
EFFECTS OF BREAST CANCER HORMONE TREATMENT ON LIPIDS AND 

SUBSEQUENT CARDIOVASCULAR DISEASES 

by 

Hsin-Hui Huang 

MD in Medicine, Kaohsiung Medical College, Taiwan, 1996 

MPH in Health Management, Yale University, 2002 

MS in Biostatistics, University of Pittsburgh, 2014 

Submitted to the Graduate Faculty of 

the Department of Epidemiology 

Graduate School of Public Health in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

University of Pittsburgh 

2017 



ii 

UNIVERSITY OF PITTSBURGH 

GRADUATE SCHOOL OF PUBLIC HEALTH 

 

 

 

This dissertation was presented 

 

by 

 

Hsin-Hui Huang 

 

 

It was defended on 

June 1st, 2017 

and approved by 

Emma Barinas-Mitchell, PhD, Assistant Professor, Department of Epidemiology, Graduate 

School of Public Health, University of Pittsburgh 

 

Chung-Chou (Joyce) Chang, PhD, Professor, School of Medicine, University of Pittsburgh 

 

Brenda Diergaarde, PhD, Associate Professor, Department of Epidemiology, Graduate School 

of Public Health, University of Pittsburgh 

 

 Dissertation Advisor: Marnie Bertolet, PhD, Assistant Professor, Department of 

Epidemiology, Graduate School of Public Health, University of Pittsburgh 

 

 

 



iii 

Copyright © by Hsin-Hui Huang 

2017 



iv 

 

ABSTRACT 

Selective estrogen receptor modulators (SERMs), the earliest breast cancer (BC) 

hormone treatment, improve survival of hormone positive (HR+) BC patients. Aromatase 

inhibitors (AIs) further prolong disease free survival (DFS) for postmenopausal HR+ BC 

patients, but their benefits in overall survival (OS) are inconclusive. An important factor that 

impacts OS but not DFS is non-BC death, and cardiovascular disease (CVD) is one of the major 

contributors. In addition to its high prevalence in the aging population, CVD may be associated 

with BC cancer treatment. BC hormone treatment influences serum estrogen concentration, 

which is related to the occurrence of CVD; therefore, it is critical to investigate the impact of BC 

hormone treatment on CVD, especially in the era when prolonged hormone treatment is 

increasingly popular in BC care. 

This dissertation consists of 3 projects: 1) enhancement of an existing Bayesian Network 

Meta-analysis (NMA) method by allowing more reporting formats, so more studies may be 

included and expanding an existing consistency check of direct and indirect evidence for a NMA 

to include longitudinal data; 2) a Bayesian NMA exploring the effects of BC hormone drugs on 

changes of lipid profiles during hormone treatment; and 3) a study examining the effects of 

hormone treatment on dyslipidemia/coronary heart disease (CHD) throughout the whole course 

of BC treatment using electronic medical records.  

Marnie Bertolet, PhD 

EFFECTS OF BREAST CANCER HORMONE TREATMENT ON LIPIDS AND 

SUBSEQUENT CARDIOVASCULAR DISEASES 

Hsin-Hui Huang, PhD 

University of Pittsburgh, 2017
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The result from the second study showed that patients on SERMs had better lipid profiles 

and tended to reduce the risk of dyslipidemia/CHD. The third study revealed that the beneficial 

effects disappeared after discontinuing SERMs. NMA demonstrated that individual AIs impact 

changes of lipid profiles differently. However, the third study combining AIs as a whole did not 

reveal the significant impact on risk of dyslipidemia/CHD, which may be caused by mixed 

effects of individual AIs and insufficient statistical power due to few outcome events. The public 

health significance of this dissertation is to provide methods promoting applicability of NMA for 

longitudinal data, and to show the effects of BC hormone treatment on lipids and CHD. BC 

patients with pre-existing risk factors of CVD should be monitored more frequently when they 

are on hormone treatment.  
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1.0  INTRODUCTION 

Breast cancer (BC) is the most prevalent form of cancer in American women, with 

estimated 252,710 new cases and about 40,610 death to BC women in 2017
1,2

.  While recent 

advances in cancer therapy have improved survival and quality of life, BC survivors now face 

long term effects of cancer treatments, especially when these coincide or accelerate chronic 

diseases of aging.  This dissertation looks at the effects of BC treatment, selective estrogen 

receptor modulators (SERMs) and aromatase inhibitors (AIs), on the long term cardiovascular 

health of post-menopausal BC survivors. 

Coronary heart disease (CHD) is the most common type of cardiovascular disease (CVD) 

and is the leading cause of death in both men and women. The mortality rate is significantly 

lower in women before menopause, but the rate for post-menopausal women is close to men
3
. 

Menopause, with the drastic reduction in female sex hormones,  corresponds to changes in CVD 

risk factors and may play an important role in the development and prognosis of CVDs
4
. 

Hormone receptor positive (HR+) BC is the major type of BC diagnosed in post-menopausal 

women and hormone therapy, interrupting either function or production of female sex hormones, 

is the most important long-term adjuvant treatment. Hormone therapy may impact levels of 

female sex hormones in post-menopausal BC patients and further deteriorate CVD risk factors.   
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AIs are the main hormone therapies for HR+ breast cancer in post-menopausal patients 

and act by reducing production of estrogen. An alternate type of hormone therapy, SERM, 

blocks the function of estrogen on cancer cell proliferation. Several large-scale international 

clinical trials have shown that AIs improved disease free survival (DFS) in patients with early 

stage HR+  BC compared to the effect of SERMs; however, overall survival (OS) was not 

significantly improved by AIs
5
. These results imply more non-BC relapse mortality, or 

equivalently, higher mortality from non-BC causes in AI verses SERM treated BC survivors. 

Among the non-BC causes of mortality, CVD is one of the major non-BC recurrence cause of 

death in randomized clinical trials (RCT)
6
. Additionally, higher incidence of cardiovascular 

events in AI treated BC patients compared to those taking tamoxifen (a SERM drug) was 

reported in a meta-analysis study published in 2011
7
. One reason may be due to the association 

of estrogen and the worsening of lipid profiles
8,9

, one of the risk factors of CVDs
10

. The major 

effect of AIs is to reduce serum estrogen level, and this depletion of estrogen may impact the 

cardiovascular system similar to menopause.  

This dissertation includes the following: Chapter 1: Literature review of BC and CHDs; 

Chapter 2: The statistcal method that converts values at follow-up visits into changes from 

baseline; Chapter 3: Bayesian network meta-analysis of effects of BC hormone drugs on changes 

of lipid profiles during hormone treatment using the method proposed in Chapter 2; Chapter 4: 

Time-dependent BC hormone treatment on risk of subsequent CHDs in a hospital cohort. The 

overall goal of this dissertation is to compare differential effects of BC hormone drugs on lipid 

profiles and CHDs in long-term BC survivors. 
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1.1 BREAST CANCER (BC) 

1.1.1 Incidence, Mortality and Prevalence 

It is estimated that approximately 252,710 new invasive BC cases and 40,610 BC deaths 

will occur in 2017
11

. Incidence rates of invasive BC increased between 1975 and 2000 in women 

who were over 50 years old, but incidence of in situ and invasive BC continued increasing since 

1980 for all age groups (Figure 1 A, panel a, b). The rates increased rapidly in the 1980s due to 

popularity of mammography screening; more patients were diagnosed with early stage BC 
12

. 

The incidence rate decreased about 7% between 2002 and 2003, which is believed to be related 

to discontinuing hormone replacement therapy (HRT) after the Women’s Health Initiative 

randomized trial failed to prove benefits of HRT on preventing CVDs. The change in patterns of 

BC occurrence in the past 4 decades was mainly observed in women over 50 years old with 

estrogen receptor positive (ER+) breast cancer while the incidence of estrogen receptor negative 

(ER-) BC has been decreasing or relatively stable in the past decades, especially for non-

Hispanic White women (Figure 1 B)
13–15

. 
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(A) Incidence and mortality rates of female breast cancer by age, United States, 1975 to 2010 

 

 
(B) Trends in female breast cancer incidence rates by age, race/ethnicity, 2000 to 2010 

 From DeSantis C, et al.  CA Cancer J Clin (2014)
12 

 

Figure 1. Incidence, mortality, and trends of female breast cancer 
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Age and race are associated with incidence and subtypes of BC (Figure 1 B). Incidence 

rates of BC were significantly higher in women over 50 years old compared to women 30-49.  In 

the last decade, non-Hispanic White women over 50 years old had the highest incidence rate 

compared to non-Hispanic Black and Hispanic women. In all age groups, the incidences of ER+ 

BC was highest in non-Hispanic White women. However, the incidence rate of ER- breast cancer 

was highest in non-Hispanic Black women. The incidence rate of ER- breast cancer decreased 

between 2000 and 2010, especialy for women 50-59 years of age. The incidence rates of ER+ 

and ER- breast cancers were similar in young women, ages between 30 and 49 years old
12

.  

During 1990 and 2010, the mortality rate was higher in women aged 50 years old and 

over compared to the younger population. The mortality rate in the elder population decreased 

across time (Figure 1 A, panel c). The annual mortality rate was similar in White and non-

Hispanic Black women who were younger than 50 years old, but the mortality rate declined more 

in the white women aged 50 years old and over compared to the black women in the same age 

group 
16

. Though the incidence rates of BC have been stable in the past decade, the mortality 

rates were continuously decreasing. The prevalence of BC has increased due to more BC 

survivors in the population 
16

.  
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1.1.2 Subtypes 

Subtypes of BC are determined by characteristics of the cancer cells, and are closely 

associated with therapeutic options and survival outcomes. Previously,  BC diagnosis mainly 

depended on histological features of breast cancer tissues (BC cell differentiation) and 

immunochemical tests (intensity of hormone receptor expression on cell surfaces) to predict 

prognosis and determine therapeutic strategies. Current technologies are able to identify 

mechanisms of BC carcinogenesis and molecular characteristics within BC cells, so the modern 

subtypes of BC are determined by the immunochemical features and expressions of specific 

genes, which provide information to determine the most effective treatment of BC and to predict 

prognoses
17

.    

The modern subtype classification of breast cancer is based on cellular expression of ER, 

Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Ki-67 

(Table 1).  

Table 1. Subtypes of breast cancer (BC) 

Subtype Characteristics Prevalence among BC cases 

(approximate) 

Luminal A ER+ and/or PR+ 

HER2 –  

Low Ki-67 

30-70% 

Luminal B ER+ and/or PR+ 

HER2 + (or HER2- with high Ki-67) 

10-20% 

Triple negative/basal-like ER- 

PR- 

HER2- 

15-20% 

HER2 type ER- 

PR- 

HER2+ 

5-15% 

ER: Estrogen Receptor; PR: Progesterone Receptor; HER2: Human Epidermal Growth Factor Receptor 2 

Adapted from articles of Voduc KD, et al.
18

; Howlader N, et al.
19
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1.1.3 Estrogen Receptor (ER) and Progesterone Receptor (PR) 

Estrogen controls cell proliferation via estrogen receptors (ER) in breast tissue. There are 

two types of ERs, ER and ER. Compared to ER, ER is the predominant form in breast 

tissue, especially ER+ BC, and is regulated by the distal promotor of ER mRNA 
20–22

.  An in 

vitro study showed that ER can stimulate cell proliferation in an autocrine manner for ER+ 

breast cancer cell lines, which cannot be observed in normal mammary epithelial cells
23

.  In 

addition, the proportion of ER expression is higher in the dividing BC cells compared to the 

normal breast epithelial cells
24

. This overexpression of ER in BC cells may be caused by 

upregulation of ER via gene amplification or blocking degradation of ER
25–27

.  

Transcription of PR genes can be generated by estrogen regulated promoters, leading ER 

and PR to be commonly expressed in the same cells; however, PR can still be independently 

expressed in human breast cells
24,28,29

.  After being stimulated by progesterone, PR+ breast cells 

proliferate via a direct Cyclin D1-dependent mechanism (cell intrinsic signaling), and activate 

receptor activator of NfB ligand (RANKL), which induces proliferation of neighboring PR- 

cells in a paracine manner
30–32

. Therefore, proliferation of the breast cell without PR can still be 

promoted by progesterone via PR+ cells.  

ER and PR can bind to deoxyribonucleic acid (DNA) of BC cells directly or indirectly 

by working with the other transcription factors and recruiting coactivators to impact transcription 

of the BC cell DNA
33–37

. The genomic action (classic pathway) requires ER receptors to 

interact with an estrogen response element in the target genes. Genome-wide studies identified 

more than 5,000 target genes and the majority of the ER binding sites are located at distant 

regulatory elements and only 4% of them are in the promotor regions
38,39

. ER/PR can also 
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induce DNA transcription via influencing signal pathways trigered by growth factor receptors 

and G-protein-coupled receptors (non-genomic signaling), e.g. Epidermal growth factor receptor 

(EGFR) and human epidermal growth factor receptor 2 (HER2)
40–47

(Figure 2). ER/PR expression 

is the first identified feature that was used to determine BC prognosis and therapeutic strategies.   
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From Tanos et al. Breast Cancer Research (2012)

47
  

Estrogen receptor (ER) and progesterone receptor (PR) can bind directly to DNA-specific sequences or indirectly by binding to 

other transcription factors. In addition, ER and PR are able to activate several signaling pathways (mitogen-activated protein 

kinases (MAPKs),, JAK/STAT, SRC or phosphatidylinositol-3-kinase (PI3K)) (blue arrows). In parallel, epidermal growth factor 

receptor (EGFR) activation by epidermal growth factor (EGF) or mediated by ER activates MAPKs, which in turn can 

phosphorylate and probably activate ER or PR. Protein kinase A (PKA) and PAK phosphorylate and activate ER (red arrows). 

cAMP is involved in the activation of both ER and PR receptors and can be induced by membrane receptors such as GPR30 or 

mPR. Besides, coactivators can participate in ER activation by cross talk with other signling pathways; the coactivator 

coactivator-associated arginine methyltransferase-1 (CARM1) activates ER by cAMP signaling, leading to ER 

phosphorylation. Once phosphorylated, ER and CARM1 interact and can bind to the DNA to regulate target genes. E2, 17-

estradiol; HB, heparin-binding; PG, progesterone. 

 

Figure 2. Integration of genomic and non-genomic estrogen receptor and progesterone receptor 

signaling pathways 
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Risk factors of breast cancer related to estrogen exposure, such as parity and age at 

menarche
48,49

, are closely associated with ER+ breast cancer. Furthermore, ER overexpression is 

closely related to expression of PR, cyclin-dependent kinase inhibitors p21 and p27, cyclin D1, 

and apoptosis inhibitor bcl-2 
50–52

. ER expression is closely related to outcomes of BC patients. 

Based on a report in 2003, only considering the impact of hormone thearpy on BC survival, the 

estimated 5-year survival for patients with ER+ breast cancer was 90% compared to 77% for the 

patients with ER- breast cancer 
53

. 

Characteristics of breast cancer are different between pre- and post-menopausal patients. 

Though the incidence rate of invasive breast cancer is low in pre-menopausal women, the overall 

survival and recurrence-free survival are markedly poor compared to the post-menopausal 

patients. The evidence suggests that the clinical features of pre-menopausal breast cancer are 

biologically distinct from those of post-menopausal breast cancer. Pre-menopausal BCs are more 

aggressive, and 38-64% of BCs diagnosed in patients younger than 40 years old have high grade 

histological features (poorly differentiated BC cells) compared to 17-38% in patients aged 60 

years old and above 
54

. Approximately 54-58% of BCs in pre-menopausal patients are ER+ while 

80-83% of post-menopausal breast cancers are ER+. Also, pre-menopausal BCs more often 

exhibit high Ki-67 expression compared to post-menopausal BCs (48% vs. 26%) 
55

. HER2 and 

p53 are commonly overexpressed in the pre-menopausal breast cancer 
55,56

. Furthermore, pre-

menopausal breast cancers have a basal-like molecular phenotype and are more likely to be 

involved in gene mutation, especially associated with BRCA1 mutations 
55,57–60

. The specific 

features of pre-menopausal breast cancer are associated with a poor prognosis. Based on the 

SEER data between 1988 and 2001, 5-year survival rates for women diagnosed of BC before 40 
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years old are 78-84% compared to >90% among female patients who were diagnosed at ages of 

60 years and older 
61

.  
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1.1.4 Therapeutic Strategies 

Therapeutic strategies for breast cancer are based on characteristics of breast cancer cells, 

clinical stage (determined by tumor size and involvement of organs), and organ functions 

(including heart, lung, liver and kidney) of the patients. The National Comprehensive Cancer 

Network (NCCN) regularly publishes guidelines of cancer treatment according to updates of 

clinical trials and expert opinions
17

.  

The main characteristics of breast cancer cells include hormone receptor status, HER2 

expression, and histological grading. The features determine specific chemotherapeutic agents 

and target therapies. Stages of breast cancer are based on the results from preoperational 

examination and pathological findings after any surgery, which are based on the size of breast 

tumor, involvement of nearby tissues and lymph nodes, as well as involvement of vital organs. 

Radiotherapy focuses on local control of the tumor sites, so it is usually recommended for 

patients with modified surgical methods to preserve breasts, large breast cancer lesions, or 

inadequate surgical margins in which potential micro-tumor invasions are possible at the surgical 

margins. Chemotherapy focuses on systemic disease control, which is usually used in patients 

with advanced disease even though the local lesions are removed completely. Responses of 

breast cancer cells to chemotherapeutic agents depend on molecular characteristics of the cells. 

The major function of chemotherapy is to disturb proliferation of the cancer cells, but it also 

impacts normal cells with proliferative entities, such as hair, mucosa, and blood cells. These are 

the sites where patients experience adverse effects during chemotherapy
17

. 

Targeted therapies are the modern treatment improving survival of patients with BC cells 

that have specific molecular features. Hormone therapy is the earliest targeted therapy for breast 
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cancer. It improves survival of patients with overexpression of estrogen receptors and/or 

progesterone receptors that can be examined by microscopic immunohistochemistry stain
62,63

.  

More than 90% of early BC patients (stage I and II, which are BC with/without localized 

lymph node involvement) survive over 5 years, which is attributed to effective cancer treatment 

and early disease detection via regular mammography. As a result, some physicians consider 

breast cancer now a chronic disease, requiring regular monitoring but not acutely life-

threatening. 
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1.1.5 Selective Estrogen Receptor Modulators (SERMs) vs. Aromatase Inhibitors (AIs) 

Selective estrogen receptor modulators (SERMs) have a different mechanism of action 

than AIs.  SERMs compete with estradiol for binding to estrogen receptors, so the function of 

estrogen on proliferation of breast cancer cells is blocked. The physiological estrogen production 

continues after administering SERMs. On the contrary, AIs block production of estrogen by 

inhibiting the activity of aromatase enzyme, which converts androgen into estrogen.  

Tamoxifen (TAM), the first SERM, itself has low affinity to ERs, but induces a 

metabolite converted by the liver that has high affinity to ERs and acts as an antagonist in 

mammary cells
64

. A study showed that the tamoxifen-ER complex recruited co-repressors to ER 

target promoters in the mammary cells, but recruited co-activators in the endometrial cells
65

. 

These results are consistent with the clinical observations of reducing risk of breast cancer 

recurrence and increasing incidence of endometrial cancer for BC patients on adjuvant tamoxifen 

treatment
66,67

. In order to balance benefit and risk on taking TAM for adjuvant therapy of BC, the 

current guidelines recommend 5 years of treatment. The BC patients completing TAM may shift 

their treatment to AIs if they approach menopause, or stop TAM without further hormone 

therapy. However, longer term use of TAM may continue to reduce risk of BC recurrence and 

mortality. The results of a clinical trial published in 2013 showed a significant lower mortality 

rate ratio (RR=0.71, 95% CI, 0.58-0.88) after 10 years of TAM compared to the regular 5-year 

treatment
63

.  

AIs reduce production of estrogen, so the ER-target cells proliferate less due to fewer 

stimuli of ligand-ER complexes. The effects are more significant in post-menopausal women 

because their estrogens are mainly derived from peripheral tissues via aromatase activated 

pathways while pre-menopausal women have more ovaries secreted estrogens.  
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Figure 3 shows the action of AIs on estrogen production. The major source of estrogen in 

pre-menopausal women is from the functional ovaries, with other sources coming from 

subcutaneous fat, breast and bone, via the pathway of converting androgens into estrogens, 

which requires the aromatase enzyme
68

. After menopause, the ovarian function is lost, so the 

main source of estrogens is from the other tissues with the action of the aromatase enzyme
69

. In 

addition, aromatase activity may impact local concentration of estrogen in the peripheral tissues 

and increase the risk of certain conditions, such as breast cancer. The aromatase gene is located 

at chromosome 15. Expression of aromatase is higher in breast cancer due to paracrine 

interaction between malignant epithelial cells and adipose stromal cells. In normal adipose 

stromal cells, which are undifferentiated adipose fibroblasts, aromatase expression is driven by 

glucocorticoid dependent promoter. Malignant breast cancer epithelial cells stimulate production 

of adipose fibroblasts, increasing the amount of aromatase transcription. Furthermore, the 

cytokines produced by malignant epithelial cells switch aromatase promoters to induce cyclic 

adenosine monophosphate (cAMP)-dependency  which increase aromatase expression
69,70

.  

Production of estrogens is more efficient on aromatase overexpression status, which increases 

ligand-bound ERs and leads to proliferation of ER-target cells.      

AIs reduce production of estrogen, so the ER-target cells proliferate less due to fewer 

stimuli of ligand-ER complexes. The effects are more significant in post-menopausal women 

because their estrogens are mainly derived from peripheral tissues via aromatase activated 

pathways while pre-menopausal women have more ovaries secreted estrogens.  

There are two types of AIs. The steroidal type AIs are analogues of androstenedione, 

which compete the substrate-binding pocket of aromatase with the natural androstenedione and 

irreversibly inactivate aromatase enzyme
71

. The non-steroidal type AIs bind to the iron atom in 
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the heme group of cytochrome P450 in the enzyme, which is reversible
72,73

. The current 

generation of AIs is able to inhibit aromatase enzyme at more than 95% of specificity
74

.  

Compared to TAM treatment, post-menopausal BC patients on AIs had significantly lower 

recurrence and mortality rate after 5 years of treatment
75

. The current breast cancer treatment 

guidelines, based on National Comprehensive Cancer Network (NCCN) recommendations, 

suggest switching to AIs after 5 years of TAM if the pre-menopausal patients become post-

menopausal or upfront AIs treatment if the patients are post-menopause at diagnosis.       

 

 
From Johnston SRD, et al. Nature Reviews of Cancer (2003)

76
 

Estradiol binds to the estrogen receptor (ER), leading to dimerization, conformational change and binding to estrogen response 

elements (EREs) upstream of estrogen-responsive genes including those responsible for proliferation. Tamoxifen competes with 

estradiol for ER binding whereas aromatase inhibitors reduce the synthesis of estrogens from their androgenic precursors. 

 

Figure 3. Mechanism of action of aromatase inhibitors and tamoxifen 
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1.2 CARDIOVASCULAR DISEASE (CVD) 

1.2.1 Incidence, Mortality and Prevalence 

Cardiovascular diseases include diseases in the blood vessels, heart, and brain. Almost 1 

in 3 American adults have at least one type of CVD and rises to more than 50% of the population 

aged 60 years and older. Since beginning of the 20 century, CVD has been the leading cause of 

death. According to 2013 mortality data, the death rates in men and women were 269.8 and 

184.8 per 100,000, respectively. Non-Hispanic men and non-Hispanic women had the highest 

mortality rate compared to the other racial/ethnic groups
77

. Before age of 60, CVD death rates 

are higher in men, but the rates are similar in both genders after 60 years old. 

Coronary heart disease (CHD), a condition in which the arteries supplying blood to the 

heart become occluded, is a major type of CVD. Severe CHD can result in a myocardial 

infarction (MI), the death of heart tissue due to lack of oxygen. In the US, CHD accounted for 

18% of CVD events, but almost half of the CVD deaths were associated with CHD. Estimated 

550,000 new MI patients were diagnosed in 2016 based on the data from the Atherosclerosis 

Risk In Communities (ARIC) study
78

.  The annual CHD death rate has declined in recent 

decades (Figure 4A),  with 47% of the death rate reduction attributed to improved treatment, 

including management of CVD risk factors
79,80

. With effective prevention programs, the 

incidence of MI has also declined significantly. The incidence of CHD varies by race, gender, 

and age. The annual incidence of MI or fatal coronary heart disease is significantly higher in men 

among the population under the age of 75; however, the incidence is higher in women among the 

population older than 85 years old (Figure 4B). The prevalence of CHD is consistently higher in 

men across all ages (Figure 4C). The phenomenon is partially due to older age of the first MI in 
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women. In addition, for patients older than 45 years, more women die after the first MI. 

Subsequently, female patients have a shorter survival time then male patients (5.5 years vs. 8.2 

years)
81

. Black males have the highest incidence rate before the age of 85. Non-Hispanic White 

males have the highest prevalence of CHD. The fact that high incidence of Black males and high 

prevalence in White males may be reflective of racial disparity in medical access, resulting in 

more Black male patients who die of CHD than White males. 

 

 

 
(A) Death attributable to diseases of heart.  
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(B) Annual number of adults per 1000 having diagnosed heart attack or fatal coronary heart disease 

(CHD) by age and sex. 

 

(C) Prevalence of myocardial infarction by age and sex  
From Mozaffarian et al. Circulation (2015)

81
 

 

Figure 4. Incidence and prevalence of CHD across age groups for men and women 
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1.2.2 Pathophysiology of Coronary Heart Disease (CHD)  

CHD, caused by reduced blood flow due to narrowing of the coronary artery lumen, is 

the most frequent and fatal CVD. This problem starts in the endothelium of the coronary artery 

which develops atherosclerosis via a series of inflammatory processes. When infectious agents 

and/or low-density lipoprotein cholesterol (LDL-C) contact arterial intima and initiate 

inflammation, endothelial cells are activated and adhesion molecules are expressed. These 

reactions usually appear at the site of hemodynamic strain. Platelets first arrive at the site and are 

followed by leukocytes, including monocytes and T cells. These cells migrate to the sub-

endothelial space after attaching to the intima. The monocytes are transformed into macrophage 

via stimulation of cytokines produced by inflammatory intima
82,83

. Therefore, innate immunity is 

up-regulated. Various molecules and particles are engulfed by macrophages and destroyed. 

Cholesterol may accumulate in the macrophages, which are then transformed into foam cells if it 

cannot be removed efficiently. The foam cells secrete pro-inflammatory cytokines and induce 

local inflammatory reaction of endothelial and smooth muscle cells (SMCs). SMCs move to the 

intimal layer and proliferate to form an extracellular matrix that is more susceptible to oxidative 

impact and further facilitates inflammatory responses. Endothelial cells, monocytes and the 

extracellular matrix secrete matrix metalloproteinases (MMPs) together modulate functions of 

vascular cells and lead to angiogenesis, destruction, and remodeling of arteries
84

. MMPs can 

degrade the extracellular matrix, so the strength of plaque’s fibrous cap is compromised. 

Narrowing coronary artery lumen is usually not fatal and spasm of the artery may induce acute 

coronary artery syndrome (known as angina or chest pain). However, vulnerable plaque rupture 

and endothelial erosion allow blood entering the plaque core to contact tissue factors, derived 

from dead lipid-laden macrophages, and then platelets and coagulation are activated for 
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thrombus formation
85

. Occlusion of the coronary artery blocks blood supply of myocardium and 

causes myocardial infarction, which is the major cause of acute cardiac death (Figure 5).       

 

 
From Libby P, Nature (2002)

83
 

Figure 5. Schematic of the life history of an atheroma 
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1.2.3 CVDs in Pre- vs. Post-Menopausal Women 

Epidemiological data show significantly lower age-specific CVD mortality in women 

before 50 years old compared to men; however, the advantage disappears when menopause 

occurs. Though reduced female sex hormones after menopause has been considered a major 

contributor to losing the advantage in CVD mortality, the increased CVD mortality after midlife 

of women is not obvious in countries with lower CVD risk factors
86

. Female sex hormone may 

not be as important as other CVD risk factors for CVD death. Studies show higher incidence of 

angina pectoris in women compared to men at all age groups, but female CVD mortality rates 

steadily increase with age, which is contrary to slower increment of mortality rates in males after 

45 years old
3,87,88

. More evidence indicates that changes of the CVD risk factors during 

menopausal transition are also important in addition to changes of female sex hormone levels
89–

92
.  

Many studies have explored physiological changes during the menopausal transition in 

order to clarify the role of menopause on risk of CVDs. Pre-menopause high body mass index 

(BMI) and impaired fasting glucose are associated with incidence of post-menopausal metabolic 

syndrome
93

. Changes of lipids mainly occur at the late peri-menopausal stage. Within 1 year 

before and after final menstrual period (FMP), total cholesterol, and low density lipoprotein 

cholesterol (LDL-C) increase significantly. HDL-C also increases at the late peri-menopausal 

and early post-menopausal stages, but it declines afterwards
94–96

. Subclinical cardiovascular 

disease (SCD) measures, including carotid intima-media thickness (cIMT) and inter-adventitia 

diameter (AD) representing remodeling of the carotid artery indicative of vascular aging, 

deteriorate faster during the late peri-menopausal and post-menopausal stages compared to the 

pre-menopausal period
97

. The phenomena may be driven partially by changes of endogenous 
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female sex hormone. HDL-C is inversely related to SCD measures, including aortic calcification 

(AC) and cIMT, in women at the stages of pre-menopause or early peri-menopause. However, 

the relationship is reversed or weakens during late peri-menopausal or post-menopausal stages, 

so the protective effect of HDL-C on CVDs is reduced for post-menopausal women
98

. 

Physiological metabolism changes during the menopausal transition, which can lead to 

occurrence of CVDs. 
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1.2.4 Sex Hormones and CVDs 

Estrogen signaling involves two pathways. The first one is a genomic (classic) pathway 

that requires involvement of ER and ER The other one is a non-genomic pathway that reacts 

to stimuli rapidly, which may still use the ERs but is not related to transcription of genes. The 

rapid non-genomic pathway can directly induce dilatation of normal vessels and inhibit platelet 

activation via production of nitric oxide (NO) associated with function of ER
99

. This pathway 

does not function well in the dysfunctional endothelium because NO production is reduced in the 

dysfunctional endothelium. The genomic pathway impacts vessels in several ways. It can 

increase gene expression for vasodilatory enzymes, such as NO synthase
100

. Also, it facilitates 

endothelial cell growth in response to vascular injury, as well as inhibits migration and growth of 

smooth muscle cells
101–103

. The systemic effects of estrogen impact levels of lipid, coagulation 

factors, and the other vasoactive molecules, which influence the cardiovascular system from 

molecular reactions (e.g. cell growth in response to vascular injury) to physiological vascular 

mobility (e.g. Vasodilatation)
104

. The overall effects of estrogen protect the cardiovascular 

system by healing vascular injury faster and dilating vessels (Figure 6).  
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Reproduced with permission from Mendelsohn ME and Karas RH, N Eng J Med (1999) 

 Copyright Massachusetts Medical Society 105 

Figure 6. Direct effects of estrogen on blood vessels 

 

 

Menopause, either by physiological or surgical removal of the ovaries, is associated with 

reduced serum estradiol but increased follicle-stimulating hormone (FSH). Leptin, total and LDL 

cholesterol are higher in post-menopausal women
106

. The relationship between sex hormones and 

CVDs in post-menopausal women is of interest due to the significant discrepancy of CVD 

mortality among men, and pre-, and post-menopausal women. However, the results of the 

relationship between sex hormones and CVDs are inconsistent across studies. Duration of 

estrogen exposure may be related to risk of CVDs. Women having menarche at very early and 

late ages have higher risk of ischemic heart diseases in a UK population between 50 and 64 years 

old
107

. A 20 year cohort study concluded that longer estrogen exposure (more than 18 years in 

their study) provides a 20% reduction in CV mortality compared to shorter than 13 years of 
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estrogen exposure in post-menopausal women. The estrogen exposure duration was determined 

by the menstrual cycles, pregnancy, and oral contraceptive use
108

.  

The relationship between serum sex hormone levels and CVDs may be non-linear. 

Extremely low serum estradiol levels and extremely high testosterone levels are independently 

associated with increased incidence of ischemic heart diseases
109

. During menopausal transition, 

decreasing sex hormone binding globulin (SHBG) is associated with progression of cIMT while 

lower estradiol is associated with faster AD progression
110

. Testosterone and SHBG are 

associated with calcified and non-calcified coronary artery plaque as well as aortic plaque. 

Androgen but not estrogen level is related to coronary risk factors (Framingham risk score)
111

.  

In a study of a post-menopausal population, the highest tertile of estradiol was associated with 

higher risk of CHD, but the association disappeared after adjusting for CVD risk factors
112

. 

Contrary to this study, higher estradiol was associated with reduced coronary artery calcium 

score (CACS) in another study
113

. A study indicated changes of estradiol between pre- and post-

menopausal stages were inversely related to 10-year CHD risk
114

. Many factors, such as study 

time (menopausal transition) and study outcomes, may account the inconsistent results of the 

relationship between sex hormone and CVDs.   

Endogenous estrogen, naturally produced female sex hormone, not only impacts the 

cardiovascular system but also influences lipid metabolism in the liver. Animal studies show that 

estrogen enhances clearance of LDL-C by increasing LDL-C receptors in hepatocytes and 

reduces HDL-C catabolism via decreasing HDL-C receptors
115,116

. The clinical experience for 

relationship of estrogen and lipid profiles is mainly from the studies of hormone replacement 

therapy (HRT), which increased serum estrogen levels. The results indicated that the current 

HRT users have lower LDL-C as well as total cholesterol, and higher HDL-C as well as 
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triglyceride (TG) compared to non-HRT users
117–119

. Specifically, LDL-C responded to HRT 

earlier than HDL-C
120

. However, association of endogenous sex hormone with lipid profiles is 

inconsistent across the studies for non-HRT users. A study of peri-menopausal women showed 

low SHBG and high free androgen index (FAI) were related to unfavorable CV risk factors, 

including poor lipid profiles. The relationship was weaker for low estradiol levels
121

. Similar 

results can be found in post-menopausal women
122,123

. However, some studies in post-

menopausal women showed that SHBG but not estrogen and androgen independently predicted 

HDL-C and TG levels
124,125

. Though post-menopausal women tend to have poor lipid profiles, 

sex hormones cannot fully explain the phenomenon. In brief, the relationship between sex 

hormones, CVDs, and lipid profiles remains unclear and requires more studies to clarify the 

mechanisms. 
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1.3 RATIONALE FOR INVESTIGATING RISK OF CVDS IN BC PATIENTS ON 

HORMONE TREATMENT 

The major function of AIs is reducing the production of estrogen by blocking aromatase 

function. A study showed that serum estradiol levels decreased and approached a plateau after 6 

months of AI treatment for metastatic BC patients
126

. Physiologically, patients taking AIs are in 

the iatrogenic aromatase deficiency status. Naturally developed aromatase deficiency is very rare 

in humans. Hypertestosteronemia, hypoestrogenemia, puberty failure, hypercholesterolemia, 

high LDL-C, and low HDL-C are the common clinical symptoms of aromatase deficiency
127,128

. 

Studies using animal models have shown that aromatase deficient mice experience the problem 

of hepatic steatosis and expressed poor lipid profiles. Estrogen replacement can reverse the 

phenomenon in these mice
129,130

. Current hormone therapeutic strategies for post-menopausal BC 

include 1) switching from SERMs to AIs after 2-3 years of treatment, 2) upfront AI treatment, 

and 3) prolonged SERMs therapy, which provide comparable OS. When AIs become the main 

hormone therapy for post-menopausal BC patient to improve DFS, it is important to understand 

the major problem that compromises OS. Incidence of CVDs is higher in AI treated BC patients 

compared to those receiving SERMs
131

. Dyslipidemia is one of the major CVD risk factors, and 

high risk of CVDs in BC patients may be due to dyslipidemia caused by AIs, which is 

preventable via appropriate medical intervention. 
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1.4 SPECIFIC AIMS 

The major theme of this dissertation is to investigate the impact of BC hormone therapies 

on lipid profiles and subsequent cardiovascular events. Starting with developing a statistical 

method to conduct a Bayesian network meta-analysis in Chapter 2, the network meta-analysis 

fostered the hypothesis of effects of BC hormone treatment on changes in lipids, which is 

described in Chapter 3. Based on the results of the meta-analysis, we conducted a cohort study to 

examine impacts of hormone drugs on risk of cardiovascular diseases in Chapter 4. 

Specific Aim 1. Network meta-analysis for correlated longitudinal data with heterogeneous 

report format using Bayesian statistical methods 

Specific Aim 2. Bayesian network meta-analysis of effects of breast cancer hormone therapies on 

changes of lipid profiles (total cholesterol, high-density lipoprotein cholesterol, low-density 

lipoprotein cholesterol, and triglyceride). 

Hypothesis: BC patients on AIs have poor lipid profiles compared to those who were on SERMs 

or not on hormone therapies. 

Specific Aim 3. Impact of BC hormone therapy on dyslipidemia and cardiovascular events in a 

cohort using electronic medical records and time-dependent Cox proportional hazard models.  

Hypothesis: Usage of AIs is associated with higher risk of CVDs and dyslipidemia after 

controlling for important covariates. 
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2.0  PAPER 1: STATISTICAL METHODS CONVERTING HETEROGENEOUS 

REPORTING FORMATS INTO A HOMOGENEOUS REPORTING FORMAT AND 

EXAMINING CONSISTENCY OF ESTIMATES FOR NETWORK META-ANALYSES 

USING LONGITUDINAL DATA 

 

 

2.1 ABSTRACT 

 Traditional meta-analyses combine multiple studies to determine the effect of an 

intervention to a single comparator on an outcome measured once at the end of a study. Newly 

developed Bayesian network meta-analysis (NMA) methods expand this to trials with 

longitudinal repeated outcome measures and to a network of target treatments, including studies 

that include any subset of the target treatments. However, there exist difficulties regarding the 

practical implementation of these NMA methods; specifically: 1) heterogeneous reporting, with 

some studies reporting the mean and variance of the outcome at each follow-up time and others 

reporting the baseline mean and variance of the outcome and then, at the follow up visits, 

reporting the mean and variance of the change in the outcome from the baseline, and 2) there are 
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no consistency checks for longitudinal NMA. In this study, starting with a Bayesian NMA for 

repeated outcome measures, we incorporated a first-order autoregressive model to convert the 

variances of the means to the change from baseline variances.  We then updated and incorporated 

a traditional arm-based consistency method to determine whether the direct and indirect effect 

comparisons of treatments on repeated-measure outcomes were consistent. We illustrate our 

method with a meta-analysis of the effect of breast cancer hormone therapies on changes in total 

cholesterol measured multiple times during up to 5 years of follow-up. 
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2.2 INTRODUCTION 

A meta-analysis combines information from multiple published scientific articles that 

directly compare two treatments for a given condition from results of multiple randomized 

clinical trials (RCTs) and epidemiologic studies. The analysis increases power by combining 

study populations and it explores uncertainty of conflicting results. Traditional meta-analysis 

methods include only the studies with direct treatment comparisons of interest. Some meta-

analysis studies may only include RCTs, as the confounding factors within studies are 

eliminated. However, even if a meta-analysis only includes RCTs, the advantage of within-study 

randomization does not protect against confounding when combining participants across studies. 

When increasing the number of studies in the meta-analysis, the treatment arms become complex 

mixtures of the underlying study populations. The heterogeneous populations and the varying 

sample sizes of included studies can induce complex biases. Therefore, adjustment for the 

important confounders, such as specific inclusion criteria of the RCTs, is needed in the meta-

analysis.  

There are several limitations with the traditional meta-analysis methods. First, meta-

analysis uses aggregated data instead of individual data, so investigation of confounders and 

modifiers cannot occur at the individual level. Second, we can only compare two treatments with 

studies that contain a direct comparison. Information from RCTs having either one of the target 

treatments is not used. This limits the RCTs that can be included and reduces the statistical power 

of meta-analyses, which especially impacts studies for rare diseases. Third, when there are 

multiple treatment options for a specific disease, not all potential head-to-head comparisons are 

available from RCTs. RCTs often compare the new drug to the standard therapy or usual care. 

This reduces the number of treatment comparisons possible in the meta-analysis.  
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Network meta-analysis (NMA) incorporates indirect comparisons, which use information 

other than head-to-head comparisons of the target comparators, into meta-analysis by 

establishing a network of all therapies and allows us to compare one therapy to any other therapy 

in the network even in the absence of any studies with direct comparisons. In addition to the 

strong evidence provided by the direct comparison, the indirect comparisons can also provide 

information regarding the comparison of primary interest. Network meta-analyses are also 

referred to as mixed treatment comparisons (MTC).  

Indirect comparisons are subject to greater bias than direct comparisons. Different from 

direct comparisons from head-to-head RCTs, indirect comparisons usually use separate RCTs to 

obtain the same estimate as direct comparisons. Due to the different factors in the separate RCTs 

such as timing, overall population differences, and the magnitude of the treatment effects, 

additional biases are introduced to indirect comparisons
132,133

. To preserve the within-study 

randomization, Bucher et al. recommended that NMA should include all arms in the selected 

RCTs and the differences between treatments within the RCTs should be modeled.  

The main assumption of traditional meta-analysis is that the true difference of treatment 

effects is constant across trials or the trial specific treatment differences are from a common 

distribution. In addition, NMA also requires the assumption that the true difference of treatment 

effects in trials for indirect comparisons would be identical to the true difference of treatment 

effects in trials for direct comparisons, or at least from the same common distribution. The 

evidence from indirect comparisons is less precise than the one from direct comparison. 

Assuming that we have treatments A, B, and C, we are interested in comparing the therapeutic 

effect between treatment A and treatment B. Denote the estimates of the direct comparisons as 

𝜃𝐴𝐵, 𝜃𝐴𝐶 , and 𝜃𝐵𝐶 . The estimate of the indirect comparison between treatment A and B is 
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denoted as �̃�𝐴𝐵. The indirect estimate �̃�𝐴𝐵 = 𝜃𝐴𝐶 − 𝜃𝐵𝐶 , has a variance of the sum of the 

variances of 𝜃𝐴𝐶  and 𝜃𝐵𝐶  minus a correlation term. This variance is usually greater than the 

variance of a direct estimate 𝜃𝐴𝐵. Consistency of the point estimates from direct and indirect 

evidence must be examined to verify the assumptions of the model for NMA.  

The concept of NMA is very attractive and can be applied to clinical questions, especially 

for diseases having multiple therapeutic options. Most existing NMA models focuse on the final 

treatment effects, and do not consider longitudinal trajectories. However, RCTs often report 

multiple interim outcomes before the final results. The longitudinal data provide information 

regarding the drug effects across time. Models using only the final results ignore the patterns of 

the therapeutic effects during treatment. In order to solve the problem, several methods were 

proposed
134–136

. Ding’s method focuses on continuous outcome changes from multiple follow-up 

times using baseline values
134

, while Lu’s method analyzes binary outcomes over multiple 

follow-up times
136

. Jansen proposed a more generalized model to manage both longitudinal 

continuous and binary outcomes
135

. In this study, we focus on Ding’s method and address 

potential problems when applying this method to real world applications.       

Ding’s method specifically focuses on the drug effects which require time to achieve 

their maximal effects. The integrated two-component prediction (ITP) model estimates the drug 

effects and their shapes across time at the individual level data
137

. Ding combines the ITP model 

with the concept of NMA and developed the Bayesian evidence synthesis techniques-ITP 

(BEST-ITP) model.  

First, we encountered two main challenges when using the BEST-ITP model. The 

published RCTs reported their results in heterogeneous formats. Some articles report follow-up 

measures as outcome change from baseline values. However, others provide outcome 
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measurements at each follow-up time point, which the variances reported do not take correlation 

among the series of follow-up measurements into account. Second, there are no appropriate 

consistency tests for the specific NMA method that compare indirect and indirect longitudinal 

outcome changes from the baseline values. Verifying this assumption is essential to validate the 

model. To solve the challenges, we propose methods to obtain a uniform reporting format and to 

examine consistency of the estimates from direct and indirect evidence. 

The article is organized as follows. In Section 2.3.1, we outline the Ding’s NMA model 

that estimates longitudinal follow-up outcome changes from baseline values. Section 2.3.2 

expands Abram’s method for converting heterogeneous reporting formats into a homogeneous 

format to a longitudinal setting. The method in Section 2.3.3 expands Hong’s consistency test of 

direct and indirect estimates to a longitudinal setting. In Section 2.4, we present simulation data 

to verify the performance of the proposed methods.    
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2.3 METHODS 

2.3.1 Network Meta-Analysis 

Comparison networks were proposed by Thomas Lumley in 2002
138

. His method 

combines information from available two-arm RCTs for diseases with multiple treatment 

options; allowing treatment effects without head-to-head RCTs can be compared. Lumley 

indicated that it is straightforward to estimate treatment difference by taking differences of the 

individual estimates, and he further focused on detecting and estimating inconsistency of 

treatment effects across trials. 

𝑌𝑖𝑗𝑘~𝑁(𝑦𝑖𝑗𝑘, 𝜎𝑖𝑗𝑘
2 ) 

𝑦𝑖𝑗𝑘 = 𝛿𝑖𝑗 + 𝜂𝑖𝑘 + 𝜂𝑗𝑘 + 𝜉𝑖𝑗 

𝛿𝑖𝑗 = 𝜇𝑖 − 𝜇𝑗 

𝜂𝑖𝑘~𝑁(0, 𝜏
2),    𝜂𝑗𝑘~𝑁(0, 𝜏

2) 

𝜉𝑖𝑗~𝑁(0, 𝜔
2) 

𝑌𝑖𝑗𝑘: the treatment difference estimate from the kth RCT comparing treatment i and j 

𝑦𝑖𝑗𝑘: the mean treatment difference estimate of the kth RCT comparing treatment i and j 

𝜎𝑖𝑗𝑘
2 : estimated variance 

𝜇𝑖 & 𝜇𝑗: true average effects of treatment i and j 

𝛿𝑖𝑗: the true difference between treatment i and j 

𝜂𝑖𝑘 & 𝜂𝑗𝑘: random effects from the normal distribution with a common mean, 0, and 

variance, 𝜏2, representing the difference between the pooled average effect and the 

effect in kth trial 

𝜉𝑖𝑗: random effect from the normal distribution with a common mean, 0, and variance, 

𝜔2, representing a change in the effect of treatment i when comparing to treatment j 

 

Lumley’s model includes variations of average effects of two treatments (i and j) in the 

individual trials, 𝜂𝑖𝑘 and 𝜂𝑗𝑘, and inconsistency of the specific pair of treatments (𝜉𝑖𝑗) into 
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consideration. If 𝜉𝑖𝑗 is too large, inconsistency of the estimates occurs and network meta-analysis 

may not be appropriate. The model proposed by Lumley restricts its application to two-arm 

clinical trials. 

In order to include trials that have more than two arms in the NMA, Lu and Ades 

proposed a hierarchical Bayesian model for K-comparisons
139

. This method is an extension of 

the Smith, Spiegelhalter and Thomas (SST) model, which uses the full Bayesian approach to 

estimate treatment effects for traditional meta-analysis focusing on the 2-arm clinical trials
140

.  

 

 

2.3.1.1 K-Comparison Extended from SST Model by Lu and Andes 

The k-comparison model
139

 estimates the kth treatment effect, 𝜃𝑖𝑘 ,  on a binomial 

outcome from N trials. By choosing treatment 1 as the reference treatment in the ith trial with k 

treatment groups, the model can be written as follows: 

𝑟𝑖𝑘~𝑏𝑖𝑛(𝑝𝑖𝑘, 𝑛𝑖𝑘),                                                  𝑘 = 2,⋯ ,𝐾 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖1) = 𝛼𝑖                      −
𝛿𝑖2

𝐾⁄ −
𝛿𝑖3

𝐾⁄ −⋯−
𝛿𝑖𝐾

𝐾⁄  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖2)  =  𝛼𝑖 +  (𝐾 − 1)
𝛿𝑖2

𝐾⁄ −
𝛿𝑖3

𝐾⁄ −⋯−
𝛿𝑖𝐾

𝐾⁄  

⋮ 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝐾) = 𝛼𝑖 −
𝛿𝑖2

𝐾⁄ −
𝛿𝑖3

𝐾⁄ −⋯+ (𝐾 − 1)
𝛿𝑖𝐾

𝐾⁄  

𝛿𝑖
𝑇 = (𝛿𝑖2, ⋯ , 𝛿𝑖𝐾)

𝑇~𝑁(𝛿, Σ) 

𝛼𝑖 =∑
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘)

𝐾⁄
𝑘
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𝛿𝑖𝑘 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) − 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖1), 𝑘 = 2,⋯ , 𝐾 

Prior distribution for 𝛼𝑖, 𝛿, and Σ 

𝑟𝑖𝑘: the number of events in the kth treatment group in trial i.  

𝑛𝑖𝑘: the number of participants in the kth treatment group in trial i. 

𝑝𝑖𝑘: the probability of events in the kth treatment group in trial i. 

𝛿𝑖𝑘: effect of the kth treatment compared to the reference in trial i 

𝛼𝑖: the average event rate (on the logit scale) in the ith trial, and a nuisance parameter that 

will be changed to the reference after reparameterization. 

𝛿: the population mean treatment effects relative to the reference treatment; the (K-1)-

dimensional hyperparameter 

Σ: the (K-1)×(K-1) variance-covariance matrix for 𝛿  

 

All 𝛿𝑖’s are from the common normal distribution with mean 𝛿 and variance Σ. This 

model structure expands upon the original SST model, which focuses only on two arm clinical 

trials, by replacing the single variance parameter with the variance-covariance matrix Σ.  

Let X be a K×K matrix. 

𝑋 = 

[
 
 
 
 
1          −1/𝐾          −1/𝐾 ⋯         −1/𝐾
1 (𝐾 − 1)/𝐾          −1/𝐾 ⋯         −1/𝐾

1         −1/𝐾 (𝐾 − 1)/𝐾 ⋯         −1/𝐾
⋮          ⋮             ⋮ ⋱ ⋮
1         −1/𝐾          −1/𝐾 ⋯ (𝐾 − 1)/𝐾]

 
 
 
 

≡

[
 
 
 
 
 
𝑋1
𝑇

𝑋2
𝑇

𝑋3
𝑇

⋮
𝑋𝐾
𝑇]
 
 
 
 
 

 

 

The outcome estimate, 𝑌𝑖𝑘, can be written as a logit function of 𝑝𝑖𝑘.  

𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑘)
𝑇 = (𝑙𝑜𝑔𝑖𝑡(𝑝𝑖1), 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖2), … , 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘))

𝑇. 

The parameters can be described as 

Θ𝑖 = (𝛼𝑖, 𝛿𝑖2, … , 𝛿𝑖𝑘)
𝑇, 

and then the k-comparison model can be rewritten in the matrix form 

𝑌𝑖 = 𝑋Θ𝑖 ,       𝑖 = 1,… ,𝑁 

or  
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𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝑋𝑘
𝑇Θ𝑖. 

𝛼𝑖 is the average event rate of the ith trial, a nuisance parameter, and not a parameter of 

interest. Therefore, the equation can be reparameterized as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝜙𝑖 + 𝜃𝑖𝑘 

𝜃𝑖1 = 0 

(𝜃𝑖2, ⋯ , 𝜃𝑖𝐾)
𝑇~𝑁(𝜃, Σ𝜃) 

𝜙𝑖~𝑁(𝜇𝜙, 𝜏𝜙
2 ) 

𝜙𝑖: the reference effect from trial i 

𝜃𝑖𝑘: the difference between the kth treatment and the reference treatment in trial i 

𝜇𝜙 : the treatment effect from reference treatment 

 𝜃 : a hyperparameter with (K-1) dimensions, which represents the treatment effects 

relative to the reference treatment.  

Σ𝜃: the (K-1)×(K-1) variance-covariance matrix.  

 

 

This reparameterization facilitates expansion of the model. Continuous outcomes can be 

similarly modelled by changing the logit link to the identity link
141

.  

 

 

2.3.1.2 Integrated Two-Component Prediction (ITP) Model 

The Integrated Two-component Prediction (ITP) model specifically focusing on 

longitudinal repeated outcomes from RCTs investigating drug effects should be described. The 

RCTs often collect outcome measures throughout the study. The treatment effects can vary 

across time. The therapeutic effect of a drug can gradually accumulate and then achieve a 

plateau. In general, the meaningful drug effects may be observed after a certain period of time 

and the early responses may not completely reflect the final results.  Fu and Manner developed 
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the ITP model to represent a time course of drug effects
137

. The model assumes the drug effects 

accumulate across the therapeutic course with the concave pattern that achieves plateau during 

treatment. 

The ITP model focuses on continuous outcome measures and estimates the final mean 

treatment effect, 𝜃𝑘, from repeated measurement across the whole treatment course at the 

individual level. Different from the models described above, this model also considers the time 

variable. Later, this model is expanded to meta-analyses from aggregated data reported in 

published articles regarding the similar patterns of drug effects. 

𝑌𝑘𝑗𝑙 = (𝜃𝑘 + 𝑠𝑘𝑗 + 𝜖𝑘𝑗𝑙)
1 − 𝑒𝑝𝑘𝑡𝑘𝑗𝑙

1 − 𝑒𝑝𝑘𝑑
 

𝑌𝑘𝑗𝑙: the observation (change from baseline) from the subject j on treatment k at time l.  

𝜃𝑘 : the mean effect of the kth treatment by the end of time d, the total treatment duration.  

𝑝𝑘: the shape of the kth treatment throughout the treatment duration 

𝑡𝑘𝑗𝑙: the time points for the interim observations for subject j on treatment k, 𝑡𝑘𝑗𝑙 ≤ 𝑑.  

𝑠𝑘𝑗:  the random effect accounting for the correlations of the within-subject 

measurements.  

𝜖𝑘𝑗𝑙: is the residual error for the subject j on treatment k at time l.  

 

 

This model expresses the increased variation of the treatment effects when time 

increases, which is often observed during drug therapies. The first component of the equation, 

𝜃𝑘 + 𝑠𝑘𝑗 + 𝜖𝑘𝑗𝑙, is a traditional mixed-effect ANOVA model and the second component, 

1−𝑒
𝑝𝑘𝑡𝑘𝑗𝑙

1−𝑒𝑝𝑘𝑑
, models changes in time. The baseline values are incorporated because the model 

estimates the responses as changes from baseline. When p is fixed and  𝜃𝑘 varies, the trends of 

the drug effects are the same but the final drug effects are different, depending on the values of 

𝜃𝑘. When 𝜃𝑘 is fixed and p varies, the trends of the drug effects are different but the final drug 

effects are toward to the same end point (Figure 7). 
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(a) fixed p= -0.2 for = -1.5, -1.0, -0.5, respectively; (b) fixed  = -1.0 for p= -0.5, -0.2, -0.01, 

respectively. 
From Ding & Fu, Statistics in Medicine, (2013)

134 
 

Figure 7. The treatment effect,  and shape parameter, p, from the ITP model.  

 

 

 

 

2.3.1.3 Bayesian Evidence Synthesis Techniques-ITP (BEST-ITP) Model 

Ding and Fu further proposed a Bayesian evidence synthesis techniques –ITP (BEST-

ITP) model
134

 by combining the K-comparison extended from SST model with the ITP model, 

enabling NMA to estimate longitudinal drug effects from available RCTs. Instead of using 

individual level data in the ITP model, the study summary level data are used in the BEST-ITP 

model. The main available data are �̅�𝑖𝑘𝑙, 𝑠𝑖𝑘𝑙, 𝑛𝑖𝑘𝑙, 𝑑𝑖, and 𝑡𝑖𝑘𝑙.   �̅�𝑖𝑘𝑙 is the observed outcome 

change from baseline for treatment k at time l in trial i. 𝑠𝑖𝑘𝑙 is the corresponding observed 

standard deviation, and 𝑛𝑖𝑘𝑙 is the numbers of the participants for the kth treatment at time l in 

trial i. 𝑑𝑖 is the treatment duration for trial i and 𝑡𝑖𝑘𝑙 is the interim follow-up duration of 



42 

treatment k at time l in trial i  with  𝑡𝑖𝑘𝑙≤ 𝑑𝑖. The model assumes that the trial and treatment 

effects are additive. The BEST-ITP model is as follows: 

�̅�𝑖𝑘𝑙~𝑁(𝜇𝑖𝑘𝑙, 𝜎𝑖𝑘𝑙
2 ) 

𝑆𝑖𝑘𝑙
2 (𝑛𝑖𝑘𝑙 − 1)

𝜎2
(
1 − 𝑒𝑝𝑘𝑑𝑖

1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙
)2~Γ{

(𝑛𝑖𝑘𝑙 − 1)

2
, 2} 

𝜇𝑖𝑘𝑙 = (𝜙𝑖 + 𝜃𝑘) (
1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙

1 − 𝑒𝑝𝑘𝑑𝑖
) 

𝜎𝑖𝑘𝑙
2 =

𝜎2

𝑛𝑖𝑘𝑙
(
1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙

1 − 𝑒𝑝𝑘𝑑𝑖
)

2

 

𝜃0 = 0 

�̅�𝑖𝑘𝑙 = (𝜙𝑖 + 𝜃𝑘 +
𝜖𝑖𝑘𝑙

√𝑛𝑖𝑘𝑙
)
1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙

1 − 𝑒𝑝𝑘𝑑𝑖
,         𝑉𝑎𝑟(𝜖𝑖𝑘𝑙) = 𝜎

2 

The non-informative priors can be chosen for the following parameters. 

{
 
 
 

 
 
 
𝜃𝑘 ∝ 1,     𝑘 = 2, … , 𝐾
𝑝𝑘 ∝ 1,    𝑘 = 2,… , 𝐾

𝜙𝑖~𝑁(𝜇𝜙, 𝜏𝜙
2 )             

𝜇𝜙 ∝ 1                          

log(𝜏𝜙
2 ) ∝ 1                 

𝜖𝑖𝑘𝑙~𝑁(0, 𝜎
2)              

log(𝜎2) ∝ 1                 

 

𝜇𝑖𝑘𝑙 is the hyperparameter mean of the observed outcome changes from baseline for the 

kth treatment at time l in trial i. 𝜎𝑖𝑘𝑙 is the corresponding hyperparameter standard deviation. 𝜙𝑖 

is the ith trial-specific effect, which has a normal distribution with mean 𝜇𝜙 and standard 

deviation 𝜏𝜙. 𝜃𝑘 is the kth treatment effect relative to the reference treatment. 𝑝𝑘 is the change 

pattern within therapeutic duration for the kth treatment. 𝜖𝑖𝑘𝑙 is the residual error.  

This is a fixed-effect (FE) model for 𝜃𝑘, but it can be extended to a random-effect (RE) 

model by replacing 𝜃𝑘 with 𝜃𝑖𝑘, with a multivariate normal distribution: 
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(𝜃𝑖2, ⋯ , 𝜃𝑖𝐾)
𝑇~𝑁(𝜃, Σ𝜃). Ding recommended a FE model for many reasons. First, the clinical 

trials are usually designed with inclusion and exclusion criteria for specific groups of patients 

where a RE model assumes subjects from different trials are randomly chosen from the same 

population. In addition, sample sizes may differ significantly among trials and they often indicate 

the strength of evidence from the trials. Therefore, it is more reasonable to put more weight to 

the trials with large sample sizes (the FE model) than to treat all trials as equally important (the 

RE model). Finally, each treatment combination in the NMA usually contains fewer trials than 

the overall meta-analysis which includes all trials, so the between-trial variability may not be 

precisely estimated by the RE model. Alternatively, if the data sets from RCTs have similar 

study designs and sample populations, it is reasonable to assume that the estimates from trials are 

drawn from a common distribution and a RE model can serve as a primary analysis.  Ding 

recommended that both models can be examined with one model as a sensitivity analysis to the 

other. 
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2.3.2  Assessing Change from Baseline for Heterogeneously Reported Trials 

Clinical trials often use a variety of formats when publishing their results, including 1) 

mean changes and standard deviation (SD) from baseline, and 2) observed mean values and SD 

at follow-up time points. The first format is consistent with the BEST-ITP model, but the second 

format is not and specifically lacks the variance of the change since baseline, which requires the 

correlation between measurements from the same person.  

The heterogeneous reporting formats may reduce the number of the included studies in 

meta-analysis as statistical methods often focus on one reporting format. For example, the 

BEST-ITP model uses baseline and changes (and SD) from baseline values. When experiencing 

heterogeneous reports of the primary effect measures for meta-analysis, there are three options: 

(i) use the studies with the format that is consistent with the model and eliminating the others, (ii) 

assume a value for the correlation between baseline and follow-up, based on the prior 

knowledge, for the within-subject correlation, and use that to impute values
142

, and (iii) use a 

fully Bayesian approach to estimate a distribution of the correlation, which requires at least one 

study to report observed follow-up values and changes from baseline at all time points
143,144

. The 

first option reduces the number of studies included. Several correlation values may need to be 

examined for sensitivity analyses in the second option. We further examined option iii. 

Abrams et al. proposed a fully Bayesian method to estimate the within-arm correlation 

from external evidence for the trials without appropriate reporting format in the meta-analysis
145

. 

Distribution of correlation, 𝜌, is skewed but 𝜌 can be converted using the Fisher transformations, 

S, via the form, 𝑆 =
1

2
ln (

1+𝜌

1−𝜌
). Different from 𝜌, the Fisher transformation is normally 

distributed. We use Bayesian methods to estimate the Fisher transformations from studies that 
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provide both follow-up and change values and then use the overall pooled mean of the Fisher 

transformations to estimate 𝜌. For the I trials that contain both follow-up and change values, we 

have the equations as follows: 

𝑆𝑖~𝑁(𝜂𝑖 , 𝜈𝑖) 

𝜂𝑖~𝑁(𝛿,𝜔
2),   𝑖 = 1,… , 𝐼 

𝛿~𝑁(0, 10000) and 𝜔−2~𝐺𝑎𝑚𝑚𝑎(0.001, 0.001) 

𝜌 =
𝑒2𝛿 − 1

𝑒2𝛿 + 1
 

𝑆𝑖: observed Fisher transformation in the ith trial 

𝜂𝑖 & 𝜈𝑖 : the underlying Fisher transformation and variance in the ith trial 

𝛿: overall pooled mean of the Fisher transformation 

𝜔2: between-study variance 

 

The estimated 𝜌 can be applied to the below equation to calculate the variances of 

changes from baseline for the J trials only reporting values at all time points:  

𝑉(𝑑𝑗𝑘) = 𝑉(𝑦𝑗𝑘1) + 𝑉(𝑦𝑗𝑘2) − 2𝜌√𝑉(𝑦𝑗𝑘1)𝑉(𝑦𝑗𝑘2),   𝑗 = 1,… , 𝐽 

𝑑𝑗𝑘: value change from baseline to follow-up in the kth group of the jth trial 

𝑦𝑗𝑘1: baseline measurement in the kth group of the jth trial 

𝑦𝑗𝑘2: follow-up measurements in the kth group of the jth trial 

𝜌: the within-subject correlation 

 

Inspired by the above models to estimate 𝜌 for one follow-up measurement, we estimate 

𝜌 for the trials with multiple follow-up measurements by assuming a first-order autoregression 

model, AR(1), for correlation of a series of outcomes measured at different time points. For a 

series of measurements,𝑦1, … , 𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1, …, recorded at time 1,…, t-1, t, t+1,… with a fixed 

time interval, the correlation of measurements are interval apart (𝑦𝑡−1 and 𝑦𝑡, or 𝑦𝑡 and 𝑦𝑡+1, for 
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example) is 𝜌. The correlation of two observations t time periods apart is 𝜌𝑡. For example, 

cor(𝑦0, 𝑦𝑡)= 𝜌𝑡. The correlation matrix is as follows: 

𝑦0 𝑦1 𝑦2 𝑦3

𝑦0
𝑦1
𝑦2
𝑦3 [

 
 
 
 
1 𝜌
𝜌 1

𝜌2 𝜌3

𝜌 𝜌2

𝜌2 𝜌

𝜌3 𝜌2
1 𝜌
𝜌 1 ]

 
 
 
 
 

By using information from the trials that report longitudinal outcomes with both changes 

from baseline and values for all follow-up time points, we can obtain observed within-trial 

correlation and then calculate the observed trial-specific correlation, 𝜌𝑖, by assuming AR(1) 

correlation. The corresponding Fisher transformation, 𝑆𝑖, can be obtained from 𝜌𝑖. Next, we can 

estimate the trial-specific Fisher transformation, 𝜂𝑖, and then the overall pooled mean Fisher 

transformation, 𝛿. The overall correlation, 𝜌, can be estimated by 𝛿, and then is applied to the 

trials which only report follow-up values. The mean and variance of the changes from baseline 

can be obtained by the 𝜌. For the studies focusing on treatment effects, we mainly use the 

published studies with follow-up and change measures in the placebo arms. The estimated 𝜌 

represents the natural correlation of the series of the outcome measures without intervention of 

drug effects.       
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2.3.3 Treatment Comparison Inconsistency 

NMA produces a set of contrast estimates of any treatment relative to any other in the 

established network, under the major assumption of consistent evidence between direct and 

indirect comparisons.  Dias et al. presented several methods to detect inconsistency of evidence 

in networks
146

.  

Bucher et al. introduced a 2-stage method for a loop with three treatments and three head-

to-head comparisons
147

. First, the estimates from RCTs with head-to-head comparisons and from 

RCTs without head-to-head comparisons are separately synthesized in each pairwise contrast. 

Second, the estimates from direct and indirect evidence are compared to detect conflicting results 

by using a z-score to examine the null hypothesis of no inconsistency. This method can be used 

in the network involving more than 3 edges of the loop. An indirect estimate of any edge can be 

obtained from the other edges, and its variance of the inconsistency term is the sum of the 

variances of all the direct comparisons forming the indirect estimate. Therefore, the increased 

number of edges in the loop increases the variance of the inconsistency estimate hence reducing 

the probability of detecting inconsistency.  

Dias et al. proposed an unrelated mean effects (UME) model for general networks by 

using Bayesian statistical methods
146

. The UME model separately estimates each of the direct 

effect contrasts from available evidence. The results are then compared to the estimates from 

NMA to examine consistency by using their residual deviance and deviance information criterion 

(DIC). The posterior mean deviance of individual trials can be obtained from the MCMC 

samples in each of UME and NMA models, which can be used to identify the trials that 

contribute inconsistency of the meta-analysis if they are significantly different.  
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Lu and Ades proposed a model to check loop-based inconsistency by adding one 

parameter, inconsistency factor (ICF), w, to the consistency equations for every loop in the 

network
148

. For example, suppose we compare four treatment effects, including treatment A, B, 

C, and D. Taking treatment A as the reference treatment, we add an ICF for each loop to model 

inconsistency. The models are as follows (Figure 8): 

 

 

 

𝑑𝐵𝐶 = 𝑑𝐴𝐶 − 𝑑𝐴𝐵 + 𝑤𝐴𝐵𝐶, 

𝑑𝐵𝐷 = 𝑑𝐴𝐷 − 𝑑𝐴𝐵 + 𝑤𝐴𝐵𝐷, 

𝑑𝐶𝐷 = 𝑑𝐴𝐷 − 𝑑𝐴𝐶 + 𝑤𝐴𝐶𝐷. 

 

𝑑𝑖𝑗: difference in treatment effect between treatment i and j. 

Figure 8. Loop-based inconsistency test for NMA comparing treatment A, B, C, and D 

 

All ICFs are from the same distribution, N(0, 𝜎𝑤
2 ).  It is recommended to allow the 

posterior probability that the overall variance of the ICFs, 𝜎𝑤
2 , to be greater than the between-trial 

variance, 𝜎2, given the observed data. The greater posterior probability indicates potential 

inconsistency.  

Node-splitting is more complicated than the previous methods, which a node indicates a 

specific pair comparison
149

.  This method is displayed by a directed acyclic graph (DAG). The 

main concept is to split different sources of information for each node of interest in a DAG to 

examine potential conflict between the inferences derived from different sources. A node of 
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interest, the kth treatment vs. reference (𝑑𝑏𝑘), in the network has two posterior distributions 

generated from independent sources: trials that direct compare two treatments and trials that do 

not. We can detect conflict between these sources via comparing the two distributions. For 

treatment A and B, there are two posterior distributions for the mean treatment effect, 𝑑𝐴𝐵: 𝑑𝐴𝐵
𝐷𝑖𝑟 

is from the trials directly comparing A and B, and 𝑑𝐴𝐵
𝐼𝑛𝑑 is from trials providing indirect evidence, 

from a NMA that does not include trials directly compare treatment A and B. The trial specific 

treatment effects for treatment A and B (direct evidence) in the ith trial are drawn from a normal 

distribution with mean 𝑑𝐴𝐵
𝐷𝑖𝑟 and variance 𝜎2, 𝛿𝑖𝐴𝐵~𝑁(𝑑𝐴𝐵

𝐷𝑖𝑟 , 𝜎2). The indirect evidence from the 

other trials is used to estimate 𝑑𝐴𝐵
𝐼𝑛𝑑 via consistency equations. The inconsistency parameter 

𝜔𝐴𝐵 = 𝑑𝐴𝐵
𝐷𝑖𝑟 − 𝑑𝐴𝐵

𝐼𝑛𝑑 is used to test the hypothesis that the direct and indirect estimates are equal. 

Inconsistency for each pair of treatments should be checked separately.   

The above methods are contrast-based (CB) models that estimate treatment effects 

comparing to the reference treatment. Hong et al. proposed an arm-based (AB) model that 

estimates the magnitude of each treatment effect. There are different assumptions between AB 

and CB models. The AB model assumes exchangeability of treatment arms across trials. The 

assumption for CB model is exchangeability of the relative treatment effects compared to the 

reference treatment across trials. The assumptions of studies at random and effects at random 

were assumed by the AB and CB models, respectively, in meta-analysis
150

.  

Taking binary data as an example, the CB model estimates the logit response with 

nuisance trial-specific mean effect, 𝛼𝑖, and trial-specific relative treatment effect, 𝛿𝑖𝑘, 

representing kth treatment vs. reference in trial i.  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝛼𝑖 + 𝛿𝑖𝑘 

Instead, the AB random effect model estimates the logit response probability as follows: 
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𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝜃𝑘 + 𝜂𝑖𝑘 

𝜃𝑘: the fixed effect representing the mean effect of treatment k  

𝜂𝑖𝑘: the random effect for treatment k in trial i.  

 

 

The random effects �⃗�𝑖 for trial i are from a multivariate normal distribution: 

�⃗�𝑖 = (𝜂𝑖1, … , 𝜂𝑖𝐾)
𝑇~𝑀𝑉𝑁(0, Σ) 

Σ: an 𝐾 × 𝐾 unstructured covariance matrix representing correlation between treatment 

arms in each trial. A non-informative Wishart prior on Σ𝑘
−1.  

 

 

Expanding application of the AB model from the cross-sectional data to the longitudinal 

data, we incorporated the functional form of the BEST-ITP model with the AB model to obtain: 

 

𝜇𝑖𝑘𝑙 = (𝜃𝑘) (
1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙

1 − 𝑒𝑝𝑘𝑑𝑖
) + 𝜂𝑖𝑘 

�̅�𝑖𝑘𝑙~𝑁(𝜇𝑖𝑘𝑙, 𝜎𝑖𝑘𝑙
2 ) 

𝑆𝑖𝑘𝑙
2 (𝑛𝑖𝑘𝑙 − 1)

𝜎2
(
1 − 𝑒𝑝𝑘𝑑𝑖

1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙
)2~Γ{

(𝑛𝑖𝑘𝑙 − 1)

2
, 2} 

𝜎𝑖𝑘𝑙
2 =

𝜎2

𝑛𝑖𝑘𝑙
(
1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙

1 − 𝑒𝑝𝑘𝑑𝑖
)

2

 

�̅�𝑖𝑘𝑙 = (𝜃𝑘 +
𝜖𝑖𝑘𝑙

√𝑛𝑖𝑘𝑙
)
1 − 𝑒𝑝𝑘𝑡𝑖𝑘𝑙

1 − 𝑒𝑝𝑘𝑑𝑖
+ 𝜂𝑖𝑘 ,         𝑉𝑎𝑟(𝜖𝑖𝑘𝑙) = 𝜎

2 

 

𝜃𝑘: the fixed mean outcome change from baseline of the kth treatment at the end of the 

treatment.  

𝜇𝑖𝑘𝑙: the hyperparameter mean of the observed outcome changes from baseline for the kth 

treatment at time l in trial i.   

�̅�𝑖𝑘𝑙: the observed outcome change from baseline for treatment k at time l in trial i.  

𝑠𝑖𝑘𝑙: the corresponding observed standard deviation 

𝑛𝑖𝑘𝑙: the numbers of the participants for the kth treatment at time l in trial i.  

𝑑𝑖: the treatment duration for trial i  
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𝑡𝑖𝑘𝑙: the interim follow-up duration of treatment k at time l in trial i  with  𝑡𝑖𝑘𝑙≤ 𝑑𝑖.  
𝜎𝑖𝑘𝑙: the corresponding hyperparameter standard deviation.  

𝑝𝑘: the change pattern within therapeutic duration for the kth treatment.  

𝜖𝑖𝑘𝑙: the residual error.  

We are interested in the contrast of any two treatments, which is 𝜃𝑘 − 𝜃𝑘′, where 𝑘 ≠ 𝑘′.   

 

 

To detect the discrepancy of direct and indirect evidence for comparing two treatments 

(e.g. A and B), the trials can be categorized into 4 groups: 

(i) trials including both A and B,  

(ii) trials including A but not B,  

(iii) trials including B but not A, and  

(iv) trials including neither A nor B.   

The fixed effects for treatment A and B in group (i) are denoted as 𝜃𝐴
(𝑖)

 and 𝜃𝐵
(𝑖)

, and the 

effects in the other groups have the similar notations. The discrepancy between A and B can be 

tested by the posterior distribution of the discrepancy factor ∆𝐴𝐵= (𝜃𝐴
(𝑖)
− 𝜃𝐵

(𝑖)
) − (𝜃𝐴

(𝑖𝑖)
−

𝜃𝐵
(𝑖𝑖𝑖)

), which is the difference of treatment effects in trials with direct evidence minus the 

difference in trials with indirect evidence. If zero is in the far tail of the posterior distribution, we 

conclude that inconsistency happens. Borrowing the concept of the node-splitting method that 

only defines the sources of evidence as direct and indirect comparisons, the trials in group (ii), 

(iii), and (iv) can be combined as group (ii) which represents indirect comparisons. The 

discrepancy factor is ∆𝐴𝐵= (𝜃𝐴
(𝑖)
− 𝜃𝐵

(𝑖)
) − (𝜃𝐴

(𝑖𝑖)
− 𝜃𝐵

(𝑖𝑖)
). When inconsistency is detected, the 

random effects 𝜂𝑖𝐴 and 𝜂𝑖𝐵 can be used to identify the trials with extreme variations, which 

provide information of treatment A and/or B. Afterwards, we can refit the model excluding the 
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identified trials with extreme variations, and examine improvement of the model fit by using 

deviance information criterion (DIC).     
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2.4 SIMULATION 

2.4.1 Design 

We conducted simulations to evaluate performance of combining the proposed methods 

for longitudinal repeated outcome NMA. One set of simulations tested heterogeneous reporting 

and another set tested consistency verification.  

For the both simulations, we generated data using the BEST-ITP and AR(1) correlation 

models. The primary data set was simulated using the known parameter values and comprised of 

baseline, changes from baseline, and follow-up values at all time points. The changes from 

baseline represent the treatment effects which are the main interest of the study. Each generated 

data set consists of 24 trials and each trial compared two of the three treatments (placebo, 

treatment A and treatment B) with two follow-up visits at 3 and 6 months, respectively. We 

generated 1000 data sets from the BEST-ITP model and AR(1) correlation between the baseline 

and the follow-up values with the  parameter values similar to Ding’s paper:   

{
 
 
 

 
 
 
𝜙𝑖~(𝜇𝜙 , 𝜏𝜙

2 ), 𝜇𝜙 = −3, 𝜏𝜙
2 = 1, 𝑖 = 1,… , 24 trials

𝑝1 = −0.10, 𝑝2 = −0.15, 𝑝3 = −0.20             
𝜃1 = 0,                   𝜃2 = −1.0,            𝜃3 = −1.5               

𝜎2 = 9                                                                                        
𝜂𝑖~𝑁(𝛿,𝜔

2),     𝛿 = 0.5, 𝜔 = 0.15, 𝑖 = 1,… , 24 trials

𝐵�̅�~(𝜇𝑏 , 𝜎𝑏
2),       𝜇𝑏 = 15, 𝜎𝑏 = 0.3, 𝑖 = 1, … , 24 trials 

 

𝜙𝑖 is the trial-specific mean effect, which is normally distributed with mean, 𝜇𝜙, and 

standard deviation, 𝜏𝜙, for the ith trial. 𝑝’s and 𝜃’s are the target parameters, which represent the 

change patterns and the mean treatment effects at the end of treatment. 𝜂𝑖 is the Fisher 

transformation for the ith trial. 𝛿 is the pooled mean Fisher transformation and 𝜔 is the 
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corresponding standard deviation. 𝐵𝑖 is the mean baseline value for the ith trial, which is 

normally distributed with mean, 𝜇𝑏, and standard deviation, 𝜎𝑏. The sample sizes, 𝑛𝑖𝑘𝑙, for the 

ith trial and kth treatment at time l ranges from 20 to 50 without loss of follow-up for all visits 

and the sample sizes of the two arms are balanced in each study.  

The primary simulated data were modified to examine the performance of the proposed 

methods according to the following scenarios:  

(1) The data sets examine the Fisher transformation with AR(1) correlation model for 

longitudinal repeated values: Two trials consisting of the placebo arm reported baseline, 

changes from baseline, and follow-up values. Two trials only reported baseline and follow-

values and the rest trials reported baseline and changes from baseline. 

(2) Three separate scenarios examine the AB model for longitudinal repeated values:  

a. Four trials (trial 3, 6, 9, and 12) consisting of the treatment 3 arm reported changes 

from baseline with 𝜃3 = −6 instead of -1.5.  

b. Four trials (trial 3, 6, 9, and 12) consisting of the treatment 3 arm reported changes 

from baseline with 𝜃3 = −7.5 instead of -1.5.  

c. Four trials (trial 3, 6, 9, and 12) consisting of the treatment 3 arm reported changes 

from baseline with 𝜃3 = −9 instead of -1.5. 

2.4.2 Statistical Software 

The Bayesian statistical methods were conducted by using WinBUGS v1.4.3, JAGS 

4.3.0, “R2WinBUGS”, and “RJAGS” package in R program v3.2.3. The numbers of iteration, 

burn-in, and thinning to obtain the MCMC sampling was determined by the results of the 

convergence diagnostics, including tracing plots, autocorrelation function plots, and Geweke.   
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2.4.3 Results 

The first scenario examined performance of the Fisher transformation and AR(1) 

correlation models. The placebo arms from the two trials reporting baseline, changes from 

baseline, and follow-up values were used to estimate Fisher transformation using the full 

Bayesian statistical method. The pooled Fisher transformation value was converted to 

correlation, 𝜌. The variances of changes from baseline for the trials that reported baseline and 

follow-up values were obtained using 𝜌, and the new data sets were available for further 

analyses. The target parameters, 𝜃’s and 𝑝’s, are estimated from the primary and the new data 

sets using the BEST-ITP model.  

Figure 9 displayed the density curves of the posterior samples for each of the parameters, 

𝜃’s and 𝑝’s, from both the original and the modified data set. The true values are printed on each 

plots and the vertical lines represent the mean of the parameter in the 1000 posterior samples. 

The estimated mean value of each parameter is close to the true value, which indicates that the 

proposed model performs well in estimating parameters. We apply the proposed model in all 

1000 data sets and summarize the estimated parameter values from the 1000 data sets by 

presenting the estimated bias, standard deviation, and mean squared error (MSE) (Table 2). The 

results indicate that AR(1) model and Fisher transformation can appropriately estimate the final 

treatment effects. 

  



56 

 

(A) Original 

 

(B) Modified 

Figure 9. Plot of posterior distribution from the model for one simulated data set (original and 

modified) 
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Table 2. Bias and MSE of estimates from the primary and the modified data sets 

Parameter 𝜃2 𝜃3 𝑝1 

  Bias SD MSE Bias SD MSE Bias SD MSE 

Primary 0.002 0.071 0.005 -0.001 0.074 0.005 0.001 0.016 0.000 

Fisher 0.001 0.071 0.005 -0.001 0.074 0.005 0.002 0.016 0.000 

          Parameter 𝑝2 𝑝3 
     Bias SD MSE Bias SD MSE 

   Primary 0.000 0.014 0.000 0.050 0.014 0.003 

   Fisher 0.000 0.014 0.000 0.050 0.014 0.003 

    

 

The data sets examining performance of the AB model on detecting the inconsistent 

estimates from direct and indirect evidence were generated based on three separate scenarios. 

Table 3 shows the discrepancies of the estimates from the direct and the indirect evidence in each 

scenario. The table shows the mean discrepancy values for individual contrast pairs from all 

1000 simulations and their 95% credible interval. The % inconsistent is the percentage of the 

estimated discrepancy values outside of the 95% credible interval among 1000 simulations. For 

the data with consistent parameter values, the mean discrepancy values in individual contrast 

pairs are very small. For the data with inconsistent parameter values in the three trials, the 

discrepancies are significantly away from zero in the contrast estimates of treatment 2 vs. 3 and 

treatment 3 vs. 1. Taking the data including four trials with  𝜃3= {-1.5, -6} as an example, the 

direct contrast estimate of treatment 1 and treatment 3 is -3.75, but the indirect contrast estimate 

is -1.5. The discrepancy between direct and indirect contrast estimates of treatment 1 vs. 

treatment 3 is 2.25, which is close to our simulation result of 2.35. The direct contrast estimate of 

treatment 2 and treatment 3 is -0.5, but the indirect estimate is -2.75. The discrepancy between 
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direct and indirect contrast estimates of treatment 2 vs. treatment 3 is -2.25, which is also close to 

the simulation result. The treatment estimates of the treatment 3 are inconsistent from the two 

evidence sources. The power of the AB model to detect inconsistency grows as the effect size 

increases.  

To identify the trials that induce the inconsistent results, we examined the random effects 

that express variation of treatment effects within trials. When the treatment effects are consistent 

across trials, the random effects should be multivariate normally distributed around the mean 

zero. The random effect values representing the trials with inconsistent treatment B effects are 

significantly different from the random effect values for the trials with consistent treatment 

effects.  Figure 10 shows the random effect values estimated by the AB model in one data set. 

The red dots indicate the significant different random effect values representing treatment 3 in 

trial 3, 6, 9, and 12. The result is compatible to our scenarios to demonstrate performance of the 

AB consistent test. 
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Table 3.Discrepancy of estimates from direct and indirect evidence  

Occurrence of 

inconsistent treatment 3 

in trials comparing to 

treatment 1 

Discrepancy 

 Treatment 1 vs. 

Treatment 2 

Treatment 1 vs. 

Treatment 3 

Treatment 2 vs. 

Treatment 3 

Treatment 3,  

all trials: -1.5 

Mean  -0.00 0.00 -0.01 

95% CI (-1.03, 1.02) (-0.99, 1.00) (-1.00, 0.98) 

% inconsistent 1% 0.60% 0.20% 

Treatment 3 Mean  0.04 2.35 -2.25 

    4 trials: -1.5 95% CI (-0.98, 1.05) (1.16, 3.52) (-3.29, -1.21) 

    4 trials: -6 Power 0% 49.20% 74.40% 

Treatment 3 Mean  0.04 3.01 -3.00 

    4 trials: -1.5 95% CI (-0.97, 1.05) (2.02, 4.01) (-4.00, -1.97) 

    4 trials: -7.5 % inconsistent 0% 62.10% 91.70% 

Treatment 3 Mean  0.04 3.76 -3.74 

    4 trials: -1.5 95% CI (-0.99, 1.07) (2.76, 4.77) (-4.78, -2.71) 

    4 trials: -9 % inconsistent 0% 76.70% 98.60% 
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(A) all trials with 𝜃3= -1.5; (B) 4 trials of 𝜃3= -1.5, 4 trials of 𝜃3= -6; (C) 4 trials of 𝜃3= -1.5, 4 

trials of 𝜃3= -7.5; (D) 4 trials of 𝜃3= -1.5, 4 trials of 𝜃3= -9 

 

 

v[3,3]: Treatment 3 in Trial 3, v[6,3]: Treatment 3 in Trial 6, v[9,3]: Treatment 3 in Trial 9, v[12,3]: Treatment 3 in 

Trial 12 

Red dots: extreme random effect values 

 

Figure 10. Random effects from consistent data and inconsistent data. 
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2.5 DISCUSSION 

Our proposed method expands applications of the Ding’s longitudinal BEST-ITP NMA 

model in two ways for 1) incorporating articles with different reporting formats, and 2) testing 

inconsistency of estimates from direct and indirect evidence. 

The existing NMA studies use the final outcomes from published articles. As repeated 

measurements are available, new NMA techniques are required to analyze such data and Ding’s 

BEST-ITP model specifically focuses on estimating cumulated drug effects throughout the 

treatment course. This method estimates treatment effects reported as changes from baseline. 

Some studies that report follow-up values may be excluded, reducing the number of studies 

included. In addition, the inconsistency tests have not been developed for this method. Prior to 

this study, the assumption of consistency between direct and indirect effects in a longitudinal 

NMA could not be examined, which limited the application of Ding’s model in the real-world 

data. Our proposed methods expand Abram’s method to convert multiple follow-up values into 

changes from baseline by appropriately estimating the variances of changes from baseline 

values. This allows more studies to be included in a NMA. This can have a large impact, 

especially for studies on rare diseases as they usually have fewer RCTs with small sample sizes. 

By expanding Hong’s AB model to test inconsistency of estimates from direct and indirect 

evidence from Ding’s model, the assumption of NMA, and hence the results from Ding’s model, 

can be verified.    

Our simulation demonstrated using Bayesian approach and AR(1) model to estimate 

Fisher transformation and to obtain variances of changes from baseline performs well. The 

results showed that the estimated treatment effect and shape parameters are very close to the true 

values with small biases and MSEs. The simulation results demonstrated efficiency of Ding’s 



62 

method in estimating treatment and shape parameters using the primary data sets and the 

modified data sets that used the Bayesian approach and AR(1) model to convert follow-up values 

into changes from baseline. 

The three separate scenarios were used to demonstrate effectiveness of the AB model on 

detecting discrepancy of estimates from direct and indirect evidence. The power of the AB 

model to test inconsistency of the estimates from direct and indirect evidences depends on 

magnitude of the discrepancy between the estimates from the two information sources. The 

larger different the direct and indirect evidences are, the more power the AB model has to detect 

inconsistency. The values of the random effects that represent variation of the treatment effects 

across trials effectively identify the treatment and trials that have inconsistent estimates. We 

showed that AB model can effectively test the assumption of NMA by identifying treatments and 

trials that provide inconsistent information.    

The method proposed in this study has several strengths. First, our method takes the 

correlation of the longitudinal data into consideration and converts the heterogeneous reporting 

formats into the homogenous reporting formats. When we want to convert the follow-up values 

into changes from baseline, the mean estimates can be calculated straight forward by taking 

difference between the follow-up value and the baseline; however, the variances must take 

correlations between the follow-up value and the baseline into consideration. Our method can 

appropriately estimate correlation between the follow-up value and the baseline. The estimates 

are closer to the true values if more data are available using the Bayesian approach. Second, 

more published results can be included in the NMAs using the BEST-ITP model. By efficiently 

obtaining the homogeneous reporting format, we can increase the sample sizes of the NMAs by 

including more trials. Third, we can examine the assumption of NMA, consistency of estimates 
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from direct and indirect evidence, for the BEST-ITP model. The previously proposed 

inconsistent methods only focus on cross sectional data. Incorporating the BEST-ITP model with 

the AB model can effectively detect inconsistency of estimates from direct and indirect evidence 

and identify the trials and the treatment that cause inconsistency for longitudinal data.  

Our methods have some limitations. We may underestimate variability of the treatment 

impacted outcomes by assuming the correlation between the baseline and follow-up values is the 

same in placebo arm and the treatment arm. The assumption ignores variation of outcomes 

impacted by treatment effects. If more data, studies reporting both follow-up and changes from 

baseline, for the treatment impacted outcomes are available, we can simply use the available 

information to estimate the corresponding correlation, 𝜌, for individual treatment impacted 

outcomes. However, using the data representing the natural course of the outcome over time may 

be more appropriate than using the data with mixture of the outcomes impacted by different 

treatments if the individual treatment impacted outcome data are unavailable. The variations of 

the correlation, 𝜌, may be large in the data with outcomes impacted by different treatments, and 

the model may not converge if the available data are scarce. Using AR(1) structure for 

correlations may be naïve. However, assuming unstructured relationship requires more data for 

the model to converge. The requirement is hard to achieve for the studies focus on rare diseases. 

We can use different correlation structures as the sensitivity tests to test if we can obtain robust 

estimates. 

My future work will develop a robust method to account for correlation of follow-up and 

baseline values. In addition to reporting follow-up values, some studies report median, lower 

limit, and upper limit of the follow-up values. Appropriate statistical methods are needed to 

convert such report format into the format reporting changes from baseline. Though the AB 
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model performs adequately in the simulation, the method requires reasonable number of included 

trials to avoid unstable estimates of the random effects. We will work on methods to detect 

inconsistency in NMA with small sample sizes.  
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3.0  PAPER 2: BAYESIAN NETWORK META-ANALYSIS OF BREAST CANCER 

HORMONE THERAPIES ON CHANGES OF LIPIDS  

 

3.1 ABSTRACT 

Background:  Aromatase inhibitors (AIs) improve disease free survival (DFS) for 

postmenopausal hormone receptor positive breast cancer (BC) patients compared to selective 

estrogen receptor modulators (SERMs). As BC patients survive longer, they are more likely to 

develop chronic diseases, with cardiovascular diseases (CVDs) being the critical one that 

threatens survival. One meta-analysis showed that AIs increase the risk of CVDs compared to a 

SERM, tamoxifen. However, it is uncertain whether the risk of CVDs for AI users is higher than 

BC patients without hormone treatment. Dyslipidemia is a CVD risk factor. We used 

dyslipidemia as an early risk factor of CVDs and applied Bayesian network meta-analysis to 

examine the effects of specific hormone treatment on changes of lipid profiles in hormone 

receptor positive breast cancer survivors.    

Methods: Randomized clinical trials (RCTs) investigating effects of all types of adjuvant 

hormone treatment (tamoxifen, toremifene, anastrozole, letrozole, and exemestane, and placebo) 

on lipids were searched from two online databases, PubMed and EMBASE. The RCTs recruiting 
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post-menopausal BC patients without residual cancer after primary treatment were eligible for 

our meta-analysis. The articles that did not report results from all intervention arms in the study 

were excluded. The studies reporting lipid values at each follow-up visit were converted to 

changes from baseline. Bayesian network meta-analysis for longitudinal data evaluated the drug 

effects on lipid profiles. Age of participants, baseline lipid values, and prior usage of tamoxifen 

were examined to determine heterogeneity of the treatment effects. Consistency of the estimates 

derived from direct and indirect evidence was examined using the arm-based method.      

Results: Toremifene is the best therapeutic option among all hormone drugs for the lipid 

profiles. Tamoxifen improves cholesterol, but worsens triglycerides. Most AIs do not 

significantly impact lipids, except exemestane decreasing HDL-c and anastrozole decreasing 

TGs. Compared to tamoxifen, AIs worsen most lipids, except triglycerides. Age, baseline lipid 

value, and prior usage of tamoxifen modify the treatment effects in most lipids. However, 

ranking the drugs based on their benefit for each lipid value produces similar result after 

accounting for effect modification.  

Conclusions: SERMs are beneficial to most lipid profiles, but AIs do not have consistent 

impacts on lipids. Tailoring hormone drug prescriptions based on medical conditions of BC 

patients is recommended.  
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3.2 INTRODUCTION 

Selective estrogen receptor modulators (SERMs), especially tamoxifen, have 

demonstrated improved disease free survival (DFS) and overall survival (OS) for hormone 

receptor positive breast cancer (BC) patients
151,152

. Five-year of tamoxifen use provides better 

event-free survival (EFS) and OS compared to only 1-2 years of treatment
153

. For early stage 

breast cancer, adjuvant 5-year tamoxifen can reduce the 15-year recurrence and mortality rate by 

11.8% and 9.2%, respectively compared to the patients without adjuvant hormone therapies
62

. 

The ATLAS trial compared 10-year and 5-year tamoxifen usage and reported significantly 

reduced recurrence (18% vs. 20.8%, p=0.002) and breast cancer mortality (9.7% vs. 11.4%, 

p=0.01) with the longer duration of treatment. It also revealed that longer use of tamoxifen 

increases risk of endometrial cancer (RR=1.74, p=0.0002) and pulmonary embolism (RR=1.87, 

p=0.01), but reduces incidence of ischemic heart disease (RR=0.76, p=0.02)
63

.  

Aromatase inhibitors (AIs) restrict production of estrogen from the peripheral tissue, 

which is recommended for postmenopausal hormone positive BC patients. AIs compared to 

tamoxifen-only treatment provide longer DFS
154–168

. However, OS benefits were not consistent 

in clinical trials. Compared to tamoxifen treatment, some studies showed improved OS after 1-3 

years of AI usage
162,163

. A larger number of studies revealed comparable OS in both AI and 

tamoxifen arms within 2 to 10 years of follow-up 
156,158,165,167,168

. The fact that better DFS does 

not reflect better OS may be related more non-recurrence BC deaths in the AI treatment 

group
161,165,166

.  

Among the non-recurrence BC deaths, cardiovascular diseases (CVDs) are important 

complications to monitor partly because of cardiotoxicity from BC treatment and partly because 

of significant increased CVD risk after transition from pre-menopause to post-menopause. A 



68 

meta-analysis analyzed 7 trials with 30,023 patients and showed that longer duration of AI usage 

was associated with higher risk of CVDs, but not significantly related to non-BC deaths
7
. A 

cohort study showed that extremely low concentration of estradiol is associated higher risk of 

ischemic heart disease (IHD) and increased total cholesterol, but not related to HDL serum 

levels
109

. Therefore, AIs, which block production of estrogen for postmenopausal women, can 

induce extremely low levels of estradiol and then may increase the risk of dyslipidemia and 

CVDs for postmenopausal BC patients on AIs.  

Though the meta-analysis revealed higher odds of CVDs for AI users compared to those 

who taking tamoxifen, the results do not indicate that AI increases the CVD risk. Several studies 

have already shown cardiac protection from tamoxifen
169–174

.  Also, the meta-analysis aggregated 

non-steroidal and steroidal AIs and only used the final outcomes of the trials, ignoring the 

patterns of CV incidence across time. We hypothesize that changes in lipid profiles are different 

among hormone therapies across time. Network meta-analysis allows us to disentangle these 

relationships.   
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3.3 METHODS 

3.3.1 Search Strategy and Selection Criteria 

Published articles were searched using PUBMED and EMBASE (host: OVID) for 

records up to January 31
st
, 2016. Gray literature was searched for abstracts from two 

conferences: American Society of Clinical Oncology Annual Meetings and San Antonio Breast 

Cancer Symposium Annual Meetings, from 2000 to 2015. Only English language articles were 

included. The search algorithm was described in the supplementary material (Table S 1 & Table 

S 2). We excluded studies that did not focus on human subjects, were not randomized clinical 

trials, and were not investigating adjuvant hormonal therapies. The studies only reporting mean 

values of lipid profiles without standard deviation (SD) were excluded. The studies that did not 

report results of all arms were excluded. 

 

3.3.2 Study Selection and Data Extraction 

Data on lipid values (follow-up and/or baseline) were extracted by HH. Discrepancies 

were resolved by consensus of the author HH and MB. The lipid profiles studied included total 

cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein 

cholesterol (LDL-C), and triglycerides (TG). The aromatase inhibitors included both non-

steroidal (anastrozole and letrozole) and steroidal (exemestane) types. The selective estrogen 

receptor modulators include tamoxifen and toremifene. 
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3.3.3 Outcomes 

Serum values of lipid profiles, including TC, HDL-C, LDL-C, and TG, during and after 

hormone therapies are the major outcome of this meta-analysis. The results from different 

articles but the same clinical trials were pooled together. Four reporting formats of the outcome 

values were included: 1) mean and standard deviation (SD) of changes from baseline values 

and/or measurements at all follow-up time points; 2) median and ranges of the changes from 

baseline values and/or measurements at all follow-up time points; 3) mean and SD of the percent 

change from baseline at all follow-up time points; and 4) median and ranges of the percent 

change from baseline at all follow-up time points.    

 

3.3.4 Quality Assessment – Risk of Bias 

Quality of the studies were evaluated using the Cochrane Collaboration’s tool to assess 

risk of bias, including selection, performance, detection, attrition, and reporting biases
175

. The 

assessment of each article was judged and recorded in a standard form by HH.  

 

3.3.5 Statistical Analysis 

The aim of this study is to estimate the mean effect of hormone therapy on changes of 

lipid profiles throughout the therapeutic period. We developed a data set consisting of the format 

reporting mean and SD of changes from baseline values at all follow-up time points, conducted 
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network meta-analysis for the longitudinal data, and examined consistency of the estimates using 

the methods proposed (manuscript in progress). The statistical approaches included three steps. 

The first step is to convert all reported formats into a baseline and change from baseline and 

associated SD’s. The second step is the network meta-analysis using the BEST-ITP model. The 

third step examines the consistency assumption of the network meta-analysis and heterogeneity 

of the included trials. 

For step one, we converted the reported measurements at all follow-up time points into 

changes from baseline, using the information from the articles that reported both changes from 

baseline values and measurements at all follow-up time points. Only the data from the placebo 

arm in these articles were used to estimate correlation, 𝜌, between the baseline value and the 

follow-up measurements. We assumed autoregression model of order 1, AR(1), for correlation 

between baseline and the measurement at the 6-month intervals from the placebo. The Fisher 

transformation was applied to the observed correlations. By using the fully Bayesian approach 

proposed by Abrams et al.
145

 and expanded by HH, we estimated the pooled Fisher 

transformation, and then obtained the overall correlation, 𝜌, between measurements which are 

observed 6 months apart. The process was performed separately for each lipid type.  The SDs of 

the changes from baseline was calculated using the estimated 𝜌, and the SDs of the baseline 

value and the follow-up measurement for the articles only reporting measurements at all follow-

up time points. For the articles that reported the median, lower, and upper range of the changes 

from baseline, we assumed that they are equivalent to the mean, lower and upper limits of the 

95% confident intervals. The percentages of changes from baseline and the corresponding SD’s 

were multiplied by the baseline mean values. 
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The second step uses network meta-analysis to estimate the treatment effects on changes 

of lipid profiles. Our data comprise longitudinal records of lipid changes, so we used the model 

proposed by Ding and Fu
134

 to account for the trends of the treatment effects over time. The 

method assumes the magnitude of the treatment effects may gradually change monotonically 

over time and then achieve a plateau. The speed to achieve the maximal treatment effect is 

different among all drugs, so the early responses may not strongly predict the final treatment 

effects. Bayesian statistical methods were used to estimate the parameters of interests, including 

the final treatment effects at the end of the therapeutic duration and the patterns of the treatment 

effects throughout the therapeutic duration. The Markov Chain Monte Carlo (MCMC) sampling 

output was used to obtain relevant statistics from the posterior distributions. We computed all 

pairwise drug comparisons for each lipid, the probabilities of the ranks for individual drugs, and 

the surface under the cumulative ranking curve (SUCRA) of each drug. The estimated mean 

effects of individual drugs over time were graphed to visualize the patterns of lipid value 

changes over time. 

The third step examines the assumption of consistent estimates from the direct and 

indirect evidence. The arm-based (AB) model proposed by Zhao et al. was used to detect 

inconsistency of estimates from the direct and the indirect evidence for each pairwise treatment 

comparison
176

. When inconsistent contrast estimates were detected, we identified studies 

produced the inconsistent evidence. We re-ran the model to check for consistency after excluding 

the inconsistent trials to ensure final consistency. Heterogeneity of the trial results due to key 

demographics was examined using metaregressors (median ages, baseline values, or prior usage 

of tamoxifen)
177

.  
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Sensitivity analyses were performed by removing studies reporting median changes of 

lipids and comparing the fixed-effect BEST-ITP model with the random-effect BEST-ITP 

models. We used R version 3.2.3 with “R2WinBUGS” package to incorporate WinBUGS 

software version 1.4.3 to perform the Bayesian statistical methods via MCMC simulations for all 

analyses.       
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3.4 RESULTS 

We identified 114 articles by reviewing the titles and abstracts. Ninety-seven articles 

were excluded for the following reasons: duplication (n=27), no available data (n=7), no 

appropriate lipid data (n=34), and inappropriate study design and report (n=29). Total 17 articles 

from 13 individual clinical trials were included in our meta-analysis (Figure 11 & Table S 3). 

Five of the included studies reported sub-cohorts of the randomized clinical trials. All studies are 

2-arm randomized design and were published between 1990 and 2012. The number of enrolled 

subjects in each trial ranged from 48 to 411. The 13 trials included a total of 1,913 subjects, who 

were randomized to 6 therapeutic arms: placebo (n= 508), tamoxifen (n= 344), toremifene (n= 

120), letrozole (n= 312), anastrozole (n= 57), and exemestane (n= 572). At least 2 trials 

contributed to each node in the therapeutic network. (Figure 12). The major problems in the bias 

assessment included lacking reporting for methods of randomization and allocation concealment 

of participants (Table S 4).  
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Figure 11.  Flow chart of literature search and selection 
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n: number of participants; S: number of studies 

Figure 12.  Network graph of breast cancer hormone drugs in the available studies 

 

The mean age of the participants in the included trials ranged from 57 to 65 years old 

(Table S 5). The sample sizes for each arm ranged from 23 to 211. Participants in 5 of the 13 

trials accepted tamoxifen treatment prior to enrolling to the trials. Eight of the 13 trials provided 

information regarding weight, height, and body mass index (BMI), and more than half of them 

with subjects having mean BMI ≥25, classified as overweight. The overall follow-up duration 
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ranged from 3 month to 60 months for the included trials. The trials regularly measured the lipid 

values and the intervals between measurements ranged from 2 month to 12 months. 

The effects of hormone therapies on changes from baseline for the lipid profiles were 

listed in Table 4. Toremifene significantly improved all lipid profiles (increasing HDL-C, but 

reducing TC, LDL-C, and TG). Tamoxifen significantly reduces TC and LDL-C, but increase 

TG. Anastrozole significantly reduced TG. Exemestane significantly decreased serum levels of 

HDL-C. All other effects of drugs on lipids were not significant.  

 

 

Table 4. Estimated 5-year effects of hormone therapy on changes from baseline for lipid profiles 

  TC (mg/dl) HDL-C(mg/dl) LDL-C(mg/dl) TG(mg/dl) 

 

  

Mean 

(95 % Credible interval) 

 
Placebo 

3.81 

(-3.27, 11.82) 
2.20 

(0.46, 4.23) 

3.81 

(-5.62, 12.58) 

0.06 

(-11.30, 11.86) 

SERMs 

Tamoxifen 
-17.81 

(-24.95, -10.06) 

-1.70 

(-3.49, 0.17) 
-17.31 

(-26.25, -8.13) 

28.08 

(16.81, 39.23) 

Toremifene 
-22.56 

(-31.47, -13.92) 

9.50 

(7.19, 11.88) 

-20.37 

(-31.02, -10.69) 

-28.06 

(-42.95, -13.51) 

AIs 

Letrozole 
7.71 

(-0.44, 15.51) 

0.31 

(-1.77, 2.38) 

4.88 

(-4.63, 14.25) 

9.36 

(-4.00, 22.90) 

Anastrozole 
6.22 

(-3.55, 16.42) 

-0.30 

(-3.10, 2.64) 

8.43 

(-3.06, 19.08) 
-22.34 

(-43.98, -1.45) 

Exemestane 
-3.74 

(-10.90, 3.89) 
-4.37 

(-6.12, -2.45) 

2.29 

(-7.13, 10.93) 

-10.25 

(-21.49, 1.32) 

TC: Total Cholesterol; TG: Triglyceride; HDL-C: High Density Lipoprotein Cholesterol; LDL-C: Low Density 

Lipoprotein Cholesterol; SERMs: Selective Estrogen Receptor Modulators; AIs: Aromatase Inhibitors 

Bold: p<0.05 

 

 

Figure 13 showed the predicted changes of lipid profiles over time for each therapeutic 

option. Letrozole increases TC faster than the other drugs, but toremifene slowly decreases TC to 

the greatest magnitude after about 3 years of treatment. On the contrary, toremifene increases 

HDL-C faster and more than the other drugs, and achieves its plateau at about 1.5 years of 
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treatment. Exemestane reduces HDL-C faster than the other AIs. Both tamoxifen and toremifene 

reduce LDL-C, but toremifene impacts LDL-C more slowly. Tamoxifen slowly increases TG and 

achieves plateau after about 2 years of treatment. 

 

 

 (A) total cholesterol; (B) HDL-C; (C) LDL-C; and (D) triglyceride 

  

(A) (B) 

  

(C) (D) 

Figure 13. Changes of lipid profiles for each hormone therapeutic option during 5 years of 

treatment 
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We compared all therapeutic options based on their beneficial effects on lipid changes. 

The first rank indicates the best choice accounting for the changes of the lipid profiles, and the 

last rank indicates that the drug either improves the least or worsens the most for a given lipid 

profiles. SUCRA indicates the cumulative rank probabilities. The larger SUCRA implies the 

better rank among all therapeutic options for the individual treatment with regard to the outcome. 

Across all lipid profiles, toremifene is the best therapeutic option. The other hormone drugs have 

various effects regarding lipid types. For TC, toremifene is ranked the best option in 93% of the 

MCMC samples (Table S 6). Tamoxifen is ranked the best option in only 7% of the MCMC 

samples, but ranked the second best option in 93% of the MCMC samples. Exemestane is the 

best choice among the AIs, which is ranked the third among all hormone drugs (Figure S 1). 

Tamoxifen is not a good choice regarding HDL-C and TG because it ranks 5
th

 and 6
th

, 

respectively. Among all AI drugs, Exemestane is the better option, except for HDL-C (Table S 7, 

Table S 8, Table S 9, Figure S 2, Figure S 3, & Figure S 4).  

In addition to the changes of lipids for each hormone therapeutic drug, all possible 

treatment pairwise comparisons were made for each lipid profile. SERMs and exemestane reduce 

more TC serum levels compared to placebo. Patients taking AIs had significantly increased TC 

compared to those who taking SERMs. The two SERMs have compatible effects on TC and 

LDL-C. However, only toremifene increases more HDL-C than placebo, and the other drugs do 

not benefit patients regarding HDL-C.  Compared to placebo, tamoxifen and letrozole 

significantly increase TG, but toremifene, anastrozole, and exemestane reduce TG. Among all 

hormone therapeutic drugs, tamoxifen performs worst for TG profile changes (Table 5).    
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Table 5. Pair-wise (comparator vs. reference) comparisons of hormone therapeutic effects on 

changes in lipids 

TC(mg/dl) 
 Reference 

Comparator 

Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

Mean (95% Credible Interval) 

Placebo 0 

SERM Tamoxifen -21.62

(-24.17, -19.12) 

0 

Toremifene -26.37

(-33.04, -19.7) 

-4.77

(-10.89, 1.36) 

0 

AI Letrozole 3.89 

(0.83, 6.97) 

25.49 

(21.65, 29.34) 

30.26 

(23.06, 37.46) 

0 

Anastrozole 2.40 

(-5.90, 10.81) 
24.04 

(16.00, 32.09) 

28.81 

(21.69, 35.93) 

-1.45

(-10.31, 7.41) 

0 

Exemestane -7.55

(-9.53, -5.58) 

14.06 

(11.79, 16.34) 

18.83 

(12.33, 25.33) 

-11.43

(-14.84, -8.02) 

-9.98

(-18.30, -1.66) 

0 

HDL-C(mg/dl) 
 Reference 

Comparator 

Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

Mean (95% Credible Interval) 

Placebo 0 

SERM Tamoxifen -3.90

(-4.73, 3.08) 

0 

Toremifene 7.30 

(5.23, 9.35) 

11.20 

(9.30, 13.10) 

0 

AI Letrozole -1.89

(-2.91, -0.87) 

2.013 

(0.75, 3.27) 

-9.19

(-11.42, -6.96) 

0 

Anastrozole -2.50

(-5.18, 0.17) 

1.44 

(-1.10, 3.98) 
-9.76

(-12.11, -7.42) 

-0.57

(-3.37, 2.22) 

0 

Exemestane -6.57

(-7.24, -5.90) 

-2.67

(-3.43, -1.92) 

-13.87

(-15.87, -11.87) 

-4.68

(-5.82, -3.55) 

-4.11

(-6.72, -1.50) 

0 
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Table 5. (cont.) 

LDL-C(mg/dl) 
 Reference 

Comparator 

Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

Mean (95% Credible Interval) 

SERM Placebo 0 

Tamoxifen -21.11

(-23.62, -18.65) 

0 

AI Toremifene -24.17

(-30.56, -17.90) 

-3.08

(-9.00, 2.83) 

0 

Letrozole 1.07 

(-1.96, 4.12) 
22.15 

(18.42, 25.88) 

25.24 

(18.30, 32.17) 

0 

Anastrozole 4.62 

(-3.54, 12.72) 
25.70 

(17.79, 33.61) 

28.78 

(21.76, 35.81) 

3.55 

(-5.16, 12.25) 

0 

Exemestane -1.52

(-3.50, 0.49) 

19.62 

(17.37, 21.86) 

22.70 

(16.42, 28.98) 

-2.54

(-5.81, 0.74) 

-6.08

(-14.23, 2.06) 

0 

TG(mg/dl) 
 Reference 

Comparator 

Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

Mean (95% Credible Interval) 

Placebo 0 

SERM Tamoxifen 28.02 

(21.51, 34.51) 

0 

Toremifene -28.12

(-43.08, -13.46) 

-56.15

(-69.88, -42.42) 

0 

AI Letrozole 9.30 

(1.5, 17.11) 

-18.74

(-28.29, -9.19) 

37.41 

(21.06, 53.76) 

0 

Anastrozole -22.41

(-44.30, -1.06) 

-50.33

(-71.65, -29.01) 

5.82 

(-11.76, 23.40) 
-31.59

(-54.62, -8.56) 

0 

Exemestane -10.31

(-15.45, -5.19) 

-38.33

(-44.43, -32.23) 

17.82 

(3.29, 32.35) 

-19.59

(-28.17, -11.01) 

12.00 

(-9.79, 33.79) 

0 

TC: Total Cholesterol; TG: Triglyceride; HDL-C: High Density Lipoprotein Cholesterol; 

LDL-C: Low Density Lipoprotein Cholesterol  

Bold: p<0.05 

Heterogeneity of the trials was examined by including metaregressors in the models.  For 

TC, age, baseline lipid values and prior tamoxifen use modified the effects of hormone therapies 

on lipid changes. For example, the effect of tamoxifen on reduction of TC is more for young 
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patients than the older patients. The effect size is 1.51 mg/dl of TC per year increase of age 

(Table S 10). The patients taking tamoxifen prior to the new hormone therapies have less 

reduction of TC compared to those who were not exposed to tamoxifen previously. After 

adjusting for the metaregressors, toremifene and tamoxifen still the best two options to reduce 

TC compared to placebo (Table S 11 & Figure S 5). For HDL-C, baseline HDL-C and prior 

tamoxifen usage significantly modify the impact of hormone therapies on changes of HDL-C by 

further reducing the HDL-C levels. Accounting for effect modification, toremifene increases 

more HDL-C than placebo in either model (Table S 12, Table S 13, & Figure S 6). Similar to the 

impacts on TC, the metaregressors significantly modify the effects of hormone therapies on 

LDL-C (Table S 14, Table S 15, & Figure S 7). Only baseline TG values significantly modify the 

effects of hormone therapies on changes of TG (Table S 16, Table S 17, & Figure S 8).  

There are eight comparisons with direct evidence from the available trials. Inconsistency 

tests are based on differences of the contrast estimates between direct and indirect evidence of 

the contrast pairs. We detected inconsistent contrast estimates for the pair of tamoxifen and 

toremifene regarding TC. Two trials providing indirect evidence of tamoxifen have large 

variations. Inconsistency disappeared after removing the two trials. For the pair of tamoxifen and 

exemestane, inconsistency was observed regarding TC, LDL-C, and TG. Greater variations of 

two trials providing indirect evidence of tamoxifen and exemestane, respectively, were identified 

and inconsistency of the three lipids was solved after removing the two trials (Table S 18).        

Sensitivity analyses were performed for three scenarios, including the original model, the 

model excluding trials reporting median changes of lipids, and the random-effect model. 

Comparing the original model to the model excluding trials reporting median changes of lipids, 

the ranks of the drug effects on lipid changes are not completely the same. Toremifene stayed the 
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top ranked for HDL-C and TG, ranked second (switched with tamoxifen) in TC and LDL-C. The 

main effects of the drugs on the lipid profiles are similar in both models. The results of the 

random-effect model are also similar to the original models regarding to TC, HDL-C, and LDL-

C (Table S 19, Table S 20, & Table S 21); however, the results for TG are significantly different 

from the original model. Anastrozole becomes the first rank while toremifene is the third rank 

(Table S 22).   
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3.5 DISCUSSION 

 

Our Bayesian network meta-analysis demonstrated the effects of hormone drugs on lipids 

throughout the 5-year therapeutic period. The results showed that SERMs, especially toremifene, 

improve lipid profiles more than AIs. The only exception is tamoxifen which significantly 

increases triglyceride levels. Most AIs did not significantly impact changes in lipids. The 

maximal effects of the drugs on lipids requires at least 6 months of treatment, and some may 

need at least 20 months to achieve their stable effects.  Compared to placebo, toremifene 

improves all lipid profiles while the other hormone drugs impact lipids inconsistently. Patients’ 

ages, baseline lipid values, and prior usage of tamoxifen modify the effects of hormone therapies 

on changes in lipid profiles.  

Previous meta-analysis showed that BC patients on AIs had higher odds of CVDs 

compared to those who are on tamoxifen
7
. The major argument of the study is that tamoxifen 

may reduce the risk of CVDs
178

, so we cannot conclude that AIs increase risk of CVDs with the 

evidence that compares effects of AIs and tamoxifen. Though our study does not directly 

investigate the effects of BC hormone treatment on CVDs, we examine the well-established 

CVD risk factor, lipids, instead. Our results support the above argument by showing that AIs 

does not deteriorate all lipid profiles and AIs perform worse than SERMs because SERMs 

improve most lipid profiles.   

Tamoxifen and toremifene provide beneficial effects on most lipids, but tamoxifen 

worsens triglyceride in our study. Prior studies showed consistent benefits of tamoxifen on TC 

and LDL-C, but inconsistent effects on HDL-C and TG
178–181

. These studies mainly reported 

tamoxifen treatment effect without comparing to the other therapeutic arms. Our results are 
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similar to the prior reports that tamoxifen itself improves TC, LDL-C, but not HDL-C and TG. 

We further have comparison of tamoxifen and placebo, and showed that tamoxifen has 

significantly worse HDL-C and TG changes compared to placebo.  

AIs do not impact lipids as significantly as SERMs in our study. Anastrozole and 

exemestane improves TG and worsens HDL-C, respectively. A reviewed study showed 

inconsistent effects of AIs on lipid changes, which were mainly from small studies
182

. The 

inconsistent results may be due to various follow-up periods for the included articles; therefore, 

the result from the article with a short follow-up period cannot reveal the real effects of AIs on 

lipids throughout the 5-year therapeutic duration. Our studies incorporated longitudinal 

information to project the potential long term effects of AIs on lipid changes. Some hormone 

drugs achieved their maximal effects slower than the others in our study; therefore, conclusions 

drawn from the studies with short follow-up periods may be misleading.   

The age when starting BC hormone treatment modifies the effects of hormone drugs on 

the final TC and LDL-C values. The TC and LDL-C values increase more in older patients than 

in younger patients. Compared to the unadjusted models, the benefits of tamoxifen and 

toremifene on TC and LDL-C are slightly reduced, but the benefit of exemestane on TC and 

LDL-C are increased in the model adjusted for age starting BC hormone treatment. The effect of 

age on changes of lipid in our study are compatible with the studies showing increased TC with 

aging in women
183,184

. Even though the effects of hormone therapies on changes of lipids are 

slightly different after adjusting for ages, our conclusion for the best hormone treatment options 

does not change.       

Prior tamoxifen use worsens most lipid changes in our study. Our results showed that 

tamoxifen improves most lipid profiles, so the lipid profiles of the patients previously taking 
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tamoxifen may return to their natural levels once tamoxifen is discontinued. Compared to the 

unadjusted models, AIs are more beneficial or at least are less harmful to lipids after adjusting 

for prior tamoxifen use. The results may explain the inconsistent effects of AIs on lipids in the 

previous studies, which did not account for existing of prior tamoxifen usage.      

Inconsistency tests that compare direct information to the indirect information reveal two 

inconsistent pairs, tamoxifen vs. toremifene and tamoxifen vs. exemestane. The trials causing 

inconsistency for the pair of tamoxifen and toremifene enrolled patients who previously took 

tamoxifen for at least 2 years. Therefore, the effects may be overestimated without considering 

the impact of prior tamoxifen usage. One of the trials that impact the pair of tamoxifen and 

exemestane only follow-up the patients for 3 months, so it may underestimate the final effect of 

tamoxifen, which requires at least 6 months to achieve its plateau of the effects on TC, LDL-C, 

and TG. The trial providing indirect information of exemestane for the pair of tamoxifen and 

exemestane has older subjects compared to the trials providing direct information. The 

inconsistent results were solved after removing the trials with large variations.  

The results of fixed and random effect models are in TC, HDL-C, and LDL-C. The 

results may indicate the subjects in trials were randomly selected from the same population. 

However, the effects of hormone therapy drugs in TG are different between fixed and random 

effect models. If TG is the only one measurement that contrary to the other measurements about 

the population, measurement biases are highly suspected. It is possible that participants did not 

follow the instruction of fasting before blood test. TG is more sensitive to fasting status of the 

patients on blood tests than lipoprotein cholesterol, so large variations can be observed in TG 

measurement
185

. Exclusion of trials only reporting median measurements flips the ranks of 
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tamoxifen and toremifene for TC and LDL-C, but the general conclusion is the same that SERMs 

benefit lipid changes with respect to TC, HDL-C, and LDL-C.  

There are several strengths of our study. First, we are able to incorporate longitudinal 

information and to compare all hormone therapeutic options in one analysis. The previous meta-

analysis and network meta-analysis only focused on the final follow-up results of the selected 

articles, not the patterns of the changes over time. This analysis does not only estimate the final 

changes of the outcomes, but also presents the changing patterns across time. Second, we convert 

the heterogeneous reporting format into a homogeneous format by using Bayesian statistical 

methods. Therefore, more studies can be included in our analyses. Increasing the number of 

drugs and participant enhances the power to detect differences. Without appropriate estimation 

process, we may have to exclude studies without the same reporting format, so the statistical 

power of the study will be reduced due to much smaller sample size. Third, we showed important 

factors that can modify the drug effects on lipid changes, which may explain the conflicting 

results among the previous studies.  

We also identified some weaknesses of this study. First, we have small sample size in this 

study. Some comparison pairs have only one study for direct comparison. Therefore, there are 

large variances due to limited information. Second, we included articles reporting median of 

lipid changes instead of mean and standard error. The studies reporting median instead of mean 

may have skewed data. We may not obtain efficient estimates by including these studies. 

However, the conclusions are similar for the analyses with and without studies reporting median 

changes. Therefore, we are still confident of our results. Third, the included articles were 

published between 1990 and 2012. The health care and treatment of BC and lipids improve over 

time, as well as, the techniques of lipid measurements and lipid treatment. The changes may 
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impact the estimates of our study. We mainly focused on lipid changes, so the effects of the 

different baseline values, which may be induced by techniques, may be reduced. We also 

examined the impact of the baseline lipid values and revealed that they do not influence the ranks 

of the best choices among the hormone therapy drugs. Fourth, we only included published 

articles, so publication bias cannot be avoided.            

In conclusion, toremifene benefits all lipid profiles in BC patients. AIs do not 

significantly impact most lipids. The BC patients taking exemestane need to monitor their HDL-

C during treatment. Regularly examining triglyceride may be necessary for patients taking 

tamoxifen, especially for those who accept extended tamoxifen treatment, which can prolong 

survival of pre-menopausal BC patients
186

, since aging and tamoxifen both deteriorate 

triglyceride. The results are based on the aggregated data from published articles of RCTs. 

Further studies on individuals with personal characteristics are necessary to validate the results 

of our study.   
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4.0  PAPER 3: RISK OF DYSLIPIDEMIA AND CORONARY HEART DISEASE IN 

POSTMENOPAUSAL EARLY-STAGE HORMONE RECEPTOR-POSITIVE BREAST 

CANCER PATIENTS ON HORMONE TREATMENT 

 

4.1 ABSTRACT 

Background 

Tamoxifen, a selective estrogen receptor modulator (SERM), improves disease free 

survival (DFS) and overall survival (OS) for hormone receptor positive (HR+) breast cancer 

(BC) patients. Aromatase inhibitors (AIs), an alternate hormone treatment, further prolong DFS 

in postmenopausal HR+ BC patients, but their reported benefit in OS is inconsistent. Prior 

studies reported conflicting results of hormone cancer treatments on risk of cardiovascular 

diseases and dyslipidemia when patients were on treatment. We investigate the impact of 

hormone treatment on incidence of dyslipidemia and coronary heart disease (CHD) in HR+ BC 

patients.   

Methods 

Electronic medical records from University of Pittsburgh Medical Center (UPMC) were 

reviewed to extract information on patients aged 50 years and above with stage I/II HR+ BC. For 
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each patient without a prior history of dyslipidemia or CHD events, we collected information on 

use and type of hormone treatment, and diagnosis of dyslipidemia and CHD events after cancer 

diagnosis. Demographic and BC characteristics were extracted from Cancer Registry data. Cox 

proportional hazard models with time-varying hormone treatment indicators were used to 

investigate effects of different types of hormone treatment on risk of dyslipidemia and CHD. 

Hormone treatment was categorized by timing of usage and type of drug. 

Results 

A total of 968 BC patients were included in this study. We classified participants into 

four groups describing their trajectory of treatment; AI only (N=725, 75%), SERM only (N=53, 

6%), both (either AI then SERM or vice versa, N=108, 11%), or no hormone therapy (N=82, 

8%). Age at diagnosis differed significantly across the groups (57.30 years, 63.13 years, 56.26 

years, and 64.59 years, p<0.0001) for AI only, SERM only, both, and no hormone therapy, 

respectively. Our population was mostly white (94%) with mean follow up time of 71 months, 

74 months, 76 months and 70 months for SERM, AI, both, and no hormone treatment, 

respectively. Nineteen percent of AI-only users developed dyslipidemia versus 13% of SERM-

only users. Incidence of CHD was similar (1% vs. 1%). The time-varying Cox proportional 

model showed that current SERM users tended to have lower risk of dyslipidemia/CHDs 

compared to never SERM users (HR: 0.49, 95% CI: 0.19, 1.25, p=0.134). The potential 

protective effect of current SERM usage disappeared after discontinuing treatment (HR: 0.89, 

95% CI: 0.35, 2.28). Current AI users tended to have a higher risk of dyslipidemia/CHDs 

compared to current SERM users (HR: 2.02, 95% CI: 0.94, 4.33, p=0.071). Patients previously 

using AIs had similar risk of dyslipidemia/CHD compared to those who previously used SERMs 

(HR: 1.13, 95% CI: 0.43, 2.93, p=0.809).  
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Discussion 

This study showed a potential protective effect of SERMs on dyslipidemia/CHDs during 

treatment with the effect disappearing after discontinuing treatment. Though current AI usage 

increased the risk of dyslipidemia/CHDs compared to current SERM usage, patients had similar 

risk for dyslipidemia and CHD events after discontinuing either treatments (prior AI vs prior 

SERM). Future studies should include more subjects and longer follow up of patients.  
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4.2 INTRODUCTION 

Due to the increased use of hormone treatment for breast cancer, survival for hormone 

receptor positive breast cancer (HR+ BC) patients has improved in recent decades. Tamoxifen, 

the most popular selective estrogen receptor modulator (SERM), has been shown to improve 

disease free survival (DFS) and overall survival (OS) in HR+ BC patients compared to those 

without any hormone treatment
151,152

. Compared to SERMs, aromatase inhibitors (AIs) further 

prolonged DFS in post-menopausal HR+ BC patients
154,155,159,162

. However, beneficial effects on 

overall survival (OS) are controversial in the early literature
162,163,165,167,168

. As data on long-term 

effects of AIs from clinical trials are now available, more recently published articles increasingly 

report improved long-term OS in patients receiving 5-year AI treatment compared to 5-year 

tamoxifen treatment
165,205

. In addition, more studies showed that longer use of hormone 

therapies, both tamoxifen and AIs, benefits survival of HR+ BC patients
186,206

. Since long-term 

hormone treatment is beneficial to the HR+ BC patients, a good understanding of the adverse 

effects (AEs) of these drugs during treatment is important to balance benefits and harms of 

hormone treatment.   

In addition to secondary cancers, the most noticeable and severe AEs related to hormone 

treatment involve cardiovascular diseases (CVDs). CVDs and their risk factors are not only 

related to hormone treatment, they are also related to the normal aging process. A study showed 

37% of the HR+ BC patients had higher 10-year predicted CVD risk than 10-year predicted BC 

recurrence risk, while only 20% of the recruited patients had higher 10-year predicted BC 

recurrence risk than 10-year CVD risk, especially those with early stage BC
207

. However, a 

meta-analysis showed that AI treated patients have higher odds of CVD mortality than those 

taking tamoxifen
7
. A network meta-analysis (NMA) did not show higher CVD events in AI users 
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compared to SERM users
208

. In addition to the CVD events, our prior work in investigating 

hormone therapies on changes in lipids using NMA showed that SERMs improve lipid profiles 

but that most AIs have a non-significant impact on most lipids compared to placebo (see Chapter 

3, Table 4).   

The above-described meta-analyses used self-reported AEs from randomized clinical 

trials (RCTs) to report their CVD events. There are two disadvantages to this type of 

ascertainment. First, the self-reported events may not be accurate. Second, the studies using the 

final reports of the RCTs did not differentiate between events that happened during versus after 

use of hormone therapy. Most AIs do not permanently inhibit the aromatase enzyme activities, so 

assuming constant drug effects during and after stopping with treatment may be unreasonable. 

The cohort study published in 2016 by Haque, et al. estimated cumulated hazard ratios (HRs) of 

tamoxifen and AIs on all cardiovascular events using time-dependent Cox proportional hazards 

models to manage changes of treatment throughout the follow-up periods based on electronic 

medical records. The results showed that AI-only and tamoxifen-only users have a similar risk of 

cardiac ischemia (HR: 0.97, 95% CI: 0.78-1.22) and stroke (HR: 0.97, 95% CI: 0.70-1.33)
209

. 

However, the study also did not reveal the possible difference in risk of cardiovascular events 

during vs after hormone treatment. Our previous NMA only focused on the effects of hormone 

treatment on lipids during treatment. To understand the complete effects of hormone treatment 

on risk of dyslipidemia and coronary heart diseases (CHDs) throughout the whole course of BC 

patient care, we conducted this cohort study using hospital electronic medical records (EMRs) 

from diagnosis through treatment to off-treatment follow up visits. The main goals of the study 

are to examine if patients on AIs have higher risk of dyslipidemia/CHD events than those who 

are on SERMs and whether the risk difference disappears after discontinuing treatment.   
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4.3 METHODS 

4.3.1 Data Sources and Setting 

The University of Pittsburgh Medical Center (UPMC) is a health care enterprise that 

provides healthcare services via community and tertiary hospitals. The service area covers the 

western/north central Pennsylvania, western New York, and Ohio. Data in the UPMC Cancer 

Registry include demographic and cancer related information at diagnosis and are updated 

regularly for vital status and cancer treatment. Our data were provided by two honest brokers 

who identified the patients and medications from the Electronic Medical Administrative Records 

(e-MARs) and the Cancer Registry data from UPMC in Pittsburgh. This study was approved by 

the University of Pittsburgh Institutional Review Board (IRB). We obtained demographics, BC 

characteristics, and cancer treatment from the Cancer Registry. The e-MARs provided medical 

records, including medication and outcome events, starting from the date of BC diagnosis to the 

end of the study period (Figure 14). The prescription information of hormone treatment was 

extracted by HHH from the eMARs.  
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Figure 14. Flow chart for data extraction from Cancer Registry and MARs 
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4.3.2 Patients and Design 

 The target population is the group of HR+ BC patients ascertained from the Cancer 

Registry. Patients diagnosed with primary stage I or stage II BC between Jan. 1
st
, 2005 and Dec. 

31
st
, 2011 were eligible for this study. We excluded patients younger than 50 years old from the 

study, as they are likely to not yet be postmenopausal, and patients with HR- or unknown HR 

status breast cancer. Those who were diagnosed with heart disease or dyslipidemia before or 

within 3 months after BC diagnosis were also excluded. The medical records of each patient 

were obtained from eMARs starting from BC diagnosis till the final date of the study, Dec. 31, 

2015.  

4.3.3 Outcomes 

 Outcomes included new dyslipidemia and CHD events (myocardial infarction, ischemia, 

coronary artery disease, and angina pectoris). The CHD events were determined by one of the 

following three criteria: 1) ICD-9 (410.0-414.9) and ICD-10 (I20.0-I25.9) as appropriate; 2) 

procedure codes related to CABG (36.10-36.20; 33510-33523, 33533-33536) and PTCA (92982-

92984); and 3) elevated Troponin levels. Dyslipidemia was determined based on ICD-9 (272.0-

272.5) and ICD-10 codes (E78.5-E78.6). Patients were considered diagnosed with new 

dyslipidemia or CHD if they met the above criteria at least once for inpatient or twice for 

outpatient records.  



97 

4.3.4 Hormone Treatment Data 

 Hormone treatment information was recorded longitudinally and categorized by type of 

hormone drug (AI or SERM) and status of usage (current, prior, or never). The variables 

representing usage of hormone therapy during the follow-up period, including current usage for 

SERM, current usage for AI, prior usage for SERM, prior usage for AI, and never usage for 

SERM and AI, were constructed. For example, a patient started tamoxifen for 6 months, 

followed by an AI for another 12 months, and then was observed off treatment for 3 months. The 

first input for this patient would be: duration is 6 months; SERM: current; and AI: never. The 

second input would be: duration is 12 months; AI: current; and SERM: prior. The final input 

would be: duration is 3 months; SERM: prior; and AI: prior. We also created a variable to 

summarize hormone treatment in mutually exclusive categories during the whole study period 

(i.e., SERM-only, AI-only, both SERM and AI, and no hormone treatment). The example patient 

above would be categorized as both SERM and AI for this alternate variable. Information on 

prescriptions of hormone treatment, including start and stop dates, were extracted from eMARs. 

The hormone treatment information from eMARs was verified to be consistent with the Cancer 

Registry data.  

4.3.5 Covariates 

 Baseline characteristics of the patients were abstracted from the Cancer Registry data, 

and included race (White, non-White), weight, height, smoking status (yes, no), alcohol 

consumption (yes, no), post-menopausal status (yes, no/unknown), BC cancer stage (stage I, 

stage II), and family history of BC (yes, no). Cancer treatment prior to hormone treatment, 



98 

including chemotherapy and radiotherapy, was also extracted from the Cancer Registry data. Pre-

existing diabetes and hypertension before BC diagnosis were identified using ICD-9 (250.0-

250.93; 401.0-401.9) and ICD-10 (E08-E11.9; I10-I16) code as appropriate. Height and weight 

were used to calculate body mass index (BMI), which was categorized as: under-/normal weight 

(BMI < 25), overweight (25 ≤ BMI < 30), obese (BMI ≥ 30), and unknown.  

4.3.6 Statistical Analysis 

 Descriptive statistical analyses were performed to examine differences in baseline 

characteristics between the 4 mutually exclusive groups of BC patients (i.e., those who received 

AI-only, SERM-only, both, and no hormone treatment). Continuous variables were tested using 

one-way analysis of variance (ANOVA) and categorical variables were examined using X2
 or 

Fisher exact test as appropriate.  

 Follow-up time for each patient started at the date of BC diagnosis and ended on the date 

of the new outcome event, either dyslipidemia or CHD whichever came first. If the patient did 

not develop any new event, the end of the follow-up time was the last contact date in the Cancer 

Registry or the last date of the study period, Dec. 31, 2015, whichever came first. Time between 

BC diagnosis and the date that the first hormone drug was prescribed contributed to the never 

usage categories. Cox proportional hazards models were used to estimate the hazards of the 

outcome events for time-varying hormone treatment. We performed three Cox proportional 

hazard models to investigate the effects of hormone treatment on the outcome events. The first 

one is an unadjusted model containing only the hormone treatment variables. The second model 

included demographic characteristics in addition to the treatment variables. The third model 

added medical history and BC related features to the second model. All variables were selected 
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based on their clinical importance. The parameter estimates and standard errors of hormone 

treatment as well as the hazard ratios (HRs), 95% confidence intervals (CIs) and p-values were 

obtained from the Cox proportional hazards models. All analyses were performed using SAS, 

version 9.3 (SAS Institute Inc).  
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4.4 RESULTS 

Patients 50 years of age or older with a diagnosis of primary stage I or stage II BC 

between Jan. 1
st
, 2005 and Dec. 31

st
, 2011 were eligible for this study (n=2,172). Patients with a 

history of heart disease (n=103) and dyslipidemia (n=380) before BC diagnosis or diagnosis of 

these up to 3 months after BC diagnosis were excluded from our study population. Patients with 

incomplete hormone therapy information, lacking starting or stopping dates, were excluded 

(n=307). Patients without hormone therapies for whom estrogen and progesterone receptor status 

was unknown and patients with HR- BC were excluded (n=414). The final population included 

968 BC patients. All included patients were followed up from the diagnosis of BC until 

occurrence of the event, the last contact date, or end of the study period, Dec. 31
st
, 2015, 

whichever came first (Figure 15). 

 

 
Figure 15. Flow chart describing eligibility and exclusion of the breast cancer population in the 

study 



101 

 

Table 6 summarizes the characteristics of the study participants. As our study population 

included only BC patients with HR+ BC, most patients received hormone treatment. Seventy-

five percent of the population received AIs only, and 11% of patients received both AIs and 

SERMs. Therefore, the majority of our population was exposed to AIs during the course of 

cancer treatment. Mean follow-up duration ranged from 70.9 months (5.9 years) to 76.6 months 

(6.4 years). Nineteen percent of the AI-only users developed dyslipidemia while about 13% of 

the SERM-only, both, and never users were diagnosed with dyslipidemia. Few patients 

developed heart disease (n=16), and most of them also developed dyslipidemia (n=11). More 

than 90% of the population was white. More AI-only users were known to be post-menopausal 

than SERM-only users (94% vs. 56%). Prevalence of tobacco and alcohol consumption was low 

in our population, 11% and 5%, respectively. Almost one third of all AI-only users had pre-

existing hypertension while the percentages of pre-exiting hypertension in the other treatment 

groups ranged from 19% to 22%. The prevalence of pre-existing diabetes was low in all 

treatment groups (6%). More than two thirds of the patients received radiotherapy, but only 

about one third of patients had chemotherapy prior to hormone treatment. More than 90% of 

patients taking hormone drugs survived during our study period.  
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Table 6. Characteristics of the HR+ BC patients  

  Drug Prescription During Follow-Up Period Total  

  SERM-only AI-only Both No  p-value 

All Patients 53 (6) 725 (75) 108 (11) 82 (8) 968 (100)  

Demographics 

Age at Diagnosis 57.3 (9.0) 63.1 (8.6) 56.3 (7.6) 64.6 (11.4) 62.2 (9.2)  <0.01 

White 50 (94) 683 (94) 107 (99) 77 (93) 917 (94) 0.12 

BMI   0.20 

    Normal 

/Underweight 

20 (37) 163 (22) 27 (25) 26 (31) 236 (24)  

    Overweight 16 (30) 221 (30) 33 (30) 20 (24) 290 (29)  

    Obese 16 (30) 266 (36) 36 (33) 28 (34) 346 (35)  

    Unknown 1 (1) 75 (10) 12 (11) 8 (9) 96 (9)  

Medical History 

Current tobacco use 6 (11) 76 (10) 12 (11) 14 (17) 108 (11)  0.36 

Current alcohol use 5 (9) 45 (6) 7 (6) 1 (1) 58 (5)  0.15 

History of Diabetes 2 (3) 53 (7) 2 (1) 2 (2) 59 (6)  0.05 

History of 

Hypertension 

12 (22) 234 (32) 21 (19) 16 (19) 283 (29) < 0.01 

Post-menopausal 30 (56) 682 (94) 59 (54) 73 (89) 844 (87)  <0.01 

Breast Cancer Characteristics 

AJCC stages   0.04 

    Stage 1 33 (63) 468 (65) 59 (55) 61 (75) 621 (65)  

    Stage 2 20 (37) 257 (35) 49 (45) 21 (25) 347 (35)  

Radiotherapy 35 (66) 523 (72) 77 (71) 55 (67) 690 (71)  0.64 

Chemotherapy 12 (22) 263 (36) 45 (41) 29 (35) 349 (36)  0.13 

Family history of 

breast cancer 

38 (71) 537 (74) 78 (72) 59 (71) 712 (73)  0.94 

Treatment Summary and Outcomes 

Follow-up (months) 71.2 (19.9) 74.5 (25.4) 76.6 (28.4) 70.9 (34.2) 74.3 (26.3)  0.39 

Treatment duration 

(months) 

45.5 (20.6) 42.9 (22.8) 50.5(25.3)  0 (0) 40.2 (25.3) 0.01 

New Dyslipidemia 7 (13) 139 (19) 15 (13) 12 (14) 173 (17)  0.34 

New CHD 1 (1) 12 (1) 0 (0) 3 (3) 16 (1)  0.20 

Dyslipidemia/CHD 7 (13) 143 (19) 15 (13) 13 (15) 178 (18)  0.31 

Alive at end of study 49 (92) 663 (91) 104 (96) 57 (69) 873 (90) <0.01 

Data are presented as Mean (SD) or N(%)
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There were no significant differences for rates of dyslipidemia/CHD for AI treatment 

categories (current AI vs. never hormone users (HR: 0.99, 95% CI: 0.54, 1.82) and prior AI vs. 

never hormone users (HR: 1.00, 95% CI: 0.27, 3.70)). In contrast, current SERM had a 

borderline impact on risk of dyslipidemia/CHD (HR: 0.49, 95% CI: 0.19, 1.25), but prior SERM 

users did not have increased risk of the events (HR: 0.89, 95% CI: 0.35, 2.28) compared to never 

hormone users, respectively. Risk of dyslipidemia/CHD was higher for patients currently taking 

AIs compared to those who were currently taking SERMs (HR: 2.02, 95% CI: 0.94, 4.33), but 

the risk difference disappeared after discontinuing AIs/SERMs, prior AI vs. prior SERM, (HR: 

1.13, 95% CI: 0.43, 2.93). The treatment effects were attenuated after adjusting the covariates 

(Table 7).  

 

Table 7. Time-dependent Cox proportional hazards models for dyslipidemia/CHD 

 Model 1 Model 2 Model 3 

 HR (95% CI) HR (95% CI) HR (95% CI) 

Model    

Current AI 0.99 (0.54, 1.82) 1.01 (0.55, 1.87) 1.00 (0.54, 1.86) 

Current SERM 0.49 (0.19, 1.25) 0.54 (0.21, 1.39) 0.58 (0.22, 1.53) 

Prior AI 1.00 (0.27, 3.70) 0.97 (0.27, 3.54) 0.98 (0.27, 3.55) 

Prior SERM 0.89 (0.35, 2.28) 0.97 (0.38, 2.49) 0.95 (0.35, 2.59) 

Never hormone Reference Reference Reference 

Contrast    

Current AI vs Current SERM 2.02 (0.94, 4.33) 1.87 (0.86, 4.03) 1.74 (0.77, 3.93) 

Prior AI vs Prior SERM 1.13 (0.43, 2.93) 1.00 (0.38, 2.63) 1.03 (0.37, 2.85) 

Current AI vs Prior AI 0.99 (0.28, 3.54) 1.04 (0.30, 3.67) 1.01 (0.30, 3.48) 

Current SERM vs Prior SERM 0.55 (0.15, 1.98) 0.56 (0.16, 2.00) 0.60 (0.17, 2.18) 

Prior AI and prior SERM vs Never 0.94 (0.33, 2.66) 0.97 (0.35, 2.70) 0.97 (0.35, 2.72) 
Model 1: current AI, current SERMs, prior AI, prior SERM 

Model 2: Model 1, age at diagnosis, BMI, race, smoking, alcohol 
Model 3: Model 2, diabetes history, hypertension history, postmenopausal status, breast cancer stage, chemotherapy, radiotherapy 
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4.5 DISCUSSION 

Our results suggest that, among HR+ BC patients, current SERM users may have lower 

risk of dyslipidemia/CHDs compared to never SERM users, while prior SERM usage and 

current/prior AI usage appear to not impact risk of dyslipidemia/CHD. Compared to current 

SERM usage, current AI usage had higher risk of dyslipidemia/CHD. The other comparisons 

between treatment groups showed similar risk of dyslipidemia/CHD. The benefit of current 

SERM usage was attenuated after adjusting for important demographic and clinical covariates. 

The results were not statistically significant due to few dyslipidemia/CHD events during the 

whole follow-up period.  

Previous studies have reported similar findings that better lipid profiles can be observed 

in current SERM users but not in current AI users. A systematic review indicated that lipid 

profiles were improved after initiating tamoxifen treatment, but AIs did not have consistent 

beneficial effect on lipids
210

. Several clinical trials also observed similar effects on lipids for 

tamoxifen, but not for AIs
197–199,204

. Regarding CHDs, the number of events in our study 

population was very low. A breast cancer preventive trial using tamoxifen showed that tamoxifen 

was not associated with CVD events within mean 49 months of follow-up
211

. Normally, 

tamoxifen and AIs are prescribed for 5 years to prevent recurrence of BC. Five years is generally 

not long enough to develop CHDs, especially in the younger population. The mean age of our 

patients was 62.17 years old, so few CHD events within 5 years of hormone treatment in such 

young age population were expected.  

The unique feature of our study is that we examined the risk of dyslipidemia/CHDs after 

discontinuing hormone treatment. Our results showed that the potential benefits of current 

SERM (mainly tamoxifen) usage on dyslipidemia/CHDs disappeared after discontinuing 
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treatment compared to non-hormone usage. Current AI users tended to have a higher risk of 

dyslipidemia/CHDs compared to current SERM users. The risk difference disappeared after 

discontinuing treatment. The function of tamoxifen to compete with estrogen for estrogen 

receptors is reversible. Estrogen regains its normal binding capacity to estrogen receptors (ERs) 

after tamoxifen is discontinued and metabolized
212

. AIs inhibit production of estrogen either 

reversibly (non-steroidal type) or irreversibly (steroidal type). Most AI users in our study took 

the non-steroidal type of AIs, so production of estrogen returned to its normal status after 

discontinuing AI treatment for most patients. Since our outcome was driven by dyslipidemia, 

which is reversible, it is possible that the protective effect of tamoxifen compared to no hormone 

treatment and the adverse effects of AIs compared to SERM on dyslipidemia were temporary.  

Our study has several strengths. First, we collected hormone treatment information 

throughout the whole follow-up period. Therefore, we were able to examine changes of the risk 

of dyslipidemia/CHDs with respect to transition of hormone treatment during the period. Second, 

our hormone treatment data were obtained by reviewing medical records, so we were able assess 

adherence of hormone treatment in our population.  

There are several limitations to our study. First, few cases of CHD developed in our 

population. We combined events of dyslipidemia and CHD as there were few CHD events. 

However, our data revealed that most patients with CHD also had dyslipidemia. Using 

dyslipidemia as a proxy may capture most CHD events. Second, we combined all AIs for 

intervention and all lipid profiles for the outcome in this study. Regarding dyslipidemia, our prior 

meta-analysis (Chapter 3) showed that individual AIs had different effect on different lipids 

during treatment, so the mixed effects of AIs may offset individual significant impacts on 

dyslipidemia. Third, quality of medical records is critical for accuracy of medication 
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information. Though we can better understand compliance of medication from the medical 

records, reviewing the records is very time-consuming, and health care provider notes may not 

be well organized potentially leading to misclassification. To minimize misclassification of 

hormone treatment, we verified consistency of EMR data with data from the Cancer Registry.  

In addition to the current cohort focusing on patients in Pittsburgh, our future efforts to 

expand our study cohort include using the whole UPMC service areas and acquiring the 

pharmacy claims to better ascertain information on hormone treatment. Our current population is 

relatively young, so few CHDs can be observed within a short follow-up period. Next, we would 

follow up the cohort longer to have enough statistical power in examining the effects of hormone 

treatment on CHDs. If enough events are available, we will specifically investigate effects of 

individual hormone drugs on CHD, and whether these effects may be mediated by poor lipid 

profiles.  
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5.0  CONCLUSIONS 

With the goal of performing a systematic review and NMA, we realized methods 

available were not adequate. The first paper proposed two adaptations to an existing BEST-ITP 

method: 1) adapt heterogeneous reporting to homogeneous reporting, and 2) expand arm based 

consistency models for use with longitudinal outcomes. The second paper utilized these methods 

for the systematic review/NMA where we characterized the longitudinal effect of two SERMs, 3 

AIs, and placebo on TC, LDL-C, HDL-C, and TG. The third paper used medical record data to 

investigate with long-term follow-up effects of SERMs and AIs on dyslipidemia and CHD of 

patients in a community setting.   

To apply NMA to longitudinal data, two objectives are including as many as studies as 

possible and testing the consistency assumption of NMA. We have to convert heterogeneous 

reporting formats to a homogeneous reporting format. We proposed methods converting values 

to changes from baseline at follow-up time points by using AR(1) covariance structure across 

time points and testing consistency of estimates from direct and indirect evidences by expanding 

the Arm Based consistency model proposed by Hong et al. To accommodate longitudinal 

repeated data a simulation successfully demonstrated efficiency of our proposed statistical 

methods. The small biases and MSEs implied that the estimated parameter values are close to the 

true values. The AB model can detect inconsistency of estimates when inconsistent parameter 

values were introduced to the simulation data. The power to detect inconsistency improved as the 
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magnitude of inconsistency increased. However, assuming an AR(1) model for the correlated 

follow-up data is a simplistic assumption that may not completely reflect the relationship of the 

baseline and all the follow-up data. This assumption is needed for NMA with a smaller number 

of included studies. Future studies exploring the data structure by assuming unstructured 

relationship could be conducted to examine robustness of AR(1) and unstructured model. Our 

proposed methods allow researchers to include more studies with longitudinal data in the meta-

analyses and verify application of NMA to longitudinal data by being able to examine the 

consistency assumption.       

The second project aimed to apply what we proposed in the first project and the Bayesian 

NMA proposed by Ding to examine the impact of BC hormone drugs on changes of lipid 

profiles. We identified eligible published articles from PubMed and EMBASE using pre-

determined selection criteria. The randomized clinical trials reporting lipid data in all 

intervention arms were included in this project. The results revealed different effects of 2 

SERMs and 3 AIs and placebo on changes of lipids during hormone treatment. SERMs, 

especially toremifene, improved most lipids while most AIs did not significantly impact lipids. 

SERMs performed better than AIs. Our results were compatible with the prior meta-analysis that 

showed the higher odds of CVDs for patients taking AIs compared to those taking tamoxifen. 

Furthermore, we were able to compare individual hormone drugs to each other and identify the 

specific drugs that deteriorated lipids. However, our meta-analysis included only 17 studies and 

some of them had very few participants. Therefore, the estimates derived from the NMA model 

had large variances which are more prominent when testing consistency of the estimates from 

direct and indirect evidence. The sample sizes from either direct or indirect evidence became 

smaller than those from combined evidences, so the variances of the estimates from separated 
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evidences were even larger than the combined evidence. Therefore, we were less likely to reject 

the null hypothesis that the estimates from direct and indirect evidences are the same. Our future 

effort will include more studies to increase the statistical power of the analysis. This project 

successfully compared all BC hormone drugs in one study and showed that SERMs are 

beneficial to most lipids and AIs do not significantly deteriorate lipid profiles.  

To expand the results from the NMA which focused on clinical trials, the third project 

investigated effects of BC hormone drugs throughout the whole course of BC treatment, 

including on and off hormone treatment, in a hospital cohort using electronic medical records. 

Two honest brokers extract data from Cancer Registry and e-MARs within the coverage of 

UPMC. We used time-dependent Cox proportional hazards model to handle transition of 

hormone treatment during follow-up periods. Our cohort study showed that current SERM usage 

tended to reduce the risk of the outcomes, dyslipidemia and CHD when compared to never 

SERM usage. Compared to current SERM usage, current AI usage increased the risk of the 

outcome events. However, the trends disappeared after discontinuing hormone treatment. We do 

not have enough statistical power because of few events; however, our results suggest an effect 

of current hormone treatment on the outcome events, which was not observed for prior hormone 

usage. Our cohort also showed that the major outcome event was dyslipidemia and most CHDs 

were accompanied by dyslipidemia. We will expand our study population by including more 

hospitals within UPMC service areas and expect to observe more events and gain statistical 

power of the estimates. Using the longitudinal EMRs and the time-dependent Cox proportional 

model, we can investigate changes of the BC hormone drug effects during on and off treatment 

in this project. The results showed that the protective effect of SERMs on dyslipidemia/CHD 

events may be temporary, which disappear when discontinuing SERMs.   
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This dissertation project successfully showed efficiency of the proposed statistical 

methods for the Bayesian NMA using longitudinal data, and the potential protective effects of 

SERMs on lipid profiles and events of dyslipidemia/CHD compared to AIs during hormone 

treatment. Individual AI may deteriorate lipids, especially HDL-C. Though we do not have 

enough power to ascertain our findings, we revealed the trend that current AI usage is related to 

dyslipidemia compared to current SERM usage, which was not observed in prior usage. 

Therefore, we should mainly focus on adverse effects of hormone drugs during treatment. We 

revealed deterioration of lipids for some AIs in NMA but did not find significant adverse effects 

of AIs on dyslipidemia and CHDs in the cohort study. The contrasting results may be related to 

the different methods of categorizing treatment between the two studies. We tested individual 

AIs in the NMA, but combined them together in the cohort study. Therefore, the adverse effects 

of the specific AIs, accounting for a small proportion of AI usage, may be offset by the 

beneficial effects of the other AIs. After including more participants and potential events in 

future studies, we can specifically test individual hormone treatment and their usage across time 

on individual lipids and subsequent CHDs.   

The work in this project adds value and innovation to the literature. First, we developed 

methods to unify reporting formats of longitudinal data, so more studies can be included in the 

Bayesian NMA. Second, expanding arm-based models to examine consistency of estimates from 

direct and indirect evidence for longitudinal data validates the consistent assumption of Bayesian 

NMA. We confirmed that BEST-ITP, a Bayesian NMA focusing on longitudinal drug effects, is 

applicable for clinical applications. Third, we revealed effects of individual BC hormone drugs 

on changes of lipid profiles, which have not been investigated before, so the clinicians can 

provide a better care for the BC patients who already have higher risk of dyslipidemia/CVD 
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when prescribing BC hormone drugs. Fourth, the study in community practice setting is the first 

one to investigate the effects of the “prior use” of BC hormone drugs on risk of 

dyslipidemia/CHD.     
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5.1 PUBLIC HEALTH SIGNIFICANCE 

 

This dissertation demonstrated methods to convert heterogeneous reporting formats into a 

homogeneous format and to examine the consistency assumption of NMA for longitudinal data. 

After this dissertation, studies that use different reporting formats can be used in NMA to 

compare effects of more than two therapeutic options. The consistency test validates the results 

from NMAs using longitudinal data. The work on breast cancer hormone treatment showed 

protective effects of SERMs and diverse effects of AIs on lipid profiles and subsequent CHDs 

during the therapeutic period. The results encourage carefully monitoring lipids, which are 

associated with subsequent CHD events, during hormone treatment, especially for patients with 

risk of dyslipidemia on some types of AIs.     
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APPENDIX: SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Table S 1. Literatures search criteria for PubMed 

Breast Neoplasms [MeSH][Text Word] Randomized Controlled Trials [MeSH][ Publication 

Type] 

Breast Cancer [Text Word] Clinical Trials [MeSH][Publication Type][Text 

Word] 

Breast Malignancy [Text Word] Controlled Clinical Trial [Publication Type] 

Breast Tumor [Text Word] Evaluation Studies [Publication Type] 

Lipids [MeSH] [Text Word] Double-Blind Method [MeSH][Text Word] 

Cholesterol [MeSH] [Text Word] Single-Blind Method [MeSH][Text Word] 

Lipoprotein [MeSH] [Text Word] Comparative Study [Publication Type][Text Word] 

Cholesterol, HDL [MeSH] [Text Word] Placebos [MeSH][Text Word] 

Cholesterol, LDL [MeSH] [Text Word] Tamoxifen [MeSH][Text Word] 

Lipoproteins, HDL [MeSH] [Text 

Word] 

Soltamox [MeSH][Text Word] 

Lipoproteins, LDL [MeSH] [Text Word] Nolvadex [MeSH][Text Word] 

Triglycerides [MeSH] [Text Word] Toremifene [MeSH][Text Word] 

Hypercholesterolemia [MeSH] [Text 

Word] 

Fareston [MeSH][Text Word] 

Hyperlipidemia [MeSH] [Text Word] Aromatase Inhibitors [MeSH][Text Word] 

Dyslipidemia [MeSH] [Text Word] Anastrozole [MeSH][Text Word] 

Cardiovascular Diseases [MeSH]  Arimidex [MeSH][Text Word] 

Myocardial Ischemia [MeSH]  Letrozole [MeSH][Text Word] 

Coronary Artery Disease [MeSH]  Femara [MeSH][Text Word] 

Coronary Disease [MeSH] Exemestane [MeSH][Text Word] 

Coronary Vessels [MeSH]  Aromasin [MeSH][Text Word] 

Angina Pectoris [MeSH]  

Postmenopause [MeSH][Text Word] 
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Table S 2. Literature search criteria for Embase 

Breast Cancer /exp Randomized Controlled Trial /exp 

Breast Neoplasms /exp Randomized Controlled Trial (Topic) /exp 

Breast Malignancy /exp Clinical Trial /exp 

Breast Carcinoma /exp Controlled Clinical Trial /exp 

Cholesterol /exp Controlled Clinical Trial (Topic) /exp 

Lipid /exp Double Blind Procedure /exp 

HDL Cholesterol /exp Single Blind Procedure /exp 

LDL Cholesterol /exp Comparative Studies /exp 

Triglycerides /exp Evaluation Study /exp 

Hypercholesterolemia /exp Placebo /exp 

Hyperlipidemia /exp Tamoxifen /exp 

Dyslipidemia /exp Soltamox /exp 

Cardiovascular Disease /exp Nolvadex /exp 

Ischemic Heart Disease /exp Toremifene /exp 

Coronary Heart Disease /exp Fareston /exp 

Coronary Artery /exp Aromatase Inhibitors /exp 

Myocardial Infarction /exp Anastrozole /exp 

Angina /exp Arimidex /exp 

Postmenopause /exp Letrozole /exp 

Femara /exp 

Exemestane /exp 

Aromasin /exp 
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 Table S 3. Summary of the reported outcomes of the selected articles  

Supplement Table 3. Summary of the reported outcomes of the selected articles 
 
 

Author (Year) 

Level of Evidence/ 
Study Design/Participants/ 

Inclusion Criteria 

 

Intervention and 

Control for analysis 

 
 

Outcome Measures 

 
 

Results 

Love RR, et al. 

(1990)
187

 

Level 2 

Subcohort of RCT 

N=140 (Tamoxifen (n=70) vs. Placebo (n=70)) 

 

Inclusion: postmenopausal operable breast 

cancer patients without evidence of disease, 

tumor size <5cm. 

Tamoxifen (n=70) vs. 

Placebo (n=70) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mmol/L): 

change from baseline (Mean±SE) 

Tamoxifen:  

Baseline          5.619±0.794 

3 months         -0.683±0.077*# 

6 months         -0.652±0.076*# 

12 months       -6.676±0.081*# 

Placebo: 

Baseline          5.950±0.918 

3 months         0.052±0.074# 

6 months         -0.016±0.091# 

12 months       -0.0596±0.068# 

 

HDL-C (mmol/L): 

Tamoxifen 

Baseline          1.481±0.382 

3 months         -0.069±0.29* 

6 months         -0.028±0.027 

12 months       -0.099±0.022*# 

Placebo: 

Baseline          1.528±0.348 

3 months         -0.014±0.023 

6 months         0.015±0.025 

12 months       0.010±0.028# 

 

LDL-C (mmol/L): 

Tamoxifen 

Baseline          3.904±0.820 

3 months         -0.666±0.065*# 

6 months         -0.664±0.064*# 

12 months       -0.626±0.074*# 
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    Placebo 

Baseline          4.195±0.932 

3 months         0.056±0.070# 

6 months         -0.050±0.082# 

12 months       -0.052±0.062# 

 

Triglyceride (mmol/L): 

Tamoxifen      

Baseline        1.174±0.491 

3 months       0.258±0.082*# 

6 months       0.206±0.064* 

12 months     0.246±0.066*# 

Placebo          

Baseline        1.134±0.481 

3 months       0.046±0.050# 

6 months       0.089±0.056 

12 months     0.018±0.055# 

 

Love RR, et al. 

(1991)
188

  

Level 2 

Subcohort of RCT 

N=140 (Tamoxifen (n=70) vs. Placebo (n=70)) 

 

Inclusion: postmenopausal operable breast 

cancer patients without evidence of disease, 

tumor size <5cm. 

Tamoxifen (n=64) vs. 

Placebo (n=62) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mmol/L): 

change from baseline (Mean±SE) 

Tamoxifen:  

Baseline          5.619±0.794 

18 months       -0.747±0.164*#     

24 months       -0.672±0.167*# 

Placebo: 

Baseline          5.950±0.918   

18 months       -0.092±0.175#   

24 months       -0.140±0.154# 

 

HDL-C (mmol/L): 

Tamoxifen 

Baseline          1.481±0.382 

18 months        -0.106±0.056*  

24 months        -0.093±0.055*  

Placebo: 

Baseline          1.528±0.348 

18 months       -0.077±0.059*   

24 months       -0.117±0.057*   
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LDL-C (mmol/L): 

Tamoxifen 

Baseline          3.904±0.820 

18 months       -0.737±0.135*#   

24 months       -0.725±0.143*#   

Placebo 

Baseline          4.195±0.932 

18  months      -0.058±0.148    

24 months       -0.017±0.141   

 

Triglyceride (mmol/L): 

Tamoxifen      

Baseline        1.174±0.491 

18 months     0.207±0.121*   

24 months     0.319±0.139*#   

Placebo          

Baseline        1.134±0.481 

18 months     0.093±0.144   

24 months     -0.012±0.116# 

 

Love RR, et al. 

(1994)
189

  

Level 2 

Subcohort of a RCT  

N=140 (Tamoxifen (n=70) vs. Placebo (n=70)) 

 

Inclusion: postmenopausal operable breast 

cancer patients without evidence of disease, 

tumor size <5cm. No lipid-lowering medication 

was taken in this cohort. 

Tamoxifen (n=30) vs. 

Placebo (n=32) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mmol/L): 
change from baseline 

Tamoxifen:  

Baseline          5.62±0.10 

60 months       -0.73±0.13*#   

Placebo: 

Baseline          5.95±0.11   

60 months       -0.12±0.10# 

 

HDL-C (mmol/L): 

Tamoxifen 

Baseline          1.48±0.05 

60 months        -0.17±0.04*  

Placebo: 

Baseline          1.48±0.05 

60 months       -0.19±0.06*   
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    LDL-C (mmol/L): 

Tamoxifen 

Baseline          3.90±0.09 

60 months       -0.80±0.12*#  

Placebo 

Baseline          4.20±0.11 

60 months       -0.06±0.10#   

 

Triglyceride (mmol/L): 

Tamoxifen      

Baseline        1.17±0.06 

60 months     0.52±0.11*   

Placebo          

Baseline        1.13±0.06 

60 months     0.27±0.11* 

 

Gylling H, et 

al. (1995)
190

 

Level 2 

Subcohort of a randomized trial (subjects with 

lipid data were included) 

N=48 (Tamoxifen (n=24) vs. Toremifene 

(n=24)) 

 

Inclusion: postmenopausal breast cancer patients 

without residual cancer, systemic disease, 

hypercholesterolemic drugs.  

Tamoxifen (n=10) vs. 

Toremifene (n=14) 

Total Cholesterol  

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mmol/L) 

Tamoxifen: 

Baseline      5.2±0.4 

2 months     4.8±0.2 

6 months     4.8±0.3 

12 months   4.7±0.3* 

Toremifene: 

Baseline      5.8±0.3 

2 months     5.4±0.3 

6 months     5.4±0.3 

12 months   5.1±0.3* 

HDL-C (mmol/L) 

Tamoxifen: 

Baseline      1.1±0.1 

2 months     1.2±0.1 

6 months     1.2±0.1 

12 months   1.2±0.1  

Toremifene: 

Baseline      1.3±0.1 

2 months     1.3±0.1 

6 months     1.3±0.1 

12 months   1.2±0.1  
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    LDL-C (mmol/L) 

Tamoxifen: 

Baseline      3.3±0.3 

2 months     2.7±0.2 

6 months     2.7±0.2* 

12 months   2.7±0.3*  

Toremifene: 

Baseline      3.5±0.3 

2 months     3.3±0.3 

6 months     3.3±0.3 

12 months   3.0±0.3*  

Triglyceride (mmol/L) 

Tamoxifen: 

Baseline      1.8±0.3 

2 months     1.9±0.3 

6 months     1.8±0.2 

12 months   1.9±0.3  

Toremifene: 

Baseline      1.9±0.3 

2 months     2.1±0.4 

6 months     1.9±0.3 

12 months   1.8±0.2  

 

Saarto T, 

Blomqvist C, 

Ehnholm C, et 

al. (1996)
191

 

Level 1 

RCT 

N= 49 (Tamoxifen (n=26) vs. Toremifene 

(n=23)) 

 

 

Inclusion: less than 75 y/o postmenopausal node-

positive breast cancer patients with appropriate 

performance status and without recurrence within 

6 months 

Tamoxifen (n=26) vs. 

Toremifene (n=23) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mmol/L) 

Tamoxifen: 

Baseline      6.16±1.03 

12 months   5.46±0.91* 

Toremifene: 

Baseline      5.88±1.16 

12 months   5.26±1.06* 

 

HDL-C (mmol/L) 

Tamoxifen: 

Baseline      1.63±0.40 

12 months   1.55±0.34# 

Toremifene: 

Baseline      1.36±0.33 

12 months   1.55±0.45*# 
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LDL-C (mmol/L) 

Tamoxifen: 

Baseline      4.01±0.91 

12 months   3.17±0.95* 

Toremifene: 

Baseline      3.74±1.03 

12 months   3.01±1.06* 

 

Triglyceride (mmol/L) 

Tamoxifen: 

Baseline      1.02±0.47 

12 months   1.31±0.86* 

Toremifene: 

Baseline      1.08±0.90 

12 months   1.04±1.02 

 

Kusama M, 

Miyauchi K, 

Aoyama H, et 

al. (2004)
192

 

Level 1  

RCT 

 

N= 73 (Toremifene (n=37) vs. Tamoxifen 

(n=36)) 

 

 

Inclusion: postmenopausal breast cancer patients 

with appropriate performance status without 

evidence of metastasis. 

Toremifene (n=34) vs. 

Tamoxifen (n=31) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mg/dL) 

Tamoxifen:  

Baseline      211.4 

3 months     189.3* 

6 months     182.6* 

12 months   184.4* 

 

Toremifene: 

Baseline      214.7 

3 months     200.5* 

6 months     198.9* 

12 months   201.8* 

 

HDL-C (mg/dL) 

Tamoxifen: 

Baseline      57.8 

3 months     59.5 

6 months     56.9 

12 months   58.6# 
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    Toremifene: 

Baseline      54.7 

3 months     64.2* 

6 months     63.9* 

12 months   68.1*# 

        

LDL-C (mg/dL) 

Tamoxifen: 

Baseline      125.7 

3 months     106.4* 

6 months     102.9* 

12 months   106.4* 

 

Toremifene: 

Baseline      126.2 

3 months     113.1* 

6 months     113.3* 

12 months   115.8* 

 

Triglyceride (mg/dL) 

Tamoxifen: 

Baseline      127.4 

3 months     134.1 

6 months     146.6 

12 months   150.8*# 

 

Toremifene: 

Baseline      152.4 

3 months     128.0 

6 months     132.2 

12 months   115.9*# 
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Markopoulos 

C, Polychronis 

A, Zobolas V, 

et al. (2005)
193

 

Level 2  

Subcohort of a randomized trial (subjects with 

lipid data were included) 

 

N=176 (Exemestane (n=90) vs. Tamoxifen 

(n=86)) 

 

Inclusion: postmenopausal early breast cancer 

patients without residual cancer. 

Exemestane (n=90) vs. 

Tamoxifen (n=86) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mg/dL) 

Exemestane:  

Baseline      222 

3 months     230 

6 months     232.5§ 

9 months     227 

12 months   223§ ¶ 

 

Tamoxifen: 

Baseline      219.5 

3 months     228.5 

6 months     214.5§ 

9 months     209 

12 months   199§ ¶ 

 

HDL-C (mg/dL) 

Exemestane: 

Baseline      52 

3 months     50 

6 months     50§ 

9 months     49 

12 months   53 

 

Tamoxifen: 

Baseline      59.7 

3 months     57 

6 months     57§ 

9 months     54 

12 months   59 

        

LDL-C (mg/dL) 

Exemestane: 

Baseline      137 

3 months     152§ ¶ 

6 months     148.5§ ¶ 

9 months     146 

12 months   147  
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    Tamoxifen: 

Baseline      140 

3 months     137.5§ ¶ 

6 months     139§ ¶ 

9 months     131 

12 months   124 

 

Triglyceride (mg/dL) 

Exemestane: 

Baseline      128.5 

3 months     114¶ 

6 months     115¶ 

9 months     111.5¶ 

12 months   132.5 

 

Tamoxifen: 

Baseline      109 

3 months     142¶ 

6 months     123¶ 

9 months     140¶ 

12 months   99     
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Sawada S, 

Sato, K, 

Kusuhara M, et 

al. (2005)
194

 

Level 1  

RCT 

 

N= 49 (Tamoxifen (n=25) vs. Anastrozole 

(n=24)) 

 

Inclusion: postmenopausal breast cancer patients 

with appropriate performance status without 

evidence of metastasis, chemotherapy, 

radiotherapy, lipid medication. 

(Tamoxifen (n=22) vs. 

Anastrozole (n=22) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Changes of  lipid profiles 

(baseline to 3 months) 

Median (IQ range) 

Cholesterol (mg/dL) 

Tamoxifen   -34.5 (-50.0~-15.0)* 

Anastrozole  4.0 (-9.0~17.0) 

 

HDL-C (mg/dL) 

Tamoxifen   0.5 (-2.5~6.8) 

Anastrozole 6.0 (3.3~11.9)* 

 

LDL-C (mg/dL) 

Tamoxifen   -35.5 (-44.0~-25.0)* 

Anastrozole -3.5 (-23.0~8.0) 

 

Triglyceride (mg/dL) 

Tamoxifen   26.0 (0.0~44.0)* 

Anastrozole -27.0 (-44.0~-9.0)* 
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Wasan KM, 

Goss PE, 

Pritchard PH, 

et al. (2005)
195

 

Level 2  

Subcohort of a randomized trial (subjects with 

lipid data were included) 

 

N=347 (Letrozole (n=183) vs. Placebo (n=164)) 

 

Inclusion: postmenopausal early breast cancer 

patients without residual cancer, hyperlipidemia, 

and lipid drugs. 

Letrozole (n=183) vs. 

Placebo (n=164) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Percentage changes of  lipid 

profiles (vs. baseline) 

Total Cholesterol (mmol/l) 

Letrozole    

6 months          13.58±12.51 

12 months        14.55±14.95 

24 months        13.35±14.70 

36 months        40.53±16.39 

 

Placebo 

6 months          12.49±14.06 

12 months        11.15±15.57 

24 months        10.19±18.37 

36 months        8.36±24.50 

 

HDL-C (mmol/l) 

Letrozole 

6 months          1.46±15.47# 

12 months        3.07±16.41 

24 months        1.22±18.70 

36 months        2.08±23.43 

 

Placebo 

6 months          4.31±13.41# 

12 months        3.21±17.01 

24 months        6.53±29.54 

36 months        12.90±43.02 

 

LDL-C (mmol/l) 

Letrozole 

6 months          25.40±23.65 

12 months        27.65±27.35# 

24 months        23.07±27.39 

36 months        20.72±25.98 

 

Placebo 

6 months          23.40±25.13 

12 months        21.49±29.82# 
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    24 months        22.03±32.94 

36 months        18.19±43.56 

 

Triglyceride (mmol/l) 

Letrozole 

6 months          5.13±43.49 

12 months        3.52±41.00 

24 months        11.87±44.25# 

36 months        8.44±46.95 

 

Placebo 

6 months          1.87±45.58 

12 months        6.40±71.25 

24 months        -1.33±42.19# 

36 months        3.11±35.84 

Lønning PE, 

Geisler J, Krag 

LE, et al. 

(2005)
196

 

Level 1  

RCT 

 

N=147 (Exemestane (n=73) vs. Placebo (n=74)) 

 

Inclusion: postmenopausal early breast cancer 

patients without residual cancer, hyperlipidemia, 

and lipid drugs. 

Exemestane (n=64) vs. 

Placebo (n=62) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Percentage changes of  lipid 

profiles (vs. baseline) 

Mean (95% CI) 

Total Cholesterol (mg/dL) 

Placebo  

6 months          0 (-3~-2) 

12 months        -4 (-6~-1) 

24 months        -5 (-7~-2) 

 

Exemestane 

6 months          -3 (-6~-1) 

12 months        -4 (-6~-2) 

24 months        -6 (-9~-4) 

 

HDL-C (mmol/l) 

Placebo 

6 months          1 (-2~5)# 

12 months        1 (-2~5)# 

24 months        2 (-2~6)# 

 

Exemestane 

6 months          -7 (-10~-3)# 

12 months        -6 (-10~-2)# 
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    24 months        -9 (-13~-5)# 

 

LDL-C (mmol/l) 

Placebo 

6 months          -2 (-6~1) 

12 months        -5 (-8~-1) 

24 months        -6 (-10~-3) 

 

Exemestane 

6 months          -3 (-6~0) 

12 months        -3 (-6~1) 

24 months        -6 (-10~-3) 

                       E vs. P  p<0.05 

 

Triglyceride (mg/dL) 

Placebo 

6 months          7 (-2~15) 

12 months        1 (-7~8) 

24 months        -3 (-13~6) 

 

Exemestane 

6 months          2 (-6~10) 

12 months        -4 (-12~4) 

24 months        1 (-9~10) 
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Markopoulos 

C, Chrissochou 

M, Michailidou 

A, et al. 

(2005)
197

 

Level 2  

Subcohort of a randomized trial (subjects with 

lipid data were included) 

 

N=340 (Exemestane (n=172) vs. Placebo 

(n=168)) 

 

Inclusion: postmenopausal early breast cancer 

patients without residual cancer, hyperlipidemia, 

and lipid drugs. 

Letrozole (n=172) vs. 

Placebo (n=168) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Percentage changes of  lipid 

profiles (vs. baseline) 

Total Cholesterol (mg/dL) 

Exemestane  

6 months          6.2* 

12 months        8.9* 

 

Placebo 

6 months          8.0* 

12 months        9.2* 

 

HDL-C (mmol/l) 

Exemestane 

6 months          -0.9 

12 months        2.6 

 

Placebo 

6 months          6.4 

12 months        9.7 

 

LDL-C (mmol/l) 

Exemestane 

6 months          11.1* 

12 months        10.3* 

 

Placebo 

6 months          11.2* 

12 months        9.7* 

 

Triglyceride (mmol/l) 

Exemestane 

6 months         -20.6   

12 months       -20.1*   

 

Placebo 

6 months          -8.9* 

12 months        -14.7* 
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Francini G, 

Petrioli R, 

Montagnani A, 

et al. (2006)
198

 

Level 1  

RCT 

 

N= 55 (Tamoxifen Exemestane (n=28) vs. 

Tamoxifen (n=27)) 

 

 

Inclusion: Prior TAM for 2 years of 

postmenopausal breast cancer patients with 

appropriate performance status without evidence 

of metastasis. 

Tamoxifen Exemestane 

(n=28) vs. Tamoxifen 

(n=27) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Total Cholesterol (mg/dl 

mean±SD) 

TAM Exemestane: 

Baseline       215.12±10.01 

6 months      216.23±10.44 

12 months    215.32±11.21 

 

Tamoxifen:  

Baseline       215.68±9.31 

6 months      224.27±13.33 

12 months    224.17±12.83 

 

 

 HDL-C (mg/dl mean±SD) 

TAM Exemestane: 

Baseline       58.62±6.17 

6 months      58.22±8.77 

12 months    57.98±8.01 

 

Tamoxifen:  

Baseline       58.07±6.40 

6 months      53.41±8.10 

12 months    51.20±8.08* 

 

 LDL-C (mg/dl mean±SD) 

TAM Exemestane: 

Baseline       131.15±14.51 

6 months      133.56±19.10 

12 months    132.31±19.24 

 

Tamoxifen:  

Baseline       130.91±15.10 

6 months      149.8±17.18* 

12 months    152.81±18.12*# 

 

 Triglyceride (mg/dl mean±SD) 

TAM Exemestane: 

Baseline       124.87±46.1 
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    6 months      119.30±47.81 

12 months    127.63±40.60 

 

Tamoxifen:  

Baseline       124.11±58.27 

6 months      107.21±64.30* 

12 months    101.04±43.65* 

Montagnani A, 

Gonnelli S, 

Cadirni A, et 

al. (2008)
199

 

Level 1 

RCT 

 

N=68 (TAM Exemestane (N=33) vs. TAM 

(N=35)) 

 

Inclusion:  

TAM Exemestane 

(N=33) vs. TAM (N=35) 

Total Cholesterol 

LDL-C 

HDL-C 

Triglyceride 

Change of lipid profiles (%) 

LDL-C 

TAM E 

12 months         16.5*# 

24 months         10.1*# 

TAM 

12 months         -1.1# 

24 months         -0.5# 

  

HDL-C 

TAM E 

12 months         -12.7*# 

24 months         -15.2*# 

TAM 

12 months         -2.1# 

24 months         2.4# 

 

Triglyceride 

TAM E 

12 months         -16.9*# 

24 months         -18.1*# 

TAM 

12 months         2.5# 

24 months         4.1# 
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Markopoulos 

C, Dafni U, 

Misitzis J, et al. 

(2009)
200

 

Level 2  

Subcohort of a randomized trial (subjects with 

lipid data were included) 

 

N=411 (Exemestane (N=211) vs. Observation 

(N=200)) 

 

Inclusion: 5-year TAM treated postmenopausal 

BC patients without metastasis and recurrence 

Exemestane (N=211) vs. 

Observation (N=200) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Change values of lipid profiles  

Total Cholesterol (mg/dl) 

Exemestane 

6 months        11.5±5.6* 

12 months      14.4±5* 

18 months      15.3±7* 

24 months      8.9±7.4 

Observation 

6 months        16.8±4.7* 

12 months      21.6±4.1* 

18 months      24±5.3* 

24 months      17±6* 

 

HDL-C 

Exemestane 

6 months        -4.3±1.8* 

12 months      -3±2.3 

18 months      -6.5±2.6* 

24 months      -8.3±2.1* 

Observation 

6 months        2.2±1.5 

12 months      1.7±1.4 

18 months      1.5±1.2 

24 months      1.1±1.9 

 

LDL-C 

Exemestane 

6 months        24.3±6.3* 

12 months      20.1±6.3* 

18 months      22.7±9.5* 

24 months      32.1±8.1* 

Observation 

6 months        19.8±5.7* 

12 months      22.3±4.9* 

18 months      30.4±6.2* 

24 months      23±8.4* 
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    Triglyceride 

Exemestane 

6 months        -24.1±7.8* 

12 months      -32.2±7.6* 

18 months      -26.8±9.3* 

24 months      -20.7±9.6* 

Observation 

6 months        -13.7±6.1* 

12 months      -17.6±7.6* 

18 months      -9.4±7.2 

24 months      -19.8±9* 

 

Markopoulos 

C, Polychronis 

A, Dafni U, et 

al. (2009)
201

  

Level 2  

Subcohort of a randomized trial (subjects with 

lipid data were included) 

 

N=211 (Exemestane (N=110) vs. Tamoxifen 

(N=101)) 

 

Inclusion: 5-year TAM treated postmenopausal 

BC patients without metastasis and recurrence 

Exemestane (N=110) vs. 

Tamoxifen (N=101) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Change values of lipid profiles  

Total Cholesterol (mg/dl) 

Exemestane 

12 months      -13.1±5.6* 

18 months      -10.2±7.1 

24 months      -8.3±7.2 

Tamoxifen 

12 months      -28.9±4.8* 

18 months      -19.0±7.3* 

24 months      -29.3±6.3* 

 

HDL-C 

Exemestane 

12 months      -2.7±2.2 

18 months      -5.3±2.5* 

24 months      -3.0±2.7 

Tamoxifen 

12 months      0.9±2.0 

18 months      0.7±1.7 

24 months      0.8±2.6 

 

LDL-C 

Exemestane 

12 months      -7.7±5.4 

18 months      -7.5±6.8 

24 months      -2.3±5.1 
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Table S 3. (cont.) 

    Tamoxifen 

12 months        -21.1±6.5* 

18 months      -24.6±7.1* 

24 months      -28.4±8.0* 

 

Triglyceride 

Exemestane 

12 months      -9.0±11.2 

18 months      2.9±10.2 

24 months      -21.6±13.3 

Tamoxifen 

12 months      13.4±9.2 

18 months      -9.9±16.3 

24 months      22.0±10.4* 

Anan K, 

Mitsuyama S, 

Yanagita Y, et 

al. (2011)
202

 

Level 1 

RCT 

 

N=69 (Toremifene (N=36) vs. Anastrozole 

(N=33)) 

 

Inclusion: Postmenopausal BC patients having 

appropriate organ function without residual 

tumor 

 

Toremifene (N=32) vs. 

Anastrozole (N=29) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Change percentage of lipid  

Total Cholesterol mean(95% 

CI) 

Toremifene 

6 months      -6.2 (-10.4~-2.1)* 

12 months    -8.3 (-11.7~-4.8)* 

24 months    -7.2 (-11.2~-3.1)* 

Anastrozole 

6 months       0.1 (-5.3~5.6) 

12 months     1.7 (-2.7~6.6) 

24 months     -1.2 (-8.5~6.0) 

 

HDL-C 

Toremifene 

6 months      17.1 (8.5~25.6)* 

12 months    17.0 (6.8~27.3)* 

24 months    22.0 (9.5~34.5)* 

Anastrozole 

6 months      0..8 (-4.1~5.8) 

12 months    3.2 (-1.1~7.5) 

24 months    2.7 (-3.4~8.9) 
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Table S 3. (cont.) 

    LDL-C 

Toremifene 

6 months      -12.9 (-19.7~-6.2)* 

12 months    -10.2 (-14.7~-5.7)* 

24 months    -11.3 (-17.8~-4.8)* 

Anastrozole 

6 months      1.4 (-6.7~9.6) 

12 months    2.8 (-5.0~10.7) 

24 months    -1.8 (-13.2~9.4) 

 

Triglyceride 

Toremifene 

6 months      10.2 (-11.9~32.4) 

12 months    -8.6 (-21.5~4.3) 

24 months    -12.3 (-28.7~4.0) 

Anastrozole 

6 months      11.1 (-11.4~33.7) 

12 months    6.3 (-16.4~29.0)  

24 months    24.9 (-9.8~59.6) 
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Table S 3. (cont.) 

Bell LN, 

Nguyen ATP, 

Li L, et al. 

(2012)
203

 

Level 1  

RCT 

 

N=246 (Exemestane (N=117) vs. Letrozole 

(N=129)) 

 

Inclusion: Postmenopausal BC patients without 

residual tumor 

Exemestane (N=117) vs. 

Letrozole (N=129) 

Total Cholesterol 

HDL-C 

LDL-C 

Triglyceride 

Change values of lipid  

Total Cholesterol mean±SD 

Exemestane 

3 months      -8±28* 

Letrozole 

3 months       8±24* 

 

HDL-C 

Exemestane 

3 months      -8±9* 

Letrozole 

3 months       -1±9 

 

LDL-C 

Exemestane 

3 months      2±27 

Letrozole 

3 months       7±25* 

 

Triglyceride 

Exemestane 

3 months      -12±42* 

Letrozole 

3 months       0.4±43 

 

Note.  

RCT = randomized clinical ; HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol 

* p<0.05 (vs. baseline); # p<0.05 between groups;  

¶ p<0.05 (E vs. T for percentage changes from baseline);  

§ p<0.05 (E vs. T for absolute values) 

 

 

; 

. 
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Table S 4.Quality and bias assessment
175

 

Authors 

Sequence 

generation 

Allocation 

concealment 

Blinding of 

participants 

personnel and 

outcome 

assessors 

Incomplete outcome 

data 

Selective outcome 

report 

Other 

potential bias 

Love R, et al.
175-177

  ? ? + + + + 

Gylling H, et al.
178 

? ? + + + - 

Saarto T, et al.
179 

? ? ? + + + 

Kusama M, et al.
180 

+ ? + - + ? 

Markopoulos C, et al.
181,189 

+ + + + + + 

Sawada S, et al.
182

  ? ? + + + + 

Wasan KM, et al.
183

  + ? + + + + 

Lønning PE, et al.
184 

+ ? + + + + 

Markopoulos C, et al.
185,188 

? ? + ? + + 

Francini G et al.
186 

+ ? + + + ? 

Montagnani A, et al.
187 

? ? + + + + 

Anan K, et al.
190 

+ ? + ? + + 

Bell LN, et al.
191 

? ? + + + + 

+: the criteria are fulfilled; -: the criteria are not fulfilled; ?: cannot be determined 
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Table S 5. Characteristics of population in selected trials 

Article Medication Prior 

TAM 

TAM 

duration 

Number 

of  

Subject 

Mean 

Age 

Mean 

weight 

(kg) 

Mean 

Height 

(cm) 

Mean 

BMI 

Overall 

follow/up 

year 

Number 

of C/T 

Number 

of R/T 

Baseline 

TC HDL-C LDL-C TG 

Love RR, et 

al.187–189  

TAM N 0 70 57.6 - - 26.2 5 - 12 217.3 57.3 151.0 104.0 

Placebo N 0 70 57.8 - - 27.6 5 - 17 230.1 59.1 162.2 100.4 

Gylling H, et 

al.190 

TAM N 0 24 60.0 66.2 161 25.6 1 - - 201.1 42.5 127.6 159.4 

Toremifene N 0 24 60.0 66.2 161 25.6 1 - - 224.3 50.3 135.3 168.3 

Saarto T, et 

al.191 

TAM N 0 26 60.0 68.0 163 25.6 1 - - 238.2 63.0 155.1 90.3 

Toremifene N 0 23 63.0 75.0 163 28.2 1 - - 227.4 52.6 144.6 95.7 

Kusama M, 

et al.192  

TAM N 0 36 63.0 55.0 154 22.7 1 0 0 211.4 57.8 125.7 127.4 

Toremifene N 0 37 64.0 54.7 151 23.3 1 0 0 214.7 54.7 126.2 152.4 

Markopoulos 

C, et al. 181,189 
Exemestane N 0 90 65.0 74.4 - - 1 41 46 222.0 52.0 137.0 128.5 

TAM N 0 86 63.0 73.5 - - 1 41 42 219.5 59.7 140.0 109.0 

Sawada S, et 

al.182  

TAM N 0 25 59.3 54.7 153 23.4 0.25 - - 217.0 61.0 132.0 129.0 

Anastrozole N 0 24 58.7 55.6 155 23.1 0.25 - - 213.0 59.0 130.0 134.0 

Wasan KM, 

et al.183 
Letrozole Y 5 183 62.9 - - - 3 - - 206.9 61.5 116.8 192.2 

Placebo Y 5 164 63.1 - - - 3 - - 213.1 58.0 124.5 266.6 

Lønning PE, 

et al.184 
Exemestane N 0 73 60.0 - - - 2 - - 253.4 65.7 166.3 110.8 

Placebo N 0 74 59.0 - - - 2 - - 257.1 65.7 170.1 110.4 

Francini G, et 

al.186 
Exemestane Y 2 28 61.9 69.9 156 29.2 1 8 14 215.1 58.6 131.2 124.9 

TAM Y 2 27 61.2 69.8 156 29.0 1 6 11 215.7 58.1 130.9 124.1 

Montagnani 

A, et al.187 
Exemestane Y 2.5 33 61.6 67.2 156 28.1 2 - - 215.8 59.1 130.9 122.4 

TAM Y 2.5 35 62.2 67.4 156 28.0 2 - - 218.2 57.3 136.4 125.4 

Markopoulos 

C, et al.185,188 
Exemestane Y 5 211 62.6 71.8 - - 2 80 117 215.0 57.0 139.4 118.0 

Placebo Y 5 200 61.8 69.6 - - 2 79 99 213.5 56.0 133.0 123.0 

Anan K, et 

al.190 
Toremifene N 0 36 62.5 55.0 154 23.2 2 0 - 220.8 57.5 139.4 133.1 

Anastrozole N 0 33 60.0 43.3 151 24.0 2 0 - 220.8 57.5 139.4 133.1 
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Table S 5. (cont.) 
Bell LN, et 

al.191 
Exemestane Y 2.5 117 59.0 - - - 0.25 51 - 212.0 63.0 127.0 112.0 

Letrozole Y 2.5 129 57.0 - - - 0.25 69 - 203.0 60.0 121.0 110.0 

TAM: Tamoxifen; BMI: body mass index; C/T: chemotherapy; R/T: radiotherapy; TC: total cholesterol; HDL-C: high density lipoprotein cholesterol; LDL-C: low density 

lipoprotein cholesterol; TG: tryglyceride 
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Table S 6. Rank probabilities of effects of hormone therapy on TC 

Probability of rank and SUCRA(cumulated probability) 

  SERMs AIs 

Rank Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

1 0 (0) 0.07 (0.07) 0.93 (0.93) 0 (0) 0 (0) 0 (0) 

2 0 (0) 0.93 (1) 0.07 (1) 0 (0) 0 (0) 0 (0) 

3 0 (0) 0 (1) 0 (1) 0 (0) 0.01 (0.01) 0.99 (0.99) 

4 0.71 (0.71) 0 (1) 0 (1) 0 (0) 0.28 (0.29) 0.01 (1) 

5 0.29 (1) 0 (1) 0 (1) 0.37 (0.37) 0.34 (0.63) 0 (1) 

6 0 (1) 0 (1) 0 (1) 0.63 (1) 0.37 (1) 0 (1) 

SUCRA 34% 81% 99% 8% 18% 60% 

TC: Total Cholesterol; SERMs: Selective Estrogen Receptor Modulators; AIs: Aromatase Inhibitors 

 

 

 

 

 

Figure S 1. Rankgram of effects of hormone therapy on total cholesterol 
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Table S 7. Rank probabilities of effects of hormone therapy on HDL-C 

HDL-C Probability of rank and SUCRA(cumulated probability) 

  SERMs AIs 

Rank Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

1 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 

2 0.96 (0.96) 0 (0) 0 (1) 0 (0) 0.04 (0.04) 0 (0) 

3 0.04 (1) 0 (0) 0 (1) 0.66 (0.66)  0.31 (0.34) 0 (0) 

4 0 (1) 0.14 (0.14) 0 (1) 0.34 (1) 0.52 (0.86) 0 (0) 

5 0 (1) 0.86 (1) 0 (1) 0 (1) 0.14 (1) 0 (0) 

6 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 1 (1) 

SUCRA 79% 23% 100% 53% 45% 0% 

HDL-C: High Density Lipoprotein Cholesterol; SERMs: Selective Estrogen Receptor Modulators; AIs: Aromatase 

Inhibitors 
 

 

 
 

 

 

Figure S 2. Rankgram of effects of hormone thearpy on HDL-C 
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Table S 8. Rank probabilities of effects of hormone therapy on LDL-C 

LDL-C Probability of rank and SUCRA (cumulated probability) 

  SERMs AIs 

Rank Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

1 0 (0) 0.16 (0.16) 0.84 (0.84) 0 (0) 0 (0) 0 (0) 

2 0 (0) 0.84 (1) 0.16 (1) 0 (0) 0 (0) 0 (0) 

3 0.05 (0.05) 0 (1) 0 (1) 0.05 (0.05) 0.06 (0.06) 0.83 (0.83) 

4 0.61 (0.67) 0 (1) 0 (1) 0.18 (0.23) 0.06 (0.12) 0.15 (0.98) 

5 0.30 (0.97) 0 (1) 0 (1) 0.58 (0.81) 0.09 (0.22) 0.02 (1) 

6 0.03 (1) 0 (1) 0 (1) 0.19 (1) 0.78 (1) 0 (1) 

SUCRA 34% 83% 97% 22% 8% 56% 

LDL-C: Low Density Lipoprotein Cholesterol; SERMs: Selective Estrogen Receptor Modulators; AIs: Aromatase 

Inhibitors 
 

 

 

 

Figure S 3. Rankgram of effects of hormone therapy on LDL-C 
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Table S 9. Rank probabilities of hormone therapy on Triglyceride 

Triglyceride Probability of rank and SUCRA(cumulated probability) 

  SERMs AIs 

Rank Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

1 0 (0) 0 (0) 0.73 (0.73) 0 (0) 0.26 (0.26) 0.01 (0.01) 

2 0 (0) 0 (0) 0.26 (1) 0 (0) 0.60 (0.86) 0.13 (0.14) 

3 0.02 (0.02) 0 (0) 0 (1) 0 (0)  0.12 (0.98) 0.86 (1) 

4 0.97 (0.99) 0 (0) 0 (1) 0.01 (0.01) 0.02 (1) 0 (1) 

5 0.01 (1) 0 (0) 0 (1) 0.99 (1) 0 (1) 0 (1) 

6 0 (1) 1 (1) 0 (1) 0 (1) 0 (1) 0 (1) 

SUCRA 40% 0% 95% 20% 82% 63% 

SERMs: Selective Estrogen Receptor Modulators; AIs: Aromatase Inhibitors 

 

 

 

 

Figure S 4. Rankgram of effects of hormone therapy on Triglyceride 
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Table S 10. Estimates of changes of TC levels with the presence of metaregressors 

Drug No Adjustment Adjust for Age 

(�̅� = 60.91) 

Adjust for Baseline  

(�̅� = 220.75) 

Adjust for Tamoxifen 

use 

 Mean (95% Credible Interval) 

Metaregressor  1.51 

(    0.56 ,    2.52 ) 

-0.24 

(   -0.37 ,   -0.11 ) 

5.86 

(    1.79 ,    9.97 ) 

Tamoxifen -21.62 

(  -24.17 ,  -19.12 ) 

-19.37 

(  -22.29 ,  -16.48 ) 

-21.91 

(  -24.45 ,  -19.35 ) 

-24.19 

(  -27.18 ,  -21.02 ) 

Toremifene -26.37 

(  -33.04 ,  -19.70 ) 

-25.96 

(  -32.53 ,  -19.37 ) 

-25.87 

(  -32.37 ,  -19.43 ) 

-28.72 

(  -35.32 ,  -22.10 ) 

Letrozole 3.89 

(    0.83 ,    6.97 ) 

2.11 

(   -1.27 ,    5.40 ) 

0.95 

(   -2.53 ,    4.36 ) 

-1.35 

(   -6.12 ,    3.43 ) 

Anastrozole 2.40 

(   -5.90 ,   10.81 ) 

6.50 

(   -2.30 ,   15.18 ) 

2.55 

(   -5.66 ,   10.90 ) 

0.07 

(   -8.13 ,    8.51 ) 

Exemestane -7.55 

(   -9.53 ,   -5.58 ) 

-9.15 

(  -11.40 ,   -6.94 ) 

-7.43 

(   -9.41 ,   -5.53 ) 

-11.50 

(  -14.82 ,   -8.12 ) 

TC: Total Cholesterol 

Baseline and age are centered to their mean in the model. 

Placebo:             𝑌𝑖1 = 𝜇𝑖 
Hormone drugs: 𝑌𝑖𝑘 = 𝜇𝑖 + 𝜃𝑘 + 𝑏(𝑥𝑖 − �̅�) 
k: treatments, k=1 (placebo), k=2, …, 6 (hormone drugs) 

𝑌𝑖𝑘: trial-specific treatment-specific outcome 

𝜇𝑖: trial-specific mean effect without treatment (placebo) 

𝜃𝑘: drug effect relative to placebo 

b: covariate coefficient 

𝑥𝑖: trial-specific covariate value 

�̅�: grand mean of age/baseline 

Bold: p<0.05 

 

 

 

Table S 11. SUCRA reports of hormone therapeutic options for TC based on presence of 

metaregressors  
SUCRA of hormone therapeutic options with metaregressors 

Drug Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

No Adjustment 34% 81% 99% 8% 18% 60% 

Adjust for Age 36% 80% 100% 18% 5% 60% 

Adjust for Baseline 29% 82% 98% 19% 13% 60% 

Adjust for Tamoxifen 

use 

16% 81% 99% 27% 18% 60% 

TC: Total Cholesterol 

 

  



144 

 

 
  

 
 

TC: Total Cholesterol 

 
 

Figure S 5. Rank plots of hormone therapeutic options for TC based on presence of 

metaregressors 
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Table S 12. Estimates of changes of HDL-C levels with the presence of metaregressors  

Drug No Adjustment Adjust for Age 

(�̅� = 60.91) 

Adjust for Baseline  

(�̅� = 57.53) 

Adjust for Tamoxifen 

use 

 Mean (95% Credible Interval) 

Metaregressor  -0.24 

(   -0.57 ,    0.08 ) 
-0.48 

(   -0.60 ,   -0.36 ) 

-3.94 

(   -5.26 ,   -2.62 ) 

Tamoxifen -3.90 

(   -4.73 ,   -3.08 ) 

-4.27 

(   -5.27 ,   -3.32 ) 

-2.49 

(   -3.39 ,   -1.60 ) 

-2.32 

(   -3.31 ,   -1.32 ) 

Toremifene 7.30 

(    5.23 ,    9.35 ) 

7.23 

(    5.21 ,    9.30 ) 

7.74 

(    5.64 ,    9.82 ) 

8.61 

(    6.53 ,   10.70 ) 

Letrozole -1.89 

(   -2.91 ,   -0.87 ) 

-1.60 

(   -2.68 ,   -0.51 ) 

-0.69 

(   -1.74 ,    0.37 ) 
1.74 

(    0.20 ,    3.34 ) 

Anastrozole -2.50 

(   -5.18 ,    0.17 ) 

-3.19 

(   -6.14 ,   -0.34 ) 

-2.31 

(   -5.02 ,    0.39 ) 

-1.20 

(   -3.88 ,    1.46 ) 

Exemestane -6.57 

(   -7.24 ,   -5.90 ) 

-6.33 

(   -7.05 ,   -5.58 ) 

-6.33 

(   -7.00 ,   -5.64 ) 

-4.01 

(   -5.09 ,   -2.94 ) 

Placebo:             𝑌𝑖1 = 𝜇𝑖 
Baseline and age are centered to their mean in the model. 

Hormone drugs: 𝑌𝑖𝑘 = 𝜇𝑖 + 𝜃𝑘 + 𝑏(𝑥𝑖 − �̅�) 
k: treatments, k=1 (placebo), k=2, …, 6 (hormone drugs) 

𝑌𝑖𝑘: trial-specific treatment-specific outcome 

𝜇𝑖: trial-specific mean effect without treatment (placebo) 

𝜃𝑘: drug effect relative to placebo 

b: covariate coefficient 

𝑥𝑖: trial-specific covariate value 

Bold: p<0.05 

 

 

 

 

 

Table S 13. SUCRA reports of hormone therapeutic options for HDL-C based on presence of 

metaregressors  
SUCRA of hormone therapeutic options with metaregressors 

Drug Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

No Adjustment 79% 23% 100% 53% 45% 0% 

Adjust for Age 80% 24% 100% 57% 39% 0% 

Adjust for Baseline 77% 29% 100% 60% 34% 0% 

Adjust for Tamoxifen 

use 

57% 24% 100% 79% 40% 0% 

HDL-C: High Density Lipoprotein Cholesterol 
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Figure S 6. Rankgrams of hormone therapeutic options for HDL-C based on presence of 

metaregressor 
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Table S 14. Estimates of changes of LDL-C levels with the presence of metaregressor  

Drug No Adjustment Adjust for Age 

(�̅� = 60.91) 

Adjust for Baseline  

(�̅� = 139.35) 

Adjust for Tamoxifen 

use 

 Mean (95% Credible Interval) 

Metaregressor  1.98 

(    1.00 ,    2.93 ) 

-0.31 

(   -0.47 ,   -0.15 ) 

10.21 

(    6.09 ,   14.29 ) 

Tamoxifen -21.11 

(  -23.62 ,  -18.65 ) 

-18.02 

(  -20.96 ,  -15.09 ) 

-18.46 

(  -21.31 ,  -15.63 ) 

-25.39 

(  -28.41 ,  -22.31 ) 

Toremifene -24.17 

(  -30.56 ,  -17.89 ) 

-23.23 

(  -29.68 ,  -16.76 ) 

-21.46 

(  -27.90 ,  -14.97 ) 

-28.17 

(  -34.54 ,  -21.72 ) 

Letrozole 1.07 

(   -1.96 ,    4.12 ) 

-1.28 

(   -4.55 ,    2.00 ) 
-4.30 

(   -8.35 ,   -0.20 ) 

-8.07 

(  -12.81 ,   -3.38 ) 

Anastrozole 4.62 

(   -3.54 ,   12.72 ) 
10.28 

(    1.83 ,   19.06 ) 

7.05 

(   -1.33 ,   15.40 ) 

0.52 

(   -7.75 ,    8.69 ) 

Exemestane -1.52 

(   -3.50 ,    0.49 ) 
-3.47 

(   -5.68 ,   -1.37 ) 

-0.37 

(   -2.46 ,    1.66 ) 
-8.11 

(  -11.37 ,   -4.83 ) 

Placebo:             𝑌𝑖1 = 𝜇𝑖 
Baseline and age are centered to their mean in the model. 

Hormone drugs: 𝑌𝑖𝑘 = 𝜇𝑖 + 𝜃𝑘 + 𝑏(𝑥𝑖 − �̅�) 
k: treatments, k=1 (placebo), k=2, …, 6 (hormone drugs) 

𝑌𝑖𝑘: trial-specific treatment-specific outcome 

𝜇𝑖: trial-specific mean effect without treatment (placebo) 

𝜃𝑘: drug effect relative to placebo 

b: covariate coefficient 

𝑥𝑖: trial-specific covariate value 

Bold: p<0.05 

 

 

 

 
 

Table S 15. SUCRA reports of hormone therapeutic options for LDL-C based on presence of 

metaregressors  
SUCRA of hormone therapeutic options with metaregressors 

Drug Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

No Adjustment 34% 83% 97% 22% 8% 56% 

Adjust for Age 24% 81% 99% 38% 0% 58% 

Adjust for Baseline 27% 83% 97% 58% 2% 33% 

Adjust for Tamoxifen 

use 

11% 84% 96% 49% 10% 50% 

LDL-C: Low Density Lipoprotein Cholesterol 
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Figure S 7. Rankgrams of hormone therapeutic options for LDL-C based on presence of 

metaregressor 
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Table S 16. Estimates of changes of Triglyceride levels with the presence of metaregressor  

Drug No Adjustment Adjust for Age 

(�̅� = 60.91) 

Adjust for Baseline 

(�̅� = 133.07) 

Adjust for Tamoxifen 

use 

 Mean (95% Credible Interval) 

Metaregressor  -1.38 

(    -3.72 ,     0.93 ) 
-0.58 

(    -0.78 ,    -0.38 ) 

-10.27 

(   -20.27 ,     0.24 ) 

Tamoxifen 28.02 

(    21.51 ,    34.51 ) 

26.01 

(    18.64 ,    33.36 ) 

16.18 

(     8.03 ,    24.16 ) 

32.40 

(    24.56 ,    40.02 ) 

Toremifene -28.12 

(  -43.08 ,   -13.46 ) 

-28.52 

(   -43.40 ,   -13.42 ) 

-32.55 

(   -48.22 ,   -17.12 ) 

-23.50 

(   -38.85 ,    -8.97 ) 

Letrozole 9.30 

(  1.50 ,    17.11 ) 

10.95 

(     2.81 ,    19.36 ) 

34.12 

(    22.36 ,    45.84 ) 

18.88 

(     6.52 ,    31.32 ) 

Anastrozole -22.41 

(   -44.30 ,    -1.06 ) 

-26.07 

(   -48.99 ,    -4.11 ) 

-29.77 

(   -52.33 ,    -7.67 ) 

-17.25 

(   -39.57 ,     4.32 ) 

Exemestane -10.31 

(   -15.45 ,    -5.19 ) 

-8.81 

(   -14.44 ,    -3.26 ) 

-13.09 

(   -18.40 ,    -7.90 ) 

-3.51 

(   -11.82 ,     4.73 ) 

Placebo:             𝑌𝑖1 = 𝜇𝑖 
Baseline and age are centered to their mean in the model. 

Hormone drugs: 𝑌𝑖𝑘 = 𝜇𝑖 + 𝜃𝑘 + 𝑏(𝑥𝑖 − �̅�) 
k: treatments, k=1 (placebo), k=2, …, 6 (hormone drugs) 

𝑌𝑖𝑘: trial-specific treatment-specific outcome 

𝜇𝑖: trial-specific mean effect without treatment (placebo) 

𝜃𝑘: drug effect relative to placebo 

b: covariate coefficient 

𝑥𝑖: trial-specific covariate value 

Bold: p<0.05 

 

 

 

 

 
 

Table S 17. SUCRA reports of hormone therapeutic options for Triglyceride based on presence 

of metaregressors  
SUCRA of hormone therapeutic options with metaregressors 

Drug Placebo Tamoxifen Toremifene Letrozole Anastrozole Exemestane 

No Adjustment 40% 0% 95% 20% 82% 63% 

Adjust for Age 40% 0% 92% 20% 86% 61% 

Adjust for Baseline 40% 20% 92% 0% 86% 61% 

Adjust for 

Tamoxifen use 

45% 0% 95% 20% 81% 58% 
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Figure S 8. Rankgrams of hormone therapeutic options for Triglyceride based on presence of 

metaregressor 
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Table S 18. Differences between direct and indirect estimates 

 
 Mean (95% Credible Interval) 

Placebo and Tamoxifen 

Total cholesterol -7.13 (-52.77, 16.84) 

HDL-C 7.22 (-51.54, 150.04) 

LDL-C -4.42 (-60.58, 45.45) 

Triglyceride 2.99 (-91.31, 72.69) 

Placebo and Letrozole 

Total cholesterol 3.76 (-138.54, 192.78) 

HDL-C -4.72 (-256.04, 152.88) 

LDL-C 6.72 (-76.75, 178.10) 

Triglyceride -3.18 (-167.00, 184.36) 

Placebo and Exemestane 

Total cholesterol -10.61 (-92.37, 90.07) 

HDL-C -0.32 (-12.00, 11.00) 

LDL-C -16.54 (-144.18, 63.75) 

Triglyceride -21.77 (-101.60, 60.84) 

Tamoxifen and Toremifene 

Total cholesterol -36.18 (-70.28, -1.58)* 

Total cholesterol (removing trials with large variation) -24.80 (-58.84, 10.76)
¶
 

HDL-C 13.82 (-3.41, 31.04) 

LDL-C -29.72 (-71.24, 11.27) 

Triglyceride 14.93 (-57.82, 88.36) 

Tamoxifen and Anastrozole 

Total cholesterol -5.78 (-124.88, 173.56) 

HDL-C -6.83 (-156.38, 61.89) 

LDL-C -7.22 (-214.98, 162.04) 

Triglyceride 83.65 (-121.94, 240.54) 

Tamoxifen and Exemestane 

Total cholesterol 28.47 (3.61, 54.18)* 

Total cholesterol (removing trials with large variation) 18.02 (-7.25, 45.18)
§
 

HDL-C -3.05 (-16.41, 10.94) 

LDL-C 40.98 (6.44, 76.72)* 

LDL-C (removing trials with large variation) 27.88 (-9.79, 63.96) 
§
 

Triglyceride -62.14 (-122.84, -2.62)* 

Triglyceride (removing trials with large variation) -59.76 (-118.44, 0.69) 
§
 

Letrozole and Anastrozole 

Total cholesterol 11.60 (-175.60, 145.64) 



152 

Table S 18. (cont.) 

HDL-C 6.01 (-23.06, 33.04) 

LDL-C 3.08 (-80.46, 60.97) 

Triglyceride -35.09 (-141.36, 170.22) 

Letrozole and Exemestane 

Total cholesterol -16.34 (-247.36, 127.30) 

HDL-C -1.59 (-78.51, 52.70) 

LDL-C -19.98 (-296.32, 255.70) 

Triglyceride -13.40 (-160.42, 162.92) 

* The estimate difference between direct and indirect evidence is significantly away from zero 

¶ Removing articles published by Francini et al. (2006)
198

 and Montagnani et al. (2008)
199

 

§ Removing articles published by Sawada et al (2005)
204

 and Markopoulos et al. (2005 and 2009)
197,200
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Table S 19. Sensitivity analyses for total cholesterol 

 Mean (95% Credible Interval) SUCRA Rank 

Fixed-Effect model – the original model 

Placebo 3.81 (-3.27, 11.82) 34% 4 

Tamoxifen -17.81 (-24.95,  -10.06) 81% 2 

Toremifene -22.56 (-31.47,  -13.92) 99% 1 

Letrozole 7.71 (-0.44,  15.51) 8% 6 

Anastrozole 6.22 (-3.55,  16.42) 18% 5 

Exemestane -3.74 (-10.90,  3.89) 60% 3 

Remove studies with median report 

Placebo 4.05 (-4.00,  11.94) 37% 4 

Tamoxifen -20.43 (-28.43,   -12.73) 98% 1 

Toremifene -17.44 (-25.94,  -8.70) 82% 2 

Letrozole 6.70 (-1.43,  14.93) 13% 5 

Anastrozole 7.91 (-1.76,  17.60) 10% 6 

Exemestane -6.24 (-13.90,  1.82) 60% 3 

Random-effect model 

Placebo 5.86 (-3.67,  15.14) 26% 4 

Tamoxifen -17.88 (-27.80,  -8.28) 81% 2 

Toremifene -27.41 (-41.70,  -14.02) 98% 1 

Letrozole 9.28 (-5.98,  25.28) 16% 6 

Anastrozole 7.59 (-10.44,  25.33) 22% 5 

Exemestane -3.48 (-15.22,  6.71) 56% 3 
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Table S 20. Sensitivity analyses for HDL-C  

 Mean (95% Credible Interval) SUCRA Rank 

Fixed-effect model – the original model 

Placebo 2.20 (0.46,   4.23) 79% 2 

Tamoxifen -1.70 (-3.49,  0.17) 23% 5 

Toremifene 9.50 (7.19,  11.88) 100% 1 

Letrozole 0.31 (-1.77,  2.38) 53% 3 

Anastrozole -0.30 (-3.10,  2.64) 45% 4 

Exemestane -4.37 (-6.12,  -2.45) 0% 6 

Remove studies with median report 

Placebo 1.42 (-0.33,  3.22) 76% 2 

Tamoxifen -0.55 (-2.24,  1.25) 36% 4 

Toremifene 9.91 (1.57,  11.99) 100% 1 

Letrozole -0.74 (-2.72,  1.19) 31% 5 

Anastrozole 0.44 (-2.18,  3.05) 57% 3 

Exemestane -5.81 (-7.53,  -3.93) 0% 6 

Random-effect model 

Placebo 1.68 (-0.92,  4.04) 59% 3 

Tamoxifen -0.56 (-4.56,  3.64) 36% 5 

Toremifene 10.10 (4.35,  15.77) 98% 1 

Letrozole -0.74 (-8.17,  7.03) 37% 4 

Anastrozole 3.26 (-4.73,  11.78) 65% 2 

Exemestane -5.41 (-10.09,  -0.81) 4% 6 

HDL-C: high density lipoprotein cholesterol 
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Table S 21. Sensitivity analyses for LDL-C  

 Mean (95% Credible Interval) SUCRA Rank 

Fixed-effect model – the original model 

Placebo 3.81 (-5.62,  12.58) 34% 4 

Tamoxifen -17.31 (-26.25,  -8.13) 83% 2 

Toremifene -20.37 (-31.02,  -10.69) 97% 1 

Letrozole 4.88 (-4.63,  14.25) 22% 5 

Anastrozole 8.43 (-3.06,  19.08) 8% 6 

Exemestane 2.29 (-7.13,  10.93) 56% 3 

Remove studies with median report 

Placebo 4.37 (-5.08,  15.04) 26% 5 

Tamoxifen -19.21 (-29.03,  -8.99) 98% 1 

Toremifene -15.44 (-26.52,  -4.99) 82% 2 

Letrozole 3.81 (-6.09, 14.34) 33% 4 

Anastrozole 10.90 (-0.68,  22.16) 1% 6 

Exemestane -0.65 (-10.93,  9.24) 60% 3 

Random-effect model 

Placebo 6.43 (-5.25,  18.05) 25% 5 

Tamoxifen -17.57 (-29.84,  -5.20) 84% 2 

Toremifene -23.51 (-39.88,  -5.80) 95% 1 

Letrozole 7.05 (-13.37,  26.28) 25% 4 

Anastrozole 5.10 (-17.61,  28.39) 30% 6 

Exemestane 2.23 (-11.69,  15.94) 42% 3 

LDL-C: low density lipoprotein cholesterol 
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Table S 22. Sensitivity analyses for Triglyceride 

 Mean (95% Credible Interval) SUCRA Rank 

Fixed-effect model – the original model 

Placebo 0.06 (-11.30,  11.86) 40% 4 

Tamoxifen 28.08 (16.81,  39.23) 0% 6 

Toremifene -28.06 (-42.95,  -13.51) 95% 1 

Letrozole 9.36 (-4.00,  22.90) 20% 5 

Anastrozole -22.34 (-43.98,  -1.45) 82% 2 

Exemestane -10.25 (-21.49,  1.32) 63% 3 

Remove studies with median report 

Placebo 6.84 (-10.29,  23.13) 40% 4 

Tamoxifen 29.56 (13.22,  44.93) 0% 6 

Toremifene -39.05 (-58.58,  -19.39) 90% 1 

Letrozole 17.06 (-0.44,  35.61) 20% 5 

Anastrozole -38.71 (-64.51,  -13.83) 90% 2 

Exemestane -5.47 (-22.06,  11.47) 60% 3 

Random-effect model 

Placebo -0.34 (-11.88,  10.52) 42% 4 

Tamoxifen 23.42 (3.20,  45.43) 6% 6 

Toremifene -12.28 (-41.28,  19.41) 66% 3 

Letrozole 4.83 (-35.74,  45.70) 36% 5 

Anastrozole -22.87 (-68.29,  20.73) 79% 1 

Exemestane -13.74 (-38.92,  9.34) 71% 2 
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