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CURVELET-BASED TEXTURE CLASSIFICATION IN COMPUTERIZED CRITICAL 

GLEASON GRADING OF PROSTATE CANCER HISTOLOGICAL IMAGES 

 

Wen-Chyi Lin, PhD 

University of Pittsburgh, 2017 

 

Classical multi-resolution image processing using wavelets provides an efficient analysis of image 

characteristics represented in terms of pixel-based singularities such as connected edge pixels of 

objects and texture elements given by the pixel intensity statistics.  Curvelet transform is a recently 

developed approach based on curved singularities that provides a more sparse representation for a 

variety of directional multi-resolution image processing tasks such as denoising and texture 

analysis. The objective of this research is to develop a multi-class classifier for the automated 

classification of Gleason patterns of prostate cancer histological images with the utilization of 

curvelet-based texture analysis. This problem of computer-aided recognition of four pattern classes 

between Gleason Score 6 (primary Gleason grade 3 plus secondary Gleason grade 3) and Gleason Score 8 

(both primary and secondary grades 4) is of critical importance affecting treatment decision and patients’ 

quality of life. Multiple spatial sampling within each histological image is examined through the curvelet 

transform, the significant curvelet coefficient at each location of an image patch is obtained by 

maximization with respect to all curvelet orientations at a given location which represents the apparent 

curved-based singularity such as a short edge segment in the image structure. This sparser representation 

reduces greatly the redundancy in the original set of curvelet coefficients. The statistical textural features 
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are extracted from these curvelet coefficients at multiple scales. We have designed a 2-level 4-class 

classification scheme, attempting to mimic the human expert’s decision process. It consists of two 

Gaussian kernel support vector machines, one support vector machine in each level and each is 

incorporated with a voting mechanism from classifications of multiple windowed patches in an 

image to reach the final decision for the image.  At level 1, the support vector machine with voting 

is trained to ascertain the classification of Gleason grade 3 and grade 4, thus Gleason score 6 and 

score 8, by unanimous votes to one of the two classes, while the mixture voting inside the margin 

between decision boundaries will be assigned to the third class for consideration at level 2. The 

support vector machine in level 2 with supplemental features is trained to classify an image patch 

to Gleason grade 3+4 or 4+3 and the majority decision from multiple patches to consolidate the two-

class discrimination of  the image within Gleason score 7, or else, assign to an Indecision category. 

The developed tree classifier with voting from sampled image patches is distinct from the 

traditional voting by multiple machines. With a database of TMA prostate histological images 

from Urology/Pathology Laboratory of the Johns Hopkins Medical Center, the classifier using 

curvelet-based statistical texture features for recognition of 4-class critical Gleason scores was 

successfully trained and tested achieving a remarkable performance with 97.91% overall 4-class 

validation accuracy and 95.83% testing accuracy.  This lends to an expectation of more testing and 

further improvement toward a plausible practical implementation.       

Index Terms— Curvelets, local maximum curvelet coefficient, tissue texture classification, 

prostate cancer, Gleason grading, Gleason scores [  
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1.0  INTRODUCTION 

Gleason grading system has been established as the standard for interpreting prostate carcinoma 

by expert pathologists based on microscopic tissue images (TMA) from needle biopsies [49-50]. 

Gleason grade is categorized into 1 to 5, and increases based on the cumulative loss of regular 

glandular structure which reflects the increasing degree of malignancy aggressive phenotype. The 

major work of computer-aided classification as reported in the published literatures is mainly 

focused on the classification between primary grade 3, 4 and 5 by microstructure, morphology or 

texture methods [56, 58, 109]. Approaches based on architecture require tissue segmentation 

before performing feature extraction and thus rely heavily on correct identification of prostate 

nuclei and glandular structures as shown in Figure 1. Texture-based features are used broadly in 

data driven methods because of the simplicity of feature extraction and effectiveness of 

representing histopathology characteristics displayed in images.  

As compared to the structure-based and segmentation oriented techniques [58, 59, 111], 

the texture features extracted from wavelet and multiwavelet coefficients have been shown to be 

able to achieve more preferable results [4, 53]. Moreover, the wavelet transform is capable of 

capturing texture complexity that provided by spatial and frequency information across several 

scales with multiresolution analysis. Nevertheless, the wavelet-based methods share a 
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disadvantage of extracting features from transform coefficients which are limited in directional 

selectivity and capture only point singularities. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Pattern and structure of a benign gland 

 

Gleason score (GS) is the summation of the primary grade and the secondary grade, ranging 

from 5 to 10 where the reliable recognition between GS 3+3, 3+4, 4+3 and 4+4 is of crucial 

importance. However, most published studies dealt with primary Gleason grade 3, 4 and 5 while 

the classification for critical Gleason patterns, the GS 3+3, 3+4, 4+3 and 4+4, is less reported. The 

intermediate-grade carcinoma is the mid-point between the low-grade and high-grade and it 

receives the most lack of consensus in second-opinion assessments which is considered as the 

critical Gleason patterns where the inaccurate determination of prognosis in terms of over- or 

under-assessment will greatly affect appropriate treatment and inevitably result in undesirable 

quality of life for patients [38-39, 70].  
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With regard to the advances of image processing and classification methods, the second 

generation curvelet transform developed by Candes and Donoho [11-13] is a generalization of 

wavelet transform for optimal sparse representation of a class of continuous functions with 

curvilinear singularity, i.e., discontinuity along a curve with bounded curvature. Although the 

fundamental of curvelet transform has been introduced to application fields [5, 18, 21], the 

utilization of all available curvelet coefficients showed a high redundancy ratio that needs to be 

deliberated in extraction of discriminant information. The machine for classification of patterns of 

intermediate class, such as Gleason patterns 3+4 and 4+3 in prostate cancer images, which are 

correlated to other two classes such as class of Gleason patters 3+3 and of Gleason patters 4+4, 

needs to be meticulously designed to achieve good accuracy. 

The objective of this research is, first, to explore the utilization of the most significant 

curvelet coefficients for concise and realistic representation of image characteristics, based on 

which to extract discriminating texture features of prostate cancer tissue images, and second, to 

design a classifier for computer-aided classification of 4 classes of critical Gleason patterns   

where two classes are correlated with the other two classes. The selected curvelet-based texture 

features will be used; along with the design strategy, to achieve a performance of high and 

reliable classification accuracy. 

The thesis is organized as follows. First, a brief review of curvelet transform in the 

context of image processing is given in Chapter 2. Chapter 3 presents the utilization of maximum 

curvelet coefficients to extract statistical texture features from prostate histological images of 

critical Gleason patterns. Our study on the classifier design for computer-aided classification of 

four classes of critical Gleason patterns of prostate cancer tissue images and our experimental 
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results are presented in Chapter 4. Chapter 5 summarizes the major contributions of the thesis and 

gives suggestions for future research. 
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2.0  THE METHOD OF CURVELET TRANSFORM 

Wavelet transform and its generalizations have become the fundamental approach for multi-

resolution analysis. Multiresolution image analysis [23] projects an image into spaces in multiple 

scales (resolutions) which allows us to focus on characteristics pertaining to specific scales, the 

composition of which makes an efficient representation for analysis, measurement and storage. 

A wavelet is a basis function as a building block for functional representation in multiple scales.  

Wavelet transform provides a sparse representation for functions with point singularities; a point 

singularity means that there is a discontinuity or significant change in the immediate 

neighborhood of a point, such as an edge pixel in a 2-dimensional image. Edge pixels need to be 

appropriately connected to obtain object boundaries in image segmentation, or to form texture 

elements or textons in micro and macro scales, or in a mixture manner, for texture extraction.  

Well-known successful results have been obtained for image/video compression, denoising, 

image segmentation, image texture classification, and image fusion, etc [5, 22, 24, 25, 80].  

In general, a 2-dimensional wavelet is expressed as a tensor product of two 1-dimensional 

wavelets and therefore, it can isolate well a point singularity, i.e., the discontinuity across an 

edge pixel,  effortlessly, but the directional selectivity is limited to only three orientations: 

horizontal, vertical and diagonal. Ridgelet transform and curvelet transforms are recent extensions 

of wavelet transform to consider line and curve singularities [26, 27].  
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2.1 RIDGELET TRANSFORM 

An anisotropic geometric wavelet, named ridgelet, was introduced by Candés and Donoho [27] in 

1998 to overcome the limitation of the standard 2-D wavelet transform. Ridgelet transform is a 

type of multiscale direction-selective transform that uses ridgelet as the basis element which has 

high directional selectivity. The ridgelet transform processes the image data by first performing 

line integrals over different radial orientations at various locations to acquire the Radon transform 

[28], and then applying wavelet transform to the Radon coefficient profiles. In this way, the 

wavelet transform handles the sharp point singularities in the Radon domain which reflect the 

line singularities in the pertinent image locations. It provides a very effective technique to perform 

sparse directional analysis [16, 29]. This sparsity property of the ridgelet transform enables better 

texture discrimination for a class of 2-D images than that of the wavelet transform.   

The first generation of curvelet transform is a generalization of the ridgelet transform. As 

edges in images, in general, appears to be curvilinear rather than straight lines, at sufficiently fine 

scales, a curved edge, nevertheless, looks almost straight where the ridgelet can be utilized upon 

the premise. To analyze curve singularities in 2-D images, a natural way is to consider a curve 

which is piecewise linear, and thus to consider a smooth partition of the image into small blocks 

band apply the ridgelet transform locally to the partitioned sub-images. This concept of the block 

ridgelet transform led to the first-generation curvelet transform [29], where curvelet represent 

curves as a superposition of functions with supports of various lengths and widths obeying 

the parabolic scaling law width ≈ length2. The processing of the first-generation curvelet 

transform is given by the following steps:   

(1) Subband decomposition (the image is filtered into subbands),   

(2) Smooth block partitioning (each subband is smoothly windowed into squares of 
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appropriate scale,   

(3) Renormalization (each resulting square is renormalized to unit scale, and   

(4) Ridgelet Analysis (each square is processed with the ridgelet transform). 

To obtain high direction sensitivity and anisotropy, the first generation curvelet transform 

has a redundancy factor of 16J + 1 whenever J scales are used in subband decomposition [30] but 

is rather restricted due to the accuracy problem of requiring smoothly partitioned blocks of small 

size in computing the local ridgelet transform. 

2.2 CURVELET TRANSFORM 

The second-generation curvelet transform [11] captures the local curved structures with radial 

‘wedges’ constructed by concentric squares in the frequency domain to provide a tight frame for 

functional representation in the spatial domain with low redundancy. A curvelet is defined inside 

the wedge and has three parameters: scale, orientation, and spatial location. The curvelet 

transform is a mapping of a multivariable function into a space spanned by curvelets in multiple 

scales and multiple orientations. It gives an efficient representation for functions with curved 

singularities but are smooth away from discontinuities across such curves. In the curvelet domain, 

the information of prominent edges or curved elements in images is packed into a small number 

of coefficients, thus the transform yields a very sparse image representation. 

A curvelet in the 2-dimensional space is an elementary function φ(x1, x2) of two spatial 

variables x1 and x2 that is defined primarily over a narrow rectangular support region of short width 

(e.g., along x1 axis) and longer length (e.g., along x2 axis) following the parabolic scaling rule, i.e., 

the width scaling is equal to the square of the length scaling as illustrated in the right of Figure 2(a) 
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support for a curvelet in the spatial domain is shown in the right together with its rotated and 

shifted in the left of the figure. It changes rapidly along x1 and is smooth along x2, so its Fourier 

transform ),(ˆ
21  j  is in a broad high frequency band along ω1 and is limited to a narrow low 

frequency band along ω2, that means, ),(ˆ
21  j  is supported over a narrow wedge sector in the 

2-d frequency domain (ω1, ω2) where ^ denotes the Fourier transform. When   is expressed by 

),(   in the spatial polar coordinates ),(  , its Fourier transform is given by ),(ˆ
tj r   in the 

frequency polar coordinates ),( r .  If φ(x1, x2) is rotated by an angle θl but without translation, and 

expressed in the spatial polar coordinates (ρ, θ – θl), its Fourier transform is of the similar pattern 

appearing along the radial frequency axis r and across a narrow sector of angular frequency θt in 

the polar frequency coordinates (r, θt – θl).  In Figure 2(b), a polar frequency plane is shown with 

radial windows in a circular coronae for supporting curvelets of a scale in different orientations. 

The shaded sector illustrates a narrow radial wedge centered at a long radial frequency line but 

with a short width in angular frequency compliant with the parabolic scaling rule. It provides the 

frequency support of the curvelet centered in a specific spatial orientation θl. That is how the 

second generation curvelet is generated.  

With both shift (k1, k2) in (x1, x2) and rotation θl, a curvelet at scale j (for  j ≥ 0) is given by  

)])(2),(2[(2),( 22

2/

11

4/3

21,,

Tjjj

kj kxkxRxx
ll

    

and its Fourier transform is 

    2211

2

2/

1

4/3

21,, 2,2ˆ2),(ˆ 

  kkiTjjj

kj eR
ll

                 (2.1) 
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(a)                                                                          (b) 

Figure 2. Illustrations of curvelets with parabolic scaling (a) in the spatial domain and (b) in the 2-D 

frequency plane. Similar curvelet responses can be found in same radial wedges. The shaded sector denotes the 

frequency support of a shifted and rotated curvelet in (a). 

where subscript k denotes a column vector [k1, k2]T and 
l

R  is a rotation matrix with respect to the 

horizontal reference,   













ll

ll

l
R






cossin

sincos
,  

The set of { ),( 21,, xxkj l
 } is a tight frame that can be used to represent a function f(x1, x2) 

by the linear combination of the curvelets { ),( 21,, xxkj l
 }  

 21,,

,,

,, , xxcf kj

kj

kj l

l

l 



   

where the curvelet coefficients { kj l
c ,, } are given by inner products 

kjkj ll
fc ,,,, ,                                                     (2.2) 

This gives the curvelet transform. 

in scale 2𝑗/2 

in scale 2𝑗 

in scale 2–𝑗/2 in scale 2–𝑗 
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(a)                                                                           (b) 

Figure 3. A polar wedge constructed for scale j and orientation θl in (a) the frequency domain and in (b) the polar 

wedge is replaced by the pseudopolar wedge to be adapted to the Cartesian coordinates. 

 

For the discrete curvelet transform, let a frequency domain polar wedge be defined by Uj  

  ),2()2(2),(
2/4

3

  jj

j

j VrWrU 



                                                       (2.3) 

where W(r) and V(θτ) are a pair of radial window and angular window in the polar coordinates with  

r  (1/2, 2),  

       ),2
2

,2
2

(      2
2

2/2/2/ jjj
q





   ) 2, 1, 0,( q  

)( lt   .  

The  2/j  denotes the integer part of j/2. Here r is the normalized radial frequency variable with 

the normalization constant π and  

  ,2)
2

(
2/j

l l





  (l = 0, 1, 2, …, Nj – 1),   

Polar wedge 

Rectangular wedge 

𝜃𝜏 

(r, 𝜃) 

(ω1, ω2) 
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  )
2

,
2

(,2
2

2/ 



 



t

j

t t . ) 2, 1, 0,( t  

where Nj denotes the number of polar wedges, thus, the number of orientations considered which 

is equal to the number of rotation increment over the 2π range. The angular frequency variable 

 2/
2)2/(

j
q


   varies around the orientation θl as shown in Figure 3(a). Radial 

window W(r) and angular window V(θτ) are smooth non-negative real-valued functions and are 

subject to the admissibility conditions  
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The window V has its width inversely related to the length of the window W, thus, at scale 

j, Vj(θτ) is given by the expression V in (2.3) which refers to the shaded region in Fig. 2(b). With 

the symmetry property of the Fourier transform, the range of θt is (−π/2, π/2). Let the curvelet at 

scale j without shift be defined in the polar wedge Uj  

).,()(),(ˆ
21, ltjjlj rURU

l
                                            (2.6) 

With a spatial translation (k1, k2), it will then be  
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jklj eRU
l
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 ,                                           (2.7) 

its inverse Fourier transform gives  

).,( 21,, xxkj l
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Through the Plancherel’s theorem, the curvelet coefficients are also given by the inner products in 

the frequency domain 

 
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  dωfffkljc kjkjkj lll
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21212
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1






 ddeRUf
kki

j l


                       (2.8) 

The magnitude of curvelet coefficient c(j,l,k) denotes the strength of the curved singularity, a short 

edge segment at scale j centered at the location k = (k1, k2) and in orientation θl. In digital 

implementation, the polar wedge is replaced by the pseudopolar wedge in the Cartesian 

coordinates as shown in Figure 3(b).   

2.2.1 Multiresolution Decomposition and Subband Index 

In the above discussion, the scale index j ≥ 0 is considered, increasing refers to finer resolution. In 

image processing applications, a given image of the size 2M × 2M is in the finest resolution which 

is designated as the reference scale  j = 0. Dyadic decomposition into coarser scales j = –1, –2, …, 

leads to subband images of 2M-1 × 2M-1, etc. in successively lower frequency band. Consider a scan 

line of 2M pixels, its Fourier transform FFT is given by 2M frequency increments which is 

dyadically decomposed into M subband with subband index i corresponding to the decomposition 

scale level j, (j < 0), i = M + 1 + j, (i = 1, 2, …, M) as shown in Figure 4. For a radical scan line, 

this also holds true in terms of radical frequency subband. Referring to Figure 2(a), the vertically 

orientated narrow rectangle for j > 0 will become horizontally orientated for j < 0 as illustrated in 

Figure 5. As j goes to be very negative for coarse scales, the rectangle orientation becomes not 
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meaningful any more for an oriented curvelet to be defined there. So, the three subbands covering 

the lowest frequencies are left out to be contained in a scaling component  o
ˆ  with 

multiresolution analysis, and we relabel the cuvelet subband index by J.  

J = i – 3 = M + 1 + j – 3 = M – 2 + j.  ( J = 1, 2, …, M – 3 ) 

where J subbands are used in our curvelet transform analysis.   
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Figure 4. A scan line of 2M points FFT is divided into M subband  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The orientation of the rectangular region changes from vertical to horizontal as the image is 

decomposed into coarse scales where j<0.  
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The curvelet transform takes the advantage of the inter-scale orthogonality, the multiscale 

separation of subband frequency components can be achieved through the 2-D Meyer wavelet 

analysis [5, 81]. The Meyer wavelet in the frequency domain forms an orthogonal basis with 

symmetric band-limited functions. The wavelet and scaling functions in the frequency domain are 

smooth and have compact supports, in the spatial domain they are infinitely differentiable with 

infinite support. The Meyer wavelet in the Fourier domain is given by 
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Where the auxiliary function ν(Δ) is a smooth non-negative function goes from 0 to 1 on the 

interval [0, 1] and satisfying 








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1if1

0if0
)(                                                     (2.10) 

and 

.1)1()(                                                          (2.11) 

a classical auxiliary function is: 

)20708435()( 324 xxxxx  .                                       (2.12) 

which given a smooth transition ν as Δ goes from 0 to 1 as shown in Figure 6. 
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(a) 

 

(b) 

Figure 6. The auxiliary function (a) ν(x) and (b) ν(1–x). 
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The Meyer scaling function in the frequency domain is 
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Figure 7 displays the graphs of the Fourier transform of the Meyer wavelet and scaling functions 

as well as the functions in the time domain. 

 

 

 

  
(a)                                                                (b) 

  
(c)                                                                (d) 

 
Figure 7. Meyer wavelet and scaling functions (a)(c) in the frequency domain and (b)(d) in the spatial 

domain.  
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 The Meyer wavelet function  ̂  can be obtained by taking the product of the dilated 

Meyer scaling function  2/ˆ   and a 2π periodic function m0 in L2([0, 2π]) constructed from ̂  [82], 

as shown in Figure 8.  

Figure 8. Construction of Meyer wavelet function in the frequency domain 

 

In the similar manner, the radial frequency concentric window Wj(ω) used in Eq. (2.3) and Eq. 

(2.6) in constructing curvelet )(ˆ
,  lj  may be obtained by multiplying the dilated Meyer scaling 

function along the radial frequency with a 2π-periodic shifted function at scale j and subtracting 

its next coarse version. Finally leading to 
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where ω is the radial frequency r used earlier. The angular window       2/
2

j

j VV   can be 

built with the Meyer scaling window [20] to achieve a smooth separation of angular frequency 

components     in the angular direction. The angular window size decreases as the scales 

become finer (j increases). With the radial frequency r and the angular frequency  , the wedge 

window is then defined as 

     .
~

:
~

 jjj VrWU                                                 (2.15) 
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the angular wedge sector and, thus, the curvelet )(ˆ
,  lj  is given by 

     


SVWU jjlj :
~

, .                                          (2.16)    

The scheme of the curvelet transform in the frequency domain is shown in Figure 9 which 

displays a 5-scale curvelet decomposition of a 28×28 image where the number of angular of 

partitions at the given scale (subband 3-4) is set to 16. The top portion of Figure 10 demonstrates 

curvelets in the frequency domain at five subbands in four different orientations, the bottom 

portion shows their corresponding 1-D Meyer wavelet and scaling functions along the frequency 

axis. The support of the highest scale Meyer wavelet function (subband 5) exceeds the half 

sampling frequency 1 (normalized by π) and thus, is periodically extended to 4/3 as shown in the 

red dotted line.  
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Figure 9. Schematic structure of the fast discrete curvelet transform. Here shows a 5-scale decomposition 

and the number of angles of next scale is set to 16. The double arrow signs denote that the forward transform is 

invertible. 
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Figure 10. Curvelets in the radial frequency domain at five subbands in different orientations (top). Their 

corresponding 1-D Meyer wavelet functions and scaling function.   
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Since curvelet coefficients and curvelets are computed by the inverse Fourier transform via 

a wedge sector  ljU ,

~
 given in Eq. (2.16), the smoothness near the boundaries of the compact W 

and V windows nevertheless introduces unwanted fluctuations in the spatial domain. This is shown 

in Figure 11 (a) and (b). 

 

 

Figure 11. Comparison of the curvelets obtained from the rectangle-edge wedge (a)(b) and the smooth wedge (c)(d). 

The curvelet has a fast decay with a smooth frequency support near the edges of the wedge.  

(a) (b) 

(c) (d) 
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2.2.2 Computation of Discrete Curvelet Transform Via Frequency Wrapping 

Figure 12. The digital coronae in the frequency plane with pseudo-polar coordinates, trapezoidal wedges 

are shown also satisfying parabolic scaling rule. 

 

The discrete curvelet transform can be obtained through the inner product in the frequency 

domain as indicated in Eq. (2.8) and in Figures 2(b) and 3(a) where, for one scale j, the curvelet 

functions with different orientations are well tiled in a circular shell or coronae. Since the FFT of 

an image is in the rectangular coordinates, the wedges need to be extend to trapezoidal wedge tiled 

as concentric rectangular shells as illustrated in Figure 12 to accommodate for computation in 

rectangular frequency coordinates. The wedges are then in different trapezoidal shapes and 

incremental orientations of successive wedges are not uniform. Special care must be taken to 

facilitate the computation. There are two different algorithms for computing the fast digital 

curvelet transform developed by Candés and colleagues [12, 15]: one is called the unequispaced 
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FFT approach, and the other is called frequency wrapping approach which is the one we use. The 

frequency wrapping approach may be briefly explained by the sketch in Figure 13 where a shaded 

trapezoidal wedge at scale j is under a shearing process, is mapped to a parallel-pipe shaped support 

as shown in (a). The tiling of the parallel pipes, shown in Figure 13(b), which is geometrically 

periodic in either vertical or horizontal direction and each contains the identical trapezoidal 

information will enable a wrapping process by mapping into a rectangular region centered at the 

origin of the frequency plane where the data samples in trapezoidal wedges in two neighboring 

parallel pipes are mapped into the rectangular wedge as illustrated by the shaded parts enclosed in 

the rectangle. The frequency information contained in the broken pieces in the rectangular wedge 

is the same as in the parallel pipe and, thus, in the original trapezoidal wedge, except they are re-

indexed components of the original data. Use this to compute the inner product with the given 

image to obtain the same inner product. In this way, the inner product can be computed for each 

wedge and immediately followed by the inverse FFT to obtain the contribution to the curvelet 

coefficients from that original wedge with the trapezoidal support. Software for both algorithms 

are freely available in Candés’ laboratory [15], we have used the second algorithm in our study of 

the curvelet-based texture feature analysis. 
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(a)                                                            (b) 

 
Figure 13. The schematic diagram to illuminate the concept of the wrapping algorithm for computing 

digital curvelet coefficients at a given scale.  
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3.0  CURVELET-BASED TEXTURE FEATURES OF CRITICAL PROSTATE 

CANCER HISTOLOGICAL IMAGES 

In this chapter, we investigate the property of discrete curvelet transform coefficients of prostate 

cancer tissue images that are used to extract texture features. We first examine the property of 

curvelet coefficients denoting edge curve segments and their distributions. From the data structure 

of the coefficients, we consider an efficient and effective way using maximum curvelet coefficients 

to extract the curvelet-based texture information in the sense of sparsity. Such multiscale texture 

decomposition using the highly anisotropic characteristics of the curvelets are then studied for 

discrimination of four critical Gleason patterns in the prostate cancer tissue images. 

3.1 CURVELET COEFFICIENT DISTRIBUTIONS 

Texture evaluation provides quantitative measures for describing image texture content within a 

region of interest that are used in scene recognition and classification. In the previous chapter, we 

have reviewed the relationship between the directional wavelet transform and curvelet transform. 

Although various wavelet-based texture classification methods have shown many successful 

applications, the assessment on texture descriptions using the curvelet transform, especially on the 

efficient utilization of curvelet coefficients, remains to be fully developed. 
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3.1.1 Curvelet Coefficients and Image Edge Segments 

The curvelet coefficients  kjc l ,,  in scale j denotes the strength of the discontinuity, a directional 

feature or an edge segment in orientation l  in an image centered at the spatial location k. The 

waveform of a curvelet shown in Figure 14 is a well-defined function that has very large gradient 

amplitude across its width and is smooth along its length. When it is used as a basic unit in 

representation of a sharp change in image brightness, its coefficient magnitude is associated with 

the degree of change in the direction orthogonal to the longitudinal direction of the curvelet which 

reflects the boundary of a constituent object such as nucleus or glandular cell in the prostate tissue 

image. The curvelet coefficients in an image capture curve segments of varying strength over all 

discrete orientations, but only a small percentage of the coefficients are strong and representing 

the meaningful edges while a large number of weak coefficients simply describe the very blurred 

boundaries.  

 

    

Figure 14. The strongest curvelet coefficient among all orientations indicates the main trace of the line 

segment in the spatial domain 
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3.1.2 Curvelet Coefficient Distributions 

In image classification problems, it is essential to ascertain that the strong curvelet coefficients 

would carry useful information of describing the texture content of an image and have enough 

discriminative power to classify the texture patterns. However, in real situations, most of the 

curvelet coefficients may have very small magnitudes except those indicating object edges which 

are much fewer in percentage.  As shown in Figure 15, the distributions of curvelet coefficients in 

two scales of two prostate tissue images of two primary Gleason grades are characterized by high-

pitched peaks at zero coefficient magnitude and extended tails at large coefficient magnitudes on 

both sides (positive and negative). The histograms quantize the curvelet coefficients into limited 

bins and the small portions of the important edge information are distributed at both ends of the 

magnitude interval which could make the high order statistical moments play a key role in 

classification. On the other hand, the generalized Gaussian-like distribution (GGD) contributed by 

the overwhelming number of coefficients near zero value would not be able to provide the needed 

discriminative information in the classification task.  
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Figure 15.  H&E stained prostate histological images (a) of Gleason grade 3 and (b) Gleason grade 4 (top row), 

histograms of their curvelet coefficients at subband 5 (middle row) and at subband 4 (bottom row). 

                  
(a)                                                                                     (b) 

 
(c)                                                                                     (d) 
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3.2 MAXIMUM CURVELET COEFFICIENTS 

Edge information is very important for image texture analysis because high frequencies in the 

spectral domain contain more information on texture discrimination properties. The value of 

curvelet coefficients kljc ,,  at position (k1, k2) under scale j denotes the strength of the curvelet 

component oriented at angle θl in the representation of an image function f(x1, x2). It contains the 

information on edginess coordinated along a short path of connected edge pixels in that orientation. 

Naturally, it would be advantageous to extract texture features in the curvelet coefficient space. 

The tails of the curvelet coefficient distribution are embedded with the edge information but the 

modeling of coefficient distribution by Generalized Gaussian distribution which led to texture 

features mainly utilizing the shape and scale parameters is not effective enough for general 

applications. Further exploration in texture classification is desired. 

3.2.1 The Sparsity 

Sparsity is a fundamental consideration in modeling physical phenomena leading to sparse 

segmentation which would permit efficient data processing, e.g., accurate statistical estimation, 

discriminant feature extraction and classification.  

In the discrete implementation of curvelet transform, the Fourier transform of the smooth 

curvelet widow is multiplied with the Fourier transformed of the image data that is carried out 

through the wrapping process as we reviewed in 2.2.2. After applying the Inverse Fourier 

transform to the wrapped FFTs to obtain the curvelet coefficients, the resulting coefficients are 

saved in the arrays corresponding to the orientations l and according to their relative quadrants. 
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The coefficient arrays are allocated from the 
4
3  in the North quadrant to the East quadrant, South 

quadrant and the West quadrant. As the consequence of the antisymmetric property of the Fast 

Fourier transform, the resulting coefficient arrays in the North and the East quadrants will be 

identical to their South and West counterparts. Therefore, in order to achieve real-valued curvelet 

coefficients, the real part and the imaginary part of the computed coefficients can be regarded as 

the cosine curvelet and sine curvelet [15] which are stockpiled in a pair of symmetry arrays as 

shown in Figure 16 where the cosine curvelet and the sine curvelet of the initial complex-valued 

coefficient array are allocated separately as illustrated in red and blue vertical strips. In such a way 

the real-valued curvelet coefficients can be obtained in the translated spatial locations.  

In this schematic in Fig 17, each layer of concentric square represents an individual 

subband J and the each of the coefficient array denotes the orientations l of that subband. Each 

coefficient in the array designates the value of the curvelet coefficient at location (k1, k2). The 

curvelet transform implemented in the CurveLab toolbox [15] gives a considerable redundancy 

because the number of curvelet coefficients is much larger than the number of pixels. The 

redundancy is introduced by multiple coefficients in different orientations at same translation 

location (k1, k2). As shown in Figure 18, the curvelet coefficient at the same location in different 

arrays of one sector (North or East) are associated with the curvelet waveforms cantered at the 

same location but with respective coefficient magnitudes. Although it depends on the 

characteristics of a given image, in most cases, there is only one coefficient, or possibly two, 

having significant magnitude.  

To well exploit the advantages provided by the highly-anisotropic curvelet and perform the 

texture analysis of the prostate pathological images based on the multiresolution method, we 
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consider the maximum curvelet coefficient at the translated (k1, k2), maximized with respect to all 

orientations, for texture analysis purpose in the sense of sparsity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.    The schematic of curvelet coefficient arrays of a 256×256 pixel size image with 5 subband 
decomposition.     
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Figure 17.    Illustration of the significant curvelet coefficient extracted from the coefficients of all arrays 

in one sector.  
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Figure 18. Illustration of the centers of curvelet supports or curvelet coefficient locations in coefficient arrays of 

scale j = −1 (subband J = 5) for an image of 256×256. Blue dots denote the locations in the arrays of the North 

sector while the red dots denote the locations in the arrays of the East sector. 
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Due to the parabolic scaling rule, curvelet coefficient at (k1, k2) or the translation k1 and k2 

in the coefficient arrays in the North sector and in the East sector are swapped. When the inverse 

discrete Fourier transform is applied to the wrapped frequency components, the obtained curvelet 

coefficients in arrays of the North sector will be on the Cartesian grid   2

2/

1 2,2 kkI jj

N  ,           

(j < 0), while that in the Easter sector will be on  21

2/ 2,2 kkI jj

E  . The curvelet coefficients in 

the arrays of the North sector will be dense along the vertical axis of the image and coarse along 

the horizontal axis, while the coefficients in the arrays of the East sector will be contrary. 

Taking into consideration of the different resolution grids, the computation of the 

maximum curvelet coefficients at a location (k1, k2) will take two steps. First, we collect a set of 

coefficients at the same location closest to k from all arrays (covering an orientation range of π/2) 

in the North sector and designate it as ),( kcN

j . Similarly, collect another set of are the curvelet 

coefficients at the point nearest to k from all arrays in the East sector, where the resolutions of the 

translation grids are swapped, and designate it as set ),( kcS

j . The maximum curvelet coefficients 

at (k1, k2), for a given scale j is then given by  

)}.,(),(),(),({max:),(max)( 


kckckckckckc E

j

N

jjjjj 
             (3.1) 

where k = (k1, k2) refers to the integer grids of the original image, and the maximization is taken 

with respect to all θ. Figure 19 shows the centers of curvelet supports where the blue dots represent 

the set of 
N

jc  and the red dots denote the set of 
E

jc . Table 1 lists such a union set of centers of 

curvelets at which curvelet coefficients are assigned for scale j = −1 or subband 5 for a 256×256 

image. As the curvelet coefficients of significant strengths provide the apparent curve segment 
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information in all scales and covering the whole image, the total number of the maximum curvelet 

coefficients in a 5 scale decomposition of an image of 256 × 256 pixels is only 10,297 and the 

redundancy now is reduced to about 0.3142 as compared to the number of pixels of the original 

image.   

 

TABLE 1. Locations of curvelet coefficients in an array (scale j = −1, image size 256×256). Blue values represent 

the centers of the curvelet supports in arrays of the North sector while the red values denote the centers in arrays of 

the East sector 

 

 

3.2.2 Maximum Curvelet Coefficient and Distributions 

The discrete curvelet transform software generates curvelet coefficients of all orientations at a 

given location k, many of which are not significant that leads to an unnecessary high redundancy 

in contrast to the original objective of providing an efficient sparse representation. Based on the 

hypothesis that a given image function f(x1, x2) may have a number of curved singularities at 

different locations but, otherwise, are smooth away from these singularities. At a given point (k1, 
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k2), only a unique curved singularity of a pertinent orientation exists, thus there will be only one 

curvelet coefficient there referring to that orientation. Instead of considering the use of a threshold 

to de-noise it [16], we propose to consider the maximum curvelet coefficient defined by 

 

Maximum curvelet coefficient       .,max 


kckc jj           

As given in eq. (3.1) in section 3.2.1, and develop our method of analysis and texture 

feature extraction. 

Let us examine the curvelet transform of an example image shown in Fig. 19(a) and its 

maximum curvelet coefficients of three top scales in the decomposition (subbands 5, 4 and 3). The 

reconstruction from these three-scale maximum curvelet coefficients is shown in Fig. 19(b) 

displaying significant edge information around the constituent structures in the image. When it is 

added with the contributions from the scaling component and the subband 2 component, the result 

is shown in Fig. 19(c). This is the reconstruction of the image by using the maximum curvelet 

coefficients to obtain an approximation to the original image where the appearance of significant 

edge curves, regarded as textures, will help us to develop a effective new method for texture 

classification.  
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(a)                                                                                         (b) 

 

 

(c) 

Figure 19. (a) an example tissue image,  (b) reconstruction from maximum curvelet coefficients of three top scales, 

and (c) reconstruction including contributions from scaling component and lower frequency component  
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The histograms of the maximum curvelet coefficients at each scale appear to have two-mode 

distributions in positive and negative coefficients, is almost symmetrical with respect to zero 

magnitude, all with strong curve strength. Each mode has sharp peak and is not symmetric with 

respect to its peak. The high peak of the original full coefficient distributions shown in Fig. 15, 

which delineates the slow change in image background is now vanished. Figure 20 shows the 

histograms of maximum curvelet coefficients of a P3S3 and a P4S4 image patch at scale from 3 to 

5. They represent the physical boundaries of various nuclei and lumen more properly and provide, 

in reconstruction, a clear view of texture patterns displayed by these boundary curve segments. 

For small objects, both positive edges and corresponding negative edges always exist. Thus, the 

bi-modal histograms are almost symmetric. Let us reverse the sign of the negative coefficient 

magnitude and merge the negative mode to the positive side so as to give a single mode distribution 

of maximum curvelet coefficient magnitude which will still characterize the individual mode, yet 

give a simpler picture without having to calculate both modes separately. 
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Figure 20. Histograms of significant curvelet coefficients 
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Figure 21 shows the histograms of the maximum curvelet coefficients of vertical, horizontal, 

diagonal and 8
3 π orientations of a P3S3 and a P4S4 image patch at scale 4. From the histograms 

of the maximum coefficients of individual orientation, the distributions appear to have a similar 

skewness characteristic for Gleason grade 3+3 compared to that of grade 4+4. Figure 22 shows the 

histograms of the maximum curvelet coefficients of all orientations of a P3S3 and a P4S4 image 

patch at scale 3, 4 and 5. In the histograms of Gleason grade 3+3, there are more weak curvelet 

coefficients as compared to that in the histograms of Gleason grade 4+4. The close to zero 

magnitude coefficients represent areas of the well differentiated architecture that usually appear to 

be benign whereas cancerous areas that appear otherwise. In the histograms of Gleason grade 4+4 

where the fusion of glands, increase number of cells, and obvious nucleoli with dark appearances 

in a cancerous region all contribute to give stronger curvelet magnitude. In this study, we focus on 

the texture features extracted from the maximum curvelet for classification of critical Gleason 

patterns. 
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Figure 21. Histograms of maximum curvelet coefficients of three orientations in four orientations of a P3S3 and a 

P4S4 image patches at scale 4 (with positive and negative coefficients pooled together)  
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Figure 22. Histograms of maximum curvelet coefficients of a P3S3 and a P4S4 image patch at scale from 3 to 5 

(pooling together coefficients in all orientations as well as of positive and negative magnitude)  
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The texture characteristics in an image can be used to estimate the associated architectures for 

prostate phenotype analysis. The maximum curvelet coefficients in 3 scales (subbands 5 to 3) of 

two sample images of primary Gleason score P3S3 and P4S4 are plotted in the lower part of Figure 

23 and 24. The strength of coefficients is indicated by the brightness at their corresponding 

locations (k1, k2) in reference to the original image coordinates. The plot of low scale (subband 3) 

appears to be coarse as compared to that of the finer scale (subband 4 and 5). The maximum 

curvelet coefficients capture not only explicit micro textural information but also implicit macro 

structured information as well. 

The texture information displayed in the fine scale curvelet coefficients plot (subband 5) 

of pure grade 3 shows the regions of benign cells have similar texture appearances while it is 

lacking in the case of pure grade 4. The curvelet-based coefficeints in fine scale are capable of 

capturing the subtle information such as cell, gland and stroma where the latter two components 

are more observed in grade 3 tissues but are less observed in grade 4.  

As listed in Tab 2 and 3, the homogeneous texture information demonstrated by the 

curvelet-based features of the tissue image reveals the observation that either the patch is benign 

everywhere or malignant all the way through. Since the deteriorations of prostate cancer are 

associated with the transition of Gleason patterns from the purely normal Gleason pattern to 

cancerous phenotypes, this information can be measured in terms of the curvelet-based statistical 

texture features.  
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Figure 23. Maximum curvelet coefficients of three P3S3 image patches. The middle row shows the 

subband 5 and the bottom row shows different textures in subbands 4 and 3 of the first patch. 
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Figure 24. Maximum curvelet coefficients of three P4S4 image patches. The middle row shows the 

subband 5 and the bottom row shows different textures in subbands 4 and 3 of the first patch. 
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Figure 25. Maximum curvelet coefficients in subband 5 of three P3S4 image patches.  
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Figure 26. Maximum curvelet coefficients in subband 5 of three P4S3 image patches.  

 

 

 

 

 



 49 

 

TABLE 2. Statistical features skewness in two scales of the image patches in Fig 23  

 

 

 

 

TABLE 3. Statistical features skewness in two scales of the image patches in Fig 24 

 

 

 

 

 

TABLE 4. Statistical features skewness in two scales of the image patches in Fig 25 

 

 

 

 

TABLE 5. Statistical features skewness in two scales of the image patches in Fig 26 

 

 

 

 

  

 Skewness Subband 4 Skewness Subband 5 

1 21.5533 13794.7315 

2 21.7791 12935.7899 

3 22.5651 14062.0205 

 Skewness Subband 4 Skewness Subband 5 

1 25.8292 20451.6832 

2 26.2017 20411.7193 

3 25.9143 21473.8369 

 Skewness Subband 4 Skewness Subband 5 

1 23.6037 53229.5336 

2 24.4041 84339.5389 

3 24.8680 78004.0870 

 Skewness Subband 4 Skewness Subband 5 

1 25.0517 83272.7355 

2 23.4383 142729.7029 

3 23.2833 126941.7661 
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Azar et al. [109] proposed a statistical proximity sampling method to extract features from 

the sub-glandular structures in prostate tissue images which can represent the relative distribution 

of tissue components near lumen regions while preserving spatial quantitative information. It can 

be used as a basis for the analysis of different areas within an image. They obtained high 

classification rates for tubular formation in both healthy and cancerous tissue images which is 

considered as the most important information for the classification of prostate tissue and thus the 

method has demonstrated the efficacy in extracting discriminative features from the image patch. 

That is, the region-based statistical features extracted from the glandular structure comprising of 

lumen, epithelium, nuclei, stroma and associated components can provide effective tissue 

architecture and descriptions for the analysis of Gleason grading applied to the tissue prostate 

images. The implicit representation of region-based texture is robust and highly descriptive against 

the complexity of biological tissue and variations in staining procedures in different dataset.  

The maximum curvelet coefficients of two sample images of intermediate Gleason score 

P3S4 and P4S3 are illustrated in Figure 25 and 26. The texture information displayed in the fine 

scale shows that these two in-between classes demonstrate different degrees of benign texture and 

cancerous appearance, which are heterogenous themselves, as compared to that of the primary 

grades. The comparison of the curvelet-based texture feature skewness of the fine scales listed in 

Table 4 and Table 5 indicates that it may be used to effectively discriminate the degrees of 

malignancy implied in the abundant textures. With such features extracted from the intermediate 

grades and the features obtained from the primary grades, we design a new classifier to achieve 

high accuracy as planned. 
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3.3 CURVELET-BASED TEXTURE FEATURE EXTRACTION 

In the previous section, we have explored the texture characteristics exhibited in the multiscale 

curvelet coefficients of prostate cancer tissue images which contain abundant edge information 

of cells, nuclei and glandular structures and their arrangements. The curvelet magnitude carries 

much more information than pixel intensity, it denotes the strength of an oriented edge segment. 

It is a function of position variable and orientation variable. Its distribution is bi-modal and almost 

symmetric. At each scale, we may pool positive coefficient and negative coefficients together to 

give a single mode distribution for each orientation. We may also pool coefficients in all 

orientations together to assess a rotation-invariant distribution. Furthermore, we consider the 

maximum curvelet coefficient magnitude at each location, maximized over all orientations to 

achieve a sparse representation. These provide us a new basis for characterizing image textures for 

classification.  

3.3.1 Texture Feature Extraction from Maximum Curvelet Coefficients 

Based on the normalized histograms or probability distributions    2121

* ,),( kkPkkcP JJJ  of 

maximum curvelet coefficients ),( 21

* kkc
J

 at each scale (subband J) with all orientations as well 

as positive and negative magnitudes pooled together, their first order statistics are used to extract 

the statistical texture features defined in the following: 
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• Variance: 

Variance is a measure of how spread out the distribution of curvelet coefficient 

magnitude. A large variance value indicates that the coefficient magnitude in the 

image patch of N × N size are spread out widely. 
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• Energy: 

 

Energy is a measure of homogeneity of curvelet coefficient in the image patch. 


N

k

N

k

JJ kkPEner
1 2

],[ 21

2
 

 

 

• Entropy: 

 

The measure of complexity of the image. Complex textures tend to have higher 

entropy values. 

],[log],[ 2121

1 2

kkPkkPS J

N

k

N

k

JJ   

 

• Skewness: 

 

Skewness is a measure of symmetry of the distribution. A distribution is symmetric 

if it is the same to the left and to the right of the mean. The skewness for a normal 

distribution is zero, and any symmetric distribution should have a skewness very 

close to zero. Negative skewness value indicates that the distribution is skewed 

toward left of the mean which means that the left tail is long relative to the right tail 
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while positive value indicates skewed toward right of the mean. For the distribution 

of the maximum coefficients, only skewness toward right is apparent. 
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• Kurtosis: 

Kurtosis is a measure of whether the distribution is peaked or flat compared to a 

normal distribution. Distribution with high kurtosis has a distinct peak near the 

mean, decays rapidly, and has heavy tails.  A flat top near the mean rather than a 

sharp peak indicates that the distribution has low kurtosis.  
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Figure 27 and 28 show the histograms of the curvelet-based textural features extracted from 

patches of prostate pathological images of two primary Gleason score 3+3 and 4+4, and two 

intermediate Gleason score 3+4 and 4+3, respectively. These features in different scales will be 

selected in our design of a classifier for a reliable recognition of the four critical Gleason scores. 
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Figure 27. Histograms of statistical features extracted from maximum curvelet coefficients in (a) subband 3, 

(b) subband 4 and (c) subband 5 of two primary Gleason score 3+3 and 4+4. 
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Figure 28. Histograms of statistical features extracted from maximum curvelet coefficients in (a) subband 3, (b) 

subband 4 and (c) subband 5 of two in-between Gleason score 3+4 and 4+3. 
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3.3.2 Dissimilarity Measure of Texture Features 

The classical Kullback-Leibler divergence (KLD) can be used for the dissimilarity measure of 

feature x in two classes θi, (i = 1, 2) which is given by [31, 68]  
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where p(x; 𝜃i) is the class-conditional probability density function of x. For the texture features x 

derived from maximum curvelet coefficients 
*

J
c , the density function estimates are generally non-

Gaussian, the evaluation of KL-divergence would be more complicated. As a crude estimation by 

using Gaussian approximation, the divergence is simply given by    
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where 
2

i and i  are variance and mean value of the feature x in each class. This divergence 

estimate is employed to provide a rough ranking and ordering of multiscale curvelet-based texture 

features in our investigation of feature selection based on  their discrimination capability, that is 

to be presented in Chapter 4.  
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4.0  CLASSIFICATION OF FOUR CRITICAL GLEASON SCORES 

This chapter presents new study on machine-aided classification of four critical Gleason patterns 

in prostate cancer tissue images by using texture features extracted from maximum curvelet 

coefficients of the images. As mentioned earlier, the reliable recognition of these patterns among 

Gleason score 6, 7 (3+4 or 4+3) and Gleason score 8 is of crucial importance that will affect the 

patient’s treatment. A two-level classifier consisting of two Gaussian kernel support vector 

machines, each is incorporated with a voting mechanism by multiple windowed patches in a core 

image for class assignment in each level, has been developed. A set of Tissue MicroArray (TMA) 

images of four prominent Gleason scores (GS) 3 + 3, 3 + 4, 4 + 3 and 4 + 4 has been studied in 

machine learning and testing. The experimental result has achieved an average accuracy of 95.83% 

for 4 classes, an outstanding performance when compared with other published works. 

4.1 STRATEGY IN CLASSIFIER DESIGN  

When a urologist assigns each tissue image a Gleason grade number, primary grade and secondary 

grade respectively, the image will be firstly examined for its majority (> 50%) arrangement of 

glandular architecture (an area where the cancer is most aggressive) and then the secondary 

Gleason grade pattern where less extensive of growth (< 50%) is confirmed. In view of that, the 
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Gleason patterns are defined according to how well the glands are differentiated and the degree of 

cells are recruited by the surrounding neoplastic tissues. The P3S3 samples most often have 

individual discrete well-formed glands while the P4S4 samples typically have poorly-formed 

glands or predominantly lacking glands with a lesser component of well-formed glands [70-72]. 

Therefore, the perceptions of the homogeneity of the purity and impurity learned from prostate 

tissue images of pure grades, e.g. P3S3 and P4S4, can be used toward the interpretation of the 

heterogeneity displayed in images of the intermediate Gleason grades. 

Based on the aforementioned characteristics of the growth of prostate cancer that involves 

structural and textural changes over time, we first investigate the discrimination between the 

primary Gleason score 3+3 and 4+4 by training a SVM classifier without the use of C parameter 

that controls the maximum penalty imposed on margin-violating observations. A SVM was trained 

with the pure grade 3 and 4 samples while the parameter C was not used. The resulting σ value 

and number of support vectors are listed in table 6 which demonstrates that the homogeneity 

displayed in the primary grades and captured by the curvelet-based texture features can be used to 

provide a principle margin to ascertain the recognition of grade 3 and grade 4. Although the 

training was successful finished with a proper selected σ value, however, the excessive number of 

support vectors will not contribute to a desirable generalization capability while the small sigma 

value would also indicate the over-fitting of the data points. This leads to the search and selection 

of hyperparameters including sigma and C values for a stable model with maximum gap tolerance. 

The SVM trained with the primary grades can be incorporated with a second SVM classifier to 

handle the heterogeneity and integrated into a four-class tree classifier towards a good 

classification result.   
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TABLE 6. Results for the SVM classifier 

Classifier σ C SVs 

GS 3+3 vs 4+4 0.8993 - 339 

 

The strategy of developing a 2-level tree classifier mimic the human expert’s decision 

process. The classifier consists of one Gaussian-kernel SVM with a voting mechanism by multiple 

samples of image patches from a core image will give three categories in each level, as shown in 

Fig. 29. The SVM in the first level of the tree classifier is designed to learn the texture 

homogeneities appeared in pure grade 3 (Gleason score 3+3) and in pure grade 4 (Gleason score 

4+4), respectively, from training patch samples. If the training is 100% successful, the 25 patches 

in an image must have the same texture pattern for the particular Gleason grade. The classification 

results of these 25 patches must be unanimous, either grade 3 or grade 4, which implies that the 

image as a whole is of Gleason score 3+3 or 4+4. For a testing image, if the voting is not unanimous, 

some patches vote for grade 3 and some vote for grade 4, then the image will be assigned to the 

indecision category (including GS 3+4 and GS 4+3). That means, the 25 patch classification results 

provided by this SVM#1 are used as 25 votes to decide whether the image has an absolute majority 

of votes of either pattern 3 or of pattern 4, or else has a heterogeneous mixture. The absolute 

majority rule applied here requires 100% of the votes, i.e., 25/0 (all Gleason 3 patterns) for class P3S3, 

and 0/25 (all Gleason 4 patterns) for class P4S4. Once the classification outputs indicate that there 

is a discrepancy among the 25 patches, i.e., from 24/1 to 2/23, then these 25 patches will be directed 

to the second level of the tree classifier where a machine SVM#2, which is trained by GS 3 + 4 

and GS 4 + 3 training samples, will make a decision. Among the 25 classification results generated 

by these patches underwent SVM#2, the voting majority ( ≥ 14/11) will assign the image to the 
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class 3 + 4, the voting majority ( ≤ 11/14) will assign it to the class 4 + 3, and in-and-between cases 

13/12 and 12/13 are allocated to the Indecision category.  

Our goal is aim at achieving a better separation of the critical Gleason score which has to 

be done by consolidating the classification of the primary grade first through the recognition of 

texture embedded therein. Since the texture pattern of GS 3+3 and GS 4+4 image will only be 

either pure grade 3 or 4, the first SVM in the layer one of the tree classifier is designed to constrict 

these texture patterns toward their groups as close as possible and thus the design of the Indecision 

group is crucial. If any of the impurity has been found in any one of the 25 image patches, the 

particular image section containing the 25 patches will be classified as the Indecision category and 

directed to the next level classifier where the in-between classes are discriminated according to 

different degree of mixture lies in them.  

That is, although the training of the SVM could be finished successfully with the use of 

slack variables and margin parameter C, when one considers a novel image sample, the trained 

tree classifier can only assure the accuracy on the patterns it learned before and thus any one of 

the 25 patches that falls to the wrong side of the decision hyperplane should be treated strictly to 

ensure the correct classification. In a similar fashion, the second SVM of the tree classifier is also 

designed with a safety mechanism that strictly forestalls unrecognized patterns from going into the 

decision process. The Indecision category reinforces the separation hyperplane in a way to prevent 

misclassification of the critical Gleason grade a step further. The proposed tree classifier is very 

distinct from the standard multi-class support vector machines.  

Gaussian kernels were used in both SVMs where the parameter σ was chosen with a 

Bayesian optimization procedure, in each kernel for both machines. Individual SVM has different 

number of support vectors as resulted from the training. The two kernel SVMs were successfully 
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trained, together with the successful majority decision rule, giving a trained tree classifier of 4 

classes of critical Gleason scoring with no training error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. The proposed tree-structured classifier for critical Gleason grading. 
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4.2 METHODS 

The curvelet-based methodology for statistical texture feature extraction from prostate 

pathological images is described below. Non-linear support vector machines are developed for 

classification of critical Gleason score 3+3, 3+4, 4+3 and 4+4. 

4.2.1 Sampling Image Patches   

A central portion of 768×768 pixels covering about 70% of the core was taken which was 

considered to be sufficient for enclosing the prostate cells and glandular structure information. Let 

a window of the size of 256×256 pixels be moved across the whole 768×768 array starting from 

the top-left area to the bottom-right each time shifted by one half of the width (128 pixels) 

columnwise or rowwise, thus a total of 25 patches are taken with partial overlapping. Each patch 

of 256×256 pixels undergoes the fast discrete curvelet transform [12, 13] with the use of the 

Curvelab Toolbox software [15] to give curvelet coefficients c(j,l,k) in the decomposed subbands 

where the specific spatial frequencies are wrapped and the inverse Fourier transform is performed 

to provide the oriented edge information of the prostate cellular and ductile structures contained 

therein.  

Figure 30 is shown for the image patches obtained with moving window method, taken 

from a GS 4+4 images. Their statistical measures including variance 
2

J , energy JEner , entropy 

JS , skewness J1 , and kurtosis JKurt  in each subband for each patch are computed as textual 

features as we discussed in Chapter 3.   
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Figure 30. Moving window samples of (a) P3S4 and (b) P4S3 TMA images  

 

4.2.2 Feature Selections 

Each TMA image is about 2.8 megapixel color images and comprises a biopsy core of 0.6mm in 

diameter captured by a microscope at 20× magnification. We examined 768 × 768 pixels of the 

central part constituting about 75% area of the section which contains abundant prostate cellular 

and glandular information.  It is subdivided into 25 smaller patches, each of 256 × 256 pixels with 
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partial overlapping column-wise or row-wise. In other words, a scanning window of this size 

samples different portions of the image 25 times to form 25 local observations. Each observation 

will be tested by the proposed tree classifier and the majority of the 25 testing results are used to 

decide which Gleason patterns the image belongs to.  

Our previous work [19, 97-98] has showed that the use of statistical features obtained from 

the conventional curvelet-based textures and a proper designed tree classifier can achieve a 

preferable classification performance compared to current published research where the critical 

intermediate Gleason grades are less reported. A tree structured classifier consisting of three 

Gaussian-kernel support vector machines (SVM) was developed where the first SVM is initially 

to decide whether an input patch belongs to Grade 3 (GG3 denotes the inclusion of P3S3 and P3S4) 

or Grade 4 (GG4 denotes the inclusion of P4S3 and P4S4) and then to make majority decision of 

multiple patches in the image. The result of the first machine will direct the image to either the 

second SVM or the third SVM, where machine#2 is responsible to decide whether the image 

belongs to class P3S3 or class P3S4, and machine#3 to decide whether it belongs to class P4S3 or 

class P4S4; each machine likewise examines multiple patches and makes a majority decision. 

The maximum coefficients obtained by applying the fast curvelet transform to the available 

prostate histological images with moving window method are pulled together in each of the 5 

decomposition scales. Statistical measure including variance, energy, entropy skewness and 

kurtosis are calculated from these coefficients. According to the contemporary Gleason grading 

system [38, 70, 72], grade group 1 (Gleason score ≤ 6) will only have individual discrete well-

formed glands while the grade group 2 (Gleason score 3 + 4 = 7) and above grade groups start to 

deteriorate with poorly-formed, fused or cribriform component and finally lose the gland formation.  
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Cancer cells can particularly be distinguished from non-cancer cells by changes in the 

nucleolar structure. Alterations in nucleolar shape, size and amount are common features in 

quantitative nuclear morphometry that has been used to predict progression of different types of 

cancer [70]. The nucleolar features can be detected by the curvelets and quantized into statistical 

measures for efficient analysis. From well-differentiated to poor-differentiated adenocarcinomas, 

the mean number nucleoli increase significant and the main morphologic changes in the structure 

of nuclei are also characteristic features of cancer cells. In recent years, quantification of these cell 

features has been used to evaluate development of different cancers [74] and the studies have 

shown that the alterations of nuclear structure can be used to predict metastasis and progress in 

prostate cancer [75]. For prostate carcinomas evaluation, information extracted from nucleolar 

morphometry that measures nucleolar number, area, perimeter, and diameter can forecast 

progression as well as biochemical recurrence as these size and shape changes are frequent events 

in prostate cancer cells and are usually associated with a more aggressive cancer phenotype. 

In tissue images, nucleoli in a benign prostate gland usually appear consistently dark or 

uniformly bright over its entire area without obvious nucleoli, while nuclei in a cancerous gland 

appear light blue and contain prominent nucleoli which appear as small dark spots [74]. Cancer 

cells can be particularly distinguished from non-cancer cells by looking at the changes in the nuclei 

structure. Alterations in nuclei shape and size and increase in the number of nucleoli are common 

features in quantitative nuclear morphometry that have been used to predict metastasis and forecast 

progression as well as biochemical recurrence in prostate cancer [74-76]. The nuclei features can 

be examined via the curvelet transform of the image and quantized by statistical measures of the 

curvelet coefficients where the strength reflect edges of different components and their spatial 
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arrangements give textural patterns. These can provide more effective classification capability as 

developed in our work. 

The images contained in the database are prostate cancer histological images of Gleason 

Scores 6, 7 and 8, consisting of 4 classes: P3S3, P3S4, P4S3 and P4S4. The texture information 

provided by the tissue images could exhibit the homogeneous and heterogeneous characteristics 

implicitly or explicitly depending on which class the cancer is assigned to. This kind of information 

can be used towards the learning of the subtle difference of critical cancer patterns and thus for the 

discrimination of these categories. The machine vision tasks will need to be able to handle the 

decision flow similar to that of pathologists. This can be fulfilled through the recognition of 

multiple patches of subimages covering each image area. In order to process the purity and 

impurity exhibit in prostate tissue images, a tree structure classifier that consists two support vector 

machines (SVM) embedded with voting mechanism is developed.  

We evaluate the KLD method of curvelet-based texture feature selection for the 

classification of critical prostate cancer histological images. Total 10 curvelet-based textural 

features from the fine scales 3 to 5 have been ranked and provided as two reference feature sets 

for the classification of primary Gleason score 3+3 versus 4+4 and 3+4 versus 4+3. Among the 

two sets, the same 7 out of the 10 features are selected according to the Kullback–Leibler 

divergence method with different ranking for the two categories while 3 extra features, the Kurtosis 

and Entropy of subband 5, and Variance of subband 4, are selected to provide the discriminant 

information for the second classification task which involves of certain degree of mixture of the 

primary patterns. The feature set for the classification of primary Gleason score 3+3 versus 4+4 is 

chosen as  
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while the feature set for the classification of primary Gleason score 3+4 versus 4+3 is chosen as 
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The methodology for an effective classifier design with ensemble approach that realized 

by weighted voting mechanism will be developed and evaluated. The experimental results to 

illustrate how feature suggested by the KLD method and effective classifier design that improve 

the classification performance will be discussed and reported in next chapter. 
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4.2.3 Gaussian Kernel Support Vector Machines 

Suppose that a training set for the 2-class problem consists of N training samples of d-dimensional 

feature vectors xi ∈ Rd and the class label be ti = +1 for class 1 and –1 for class 2. The training 

samples are denoted by   N

iii tx
1

,
 . (The linearly non-separable case can be better addressed by 

using the SVM with a kernel function to map the input vectors from the original space into a high 

dimensional hidden space where an optimal separating hyperplane can be constructed.) If they are 

linearly separable, let a linear decision hyperplane be given by 

0)(  bxwxg T
                                                          (4.1) 

where w is the weight vector and b is the bias or threshold weight. We may fine two hyperplanes 

called carinal hyperplanes, one on each side of the separating hyperplane g(x) = 0 with a distance, 

any training sample lying on either one of the cardinal hyperplane is called a support vector 

denoted as xSV. The margin area between the separating hyperplane and the cardinal hyperplane 

may be considered as a bound. The goal for training a SVM is to find the optimal decision 

hyperplane that gives the largest bounds. With appropriate scaling the bound can be normalized to 

1 so that, 
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                                          (4.2) 

 The margin distance can be maximized which is equivalent to minimize the 
2

2

1
w . The 

training of SVM is to find the optimal w and b using the training sample set subject to the 

constraints in Eq. (4.2) i.e.,  
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  Nibxwt i

T

i ,...,2,1for1                                        (4.3) 

To allow some training sample points on the opposite side of its cardinal hyperplane, we 

may introduce a non-negative slack variables ξi then the objective function becomes 
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1
,                                               (4.4) 

which is to be minimized with respect to w where C > 0 is a regulation parameter and the separating 

hyperplane must satisfy  

  Nibxwt iii

T

i ,...,2,1for0,1                          (4.5) 
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i
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i bxwt  1  must be added to the right side of objective 

function Q in eq. (4.4). The 


N

i

i

1

 is the upper bound of the number of the erroneous samples and 

a large C leads to a large penalty for such an error while a small C yields a high error rate on the 

training vectors [104]. This offers a trade-off between maximum margin and minimum error. The 

constrained optimization problem leads to the discriminant function expressed by  
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where SVx  are the support vectors. When the feature vectors are nonlinearly mapped by a function 

Φ(x): Rd → H, an optimal decision hyperplane can be constructed in that space as  

   













 

 SVxi

i

T

i bxxtxg isign)(                                           (4.7) 



 70 

Let a kernel function K be defined as      xxxxK i

T

i ,  and the optimal hypersurface 

is now given by  

 













 

 SVxi

ii bxxKtxg ,sign)( i                                             (4.8) 

If  ix  is a Gaussian function, then the Gaussian kernel is given by 
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The kernel parameter σ is the standard deviation which determines the width of the Gaussian 

distribution. The Statistics and Machine Learning Toolbox was used for training our SVM 

classifiers [108]. 

To achieve a good generalization capability and attain a low error rate on future data, the 

appropriate values of the cost parameter C and the kernel parameter σ, the hyperparameters used 

by the SVM have to be estimated. Hyperparameters cannot be directly identified and thus a train 

and cross-validation process is required to evaluated them recurrently. In general, a grid search in 

(C, σ) space to obtain the optimal object function value is performed for the model selection [107, 

105] and the performance of the hyperparameter optimization is measured with cross-validation 

on the held-out set. The hyperparameters that achieve the best accuracy in the train-validation 

cycle are finalized as the model parameters.  The Bayesian optimization [106-108] are used in the 

search of the hyperparameters in this work. 
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4.3 EXPERIMENTS AND RESULTS 

The TMA prostate histological images used to train the classifier are from pathology databases 

prepared by the Urology/Pathology Laboratory of the Johns Hopkins Medical Institute. Among 

these files (TMA #471, #681 and #682), 32 available images from 16 cases (patients) of GS 3 + 3 

and GS 4 + 4, respectively were used in the training of Gleason patterns of Grade 3 and Grade 4 

which provided 64 core images in total where 1,600 (= 25×64) training patch samples were 

generated by the aforesaid local scanning window approach. The 1,600 training feature vectors 

were used to train the SVM 1 in the first level of the tree classifier for classification of the patch 

images observations and then casting votes of 25 sub-images in each case for determining pattern 

3 or pattern 4 of the core images. The support vector machine 2 in the second level of the tree 

classifier is trained with 32 images from 16 cases of GS 3+4 and GS 4+3 data sets, respectively, to 

provide also 1,600 training feature vectors for pattern discrimination of patches and then use majority 

balloting to differentiate pattern P3S4 from P4S3. For the first and second SVM’s in the classifier, 

feature sets for P3S3 vs P4S4, and for P3S4 vs P4S3, respectively, are listed in Table 7, they were 

selected according to Kullback–Leibler divergence criteria [68]. The digits J in entries of Table 7 

represent the subband J where the features were extracted from. The higher order moments, 

skewness and kurtosis, were selected as texture features for their discriminating capability, as 

discussed in previous sections. 

There are 8 features used in the first SVM 1 including variance and kurtosis from subband 

3, energy, entropy, skewness and kurtosis from subband 4, energy and skewness from subband 5. 

The 10 texture features used in the second SVM 2 include the same 7 features used in the first 
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SVM but with three additional features from fine subbands, variance from subband 4, entropy and 

kurtosis from subband 5, to provide enhancement of discrimination for the in-between classes. 

 

TABLE 7. Statistical features in different subbands (n) selected by the KL-Divergence method for the tree classifier 

Feature 

Classifier 
Variance Energy Entropy Skewness Kurtosis 

GS 6 vs GS 8 3 4, 5 4 4, 5 3, 4 

GS 3+4 vs GS 4+3 3, 4 4, 5 4, 5 4, 5 3, 5 
 

 

4.3.1 Kernel Selection 

The model selection for the RBF kernel used in the two support vector machines in the tree 

classifier was carried out by the Bayesian optimization method [105]. The input feature data were 

normalized into [0, 1] and the search ranges for RFB kernel σ and regularization parameter C were 

from 10-1 to 10 and from 1 to 104, respectively. For each pair of the hyperparameters, a leave-

one(image)-out (LOO) cross-validation test was performed. Then we selected the value of the 

hyperparameters that achieved the best recognition rate as the model parameter values. Table 8 

lists the results of the selected values for σ and C. From the table, the regularization parameter C 

selected for SVM 2 in the second level is larger than that of SVM 1 in the first level. The same 

situation was obtained with the resulting number of support vectors (SV) in the two SVMs, the 

second one is much large than the first one. The objective function value and the CV error versus 

the number of times of function evaluations are shown in Figure 31-32. The object function of the 

first SVM converged faster than that of the second SVM as shown in Fig. 31, and the first SVM 

also reached a lower cross-validation error rate as compared to the second SVM. Number of 
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support vectors, values of alpha, and threshold weights of the two SVMs are listed in Table 13 and 

Table 14 in Appendix B, respectively. 

TABLE 8. Validation results of the tree classifier 

Classifier σ C Error SVs 

SVM#1 1.5545 1 1.12% 72 

SVM#2 2.7974 6.1212 4.42% 171 

 

 

 
Figure 31. The cross-validation error versus evaluation times of the first SVM. 
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Figure 32. The cross-validation error versus evaluation times of the second SVM. 

4.3.2 Training and Testing Results of the Tree Classifier 

Using the Gaussian support vector SVM 1, the training of 32+32 core images of GS 3+3 and of 

GS 4+4 was 100% successful as shown in Table 9. To evaluate the generalization capability for 

this level classifier, firstly, we conducted the 10% Jackknife cross-validation tests for 100 

realizations and the resulting statistics are shown in Table 10 with an average accuracy of 98.88% 

for primary Gleason grade 3 and 4. We also tested the SVM 1 with 32 core images of Gleason  

3+4 and 32 core images of Gleason score 4+3 which would be used as training set for SVM 2 in 

the level 2. The results were given in Table 10 and listed in Table 11. All the images of Gleason 

score 3+4 and 4+3 were correctly classified to class 3 (Gleason score 7) at level 1 of the tree 

classifier.  
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TABLE 9. Training results of SVM 1 (based on image patches) 

Train 

Label 
GS 3+3 GS 4+4 

GS 3+3 32×25 0 

GS 4+4 0 32×25 

 

 

 

TABLE 10. Validation test of SVM 1 (based on image patches) 

Test 

Label 
GS 3+3 GS 4+4 Error 

Overall 

Accuracy 

Class 1 GS 3+3 3165 32 1.09% 
98.88% 

Class 2 GS 4+4 37 3163 1.16% 

Average 98.90% 98.84% 1.12%  

Level 1 classifier SVM 1 + patch voting 

Input with training samples of GS 3+3 

and 4+4 
Input with samples of GS 3+4 and 4+3 

Test 

Label 

Class 1 

GS 3+3 

Class 2 

GS 4+4 

Class 3 
Error 

GS 3+4 GS 4+3 

Class 1 GS 3+3 32 0 0 0 0% 

Class 2 GS 4+4 0 32 0 0 0% 

 

Class 3 

 

GS 3+4 0 0 32 0 0% 

GS 4+3 0 0 0 32 0% 

Dist_T_SVM_20160514_G3vsG4_v2.m, Dist_T_SVM_20160502_G34vsG43_v1.m 
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 TABLE 11. Testing result of trained (SVM 1 + voting) with a set of samples GS 3+4 and 4+3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grade 
No 

GS 3+4 GS 4+3 

3        4 3        4 

1 14 11 10 15 

2 17 8 11 14 

3 13 12 12 13 

4 13 12 8 17 

5 14 11 12 13 

6 22 3 12 13 

7 15 10 4 21 

8 14 11 10 15 

9 16 9 7 18 

10 13 12 6 19 

11 13 12 9 16 

12 13 12 11 14 

13 18 7 8 17 

14 17 8 12 13 

15 16 9 10 15 

16 18 7 10 15 

17 13 12 3 22 

18 14 11 4 21 

19 24 1 12 13 

20 21 4 9 16 

21 21 4 5 20 

22 16 9 9 16 

23 15 10 9 16 

24 13 12 7 18 

25 21 4 10 15 

26 13 12 9 16 

27 14 11 11 14 

28 17 8 11 14 

29 14 11 6 19 

30 13 12 4 21 

31 18 7 8 17 

32 14 11 12 13 
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Secondly, we conducted the training of SVM 2 in the second level with 1600 training image 

patches of each class, which was also 100% successful and then the10% Jackknife cross-validation 

tests for 100 realizations. The results are given in Table 12 and Table 13, respectively. The 

resulting statistics shown in Table 13, gave an average accuracy of 96.95% for Gleason score 3+4 

and 4+3.  

 

TABLE 12. Training results of SVM 2 (based on image patches) 

Train 

Label 
GS 3+4 GS 4+3 

GS 3+4 32×25 0 

GS 4+3 0 32×25 

 

TABLE 13. Validation results of SVM 2 

Test 

Label 
GS 3+4 GS 4+3 

Indecision 

GS 3+4 GS 4+3 

GS 3+4 3102  98  

GS 4+3  3103 
 

97 

Average 96.94% 96.97% 3.06% 3.03% 

Dist_T_SVM_20160514_G3vsG4_v2.m, Dist_T_SVM_20160502_G34vsG43_v1.m 

 

The capability of the trained tree classifier was evaluated by a test set of TMA images 

which includes 24 images in 12 cases of each of the GS 3+3, 3+4, 4+3 and 4+4 in Table 14, gives 

the test result of the level 1 classifier (SVM 1 + voting) for the four classes. The samples assigned 

to class 3 with indecision labels at level 1 were directed to SVM 2 in level 2 for further 

classification. The overall testing results of the whole tree classifier are given in Table 15 with an 

average accuracy 95.83% for the four classes. The use of features generated from maximum 

curvelet coefficients which integrate both nuclei and glandular edge information into the texture 
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features appears to improve the classification accuracy of the four critical classes from 96.88% 

validation accuracy reported in our earlier work [104] to the current descent (validation accuracy) 

of 97.91%. 

TABLE 14. Testing Result of the SVM 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grade 

No 

GS 3+3 GS 3+4 GS 4+3 GS 4+4 

3 4 3 4 3 4 3 4 

1 25 0 12 13 10 15 0 25 

2 25 0 16 9 11 14 0 25 

3 25 0 13 12 12 13 0 25 

4 25 0 16 9 12 13 0 25 

5 25 0 14 11 13 12 0 25 

6 25 0 13 12 10 15 0 25 

7 25 0 14 11 11 14 0 25 

8 25 0 14 11 10 15 0 25 

9 25 0 14 11 11 14 0 25 

10 25 0 13 12 12 13 0 25 

11 25 0 15 10 12 13 0 25 

12 25 0 13 12 9 16 0 25 

13 25 0 13 12 9 16 0 25 

14 25 0 14 11 10 15 0 25 

15 25 0 13 12 12 13 0 25 

16 25 0 14 11 10 15 0 25 

17 25 0 14 11 9 16 0 25 

18 25 0 13 12 12 13 0 25 

19 25 0 15 10 11 14 0 25 

20 25 0 15 10 11 14 0 25 

21 25 0 13 12 13 12 1 24 

22 25 0 14 11 12 13 0 25 

23 25 0 14 11 12 13 0 25 

24 25 0 12 13 10 15 0 25 

 100% 91.67% 91.67% 95.83% 

Accuracy 95.83% 93.75% 
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TABLE 15. Testing Result of the Tree Classifier 

Test 

Label 

Gleason 

Score 6 

Gleason 

Score 8 
Gleason Score 7 Indecision Overall 

GS 3+3 GS 4+4 GS 3+4 GS 4+3   

GS6 GS 3+3 24  
 

  24 

GS8 GS 4+4  23  1  24 

GS7 
GS 3+4   22  2 24 

GS 4+3    23 1 24 

Accuracy 
100% 95.83% 91.67% 95.83%  96 

Average Accuracy 95.83% 

4.4 DISCUSSION  

The new tree classifier having two Gaussian kernel support vector machines with voting by 

multiple patches in a prostate tissue image using curvelet-based texture features of the images has 

been developed with success. The notion of a moving window to sample multiple subimages for 

use in majority voting is mimic to a pathologist’s decision process for Gleason scoring attempting 

to roughly model the concept of the primary and secondary Gleason grading of a core prostate 

cancer histological image. The unanimous votes in level classifier during the training is to 

ascertain the feature characteristics of pure grade3 and pure grade 4. As demonstrated in our 

experiments, it is a very rewarding success of our effort. 

The classification performance attained and the limited number of support vectors of SVM 

1 in the tree classifier confirmed the effectiveness of selected features extracted from the high 

order statistical moments of maximum curvelet coefficients.  

The classification of all 24 test images of Gaussian score 3+3 reached 100% accuracy. No 

test image of other scores was under-rated to GS 3+3. This is our objective.   
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The developed tree classifier has been demonstrated with the testing result giving an overall 

average classification accuracy of 95.81% for 4 classes. The first level SVM 1 with voting 

mechanism was designed on the basis of homogeneous textures of all patches in each training 

image of Gleason score 3+3 and similarly, 2 different but also homogeneous textures of Gleason 

score 4+4, respectively. The second level SVM 2 with majority voting instead of unanimous voting 

utilizes additional features in fine scales to enhance the discrimination between Gleason scores 

3+4 and 4+3. The 95.83% and 91.67% recognition accuracy of GS 4+3 and GS 3+4 test images, 

respectively, involved 1 and 2 images, respectively being assigned to indecision category results 

were too close to the mid-point, but they stayed in Gleason score 7. One of the 24 test images of 

GS 4+4 was misclassified to GS 4+3. It was assigned to class 3 at the level 1 and subsequently at 

level 2 was classified into GS 4+3 where the classification was designed to only differentiate 

between GS 3+4 and GS 4+3. If we relaxed the requirement of unanimous (0/25) voting of GS 

4+4 in level 1 classifier, e.g., using the threshold of (2/23), this error will be avoided.  

The use of SVM classifier has been proved to be superior to the conventional KNN or 

Bayes classifier of Gleason grading problems [35, 65]. Compared to the reported results listed in 

Table 16, our new method has shown a remarkable performance.  In [35], a sophisticated two-

stage classifier which is composed of a multi-class Bayes classifier and binary SVM classifiers 

trained with multi-resolution quaternion wavelet transform (QWT) features and LBP (Local 

Binary Pattern) features, produced a comparable accuracy 98.83% in classifying Grade 3 and 

Grade 4, while ours is 98.88%. and our classifier is free from any error of misclassifying GS 4+4 

to GS 3+3 and is capable of providing the classification of intermediate GS 3+4 and 4+3 classes 

which is a challenging task for histopathology image analysis [99, 109].  
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  TABLE 16. Comparison of cross-validation of different Approaches for G3 vs G4 and 4 critical Gleason grades 

Method Dataset 
Grade 3 vs 

Grade 4 

GS 7 (3+4) vs 

GS 7 (4+3) 

Cardinal multiridgelet transform 

(CMRT) texture [56] 

16 grade 3 and 26 grade 

4 images (20×) 
93.75%  

Lumen- and nuclei-based method 

[109] 

134 grade 3 and 70 grade 

4 images (20×) 
87.30%  

Shape features of the lumen and 

gland inner boundary [110] 

16 grade 3 and 11 grade 

4 images (40×) 
95.19%  

Texton forests [34] 
25 grade 3 and 50 grade 

4 images (10×) 
94.00%  

Network cycle features [98] 
25 grade 3 and 50 grade 

4 images (10×) 
91.56%  

Gland segmentation and structural 

features [58] 

28 grade 3 regions and 

20 grade 4 regions (20×) 
85.60%  

Quaternion wavelet transform 

(QWT), quaternion ratios, and 

modified LBP [35] 

30 grade 3, 30 grade 4 

and 11 grade 5 images  
98.83%  

Texture features from combining 

diffusion coefficient and T2-

weighted MRI images [99] 

34 GS 3+3 vs 159 GS ≥7  

114 GS 3+4 vs 26 GS 

4+3 

159 GS ≥7 includes:  

114 GS 3+4, 

26 GS 4+3, 

19 GS ≥8 

93.00% 92.00% 

Our two-level classifier using 

maximum curvelet coefficient-based 

texture and features 

32 GS 3+3, 32 GS 3+4, 

32 GS 4+3,  and 32 GS 

4+4 images (20×) 

98.88% 95.58% 
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5.0  CONCLUSIONS AND SUGGESTIONS 

One of the major efforts in this dissertation research is the utilization of the significant curvelet 

coefficient at each location which is the maximum coefficient with respect to all orientations at 

each point for sparse and realistic representation of images. As the coefficient at a point refers to 

a unique orientation, it denotes a piece of short edge segment there which may be a texton related 

to the image structure, for example, nuclei boundary or glandular structure in a tissue image. 

Extraction of texture features based on the significant curvelet coefficients is direction sensitive 

and robust to noise, and thus is more effective on representing texture characteristics.  

Using the database of prostate histological images we have, we examined the first order 

statistical measures of the distributions of curvelet coefficients for each of the four pattern classes 

under consideration by pooling together coefficients in all directions of the image patches, their 

capabilities in class discrimination were studied and proven for feature selection in our classifier 

design. This is the first contribution. 

 

The second major contribution of the thesis is the success of the design of a 2-level 

classifier with one support vector machine in each level for recognition of four classes of critical 

Gleason patterns in prostate cancer histological images. Two intermediate classes, Gleason 3+4 

and Gleason 4+3, are correlated to the two classes, Class 1 (Gleason 3+3) and Class 2 (Gleason 

4+4), we developed the first support vector machine with a voting mechanism by multiple 
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samples within a core image.  Using the large number of these subimages of Class 1 and Class 

2, the training success with unanimous voting assures the adequacy of the selected features used 

in the first support vector machine with maximum margin. Any non-unanimous voting result will 

assign the subimage into Class 3 (Gleason 3+4 and Gleason 4+3) which will be discriminated in 

the second support vector machine with a majority voting in level 2. This 3-class machine 

structure in level 1 is distinct from the standard multi-class support vector machines. The 

classifier was trained using 32 sample images of each class, each image was partitioned into 25 

half-overlapped image patches with a moving window method to provide 1600 training samples 

for each class. 

The designed classifier was successfully trained with 100% training accuracy. The 10% 

Jackknife validation result reaches an overall 97.97% accuracy; the first SVM gave an 98.88% 

accuracy for the classification of primary Gleason grade 3+3 and 4+4, which is outstanding as 

compared to the published studies [34, 35]. The validation result of the second SVM attained an 

accuracy of 95.58% which was about 3.58% higher than the only available reported work 

regarding the in-between classes [99]. The classifier was tested with 24 samples of each class 

and achieved an overall testing accuracy of 95.83%. This is the major contribution of this 

dissertation research.   
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5.1 SUGGESTIONS FOR FURTHER RESEARCH 

The following two problems are suggested for further research: 

1. The significant curvelet coefficients (the local max curvelet coefficients) that have been 

used here carry the unique orientation information at each location, and thus the 

orientation co-occurrence matrix can be evaluated in a straight forward manner. This 

will enable us to extract the second order statistical texture features reflecting some 

structural characteristics as well. This will be of great interest in further study on 

classification of critical prostate cancer tissue images.      

2. The bound on the number of support vectors in a classifier is an important problem in 

training a support vector machine giving maximum margin and minimum error under 

a reasonable upper bound on support vector number, the smaller bound will assure the 

reliability of the trained machine. The analytical study toward a feasible of this 

optimization process is suggested for future study. 
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APPENDIX 

A. CURVELET IMAGE DENOISING 

The curvelet transform provides a sparse representation of image with rich curvilinear in multiscale 

and orientations which implies that most of the curvelet coefficients will have close to zero values 

except for those dominant curvelet coefficients localizing the edginess. The distribution of very 

few but large magnitude coefficients and the majority that has low amplitude coefficients 

contributes the heavy tailed shape distribution with peaks always occur at zero (leptokurtic). Figure 

15 demonstrates such histograms representing curvelet coefficients in subband 4 and 5 obtained 

from P3S3 and P4S4 prostate sample images of 256 × 256 pixels size. The curvelet coefficients 

across all orientations are pulled together in each scale so that the distribution is nearly rotation 

invariant. 

The multiscale Meyer wavelets provide an infrastructure that can be used to construct the 

narrow curvelet wedges systematically at different scales and to divide the 2-D Fourier transform 

in the sense of partition of unity. The needle-shape elements of this transform resulting from the 

multiscale directional wavelet are sharply supported in the spatial domain and are highly 

directional sensitive and anisotropic. In the transform domain, a curvelet coefficient with 

significant magnitude denotes a short edge segment centered at the location k = (k1, k2), in 

orientation θl and at scale level j, as the curved singularity shown in Figure 14. The curvelet 

coefficients with large amplitude provide optimal sparse representations of edge components of 

images and information embedded therein can deliver useful description of the image for different 

types of image processing purposes, e.g. edge detection.  
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For image denoising task, the moderate white Gaussian noise of a corrupted image are 

often associated with weak magnitude coefficients at fine scales and one can recover the image by 

properly excluding most of the weak coefficients and reconstructing a preferable result with the 

rest fine and coarse scale coefficients.  

A.1 CURVELET SHRINKAGE  

Suppose the observed 2-D signal has been corrupted by additive noise and is given by 

 

 fg                                                          (A.1) 

 

where ɛ is white zero-mean Gaussian noise with variance σ2 which is independent of the signal f. 

We observe the contaminated signal g and wish to recover the signal f containing as much as much 

important information as possible. Equivalently, the goal is to exclude the noise ɛ to obtain an 

estimate which minimizes the mean squared error (MSE) 
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 In the curvelet domain, the problem can be formulated as  

 

ljljlj ncy ,,,                                                         (A.3) 
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where ljy ,  represents the noisy curvelet coefficients at scale j, orientation l, and the ljc ,  denotes 

the true coefficients, and ljn ,  is the independent Gaussian noise. The goal is to estimate ljc ,
ˆ  from 

the corrupted observation ljy , . Because the computation of the variance σ2 of the noise is 

prohibitively expensive, in the work of image denoising using curvelet transform by Starck et al. 

[16], they calculated an approximate value 
2~
  of individual variances with Monte-Carlo 

simulations and simply estimated the variance values by evaluating the curvelet transform of few 

standard white noise images. The λ is a set of parameters of the ridgelet (curvelet) transform. The 

true coefficients are then estimated with the hard shrinkage function  
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where k is chosen based on the scale in their experiments. The principle of the hard curvelet 

shrinkage is to shrink small curvelet coefficients toward zero to remove noise while retain the 

remaining few large ones that explain the useful information of images. 
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B. GLEASON GRADING FOR PROSTATE CARCINOMA   

 

According to the epidemiology statistics [48], over 161,300 anticipated new cases of prostate 

carcinoma will be diagnosed and near 26,730 men are likely to die in the United States in 2017. 

Since 1966, the Gleason grading system devised by Donald Gleason has been established as a 

standard for interpreting this disease by expert pathologists based on microscopic tissue images 

from needle biopsies [49-50]. Gleason grade is categorized into 1 to 5, and increases based on the 

cumulative loss of regular glandular structure which reflects the increasing degree of malignancy 

aggressive phenotype, as illustrated in Figure 33. When an urologist examines a tissue image, he 

initially examines for a major (primary) arrangement of glandular architecture (an area where the 

adenocarcinoma acts to be most aggressive) and then inspects for a less extensive Gleason grade 

pattern (secondary) of growth, and assigns each one a Gleason grade number, primary grade and 

secondary grade respectively. The Gleason score (GS) is the summation of the primary grade and 

the secondary grade, ranging from 5 to 10. Urologic pathologists incline to determine a total score 

of 6 as a slower-growing cancer, 7 (3+4) as a medium-grade, and 4+3, 8, 9, or 10 as poorly 

differentiated (higher-grade) more aggressive carcinoma. Examples of TMA prostate images of 

Gleason grades P3S3, P3S4, P4S3 and P4S4 in Figure 34 are shown for the different complicated 

texture patterns from benign, critical intermediate class to carcinoma class.  
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(a)                                                  (b)                                               (c) 

 
Figure 33. The Gleason grading system diagram (a) original by D.F. Gleason, M.D and (b) the modification made in 

2005 and (c) the right hand side are the refinement made in 2010. 
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Figure 34. Examples of prostatic carcinoma (a) Gleason grade 2, (b) Gleason grade 3, (c) Gleason grade 4, 

and (d) Gleason grade 5, courtesy of WebPathology.com 

 

A lower carcinoma grows more slowly and is less likely to propagate than a higher grade 

carcinoma [51]. The primary Gleason grades 3 and 4, hence, the Gleason Scores 6 and 7, are 

discriminated as the mid-point between the low-grade (less aggressive) and the intermediate-grade 

carcinoma and it generates the most lack of consensus in second-opinion assessments. In order to 

determine a patient's prognosis, there will be attention paid to more accurate Gleason grading and 
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scoring on all patients especially with a total Gleason Score of 7 (Primary 3 and Secondary 4 

(P3S4), or Primary 4 and Secondary 3 (P4S3)), or 8 (Primary 4 and Secondary 4 (P4S4). The 

existence of a grade 4 is considered as a more aggressive regardless the overall degree of 

involvement [39, 49-50]. These scores (GS6, GS7, and GS8) are the critical Gleason scores that 

will help prognosis and provide suggestions for adequate definitive treatment. Examples of 

prostatic adenocarcinoma for the original Gleason grade 2 to 5 are shown in Figure 34.  

Figure 34 (a) shows the stroma which is the fibromuscular tissue, clearly surrounds gland 

units, each of which is made of epithelial cells around a lumen; this retains to Gleason grade 2, 

where the glands are still round to olive-shaped and are nearly uniformly distributed. Figure 34 (b) 

is Gleason grade 3, where glands are shown with an irregular arrangement due to the progress of 

cancer. Figure 34(c) illustrates Gleason grade 4 whereas cancer gets worse, epithelium cells 

replicate irregularly and tend to occupy lumen areas. Figure 34 (d) shows Gleason grade 5, where 

lumens and stroma are virtually vanished. 

Tabesh et al. [73] aggregated color, texture, and morphometric features at the global and 

histological object levels for classifications. They found that features associated with texture 

coarseness perform particularly well in these tasks. Doyle et al. [55] present a boosted Bayesian 

multiresolution (BBMR) system to identify regions of prostate cancer on digital biopsy slides. The 

algorithm decomposes the whole-slide image into an image pyramid comprising multiple 

resolution levels. Regions identified as cancer via a Bayesian classifier at lower resolution levels 

are subsequently examined in greater detail at higher resolution levels by a random forest classifier 

ensemble obtained by bagging multiple decision tree classifier. They concluded the classifier is 

able to detect areas involved by disease across multiple image resolutions which is similar to the 

approach employed manually by pathologists. 
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Kein and Jain [17] proposed a prostate cancer detection approach for the whole slide tissue 

image by extracting a cytological feature which presents the cancer nuclei (nuclei with prominent 

nucleoli) in the tissue, and apply this feature to detect the cancer regions. They showed the 

robustness of the cytological feature with the use of cytological-textural feature and conventional 

image texture features combination method. They later present another approach focused on the 

tissue structure and Gleason grading system specification. Their hierarchical classification scheme 

obtains 85.6% accuracy in classifying an input tissue pattern into one of three classes: benign, 

grade 3 carcinoma and grade 4 carcinoma.  

Veltri et al. [59] proposed an adaptive active contour scheme (AdACM) that combines 

boundary and region based energy terms with a shape prior in a multi-level set formulation to 

segment nuclei on prostate cancer tissue microarray images. They achieved a classification 

accuracy of 84% in discriminating Gleason patterns 6, 7, 8, and 9 using a Support Vector Machine 

classifier and morphological features extracted from the segmentations.  

Lopez and Again [35] introduced a new combination of wavelet and fractal features to 

automatically grade Gleason patterns 3, 4, and 5 pathological images using the Gleason grading 

system. They used pairwise coupling SVM classifiers for image classification and obtained a 

system accuracy close to 97%, estimated through three different cross-validation schemes.  

The curvelet-based methodology for multiresolution texture feature extracted from prostate 

pathological images is described in next section. The exploration of using different strategies in 

ensemble classifier design is examined and reported. Non-linear support vector machines are 

employed as the baseline model of the tree structure classifier for classification of critical Gleason 

scores 6, 7 and 8. The strategy of ensemble classifier design and utilization of multiresolution 

texture features greatly improve the classification accuracy of prostate histological patterns. 



 93 

C. PARAMETERS OF SVM WITH RBF FOR PROSTATE CANCER 

CLASSIFICATION STUDY 

 
Table 17. Parameters of the first SVM of the tree classifier for prostate cancer Gleason score 3+3 versus 4+4 (32 

P3S3 and 32 P4S4, 25 patches per each image, 8 features are used, σ = 1.5545, C = 1).  

Index Support Vector Alpha 

1.  -0.0749 0.8678 -0.1143 -0.0165 0.0496 0.9969 1.2417 -0.3857 0.8249 

2.  -0.6079 0.4502 0.1254 -0.0395 -0.0013 -0.2860 -0.2898 1.2007 0.0802 

3.  -0.8761 0.1483 0.2083 0.4882 0.7888 -0.5470 -0.5376 -0.7697 0.7501 

4.  -0.9215 1.8442 0.1451 0.3249 0.6276 -0.7946 -0.7006 -0.9808 0.0425 

5.  -0.9597 0.1906 0.1602 -0.0019 0.0805 -0.7876 -0.6563 -0.2971 0.6054 

6.  0.1566 0.3214 -0.1589 -0.0644 -0.0409 0.4038 0.6332 0.5377 0.6970 

7.  -1.0388 -0.0125 0.2222 -0.0095 0.0153 -0.8039 -0.7287 0.0395 1.0000 

8.  -1.1850 1.9580 0.2432 0.2039 0.0236 -0.9751 -0.8264 -0.9851 1.0000 

9.  -0.4162 1.3639 -0.0941 0.2977 0.4845 0.2268 0.2995 -0.8458 0.4317 

10.  0.0924 0.9940 -0.1262 -0.0138 0.0357 1.9508 3.2913 -0.2602 0.5735 

11.  0.2670 0.8898 -0.1325 -0.0368 0.0159 1.8752 2.8340 0.5559 0.6345 

12.  0.5121 0.9570 -0.1301 0.0012 0.0616 2.8451 4.3491 0.1789 1.0000 

13.  0.0233 0.3849 -0.1159 -0.0153 0.0610 1.1901 1.4811 2.0255 0.8215 

14.  -0.5153 0.0377 -0.0888 0.0052 0.0796 0.0463 0.0553 0.9636 0.3395 

15.  -0.5254 0.2409 -0.1199 -0.0341 0.0300 -0.4591 -0.4172 0.6530 0.1227 

16.  -0.9481 -0.1389 1.2287 0.9126 2.1221 -0.3291 -0.3792 -0.1084 0.8418 

17.  -1.5584 -0.0044 38.2466 34.9549 36.0842 -1.0630 -0.8856 -1.0834 1.0000 

18.  -0.7951 -0.1546 1.4612 0.9652 2.1713 0.1256 0.1119 1.2246 1.0000 

19.  -1.2589 -0.9674 3.3732 6.2525 3.8682 -0.5798 -0.5563 -0.5255 1.0000 

20.  -1.4381 -0.5505 8.7774 17.6508 15.4115 -0.9006 -0.7954 -1.0172 1.0000 

21.  -0.2123 0.8491 -0.1486 -0.0811 -0.1159 -0.4849 -0.2319 0.7635 0.1302 

22.  -0.1718 0.2548 0.0752 0.4558 0.2368 0.8790 0.8310 2.3112 0.7389 

23.  -0.4508 -0.0298 0.0485 0.4468 0.2325 0.4661 0.4559 1.5601 0.3813 

24.  1.2052 -1.1744 -0.1700 -0.1416 -0.1791 0.6696 0.5223 7.5350 0.2641 

25.  1.6459 -0.9934 -0.2349 -0.1389 -0.1752 2.8690 3.7552 2.7198 0.3254 

26.  5.9169 -0.9704 -0.2603 -0.1428 -0.1643 7.6255 9.8389 2.1384 0.5266 

27.  4.1370 -0.9553 -0.2563 -0.1327 -0.1415 4.2869 4.9708 0.7630 0.3994 

28.  0.2073 -0.9245 -0.1517 -0.1443 -0.1885 -0.4244 -0.3507 0.8984 0.4356 
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Table 17 (continued) 

29.  1.1802 -0.9669 -0.1689 -0.1460 -0.1898 1.1986 1.7484 2.0510 0.2923 

30.  1.2498 -1.2124 -0.1686 -0.1292 -0.1466 0.7061 0.3631 5.3433 0.3669 

31.  1.5362 -1.2616 -0.2373 -0.1352 -0.1569 1.1270 0.6670 8.5108 0.3642 

32.  2.3734 -1.1623 -0.2449 -0.1607 -0.1917 2.6646 2.6725 5.6584 0.1762 

33.  2.0659 -1.2153 -0.2371 -0.1422 -0.1797 2.8334 2.6895 5.1440 0.1128 

34.  2.5373 -1.0855 -0.2410 -0.1585 -0.1820 3.1430 2.8501 7.8427 0.4690 

35.  2.8646 -1.0726 -0.2417 -0.1449 -0.1904 4.4334 4.6330 5.1519 0.3407 

36.  -0.4143 -1.0705 -0.0954 -0.1241 -0.1645 -0.5631 -0.6418 0.5403 0.3807 

37.  0.3373 -1.0640 -0.1132 -0.1237 -0.1580 0.8895 0.7542 1.3435 0.6472 

38.  2.2444 -1.1259 -0.2326 -0.1342 -0.1833 4.0681 4.1548 2.6845 0.0831 

39.  1.7535 -1.0533 -0.2283 -0.1288 -0.1705 3.6348 3.8500 1.5327 0.0388 

40.  -0.5421 -0.7055 -0.0992 -0.0580 -0.0474 -0.7958 -0.7364 -0.6204 0.8378 

41.  -0.1305 -1.2223 -0.1193 -0.1335 -0.1737 -0.4275 -0.5293 3.6564 0.3978 

42.  2.1841 -1.2137 -0.2331 -0.1300 -0.1892 3.0321 2.6103 4.0427 0.1254 

43.  3.5129 -1.2044 -0.2474 -0.1322 -0.1789 4.0310 3.6580 5.9644 0.2898 

44.  0.2520 -0.8131 -0.1308 -0.0415 -0.1496 0.6705 0.7439 -0.4602 0.7403 

45.  3.6991 -1.0801 -0.2458 -0.1380 -0.1814 6.0922 7.2741 3.9911 0.4929 

46.  2.9698 -0.9715 -0.2404 -0.1328 -0.1710 6.3372 8.5473 1.5371 0.4173 

47.  2.1546 -1.0396 -0.2261 -0.1315 -0.1709 4.9354 6.1492 1.8426 0.3724 

48.  2.8323 -0.9735 -0.2386 -0.1348 -0.1745 6.0011 7.9817 1.8683 0.1026 

49.  1.2857 -0.9590 -0.1862 -0.1391 -0.1726 -0.0934 0.0689 1.9637 0.0829 

50.  1.9641 -0.8617 -0.2344 -0.1344 -0.1681 3.6516 3.9301 0.0454 0.0678 

51.  2.1589 -0.9707 -0.2323 -0.1318 -0.1660 4.3515 4.9524 0.6761 0.2129 

52.  1.6516 -0.9262 -0.2284 -0.1314 -0.1594 3.2569 3.4655 -0.1085 0.4164 

53.  1.6470 -0.8417 -0.2299 -0.1282 -0.1521 2.1920 1.7536 -0.2641 0.1801 

54.  0.3207 -1.1476 -0.1274 -0.1248 -0.1551 0.6288 0.5124 3.0152 0.3576 

55.  3.5111 -1.0507 -0.2476 -0.1370 -0.1771 4.5988 4.7665 2.9254 0.1722 

56.  -0.8179 -0.7902 0.1106 0.0022 -0.0207 -0.8559 -0.8062 -0.8551 0.9142 

57.  0.8468 -1.1160 -0.1334 -0.1177 -0.1511 1.9814 2.2365 0.5282 0.3108 

58.  3.2227 -1.0841 -0.1813 0.0638 0.3496 3.4269 2.4721 1.5612 0.2861 

59.  4.1921 -1.1597 -0.2537 -0.1118 -0.1986 3.4734 4.2871 3.0839 0.3306 

60.  1.7467 -1.2917 -0.1553 0.1041 0.3647 1.8231 0.8768 1.6411 0.0269 

61.  -0.0224 -1.4829 0.6293 1.6684 0.9844 1.0124 0.4300 1.2045 0.6494 

62.  0.8938 -1.4160 0.3135 0.2485 0.7513 2.1266 1.2818 3.8983 0.3958 

63.  3.5766 -1.0421 -0.2452 -0.0906 -0.0617 2.3903 2.0637 2.5905 0.1436 
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Table 17 (continued) 

64.  2.2383 -1.1436 -0.2428 -0.0874 -0.0627 0.3541 0.5621 1.0745 0.1158 

65.  3.3859 -1.0533 -0.2455 -0.0995 -0.1966 1.6491 1.9008 4.5860 0.3223 

66.  2.4122 -1.0334 -0.2525 -0.1425 -0.1794 0.9166 1.1077 3.7635 0.1885 

67.  2.5746 -0.9141 -0.2502 -0.1381 -0.1744 1.4570 1.3209 0.0945 0.0453 

68.  3.9034 -0.7929 -0.2603 -0.1434 -0.1699 1.6454 2.4440 0.1682 0.3742 

69.  2.7996 -1.0403 -0.2553 -0.1372 -0.1611 0.9884 1.4151 0.5116 0.0535 

70.  1.7153 -0.8559 -0.2488 -0.1366 -0.1666 0.1500 0.3046 -0.2051 0.1419 

71.  2.0439 -0.9467 -0.2498 -0.1281 -0.1451 0.4378 0.6671 1.9123 0.0136 

72.  3.5627 -1.0361 -0.2580 -0.1424 -0.2304 1.3053 2.1311 1.9003 0.2140 

 

Bias 

-0.4702 
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Table 18. Parameters of the Second SVM of the tree classifier for prostate cancer Gleason score 3+4 versus 4+3 (32 

P3S4 and 32 P4S3, 25 patches per each image, 10 features are used, σ = 2.7974, C = 6.1212).  
 

Index Support Vector Alpha 

1.  -1.0346 1.3610 0.7598 1.5600 0.0584 -0.6666 -0.7772 -0.4761 -0.5528 -0.6369 6.1212 

2.  -0.2347 0.4206 0.2121 -0.2943 -0.2213 -0.3267 -0.2675 -0.7985 -0.9298 1.0444 6.1212 

3.  -1.2319 0.6686 1.1185 0.0191 2.3406 -0.6991 -0.6403 -0.8980 -1.1418 1.5724 1.8048 

4.  -0.6498 0.3822 0.6882 -0.1079 -0.0063 -0.5115 -0.6336 -0.8031 -0.9541 0.6583 6.1212 

5.  -0.8533 -0.2619 0.7349 -0.1559 -0.0339 -0.5529 -0.1607 -0.6454 -0.6131 1.0320 6.1212 

6.  0.3403 -1.2454 -0.5910 -0.1471 0.2365 1.7283 1.0603 -0.6934 -0.7386 0.1729 1.6640 

7.  -1.0516 -0.3035 1.3266 0.0692 0.0587 -0.5747 -0.4276 -0.6266 -0.5355 0.8606 6.1212 

8.  -1.1705 0.6752 1.1356 -0.0317 0.0418 -0.6801 -0.6238 -0.7133 -0.6940 1.1121 6.1212 

9.  -1.1671 0.6751 1.2140 1.6147 0.4752 -0.6445 -0.7494 -0.8942 -1.1154 1.8956 6.1212 

10.  -0.5507 0.2642 0.4822 -0.3493 -0.2122 -0.3750 -0.0472 2.1883 2.1399 -1.5862 3.2852 

11.  -1.0877 0.6726 0.8929 -0.2958 -0.3905 -0.6428 -0.3314 -0.5402 -0.4745 0.8536 4.3390 

12.  -0.6149 -0.2555 0.6403 -0.1682 -0.1079 -0.4864 -0.1559 0.4354 0.5481 -0.9735 2.0786 

13.  -0.7623 -0.9685 0.7881 -0.1672 -0.0174 -0.4807 0.1500 -0.5037 -0.4091 0.3811 6.1212 

14.  -0.4675 -1.1497 1.3698 0.2522 0.1722 0.1362 -0.0099 1.4995 1.5426 -1.3236 4.8477 

15.  0.3727 -0.3608 -0.5043 2.1477 4.4105 -0.0293 0.0882 0.8915 1.0439 -1.6821 0.1721 

16.  0.0231 0.7376 -0.7957 0.8403 2.0411 -0.4487 -0.4576 0.0037 0.2117 -0.9853 2.5017 

17.  -0.9212 0.5045 0.8557 2.2864 4.0651 -0.6286 -0.7932 -0.7906 -0.9777 -0.4402 3.7260 

18.  1.0353 -0.0881 -1.0916 -0.0293 0.5954 0.2958 -0.1948 -0.4942 -0.4749 -0.4024 6.1065 

19.  0.1483 0.7692 -1.0403 -0.4111 -1.2963 -0.1680 0.4610 3.3592 2.8931 -2.1424 1.1156 

20.  3.1264 1.6241 -1.1780 -0.2580 -0.2544 4.0516 0.0178 -0.3838 -0.1982 0.3820 1.0071 

21.  0.1033 -0.0701 -0.9666 0.0386 0.1181 -0.1961 -0.2673 -0.6096 -0.6220 -0.1106 6.1212 

22.  1.4099 0.4006 -1.2071 -0.3682 -0.2661 0.6488 0.7399 2.0685 1.8430 -1.1011 0.5261 

23.  2.7368 -0.0921 -1.2855 -0.6192 0.0702 2.5277 1.2456 0.2050 0.4584 -0.0409 3.1314 

24.  0.8839 -0.6003 -1.2042 -0.4188 -0.3731 0.0160 0.9088 0.5710 0.7063 -0.8487 1.0103 

25.  -0.0382 0.4422 -0.9178 -0.1670 0.4830 -0.2889 -0.4663 -0.7402 -0.8499 0.2515 1.2961 

26.  0.9492 -0.6798 -1.2251 -0.4876 -0.4082 -0.0695 0.9642 0.9483 0.9769 -1.0718 6.1212 

27.  0.9706 -0.6029 -1.2244 -0.4893 -0.4184 0.0381 0.8472 0.4020 0.5381 -0.7010 6.1212 

28.  3.1562 -0.5608 -1.1945 -0.7571 -1.4366 4.3944 3.8555 1.2650 1.3390 -0.8457 1.3263 

29.  1.8841 -0.5711 -1.0449 -0.7534 -0.5970 2.1574 3.7166 -0.5789 -0.5829 0.7253 2.9944 

30.  1.8142 0.0958 -1.0366 -0.3608 -0.4605 1.7722 0.5037 0.5942 0.6940 -0.6280 2.8570 

31.  1.2560 -0.6743 -0.9841 -0.3490 -1.3983 1.2628 2.6516 1.0845 1.3773 -0.8440 0.5960 

32.  -0.5742 0.4585 0.3866 -0.3963 -0.4995 -0.5143 -0.3478 -0.2765 -0.3893 -0.2977 6.1212 

33.  -1.2434 0.5009 1.9527 3.0944 4.1699 -0.6230 -0.8088 -0.9229 -1.2051 1.9049 1.4181 
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34.  0.1073 -1.0380 -0.4657 2.0537 4.3489 -0.0650 0.7989 2.1335 2.3125 -2.0090 1.1960 

35.  -1.1790 -1.7970 7.0000 6.7277 14.5749 -0.5889 0.0787 -0.1647 -0.0718 -2.1767 1.1313 

36.  -0.7100 -1.0445 1.7302 1.7794 3.8713 -0.5044 0.9799 -0.0455 0.1410 -0.9066 0.3771 

37.  0.2351 -0.0244 -1.0590 -0.3118 -0.3690 -0.1892 -0.1062 0.7175 0.8657 -0.9326 6.1212 

38.  -1.7164 1.4574 5.7226 2.9177 4.1002 -0.7704 -0.9211 -0.8682 -1.1230 -0.7525 0.7810 

39.  -1.7344 2.3146 5.4891 2.7276 3.7507 -0.7856 -0.9132 -0.8903 -1.1498 -0.0327 0.2724 

40.  0.0098 -0.1918 -0.9724 -0.3368 -0.3406 -0.2062 0.1679 -0.3198 -0.3153 -0.3049 1.4378 

41.  -0.7034 0.8496 0.4560 -0.2762 -0.4461 -0.5968 -0.5380 -0.0193 -0.0251 -0.5972 6.1212 

42.  -0.5216 0.7309 0.3842 -0.4272 -0.5615 -0.3874 -0.4023 -0.7600 -0.9197 1.4394 6.1212 

43.  4.4544 0.2689 -1.3181 -0.8223 -1.4780 4.1183 2.9881 -0.0405 0.2162 0.2780 1.0677 

44.  2.0397 -0.4044 -1.2276 -0.8001 -0.5152 1.3188 1.8622 0.6950 0.9224 -0.4609 0.9147 

45.  1.9858 -0.4604 -0.9283 0.1551 0.0676 1.0564 2.9196 6.4765 5.4171 -2.1117 0.8612 

46.  1.8499 0.2023 -1.1863 -0.4223 -0.7769 0.8887 1.5041 3.6187 3.4360 -1.4490 2.1921 

47.  1.0071 -1.0197 -0.2629 2.6606 1.0477 1.1413 2.5863 8.0695 6.3827 -2.7809 0.8512 

48.  1.5898 -0.0333 -1.0524 0.4740 -0.3546 0.9928 2.0501 9.0337 7.5775 -2.2651 0.7881 

49.  2.4476 0.6509 -1.3378 -0.7773 -1.3125 1.0434 1.4335 6.2089 5.3192 -1.8348 1.0617 

50.  1.1103 0.6956 -1.1605 -0.4029 -0.5975 0.2379 0.1102 0.1150 0.2848 0.1828 6.1212 

51.  -0.4155 -0.4790 0.2719 -0.3388 -0.5194 -0.4028 0.2781 -0.3184 -0.3304 -0.2051 3.8364 

52.  -0.2484 -0.6228 0.2077 -0.4057 -0.6162 -0.3305 0.4019 -0.1566 -0.1532 -0.0404 6.1212 

53.  -0.6809 -0.3179 0.5489 -0.0669 0.2460 -0.5092 -0.3281 -0.5840 -0.5437 0.1952 6.1212 

54.  -0.0998 -1.7050 -0.6373 0.0331 0.3064 0.9204 3.4898 -0.5520 -0.4806 -0.0037 1.5908 

55.  -0.3101 -2.2455 1.0241 0.1784 0.3296 0.9905 3.5262 -0.3653 -0.2759 -0.2858 1.0102 

56.  3.3198 0.5064 -1.0189 -0.1648 0.0471 6.4929 1.1396 1.3669 1.3091 -1.2056 0.7047 

57.  -0.8093 0.3865 0.8806 1.6999 0.4135 -0.5162 -0.6880 -0.8352 -1.0263 0.4761 6.1212 

58.  0.0217 -0.1021 -0.7633 -0.1308 -0.0472 0.3430 -0.2002 -0.0532 0.0849 -0.4248 6.1212 

59.  -0.4233 -1.1208 0.7091 -0.1018 0.1527 -0.1997 0.1499 -0.7839 -0.9046 0.6319 6.1212 

60.  0.3021 -0.4072 -0.7933 -0.0970 0.0270 0.4485 -0.1875 0.0065 0.0311 -0.9352 6.1212 

61.  -1.0048 0.5055 1.0726 1.7324 0.3519 -0.5634 -0.5676 -0.5158 -0.4861 0.0468 6.1212 

62.  -0.3537 -0.5255 0.3837 -0.2216 -0.1431 -0.2009 -0.0831 0.1533 0.2040 -0.8539 6.1212 

63.  -0.4911 -0.8330 0.5222 -0.0545 0.2479 -0.3130 -0.2335 -0.0323 0.0068 -0.7343 6.1212 

64.  1.4319 -0.3735 -0.8756 -0.3096 -0.3593 5.1708 1.4301 -0.1384 0.0220 0.2504 4.6796 

65.  -0.9183 0.0131 1.0026 1.8841 0.7558 -0.5786 -0.6444 0.3101 0.3548 -1.6695 3.0772 

66.  0.5961 -0.7298 -0.5468 1.3304 -0.0834 0.7884 1.0057 2.4946 2.3225 -2.1448 1.5940 

67.  0.2056 -0.4735 -1.0285 -0.2202 -0.2153 -0.2319 0.4444 1.1582 1.2251 -1.3603 0.4046 

68.  0.2153 0.2704 -0.9509 -0.2189 -0.0758 -0.1561 0.0092 0.3059 0.4168 -0.2251 6.1212 
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Table 18 (continued) 

69.  -0.9990 0.8243 1.0063 1.9590 1.0372 -0.6180 -0.8016 -0.7508 -0.8447 0.0862 1.0048 

70.  -0.4581 0.5859 0.4356 -0.0382 0.3417 -0.4474 -0.5646 -0.7567 -0.8330 0.8841 6.1212 

71.  -0.5826 2.4840 0.6262 1.5646 2.5969 -0.3944 -0.8003 -0.8769 -1.0907 0.5994 0.7167 

72.  -0.3252 0.2457 0.4187 -0.0381 0.4618 -0.3203 -0.4961 -0.4682 -0.4070 -0.1629 2.8991 

73.  -0.7403 0.3845 0.9964 1.9397 0.8962 -0.4266 -0.5506 -0.7680 -0.8486 0.3084 6.0110 

74.  -0.9952 0.1688 1.1095 2.1639 0.9219 -0.6205 -0.6574 -0.7651 -0.8530 0.2827 6.1212 

75.  -1.0631 1.7481 0.9624 1.5135 0.2397 -0.6199 -0.7919 -0.8360 -1.0247 0.4867 0.2582 

76.  -0.6522 -1.0439 0.8450 0.0339 0.3904 -0.4300 -0.2835 -0.6192 -0.7053 -0.8539 0.9313 

77.  -1.0050 0.1599 0.8843 1.5985 0.7637 -0.6409 -0.5910 -0.8032 -0.9572 -0.0827 6.1212 

78.  -0.9852 -0.2202 1.0128 0.0757 0.6172 -0.5690 -0.5640 -0.8004 -0.9105 0.3735 4.1702 

79.  -0.5687 0.0210 0.1984 -0.4433 -0.5253 -0.5941 -0.0275 -0.1831 -0.0824 0.7146 1.7996 

80.  -0.6717 0.1326 0.1306 -0.3877 -0.3141 -0.6347 -0.4469 -0.3206 -0.3001 -0.0133 4.7929 

81.  -0.5557 -1.0698 0.5607 -0.2743 -0.2306 -0.4661 -0.1782 -0.4005 -0.4098 -0.2142 1.5337 

82.  -1.1818 -0.3763 0.9260 -0.2699 -0.2673 -0.5723 -0.6106 0.1656 0.1463 -0.4300 0.2520 

83.  0.6882 0.1965 -1.1477 -0.3771 -0.4464 0.2011 -0.3134 0.0707 0.2151 -0.3810 6.1212 

84.  -0.9139 0.3543 0.7510 -0.3637 -0.4764 -0.3462 -0.6072 -0.5422 -0.6599 0.7043 6.1212 

85.  -0.1892 0.0723 0.3381 1.2317 -0.0053 0.1591 -0.5688 -0.7975 -0.9383 0.9483 0.1632 

86.  -1.4888 -0.0514 1.2842 1.0156 -0.1456 -0.7634 -0.6696 -0.7271 -0.8143 1.2593 1.1246 

87.  -0.3834 -0.6590 0.7177 -0.1943 -0.1523 0.2618 -0.5004 -0.8054 -0.9679 0.8964 6.1212 

88.  -1.4639 -0.2093 1.1015 -0.2666 -0.2377 -0.7672 -0.7043 -0.7700 -0.8965 1.1037 6.0097 

89.  -1.2873 1.0888 0.8440 0.8535 -0.2627 -0.7256 -0.7474 -0.8440 -1.0162 1.7367 6.1212 

90.  -1.0510 0.8098 0.6625 -0.3866 -0.4700 -0.6822 -0.6635 -0.4889 -0.5791 0.2345 6.1212 

91.  0.2273 -0.6347 0.1386 -0.3688 -0.2378 0.2769 -0.3485 -0.5556 -0.6406 -0.1089 0.2604 

92.  -1.2087 0.8432 0.9686 1.2583 -0.0333 -0.7283 -0.7262 -0.7808 -0.9401 0.3128 6.1212 

93.  -1.2922 -0.5897 0.9889 1.1466 1.7567 -0.7201 -0.6261 -0.7964 -0.9749 0.5635 5.9037 

94.  -0.5097 0.6522 0.6676 1.1980 0.2653 -0.4829 -0.6791 -0.3237 -0.2879 0.1951 6.1212 

95.  0.6866 -1.8567 0.2334 3.7539 6.8966 0.4234 0.1276 2.1646 2.2248 -1.3088 1.0573 

96.  -0.9789 -2.9634 10.4121 24.3916 15.5304 -0.2698 -0.2654 0.7330 0.7071 -2.3807 0.8703 

97.  -0.4288 -2.5298 5.4784 4.2719 9.0279 -0.4418 0.3292 1.6218 1.9489 -0.9565 0.7262 

98.  1.4293 -1.7826 -0.2944 2.3745 0.3944 0.6175 0.7646 2.9864 3.3341 -1.0332 1.0586 

99.  0.0409 -2.3140 3.6378 3.4540 6.5427 -0.1256 0.5481 2.1489 2.4179 -0.9974 0.5614 

100.  1.4357 -0.3133 -1.2734 -0.4184 -1.4138 0.2253 0.8136 2.2171 2.2447 -0.5511 2.8874 

101.  1.2845 -1.5597 -0.9965 -0.1881 -0.6248 0.3268 1.4940 5.6791 5.5913 -1.0726 0.2631 

102.  -0.1029 0.0734 0.2014 -0.3310 -0.2332 -0.2898 -0.4855 -0.3533 -0.3322 0.1055 4.4600 

103.  -0.4136 -0.0044 0.2923 -0.2530 -0.1689 -0.4170 -0.4800 -0.4183 -0.3670 0.1106 6.1212 
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Table 18 (continued) 

104.  1.6977 0.2899 -1.3507 -0.4268 0.4302 0.2339 -0.3392 0.0864 0.3276 -0.3909 4.2583 

105.  0.9064 0.3633 -1.2090 -0.3962 0.2613 0.2285 -0.3768 0.6796 0.9348 -0.6315 6.1212 

106.  0.8839 -1.0570 -1.1579 -0.5065 -0.2209 0.8731 0.7725 2.6946 2.6546 -1.2089 0.6571 

107.  2.3794 -0.5190 -1.4000 -0.6516 -0.6038 1.4416 0.6125 0.4809 0.6777 -0.2139 0.5952 

108.  0.5775 -0.1543 -1.1976 -0.5261 -0.3392 -0.0155 -0.1915 0.8874 0.9360 -0.8341 3.2673 

109.  -0.0926 0.0177 0.0193 -0.3848 -0.1817 -0.4187 -0.3055 -0.5631 -0.5580 0.6204 6.1212 

110.  -0.2943 0.1965 0.0414 -0.3360 -0.0309 -0.4890 -0.3780 0.0445 0.0018 -0.6412 6.1212 

111.  -0.6572 -0.4035 0.3878 -0.2360 1.4550 -0.5576 -0.5562 -0.8375 -1.0368 1.4844 1.8734 

112.  -0.0392 -0.4152 0.1134 -0.4519 -0.5208 -0.2234 0.2646 -0.1899 -0.1445 0.4047 6.1212 

113.  1.4623 -1.4147 -1.0695 -0.5250 -0.6283 2.3168 3.1436 0.1932 0.3658 0.2479 3.4635 

114.  2.1852 -0.4846 -1.2431 -0.5993 -0.8017 1.9830 1.6255 0.0722 0.2901 0.9011 0.3049 

115.  5.2361 -1.4222 -1.2865 -0.8685 -0.7063 7.9888 4.1018 0.2377 0.5179 0.6043 0.6867 

116.  3.0774 -1.7916 -1.1611 -0.8356 -0.6556 5.2942 3.2751 -0.0679 0.1813 0.7940 0.7434 

117.  0.4781 -0.4988 -1.1429 -0.5548 -0.7613 -0.0697 0.9813 0.0242 0.1299 0.4940 3.2252 

118.  -0.0455 -0.6794 -0.0912 -0.4218 -0.2298 -0.4379 0.4783 2.0811 1.9896 -1.4135 6.1212 

119.  0.1593 -0.9866 -0.0514 -0.3515 0.2716 0.0129 -0.0971 0.4237 0.4763 -1.1182 4.4581 

120.  1.6934 -2.0440 -1.2284 -0.8227 -0.5992 1.0570 5.6784 0.1904 0.5239 0.7255 0.0210 

121.  -0.0027 -0.3244 -0.0472 -0.5257 -0.6343 -0.3519 0.9361 0.1601 0.4037 1.0291 1.1313 

122.  0.9868 -0.6011 -1.1626 -0.4348 -0.5280 0.4636 0.6601 0.5551 0.7638 -0.2745 3.4883 

123.  -0.7135 -0.4892 0.8203 1.6189 0.2141 -0.4653 -0.4371 -0.6180 -0.6778 0.0947 6.1212 

124.  -1.0145 0.2738 1.0067 1.7816 0.2484 -0.6306 -0.7461 -0.6585 -0.7057 0.6054 6.1212 

125.  -0.6423 0.5799 0.8112 1.7646 0.4113 -0.2798 -0.7580 -0.6106 -0.6377 0.5005 6.1212 

126.  -0.8842 -0.4920 0.7434 -0.0677 0.1572 -0.4761 -0.4521 -0.6237 -0.6345 0.8044 6.1212 

127.  -1.0969 0.4774 0.7917 1.6322 1.7608 -0.6939 -0.8425 -0.8656 -1.0398 2.8741 1.4394 

128.  -0.6548 -1.0404 0.5191 -0.1118 0.1257 -0.5378 -0.1806 0.1126 0.1403 -0.6086 3.1814 

129.  0.1423 -1.4240 0.1796 -0.2002 -0.0596 -0.1388 0.7928 -0.2023 -0.1802 -0.4844 6.1212 

130.  0.6051 -1.0781 -1.0351 -0.2909 -0.0518 0.2098 0.8534 -0.1527 -0.0800 -0.2365 6.1212 

131.  1.2840 -0.4439 -1.1032 -0.3400 -0.1446 1.3650 0.3434 0.2602 0.3832 -0.2034 6.1212 

132.  -1.1171 0.7429 0.7059 1.3665 0.3154 -0.6988 -0.8527 -0.6231 -0.7399 -0.0021 6.1212 

133.  -0.8813 0.4409 0.5817 1.1333 0.2583 -0.5494 -0.7476 0.0021 -0.0680 -0.9435 6.1212 

134.  -0.7566 -0.3721 0.5902 -0.2997 -0.1792 -0.4719 -0.5383 -0.0362 -0.1132 -0.5902 6.1212 

135.  -0.8452 -0.7526 0.7360 1.2032 0.1711 -0.5656 -0.4061 1.5448 1.4964 -1.3525 4.6682 

136.  -0.2154 -0.9030 0.5828 -0.3220 -0.3201 -0.1095 0.3305 4.0004 3.6780 -0.9683 0.0115 

137.  -1.0768 0.7282 0.6749 1.3853 0.3017 -0.6587 -0.8417 -0.6660 -0.7630 0.4353 1.3598 

138.  -0.1609 -1.6187 0.3508 -0.2113 -1.2380 -0.1568 0.9661 6.9018 6.0059 -1.8409 0.4890 
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Table 18 (continued) 

139.  -0.8104 0.8099 0.4921 1.3010 1.8988 -0.5975 -0.8488 -0.8950 -1.1308 3.0762 0.3001 

140.  -0.9191 -0.7737 0.6936 1.5714 0.4982 -0.6557 -0.6325 0.6705 0.6779 -1.4252 0.4854 

141.  -0.6095 -1.6605 0.7598 -0.1398 -0.1304 -0.2834 0.6406 5.7927 4.9670 -1.4850 0.1617 

142.  0.2369 -0.3109 -0.2042 -0.5080 -0.6049 -0.3263 0.0313 0.1895 0.0076 -0.3585 1.8151 

143.  -0.0013 -0.5085 0.0960 -0.4438 -0.4741 -0.1069 0.3633 3.6013 3.3341 -1.0058 0.1889 

144.  -1.6869 -0.9722 6.3476 3.7363 2.6016 -0.7648 -0.8803 -0.9238 -1.2160 2.0822 1.0806 

145.  -1.6516 0.6633 5.9014 10.0951 3.4068 -0.7472 -0.9606 -0.9269 -1.2437 1.3438 0.8675 

146.  0.2022 0.5617 0.6057 2.1650 2.3204 -0.2198 -0.7841 -0.7781 -0.9373 0.1314 4.1313 

147.  -0.6853 -0.0407 0.8468 2.7403 2.8855 -0.5423 -0.8779 -0.8722 -1.1208 0.5179 2.8404 

148.  0.9195 -0.3980 -1.0565 1.6839 2.4170 0.4592 -0.5740 -0.7755 -0.9531 -0.1676 0.4883 

149.  1.2162 -1.0680 -1.2651 -0.3203 -1.2830 0.1341 1.2407 5.3923 5.0984 -1.4402 1.6206 

150.  2.0575 -1.1231 -1.3699 -0.5531 -1.4689 1.6562 0.8370 2.9756 3.1240 -0.6832 0.4537 

151.  0.4670 -0.6405 -1.2041 -0.2199 0.2687 -0.2030 -0.3889 -0.0705 -0.0512 -1.1326 6.1212 

152.  2.2283 0.0623 -1.3286 -0.5674 -0.6114 2.1206 0.0018 0.0578 0.1133 0.6371 0.1929 

153.  -0.2217 0.3628 -0.1251 -0.3150 -0.2816 -0.5463 -0.6253 -0.4440 -0.5451 -0.1327 6.1212 

154.  -0.2710 0.5606 0.0565 -0.2360 -0.0925 -0.4595 -0.6763 -0.7912 -0.9533 1.8971 1.1672 

155.  -0.6881 -2.5417 0.3583 -0.2121 -0.2061 -0.5873 1.3637 -0.5404 -0.5724 0.5544 1.3441 

156.  0.5837 -1.9606 -1.1686 -0.4559 -0.4727 -0.0795 2.6835 1.0695 1.1914 -0.2740 0.1330 

157.  -0.9529 -0.7510 0.5199 -0.1638 1.7628 -0.6450 -0.6161 -0.7316 -0.8929 0.0352 2.1541 

158.  -0.7291 0.5288 0.2668 1.0463 1.5798 -0.6236 -0.7084 -0.7489 -0.9466 0.0444 6.1212 

159.  1.0751 -3.3369 -1.0875 -0.3971 -0.6465 1.1053 12.9512 0.0094 0.1671 0.3188 0.8099 

160.  1.4250 -3.1106 -1.0832 -0.7494 -0.7037 1.8202 17.3703 0.1041 0.3553 0.6018 0.8107 

161.  0.3607 -2.8879 0.2096 -0.2750 -0.4626 0.3315 4.6444 -0.4928 -0.3888 1.0511 1.2187 

162.  0.8037 -2.8037 -1.0179 -0.3248 -0.5013 1.1476 5.2245 -0.4604 -0.2950 1.3363 0.2257 

163.  2.9145 -1.2026 -1.3501 -0.9133 -1.6647 1.8812 5.9897 1.3722 1.8943 0.5100 0.6664 

164.  3.2989 -1.3750 -1.3937 -0.9067 -1.6658 2.3587 2.9275 0.8291 1.0956 0.1104 1.1618 

165.  6.0310 -0.7655 -1.3662 -0.5308 -0.9221 8.3308 0.8997 -0.4066 -0.2339 1.6504 0.4400 

166.  4.1520 -0.3426 -1.2359 -0.3372 -0.6863 8.1608 -0.2298 -0.6275 -0.5696 2.2271 0.4395 

167.  5.0839 -1.6732 -1.4154 -0.8620 -0.9548 6.3622 3.9631 -0.5411 -0.3967 3.6246 0.5267 

168.  3.2333 -1.7501 -1.3698 -0.8292 -0.8418 2.5127 4.3090 -0.3198 -0.0223 2.1360 0.5834 

169.  -0.3298 -2.0812 0.5304 -0.2220 0.0581 -0.2323 0.8364 -0.0456 0.0803 -0.2976 0.7638 

170.  2.3146 -0.4207 -1.1563 -0.4372 -0.3336 4.6665 1.0096 -0.0532 0.2119 0.9902 5.7482 

171.  -0.6333 0.0862 0.3308 -0.3296 -0.0256 -0.4694 -0.4366 -0.8424 -1.0134 1.7604 6.1212 
 
 

Bias 

-0.1302 
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D. RANKING OF THE STATISTICAL FEATURES 

Table 19. Ranking of the statistical features for the two classification problems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GS 3+3 vs GS 4+4 GS 3+3 vs GS 4+4 

 Feature Subband Feature Subband 

1.  Entropy 4 Entropy 4 

2.  Skewness 4 Energy 4 

3.  Energy 4 Skewness 4 

4.  Skewness 5 Variance 4 

5.  Energy 5 Kurtosis 5 

6.  Kurtosis 4 Entropy 5 

7.  Variance 3 Skewness 5 

8.  Kurtosis 3 Energy 5 

9.  Variance 5 Kurtosis 3 

10.  Entropy 5 Variance 3 

11.  Kurtosis 5 Variance 5 

12.  Skewness 3 Kurtosis 4 

13.  Variance 4 Skewness 3 

14.  Entropy 3 Energy 3 

15.  Energy 3 Entropy 3 
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