also employ demographic, clinical and patient flow information as presented in Table 3.1.

We further limit our analysis to patients with complete data (other than the interpolated

SOFA scores). The composition of the source and study populations are depicted in Figure

3.1.

 

Complete SOFA score available  
(N=17,250) 

Source Population 

(N=54,811 ICU stays) 

SOFA Cardiovascular (N=29,088) 

SOFA Coagulation (N=28,926) 

SOFA Liver (N=23,217) 

SOFA Neurologic (N=28,888) 

SOFA Renal (N=28,953) 

SOFA Respiratory (N=17,254)) 

 

SOFA scores computed every six hours 

if medical information available. 

Patients removed if one SOFA 

dimension is not available 

All variables available 
(N=16,059) 

Patients removed if other variables 

(SIRS, APACHE, etc.) not available 

(N=1,191) 

Study Population 
Transferred Alive Patients 

(N=14,604) 

Patients died in the ICU  
(N=1,455) 

Figure 3.1: Cohort selection rules
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3.2.2 Model Development and Validation

We employ two classification schemes to estimate ICU readmission and mortality probabil-

ities at the time of ICU discharge: (1) multivariate logistic regression and (2) Naive-Bayes

model. Multivariate logistic regression is a statistical technique for analyzing a data set,

in which more than one independent variables (Xi, i = 1, . . . , n) that determine a binary

dependent variable (Y ). Formally, logistic regression fits a multiple linear regression function

defined as

log

[
P (Y = 1|X1, X2, . . . Xn)

1− P (Y = 1|X1, X2, . . . Xn)

]
= β0 + β1X1 + β2X2 + . . .+ βnXn.

Thus, for a given input Xi, i = 1, . . . , n, equation (3.1) provides the probability of dependent

variable taking value 1, i.e., in our setting patient being readmitted or die.

P (Y = 1|X1, X2, . . . Xn) =
e(β0 + β1X1 + β2X2 + . . .+ βnXn)

1 + e(β0 + β1X1 + β2X2 + . . .+ βnXn)
. (3.1)

Parameters are determined by maximum likelihood estimates. We refer the reader [75] for

further details.

Naive-Bayes model is a simple classification technique, which assumes variables Xi, i =

1, . . . , n are conditionally independent from each other for a given dependent variable Y .

This approach relies on Bayes’ theorem. Hence, for a given input Xi, i = 1, . . . , n, equation

(3.2) provides the probability of dependent variable taking value 1,

P (Y = 1|X1, X2, . . . Xn) =

P (Y = 1)
∏
i

P (Xi|Y = 1)

1∑
j=0

P (Y = j)
∏
i

P (Xi|Y = j)

, (3.2)

where the distributions of P (Y ) and P (Xi|Y ), i = 1, . . . , n are estimated from the training

data; see [46] for details.

In this study, we assume that a readmission occurs if a patient is readmitted more than

24 hours after ICU discharge. Patients readmitted within 24 hours of discharged are not

considered discharged from the ICU. We preselect candidate risk factors based on univariate

statistical association with ICU readmission or post-ICU mortality using a t-test with a

18



significance value of 0.05 for continuous variables and chi-square test of homogeneity for

proportions of categorical variables. Table 3.1 and Table 3.2 display the corresponding p-

values. We note that SIRS> 2 is an indicator variable as to whether the SIRS score is

greater than 2 or not, and unit utilization upon discharge is the unit occupancy rate (beds

occupied/bed capacity) at the time of discharge.

For variable selection, we employ a step-wise backward elimination method with a p-value

threshold as 0.05. We use Walds χ2 and log-likelihood statistics to test the significance of

individual variables in the logistic regression model. We further employ the Akaike informa-

tion criterion (AIC) to determine the best models. We develop two ICU readmission models,

one including ICU non-survivors and one excluding ICU non-survivors for each technique.

We present the odd-ratios, 95% confidence intervals and p-values for the final regression

models. We assess the goodness of fit of the models using Hosmer-Lemeshow test statistics.

We determine the discrimination power of the models using the AUC of the ROC curves,

which is a broadly accepted measure for statistical model comparison, particularly in the

statistical learning community [71, 125, 138]. For validation purposes, we perform 10-fold

cross-validation, where in each fold a model is developed on 90% of cohort size and tested

on the remaining 10%. We repeat the 10-fold analysis 50 times, and hence the confidence

intervals are determined by a sample of 500 AUC values for each model. We use the R

statistical package version 2.14.1 for analysis.

3.2.3 Study Population

The source population consists of 46,169 patients with 54,811 ICU admissions. Of these,

5,107 died during their ICU stay and 1,849 died after ICU discharge but during the index

hospitalization. The study population consists of 16,059 ICU admissions of patients with

clinical and bed flow. Of those, 14,604 were discharged alive from the ICU (Figure 3.1). Of

ICU admissions with live discharges, there were 2,475 readmission episodes, thus an ICU

readmission rate of 15.4%. Of those discharged alive, a further 1,628 patients died in the

hospital after discharge. Table 3.1 summarizes the basic characteristics of the patients for

both readmitted and non-readmitted patients, and Table 3.2 summarizes the basic charac-
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teristics of the patients for both surviving and non-surviving patients. Of those discharged

alive, 58% were transferred to a stepdown unit, 22% of them transferred to a floor unit and

the remaining patients were directly discharged from the hospital to a variety of destinations.

Only 37% of admissions are medical, reflecting the local patient case-mix. A total of 3,083

patients died in the hospital, yielding a 19% hospital mortality.

Table 3.1: Comparison for readmitted and non-readmitted patients

Patients Readmit. Non-Readmit. p-value Non-Readmit.

(Survived)

N 16,059 2,475 13,584 12,129

Age, mean (sd) 59 (17) 61 (16) 59 (18) < 0.001 58 (18)

Male (%) 9,187 (57.0%) 1,420 (57.0%) 7,767 (57.0%) 0.847 6,988 (58.0%)

LOS (hr), mean (sd) 171 (265) 163 (248) 172 (268) 0.116 165 (245)

LOS before ICU stay (hr), mean (sd) 29.5 (90.8) 42.8 (117.3) 27.1 (84.9) < 0.001 25.7 (79.4)

Number of Previous ICU stays, mean 0.14 0.19 0.13 < 0.001 0.13

Type of Patient < 0.001

Medical (%) 5,956 (37.0%) 746 (30.0%) 5,210 (38.0%) 4,403 (36.0%)

Surgical (%) 10,103 (63.0%) 1,729 (70.0%) 8,374 (62.0%) 7,726 (64.0%)

ICU Type < 0.001

CCU, n (%) 1,907 (11.8%) 307 (12.4%) 1,600 (11.7%) 1,329 (10.9%)

Cardiothoracic, n (%) 1,557 (9.6%) 304 (12.2%) 1,253 (9.2%) 1,216 (10.0%)

Medical, n (%) 1,920 (11.9%) 415 (16.7%) 1,505 (11.0%) 1,287 (10.6%)

Neuro, n (%) 3,336 (20.7%) 349 (14.1%) 2,987 (21.9%) 2,617 (21.5%)

Surgical, n (%) 3,499 (21.7%) 446 (18.0%) 3,053 (22.4%) 2,848 (23.4%)

Transplant, n (%) 3,387 (21.0%) 534 (21.5%) 2,853 (21.0%) 2,527 (20.8%)

Trauma, n (%) 453 (2.8%) 120 (4.8%) 333 (2.4%) 305 (2.5%)

Origin Level of Care < 0.001

Stepdown Unit, n (%) 3,962 (24.6%) 731 (29.5%) 3,231 (23.7%) 2,910 (24%)

Floor, n (%) 2,389 (14.8%) 403 (16.2%) 1,986 (14.6%) 1,810 (14.9%)

Other, n (%) 9,708 (60.4%) 1,341 (54.1%) 8,367 (61.5%) 7,409 (61.0%)

Destination Level of Care < 0.001

Stepdown Unit, n (%) 9,271 (57.7%) 1,748 (70.6%) 7,523 (55.3%) 7,523 (62.0%)

Floor, n (%) 3,514 (21.8%) 727 (29.3%) 2,787 (20.5%) 2,787 (22.9%)

Out, n (%) 3,274 (20.3%) 0 (0.0%) 3,274 (24.1%) 1,819 (15.0%)

Discharge at night, n (%) 4,160 (25.9%) 628 (25.3%) 3,532 (26.0%) 0.523 2,994 (25.0%)

Discharge during weekend, n (%) 4,293 (26.7%) 686 (27.7%) 3,607 (26.5%) 0.228 3,190 (26.0%)

Procedures used during the ICU stay

CVC, n (%) 8,001 (49.8%) 1,113 (44.9%) 6,888 (50.7%) < 0.001 5,929 (48.8%)

MV (last 24 hours), n (%) 6,217 (38.7%) 460 (18.5%) 5,757 (42.3%) < 0.001 4,455 (36.7%)

Charlson comorbidity index 0.428

0, n (%) 14,533 (90.5%) 2,228 (90.0%) 12,305 (90.5%) 10,998 (90.6%)

1, n (%) 1,474 (9.1%) 241 (9.7%) 1,233 (9%) 1,088 (8,9%)

>= 2, n (%) 52 (0.3%) 6 (0.2%) 46 (0.3%) 43 (0.3%)

Unit Utilization, mean (%, sd) 71.0 (19.0) % 64.0 (24.0) % 72.0 (17.0) % < 0.001 72.0 (18.0) %

APACHE III (Admission), mean (sd) 83.4 (13.6) 82.6 (11.7) 83. (13.9) < 0.001 82.2 (13.0)

SIRS> 2 last 48 hours, n (%) 6,829 (42.5%) 1,110 (44.8%) 5,71 (42.1%) 0.011 4,695 (38.7%)
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Table 3.2: Comparison for surviving and non-surviving patients

Non-surviving Patients Surviving Patients p-value
N 3,083 12,976
Age, mean (sd) 66 (15) 57(17) < 0.001
Male (%) 1,665 (54.0%) 7,522 (58.0%) < 0.001
LOS (hr), mean (sd) 211 (368) 161 (233) < 0.001
LOS before ICU stay (hr), mean (sd) 40.45 (124.8) 26.94 (80.5) < 0.001
Number of Previous ICU stays, mean 0.13 0.14 0.338
Type of Patient < 0.001

Medical (%) 1,601 (52.0%) 4,355 (34.0%)
Surgical (%) 1,482 (48.0%) 8,621 (66.0%)

ICU Type < 0.001
Cardiac, n (%) 523 (16.9%) 1,384 (10.6%)
Cardiac-T, n (%) 165 (5.3%) 1,392 (10.7%)
Medical, n (%) 535 (17.3%) 1,385 (10.6%)
Neuro, n (%) 807 (26.1%) 2,529 (19.4%)
Surgical, n (%) 423 (13.7%) 3,076 (23.7%)
Transplant, n (%) 554 (17.9%) 2,833 (21.8%)
Trauma, n (%) 76 (2.4%) 377 (2.9%)

Origin Level of Care 0.001
Stepdown Unit, n (%) 762 (24.7%) 3,200 (24.6%)
Floor, n (%) 395 (12.8%) 1,994 (15.3%)
Out, n (%) 1,926 (62.4%) 7,782 (59.9%)

Destination Level of Care < 0.001
Stepdown Unit, n (%) 744 (24.1%) 8,527 (65.7%)
Floor, n (%) 303 (9.8%) 3,211 (24.0%)
Out, n (%) 2,036 (66.0%) 1,238 (9.5%)

Discharge at night, n (%) 1,124 (36.4%) 3,036 (23.4%) < 0.001
Discharge during weekend, n (%) 883 (28.6%) 3,410 (26.2%) 0.009
Procedures used during the ICU stay

CVC, n (%) 1,723 (55.8%) 6,278 (48.3%) < 0.001
MV (last 24 hours), n (%) 2,157 (69.9%) 4,060 (31.2%) < 0.001

Charlson co-morbidity index 0.126
0, n (%) 2,780 (90.1%) 1,1753 (90.5%)
1, n (%) 298 (9.6%) 1,176 (9.0%)
>= 2, n (%) 5 (0.1%) 47 (0.37%)

Unit Utilization upon discharge, mean (sd) 0.7 (0.1) 0.7 (0.1) 0.700
APACHE III (Admission), mean (sd) 92.1 (16.7) 81.3 (11.9) < 0.001
SIRS> 2 last 48 hours, n (%) 1,906 (61.8%) 4,923 (37.9%) < 0.001
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The mean admission APACHE-III score is 83.40, with a standard deviation of 13.64,

where the score ranges from 0 to 299, with severity increasing as the score increases. Figure

3.2 presents the histogram of admission APACHE-III scores.
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Figure 3.2: Histogram of admission APACHE-III score

Figure 3.3 presents histograms of the average SOFA score (the time average SOFA score

of a patient through his/her LOS), the initial SOFA score (first 6 hours of ICU admission),

the highest SOFA score (maximum SOFA score during the ICU LOS), and the discharge

SOFA score (the score when the patient is transferred or discharged from the ICU).
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Figure 3.3: Histograms of the average, initial, maximum and discharge total SOFA scores
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In the 16,059 patients with complete data, all metrics of the total SOFA were higher in

non-readmitted patients, owing to the presence in this cohort of ICU non-survivors (Table

3.3), whose scores were much higher.

Table 3.3: SOFA trend values for survivors and non-survivors

Surviving Non-surviving p-value

Initial SOFA, mean (sd) 6.72 (3.14) 8.78 (3.52) < 0.001

Maximum SOFA, mean (sd) 8.06 (3.29) 12.27 (3.76) < 0.001

Average SOFA, mean (sd) 5.51 (2.53) 9.57 (3.31) < 0.001

Variance SOFA, mean (sd) 2.23 (2.36) 2.94 (3.34) < 0.001

Discharge SOFA, mean (sd) 4.57 (2.75) 10.88 (3.97) < 0.001

Among ICU survivors, those readmitted had comparable initial and mean total SOFA

scores, but higher average and discharge scores (Table 3.4).

Table 3.4: SOFA trend values for readmitted and non-readmitted patients

Readmitted Non-Readmitted p-value

Initial SOFA, mean (sd) 4.96 (3.25) 4.49 (3.12) 0.448

Maximum SOFA, mean (sd) 8.13 (3.43) 8.04 (3.26) 0.239

Average SOFA, mean (sd) 5.76 (2.56) 5.45 (2.52) < 0.001

Variance SOFA, mean (sd) 1.93 (2.21) 2.29 (2.38) < 0.001

Discharge SOFA, mean (sd) 4.96 (2.54) 4.48 (2.79) < 0.001

3.3 RESULTS

3.3.1 Models for Predicting Intensive Care Unit Readmission

We first present logistic regression model results. Table 3.5 summarizes the 24 variables that

independently predicted post-ICU readmission (N=14,604), their estimates, and p-values.

The readmission regression model exhibits calibration Hosmer-Lemeshow with p-value 0.42,

and good discrimination (ROC-AUC) of 0.765 with a 95% bootstrap confidence interval
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[0.766,0.764] . A similar model based on a population, which includes ICU non-survivors

(N=16,059) exhibits slightly better performance with AUC of 0.79 (0.789,0.791) and good

calibration p = 0.25. The list of predictors are same, which are presented in Table 3.6.

Figure 3.4 presents ROC-AUC curves for both readmission logistic regression models.

Table 3.5: Predictors of ICU logistic regression readmission model in a cohort excluding ICU

non-survivors (N=14,604)

Variables Odd-ratio (95% Confidence Interval) p-value

(Intercept) 0.000 (0.000 - 0.000) 0.890

ICU Type Medical 1.378 (1.137- 1.685) 0.001

ICU Type Trauma 1.445 (1.074 - 1.937) 0.014

Age 1.011 (1.008 - 1.014) < 0.001

ICU Length of Stay 1.001 (1.000 - 1.001) < 0.001

Initial SOFA Liver 0.868 (0.766 - 0.984) 0.027

Initial SOFA Respiratory 0.824 (0.755 - 0.899) < 0.001

Discharge SOFA Liver 1.216 (1.084 - 1.366) 0.001

Discharge SOFA Neurological 1.465 (1.357 - 1.582) < 0.001

Maximum SOFA Liver 1.259 (1.087 - 1.455) 0.002

Max SOFA Neurological 0.832 (0.788 - 0.878) < 0.001

Max SOFA Renal 1.478 (1.264 - 1.727) < 0.001

Average SOFA Coagulation 1.082 (1.010 - 1.159) 0.025

Average SOFA Neurological 0.768 (0.689 - 0.855) < 0.001

Average SOFA Renal 0.779 (0.665 - 0.915) 0.002

Average SOFA Respiratory 1.510 (1.279 - 1.788) < 0.001

Average SOFA Cardiovascular 1.128 (1.027 - 1.239) 0.012

Variance SOFA Renal 0.662 (0.466 - 0.932) 0.020

Central Venous Catheter 0.709 (0.635 - 0.791) < 0.001

Patient Type Surgical 1.563 (1.405 - 1.741) < 0.001

LOS before ICU admission 1.001 (1.001 - 1.001) < 0.001

Number of previous ICU admissions 1.203 (1.097 - 1.318) < 0.001

SIRS> 2 48 hours prior to discharge 1.341 (1.218 - 1.476) < 0.001

Mechanical Ventilation within 24 hours of discharge 0.544 (0.475 - 0.620) < 0.001

Unit Utilization upon discharge (%) 0.184 (0.139 - 0.243) < 0.001
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Table 3.6: Predictors of ICU logistic regression readmission model in a cohort including ICU

non-survivors (N=16,059)

Variables Odd-ratio (95% Confidence Interval) p-value

(Intercept) 0.000 (0.000 - 0.000) 0.906

ICU Type Medical 1.346 (1.098 - 1.650) 0.001

ICU Type Trauma 1.428 (1.051 - 1.934) 0.014

Age 1.011 (1.008 - 1.014) < 0.001

ICU Length of Stay 1.000 (1.000 - 1.001) < 0.001

Initial SOFA Liver 0.887 (0.778 - 1.012) 0.027

Initial SOFA Respiratory 0.837 (0.764 - 0.917) < 0.001

Discharge SOFA Liver 1.245 (1.104 - 1.407) 0.001

Discharge SOFA Neurological 1.463 (1.350 - 1.585) < 0.001

Maximum SOFA Liver 1.224 (1.049 - 1.426) 0.002

Max SOFA Neurological 0.836 (0.790 - 0.885) < 0.001

Max SOFA Renal 1.504 (1.278 - 1.769) < 0.001

Average SOFA Coagulation 1.073 (0.998 - 1.153) 0.025

Average SOFA Neurological 0.766 (0.684 - 0.858) < 0.001

Average SOFA Renal 0.769 (0.652 - 0.909) 0.002

Average SOFA Respiratory 1.473 (1.238 - 1.756) < 0.001

Average SOFA Cardiovascular 1.146 (1.038 - 1.265) 0.012

Variance SOFA Renal 0.673 (0.465 - 0.963) 0.020

Central Venous Catheter 0.694 (0.618 - 0.779) < 0.001

Patient Type Surgical 1.628 (1.455 - 1.824) < 0.001

LOS before ICU admission 1.001 (1.001 - 1.002) < 0.001

Number of previous ICU admissions 1.217 (1.101 - 1.342) < 0.001

SIRS> 2 48 hours prior to discharge 1.322 (1.195 - 1.463) < 0.001

Mechanical Ventilation within 24 hours of discharge 0.544 (0.473 - 0.625) < 0.001

Unit Utilization upon discharge (%) 0.207 (0.154 - 0.279) < 0.001
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Figure 3.4: ROC curves for models of predicting ICU readmission using logistic regression

with 95% uncertainty bands

Logistic regression significantly outperforms the Naive-Bayes approach in predicting ICU

readmission: the mean AUC drops to 0.65 for the model including ICU survivors, and 0.49

for the model excluding ICU survivors. Figure 3.5 depicts ROC-AUC curves for both Naive-

Bayes models. It has been shown via several data sets that logistic regression generally

outperforms the Naive-Bayes approach when training data is abundant, and vice versa when

training data is scarce [116]. Our results also confirm previous observations.
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Figure 3.5: ROC curves for models of predicting ICU readmission using Naive-Bayes tech-

nique with 95% uncertainty bands
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Table 3.7 compares the AUCs of existing readmission models. The best previously re-

ported AUC is 0.74 [121]. We perform external validation of the model presented in [121]

with our data set, which yields an AUC of 0.54.

Table 3.7: Comparison with published readmission models

Study Reference Year Cohort Size ROC-AUC

Campbell et al. [18] 2008 6,208 0.65

Frost et al. [57] 2010 14,952 0.66

Badawi and Breslow [7] 2012 469,976 0.71

Ouanes et al. [121] 2012 3,462 0.74

Readmission model including ICU non-survivors - - 16,059 0.79

Readmission model excluding ICU non-survivors - - 14,604 0.77

3.3.2 Intensive Care Unit Discharge Mortality Models

ICU survivors in the study population has a significantly higher mortality (20.9%) compared

to the source population of 46,169, where the 1-year mortality is 15.2% (p< 0.001), reflecting

some bias towards more complete data in sicker patients. Table 3.8 presents 26 variables

that independently predicts post-ICU mortality (N=14,604, of whom 1658 died in hospital).

The model is well calibrated, with a Hosmer-Lemeshow p-value of 0.63, and has very good

discrimination with AUC of 0.88 [0.879,0.881]. A similar model based on a population that

includes ICU non-survivors (N=16,059) exhibits slightly better performance with AUC of

0.925 [0.924,0.926] and good calibration p=0.37. This shows that it is easier to predict

mortality in the ICU than post ICU mortality. Table 3.9 presents the list of predictors.

Figure 3.6 presents ROC-AUC curves for both logistic regression mortality models.

Similarly, logistic regression outperforms the Naive-Bayes approach in predicting mor-

tality similar to readmission. Mean AUC drops from 0.93 to 0.78 and 0.88 to 0.71, for data

set including ICU survivors and for data set excluding ICU survivors, respectively. Figure

3.7 presents ROC-AUC curves for both Naive-Bayes mortality models.

27



Table 3.8: Predictors of post-ICU logistic regression mortality model in a cohort excluding

ICU non-survivors (N=14,604)

Variables Odd-ratio (95% Confidence Interval ) p-value

(Intercept) 0.002 (0.001 - 0.004) < 0.001

ICU Type Cardiac-T 0.558 (0.414 - 0.749) < 0.001

ICU Type Medical 1.338 (1.054 - 1.701) 0.017

ICU Type Neuro 1.034 (1.030 - 1.039) 0.001

Age 1.001 (1.000 - 1.001) < 0.001

LOS 0.923 (0.866 - 0.983) < 0.001

Initial SOFA Neurological 2.491 (1.903 - 3.289) 0.012

Discharge SOFA Liver 1.245 (1.150 - 1.347) < 0.001

Discharge SOFA Coagulation 2.080 (1.930 - 2.242) < 0.001

Discharge SOFA Neurological 1.184 (1.114 - 1.258) < 0.001

Discharge SOFA Renal 1.227 (1.062 - 1.419) < 0.001

Discharge SOFA Respiratory 1.474 (1.353 - 1.606) 0.006

Discharge SOFA Cardiovascular 0.887 (0.797 - 0.987) < 0.001

Maximum SOFA Neurological 0.876 (0.773 - 0.993) 0.028

Maximum SOFA Respiratory 0.608 (0.458 - 0.802) 0.039

Average SOFA Liver 0.536 (0.338 - 0.834) 0.001

Variance SOFA Liver 0.747 (0.648 - 0.858) 0.007

Variance SOFA Neurological 2.389 (1.727 - 3.321) < 0.001

Variance SOFA Respiratory 1.016 (1.010 - 1.021) < 0.001

APACHE III (Admission) 0.848 (0.733 - 0.982) < 0.001

Central Venous Catheter 0.796 (0.696 - 0.911) 0.028

Patient Type Surgical 1.521 (1.325 - 1.745) 0.001

Discharge at night 1.225 (1.062 - 1.412) < 0.001

Discharge during weekend 1.002 (1.001 - 1.003) 0.005

LOS before ICU admission 1.574 (1.382 - 1.792) < 0.001

SIRS> 2 48 hours prior to discharge 0.380 (0.264 - 0.549) < 0.001

Unit utilization upon discharge (%) 1.666 (1.466 - 1.865) < 0.001
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Table 3.9: Predictors of ICU logistic regression mortality model in a cohort including ICU

non-survivors (N=16,059)

Variables Odd-ratio (95% Confidence Interval ) p-value

(Intercept) 0.008 (0.004 - 0.015) < 0.001

ICU Type Cardiac-T 0.536 (0.402 - 0.711) < 0.001

ICU Type Medical 1.332 (1.067 - 1.663) 0.011

ICU Type Neuro 1.329 (1.081 - 1.636) 0.007

Age 1.033 (1.029 - 1.038) < 0.001

Initial SOFA Neurological 0.924 (0.873 - 0.979) 0.007

Discharge SOFA Liver 2.231 (1.756 - 2.846) < 0.001

Discharge SOFA Coagulation 1.278 (1.187 - 1.377) < 0.001

Discharge SOFA Neurological 2.328 (2.182 - 2.486) < 0.001

Discharge SOFA Renal 1.175 (1.108 - 1.246) < 0.001

Discharge SOFA Respiratory 1.353 (1.166 - 1.573) < 0.001

Discharge SOFA Cardiovascular 1.488 (1.374 - 1.613) < 0.001

Maximum SOFA Neurological 0.836 (0.763 - 0.915) < 0.001

Average SOFA Liver 0.657 (0.511 - 0.842) < 0.001

Average SOFA Respiratory 0.780 (0.644 - 0.944) 0.011

Variance SOFA Liver 0.585 (0.393 - 0.864) 0.008

Variance SOFA Neurological 0.842 (0.743 - 0.954) 0.007

Variance SOFA Renal 1.504 (1.162 - 1.943) 0.002

Variance SOFA Respiratory 1.949 (1.474 - 2.583) < 0.001

APS (Admission) 1.011 (1.006 - 1.016) < 0.001

Patient Type Surgical 0.776 (0.686 - 0.878) < 0.001

Discharge at night 1.549 (1.361 - 1.762) < 0.001
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Figure 3.6: ROC curves for models of predicting ICU mortality using logistic regression with

95% uncertainty bands
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3.3.3 Incremental Predictive Value of SOFA Score Dynamics

To better understand the explanatory power associated with dynamic SOFA scores, we

compare the AUCs and AICs of two models: (i) our best readmission model (N=16,509), and

(ii) a model that includes only SOFA variables (SOFA only). There is a noticeable difference

between AUCs and AICs of the two models, i.e., AUC= 0.67 (SOFA only) vs. 0.796 and AIC

= 11,216 (SOFA only) vs. AIC = 13,025 (best model). We perform a similar analysis in the

second ICU-readmission model (N=14,604) and the post-ICU mortality model. The AUC

also drops to 0.66 (vs. 0.77) in the second ICU readmission model indicating that SOFA

scores alone are not enough to predict ICU readmission. On the other hand, the ROC drops

to only 0.85 (vs. 0.88) in the post-ICU mortality model suggesting that, as opposed to ICU-

readmission models, SOFA scores dynamics by themselves explain post-discharge mortality

well. We also examine the importance of score dynamics, compared to including discharge

scores only. An ICU readmission model performs worse when only discharge scores are added

to other risk factors with AUC of 0.77 (vs. 0.796). Hence models not including dynamic

score information suffers a loss in discriminatory power. However, including only discharge

SOFA score, in addition to other predictors, appears sufficient to predict post-ICU mortality

with AUC of 0.874 (vs. 0.88 for dynamic SOFA information). We also verify how the ICU

readmission probability changes in the 24 hours prior to actual ICU discharge (Figure 3.8).

As expected, the probability decreases steadily, indicating continued patient improvement

prior to discharge. Yet, the probability changes slowly, also suggesting that there should be

some discretion as to the precise timing of ICU discharge.

3.4 DISCUSSION

Using an observational database of 12 ICUs from a large tertiary health care system, we

develop and validate an ICU readmission model, as well as a post-ICU mortality model.

These models offer significantly improved performance over existing readmission models and

raise several interesting observations. Comparing models comprising SOFA scores and their
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Figure 3.8: Average estimated probabilities of readmission for the entire cohort prior to

discharge

trends to similar models not including these dynamic components, there is a significant

improvement in model performance towards predicting ICU-readmission, but not post-ICU

mortality. This finding suggests that SOFA evolution scores carry very significant explana-

tory power towards ICU-readmission, complementary to more conventional risk factors, and

probably contribute to the incremental performance of the models we present, compared to

published models. We also observe APS at the time of admission score is not a significant

factor in the multivariate readmission model, unlike [18, 57, 121]. Thus, we presume that

prognostic information carried by admission severity is preserved by dynamic changes in

health during the ICU stay and ICU pre-discharge status. In fact, dynamic variables appear

to carry additional information as suggested by improved model performance.

Others have previously reported that the type of ICU, a reflection of case-mix, was

prognostic of post-discharge outcome [7] and our study extends these findings. Transplant

patients have high readmission rates, as well as patients admitted to the general surgical ICU.

Infection and poor organ function are frequent drivers of adverse evolution in transplant pa-

tients. Similar to [121], we show that a higher SIRS score, and persistent overt inflammation

discharge increases the readmission rates. The use of central venous catheter has also ex-
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planatory power in the readmission model consistent with the findings in [121]. A more

detailed study of our general surgical population is required to elucidate the contributors

to its increased risk beyond those already included in the models. These findings suggest

that discharge decisions and acceptable readmission rates should depend on factors other

than disease severity, such as case-mix. Beyond patient-based risk factors, we also note that

ICU occupancy predicts both readmission and post-ICU mortality, while night and weekend

discharges independently predict post-ICU mortality. Whether this is a statement on post-

ICU care during weekends and nights merits further investigation; some reports [61, 121]

conclude that discharging patients at night is an indicator of high risk of readmission, yet we

could not verify this finding as our results are more consistent with those reported in [18].

The ICU-readmission model we present compares advantageously with existing models

[7, 57, 18, 121] whereas a direct comparison with the Rothman index is not yet possible as

its discrimination in predicting ICU-readmission is not yet available [127]. We believe that

the inclusion of dynamic data at least partially explains improved performance. We also

note that our readmission models estimate the probability of being readmitted to the ICU

after discharge to a lower level of care during same hospital stay similar to [57, 81], whereas

[121] estimates readmission probability within 7 days, and [18] within 2 days. Confining the

time horizon of the prediction to short periods results is an easier task, explaining why these

models have generally better AUCs among published models. Had we confined our event

window for readmission to a shorter horizon, we anticipate we could also have obtained a

more accurate model. It is appropriate to develop such a model if the purpose of prediction

tool is to mitigate early readmissions.

For both the ICU readmission and late mortality models, we identify some potentially

modifiable factors, including the presence of a central venous catheter, time of discharge,

ICU occupancy at time of discharge, and pre-discharge SOFA scores, although it is quite

plausible that the presence of a central catheter is a marker of unmeasured severity, and not

a modifiable factor. A deeper analysis of the model, or restricting it to sub-populations at

high risk of readmission or late mortality (e.g. transplant patients) could furnish further

guidance as to the appropriate timing of discharge in these patients.
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Our study has limitations. Many patients in our study population have missing data

and we have evidence that data were not missing at random: we show that patients with

complete data are generally sicked with higher 1-year mortality compared to overall ICU

population. Thus, our models may not be as accurate in less sick patients, where event

rates are lower. Although large, our population is derived from a single health system, and

reflect a predominantly surgical case mix. Despite our extensive internal validation study,

external validation of our models would therefore be desirable, especially in populations with

a different case-mix. Our model formulates predictions based on variables measured prior

to ICU discharge. Ideally, one would like to use such a model prospectively to support a

disposition decision. The model is well-calibrated and therefore patients with high predicted

probability of ICU readmission are indeed readmitted more often. We also find that the

predicted probability of ICU readmission decreased monotonically in the days leading to

recorded discharge. It can therefore be conjectured that, if patients had been discharged

earlier (or later), one can compute a trade-off of an acceptable readmission rate. Operating

points of such trade-off would plausibly be case-mix and environment dependent (e.g. high

occupancy and high demand pressure). Flexible, yet evidence-based policies could therefore

be implemented with knowledge of those trade-offs. For example, it might be better not to

discharge patients at night or on week-ends if there is no demand for beds.

The most immediate impact of an accurate ICU readmission model is to use such a score

as a selection mechanism as to which patients are readier for ICU discharge. Unfortunately,

a head-to-head comparison of the performance of the model versus clinical judgment or

alternative decision support tools, such as the Rothman index [53, 135], would require a

specific evaluation. Perhaps the most attractive application is the relative of integration to

modern electronic health record systems. Indeed, our model is comprised of variables that can

be computed from variables automatically recorded in the EHR, excepted the neurological

SOFA score. A second potential impact is the identification of potentially modifiable risk

factors as described above. A third impact is that it is quite apparent that case-mix plays

a major role in determining risk of ICU readmission and that policies of optimal discharge

rules are therefore hardly transportable. Thus, our finding confirms a recent report that

unadjusted ICU readmission rate is a poor quality indicator of system performance [156].
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3.5 CONCLUSIONS

Optimizing ICU discharge decisions is paramount in providing cost-effective care in the in-

creasingly outcome driven health care delivery context and promoting patient and family

satisfaction. Unplanned readmissions are often associated with extreme anxiety and in-

creased resource use, and appropriate targeting of those patients, beyond the actual timing

of the discharge decision, can be helped by models such as the one we presented. We present

tools that could help in such planning decision. We build logistic regression models and com-

pare them with the published prediction models. We outperform any model in predicting

readmission.
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4.0 PHYSIOLOGY-BASED ANTICIPATIVE INTENSIVE CARE UNIT

MANAGEMENT

4.1 INTRODUCTION

In this chapter, we build an infinite-horizon Markov Decision Process based on the scores

to model the anticipative transfer request problem, with the objective of minimizing the ex-

pected total cost of unnecessarily occupying ICU beds plus the cost of unnecessarily reserving

downstream beds. The model periodically determines the number of transfer requests after

observing the medical conditions of the patients staying in the ICU. One major difference

of our model from existing early discharge models, (e.g., Chan et al. [22] and Dobson et al.

[42]), is that our model does not allow the transfer of patients to downstream units while

they still need an ICU care, which more accurately reflects clinical reality. Early discharged

patients have higher readmission and mortality rates [7].

Our aim is to determine the optimal number of downstream bed requests at each time

step in order to minimize both the downstream bed allocation cost and unnecessary ICU

occupation cost. Physicians monitor the status of each patient and determine the number of

requests at each discharge round. Typically, discharge rounds are every 12 or 24 hours [77].

Our model allows state changes and discharges every 6 hours, whereas transfer decisions

are taken every 12 hours. Note that if we allocate a downstream bed for each patient,

then the multi-patient problem simply determines the transfer request times of each patient

independently, i.e., solving many single-patient problems. Instead, we choose the number of

requests so that the allocated beds in the downstream units can be used interchangeably,

depending on the outcome of the patients in the next discharge round.

36



Bed costs are in a sense intangible and unknowable in advance, as they largely reflect

the opportunity costs of beds, which may vary greatly. Hence, it is not easy to define and

estimate these figures. While bed managers might have some estimates on these quantities,

which are prone to high estimation errors. In Section 4.5 we subsequently consider robust

dynamic programming approaches, which model ambiguity in the parameters defining a

dynamic program.

Realistic formulations of the optimal transfer request problem are difficult to solve in

practice even for small sized ICUs. We use an ADP approach to solve the problem. The

approximation uses state-aggregation-based policy approximation [128], which partitions

the state into solvable sets and then solves these smaller aggregated problems. Rather

than generating an approximate value function via basis functions, we directly concatenate

the policies of these small scale problems, i.e., summing the number of requests of each to

determine a suboptimal policy for the original problem, which we call an approximate policy

throughout the chapter.

The remainder of the chapter is organized as follows. In Section 4.2 we present the

formulation of the model. In Section 4.3, we establish some structural properties. We discuss

the approximation algorithm in Section 4.4. In Section 4.5 we present the cost ambiguity

model formulation. In Section 4.6, we discuss some managerial insights through a set of

numerical experiments.

4.2 MARKOV DECISION PROCESS FORMULATION

Transfer decisions require a clinically based measure of patients’ medical conditions in the

ICU. In particular, it is vital to have a measure that can predict the probability of readmission

or death upon transfer to a downstream unit. While APACHE score and SOFA scores are

the clinically accepted measures of disease severity in critical care patients. In Chapter 3 we

show that these scores are less successful in predicting the readmission or death probabilities

upon transfer to a downstream unit. Thus our objective is to develop a generalizable and

dynamic transfer readiness score that can be used to provide better transfer decisions.
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As we have discussed in Chapter 3, predictive ICU management decisions should be

based on readmission or mortality, and thus a good estimation/prediction of readmission or

mortality is essential. For that, we have developed logistic regression models that incorpo-

rates patient demographics, patient type (medical, surgical), medical scores (APACHE-III,

SOFA, SIRS), Charlson index for comorbidities, procedures applied, mechanical ventilation

status, unit information (current unit type, origin unit), and unit utilization. We employ

the readmission logistic regression model presented in Chapter 3. To generate the score, we

first partition the probability intervals and map them into point scores. Hence, the score

of a patient is determined the probability of readmission, which is generated by logistic

regression.

We define a score set S = {1, . . . , S}, where score 1 is the transfer state that has the

probability of readmission below 0.1, and split the remaining interval (0.1, 1] into equally

spaced and disjoint S − 1 intervals. Score i maps into the (i− 1)th interval. In other words,

every score represents the probability of readmission being in the corresponding interval. For

our numerical studies we define the range of the TRS from 1 to 5.

Now, we present an infinite-horizon discrete-time MDP model for the anticipative transfer

request problem. We assume that ICU is a loss system for the MDP model; whenever the

unit is full, arriving patients are diverted to other hospitals or admitted to other units.

4.2.1 States and Actions

The state is defined as the transfer readiness scores of all patients. We further define state

∆ to represent the state that the corresponding bed is empty. We assume that if k beds in

downstream units are available and more than k patients are ready to be transferred, the k

patients who move are selected in increasing order of bed numbers. Arriving patients’ initial

health states are drawn from an initial state distribution Q that is estimated through the

historical distribution of health scores upon admission to the ICU. Consider an N -bed ICU

and denote N = {1, . . . , N}. Each patient’s health in the ICU is monitored via their TRS

process. We assume that the TRS process is a DTMC and each patient’s health evolves

independently. Let S = {∆, 1, . . . , S} be the state set for each ICU patient, and H be the
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transition probability matrix of the health evolution of a patient. Hence the state description

s ∈ S is an N -dimensional vector where si ∈ S is the state of bed i, and S is the state

space. For a given state s, each a(s) ∈ A = {0, 1, . . . , N} represents the number of transfer

requests. Recall that ∆ is the state where the bed is empty. A patient can only be transferred

if her status is in a transferable state S0 ⊂ S at the beginning of next period. We also define

Sc0 = S \ S0 to be non-transferable states.

4.2.2 Transition Probabilities

Let Z be the number of patients arriving to the system at a period. Hence the probability

distribution of Z is given by

P (Z = z) =
e−ηηz

z!
, for z = 0, 1, . . .

For computational tractability, we assume that new arriving patients are assigned to empty

beds first and patients are selected to transfer in increasing order of the index set of beds

of transferable patients. We assume that a requested downstream bed becomes available in

the next round with probability α > 0. Now, define set E (s) as the index set of empty beds

for a given state s. Let P (s′|s, a) be the probability of moving from state s to state s′ given

action a ∈ A. When a = 0, the probability of being in state s′ is simply the multiplication

of independent health evolution probabilities and new arrivals with initial distributions, i.e.,

P (s′|s, 0) =
∏

i∈E c(s)

H(s′i|si) +


P (Z = [|E (s)| − |E (s′)|])

∏
i∈E (s)\E (s′)

Q(s′i), if E (s′) 6= ∅

P (Z ≥ [|E (s)|])
∏

i∈E (s)\E (s′)

Q(s′i), if E (s′) = ∅.
(4.1)

When a > 0, the calculation of the transition probabilities is somewhat complicated. For

a given a > 0 requests, in the next stage k beds can be available where k ≤ a. Let Ka be a

random variable for the number of beds available when a beds are requested. Define Ba(k)

as the probability of having k beds available when a beds are requested. Note that Ka is

binomial distributed with success probability α > 0 and a trials. Then for each a > 0 and

k = 1, ..., a, Ba(k) = P (Ka = k) =
(
a
k

)
αk(1 − α)a−k. Now, let I(s) ⊂ N be the index set of

non-transferable patients for a given s, i.e., I(s) = {i ∈ N : si ∈ Sc0}.
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Recall that there are many different ways to approach state s′ from state s. First, we

should note that some transitions are not feasible due to aforementioned technical assump-

tion, e.g., if bed 1 and bed 2 are empty at s, we cannot transition to a state s′ where bed

1 is empty but bed 2 is occupied, since new patients are allocated in increasing order of the

bed numbers. Hence the probability for such transitions are zero. Second, if a bed is empty

in the next period, but occupied in the current period, then the patient must have been

discharged, hence at least a bed must be available for such state transition to happen; if

k < |E (s′) \ E (s)|, then the probability of transitioning from state s to s′ is zero. Similarly,

if a bed is occupied in the next period but empty in the current period, there must be at

least an arriving patient, i.e., if z < |E (s) \ E (s′)|, then the probability of transitioning from

state s to s′ is zero. We will therefore condition on the number of available beds k.

Consider the case, where |I(s′)| patients are non-transferable, andN−|I(s′)| > 0 patients

are transferable and |E (s′)| > 0 beds are empty in the next period. Because there are

transferable patients in the ICU in the next period, k patients were transferred. Patients in

the set E (s′)\E (s) are discharged, hence their states must have transitioned to a transferable

state in the next period and transferred, which occurs with probability

P1 =
∏

i∈E (s′)\E (s)

∑
j∈S0

H(j|si).

As mentioned earlier, new patients in the set E (s) = \E (s′) arrived with initial states to

transition from s to s′, which occurs with probability

P2 =
∏

i∈E (s)\E (s′)

Q(s′i).

Further, k − |E (s′) \ E (s)| patients that are in non-transferable states in the current period

may have evolved to a transferable state and transferred, and new patients arrived with

initial states. These patients can be any among in non-transferable but non-empty state in

the next period and the current period. Thus, define a subset T ⊂ I(s′) \ (E (s) ∪ E (s′)),

with cardinality |T | = k − |E (s′) \ E (s)|. Hence, the probability of such an event is

P3 =
∑
∀T

∏
i∈T

Q(s′i)
∑
j∈S0

H(j|si).
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All remaining patients should simply make the transitions through the score process, which

has probability

P4 =
∏

i∈T c\(E (s)∪E (s′))

H(s′i|si).

Finally, k − |E (s′) \ E (s)|+ |E (s)| must have arrived, which occurs with probability

P5 = P
(
Z = k − |E (s′) \ E (s)|+ |E (s) \ E (s′)|

)
.

Hence the transition probability of going from s to s′ (defined above) when a beds are

requested is:

P (s′|s, a) =
a∑

k=|E (s′)\E (s)|

Ba(k)
5∏
`=1

P`.

The case where no patients are transferable (I(s′) = N ) is slightly different since if k > 0

beds become available in the next stage, patients will stay in the ICU, because less patients

may become transferable. Hence,

P (s′|s, a) =
∏

i∈N\(E (s)∪E (s′))

H(s′i|si) +
a∑

k=|E (s′)\E (s)|

Ba(k)
5∏
`=1

P`.

For the case where the unit is full in the next period (E (s′) = 0), the equality in P5 is

replaced with greater than or equal to as new arrivals are lost since the ICU is full, i.e., the

quantity P5 is modified to be equal to

P5 = P (Z ≥ k − |E (s′) \ E (s)|+ |E (s) \ E (s′)|).
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4.2.3 Cost Structure

We impose costs on allocated downstream beds that are not used, and on ICU stay for

transferable patients. Specifically, we pay cB ≥ 0 per stage per downstream bed requested,

but not allocated. Further, we pay cI ≥ 0 per stage for each transferable patient who stays

in the ICU, since they will be allocated to the ICU unnecessarily. We should specifically

note that these costs are not necessarily tangible bed operating costs, but rather represent

the opportunity cost of a bed system-wide, hence we might have cases where downstream

bed cost cB exceeds ICU bed cost cI , if the downstream is the bottleneck. These figures are

neither constant nor easy to estimate, thus we employ a robust model in Section 4.6.3.

Define pi to be the probability that patient i is discharged in the next period given that

she is in state si. It is easy to see that

pi =
∑
j∈S0

H(j|si).

Let d(s) be the random number of transferable patients in the next period given state s.

The probability mass functions of d(s) is given by

P (d(s) = d) =
∑

T ⊂N ,|T |=d

∏
i∈T

pi
∏
i∈T c

(1− pi).

Hence, the total cost can be written as

c(s, a) = cI |Ic(s)|+ cBE[(d(s)−Ka)
−]

= cI |Ic(s)|+
a∑
k=0

Ba(k)
k∑
d=0

cB(k − d)P (d(s) = d).

4.2.4 Optimality Criterion

The objective is to minimize the total expected discounted extra ICU holding cost and

downstream bed allocation cost. Let λ ∈ (0, 1) be the discount rate, and V (s) be the

minimum expected discounted total cost starting from state s. Recall that we allow patients

to be transferred before the next decision round. To model such a case, define a dummy

value function V (s) for the next round following a discharge round, where we take no actions

but allow the state to change and patients to transfer.
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4.2.5 Bellman Equations

The optimality equation for each s ∈ S can be written as

V (s) = min
a∈{0,1,...,N}

{
c(s, a) + λ

∑
s′∈S

V (s′)P (s′|s, a)

}
, (4.2)

where

V (s) = c(s, 0) + λ
∑
s′∈S

V (s′)P (s′|s, 0). (4.3)

Before presenting structural properties, we summarize our main assumptions as follows:

• The Transfer readiness process follows a discrete time Markov Chain.

• Patients arrive to the unit according to a Poisson distribution with mean η in each period.

• Arriving patients’ initial scores are drawn from a distribution Q.

• The ICU unit is a loss system, i.e., newly arriving patients are lost, if the ICU is full.

• Requested downstream beds become available according to a Bernoulli process. Note

that we are not specifically modeling the downstream unit due to tractability.

• Patients are transferred first and arriving patients are admitted next at the beginning of

each period.

4.3 STRUCTURAL PROPERTIES

In this section, we prove the existence of an optimal threshold policy for a special case of

the problem. Threshold type of policies are easy to implement, appealing to decision makers

and can improve the computational efficiency of dynamic programming algorithms [129]. We

show the existence of an optimal threshold policy for a special case of the problem where

there is a single patient in the ICU. In that case we define the threshold policy as follows:

A transfer request should be made if and only if the patient’s score is below a certain score.
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4.3.1 Single-Patient Model

Let us start by describing the single-patient model. The state description s is the score of

the single patient, and the action set is a(s) ∈ {0, 1}. At each decision epoch the physician

decides whether to make a transfer request. The transition probabilities are

P (s′|s, a) =


H(s′|s) if a = 0,

(1− α)H(s′|s) if a = 1, and s′ ∈ S0,

H(s′|s) + αQ(s′)
∑
i∈S0

H(i|s) if a = 1, and s′ ∈ Sc0.

The cost function c(s, a) is

c(s, a) =



0 if a = 0 and s ∈ Sc0,

cI if a = 0 and s ∈ S0,

cBα

(
1−

∑
i∈S0

H(i|s)

)
if a = 1 and s ∈ Sc0,

cI + cBα

(
1−

∑
i∈S0

H(i|s)

)
if a = 1 and s ∈ S0.

Define V (s) as the expected discounted total cost starting from state s. Hence the

optimality equation for each s ∈ S can be written as

V (s) = min
a∈{0,1}

{
c(s, a) + λ

∑
s′∈S

V (s′)P (s′|s, a)

}
. (4.4)

We assume that there exists a threshold ψ ∈ S such that the patient is transferable if s ≤ ψ,

and non-transferable if s > ψ, i.e., S0 = {s ∈ S : s ≤ ψ}. Further, we assume that new

arriving patients are in a non-transferable state, thus
∑

s>ψQ(s) = 1. Moreover an ICU bed

is more valuable than a downstream bed, i.e., cI > cB. We present some assumptions that

are sufficient conditions for the existence of an optimal threshold policy.
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4.3.2 Structural Assumptions

The first assumption is on the probability distribution matrix P (s′|s, 1).

Assumption 4.1. For a given 1 ≤ ψ ≤ S, P (i|s, 1) ≥ P (i|j, 1) for any s ≤ ψ, i ≤ ψ and

j > ψ, and P (j|k, 1) ≥ P (j|s, 1) for any s ≤ ψ, j > ψ, and k > ψ.

Figure 4.1 illustrates the structure of the matrix, which is divided into four parts from

ψth diagonal entry. Then, column-wise, all the entries on the upper left corner should be

greater than or equal to all the entries from the lower left corner and all the entries on the

upper right corner should be less than or equal to all the entries in the lower right corner.

    

Figure 4.1: Illustration of matrix structure in Assumption 4.1

Specifically, the assumption says that the likelihood of moving to a transferable state

is higher when a patient is already in a transferable state rather than coming from a non-

transferable state. Similarly, the likelihood of moving to non-transferable states is higher

when the patient is in a non-transferable state rather than going from a transferable state.

Remark 4.1. Recall Assumption 1 on the structure of the probability distribution matrix

P (s′|s, 1). Typical probability matrix structures that have been extensively studied in the

literature are: increasing failure rate (IFR) or decreasing failure rate (DFR) (cf., [9]), totally

positive of order 2 (TP2) (cf., [82]) and upper-triangular. For example if a matrix is TP2,

then it is IFR (see [82]).
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We use a new matrix structure to get the monotonicity and threshold results, and this

assumption is not stronger than any other in the literature. Now, for ψ = 1, the probability

matrix P satisfies Assumption 1.

P =


0.7 0.1 0.2

0.3 0.3 0.4

0.1 0.6 0.3

 .
On the other hand it is neither IFR nor DFR, hence not TP2. Also, clearly it is not upper

triangular. This shows that Assumption 1 is no stronger than IFR, and hence no stronger

than TP2.

Remark 4.2. The conditions in Assumption 4.1 are equivalent to the following: (1 −

α)H(i|s) ≥ H(i|j) for any s ≤ ψ, i ≤ ψ and j > ψ. Further, H(j|s) ≥ H(j|k) +

αQ(j)
∑

`≤ψH(`|k) for any s ≤ ψ, j > ψ, and k > ψ.

The second structural assumption is on the transition probability matrix H.

Assumption 4.2. H[i|s] is a non-increasing function of s for i ≤ ψ.

Intuitively, we assume that the probability of transitioning to a transferable state de-

creases as the severity level of the patient increases.

4.3.3 A Threshold-Type Transfer Request Policy

We present some structural properties that enable us to prove the existence of a threshold-

type policy. We first prove that the cost of starting from a transferable state is always higher

than starting from a non-transferable state (monotonicity), as summarized in Proposition

4.1.

Proposition 4.1. Under Assumption 4.1, we have

V (s) ≥ V (s′)

for any s ≤ ψ, and s′ > ψ.
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Proof. Let Vn(s) be the value function corresponding to the nth iteration of the value it-

eration algorithm. Similarly, let Wn(s) and Rn(s) denote the cost of waiting and request-

ing a bed at stage n, respectively. We prove the proposition by induction on Vn(s) =

min{Wn(s), Rn(s)}. Without loss of generality, assume that V0(s) = 0 for all s ∈ S. It is easy

to observe that R1(s) ≥ W1(s) ≥ R1(s′) ≥ W1(s′), for any s ≤ ψ, and s′ > ψ, since cI > cB.

Hence V1(s) ≥ V1(s′) for any s ≤ ψ, and s′ > ψ. Assume that Vn−1(s) ≥ Vn−1(s′), for any

s ≤ ψ, and s′ > ψ. In order to show Vn(s) ≥ Vn(s′), we need to show (i) Rn(s) ≥ Wn(s′), (ii)

Rn(s) ≥ Rn(s′), (iii) Wn(s) ≥ Wn(s′), and (iv) Wn(s) ≥ Rn(s′), for any s ≤ ψ, and s′ > ψ.

Now fix s ≤ ψ, and s′ > ψ. Also, let x ∈ argmin
{s:s≤ψ}

Vn−1(s), note that Vn−1(x) ≥ Vn−1(s′), for

s′ > ψ.
We start by proving case (i). Now, we have

Rn(s) = c(s, 1) + λ

∑
i≤ψ

Vn−1(i)P (i|s, 1) +
∑
j>ψ

Vn−1(j)P (j|s, 1)


≥ λ

∑
i≤ψ

Vn−1(i)P (i|s, 1) +
∑
j>ψ

Vn−1(j)P (j|s, 1)


= λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
i≤ψ

Vn−1(i)[P (i|s, 1)− P (i|s′, 0)] +
∑
j>ψ

Vn−1(j)P (j|s, 1)


≥ λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
i≤ψ

Vn−1(x)[P (i|s, 1)− P (i|s′, 0)] +
∑
j>ψ

Vn−1(j)P (j|s, 1)

 (4.5)

= λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
j>ψ

Vn−1(x)[P (j|s′, 0)− P (j|s, 1)] +
∑
j>ψ

Vn−1(j)P (j|s, 1)

 (4.6)

≥ λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
j>ψ

Vn−1(j)[P (j|s′, 0)− P (j|s, 1)] +
∑
j>ψ

Vn−1(j)P (j|s, 1)

 (4.7)

= λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
j>ψ

Vn−1(j)P (j|s′, 0)


= Wn(s′).

Inequality (4.5) follows from definition of x, and the assumption that (1−α)H(i|s) ≥ H(i|s′)

for i ≤ ψ, hence, [P (i|s, 1) − P (i|s′, 0)] ≥ 0, for i ≤ ψ. Equality (4.6) follows from the fact

that both P (·|s, 1) and P (·|s′, 0) are probability distributions. Thus,

∑
i≤ψ

P (i|s′, 0) +
∑
j>ψ

P (j|s′, 0) =
∑
i≤ψ

P (i|s, 1) +
∑
j>ψ

P (j|s, 1),
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which implies

∑
i≤ψ

[P (i|s, 1)− P (i|s′, 0)] =
∑
j>ψ

[P (j|s′, 0)− P (j|s, 1)].

Finally, inequality (4.7) follows from the assumption thatH(j|s′) ≥ H(j|s)+αQ(j)
∑

`≤ψH(`|s),

i.e., [P (j|s′, 0)− P (j|s, 1)] ≥ 0, and Vn−1(x) ≥ Vn−1(j) for j > ψ.

The same method can be repeated for other cases by making necessary arrangements

in the probabilities. For case (ii), we need P (i|s, 1) ≥ P (i|s′, 1), for i ≤ ψ, P (j|s′, 1) ≥

P (j|s, 1) for j > ψ, and c(s, 1) ≥ c(s′, 1), then we can easily obtain Rn(s) ≥ Rn(s′) by

replacing P (i|s′, 0)’s and P (j|s′, 0)’s with P (i|s′, 1)’s and P (j|s′, 1)’s, respectively. Note that

c(s, 1) ≥ c(s′, 1) is trivial from c(s, 0) = cI > cB ≥ c(s′, 1). From assumption 4.1, we have

P (i|s, 1) = (1− α)H(i|s) ≥ H(i|s′) ≥ (1− α)H(i|s′) = P (i|s′, 1) for i ≤ ψ, and P (j|s, 1) =

H(j|s) + αQ(j)
∑

`≤ψH(`|s) ≤ H(j|s′) ≤ H(j|s′) + αQ(j)
∑

`≤ψH(`|s′) = P (j|s′, 1) for

j > ψ, thus Rn(s) ≥ Rn(s′) for s ≤ ψ and s′ > ψ. For case (iii), we have

Wn(s) = c(s, 0) + λ

∑
i≤ψ

Vn−1(i)P (i|s, 0) +
∑
j>ψ

Vn−1(j)P (j|s, 0)


≥ λ

∑
i≤ψ

Vn−1(i)P (i|s, 0) +
∑
j>ψ

Vn−1(j)P (j|s, 0)


= λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
i≤ψ

Vn−1(i)[P (i|s, 0)− P (i|s′, 0)] +
∑
j>ψ

Vn−1(j)P (j|s, 0)


≥ λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
i≤ψ

Vn−1(x)[P (i|s, 0)− P (i|s′, 0)] +
∑
j>ψ

Vn−1(j)P (j|s, 0)

 (4.8)

= λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
j>ψ

Vn−1(x)[P (j|s′, 0)− P (j|s, 0)] +
∑
j>ψ

Vn−1(j)P (j|s, 0)

 (4.9)

≥ λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
j>ψ

Vn−1(j)[P (j|s′, 0)− P (j|s, 0)] +
∑
j>ψ

Vn−1(j)P (j|s, 0)

 (4.10)

= λ

∑
i≤ψ

Vn−1(i)P (i|s′, 0) +
∑
j>ψ

Vn−1(j)P (j|s′, 0)


= Wn(s′).
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Inequality (4.8) follows from P (i|s, 0) ≥ P (i|s′, 0), which comes from Assumption 4.1,

i.e., P (i|s, 0) = H(i|s) ≥ (1 − α)H(i|s) ≥ H(i|s′) = P (i|s′, 0) for i ≤ ψ, and the definition

of Vn−1(x). Inequality (4.10) follows from P (j|s′, 0) ≥ P (j|s, 0) for j > ψ, which also comes

from Assumption 4.1 that P (j|s, 0) = H(j|s) ≤ H(j|s) + αQ(j)
∑

`≤ψH(`|s) ≤ H(j|s′) =

P (j|s′, 0) for j > ψ, and Vn−1(x) ≥ Vn−1(j) for j > ψ. Note that c(s, 1) ≥ c(s′, 0) is trivial

from cI > 0.

For case (iv), we only need P (i|s, 0) ≥ P (i|s′, 1), for i ≤ ψ, and P (j|s′, 1) ≥ P (j|s, 0) for

all j > ψ, and further c(s, 0) ≥ c(s′, 1). We can repeat the similar algebra above by replacing

P (i|s′, 0)’s and P (j|s′, 0)’s with P (i|s′, 1)’s and P (j|s′, 1)’s. Note that c(s, 0) = cI > cB ≥

c(s′, 1). From Assumption 4.1, we have P (i|s, 0) = H(i|s) ≥ (1 − α)H(i|s) ≥ H(i|s′) ≥

(1−α)H(i|s′) = P (i|s′, 1) for i ≤ ψ, and P (j|s, 0) = H(j|s) ≤ H(j|s)+αQ(j)
∑

`≤ψH(`|s) ≤

H(j|s′) ≤ H(j|s′) + αQ(j)
∑

`≤ψH(`|s′) = P (j|s′, 1) for j > ψ. This completes the proof of

Vn(s) ≥ Vn(s′), for any s ≤ ψ, and s′ > ψ, and hence the result follows by induction.

Let L(s) be the difference between the cost of requesting a bed and the cost of waiting

for a given state s ∈ S, i.e.,

L(s) = c(s, 1)− c(s, 0) + λ

[∑
i∈S

V (i)P (i|s, 1)−
∑
i∈S

V (i)P (i|s, 0)

]
.

Proposition 4.2 presents the monotonicity of the cost difference function L(s).

Proposition 4.2. If Assumptions 4.1 and 4.2 hold, L(s) is non-decreasing in s.

Proof. Define θ(s) =
∑

i∈S V (i)P (i|s, 1) −
∑

i∈S V (i)P (i|s, 0), and rewrite L(s) = c(s, 1) −

c(s, 0) + λθ(s). We first show that c(s, 1) − c(s, 0) is non-decreasing in s, and then θ(s) is

non-decreasing. One can easily see that,

c(s, 1)− c(s, 0) = cBα

(
1−

∑
i≤ψ

H(i|s)

)
, (4.11)

for any s ∈ S. From Assumption 4.2, it is easy to observe that c(s, 1) − c(s, 0) is non-

decreasing in s. Now, for θ(s), we have

θ(s) =
∑
i∈S

V (i)P (i|s, 1)−
∑
i∈S

V (i)P (i|s, 0)
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=
∑
i∈S

V (i)[P (i|s, 1)−H(i|s)]

=
∑
i≤ψ

V (i)[(1− α)H(i|s)−H(i|s)] +
∑
j>ψ

V (j)[H(j|s) + αQ(j)
∑
`≤ψ

H(`|s)−H(j|s)]

= α
∑
i≤ψ

−V (i)H(i|s) +
∑
j>ψ

V (j)[αQ(j)
∑
`≤ψ

H(`|s)]

= α
∑
i≤ψ

−V (i)H(i|s) + α
∑
`≤ψ

H(`|s)
∑
j>ψ

V (j)Q(j)

= α
∑
i≤ψ

H(i|s)[−V (i) +
∑
j>ψ

V (j)Q(j)].

Because V (i) ≥ V (j) for any i ≤ ψ, and j > ψ, then V (i) ≥
∑

j>ψ V (j)Q(j), because the

right hand-side of the inequality is a convex combination. Thus [−V (i) +
∑

j>ψ V (j)Q(j)]

is non-positive. Then θ(s) is non-decreasing in s, since H(i|s) is non-increasing in s. This

completes the proof of L(s) being non-decreasing in s.

Our main result is given in Theorem 4.1, which presents the existence of a threshold type

optimal policy for single-patient problem.

Theorem 4.1. If Assumptions 4.1 and 4.2 hold, there exists a threshold s∗, where it is

optimal to request a bed for all s ≤ s∗, and wait for all s > s∗.

Proof of Theorem 4.1: The result follows directly from Proposition 4.2 as follows.

The fact that the cost difference is non-decreasing in s indicates that whenever the cost of

transfer is less than the cost of wait for some s∗, i.e., L(s) ≤ 0, it will always be smaller than

zero for s ≤ s∗. Hence the cost of requesting will be always less than the cost of waiting for

all s ≤ s∗. Therefore, there exists a threshold type of optimal policy. �

For the multi-patient problem, we expect that a decrease in the severity of one patient

with others being the same means more patients are likely to be in a transferable state in

the next period, and, hence leads to a higher number of transfer requests, i.e., a(s) ≥ a(s′),

such that sj ≥ s′j for some j ∈ N and si = s′i for all i ∈ N \ j. Conjecture 4.1 summarizes a

lexicographic ordering of the states with regards to number of transfer requests.

Conjecture 4.1. If N > 1 and Assumptions 4.1 and 4.2 hold, then the optimal number of

requests in a state is less than or equal to the one if instead we have one patient with lower

score., i.e., a∗(s) ≥ a∗(s′), such that sj ≥ s′j for some j ∈ N and si = s′i for all i ∈ N \ j.
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Although this conjecture remains open to be proven, we run an experimental analysis,

where we randomly generate 100 5-dimensional problem instances. We solve all problem

instances to optimality by employing policy iteration algorithm. We observe that in all the

instances an optimal threshold policy exists. Furthermore, in all the numerical experiments,

where we employ our data set, we observe a similar structure although Assumptions 4.1 and

4.2 do not hold.

Remark 4.3. Note that Assumptions 4.1 and 4.2 may not hold in practice. We define the

following metric for the average violation of Assumption 4.1, κP , as the sum of all entries

violating the order of the inequalities given in Assumption 4.1 divided by the number of

entries, i.e.,

κP =
1

|S |2

∑
i≤ψ

∑
s≤ψ

∑
j>ψ

max{P (i|j, 1)− P (i|s, 1), 0}+
∑
k>ψ

∑
s≤ψ

∑
j>ψ

max{P (j|s, 1)− P (j|k, 1), 0}

 .

For the transition probability matrix generated through our data set, violation κP is 0.032.

However, in all the instances in Section 4.6 we observe that threshold policy holds when solved

to optimality even when the transition probability matrix generated violates Assumption 4.1.

4.4 STATE-AGGREGATION BASED POLICY APPROXIMATION

ALGORITHM

The exact solution of the model is intractable for medium size ICUs (10-25 beds), as the size

of the state space for a 10-bed ICU with five severity levels is approximately 107. Instead, we

employ an approximation heuristic that partitions the state into solvable sets, then solves the

small scale problems, and finally sums the solutions of the small scale problems to determine

an approximate solution to the original problem.

Recall that N is the number of beds, hence the dimension of the state of the original

problem, and define w as the dimension of the state of a solvable problem in a reasonable

time. Further define sn as a state and S n as the state space of an n-dimensional problem.

Hence, sN corresponds to the original state s and S N corresponds to the original state
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space S . First, solve all small scale problems with dimensions less than or equal to w to

full optimality via policy iteration. Note that for every n ≤ w-dimensional state sn, we have

an optimal policy a∗(sn). The second part is to determine an approximate optimal policy

ã(s) for every state s = {s1, s2, . . . , sN} ∈ S , for the original problem. We partition the

state s into disjoint solvable sets, i.e., s =
⋃
i si, where each set has at most cardinality

w, |si| ≤ w, in other words dimension of each si is less than or equal to w. For a given

partition the approximate solution for the original problem is ã(s) =
∑

i a
∗(s
|si|
i ). Note that

we only need to store optimal policies for small scale problems, and an approximate policy

can be generated for every state for the original problem through summation. This solves the

problem of storing the optimal policy. Algorithm 1 summarizes the approximation method.

Algorithm 1: Approximation algorithm

1 Determine exact optimal solutions V ∗(sn), for all sn ∈ S n, for n ≤ w

2 Determine the optimal action a∗(sn) for all sn ∈ S n, for n ≤ w

3 For each s ∈ S

(I) Partition the state s into sets s =
⋃
i si, of each having cardinality at most w

(II) Return approximate policy for state s as ã(s) =
∑

i a
∗(s
|si|
i )

We should also note that the approximate solution depends on the partitions, as the

best partitioning is not obvious. We have employed two different methods: (1) sort states in

ascending order and (2) random order, and picked the one with less cost in our algorithm.

The random order approach generated approximately 10% less cost than the ascending order

approach.

The approximation method can be considered as a state aggregation algorithm [11, 128].

In particular, the N -dimensional state space is aggregated to a w-dimensional state space.

However, one of the main differences in our algorithm is that we do not approximate the

value functions through basis functions. Instead, we simply generate an approximate policy

by summing the policies of aggregated problems.

While our algorithm does not have a theoretical performance guarantee, we provide

an experimental analysis to illustrate the performance of the algorithm in relatively small

problem sizes. As we have stated, we generate 100 5-dimensional instances with random
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transition probability matrices. We set the ICU bed cost cI = 2, the downstream bed cost

cB = 1, the downstream bed availability probability α = 0.63, and the initial state probability

distribution Q = [0, 0.2, 0.33, 0.32, 0.15]. We determine approximate policies through our

approximation algorithm by varying the solvable problem size w from 1 to 4. Finally we

compare the values of the approximate policies with the optimal value. Let πw be the

approximate policy when the solvable problem size is set to w. Define V πw
(s) to be the

value of policy πw for a given state s. Further, define γw as the mean optimality gap across

all states, which is written as

γw =
1

|S |
∑
s∈S

[
V πw

(s)

V ∗ (s)
− 1

]
.

Also let ρw be the maximum optimality gap across all states, which is written as

ρw = max
s∈S

[
V πw

(s)

V ∗ (s)
− 1

]
.

Table 4.1 presents average mean optimality gaps γw and average maximum optimality gaps

ρw among all 100 instances for w ∈ {1, 2, 3, 4} in percentages.

Table 4.1: Optimality bounds for 100 random problem instances

w
1 2 3 4

γw 50.62%± 5.48%1 12.03%± 1.28% 3.63%± 0.49% 3.01%± 0.19%
ρw 51.17%± 5.48% 12.37%± 1.28% 3.95%± 0.49% 3.14%± 0.19%
1 99% confidence intervals of sample averages

Note that the results of the experimental analysis are promising since the optimality gap

is around 50%, when we solve 1-dimensional problems to determine an approximate policy

instead of solving the problem to optimality. Furthermore, this gap reduces even up to 3%

when we solve 4-dimensional problems. Notably, the optimality gap increases as states are

further aggregated.
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4.5 COST AMBIGUITY MODEL FORMULATION

Hospitals can be seen as a network of ICUs and downstream units, where downstream units

can receive patients from multiple ICUs. Reducing the congestion of one ICU by making

earlier requests might increase the congestion in the downstream unit, and hence affect

other ICUs sharing the downstream unit. Due to inter-dependencies among units, a holistic

approach needs to be pursued to decrease the congestion of the whole system. Although a

model considering multiple ICUs and downstream units is not tractable, we can model this

problem by adjusting the downstream bed cost to consider the congestion added to other

ICUs sharing the downstream unit. Unfortunately, this complicates the estimation of the

cost. This motivates us to build a robust model where bed cost parameters are ambiguous.

We adopt the max-min formulation scheme presented in Iyengar [78] and Nilim and El-

Ghaoui [117], which mimics playing a game with nature. We assume that nature selects the

worst possible probability distribution from the uncertainty set in each state and time after

observing the controlled action.

We assume that cB follows some unknown distribution µ in an uncertainty set C. Further

define Eµ as the expectation with respect to the fixed measure µ ∈ C. We assume that cB

is bounded. Hence the robust value function Ṽ (s) for each s ∈ S , and Ṽ (s) the dummy

robust value function to allow transfer one period prior to next decision round, given by

Ṽ (s) = min
a∈{0,1,...,N}

sup
µ∈C

Eµ

[
cµ(s, a) + λ

∑
s′∈S

Ṽ (s′)P (s′|s, a)

]
, (4.12)

where

Ṽ (s) = sup
µ∈C

Eµ

[
cµ(s, 0) + λ

∑
s′∈S

Ṽ (s′)P (s′|s, 0)

]
. (4.13)

We modify techniques provided in [117] to solve the above robust problem. We choose

two different uncertainty set schemes in our study: (1) the interval model, and (2) the

entropy model.
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(i) Interval model: In the interval model we assume that cB can take any value between

an upper bound cB and a lower bound cB. Then the uncertainty set becomes

C = {µ : P µ(cB ≤ cB) = 1, P µ(cB ≥ cB) = 1}.

We assume that the decision maker has a point estimate on downstream bed cost, say ĉB.

Then the upper bound is cB = ĉB +ω, and the lower bound is cB = ĉB −ω. Hence the inner

optimization problem is to determine the probability distribution of cB, which maximizes

the expectation in (4.12). We should note that the interval model is risk averse, and hence

does not assume any further information other than cB being in an interval.

(ii) Entropy model: In the entropy model, we assume that the decision maker has an

underlying probability distribution on cB and the uncertainty set is defined by an entropy

model as described in [117]. Specifically, let q be the empirical distribution on the parameter

cB. Then the description of the uncertainty set becomes

C = {µ : µ ≥ 0, D(µ||q) ≤ β},

where β > 0 is fixed, and D(µ||q) is the Kullback-Leibler divergence from q to µ,

D(µ||q) =
∑
j

µ(j) log
µ(j)

q(j)
.

We use the bisection algorithm of [117] to solve the inner maximization problem, and the

policy iteration algorithm for the outer minimization problem.

4.6 NUMERICAL EXPERIMENTS

In this section, we present numerical results to compare the benefits of the anticipative policy

calculated via our approximation algorithm with two different policies: (1) current practice,

in which a bed is requested when a patient is clinically transferable; and (2) expected transfer

policy, in which the number of beds requested is simply the expected number of transferable

patients in the next period that is rounded closest integer. We compare the policies in a

simulation model described in Section 4.6.1. We present the performance of the non-robust

anticipative policy in Section 4.6.2, and the robust policies in Section 4.6.3.
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4.6.1 Intensive Care Unit Simulation Model

We assume that the patient arrival process is Poisson, and there is infinite waiting room

capacity (e.g., [66] and [88]). We model patient transfers to other hospitals or ambulance

diversions as abandonments from the waiting line and assume that patience is Bernoulli

distributed. New arriving patients or patients waiting in line are admitted to the ICU

whenever there is an empty bed. The initial health of each admitted patient follows the score

process and is independent of other patients. We specifically model the downstream unit,

which we assume has a finite capacity and there is no queue between ICU and downstream

unit, thus a patient waiting for the downstream bed stays in the ICU. We assume that LOS

in the downstream unit is exponential with mean 3 days. We also assume that downstream

bed preparation times (includes cleaning, bed assignment, paperwork, etc.) are exponential

distributed with rate 6 per day. The ICU LOS, i.e., the service process in the ICU, is

dictated by the patient score process, the given transfer request policy, and the downstream

bed capacity. Thus the service process is endogenously determined, which differentiates

our simulation model from many other existing studies that assume a predetermined LOS

distribution. Recall that the transfer policy provided by the optimization model is an input

for the simulation model. We should note that the purpose of the simulation model is to

compare different policies under a more realistic setting. Hence, we relaxed some assumptions

of the optimization model in the simulation model. In particular:

• ICU has a waiting line, thus patients are not lost if the unit is full, but patients may

abandon the queue.

• Downstream unit is specifically modeled, instead of assuming a Bernoulli bed availability

process.

The length of each simulation is 6 years with a warm up period of 6 months. We perform

2,500 replications. Figure 4.2 illustrates main flow of the simulation model.

In our base scenario, we consider a medium-scale medical ICU with 12 beds. The ICU

has 0.85 utilization, the mean LOS is 4.5 days and the mean transfer delay is 9.5 hours.

We should note that transfer policy affects utilization, LOS and transfer delay, hence the

preceding numbers are an outcome of the current transfer request policy. We estimate the
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score transition probability matrix from all the patients who stayed in the unit. We assume

that the ratio of the cost of ICU bed to the cost of downstream bed is 2 and the downstream

unit has 10 beds in the base scenario. We set discount parameter λ to 0.9999 in all the

experiments, which corresponds to approximately a 1% monthly discount.

- Update ICU scores using DTMC 

- Release patients from Downstream as 

their LOS ends 

Transfer patients from ICU considering 

scores and downstream bed availabilities

Generate Poisson patient arrivals and 

assign initial health scores

Admit new arriving and patients waiting in 

the line to the ICU considering capacity 

(FCFS order)

- Employ transfer policy to determine # of 

requests considering scores of patients

- Start transfer operations (clean bed, 

paperwork etc.)

Update simulation time to the next round

Generate abandonments  and release 

patients from waiting line

Decision 

Round?

NO

YES

Figure 4.2: Illustration of the flow of the simulation model

4.6.2 Numerical Results for the Non-robust Anticipative Model

Table 4.2 shows that under all scenarios, the anticipative policy performs better in terms of

costs, utilization, throughput, and transfer delay. In fact, a 11-bed unit under the anticipative

policy performs as well as a 12-bed unit under current practice in terms of utilization. Thus,

by simply changing the policy one might reduce congestion without increasing the unit size.

We note the significant reduction in the mean transfer delay by almost 50%, which reduces

the total LOS and thus helps to improve system efficiency. Table 4.2 also demonstrates that

even a naive policy such as an expected request policy performs better than the current

practice.
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Table 4.2: Performance of policies in terms of the mean utilization, mean throughput and

mean transfer delay with different unit sizes

# of beds Policy Utilization Throughput (per day) Delay (hours)
10 Current Policy 0.9144± 0.00091 2.0441± 0.0020 8.1020± 0.0247
10 Expected Transfer policy 0.8926± 0.0010 2.1191± 0.0021 4.8172± 0.0283
10 Anticipative Policy 0.8820± 0.0010 2.1378± 0.0021 3.7234± 0.0293
11 Current Policy 0.8831± 0.0010 2.1433± 0.0021 8.8298± 0.0307
11 Expected Transfer Policy 0.8557± 0.0011 2.2082± 0.0023 5.5009± 0.0346
11 Anticipative Policy 0.8444± 0.0012 2.2176± 0.0023 4.4954± 0.0357
12 Current Policy 0.8502± 0.0011 2.2178± 0.0023 9.6105± 0.0384
12 Expected Transfer Policy 0.8175± 0.0012 2.2684± 0.0023 6.2085± 0.0425
12 Anticipative Policy 0.8067± 0.0013 2.2779± 0.0024 5.3131± 0.0443

1 99% confidence intervals of sample means

We test the performance of the anticipative policy by changing the load of the ICU. Figure

4.3 depicts the change in the expected number of patients waiting in line to be admitted

to the ICU as the arrival rate changes. Not surprisingly, the anticipative policy performs

best in terms of the expected queue length. Furthermore, one can see from Figure 4.3 that

the benefit of the anticipative policy increases as the ICU gets more loaded, which can be

observed from the fact that the gap between lines gets wider.

The ratio of the ICU bed cost to the downstream bed cost, cI/cB, is the key to define

the anticipative transfer policy, since it captures the relative importance of an ICU bed. We

investigate the sensitivity of the benefit to the change in the cost ratio. We define the benefit

of applying the anticipative policy as the percentage decrease in unit utilization, throughput,

cost and transfer delay when the anticipative policy is applied instead of the current practice.

Figure 4.4 shows the change of benefit when the cost ratio cI/cB varies. We should note

that the benefit of the anticipative policy compared to the current practice depends on the

ratio of the costs of the ICU bed and the downstream bed. It is unsurprising that the

anticipative policy provides the highest benefit when ICU beds are more expensive. The

anticipative policy makes earlier requests, and transfers patients rapidly from the ICU. The

benefit of the policy decreases as the cost of the downstream bed increases. The anticipative

policy becomes more conservative in making earlier requests as the early allocation cost of

downstream bed increases compared to the ICU unit bed cost, i.e., the anticipative policy
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Figure 4.3: Expected number of patients waiting in line under different policies as the arrival

rate changes
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Figure 4.4: Benefit of applying the anticipative policy compared to the current practice as

the ICU bed cost to the downstream bed cost ratio changes
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tends to act the same as the current practice by delaying transfer requests. As mentioned

earlier, the cost might stem from either high downstream costs or the lack of available beds

from downstream beds, and much of the congestion is due to downstream units.

We also examine the change in the benefit of applying the anticipative policy as the

downstream capacity changes, in other words, varying the downstream unit congestion.

From Figure 4.5 we can see that the anticipative policy performs better as the downstream

unit has more capacity. In particular, as the downstream unit gets more congested, patients

have to wait longer in the ICU to find a bed in the downstream unit regardless of the transfer

request policy.
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Figure 4.5: Benefit of applying the anticipative policy compared to the current practice as

downstream capacity changes

4.6.3 Numerical Results for the Robust Methods

We provide numerical results for the two robust models: the interval model and the entropy

model. We test the performance of the robust policies as well as the non-robust anticipative

policy and compare them with the performance of current practice.
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In the interval model, we choose the interval to be [ĉB − 0.5, ĉB + 0.5]. For the entropy

model, we assume that the empirical distribution q of cB is uniform, taking discrete values,

with P (cB = ĉB−0.5) = 1/3, P (cB = ĉB) = 1/3, P (cB = ĉB +0.5) = 1/3. We choose β to be

0.05, 0.25. Note that increasing values of β corresponds to increasing levels of uncertainty.

We first determine optimal policies using our point estimates ĉB ∈ {0.5, 1, 1.5, 2, 2.5, 3,

3.5, 4, 4.5, 5} and uncertainty sets as described, while fixing cI = 1. Next, we simulate the

performance of the policies under different realizations of downstream cost cB ∈ {0.5, 1, 1.5, 2,

2.5, 3, 3.5, 4, 4.5, 5}. Table 4.3 displays the benefit of applying various policies in terms of

total cost relative to the current policy under all scenarios. We highlight the best performing

policy by presenting the largest percentages in bold for each scenario. Also note that we

choose not to present the percentage of the best performing alternative policy in bold for

the scenarios on the lower diagonal of Table 4.3, because the current practice is the best (all

percentages are negative).

From Table 4.3 we see that the benefits of the robust and the anticipative policies diminish

as the downstream bed cost estimate ĉB increases. This is due to the fact that as the cost of

downstream bed increases, the anticipative and the robust policies will delay making transfer

requests. At the extreme, where the downstream bed cost is infinite and the ICU bed cost

is finite, all proactive policies and current practice are the same.

We further make the following observations from the numerical experiments.

(i) The anticipative policy performs best when the downstream bed cost is accurately

predicted, i.e., cB is close to ĉB. This is due to the fact that the robust policies delay

transfer requests by overestimating the downstream bed cost, and hence perform worse than

the anticipative policy.

(ii) The anticipative policy is the best policy when the downstream bed cost is over-

estimated, i.e., ĉB > cB, which corresponds to the upper diagonal scenarios of Table 4.3.

Note that the robust models assign even higher downstream bed costs than point estimate

ĉB, since they are designed to protect the downstream unit. The anticipative model uses

an estimate of downstream bed cost closer to reality than the robust models under these

scenarios. Thus, the anticipative policy performs better than the robust models.
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Table 4.3: Expected discounted cost gain in percentages for best performing policies com-

pared to the current policy

Estimated downstream bed cost ĉB
Policy 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ct

u
al

d
ow

n
st

re
a
m

b
ed

co
st

c
B

0.5

Ant1 19.21* 15.12 6.62 4.32 1.02 0.51 0.24 0.24 0.00 0.00
RI2 15.12 6.62 4.32 1.02 0.51 0.24 0.24 0.00 0.00 0.00

RE0053 17.30 5.27 5.63 1.83 0.73 0.51 0.22 0.21 0.00 0.00
RE0254 14.12 4.67 4.97 1.29 0.51 0.18 0.22 0.21 0.00 0.00

1

Ant 4.95 5.31 4.23 3.21 2.67 1.21 0.53 0.22 0.21 0.00
RI 5.31 4.23 3.21 2.67 1.21 0.53 0.22 0.21 0.00 0.00

RE005 10.85 5.27 4.01 1.83 0.73 0.51 0.22 0.21 0.00 0.00
RE025 7.82 4.67 3.55 1.29 0.51 0.18 0.22 0.21 0.00 0.00

1.5

Ant -4.90 0.45 3.33 2.03 1.58 1.14 0.47 0.21 0.21 0.00
RI 0.45 3.33 2.03 1.58 1.14 0.47 0.21 0.21 0.00 0.00

RE005 -1.40 4.95 3.20 1.95 1.24 0.66 0.47 0.21 0.00 0.00
RE025 5.43 3.67 2.55 1.91 1.04 0.47 0.21 0.21 0.00 0.00

2

Ant -10.09 -3.20 2.10 3.14 0.99 0.44 0.01 0.00 0.00 0.00
RI -3.20 2.10 3.14 0.99 0.44 0.01 0.00 0.00 0.00 0.00

RE005 -5.12 -0.54 3.78 2.52 0.81 0.23 0.00 0.00 0.00 0.00
RE025 -4.32 2.35 3.26 1.43 0.76 0.01 0.00 0.00 0.00 0.00

2.5

Ant -20.11 -14.63 -7.54 -2.32 0.44 0.12 0.00 0.00 0.00 0.00
RI -14.63 -7.54 -2.32 0.44 0.12 0.00 0.00 0.00 0.00 0.00

RE005 -18.79 -4.30 -0.97 1.33 0.24 0.05 0.00 0.00 0.00 0.00
RE025 -15.75 -7.12 1.06 0.97 0.13 0.00 0.00 0.00 0.00 0.00

3

Ant -33.29 -29.31 -14.42 -3.98 -1.12 0.11 0.11 0.00 0.00 0.00
RI -29.31 -14.42 -3.98 -1.12 0.11 0.11 0.11 0.00 0.00 0.00

RE005 -31.24 -19.23 -6.73 -2.99 -0.34 0.11 0.11 0.00 0.00 0.00
RE025 -30.05 -12.21 -3.56 -0.33 0.27 0.11 0.11 0.00 0.00 0.00

3.5

Ant -44.21 -36.39 -17.73 -4.78 -1.45 -0.98 0.09 0.03 0.00 0.00
RI -36.39 -17.73 -4.78 -1.45 -0.98 0.09 0.03 0.00 0.00 0.00

RE005 -40.87 -25.49 -5.24 -2.34 -1.23 0.24 0.06 0.00 0.00 0.00
RE025 -37.15 -21.31 -3.17 -1.51 -1.11 0.10 0.03 0.00 0.00 0.00

4

Ant -52.31 -43.28 -20.96 -5.56 -1.77 -1.05 0.07 0.09 0.00 0.00
RI -43.28 -20.96 -5.56 -1.77 -1.05 0.07 0.09 0.00 0.00 0.00

RE005 -48.75 -27.43 -12.37 -2.55 -1.54 0.05 0.10 0.00 0.00 0.00
RE025 -45.64 -25.19 -10.87 -2.12 -1.19 0.06 0.09 0.00 0.00 0.00

4.5

Ant -65.12 -50.01 -24.12 -6.33 -2.09 -1.12 -0.05 -0.03 0.00 0.00
RI -50.01 -24.12 -6.33 -2.09 -1.12 -0.05 -0.03 0.00 0.00 0.00

RE005 -61.32 -29.89 -14.23 -3.07 -1.33 -1.01 0.00 0.00 0.00 0.00
RE025 -54.44 -26.45 -12.11 -2.51 -1.45 -0.55 0.00 0.00 0.00 0.00

5

Ant -74.22 -56.58 -27.20 -7.07 -2.39 -1.18 -0.02 -0.02 0.00 0.00
RI -56.58 -27.20 -7.07 -2.39 -1.18 -0.02 -0.02 0.00 0.00 0.00

RE005 -65.55 -34.31 -23.21 -4.20 -1.45 -0.78 -0.02 0.00 0.00 0.00
RE025 -58.74 -28.67 -15.43 -2.71 -2.09 -1.10 -0.02 0.00 0.00 0.00

1 Anticipative policy
2 Robust policy with interval uncertainty set
3 Robust policy with entropy uncertainty set where β = 0.05
4 Robust policy with entropy uncertainty set where β = 0.25
* All numbers are in percentages
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(iii) Current practice outperforms other policies when the downstream bed cost is greatly

underestimated. Such scenarios are located at the lower diagonal of Table 4.3. These are

the scenarios where the downstream unit is the bottleneck rather than the ICU unit. This is

intuitive, since in such cases the optimal strategy should be to keep patients in the ICU and

not take the risk of making early allocations. However, proactive policies cannot capture

this as cB is underestimated.

(iv) Note that the range of the benefit for the robust policies are smaller than the range

of the benefit for the non-robust anticipative policy as expected. For instance, the benefit of

the anticipative policy varies between -74.79% and 19.21%, while it is between -56.58% and

15.12% for the RI policy.

(v) It is clear from Table 4.3 that the robust policies might perform better than the

anticipative policy under some scenarios where the downstream bed cost is underestimated.

Interestingly, the performance of the robust policies depends on the underestimation error,

and the uncertainty level implied by the model. In particular, when the underestimation error

is high, RI performs best, as it already implies more uncertainty than the entropy models,

hence is better prepared for the worst scenarios. Similarly, we can also observe that the robust

policy with entropy uncertainty set with β = 0.25 (RE025) performs better than the robust

policy with entropy uncertainty set with β = 0.05 (RE005), under higher underestimation

errors, due to the fact that higher β means higher uncertainty level. Evidently, RE005

performs best when the underestimation error is relatively lower.

4.7 CONCLUSIONS

Understanding of day-to-day ICU operations and altering the existing policies and procedures

can significantly improve patient flow as well as patient outcomes. In this chapter, we

quantify the value of switching from a reactive transfer policy to a proactive transfer policy.

To this end, we build an MDP model, and solve it via an approximation method. Our

results indicate that a proactive strategy can be very effective, for example, a 11-bed unit

under our proposed policy performs as well as a 12-bed unit under current practice. Effective
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use of clinical markers to define patient status through LOS in the ICU is the key to our

success. We also provide a proof of threshold-structured transfer request policy for single

patient problem. We provide numerical support for the existence of threshold policy for

multi-patient problem through an experimental analysis. In addition, we provide a robust

model to evaluate the sensitivity of the anticipative policy to cost parameter estimation

errors. The results show that proactive strategies perform better than current practice in

most of the settings, with the exception of cases where the downstream unit cost is extremely

underestimated.

Some patients (20% in our data set) die while staying in the ICU and were discharged

directly from the ICU without being transferred to a downstream unit. We should note

that our model does not consider these patients and focuses only those who are transferred

to downstream unit. However, we can tackle the problem by adjusting the model in the

following way. (1) Enlarge the state space to contain a death state ∆, where the transfer

score does not change through time whenever patient dies, i.e., the patient stays in the

death state with probability one. (2) Extend the notion of downstream unit to contain the

morgue unit. (3) Assume that a transfer request is necessary for dead patients to transfer

them to the morgue, similar to patients in transferable state. Hence, same transfer request

mechanism now applies for the patients who died in the ICU. Another limitation of our

study is that, we assume that all physicians employed the current practice all the time.

Some physicians might have had a sense of the situation in the downstream unit and acted

proactively when giving transfer decisions. This will reduce the reported benefits of the

anticipative policy. However, expert opinion suggests that acting proactively is rare. Finally,

employing anticipative policies may also influence the staff behavior. In particular, they may

start acting slower in carrying transfer operations, knowing the fact that the transfers are

not imminent. But, we still believe that an early transfer request will enable staff to better

plan their operations, although they tend to act slower, that will eventually improve the

efficiency.
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5.0 AN EXPLICIT STOCHASTIC MODEL OF INTENSIVE CARE UNIT

LENGTH OF STAYS

5.1 INTRODUCTION

Better LOS modeling can greatly enhance the quality of care as well as operational efficiency.

In particular, more accurate predictions help hospital managers to plan the number of beds

and staff required, or enables physicians to identify possible prolonged stays and prepare a

better treatment plan. Many statistical or classification models use Day 1 information to

predict a point estimate or an LOS range. To the best of our knowledge, this is the first

attempt to model ICU LOS explicitly through patient health progression. This model allows

us to distinguish between medically indicated LOS, and congestion LOS.

First, we present statistical and data-mining models to identify potential variables influ-

encing LOS. We should note that our aim is not to employ these models as prediction tools.

We utilize them to give us a brief understanding on factors inducing prolonged LOS’s, as it

is more difficult to model longer LOS’s via probabilistic models presented in this study. We

build a linear regression model with a poor fit (R2 = 0.1). We also build a logistic regression

model to identify patients with prolonged LOS’s. We show that our model presents a good

discrimination. The discriminative power increases 4% as the threshold increases from 10

days to 30 days, i.e., it is easier to distinguish patients staying longer.

Second, we provide an explicit ICU LOS model by (1) considering the health progression

of the patients via the score process, (2) modeling the transfer decision via a threshold

policy, and (3) considering the bed availability and delay dynamics. We analyze the model

by assuming two score processes (DTMC and CTMC), and conclude that the LOS process

is a phase-type distribution under these assumptions. A non-negative random variable is
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said to have a phase-type distribution if it represents the time to absorption of some Markov

chain [115]. Moreover, we compare the performance of the stochastic model with the Coxian

distribution. We show that our model slightly underestimates the LOS (12.5 % smaller mean

value), although it matches the shape of the distribution. The Coxian distribution fits the

best as the model is flexible to fit the LOS data but the phases do not have physical meaning.

Furthermore, the stochastic model demonstrates a poorer performance in predicting the tail

of the distribution compared to the Coxian. We discuss some drawbacks of our model and

discuss future extensions that may improve the goodness of fit.

The remainder of the chapter is organized as follows. In Section 5.2, we present prelim-

inary analysis on the LOS data and the transfer delay data. We discuss statistical models

to identify factors affecting LOS in Section 5.3. We present a detailed description of the

stochastic model and analysis in Section 5.4. In Section 5.5, we discuss performance of the

model while comparing with the Coxian distribution.

5.2 PRELIMINARY ANALYSIS

In this section, we present a preliminary statistical analysis. This will allow us to gain

insights on the underlying structure of the LOS distribution. We use the same population

discussed in Chapter 3 that consists of 16,059 ICU patients whose medical conditions can be

tracked and transfer scores can be created from admission to discharge. Recall that our aim

is to build an LOS model incorporating medical progression. LOS represents the number

of days a patient stayed in one of the ICUs from admission to discharge. We choose not to

remove patients who died in the ICU from analysis as deaths are not known at admission

and dead patients must be considered in resource management. We define transfer delay

as the duration between the time of transfer request and the time of discharge, in which

transfer operations (e.g., assigning bed, cleaning bed, assigning staff) are performed.

Table 5.1 gives the basic descriptive statistics. The LOS distribution is positively skewed

as the mean doubles the median, it has high variability with a coefficient of variation 1.55.

The maximum LOS is around 234 days.
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Table 5.1: LOS and transfer delay descriptive statistics

Mean Median Std. Dev. Minimum Maximum Skewness

LOS (days) 7.12 3.54 11.04 0.21 234.80 5.82

Transfer Delay (hours) 9.59 9.18 0.53 2.973 26.16 0.92

Figure 5.1 depicts the distributions of the LOS and transfer delay. Figure 5.1 demon-

strates that the LOS distribution has a significantly long tail.
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Figure 5.1: Histograms of LOS and transfer delay

Although it is clear visually that the LOS data is not normally distributed, we still

provide the quantile-quantile (Q-Q) plot to show the normality assumption does not hold

for the LOS distribution. Figure 5.2 presents Q-Q plot for the LOS data and the Q-Q plot

for the log-transformed LOS data. We choose not the remove outliers from analysis, since

they represent prolonged LOS’s. Recall that our aim is to model LOS to include longer stays

so that it can be used in resource management decisions.
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(a) LOS (b) Log Transformed LOS

Figure 5.2: Q-Q Plots for LOS

As a starting point for modeling LOS, we fit three distributions; Weibull, Lognormal and

Gamma. Table 5.2 summarizes the estimated parameters of the distributions.

Table 5.2: Distributions and estimated parameters

Distribution Notation Parameters (standard error)
Weibull W (λ, k) k = 0.857 (0.005)

λ = 6.488 (0.063)
Lognormal ln(N(µ, σ)) µ = 1.266 (0.010)

σ = 1.284 (0.007)
Gamma G(α, β) α = 0.846 (0.008)

β = 0.119 (0.001)

We also give log-likelihood, Akaike information criterion and Bayesian information cri-

terion (BIC) values [140] in Table 5.3 for model selection.

Table 5.3: Results with different measures of goodness of fit

Distribution Log-Likelihood AIC BIC

Weibull -47,160 94,324 94,340

Lognormal* -47,134 94,271 94,287

Gamma -47,409 94,822 94,837
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Figure 5.3 presents the histogram of the LOS data and theoretical densities of the fitted

distributions. Lognormal distribution matches the best visually the shape of the underlying

LOS distribution. Our results confirm previous observations [50, 103] that Lognormal dis-

tribution is a good fit and superior to Gamma and Weibull to model LOS. Figures A1, A2

and A3 also present Q-Q plots and p-p plots for the fitted distributions. One can see from

the Q-Q plots in the figures A1, A2 and A3 that all distributions are incapable of modeling

prolonged stays.
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Figure 5.3: Histogram of LOS and theoretical densities of fitted distributions

5.3 STATISTICAL ANALYSIS OF INTENSIVE CARE UNIT LENGTH OF

STAY

In this section, we present a statistical analysis to identify factors affecting LOS. We first

employ a linear regression model, and discuss variables contributing positively to LOS. Next,

we build two logistic regression models, where binary variable is defined as LOS being greater

than a selected threshold. Similar to the analysis in Chapter 3, we use the step-wise back-

ward selection method to remove variables with a p-value threshold 0.05. Some variables
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used in the readmission models in Chapter 3 are unknown prior to discharge, thus we fit

our models with variables available at the admission. We provide estimates of regression

coefficients as well as 95% confidence intervals. We also present ROC-AUC curves to show

the discriminatory power of the logistic regression models.

Table 5.4 presents significant variables in the linear regression model that independently

predicted LOS. Moreover, Table 5.5 demonstrates summary statistics of the linear regression

model.

Table 5.4: Predictors of ICU linear regression LOS model

Variables Odd-ratio (95% Confidence Interval) p-value

(Intercept) -44.238 ( -77.003 - -11.472 ) 0.008

ICU Type Cardiac-T -73.513 ( -90.890 - -56.136 ) < 0.001

ICU Type Medical 42.948 ( 26.807 - 59.089 ) < 0.001

ICU Type Neurological 32.877 ( 18.389 - 47.364 ) < 0.001

ICU Type Surgical -9.906 ( -24.246 - 4.433 ) 0.176

ICU Type Trauma 42.419 ( 16.484 - 68.353 ) 0.001

Origin Level of Care Regular -12.479 ( -23.998 - -0.960 ) 0.034

Origin Level of Care SDU -20.575 ( -30.133 - -11.017 ) < 0.001

Age -0.282 ( -0.512 - -0.052 ) 0.016

Initial SOFA Liver 23.242 ( 18.692 - 27.791 ) < 0.001

Initial SOFA Respiratory 10.800 ( 5.298 - 16.301 ) < 0.001

APACHE III (Admission) 1.224 ( 0.915 - 1.533 ) < 0.001

Charlson Index -25.014 ( -37.741 - -12.287 ) < 0.001

Central Venous Catheter 115.593 ( 107.070 - 124.115 ) < 0.001

Patient Type Surgical 52.155 ( 43.682 - 60.628 ) < 0.001

Number of previous ICU admissions 36.858 ( 28.747 - 44.969 ) < 0.001

Table 5.5: Summary statistics ICU linear regression LOS model

Residual standard error 251.7

Degrees of freedom 16,037

R2 0.099

Adjusted R2 0.098

F-statistic 111.1

p-value < 0.001
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The model exhibits a poor fit with R2 = 0.1. Verburg et al. [148] report that R2

typically ranges 0.05-0.28 among published studies. Figure 5.4 also shows how the model

fits the data poorly. However, recall that our goal is not to provide a prediction model to

be used for planning but identify a selection of variables, which are significant to prolonged

LOS. Verburg et al. [148] review several LOS prediction models and conclude that none of

the models satisfy the requirements given in the study for planning purposes.

(a) Q-Q Plot (b) Residual vs Fitted

Figure 5.4: Diagnostic plots for LOS linear regression model

We build multivariate logistic regression models to predict unexpectedly longer LOS’s.

The aim of the models is to distinguish patients staying longer than a given threshold. We

choose two thresholds; 10 days and 30 days as in [19, 120]. In our data set, 3,225 patients

stayed longer than 10 days and 955 patients stayed longer than 30 days out of total 16,059

patients. We employ a similar 10-fold analysis for validation described in Chapter 3. 10-day

model exhibits an AUC of 0.736 with a 95% confidence interval 0.735-0.737, and 30-day

model exhibits an AUC of 0.770 with a 95% confidence interval 0.769-0.771. Figure 5.5

presents ROC curves for the logistic regression models. Interestingly, the discriminatory

power increases almost 4% as the threshold moves from 10 days to 30 days. Although a

more detailed analysis is necessary, we can argue that it is relatively easier to distinguish

patients with very long LOS’s. Tables 5.6 and 5.7 present predictors of logistic regression

models.
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Figure 5.5: ROC curves for logistic regression models for predicting prolonged LOS with

95% uncertainty bands

From the coefficients in Table 5.4 and odd-ratios in Tables 5.6 and 5.7, we observe that

patients in relatively severe conditions at admission are more likely to stay longer in the

ICU. Both initial SOFA scores and Admission APACHE III score have positive correlation

with LOS similar to many studies [3, 30, 131, 141]. Additionally, patients who are previously

admitted to the ICU tend to stay longer, as the corresponding coefficient is positive in the

regression model (36.858), and the odd-ratios are greater than one in both logistic regression

models (1.309-1.404). Surprisingly, age has a negative coefficient in the linear regression

model (-0.282) and it is not a significant variable in logistic regression model. Contrary to

the literature, increasing age is not a contributing factor to LOS. The model predicts surgical

patients to stay longer than medical patients. Furthermore, patients who are admitted to

the ICU from out of hospital have longer LOS’s compared to the ones admitted from in-

hospital units (stepdown unit or regular unit). Finally, trauma patients are more likely to

have prolonged ICU stays.
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Table 5.6: Predictors of ICU logistic regression model for predicting LOS > 10 days

Variables Odd-ratio (95% Confidence Interval) p-value

(Intercept) 0.015 ( 0.011 - 0.021 ) < 0.001

ICU Type Cardiac-T 0.430 ( 0.351 - 0.526 ) < 0.001

ICU Type Medical 1.544 ( 1.304 - 1.828 ) < 0.001

ICU Type Neurological 1.760 ( 1.505 - 2.060 ) < 0.001

ICU Type Trauma 2.103 ( 1.630 - 2.706 ) < 0.001

Origin Level of Care Regular 0.792 ( 0.698 - 0.897 ) < 0.001

Origin Level of Care SDU 0.699 ( 0.625 - 0.780 ) < 0.001

Initial SOFA Liver 1.186 ( 1.134 - 1.239 ) < 0.001

Initial SOFA Renal 1.065 ( 1.023 1.107 ) 0.002

Initial SOFA Respiratory 1.178 ( 1.111 - 1.249 ) < 0.001

Initial SOFA Cardiovascular 0.945 ( 0.901 0.990 ) 0.017

APACHE III (Admission) 1.013 ( 1.010 - 1.016 ) < 0.001

Charlson Index 0.762 ( 0.657 - 0.880 ) < 0.001

Central Venous Catheter 4.003 ( 3.639 - 4.407 ) < 0.001

Patient Type Surgical 1.736 ( 1.581 - 1.908 ) < 0.001

LOS prior to ICU admission 1.001 ( 1.000 1.001 ) 0.022

Number of previous ICU admissions 1.309 ( 1.209 - 1.416 ) < 0.001
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Table 5.7: Predictors of ICU logistic regression model for predicting LOS > 30 days

Variables Odd-ratio (95% Confidence Interval) p-value

(Intercept) 0.002 ( 0.001 - 0.003 ) < 0.001

ICU Type Cardiac-T 0.692 ( 0.500 - 0.953 ) 0.025

ICU Type Medical 1.907 ( 1.451 - 2.516 ) < 0.001

ICU Type Neurological 1.458 ( 1.113 - 1.919 ) 0.007

ICU Type Trauma 1.872 ( 1.236 - 2.788 ) 0.002

Origin Level of Care SDU 0.828 ( 0.700 - 0.977 ) 0.027

Initial SOFA Liver 1.233 ( 1.154 - 1.317 ) < 0.001

Initial SOFA Renal 1.071 ( 1.006 1.139 ) 0.031

APACHE III (Admission) 1.018 ( 1.013 - 1.023 ) < 0.001

Charlson Index 0.623 ( 0.471 - 0.807 ) < 0.001

Central Venous Catheter 4.444 ( 3.710 - 5.354 ) < 0.001

Patient Type Surgical 2.992 ( 2.511 - 3.583 ) < 0.001

Number of previous ICU admissions 1.404 ( 1.253 - 1.567 ) < 0.001

5.4 STOCHASTIC INTENSIVE CARE UNIT LENGTH OF STAY MODEL

We start by assuming the score follows a scalar stochastic process {St : t ≥ 0} as long as

the patient stays in the ICU. Define a random variable L as the LOS in the ICU. We will

express L based on the score process and bed availability dynamics. We assume that a

patient is medically non-transferable to a downstream unit if her score at time t, St, is above

a certain threshold ψ. We further define a request threshold κ ≥ ψ, where a bed request is

given and the bed becomes available after a random amount of time δ.

Let τ 1
r be the first time to reach the request threshold from admission, i.e., τ 1

r = inf{t >

0 : St ≤ κ}. Further define τ 1
d = τ 1

r + δ be the sum of the first time to reach the request

threshold and the time when the target bed is available. Now, if the patient’s status is

transferable at time τ 1
d , i.e., Sτ1d ≤ ψ, then the patient is transferred, and hence the LOS is

simply L = τ 1
d ; otherwise we need to wait until a patient’s score reaches transfer threshold

κ again and a request is given again, or if the score is already below the request threshold

but above the medical threshold, then a new request is given immediately.
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Let i be the number of times the described cycle is repeated, and then define τ id = τ ir + δ,

and τ ir = inf{t ≥ τ i−1
d : St ≤ κ} recursively. Finally, let Ω be the random total number

of times the cycle is repeated. Then LOS is L =
∑Ω

i=1 τ
i
d − τ i−1

d . Figure 5.6 illustrates a

sample path of the LOS process.
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Figure 5.6: Illustration of a sample path of the LOS process: The patient was first healthier

than κ at time τ 1
r , so a downstream bed was requested. However, when the bed was ready δ1

time units later (at time τ 1
d ), the patient was above ψ, so too sick to be transferred. However,

at time τ 2
r , the next time the patient was healthier than the request threshold κ, the transfer

occurred δ2 time units later (at time τ 2
d )

Next, we characterize the LOS process under certain assumptions. In particular, we

show that if (1) the score process follows a DTMC (CTMC) and (2) the transfer delay is

geometrically (exponentially) distributed, then the LOS process is a phase-type distribution.

5.4.1 The Score Process as a Discrete Time Markov Chain

We assume that the score process is a DTMC and each patient’s health evolves independently.

Let S = {1, . . . , S} be the score set, and P be the transition probability matrix of the score

evolution of a patient.
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P =



p11 · · · p1ψ · · · p1κ · · · p1S

...
...

... · · · ...

pψ1 · · · pψψ · · · pψκ · · · pψS
...

...
... · · · ...

pκ1 · · · pκψ · · · pκκ · · · pκS
...

...
...

...

pS1 · · · pSψ · · · pSκ · · · pSS


.

Further assume that a requested downstream bed becomes available in the next period with

probability α > 0. Now, we will model LOS as the time to absorption of a DTMC by

employing the score process defined by P and the transfer request phenomena. First, define

∆ as an absorbing state where the patient is discharged. Further, define (s, R) for ψ < s ≤ κ

to represent the states where the downstream bed is ready and the patient has a requestable

score. We also define ψ < s ≤ κ as the states where the patient has a requestable score but

the downstream bed is not available. We should note that, if the patient has a transferable

score and the downstream bed is ready then she is discharged, hence s ≤ ψ can be defined as

the states where the patient is transferable and the downstream bed is not available. Finally,

define s > κ as non-requestable states as the patient has a non-requestable score. The patient

stays in the ICU if her score is non-requestable. The probability of going to any other state s′

from a non-requestable state is pss′ (5.1a), where s > κ, and s′ ∈ S. Once the process reaches

to a requestable state s ≤ κ, as patient’s score reaches a requestable score, a transfer request

is given. The patient can be discharged and the LOS process terminates if the patient’s

score switches to one of the transferable scores s′ ≤ ψ and the downstream bed becomes

available. Thus, the probability of going to the absorbing state is α
∑ψ

i=1 psi where s ≤ κ,

given that the process is in s ≤ κ presented in (5.1b). The process stays in a requestable state

s′ ≤ κ, if the downstream bed does not become available, which has probability (1− α)pss′ ,

s ≤ κ, s′ ≤ κ given in (5.1c). The state switches to (s′, R), if the downstream bed becomes

available but the patient score becomes requestable but non-transferable ψ < s′ ≤ κ, which

has probability αpsj, s ≤ κ, ψ < j ≤ κ given in (5.1d). Recall that, if the state switches

to a non-requestable state, we release the downstream bed and wait until it reaches to a
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requestable state to make a request again. The probability of going to a non-requestable

state from a requestable state is pss′ , s ≤ κ, and s′ > κ presented in (5.1e). The process

can switch to other non-requestable states with probability pis′ , where ψ < i ≤ κ, s′ > κ

given in (5.1f). In addition, the process may stay in a requestable and ready bed states with

probability pij, where ψ < i ≤ κ, ψ < j ≤ κ presented in (5.1g). Finally, if the process

is in state (i, R) where ψ < i ≤ κ, the process switches to the absorbing state only if the

patient’s score becomes transferable, which has probability
∑ψ

k=1 pik given in (5.1h), since

the downstream bed is already available. All the remaining transition probabilities are zero,

except the process stays in ∆ with probability one. Let H be the transition probability

matrix of the described process, where each entry is summarized.

H(s′|s) =



pss′ , if s > κ and s′ ∈ S

α

ψ∑
i=1

psi, if s ≤ κ and s′ = ∆

(1− α)pss′ , if s ≤ κ and s′ ≤ κ
αpsj , if s ≤ κ and s′ ∈ {(j, R) : ψ < j ≤ κ}
pss′ , if s ≤ κ and s′ > κ

pis′ , if s ∈ {(i, R) : ψ < i ≤ κ} and s′ > κ

pij , if s ∈ {(i, R) : ψ < i ≤ κ} and s′ ∈ {(j, R) : ψ < j ≤ κ}
ψ∑
k=1

pik, if s ∈ {(i, R) : ψ < i ≤ κ} and s′ = ∆

0, if s > κ and s′ ∈ ∆ ∪ {(s′, R) : ψ < s′ ≤ κ}
0, if s ∈ {(i, R) : ψ < i ≤ κ} and s′ ≤ κ
0, if s = ∆ and s′ 6= ∆

1, if s = ∆ and s′ = ∆.

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

(5.1f)

(5.1g)

(5.1h)

(5.1i)

(5.1j)

(5.1k)

(5.1l)

H can be rewritten as

H =


T

|

T 0

|

− 0 − 1

 ,
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where T 0 is the column vector of the transition probabilities to the absorbing state ∆ from

transient states. Further define Q as the initial state distribution. Proposition 5.1 gives the

complete characterization of L .

Proposition 5.1. If the score process follows a DTMC determined by P, and transfer request

policy is threshold-type and a requested downstream bed becomes available in the next period

with probability α > 0, then the CDF of L is given by:

F (L = k) = 1−QTkI,

the pdf of L is given by:

f(L = k) = QTk−1T 0,

and the nth factorial moment is given by:

E[L (L − 1) . . . (L − n+ 1)] = n!Q(I−T)−nTn−1I,

where I is the identity matrix.

Proof. The result follows from the fact that L represents the time to absorption of discrete

time Markov chain H given that the process starts from an initial state with distribution Q ,

hence it is a phase-type distribution. See [115] for characterization results.
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5.4.2 The Score Process as a Continuous Time Markov Chain

Now, we consider the case of a CTMC score process. We assume that the TRS process is

a CTMC and each patient’s health evolves independently. Let S = {1, . . . , S} be the score

set, and P be the infinitesimal generator of the health evolution of a patient.

P =



−
∑S

i µ1i · · · µ1ψ · · · µ1κ · · · µ1S

...
. . .

...
...

...

µψ1 · · · −
∑S

i µψi · · · µψκ · · · µψS
...

...
. . .

...
...

µκ1 · · · µκψ · · · −
∑S

i µκi · · · µκS
...

...
...

. . .
...

µS1 · · · µSψ · · · µSκ · · · −
∑S

i µSi


.

Further assume that transfer delay is exponentially distributed with rate λ > 0. Similarly,

we will model LOS as the time to absorption of a CTMC by employing the score process

defined by P and the transfer request phenomena. The state definitions of the CTMC is

the same as the DTMC described in Section 5.4.1. The patient stays in the ICU the patient

has a non-requestable score. The rate of going to any other states s′ given that the state is

non-requestable is µss′ , where s > κ, and s′ ∈ S given in (5.2a). Once the process reaches to

a requestable state s ≤ κ, as patient’s score reaches a requestable score, a transfer request

is given. The patient can be discharged or the process transitions to the absorbing state ∆,

if the downstream bed becomes available and the patient’s score is transferable. The rate of

going to discharge state given that the process is in a state where the patient is transferable

and the downstream bed is not available is λ presented in (5.2b). The process can also switch

to a requestable state or a non-requestable state s′ ≤ κ with rate µss′ , s ≤ ψ, s′ ∈ given in

(5.2c). Given that the process is in a state that patient has a requestable but not transferable

score, the process may switch to (s′, R) with rate λ, where ψ < s′ ≤ κ presented in (5.2d).

Recall that, if the state switches to a non-requestable state, we release the downstream

bed and wait until it reaches to a requestable state to make a request again. The process

switches to a non-requestable state with rate µis′ , given that the patient has a requestable

ψ < i ≤ κ but not transferable score and the downstream bed is ready presented in (5.2e).
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If the process is in state (i, R), where ψ < i ≤ κ, the process can go to the absorbing state

if the score process switches to a transferable state, which has rate of
∑ψ

k=1 µik, since the

downstream bed is already available presented in (5.2f). In addition, the process can also

switch to other requestable and ready bed states with rate µij, where ψ < i ≤ κ, ψ < j ≤ κ

given in (5.2g). Finally, the process can switch to other non-requestable states with rate

µss′ , where ψ < s ≤ κ, ψ < s′ ≤ κ presented in (5.2h). All the remaining transition rates

are zero. Let H be the infinitesimal generator matrix of the described process, where each

entry is summarized.

H(s′|s) =



µss′ , if s > κ and s′ ∈ S
λ, if s ≤ ψ and s′ = ∆

µss′ , if s ≤ ψ and s′ ≤ S
λ, if ψ < s ≤ κ and s′ = (s,R)

µis′ , if s ∈ {(i, R) : ψ < i ≤ κ} and s′ > κ

ψ∑
k=1

µik, if s ∈ {(i, R) : ψ < i ≤ κ} and s′ = ∆

µij , if s ∈ {(i, R) : ψ < i ≤ κ} and s′ ∈ {(j, R) : ψ < j ≤ κ}
µss′ , if ψ < s ≤ κ and s′ ∈ S
0, if s > κ and s′ ∈ ∆ ∪ {(s′, R) : ψ < s′ ≤ κ}
0, if ψ < s ≤ κ and s′ = ∆

0, if s = ∆ and s′ = ∆

0, if s = ∆ and s′ 6= ∆.

(5.2a)

(5.2b)

(5.2c)

(5.2d)

(5.2e)

(5.2f)

(5.2g)

(5.2h)

(5.2i)

(5.2j)

(5.2k)

(5.2l)

We skip to present self-loops, which are negative sum of out rates. H can be rewritten as

H =


T

|

T 0

|

− 0 − 0

 ,

where T 0 is the column vector of the transition rates to the absorbing state ∆ from transient

states. Further define Q as the initial state distribution. Proposition 5.2 presents the

complete characterization of L .
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Proposition 5.2. If the score process follows a CTMC determined by P, the transfer request

policy is threshold-type and a downstream bed becomes available after exponentially distributed

transfer delay with rate λ > 0, then the CDF of L is given by:

F (L ≤ `) = 1−Qe(T`)I,

the pdf of L is given by:

f(`) = Qe(T`)T 0,

and the nth moment is is given by:

E[L n] = (−1)nn!QT−nI,

where I is the identity matrix.

Proof. The result follows from the fact that L represents the time to absorption of continuous

time Markov chain H given that the process starts from an initial state with distribution Q ,

hence it is a phase-type distribution. See [115] for characterization results.

5.5 GOODNESS OF FIT PERFORMANCE OF THE MODEL AND THE

COXIAN DISTRIBUTION

In this section, we compare the goodness of fit of the proposed stochastic model with the

Coxian distribution, a special type phase-type distribution. The Coxian distribution differs

from general phase-type distributions in that the transient states (or phases) are ordered.

The chain has k phases and the time spent in phase i is exponentially distributed with

rate µi, and the process may switch to phase i + 1, after phase i, with probability pi or be

absorbed with probability 1 − pi. The process starts from phase 1 with probability 1. The

representation of the Coxian distribution is given in (5.3).
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T =



−µ1 p1µ1 0 0 · · · 0

0 −µ2 p2µ2 0 · · · 0

0 0 −µ3 p3µ3 0

0 0 0
. . . . . . 0

...
...

. . . . . . −µk−1 pk−1µk−1

0 0 · · · 0 0 −µk


. (5.3)

Fitting the Coxian distribution is relatively easier than fitting general phase-type dis-

tributions, since it requires fewer parameter estimations. It has also been shown that the

Coxian distribution is a good fit for the LOS of geriatric patients [49, 62, 105, 106]. Recall

that the stochastic LOS model is also a phase-type distribution. However, the main differ-

ence between the stochastic LOS model and the Coxian distribution is that the phases of the

Coxian distribution do not represent physical conditions, besides the difference on the struc-

ture of the transitions. In fact, the stochastic model is more of a descriptive model of the

LOS based on the evolution of physical conditions of patients. Hence, the parametrization

methods are completely different. We estimate the transition probabilities of the LOS chain

using the score transition probabilities that we have estimated from the data set, whereas

the parameters of the Coxian is estimated via a log-likelihood maximization algorithm.

For the goodness of fit analysis, we build two LOS models with: 10 score states S1 =

{1, 2, . . . , 10} and 20 score states S2 = {1, 2, . . . , 20}. As in Chapter 4, we estimate the

readmission probabilities for all 16,059 patients from admission to discharge every six hours

and map the probabilities to corresponding scores by assuming equally spaced intervals,

e.g.,score i maps into the (i − 1)th probability interval. Next, we estimate the transition

probability matrix P using the data set. We further choose 0.1 as the probability threshold

of transfer, which corresponds to score-1 for 10 score state LOS model and score-2 for 20

score state model. We set the transferable score ψ and requestable score κ same, since in

practice physicians are not utilizing anticipative transfer request policy. We should note

that the simulation is discrete time as the score changes every six hours. Finally, we set

the probability of downstream bed availability probability to 0.63, which corresponds to on
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average of 9.5 hours delay, because the step length of the simulation is six hours. We perform

100,000 replications. For the Coxian distribution, we set the number of phases to 5 and use

the EMPht algorithm developed by Asmussen et al. [5].

Table 5.8 summarizes the descriptive statistics of the models. Figure 5.7 presents the

histogram of empirical LOS and density functions of three models. Moreover, Figure 5.8

depicts the CDFs of the models compared with the empirical LOS CDF.

Table 5.8: Descriptive statistics of the stochastic LOS models and the Coxian distribution

Mean Median Std. Dev. Skewness 99% Quantile

Empirical LOS 7.12 3.54 11.05 5.82 50.93

Stochastic model with 10 score states 5.77 3.38 6.67 2.22 30.38

Stochastic model with 20 score states 6.22 3.63 7.30 2.21 33.13

Coxian 7.13 3.55 11.06 5.43 45.23
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Figure 5.7: Histogram of empirical LOS and density functions of fitted LOS models
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The Coxian distribution outperforms the LOS model in matching the moments. The

stochastic LOS model slightly underestimates the mean LOS (12.5%), closely matches the

median and overly underestimates the standard deviation and skewness. However, it matches

the shape of the underlying distribution. Additionally, the Coxian distribution is better in

modeling the long tails, as its 99% percentile is closest to that of the empirical LOS. We

should note that the 20-score state model performs better than the 10-score state model.

One possible explanation is that we may lose some information through discretization when

creating scores from probabilities. However, a more detailed analysis is needed to conclude

that a score set with more states is better, since having more states will lead to less reliable

transition probability estimates due to a decrease in the sample size.

There are some possible explanations of the moderate fitting performance of the stochas-

tic model, which also addresses the possible improvement directions: (1) The Markovian

assumption of the score process and geometrically distributed transfer delay assumption are

restrictive. (2) The model assumes the physical conditions of the patients can be modeled

with a single scalar based on probability of readmission. However, in practice physicians con-
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sider many other things such as whether downstream unit provides adequate care regarding

resources to treat patients when giving discharge decisions. One future direction is to extend

the state description to incorporate conditions. (3) The predictive power of the readmission

model is not excellent (AUC-0.77); hence it would be bold to state the transfer readiness

score models the patients’ health conditions. We believe that the results are encouraging

and a better fitting descriptive model can be built and utilized.

5.6 CONCLUSIONS

We present a statistical and probabilistic analysis of ICU LOS. In particular, we build linear

and logistic regression models to identify factors yielding longer LOS’s. Next, we present an

explicit stochastic model of LOS that incorporates patient physiology modeled by transfer

readiness score, as well as the transfer delay dynamics. We characterize the LOS process

for a DTMC and a CTMC score processes. We show that the resulting LOS process is a

phase-type distribution. Finally, we test the goodness of fit of the model with the LOS

data. The stochastic model slightly underestimates the LOS, whereas it captures the shape

of the empirical LOS distribution. The Coxian distribution provides the best performance

in matching the moments and the long tail of the LOS distribution. We demonstrate that a

simple stochastic model based on physiology can moderately predict LOS and improvements

on the score potentially improves the goodness of fit.
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6.0 CONCLUSIONS AND FUTURE DIRECTIONS

Modeling patient flow through an ICU is challenging because, unlike other patient flow

models, a stochastic and dynamic model of physiology is crucial. This is very challenging,

and requires enormous volumes of highly detailed data. This dissertation focuses data-

driven approaches to optimally manage operations in the ICUs by: (1) creating a dynamic

transfer readiness score and an explicit stochastic LOS model based on patient physiology

and transfer delay dynamics; (2) developing an optimization model to make anticipative bed

requests using the created dynamic and stochastic score.

In Chapter 3, we construct prediction models to estimate readmission and death prob-

abilities upon transfer to a downstream unit. Our models outperform any published model

in predicting readmissions. We show that the inclusion of dynamic data at least partially

explains improved performance. For both the ICU readmission and late mortality models,

we identified some potentially modifiable factors. Accurate predictions of performance mea-

sures are essential for optimal management of units. In that regard, we construct a new

Transfer Score to model the dynamic nature of patient physiology by employing proposed

prediction models.

In Chapter 4, we develop an optimization model to make anticipative bed requests us-

ing the created dynamic and stochastic score. We illustrate that an anticipative transfer

request policy significantly increases the efficiency by reducing the transfer delays (up to

50% reduction) and hence reducing the congestion in the ICU. We further investigate the

sensitivity of policy change upon cost parameter estimation errors by using robust models,

and demonstrate that proactive strategies are more beneficial than reactive current policy

in most scenarios.
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In Chapter 5, we construct an explicit stochastic LOS model based on transfer score and

delay dynamics. We characterize the LOS process under certain conditions. We compare the

performance of the model with the Coxian distribution. We demonstrate that a model based

on physiology can moderately explain a complex outcome, and can be utilized for planning

purposes.

Our study have some certain limitations and potentially future extensions. Our data

set reflects some bias towards more complete data on sicker patients. The readmission and

mortality prediction models need to be tested with more data. Throughout the study, we

assume that patient’s physiology can be modeled with a single scalar based on probability

of readmission. However, in practice physicians consider many other things such as whether

downstream unit provides adequate care regarding devices, drugs, or training of nurses. One

future direction is to extend the state description to incorporate aforementioned conditions.

A better state description will also improve the performance of the anticipative transfer re-

quest policies. However, new approximation algorithms are also needed to generate policies

in a reasonable time for such extended state space. Constructing different approximation

methods with optimality bound guarantees is another interesting research direction to pur-

sue. Our simulation model considers an isolated ICU-downstream system. A more complex

simulation considering other units, i.e., hospital network as a whole, can be developed to

assess the benefits of the anticipative policies. Testing the goodness of fit of the LOS model

with different score processes and transfer request policies is an immediate future research

direction. Finally, determining the minimal state definition so that the transfer readiness

score process is Markovian is an exciting problem, since the Markov property is critical in

optimization models.
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APPENDIX

PROBABILITY DISTRIBUTION FIT DIAGNOSTIC PLOTS

Figure A1: Weibull distribution fit diagnostic plots

88



Figure A2: Lognormal distribution fit diagnostic plots
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Figure A3: Gamma distribution fit diagnostic plots
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