Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Model-Based Closed-Loop Glucose Control in Critical Illness

Knab, Timothy D (2017) Model-Based Closed-Loop Glucose Control in Critical Illness. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

This is the latest version of this item.

[img]
Preview
PDF
Download (10MB) | Preview

Abstract

Stress hyperglycemia is a common complication in critically ill patients and is associated with increased mortality and morbidity. Tight glucose control (TGC) has shown promise in reducing mean glucose levels in critically ill patients and may mitigate the harmful repercussions of stress hyperglycemia. Despite the promise of TGC, care must be taken to avoid hypoglycemia, which has been implicated in the failure of some previous clinical attempts at TGC using intensive insulin therapies. In fact, a single hypoglycemic event has been shown to result in worsened patient outcomes.

The nature of tight glucose regulation lends itself to automatic monitoring and control, thereby reducing the burden on clinical staff. A blood glucose target range of 110-130 mg/dL has been identified in the High-Density Intensive Care (HIDENIC) database at the University of Pittsburgh Medical Center (UPMC). A control framework comprised of a zone model predictive controller (zMPC) with moving horizon estimation (MHE) is proposed to maintain euglycemia in critically ill patients. Using continuous glucose monitoring (CGM) the proposed control scheme calculates optimized insulin and glucose infusion to maintain blood glucose concentrations within the target zone.

Results from an observational study employing continuous glucose monitors at UPMC are used to reconstruct blood glucose from noisy CGM data, identify a model of CGM error in critically ill patients, and develop an in silico virtual patient cohort. The virtual patient cohort recapitulates expected physiologic trends with respect to insulin sensitivity and glycemic variability. Furthermore, a mechanism is introduced utilizing proportional-integral-derivative (PID) to modulate basal pancreatic insulin secretion rates in virtual patients. The result is virtual patients who behave realistically in simulated oral glucose tolerance tests and insulin tolerance tests and match clinically observed responses.

Finally, in silico trials are used to simulate clinical conditions and test the developed control system under realistic conditions. Under normal conditions the control system is able to tightly control glucose concentrations within the target zone while avoiding hypoglycemia. To safely counteract the effect of faulty CGMs a system to detect sensor error and request CGM recalibration is introduced. Simulated in silico tests of this system results in accurate detection of excessive error leading to higher quality control and hypoglycemia reduction.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Knab, Timothy Dtdk17@pitt.edutdk17
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairParker, Robert S.rparker@pitt.edu
Committee CoChairClermont, Gillesclermontg@upmc.edu
Committee MemberMcCarthy, Joseph J.jjmcc@pitt.edu
Committee MemberCole, Danieldgcole@pitt.edu
Date: 26 September 2017
Date Type: Publication
Defense Date: 13 February 2017
Approval Date: 26 September 2017
Submission Date: 24 July 2017
Access Restriction: No restriction; Release the ETD for access worldwide immediately.
Number of Pages: 275
Institution: University of Pittsburgh
Schools and Programs: Swanson School of Engineering > Chemical Engineering
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: Glucose Control, Model Predictive Control, Critical Care, Mathematical Modeling
References: [1] K. M. Dungan, S. S. Braithwaite, and J.-C. Preiser, “Stress hyperglycaemia,” vol. 373, no. 9677, pp. 1798-1807. [2] K. C. McCowen, A. Malhotra, and B. R. Bistrian, “Stress-Induced Hyperglycemia,” vol. 17, no. 1, pp. 107-124. [3] L. Corsino, K. Dhatariya, and G. Umpierrez, “Management of Diabetes and Hy perglycemia in Hospitalized Patients,” in Endotext (L. J. De Groot, G. Chrousos, K. Dungan, K. R. Feingold, A. Grossman, J. M. Hershman, C. Koch, M. Korbonits, R. McLachlan, M. New, J. Purnell, R. Rebar, F. Singer, and A. Vinik, eds.), MDText.com, Inc. [4] P. E. Marik and R. Bellomo, “Stress hyperglycemia: An essential survival response!,” vol. 17, no. 2, p. 305. [5] “SCCM — Critical Care Statistics.” [6] M. Egi, R. Bellomo, E. Stachowski, C. J. French, G. K. Hart, C. Hegarty, and M. Bailey, “Blood glucose concentration and outcome of critical illness: The impact of diabetes*:,” vol. 36, no. 8, pp. 2249-2255. [7] G. E. Umpierrez, S. D. Isaacs, N. Bazargan, X. You, L. M. Thaler, and A. E. Kitabchi, “Hyperglycemia: An Independent Marker of In-Hospital Mortality in Patients with Undiagnosed Diabetes,” vol. 87, no. 3, pp. 978-982. [8] M. Falciglia, R. W. Freyberg, P. L. Almenoff, D. A. D'Alessio, and M. L. Render, “Hyperglycemia-related mortality in critically ill patients varies with admission diag nosis,” vol. 37, no. 12, pp. 3001-3009. [9] A. P. Furnary, G. Gao, G. L. Grunkemeier, Y. Wu, K. J. Zerr, S. O. Bookin, H. S. Floten, and A. Starr, “Continuous insulin infusion reduces mortality in patients with diabetes undergoing coronary artery bypass grafting,” vol. 125, no. 5, pp. 1007-1021. [10] J. S. Krinsley, “Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients,” vol. 78, no. 12, pp. 1471-1478. [11] G. V. M. Bochicchio, M. Joshi, K. M. R. Bochicchio, A. R. Pyle, S. B. M. John son, W. Meyer, K. Lumpkins, and T. M. M. Scalea, “Early hyperglycemic control is important in critically injured trauma patients,” vol. 63, no. 6, pp. 1353-1359. [12] B. P. Kavanagh and K. C. McCowen, “Glycemic Control in the ICU,” vol. 363, no. 26, pp. 2540-2546. [13] M. I. Worthley, F. M. Shrive, T. J. Anderson, and M. Traboulsi, “Prognostic Impli cation of Hyperglycemia in Myocardial Infarction and Primary Angioplasty,” vol. 120, no. 7, pp. 643.e1-643.e7. [14] R. Fogelholm, K. Murros, A. Rissanen, and S. Avikainen, “Admission blood glucose and short term survival in primary intracerebral haemorrhage: A population based study,” vol. 76, no. 3, pp. 349-353. [15] P. L. Bosarge and J. D. Kerby, “Stress-induced Hyperglycemia,” vol. 47, no. 1, pp. 287- 297. [16] J. Hermanides, T. M. Vriesendorp, R. J. Bosman, D. F. Zandstra, J. B. Hoekstra, and J. H. DeVries, “Glucose variability is associated with intensive care unit mortality*:,” vol. 38, no. 3, pp. 838-842. [17] M. Egi and R. Bellomo, “Reducing Glycemic Variability in Intensive Care Unit Pa tients: A New Therapeutic Target?,” vol. 3, no. 6, pp. 1302-1308. [18] A. Ouattara, A. Grimaldi, and B. Riou, “Blood Glucose VariabilityA New Paradigm in Critical Care?,” vol. 105, no. 2, pp. 233-234. [19] N. A. Ali, J. S. Krinsley, and J.-C. Preiser, “Glucose Variability in Critically III Pa tients,” in Yearbook of Intensive Care and Emergency Medicine (P. J.-L. Vincent, ed.), no. 2009 in Yearbook of Intensive Care and Emergency Medicine, pp. 728-737, Springer Berlin Heidelberg. [20] G. Van den Berghe, P. Wouters, F. Weekers, C. Verwaest, F. Bruyninckx, M. Schetz, D. Vlasselaers, P. Ferdinande, P. Lauwers, and R. Bouillon, “Intensive Insulin Therapy in Critically Ill Patients,” vol. 345, no. 19, pp. 1359-1367. [21] J.-C. Preiser, P. Devos, and G. Van den Berghe, “Tight control of glycaemia in critically ill patients,” vol. 5, no. 5, pp. 533-537. [22] J. S. Krinsley and A. Grover, “Severe hypoglycemia in critically ill patients: Risk factors and outcomes,” vol. 35, no. 10, pp. 2262-2267. [23] G. Van den Berghe, A. Wilmer, G. Hermans, W. Meersseman, P. J. Wouters, I. Milants, E. Van Wijngaerden, H. Bobbaers, and R. Bouillon, “Intensive Insulin Therapy in the Medical ICU,” vol. 354, no. 5, pp. 449-461. [24] J.-C. Preiser, P. Devos, S. Ruiz-Santana, C. Mlot, D. Annane, J. Groeneveld, G. Iapichino, X. Leverve, G. Nitenberg, P. Singer, J. Wernerman, M. Joannidis, A. Stecher, and R. Chiolro, “A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: The Glucontrol study,” vol. 35, no. 10, pp. 1738-1748. [25] S. R. Mehta, S. Yusuf, R. Daz, J. Zhu, P. Pais, D. Xavier, E. Paolasso, R. Ahmed, C. Xie, K. Kazmi, J. Tai, A. Orlandini, J. Pogue, L. Liu, and CREATE-ECLA Trial Group Investigators, “Effect of glucose-insulin-potassium infusion on mortality in pa tients with acute ST-segment elevation myocardial infarction: The CREATE-ECLA randomized controlled trial,” vol. 293, no. 4, pp. 437-446. [26] T. N.-S. S. Investigators, “Intensive versus Conventional Glucose Control in Critically Ill Patients,” vol. 360, no. 13, pp. 1283-1297. [27] T. N.-S. S. Investigators, “Hypoglycemia and Risk of Death in Critically Ill Patients,” vol. 367, no. 12, pp. 1108-1118. [28] J. Hermanides, R. J. Bosman, T. M. Vriesendorp, R. Dotsch, F. R. Rosendaal, D. F. Zandstra, J. B. L. Hoekstra, and J. H. DeVries, “Hypoglycemia is associated with intensive care unit mortality,” vol. 38, no. 6, pp. 1430-1434. [29] F. M. Brunkhorst, C. Engel, F. Bloos, A. Meier-Hellmann, M. Ragaller, N. Weiler, O. Moerer, M. Gruendling, M. Oppert, S. Grond, D. Olthoff, U. Jaschinski, S. John, R. Rossaint, T. Welte, M. Schaefer, P. Kern, E. Kuhnt, M. Kiehntopf, C. Hartog, C. Natanson, M. Loeffler, and K. Reinhart, “Intensive Insulin Therapy and Pentastarch Resuscitation in Severe Sepsis,” vol. 358, no. 2, pp. 125-139. [30] M. Wilson, J. Weinreb, and G. W. S. Hoo, “Intensive Insulin Therapy in Critical Care,” vol. 30, no. 4, pp. 1005-1011. [31] R. Tiruvoipati, B. Chiezey, D. Lewis, K. Ong, E. Villanueva, K. Haji, and J. Botha, “Stress hyperglycemia may not be harmful in critically ill patients with sepsis,” vol. 27, no. 2, pp. 153-158. [32] H. Hirasawa, S. Oda, and M. Nakamura, “Blood glucose control in patients with severe sepsis and septic shock,” vol. 15, no. 33, pp. 4132-4136. [33] B. W. Whitcomb, E. K. Pradhan, A. G. Pittas, M.-C. Roghmann, and E. N. Perence vich, “Impact of admission hyperglycemia on hospital mortality in various intensive care unit populations*:,” vol. 33, no. 12, pp. 2772-2777. [34] P. E. Marik and J.-C. Preiser, “Toward understanding tight glycemic control in the ICU: A systematic review and metaanalysis,” vol. 137, no. 3, pp. 544-551. [35] P. Parsons and P. Watkinson, “Blood glucose control in critical care patients a review of the literature,” vol. 12, no. 4, pp. 202-210. [36] K. A. Malmberg, S. Efendic, L. E. Rydn, and F. T. M. S. Group, “Feasibility of Insulin-Glucose Infusion in Diabetic Patients With Acute Myocardial Infarction: A report from the multicenter trial: DIGAMI,” vol. 17, no. 9, pp. 1007-1014. [37] G. Y. Gandhi, G. A. Nuttall, M. D. Abel, C. J. Mullany, H. V. Schaff, P. C. O'Brien, M. G. Johnson, A. R. Williams, S. M. Cutshall, L. M. Mundy, R. A. Rizza, and M. M. McMahon, “Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: A randomized trial,” vol. 146, no. 4, pp. 233-243. [38] N. A. Ali, J. M. OBrien, K. Dungan, G. Phillips, C. B. Marsh, S. Lemeshow, A. F. Connors, and J.-C. Preiser, “Glucose variability and mortality in patients with sepsis,” vol. 36, no. 8, pp. 2316-2321. [39] G. D. C. De La Rosa, J. H. Donado, A. H. Restrepo, A. M. Quintero, L. G. Gonzlez, N. E. Saldarriaga, M. Bedoya, J. M. Toro, J. B. Velsquez, J. C. Valencia, C. M. Arango, P. H. Aleman, E. M. Vasquez, J. C. Chavarriaga, A. Yepes, W. Pulido, and C. A. Cadavid, “Strict glycaemic control in patients hospitalised in a mixed medical and surgical intensive care unit: A randomised clinical trial,” vol. 12, no. 5, p. R120. [40] P. C. Davidson, R. D. Steed, and B. W. Bode, “Glucommander,” vol. 28, no. 10, pp. 2418-2423. [41] R. Cinotti, C. Ichai, J.-C. Orban, P. Kalfon, F. Feuillet, A. Roquilly, B. Riou, Y. Blan loeil, K. Asehnoune, and B. Rozec, “Effects of tight computerized glucose control on neurological outcome in severely brain injured patients: A multicenter sub-group anal ysis of the randomized-controlled open-label CGAO-REA study,” vol. 18, p. 498. [42] T. Okabayashi, Y. Shima, T. Sumiyoshi, A. Kozuki, T. Tokumaru, T. Iiyama, T. Sug imoto, M. Kobayashi, M. Yokoyama, and K. Hanazaki, “Intensive Versus Intermediate Glucose Control in Surgical Intensive Care Unit Patients,” vol. 37, no. 6, pp. 1516-1524. [43] J. I. Mechanick, “Metabolic Mechanisms of Stress Hyperglycemia,” vol. 30, no. 2, pp. 157-163. [44] A. Herschkovitz, Y.-F. Liu, E. Ilan, D. Ronen, S. Boura-Halfon, and Y. Zick, “Common Inhibitory Serine Sites Phosphorylated by IRS-1 Kinases, Triggered by Insulin and Inducers of Insulin Resistance,” vol. 282, no. 25, pp. 18018-18027. [45] L. Li and J. L. Messina, “Acute Insulin Resistance Following Injury,” vol. 20, no. 9, pp. 429-435. [46] K. C. McCowen, P. R. Ling, A. Ciccarone, Y. Mao, J. C. Chow, B. R. Bistrian, and R. J. Smith, “Sustained endotoxemia leads to marked down-regulation of early steps in the insulin-signaling cascade,” vol. 29, no. 4, pp. 839-846. [47] P. E. Cryer, “Hypoglycemia, functional brain failure, and brain death,” vol. 117, no. 4, pp. 868-870. [48] G. Boden, “Gluconeogenesis and glycogenolysis in health and diabetes,” vol. 52, no. 6, pp. 375-378. [49] M. E. McDonnell and G. E. Umpierrez, “Insulin Therapy for the Management of Hyperglycemia in Hospitalized Patients,” vol. 41, no. 1, pp. 175-201. [50] J.-C. Preiser, J. G. Chase, R. Hovorka, J. I. Joseph, J. S. Krinsley, C. D. Block, T. Desaive, L. Foubert, P. Kalfon, U. Pielmeier, T. V. Herpe, and J. Wernerman, “Glucose Control in the ICU A Continuing Story,” p. 1932296816648713. [51] A. Evans, A. Le Compte, C.-S. Tan, L. Ward, J. Steel, C. G. Pretty, S. Penning, F. Suhaimi, G. M. Shaw, T. Desaive, and J. G. Chase, “Stochastic Targeted (STAR) Glycemic Control: Design, Safety, and Performance,” vol. 6, no. 1, pp. 102-115. [52] T. Van Herpe, D. Mesotten, P. J. Wouters, J. Herbots, E. Voets, J. Buyens, B. De Moor, and G. Van den Berghe, “LOGIC-Insulin AlgorithmGuided Versus Nurse-Directed Blood Glucose Control During Critical Illness,” vol. 36, no. 2, pp. 188-194. [53] C. Pachler, J. Plank, H. Weinhandl, L. J. Chassin, M. E. Wilinska, R. Kulnik, P. Kauf mann, K.-H. Smolle, E. Pilger, T. R. Pieber, M. Ellmerer, and R. Hovorka, “Tight glycaemic control by an automated algorithm with time-variant sampling in medical ICU patients,” vol. 34, no. 7, pp. 1224-1230. [54] J. B. Lee, E. Dassau, R. Gondhalekar, D. E. Seborg, J. E. Pinsker, and F. J. Doyle, “Enhanced Model Predictive Control (eMPC) Strategy for Automated Glucose Con trol,” vol. 55, no. 46, pp. 11857-11868. [55] M. Vogelzang, F. Zijlstra, and M. W. Nijsten, “Design and implementation of GRIP: A computerized glucose control system at a surgical intensive care unit,” vol. 5, p. 38. [56] U. Pielmeier, S. Andreassen, B. Juliussen, J. G. Chase, B. S. Nielsen, and P. Haure, “The Glucosafe system for tight glycemic control in critical care: A pilot evaluation study,” vol. 25, no. 1, pp. 97-104. [57] P. Kalfon, B. Giraudeau, C. Ichai, A. Guerrini, N. Brechot, R. Cinotti, P.-F. Dequin, B. Riu-Poulenc, P. Montravers, D. Annane, H. Dupont, M. Sorine, B. Riou, and O. b. o. t. C.-R. S. Group, “Tight computerized versus conventional glucose control in the ICU: A randomized controlled trial,” vol. 40, no. 2, pp. 171-181. [58] E. Rood, R. J. Bosman, J. I. van der Spoel, P. Taylor, and D. F. Zandstra, “Use of a Computerized Guideline for Glucose Regulation in the Intensive Care Unit Improved Both Guideline Adherence and Glucose Regulation,” vol. 12, no. 2, pp. 172-180. [59] D. Aragon, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control,” vol. 15, no. 4, pp. 370-377. [60] R. T. M. van Hooijdonk, L. M. G. Steuten, M. M. A. Kip, H. Monteban, M. R. Mul der, F. v. B. Houckgeest, J. P. van der Sluijs, A. Abu-Hanna, P. E. Spronk, and M. J. Schultz, “Health Economic Evaluation of a Strict Glucose Control Guideline Imple mented Using Point-of-Care Testing in Three Intensive Care Units in The Netherlands,” vol. 13, no. 4, pp. 399-407. [61] U. Holzinger, J. Warszawska, R. Kitzberger, M. Wewalka, W. Miehsler, H. Herkner, and C. Madl, “Real-Time Continuous Glucose Monitoring in Critically Ill Patients,” vol. 33, no. 3, pp. 467-472. [62] K. Hanazaki, H. Maeda, and T. Okabayashi, “Tight perioperative glycemic control using an artificial endocrine pancreas,” vol. 40, no. 1, pp. 1-7. [63] K. Hanazaki, H. Kitagawa, T. Yatabe, M. Munekage, K. Dabanaka, Y. Takezaki, Y. Tsukamoto, T. Asano, Y. Kinoshita, and T. Namikawa, “Perioperative intensive insulin therapy using an artificial endocrine pancreas with closed-loop glycemic control system: The effects of no hypoglycemia,” vol. 207, no. 6, pp. 935-941. [64] R. Hovorka, J. Kremen, J. Blaha, M. Matias, K. Anderlova, L. Bosanska, T. Roubicek, M. E. Wilinska, L. J. Chassin, S. Svacina, and M. Haluzik, “Blood Glucose Control by a Model Predictive Control Algorithm with Variable Sampling Rate Versus a Routine Glucose Management Protocol in Cardiac Surgery Patients: A Randomized Controlled Trial,” vol. 92, no. 8, pp. 2960-2964. [65] J. J. Cordingley, D. Vlasselaers, N. C. Dormand, P. J. Wouters, S. D. Squire, L. J. Chassin, M. E. Wilinska, C. J. Morgan, R. Hovorka, and G. V. den Berghe, “Intensive insulin therapy: Enhanced Model Predictive Control algorithm versus standard care,” vol. 35, no. 1, pp. 123-128. [66] J. G. Chase, G. Shaw, A. L. Compte, T. Lonergan, M. Willacy, X.-W. Wong, J. Lin, T. Lotz, D. Lee, and C. Hann, “Implementation and evaluation of the SPRINT protocol for tight glycaemic control in critically ill patients: A clinical practice change,” vol. 12, no. 2, p. R49. [67] Merrer J, De Jonghe B, Golliot F, and et al, “Complications of femoral and subclavian venous catheterization in critically ill patients: A randomized controlled trial,” vol. 286, no. 6, pp. 700-707. [68] S. Vaddiraju, D. J. Burgess, I. Tomazos, F. C. Jain, and F. Papadimitrakopou los, “Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises,” vol. 4, no. 6, pp. 1540-1562. [69] R. P. Radermecker, A. Sultan, C. Piot, A. S. Remy, A. Avignon, and E. Renard, “Continuous glucose monitoring as a tool to identify hyperglycaemia in non-diabetic patients with acute coronary syndromes,” vol. 26, no. 2, pp. 167-170. [70] C. D. Block, B. Manuel-y Keenoy, L. V. Gaal, and P. Rogiers, “Intensive Insulin Therapy in the Intensive Care Unit Assessment by continuous glucose monitoring,” vol. 29, no. 8, pp. 1750-1756. [71] W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose,” vol. 10, no. 5, pp. 622-628. [72] P. A. Goldberg, M. D. Siegel, R. R. Russell, R. S. Sherwin, J. I. Halickman, D. A. Cooper, J. D. Dziura, and S. E. Inzucchi, “Experience with the Continuous Glucose Monitoring System in a Medical Intensive Care Unit,” vol. 6, no. 3, pp. 339-347. [73] K. M. Schuster, K. Barre, S. E. Inzucchi, R. Udelsman, and K. A. Davis, “Continuous glucose monitoring in the surgical intensive care unit: Concordance with capillary glucose,” vol. 76, no. 3, pp. 798-803. [74] U. Holzinger, J. Warszawska, R. Kitzberger, H. Herkner, P. G. H. Metnitz, and C. Madl, “Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring,” vol. 35, no. 8, pp. 1383-1389. [75] J. C. Boyd and D. E. Bruns, “Effects of Measurement Frequency on Analytical Quality Required for Glucose Measurements in Intensive Care Units: Assessments by Simula tion Models,” vol. 60, no. 4, pp. 644-650. [76] B. Kovatchev, S. Anderson, L. Heinemann, and W. Clarke, “Comparison of the Nu merical and Clinical Accuracy of Four Continuous Glucose Monitors,” vol. 31, no. 6, pp. 1160-1164. [77] S. E. Noujaim, D. Horwitz, M. Sharma, and J. Marhoul, “Accuracy Requirements for a Hypoglycemia Detector: An Analytical Model to Evaluate the Effects of Bias, Precision, and Rate of Glucose Change,” vol. 1, no. 5, pp. 652-668. [78] M. E. Wilinska and R. Hovorka, “Glucose Control in the Intensive Care Unit by Use of Continuous Glucose Monitoring: What Level of Measurement Error Is Acceptable?,” vol. 60, no. 12, pp. 1500-1509. [79] T. V. Herpe, B. D. Moor, G. V. den Berghe, and D. Mesotten, “Modeling of Effect of Glucose Sensor Errors on Insulin Dosage and Glucose Bolus Computed by LOGICInsulin,” vol. 60, no. 12, pp. 1510-1518. [80] J. C. Boyd and D. E. Bruns, “Performance Requirements for Glucose Assays in Inten sive Care Units,” vol. 60, no. 12, pp. 1463-1465. [81] B. D. Mensh, N. A. Wisniewski, B. M. Neil, and D. R. Burnett, “Susceptibility of Interstitial Continuous Glucose Monitor Performance to Sleeping Position,” vol. 7, no. 4, pp. 863-870. [82] A. M. Albisser, B. S. Leibel, T. G. Ewart, Z. Davidovac, C. K. Botz, and W. Zingg, “An artificial endocrine pancreas,” vol. 23, no. 5, pp. 389-396. [83] E. Pfeiffer, C. Thum, and A. Clemens, “The Artificial Beta Cell - A Continuous Control of Blood Sugar by External Regulation of Insulin Infusion (Glucose Controlled Insulin Infusion System),” vol. 6, pp. 339-342. [84] J. Mirouze, J. L. Selam, T. C. Pham, and D. Cavadore, “Evaluation of exogenous insulin homoeostasis by the artificial pancreas in insulin-dependent diabetes,” vol. 13, no. 3, pp. 273-278. [85] A. H. Clemens, D. L. Hough, and P. A. D'Orazio, “Development of the Biostator Glucose clamping algorithm.,” vol. 28, no. 9, pp. 1899-1904. [86] G. M. Steil, C. C. Palerm, N. Kurtz, G. Voskanyan, A. Roy, S. Paz, and F. R. Kandeel, “The Effect of Insulin Feedback on Closed Loop Glucose Control,” vol. 96, no. 5, pp. 1402-1408. [87] F. J. Doyle, L. M. Huyett, J. B. Lee, H. C. Zisser, and E. Dassau, “Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms,” vol. 37, no. 5, pp. 1191- 1197. [88] E. Atlas, R. Nimri, S. Miller, E. A. Grunberg, and M. Phillip, “MD-Logic Artificial Pancreas System A pilot study in adults with type 1 diabetes,” vol. 33, no. 5, pp. 1072- 1076. [89] M. S. Ibbini and M. A. Masadeh, “A fuzzy logic based closed-loop control sys tem for blood glucose level regulation in diabetics,” vol. 29, no. 2, pp. 64-69, 2005/03//Mar/Apr2005. [90] R. Mauseth, I. B. Hirsch, J. Bollyky, R. Kircher, D. Matheson, S. Sanda, and C. Green baum, “Use of a Fuzzy Logic Controller in a Closed-Loop Artificial Pancreas,” vol. 15, no. 8, pp. 628-633. [91] P. Herrero, R. Calm, J. Veh, J. Armengol, P. Georgiou, N. Oliver, and C. Tomazou, “Robust Fault Detection System for Insulin Pump Therapy Using Continuous Glucose Monitoring,” vol. 6, no. 5, pp. 1131-1141. [92] L. Magni, D. M. Raimondo, L. Bossi, C. D. Man, G. De Nicolao, B. Kovatchev, and C. Cobelli, “Model Predictive Control of Type 1 Diabetes: An in Silico Trial,” vol. 1, no. 6, pp. 804-812. [93] R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M. Massi-Benedetti, M. O. Fed erici, T. R. Pieber, H. C. Schaller, L. Schaupp, T. Vering, and M. E. Wilinska, “Nonlin ear model predictive control of glucose concentration in subjects with type 1 diabetes,” vol. 25, no. 4, p. 905. [94] B. Grosman, E. Dassau, H. C. Zisser, L. Jovanovi, and F. J. Doyle, “Zone Model Predictive Control: A Strategy to Minimize Hyperand Hypoglycemic Events,” vol. 4, no. 4, pp. 961-975. [95] H. Lee, B. A. Buckingham, D. M. Wilson, and B. W. Bequette, “A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator,” vol. 3, no. 5, pp. 1082-1090. [96] F. Cameron, B. W. Bequette, D. M. Wilson, B. A. Buckingham, H. Lee, and G. Niemeyer, “A Closed-Loop Artificial Pancreas Based on Risk Management,” vol. 5, no. 2, pp. 368-379. [97] S. Schmidt, D. Boiroux, A. K. Duun-Henriksen, L. Frssing, O. Skyggebjerg, J. B. Jrgensen, N. K. Poulsen, H. Madsen, S. Madsbad, and K. Nrgaard, “Model-Based Closed-Loop Glucose Control in Type 1 Diabetes: The DiaCon Experience,” vol. 7, no. 5, pp. 1255-1264. [98] S. Del Favero, D. Bruttomesso, and C. Cobelli, “Artificial Pancreas: A Review of Fun damentals and Inpatient and Outpatient Studies,” in Frontiers in Diabetes (D. Brut tomesso and G. Grassi, eds.), vol. 24, pp. 166-189, S. KARGER AG. [99] F. H. El-Khatib, S. J. Russell, D. M. Nathan, R. G. Sutherlin, and E. R. Damiano, “A bihormonal closed-loop artificial pancreas for type 1 diabetes,” vol. 2, no. 27, p. 27ra27. [100] F. Chee, T. Fernando, and P. van Heerden, “Closed-loop glucose control in critically ill patients using continuous glucose monitoring system (CGMS) in real time,” vol. 7, no. 1, pp. 43-53. [101] T. Yatabe, R. Yamazaki, H. Kitagawa, T. Okabayashi, K. Yamashita, K. Hanazaki, and M. Yokoyama, “The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients*:,” vol. 39, no. 3, pp. 575-578. [102] K. Yamashita and T. Yatabe, “Intraoperative glycemic control procedures and the use of an artificial pancreas,” vol. 15, no. 33, pp. 4126-4131. [103] L. Leelarathna, S. W. English, H. Thabit, K. Caldwell, J. M. Allen, K. Kumareswaran, M. E. Wilinska, M. Nodale, J. Mangat, M. L. Evans, R. Burnstein, and R. Hovorka, “Feasibility of fully automated closed-loop glucose control using continuous subcuta neous glucose measurements in critical illness: A randomized controlled trial,” vol. 17, no. 4, p. R159. [104] P. J. Strasma, S. Finfer, O. Flower, B. Hipszer, M. Kosiborod, L. Macken, M. Sechter berger, P. H. J. van der Voort, J. H. DeVries, and J. I. Joseph, “Use of an Intravascular Fluorescent Continuous Glucose Sensor in ICU Patients,” vol. 9, no. 4, pp. 762-770. [105] I. I. Raad and G. P. Bodey, “Infectious Complications of Indwelling Vascular Catheters,” vol. 15, no. 2, pp. 197-208. [106] “Catheter Complications in Total Parenteral Nutrition A Prospective Study of 200 Consecutive Patients NEJM.” [107] I. I. Raad, M. Luna, S.-A. M. Khalil, J. W. Costerton, C. Lam, and G. P. Bodey, “The Relationship Between the Thrombotic and Infectious Complications of Central Venous Catheters,” vol. 271, no. 13, pp. 1014-1016. [108] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press. [109] J. Lin, N. N. Razak, C. G. Pretty, A. Le Compte, P. Docherty, J. D. Parente, G. M. Shaw, C. E. Hann, and J. Geoffrey Chase, “A physiological Intensive Control InsulinNutrition-Glucose (ICING) model validated in critically ill patients,” vol. 102, no. 2, pp. 192-205. [110] J. Plank, J. Blaha, J. Cordingley, M. E. Wilinska, L. J. Chassin, C. Morgan, S. Squire, M. Haluzik, J. Kremen, S. Svacina, W. Toller, A. Plasnik, M. Ellmerer, R. Hovorka, and T. R. Pieber, “Multicentric, Randomized, Controlled Trial to Evaluate Blood Glucose Control by the Model Predictive Control Algorithm Versus Routine Glucose Management Protocols in Intensive Care Unit Patients,” vol. 29, no. 2, pp. 271-276. [111] A. Roy, “Dynamic Modeling of Free Fatty Acid, Glucose, and Insulin During Rest and Exercise in Insulin Dependent Diabetes Mellitus Patients.” [112] P. D. Docherty, J. G. Chase, C. E. Hann, T. F. Lotz, J. Lin, K. A. McAuley, and G. M. Shaw, “The Identification of Insulin Saturation Effects During the Dynamic Insulin Sensitivity Test,” vol. 4, pp. 141-148. [113] A. Pritchard-Bell, G. Clermont, T. D. Knab, J. Maalouf, and R. S. Parker, “Subcuta neous Insulin Dynamics in a Critical Care Population,” (Submitted). [114] D. C. Howey, R. R. Bowsher, R. L. Brunelle, and J. R. Woodworth, “[Lys(B28), Pro(B29)]-Human Insulin: A Rapidly Absorbed Analogue of Human Insulin,” vol. 43, no. 3, pp. 396-402. [115] V. Melki, E. Renard, V. Lassmann-Vague, S. Boivin, B. Guerci, H. Hanaire-Broutin, J. Bringer, P. Belicar, N. Jeandidier, L. Meyer, P. Blin, B. Augendre-Ferrante, and J.-P. Tauber, “Improvement of HbA1c and Blood Glucose Stability in IDDM Patients Treated With Lispro Insulin Analog in External Pumps,” vol. 21, no. 6, pp. 977-982. [116] L. Crenier, C. Abou-Elias, and B. Corvilain, “Glucose Variability Assessed by Low Blood Glucose Index Is Predictive of Hypoglycemic Events in Patients With Type 1 Diabetes Switched to Pump Therapy,” vol. 36, no. 8, pp. 2148-2153. [117] S. Ellahham, “Insulin therapy in critically ill patients,” vol. 6, pp. 1089-1101. [118] A. Prieto-Tenreiro, R. Villar-Taibo, M. Pazos-Couselo, M. Gonzlez-Rodrguez, F. Casanueva, and J. M. Garca-Lpez, “[benefits of subcutaneous continuous insulin infusion in type 1 diabetic patients with high glycemic variability],” vol. 59, no. 4, pp. 246-253. [119] B. Guerci and J. P. Sauvanet, “Subcutaneous insulin: Pharmacokinetic variability and glycemic variability,” vol. 31, pp. 4S7-4S24. [120] B. Yegneswaran, R. Parket, S. Gawel, A. Pritchard-Bell, T. Ho, and G. Clermont, “Association between average glucose levels and hospital mortality among critically ill patients,” vol. 17, p. P458. [121] L. M. Fisk, A. J. Le Compte, G. M. Shaw, and J. G. Chase, “Improving safety of glucose control in intensive care using virtual patients and simulated clinical trials,” vol. 3, no. 3, pp. 415-430. [122] K. Choi, T. J. Oh, J. C. Lee, M. Kim, H. C. Kim, Y. M. Cho, and S. Kim, “In-Silico Trials for Glucose Control in Hospitalized Patients with Type 2 Diabetes,” vol. 31, no. 2, pp. 231-239. [123] S. S. Kanderian, S. A. Weinzimer, and G. M. Steil, “The Identifiable Virtual Patient Model: Comparison of Simulation and Clinical Closed-Loop Study Results,” vol. 6, no. 2, pp. 371-379. [124] P. Palumbo, G. Pizzichelli, S. Panunzi, P. Pepe, and A. D. Gaetano, “Tests on a virtual patient for an observer-based, closed-loop control of plasma glycemia,” in 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 6936-6941. [125] A. Guerrini, M. Sorine, and P. Kalfon, “Assessing Performances of Glucose Control Algorithms on a Set of Virtual ICU Patients,” [126] J. G. Chase, F. Suhaimi, S. Penning, J.-C. Preiser, A. J. Le Compte, J. Lin, C. G. Pretty, G. M. Shaw, K. T. Moorhead, and T. Desaive, “Validation of a model-based virtual trials method for tight glycemic control in intensive care,” vol. 9, p. 84. [127] J. C. Lee, M. Kim, K. R. Choi, T. J. Oh, M. Y. Kim, Y. M. Cho, K. Kim, H. C. Kim, and S. Kim, “In Silico Evaluation of Glucose Control Protocols for Critically Ill Patients,” vol. 59, no. 1, pp. 54-57. [128] B. Bequette, F. Cameron, N. Baysal, D. Howsmon, B. Buckingham, D. Maahs, and C. Levy, “Algorithms for a Single Hormone Closed-Loop Artificial Pancreas: Chal lenges Pertinent to Chemical Process Operations and Control,” vol. 4, no. 4, p. 39. [129] A. Roy and R. S. Parker, “Dynamic modeling of free fatty acid, glucose, and insulin: An extended ”minimal model”,” vol. 8, no. 6, pp. 617-626. [130] S. Penning, C. Pretty, J.-C. Preiser, G. M. Shaw, T. Desaive, and J. G. Chase, “Glucose control positively influences patient outcome: A retrospective study,” vol. 30, no. 3, pp. 455-459. [131] D. C. Klonoff, “Continuous Glucose Monitoring Roadmap for 21st century diabetes therapy,” vol. 28, no. 5, pp. 1231-1239. [132] D. C. Klonoff, C. Lias, S. Beck, J. L. Parkes, B. Kovatchev, R. A. Vigersky, G. ArreazaRubin, R. D. Burk, A. Kowalski, R. Little, J. Nichols, M. Petersen, K. Rawlings, D. B. Sacks, E. Sampson, S. Scott, J. J. Seley, R. Slingerland, and H. W. Vesper, “Develop ment of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol,” p. 1932296815614587. [133] B. W. Bode, T. M. Gross, K. R. Thornton, and J. J. Mastrototaro, “Continuous glucose monitoring used to adjust diabetes therapy improves glycosylated hemoglobin: A pilot study,” vol. 46, no. 3, pp. 183-190. [134] H. P. Chase, L. M. Kim, S. L. Owen, T. A. MacKenzie, G. J. Klingensmith, R. Murt feldt, and S. K. Garg, “Continuous subcutaneous glucose monitoring in children with type 1 diabetes,” vol. 107, no. 2, pp. 222-226. [135] C. L. Rohlfing, H.-M. Wiedmeyer, R. R. Little, J. D. England, A. Tennill, and D. E. Goldstein, “Defining the Relationship Between Plasma Glucose and HbA1c Analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial,” vol. 25, no. 2, pp. 275-278. [136] J. C. Pickup, S. C. Freeman, and A. J. Sutton, “Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: Meta-analysis of randomised controlled trials using individual patient data,” vol. 343, p. d3805. [137] S. Garg, H. Zisser, S. Schwartz, T. Bailey, R. Kaplan, S. Ellis, and L. Jovanovic, “Improvement in Glycemic Excursions With a Transcutaneous, Real-Time Continuous Glucose Sensor A randomized controlled trial,” vol. 29, no. 1, pp. 44-50. [138] S. Garg and L. Jovanovic, “Relationship of Fasting and Hourly Blood Glucose Levels to HbA1c Values Safety, accuracy, and improvements in glucose profiles obtained using a 7-day continuous glucose sensor,” vol. 29, no. 12, pp. 2644-2649. [139] “Press Announcements - FDA approves first automated insulin delivery device for type 1 diabetes.” [140] A. M. Corstjens, J. J. Ligtenberg, I. C. van der Horst, R. Spanjersberg, J. S. Lind, J. E. Tulleken, J. H. Meertens, and J. G. Zijlstra, “Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients,” vol. 10, no. 5, p. R135. [141] R. T. van Hooijdonk, T. Winters, J. C. Fischer, E. C. van Dongen-Lases, J. S. Krins ley, J.-C. Preiser, and M. J. Schultz, “Accuracy and limitations of continuous glucose monitoring using spectroscopy in critically ill patients,” vol. 4, p. 8. [142] K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the SensorTis sue InterfaceEffects of Motion, Pressure, and Design on Sensor Performance and the Foreign Body ResponsePart I: Theoretical Framework,” vol. 5, no. 3, pp. 632-646. [143] K. L. Helton, B. D. Ratner, and N. A. Wisniewski, “Biomechanics of the SensorTissue InterfaceEffects of Motion, Pressure, and Design on Sensor Performance and Foreign Body ResponsePart II: Examples and Application,” vol. 5, no. 3, pp. 647-656. [144] D. M. Maahs, D. DeSalvo, L. Pyle, T. Ly, L. Messer, P. Clinton, E. Westfall, R. P. Wadwa, and B. Buckingham, “Effect of Acetaminophen on CGM Glucose in an Out patient Setting,” vol. 38, no. 10, pp. e158-e159. [145] K. Tonyushkina and J. H. Nichols, “Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results,” vol. 3, no. 4, pp. 971-980. [146] YSI, “YSI 2300 Stat Plus Glucose & Lactate Ananlyzer — ysi.com.” [147] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and solving math ematical programs in python,” vol. 3, no. 3, pp. 219-260. [148] W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff, Pyomo Optimization Mod eling in Python, vol. 67 of Springer Optimization and Its Applications. Springer US. [149] A. Wchter and L. T. Biegler, “On the implementation of an interior-point filter line search algorithm for large-scale nonlinear programming,” vol. 106, no. 1, pp. 25-57. [150] HSL, “A collection of Fortran codes for large scale scientific computation..” [151] cofa1, “Dexcom product guides - user guides, quick start, tutorials.” [152] A. Facchinetti, S. Del Favero, G. Sparacino, J. Castle, W. Ward, and C. Cobelli, “Modeling the Glucose Sensor Error,” vol. 61, no. 3, pp. 620-629. [153] B. P. Kovatchev, “Hypoglycemia Reduction and Accuracy of Continuous Glucose Mon itoring,” vol. 17, no. 8, pp. 530-533. [154] H. Akaike, “A Bayesian extension of the minimum AIC procedure of autoregressive model fitting,” vol. 66, no. 2, pp. 237-242. [155] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, 2nd ed ed. OCLC: ocm48557578. [156] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling with python,” in Proceedings of the 9th Python in Science Conference, pp. 57-61. [157] “System and methods for processing analyte sensor data for sensor calibration.” [158] H. Kirchsteiger, J. B. Jrgensen, E. Renard, and L. del Re, Prediction Methods for Blood Glucose Concentration: Design, Use and Evaluation. Springer. [159] A. Pritchard-Bell, G. Clermont, T. Knab, D., J. Maalouf, M. Vilkhovoy, and R. S. Parker, “Modeling Glucose and Subcutaneous Insulin Dynamics in Critical Care,” In Press. [160] C. R. Kahn, “Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A necessary distinction,” vol. 27, no. 12, pp. 1893-1902. [161] R. N. Bergman, L. S. Phillips, and C. Cobelli, “Physiologic evaluation of factors control ling glucose tolerance in man: Measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose.,” vol. 68, no. 6, pp. 1456-1467. [162] R. L. Prigeon, M. E. Rder, D. Porte, and S. E. Kahn, “The effect of insulin dose on the measurement of insulin sensitivity by the minimal model technique. Evidence for saturable insulin transport in humans.,” vol. 97, no. 2, pp. 501-507. [163] A. Natali, A. Gastaldelli, S. Camastra, A. M. Sironi, E. Toschi, A. Masoni, E. Fer rannini, and A. Mari, “Dose-response characteristics of insulin action on glucose metabolism: A non-steady-state approach,” vol. 278, no. 5, pp. E794-E801. [164] J. G. Chase, G. M. Shaw, J. Lin, C. V. Doran, M. Bloomfield, G. C. Wake, B. Broughton, C. Hann, and T. Lotz, “Impact of Insulin-Stimulated Glucose Removal Saturation on Dynamic Modelling and Control of Hyperglycaemia,” vol. 1, pp. 79-94. [165] R. A. Rizza, L. J. Mandarino, and J. E. Gerich, “Dose-response characteristics for effects of insulin on production and utilization of glucose in man,” vol. 240, no. 6, pp. E630-E639. [166] P. N. Bvenholm, J. Pigon, C.-G. stenson, and S. Efendic, “Insulin Sensitivity of Sup pression of Endogenous Glucose Production Is the Single Most Important Determinant of Glucose Tolerance,” vol. 50, no. 6, pp. 1449-1454. [167] W. C. Duckworth, R. G. Bennett, and F. G. Hamel, “Insulin Degradation: Progress and Potential,” vol. 19, no. 5, pp. 608-624. [168] C. D. Man, R. A. Rizza, and C. Cobelli, “Meal Simulation Model of the Glucose-Insulin System,” vol. 54, no. 10, pp. 1740-1749. [169] A. Pritchard-Bell, “Mathematical Modeling in Systems Medicine: New Paradigms for Glucose Control in Critical Care.” [170] A. Roy and R. S. Parker, “A phenomenological model of plasma FFA, glucose, and in sulin concentrations during rest and exercise,” in American Control Conference (ACC), 2010, pp. 5161-5166. [171] E. Cengiz and W. V. Tamborlane, “A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring,” vol. 11, pp. S-11-S-16. [172] P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of Glucose Levels in Dermal Interstitial Fluid and Finger Capil lary Blood,” vol. 3, no. 1, pp. 81-90. [173] R. J. Davey, C. Low, T. W. Jones, and P. A. Fournier, “Contribution of an intrinsic lag of continuous glucose monitoring systems to differences in measured and actual glucose concentrations changing at variable rates in vitro,” vol. 4, no. 6, pp. 1393-1399. [174] E. Kulcu, J. A. Tamada, G. Reach, R. O. Potts, and M. J. Lesho, “Physiological Differ ences Between Interstitial Glucose and Blood Glucose Measured in Human Subjects,” vol. 26, no. 8, pp. 2405-2409. [175] A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time Lag of Glucose From Intravascular to Interstitial Compartment in Humans,” vol. 62, no. 12, pp. 4083-4087. [176] A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Co belli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” vol. 9, no. 1, pp. 63-68. [177] A. Facchinetti, G. Sparacino, and C. Cobelli, “Enhanced accuracy of continuous glucose monitoring by online extended kalman filtering,” vol. 12, no. 5, pp. 353-363. [178] M. Breton and B. Kovatchev, “Analysis, Modeling, and Simulation of the Accuracy of Continuous Glucose Sensors,” vol. 2, no. 5, pp. 853-862. [179] D. J. Lunn, C. Wei, and R. Hovorka, “Fitting dynamic models with forcing func tions: Application to continuous glucose monitoring in insulin therapy,” vol. 30, no. 18, pp. 2234-2250. [180] S. Guerra, A. Facchinetti, G. Sparacino, G. D. Nicolao, and C. Cobelli, “Enhancing the accuracy of subcutaneous glucose sensors: A real-time deconvolution-based approach,” vol. 59, no. 6, pp. 1658-1669. [181] O. M. Alifanov, E. A. Artiukhin, and S. V. Rumiantsev, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. Begell House. [182] C. Simon and G. Brandenberger, “Ultradian oscillations of insulin secretion in hu mans,” vol. 51, pp. S258-S261. [183] C. Pretty, P. Docherty, J. Lin, L. Pfeifer, U. Jamaludin, G. Shaw, A. Le Compte, and J. Chase, “Endogenous insulin secretion and suppression during and after sepsis in critically ill patients: Implications for tight glycemic control protocols,” vol. 15, p. P389. [184] J. Li, Y. Kuang, and C. C. Mason, “Modeling the glucoseinsulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays,” vol. 242, no. 3, pp. 722-735. [185] A. D. Baron, O. G. Kolterman, J. Bell, L. J. Mandarino, and J. M. Olefsky, “Rates of noninsulin-mediated glucose uptake are elevated in type II diabetic subjects.,” vol. 76, no. 5, pp. 1782-1788. [186] M. P. Macedo, I. S. Lima, J. M. Gaspar, R. A. Afonso, R. S. Patarro, Y.-B. Kim, and R. T. Ribeiro, “Risk of postprandial insulin resistance: The liver/vagus rapport,” vol. 15, no. 1, pp. 67-77. [187] R. A. DeFronzo and D. Tripathy, “Skeletal Muscle Insulin Resistance Is the Primary Defect in Type 2 Diabetes,” vol. 32, pp. S157-S163. [188] R. Nesher and E. Cerasi, “Modeling phasic insulin release immediate and time dependent effects of glucose,” vol. 51, pp. S53-S59. [189] J.-C. Henquin, N. Ishiyama, M. Nenquin, M. A. Ravier, and J.-C. Jonas, “Signals and Pools Underlying Biphasic Insulin Secretion,” vol. 51, pp. S60-S67. [190] P. Rorsman, L. Eliasson, E. Renstrm, J. Gromada, S. Barg, and S. Gpel, “The Cell Physiology of Biphasic Insulin Secretion,” vol. 15, no. 2, pp. 72-77. [191] Z. Wang and D. C. Thurmond, “Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins,” vol. 122, no. 7, pp. 893-903. [192] S. G. Straub and G. W. G. Sharp, “Glucose-stimulated signaling pathways in biphasic insulin secretion,” vol. 18, no. 6, pp. 451-463. [193] K. S. Polonsky, B. D. Given, L. Hirsch, E. T. Shapiro, H. Tillil, C. Beebe, J. A. Galloway, B. H. Frank, T. Karrison, and E. Van Cauter, “Quantitative study of insulin secretion and clearance in normal and obese subjects.,” vol. 81, no. 2, pp. 435-441. [194] S. Gudbjrnsdttir, M. Sjstrand, L. Strindberg, J. Wahren, and P. Lnnroth, “Direct Measurements of the Permeability Surface Area for Insulin and Glucose in Human Skeletal Muscle,” vol. 88, no. 10, pp. 4559-4564. [195] M. Sjstrand, A. Holmng, and P. Lnnroth, “Measurement of interstitial insulin in human muscle,” vol. 276, no. 1, pp. E151-E154. [196] M. Sjstrand, A. Holmng, L. Strindberg, and P. Lnnroth, “Estimations of muscle in terstitial insulin, glucose, and lactate in type 2 diabetic subjects,” vol. 279, no. 5, pp. E1097-E1103. [197] N. M. O'Meara, J. Sturis, E. Van Cauter, and K. S. Polonsky, “Lack of control by glucose of ultradian insulin secretory oscillations in impaired glucose tolerance and in non-insulin-dependent diabetes mellitus.,” vol. 92, no. 1, p. 262. [198] C. McDonald, A. Dunaif, and D. T. Finegood, “Minimal-Model Estimates of Insulin Sensitivity Are Insensitive to Errors in Glucose Effectiveness 1,” vol. 85, no. 7, pp. 2504- 2508. [199] G. Pillonetto, G. Sparacino, P. Magni, R. Bellazzi, and C. Cobelli, “Minimal model SI=0 problem in NIDDM subjects: Nonzero Bayesian estimates with credible confidence intervals,” vol. 282, no. 3, pp. E564-E573. [200] A. Mari and A. Valerio, “A circulatory model for the estimation of insulin sensitivity,” vol. 5, no. 12, pp. 1747-1752. [201] K. Turnheim and W. K. Waldhusl, “Essentials of insulin pharmacokinetics,” vol. 100, no. 3, pp. 65-72. [202] Y. T. Kruszynska, P. D. Home, I. Hanning, and K. G. Alberti, “Basal and 24-h Cpeptide and insulin secretion rate in normal man,” vol. 30, no. 1, pp. 16-21. [203] T. E. Shapiro, H. Tillil, A. Rubenstein, and K. Polonsky, “Peripheral Insulin Parallels Changes in Insulin Secretion More Closely Than C-Peptide After Bolus Intravenous Glucose Administration*,” vol. 67, no. 5, pp. 1094-1099. [204] M. H. Shanik, Y. Xu, J. krha, R. Dankner, Y. Zick, and J. Roth, “Insulin Resistance and Hyperinsulinemia Is hyperinsulinemia the cart or the horse?,” vol. 31, pp. S262- S268. [205] B. A. Cooperberg and P. E. Cryer, “Glucagon supports postabsorptive plasma glucose concentrations in humans with biologically optimal insulin levels,” vol. 59, no. 11, pp. 2941-2944. [206] J. Iversen and D. W. Miles, “Evidence for a Feedback Inhibition of Insulin on Insulin Secretion in the Isolated, Perfused Canine Pancreas,” vol. 20, no. 1, pp. 1-9. [207] I. B. Leibiger, B. Leibiger, and P.-O. Berggren, “Insulin feedback action on pancreatic -cell function,” vol. 532, pp. 1-6. [208] C. J. Rhodes, M. F. White, J. L. Leahy, and S. E. Kahn, “Direct Autocrine Action of Insulin on -Cells: Does It Make Physiological Sense?,” vol. 62, no. 7, pp. 2157-2163. [209] A. R. Saltiel and C. R. Kahn, “Insulin signalling and the regulation of glucose and lipid metabolism,” vol. 414, no. 6865, pp. 799-806. [210] C. J. Hedeskov, “Mechanism of glucose-induced insulin secretion.,” vol. 60, no. 2, pp. 442-509. [211] J. Olefsky, J. W. Farquhar, and G. Reaven, “Relationship between fasting plasma insulin level and resistance to insulin-mediated glucose uptake in normal and diabetic subjects,” vol. 22, no. 7, pp. 507-513. [212] A. Laws, A. C. King, W. L. Haskell, and G. M. Reaven, “Relation of fasting plasma insulin concentration to high density lipoprotein cholesterol and triglyceride concen trations in men.,” vol. 11, no. 6, pp. 1636-1642. [213] T. Rnnemaa, M. Laakso, K. Pyrl, V. Kallio, and P. Puukka, “High fasting plasma insulin is an indicator of coronary heart disease in non-insulin-dependent diabetic pa tients and nondiabetic subjects.,” vol. 11, no. 1, pp. 80-90. [214] C. Weyer, R. L. Hanson, P. A. Tataranni, C. Bogardus, and R. E. Pratley, “A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: Evidence for a pathogenic role of relative hyperinsulinemia.,” vol. 49, no. 12, pp. 2094-2101. [215] C. G. Pretty, A. J. Le Compte, J. G. Chase, G. M. Shaw, J.-C. Preiser, S. Penning, and T. Desaive, “Variability of insulin sensitivity during the first 4 days of critical illness: Implications for tight glycemic control,” vol. 2, no. 1, p. 17. [216] A. Blakemore, S.-H. Wang, A. Le Compte, G. M. Shaw, X.-W. Wong, J. Lin, T. Lotz, C. E. Hann, and J. G. Chase, “Model-Based Insulin Sensitivity as a Sepsis Diagnostic in Critical Care,” vol. 2, no. 3, pp. 468-477. [217] T. Ferenci, B. Beny, L. Kovcs, L. Fisk, G. M. Shaw, and J. G. Chase, “Daily Evolution of Insulin Sensitivity Variability with Respect to Diagnosis in the Critically Ill,” vol. 8, no. 2, p. e57119. [218] S. D. Mittelman, Y. Y. Fu, K. Rebrin, G. Steil, and R. N. Bergman, “Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyper glucagonemia.,” vol. 100, no. 12, pp. 3121-3130. [219] A. Seppl-Lindroos, S. Vehkavaara, A.-M. Hkkinen, T. Goto, J. Westerbacka, A. Sovi jrvi, J. Halavaara, and H. Yki-Jrvinen, “Fat Accumulation in the Liver Is Associated with Defects in Insulin Suppression of Glucose Production and Serum Free Fatty Acids Independent of Obesity in Normal Men,” vol. 87, no. 7, pp. 3023-3028. [220] A. Mitrakou, D. Kelley, M. Mokan, T. Veneman, T. Pangburn, J. Reilly, and J. Gerich, “Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance,” vol. 326, no. 1, pp. 22-29. [221] I. M. Toli, E. Mosekilde, and J. Sturis, “Modeling the InsulinGlucose Feedback System: The Significance of Pulsatile Insulin Secretion,” vol. 207, no. 3, pp. 361-375. [222] E. Watson, M. Chappell, F. Ducrozet, S. Poucher, and J. Yates, “A new general glucose homeostatic model using a proportional-integral-derivative controller,” vol. 102, no. 2, pp. 119-129. [223] S. A. Weinzimer, G. M. Steil, K. L. Swan, J. Dziura, N. Kurtz, and W. V. Tamborlane, “Fully Automated Closed-Loop Insulin Delivery Versus Semiautomated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Artificial Pancreas,” vol. 31, no. 5, pp. 934-939. [224] E. Renard, J. Place, M. Cantwell, H. Chevassus, and C. C. Palerm, “Closed-Loop Insulin Delivery Using a Subcutaneous Glucose Sensor and Intraperitoneal Insulin De livery,” vol. 33, no. 1, pp. 121-127. [225] T. Peyser, E. Dassau, M. Breton, and J. S. Skyler, “The artificial pancreas: Current status and future prospects in the management of diabetes,” vol. 1311, no. 1, pp. 102- 123. [226] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser, and D. E. Seborg, “An Improved PID Switching Control Strategy for Type 1 Diabetes,” vol. 55, no. 3, pp. 857-865. [227] C. Cobelli, E. Renard, and B. Kovatchev, “Artificial Pancreas: Past, Present, Future,” vol. 60, no. 11, pp. 2672-2682. [228] W. L. Clarke, S. Anderson, M. Breton, S. Patek, L. Kashmer, and B. Kovatchev, “Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin De livery and a Model Predictive Control Algorithm: The Virginia Experience,” vol. 3, no. 5, pp. 1031-1038. [229] D. Bruttomesso, A. Farret, S. Costa, M. C. Marescotti, M. Vettore, A. Avogaro, A. Tiengo, C. D. Man, J. Place, A. Facchinetti, S. Guerra, L. Magni, G. D. Nico lao, C. Cobelli, E. Renard, and A. Maran, “Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier,” vol. 3, no. 5, pp. 1014- 1021. [230] B. W. Bequette, “A Critical Assessment of Algorithms and Challenges in the Devel opment of a Closed-Loop Artificial Pancreas,” vol. 7, no. 1, pp. 28-47. [231] R. A. Ritzel, A. E. Butler, R. A. Rizza, J. D. Veldhuis, and P. C. Butler, “Relationship Between -Cell Mass and Fasting Blood Glucose Concentration in Humans,” vol. 29, no. 3, pp. 717-718. [232] O. Ajala, H. Lockett, G. Twine, and D. E. Flanagan, “Depth and duration of hypo glycaemia achieved during the insulin tolerance test,” vol. 167, no. 1, pp. 59-65. [233] A. Caraty, M. Grino, A. Locatelli, V. Guillaume, F. Boudouresque, B. Conte-Devolx, and C. Oliver, “Insulin-induced hypoglycemia stimulates corticotropin-releasing factor and arginine vasopressin secretion into hypophysial portal blood of conscious, unre strained rams.,” vol. 85, no. 6, pp. 1716-1721. [234] N. Tesfaye and E. R. Seaquist, “Neuroendocrine Responses to Hypoglycemia,” vol. 1212, pp. 12-28. [235] J. E. Sprague and A. M. Arbelez, “Glucose Counterregulatory Responses to Hypo glycemia,” vol. 9, no. 1, pp. 463-475. [236] J. Gerich, P. Cryer, and R. Rizza, “Hormonal mechanisms in acute glucose counterreg ulation: The relative roles of glucagon, epinephrine, norepinephrine, growth hormone, and cortisol,” vol. 29, no. 11, pp. 1164-1175. [237] P. D. Feo, G. Perriello, E. Torlone, M. M. Ventura, C. Fanelli, F. Santeusanio, P. Brunetti, J. E. Gerich, and G. B. Bolli, “Contribution of cortisol to glucose coun terregulation in humans,” vol. 257, no. 1, pp. E35-E42. [238] I. Lager, “The insulin-antagonistic effect of the counterregulatory hormones,” vol. 735, pp. 41-47. [239] S. N. Davis, C. Shavers, F. Costa, and R. Mosqueda-Garcia, “Role of cortisol in the pathogenesis of deficient counterregulation after antecedent hypoglycemia in normal humans.,” vol. 98, no. 3, pp. 680-691. [240] S. N. Davis, C. Shavers, B. Davis, and F. Costa, “Prevention of an increase in plasma cortisol during hypoglycemia preserves subsequent counterregulatory re sponses.,” vol. 100, no. 2, pp. 429-438. [241] A. V. Turnbull and C. L. Rivier, “Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: Actions and mechanisms of action,” vol. 79, no. 1, pp. 1-71. [242] C. Tsigos and G. P. Chrousos, “Hypothalamicpituitaryadrenal axis, neuroendocrine factors and stress,” vol. 53, no. 4, pp. 865-871. [243] S. M. Smith and W. W. Vale, “The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress,” vol. 8, no. 4, pp. 383-395. [244] C. W. Burke, “The Pituitary Megatest: Outdated?,” vol. 36, no. 2, pp. 133-134. [245] S. L. Jones, P. J. Trainer, L. Perry, J. a. H. Wass, G. M. Besser, and A. Grossman, “An audit of the insulin tolerance test in adult subjects in an acute investigation unit over one year,” vol. 41, no. 1, pp. 123-128. [246] P. Vestergaard, H. C. Hoeck, P. E. Jakobsen, and P. Laurberg, “Reproducibility of Growth Hormone and Cortisol Responses to the Insulin Tolerance Test and the Short ACTH Test in Normal Adults,” vol. 29, pp. 106-110. [247] E. Erturk, C. A. Jaffe, and A. L. Barkan, “Evaluation of the Integrity of the Hypothalamic-Pituitary-Adrenal Axis by Insulin Hypoglycemia Test,” vol. 83, no. 7, pp. 2350-2354. [248] M. Lange, O. L. Svendsen, N. E. Skakkebaek, J. Muller, A. Juul, M. Schmiegelow, and U. Feldt-Rasmussen, “An audit of the insulin-tolerance test in 255 patients with pituitary disease,” vol. 147, no. 1, pp. 41-47. [249] G. Dickstein, “The assessment of the hypothalamo-pituitary-adrenal axis in pituitary disease: Are there short cuts?,” vol. 26, pp. 25-30. [250] F. C. Greenwood, J. Landon, and T. C. Stamp, “The plasma sugar, free fatty acid, cortisol, and growth hormone response to insulin. I. In control subjects.,” vol. 45, no. 4, pp. 429-436. [251] M. Matsuda and R. A. DeFronzo, “Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp.,” vol. 22, no. 9, pp. 1462-1470. [252] A. Mari, G. Pacini, E. Murphy, B. Ludvik, and J. J. Nolan, “A Model-Based Method for Assessing Insulin Sensitivity From the Oral Glucose Tolerance Test,” vol. 24, no. 3, pp. 539-548. [253] M. Stumvoll, A. Mitrakou, W. Pimenta, T. Jenssen, H. Yki-Jrvinen, T. V. Haeften, W. Renn, and J. Gerich, “Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity.,” vol. 23, no. 3, pp. 295-301. [254] G. Pacini and R. N. Bergman, “MINMOD: A computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test,” vol. 23, no. 2, pp. 113-122. [255] K. Alberti and P. Zimmet, “Definition, diagnosis and classification of diabetes mel litus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation,” vol. 15, no. 7, pp. 539-553. [256] “Glucose tolerance test Results - Mayo Clinic.” [257] “Glucose Tests: The Test — Glucose Test: Blood Sugar; Blood Glucose; Fasting Blood Glucose; Oral Glucose Tolerance Test; OGTT; GTT; Urine Glucose — Lab Tests Online.” [258] T. Vilsbll, T. Krarup, J. Sonne, S. Madsbad, A. Vlund, A. G. Juul, and J. J. Holst, “Incretin Secretion in Relation to Meal Size and Body Weight in Healthy Subjects and People with Type 1 and Type 2 Diabetes Mellitus,” vol. 88, no. 6, pp. 2706-2713. [259] E. Muscelli, A. Mari, A. Casolaro, S. Camastra, G. Seghieri, A. Gastaldelli, J. J. Holst, and E. Ferrannini, “Separate Impact of Obesity and Glucose Tolerance on the Incretin Effect in Normal Subjects and Type 2 Diabetic Patients,” vol. 57, no. 5, pp. 1340-1348. [260] S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” vol. 2, no. 8, p. e12114. [261] K. Vollmer, J. J. Holst, B. Baller, M. Ellrichmann, M. A. Nauck, W. E. Schmidt, and J. J. Meier, “Predictors of Incretin Concentrations in Subjects With Normal, Impaired, and Diabetic Glucose Tolerance,” vol. 57, no. 3, pp. 678-687. [262] M. Axelsen, “Postprandial Hypertriglyceridemia and Insulin Resistance in Normo glycemic First-Degree Relatives of Patients with Type 2 Diabetes,” vol. 131, no. 1, p. 27. [263] E. Breda, M. K. Cavaghan, G. Toffolo, K. S. Polonsky, and C. Cobelli, “Oral Glu cose Tolerance Test Minimal Model Indexes of -Cell Function and Insulin Sensitivity,” vol. 50, no. 1, pp. 150-158. [264] K. Frch, G. Pacini, J. J. Nolan, T. Hansen, A. Tura, and D. Vistisen, “Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs,” vol. 36, no. 11, pp. 3691-3697. [265] G. Bock, C. D. Man, M. Campioni, E. Chittilapilly, R. Basu, G. Toffolo, C. Cobelli, and R. Rizza, “Pathogenesis of Pre,” vol. 55, no. 12, pp. 3536-3549. [266] E. Breda, G. Toffolo, K. S. Polonsky, and C. Cobelli, “Insulin Release in Impaired Glucose Tolerance Oral Minimal Model Predicts Normal Sensitivity to Glucose but Defective Response Times,” vol. 51, pp. S227-S233. [267] M. C. Moore, S. N. Davis, S. L. Mann, and A. D. Cherrington, “Acute Fructose Administration Improves Oral Glucose Tolerance in Adults With Type 2 Diabetes,” vol. 24, no. 11, pp. 1882-1887. [268] “Drugs@FDA: FDA Approved Drug Products.” [269] “HUMALOG INSULIN LISPRO INJECTION, USP(rDNA ORIGIN)100 UNITS PER ML (U-100).” [270] R. A. Rizza, P. E. Cryer, and J. E. Gerich, “Role of Glucagon, Catecholamines, and Growth Hormone in Human Glucose Counterregulation,” vol. 64, no. 1, pp. 62-71. [271] J. Gerich, J. Davis, M. Lorenzi, R. Rizza, N. Bohannon, J. Karam, S. Lewis, R. Kaplan, T. Schultz, and P. Cryer, “Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man,” vol. 236, no. 4, pp. E380-385. [272] K. Nonaka, F. Ono, M. Ishibashi, and N. Okita, “No Delay in Glucose Change at Antecubital Skin in Hypoglycemia of Normal Subjects,” vol. 26, no. 3, pp. 957-958. [273] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. D. III, Process Dynamics and Control. Wiley, 3 edition ed. [274] M. R. Marvin, S. E. Inzucchi, and B. J. Besterman, “Computerization of the Yale Insulin Infusion Protocol and Potential Insights into Causes of Hypoglycemia with Intravenous Insulin,” vol. 15, no. 3, pp. 246-252. [275] R. Juneja, C. Roudebush, N. Kumar, A. Macy, A. Golas, D. Wall, C. Wolverton, D. Nelson, J. Carroll, and S. J. Flanders, “Utilization of a Computerized Intravenous Insulin Infusion Program to Control Blood Glucose in the Intensive Care Unit,” vol. 9, no. 3, pp. 232-240. [276] K. R. Muske and J. B. Rawlings, “Model predictive control with linear models,” vol. 39, no. 2, pp. 262-287. [277] G. Grunberger, J. Abelseth, T. Bailey, B. Bode, Y. Handelsman, R. Hellman, L. Jo vanovi, W. Lane, P. Raskin, W. Tamborlane, and C. Rothermel, “Consensus State ment by the American Association of Clinical Endocrinologists/American College of Endocrinology Insulin Pump Management Task Force,” vol. 20, no. 5, pp. 463-489. [278] “10% Dextrose Injection, USPConcentrated Dextrose in Water.” [279] C. F. Cori and G. T. Cori, “The Fate of Sugar in The Animal Bod IV. The Tolerance of Normal and Insulinized Rats for Intravenously Injected Glucose and Fructose,” vol. 72, no. 2, pp. 597-614. [280] C. V. Rao, J. B. Rawlings, and J. H. Lee, “Constrained linear state estimationa moving horizon approach,” vol. 37, no. 10, pp. 1619-1628. [281] C. Rao, J. Rawlings, and D. Mayne, “Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations,” vol. 48, no. 2, pp. 246-258. [282] D. G. Robertson, J. H. Lee, and J. B. Rawlings, “A moving horizon-based approach for least-squares estimation,” vol. 42, no. 8, pp. 2209-2224. [283] C. V. Rao and J. B. Rawlings, “Constrained process monitoring: Moving-horizon ap proach,” vol. 48, no. 1, pp. 97-109. [284] C. C. Qu and J. Hahn, “Computation of arrival cost for moving horizon estimation via unscented Kalman filtering,” vol. 19, no. 2, pp. 358-363. [285] Dexcom, “Dexcom Platinum G4 Continuous Glucose Monitoring System: Users Man ual.” [286] E. Jones, T. Oliphant, and P. Peterson, SciPy: Open Source Scientific Tools for Python. 2001. [287] G. Zhang, X. Chen, and T. Chen, “Digital redesign via the generalised bilinear trans formation,” vol. 82, no. 4, pp. 741-754. [288] E. Hairer, S. P. Nrsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. No. 8 in Springer series in computational mathematics, Springer, 2nd rev. ed ed. OCLC: ocn620251790. [289] A. Hindmarsh and L. Petzold, “LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff System,” [290] “Choosing Sample Time and Horizons - MATLAB & Simulink.” [291] F. Chee and T. Fernando, Closed-Loop Control of Blood Glucose. Springer Science & Business Media. [292] L. Tarr, B. S. Oppenheimer, and R. V. Sager, “The circulation time in various clinical conditions determined by the use of sodium dehydrocholate,” vol. 8, no. 6, pp. 766-786. [293] “Welcome to GlucoStabilizer.” [294] I. G. M. Team, “IV GlucoStabilizer: How Insulin and Dextrose 50% are calculated.” [295] S. Todi and M. Bhattacharya, “Glycemic variability and outcome in critically ill,” vol. 18, no. 5, pp. 285-290. [296] L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.-P. Cristol, and C. Colette, “Activation of Oxidative Stress by Acute Glucose Fluctuations Compared With Sus tained Chronic Hyperglycemia in Patients With Type 2 Diabetes,” vol. 295, no. 14, pp. 1681-1687. [297] L. A. Dossett, H. Cao, N. T. Mowery, M. J. Dortch, J. M. Morris, and A. K. May, “Blood Glucose Variability Is Associated with Mortality in the Surgical Intensive Care Unit,” vol. 74, no. 8, pp. 679-685. [298] G. Meyfroidt, D. M. Keenan, X. Wang, P. J. Wouters, J. D. Veldhuis, and G. Van den Berghe, “Dynamic characteristics of blood glucose time series during the course of crit ical illness: Effects of intensive insulin therapy and relative association with mortality,” vol. 38, no. 4, pp. 1021-1029. [299] J. S. Krinsley, “Glycemic variability and mortality in critically ill patients: The impact of diabetes,” vol. 3, no. 6, pp. 1292-1301. [300] M. Egi, R. Bellomo, E. Stachowski, C. J. French, and G. Hart, “Variability of Blood Glucose Concentration and Short-term Mortality in Critically Ill Patients,” vol. 105, no. 2, pp. 244-252. [301] P. A. Goldberg, M. D. Siegel, R. S. Sherwin, J. I. Halickman, M. Lee, V. A. Bailey, S. L. Lee, J. D. Dziura, and S. E. Inzucchi, “Implementation of a Safe and Effective Insulin Infusion Protocol in a Medical Intensive Care Unit,” vol. 27, no. 2, pp. 461-467. [302] B. W. Bequette, “Fault Detection and Safety in Closed-Loop Artificial Pancreas Sys tems,” vol. 8, no. 6, pp. 1204-1214. [303] U. Klueh, Z. Liu, B. Feldman, T. P. Henning, B. Cho, T. Ouyang, and D. Kreutzer, “Metabolic biofouling of glucose sensors in vivo: Role of tissue microhemorrhages,” vol. 5, no. 3, pp. 583-595. [304] A. Koh, S. P. Nichols, and M. H. Schoenfisch, “Glucose Sensor Membranes for Miti gating the Foreign Body Response,” vol. 5, no. 5, pp. 1052-1059. [305] S. Vashist, “Continuous Glucose Monitoring Systems: A Review,” vol. 3, no. 4, pp. 385- 412. [306] N. Baysal, F. Cameron, B. Buckingham, D. Wilson, and B. Bequette, “Detecting sensor and insulin infusion set anomalies in an artificial pancreas,” in American Control Conference (ACC), 2013, pp. 2929-2933. [307] N. Baysal, F. Cameron, B. A. Buckingham, D. M. Wilson, H. P. Chase, D. M. Maahs, B. W. Bequette, f. t. I. H. C.-L. S. G. (ihcl), B. A. Buckingham, D. M. Wilson, T. Aye, P. Clinton, B. P. Harris, H. P. Chase, D. M. Maahs, R. Slover, P. Wadwa, J. Realsen, L. Messer, I. Hramiak, T. Paul, S. Tereschyn, M. Driscoll, B. W. Bequette, F. Cameron, N. Baysal, R. W. Beck, J. Lum, C. Kollman, P. Calhoun, J. Sibayan, N. M. Njeru, W. Sauer, J. Lott, J. C. Pickup, I. Hirsch, and H. Wolpert, “A Novel Method to Detect Pressure-Induced Sensor Attenuations (PISA) in an Artificial Pancreas,” vol. 8, no. 6, pp. 1091-1096. [308] A. W. Karlin, T. T. Ly, L. Pyle, G. P. Forlenza, L. Messer, R. P. Wadwa, D. J. DeSalvo, S. L. Payne, S. Hanes, P. Clinton, D. M. Maahs, and B. Buckingham, “Duration of Infusion Set Survival in Lipohypertrophy Versus Nonlipohypertrophied Tissue in Patients with Type 1 Diabetes,” vol. 18, no. 7, pp. 429-435. [309] M. L. Tyler, K. Asano, and M. Morari, “Application of moving horizon estimation based fault detection to cold tandem steel mill,” vol. 73, no. 5, pp. 427-438. [310] A. Bemporad, D. Mignone, and M. Morari, “Moving horizon estimation for hybrid systems and fault detection,” in American Control Conference, 1999. Proceedings of the 1999, vol. 4, pp. 2471-2475 vol.4. [311] W. K. Hamilton, “Do we monitor enough? We monitor too much,” vol. 2, no. 4, pp. 264-266. [312] J. Phillips and J. H. Barnsteiner, “Clinical alarms: Improving efficiency and effective ness,” vol. 28, no. 4, pp. 317-323. [313] B. J. Drew, R. M. Califf, M. Funk, E. S. Kaufman, M. W. Krucoff, M. M. Laks, P. W. Macfarlane, C. Sommargren, S. Swiryn, and G. F. Van Hare, “AHA Scientific State ment: Practice Standards for Electrocardiographic Monitoring in Hospital Settings: An American Heart Association Scientific Statement From the Councils on Cardiovas cular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young: Endorsed by the International Society of Computerized Electrocardiology and the American As sociation of Critical-Care Nurses,” vol. 20, no. 2, pp. 76-106. [314] C. Atzema, M. J. Schull, B. Borgundvaag, G. R. D. Slaughter, and C. K. Lee, “ALARMED: Adverse events in Low-risk patients with chest pain Receiving continuous electrocardiographic Monitoring in the Emergency Department. A pilot study,” vol. 24, no. 1, pp. 62-67. [315] K. C. Graham and M. Cvach, “Monitor Alarm Fatigue: Standardizing Use of Physio logical Monitors and Decreasing Nuisance Alarms,” vol. 19, no. 1, pp. 28-34. [316] J. P. Shivers, L. Mackowiak, H. Anhalt, and H. Zisser, “Turn It Off!: Diabetes Device Alarm Fatigue Considerations for the Present and the Future,” vol. 7, no. 3, pp. 789- 794. [317] T. C. Dunn, R. C. Eastman, and J. A. Tamada, “Rates of glucose change measured by blood glucose meter and the GlucoWatch Biographer during day, night, and around mealtimes,” vol. 27, no. 9, pp. 2161-2165. [318] S. D. Favero, M. Monaro, A. Facchinetti, A. Tagliavini, G. Sparacino, and C. Co belli, “Real-time detection of Glucose Sensor and Insulin Pump Faults in an Artificial Pancreas.,” vol. 47, no. 3, pp. 1941-1946. [319] J. D. R. F. C. G. M. S. Group, “Lack of accuracy of continuous glucose sensors in healthy, nondiabetic children: Results of the Diabetes Research in Children Network (DirecNet) Accuracy Study,” vol. 144, no. 6, pp. 770-775. [320] G. Clermont, J. Bartels, R. Kumar, G. Constantine, Y. Vodovotz, and C. Chow, “In silico design of clinical trials: A method coming of age:,” vol. 32, no. 10, pp. 2061-2070. [321] M. R. Davies, H. B. Mistry, L. Hussein, C. E. Pollard, J.-P. Valentin, J. Swinton, and N. Abi-Gerges, “An in silico canine cardiac midmyocardial action potential duration model as a tool for early drug safety assessment,” vol. 302, no. 7, pp. H1466-H1480. [322] P. Hunter, T. Chapman, P. V. Coveney, B. de Bono, V. Diaz, J. Fenner, A. F. Frangi, P. Harris, R. Hose, P. Kohl, P. Lawford, K. McCormack, M. Mendes, S. Omholt, A. Quarteroni, N. Shublaq, J. Skr, K. Stroetmann, J. Tegner, S. R. Thomas, I. Tollis, I. Tsamardinos, J. H. G. M. van Beek, and M. Viceconti, “A vision and strategy for the virtual physiological human: 2012 update,” vol. 3, no. 2, p. 20130004. [323] A. G. Erdman, D. F. Keefe, and R. Schiestl, “Grand Challenge: Applying Regulatory Science and Big Data to Improve Medical Device Innovation,” vol. 60, no. 3, pp. 700- 706. [324] G. E. P. Box, “Robustness in the Strategy of Scientific Model Building..” [325] M. G. Pedersen, A. Corradin, G. M. Toffolo, and C. Cobelli, “A subcellular model of glucose-stimulated pancreatic insulin secretion,” vol. 366, no. 1880, pp. 3525-3543. [326] L. E. Fridlyand and L. H. Philipson, “Glucose sensing in the pancreatic beta cell: A computational systems analysis,” vol. 7, p. 15. [327] R. V. Overgaard, K. Jelic, M. Karlsson, J. E. Henriksen, and H. Madsen, “Mathemati cal Beta Cell Model for Insulin Secretion following IVGTT and OGTT,” vol. 34, no. 8, pp. 1343-1354. [328] I. R. Sweet and F. M. Matschinsky, “Mathematical model of bet
Date Deposited: 26 Sep 2017 19:32
Last Modified: 26 Sep 2017 19:32
URI: http://d-scholarship.pitt.edu/id/eprint/32929

Available Versions of this Item


Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item