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MODELING CHEMOTHERAPY- AND RADIOTHERAPY-INDUCED

HEMATOLOGICAL TOXICITY

Christine Carcillo, PhD

University of Pittsburgh, 2017

Chemotherapy and radiation are common treatments for cancer patients. Their mechanism

of action is not targeted to cancerous cells specifically, and non-cancerous cells can suffer the

consequences. Too much therapy can induce hematological toxicities. When cell counts dip

too low, bleeding and infection can reduce and delay treatment. The use of mathematical

models to understand these toxic events is a starting point for avoiding high-grade toxicity. If

patients can be flagged as sensitive to a given therapy early on in their treatment, adjustments

can be implemented in real-time.

A biologically-motivated model of chemotherapy-induced thrombocytopenia is devel-

oped. Platinum compounds such as carboplatin, oxaliplatin, and cisplatin can significantly

lower platelet counts. These chemotherapeutics kill stem and progenitor cells in the bone

marrow, which ultimately leads to a decrease in the circulating platelet count. The model

parameters are able to identify which patients will react strongly to the chemotherapy, as

characterized by a rapid decline in cell count followed by a low-magnitude rebound. This

model was then expanded to include neutropenia, a separate toxicity common to systemic

chemotherapeutics. Clinical outcomes based on survival (good vs. poor) and tumor dif-

ferentiation from healthy tissue (denoted as high or low delta), were used to bin patients.

This model simultaneously captures thrombocytopenia and neutropenia in pancreatic cancer

patients and predicts which patients will have a better or worse overall survival time.

While chemotherapy toxicity often affects rapidly dividing cells in the bone marrow,

radiation can be toxic whether bone marrow is in the beam path or not. Lymphopenia
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occurs as a result of the cells circulating through blood vessels in the beam path while the

patient is being irradiated. An algorithm was developed to track the amount of integrated

damage taken by circulating lymphocytes, and as the damage accumulates which cells die.

Lymphocyte death and replenishment occurs at biological rates taken from the literature.

This model predicts the depth of lymphopenia after each fraction of radiation and can be

combined with a chemotherapy-induced lymphosuppression model to predict cell counts after

combination therapy.
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1.0 INTRODUCTION

Cancer is a devastating disease characterized by abnormal cell growth and unparalleled

heterogeneity. Cytotoxic chemotherapy is able to overcome some of the heterogeneity by

targeting functions common in all dividing cells. This is positive since it is inclusive of

cancer cells, but negative because healthy cells are dying in the process. This results in

direct medical costs upwards of $87.8 billion in 2014. Even with treatment options, over

600,000 Americans are expected to die from cancer in 2017 [12].

Patients can develop severe treatment-induced toxicities, which can lead to dose reduc-

tions and delays, negatively impacting efficacy and outcome. Hematological dose-limiting

toxicities that can arise include thrombocytopenia (low platelet count), neutropenia (low

neutrophil count), erythropenia (low red blood cell count), and leukopenia (low white blood

cell count). Modeling and simulating the mechanisms behind cytotoxicity can provide in-

sights into: cell death and subsequent rebound; treatment options; prognostic indicators;

and cost effective next steps [13].

However, mathematical approaches to systems medicine often result in mathematical

elegance but are not practical in the clinic [14]. Incorporating clinically relevant measure-

ments and biological mechanisms into pharmacokinetic and pharmacodynamic models can

sometimes bolster their predictive capabilities. Additionally, a biological underpinning will

make the model translatable for other diseases and disorders. Modeling the behavior of

hematocytes in response to therapy can yield patient subpopulations with varying degrees

of cytotoxicity and/or overall survival. Patients predicted to respond better and tolerate the

drug for the whole course of treatment could remain on one regimen, while those predicted to

underperform could try alternative therapies. This type of analysis that cannot be captured

by sparse data alone can be predictive of overall survival and guide personalized medicine.
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Cancer occurs when cell growth is uncontrolled and cell proliferation rates exceed apop-

tosis rates. As the cells grow and divide, a mass known as a tumor forms. Once the tumor

is large enough to be detected, there is a good chance that the cancer has spread or metas-

tasized to other areas of the body [12]. Surgery can remove most of the primary tumor

when it is in an accessible and operable area but does not always get all of the cells in that

region. Radiation, while still a localized option, can be used to shrink the tumor prior to

surgery or reach the cancer cells surrounding the tumor that escaped surgery. Alternatively,

immunotherapy, or targeted therapies can have more widespread kill, but they are still spe-

cific to a certain mechanism that may or may not be present in all cancerous cells. The only

systemic treatment currently available to infiltrate metastases is chemotherapy [12].

Cytotoxic chemotherapies target mechanisms found in all cells and can therefore kill

cancerous and healthy cells. The mechanisms of action tend to involve the cell cycle, to

take advantage of cancerous cells rapid cell division [12]. Bone marrow cells also rapidly

divide and are a prime target for chemotherapy. These stem and progenitor cells in the bone

marrow differentiate into circulating cells such as platelets, neutrophils, and lymphocytes.

These mature cells play important roles in the clotting process, and innate and adaptive

immunity [15, 16, 17]. When these processes are impaired by low cell counts, bleeding and

infection can occur. This is why a balance between efficacy and toxicity is of such importance

in cancer treatment plans. Even if more chemotherapy reduces tumor growth, the limiting

factor is toxicity.

Any drug, including chemotherapy, has an associated patient-specific pharmacokinetic

(PK) profile of absorption, distribution, elimination and metabolism that can be quantified

with a variety of bodily measurements including drug concentrations in the blood plasma,

urine, and tumor. Using PK models that are drug specific is important, because even within

chemotherapy, drugs have different residence times and mechanisms of action. Different cell

types have varying sensitivities to different chemotherapies. For instance, doxorubicin has a

high rate of neutropenia associated with it, and carboplatin has a high rate of thrombocy-

topenia [18]. The magnitude and duration of drug are often inputs into the PK model, and

the output profile drives drug effects on the body referred to as pharmacodynamics (PD)

[19, 20].
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As with any drug, the desired effects need to outweigh the side effects. Both desired

PD (tumor suppression) and undesired PD (toxicity) result from a given dose (Figure 1.1).

Toxicities arise when the patient is highly sensitive to a dose, or the patient does not have

sufficient time to recover from the toxic side effects before the next dose. Toxicities can halt

or reduce scheduled chemotherapy doses. Modeling the hematological toxicities can provide

keys to understand why some patients can tolerate chemotherapy, while others require lower,

less frequent or alternative treatments.

Tumor Growth 

Pharmacokinetic 
(PK) 

Pharmacodynamic 
(PD) Efficacy 

Pharmacodynamic 
(PD) Toxicity 

Dose 

Figure 1.1: Models of cancer, chemotherapy, and their interactions. A scheduled dose of

chemotherapy has drug pharmacokinetics that drive pharmacodynamics. Desired pharma-

codynamics suppress tumor growth by killing cancerous cells, while undesired pharmacody-

namics lead to toxicities that can reduce or delay subsequent doses.

1.1 LINEAGE TREE

Stem cells are undifferentiated cells that can proliferate and mature into specific cell types

(Figure 1.2). They are similar to cancerous cells, since they are rapidly dividing. This

makes them susceptible to chemotherapy with mechanisms of action involving the cell cycle.

Progenitor cells also proliferate but have signals from the body to become certain cell types.
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Therefore, in a thrombocytopenic model, the thrombocyte progenitor cells are also at risk

of cell death due to chemotherapy. However, a common progenitor cell population can give

rise to more than one cell type. Therefore, eliminating progenitors can result in downstream

effects of multiple cell types.

The time it takes from the patient receiving the drug to the observable decline in pro-

genitor cells has been modeled a number of ways. A step function or switch turns on and

off drug effects, in a binary way, indicating a rapid effect time. This is not always biological

but easy to start with, if no other information is available [21]. Another option is to use

the entire PK profile to cause a PD effect. The PK and PD models can be joined directly,

or additional states can be added if a time delay is observed from plasma to bone marrow

concentrations.

After appropriate equations are set for the drug entering the bone marrow from the

blood stream, the elimination term is introduced on stem and progenitor cells in the bone

marrow. Starting simple, a linear elimination term has been used to remove cells through

direct cell death (Eqn. 1.1). This term has been modified by some to mimic saturating drug

pharmacokinetics using the hill equation (Eqn. 1.2). For instance, cycle specific drugs can

only impact cells in a certain stage of the cell cycle. Therefore, the drug may be eliminated

as cells are in other stages of the cycle.

Linear = −Slope×Drug(t)Cell(t) (1.1)

Hill =
−Emax×Drug(t)nCell(t)

ECn
50 +Drug(t)n

(1.2)

This toxic effect in the progenitor populations produces dynamic behaviors that propa-

gate down to mature circulating cells, the clinically measurable data. Two main modeling

methods are used including a lag time, that delays the onset of effects by a given time, and

transit compartments, that reduce the early time effects. Lag time models introduce numer-

ical issues and completely ignore any initial effects. Meanwhile, adding or subtracting the

number of transit compartments adds flexibility in the output profile. This is why transit
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Figure 1.2: Hematopoiesis lineage. Figure obtained at affymetrix eBioscience [2]. Multipo-

tent stem cells can differentiate into different cell types including platelets, neutrophils and

lymphocytes such as T- and B-cells. Various cytokines impact specific steps in the transition

from stem cell to fated cell type.
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Table 1.1: Platelet, neutrophil and lymphocyte grades of toxicity. Toxicity is graded from 1

to 4 with 4 being the most severe. Often grades 3 and 4 warrant dose reductions or delays,

while grade 2 will be monitored. LLN is the lower limit of normal [1].

Grade Platelets (cells/L) Neutrophils (cells/L) Lymphocytes (cells/L)

1 75×109<Pc<LLN 1.5×109<Nc(t)<LLN 0.8×109<Lc(t)<LLN

2 50×109<Pc<75×109 1.0×109<Nc(t)<1.5×109 0.5×109<Lc(t)<0.8×109

3 25×109<Pc<50×109 0.5×109<Nc(t)<1.0×109 0.2×109<Lc(t)<0.5×109

4 Pc<25×109 Nc(t)<0.5×109 Lc(t)<0.2×109

compartments are used more often [22]. The maturation cascade used with transit compart-

ments typically uses an average maturation time between each state within a given cell type.

However, when switching from a neutrophil to a thrombocyte, the maturation time must be

adjusted because each cell type has its own unique range of maturation. Thrombocytes have

a longer time to mature thrombocyte than neutrophils. Even though an average maturation

time is used in population analysis, letting this parameter be patient specific could shed light

on individual variability.

The toxicity in the clinically observable cell types are graded on a scale from 1 to 4, with

4 being the most severe (See Table 1.1) [1]. When the cells nadir in the grade 3 or 4 toxicity

range, dose reductions and delays occur. This reduction or delay of future doses can greatly

impact the effectiveness of chemotherapy on tumor reduction. If the severity of toxicity can

be predicted, drug schedules can be optimized to avoid toxicity.

When the cells begin to decline in number, the body sends feedback signals to stem and

progenitor cells through cytokines and other regulatory molecules, to increase cell division

and regain homeostasis. The feedback response typically produces some overshoot. The

rebound is commonly represented as a power function of the ratio between the individuals

baseline cell count and the current cell count with time (Eqn. 1.3).
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Rebound = (
C0

Cc(t)
)γ (1.3)

Care must be taken so that oscillations dampen and are not sustained well after treatment

ends. Additionally, rescues, often a recombinant version of the cytokine responsible for

proliferation, can be exogenously administered to speed up recovery and prevent grade 3

and 4 toxicity.

The following sections will provide characteristics specific to white blood cells, red blood

cells, and platelets, as well as, common connections in the hematopoietic lineage tree (Fig-

ure 1.2) and available rescues. Also, models in the literature that address chemotherapy-

induced hematological toxicity will be reviewed as they apply to specific cell types.

1.2 LEUKOPENIA

White blood cells (WBC), also known as leukocytes, make up the cells in the immune system

and are derived from stem cells in the bone marrow. WBC are broken down into five main

types: (1) neutrophils (60 %) (2) lymphocytes (30 %) (3) monocytes (4) eosinophils and

(5) basophils [23]. Many models lump all white blood cells together and track the total

WBC count over the course of treatment. Minami et al. [24, 25] used an indirect-response

approach to account for leukopenia in patients receiving a 3-hour infusion of paclitaxel. They

incorporated a sensitivity factor of the myeloid cells, to account for variable cell death over

time, and a lag time for peripheral leukocyte decline. The data provided was captured by

the model with nadirs ranging from 12 to 16 days, but feedback regulation was neglected,

and an overshoot is not possible by using this model.

Soon after that, a model was published studying leukopenia in rats, after the admin-

istration of 5-Fluorouracil [26]. This model has a feedback function from the circulating

leukocytes back to the production rate of the first set of sensitive proliferating cells. The

feedback is the fraction of leukocytes at baseline over the leukocytes in circulation.
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Using a similar model with human patient data, Friberg et al. tested a single model

independently on leukocytes and neutrophils under six different chemotherapies [3]. The

structure of the model has one proliferating compartment sensitive to chemotherapy that is

regulated by a feedback term of the baseline circulating cell type over the current circulating

cell concentration. Unlike their rat model, it is raised to a power, γ. The proliferating cells

mature at a mean transition time (MTT), that is broken up into mean transit rates (ktr),

until they mature and enter circulation in the blood stream (Figure 1.4).

The circulating cells have a natural cell death to maintain steady state. By changing

only the MTT, gamma, and drug elimination terms, (slope for linear and Emax and EC50

for Emax model), the underlying model can separately capture neutrophils and leukocytes

throughout treatment. This model is a hallmark model in the pharmacometric literature

and the basis of most chemotherapy-induced hematological toxicity models. The simple

structure captures the basic understanding of biology and uses only a few parameters to

capture multiple cell types and drugs. The power lies in the simplicity, but when a deeper

understanding is desired, additional biology must be incorporated.

Kobuchi et al. took Friberg’s human model with the gamma term and separately applied

it to 5-Fluorouracil in rat neutrophil, leukocyte, and lymphocyte counts [27]. The model

structure inherently can produce sustained oscillations, if the gamma term is too high, as

can be seen in their simulations of lymphocytes. This model artifact is not necessarily

biological and could warrant a new feedback response function. This model, on top of

tracking leukocytes, also tracks lymphocytes, which are a subset of leukocytes. This is

important because lymphocytes are the main cell type of the immune system and are a

separate branch of the hematopoietic lineage tree. The mechanisms behind proliferation and

maturation could be vastly different.
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Figure 1.3: Seminal model describing cell maturation with feedback of chemotherapy-induced

myelosuppression [3].

Figure 1.4: Typical time-series profile for different cell types after single dose treatment [4].
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1.3 LYMPHOPENIA

All WBCs come from a common myeloid progenitor, with the exception of lymphocytes.

McCune et al. was able to model lymphopenia through the nadir and approaching baseline

levels in the recovery phase [28]. Their Friberg-inspired model should be expanded to include

feedback for biology, but the data presented did not require it. This is fine for a single dose

but future doses will need to include long term dynamics.

Lymphocytes are further broken down into three types: (1) T cells (2) B cells and (3)

natural killer cells. T and B cells account for the vast majority of lymphocytes [23]. Even

though T cells develop in the thymus, and B cells develop in the bone marrow, all cell

types start out in the bone marrow [23]. One model that delves into the distinctions among

lymphocytes was made by Velez de Mendizabal et al. By observing rat B cells at different

stages of maturity, two subpopulations with different dynamics emerged [29]. If the standard

Friberg model was used, then both immature and mature B cells would appear to have similar

dynamics. To account for the discrepancy, they added a second maturation chain, that a

fraction of the differentiated cells enter, and a second feedback response.

Thus far, models have been reviewed that capture the dynamics of a single cell type.

Looking back at the hematopoietic lineage tree (Figure 1.2), many interdependencies are

present. Quartino et al. do not combine models, but they at least try to account for

tracking all WBCs by the summation of neutrophils and non-neutrophils [4].

One possible motivation for exploring combined models is the neutrophil to lymphocyte

ratio (NLR) [30, 31, 32]. The ratio is a hypothesized marker of inflammation, and it is

also used in cardiovascular mortality and fatty liver disease [33, 34, 35, 36]. Currently the

NLR is only looked at as a pretreatment ratio and not dynamically throughout the course

of treatment. Many studies have found that patients coming in with a high NLR will have a

poor prognosis((>4) [30], high mean (6.02) [31], review article [32]). Another motivation for

combined models is overlapping regulation, stemming from a common progenitor state, such

as the common myeloid progenitor. The common myeloid progenitor state is responsible for

the next three cell types discussed.
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1.4 NEUTROPENIA

Compared to other cell types, neutrophil production and regulation are well studied and un-

derstood. They make up the majority of white blood cells, play a major role in inflammation

and immunity, and neutropenia is a common dose limiting toxicity. Neutrophils have high

mobility and can rapidly be recruited in large numbers. The main feedback molecule for

stimulating more neutrophils is granulocyte-colony stimulating factor (G-CSF). There are

numerous articles and reviews for neutrophils, so the focus of this will be on the most recent

of those.

In 2012 Hansson et al. modeled patients who had grade IV neutropenia after docetaxel

administration [37]. They found that patients with neutropenic fever had a faster time to

nadir (MTT) and higher drug sensitivity (EC50). Meanwhile Zhuge et al. expanded the

average transit rate to be more mechanistic with specific rate constants for proliferation,

maturation and apoptosis [38]. This model was extended further to include G-CSF binding

and internalization kinetics, and a neutrophil reservoir [39].

A biologically-motivated model with average maturation kinetics by Ho et al. not only

captures cancer chemotherapy dynamics with G-CSF rescue, but also captures the inflam-

matory kinetics that occur on a much faster time scale [40]. A marginal pool in the vascular

space is in rapid equilibrium with the circulating neutrophils. The circulating neutrophils

can enter the extravascular space and be taken up by macrophages, thus activating T cells in

the spleen and lymph nodes. This model has many cytokines that have nonlinear feedback

relationships to capture both slow and fast dynamics.

A few other recent models include a model with the Friberg base, but a more detailed

feedback loop including endogenous G-CSF [41], with additional cell cycle dynamics in the

proliferating compartment [42], and with exogenous G-CSF [43].
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1.5 THROMBOCYTOPENIA

Neutrophils and thrombocytes share the common myeloid progenitor state, in addition to

the key regulatory molecule thrombopoietin (TPO). TPO plays a lesser role in neutrophil

production by providing feedback on the common myeloid progenitor cells, but it plays a

major role through the lifecycle of platelets. Platelet production is critical in hemostasis,

coagulation, and inflammation and is regulated by many types of feedback [15]. For platelets,

the maturation path starts with a colony-forming unit megakaryocyte (CFU-Mk), that turns

into a megakaryoblast, matures to a promegakaryocyte, and finally into a megakaryocyte.

Megakaryocytes are large cells with lobulated nuclei and are the last step before platelet

production. Megakaryocytes migrate and localize to the endothelial border where fragments

break off into the blood stream. These fragments are the platelets and each megakaryocyte

produces 1000-3000 platelets [44, 45]. Once in circulation, one-third of the thrombocytes

will sequester in the spleen [46, 47, 48].

The first key regulator of thrombopoiesis is thrombopoietin (TPO). TPO is constitu-

tively produced in the liver and kidneys and inducibly produced in the liver [47]. It is a

ligand molecule with a corresponding receptor found on both megakaryocytes and platelets.

As platelet production increases, more TPO is taken up by the receptors and out of circu-

lation [49]. Therefore, the platelet/megakaryocyte count and TPO count have an inverse

relationship. TPO plays such a major role in feedback regulation, that in TPO deficient

mice, a 90% reduction in platelet count was observed [50]. The ligand/receptor relationship

relays feedback to achieve homeostasis through signals to the stem and progenitor cells [48].

A second regulatory feedback in platelet production is through stromal cell-derived factor

1 (SDF-1) produced by stromal cells. This chemokine is involved in the chemotaxis of the

megakaryocyte to the endothelial border [51]. In response to low platelet counts, SDF-1

helps localize the megakaryocyte and increases the likelihood that it will release platelets

into the bloodstream [52].

Bernstein and colleagues used a pharmacodynamic model, to separate good responders

from poor responders, by plotting the TPO concentration as a function of platelet count

[53]. TPO binds to platelets and megakaryocytes in a ligand receptor fashion, giving TPO
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and platelet count have an inverse relationship. Their correlation found it beneficial to have

a strong inverse relationship, compared to a weak one.

In addition to including TPO (relative not absolute) into their mechanistic model of

thrombocytopenia, Scholz et al. added an age structure to platelets [21]. Newly formed

platelets tended to sequester in the spleen and are released from the spleen after a function

of time. Moreover, they use a complex self-renewal function for stem cells but account

for chemotherapy as a simple step function. In another paper with patients receiving an

antibody-drug conjugate, two patient subpopulations emerged from their data [54]. Some

patients returned to baseline before the subsequent cycle, while others returned to a new

and lower baseline, producing a downward drift. The final model was based off the classic

Friberg model, but it had a depletion rate on the baseline proliferating compartment.

Of course there are many Friberg-inspired models without additional mechanistic in-

sights, that for reference include one of neutrophils, leukocytes and platelets in response to

2α-deoxy-2α-mehtylidenecytidine [55], and three of neutrophils and platelets in response to

indisulam [56, 20] or carboplatin plus paclitaxel [8].

More recently, the TPO receptor ligand relationship was modeled in depth using data

from mice receiving chemotherapy and radiation [57]. The model captured the endogenous

TPO levels, along with platelet counts over time. However, in their simulated time courses

of platelets, the rebound effect is not present in the recovery phase of thrombocytopenia, as

seen in humans. This leads back to the controversy of scaling non-human models in humans.

Since TPO is the main regulator of platelet production, recombinant human TPO and

TPO receptor agonists have been studied to boost platelet levels, so more drug can be admin-

istered. Hayes et al. modeled patients getting carboplatin with and without eltrombopag, a

TPO receptor agonist [58]. The pharmacodynamic model is simple and uses a linear addition

term for the positive effects of eltrombopag. Rescues for thrombocytopenia are still not used

widely, unlike G-CSF for neutropenia, so dose reductions and delays must be avoided by

choosing appropriate doses.
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1.6 ERYTHROPENIA

Platelets are actively involved in the clotting process, and when platelet counts get too low,

spontaneous bleeding can occur. Anemia is a condition when red blood cells get too low, due

to the chemotherapy itself and as a byproduct of thrombocytopenia. Woo et al. modeled

chemotherapy-induced anemia in rats that were administered carboplatin [59]. Akin to TPO,

erythropoietin, EPO, was the molecule in the feedback loop that stimulates erythropoiesis.

Carboplatin killed cells in the proliferating compartment, but it also had a secondary impact

due to cell elimination of mature red blood cells from internal hemorrhage associated with

thrombocytopenia.

Schirm et al. built a more mechanistic model of human anemia, with chemotherapy

and exogenous EPO administration [60]. This model was later added to their granulopoiesis

model to create one of the first combined hematological toxicity models with overlapping

feedback response [61].

In addition to EPO, Jayachandran et al. added red blood cell mean corpuscular volume,

as a marker for efficacy, in patients with childhood Acute Lymphoblastic Leukemia, who were

administered 6-Mercaptopurine [62]. In another study, a very simple pharmacodynamic

model of 5-FU-induced erythropenia in rats was built with only two compartments [27].

One compartment was for precursor production, and the other was for circulating blood

cells. Again, with no feedback term, this model is incapable of the overshoot in the rebound

phase, so all simulations just approach baseline levels.

Few studies have shown the effectiveness of recombinant TPO, but recombinant EPO

has been implemented for many years. Ramakrishnan et al. modeled recombinant human

EPO in healthy patients [63], and more information including cytotoxic chemotherapy and

EPO can be found in a review of erythropoiesis-stimulating agents [64].
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1.7 NON-HEMATOLOGICAL AND OVERLAPPING TOXICITIES

While the focus of this research tracks hematological toxicity, patients often experience non-

hematological toxicities. Dynamic analysis becomes more difficult, since there isn’t always

a measurable data point to track severity. One patient’s level of tolerance may exceed

another patient. The side effects range from fatigue and hair loss, to nausea, rash, vomiting,

diarrhea, nerve pain and kidney problems, to name a few. For instance, drugs in the taxane

and platinum families, at certain cumulative doses, produce peripheral neuropathy. Unlike

hematocytes, nerve cells don’t always regenerate, resulting in permanent damage [65].

However, even if a side effect is not life threatening or create a permanent problem, the

patient may wish to delay future treatments, or try a new therapy, to improve quality of

life. Any deviations from the planned treatment course could impact efficacy. This makes

modeling and simulation a valuable approach, by limiting the number of toxicities that arise.

Modeling becomes more difficult when multiple drugs are given at the same time. Com-

bination therapy is almost always prescribed, and it has proven successful by attacking the

cells at multiple stages of the cell cycle. If the toxicities of the drugs don’t overlap, then a

boost in efficacy could be achieved. When the toxicities overlap, or drug-drug interactions

occur, it is difficult to determine which drugs contribute which percentage of the toxicities.

Even though carboplatin and paclitaxel is a combination that is still used for ovarian and

lung cancers, thrombocytopenia, anemia, and nausea are common grade 3 and 4 toxicities

for both as monotherapies [66]. The overlapping toxicities could be additive or synergistic

and result in dose limiting toxicity. Therefore, the dose magnitudes and frequencies must be

carefully chosen.

1.8 RADIATION

In addition to chemotherapy, about 50% of cancer patients receive radiation therapy [67].

Radiation is mainly a localized treatment option, although whole body irradiation can be

used. Radiation uses targeted high energy waves to damage DNA. The four main types of
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radiotherapy are 3D conformal, intensity modulated, image-guided, and stereotactic body

[67]. They differ in precision of tumor margins and intensity of beam.

The damage inflicted by radiation can be enough to kill the cell abruptly, in a linear

fashion, but also quadratically, as damage accumulates with fractionated radiation [68].

This is because DNA is double stranded, and acute damage to one strand can sometimes be

repaired before the next fraction of radiation. Cancerous cells go through cell division at a

faster rate than normal cells, and they will have likely divided with damage. Entire fields of

study are dedicated to radiation dosimetry, but little is out there regarding the lymphopenia

commonly associated with it.

It is generally accepted that lymphocytes are more sensitive to the effects of radiation

than other cell types, and in some cancers, the degree of lymphopenia correlates to overall

survival [69]. For instance one model concluded this using multivariate regression in non-

small cell lung cancer patients [70]. Their explanation is that after enough fractions of

radiation, a large percentage of lymphocytes will pass through the field of radiation so that

lymphopenia can occur [71]. Their model was built using data through the course of radiation

but not during the recovery phase post-radiation. Even if enough cells circulated through

the radiation field, another phenomena must be taking place to account for such prolonged

recovery times after radiation [72, 73].

There are long standing hypotheses on lymphocyte recruitment post-radiation. The main

one is that radiation damages the tissue, releasing damage associated molecular patterns

(DAMPs) [74, 75, 76, 77]. The DAMPs initiate an immune response and recruit T-cells to

the site of damage. As fractions of radiation accumulate, T-cells are killed directly by the

radiation, as well as, through the immune response. This results in a prolonged recovery of

lymphocytes to baseline post-radiation.
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1.9 RADIOSENSITIZATION

There can be added benefits of giving both chemotherapy and radiation to treat cancer

patients. Chemotherapies that impact DNA damage repair, or arrest cells in a phase of

the cell cycle, create a certain level of damage [78]. With the addition of radiation, the

damage can be sufficient to result in cell death. Timing of radiation and radiosensitizing

chemotherapy, whether it is given before and/or concurrently, is still being studied.

Another radiosensitizer, besides chemotherapy, is oxygen. Solid tumors invade already

occupied space and eventually use up all the local resources, such as oxygen carrying blood

supplies. This creates a hypoxic environment that limits the efficacy of radiation [79]. Ra-

diation and oxygen produce free radicals that are toxic to cells. In the absence of oxygen,

the free radicals are reduced and the DNA can be repaired.

1.10 DISSERTATION OVERVIEW

Chemotherapy and radiation were huge advances in cancer treatment. They are both potent

methods of reducing cancerous cell populations. This efficacy comes with a cost, and it

is ultimately what limits how much treatment a patient undergoes. Dose limiting toxicities

often are hematological, because bone marrow cells are rapidly proliferating. Moreover, radi-

ation eliminates sensitive, circulating lymphocytes. Building biologically-motivated models,

that describe hematocyte elimination and regulation, is a cost and time effective method of

research that could lead to improved patient outcomes.

Chapter 2 starts with the first toxicity model of chemotherapy-induced thrombocytope-

nia. The model was developed using patient platelet counts after a high dose of carboplatin

and incorporated two key regulators. The two regulatory molecules are thrombopoietin

(TPO) and stromal cell-derived factor 1. The model was subjected to a affine parallel tem-

pering Markov chain Monte Carlo (APT-MCMC) technique to find parameter distributions.

The distributions for patients that entered grade 4 toxicity and required platelet transfusions

were statistically different than for those who were less sensitive to the pharmacodynamic
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effects. A test dose lower in magnitude is proposed to determine early on which patients can

tolerate larger doses.

Chapter 3 takes the previously built thrombocytopenia model and expands it to include

neutropenia. This is possible because platelets and neutrophils share a common myeloid

progenitor state and regulation from TPO. Additional motivation for combining the two cell

types is that both seem to be sensitive to chemotherapy in a locally advanced pancreatic

cancer population. Granulocyte-colony stimulating factor (G-CSF), specific to neutrophil

production, was also added. This combined model of platelets and neutrophils was imple-

mented in APT-MCMC, and parameter distributions were found for two patient subpopu-

lations. The two groups of two subgroups for this patient data set were ”high delta” and

”low delta” which describe the tumor histology, and poor and good overall survival. ”High

delta” tumors were previously associated with a poorer outcome than ”low delta”. While

the histology is an indicator of survival, the actual survival times for patients were also

used. Patients were subdivided into those that survived shorter and longer than the median

overall survival of 19.1 months. This model was validated with another dataset of patients,

receiving a different chemotherapy plan, with a new cutoff of 14 months overall survival.

Chapter 4 covers a model of radiation-induced lymphocytopenia. Lymphocytes play a

critical role in the immune system, and low counts can result in infection. The fraction of

cells that die after a given beam of radiation is predicted using an algorithm inclusive of cell

death and generation. The probability of cell death is based on in vitro radiosensitivities,

and generation is applied via a daily lymphocyte turnover. This model can be combined with

a chemotherapy-induced myelosuppression model to predict toxicity in combination therapy

regimens.

Chapter 5 focuses on the conclusions of all the hematological toxicity models and what

impact they have made. Furthermore, it discusses future work that has the potential to

translate to the clinic.
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2.0 BIOLOGICALLY-MOTIVATED MODEL OF

CHEMOTHERAPY-INDUCED THROMBOCYTOPENIA

Thrombocytopenia is when an individual has a below average platelet count. This can be

an inherited or acquired condition, due to a decreased production such as from dehydration,

sepsis, or a hereditary syndrome, or an increased destruction, such as from idiopathic thro-

mocytopenic purpura, lupus, or dengue fever, or drugs such as heparin or chemotherapy.

Carboplatin is a chemotherapy with the dose limiting toxicity of thrombocytopenia. Two

previously published studies have control groups that only received carboplatin, and the pa-

tients developed severe thrombocytopenia [5, 6]. A model was built to capture the dynamics

behind platelet production, regulation, and response after carboplatin.

Platelet production is critical in hemostasis, coagulation, and inflammation and is reg-

ulated by many types of feedback [15]. Blood cells start as stem cells that mature and

differentiate in the bone marrow into specific end cell types, based on chemical cues in the

microenvironment. For a platelet, this path starts with a colony-forming unit megakaryocyte

(CFU-Mk) that turns into a megakaryoblast, matures to a promegakaryocyte and finally into

a megakaryocyte. Megakaryocytes are large cells with lobulated nuclei and are the last step

before becoming a platelet. Megakaryocytes migrate and localize to the endothelial border,

through the help of stromal cell-derived factor 1 (SDF-1), where fragments break off into the

blood stream. These fragments are the platelets, and each megakaryocyte produces 1000-

3000 platelets [44, 45]. Once in circulation, one-third of the thrombocytes will sequester in

the spleen while the rest are circulated as depicted in Figure 2.4 [46, 47, 48, 80]. Thrombopoi-

etin (TPO), a ligand molecule with associated receptors on platelets and megakaryocytes,

relays feedback signals to stimulate proliferation as needed.
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2.1 MATERIALS AND METHODS

2.1.1 Patient Data

Individual platelet time series data was obtained from Smith et al. for seven patients (Fig-

ure 2.1) [5]. The data was from a study observing if interleukin-1α could be used as a toxicity

rescue for thrombocytopenia. In order to study changes from baseline, a control group was

only given high dose carboplatin and no interleukin-1α. Therefore, to build a model in

response to only carboplatin, the control group data was used. The patients received 800

mg/m2 intravenously over 30 minutes. Platelet transfusions were given when platelet counts

were below 20,000 per cubic millimeter (Figure 2.1).

The three patients that did not receive platelet transfusions were not assigned any val-

ues, and every data point is a true measurement. The four patients that received platelet

transfusions were assigned a value of 2.0 x107 platelets/mL during the transfusion period.

Since the infusion protocol used by Smith et al. was not given, a 30 minute infusion was

administered every other day when platelet counts were assigned.

The second set of data is also individual platelet time series data in response to car-

boplatin [6]. This study also was used to test the effects of a rescue, but in this case it

was recombinant human thrombopoietin in gynecological cancer. Six patients were given

carboplatin with a calculated area under the curve (AUC) of 11. The same patients, upon

recovery from the first dose of carboplatin, received another dose with the rescue. Only the

first dose data was used and is represented by the dotted line in Figure 2.2.

Five patients received at least one platelet transfusion, while one did not need any. Again

no information was given on the duration or magnitude of the platelet transfusion, but the

time and number of transfusions was available. Therefore, the same 30 minute infusion of 2

x107 platelets/mL was assumed at each time that the patient was listed to get a transfusion.
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Figure 2.1: Platelet counts over time of the 7 patients used to fit the model. Patients were

administered 800 mg/m2 of carboplatin on day 0. [5].
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Figure 2.2: Second set of platelet counts over time for 6 patients administered carboplatin

at an AUC of 11. The dotted lines represent the data used and the arrowheads are when

platelet transfusions occured. [6].
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2.1.2 Carboplatin

Carboplatin is an FDA approved alkylating agent in the platinum family and is cell-cycle

nonspecific. It is used to treat ovarian, lung, head and neck, endometrial, and breast cancers

among others. The primary route of elimination is renal excreation [81]. This is why the

Calvert formula is used to dose patients. In recurrent ovarian cancer, carboplatin is dosed

at 360 mg/m2 IV every 4 weeks as a monotherapy [81]. The doses used to fit this model are

very high doses and greater than what is recommended. In comparison to cisplatin, another

platinum agent, carboplatin has fewer side effects such as no nephrotoxic effects. However,

thrombocytopenia is a main dose limiting toxicity.

In order to capture the dynamics of carboplatin toxicity, a PK model from the literature

fit to data at 450 mg/m2 was linearly scaled up (Figure 2.3) [8, 82, 7]. This two compart-

ment model incorporates exchange between a central and peripheral compartment as well

as a clearance term [8]. The following equations represent the PK model with Drug, Cb,

and Cp being the, dose rate of carboplatin, concentration of carboplatin in the blood, and

concentration of carboplatin in the peripheral compartment respectively:

dCb(t)

dt
=

Drug(t)

V1
− k12Cb(t) − k10Cb(t) + k21Cp(t) (2.1)

dCp(t)

dt
= −k21Cp(t) + k12Cb(t) (2.2)

Carboplatin PK is the driving force behind the dynamics in the bone marrow. Individual

PK profiles corresponding to individual PD profiles were not available, therefore, an average

PK profile was used for patients.

The model can scale to accommodate different dose magnitudes. The dose for the second

dataset was found using the Calvert formula, to go from an AUC to dose (dose = target AUC

× glomerular filtration rate + 25). Individual glomerular filtration rates were not provided,

so an average dose was given to each patient equivalent to 1650 mg/m2.
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2.1.3 Model Development

2.1.3.1 Existing Hematopoietic Models Existing models of chemotherapy-induced

thrombocytopenia have a phenomenological point of view, neglecting drug pharmacokinetics

(PK) [21] or incorporating biological response and regulation via a nonlinear mathematical

feedback effect [54, 55, 57]. Some models incorporate the age structure of the precursors and

megakaryocytes [21, 57, 83], but this is not clinically measurable. One model, while more

biological and less empirical, explicitly models the ligand receptor relationship of TPO, but

uses data from mice not humans [57]. That mouse model captures the effects of multiple

doses of carboplatin and radiation [57]. However, the simulation presented for a single

carboplatin dose does not rebound significantly above the baseline platelet count, which is

an observable phenomenon in human patient data.

The highly used, more phenomenological model structure created by Friberg et al. will be

the starting point [3] for building a biologically-motivated model with clinical measurements

in humans. The Friberg et al. model has a proliferating compartment of cells that mature

through a series of transit compartments, with mean transit times, and eventually become

circulating cells. As chemotherapy is introduced, the proliferating cells are eliminated and

this results in a drop in circulating cell count. Nonlinear feedback from deviations of basal

circulating count to current circulating count stimulates proliferation. The delayed feedback

produces a circulating cell count profile of a decrease then overshoot above baseline before

returning to baseline levels.

2.1.3.2 Platelet Production and Regulation Platelet production has a transit rate

of maturation, ktr, as cells differentiate from stem cell to end cell type (Eq.2.3 -Eq.2.5) that

is a patient specific parameter. After the stem cells mature into megakaryocytes (Eq.2.6),

they can move to the endothelial border and release platelets into the bloodstream. Each

megakaryocyte is assumed to produce 1000 platelets with lifespans of roughly 7-10 days.

Platelets, as modeled herein, represent the circulating platelets in the vascular space (Eq.2.7).

Platelets are free to move in and out of the spleen (Eq.2.9) and kidney and liver (Eq.2.8).

One-third of the total platelet count is represented in the spleen state (Eq.2.9).
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Table 2.1: Thrombocytopenia Model Equations and Corresponding Biological States.

State Biological Meaning Unit

P1(t) Progenitor 1 CFU-Mk 106cells
µL

P2(t) Progenitor 2 Megakaryoblast 106cells
µL

P3(t) Progenitor 3 Promegakaryocyte 106cells
µL

M(t) Megakaryoctye 106cells
µL

Pc(t) Circulating Platelets 106cells
mL

Pt(t) Platelets in Liver and Kidneys 106cells
mL

Ps(t) Platelets in Spleen 106cells
mL

S(t) Stromal Cell-Derived Factor-1 -

T (t) Thrombopoietin pg
mL

T1(t) Thrombopoietin Signal -

T2(t) Thrombopoietin Signal -

T3(t) Thrombopoietin Signal -
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dP1(t)

dt
= ktrP10 − ktrP1(t) − SlopeE2

2(t)P1(t) + ktrkT (kT3T
2
3 (t) − T0)P1(t) (2.3)

dP2(t)

dt
= ktrP1(t)ktrP2(t) − SlopeE2

2(t)P2(t) + ktrkT (kT3T
2
3 (t) − T0)P2(t) (2.4)

dP3(t)

dt
= ktrP2(t) − ktrP3(t) (2.5)

dM(t)

dt
= ktrP3(t) − ktr2M(t) (2.6)

dPc(t)

dt
= ktr2M(t) − ktrPc(t) − kpsPc(t) − kptPc(t) + kkpPt(t) + kspPs(t) (2.7)

dPt(t)

dt
= kptPc(t) − kkpPt(t) (2.8)

dPs(t)

dt
= kpsPc(t) − kspPs(t) (2.9)

dS(t)

dt
=

Pc0S0

km + S0

− Pc(t)S(t)

km + S(t)
(2.10)

dT (t)

dt
= T0(

Pc0
M(t)

)γ − T (t) (2.11)

dT1(t)

dt
= ktsT (t) − ktsT1(t) (2.12)

dT2(t)

dt
= ktsT1(t) − ktsT2(t) (2.13)

dT3(t)

dt
= ktsT2(t) − ktsT3(t) (2.14)

where

ktr2 = ktr(1 + (S(t) − S0)) (2.15)

The first key regulator of thrombopoiesis is thrombopoietin (TPO). TPO is constitutively

produced in the liver and kidneys and inducibly produced in the liver [47]. It is a ligand

molecule with a corresponding receptor found on both megakaryocytes and platelets. As

platelet production increases, more receptors are occupied, internalized and degraded by

TPO [49]. TPO plays such a major role in feedback regulation that in TPO deficient mice,

a 90% reduction in platelet count was observed [50]. The ligand/receptor relationship relays

feedback to achieve homeostasis through signals to the stem and progenitor cells [48]. Many

myelosuppression models rely on the power exponent of the ratio between circulating and

baseline cell counts to account for rebound after a toxicity challenge but this model uses

TPO explicitly.
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A second regulatory feedback in platelet production is through stromal cell-derived factor

1 (SDF-1) produced by stromal cells. This chemokine is involved in the chemotaxis of the

megakaryocyte to the endothelial border [51]. In response to low platelet counts, SDF-1

helps localize the megakaryocyte and increases the likelihood that it will release platelets

into the bloodstream [52].

To model TPO, a series of transition states were used to represent a signal being passed

from ligand to receptor to stem/progenitor cells (Eq.2.12- Eq.2.14). This signal is the regu-

latory feedback in response to the megakaryocyte count. TPO has a standing steady state

around 200 pg/mL but can increase or decrease depending on saturation of receptors [84]. If

there are more ligand molecules than receptors, then an accumulation of extracellular TPO

will occur. While TPO alters the rate of cell division (Eq.2.11), SDF-1 alters the matura-

tion transition rate (Eq.2.10), ktr2, of the megakaryocyte to platelets [85, 86, 87]. Akin to

TPO, a basal level of SDF-1 is present but more can be produced in response to platelet

count to produce a gradient for chemotaxis. The model and parameterization above is for

the healthy dynamic system. Chemotherapy challenges will kill progenitor cells, decrease

platelet count, and activate TPO and SDF-1 to compensate for the chemotherapy-induced

thrombocytopenia.

2.1.3.3 Toxicity Pharmacodynamics Chemotherapy is administered on the time scale

of minutes to hours but has delayed and long-lasting effects ranging from days to weeks. This

is biologically-motivated by a cytotoxic transition that occurs after the carboplatin-DNA

adduct forms [59]. To account for this time scale issue, effect states were added (Eqs.2.16

and 2.17). The concentration of drug that makes it to the bone marrow is set by the transition

rate, kvbm=0.0021 day−1, and drug equilibrium with the plasma compartment, kbmv=0.26

day−1. The accumulation and decay of the toxic signal is set by rates, kvm1=2300.0 day−1

and kvm2=0.9 day−1, respectively. The effect state (Eq. 2.17) with a fit Slope term eliminates

cells in the progenitor states (Eqs.2.3 and 2.4).

dE1(t)

dt
= kvbmCb(t) − kbmvE1(t) (2.16)

dE2(t)

dt
= kvm1E1(t) − kvm2E2(t) (2.17)
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Figure 2.4: Dynamic Chemotherapy-Induced Thrombocytopenia Model. Progenitor and

stem cells mature into megakaryocytes. Each megakaryocyte produces on the order of 1,000

platelets that are released into the blood stream. The progenitor cells are susceptible to cell

death via chemotherapy in the bone marrow. As the circulating platelet count decreases after

a dose of chemotherapy, stromal cell-derived factor 1 and thrombopoietin provide feedback

regulation to regain homeostasis.
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Table 2.2: Thrombocytopenia Model Parameters (P). SS fit: fit to steady state data, Dyn.

fit: fit to dynamic data.

P Value Unit Source

kpt 0.288 1
day

SS fit

kkp 1.44 1
day

SS fit

kps 0.864 1
day

SS fit [80]

ksp 1.44 1
day

SS fit [80]

km 1.44×106 pg
mL

Dyn. fit [50]

T0 200 pg
mL

[84]

S0 1 - Dyn. fit

kts 0.3 1
day

Dyn. fit

γ 0.6 - Dyn. fit

kT3 0.005 1
day

Dyn. fit
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2.1.4 Parameter Estimation

Twelve ordinary differential equations were used to describe the states of the chemotherapy-

induced thrombocytopenia model. The data was fit to the circulating platelet state, Pc,

using Python and a affine parallel tempering Markov Chain Monte Carlo approach (APT-

MCMC) [88]. The energy function, J(p), between the model, ysim(i, p), and data, y(i), was

minimized by adjusting three parameters (Slope, kT , ktr):

J(p) =
N∑
i=1

(y(i) − ysim(i, p))2 (2.18)

Each time series data point is compared to the simulation output at that point in time and

the difference is squared. The sum of all the squared residuals is minimized.

The fixed parameters in the model were fit to meet certain criteria. For instance, the

rate constants to and from circulating platelets and the spleen were set to make the splenic

concentration of platelets at steady state to be one-third of an individuals total platelet count

[80]. Additionally, unlike TPO where a nominal value is found in the literature, SDF-1 basal

levels were fixed at 1 to be a relative increase and decrease. However, the parameters were

dynamically fit for SDF-1 feedback to account for the 10% regulation found in the literature

[50]. All fixed parameters are provided in Table 3.2.

2.2 RESULTS

2.2.1 Platelet Response to Chemotherapy

In response to a chemotherapy challenge, carboplatin, the nadir for all patients fell between

12 to 25 days post treatment, and platelets rebounded reaching steady state. Figure 2.5 shows

the seven patients and corresponding model fits from the Smith et al. data, while Figure 2.6

shows the six patients and corresponding model fits from the Vadhan-Raj et al. data. The

grade three and grade four toxicity lines show when patients fall into thrombocytopenia and

are prone to bruising and bleeding that would warrant treatment delays or reductions. The

model captures individual patients well despite different nadirs, durations, grade 3 and 4
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toxicities and different platelet counts. The parameter distribution histograms can be found

in Figure 2.7, for the first data set, and Figure 2.8, for the second data set, and Table 3.3. The

parameter distribution for Slope did not distinguish different patient subgroups. However,

clear differences can be seen in the distributions of the TPO signal, kT , and transit time,

ktr. Patients that needed platelet transfusions all had ktr values greater than those that did

not. This means that the drug effects the circulating platelet count at a faster rate than

a smaller ktr. For the patients with a smaller ktr the rebound response from SDF-1 and

TPO can begin to set in before they enter grade four toxicity. Additionally, the magnitude

of the rebound is greater for patients that do not need platelet transfusions. This could be

explained by interpatient differences in drug sensitivity. For the other data set, the same

TPO statistical difference can be seen, but the ktr does not follow the trend and a large

overlap occurs. This could be due to the fact that the carboplatin dose is so high that too

many cells are eliminated at a saturable rate.

2.2.2 Thrombopoietin

The dynamic effects of TPO can be seen in Figure 2.9. On the left is the TPO output

profile for a chemotherapy challenge. The peak value of TPO reaches around 4000 pg/mL

and occurs before the platelets nadir [89]. The resulting platelet outcome when TPO is

its nominal value of 200 pg/mL is seen on the right in Figure 2.9. A much lower platelet

response occurs in the absence of TPO and the overshoot does not occur.

2.2.3 Stromal Cell-Derived Factor 1

SDF-1 is known to help localize the megakaryocyte to the endothelial barrier so platelets can

be released into circulation. When platelet count drops, SDF-1 is activated and influences

the rate of transition from megakaryocyte to platelets. As megakaryocytes break up into

platelets, the megakaryocyte count decreases and platelet count increases (Figure 2.10).

The parameters were set to regulate about 10% of platelet production [50]. This short-term

compensation increases the number of platelets based on the existing pool of megakaryocytes,

but TPO is needed to increase the number of megakaryocytes and aid in long-term recovery.
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Figure 2.5: Individual thrombocyte concentration profiles over time [5]. Patients 1-4 received

platelet transfusions. Patient data (red dots) and model output (blue line) with grade three

(black dot dash line) and grade four (green dash line) toxicity.
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Figure 2.6: Individual thrombocyte concentration profiles over time [6]. Patients 8,10-13

received platelet infusions. Patient data (red dots) and model output (blue line) with grade

three (black dot dash line) and grade four (green dash line) toxicity.
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Figure 2.7: APT-MCMC histograms of the three fit parameters. Patients 1-4 are in red

while patients 5-7 are in blue. The figures are all the number of simulations vs. the natural

log of the parameter.
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Table 2.3: Individual Thrombocytopenia Fitted Model Parameters (P).

Patient mean Slope mean kT (Day−1) mean ktr(Day
−1)

1 6.9 0.012 0.74

2 2.1 0.94 0.61

3 2.53 0.6 0.63

4 27.8 0.02 0.62

5 12.7 9.4 0.34

6 52.6 8.5 0.32

7 1.29 13.0 0.405

8 1.4 1.85 0.47

9 2.0 9.2 0.39

10 2.89 1.7 0.40

11 37.0 0.61 0.48

12 12.7 1.6 0.36

13 3.6 0.09 0.41
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Figure 2.9: Patient 6, Left: Thrombopoietin (red dashed line, right y axis) increases with

time as platelet concentration (blue line, left y axis) decreases. Right: Platelet response with

(blue line) and without (black dash line) thrombopoietin regulation.
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Figure 2.10: Patient 3, Stromal cell-derived factor 1, Left: Megakaryocytes, Right: Platelets,

with (blue line) and without (red dash line) SDF-1 regulation.

2.3 DISCUSSION

The model presented considers, PK, thombopoiesis, and the feedback of TPO and SDF-1

both in healthy patients and those with cancer that receive chemotherapy. Additionally,

it captures patients with varying drug sensitivity. Finally, the biologically driven model

provides biological transition rates for progenitor maturation, transport rates, one-third of
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Figure 2.11: Simulated individual thrombocyte concentration profiles over time of patients

receiving high dose carboplatin (right) and a low test dose (left)[5]. Patients 1-4 (red) are

more sensitive to the drug while patients 5-7 (blue) are less sensitive. The grade three (black

dot dash line) and grade four (green dash line) toxicity lines are provided.
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the total platelet count in the spleen, circulating platelet count dynamics, and, scale and

timing of TPO in response to a chemotherapeutic challenge.

The one patient that did not follow the pattern could have been an outlier, or was just

at such a high dose of carboplatin, that a saturable degree of cell elimination was reached.

Additionally, the initial data points, for the patient that did not need to have a platelet

transfusion, was a little erratic. There was an initial dip within the first few days that does

not fit the gradual decrease that is expected. The actual initial condition could be off. If

the initial condition was actually a lower value, then the ktr would fall into place and be

predictive. Moreover, this patient hugs the grade 4 toxicity, so the patient is too close for

the model to separate this patient from the other patients. A trial with a larger sample size

would make this model more robust.

Even with the help of TPO and SDF-1 regulation, interpatient variability in drug sen-

sitivity can cause some patients to fall into grade 4 thrombocytopenia after a carboplatin

dose. These patients received platelet transfusions. The underlying biology of how quickly

the drug impacts circulating platelets as well as the degree of rebound due to thrombopoietin

were the key parameter differences. In a similar study of neutrophils, it was concluded that

patients with a faster ktr, and lower EC50, in a sigmoid model of cell elimination due to

drug, correlated to patients that developed febrile neutropenia [37]. Without pharmacoki-

netic information it is difficult to distinguish if PK, PD or a combination of both contribute

to patient variability. The fact that there are data points well above baseline in the recovery

phase points to the biology of PD effects.

Both severe toxicities may be able to be detected using a lower test dose. For instance,

in Figure 2.11, on the left is the high dose of carboplatin, and on the right is the low dose

test case. It is clear the red patients show a faster response and deeper nadir, indicating

they would be more susceptible to high carboplatin doses. This could help guide dosing for

patients with a high ktr, including giving smaller, more frequent doses.

The model was able to capture the regulatory mechanisms behind platelet production.

TPO impacts the production rate of platelets, while SDF-1 alters the localization rate of

megakaryocytes. However, the response is delayed and platelets can fall drastically. When

platelets fall beneath the grade three and four toxicity thresholds, the subsequent dose
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of chemotherapy is often delayed until the patient recovers, which leads to lower efficacy.

Additionally, as seen in some patients presented, if thrombocytopenia is too severe, platelet

transfusions might be necessary. Unfortunately, platelet transfusions have a high rate of

infection and short-term relief [90]. If toxicity can be predicted early on, then patients can

be eligible for preventative or palliative care prior to toxic events. This model has the ability

to make such estimations, or even the potential to contribute to real-time alterations of

chemotherapy doses for individual patients.
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3.0 A COMBINED MODEL OF THROMBOCYTOPENIA AND

NEUTROPENIA

Local pancreatic cancer has a 5-year survival rate of 29% and an increase in death rate of 0.3%

per year from 2005-2014 in white men [12]. By the time a patient presents with symptoms,

the disease is already established and most likely has metastasized. This makes surgery an

unlikely option, and clinicians turn to chemotherapy and radiation. Chemotherapy works

by killing cells that rapidly divide such as cancerous cells. Toxicity arises because stem and

progenitor cells in the bone marrow also rapidly divide, resulting in hematological toxicities

such as thrombocytopenia and neutropenia.

One way to try to combat the low survival rates associated with pancreatic cancer is by

identifying and predicting subpopulations that will respond to a given treatment schedule,

using mathematical modeling and simulation. Patients predicted to underperform could be

put on a different schedule or different treatment. Two subpopulations that can be used to

stratify patients prior to therapy emerge via a image-defined histologic subtype, that has

previously been correlated to overall survival [91]. ”High delta” tumors are well defined

on a CT image. The tumor is visually more distinct from normal tissue and is associated

with a poor prognosis. ”Low delta” tumors are poorly defined and have a better prognosis.

Through modeling and simulation, distinct parameter distributions can differentiate high

delta and low delta tumors. Based on the physiological meaning of the model parameters of

interest, mechanistic understanding can help guide decisions regarding therapy.

Even though ”high delta” and ”low delta” is associated with overall survival, models can

be built retrospectively by studying patients that had either good or poor overall survival,

regardless of histologic subtype. Therefore, parameter distributions for both the high/low

delta and poor/good overall survival cases are studied.
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The mathematical model that was built is a biological extension of a seminal model de-

scribing chemotherapy-induced myelosuppression (Figure 1.4) [3]. The base model has stem

and progenitor cells in the bone marrow that mature into circulating cells. As chemotherapy

eliminates progenitor cells, the resulting deviation in circulating cell count from baseline

drives feedback on proliferation rates. This model describes the overall time course of circu-

lating cells but was expanded to include more biology.

The full model is a combined model describing chemotherapy-induced thrombocytopenia

and neutropenia. Platelets are highly involved in the blood clotting process, and neutrophils

are the main component of the innate immune response [15, 16]. If either cell type is low,

then infections and bleeding can occur, compromising the patient’s health. Both platelets

and neutrophils start from a common myeloid progenitor population. Depending on chemical

cues in the microenvironment, the myeloid progenitor cell can differentiate into a neutrophil

or thrombocyte. The purpose of building this model is to find the degree of influence that

parameters involving regulation and maturation have in locally advanced pancreatic cancer

patients, early on during treatment.

3.1 MATERIALS AND METHODS

3.1.1 Patients Data

Individual platelet and neutrophil time series data, image-defined subtypes, and overall

survival times were provided from a phase II trial at the M.D. Anderson Cancer Center

[92]. Patients received gemcitabine (1,000 mg/m2 over 100 minutes) and oxaliplatin (100

mg/m2) every 2 weeks for four doses and cetuximab (400 mg/m2 loading dose) on day 1 of

chemotherapy and then weekly (250 mg/m2). Patients also received chemoradiation after

the initial chemotherapy portion, but this model is applied to the initial chemotherapy only

portion. Of the 58 patients, 13 were excluded due to not enough data or not receiving both
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chemotherapy and radiation. The remaining 45 patients were grouped into ”high delta”,

or well defined tumors on a CT image, or ”low delta”/poorly defined. Additionally, the

patients were grouped into those above and below the trial median survival time of 19.1

months. Due to sparse data measurements, patient data within each subgroup was pooled

as a population every 1-4 then 5-7 days that make up each week, starting with the first day of

chemotherapy. The cell counts that were used to fit this model are the median platelet and

neutrophil counts, normalized to each individuals respective baseline count prior to therapy.

3.1.2 Gemcitabine

Gemcitabine is a nucleoside analog that is indicated for ovarian cancer with carboplatin,

breast cancer with paclitaxel, non-small cell lung cancer with cisplatin, and pancreatic can-

cer as a single agent [93]. When given as an infusion for more than an hour or more frequently

than once a week, toxicity becomes more prevalent. Some toxicites that do occur include

nausea/vomiting, anemia, neutropenia, and thrombocytopenia. When gemcitabine was ad-

ministered concurrently with radiation, it resulted in life-threatening mucositis.

Gemcitabine is a prodrug that must be converted to its active form through phosphory-

lation. The drug can also become metabolically inactive, creating complex drug pharmacoki-

netics. The mechanism of action of active gemcitabine involves arresting cells in the G1/S

phase of the cell cycle [93]. Pharmacokinetic models of gemcitabine range from a simple two

compartment model [94] to a biologically-motivated multi-compartment one [95].

3.1.3 Oxaliplatin

Oxaliplatin, like carboplatin, is a member of the platinum class of chemotherapies. Also like

carboplatin, oxaliplatin comes with common adverse reactions such as peripheral sensory

neuropathy, neutropenia, thrombocytopenia, anemia, fatigue, and stomatitis [96]. Oxali-

platin is often given as part of a combination therapy referred to as FOLFIRINOX for

advanced pancreatic cancer. This name is a combination of many abbreviated drug names

including fluorouracil, leucovorin, irinotecan, and oxaliplatin. Additionally, as is the case

here, it is often given with gemcitabine for advanced pancreatic cancer. For stage III colon
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cancer patients with complete resection or advanced colorectal cancer, oxaliplatin is given

with fluorouracil and leucovorin.

Oxaliplatin PK is triphasic with a Cmax of 0.814 mcg/mL, and volume of distribution

of 440 L at a dose of 85 mg/m2, over 2 hours [96]. Again like carboplatin, the main route of

elimination is renal excretion. A three compartment PK model which incorporates entero-

hepatic recirculation was used to drive PD effects in the model [97]. Mean parameter values

from the final model were used since no individual PK information was used.

3.1.4 Cetuximab

Cetuximab is a monoclonal antibody and an epidermal growth factor receptor antagonist.

It is indicated for head and neck and colorectal cancers [98]. Cardiopulmonary arrest, rash,

pruritus, and diarrhea are some common adverse reactions, but not myelosuppression. Since

myelosuppression is not listed as a side effect of cetuximab, it will not be used in the model.

3.1.5 Model Developemnt

Oxaliplatin was the pharamcokinetic (PK) driver of this pharmacodynamic (PD) toxicity

model, since gemcitabine is at a dose magnitude and frequency that does not produce signif-

icant myelosuppresion. Individual PK profiles were not available, but a previously published

model of oxaliplatin was used, along with an effect state describing the concentration-time

profile in the bone marrow as opposed to the plasma concentration [97].

The PD model is a combination and modification of two models, in order to mimic

the hematopoietic lineage of neutrophils and thrombocytes in the bone marrow. The first

model is a biologically-motivated model of thrombocytopenia that includes two regulatory

molecules, including thrombopoietin (TPO) and stromal cell-derived factor 1 (SDF-1). The

second is a semi-mechanistic myelosuppression model that implicitly incorporates feedback.

The modified and combined model is depicted in Figure 3.1, and the unique characteristics

will be explained in more detail below.
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Figure 3.1: Combined model of chemotherapy-induced thrombocytopenia and neutropenia.

Both branches begin at the common myeloid progenitor state. Neutrophil progenitors mature

into circulating neutrophils in the blood stream and induce changes in G-CSF, thereby

stimulating proliferation. Thromopoiesis is more complex and includes TPO and SDF-1.

TPO stimulates proliferation in both the common myeloid progenitor and megakaryoblast

state.
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3.1.5.1 Combining Models: Common myeloid progenitor state Referring back to

the hematopoietic lineage tree (Figure 1.2), there are two main branches that come off the

stem cell state. One branch is for lymphopoiesis, and the other branch is for myelopoiesis.

The common myeloid progenitors differentiate into platelets, erythrocytes, or granulocytes,

including neutrophils, and share some of the same regulatory molecules. This is the biological

motivation for a single model inclusive of platelets and neutrophils. Data is provided for

each individual’s baseline platelet and neutrophil counts and are the initial conditions for

thrombopoiesis and neutropoiesis, respectively. A fraction of the cells in the common state

are fated to become platelet precursors (Eq.3.3), and the rest become neutrophil precursors

(Eq.3.14).

Additionally, this state receives feedback regulation from TPO (Eq.3.10), a prominent

molecule in thrombopoiesis. Therefore, even though TPO is inducibly produced through

changes in platelet count, both platelets and neutrophils are subject to it’s effects from their

common progenitor state. Studies have compared mice with and without TPO, and it was

found that neutrophil levels are significantly different [99, 100, 101]. Another study added

exogenous TPO in mice and saw increased myeloproliferation [102]. These studies show that

TPO is a multilineage regulator, motivating modeling both cell types jointly.

3.1.5.2 Updated TPO Signal The thrombocyte portion of the combined model is same

as in the previous chapter, with a few exceptions. Since the previous model only had one

dose of chemotherapy, the function for the impact of TPO on proliferation sufficed. For this

data set, the patients undergo treatment every 2 weeks for 4 cycles before radiation. The

patients don’t always respond uniformly after each cycle of treatment, and this warranted

a new function for TPO signaling. For instance, patients may rebound well after the first

cycle but not as strongly after the second.
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One way to think of this function is how sensitive and strong the feedback switch is on

proliferation. As TPO changes inversely to platelet count, this signal of imbalance gets trans-

mitted back to the proliferating cells. The switch on inducing proliferation, α, describes one

of the fitted parameters in the function. The parameter accounts for the patient variability

seen in the recovery phase after multiple treatment cycles.The whole function is a saturating

exponential of the deviations from the baseline signal. Therefore, the switch goes from 0 to

1 at a steepness of α.

Switch(t) =
exp(α(Tr3(t) − 200.0)) − 1.0

200.0 + (exp(α(Tr3(t) − 200.0)) − 1.0)
(3.1)

3.1.5.3 G-CSF Neutrophil maturation is the same as the classic Friberg model, so a

detailed explanation will not be reiterated. However, a molecule called granulocyte-colony

stimulating factor (G-CSF) is the main player in granulopoiesis, and it is explicitly added

to the model [103]. The same function as the TPO switch is used, except it is stimulated

by deviations in circulating neutrophil count. The combination of TPO and G-CSF acting

on neutrophil count was studied in myelosuppressed mice [101]. Mice with TPO alone and

G-CSF alone showed improved toxicity, while mice with TPO and G-CSF showed synergistic

improvement greater than TPO or G-CSF alone. Since the study was performed in mice, no

patient data was provided for TPO or G-CSF, and it is unclear how the synergism occurs.

TPO and G-CSF are treated separately and in an additive fashion in the model. The TPO

acts on the common myeloid progenitor state (Eq.3.2), and G-CSF impacts the neutrophil

specific progenitor state (Eq.3.14).
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Table 3.1: Thrombocytopenia and Neutropenia Model Equations and Corresponding Bio-

logical States.

Equation Number State Biological Meaning

Cmp(t) Common myeloid progenitor 106cells
µL

P1(t) Megakaryoblast 106cells
µL

P2(t) Promegakaryocyte 106cells
µL

M(t) Megakaryoctye 106cells
µL

Pc(t) Circulating Platelets 106cells
mL

Pt(t) Platelets in Liver and Kidneys 106cells
mL

Ps(t) Platelets in Spleen 106cells
mL

S(t) Stromal Cell-Derived Factor-1 -

T (t) Thrombopoietin pg
mL

T1(t) Thrombopoietin Signal -

T2(t) Thrombopoietin Signal -

T3(t) Thrombopoietin Signal -

N1(t) Neutrophil progenitor 1 105cells
mL

N2(t) Neutrophil progenitor 2 105cells
mL

N3(t) Neutrophil progenitor 3 105cells
mL

N4(t) Neutrophil progenitor 4 105cells
mL

N5(t) Neutrophil progenitor 5 105cells
mL

N6(t) Neutrophil progenitor 6 105cells
mL

Nc(t) Circulating neutrophils 105cells
mL

G(t) Granulocyte colony stimulating factor -

Gs(t) G-CSF signal -
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dCmp(t)

dt
= ktr(Pc0 +Nc0) − ktrCmp(t) − SlopeDrug(t)Cmp(t) + 0.03

exp(α(Tr3(t) − 200.0) − 1.0)

200.0 + (exp(α(Tr3(t) − 200.0) − 1.0)
Cmp(t) (3.2)

dP1(t)

dt
= ktr

Pc0
(Pc0 +Nc0)

Cmp(t) + 1.04
exp(α(Tr3(t) − 200.0) − 1.0)

200.0 + (exp(α(Tr3(t) − 200.0) − 1.0)
P1(t)

−Drug(t)Slope2P1(t) − ktrP1(t) (3.3)

dP2(t)

dt
= ktrP1(t) − ktrP2(t) (3.4)

dM(t)

dt
= ktrP2(t) − ktr2M(t) (3.5)

dPc(t)

dt
= ktr2M(t) − ktrPc(t) − kpsPc(t) − kPtPc(t) + kkpPt(t) + kspPs(t) (3.6)

dPt(t)

dt
= kPtPc(t) − kkpPt(t) (3.7)

dPs(t)

dt
= kpsPc(t) − kspPs(t) (3.8)

dS(t)

dt
=

Pc0S0

km + S0

− Pc(t)S(t)

km + S(t)
(3.9)

dT (t)

dt
= T0(

Pc0
M(t)

)γ − T (t) (3.10)

dT1(t)

dt
= ktsT (t) − ktsT1(t) (3.11)

dT2(t)

dt
= ktsT1(t) − ktsT2(t) (3.12)

dT3(t)

dt
= ktsT2(t) − ktsT3(t) (3.13)
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dN1(t)

dt
= ktrnCmp(t)

Nc0

(Pc0 +Nc0)
+ kGs

exp(α(Gs(t) − 200.0) − 1.0)

200.0 + (exp(α(Gs(t) − 200.0) − 1.0)
P1(t)

− ktrnN1(t) − Slope3Drug(t)N1(t) (3.14)

dN2(t)

dt
= ktrnN1(t) − ktrnN2(t) (3.15)

dN3(t)

dt
= ktrnN2(t) − ktrnN3(t) (3.16)

dN4(t)

dt
= ktrnN3(t) − ktrnN4(t (3.17)

dN5(t)

dt
= ktrnN4(t) − ktrnN5(t) (3.18)

dN6(t)

dt
= ktrnN5(t) − ktrnN6(t) (3.19)

dNc(t)

dt
= ktrnN6(t) − ktrnNc(t) (3.20)

dG(t)

dt
= G0(

Nc0

Nc(t)
)γ −G(t) (3.21)

dGs(t)

dt
= ktsG(t) − ktsGs(t) (3.22)

where

ktr2 = ktr0(1 + (S(t) − S0)
500.0

Pc0
) (3.23)

3.1.6 Parameter Estimation

Twenty-one ordinary differential equations were used to describe the states of the chemotherapy-

induced toxicity model. Model parameters were estimated by fitting the data to the circu-

lating platelet state, Pc, and the circulating neutrophil state, Nc, minimizing the energy

function J(p) in APT-MCMC[88]. The log of the energy function results in the sum of

squared residuals, between the model, ysim(i, p), and data, y(i) with parameters, p, being

alpha, Slope, and ktr:

J(p) =
N∑
i=1

(y(i) − ysim(i, p))2 (3.24)
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Table 3.2: Thrombocytopenia plus Neutropenia Model Parameters (P). SS fit: fit to steady

state data, Dyn. fit: fit to dynamic data.

P Value Unit Source

kpt 0.288 1
day

SS fit

kkp 1.44 1
day

SS fit

kps 0.864 1
day

SS fit [80]

ksp 1.44 1
day

SS fit [80]

km 1.44×106 pg
mL

Dyn. fit [50]

T0 200 pg
mL

[84]

G0 200 pg
mL

[84]

S0 1 - Dyn. fit

kts 3.0 1
day

Dyn. fit

kGs 0.001 1
day

Dyn. fit

ktrn 2.2 1
day

Dyn. fit

γ 0.6 - Dyn. fit

kT3 0.005 1
day

Dyn. fit

Slope2 5.0 1
day

Dyn. fit

Slope3 0.008 1
day

Dyn. fit
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3.2 RESULTS

3.2.1 High and Low Delta

In response to a chemotherapy challenge of oxaliplatin every 2 weeks for 4 cycles, the

model captures both subpopulations of patients with high delta and low delta tumors.

Figure 3.2 shows the boxplots of the neutrophil and platelet time-series normalized data

scaled up to the mean baseline value for low delta patients (mean P0=222×109 cells/L and

N0=66×108 cells/L) while Figure 3.3 shows the high delta case (mean P0=233×109 cells/L

and N0=70×108 cells/L). The best parameter set for the model, equivalent to the APT-

MCMC simulation with the lowest energy function, is shown as a solid curve (blue for low

and red for high delta). The color-coordinated histograms of the parameter distribution out-

puts from APT-MCMC for ktr, Slope, and α show differences between high and low delta

tumors Figure 3.4.

High delta patients have a faster transit time and lower TPO signaling threshold on

proliferation than low delta patients. In Figure 3.5 the switch function is plotted for each

case. The proliferation is stimulated for longer periods of time for the low delta patients.

The effects can be seen in the recovery phase after the patient platelet nadir. High delta

patients have a steeper and deeper percent reduction in platelet count and overshoot just

slightly above baseline in response to therapy (Figure 3.3). Low delta patients have a less

steep and less severe percent reduction, as well as, a rapid and large overshoot (Figure 3.2).

No neutrophil specific parameters were fit because the two neutrophil profile spreads were

indistinguishable.

3.2.2 Good and Poor Overall Survival

High and low delta correspond to poor and good overall survival, respectively [91]. The

results for survival above and below the trial median of 19.1 months align with the high

and low delta cases. Figure 3.6 shows the boxplots of the neutrophil and platelet time-

series normalized data, scaled up to the mean baseline value for good overall survival, while

Figure 3.7 shows the poor overall survival case. The best parameter sets for the model,
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Figure 3.2: Low delta platelet and neutrophil time-series data and model fit. The top plot

shows platelet count data as boxplots with the model output as the solid curve over time in

days. The bottom is the same patients neutrophil profile.
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Figure 3.3: High delta platelet and neutrophil time-series data and model fit. The top plot

shows platelet count data as boxplots with the model output as the solid curve over time in

days. The bottom is the same patients neutrophil profile.
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Figure 3.4: APT-MCMC histograms of fitted parameters. High delta patients are in red

while low delta patients are in blue. The figures are all the number of simulations vs. the

natural log of the parameter.
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Table 3.3: Mean APT-MCMC Parameters (P).

Delta α(Day−1) Slope(Day−1) ktr(Day
−1)

High 0.068 8.8 0.61

Low 0.187 5.49 0.45
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Figure 3.5: Switch function for low and high delta patients.
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equivalent to the APT-MCMC simulation with the lowest energy function, is shown as a

solid curve (blue for good OS and red for poor OS). The color-coordinated histograms of

the parameter distribution outputs from APT-MCMC for α, Slope, and ktr show differences

between poor and good overall survival Figure 3.8.

The same trends in the parameters exist that were seen in the high and low delta case.

Again, patients with low overall survival had a lower α and a higher ktr. Also, in both

situations the cell elimination rate in the common myeloid progenitor state, Slope, did

show a slight difference with more elimination occurring in the poor overall survival case;

however, the difference was not significant. There is still a gaussian distribution for the Slope

parameter, indicating patient variability.

3.2.3 Validation Data

Validation was performed by testing the model on a new dataset. 70 patients received

gemcitabine (750 mg/m2) and cisplatin (30 mg/m2) every 2 weeks for four doses. 50 patients

had an overall survival time greater than 14 months, and 20 patients had an overall survival

time less than 14 months. This was how the patients were stratified, and the same model

was applied to the new data. Figure 3.9 shows the histograms of overall survival times from

start of therapy for both datasets.

Figure 3.10 is the histograms of the parameter sets for the validation data. The his-

tograms, while not as distinct as the original dataset, still follow the same trends. Part of

the reason the new histograms are less distinct is that the data can only be used up through

day 60. This is because these patients receive radiation around that day, and this additional

therapy can not be compared to the original data. This means that the recovery, after ther-

apy ceases, is not fully observable. Another difference is the therapy itself. These patients

are getting cisplatin, instead of oxaliplatin, resulting in less severe toxicity. However, clear

differences are still observed between good and poor overall survival. Figure 3.11 compares

both the original and validation platelet data, for both the good and poor overall survival

cases. This time the top 1000 APT-MCMC fits are plotted on top of the data for each case.

Around day 21 good overall survival patients are on the upward rebound after the first cycle,

while the poor overall survival patients are already falling from the second cycle of therapy.
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Figure 3.6: Overall survival patients above 19.1 months platelet and neutrophil time-series

data and model fit. The top plot shows platelet count data as boxplots with the model

output as the solid curve over time in days. The bottom is the same patients neutrophil

profile.
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Figure 3.7: Overall survival patients below 19.1 months platelet and neutrophil time-series

data and model fit. The top plot shows platelet count data as boxplots with the model

output as the solid curve over time in days. The bottom is the same patients neutrophil

profile.

61



Natural Log of alpha
-4 -3 -2 -1

# 
of

 S
im

ul
at

io
ns

�104

0
0.5

1
1.5

2
2.5

3
3.5

4

Nautral Log of Slope3
-2 0 2

# 
of

 S
im

ul
at

io
ns

�104

0
0.5

1
1.5

2
2.5

3
3.5

4

Natural Log of ktr
-3.5 -3 -2.5 -2

# 
of

 S
im

ul
at

io
ns

#104

0

0.5

1

1.5

2

Figure 3.8: APT-MCMC histograms of fitted parameters. Poor overall survival patients are

in red while good overall survival patients are in blue. The figures are all the number of

simulations vs. the natural log of the parameter.
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Table 3.4: Mean APT-MCMC Parameters (P).

Delta α(Day−1) Slope(Day−1) ktr(Day
−1)

Poor 0.11 7.1 0.61

Good 0.4 6.5 0.47
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Figure 3.9: The patient overall survival time histograms for the original data (red) and

validiation data (blue) are shown as well as a line for where the cutoff point for each group

is.
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Figure 3.10: APT-MCMC histograms of fitted parameters. Poor overall survival patients

are in red while good overall survival patients are in blue. The figures are all the number of

simulations vs. the natural log of the parameter.
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Figure 3.11: Platelet counts for the original and validation data for both the good and poor

overall survival cases. The data is represented as blue boxplots and the best 1000 model

simulations are the red curves.
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3.3 DISCUSSION
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Figure 3.12: Simulations of thrombocyte count for each subgroup.
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Figure 3.13: Platelet count simulations for the good and poor overall survival cases for the

validation data.

Tumor subtyping is performed prior to therapy and has been correlated with overall

survival [91]. This combined model of thrombocytopenia and neutropenia provides insights

biologically as to why variability is seen in patient outcome. The main findings revolve around

thrombopoiesis and TPO. Patients with high delta tumors and poor overall survival had a

significantly faster transit time through maturation, a rapid decline in platelet count, and

a lower degree of feedback from TPO on proliferation. Visually this can be seen in Figures

3.12 and 3.13. By around day 20, between the second and third rounds of chemotherapy, the

subgroups begin to distinguish themselves from one another. Patients in the good OS/low

delta groups would benefit from staying on the suggested course of treatment. Patients in

the poor OS/high delta groups would be flagged as a subgroup that might not benefit from

this treatment plan. Not only does this differentiation happen prior to radiation therapy,

but it happens early on during the chemotherapy only portion of treatment.

The data for each individual was sparse and difficult to model a single patient. Once

the data was pooled as subpopulations, trends that are common in the literature began to

appear. For instance, a platelet nadir around 9-12 days and neutrophil nadir around day 6.

The platelet toxicity was more severe than the neutrophil toxicity, likely due to oxaliplatin
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being a platinum compound. Therefore, the distinctions between the two platelet subgroups

was more pronounced. The neutrophil subgroups on a population level were too similar to

find parameters that could stratify the groups based on a neutrophil specific parameter.

While tumor histology is correlated to overall survival, outliers on both sides are sure to

be present. The outliers could be the high delta tumor patients toward the bottom of the

ktr and top of α parameter distributions, and the low delta tumor patients toward the top

end of the ktr and bottom of α parameter distributions. Even though the high/low delta

correlated well with good/poor overall survival in the original dataset, the validation data

did not, indicating that the correlation does not always hold true. Obtaining concentrations

of TPO and G-CSF, as well as, more frequent circulating platelet and neutrophil counts

during and after therapy, could help separate the patient subgroups.

Although there is not a widely used thrombocyte rescue available, unlike exogenous G-

CSF for neutrophils, understanding biological differences in subgroups can open up new

research regarding patient drug sensitivity. One option that can be tested in the clinic is to

give high delta patients lower doses more frequently. Moreover, patients could be given the

original dose the first two cycles, and the model could be used to predict what future doses

could look like.

Pancreatic cancer has had few advancements in treatment options or strategies to reduce

the high associated mortality rates. Modeling and simulation is a cost-effective approach to

better understand why treatments are not effective for some patients. Furthermore, for pa-

tients in this trial who receive chemotherapy before radiation, flagging subpopulations early

on in the trial, that will not benefit from radiation, could save the patient from radiation-

induced cytotoxicity. The findings from the model indicate that sensitive patients have a

faster response to the drug, with a rapid and steep decline in platelet count, and a smaller

rebound in the recovery phase.
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4.0 CHEMORADIATION-INDUCED LYMPHOPENIA

Radiation is a common treatment option for cancer patients, and it can be given before,

after, or concurrently with chemotherapy or other treatments. While effective in killing

tumor cells, radiation alone is enough to induce lymphopenia (low lymphocyte count), and

the degree of lymphopenia can be indicative of outcome [104, 69]. Lymphocytes play an

important role in the adaptive and innate immune responses. The innate immune response

recognizes and recruits lymphocytes to defend the body against non-self invaders, infection,

and damage. The adaptive immune response, used in vaccines, stores long-term memory

on how to combat specific pathogens. The damage inflicted by radiation can be enough to

kill the cell abruptly, in a linear fashion, but also quadratically as damage accumulates with

fractionated radiation [68]. This is because DNA is double stranded and acute damage to one

strand can sometimes be repaired before the next fraction of radiation [105]. With depleted

lymphocyte numbers, serious infection can ensue, and damage repair may be slowed. This

is one reason why radiation is often given in smaller doses spread over many weeks. The

patient can rebuild their lymphocyte population and maintain a defense system throughout

treatment.

The four main types of radiotherapy are 3D conformal, intensity modulated (IMRT),

image-guided (IGRT), and stereotactic body (SBRT) [67]. They differ in precision of tumor

margins and intensity of beam. For instance, with IMRT [106, 107, 108, 109], the clinician

can control the beam angle, size, and intensity; this can be optimized using linear pro-

gramming, mixed integer programming, or even a genetic algorithm with a neural network

[110, 111, 112]. Also, there is a dose-volume constrained optimization of IMRT [113], and a

spatiotemporal optimization to maximize tumor biologically equivalent dose with constraints

for multiple organs-at-risk [114]. What these models do not address explicitly, is the radi-
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ological dose affecting circulating cells, such as lymphocytes, which contribute to toxicity.

While the models aim to avoid healthy tissues, their primary focus is on efficacy not toxicity.

These techniques result in energy deposition on their route to the tumor, as well as,

irradiating the blood circulating through the planning volume. SBRT uses 4-dimensional

imaging to build a coordinate system to deliver high doses to the tumor over fewer treatments

[115]. This technique reduces the amount of healthy tissue and circulating cells that are

irradiated. Therefore, different radiation techniques will irradiate different volumes of blood

and impact the degree of radiation-induced lymphopenia.

Pancreatic cancer is a very challenging cancer to treat, with radiation being a common

treatment and often in combination with chemotherapy. One study found that less lym-

phopenia is associated with better survival in pancreatic cancer patients [69]. This new

algorithm aims to mathematically study the number of lymphocytes and degree of lym-

phopenia associated with the volume of blood in the radiation area. This can help predict

the lymphotoxicity associated with different radiation therapies and how they may be linked

with outcome in a quantitative method.

The model developed herein does not model the explicit beam physics, but instead uses

a computationally inexpensive approach to capture the accumulation of treatment-induced

damage and probability of death to the circulating cells that pass through a treatment plan-

ning volume that is being irradiated. One existing model of accumulated damage predicts

that a single fraction of 2 Gy radiation yields at least 0.5 Gy to 4.6% of the circulating cells,

and after 30 fractions, 99% of the blood pool has at least 0.5 Gy [71]. Dynamically, over this

duration of therapy, cells will begin to die as a result of accumulated damage, and at the

same time new cells are being produced. Cell death is modeled probabilistically in accor-

dance with the in vitro lymphocyte radiosensitivity. A study found that the dose required

to reduce the surviving lymphocyte population to 10% of their baseline values, also known

as a D10, is 3 Gy, to 50%, or D50, is 2 Gy, and to 90%, or D90, is 0.5 Gy [117]. We ex-

tend the accumulated damage model to capture blood measurements throughout treatment

including natural cell death and lymphocyte replenishment, with a cell turnover of 0.33% of

the population per day [118].
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Figure 4.1: The algorithm walks through the logic behind the decisions used in the model.

Radiation damage is administered randomly, and cells probabilistically die or survive and

continue to have the opportunity to accumulate damage. At the same time cells are slowly

generated by the body and added to the circulating population.
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4.1 MATERIALS AND METHODS

4.1.1 Radiation Model Developement

The first step was to recreate the damage accumulation model in order to adapt it. A

spherical planning volume of 258 cm3, total blood volume of 5000 cm3, and dose of 2 Gy per

day for 30 fractions was used. The total damage after each fraction was totaled for each cell

in the circulating pool. The damage was randomly distributed since the blood volume was

able to recirculate in between each beam of radiation. The number of cells that had at least

0.5 Gy of damage was tallied up and divided by the total number of cells to get a fraction.

The model captures the data from the paper (Figure 4.2) and now adaptations can be made.
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Figure 4.2: The accumulated damage model was recreated as a starting point for the new

model. The blue curve is our recreation and the red dots are taken from the original papers

results.

An algorithm (Figure 4.1) was developed to track the number of lymphocytes throughout

radiation treatment. Radiation is given in smaller doses called fractions. These fractions

can be broken up into even smaller homogenous beams. A Monte Carlo approach assigns

lymphocytes to be within, or outside, the beam area, and the beams of radiation inflict
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damage to cells in the beam area. As damage accumulates, the algorithm decides whether

the cell dies, or lives and continues circulating. This decision is based off of in vitro radiosen-

sitivities that provide cutoffs for the percentage of cells that survive a given dose. After each

day of radiation a lymphocyte replenishment occurs. The algorithm tracks and updates the

lymphocytes that are generated and die.

4.1.2 Radiation Treatment Details

An individual’s total dose divided by the total number of days of radiation is input into the

algorithm as a daily fraction. The daily fraction dose is divided by the number of beams.

Radiation is assumed to be given Monday through Friday of each week and not on the

weekends. The beam number can change but is set at 4 in our simulator to mimic a four-

field conformal plan with equal doses. This value, the daily fraction dose divided by the

number of beams, is the damage that begins to accumulate. The time each beam is on is

assumed to be less than the time it takes for the blood to recirculate. For instance, 2 Gy/day

is divided equally into the 4 fields of radiation to equal 0.5 Gy per beam. The time for each

beam to be on is on average 0.5 Gy
beam

/3 Gy
min

×60 sec
min

= 10 sec
beam

. The average time to circulate

the blood is about a minute. Therefore, the randomization of cells entering the beam area

occurs after, not during, each beam of radiation.

4.1.3 Lymphocytes Exposed to Radiation

A 2-dimensional cross sectional area is used to approximate how many lymphocytes are

exposed to radiation. This area is found by taking the vascular volume of the organ subjected

to radiation relative to the vascular volume of the entire body. When vascular volume values

for organs are known [9], they are used directly; for organs like the pancreas, vascular volume

values are not reported. We therefore take the liver vascular volume fraction of 11% as an

upper bound, since it is one of the most well-perfused organs. The pancreas represents 0.14%

of body weight. Under the assumption that body density is approximately 1 kg/L, the mass

fraction and volume fraction are equivalent. The resulting fraction of the blood pool that is

exposed to radiation for each beam is 11% × 0.14% = 1.54% [9, 119].
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4.1.4 Calculating Lymphocyte Damage

Based on the assumptions explained for blood recirculation being greater than beam time,

the damage can be distributed in a Monte Carlo fashion to 1.54% of the individual’s unique

baseline circulating lymphocyte count prior to therapy. The damage is equal to the total

daily dose divided by the number of beams per fraction. For instance, a patient that receives

2 Gy/day with four fields means damage is assigned in 0.5 Gy increments per beam.
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Figure 4.3: Probability of lymphocyte death as a function of total accumulated damage.

Each cell has this probability evaluated daily, with death evaluated after radiation exposure

on days of treatment.
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4.1.5 Radiation-Induced Lymphocyte Death

The probability of lymphocyte death is a function of the total accumulated damage. Individ-

ual cells are evaluated after each beam of radiation. Since each cell is unique, and some are

able to repair the damage, a probability distribution is used to determine when a cell dies.

The basis for this distribution starts by taking each cell and separating them into groups

of less than 0.5 Gy, between 0.5 and 2 Gy, between 2 and 3 Gy, and greater than 3 Gy.

These cutoffs are established using the D10, D50 and D90 in vitro radiosensitivities [117].

To create a probability of survival, each cell is assigned a random value between 0 and 1.

This value is compared to a function specific to the accumulated damage group the cell is

in. The function for less than 0.5 Gy is [0.2×(total damage)], between 0.5 and 2 Gy is [0.1

+ 0.26×(total damage - 0.5)], between 2 and 3 Gy is [0.5 + 0.4×(total damage - 2)], and

greater than 3 Gy is [0.9 + 0.03×(total damage - 3)]. If the cells randomly assigned value

is greater than the function output, then the cell survives. If it is less than the function

output, then the cell dies (Figure 4.3). Cells that die are removed from the circulating pool.

Hence, the number of circulating cells is a discrete-time dynamic variable in this model, and

the number of cells affected by radiation on a particular day will vary (though the fraction,

or percentage, affected is constant for a particular planning volume).

4.1.6 Cell generation

The body is always producing new lymphocytes, but the dynamics of cell generation are

slow. About 0.33% of the current lymphocyte count are generated per day, which represents

an average value of turnover for lymphocyte subsets in an aged population (naive B cells

0.34, memory B cells 0.69, native effector B cells 0.44, γ δ T cells 0.2, naive CD4 0.07, naive

CD8 0.09, memory CD4 0.45, memory CD8 0.36) [118]. After the total number of beams of

radiation are administered for a day, the model updates the current count, eliminating cells

that have died and adding new cells that have been produced.
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4.2 RESULTS
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Figure 4.4: Lymphocyte count as a function of days throughout radiation. 2 Gy/day was

administered for 30 fractions with a irradiated volume of 1% and daily lymphocyte turnover

of 0.33% of the population.

The model captures lymphocyte death as a function of radiation exposure (Figure 4.4).

Cells begin to die as the number of fractions of radiation increases. Figure 4.4 shows the

lymphocyte count as a function of day with patients receiving radiation Monday through

Friday of each week. After every 5 fractions there is a rest period of two days, representing

the weekend. The rest period is after every 5 fractions, but can be seen more distinctly as the

cell count drops. The algorithm captures expected behavior. Changes in parameters were

explored including changes to the volume of blood irradiated, in organs with different relative

weights, in the vascular volume of the heart, to dose per day, and to the daily lymphocyte

turnover.

76



4.2.1 Stochastic Nature of Model
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Figure 4.5: Lymphocyte count after each day at same irradiated volumes. The dose is

2 Gy/day for 30 fractions. The simulation is ran 100 times to show minor variation in

probabilistic cell death.

A deterministic model will produce the same output. However, humans react stochasti-

cally to the same dose of therapy. Therefore, the cell damage is assigned in a Monte Carlo

fashion, and there is a probability, not certainty, of death. The small variations can be seen

in Figure 4.5. These 100 simulated patients get uniform treatment of 2 Gy per day for 30

fractions, yet there is a spread in their lymphocyte count over time.
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4.2.2 Changes in Volume of Blood Irradiated to Lymphocyte Survival
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Figure 4.6: Lymphocyte count after each day at different irradiated volumes. The dose is 2

Gy/day for 30 fractions. The blue curve is a representative simulation for a patient with 1%

of their cells exposed to radiation, the red is 5% and the yellow is 10%.

The same dose of radiation can produce different amounts of toxicity, depending on

where it is administered to the body. The size and vascularity of the organ determine the

irradiated volume, and, therefore, how many lymphocytes will pass through the beam path

while it is on. The increase in toxicity can be seen in Figure 4.6. As the amount of cells in

the beam path increases from 1% to 10%, the lymphoctye count decreases both overall and

in their rate of death (requiring fewer and fewer radiation fractions).

4.2.3 Changes in Organ using Relative Weight

The results from the changes in irradiated volume are generalized at 1%, 5%, and 10%. These

numbers are calculated from a combination of vascular volume and relative organ weight.

In Figure 4.7, the relative organ weight is specified using the organs actual value [9]. The
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Figure 4.7: Lymphocyte count after each day for organs with different relative weights [9].

The organ vascularity is held constant at 11%, as well as the dose of 2 Gy/day.
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relative organ weights as a percentage are as follows: pancreas (0.14), kidney (0.44), heart

(0.47), lungs (0.76), brain (2), and liver (2.57). It must be noted that the vascular volume

is set at 11% for all organs and only their relative organ weight is changed. The vascular

volume will be different for different organs in but is held constant to observe changes in one

variable. The greater the organ weight, the greater the decrease in lymphocyte count if the

percent of vascular volume is constant.

4.2.4 Changes in the Vascular Volume of the Heart
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Figure 4.8: Lymphocyte count as a function of day and as a function of vascular volume

in the heart. The simulations have a constant relative organ weight of 0.47% and dose of 2

Gy/day for 30 fractions. The lymphocyte curves with varying vascular volume percent are

as follows: 10% (blue), 20% (red), and 30% (yellow).
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The vascular volume of an organ is the other variable that determines the amount of

cells that become irradiated. The heart is used to illustrate how changes in the percent of

vascular volume impact lymphocyte count (Figure 4.8). The relative weight of the heart is

held constant at 0.47% of the body, but the percent of blood that makes up the heart is

increased from 10% to 30%.

4.2.5 Changes in Dose per Day to Lymphocyte Survival
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Figure 4.9: Lymphocyte count after each day at different total doses per day of radiation: 1

Gy/day (blue), 2 Gy/day (red), or 3 Gy/day (yellow). The volume irradiated is 1% for 30

total fractions.

Given a set volume of blood irradiated, but changing the dose per day, the number

of lymphocytes that die increases. Figure 4.9 shows the simulation curves of 1 Gy/day, 2

Gy/day, and 3 Gy/day, with the percentage of blood being irradiated at 1% and 30 total

fractions. There is a change in the lymphocyte profile, but it is not as pronounced as changing

the number of irradiated lymphocytes.
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4.2.6 Changes in the Daily Lymphocyte Turnover
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Figure 4.10: The curve of the lymphocyte count after 30 fractions of 2 Gy/day radiation

with an average daily lymphocyte turnover of 0.33% of the population (red). This figure

also extends a year beyond therapy to show the slow return to baseline. This value is halved

(blue) and doubled (yellow).

The daily lymphocyte turnover was set by taking the average turnover value of various

lymphocyte subsets. This turnover, 0.33% of the population, was allowed to vary to half

and double the average value. The results are shown in Figure 4.10. In the earlier fractions,

the variability is low. As lymphocyte counts drop, the turnover has a larger impact, and the

curves begin to separate. As turnover increases, fewer lymphocytes die, and the lymphocyte

count curve becomes less toxic. Additionally, an increase in turnover results in a faster time

to recovery.
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4.3 DISCUSSION

Lymphocytes are highly sensitive to radiation [120], and low lymphocyte counts after radi-

ation have been associated with a worse overall survival in pancreatic cancer patients [69].

This algorithm is able to capture lymphocyte death and replenishment as radiation is ad-

ministered, but it does not have the ability to explicitly differentiate between treatment

techniques. Instead, the model takes into consideration the number of lymphocytes that

are present in the beam path while radiation is on. This indirectly takes into account the

treatment technique, if one technique targets less blood volume than another. IGRT, for

instance, with magnetic resonance imaging (MRI) or computerized tomography (CT) scans,

allows clinicians to tighten the margins and irradiate less volume [67]. The model does

characterize radiation-induced lymphopenia that can be tuned to an individual. The daily

lymphocyte turnover, dose, and volume of irradiation, through relative organ weights and

vascular volume, can become personalized.
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The volume of irradiation had the biggest impact on lymphopenia. If more lymphocytes

in circulation are subjected to radiation, then more lymphocytes will die. Where the tumor

is located will determine what organs receive radiation. Changing the radiation technique to

minimize blood flow in the region of radiation should improve lymphotoxicity. However, in

an area where that is unavoidable, this model will predict radiation-induced lymphopenia.

This could aid a clinician in choosing a different dosing schedule or introducing a lymphocyte

rescue if it is available.
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Figure 4.11: Lymphocyte count as a function of days of radiation for a total of 12 Gy divided

among 3 (blue), 4 (red), 6 (yellow), and 12 (purple) fractions. The volume of irradiation and

turnover were held constant at 1% and 0.33% of the population, respectively.

The model is less sensitive to changes in dose for a constant irradiated volume, consistent

with the accumulated damage model [71]. The effects of dose do become more pronounced

with a larger constant irradiated volume but constant fraction number. This outcome results

from the probabilistic cell death functions, based off of in vitro lymphocyte radiosensitivity

[117]. As dose increases, the damage accumulated rate increases, and the probability of death

becomes greater. When dose is increased, the fraction number is often decreased. One study

found that SBRT, with higher, less frequent doses, led to less lymphopenia in pancreatic

cancer patients than conventional radiation [116]. This is consistent with this model as seen
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in Figure 4.11. All possibilities deliver 12 Gy total to the patient. As the fractions get

smaller in number, the dose gets larger, but the toxicity becomes less severe. This algorithm

can help find the crossover points where increasing dose and decreasing frequency is within

an acceptable toxicity burden than lower, more frequent doses.

Changes in the daily lymphocyte turnover are more prominent during later fractions of

radiation. This is because turnover is constant, and these cells make up a larger subset of

the total population at lower circulating counts. The model only captures what happens

to lymphocytes throughout radiation therapy, and estimates recovery based on the daily

turnover of cells. More research and modeling will be needed to capture how the lymphocytes

recover with regulatory feedback. Radiation-induced lymphopenia can take, in some cases,

years to recover from. Factors to be investigated are the impact of radiation on proliferation

rates, on regulatory cytokines, and the body’s immune response, among others. The long-

term toxic effects are one reason to take lymphotoxicity into consideration and monitor it

from the beginning.

Radiation is a critical treatment to combat cancer, especially in local pancreatic cancer,

with a 5-year survival rate of only 29% [12]. The model can be used as a starting point

to eventually predict patient sensitivity, prevent high grade lymphotoxicity, and improve

treatment schedules to increase efficacy but control toxicity.

4.4 CHEMORADIATION-INDUCED LYMPHOPENIA

Lymphocytes, while part of the white blood cell family, follow a different generation and

maturation pathway than the other subsets. Cytokines, such as IL-7, trigger lymphopoiesis

in the bone marrow where stem cells commit to the common lymphoid progenitor population.

From there they can differentiate into T-cells, B-cells or natural killer cells. The death

from radiation is added to a chemotherapy-induced lymphosuppression model to capture a

concurrent therapy plan.
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The classic Friberg model works well for chemotherapy, because its mechanism of action

occurs in the bone marrow. However, radiation is a localized treatment, and the planning

volume often does not include the bone marrow. Therefore, the cell death directly from

radiation is found using the results from the previous model.

Certain chemotherapies might not induce lymphopenia alone, but when combined with

radiation can synergistically increase toxicity along with efficacy. Antimetabolites such as

gemcitabine, fludarabine, and capecitabine act as radiosensitizers. Both chemotherapy and

radiation can produce lethal damage, but some cells receive sublethal damage and repair

themselves. When both chemotherapy and radiation are given, then the chances of repair

are decreased. However, the chemotherapy only is effective for cells that are still dividing,

and circulating cells are terminally differentiated. This model combines chemotherapy acting

on progenitor cells in the bone marrow and radiation acting on cells located in the planning

volume.

Similar behaviors even in patient groups with different chemotherapy and radiation

schemes emerge in the data and model. The chemotherapy induces predictable oscilla-

tions, as cells are eliminated and subsequently recover with the help of regulatory molecules

that stimulate proliferation among progenitor cells. Lymphopoiesis is less understood than

myelopoiesis, and many parameters were estimated or dynamically fit. More quantitative

studies need to be performed to ground the parameters.
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4.4.1 Patient Data

Four sets of data were used to build this model. The first dataset comes from pancreatic

cancer patients that were treated with 1000 mg/m2 of gemcitabine over 30 minutes weekly

for four weeks [121]. The absolute lymphocyte counts for 10 patients were provided and used

to help decipher how much lymphopenia is associated with gemcitabine alone. Two other

datasets, also of pancreatic cancer patients, have lymphocyte time-series data for patients

that get gemcitabine and external-beam radiation therapy. One dataset is of patients that

get seven weekly gemcitabine treatments of 400 mg/m2 over 30 minutes and two weeks of

external beam radiation (M-F) of 3 Gy/day [10]. The other is the same external beam

radiation schedule but only 4 of the weekly gemcitabine treatments [11].

Figure 4.12: 7 weekly doses of gemcitabine with 10 days of radiation therapy schedule [10].

The final dataset is from the same group of patients that were used in the thrombocy-

topenia and neutropenia combined model. Patients received 50.4 Gy of radiation at 1.8 Gy

per day for 28 days on weekdays. The gross primary tumor and regional lymph nodes greater

than 1 cm were subjected to a three- or four-field technique with 15- or 18-MV photons. On

days that radiation was administered, 825 mg/m2 capecitabine was taken twice daily orally.

Moreover, weekly cetuximab was given through the first month of chemoradiotherapy. Pa-

tient lymphocyte counts over the course of chemoradiotherapy were used to fit the model.
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Figure 4.13: 4 weekly doses of gemcitabine with 10 days of radiation therapy schedule [11].

The starting point for this data is at Dose 5 during the chemoradiation phase.

Each patient’s first day of radiation was considered day 0 for the purpose of a starting point

for the model. Similarly to the previous model, all of the datasets were sparse, and therefore

were combined on days 1-4 and 5-7 of each week. Unlike the last model where subgroups

were established, this model includes all the patients in each treatment plan.

4.4.2 Capecitabine

Capecitabine is in the same family as gemcitabine and is a prodrug that gets converted

to 5-fluorouracil (5-FU) [122]. Capecitabine is given as an adjuvant for colon cancer, as a

monotherapy for metastatic colorectal cancer, and in combination with docetaxel or as a

monotherapy for metastatic breast cancer. Unlike the previous intravenously infused drugs,

capecitabine was a tablet that is taken orally twice daily. Common adverse events include

diarrhea, hand-and-foot syndrome, nausea, vomiting, pain, fatigue, and hyperbilirubineamia.

Although myelosuppression is not a main toxicity, grade 3/4 lymphopenia occured in 13%

of patients in a study for capecitabine as a monotherapy for colon cancer and 44% grade 3

for stage IV breast cancer [123].
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Pharmacokinetics for orally administered capecitabine show peak levels at 1.5 hours and

for the active 5-FU at 2 hours. Food was shown to impact absorption and the main route

of excretion is through urine. A compartmental phamacokinetic model of capecitabine has

been published that accounts for oral administration and metabolism to 5-FU [124]. The

other drugs were previously discussed in chapter 3.

4.4.3 Model Developement

4.4.3.1 Lymphocyte Dynamics Even though all cells start from stem cells, lympho-

cytes branch off into their own maturation cascade separate from neutrophils, thrombocytes,

and erythrocytes. T-cells, B-cells and natural killer cells mature from the common lymphoid

progenitor state (Eq.4.1) with the assistance of various cytokines (Eq.4.7). The cells mature

through a series of transition states, the same rate and way the myelosuppression models of

Friberg do (Eq.4.2-Eq.4.6).

Chemotherapy, in this case, capecitabine and gemcitabine, both eliminate progenitor

cells, resulting in a cascade of lymphocyte reduction. The deviation of lymphocytes from

baseline triggers IL-7 to stimulate the common lymphoid progenitor state to proliferate

through signal feedback (Eq.4.7 and Eq.4.8). Radiation on the other hand kills cells in the

beam path (Eq.4.6).
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Figure 4.14: Dynamic Chemoradiotherapy-Induced Lymphocytopenia Model. Progenitor

and stem cells mature into circulating lymphocytes. The progenitor cells are susceptible

to cell death via chemotherapy in the bone marrow. As the circulating platelet count de-

creases after a dose of chemotherapy, interleukin-7 provides feedback regulation to regain

homeostasis. Additionally radiation eliminates circulating lymphocytes in the beam path.
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Table 4.1: Thrombocytopenia and Neutropenia Model Equations and Corresponding Bio-

logical States.

State Biological Meaning Unit

Clp(t) Common lymphoid progenitor 106cells
µL

L1(t) Lymphocyte progenitor 106cells
µL

L2(t) Lymphocyte maturation 106cells
µL

L3(t) Lymphocyte maturation 106cells
µL

L4(t) Lymphocyte maturation 106cells
mL

Lc(t) Circulating Lymphocytes 106cells
mL

IL(t) IL-7 -

ILs(t) IL-7 Signal -

dClp
dt

= ktrLc0 − ktrClp(t) − SlopecClp(t)Drug(t)

+ 0.09
exp(α(ILs(t) − 200.0) − 1.0)

200.0 + (exp(α(ILs(t) − 200.0) − 1.0)
Clp (4.1)

dL1

dt
= ktrClp(t) − ktrL1(t) (4.2)

dL2

dt
= ktrL1(t) − ktrL2(t) (4.3)

dL3

dt
= ktrL2(t) − ktrL3(t) (4.4)

dL4

dt
= ktrL3(t) − ktrL4(t) (4.5)

dLc
dt

= ktrL4(t) − ktrLc(t) −Radiation(t)Lc(t) (4.6)

dIL

dt
= IL0(

Lc0
Lc(t)

)0.6 − IL(t) (4.7)

dILs

dt
= 0.3IL(t) − 0.3ILs(t) (4.8)
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4.4.4 Results

4.4.4.1 Gemcitabine Pancreatic cancer patients that only were administered 1000 mg/m2

of gemcitabine, without radiation, set the basis for the contributing lymphopenia when com-

bined with radiation. In Figure 4.15, simulations of both the higher chemotherapy only dose

(blue curve) with corresponding data (box plots), and the lower dose when given with radi-

ation (dashed black curve) are shown. Gemcitabine contributes to the elimination of some

lymphocytes but not nearly as severe as seen in the chemotherapy plus radiation patients.
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Figure 4.15: This shows the contribution of gemcitabine alone toward lymphocyte elimina-

tion. The data for chemotherapy alone is at a higher dose than the dose given with radiation.

The two are shown for comparison.

4.4.4.2 Chemoradiation Gemcitabine and radiation only effects were added manually

to match the degree of lymphotoxicity found from the radiation damage algorithm and gem-

citabine alone data, respectively. For radiation, the dosing schedule of interest was imple-

mented into the lymphocyte tracking algorithm using the pancreas’ fraction of blood equal

to 1.54% of the total blood. The effects from radiation and chemotherapy are simultaneously

added to the lymphopoiesis model to capture the full dynamics.
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4.4.4.3 7 weeks of Gemcitabine and 3 Gy/Day Radiation 10 Fractions This

group of patients was able to get treated with 7 cycles of gemcitabine, because prior therapy

was not given. However, they received the same radiation plan as the next set of patients.

The model fits the decline of lymphocytes throughout the course of treatment, but patient

data was not collected much further beyond that (Figure 4.16). In fact the last 4 boxplots

have only 2 data points each. Therefore, the recovery phase was able to be studied better in

the other data sets. For each set of results for chemoradiation, the effects of chemotherapy

alone (magenta), radiation alone (black), and combined therapy (red) are plotted over the

boxplot’s (blue) of data.
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Figure 4.16: This figure is the lymphocyte count as boxplots in blue throughout therapy. Pa-

tients receive 7 weeks of gemcitabine and 10 days of radiation. The simulation of chemother-

apy alone (magenta), radiation alone (black), and chemoradiation (red) are all plotted.
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4.4.4.4 4 weeks of Gemcitabine and 3 Gy/Day Radiation 10 Fractions This

datatset had a lot of information after therapy ceased. The last dose of any therapy was at

day 21, but the data continues through day 70. The slow but steady return to baseline is

seen in Figure 4.17. The oscillations and final rebound bump can be seen around day 34,

from chemotherapy and proliferation stimulation from IL-7, respectively. Also, the steady

decline initially and slow, long rebound from radiation are present in the data and model fit.
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Figure 4.17: This figure is the lymphocyte count as boxplots in blue throughout therapy. Pa-

tients receive 4 weeks of gemcitabine and 10 days of radiation. The simulation of chemother-

apy alone (magenta), radiation alone (black), and chemoradiation (red) are all plotted.

4.4.4.5 BID Capecitabine and 1.8 Gy/Day Radiation 28 Fractions This set of

pancreatic cancer patients are given capecitabine instead of gemcitabine and a lower fraction

of radiation at 1.8 Gy/Day. Since the radiation dose fraction is lower, it can be give for 5.5
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weeks. Therefore, both chemotherapy and radiation are completed by day 38. Again the

same initial downward slope and slow, long recovery from radiation can be seen in Figure 4.18.

Additionally, the extra rebound seen after the last dose of chemotherapy, but not sustained

in the long-term recovery, likely due to IL-7, is observed.
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Figure 4.18: This figure is the lymphocyte count as boxplots in blue throughout therapy.

Patients receive 28 days of capecitabine and radiation. The simulation of chemotherapy

alone (magenta), radiation alone (black), and chemoradiation (red) are all plotted.

4.4.5 Discussion

The chemoradiation simulations are just a starting point for how the radiation damage model

can be applied. The model captures the data throughout therapy fairly well. The effects

of radiation are applied to match the degree of lymphopenia from the previously discussed
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algorithm. However, the parameters for lymphopoiesis are dynamically fit, and the long term

recovery after therapy is not always accounted for. Therefore, much more model analysis can

be performed. For instance, radiation only data, chemotherapy only data, and concurrent

data for the same therapy and doses could help ground parameters.

One way to account for the long, slow recovery of lymphocytes after radiation is through

damage associated molecular patterns (DAMPs) [74, 75, 76, 77]. Radiation damages the

tissue, and the DAMPs initiate an immune response, recruiting T-cells to the site of damage.

As fractions of radiation accumulate, T-cells are killed directly by the radiation, as well

as, through the immune response. This results in a prolonged recovery of lymphocytes to

baseline post-radiation. Once a full model is validated, the possible impact of this model is

great. The model can be used to monitor lymphopenia in combination therapy and used in

therapy optimization algorithms.
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5.0 CONCLUSIONS

Cancer treatments, like any drug, come with side effects. The benefits must outweigh the

risks for patients to use them. Hematological toxicities such as thombocytopenia, neutrope-

nia, and lymphopenia are common dose limiting toxicities for chemotherapy and radiation.

Adjusting the magnitude and frequency of treatment schedules is one way to prevent patients

from entering grades 3 and 4 toxicity. Predicting which patients need dose adjustments is the

difficult part. Severe toxicities can lead to bleeding, infection and even death. The models

presented were built to describe the chemotherapy and radiation induced toxicity, in order

to predict why some patients are more sensitive than others to a given treatment. More-

over, they were built to predict trends early on, in order to make adjustments and improve

outcome.

In the first model, thrombocytopenia was found to be more severe in patients with a

faster transit rate of maturation and lower ability to rebound via thrombopoietin. When

this model was biologically expanded to include neutropenia, a new dataset allowed the

model to be tested in different subgroups of patients. A correlation between outcome and

pretreatment histological subtyping was once again influenced by the platelet maturation

transit rate and thrombopoietin.

The final model was developed to describe radiation-induced lymphocytopenia. Lym-

phocytes are especially sensitive to radiation. Severe radiation-induced lymphopenia during

cancer treatment can lead to dose reductions and delays hindering patient overall survival.

This work constructs a model that predicts lymphocyte cell count throughout the course of

radiation treatment. The inputs to the model are the volume of blood in the beam area,

number of radiation fractions, number of beams per fraction, total radiation dose, and a

patient specific initial baseline lymphocyte count. A Monte Carlo approach assigns lympho-

97



cytes to be within, or outside, the beam area, and radiation damage is accumulated by blood

cells in the treatment volume for each beam and fraction. Physiologically-motivated rates

of natural (not treatment-induced) lymphocyte death and replenishment are also incorpo-

rated into the model. This model may be useful in predicting the severity of lymphopenia

from a patient-specific radiation treatment plan. Also, the model can be combined with a

chemotherapy-induced lymphosuppression model to study combination therapy.

As George Box said, ”all models are wrong, but some are useful.” The goal of the three

toxicitiy models is to predict patient subpopulations that are sensitive to a given treatment.

If sensitive patients can be detected early on in therapy, then modifications can be made

to improve efficacy and/or toxicity. Future work to improve the models include obtaining

individual pharmacokinetic data to drive pharamcodynamic effects, modeling how many and

when progenitor cells commit to a certain lineage, using individual regulator profiles such as

TPO, IL-7, and G-CSF to drive rebound effects, and a better understanding of lymphocyte

dynamics at the site of radiation. Other future work would include designing prospective

clinical trials that intervene as soon as the model predicts sensitive subpopulations.

5.1 PHARMACOKINETICS

For all sets of data only PD time series data was available. However, drug PK play an

important role in efficacy and toxicity. Drugs can be cleared or metabolized at different

rates in individuals, impacting residence times and cell elimination rates. In the models, the

transit rate of maturation determines the downward slope of the cells as they are eliminated.

This term could be set to a fixed parameter value for all patients, and the trend could

be due to an individuals PK rates. For instance, patients that are less sensitive to the

drug may actually be clearing the drug at a greater rate, so less is actually getting to the

bone marrow. Simple compartmental PK might not be enough to accurately depict the

toxicity in the bone marrow, because PK is measured by circulating blood concentrations.

A physiologically based PK model could be needed to biologically inform the model in the

bone marrow.
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5.2 PROGENITOR COMMITMENT TO LINEAGE

The hematopoietic lineage tree begins with a single population of pluripotent stem cells that

differentiate and mature into different cell types, based on chemical cues from cytokines and

other molecules. Most models in the literature only consider one cell type at a time, so it

does not matter how the commitment to lineage occurs. This works well for studying a single

toxicity, but what happens when a multiple drug therapy has multiple hematological toxicity

concerns? Currently, clinicians will not give that combination, but perhaps this combination

is more efficacious as long as toxicity is controlled. If measurements of cytokines that enforce

commitment were available, then predictions on how the patient will recover might be pos-

sible. For instance, IL-7 promotes lymphopoiesis and TPO promotes myelopoiesis. When

radiation and a platinum chemotherapy are given concurrently, lymphopenia and thrombo-

cytopenia are possible. Exogenous IL-7 and TPO could be given to patients to maximize

efficacy but control toxicity.

5.3 CYTOKINES AND REGULATORS

TPO, G-CSF, and IL-7 lack individual data to ground the terms in the models. TPO does

mimic the appropriate magnitude and peak time for a circulating platelet count, similar to the

patients used, but no measurements were available. The time series profiles of these cytokines

could be enough to explain why patients have variable drug sensitivities. The timing of
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endogenous and/or exogenous TPO and G-CSF could prevent high grade hematological

toxicities. For instance, if TPO accumulates from low platelet counts, and TPO acts on

the common myeloid progenitor state, as well as, further into the platelet lineage, then a

high concentration of common myeloid progenitors might follow. If at the same time, it

was advantageous to increase neutrophil counts in anticipation of a neutropenia-inducing

drug, then GM-CSF and/or G-CSF could be administered to boost circulating neutrophil

counts. Additionally, exogenous TPO could be administered, although it is not as effective

as exogenous G-CSF. Eventually dosing optimization routines could include toxicity rescues

in complex ways.

Another area of interest in the cytokines and regulators field is DAMPs. It is not currently

understood why lymphocytes take so long to recover after radiation therapy. There are

theories on the immune system and DAMPs, but nothing is conclusive. This is a broad

field with many avenues for further research. Improvements in experimental measurement

techniques, especially dynamically throughout therapy, are needed to characterize trends.

5.4 PROSPECTIVE STUDIES FOR EARLIER SUBGROUP

STRATIFICATION

Model validation is one of the most challenging aspects for transitioning models to the clinic.

The data used to build these models were all from previously established trials. Therefore,

the individual pharmacokinetic data, regulatory molecule time series data, and frequent

blood count measurements were not present. Designing a prospective trial to obtain all of

these measurements and get an accurate description of the patient’s dynamics is needed to

verify significant findings. Once that data is acquired and analyzed, then future prospective

trials can be performed to detect subpopulations earlier in the treatment plan. Changes in

therapy can then be made to improve outcome.
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Foncillas, C. Segura, I. F. Trocóniz, A semi-physiological-based pharmacoki-
netic/pharmacodynamic model to describe the effects of topotecan on b-lymphocyte
lineage cells, Pharmaceutical research 27 (3) (2010) 431–441.
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	4.4. Lymphocyte count as a function of days throughout radiation. 2 Gy/day was administered for 30 fractions with a irradiated volume of 1% and daily lymphocyte turnover of 0.33% of the population. 
	4.5. Lymphocyte count after each day at same irradiated volumes. The dose is 2 Gy/day for 30 fractions. The simulation is ran 100 times to show minor variation in probabilistic cell death. 
	4.6. Lymphocyte count after each day at different irradiated volumes. The dose is 2 Gy/day for 30 fractions. The blue curve is a representative simulation for a patient with 1% of their cells exposed to radiation, the red is 5% and the yellow is 10%. 
	4.7. Lymphocyte count after each day for organs with different relative weights bir94. The organ vascularity is held constant at 11%, as well as the dose of 2 Gy/day. 
	4.8. Lymphocyte count as a function of day and as a function of vascular volume in the heart. The simulations have a constant relative organ weight of 0.47% and dose of 2 Gy/day for 30 fractions. The lymphocyte curves with varying vascular volume percent are as follows: 10% (blue), 20% (red), and 30% (yellow). 
	4.9. Lymphocyte count after each day at different total doses per day of radiation: 1 Gy/day (blue), 2 Gy/day (red), or 3 Gy/day (yellow). The volume irradiated is 1% for 30 total fractions. 
	4.10. The curve of the lymphocyte count after 30 fractions of 2 Gy/day radiation with an average daily lymphocyte turnover of 0.33% of the population (red). This figure also extends a year beyond therapy to show the slow return to baseline. This value is halved (blue) and doubled (yellow). 
	4.11. Lymphocyte count as a function of days of radiation for a total of 12 Gy divided among 3 (blue), 4 (red), 6 (yellow), and 12 (purple) fractions. The volume of irradiation and turnover were held constant at 1% and 0.33% of the population, respectively. 
	4.12. 7 weekly doses of gemcitabine with 10 days of radiation therapy schedule eva08. 
	4.13. 4 weekly doses of gemcitabine with 10 days of radiation therapy schedule var08. The starting point for this data is at Dose 5 during the chemoradiation phase. 
	4.14. Dynamic Chemoradiotherapy-Induced Lymphocytopenia Model. Progenitor and stem cells mature into circulating lymphocytes. The progenitor cells are susceptible to cell death via chemotherapy in the bone marrow. As the circulating platelet count decreases after a dose of chemotherapy, interleukin-7 provides feedback regulation to regain homeostasis. Additionally radiation eliminates circulating lymphocytes in the beam path. 
	4.15. This shows the contribution of gemcitabine alone toward lymphocyte elimination. The data for chemotherapy alone is at a higher dose than the dose given with radiation. The two are shown for comparison. 
	4.16. This figure is the lymphocyte count as boxplots in blue throughout therapy. Patients receive 7 weeks of gemcitabine and 10 days of radiation. The simulation of chemotherapy alone (magenta), radiation alone (black), and chemoradiation (red) are all plotted. 
	4.17. This figure is the lymphocyte count as boxplots in blue throughout therapy. Patients receive 4 weeks of gemcitabine and 10 days of radiation. The simulation of chemotherapy alone (magenta), radiation alone (black), and chemoradiation (red) are all plotted. 
	4.18. This figure is the lymphocyte count as boxplots in blue throughout therapy. Patients receive 28 days of capecitabine and radiation. The simulation of chemotherapy alone (magenta), radiation alone (black), and chemoradiation (red) are all plotted. 
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