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MICROBIOLOGY OF HYDRAULIC FRACTURING WASTEWATER 

Daniel Lipus, Ph.D. 

University of Pittsburgh, 2017 

 

The extraction of natural gas and oil from shale formations using hydraulic fracturing 

generates large volumes of wastewater, often termed produced water. One of the biggest 

challenges associated with produced water management is microbial activity. Microorganisms 

growing in produced water may have the ability to form biofilms and produce acids and sulfides, 

which can contribute to biocorrosion and gas souring. This dissertation investigates the microbial 

ecology of microorganisms living in produced water by studying their community structure and 

metabolic potential as well as the active, genetic response of Pseudomonas biofilms to the 

biocide sodium hypochlorite to inform microbial control. First, storage guidelines for hydraulic 

fracturing produced waters intended for microbiological analysis were developed. Results 

suggested microbial communities in produced water samples to remain stable when stored at 4oC 

for three days or less. Next, the microbial ecology of 42 Marcellus Shale produced water samples 

was analyzed. Samples were dominated by the taxa Halanaerobiales, specifically the genus 

Halanaerobium. Subsequently, metagenomic sequencing and binning allowed the recovery and 

annotation of a Halanaerobium draft genome. Annotation results suggested Halanaerobium to 

have the metabolic potential for acid production and sulfide production through thiosulfate 

reduction. Microbiological assessment of produced waters from 18 Bakken Shale wells, sampled 

across a six-month time frame, confirmed the presence of Halanaerobium in produced water. 
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However, the microbial community structure was found to change temporally, and the majority 

of the samples were dominated by the order Bacillales. Finally, the active, genetic response to 

the broad-spectrum biocide sodium hypochlorite, which is also used for microbial control in 

hydraulic fracturing operations, was assessed. Pseudomonas fluorescens biofilms were exposed 

to sublethal concentrations of sodium hypochlorite and differential genes expression was 

analyzed. Results suggested genes involved in oxidative stress response pathways and multidrug 

efflux mechanisms to be upregulated, demonstrating genetic components to be involved in 

sodium hypochlorite resistance. Ultimately, findings from this dissertation enhance the current 

understanding of microbial community dynamics in produced water and may help to limit 

corrosion, control fouling and souring issues, protect well infrastructure, and minimize 

unnecessary biocide application. 
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1.0 INTRODUCTION 

 

This dissertation investigates the microbial ecology in hydraulic fracturing produced 

water from the Marcellus and Bakken Shale regions using 16S rRNA and shotgun metagenome 

sequencing studies, evaluates the metabolic potential of native produced water organisms by 

recovering and annotating a Halanaerobium draft genome, and analyzes genetic hypochlorite 

response mechanisms in Pseudomonas biofilms via differential gene expression analysis. 

1.1 MOTIVATION AND OBJECTIVE 

1.1.1 Advances in hydraulic fracturing and importance of produced water management  

Improvements in high-volume hydraulic fracturing and horizontal drilling techniques 

have led to an increase in oil and gas production from unconventional reservoirs, changing the 

current and future energy landscape [1]. As a result, natural gas and oil from shale regions has 

emerged as one of the leading energy sources in the United States. Hydraulic fracturing also has 

a global impact, as hydraulic fracturing operations have increased in, for example, Canada and 

the United Kingdom [2-4].  Shale gas and oil from unconventional reservoirs are extracted from 

the ground through a process termed hydraulic fracturing (‘fracking’), a technology that uses 
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pressurized liquids, sand and chemicals that create micro fractures to release hydrocarbons from 

underground formations [5, 6]. In high-volume hydraulic fracturing operations, large quantities 

(15-20 million liters) of fracture fluid are injected into the well, fracturing the target formation 

and thus stimulate reservoir permeability [6-9]. After the hydraulic fracturing process is 

complete, between 5% and 100% of fracking fluid, together with subsurface brines, return to the 

wellhead, where the liquid must be collected and managed. This wastewater, which is often 

termed “produced water”, returns to the surface for the rest of the well’s lifetime and represents a 

major management challenge [5, 10]. Produced water is generally saline to hypersaline and 

characterized by total dissolved solids (TDS) concentrations as high as 350,000 mg/l, and high 

concentrations of inorganic ions such as sodium, calcium, barium, strontium, and chloride, 

making conventional treatment difficult and appropriate produced water management one of the 

utmost operational and environmental concerns associated with hydraulic fracturing [5, 11]. The 

most common produced water management approach is deep well injection, a process that is 

critically viewed as it has been associated with seismic activity [5, 12]. Recently, reuse of 

produced water in hydraulic fracturing operations has emerged as a desirable management 

approach. Produced water reuse reduces environmental and logistical concerns associated with 

produced water disposal and minimizes freshwater requirements for fracturing fluid [5]. Holding 

ponds are commonly used to store produced water for up to several months before reinjection.  

1.1.2 Microbial activity in hydraulic fracturing systems and its role in produced water 

management 

One of the major concerns associated with produced water management is biological 

activity. Microorganisms have been shown to live in hydraulic fracturing produced water and in 
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the hydraulic fracturing infrastructure [10, 13, 14]. Microbial processes in hydraulic fracturing 

systems can negatively impact oil and gas production and recovery, minimize the potential for 

produced water recycling, and increase the risk for environmental contamination [5, 15, 16]. 

Examples for biological activity, causing issues in produced water and infrastructure, are 

microorganisms producing hydrogen sulfides (through the reduction of either sulfates or 

thiosulfate), acids (through anaerobic respiration), and biofilm formation, which can foul the 

subsurface fractures [16, 17]. These processes can also cause corrosion of infrastructure 

equipment and pipelines, and lead to souring of natural gas, both of which may lead to additional 

operating costs and environmental concerns. Microbial activity in hydraulic fracturing produced 

water and the hydraulic fracturing infrastructure has been identified and investigated by several 

studies, however additional work on microbial populations living in these systems and their 

biological activity would improve the current understanding of microbial community dynamics. 

In addition, previous observations have suggested operational parameters, such as well age and 

biocide application, to impact the microbial ecology in produced waters. However, few attempts 

have been made to investigate parameters potentially driving microbial populations in hydraulic 

fracturing systems. 

1.1.3 Economic impact of microbial activity on the oil and gas industry 

Microorganisms growing in hydraulic fracturing oil and gas wells and the hydraulic 

fracturing infrastructure, such as the upper well casing, piping, the separator, or storage 

equipment, can contribute to corrosion and well souring. Corrosion related failures represent 

more than 25% of failures experienced in the oil and gas industry [18]. The NACE (National 

Association of Corrosion Engineers) estimates that approximately 20% of all corrosion in the oil 
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and gas industry is caused by microbes [19, 20]. As of 2016 the oil and gas industry spent 

approximately 7 billion dollars annually on direct corrosion repair and control and also invested 

1.4 billion dollars to protect and restore production and exploration infrastructure and equipment 

[21]. A different source reports costs of several hundred million dollar due to microbial induced 

corrosion in the production, transport, and storage of oil and gas [22]. For example, evaluation of 

microbial influenced corrosion in a hydraulically fractured California oilfield revealed the 

presence of pinhole leaks in the oil-water gathering system and also identified elevated numbers 

of acid and sulfide producing bacteria. The damage was attributed to corrosion and resulted in 

costs of 1.8 million dollars to replace and modify facilities [22, 23]. These observations and 

numbers suggest microbial activity contributing to corrosion to cost operators across the United 

States between several million of up to several billion dollars every year. 

Similarly, operators have to mitigate the production of hydrogen sulfide (H2S) in natural 

gas and oil, a process called souring. Souring in gas and oilfield systems can occur thermo-

chemically, but is also often attributed to the action of bacteria reducing various sulfur 

compounds [24]. Different methods can be used to remove hydrogen sulfide from natural gas. 

Liquid H2S scavengers systems (e.g. triazine based) are one commonly used approach, however 

operating costs from just the chemical consumption can be between $8 to $10 per pound of H2S 

removed, resulting in large overall costs for treatment [25]. For example, a Haynesville play 

operator estimated a cost of $14 million annually just to purchase the scavenger chemical needed 

for gas sweetening [25, 26]. Extraction of H2S from the hydrocarbon stream early in the process 

has been recommended, as this practice can extend the operating life of midstream and 

downstream equipment [27, 28]. Remediation of damaged oil and gas wells (through for 

example excessive sulfide contamination) also represents an additional cost.  Davies et al. reports 
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US states have spent approximately $319 million in recent decades to plug and remediate more 

than 70,000 oil and gas wells [29]. 

This data suggests microbial activity in hydraulic fracturing to not only interfere with 

operations and represent an environmental issue, but to also have a large economic impact. 

Therefore, improved understanding of the microbial ecology and optimized biocide treatment 

may help to minimize costs for corrosion repair and hydrocarbon treatment. 

1.1.4 The importance of biocide efficacy during produced water management  

Attempting to control microbial growth, hydraulic fracturing well operators typically 

apply biocides. Glutaraldehyde and DBNPA (2,2-dibromo-3-nitrilopropionamide) are two of the 

most commonly applied biocides added to hydraulic fracturing produced water; however, more 

than 20 are used in the industry [15]. Anecdotal reports have suggested current biocide 

application strategies only successfully eliminate approximately 60% of microbes in the 

fracturing fluid, which is also supported by high bacterial concentrations in produced water 

following the hydraulic fracturing process [10, 15]. In addition, there is concern about the 

ecological impact of biocides due to inadvertent release [15]. Several studies have observed 

resistance of produced water organisms to glutaraldehyde, DBNPA, and other biocides in vitro 

[17, 30]. Furthermore, recent investigations have suggested hypersaline produced water to cause 

increased resistance to glutaraldehyde in produced water microorganisms and identified genetic 

pathways that may contribute to resistance [31, 32]. Genetic resistance to commonly used 

hydraulic fracturing biocides, therefore, needs to be taken into consideration when evaluating 

produced water management strategies. Despite these findings, genetic resistance mechanisms in 
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produced water organisms remain poorly understood, as the current understanding is based only 

on a few microorganisms and a small number of biocides. 

 

The research presented in this dissertation investigates the microbial diversity and 

community in hydraulic fracturing produced waters from two different unconventional 

reservoirs. Furthermore, biological activity in these systems is explored by looking at metabolic 

pathways of produced water microorganisms. Finally, genetic biocide resistance mechanisms in 

the genus Pseudomonas (a microorganism commonly detected in produced water) are evaluated. 

1.2 DISSERTATION ORGANIZATION 

The objectives of this dissertation have been addressed in five research projects, which 

represent three manuscripts for journal publication. The dissertation research is presented in the 

following chapters.  

Chapter 2: A review of the microbial ecology in hydraulic fracturing produced water 

and use of biocides during hydraulic fracturing operations. 

This chapter reviews the current understanding of the microbial ecology in hydraulic 

fracturing produced water. Results from previous studies that have evaluated the microbial 

ecology of produced waters from different shale gas regions across the United States are 

summarized and analyzed. Additionally, the importance and limitations of the literature currently 

available are highlighted. Overall, twelve different studies evaluating the microbial ecology of 

Marcellus, Barnett, Antrim, and Bakken Shale produced waters were considered for this review. 

Results identified the genus Halanaerobium as one of the most abundant taxa in hydraulic 
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fracturing produced waters, independent of geographical region. Previous work revealed a shift 

in microbial community structure from early flowback water to produced waters obtained from 

older wells. Furthermore, the literature review investigates the current research on biocide 

efficacy and resistance in produced water microorganisms. 

 

Chapter 3: Evaluating the influence of storage conditions of hydraulic fracturing 

produced water samples intended for microbiological analysis. 

This chapter evaluates the effects of storage conditions of produced water samples 

intended for microbiological analysis. Improper storage of water samples can lead to undesired 

changes in community structure, invalidating potential results and interpretation of data. Three 

types of produced water were sampled and a true baseline sample was preserved at the time of 

sampling. Produced water samples were then exposed to two different storage conditions (4oC 

and room temperature) and sampled for a 7 day period. 16S rRNA sequencing was used to 

evaluate changes in community structure throughout the time of storage. Results suggested the 

microbial community structure in samples stored at room temperature to change within 24 hours, 

as the community structure in samples stored at 4oC remained similar for 3 days. These findings 

show the importance of proper storage at 4oC to preserve the original community structure and 

allow the development of storage guidelines for produced water samples from hydraulic 

fracturing intended for microbiological analysis.  

 

Chapter 4: Predominance and metabolic potential of Halanaerobium in produced water 

from hydraulically fractured Marcellus Shale wells. 
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This chapter focuses on evaluating the microbial community structure 42 Marcellus Shale 

produced water samples and investigates the role of Halanaerobium in hydraulic fracturing 

produced water by recovery and annotation of a Halanaerobium draft genome from a Marcellus 

Shale produced water metagenome. Prior to this study, no study had evaluated samples from 

more than three well sites and across a time frame of more than six months [10, 13, 14]. Data 

from this study provides insights into the microbial ecology of produced water samples from 42 

Marcellus Shale wells, representing 18 well sites, with well ages between six months and five 

years. Furthermore, this study is the first to identify statistical correlations between ecological 

data such as community structure and diversity, and operational parameters such as total 

dissolved solids (TDS), well age, and biocide treatment combination. Large-scale studies as 

these are necessary to gain a better understanding of microbial activity in produced waters and 

the hydraulic fracturing infrastructure to identify the factors impacting microbial growth and 

improve produced water management. Evaluation of the community structure using 16S rRNA 

sequencing confirmed the dominance of Halanaerobium across all samples, supporting its role as 

one of the most abundant and wide-spread produced water taxa. Statistical analysis suggested a 

correlation between the abundance of the taxa Halanaerobiales and biocide treatment 

combination. Furthermore, we were able to recover a Halanaerobium draft genome from 

produced water metagenomic data. Annotation and analysis of annotation results allowed the 

evaluation of metabolic pathways potentially interfering with hydraulic fracturing operations. 

Analysis particularly focuses on acid production, sulfide reduction, biofilm formation, and stress 

resistance mechanisms. Data analysis also allowed phylogenetic and functional comparison of 

produced water Halanaerobium populations to other Halanaerobium species and closely related 

taxa living in similar environments. Findings from this task reveal Halanaerobium as one of the 
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potentially major contributors to acid and sulfide production in Marcellus Shale produced water. 

The draft genome, recovered and annotated as part of this task, represents one of the first 

genomes recovered from hydraulic fracturing produced water. 

 

Chapter 5: Microbiological evaluation of hydraulic fracturing produced water from 17 

Bakken Region wells. 

In this chapter, the microbial ecology and chemistry of produced waters from 17 Bakken 

formation and Three Forks formation hydraulic fracturing wells are investigated across a six 

month time frame. Unlike for the Marcellus Shale, little data on the microbiology and chemistry 

of produced waters from Bakken Shale region is currently available. As the Bakken Shale region 

has different geological and operational characteristics than the Marcellus Shale, separate 

analysis is necessary to understand the dynamics of microbial populations occurring in these 

environments. Findings will help to develop appropriate produced water management strategies 

and reduce the risk for microbially influenced corrosion, microbial biofouling, and biological 

sulfide production in the hydraulic fracturing infrastructure. Produced waters were sampled four 

times across a six month time frame from at 17 different well sites. The microbial community 

structure was analyzed using 16S rRNA sequencing and microbial abundance was assessed using 

quantitative PCR. Furthermore, basic geochemical data (TDS, DOC, pH) was collected. Data 

analysis suggested Bakken Shale produced waters to be characterized by high TDS 

concentrations and low overall microbial abundance. The community structure was found to be 

similar in diversity to produced waters from other regions, but unique in composition. Bacillales, 

Halanaerobiales, and Pseudomonadales were found to be the most dominant taxa across all 

samples.  
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Chapter 6: Peroxide scavenging and multidrug efflux highlight Pseudomonas 

fluorescens biofilm resistance to the broad spectrum antimicrobial sodium hypochlorite. 

In this chapter, the active, genetic response, potentially contributing to biocide resistance, 

to the biocide sodium hypochlorite is investigated by analyzing differential gene expression in 

biofilms of the model organisms Pseudomonas fluorescens. We exposed 48-hour biofilms of 

Pseudomonas fluorescens to a range of sodium hypochlorite concentrations to determine a 

sublethal exposure dose. Then we evaluated the genetic response at this dose using a 

transcriptome analysis, looking at differential gene expression. Results suggested 0.6 mg/L 

sodium hypochlorite to be a sublethal dose for 48-hour biofilms of Pseudomonas fluorescens. 

RNA-seq analysis suggested genes involved in oxidative stress response, in particular peroxide 

scavenging, and multidrug efflux to be upregulated. Specifically, genes encoding the organic 

hydroperoxide resistance protein Ohr, the alkyl hydroperoxide reductase subunits AhpC and 

AhpF, and the multidrug efflux pump subunit MexE were induced. Furthermore, several genes 

encoding proteins involved in amino acid synthesis and energy metabolism pathways were 

downregulated. This task provides useful insights on how microorganisms respond to stresses 

induced by sodium hypochlorite. Results may be useful to improve biocide selection and 

application strategies in industrial settings, including hydraulic fracturing operations. 

 

Chapter 7: Summary and conclusion 

Chapter 7 summarizes the main findings from the research presented in this dissertation. 

Major conclusions, implications, and limitations are highlighted.  
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2.0 A REVIEW OF THE MICROBIOLOGY ASSOCIATED WITH HYDRAULIC 

FRACTURING PRODUCED WATER 

2.1 INTRODUCTION 

Recent improvements in hydraulic fracturing technology and horizontal drilling have led 

to a significant increase of unconventional hydrocarbon resources within the last decade [33]. 

The rising number of hydraulic fracturing wells across the United States has also resulted in 

large volumes of produced water, a wastewater generated as a byproduct of gas and oil 

production [5, 34]. Produced water is not only characterized by high TDS concentrations, but 

also harbors microbial populations, which may have the capability to interfere with hydraulic 

fracturing operations and cause long term damage to the well and hydraulic fracturing 

infrastructure [5]. As management of microbial activity in these large quantities of wastewaters 

represents one of the major challenges associated with hydraulic fracturing operations, multiple 

research efforts have been made to evaluate the microbial community structure and microbial 

activity in produced water from hydraulic fracturing operations (Table 2-1). This summary aims 

to present the primary findings of these studies and assess the current understanding of hydraulic 

fracturing produced water microbiology.  
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2.2 MICROBIAL COMMUNITY STRUCTURE AND BIOLOGICAL ACTIVITY IN 

PRODUCED WATER FROM THE MARCELLUS SHALE REGION 

The majority of data on hydraulic fracturing produced water microbial ecology is based 

on samples from the Marcellus Shale formation. Several studies have used 16S rRNA and 

metagenomic sequencing to evaluate the microbial community structure and the metabolic 

potential of hydraulic fracturing produced water microorganisms from this region.  

Mohan et al. evaluated the bacterial load and microbial community structure of hydraulic 

fracturing fluid, flowback water from a hydraulic fracturing wellhead, across a nine day period 

post-fracture, and produced water from the gas-water separator 187 days post-fracture [10]. 

Bacterial loads were found to be similar in the hydraulic fracturing fluid and early flowback 

water (~107 16S rRNA gene copies per ml) and lower in the separator samples taken after 187 

days (~104 16S rRNA gene copies per ml). Taxonomic analysis revealed similar community 

structure in early flowback water and hydraulic fracturing fluid, dominated by the orders 

Rhodobacterales and Pseudomonadales. A change in community structure was observed in day 

7 and day 9 samples, with most sequences affiliated with the orders Vibrionales and 

Alteromonadales. The produced water sample taken a half-year later was almost exclusively 

characterized by sequences classified as the order Halanaerobiales. This observation supports a 

shift from an aerobic microbial community in early flowback water to an anaerobic microbial 

community in later stage produced water. Mohan et al. presented not only one of the first efforts 

to evaluate the microbial ecology of hydraulic fracturing produced water using culture-

independent methods, but also remains one of the few studies to this date to evaluate wellhead 

samples.  
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To gain insights into the metabolic potential of produced water microbial populations 

Mohan et al. also evaluated the source water, produced water day 1, and produced water day 9 

samples using shotgun metagenomic sequencing [35]. Metagenomic taxonomy data confirmed 

the 16S rRNA sequencing results from the previous study. Functional annotation using the SEED 

subsystem database suggested microbial populations in day 9 produced water samples have a 

higher relative abundance of carbohydrate, iron acquisition, and stress response genes, likely due 

to the presence of hydrocarbons and increased levels of inorganics and organics. Furthermore, 

functional mapping revealed little evidence for classical sulfate reduction. These findings 

represented the first insights into the metabolic potential of hydraulic fracturing produced water 

microbial populations, suggest that microorganisms in these systems respond to changes in 

hydrocarbon content, and suggest produced water microbial populations to have the genetic 

ability to respond to the stresses present in hydraulic fracturing produced water.  

Produced water from hydraulic fracturing operations is often kept in impoundments for 

long-term storage. This management strategy has been suggested to promote microbial growth. 

Mohan et al. evaluated the microbial ecology of untreated, biocide treated, and aerated Marcellus 

Shale flowback water impoundments at three sampling depths [36]. Cell counts suggested 

aeration and biocide treatment do not affect the overall microbial abundance. Community 

structure analysis using bacterial and archaeal 16S rRNA primers suggested bacterial populations 

exposed to glutaraldehyde biocide treatment change with depth and are dominated by the 

bacterial taxa Clostridia. Similar observations were made for the untreated impoundments, with 

the majority of surface microorganisms belonging to the genus Roseovarius. The taxa 

Marinobacterium and Clostridia were found to be more abundant at the middle and bottom 

depths. Communities from the aerated impoundments were found to be uniform across the 
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sampling depth and characterized by aerobic taxa such as Roseovarius. Microbial abundance and 

activity in flowback/produced water holding ponds is of particular interest, as produced water is 

often recycled, and microorganisms growing in holding ponds may get reinjected into wells as 

part of fracturing fluids. Data from this study represents one of the first attempts to assess the 

microbial burden of produced water stored in holding ponds and suggests management 

strategies, such as aeration or biocide treatment, can alter the microbial community structure, but 

have little impact on the overall bacterial load.  

Cluff et al. evaluated injected fluids and produced waters from three hydraulic fracturing 

wells at several time points [13]. Injected fluids were sampled at all three wells, early flowback 

waters (days 3 to 13 post fracture) were also collected at all three wells, and produced waters at 

days 49, 82, and 329 post fracture were collected at two wells. Community structure analysis 

using 16S rRNA sequencing suggested injected fluids to be dominated by aerobic organisms; 

however some variation in community structure was observed depended on the amount of 

produced water recycled in the fracturing fluid. The microbial community structure in early 

flowback waters from was found to change rapidly within the first two weeks post-fracture. 

Samples were characterized by high abundances of Burkholderia, Halolactibacillus, Arcobacter 

Marinobacter, Thermococcus, and Vibrio. The microbial community structure in later produced 

water was found to be more stable, and dominated by the taxa Halanaerobium and 

Halomonadaceae, both halophilic, anaerobic organisms.  

The microbial community structure observed by Cluff et al. is similar to that of 

previously evaluated produced water, characterized by a shift from an aerobic early flowback 

community to a community dominated by anaerobic, halophilic organisms in later stage 

produced water. The authors also try to correlate the microbial ecology across the samples with 



 15 

measured chemical parameters, finding community shifts to be correlated with a decrease in 

alkalinity, inorganic and organic carbon concentrations, and an increase in ionic content.  

Cluff et al. presented one of the most detailed hydraulic fracturing produced water studies 

available at the time of publication, confirming the shift from an aerobic to an anaerobic 

community structure across the first 6 month. However, shifts in community structure, in some 

cases in less than 24 hours, suggest potential sampling challenges. 

Akob et al. evaluated the microbiology of produced water from 13 different Pennsylvania 

shale gas wells, 12 Marcellus Shale wells and one Burket Shale well [37]. While the number of 

wells evaluated was greater than in previous studies, microbiological analysis consisted of 

culture-based tests for anaerobic fermenters, methanogens, and hydrogen sulfide producing 

bacteria. Anaerobic fermenters were found to be present in produced waters from all wells. Tests 

also suggested methanogens to be present in produced waters from five different wells, and 

hydrogen sulfide producing bacteria to be present in produced waters from seven different wells. 

The Burket well was evaluated for its microbial community structure using 16S rRNA 

sequencing, and most identified OTUs were affiliated with the genus Halanaerobium. The 

Burket well was in production for 5 months at the time of sampling, and sampled produced water 

was characterized by TDS concentrations of over 150,000 mg/L. Work by Akob et al. presents 

evidence for sulfide, acid production, and methanogenic activity in Marcellus Shale produced 

water and further supports the importance of the genus Halanaerobium in later stage, hypersaline 

produced waters.  
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Table 2-1: Table summarizing previous studies having analyzed the microbial ecology of hydraulic fracturing produced water. 

Authors Year Region 
Number of prod. 

water samples 
Source 

Well/pond ages 

at time of 

sampling 

Method 

Mohan et al. 2013 Marcellus Shale 1 well, 4 samples 
Wellhead (3 samples), 

separator (1 sample) 

Days 1, 7, 9, and 

187 
16S rRNA, qPCR 

Mohan et al. 2013 Marcellus Shale 

9 total samples (3 

impoundments at 3 

depth) 

Flowback water 

impoundment 

Approx. 80 days 

stored prior to 

sampling 

16S rRNA, MPN 

Cluff et al. 2014 Marcellus Shale 

16 total samples (3 

wells sampled 

periodically) 

Wellheads (10 samples), 

separators (6 samples) 
3.5 to 328 days 16S rRNA 

Akob et al. 2015 
Marcellus Shale, 

Burket Shale 

12 Marcellus wells, 

1 Burket well 
Separator tanks 

5 month (Burket), 

10 – 38 month 

(Marcellus) 

Enrichment culture 

(12), 

16S rRNA (1) 

Mohan et al. 2014 Marcellus Shale 
One well sampled two 

times 
Wellhead Days 1 and 9 Metagenome 

Daly et al. 2016 Marcellus Shale 1 well, 4 samples 

Wellhead (2 samples), 

and separator (2 

samples) 

Days 7, 13, 82, and 

328 
Metagenomic binning 

Vikram et al. 2016 Marcellus Shale 3 samples  
Holding pond (2), 

hauling truck (1) 
N/A 

16S rRNA, 

metatranscriptome 

Struchtemeyer et al. 2011 Barnett Shale 2 wells, 4 samples 
2 Separator samples, 2 

frac pond samples 

24 hours and 2 

month 
16S rRNA, MPN 

Davis et al. 2012 Barnett Shale 

17 total samples (2 

wells, up to 6 time 

points per well) 

2 separators, 2 storage 

tanks, 
Newly drilled 16S rRNA 

Liang et al. 2016 Barnett Shale 

4 comingled produced 

water samples from 6 

wells, two time points 

Separator N/A 

16S rRNA, MPN, 

enrichment and 

isolation 

Wuchter et al. 2013 Antrim Shale 3 wells Wellhead Approx. 5 month 16S rRNA 

Strong et al. 2013 
Bakken Shale, 

Marcellus Shale 

1 Marcellus Shale 

samples, 2 Bakken 

Shale samples 

Wellhead (Marcellus, 1 

Bakken), Separator (1 

Bakken) 

18 month 

(Marcellus), no data 

on Bakken samples 

16S rRNA 
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As microbial activity in hydraulic fracturing operations can lead to issues with 

microbially influenced corrosion, gas souring, and biofilm formation, research in this area also 

focused on metabolic pathways contributing to these processes. One of the most detailed studies, 

evaluating the metabolic potential in produced waters from the Marcellus Shale region and 

building upon previous work, was recent work by Daly et al. [16]. Using DNA from the same 

produced water samples previously evaluated by Cluff et al. with 16S rRNA sequencing, Daly et 

al. reconstructed “persisting shale genomes”, a term used by the authors for draft genomes from 

abundant produced water microorganisms, and analyzed their microbial metabolism [16]. 

Overall, six Halanaerobium, two Halomonadaceae, four Marinobacter, one Methanohalophilus, 

one Methanolobus, and two unidentified Halobacteriaceae bins were recovered from the 

metagenomic data. The Halobacteriaceae bin was novel in genome composition, named 

Candidatus Frackibacter, and suggested to be unique to the shale environment. The authors’ 

metabolic analysis of recovered genomes revealed genes involved in glycine and betaine uptake 

and synthesis, and methanogenesis pathways driven by methylamine and methanol utilization in 

Methanohalophilus. In addition, sucrose respiration pathways in Pseudomonas and 

Marinobacter, aerobic hydrocarbon degradation pathways in Marinobacter, Halomonadaceae, 

and Pseudomonas, and sulfide production mechanisms in Halomonadaceae were identified. The 

study specifically highlighted the metabolic potential of Candidatus Frackibacter, suggesting 

these organisms to produce acetate via glycine betaine fermentation, homoacetogenesis, and 

sugar fermentation. Daly et al. also investigated the functional potential of the dominant 

produced water genus Halanaerobium, suggesting this taxa has the ability to ferment amino 

acids, ethylene glycol, and the sugars sucrose, fructose, glucose, and maltose. In addition, 
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analysis revealed potential for biofilm formation, motility, acid production, and thiosulfate 

reduction.  

Data obtained in this study contributes to the current understanding of the microbial 

ecology in hydraulic fracturing produced water, confirming the roles of common produced water 

organisms such as Halanaerobium and Marinobacter, but also revealing new organisms of 

interest such as Candidatus Frackibacter. Metagenomic analysis also suggested Halomonadaceae 

can contribute to sulfide and acid production.  

To date, one study has evaluated microbial activity in hydraulic fracturing produced 

water using transcriptomic tools. This approach offers the opportunity to evaluate the active 

community in a sample and identifies active metabolic pathways. Vikram et al. analyzed active 

microbial communities in three different Marcellus Shale produced water samples using a 

metatranscriptome approach [38]. Two different storage pond samples and one sample obtained 

from a produced water hauling truck were examined. Taxonomy analysis revealed differences in 

community structure between 16S rRNA sequencing results and metatranscriptome data (active 

microbial community), demonstrating the importance of taking these differences into account 

when developing microbial control strategies. Analysis of active communities suggested the 

Enterobacteriaceae, Vibrionaceae, and Bacillaceae to be most abundant in the truck samples. 

Pond samples contained active communities of Enterobacteriaceae, Pseudomonadaceae, and 

Burkholderiaceae. Furthermore, 15% of the active community in the truck sample was found to 

be Archaea, suggesting Archaea play a more important role in produced water than previously 

assumed. The authors name different salinities (higher in truck samples) and produced 

water/well ages (pond produced water had been stored, truck samples was newly delivered) as 

possible explanations for different community structures and varying diversities. 
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Analysis of microbial activity revealed the expression of biofilm genes in truck samples 

and the expression of sulfate reduction genes in pond and truck samples, suggesting these 

processes were actively occurring. One notable observation was the identification of an 

acetoclastic methanogenesis pathway in the truck sample, suggesting active methane production 

in the evaluated produced waters. Finally, the authors identify a variety of active stress resistance 

mechanisms, including osmotic, oxidative, and periplasmic stress response genes. 

Investigations by Vikram et al. showed why it is important to evaluate microbial activity 

with different approaches. Results suggested significant differences between inactive and active 

microbial communities in hydraulic fracturing produced water. Furthermore, this study was the 

first to identify active biofilm formation, sulfate production, and methane production pathways in 

produced waters from hydraulic fracturing. 

Preliminary conclusions on microbial community dynamics in Marcellus Shale produced 

waters can be drawn based on existing studies. When analyzing the microbial community 

structure in produced waters it is necessary to differentiate between early produced water or 

flowback water (returning to the surface within the first few days and weeks after the hydraulic 

fracturing job), late produced water (returning to the surface month or years later), and 

flowback/produced water sitting in open storage ponds or impoundments. The summarized 

studies suggested early and impoundment produced water to be dominated by aerobic 

microorganisms, often abundant in taxa such as Marinobacter, Pseudomonas, Vibrio, 

Roseovarius, and Arcobacter. Later stage produced water was dominated by halophilic, 

anaerobic organisms, particularly the taxa Halanaerobium and Halomonas. Furthermore, a 

previously undiscovered organism, potentially unique to the produced water environment and 

named Candidatus Frackibacter, was identified. Archaea such as the taxa Methanohalophilus 
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and Methanolobus were also discovered in later stage Marcellus Shale produced water, and 

potentially contribute to methane production.  

2.3 MICROORGANISMS IN PRODUCED WATERS FROM BARNETT SHALE 

WELLS 

While Marcellus Shale hydraulic fracturing produced waters have been best characterized 

microbiologically, several studies have also investigated bacterial communities in hydraulic 

fracturing produced waters and hydraulic fracturing facilities from other shale gas and oil 

regions. Previous efforts investigated bacterial communities in hydraulic fracturing fluids, 

produced waters, and production facilities in the Barnett Shale in north central Texas [14, 17, 

39]. The Barnett Shale is, together with the Eagle Ford and the Haynesville Plays, one of the 

leading shale gas producers in the southern United States [14, 39]. Furthermore, it is considered 

one of the deepest shale gas plays, with a depth of up to 8,000 feet and sub-surface temperatures 

of up to 82oC.  

In a study published in 2011, Struchtemeyer et al. evaluated frac pond (also often referred 

as storage pond or impoundment) and separator flowback water samples and blender hydraulic 

fracturing fluid samples from two wells (24 hours and 2 month post fracture) [14]. All samples 

were analyzed using MPN (most probable number) enumeration studies, and frac pond and 

separator flowback water samples were evaluated using 16S rRNA pyrosequencing. 16S rRNA 

data revealed frac pond communities to be dominated by a diverse microbial community, 

including Actinobacteria, Firmicutes, Bacteroides, Betaproteobacteria, and Cyanobacteria. In 
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contrast, separator flowback water samples were dominated by facultative anaerobes, in 

particular the taxa Bacillaceae, Clostridiaceae, Planococcaceae, and Halanaerobiaceae. In 

addition, the authors report the identification of sequences associated with the sulfate reducing 

taxa Desulfotomaculum and Desulfosporosinus. Results from this study suggest microbial 

community dynamics in Barnett Shale produced waters to be similar to those observed in the 

Marcellus Shale, with aerobic taxa dominating pond samples and facultative anaerobes in 

separator flowback/produced waters. Results also support the presence of classical sulfate 

reducing taxa and thiosulfate reducing taxa in produced waters from the Barnett Shale.  

Hydraulic fracturing operations utilize an infrastructure of production lines, pipes, tanks, 

and other equipment, all of which can be colonized by microorganisms and potentially damaged 

by microbial activity. To better understand microbial community dynamics throughout these 

locations, Davis et al. evaluated the microbiology of natural gas well production facilities in the 

Barnett Shale using 16S rRNA sequencing [39]. Both tank and separator samples were evaluated 

from two well sites across a six month time frame [39]. Microbial communities in produced 

water tanks were found to be more diverse than separator samples. Tank samples were 

characterized by high abundances of Beta-, Gamma-, and Epsilonproteobacteria, in particular the 

taxa Marinobacter, Arcobacter, and Pseudomonas. Separator samples were dominated by 

Firmicutes, especially the order Halanaerobiales. Within each location communities had high 

levels of similarity across the evaluated time frame. Results suggest microbial community 

structure to change between different hydraulic fracturing infrastructure locations, in this case 

the separator and the storage tank. Due to the higher abundance of anaerobic, fermentative 

microorganisms in the separator, this and closely located areas may be more susceptible to 

microbial influenced corrosion (MIC). 
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Halanaerobium is one of the most abundant microorganisms in hydraulic fracturing 

produced water, and may be considered as one of the major contributors to acid and sulfide 

production in hydraulic fracturing systems. One published study has successfully isolated 

Halanaerobium from hydraulic fracturing produced water. Liang et al. describe the analysis of 

two Barnett Shale produced water samples using 16S rRNA sequencing and the subsequent 

isolation of a Halanaerobium strain from one of the samples [17]. Samples were taken from the 

same well within a three-month timeframe. Both samples were characterized by relatively high 

Halanaerobiales abundances, with most sequences affiliated with the genera Orenia and 

Halanaerobium. They also report an observed relative abundance of 5% for the sulfate reducing 

order Desulfovibrionales, suggesting classical microbial sulfate reduction to be factor in sulfide 

production in the Barnett Shale. Isolation and characterization of a Halanaerobium isolate (strain 

DL-01) revealed a close phylogenetic relationship to the species Halanaerobium kushneri, and 

suggested Halanaerobium DL-01 to degrade guar gum, produce acetate and sulfide when using 

thiosulfate as an election acceptor, and to be unable to utilize sulfate.  

This study also represents one of the only attempts to expose a produced water isolate to 

biocide treatments. A QAC (quaternary ammonium compound) was found to effectively inhibit 

sulfide and acetate production of Halanaerobium DL-01 at 13.5 mg/L, while glutaraldehyde and 

Tetrakis-(Hydroxymethyl)-Phosphonium Sulfate (THPS) were required at higher concentrations 

(~400-500 mg/L) [17]. The authors propose the presence of thiosulfate as a potential reason for 

the limited effectiveness of THPS, but do not propose a mechanism, other than produced water 

interactions, for glutaraldehyde resistance.  

Data from this study provides evidence that Halanaerobium can contribute to acid 

production and sulfide production in hydraulic fracturing produced water systems. Furthermore, 
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Liang et al. showed that glutaraldehyde is not effective at inhibiting Halanaerobium growth, and 

recommends QAC compounds as the preferred antimicrobial treatment against Halanaerobium.  

Work done on the microbial ecology of Barnett Shale flowback and produced water 

reveals a microbial system similar to that observed in the Marcellus Shale. Microbial community 

structures were found to be similar in composition and abundance. These studies further 

confirmed the role of the Firmicutes, in particular the anaerobic, fermentative taxa 

Halanaerobiales and Bacillales in produced water, and the role of more aerobic taxa such as 

Marinobacter and Pseudomonas in produced water storage locations. Results also suggest 

Barnett Shale produced waters to harbor greater numbers of classical sulfate reducing bacteria 

than observed in the Marcellus Shale. The second study also evaluated microbial activity and 

microbial interference in piping, storage tanks, and other operational equipment. Available 

Barnett Shale work also highlights the role of Halanaerobium and its contribution to acid and 

sulfide production in produced water environments and its potential for biocide resistance.  

2.4 MICROBIAL ECOLOGY IN PRODUCED WATERS FROM THE ANTRIM 

SHALE GAS REGION 

The Antrim Shale is a natural gas formation in the Michigan Basin, and has been 

suggested to contain biogenic gas, which represents evidence for microbial activity in the 

subsurface [40]. In a 2013 study, Wuchter et al. investigated the microbial diversity and 

methanogenic activity in Antrim Shale formation waters [41]. Three gas-producing wells in the 

Michigan Basin were sampled for produced waters at the wellheads. Bacteroidetes, 
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Proteobacteria, and Firmicutes were found to be the most dominant taxa across all three 

samples, and included fermentative, anaerobic, sulfate, iron, and nitrate reducing organisms. 

Identified taxa included Halanaerobium, Halocella, Orenia, Cytophaga, Desulfuromonas, and 

Arcobacter. Despite differences in well production ages (5 to 24 months) Halanaerobium 

abundance was similar across all three samples. These findings suggest a diverse bacterial 

community structure, characterized by both fermentative and sulfate and thiosulfate reducing 

taxa, to exist in Antrim Shale produced waters. The abundance of the genus Halanaerobium 

across all samples supports the important role of this taxon in later stage produced waters, 

independent of location.  

Archaeal abundances were low across all samples and detected archaeal sequences were 

found to have the closest similarity to the methylotrophic methanogens Methanolobus and 

Methanohalophilus and the hydrogenotrophic methanogens Methancalculus and Methanoplanus. 

The discovery of Methanohalophilus agrees with observations from the Marcellus Shale region, 

where a Methanohalophilus draft genome could be recovered from produced water and 

methanogen activity was observed in produced water holding ponds [38, 42]. The identification 

of methanogens in Antrim Shale produced waters supports the theory of biogenic gas production 

in the Antrim formation; however, observed abundances were not higher than previously 

identified in produced waters from other shale gas regions.  
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2.5 MICROBIAL ECOLOGY IN PRODUCED WATERS FROM THE BAKKEN 

SHALE REGION 

While multiple studies have evaluated the microbial ecology in Marcellus Shale produced 

water, little is currently known about microorganisms in produced waters from the Bakken Shale 

region. Strong et al. evaluated two Bakken Shale produced water samples. One sample was taken 

from the wellhead and one sample was taken from the oil water separation tank; both samples 

were obtained from wells producing oil [43]. The community structure in the wellhead sample 

was similar to that detected in other studies, as it was characterized by high abundances of 

Halanaerobium and Marinobacterium. The separator tank sample was highly abundant in 

Pseudomonas sequences, suggesting a more aerobic environment, previously observed in storage 

tanks and ponds. The wellhead sample was also characterized by 100 times higher salinity than 

the separator tank sample, supporting the hypothesis that Halanaerobium particularly thrives in 

hypersaline environments. While Strong et al. does not report qPCR or MPN data, overall 

microbial abundances in Bakken Shale produced waters are likely low, due to high subsurface 

temperatures of more than 200oF [44]. A study attempting to investigate biological contribution 

to sulfide production was not able to report any data on microbial abundances and community 

structure due to low biomass [44].  

Overall, the microbial ecology in Bakken Shale produced waters was found to be very 

similar to that observed in the Marcellus Shale and Barnett Shale, with both halophilic, aerobic, 

and anaerobic taxa being abundant, depending on the sample source (e.g. separator tank or 

wellhead), sample production age, and salinity. Bakken data also showed that fermentative and 
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sulfate reducing taxa can be abundant in produced waters, confirming trends previously observed 

in Barnett Shale produced waters.  

2.6 USE OF BIOCIDES TO CONTROL MICROBIAL ACTIVITY IN PRODUCED 

WATERS 

Microbial activity during oil and gas production and microbial activity in produced 

waters and the hydraulic fracturing infrastructure can lead to issues with reservoir souring, 

biocorrosion, and biofouling. As previously discussed, produced water samples from multiple oil 

and gas regions around the United States have been shown to harbor various microbial 

populations, which can contribute to these processes. Currently, operators utilize different types 

of biocides to control microbial growth; however, application strategies have been suggested to 

be unspecific and occur with limited efficiency. Only a few studies have analyzed the usage, 

application strategies, and efficacy of biocides in hydraulic fracturing, and an even smaller 

number of studies attempted to investigate microbial resistance mechanisms in produced waters. 

Here, current literature on these two topics will be briefly summarized and analyzed.  

Kahrilas et al. reviewed current usage of biocides in hydraulic fracturing operations in a 

2014 paper [45]. The electrophilic biocide glutaraldehyde was determined to be the most 

frequently used biocide (based on data from Fracfocus) with a frequency of 27%, followed by 

the also electrophilic biocide 2,2-Dibromo-2-cyanoacetamide (DBNPA) at 24%. The authors 

also state the use of biocides represents a danger for environmental contamination, through for 

example surface spills during transportation. Furthermore, produced waters may be treated using 
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industrial or municipal wastewater treatment methods and released into the environment. The 

authors point out that the release of sub-lethal biocide concentrations can cause adaption and 

resistance in surviving microorganisms [46]. Kahrilas et al. also discuss current research on 

mobility of biocides, stating current data does not support the migration of biocides from 

fracturing fluids or produced water to aquifers. These findings suggest groundwater 

contamination through biocides to be unlikely, but environmental contamination may occur 

through inadvertent release.  

One of the potentially biggest challenges for operators is the degradation, and especially 

biodegradation, of biocides. This is especially an issue for the commonly used biocide 

glutaraldehyde, which auto-polymerizes, especially under high pH conditions, thereby losing its 

efficacy. Kahrilas et al. also evaluated the potential for biodegradation [45]. Glutaraldehyde, 

DBNPA, and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) have been reported to be 

susceptible to biodegradation; however, for many other biocides no data on potential 

biodegradation is available. The authors also note the lack of data available on the fate of 

biocides under downhole conditions, which represent a unique (high pressure, high temperature) 

environment and may lead to additional degradation mechanisms, which have not previously 

been recognized. Based on these characteristics glutaraldehyde and DBNPA are not ideal 

biocides for microbial control during hydraulic operations.  

 Finally, Kahrilas et al. evaluated the toxicity of the biocides currently used in hydraulic 

fracturing, concluding most of them to be only low to moderately toxic, however, some 

degradation products may be more toxic and persistent. One of the advantages of glutaraldehyde 

is its low environmental toxicity, which is one of the reasons it is used so frequently in the 

hydraulic fracturing industry.  
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Overall, this study offers insights into current biocide application strategies, analyzing 

issues and risks associated with the usage of different biocides. Some of the most commonly 

used biocides such as glutaraldehyde and DBNPA were also found to be most susceptible to 

degradation, which could affect their efficacy. As efficacy is one of the most important 

characteristics in a biocide, these findings are relevant to current produced water management 

strategies. Moreover, efficient biocides can be applied at lower concentrations, and thus 

represent a smaller environmental concern.  

Two studies have evaluated the efficacy of biocides during the hydraulic fracturing 

process. Fichter et al. evaluated biocide application strategies in the Barnet Shale and tested 

several common biocides for their efficacy [47]. The biocides were tested on produced water 

samples with aerobic, fermentative, and sulfate reducing bacteria. Subsequently, six different 

types of biocides tetrakis (hydroxymethyl) phosphonium sulfate (THPS), glutaraldehyde, 

glutaraldehyde/QAC blend, DBNPA, isothiazolin, and solid bronopol), ranging in concentration 

between 30 ppm and 300 ppm, were tested for their ability to reduce acid and sulfide producing 

bacteria. Results suggested THPS concentrations of 50 ppm or higher and glutaraldehyde/QAC 

blend concentrations of 100 ppm or higher to be most efficient. A glutaraldehyde concentration 

of 100 ppm was found to lead to a 2-log reduction (30%) in cell counts and a 4-log reduction 

(60%) was observed, when a concentration of 200 ppm was used. DBNPA concentrations as 

high as 100 ppm did not result in any reduction of acid or sulfide producing bacteria. These 

findings suggested THPS is one of the most efficient biocides when attempting to control acid 

and sulfide producing bacteria. 

 In a similar study, Struchtemeyer et al. evaluated seven biocides, including 

glutaraldehyde, sodium hypochlorite, tetrakis (hydroxymethyl) phosphonium sulfate (THPS), 
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and didecyldimethylammonium chloride (DDAC) for their efficacy to treat Desulfovibrio 

desulfuricans and a sulfate reducing enrichment culture from a Barnett Shale produced water 

storage pond [47]. Planktonic cultures and biofilms were exposed to biocide concentrations 

between 12.5 ppm and 400 ppm, and minimum inhibitory concentrations (MIC) for each 

treatment were determined. Biofilm MICs were found to be higher than planktonic culture MICs, 

an observation that agrees with previous observations suggesting biofilms are more resistant to 

antimicrobial treatments. Differences in determined MICs were particularly observed for 

biofilms, as DDAC concentrations as low as ~20 ppm and THPS concentrations as much as ~40 

ppm were enough for inactivation of both Desulfovibrio desulfuricans and the sulfate reducing 

enrichment culture. On the other hand, concentrations of ~200 ppm glutaraldehyde and ~100 

ppm sodium hypochlorite were necessary to achieve inhibition in both culture and biofilm. These 

findings suggest biofilms to be more resistant to the evaluated biocides than planktonic cultures 

and suggest DDAC and THPS to be more efficient than glutaraldehyde and sodium hypochlorite.  

Struchtemeyer et al. also evaluated the efficacy of biocides in the presence of organic 

loads (in this study humic acid was used as an organic load, which also refers to organic carbon 

concentrations or organic matter). DDAC was found to be the only biocide not affected by 

organic loads that were added to the cultures. For all other evaluated biocides, MICs increased 

significantly when organic loads of 10 ppm of more were present (MICs of up to 400 ppm were 

observed for sodium hypochlorite). This is an important observation, as hydraulic fracturing 

fluids and produced water can be characterized by organic loads of up to several thousand ppm 

and could therefore contribute to increased biocide inefficacy. 

In summary, this study also supports previous observations that the commonly used 

biocide glutaraldehyde has limited effectiveness in the treatment of undesirable microorganisms 



 30 

 

during hydraulic fracturing operations and produced water storage. Biofilms were found to be 

more resistant to the evaluated antimicrobials. Findings from this study also suggest THPS and 

the biocide DDAC to be more efficient than glutaraldehyde. Both studies (Lauer et al. and 

Struchtemeyer et al.) did their testing based on cultures obtained from Barnett Shale produced 

water or on Barnett Shale produced waters. A third study evaluated the efficacy of 

glutaraldehyde, QAC, and THPS on a Halanaerobium produced water isolate, and was discussed 

previously [17]. QAC was found to be more efficient than glutaraldehyde and THPS. We believe 

no such studies are currently available for produced waters or produced water cultures from 

regions such as the Marcellus Shale or the Bakken Shale. As the Marcellus Shale and Bakken 

Shale have different physiochemical and operational characteristics (e.g. depth, temperature, and 

biocide application), and microbial community structures may be affected by these 

characteristics, it would be useful to explore biocide efficacy on produced water isolates from 

those regions in more detail. 

Efficacy testing and current biocide application strategies suggest microbial resistance to 

exist in produced waters from hydraulic fracturing. Therefore, potential microbial resistance 

mechanisms are a research interest. This is particularly important for the commonly used biocide 

glutaraldehyde. While degradation and absorption of biocides (in, for example, biofilm matrixes) 

have been discussed, recent studies have suggested genetic responses play an important role in 

biocide resistance [31, 32].  

Vikram et al. evaluated the transcriptomic response of Pseudomonas fluorescens and 

Marinobacter (a produced water isolate) to the biocide glutaraldehyde under hypersaline 

produced water conditions [32]. Results suggested the hypersaline environment leads to an 

enhanced tolerance, as the cellular osmotic stress response helped the organisms cope with 
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higher concentrations of biocide. Produced water exposure led to an upregulation of chaperones, 

the sec transclocon, and Tol-Pal system genes, which are involved in protein folding and stability 

and the maintenance of outer cell membrane integrity. Furthermore, the energy production 

systems were upregulated, suggesting that cells exposed to produced water have more energy to 

respond to stress. The induction of the NADH dehydrogenase in the electron transport chain 

suggests the potential for cellular glutaraldehyde oxidation. This response results in improved 

membrane stability, and production of enzymes able to inactivate glutaraldehyde. These 

mechanisms likely lead to an increased glutaraldehyde resistance in microorganisms. 

Furthermore, results suggest the hypersaline produced water environment to contribute to genetic 

resistance mechanisms to this biocide. 

An additional resistance mechanism was proposed by Vikram et al. in a study evaluating 

Pseudomonas biofilm resistance to glutaraldehyde [31]. Upregulation of efflux pumps, lipid 

biosynthesis, and polyamine biosynthesis were proposed as active mechanisms cells can utilize 

in response to glutaraldehyde exposure. Efflux pumps have previously been suggested to play an 

important role in antimicrobial resistance as they allow active removal of foreign substances 

from the cell [48]. Based on this data it is possible that microorganisms living in produced waters 

may have the ability to protect themselves against biocide, through upregulated biofilm 

formation and the active removal of foreign compounds from the cell.  

These examples show that microorganisms living in produced water have the potential 

for genetic responses to biocides, and that the hypersaline produced water environment may play 

an important role in cellular resistance mechanisms. Nevertheless, transcriptomic studies under 

produced water conditions have only been done for glutaraldehyde. It is likely that other biocides 

may induce additional cellular responses that have not been investigated at this point. Overall 
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observations from these studies do agree with previous biocide efficacy testing results, and 

further support the potential for glutaraldehyde resistance in produced water microbial 

populations. 

2.7 CONCLUSIONS 

Throughout this chapter we have evaluated the current understanding of microbial 

populations in produced waters from hydraulic fracturing and closely related environments, such 

as parts of the hydraulic fracturing infrastructure. Independent of location, produced waters were 

found to be dominated by halophilic microorganisms, of which several identified taxa are 

considered fermentative, sulfate or thiosulfate reducing, and biofilm forming. Microbial 

community structures were also found to evolve from aerobic dominated to anaerobic dominated 

with increasing production ages. Microbial populations in samples from storage tanks or ponds 

were also found to be more aerobic and diverse. Produced water from the Marcellus Shale is the 

best characterized from a microbial ecology standpoint. Both 16S rRNA and metagenomic 

sequencing efforts have shown microbial populations in Marcellus Shale produced water to have 

the potential for biocorrosion, biofouling, and souring events. Additional work confirming these 

trends across a larger number and diversity of samples will help to further enhance the current 

understanding of produced water microbial ecology. Several studies have also evaluated the 

Barnett Shale, identifying similar microbial community dynamics. Little data is available on 

other regions, especially the Bakken Shale, which has become one of the leading oil producing 

regions in the country and should be evaluated in more detail. The data that is available suggests 
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microbial populations very similar to those observed in the Marcellus and the Barnett Shale 

regions. The predominance of the genus Halanaerobium in later stage produced water (5-6 

months post fracture) was observed in the majority of the studies, suggesting this taxon to play 

an important role in produced water microbial activity.  

Finally, the current use and efficacy of biocides, and potential resistance mechanisms 

were investigated. The currently small study sample size suggests that more work in this field is 

necessary. Evaluating the available data revealed that the currently most used biocide 

glutaraldehyde has several disadvantages, such as the potential to self-polymerize, low efficacy, 

and potentially induces genetic resistance mechanisms in microbes often identified in produced 

water. Efflux, and osmotic stress induced membrane stabilization were identified as the main 

causes of genetic resistance. Effects of other biocides currently in use should be evaluated in 

more detail using the tools described in this review.  

In conclusion, previous work has helped to identify the issue of microbial activity in 

produced water from hydraulic fracturing, provided novel insights into the ecology and biocide 

resistance of produced water microbial populations, and set the framework for additional 

investigations. Microbial communities were found to change throughout the flowback period, 

Halanaerobium was identified as an emerging microorganism of interest, and the potential for 

biocide resistance (especially to glutaraldehyde) was evaluated. However, continued research in 

this field is recommended. Additional efforts should further advance the current understanding of 

produced water microbial ecology by looking at a large range of more diverse samples. These 

research efforts will reveal similarities and differences to previous findings, study the produced 

water microbial ecology in previously little characterized oil and shale gas regions in more 

depth, and investigate genetic biocide resistance mechanisms in more detail. 
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3.0 THE INFLUENCE OF SAMPLE STORAGE CONDITIONS ON MICROBIAL 

COMMUNITY COMPOSITION OF HYDRAULIC FRACTURING PRODUCED 

WATER 

 

Produced water sampling from high-volume hydraulic fracturing is challenged by high 

liquid pressures, workplace regulations, liability concerns on behalf of the operator, and remote 

sampling locations. Currently, no sample handling or storage recommendations exist for 

microbiological analyses of produced water. Maintaining a representative microbial community 

structure from hydraulic fracturing produced water samples throughout storage and handling is 

essential for accurate results of both culture-based and culture-independent microbial analyses. 

To provide sample handling and storage recommendations, we used 16S rRNA sequencing to 

monitor the changes in microbial communities in produced water stored at room temperature or 

4oC for seven days. Our results suggest that keeping samples at room temperature for more than 

24 hours or at 4oC for more than three days can lead to inaccurate representation of the original 

sample microbial ecology. In summary, our study highlights the importance of appropriate 

storage and handling practices when analyzing microbial community structures in saline 

environmental water samples and makes recommendations on how to best preserve the original 

sample ecology. 
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3.1 INTRODUCTION 

High-volume hydraulic fracturing operations typically produces millions of gallons of 

wastewater throughout their completion and operation, generally referred to as produced water 

[5, 6]. Produced water is characterized by unique geochemical characteristics, particularly 

elevated salinity, dissolved metals, and the presence of organic compounds that are derived from 

both the fracturing fluid and subsurface formation [5, 6, 14, 36, 39]. Microbial activity in 

produced water from hydraulic fracturing has the potential to cause corrosion, fouling, and 

sulfide release, with potential negative production and environmental consequences [5, 10, 14, 

49]. Additionally, microbial activity in the subsurface may result in sulfide production, or 

‘souring’, of the gas stream [35, 36]. Due to a growing interest in produced water biological 

activity, multiple studies have investigated the microbial ecology of produced water from 

unconventional reservoirs in an effort to improve hydraulic fracturing operations, support 

produced water recycling, and understand mechanisms of microbial biocide resistance [5, 10, 13, 

32, 35, 39, 41, 43, 45].  

Significant industrial effort is expended to minimize microbial activity during hydraulic 

fracturing operations. The presence and abundance of acid or sulfide producing microbes in 

produced water is typically determined through the utilization of culture-based assays. Changes 

in the microbial composition of samples prior to analysis may lead to inaccurate, non-

representative data resulting in ineffective operational decisions. There are currently no 

guidelines on how to treat, store, or handle produced water samples for microbiological analyses. 

Culture independent approaches, such as 16S rRNA sequencing, are also widely used tools for 

investigation of produced water microbial ecology [10, 13, 39]. Produced water samples for 
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sequencing are typically obtained on-site by well staff, due to workplace regulations and liability 

concerns, before being transferred to researchers for microbiological assessment. These 

circumstances, together with hydraulic fracturing produced water’s unique chemical 

composition, call for defined sampling and storage procedures.  

The goal of this study is to define specific handling and processing guidelines for 

produced water samples intended for microbiological analysis. We investigated the effects of 

storage condition and time on microbial communities in produced water. Produced water sample 

microbial communities were monitored for seven days at two different storage temperatures (4oC 

and room temperature) using 16S rRNA sequencing. Sequences were taxonomically classified, 

and alpha- and beta-diversity were calculated to understand the changes in microbial ecology 

under varying storage times and temperatures.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Sampling 

Samples used for time series experiments were obtained from two produced water 

holding ponds (impoundments used to store produced water) in Washington County, PA on 

December 9th 2013 (HP2) and June 13th 2014 (HP1). A third sample was taken from a produced 

water hauling truck on June 13th 2014 (FWT). All samples intended for storage experiment were 

collected in sterile 1L bottles and stored on ice during transportation to the laboratory (less than 2 

hours). Temperature and total dissolved solids (TDS) for HP1 and FWT samples were measured 
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on-site and found to be 23.8oC and 11.60 mS for HP1 and 19.1oC and 19.7 mS for FWT. 

Sampling circumstances did not allow on-site temperature and TDS measurements for HP2 

samples; however, the air temperature during sampling was approximately 1oC. Upon arrival in 

the laboratory produced water samples were immediately frozen at -80oC. For each produced 

water sample, 500 mL were also filtered on-site and filters were immediately preserved in 

TRIZOL (Life Technologies, Carlsbad, CA) for analysis of the original sample ecology.  

3.2.2  Sample Processing 

Samples were thawed at room temperature. Each sample (250 mL) was transferred to 

sterile 1000 mL bottles. Each sample was processed in duplicate. Samples for analysis (15 mL) 

were taken at the start of the experiment (Day 0), after 1 day, 2 days, 3 days, and 7 days. 

Samples were taken using a sterile 15 mL pipette and transferred into a 15 mL Falcon tube for 

further processing. During the experiment, sample bottles were stored at 4oC or room 

temperature (RT), approximately 25oC, in a closed box on the laboratory workbench.  

 

3.2.3 Chemical analysis 

pH was measured using a Thermo Fisher Education pH meter (Thermo Fisher Scientific, 

Pittsburgh, PA). TDS concentrations were determined using a Fisher Scientific Accumet AP75 

Conductivity/TDS meter (Thermo Fisher Scientific, Pittsburgh, PA). If necessary, produced 

water samples were filtered through a 0.45 μm membrane filter to remove solids, which may 
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interfere with atomic absorption and ion chromatography analysis. Cation concentrations were 

measured using a Perkin Elmer Atomic Absorption Spectrometer 1100 (Perkin Elmer, 

Bridgeville, PA). Anion concentrations were determined using Thermo Scientific ICS-1100 Ion 

Chromatograph (Thermo Fisher Scientific, Waltham, MA). Serial dilutions for each sample were 

prepared (1:10, 1:102, 1:103) followed by absorbance measurements. Sample concentrations were 

determined using standard curves. 

3.2.4 DNA Extraction 

A 15 mL sample was aliquoted from each treatment and each time point and biomass was 

collected via centrifugation at 10000 rpm. Collected produced water biomass was then digested 

with 10µl of 20mg/mL lysozyme for 30 minutes at 37oC followed by DNA extraction using a 

MoBio PowerSoil kit (Carlsbad, CA), according to manufacturer’s instructions. DNA from on-

site samples preserved in TRIZOL was extracted according to manufacturer’s instructions. 

3.2.5 DNA processing and sequencing  

DNA was amplified using 16S rRNA primers as described previously [50]. PCR samples 

underwent an initial denaturation step for 3 minutes at 96oC. Samples were then run for 40 cycles 

under the following conditions: denaturation occurred at 96oC for 45 seconds, annealing at 50oC 

for 60 seconds and elongation at 72oC for 60 seconds. Final elongation was carried out at 72oC 

for 10 minutes. Following amplification, 16S rRNA PCR products were purified using AMPure 

beads (Beckman Coulter, Pasadena, CA) and run on a 1% agarose gel for cleanup verification. 
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DNA concentrations were assessed using a Qubit (Life Technologies, Carlsbad, CA). Cleaned up 

PCR products were pooled and diluted to a concentration of 20nM. Diluted samples were then 

denatured using fresh 0.2 N sodium hydroxide for 5 minutes at room temperature and further 

diluted to 10 pMol library with hybridization buffer HT1 according to manufacturer’s 

instructions (Illumina, San Diego, CA). The 10 pMol library was spiked with 5% of 12.5 pMol 

PhiX control and sequenced using a 300 cycle V2 Nano kit on an Illumina MiSeq sequencer 

(Illumina, San Diego, CA). 

3.2.6 Computational analysis 

16S rRNA sequences were analyzed using QIIME version 1.7.0 [51]. Sequences were 

quality trimmed at a quality score of 20 and demultiplexed. Operational Taxonomic Units (OTU) 

were picked using the pick_closed_reference_otus.py python script using UCLUST [52] against 

the 2013 GreenGenes core set gg_97_otus.fasta reference database with a 97% sequence 

similarity [53]. Average microbial abundance data values were calculated based on OTU data 

from both replicates. To remove bias introduced through varying number of sequences, 1000 

sequences successfully assigned to OTUs were randomly selected for each sample and used for 

alpha diversity analysis. As part of this analysis observed species, Chao1, and Shannon were 

calculated from OTU tables. T-tests were used to assess statistical differences between number 

of OTUs measurements across the sampling period. Beta diversity was used to develop principal 

coordinate plots utilizing UniFrac distance metrics [54]. Weighted UniFrac distance matrices 

were calculated and used to compare baseline samples (Day 0) with subsequent experimental 

samples (Day 1, 2, 3, and 7). Sequences for each sample were uploaded to MG-RAST and are 
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available under the accession numbers 4603074.3 (FWT), 4603075.3 (HP1), and 4603076.3 

(HP2). 

3.3 RESULTS AND DISCUSSION 

3.3.1 Sampling and geochemical characterization 

Samples were collected from two different produced water holding ponds and from a 

produced water hauling truck. Produced water holding pond 1 (HP1) and truck (FWT) samples 

were taken in June 2014, produced water holding pond 2 sample (HP2) was taken in December 

2013. Chemical analysis results for all three samples were as expected for produced water 

samples, characterized by high TDS concentrations (Table 3-1) and in the range of previously 

reported data [10, 13, 39]. The highest TDS concentrations were measured for FWT samples at 

52,500 mg/L. HP1 was found to have the lowest TDS concentration at 5,300 mg/L. HP2 had a 

TDS concentration of 18,500 mg/L.  

3.3.2 Changes in microbial community structure 

The taxonomic distribution of all samples is shown in Figure 5-1, and taxonomic 

abundances for all samples are listed in Appendix A, Tables A1-A3. Generally, taxonomy results 

demonstrated that the microbial community changed slowly when stored at 4oC, and that samples 

cannot be considered microbiologically stable when stored at room temperature. Freezing 

produced water samples slightly altered the taxonomic profile in two out of three samples. 
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The microbial community taxonomic structure of FWT samples remained constant during 

the first three days and changed at room temperature after seven days (Figure 3-1A). Samples 

were initially dominated by bacteria of the order Campylobacterales. A shift in the microbial 

community profile was detected under room temperature conditions after Day 3. The relative 

abundance of Campylobacterales decreased while the relative abundance of Alteromonadales 

increased to nearly 80%. No changes were observed for samples stored at 4oC, in which the 

community structure remained stable throughout Day 7 (Figure 3-1A). 

Table 3-1: Chemical composition of produced water samples used in this study. 

Sample Truck  (FWT) Pond (HP1) Pond (HP2) 

Sampling date Jun-14 Jun-14 Dec-13 

pH 6.53 7.27 7.35 

Concentration (ppm) 

TDS 52500.0 5300.0 18500.0 

Calcium 6360.0 4850.0 1691.0 

Sodium 18300.0 1720.0 5272.0 

Barium 62.5 5.0 14.6 

Strontium 727.0 39.2 1051.3 

Iron 18.3 0.9 4.2 

Magnesium 449.0 40.0 193.0 

Manganese 2.0 BDL 0.3 

Chloride 37600.0 3400.0 13867.0 

Sulfate 3.7 71.5 66.5 

 

Storage results for HP1 produced water samples demonstrated that communities that 

were stored at room temperature and 4oC remained relatively stable over time (Figure 3-1B). 

Baseline samples were dominated by the orders Rhodobacterales, Sphingomonadales, 
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Oceanospirillales, and Pseudomonadales. Bacterial community structure remained relatively 

constant for the first two days in both the RT and 4oC samples. Through Days 3 and 7, the 

fractions of Sphingomonadales and Oceanospirillales bacteria decreased slightly while bacteria 

of the order Pseudomonadales increased in samples stored at room temperature. Only minor 

changes (up to +/- 5% relative abundance) were observed in samples stored at 4oC up to seven 

days. 

The greatest effects of storage time and conditions on microbial communities in produced 

water were observed for HP2 samples taken December 2013. On-site sample community 

structure was found to be dominated by Campylobacterales, but to have higher relative 

abundances of Bacteroidales, Desulfovibrionales, and Desulfuromonadales than post freezing 

day 0 samples. Storage results suggested that the microbial community shifted rapidly at room 

temperature, while the shift was more gradual at 4oC (Figure 3-1C). Baseline samples were 

dominated by Campylobacterales (~75%). After 24 hours at room temperature 

Campylobacterales relative abundance decreased, while Pseudomonadales and Alteromonadales 

relative abundances increased (Figure 3-1C).  In samples stored at 4°C, no changes in microbial 

community structure were detected within the first three days. Day 7 results revealed 

Pseudomonadales to be the dominant order while relative Campylobacterales abundance was 

found to have decreased (Figure 3-1C). 

3.3.3 Changes in microbial diversity within and between samples 

The number of OTUs assigned per 1000 sequences varied between samples (Appendix A, 

Table A4). Results demonstrated the observed number of OTUs to remain relatively more stable 
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under 4oC conditions, but to decrease under room temperature conditions throughout the seven-

day storage period for FWT and HP2 samples (Figure 3-1). Statistical analysis revealed number 

of OTUs in FWT and HP2 room temperature samples to be significant different at Day 7 

compared to Day 0 (t-test, P < 0.05). No statistical differences in number of OTUs across the 7 

day sampling period were identified for HP1 room temperatures and 4oC samples, HP2 4oC 

samples, and FWT 4oC samples. The highest number of OTUs was observed for HP2 4oC 

samples (as high as 156 OTUs) and lowest number of OTUs was observed for HP2 room 

temperature samples (as low as 56 OTUs).  

The Chao1 and Shannon diversity measurements were used to assess species richness and 

evenness [55, 56]. Results for both approaches suggest diversity within samples to remain more 

stable at 4oC than room temperature. Chao1 estimates richness by correcting for rare OTUs; 

Chao1 values were found to decrease under room temperature conditions over time, suggesting 

population richness to decline (Appendix A, Table A4). Chao1 values were found to be 

statistically significantly different in HP1 room temperature Day 7 samples, when compared to 

on-site and Day 0 samples (t-test, P < 0.05). Chao1 values at 4oC conditions suggested 

population richness to remain stable throughout storage, with the exception of HP2 samples, for 

which population richness was found to increase within the first two days and then decrease until 

Day 7 (Appendix A, Table A4). The Shannon index was used to determine population evenness; 

microbial diversity and evenness were found to be greatest within the HP1 sample set and lowest 

within the FWT sample set. Evenness values increased slightly over time in FWT, HP1 and HP2 

room temperature samples and HP1 4oC samples (Appendix A, Table A4), suggesting microbial 

community diversity to be altered throughout the storage period. 
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Weighted UniFrac principal coordinate analyses (Figure 3-2) demonstrated that samples 

tend to cluster based on source (e.g. FWT, HP1, HP2), rather than by time or storage condition. 

All on-site samples were found to cluster with the Day 0 sample. The FWT room temperature 

Day 7 samples clustered further away from other FWT samples and were found to group more 

closely with HP2 samples (Figure 3-2).  
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Figure 3-1: Microbial community structure in hydraulic fracturing produced water samples 

FWT (A), HP1 (B) and HP2 (C) samples preserved on-site and stored at room temperature or 

4oC over a time period of 7 days. 
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Similarly, the HP2 room temperature Day 7 sample was found to be an outlier and cluster 

separately from other HP2 room temperature samples (Figure 3-2). Average weighted UniFrac 

distances were found to be greatest for FWT room temperature Day 7 samples (0.62 +/- 0.01) 

and HP2 room temperature Day 2 (0.46 +/- 0.02), Day 3 (0.52 +/- 0.01) and Day 7 (0.48 +/- 

0.05). Weighted UniFrac distances relating HP2 samples stored at room temperature were greater 

than UniFrac distances obtained for samples under all other conditions (Appendix A, Figure A2).  

3.3.4 Implications and produced water storage recommendations 

 In all three produced water samples, microbial taxonomy observed in produced water 

samples stored at 4oC on Day 3 was considered representative of the baseline on-site community 

structure based upon relative abundances of major taxa and beta-diversity analyses. Microbial 

community composition in produced water samples stored at room temperature was found to be 

more variable, with major taxonomic profile changes being observed as soon as 24 hours after 

storage. Results were also confirmed through both alpha- and beta-diversity analyses. Evaluation 

of species richness and evenness within each sample also supported the convention that 

microbial communities are more susceptible to changes at room temperature. These results 

suggest produced water storage and handling to be important for microbiological analyses. 

Storing samples at room temperature for 24 hours or longer can significantly alter the taxonomic 

profile and limit the validity of downstream analysis. To preserve the original community 

structure samples should ideally be preserved on-site. If on-site sample processing is not possible 

produced water samples intended for microbiological analysis can be stored at 4oC for up to 

three days. Long term storage (between three days and up to several weeks) should occur at -
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80oC. Comparisons of samples preserved on-site and samples stored at -80oC suggested to 

preserve the overall microbial taxonomy profiles, but to result in small abundance shifts.  

 

These findings are consistent with previous storage condition studies for environmental 

samples [57, 58]. Changes in microbial community structure in sediment core samples were 

observed when stored long term at 4oC, confirming observations that microbes remain active at 

these storage conditions resulting in changes over extended periods of time [58]. Similarly, 

studies investigating storage conditions for soil samples intended for microbial analysis 

suggested -20oC or -80oC as best long term storage options and advised against storage at 4oC 

[59, 60].    

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2: Weighted Unifrac plot for microbial communities in three different types of 

hydraulic fracturing produced water at two different storage conditions over seven days. 
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3.4 SUMMARY AND CONCLUSIONS 

Changes in microbial community structure and composition during transport and storage 

of environmental samples may lead to results not representative of the original environment. Due 

to technical challenges with collection of produced water samples from hydraulic fracturing, 

there is the potential for a delay between sample collections and processing that may alter sample 

microbial ecology, and sample processing recommendations do not currently exist. To address 

this knowledge gap, we monitored the changes in microbial communities in produced water 

subjected to different storage conditions. Microbial ecology of produced water from three 

different sources (two water holding ponds and one truck sample), at two temperatures (room 

temperature and 4oC) through a seven-day period (Days 0, 1, 2, 3, and 7) was analyzed to assess 

the change in microbial community structure. Results suggest hydraulic fracturing produced 

water microbial communities to remain stable for up to three days, when stored at 40C and to 

change within 24 hours when stored at room temperature. These findings extend the current state 

of knowledge on storage of environmental samples by investigating a saline environment and 

including true baseline samples. Furthermore, these results are particularly important as analysis 

of microbial communities in produced water is an emerging focus area and necessary to 

understand the role of microbes during unconventional oil and gas production [10, 13, 36, 43, 

61]. Proper produced water handling strategies will be necessary when undergoing large scale 

studies that include samples from many wells, sampled at different time points and at different 

locations. These results strongly encourage implementation of a strict protocol for produced 

water handling that includes storage at 4oC and processing within three days of sampling. 
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4.0 PREDOMINANCE AND METABOLIC POTENTIAL OF HALANAEROBIUM IN 

PRODUCED WATER FROM HYDRAULICALLY FRACTURED MARCELLUS 

SHALE WELLS 

 

This work has been published as: 

Lipus, Daniel, et al. "Predominance and Metabolic Potential of Halanaerobium spp. in Produced 

Water from Hydraulically Fractured Marcellus Shale Wells." Applied and Environmental 

Microbiology 83.8 (2017): e02659-16. 

 

Microbial activity in the produced water from hydraulically fractured oil and gas wells 

may potentially interfere with hydrocarbon production and cause damage to the well and surface 

infrastructure via corrosion, sulfide release, and fouling. This study surveyed the microbial 

abundance and community structure of produced water sampled from 42 Marcellus Shale wells 

in southwestern Pennsylvania (well age ranged from 150 to 1846 days) to better understand the 

microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to 

assess taxonomy and utilized qPCR to evaluate the microbial abundance across all 42 produced 

water samples. Bacteria of the order Halanaerobiales were found to be the most abundant 

organisms in the majority of the produced water samples, emphasizing their previously 
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suggested role in hydraulic fracturing related microbial activity. Statistical analyses identified 

correlations between well age and biocide formulation and the microbial community, in 

particular the relative abundance of Halanaerobiales. We further investigated the role of the 

order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium 

draft genome (named MDAL1), using metagenomic sequencing and metagenomic binning. The 

recovered draft genome was found to be closely related to the species Halanaerobium 

congolense, an oil-field isolate, and Halanaerobium sp. T82-1, also recovered from produced 

water. Reconstruction of metabolic pathways revealed Halanaerobium sp. MDAL1 to have the 

potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it have the 

capability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing 

infrastructure.  

4.1 INTRODUCTION 

Oil and gas are now produced from previously unproductive (unconventional) 

hydrocarbon reservoirs due to the widespread use of horizontal drilling in conjunction with 

multi-stage, high-volume hydraulic fracturing. Hydraulic fracturing uses up to 25 million liters of 

water per well as the working fluid to fracture and increase the permeability of the hydrocarbon 

containing formation [9, 33]. Approximately 10-60% of the injected fluid returns to the surface 

after hydraulic fracturing as produced water and is characterized by total dissolved solids (TDS), 

with concentrations as high as 300,000 mg/L [5, 33]. Wells continue to generate produced water 

throughout their operational lifetime, generating up to 8000 liters of saline to hypersaline 
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wastewater per day [5]. Biological activity is generally undesirable during produced water 

holding prior to reuse or disposal, as well as during well operation [44, 49, 62]. Microorganisms 

in produced water may have the potential to produce acids and sulfides, leading to corrosion and 

gas souring [16, 37, 42, 44, 63, 64], and form biofilms, resulting in clogging and fouling events 

[13, 16, 39, 42, 64]. Microbial activity is controlled by biocide addition during the fracture 

process and produced water holding, and there is concern about the ecological impacts of 

biocides due to inadvertent release [45]. Understanding the microbial ecology of produced water 

is a critical component of controlling undesirable microbial activity. 

Previous studies have investigated the microbial ecology of Marcellus Shale produced 

water, reporting a rapid transition of the microbial community in produced water from an aerobic 

surface water microbial community, to a fermentative, anaerobic community [10, 13, 16, 36, 37, 

43, 64]. Notably, bacteria of the genus Halanaerobium (order Halanaerobiales) have been 

shown to be a predominant members of the produced water microbial community [10, 13, 16, 17, 

36, 43, 64], representing a potential operational concern due to its fermentative [16, 53, 65, 66], 

thiosulfate reducing nature [16, 17, 67-69]. Previous taxonomic characterization of microbial 

communities in produced water from the Marcellus Shale is from a sum total of six wells, with a 

maximum of three per study, all less than 18 months following fracture [10, 13, 16, 36, 37, 43, 

64, 70][37]. As there are greater than 15,000 unconventional wells in the Marcellus Shale region 

alone [71] and the produced water and well infrastructure are expected to be managed and 

maintained for 30 years or more, investigation of additional sites and well ages is necessary to 

confirm observed microbiological trends.  
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In addition, operational and geochemical factors may influence the microbial ecology of 

produced water, including the produced water salinity and the biocide composition used in the 

hydraulic fracturing fluid. Salinity has been suggested to be a major factor controlling the 

bacterial community composition and activity in a variety of aquatic environments [32, 72, 73]. 

Biocide composition likely affects the microbial ecology due to its wide variety of application 

approaches, as many different types and treatment combinations of biocides have been used 

during hydraulic fracturing with limited efficacy [39]. No study has yet investigated the 

influence of these factors on produced water microbial community structure. 

The objective of this study was to analyze the microbial abundance and community 

structure in produced water sampled from a greater number of wells, well sites, and well ages 

than previously considered. An additional goal was to identify possible correlations between the 

produced water microbial community and biocide composition, well age, and salinity as 

measured by total dissolved solids (TDS). Furthermore, this study aimed to specifically evaluate 

the abundance and metabolic potential of the order Halanaerobiales, which previous studies 

suggested to be one of the most abundant produced water organisms. Ultimately, enhanced 

understanding of produced water microbial ecology will inform microbial monitoring and 

control efforts in produced water, leading to enhanced protection of well infrastructure. 
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4.2 MATERIALS AND METHODS 

4.2.1 Samples 

Sample parameters reported in this study were based on previously suggested guidelines 

for the investigation of wastewater from unconventional shale gas extraction [74]. All Marcellus 

Shale produced water samples were obtained during one sampling day in June 2014 from wells 

in Southwest Pennsylvania. Samples were directly taken from the gas-water separator, collected 

in sterile 200 mL bottles, kept on ice during transport, and stored at -80°C within 24 hours of 

sampling. The gas-water separator represented the closest available sampling port to the 

production well. Samples analyzed in this study represent 42 wells from 18 different well sites in 

the Marcellus Shale region in Southwest Pennsylvania from production ages of 150 to 1846 days 

(Appendix B, Table B1).  

4.2.2 Chemical analysis 

Prior to chemical analyses, produced water samples were filtered through a 0.45 μm 

membrane filter to remove solids which could interfere with mass spectrometry and ion 

chromatography analysis. Cation and trace element concentrations were determined in dilute 

sub-samples using inductively coupled plasma mass spectrometry (NeXION 300x ICP-MS). 

Chloride concentrations were assessed using Thermo Scientific ICS-1100 Ion Chromatograph 

(Thermo Fisher Scientific, Waltham, MA). Total dissolved solid (TDS) concentrations were 

determined based on measured cation and anion concentrations. Biocide utilization data for the 
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42 wells was obtained from Fracfocus [75]. Nine different biocide treatment combinations were 

used across the analyzed wells, with biocide treatment combinations one (19 wells) and biocide 

treatment combination two (13 wells) used in the majority of the wells (Appendix B, Table B2). 

Biocides were part of the fracturing fluid and applied during hydraulic fracturing.  

4.2.3 DNA extraction, PCR, and sequencing 

For each sample, 30-50 mL of produced water was centrifuged (15,900 x g) to collect 

biomass. This volume was used as it represents a volume range successfully applied by our and 

other research groups for DNA extraction from produced water [39, 43]. Collected biomass was 

then digested with 10 μl of 20 mg/mL lysozyme for 30 minutes at 37oC followed by DNA 

extraction using MoBio PowerSoil kit (Carlsbad, CA) according to manufacturer’s instructions. 

DNA from all samples was amplified using V4 region 16S rRNA gene primers as described 

previously [50, 51], Samples that could initially not be amplified were diluted 10 fold prior to 

amplification to limit inhibition. Negative controls were utilized for each PCR reaction. 

Following amplification, 16S rRNA gene PCR products were purified using AMPure beads 

(Beckman Coulter, Pasadena, CA), run on a 1% agarose gel for cleanup verification, and 

quantified using Qubit (Life Technologies, Carlsbad, CA). Purified PCR products were pooled 

and diluted to a concentration of 20 nM. Diluted samples were then denatured using fresh 0.2 N 

sodium hydroxide for 5 minutes at room temperature and further diluted to 10 pMol library with 

hybridization buffer HT1 according to manufacturer’s instructions (Illumina, San Diego, CA). 

The 10 pMol library was spiked with 5% of 12.5 pMol PhiX control and sequenced using a 300 

cycle V2 Nano kit on an Illumina MiSeq sequencer (Illumina, San Diego, CA). 
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4.2.4  qPCR 

The bacterial load for 42 produced water samples was determined using SYBR Green 

based quantitative PCR (qPCR). Triplicate reactions were prepared for all samples each 

containing 1 µl DNA, 10 µl SYBR Green qPCR Mastermix (Bio-Rad, Hercules, CA), 8 µl 

ultrapure water, 0.5 µl reverse 16S rRNA primer, and 5 µl forward 16S rRNA primer, designed 

by Maeda et al [76]. Standard curves were generated using genomic DNA from Pseudomonas 

fluorescens (ATCC 13525). Reactions were run using a Bio-Rad qPCR thermocycler (Bio-Rad, 

Hercules, CA) using default settings. The number of 16S rRNA gene copies per mL was 

calculated as described previously [77]. The detection limit ranged between 141.7 and 426.4 16S 

rRNA gene copies per mL of sample.  

4.2.5 16S rRNA gene data processing 

16S rRNA sequences from all samples were analyzed using QIIME version 1.7.0 [51]. 

Sequences were trimmed at a quality score of 20 and demultiplexed. Operational Taxonomic 

Units (OTU) were picked using the pick_closed_reference_otus.py python script using UCLUST 

[78] against the 2014 GreenGenes core set gg_97_otus.fasta reference database [79]. Beta 

diversity was assessed by calculating weighted UniFrac distances [54]. Alpha diversity was 

assessed by determining the number of operational taxonomic units (OTUs), Chao1, and 

Shannon indices per 2000 sequences to remove bias introduced through varying number of 

sequences. For samples with less than 2000 sequences, the available sequences were used for 

alpha diversity estimation. DNA sequences were also annotated and deposited on MG-RAST and 
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can be accessed under the accession number 4696241.3. Description of fastq headers for sample 

sequences can be found in Appendix B, Figure B1.  

4.2.6 Correlation analysis 

Spearman rank coefficients correlating taxonomy and diversity measures with TDS, well 

age, and bacterial abundance were calculated using R [80]. Additionally, correlations were 

investigated using linear regression analysis. Differences in diversity and taxonomy by biocide 

treatment combination were assessed using two tailed t-tests. Microbial diversity between well 

sites was assessed by calculating weighted UniFrac distances and visualized using NMDS 

(nonmetric multidimensional scaling) ordination. Analysis of similarities (ANOSIM) based on 

Bray-Curtis and Euclidean distances was used to investigate statistical differences in community 

structure in R and Past [80, 81]. Furthermore, samples were clustered based on weighted UniFrac 

distances using UPGMA (Unweighted Pair Group Method with Arithmetic mean) analysis in 

QIIME [51].  

4.2.7 Metagenome library preparation 

DNA from one produced water sample (Site 13, Well 2), previously analyzed using 16S 

rRNA sequencing, was selected for metagenome sequencing. The metagenome sequencing 

library was processed using Nextera XT (Illumina, San Diego, CA) according to manufacturer’s 

instructions. Briefly, 1 ng of input sample DNA was tagmented with Illumina primers containing 

sequencing adapters and barcodes in a 12 cycle PCR step. PCR products were cleaned up using 
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AMPure XP beads (Life Technologies, Carlsbad, CA). DNA libraries was normalized using 

Illumina bead technology, quantified using Qubit (Life Technologies, Carlsbad, CA), and diluted 

to a concentration of 20-40 pM. The DNA library was denatured by heating the sample at 96oC 

for 2 minutes, cooled in an ice bath for 5 minutes, and sequenced using a 300 cycle V2 kit on an 

Illumina MiSeq sequencer (Illumina, San Diego, CA). 

4.2.8 Quality control and assembly 

Sequencing data was quality trimmed using CLC Genomics workbench version 8.5.1 

(CLC Bio, Aarhus, Denmark). Reads with poor quality score <Q30 and length <100 nucleotides 

were discarded. Trimmed reads were assembled into contiguous sequences (‘contigs’) using 

metaSPAdes version 3.5.1 [82]. Ribosomal rRNA genes in assembled contigs were predicted 

using RNAmmer [83]. Phylogenetic analysis based on extracted 16S rRNA sequence was 

performed using CLC workbench version 8.5.1 (CLC Bio, Aarhus, Denmark).  

4.2.9 Reference genome mappings 

Halanaerobium reference genomes were downloaded from NCBI using CLC Genomic 

workbench version 8.5.1 (CLC Bio, Aarhus, Denmark). Trimmed sequencing data was then 

mapped against each reference genome using the ‘map reads to reference’ tool using default 

settings. 
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4.2.10 Binning, genome annotation, and functional gene mapping 

Halanaerobium contigs were recovered from metagenomic data based on taxonomy 

using PhyloPythiaS [84] and tetranucleotide frequency, differential coverage, and marker genes 

using Maxbin [85]. The resulting Halanaerobium draft genome was assessed for completeness 

using CheckM [86, 87]. The generated Halanaerobium draft genome was uploaded to NCBI 

Genbank (accession number MIJU01000000.1) and RAST to be annotated using the SEED 

database [88, 89]. The draft genome can be accessed under the RAST accession number 

6666666.207575. KEGG orthology terms [90] were assigned to contigs and exported using 

RAST. Data was then mapped against KEGG pathways using the KEGG mapper tool [90, 91]. 

Functional gene sequences of interest were downloaded from RAST and evaluated using 

BLASTx or mapped against selected references genomes (obtained from NCBI) using CLC 

workbench version 8.5.1 using default parameters. 

4.3 RESULTS 

4.3.1 Sample background and geochemistry  

Produced water samples were analyzed from 42 hydraulically fractured, horizontal 

Marcellus Shale gas wells, representing 18 well sites, in southwestern Pennsylvania in June 

2014. In this study, the terminology ‘well site’ refers to a single well pad. A well pad is a single 

site consisting of multiple wells tapping laterally into the same formation. None of the wells 
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sampled in this study had previously been remediated for fouling or souring issues. The 

production ages of analyzed wells ranged from 150 to 1846 days and TDS concentrations for the 

42 samples ranged between 38,000 and 223,000 mg/L (Appendix B, Table B1). Sulfate 

concentrations were found to be below the detectable limit in 26 samples and low across the 

remaining samples, with maximum concentrations of 30 mg/L. Further inorganic ion 

composition data is shown in Table B3, Appendix B.  

4.3.2 Microbial abundance 

Microbial abundance for each sample is reported in Appendix B, Table B1. Microbial 

abundance in the produced water samples as determined by qPCR varied between 1.5 x 105 – 2.1 

x 108 16S rRNA gene copies per mL of produced water, within the range of previously reported 

values for produced water from the Marcellus Shale [10, 14, 36, 39]. Correlation analysis based 

on Spearman rank coefficients and linear regression analysis suggested microbial abundance to 

be positively related with well age (Appendix B, Tables B1, B4, B5) and did not reveal any 

correlations between microbial abundance and TDS (Appendix B, Tables B1, B4, B5) and 

biocide treatment combination (Appendix B, Figure B2, t-test: all P < 0.05). 

4.3.3 16S rRNA gene analysis and bacterial community structure determination 

The Firmicutes phylum, specifically the orders Halanaerobiales and Clostridiales, was 

the dominant phyla across all produced water samples (Figure 4-1). Halanaerobiales were 

identified in all produced water samples and were the most dominant order in 40 of the 42 
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samples (Figure 4-1). For most Halanaerobiales sequences we were not able to achieve 

classification below the family level using the RDP classifier within QIME (Appendix B, Figure 

B3). Within Halanaerobiales, sequences were affiliated with the genus Halanaerobium (up to 

8% of all sequences in a single sample), unassigned Halobacteroidaceae (up to 21%), or 

unassigned Halanaerobiaceae (up to 99%) (Appendix B, Figure B3). Annotation of 16S rRNA 

gene sequences using an alternative annotation strategy (MG-RAST) assigned the majority of 

unassigned Halanaerobiaceae reads to the genus Halanaerobium. Clostridiales were also 

observed in all produced water samples and were the second most abundant group behind 

Halanaerobiales (Figure 4-1). Abundant Clostridiales taxa included the families Clostridiaceae 

(up to 20% of all sequences in a single sample), Acidaminobacteraceae (up to 21%), and the 

Lachnospiraceae (up to 30%) (Appendix B, Figure B3). We were not able to classify 

Clostridiales sequences below the family level. Other abundant (>5%) orders included 

Pseudomonadales identified in 41 samples (up to 25%), Bacteroidales identified in 40 samples 

(up to 32%), Campylobacterales identified in 40 samples (up to 13%), Bacillales identified in 34 

samples (up to 29%), Oceanospirillales identified in 32 samples (up to 13.9%), and 

Desulfovibrionales identified in 17 samples (up to 6%). Within the order Pseudomonadales, 

most sequences were affiliated with the genus Pseudomonas (up to 24% of all sequences in a 

single sample). Within the order Campylobacterales, most sequences were affiliated with the 

genus Arcobacter (up to 8%), and within the Oceanospirillales most sequences were assigned as 

unclassified Halomonadaceae (up to 10%) (Appendix B, Figure B3). Sequences identified as 

Archaea were detected in 17 samples as the orders Methanosarcinales (up to 0.5% of all 

sequences in a single sample) and Methanomicrobiales (up to 1.1%). All minor orders with 

abundances below 2% are summarized in Appendix B, Figure B4. 
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We used Spearman rank coefficients and ANOSIM to correlate the relative abundance of 

Halanaerobiales with operational parameters (Appendix B, Table B6). Results identified an 

inverse correlation between the relative abundance Halanaerobiales and well age (P < 0.001). 

Halanaerobiales relative abundances were also plotted against well age and TDS concentration 

for linear regression analysis, revealing no trends (Appendix B, Figure B5). We identified a 

correlation between biocide treatment combination and Halanaerobiales abundance (t-test: P = 

0.018, ANOSIM: P = 0.008), as samples from wells treated with biocide treatment combination 

one were associated with higher relative abundance of Halanaerobiales. Biocide treatment 

combination one was 2,2-dibromo-3-nitrilopropionamide (DBNPA) based, biocide treatment 

combination two was tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione (Dazomet) based 

(Appendix B, Table B2). Both DBNPA and Dazomet are non-oxidizing biocides. Further 

mechanistic explanation for this observation will require additional analysis. 
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Figure 4-1: Relative abundance of microbial orders for 42 Marcellus Shale produced water 

samples analyzed using 16S rRNA gene sequencing in this study. Sites in this description refer to 

individual well pads. Orders that were less than 2% abundant in all samples were classified as 

minor orders and are summarized in Appendix B, Figure B4. 
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4.3.4 Alpha diversity 

The produced water microbial community alpha diversity was calculated by the number 

of OTUs, Chao1 richness index (a measure of sample richness, i.e. number of OTUs), and 

Shannon index (a measure of both sample richness and the distribution of OTUs). Alpha 

diversity parameters were assessed per 2000 sequences to enable even cross-sample comparison. 

All sequences were used for the three samples with less than 2000 OTU assigned sequences 

available for analysis (Appendix B, Table B7). The number of observed OTUs ranged from 6 to 

187; Chao1 richness analysis predicted richness values between 7 and 237; and the Shannon 

diversity ranged between 0.54 and 4.62 (Appendix B, Table B7). Correlation between alpha 

diversity parameters (number of OTUs, Chao1, and Shannon) and well age, TDS, and microbial 

abundance were assessed using Spearman rank coefficients and linear regression analysis. 

Results suggested a moderate correlation between Shannon diversity and well age, but did not 

reveal any other correlations (Appendix B, Figures B6 – B9). Alpha diversity parameters were 

also plotted against biocide treatment combinations, and no clustering by treatment combination 

was observed (Appendix B, Figure B10, t-test: all P > 0.05).  
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Figure 4-2: (A) Mapping results for metagenomic reads against other available Halanaerobium 

genomes and (B) unrooted phylogenetic tree showing the relationship between the 16S rRNA 

genes recovered from metagenomic contigs and the 16S rRNA genes of other Halanaerobium 

reference sequences downloaded from NCBI. Bar indicates 4 nucleotide substitutions per 1000 

nucleotides. 
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4.3.5 Beta diversity 

NMDS ordination analysis did not reveal any clustering by well site, or correlations 

between well sites and operational parameters (Appendix B, Figure B11). Weighted UniFrac 

distances were used to build an UPGMA tree and branches were labeled by TDS concentration, 

well age, and applied biocide composition (Appendix B, Figure B12). No clustering was 

observed for TDS concentration or well age (Appendix B, Figure B12). Analysis of similarity 

(ANOSIM) did not suggest any correlations for TDS concentration or well age (all P > 0.05). We 

observed clustering by biocide treatment combination (Appendix B, Figure B12, Table B2) and 

ANOSIM analysis revealed a difference in microbial community composition between samples 

treated with biocide treatment combinations one or two (P > 0.004). 

4.3.6 Metagenome sequencing 

Sample “Site 13, Well 2” was selected for shotgun metagenomic sequencing to further 

investigate the metabolic potential of the genus Halanaerobium, found to be abundant across all 

analyzed produced water samples. Based upon 16S rRNA gene data sample “Site 13, Well 2” 

was 99.1% Halanaerobiales and characterized by a low overall diversity (12 OTUs). Shotgun 

metagenome sequencing generated 6,089,871 trimmed, high-quality reads. Trimmed sequencing 

reads were then mapped against available Halanaerobium reference genome sequences (Figure 

4-2A). The best mapping results were achieved for Halanaerobium sp. T82-1 (accession 

numbers LSBN00000000.1) [16], a draft genome recovered from produced water (68% mapped 
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reads and 99% coverage), and Halananaerobium saccharolyticum strain DSM 6643 (accession 

numbers NZ_CAUI00000000.1) (50% mapped reads and 81% coverage) (Figure 4-2A).  

Sequencing reads were then assembled into 446 contigs using metaSPAdes. The 

minimum contig length was 5,000 bp, the maximum length was 96,535 bp, and the N50 was 

15,595 bp. Taxonomy assignment with PhyloPythiaS using the 2013 generic model with default 

settings [84] identified 82% of contigs to belong to the genus Halanaerobium. 16S rRNA gene 

prediction identified four 16S rRNA genes, between 1023 bp and 1260 bp in length [83]. 

Extraction and phylogenetic analysis of 16S rRNA genes identified the extracted genes to be 

identical to each other (ANI 100%, across 1023 bp) and closely related to the 16S rRNA gene of 

the species Halanaerobium congolense (ANI 99%, across 1023bp) (Figure 4-2B). Phylogenetic 

analysis showed that the 16S rRNA genes did not cluster closely with the only other available 

produced water Halanaerobium isolate (Halanaerobium sp. DL-01) (ANI 98%, across 1023 bp) 

(Figure 4-2B) [17]. No 16S rRNA gene is currently available or could be identified for the 

recently published produced water draft genome Halanaerobium sp. T82-1 [16]. 

4.3.7 Metagenomic contig binning and annotation 

Metagenomic binning resulted in one Halanaerobium draft genome, named 

Halanerobium sp. MDAL1, containing 129 contigs with a total size of 2,389,586 bp and a GC 

content of 34.2%, consistent with previously sequenced Halanaerobium genomes with sizes 

between 2.3 and 2.9 million bp and GC contents between 30.3% and 33.3% (Appendix B, Table 

B9) [53, 92, 93]. The Halanaerobium draft genome was the only phylogenetic bin obtained from 

the metagenomic library. Contigs that could not be binned were affiliated with the genus  
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Acetohalobium and Clostridia or could not be classified. More than half (53.9%) of original 

sample sequencing reads were successfully mapped back onto the binned contigs belonging to 

the Halanerobium sp. MDAL1 draft genome.  The Halanaerobium sp. MDAL1 draft genome bin 

was found to be 83% complete using 898 Halanaerobium marker genes in CheckM [86, 87]. 

Annotation identified 2219 gene coding sequences (CDs) and 23 RNA sequences, representing 

304 SEED subsystems for the recovered Halanaerobium draft genome. Phylogenomic analysis 

of Halanaerobium genomes and calculations of average nucleotide identities (ANI) and average 

amino acid identities (AAI) in comparison to other available Halanaerobium genomes suggested 

the recovered Halanaerobium sp. MDAL1 draft genome to be closely related to Halanaerobium 

sp. T82-1 (ANI = 98.48%, AAI = 93.82%, Table 4-1).  

Of particular interest was the metabolic potential for fermentation pathways, sulfur 

metabolism, and biofilm formation, as acid production, sulfide production, and biofouling are 

undesirable and therefore of high interest to the hydraulic fracturing industry and broader oil and 

gas industry [9, 45]. In addition, we evaluated the presence of genes involved in stress response 

mechanisms, as these processes have previously been shown to enable increased resistance to 

biocides in produced water [32]. 

Genes associated with mixed acid fermentation were identified in the Halanaerobium sp. 

MDAL1 draft genome and include ldh, which encodes a lactate dehydrogenase responsible for 

the conversion of pyruvate to lactate, ptaA, encoding a phosphate acetyltransferase that converts 

pyruvate to acetate, and adh which encodes an alcohol dehydrogenase involved in the 

fermentation of simple sugars into ethanol (Appendix B, Table B10). Furthermore, a gene 

encoding pyruvate formate lyase Pfl involved in the transformation of pyruvate to hydrogen or 

carbon dioxide was identified (Appendix B, Table B10). BLASTx analysis confirmed the 
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presence of the described fermentation genes in Halanaerobium sp. T82-1 (99% identity). The 

discovery of these genes allowed reconstruction of putative metabolic pathways for the 

conversion of pyruvate into the fermentation products lactate, acetate, ethanol, hydrogen, and 

carbon dioxide, confirming Halanaerobium’s potential to contribute to acid production in 

produced water. 

 

Table 4-1: Average nucleotide (ANI) and amino acid identity (AAI) between recovered 

produced water Halanaerobium sp. MDAL1 draft genome and other available Halanaerobium 

genomes. 

Name 
Genbank Accession 

Number 

ANI 

(%) 

AAI 

(%) 

Halanaerobium sp. MDAL1 draft genome MIJU00000000.1 - - 

Halanaerobium sp. strain T82-1 LSBN00000000.1 98.48 93.82 

Halanaerobium saccharolyticum subsp. 

saccharolyticum DSM 6643 
NZ_CAUI00000000.1 84.62 82.04 

Halanaerobium praevalens DSM 2228 CP002175.1 83.93 73.73 

Halanaerobium hydrogeniformans CP002304.1 82.65 67.59 

 

The production of sulfides during hydraulic fracturing operations can lead to gas souring 

and is therefore a significant concern to hydraulic fracturing operations [44, 94]. While we did 

not identify any classical sulfate reduction genes (e.g. dsrAB, aps), our analysis revealed several 

genes involved in thiosulfate reduction, a process previously reported to contribute to sulfide 

production and observed across various anaerobic, halophilic and thermophilic bacteria taxa [69, 
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95]. Identified genes included an unclassified rhodanese-like gene, a thiosulfate sulfurtransferase 

rhodanese (mpst), an unclassified sulfurtransferase rhodanese gene, and the anaerobic sulfite 

reductase genes asrA, asrB, and asrC in the Halanaerobium sp. MDAL1 draft genome 

(Appendix B, Table B10). BLASTx analysis revealed the unclassified rhodanese-like gene to 

share 100% homology with the previously described thiosulfate reduction RdlA rhodanese 

proteins in Halanaerobium sp. T82-1, H. congolense, and H. saccharolyticum [16, 68, 95]. 

Furthermore, a Trk type sulfate permease and a putative ABC type sulfate-like transporter were 

identified, allowing the reconstruction of a putative thiosulfate reduction pathway (Appendix B, 

Table B10). Thiosulfate is transported into the cell by a sulfate ABC-type transporter, converted 

into adenyl sulfate by the Rdl rhodanese protein, and into sulfide by a sulfurtransferase and the 

AsrABC complex. The utilization of thiosulfate and production of hydrogen sulfide has recently 

been reported for a Halanaerobium isolate DL-01 from produced water [17]. In the same study 

researchers found Halanaerobium DL-01 to produce acetate when thiosulfate was used as an 

electron acceptor [17]. Our results, together with observations from previous studies, suggest that 

Halanaerobium identified in produced water have the ability to reduce thiosulfate and potentially 

produce sulfides and acetate. These characteristics have also been described for Halanaerobium 

species isolated from different environments [68, 92].  

Biofilm formation during or after hydraulic fracturing can cause damage to the hydraulic 

fracturing infrastructure, and lead to clogging, interfering with hydraulic fracturing operations 

[14, 34]. Genes encoding for proteins suggested to be involved in biofilm formation processes 

were identified and include the sporulation two-component response regulator Spo0A,  

associated with surface attachment initiation, the glycosyl transferase group 2 family protein 

Glt2, and the diguanylate cyclase AdrA, which have both been associated with 
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exopolysaccharide production (Appendix B, Table B10) [96, 97]. Furthermore, we identified 

several flagella and motility genes, including fliC, flhA, motA, and motB, which have been 

suggested to be important for cellular attachment and initial stages of biofilm formation [98, 99]. 

Produced water contains elevated salinity levels and the presence of heavy metals, 

resulting in osmotic, oxidative, and periplasmic stress responses to protect the cell [100-102]. 

Multiple genes associated with salinity tolerance were identified in the Halanaerobium sp. 

MDAL1 draft genome (Appendix B, Table B10). The genome encodes for the Trk and Ktr 

transmembrane transporter complexes, including the potassium and sodium uptake proteins 

TrkA, TrkH, and KtrA [103-105]. The presence of the trkH and trkA genes supports previously 

reported characteristics for bacteria of the genus Halanaerobium, which have been shown to use 

a specific “salt in strategy” to counter osmotic stress through the uptake of potassium from the 

environment utilizing membrane proteins of the Trk and Ktr complexes [67, 102, 104]. In 

addition, the glycine and betaine ABC transport protein ProX, the L-proline glycine betaine ABC 

transport system permease protein ProW, and the high-affinity betaine transport system OpuA 

were identified (Appendix B, Table B10) [106, 107]. BLASTx analysis of proW, proX, and 

opuU gene sequences revealed close homology to Halanaerobium sp. T82-1 (>99% identity). 

Other identified genes with a potentially important role in microbial stress response under 

produced water conditions included perR, a redox-sensitive transcriptional regulator sor, 

encoding a superoxide reductase, and unidentified genes encoding rubredoxin, glutaredoxin, and 

rubrethyn. These genes are potentially involved in oxidative stress response pathways, which 

have been suggested to be triggered by a secondary response to osmotic stress as well as the high 

concentration of cations in produced water [108]. In addition, sequences encoding the 

periplasmic stress response gene ompH [109], the universal stress protein UspA, the heat shock 
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protein GrpE, Hsp20, and the heat shock chaperones GroES and GroEL were identified 

(Appendix B, Table B10). We also discovered gene sequences for the chemotaxis related 

proteins MotA and MotB, and the flagella assembly protein family Flg, Fli, and, Flh in 

Halanaerobium sp. MDAL1 draft genome (Appendix B, Table B10). 

4.4 DISCUSSION 

This study evaluated microbial communities in 42 produced water samples taken from 

wells of varying ages within the Southwest Pennsylvania region of the Marcellus Shale and 

investigated the metabolic potential of the dominant produced water genus Halanaerobium. The 

goal of this study was to improve the understanding of the microbial community associated with 

hydraulic fracturing operations by analyzing samples from the largest number and diversity of 

wells to date. Furthermore, the recovery and annotation of a metagenome-assembled 

Halanaerobium sp. MDAL1 draft genome bin provides new insights into the metabolic potential 

of microbial populations in produced water, specifically highlighting acid and sulfide production. 

Ultimately, improved understanding of produced water microbial ecology will enable the 

development of better produced water management strategies to minimize corrosion, produced 

water souring, and fouling events, and encourage produced water reuse.  
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4.4.1 Halanaerobiales dominates Marcellus Shale produced water 

Microbial community structure analysis revealed bacteria of the phylum Firmicutes to be 

dominant across all produced water samples analyzed, constituting as much as 99% of the 

microbial community. Within the phylum Firmicutes, the majority of the sequences were 

associated with the orders Halanaerobiales (up to 99.8% total relative abundance) and 

Clostridiales (up to 79.2% total relative abundance). Halanaerobiales are fermentative, obligate 

anaerobic halophiles that have previously been shown to be abundant in produced water 

following the flowback period in the Marcellus [10, 13, 36, 67] and Antrim Shales [41]. 

Members of the order Halanaerobiales have been isolated from conventional oil wells [68] and 

have been identified in a variety of other ecosystems such as the Dead Sea, marine salterns, 

cyanobacterial mats, and hypersaline lakes [67, 110]. Phylogenetic analysis of recovered 16S 

rRNA genes suggested the recovered draft genome to be closely related to the genus H. 

congolense (25), which was isolated from an oil field and shares multiple functional 

characteristics identified in the Halanaerobium sp. MDAL1 draft genome.  

Clostridiales sequences were identified in all but eight produced water samples, 

constituting more than 20% of the microbial community in six samples. Similar to 

Halanaerobiales, the order Clostridiales comprises fermentative, obligate anaerobes, some of 

which are spore forming [111]. Unlike Halanaerobiales, the order Clostridiales consists of many 

families with a diverse range of characteristics. The actetogenic families Clostridiaceae, 

Lachnospiraceae, and Acidaminobacteraceae were abundant in our samples. These families 

include putative sulfate reducing genera, such as Desulfotomaculum, which was identified [112]. 
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Within the Clostridiaceae, the moderately halophilic, acid producing, biofilm forming genus 

Clostridium was also identified [113, 114].   

We compared the most abundant orders identified with findings reported in previous 

produced water microbial ecology studies (Figure 4-3) [10, 13, 14, 36, 39, 43, 70]. Our data 

suggested Halanaerobiales to be the most dominant order across Marcellus Shale produced 

water samples. This observation supports previous studies, which have shown Halanaerobiales 

to exist at lower abundances in wells after a short operational lifetime and account for as much as 

99% of the population in wells older than six months (Figure 4-3) [10, 13, 36]. Sequences 

affiliated with the Clostridiales, Campylobacterales, Rhodobacterales, Bacillales, 

Pseudomonadales, Oceanospirillales, and Bacteroidales were found to be abundant in this study 

and have also been identified in previous produced water studies (Figure 4-3) [10, 13, 16, 36, 

43]. Comparison to previous studies showed that all orders identified in our study at greater than 

2% abundances have previously been detected in produced water, with the exception of the order 

Erysipelotrichales which has not been identified in produced water from unconventional wells. 

Erysipelotrichales has been previously identified in petroleum reservoirs, formation waters, and 

subsurface hot springs [115, 116]. 
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Figure 4-3: Abundance of identified Marcellus Shale produced water microbial orders identified 

in this study and in other produced water studies. Reported values represent the highest observed 

abundance in any single sample. 

4.4.2 Influence of well age, salinity, and biocide treatment combination on produced 

water microbial communities  

We evaluated the correlation between TDS, well age, and biocide application in the 

fracturing fluid on the microbial community composition across all samples, the occurrence of 

the bacterial order Halanaerobiales, the microbial diversity within each sample, and the 

microbial abundance to identify operational or geochemical factors that impact microbial 

community structure in produced water. Previous studies have suggested TDS and well age to 

influence microbial community composition in produced water [10, 13, 36], however we did not 

observe any correlations between TDS concentration and the microbial ecology in produced 
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water and only identified a moderate correlation between well age and the Shannon index, a 

measure of diversity within samples. 

In this study we were particularly focused on the abundance of Halanaerobiales, as this 

taxon was shown to be predominant across all samples. We identified a moderate inverse 

correlation between Halanaerobiales relative abundance and well age, a result standing in 

contrast to previous data suggesting Halanaerobiales relative abundance to increase with well 

age; however, these studies only investigated a limited number of samples with well ages at the 

lower end of the time spectrum analyzed in this study [10, 13, 36]. We also identified a 

correlation between Halanaerobiales abundance and biocide treatment combination. A DBNPA 

based biocide treatment combination correlated with a higher Halanaerobiales relative 

abundance. The biocide treatment combinations also contained additives such as polyethylene 

glycol and sodium hydroxide, serving other functions in the hydraulic fracturing fluid [8, 117, 

118]. Future research efforts are necessary to develop mechanistic explanations for these 

findings.   

4.4.3 Functional potential of Halanaerobium from produced water 

Microbial acid and sulfide production are of high interest to the oil and gas industry, due 

to microbial influenced corrosion, fouling, and gas souring [13, 37, 39, 44]. Taxonomic analysis 

of produced water allowed identification of multiple microbial taxa that are potentially involved 

in these processes, such as the orders Halanaerobiales and Clostridiales. Metagenomic 

investigation of Halanaerobiales acid production pathways identified putative metabolic 

fermentation pathways for lactate, acetate, ethanol, hydrogen, and carbon dioxide, consistent 
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with previous reports for Halanaerobium species isolated from diverse environments [52, 53, 67, 

68, 92, 93, 119]. In particular, these findings agree with data recently reported for a similar 

produced water Halanaerobium draft genome (strain T82-1) with the capacity to yield ethanol, 

hydrogen, and acetate as fermentation products [16]. In addition, our analysis identified potential 

sulfate reducing bacteria. Specifically, sequences identified as the sulfide-producing order 

Desulfovibrionales were more abundant than previously suggested [10, 36, 43, 70]. 

Reconstruction of putative sulfide production pathways in the recovered Halanaerobium sp. 

MDAL1 draft genome revealed the metabolic potential for thiosulfate reduction via a rhodanese 

thiosulfate reductase (Rdl). This pathway, utilizing thiosulfate or elemental sulfur instead of 

sulfate, has been previously described for H. congolense, a Halanaerobium species isolated from 

an oil field, and for a Halanaerobium sp. T82-1 and Halanaerobium sp. DL-01 recently 

recovered from produced water [16, 64, 68, 95]. These results suggest that multiple metabolic 

pathways, some of which would not be detected by current sulfate-reducing bacteria tests, have 

the potential to contribute to microbial sulfide production in the produced water environment. 

Genetic evidence for thiosulfate reduction also suggests the need to evaluate thiosulfate 

concentrations in produced water in future research efforts to generate additional geochemical 

support for these processes. 

Fouling incidents in hydraulic fracturing infrastructure are also commonly attributed to 

microbial activity [9, 33]. This study revealed several putative biofilm forming microbial taxa to 

exist in produced water, in particular the genera Pseudomonas and Clostridium have previously 

been suggested to be involved in biofilm formation [32, 120-122]. In addition, several genes 

involved in biofilm formation processes were identified in the Halanaerobium sp. MDAL1 draft 

genome, suggesting the biofilm formation potential of produced water Halanaerobium. Our data 
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therefore confirms recent work which reported genes for biofilm formation pathways to exist in 

draft genomes of Halanaerobium from fractured shale formations, despite their absence in other 

currently available Halanaerobium genomes [16]. In addition, these findings also confirm 

previous studies that have reported the presence of Halanaerobium in biofilms found in 

hydrocarbon environments [123].  

Finally, draft genome analysis revealed the potential for diverse stress response 

mechanisms in produced water Halanaerobium. Produced water Halanaerobium populations 

overcome osmotic stress through the uptake of potassium (i.e. salt in strategy) and the utilization 

of osmoprotectants. In addition, we observed the genetic potential for motility, oxidative stress 

protection mechanisms characterized by rubredoxin, glutaredoxin, and superoxide reductase 

activity, and several heat shock and periplasmic stress associated genes, enabling 

Halanaerobium survival in the saline, heavy metal rich produced water environment. These 

findings are of particular interest as the stress response in microorganisms exposed to produced 

water has been shown to lead to enhanced biocide resistance and should be taken into 

consideration when evaluating biocide application strategies [32]. 

4.4.4 Study implications 

An enhanced understanding of produced water microbial ecology is critical to limit 

corrosion, fouling, and souring issues, protect well infrastructure; minimize unnecessary biocide 

application; and encourage produced water recycling. This study represents the largest sampling 

and characterization of unconventional produced water microbial ecology to date. Recent studies 

have extensively analyzed unconventional produced water microbiology data based on samples 
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obtained from one to two Marcellus Shale well pads, producing valuable information limited by 

the small number of included sites [10, 13, 16, 36, 64].  The broader sampling effort in this 

produced water microbial ecology study allowed the confirmation of general trends observed 

during these previous temporal studies of a smaller number of wells, specifically the 

predominance of the putative biofilm-forming and fermentative Halanaerobiales. In addition, 

correlation analysis revealed statistically significant influence of fracturing fluid biocide 

composition on the produced water microbial community, and in particular Halanaerobiales 

abundance.  

Finally, this study evaluated the metabolic potential of Halanaerobium in produced water 

by successfully recovering a Halanaerobium draft genome and comparing it to other available 

Halanaerobium genomes. Annotation revealed genetic potential for several fermentation 

pathways, thiosulfate reduction, biofilm formation, and a diverse stress response, suggesting 

Halanaerobium sp. MDAL1 contributes to acid and sulfide production in produced water. These 

genetic traits have also been previously observed in other Halanaerobium isolates and draft 

genomes, in particular the species Halanaerobium sp. T82-1, H. congolense and Halanaerobium 

sp. DL-01[16, 17, 68].  

In conclusion, this study was able to confirm the dominance of halophilic, fermentative 

microorganisms, in particular the taxa Halanaerobium, across a wide range of produced water 

samples. Correlation analysis results suggest TDS concentration to have little influence on the 

microbial ecology in produced water and biocide treatment combination may affect the 

abundance of Halanaerobiales in produced water. This study was one of the first efforts to 

evaluate the metabolic potential of microorganisms associated with hydraulic fracturing 
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operations, supporting the role of Halanaerobium as a major contributor to microbial activity and 

source for corrosion, souring, and biofouling in the hydraulic fracturing infrastructure.  
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5.0 MICROBIAL COMMUNITIES IN BAKKEN REGION HYDRAULIC 

FRACTURING PRODUCED WATER 

 

To be submitted for publication as: 

Lipus, D., Roy, D., Khan, K., Ross, D., Vikram, A., Gulliver, D., Hammack, R., and Bibby, K. 

Microbial Communities in Bakken Region Hydraulic Fracturing Produced Water. 

 

 The Bakken Shale region (including both the Bakken and Three Forks formations) has 

become one of the United States’ most important oil and gas producing regions. This study 

examines the microbiology of Bakken region produced water from 17 wells sampled over a six-

month time frame. We also measured basic geochemical characteristics (TDS, DOC, and pH) 

across all evaluated samples. Produced water samples were characterized by high total dissolved 

solids (TDS) (220,000 mg/L – 350,000 mg/L) and low dissolved organic carbon (DOC) 

concentrations (41 mg/L – 132 mg/L). Microbial abundances varied between 101 – 104 16S 

rRNA gene copies/mL, approximately four orders of magnitude below those observed for 

produced waters from other unconventional resource regions. The most abundant bacterial orders 

found in produced water samples were Bacillales, Halanaerobiales, and Pseudomonadales, 

consistent with observations from other unconventional resource plays. Our observations suggest 
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temporal community structuring, as produced waters sampled early in our sampling period were 

dominated by Halanaerobiales, and produced waters sampled at the remaining winter sampling 

time points were characterized by high relative abundances of Bacillales. Data from this study 

extends the current available knowledge of the microbiology and chemistry associated with 

hydraulic fracturing produced water from the Bakken and Three Forks formations. 

5.1 INTRODUCTION 

Recent developments in unconventional resource exploration have motivated 

investigations into the microbial communities associated with produced water from hydraulic 

fracturing. The Bakken formation, together with the underlying Three Forks formation, 

represents one of the most important oil and gas reservoirs in the United States with proven 

reserves of 7.4 billion barrels of oil and 190 trillion m3 of natural gas [124, 125] and is currently 

the third most productive oil region in the United States [125, 126]. Oil and gas production in the 

Bakken region generates an average of more than 11 million liters of produced water throughout 

a single well’s lifetime [127]. Microbial activity during produced water holding is of particular 

concern, as microorganisms may cause sulfide release (souring), and corrode and foul 

infrastructure, resulting in increased operating costs and adverse environmental issues [5, 8, 10, 

13, 16, 35, 44, 49]. As the downhole environment of the Bakken and Three Forks reservoirs is 

greater than 93oC [44], there are likely limited indigenous microorganisms in the subsurface and 

that the majority of microorganisms in produced water originate in the well casing or surface 

infrastructure. Nonetheless, microbial processes are still a concern, as reports of biocorrosion, 
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biofouling, and biogenic sulfide production in production facilities in the Barnett Shale, which is 

believed to be free of microbial growth due to high subsurface temperatures, have been 

published previously [39, 128, 129].  

Previous studies have investigated microbial communities and geochemistry throughout 

the life cycle of produced water associated with unconventional gas and oil extraction from other 

plays [10, 13, 16, 17, 35, 39, 41, 43, 49, 130]; however, little is known about the microbial 

communities in Bakken region produced waters. One previous study evaluated two produced 

water samples from western North Dakota that were dominated by the bacterial taxa 

Halanaerobium, Marinobacterium, and Pseudomonas [43]. Other studies evaluating Bakken 

Shale produced waters have only analyzed geochemical data. A 2010 study reported overall total 

dissolved solids (TDS) concentrations ranging between 150,000 and 219,000 mg/L, with sulfate 

concentrations as high as 1000 mg/L [131, 132], while a 2016 study found TDS values as high as 

350,000 mg/L [133]. Additional sample analyses are necessary to confirm preliminary observed 

trends, and establish a better understanding of the microbial ecology in Bakken Shale produced 

waters.  

The goal of this study was to better characterize the microbial ecology of Bakken region 

produced water from 17 unconventional hydraulic fracturing wells in the Bakken and Three 

Forks formations sampled across a six-month time frame. Additionally, TDS, DOC, and pH data 

was collected. Findings from this study will expand the current microbiological characterization 

available for Bakken region produced waters.  
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5.2 MATERIALS AND METHODS 

5.2.1 Sampling 

Produced water samples analyzed in this study were sampled from hydraulic fracturing 

wells in North Dakota actively producing oil from the Bakken formation or the underlying Three 

Forks formation. As production data from the Bakken and Three Forks formations is usually 

reported together and labeled “Bakken Shale Data”, we refer to the sampled region as Bakken 

Shale or Bakken region throughout the chapter. Produced water samples were collected from the 

three-phase separators and final storage tanks of 17 different well sites (Appendix C, Table C1) 

on four dates: 10/8/2014, 11/5/2014, 1/14/2015, and 3/25/2015. The locations of the wells are 

shown in Figure 5-1. The samples were collected in 1 L sterile polypropylene bottles and 

transported on ice to the Environmental Engineering Laboratory at North Dakota State 

University. Approximately 100 mL of the sample were centrifuged immediately upon arrival and 

pellets were sent overnight on ice to the University of Pittsburgh for DNA extraction or stored at 

-80ºC until shipment. Sampling and biomass pelleting were performed by collaborators at North 

Dakota State University. 

 

5.2.2 Chemical analysis 

Dissolved organic carbon (DOC) was measured after diluting the samples with deionized 

distilled water using a Phoenix 8000 UV-persulfate total organic carbon analyzer (Teledyne, 

Ohio). The pH was measured using an automatic temperature corrected pH meter (Orion 230A, 
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Thermo Scientific, CO). Turbidity was determined using a 2100N Laboratory Turbidimeter and 

Formazin standards (Hach Company, Iowa). Alkalinity was assessed by the titrimetric method 

using a standard 0.02 N sulfuric acid titrant and interference checking was performed using 

American Public Health Association standard method 2005 [134]. TDS was measured using 

gravimetric method according to American Public Health Association standard method 2005 

[134]. The sample was filtered through a 0.45 μm pore-size cellulose acetate membrane prior to 

TDS determination. Analyses were conducted at least in duplicates. Chemical analysis of 

produced waters was performed by collaborators at North Dakota State University.  

 
 

Figure 5-1: Sampling locations (red star) in North Dakota. Produced water samples from the 

separator and storage tank were collected from 17 different wells at nine different locations. 
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5.2.3 DNA extraction and sequencing 

DNA extraction and sequencing was achieved as described previously [135]. Briefly, 

collected biomass was digested with 10 μl of 20 mg/mL lysozyme for 30 minutes at 37oC 

followed by DNA extraction using a MoBio PowerSoil kit (Carlsbad, CA) according to the 

manufacturer’s instructions. DNA from all samples was amplified using 16S rRNA primers as 

described previously [50, 136]. Samples initially not amplified were diluted 10 fold prior to 

amplification to limit inhibition. Negative controls were utilized for each PCR reaction and all 

negative controls were negative for contamination. Following amplification, 16S rRNA gene 

PCR products were purified using AMPure beads (Beckman Coulter, Pasadena, CA), run on a 

1% agarose gel for cleanup verification, and quantified using Qubit (Life Technologies, 

Carlsbad, CA). Purified PCR products were pooled and diluted to a concentration of 20nM. 

Diluted samples were then denatured using fresh 0.2 N sodium hydroxide for 5 minutes at room 

temperature and further diluted to 10 pMol library with hybridization buffer HT1 according to 

manufacturer’s instructions (Illumina, San Diego, CA). The 10 pMol library was spiked with 5% 

of 12.5 pMol PhiX control and sequenced using a 300 cycle V2 Nano kit on an Illumina MiSeq 

sequencer (Illumina, San Diego, CA). 

5.2.4 qPCR 

The microbial load for all produced water samples was determined using quantitative 

PCR (qPCR) using 16S rRNA gene primers designed by Maeda et al [76], as described 

previously [130]. Briefly, qPCR reactions were run in triplicate, each containing 1 µl DNA, 10 µl 
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SYBR Green qPCR Mastermix (BioRad, Hercules, CA), 8 µl ultrapure water, 0.5 µl reverse 16S 

rRNA gene primer, and 0.5 µl forward 16S rRNA gene primer. Standard curves were generated 

using genomic DNA from Pseudomonas fluorescens (ATCC 13525). Reactions were run using a 

BioRad qPCR thermocycler (BioRad, Hercules, CA) using default settings. The number of 16S 

rRNA gene copies/mL was calculated as described previously [135]. The theoretical detection 

limit was 101 16S rRNA gene copies/mL. 

5.2.5 Data analysis 

16S rRNA sequences from all samples were analyzed using QIIME version 1.7.0, as 

reported previously [51, 135, 136]. Sequences were quality trimmed (Q20) and demultiplexed in 

QIIME. Operational Taxonomic Units (OTU) were then picked using the 

pick_closed_reference_otus.py python script using UCLUST against the 2014 GreenGenes core 

set gg_97_otus.fasta reference database [78, 79]. Beta diversity was assessed by calculating 

weighted UniFrac distances [54]. Alpha diversity was assessed by determining the number of 

operational taxonomic units (OTUs), Chao1, and Shannon indices per 1000 sequences to remove 

bias introduced through varying number of sequences. For samples with less than 1000 

sequences, the available number of sequences was used for alpha diversity estimation. Statistical 

differences in diversity, microbial load, and TDS concentration between separator and storage 

tank samples, Bakken and Three Forks formation samples, and between the four evaluated time 

points were assessed using two tailed t-tests. DNA sequences were deposited on MG-RAST 

[137] and can be accessed under the library accession number mgp17856. Sequence headers are 

described in Appendix C, Figure C1.  
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5.3 RESULTS 

5.3.1 Sample characteristics and geochemistry 

Hydraulic fracturing produced water samples were taken from 17 hydraulically fractured, 

horizontal, Bakken formation (9 wells) and Three Forks formation (8 wells) well sites (Figure 5-

1). Overall, 64 separator samples and 57 holding tank samples were collected at four different 

time points over a six-month time frame (October 2014, November 2014, January 2015, and 

March 2015) (Appendix C, Table C1). Each well had its own produced water holding tank. The 

holding tank and separator from Well 6 were not sampled in November 2014, holding tanks from 

Wells 1, 2, 7, 8, 10, 11, 12, and 16 and separators from Wells 9 and 15 were not sampled in 

January 2015, and the holding tank and separator from Well 9 were not sampled in March 2015 

due to logistical challenges. The production ages of the wells analyzed in this study ranged from 

270 to 1241 days (Appendix C, Table C1). Total dissolved solids (TDS), dissolved organic 

carbon (DOC), pH, alkalinity, and turbidity concentrations were measured across all four time 

points (Table 5-1, Appendix C, Table C1). The overall total dissolved solids (TDS) 

concentrations ranged between 250,750 mg/L and 335,000 mg/L in the separator samples and 

between 259,750 mg/L and 330,500 mg/L in the storage tank samples (Table 5-1). No significant 

changes in TDS concentrations were observed between separator and storage tank samples and 

across the four sampling time points (t-test, all P > 0.05). No significant differences in TDS 

concentrations were identified between Bakken and Three Forks formation samples (t-test, all 

P > 0.05). Dissolved organic carbon (DOC) concentrations in Bakken Shale produced waters 

ranged between 41 and 80 mg/L in separator samples and 49 and 132 mg/L in storage tank 
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samples (Table 5-1), levels lower than those up to 400 mg/L, previously reported for early 

produced waters from the Marcellus Shale [11] and similar to levels of 19 mg/L - 46 mg/L, 

previously reported for later Marcellus and Devonian New Albany Shale produced waters [13, 

138]. The pH varied between 5.0 and 7.0, in the range previously reported for Bakken Shale 

produced waters [131]. 

 

Table 5-1: Physiochemical characteristics of analyzed produced water samples. Total 

dissolved solids (TDS), dis-solved organic carbon (DOC), pH, alkalinity, and turbidity were 

measured across all four sampling time points. Ambient air temperatures were 8oC to 10oC on 

10/7/2014 (October), 0oC to – 2oC on 11/1/2014 (November), -3oC to -4oC on 1/14/2015 

(January), and 15oC to 16oC on 3/25/2015 (March). 

 Separator Storage Tank 

 Max Min Avg Max Min Avg 

TDS 

(mg/L) 
340750 223000 301507 332250 196000 296803 

DOC 

(mg/L) 
225 19 70 132 14 65 

pH 6.9 5.0 6.0 7.0 5.2 6.1 

Alkalinity 

(mg/L) 
900 300 550 900 250 525 

Turbidity 

(NTU) 
128.0 6.2 140.6 890.0 10.1 139.7 
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5.3.2 Microbial abundance 

Microbial abundance in the collected produced water samples was determined by 

quantitative PCR. Eleven separator and fourteen storage tank samples could not be quantified 

due to low DNA yield. Microbial abundance in the remaining samples varied between 101 – 104 

16S rRNA gene copies/mL (Figure 5-2). No statistically significant differences in microbial 

abundance were observed between separator and storage tank samples (t-test, P > 0.05), between 

sampling time points across all samples (t-test, all P > 0.05), or between Bakken and Three Forks 

formation samples (t-test, all P > 0.05).  
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Figure 5-2: Microbial abundance as 16S rRNA gene copies per milliliter across the evaluated 

Bakken formation and Three Forks formation hydraulic fracturing produced water samples, as 

determined by qPCR. Well and time points for which no data is available were either not 

sampled or compromised during processing. DNA extraction from several samples failed due to 

low biomass. Samples labeled BDL were found to have DNA concentrations below the 

detectable limit. 

5.3.3 Microbial community structure  

The microbial community structure was determined in 44 separator samples and 38 

storage tank samples using 16S rRNA sequencing. Samples from 20 separators and 19 storage 

tanks were not analyzed, as they failed DNA extraction due to low biomass, could not be PCR 

amplified, or yielded low sequence counts due to low biomass. Abundances for all major orders 
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are summarized in Appendix C, Figure C2. All minor orders (<2%) are summarized in Appendix 

C, Figure C3. Genus level taxonomy data for all samples is summarized in Appendix C, Figure 

C4. The anaerobic, fermentative Firmicutes orders Bacillales and Halanaerobiales and the 

Proteobacteria order Pseudomonadales were the most abundant taxa across all evaluated 

samples. Figure 5-3 shows taxonomy data for these three most abundant orders. Bacillales were 

identified in all 82 samples and were the most dominant order in 45 samples. Bacillales were 

particularly abundant in November, January, and March samples, accounting for as much as 99% 

of all sequences in a single sample. Within Bacillales, most sequences were unclassified 

Bacillaceae (up to 90% relative abundance), Bacillus (up to 17% relative abundance), or 

Staphylococcus (up to 14% relative abundance). These Bacillales taxa have previously been 

associated with acid production and spore formation [14, 39, 139-141]. The order 

Pseudomonadales was identified in all samples and most abundant in the November, January, 

and March samples, accounting for up to 69% relative abundance in a single sample (Figure 5.3; 

Appendix C, Figure C2). Pseudomonadales was the most dominant order in 13 samples. Within 

the order Pseudomonadales, the majority of sequences were Pseudomonas (up to 53% total 

relative abundance), Psychrobacter (up to 23% total relative abundance), or unclassified 

Pseudomonadaceae (up to 6% total relative abundance). Psychrobacter was particularly 

abundant in January and March produced water samples. Halanaerobiales were identified in all 

but three samples and were the most abundant order in all October separator and storage tank 

samples (up to 94% relative abundance) and 10 samples across the remaining three sampling 

time points. The majority of sequences within the order Halanaerobiales were unclassified 

Halanaerobiaceae (up to 48% total relative abundance), Halanaerobium (up to 19% total relative 

abundance), or Haloanaerobacter (up to 6% total relative abundance).  
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Other observed taxa identified at greater than 10% relative abundance included 

Clostridiales, Bacteroidales, Lactobacillales, Oceanospirillales, Campylobacterales, and 

Actinomycetales (Appendix C, Figure C2). Bacteroidales, Lactobacillales, Oceanospirillales, 

and Actinomycetales were only abundant (>10% relative abundance) in October samples. All of 

these taxa have been previously identified in produced water from hydraulic fracturing [10, 13, 

14, 39, 135]. Within the Clostridiales, most sequences were affiliated with the genus Clostridium 

(up to 9% relative abundance). Within the Oceanospirillales, most sequences were associated 

with the genera Halomonas (up to 13% relative abundance) or Marinobacterium (up to 9% 

relative abundance). Clostridium, Halomonas, and Marinobacterium were all previously 

observed in produced water [10, 135, 142]. The majority of the order Campylobacterales was 

Arcobacter, and 11 samples were found to have relative Arcobacter abundances of 10% or 

greater. The majority of sequences within the order Actinomycterales were classified as the genus 

Corynebacterium, a taxa previously identified in hydrocarbon polluted environments [143]. This 

taxon was found to be particularly abundant in October samples.  

We also investigated the presence of putative sulfate reducers. The genus 

Desulfomicrobium (order Desulfovibrionales) was identified in 12 samples, with a highest 

observed relative abundance of 1.6%. The genus Desulfuromonas (order Desulfuromonadales) 

was identified in 19 samples with a highest observed relative abundance of 1.8%. 

5.3.4 Microbial diversity 

Alpha diversity parameters (number of operational taxonomic units (OTUs), Chao1 

diversity index, and Shannon diversity index) and beta diversity measurements (weighted 
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UniFrac distances) were calculated to investigate microbial diversity. The range of OTUs across 

all samples ranged between 44 and 347 OTUs (Appendix C, Table C3), the Chao1 index ranged 

between 34 and 185 and the Shannon diversity index ranged between 2.18 and 5.39 (Appendix 

C, Table C3). All three alpha diversity measurements were found to be within the range (OTUs = 

9 – 381, Chao1 = 23 – 991, Shannon diversity = 0.02 – 7.17) of those previously reported for 

hydraulic fracturing produced waters [10, 14, 39]. No statistical differences in number of OTUs, 

Chao1 Index, and Shannon diversity measurements were identified between Bakken formation 

and Three Forks formation samples (t-test, all P > 0.05). PCoA analysis of weighted UniFrac 

distances revealed three clusters, each defined by high relative abundances of Bacillales, 

Pseudomonadales, or Halanaerobiales (Figure 5-4). The majority (71%) of October samples 

grouped in the Halanaerobiales cluster. PCoA analysis did not reveal any clustering by 

formation (Appendix C, Figure C5). 
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Figure 5-3: Heatmap of relative abundances of the three most dominant orders Bacillales (Panel 

A, B), Halanaerobiales (Panel C, D), and Pseudomonadales (Panel E, F) in separator (left) and 

storage tank (right) samples across all analyzed samples and time points. Samples labeled “low 

biomass” failed DNA extraction, could not be PCR amplified, or yielded low sequence counts. 
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5.4 DISCUSSION 

Despite several recent studies evaluating hydraulic fracturing produced waters from oil 

and shale gas regions around the United States, little data is currently available on the 

microbiology of produced water generated in the Bakken region. The current study evaluated the 

microbial community structure and pH, total dissolved solids (TDS), dissolved organic carbon 

(DOC) concentrations in produced waters from 17 Bakken and Three Forks formation wells 

across a six month time frame.  

5.4.1 Bakken and Three Forks formation produced water has low biomass compared to 

other shale regions 

Microbial abundance was three to five orders of magnitude below microbial abundances 

reported for produced waters from other shale regions [10, 14, 39, 135, 144]. These observations 

agree with a recent Bakken Shale produced water study that reported low biomass [44]. High 

temperatures in the Bakken and Three Forks subsurface create an unfavorable environment for 

growth of the taxa identified in this study, suggesting that microorganisms identified were 

introduced to produced waters in the upper casing regions or the surface infrastructure [44]. 

Furthermore, microbial abundances were not found to vary temporally, and microbial 

abundances in the separator and storage tank were not found to be statistically different (all P > 

0.05). These observations suggest that samples at either the tank or separator will produce 

comparable results. 
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5.4.2 Bakken and Three Forks formation produced water is dominated by the taxa 

Bacillales, Halanaerobiales, and Pseudomonadales  

Analysis of the microbial community structure using 16S rRNA sequencing revealed both 

separator and storage tank produced water samples were dominated by the orders Bacillales, 

Halanaerobiales, and Pseudomonadales. A shift in community structure was observed from the 

October samples to the November samples. October samples had high relative abundances of 

Halanaerobiales, while November, January, and March samples had high relative abundances of 

Bacillales and Pseudomonadales. Ambient temperatures were approximately 10oC at the time of 

sampling in October, 0oC at the time of sampling in November, and -3oC to -4oC at the time of 

sampling in January. Ambient air temperatures had increased to 15oC at the March sampling 

event; however, temperatures leading up to that day had been below 5oC. Thus, the microbial 

population shift was observed in the ‘winter’ samples (Nov., Jan., and Mar.) with Pseudomonas 

and Psychrobacter becoming more prevalent (Figure 5-3, Appendix C, Table C4). The genus 

Psychrobacter is considered osmotolerant and psychrophilic, making it suitable for cold 

hypersaline environments [41, 145-148] and a likely candidate to outcompete other produced 

water microorganisms during colder months. These observations suggest microbial communities 

in hydraulic fracturing produced waters change temporally in response to environmental 

conditions, thus consideration of seasonal variation in microbial communities should be included 

in produced water management strategies.  

Halanaerobiales, Pseudomonadales, and Bacillales have all previously been shown to be 

abundant and widespread in produced water [10, 13, 14, 39, 41, 43, 135]. The order 

Halanaerobiales, especially the genus Halanaerobium, is halophilic and previous isolates have 
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the metabolic potential to produce sulfides, produce acids, and form biofilms [17, 52, 67, 95]. 

Several Halanaerobium draft genomes have recently been recovered from hydraulic fracturing 

produced water [16, 135], and analysis of metabolic pathways further supports their role in acid 

and sulfide production in hydraulic fracturing systems [16, 17, 135]. The Bacillales were the 

most abundant taxa across the winter months (November, January, March). Members of 

Bacillales, including Bacillus and Staphylococcus, have both been previously identified in 

produced water and are considered anaerobic or facultative anaerobes, fermentative, and spore 

forming [139, 140]. Spore forming microorganisms have been linked to an increased biocide 

resistance [149]. Pseudomonadales were dominated by the genera Pseudomonas and 

Psychrobacter. Pseudomonas has been frequently detected in produced water and has been 

suggested to be involved in the oxidation of organic compounds and nitrate reduction in this 

environment [13, 14, 39, 150]. Recovery and annotation of a Pseudomonas draft genome via 

metagenome sequencing of one of the here analyzed samples (Well 10, March 2015, storage 

tank) revealed several genes involved in biofilm formation pathways [130]. Sequences affiliated 

with the genus Psychrobacter were identified in 45 samples. Six samples were characterized by 

relative Psychrobacter abundances of 10% or greater. We believe Psychrobacter has not been 

previously identified in produced water at this frequency and abundance. Both Pseudomonas and 

Psychrobacter contain biofilm forming species [121, 146]. The high relative abundance of 

Arcobacter across multiple samples was of particular interest. Arcobacter are autotrophic, 

halophilic, microaerophilic, nitrogen fixing, and sulfate oxidizing, and have been reported to 

survive and form biofilms at temperatures below 5oC [13, 151-155]. The genus Arcobacter is 

often detected in hydrocarbon environments and has been suggested to be important for sulfur 

cycling in these systems [10, 13, 14, 39, 151]. Psychrobacter and Arcobacter relative abundances 
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were highest in samples with high relative abundances of Halanaerobiales and low relative 

abundances of Bacillales. Psychrobacter and Arcobacter have also been discovered together in 

sub-Antarctic seawater contaminated with hydrocarbons previously [156], supporting their 

ability to thrive in cold, hypersaline hydrocarbon contaminated environments.  

 

 
 

Figure 5-4: PCoA plot based on weighted UniFrac distances, showing all analyzed samples 

coded by sampling date (color) or sampling source (shape). 

 

The presence of Desulfomicrobium and Desulfomonas suggests the potential for sulfide 

production through sulfate reduction; however the low relative abundance (<2%) agrees with 
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previous work suggesting classical sulfate reducers likely play a minor role in sulfide production 

in hydraulic fracturing produced water environments [13]. 

5.4.3 Bakken and Three Forks formation produced waters have a microbial community 

composition similar to produced waters from other oil shale gas regions, but have a 

distinct community structure 

Comparison of these findings with results from previous hydraulic fracturing produced 

water studies suggests the Bakken Shale microbial community to be similar in composition and 

alpha diversity but unique in community structure (i.e. relative abundance of specific taxa) to 

produced water from other plays. This is exemplified by the high relative abundance of 

Bacillales and lower than expected relative abundances of Halanaerobiales in Bakken Shale 

produced water. In contrast, data from studies investigating Marcellus Shale and Barnett Shale 

produced water suggested this role to be reversed with Halanaerobiales as the more abundant 

taxa. All identified taxa have been previously observed in produced water, adding to a growing 

consensus on common produced water taxa. Despite increasing understanding of produced water 

microbiology, it is necessary to evaluate produced waters from different areas separately, as 

regional, seasonal, and operational factors structure the microbial community. Other operational 

factors, such as biocide composition, have also been shown to affect the microbial community 

structure [10, 13, 135]. 
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5.4.4 Implications 

Evaluating the biological characteristics of hydraulic fracturing produced water is 

necessary to inform produced water management. Unlike other oil and shale gas regions, such as 

the Marcellus Shale, little data is available in the literature about the microbiology of produced 

waters from the Bakken region. In this work we characterized the microbial ecology from the 

greatest number of Bakken Shale separator and storage tanks produced water samples to date.  

One of the primary motivations for this study was to investigate the presence of 

microorganisms potentially involved in microbial acid and sulfide production and biofilm 

formation processes. Taxonomic analysis of produced water enabled identification of multiple 

microbial taxa putatively involved in corrosion, fouling, and gas souring, namely members of the 

orders Halanaerobiales, Bacillales, and Clostridiales. While the sulfidogenic taxa 

Desulfomicrobium and Desulfomonas were detected at low relative abundances, organisms 

belonging to genus Halanaerobium have been shown to produce sulfide through an alternative 

metabolic pathway, namely the reduction of sulfur or thiosulfates [17, 95, 135]. Finally, results 

demonstrated no community difference between separator or storage tank samples, but the 

community structure varied temporally, necessitating periodic sampling to capture microbial 

diversity. 

Findings from this study are based on the analysis of produced water samples from a 

single region of the Bakken Shale region and are not directly transferrable to produced water 

from other oil and shale gas regions. In addition, the roles of identified taxa from produced water 

in biofilm formation, acid production, and sulfur metabolism were inferred from related isolates, 

which limits the ability to draw conclusions regarding the metabolic activity of microorganisms 
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based solely on sample taxonomic assignment. Further work to better understand the metabolic 

potential and activity of relevant isolates, particularly Halanaerobiales, Bacillales, and 

Pseudomonadales in the produced water environment is necessary to investigate how these 

organisms are involved with corrosion, sulfide production, and biofilm formation processes.  

5.5 CONCLUSIONS 

This study expands the current understanding of the microbial ecology in Bakken Shale 

region produced water. The microbial composition was found to be similar to that of produced 

waters from other regions with altered structure (i.e. relative abundances). Temporal changes in 

microbial community structure, presumably caused by environmental changes, were observed. 

Communities were dominated by taxa of potential operational significance, such as Bacillus, 

Halanaerobium, or Pseudomonas with implications for biocorrosion, biofouling, and sulfide 

production in the Bakken Shale hydraulic fracturing infrastructure. Results from this study also 

highlight the need to evaluate produced waters from different shale regions in greater detail to 

further advance the understanding of produced water chemistry and microbiology and improve 

produced water management. 
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6.0 PEROXIDE SCAVENGING AND MULTIDRUG EFFLUX HIGHLIGHT AN 

ACTIVE, GENETIC PSEUDOMONAS FLUORESCENS BIOFILM RESPONSE TO 

THE BROAD SPECTRUM ANTIMICROBIAL SODIUM HYPOCHLORITE 

 

To be submitted for publication as: 

Lipus, D., Bibby, K. (2017). Peroxide scavenging and multidrug efflux highlight an active  

Pseudomonas fluorescens biofilm response to the broad-spectrum antimicrobial sodium 

hypochlorite. 

 

Sodium hypochlorite is one of most commonly used antimicrobial agents in industrial 

applications. Despite its popularity microbial resistance against sodium hypochlorite has been 

observed previously, and especially represents a challenge in biofilms. Here, we investigate the 

transcriptomic response of Pseudomonas biofilms, a taxon abundant in multiple industries, 

including water treatment, food, and oil and gas, to sub-lethal concentrations of sodium 

hypochlorite. RNA-seq results suggest Pseudomonas biofilm populations to use peroxide 

scavenging enzymes, oxidative stress repair, and multidrug efflux to protect themselves against 

reactive oxygen species produced by sodium hypochlorite exposure. Furthermore, genes 

involved in amino acid synthesis and energy metabolism were downregulated. Findings from this 
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work will help to improve the current understanding of genetic biocide resistance mechanisms 

and may help to optimize current biocide application strategies.  

6.1 INTRODUCTION 

Formation of biofilms is considered a major issue in many industries, including food and 

beverage processing, water and wastewater treatment, health care, and other sectors using 

industrial water systems [157-160]. Biofilms may cause food spoilage and food safety issues, 

corrosion of stainless steel, block membrane pores in filtration processes, lead to the release of 

unpleasant odors, and generally reduce production efficiency. Biofilms may also harbor 

pathogenic microorganisms responsible for a multitude of infections, and therefore represent a 

serious health risk [122, 161]. For example the two well known, pathogenic organisms 

Pseudomonas aeruginosa and Clostridium difficile are often discovered in biofilms [162]. In the 

hydraulic fracturing industry biofilm formation may lead to clogging of fractures [5, 45]. 

Furthermore, biofilms may damage the infrastructure through biofouling and corrosion [130, 

135, 163]. Pseudomonas fluorescens populations have been suggested to contribute to corrosion 

in buried steel pipeline [164].  

Biofilms usually comprise a population of microorganisms enclosed in extracellular 

polymeric substance consisting of lipids, proteins, and polysaccharides, attached to a surface. 

Biofilms are usually controlled through the use of biocides, a chemical or biological agent that 

disrupts and destroys microorganisms in biofilms. However, biofilms often prove to be resistant 

to commonly used biocides such as quaternary ammonium compounds, benzalkonium chloride, 
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chlorine, 2,2-dibromo-3-nitrilopropionamide (DBNPA), and sodium hypochlorite [165-167]. 

Different active, genetic responses in microbial biofilms have been observed previously. 

Biocides may have limited penetration into the exopolysaccharide layer and bind or adsorb to the 

outside matrix components of biofilms. For example, chlorine was shown to only penetrate 100 

μm into a complex dairy biofilm [168]. In addition, biofilm communities may exhibit specific 

phenotypes, characterized by an upregulation of proteins involved in oxidative stress response, 

periplasmic stress, and cell envelope synthesis [167]. Several studies have shown genes encoding 

flagellar proteins are suppressed and genes encoding exopolysaccharide (EPS) production and 

general stress response proteins (e.g. RpoS) are induced upon surface attachment [165, 169, 

170]. Biocide exposure may also trigger genetic factors. Efflux pumps and lipid biosynthesis 

were shown to contribute to biocide resistance in Pseudomonas fluorescens and Pseudomonas 

aeruginosa when exposed to the biocide glutaraldehyde [32, 130]. Similarly, multidrug efflux 

pumps were upregulated in biofilms exposed to triclosan and cetylpyridinium chloride [171, 

172]. Exposure to the quaternary ammonium compound benzethonium chloride (BZT) lead to 

the upregulation of efflux transporters and the peptidoglycan biosynthesis gene family mur 

[173]. 

Sodium hypochlorite (NaOCl) is a broad spectrum anti-microbial that is used in various 

domestic and industrial settings, including healthcare facilities, food and agriculture industries, 

and waste disposal industries [174]. Sodium hypochlorite plays one of the most important roles 

in water treatment, where it is used for disinfection [175]. Sodium hypochlorite has also been 

used to control microbial growth in the oil and gas industry [45, 47, 176]. Upon contact with 

water sodium hypochlorite forms hypochlorous acid, which divides into hydrochloric acid and 

produces reactive oxygen species (ROS) with strong antimicrobial properties. The resulting 
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oxidative action damages proteins, leads to strand breaks in DNA, and causes lipid and fatty acid 

degradation [177, 178]. Hypochlorous acid and hypochlorite ions cause amino acid degradation 

and hydrolysis. Furthermore, hypochlorous acid releases chlorine, which leads to the formation 

of chloramines that interfere with the cellular metabolism and enzymatic activity [177, 178]. 

Resistance to sodium hypochlorite and mechanistically similar antimicrobials has been 

previously reported for a variety of microorganisms [179-182], including Pseudomonas 

aeruginosa and Staphylococcus aureus. Sodium hypochlorite exposure has been suggested to 

trigger stress by generating superoxide anions (O2
•– ), through for example the oxidation of 

organic compounds, and hydroxyl radicals through a Fenton type reaction (HOCl + Fe(II) → 

.OH + Cl- + Fe(III)) and a reaction between hypochlorous acid and superoxide anions (HOCl + 

O2
•– → OH + Cl- + O2) [183, 184]. Correspondingly, sublethal exposure to sodium hypochlorite 

in Xanthomonas campestris lead to the transcription of peroxide scavenging enzymes within the 

OxyR and OhrR regulons [185]. Examples of primary scavengers in many bacteria are catalases 

(Kat), alkyl hydroperoxide reductases (Ahp), and glutathione peroxidases and reductases [186-

188]. These enzymes work by actively reducing peroxides and hydroperoxides to their nontoxic 

forms [189, 190]. Monochloramine stress in E. coli induced oxidative stress, DNA repair, 

multidrug efflux, and cell wall repair [147]. Exposure of Pseudomonas aeruginosa to the 

biocides hypochlorite, peracetic acid, and hydrogen peroxide lead to the upregulation of DNA 

repair genes and protein secretion and downregulation of energy metabolism related genes [186]. 

These findings suggest sodium hypochlorite triggers a multifaceted genetic response and to 

specifically cause an induction of oxidative stress genes.  

In this study we systematically analyzed the effect of sodium hypochlorite on biofilms 

formed by the model organism Pseudomonas fluorescens. Furthermore, we evaluated the genetic 
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response of Pseudomonas fluorescens to a sublethal exposure of sodium hypochlorite using RNA 

sequencing, with the goal to identify active, genetic response mechanisms that may contribute to 

biocide resistance. Exposure of Pseudomonas fluorescens to sodium hypochlorite was 

hypothesized to lead to an upregulated transcription of oxidative stress genes, and the induction 

of general stress response mechanisms such as DNA repair and multidrug efflux. Findings from 

this study will inform biocide resistance in microorganisms of industrial relevance and may help 

to improve industrial biocide application strategies. 

6.2 MATERIALS AND METHODS 

6.2.1 Bacterial strain maintenance and culturing 

Pseudomonas fluorescens cultures (strain 13525) were obtained from American Type 

Culture Collection (ATCC) and maintained as laboratory glycerol stock. Pseudomonas 

fluorescens cultures were grown in Luria-Bertani (LB) broth at 25oC. 

6.2.2 Biofilm assays 

Biofilm assays were performed using a modified version of a protocol previously 

described by Vikram et al. [31]. In this study, the term biofilm refers to surface attached cells 

growing in a 96-well or 6-well plate. Briefly, Pseudomonas fluorescens cultures were grown 

overnight, diluted 100 fold in LB-broth and 200 μl of inoculant was placed in each well of a 96-

well plate. Plates were incubated at 25oC for 48 hours. Post incubation, biofilms were washed 
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with phosphate-buffered saline (PBS). Washed biofilms were there then exposed to different 

concentrations of a sodium hypochlorite solution (NOCl) for 10 minutes, with 200 μl of 

treatment added to each well. Residual free chlorine concentration was assessed after the ten 

minute exposure for the 0.6 mg/L condition. Residual chlorine after ten minutes was found to be 

0.41 mg/L (+/- 0.04 mg/L). Exposure experiments were performed in quadruplicate. After 10 

minutes, the treatment was removed and residual chlorine was immediately quenched by adding 

10% sodium thiosulfate. Biofilms were then washed again with PBS. Biofilm viability was 

assessed by adding 200 μl of 250 μg/mL 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide (MTT) solution in PBS to each well and incubation for 1 h at 25°C. Viable 

biofilms produced formazan, that was dissolved in 200 μl of dimethyl sulfoxide (DMSO), as 

previously described [31, 191]. Biofilm viability was assessed by measuring absorbance at 

570nm using a 96-well plate reader. The average absorbance and standard deviations (SD) from 

four replicates were calculated for each treatment group. 

6.2.3 Biofilm growth and RNA extraction for RNA-seq 

Overnight cultures of Pseudomonas fluorescens were diluted 100-fold and 2 mL of 

inoculant were placed in each well of a 6-well plate. Biofilms were grown for 48 hours at 25oC. 

Post incubation biofilms were washed with PBS and exposed to a control solution (PBS) and 0.6 

mg/L sodium hypochlorite solution for 10 minutes (six wells each). Post exposure the residual 

chlorine was immediately quenched with 10% sodium thiosulfate. Biofilms were then lysed in 1 

mL TRIZOL (Life Technologies, Carlsbad, CA) and placed in fresh 1.5 mL tubes. RNA was 

immediately extracted using TRIZOL, according to the manufacturer's protocol. RNA from six 
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biological replicates on each plate was pooled. DNA contamination was removed using Turbo 

DNAse (Life Technologies, Carlsbad, CA), according to manufacturer’s recommendations. 

Overall, four replicate experiments were performed. 

6.2.4 RNA-seq library preparation and sequencing 

Prior to library preparation ribosomal RNA was removed using Ribo-Zero rRNA removal 

kit (Illumina, San Diego, CA). Briefly, DNase-treated RNA samples were treated with RiboZero 

to remove rRNA, and purified using the RNeasy MiniElute Cleanup Kit (Qiagen, Valencia, 

Spain). RNA was prepared for sequencing using the ScriptSeq v2 RNA-Seq Library Preparation 

Kit (Epicentre Biotechnologies, Madison, WI). 5 ng rRNA-depleted sample were mixed with the 

RNA fragmentation solution and cDNA synthesis primer provided in the ScriptSeq kit, and 

cDNA was synthesized using StarScript reverse transcriptase. Synthesized cDNA was purified 

using Agencourt AMPure beads (Beckman Coulter, Indianapolis, IN). Di-tagged cDNA was 

PCR amplified using provided failsafe primers with Illumina adapters and barcodes and 

sequenced on an Illumina Miseq sequencer.  

6.2.5 Bioinformatics 

Libraries were quality trimmed (<Q30, <35 nucleotides min length) using CLC 

Genomics workbench 10.0 (CLC bio, Aarhus, Denmark). Differential gene expression was 

analyzed as described previously [31], using the RNA-seq and small RNA analysis tools in CLC 

Genomics workbench 10.0 (CLC bio, Aarhus, Denmark). Reads mapping to Pseudomonas 
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ribosomal RNA (5S, 16S, 23S) and intergenic regions were removed manually. Furthermore, 

sequencing data was carefully screened for any sequences mapping against phiX (used as 

sequencing control) and other contaminants. Reads for each sample were then mapped against 

Pseudomonas fluorescens strain SBW25 reference genome (Genbank accession NC_012660) 

and reads per kilobase million (RPKM) were determined [192]. The data was then normalized by 

scaling [193], and differentially expressed genes were determined by comparing normalized gene 

reads, between control biofilm samples (PBS treated) and sodium hypochlorite treated biofilm 

samples, using Baggerly’s test on proportions [194]. A minimum of 2-fold up or down regulation 

and a FDR corrected p-value of 0.01 were selected as criteria for differential expression. Genes 

found to be differentially expressed (either up or downregulated) in all or three of the four 

replicates were selected for annotation analysis. Furthermore, genes that were upregulated in two 

replicates and not downregulated in any other replicates were also selected for annotation 

analysis. Genes found to vary in differential regulation between replicates (e.g. upregulated in 

one replicate and downregulated in another) were not included. Selected genes were annotated 

using the online Database for Annotation, Visualization, and Integrated Discovery tool (DAVID) 

using default settings [195]. In addition, differentially expressed genes were annotated with the 

National Center of Biotechnology Information BLASTx tool using default settings [196]. 
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6.3 RESULTS 

6.3.1 Biofilm viability in response to sodium hypochlorite 

Viability of 48-hour Pseudomonas fluorescens biofilms was evaluated across a range of 

ten concentrations between 0.1 mg/L and 20 mg/L sodium hypochlorite (Figure 6-1). Biofilm 

viability (measured as an equivalent of biofilm activity through formazan production) was found 

to be highest in control biofilms. A decrease in viability was observed for biofilms exposed to 

concentrations of 0.1 mg/L (17.7% reduction, compared to control) and 0.5 mg/L sodium 

hypochlorite (10.4%, compared to 0.1 mg/L). Sodium hypochlorite concentrations of 0.6 mg/L 

resulted in the largest percent decrease in viability (29.5%, compared to 0.5 mg/L). Further 

increase of sodium hypochlorite concentration resulted in a gradual decrease of biofilm viability 

(Figure 6-1). Therefore, 0.6 mg/L sodium hypochlorite was selected as the sub-inhibitory 

concentration for the purpose of this study. 

 



 111 

 

 

 

 

 

6.3.2 Sequencing data analysis 

The genetic response of Pseudomonas fluorescens biofilms was determined by evaluating 

48-hour old biofilms exposed to 0.6 mg/L sodium hypochlorite using RNA-seq analysis. Four 

different experiments, each with six control and six experimental biofilms were performed. Prior 

to sequencing library preparation, for each experiment, extracted RNA from the six biofilms 

exposed to sodium hypochlorite (experimental group) was pooled and extracted RNA from the 

six biofilms exposed to PBS (control) was pooled. Sequencing analysis statistics are summarized 

in Table 6-1. Post screening, trimming, and ribosomal RNA removal 8,990,357 sequencing reads 

across all four replicates were used for RNA-seq analysis. Between 63% and 75% of all 

Figure 6-1: Pseudomonas fluorescens viability measured as absorbance at 570nm following 

a MTT assays. Biofilms were grown for 48-hours and treated with sodium hypochlorite 

concentrations between 0 mg/L and 20 mg/L for ten minutes. 
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sequencing reads were successfully mapped against Pseudomonas fluorescens strain SBW25 

reference genome during RNA-seq analysis (Table 6-1).  

 

Table 6-1: RNA-seq sequencing data for control and experimental samples for all four 

replicates. 

  

Reads generated 

Reads post trimming, 

screening, and rRNA 

removal 

RNA seq reads 

mapped (%) 

Replicate 1 
Control 3,509,088 1,543,767 75.80 

Experimental 5,905,900 1,247,471 68.12 

Replicate 2 
Control 3,995,686 854,427 70.34 

Experimental 4,439,474 910,474 66.35 

Replicate 3 
Control 4,786,779 405,874 70.09 

Experimental 4,230,106 1,074,702 63.30 

Replicate 4 
Control 4,315,809 858,848 69.87 

Experimental 3,965,471 2,094,794 67.34 

 

6.3.3 RNA-seq results 

The statistical analysis of RNA-seq data identified a total of 298 genes (4.9% of all genes 

in Pseudomonas fluorescens strain SBW25) that were statistically significantly upregulated 

(FDR corrected p-value < 0.01, at least 2-fold change) in at least one of the four replicates (Table 

6-2). In addition, 285 genes (4.7% of genes) were found to be statistically significantly 

downregulated in at least one of the four replicates (Table 6-2). Genes that were up or 

downregulated in at least two out of the four replicates were selected for downstream analysis. 

Eight genes were found to be upregulated in all four replicates, four genes were found to be 

upregulated in three of the four replicates, and 31 genes were found to be upregulated in two of 
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the four replicates (Appendix D, Table D1). Two genes were found to be downregulated in all 

four replicates, eight genes were downregulated in three of the four replicate, and 18 genes were 

downregulated in two of the four replicates (Appendix D, Table D2).  

 

Table 6-2: Differentially expressed genes across all four replicates (at least 2-fold change 

and P < 0.01). 

 
upregulated genes downregulated genes 

Replicate 1 95 107 

Replicate 2 49 41 

Replicate 3 88 46 

Replicate 4 66 91 

 

6.3.4 Identification of upregulated genes 

Differentially regulated genes meeting above described criteria were selected for 

annotation using DAVID and BLASTx. All upregulated genes are listed in Appendix D, Table 

D1. As expected, multiple upregulated genes were affiliated with oxidative stress response 

mechanisms (Table 6-3). Oxidative stress response genes induced in all four replicates included 

PFLU_RS08440, PFLU_RS14570, PFLU_RS14575, and PFLU_RS25330. The highest 

upregulation across all genes was observed for PFLU_RS08440, with an average 30 fold 

increase in expression. PFLU_RS08440 encodes the organic hydroperoxide resistance protein 

Ohr. Ohr is produced in Pseudomonas and other bacteria in response to oxidative stress, and 

converts reactive oxygen species such as organic hydrogen peroxides (H2O2) to less toxic 
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metabolites [197, 198]. PFLU_RS14570 and PFLU_RS14575 encode the alkyl hydroperoxide 

reductase subunit C AhpC and subunit F AhpF (Table 6-3). The alkyl hydroperoxide reductases 

AhpC and AhpF are antioxidant enzymes that also control peroxide levels [183, 199]. 

PFLU_RS25330 shared homology with a thioredoxin-disulfide reductase, potentially trxB, 

which reduces thioredoxin and is also involved in the defense against oxidative stress (Table 6-3) 

[183, 200-202]. In addition, PFLU_RS25630, encoding the periplasmic sulfoxide reductase 

subunit YedY, and PFLU_RS26240, likely encoding the catalase KatA, were upregulated in two 

of four replicates (Table 6-3). Both of these genes have been associated with oxidative stress 

response in bacteria [186, 187, 203]. YedY is part of the MsrPQ (methionine sulfoxide 

reductase) system, and repairs oxidized periplasmic proteins [204]. YedY is attached to the 

sulfite transmembrane spanning sulfite oxidase subunit YedZ (PFLU_RS25625), forming the 

YedYZ reductase complex. YedZ was found to be differentially expressed in replicate one (2.33-

fold) and in replicate two (2.74-fold, P = 0.01). The catalase KatA has been suggested to protect 

DNA from oxidative damage and is considered one of the key enzymes in the prevention of 

oxidative damage [205, 206]. 

Several genes affiliated with multidrug efflux, membrane transport, and membrane 

stability were also induced. These included a MexE family multidrug efflux RND transporter 

subunit (PFLU_RS14265). MexE was induced an average of 5.95-fold (Table 6-3). MexE is a 

membrane fusion protein as part of the MexEF complex, which plays an integral part in the 

detoxification of organic substances, and has been shown to be involved in antibiotic resistance 

[207, 208]. The compliment gene PFLU_RS14260, encoding MexE, did not meet the analysis 

criteria of differential expression used in this study. PFLU_RS14260 was found to be 

upregulated between 1.89-fold and 3.15-fold in three out of the four replicates (P-values 0.06 and 
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below). Furthermore, PFLU_RS07315, which shared homology with the drug resistance MFS 

transporter protein AraJ, was upregulated in two of four replicates. Moreover, PFLU_RS03250, 

an ortholog to the substrate-binding periplasmic chaperone and copper resistance protein CopZ, 

was upregulated in three of the four replicates. CopZ is a heavy metal binding protein and is 

induced by copper stress [209]. PFLU_RS08225, sharing homology to potassium-transporting 

ATPase subunit KdpA, and PFLU_RS13625 showing similarity to the organosulfonate 

utilization protein and transporter SsuF were also upregulated in two of the four replicates (Table 

6-3). The Kdp complex contributes to the maintenance of intracellular K+ concentrations through 

uptake of potassium and has been shown to be upregulated in response to acid stress [210]. SsuF 

is a molybdopterin-binding protein and part of the ssu locus regulating organosulfur metabolism 

[211]. PFLU_RS10540 shares homology with the membrane protein TerC. TerC has been 

suggested to play a role in the efflux of tellurium ions [212]. A hypothetical membrane protein 

(PFLU_RS02795) and a hypothetical protein of unknown function (PFLU_RS17150) were also 

upregulated in all four replicates (Table 6-3). PFLU_RS02795 was upregulated as high as 9.20-

fold and PFLU_RS17150 was upregulated as high as 19.55-fold. Therefore, these genes 

potentially play an important, yet unidentified, role in oxidative stress response in Pseudomonas 

fluorescens. 

 Several genes involved in transcriptional regulation were induced in response to sodium 

hypochlorite (Table 6-3). PFLU_RS28745, encoding an AraC family transcriptional regulator, 

was upregulated in three replicates and induced as much as 21.00-fold. AraC type transcriptional 

regulators are widely distributed and can be involved in the regulation of stress response 

pathways [213]. We also observed the upregulation of PFLU_RS03275, a LysR family 

transcriptional regulator. PFLU_RS03275 was upregulated in two replicates. LysR family 
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regulators play an important role in activating oxidative stress-inducible genes [214]. One of the 

members of the LysR family is the redox-sensitive OxyR, responsible for inducing the Ahp 

complex [215]. PFLU_RS14210, encoding a TetR family transcriptional regulator, was induced 

in two replicates. TetR family transcriptional regulators control transcription of multidrug efflux 

pumps and oxidative stress and chemical stress response pathways [216]. PFLU_RS24860 is an 

ortholog of the transcriptional regulator IscR. PFLU_RS06855 encodes an ArsR family 

transcriptional regulator. Both were significantly upregulated in two replicates. Moreover, IscR 

(PFLU_RS24860) was also upregulated 1.95-fold in a third replicate. IscR activates the suf 

operon encoding Fe-S assembly proteins in response to oxidative stress [217]. ArsR is a 

transcriptional repressor and part of a metal ion resistance response pathway [218].  

Finally, an ABC transporter permease sharing homology to a spermidine/putrescine abc 

transporter PotA or PotB, an isochorismatase, and an anti-sigma factor were also induced in two 

replicates (Table 6-3).  

 

Table 6-3: Upregulated Pseudomonas fluorescens genes related to oxidative stress, 

efflux, transport, and transcription regulation. 

Locus Tag Gene Description 

Fold Change 

Rep 

1 

Rep 

2 

Rep 

3 

Rep  

4 

Oxidative stress related genes 

PFLU_RS08440 ohr organic hydroperoxide resistance protein  82.24 31.13 4.40 10.05 

PFLU_RS14570 ahpC alkyl hydroperoxide reductase subunit C 3.40 3.10 5.93 11.69 

PFLU_RS14575 ahpF alkyl hydroperoxide reductase subunit F 2.05 2.56 2.09 4.11 

PFLU_RS25330 trxB thioredoxin reductase 2.36 2.88 3.28 3.58 

PFLU_RS25630 yedY periplasmic sulfoxide reductase subunit Y 4.77 3.20 
  

PFLU_RS26240 katA catalase 
 

1.73* 2.15 3.89 
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Table 6-3 (continued) 

Efflux, transport, and membrane related genes 

PFLU_RS14265 mexE 
multidrug efflux RND transporter periplasmic 

subunit 
4.97 8.77 3.40 6.65 

PFLU_RS02795 - membrane protein 5.41 6.14 2.52 9.20 

PFLU_RS10540 terC TerC like membrane protein 14.26 7.10   

PFLU_RS19180 ssuF organosulfonate utilization protein, transporter 3.81 2.38 
  

PFLU_RS03250 copZ substrate-binding periplasmic protein 2.43 
 

3.41 3.80 

PFLU_RS06620 - Pseudomonas membrane protein 4.07 13.01 
  

PFLU_RS28760 potAB ABC transporter permease potA or potB 59.60 18.43   

PFLU_RS08225 kdpA potassium-transporting ATPase subunit KdpA 
  

2.34 2.31 

PFLU_RS07315 araJ Arabinose efflux permease transporter   ∞ 
 

2.4 

       

Transcription regulation related genes 

PFLU_RS28745 araC AraC family transcriptional regulator 12.76 15.34 2.63 1.89* 

PFLU_RS27245 - translocase, transcription regulator 12.8 4.76 4.2 1.83* 

PFLU_RS14210 tetR TetR family transcriptional regulator 3.60 
 

2.93# 8.35 

PFLU_RS03275 lysR LysR family transcriptional regulator 2.57  3.37  

PFLU_RS06855 arsR ArsR family transcriptional regulator   2.23 5.20 

PFLU_RS24860 iscR 
iron-sulfur cluster assembly transcription 

regulator 
 1.95* 2.07 2.67 

PFLU_RS22250 - anti-sigma factor 2.96 5.48 
  

*upregulated less than 2-fold 
# P-value > 0.01 

 

 

6.3.5 Identification of downregulated genes 

RNA-seq analysis also identified multiple genes that were downregulated. All genes 

found to be downregulated are listed in Appendix D, Table D2. Two groups of genes were 

downregulated across multiple replicates. One group of downregulated genes were membrane 
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proteins involved in uptake of small molecules and secretion mechanisms (Table 6-4). Three 

repressed genes were affiliated with sulfur uptake. The ssuB gene, encoding an aliphatic 

sulfonate import ATP-binding protein, was downregulated in three replicates, and contributes to 

sulfonate accumulation, which can be used as a sulfur source in Pseudomonas [211]. Two sulfate 

ABC transporter genes were also downregulated. The sulfate ABC transporter permease subunit 

CysW (PFLU_RS00955) and the sulfate ABC transporter ATP-binding protein CysA 

(PFLU_RS00960) form a transporter unit and are involved in sulfate and thiosulfate uptake [219, 

220]. In addition, PFLU_RS01135, likely representing the pbpB gene, PFLU_RS24285, 

encoding the α-ketoglutarate permease KgtP, and actP were downregulated (Table 6-4). The 

pbpB gene encodes the penicillin binding protein III (also called peptidoglycan synthase) and is 

involved in cell division and a target for β-lactam antibiotics [221]. The cation/acetate symporter 

ActP transports pyruvate or acetate across the plasma membrane and the α-ketoglutarate 

transporter KgtP is a sodium-dependent dicarboxylate transporter and responsible for the 

movement of α-ketoglutaric acid and other TCA cycle intermediates into the cell [222]. 

PFLU_RS04590, showing homology with the aidA gene and likely encoding an autotransporter 

type VI secretion protein, was also repressed in two replicates. PFLU_RS01245 is an ortholog to 

the α-ketoglutarate-dependent taurine dioxygenase TauD and was also downregulated in two 

replicates. In addition, PFLU_RS06425 was downregulated in two replicates and could be 

identified as a secretion related protein, homologous to the peptidoglycan-binding protein 

domain LysM, but could not be characterized further. The LysM family encompasses membrane 

proteins, lipoproteins, and cell wall proteins, and is important for secretion and peptidoglycan 

attachment [223]. We also observed the downregulation of PFLU_RS04960, likely encoding an 

unidentified amino acid ABC transporter substrate-binding protein, and of PFLU_RS10525, 
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sharing homology with a purine efflux pump PbuE. Previous studies have observed membrane 

proteins and transporters to be repressed in response to hydrogen peroxide, suggesting oxidative 

stress impacts the regulation of these types of proteins [224].  

The second group of genes found to be downregulated included PFLU_RS10165 and 

PFLU_RS07415, encoding an acetylornithine deacetylase and an NAD(P)-dependent 

oxidoreductase. Furthermore, PFLU_RS21225, sharing similarity to a NADP-dependent 3-

hydroxy acid dehydrogenase-like gene ydfG, PFLU_RS23355, an ortholog to an acetyl-

coenzyme A synthetase like gene, and PFLU_RS03330, a gene homologous to the 

methylmalonate semialdehyde dehydrogenase MSDH, were also repressed (Table 6-4). These 

genes are all affiliated with amino acid synthesis and energy metabolism pathways. 

Acetylornithine deacetylases are broad specificity hydrolases. The acetylornithine deacetylase 

ArgE is involved in arginine biosynthesis in Pseudomonas syringae [225]. YdfG is a broad 

substrate specificity dehydrogenase and is part of amino acid synthesis, specifically pyrimidine, 

glycine, serine, and threonine metabolism, in Escherichia coli [226]. The acetyl-coenzyme A 

synthetase likely participates in acetate metabolisms and the methylmalonate semialdehyde 

dehydrogenase participates in the degradation of the amino acids valine, leucine, and isoleucine. 

Two other genes of interest were also downregulated: PFLU_RS28830 encodes an 

alkanesulfonate monooxygenase gene involved in sulfur metabolism, and PFLU_RS23670 is 

homologous to a CsbD, a stress response protein (PFLU_RS23670) (Appendix D, Table D2).  
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Table 6-4: Downregulated Pseudomonas fluorescens genes related to membrane 

transport, amino acid metabolism, and energy metabolism. 

Locus Tag Gene Description 
Fold Change 

Rep 1 Rep 2 Rep 3 Rep 4 

Membrane proteins and membrane transport 

ssuB ssuB 
aliphatic sulfonates import ATP-binding 

protein  
-2.82  -2.34 -3.10 

PFLU_RS01135 pbpB 
amino acid ABC transporter, substrate-

binding protein  
-2.24 -2.05 -2.24 

PFLU_RS08920 yjcH membrane protein YjcH 
 

-3.75 -4.00 -2.69 

PFLU_RS10525 pbuE MFS transporter, PbuE like 
 

-6.51 -2.12 -2.58 

PFLU_RS00955 cysW 
sulfate ABC transporter permease 

subunit 
 -2.53 -3.81 -3.21 

PFLU_RS00960 cysA 
sulfate ABC transporter ATP-binding 

protein 
 -2.13 -2.77 -5.50 

PFLU_RS24285 kgtP alpha-ketoglutarate permease  -2.43 -1.97* -2.24 

actP actP cation/acetate symporter ActP  -1.73* -2.85 -2.10 

PFLU_RS24655 ptsA PTS N-acetyl-D-glucosamine transporter -2.15 
 

-1.99* -2.24 

PFLU_RS04960 - 
amino acid ABC transporter substrate-

binding protein   
-2.96 -2.03 

PFLU_RS26395 - lipoprotein/hydrolase -2.09 
 

-4.68 
 

Amino acid metabolism and energy metabolism 
    

PFLU_RS21225 ydfG 
NADP-dependent 3-hydroxy acid 

dehydrogenase 
-2.56  -5.17 -3.62 

PFLU_RS10165 - acetylornithine deacetylase 
  

-18.00 -6.28 

PFLU_RS07415 - NAD(P)-dependent oxidoreductase 
  

-3.84 -3.52 

PFLU_RS23355 - acetyl-coenzyme A synthetase 
  

-3.87 -2.03 

PFLU_RS03330 msdh 
methylmalonate semialdehyde 

dehydrogenase   
-2.29 -2.02 

*downregulated less than 2-fold 
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6.4 DISCUSSION 

The purpose of this work was to investigate active, genetic pathways in Pseudomonas 

fluorescens biofilms, which may contribute to genetic resistance, in response to the broad 

spectrum antimicrobial sodium hypochlorite. Previous studies have evaluated the response to 

oxidative agents, such as hydrogen peroxides and sodium hypochlorite, for planktonic 

populations, suggesting genes involved in oxidant defense systems and cell repair to be induced 

[182, 185, 224, 227]. As biofilms have been suggested to exhibit increased antimicrobial 

resistance in comparison to planktonic cells [31, 167], we expected a similar and additional stress 

response pathways to be upregulated.  

 

To investigate the effect of sublethal oxidative stress, 48-hour Pseudomonas fluorescens 

biofilms were exposed to sodium hypochlorite. A sodium hypochlorite concentration of 0.6 mg/L 

resulted in the largest percent decrease in viability (29.5%), but did not completely inactivate the 

biofilms, and was used for transcriptome evaluation. This concentration was lower than sodium 

hypochlorite or hydrogen peroxide concentrations used in previous studies analyzing oxidative 

stress responses in bacteria [186, 187, 227]. However, exposure of up to 20 mg/L (the highest 

tested concentration) resulted in further decrease of biofilm viability.  

6.4.1 Oxidative stress response is driven by oxidant defense system genes 

As expected, many upregulated genes were involved in oxidative stress adaption and 

defense pathways. Oxidative stress response was highlighted by the organic hydroperoxide 
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resistance protein Ohr and the alkyl hydroperoxide reductase subunits AhpC and AhpF. Ohr is 

considered one of the key enzymes in microbial oxidative stress response and has been shown to 

be essential for optimal resistance against oxidative stress in Pseudomonas aeruginosa [197, 

198]. Ohr is activated by the presence of peroxide or similar molecules, and functions as a 

hyperoxide reductase and metabolizes organic hyperoxides and inorganic H2O2 into less toxic 

metabolites [197, 198]. In addition to Ohr, the alkyl hydroperoxide reductase ahp complex is 

also one of the most important oxidative stress response pathways. AhpC and AhpF are peroxide 

scavenging enzymes. AhpC, is the component with peroxidase activity, while AhpF is the 

NADH or NADPH binding component [189, 228]. When responding to oxidative stress, AhpF 

uses NADH or NADPH as electron donor to activate AhpC. AhpC then reduces peroxides and 

hyperperoxide to their nontoxic alcohol forms [189, 228]. AhpC and AhpF are both activated by 

the OxyR transcriptional regulator, a positive regulator of hydrogen peroxide inducible genes, 

and global regulator of the oxidative stress response [185, 200, 215]. Significant OxyR 

upregulation was not detected in this study, but OxyR has been shown to be induced, together 

with AhpC and AhpF, in response to oxidative stress previously [186, 187, 227]. Moreover, we 

detected the upregulation of a LysR family regulator, which could not be classified more 

specifically. OxyR belongs to the LysR family, suggesting these proteins may have similar 

functions [215]. The catalase KatA (induced in two replicates) is also activated by OxyR and has 

been shown to respond to H2O2 and oxidative stress [229, 230]. The catalase KatA, together with 

KatB, is considered an important peroxidase and plays an important role in oxidative stress 

response in bacteria [215, 231]. The induction of a thioredoxin reductase gene was also expected, 

as thioredoxin reductases are regulated by OxyR in Pseudomonas [232]. Thioredoxin reductases 

are disulfide reductases and have been shown to maintain cytoplasmic proteins in a reduced state 
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in response to oxidative stress [232, 233]. The upregulated gene in this study likely encodes the 

thioredoxin reductase subunit TrxB, the flavoprotein component, which reduces other oxidized 

thioredoxin reductases [232, 233].  

Finally, we observed the upregulation of additional genes involved in the repair of 

cellular components, which may be damaged through oxidative stress. Two of those genes are 

the periplasmic sulfoxide reductase subunit YedY, and the periplasmic sulfoxide reductase 

subunit YedZ (which was only upregulated in one replicate). Like thioredoxin reductases, these 

enzymes are likely involved in the repair of oxidative damage [204]. In particular, sulfoxide 

reductases repair methionine and other residues in the cytoplasm and in the bacterial cell 

envelope [204], thereby playing an important role in cell integrity during oxidative stress. 

Similarly, IscR is a transcriptional regulator that regulates the transcription of the isc gene 

cluster, which includes genes involved in the repair of iron sulfur clusters and triggers the 

production of oxidation resistance Suf proteins [227]. 

Sodium hypochlorite has been suggested to trigger a similar cellular response as 

hydrogen peroxide (H2O2), as its antimicrobial activity can generate superoxide and hypochlorite 

ions and hydroxyl radicals [183, 234, 235]. Here, we observed the upregulation of several 

oxidant defense system genes, known to be involved in peroxide scavenging and the 

neutralization of reactive oxygen species in response to hydrogen peroxide exposure. These 

enzymes may therefore also be able to neutralize hypochlorite and superoxide ions.  

Based on these findings and the upregulation of several transcriptional regulators 

potentially involved in the control of oxidative stress response pathways (such as LysrR, AraC, 

TetR, and IscR) putative oxidative stress response mechanisms for Pseudomonas fluorescens 

biofilms exposed to sodium hypochlorite can be proposed (Figure 6-2). Sodium hypochlorite 
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generates hypochlorite ions and reactive oxygen species, which are directly neutralized by the 

hyperoxide reductase Ohr. In addition, the oxyR regulator activates the alkyl hydroperoxide 

reductase complex ahp (encoding AhpC and AhpF) and the catalase KatA. These proteins then 

begin neutralizing reactive oxygen species. Furthermore, OxyR triggers thioredoxin reductase 

activity, which together with sulfoxide reductases repairs cytoplasmic and cell envelope proteins 

that may have been damaged through oxidative stress.  

6.4.2 Multidrug efflux potentially contributes to sodium hypochlorite resistance  

Multidrug efflux pumps have been shown to contribute to antimicrobial resistance in 

response to multiple types of antibiotics and biocides in the genus Pseudomonas and other 

bacteria, and are considered important antimicrobial resistance mechanism [31, 236]. 

Furthermore, multidrug efflux pumps were also reported to be upregulated in response to 

oxidative stress in Pseudomonas [237]. Here, we observed the upregulation of the periplasmic 

subunit of a multidrug efflux RND transporter periplasmic subunit MexE, the cytoplasmic 

membrane protein MexF, and the induction of a MFS transporter with homology to the AraJ 

transporter protein. MexE is important for antibiotic resistance and has previously been 

associated with chloramphenicol and fluoroquinolone resistance in Pseudomonas aeruginosa 

[238]. Homologs of MexE and MexF were also induced in response to glutaraldehyde stress in 

Pseudomonas fluorescens and Pseudomonas aeruginosa [31]. MexE and MexF are part of a 

Pseudomonas antibiotic efflux system MexEF-OprN. OprN is the third component in this system 

and the outer membrane channel-forming protein. Together these three proteins form a 

resistance-nodulation-cell division (RND) efflux pump. MexE plays a key role in this system, as 
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mutations in MexE lead to the loss of multidrug-resistance [238, 239]. A possible reason is that 

the MexE membrane fusion protein links the inner and outer membrane-associated efflux 

components MexF and OprN and is therefore essential [239]. However, it was notable that the 

third component of the system (OprN) was not identified in the group of upregulated genes.  

In addition, a TetR transcriptional regulator was upregulated. The tetR gene is located 

slightly downstream of the MexE and is known to control multidrug efflux, in particular for 

tetracycline resistance [240]. 

MFS transporters are another large group of transport proteins, of which several are 

involved in multidrug efflux mechanisms [241, 242]. The MFS transporter induced in this study 

shares homology with AraJ. AraJ has been described as a secondary active export pump protein 

and proposed to function as a transporter for arabinose-containing oligosaccharides in E. coli 

[243]. AraJ has also been proposed to transport arabinose-containing antibiotics [243]. These 

observations suggest that AraJ mainly functions as a sugar import and export protein. It may 

have the ability to transport certain types of antibiotics. 

The upregulation of the potassium transport protein KdpA and the copper resistance 

protein CopZ suggests that oxidative stress might also trigger indirect genetic responses. KdpA 

upregulation has been observed in response to osmotic stress [244], suggesting sodium 

hypochlorite exposure may have altered salt transport across the membrane. The CopZ 

chaperone serves in the intracellular routing of copper in Enterococcus hirae and has been 

identified in Pseudomonas aeruginosa copper stress response [245].  

Finally, the ssuF gene has been suggested to be regulated by sulfate, and to be 

specifically expressed under sulfate starvation conditions in Pseudomonas putida [211]. 
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Therefore, SsuF is likely induced through the absence of sulfate in the cell, as the presence of 

sodium hypochlorite interfering with sulfate transport across the cell membrane.  

In summary, two genes associated with multidrug efflux were upregulated in response to 

sodium hypochlorite. MexE and MexF are components of a known Pseudomonas antibiotic 

efflux MexEF-OprN operon, but the third protein in the system (OprN) was not upregulated. The 

MexEF-OprN efflux system has previously been shown to be upregulated in response to 

oxidative and nitrosative stress suggesting it to respond to stressors other than antibiotics [246]. 

Although our data only suggested two of the MexEF-OprN operon components to be induced, 

we believe there is evidence for oxidative stress response through multidrug efflux in 

Pseudomonas fluorescens biofilms (Figure 6-2).  

 

 

 

Figure 6-2: Schematic summarizing active, genetic response pathways against sodium 

hypochlorite in Pseudomonas fluorescens biofilms. 
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6.4.3 Sodium hypochlorite exposure downregulates genes encoding membrane transport 

proteins, amino acid synthesis proteins, and genes involved in energy pathways 

Only a small group of genes was found to be downregulated in in two or more replicates. 

Overall, it was difficult to assign these genes to functional groups and identify how they were 

affected by oxidative stress, as no obvious pattern could be observed. Several genes encoding 

membrane proteins involved in the transport of small molecules in and out of the cell, such as 

sulfate, were downregulated. Previous studies have made similar observations in response to 

hydrogen peroxide, suggesting that oxidative stress changes the regulation of these types of 

proteins [224]. Furthermore, genes encoding glucose, α-ketogluconate, gluconate, and fructose 

transport have been shown to be downregulated in response to oxidative stress [186, 187], 

supporting our observations. One possible explanation is that sodium hypochlorite interferes with 

transport proteins at the membrane surface. Stressed cells might also neglect non-essential active 

and facilitated transport through the cell membrane, resulting in decreased transcription levels. 

The same applies to genes encoding proteins involved in amino acid synthesis and metabolism 

and energy metabolism related processes, which were also downregulated. Similarly, these types 

of genes have been observed to be repressed in response to oxidative stress previously [186, 187, 

224]. Unexpectedly, we found a gene similar to the gene encoding the general stress response 

protein CsdD to be downregulated. CsbD’s function is unknown, but it has is induced in 

response to various stresses, including oxidative and osmotic stress [247-249].  
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6.5 CONCLUSIONS AND IMPLICATIONS 

In conclusion, results from this study predict Pseudomonas fluorescens biofilms to 

respond to oxidative stress induced by sodium hypochlorite through two mechanisms. One of 

them is active neutralization of oxidizing agents through Ohr and the Ahp complex. These 

mechanisms allow cells to neutralize and scavenge reactive oxygen species, such as peroxides. 

These mechanisms are also well studied and have been described previously for several bacteria 

as active oxidative stress response pathways. The other is active removal through multidrug 

efflux of the MexEF-OprN pump system. This mechanism may be evaluated for its importance 

in oxidative stress response in more detail, for example through the use of efflux pump 

inhibitors, proteomics, or knockout studies. 

Findings from this study have implications for industries using sodium hypochlorite as 

disinfectant and biocide. Results suggest that Pseudomonas biofilms utilize active mechanisms, 

induced through the presence of reactive oxygen species, to protect themselves against oxidative 

stress. This is a possible explanation why sodium hypochlorite has shown poor efficacy when 

tested against microbial populations isolated from hydraulic fracturing produced water [47] and 

against bacteria observed in the food industry [250, 251]. Finally, observations from this study 

show that an active microbial response can play an important role when assessing the efficacy 

and usefulness of an antimicrobial agent. Thus, data from this and similar studies, supporting the 

presence of active, genetic pathways, likely contributing to biocide resistance, should be taken 

into consideration in the development of improved and more specific biocide application 

strategies.  
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7.0 SUMMARY, CONCULSIONS, AND FURTUE WORK 

7.1 SUMMARY  

Management of microbial activity in produced waters from hydraulic fracturing is critical 

to control corrosion, fouling and souring issues, protect well infrastructure, minimize 

unnecessary biocide application, and encourage produced water recycling. During hydraulic 

fracturing microbial populations can become established downhole, in the separator, in water 

tanks, and production lines through the distribution of hydraulic fracturing fluids and hydraulic 

fracturing produced waters. Previous investigations offered first insights into the microbial 

ecology of hydraulic fracturing systems and identified taxa likely to contribute to acid and 

sulfide production. Nevertheless, additional work on produced water microbial populations was 

necessary to confirm previous results, explore poorly characterized unconventional resource 

plays, and identify metabolic pathways of interest. Thus, the objective of the research presented 

in this dissertation was to: (1) review and summarize the current understanding of the microbial 

ecology, biocide efficacy, and genetic resistance in hydraulic fracturing produced waters; (2) 

investigate changes in microbial community structure during storage of hydraulic fracturing 

produced water samples; (3) investigate the microbial ecology and the role of the genus 

Halanaerobium in Marcellus Shale produced water; (4) analyze the microbial ecology of Bakken 
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Shale produced waters; (5) and investigate the active, genetic mechanisms in response to the 

broad spectrum antimicrobial sodium hypochlorite. 

A review of studies having evaluated microbial populations in produced waters from 

hydraulic fracturing revealed microbial communities to be similar in structure, independent of 

well location and shale region (Chapter 2). However, microbial community structure was found 

to change over time, as early flowback water was dominated by halophilic, aerobic taxa, such as 

Marinobacter, while produced waters from older wells were characterized by high abundances 

of anaerobic, halophilic taxa, specifically the genus Halanaerobium. Furthermore, the potential 

for additional work was identified.   

In chapter 3, the effects of storage conditions on produced water samples intended for 

microbiological analysis were evaluated. Results demonstrated that storage at room temperature 

for more than 24 hours and at 4oC for more than three days can lead to changes in microbial 

community structure. Based on these findings, storage recommendations for produced water 

samples, which are being used in microbiological studies, were developed. To preserve the 

original community structure, samples should be kept refrigerated for short-term storage and in 

the freezer (ideally at -80oC) for long-term storage. 

Analysis of 42 Marcellus Shale produced water samples confirmed the predominance of 

the genus Halanaerobium (Chapter 4). Furthermore, correlations between the microbial 

community structure and biocide treatment combinations used in the fracturing fluid were 

identified, showing that operational factors need to be taken into consideration when evaluating 

the microbial ecology of hydraulic fracturing produced water. Analysis of the metabolic potential 

of Halanaerobium, through the assembly of a draft genome, revealed fermentation pathways and 
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thiosulfate reduction pathways, suggesting this taxa contributes to acid and sulfide production in 

hydraulic fracturing produced water systems.  

Chapter 4 presented findings on the microbiological analysis of Bakken Shale produced 

waters from 18 different wells sites sampled between October 2014 and March 2015. Using 

quantitative PCR and 16S rRNA sequencing, the microbial abundance and microbial community 

structure were analyzed. Low biomass was detected across all analyzed samples. This data 

supported previous observations and was attributed to high subsurface temperatures in Bakken 

and Three Forks formations. Microbial community structure analysis identified the same taxa 

previously observed in produced water from other oil and gas regions; however, relative 

abundances were different. Investigations also revealed the microbial community structure to 

change across the sampling period, as ambient air temperatures dropped below 0oC. Thus, 

findings from this chapter suggest the microbial ecology in produced water can differ from one 

unconventional oil and gas region to another. Results also show that seasonal changes in 

temperature can affect the microbial community structure, an observation that needs to be 

considered for produced water management. 

Finally, the exposure of Pseudomonas fluorescens biofilms to the broad spectrum 

antimicrobial and biocide sodium hypochlorite revealed induction of active, genetic pathways 

involved in peroxide scavenging, oxidative stress repair, and multidrug efflux (Chapter 5). A 

concentration of 0.6 mg/L sodium hypochlorite was found have a sublethal effect on 48-hour old 

Pseudomonas fluorescens biofilms and resulted in the upregulation of genes encoding the 

organic hydroperoxide resistance protein Ohr, the alkyl hydroperoxide reductases subunits AhpC 

and AhpF, and two components of a multidrug efflux pump system. Thus, results suggested 

active removal of reactive oxygen species through peroxidases, and removal through efflux 
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systems to be the primary oxidative stress response mechanisms in Pseudomonas fluorescens 

biofilms. Findings from this analysis may contribute to the optimization of current biocide 

applications and disinfection strategies. 

7.2 CONCLUSIONS 

The overall conclusions from this work are: 

1. Microorganisms are prevalent in produced waters from hydraulic fracturing 

across the United States; however, microbial abundances vary regionally and 

likely depend on the physicochemical characteristics of each play. Moreover, the 

hypersaline produced water environment drives the microbial ecology, resulting 

in similar community structures across shale oil and gas regions. It needs to be 

noted that the produced water community structure changes during production, as 

different microbial compositions have been observed throughout the lifetime of a 

well. Moreover, seasonal and operational changes can also impact the microbial 

ecology in hydraulic fracturing produced water and may lead to shifts within the 

community structure.  

2. The genus Halanaerobium is one of the most abundant taxa in hydraulic 

fracturing produced water. This was supported by its dominance across produced 

water samples from different shale oil and gas regions and its metabolic potential 

for acid and sulfide production. However, findings presented in chapter 4 suggest 
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Halanaerobium can be outcompeted by other taxa under certain environmental 

conditions.  

3. Observations from hydraulic fracturing produced water ecology studies may help 

to develop improved produced water management strategies. For example, 

microbial activity and microbial community dynamics should be monitored 

through regular testing, with the goal to identify changes caused by seasonal and 

operational factors.  

4. Active, genetic response mechanisms, such as active reactive oxygen scavenging 

and multidrug efflux, likely contribute to biocide resistance against sodium 

hypochlorite in Pseudomonas fluorescens biofilms. These findings are potentially 

important for disinfection strategies in industrial settings, including the oil and gas 

industry, as sodium hypochlorite is a commonly used biocide and resistant 

microbial populations can interfere with industrial processes through, for 

example, biocorrosion. 

7.3 FUTURE WORK 

Findings from this research advance the current understanding of the microbial ecology 

in produced water, revealing novel insights into microbial community dynamics, the metabolic 

capabilities of Halanaerobium, and the active microbial response against biocides, in produced 

water. Nevertheless, future research is recommended to further evaluate and confirm 

observations made in the here presented work. Efforts should target the identification of active 
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microbial pathways in produced water through the use of metatranscriptomics. This method 

allows the establishment of active microbial communities and active metabolic pathways in 

produced water and can help to confirm and complement metagenomic data presented here and 

in previous studies. We believe one such study, which evaluated active microbial mechanisms in 

holding pond and hauling truck produced water samples, currently exists [38]; however 

additional analyses using this approach, specifically targeting Halanaerobium dominated 

samples, are recommended.   

Investigation of Bakken Shale produced water revealed high abundances of Bacillales 

and Pseudomonadales in the majority of the evaluated samples. These findings were made using 

16S rRNA sequencing and should be further confirmed through metagenomic and 

metatranscriptomic analyses, with the goal to characterize Bacillales and Pseudomonadales 

populations in Bakken Shale produced water in more detail and identify their metabolic 

capabilities.  

Finally, research efforts should be aimed at developing an efficient biocide treatment 

designed to control the genus Halanaerobium. As this taxon has repeatedly been suggested to 

significantly contribute to microbial activity in hydraulic fracturing produced water, minimizing 

its presence is desirable. Very little data is currently available on the efficacy of biocides against 

the genus Halanaerobium, all of it coming from a single study [17]. Thus, exposure of 

Halanaerobium isolates to different biocide combinations may help to identify treatments useful 

for the effective control of Halanaerobium populations in produced water. In addition, the active, 

genetic response of Halanaerobium against commonly used biocides should be evaluated to 

identify mechanisms that may contribute to Halanaerobium biocide resistance. These efforts 
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should ideally be conducted under produced water conditions (hypersaline environment), as 

produced water has previously been suggested to contribute to microbial biocide resistance [32].  

Altogether, additional research efforts will further enhance the current understanding of 

produced water microbial activity and represent, combined with the already available data, the 

next step in the effort to develop specific control and management strategies. Furthermore, they 

will help to provide biocide application strategies to improve biocide efficacy and eliminate 

microbial populations contributing to corrosion and souring. 
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Table A1: Abundance fractions for microbial orders in FWT samples stored at either room temperature (RT) or at 4oC. 

 

 

 

Order 

 

On-site Day 0 

RT 

Day 0 

4°C 

Day 1 

RT 

Day 1 

4°C 

Day 2 

RT 

Day 2 

4°C 

Day 3 

RT 

Day 3 

4°C 

Day 7 

RT 

Day 7 

4°C 

Halanaerobiales 0.001 0.002 0.003 0.005 0.011 0.016 0.007 0.006 0.026 0.011 0.007 

Rhodobacterales 0.005 0.010 0.007 0.007 0.009 0.021 0.015 0.008 0.013 0.002 0.008 

Sphingomonadales 0.007 0.015 0.010 0.010 0.011 0.021 0.016 0.011 0.012 0.004 0.011 

Burkholderiales 0.001 0.017 0.014 0.028 0.013 0.018 0.016 0.013 0.009 0.003 0.016 

Campylobacterales 0.763 0.782 0.832 0.771 0.807 0.731 0.722 0.662 0.629 0.017 0.713 

Alteromonadales 0.054 0.038 0.035 0.028 0.045 0.044 0.060 0.165 0.122 0.771 0.031 

Oceanospirillales 0.034 0.042 0.032 0.024 0.042 0.037 0.056 0.070 0.119 0.096 0.122 

Pseudomonadales 0.010 0.013 0.012 0.011 0.009 0.028 0.018 0.017 0.015 0.082 0.012 

Vibrionales 0.001 0.006 0.003 0.063 0.004 0.001 0.004 0.001 0.003 0.000 0.003 

Minor Orders 0.110 0.076 0.054 0.052 0.043 0.083 0.086 0.047 0.054 0.013 0.078 
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Table A2: Abundance fractions for microbial orders in HP1 samples stored at either room temperature (RT) or at 4oC. 

 
Order On-site Day 0 

RT 

Day 0 

4°C 

Day 1 

RT 

Day 1 

4°C 

Day 2 

RT 

Day 2 

4°C 

Day 3 

RT 

Day 3 

4°C 

Day 7 

RT 

Day 7 

4°C 

Halanaerobiales 0.003 0.002 0.002 0.014 0.006 0.020 0.004 0.039 0.008 0.018 0.026 

Caulobacterales 0.002 0.009 0.011 0.017 0.014 0.021 0.018 0.013 0.016 0.023 0.020 

Rhizobiales 0.000 0.013 0.015 0.012 0.017 0.020 0.019 0.010 0.013 0.031 0.021 

Rhodobacterales 0.356 0.306 0.303 0.271 0.253 0.261 0.226 0.227 0.206 0.253 0.270 

Sphingomonadales 0.290 0.400 0.397 0.322 0.393 0.341 0.370 0.219 0.337 0.180 0.298 

Alteromonadales 0.006 0.007 0.008 0.032 0.009 0.014 0.008 0.037 0.073 0.013 0.005 

Oceanospirillales 0.098 0.129 0.126 0.200 0.173 0.172 0.189 0.156 0.210 0.113 0.223 

Pseudomonadales 0.053 0.065 0.066 0.085 0.064 0.096 0.087 0.254 0.072 0.281 0.070 

Minor Orders 0.140 0.069 0.072 0.047 0.072 0.055 0.079 0.045 0.065 0.089 0.068 
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Table A3: Abundance fractions for microbial orders in HP2 samples stored at either room temperature (RT) or at 4oC. 

 

 

 

 

 

Taxon On-site Day 0   

RT 

Day 0 

4°C 

Day 1   

RT 

Day 1 

4°C 

Day 2   

RT 

Day 2 

4°C 

Day 3   

RT 

Day 3 

4°C 

Day 7   

RT 

Day 7 

4°C 

Bacteroidales 0.064 0.033 0.025 0.013 0.024 0.005 0.028 0.002 0.029 0.002 0.011 

Clostridiales 0.001 0.021 0.015 0.023 0.028 0.011 0.036 0.008 0.048 0.002 0.026 

Rhodobacterales 0.000 0.016 0.007 0.028 0.020 0.018 0.033 0.010 0.034 0.011 0.030 

Sphingomonadales 0.000 0.024 0.015 0.017 0.027 0.009 0.027 0.006 0.030 0.006 0.014 

Desulfovibrionales 0.053 0.014 0.009 0.008 0.014 0.008 0.016 0.003 0.021 0.002 0.012 

Desulfuromonadales 0.026 0.016 0.013 0.011 0.017 0.005 0.016 0.004 0.021 0.002 0.017 

Campylobacterales 0.624 0.748 0.843 0.274 0.753 0.128 0.680 0.061 0.651 0.132 0.276 

Alteromonadales 0.037 0.024 0.017 0.133 0.020 0.290 0.021 0.403 0.022 0.279 0.075 

Pseudomonadales 0.087 0.049 0.022 0.453 0.047 0.501 0.059 0.487 0.062 0.542 0.488 

Minor orders: 0.100 0.086 0.078 0.076 0.086 0.069 0.088 0.063 0.098 0.060 0.085 
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           # of sequences° OTUs*° Chao1*° Shannon*° Evenness*° 

Sample: FWT HP1 HP2  FWT HP1 HP2 FWT HP1 HP2 FWT HP1 HP2 FWT HP1 HP2 

On-site 9444 11401 2506 95 105 133 127.5 195.4 263.8 4.07 1.93 3.65 0.89 0.41 0.75 

Day 0, RT 19306 14983 9862 112 102 110 309.8 192.3 180.6 2.16 4.07 2.64 0.46 0.88 0.56 

Day 1, RT 10576 12277 8166 107 128 113 332.5 252.5 223.7 2.09 4.44 3.50 0.45 0.92 0.74 

Day 2, RT 8286 12699 9400 145 131 87 326.5 271.6 201.8 2.63 4.49 3.10 0.53 0.92 0.69 

Day 3, RT 14119 12263 12206 102 117 63 274.9 232.2 188.1 2.63 4.69 2.92 0.57 0.99 0.70 

Day 7, RT 21147 7704 9597 62 128 56 150.6 227.9 115.8 3.31 4.98 2.94 0.80 1.03 0.73 

Day 0, 4°C 15134 14139 12177 106 113 81 260.2 241.5 178.2 2.01 4.09 1.84 0.43 0.87 0.42 

Day 1, 4°C 12078 17142 8924 111 125 109 282.1 252.8 215.2 2.28 4.18 2.51 0.48 0.87 0.53 

Day 2. 4°C 13641 14630 10239 147 124 156 312.3 244.1 317.6 2.87 4.44 3.29 0.57 0.92 0.65 

Day 3, 4°C 12130 12682 9921 110 123 149 263.2 316.8 320.9 2.86 4.59 3.54 0.61 0.95 0.71 

Day 7, 4°C 18847 14566 8803 66 116 135 222.1 246.0 282.5 2.62 4.52 3.70 0.62 0.95 0.75 

Table A4: Sequence abundances and alpha diversity measurements for each sample 

mailto:HP@
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Figure A1: Explanation of FASTA headers for 16S sequences deposited on MG-RAST. Sequences 

were deposited by sample Source (FWT, HP1, HP2). Header of each sequence in each file indicates 

sample source, storage condition, storage time point and replicate, as shown above. 



 142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2: Average weighted UniFrac distances (+/- SDEV) between on-site samples and 

storage samples. .  
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Table B1: Characteristics of samples used in this study. All samples were taken in June 2014 

Sample ID Volume 

(ml) 

Well age (Days) TDS (mg/L) Microbial abundance (16S rRNA gene 

copies per ml) 

Sequences 

Site 1, Well 1 200 785 71840 2.20E+05 14932 

Site 1, Well 2 200 826 127834 1.88E+06 6811 

Site 1, Well 3 200 790 135515 5.49E+06 13613 

Site 2, Well 1 200 888 181386 4.53E+05 3406 

Site 3, Well 1 200 525 115152 7.85E+05 2739 

Site 3, Well 2 200 525 223034 2.76E+06 6122 

Site 3, Well 3 200 257 166615 1.42E+06 12960 

Site 4, Well 1 200 182 144284 1.38E+05 10388 

Site 4, Well 2 200 182 163392 5.12E+06 3570 

Site 4, Well 3 200 182 116772 1.57E+06 11886 

Site 4, Well 4 200 182 182853 3.12E+06 5944 

Site 5, Well 1 200 1075 38749 2.13E+06 2832 

Site 5, Well 2 200 1324 130180 2.14E+06 17656 

Site 5, Well 3 200 1324 75650 1.98E+06 7123 

Site 6, Well 1 200 1812 151534 1.01E+07 8689 

Site 6, Well 2 200 1114 134414 7.80E+05 10322 

Site 6, Well 3 200 1114 82062 4.73E+05 2147 

Site 7, Well 1 200l 1022 78900 2.38E+07 3987 

Site 7, Well 2 200 1022 97436 2.31E+07 3943 

Site 7, Well 3 200 1022 185814 4.66E+05 4242 

Site 8, Well 1 200 1231 115730 4.77E+06 5381 

Site 9, Well 1 200 1196 69902 5.14E+06 3117 

Site 9, Well 2 200 1196 50383 1.50E+06 7894 

Site 9, Well 3 200 150 127418 2.81E+06 3856 

Site 10, Well 1 200 960 122015 1.02E+06 3153 

Site 11, Well 1 200 1447 46461 5.88E+07 8662 

Site 11. Well 2 200 1447 207357 1.00E+08 2058 

Site 11, Well 3 200 1447 142000 1.06E+07 8419 

Site 12, Well 1 200 718 191556 1.35E+06 2065 

Site 12, Well 2 200 718 137232 1.42E+05 12630 

Site 12, Well 3 200 694 76226 2.71E+06 10104 

Site 13, Well 1 200 405 187352 2.14E+08 22292 

Site 13, Well 2 200 405 196459 1.45E+05 19296 

Site 13, Well 3 200 405 152629 1.73E+07 15481 

Site 13, Well 4 200 405 90131 3.33E+06 2451 

Site 14, Well 1 200 1423 157714 1.06E+07 5817 

Site 15, Well 1 200 562 160723 2.24E+05 4291 

Site 15, Well 2 200 562 179771 5.39E+05 7564 

Site 16, Well 1 200 1788 152948 6.76E+06 8317 

Site 16, Well 2 200 926 119739 1.67E+06 8018 

Site 17, Well 1 200 669 160183 9.40E+06 10102 
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Site 18, Well 1 200 1847 117844 2.07E+07 6151 

 

 

 

 

Table B2: Composition of biocide treatments applied to sampled wells during the fracturing process. 

Information obtained from fracfocus. 
 Constituents # of wells # of well sites 

Treatment 1 Polyethylene Glycol 

2,2-dibromo-3-nitrilopropionamide 

Dibromoacetonitrile 

19 8 

Treatment 2 Sodium Hydroxide 

Tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione 

13 7 

Treatment 3 Methanol 

Tributyl Tetradecyl Phosphonium Chloride 

2 2 

Treatment 4 Hydrogen Chloride 

Sodium Hydroxide 

Sodium Hypochlorite 

Sodium Chlorite 

2,2-dibromo-3-nitrilopropionamide 

Dibromoacetonitrile 

1 1 

Treatment 5 Polyethylene glycol mixture 

2,2-dibromo-3-nitrolopropionamide 

2 1 

Treatment 6 Sodium Hydroxide 

Tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione 

Hydrogen Chloride 

Sodium Hypochlorite 

2 1 

Treatment 7 Sodium Hydroxide 

Tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione 

Alkyl Dimethyl Benzyl Ammonium Chloride 

Glutaraldehyde 

Ethanol 

Quaternary Ammonium Chloride 

1 1 

Treatment 8 Methanol 

Tributyl Tetradecyl Phosphonium Chloride 

Alkyl Dimethyl Benzyl Ammonium 

Ethanol  

Gluteraldehyde 

Quaternary Ammonium Chloride 

1 1 

Treatment 9 2,2-dibromo-3-nitrilopropionamide 1 1 

Table B1 (continued) 
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Table B3:  Composition of TDS for produced water samples analyzed in this study. 

Sample Sodium 

(mg/L) 

Calcium 

(mg/L) 

Barium 

(mg/L) 

Chloride 

(mg/L) 

Other Ions 

(mg/L) 

Total 

(mg/L) 

Site 1, Well 1 15490.0 7152.3 1983.1 44946.7 2267.9 71840.0 

Site 1, Well 2 26309.0 11527.0 2829.8 83566.5 3601.8 127834.1 

Site 1, Well 3 27238.3 16163.3 4034.3 83098.4 4980.3 135514.6 

Site 2, Well 1  66029.7 27102.0 7094.5 72968.6 8191.0 181385.8 

Site 3, Well 1 34631.3 12516.5 3095.7 61217.4 3690.9 115151.8 

Site 3, Well 2 82867.0 30176.4 7087.2 93893.5 9009.7 223033.8 

Site 3, Well 3 41366.1 15128.8 3870.9 101759.3 4489.6 166614.6 

Site 4, Well 1 39394.2 14216.0 3528.4 82892.7 4252.4 144283.7 

Site 4, Well 2 41540.1 14892.4 3788.5 98759.1 4411.7 163391.8 

Site 4, Well 3 1242.6 11050.7 2608.6 98326.4 3544.1 116772.4 

Site 4, Well 4 56362.4 19909.7 5113.7 95517.7 5949.1 182852.6 

Site 5, Well 1 15618.0 6434.2 1556.5 13093.4 2046.5 38748.7 

Site 5, Well  2 34664.1 13893.4 3589.6 73785.7 4250.3 130180.0 

Site 5, Well 3 22390.9 8860.6 2112.3 39627.2 2658.8 75649.7 

Site 6, Well 1 54561.2 22078.0 5343.4 62714.0 6837.9 151534.4 

Site 6, Well 2 37058.4 13998.2 3288.2 76105.0 3964.7 134414.4 

Site 6, Well 3 16375.0 6964.9 1800.3 54834.0 2087.8 82061.9 

Site 7, Well 1 20880.8 7410.1 1425.6 46585.1 2597.9 78899.6 

Site 7, Well 2 25178.3 9954.3 2617.0 56805.7 2880.5 97435.8 

Site 7, Well 3 66050.8 27765.6 6754.1 76707.9 8535.5 185813.9 

Site 8, Well 1 25364.2 11156.2 2900.3 72814.0 3495.6 115730.3 

Site 9, Well 1 23523.2 9545.9 1921.3 31775.6 3135.8 69901.7 

Site 9, Well 2 12629.8 3811.2 603.9 31846.5 1491.2 50382.7 

Site 9, Well 3 31424.7 12346.0 2722.5 77154.7 3770.4 127418.3 

Site 10, Well 1 33021.4 12194.1 2940.1 70303.1 3556.1 122014.9 

Site 11, Well 1 18935.6 6493.8 1804.7 17455.4 1771.8 46461.4 

Site 11. Well 2 58857.9 763.7 65.1 147436.3 234.1 207357.0 

Site 11, Well 3 37760.0 15150.0 6191.0 64543.9 17429.3 142000.0 

Site 12, Well 1 54967.0 22243.8 5616.0 101879.8 6849.6 191556.4 

Site 12, Well 2 39779.0 16103.4 4261.9 71941.6 5145.9 137231.8 

Site 12, Well 3 23825.5 8057.1 873.1 40322.3 3147.8 76225.8 

Site 13, Well 1 14933.8 2750.0 6056.6 92113.2 71498.6 187352.3 

Site 13, Well 2 61032.5 21886.3 2352.9 102248.7 8938.4 196458.7 

Site 13, Well 3 34250.4 13790.4 3289.4 97021.3 4277.4 152628.9 

Site 14, Well 1 43039.1 15808.9 4544.3 89318.7 5002.7 157713.7 

Site 14, Well 2 31039.7 12014.1 3082.3 40641.5 3353.4 90130.9 

Site 15, Well 1 37625.2 13925.3 3384.7 101603.2 4184.8 160723.2 

Site 15, Well 2 48533.0 17908.7 4307.3 103567.9 5454.3 179771.1 

Site 16, Well 1 102715.6 31668.3 2120.1 1745.1 14698.6 152947.6 

Site 16, Well 2 31346.1 13906.1 3761.2 66778.1 3947.1 119738.6 

Site 17, Well 1 46480.4 17413.6 4661.9 86332.6 5294.2 160182.8 

Site 18, Well 1 32958.1 12470.2 2858.0 65572.3 3985.3 117843.9 
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Table B4: Spearman coefficients for the correlation of operational parameters TDS concentration 

and well age, number of OTUs, and the bacterial load (as 16S rRNA gene copies per mL). Spearman 

rank coefficients can be between -1 and +1. Values between 0 and 1 describe a correlation. Values 

between 0 and -1 described an inverse correlation. Correlations can be very weak (0.00 – 0.19), 

weak (0.20 – 0.39), moderate (0.40 - 0.59), strong (0.60 – 0.79) or very strong (0.80 – 1.00). 

 

 
TDS Well Age Bacterial Load OTUs 

TDS 1 -0.446 -0.166 0.106 

Well Age -0.446 1 0.340 0.204 

Bacterial Load -0.166 0.340 1 -0.004 

OTUs 0.106 0.204 -0.004 1 

 

 

 

 

 

 

 

Table B5: P-values for the correlation of operational parameters TDS concentration, and well age, 

number of OTUs, and the bacterial load (as 16S rRNA copies per mL). 

 

 
TDS Well Age Bacterial Load OTUs 

TDS 
 

<0.01 0.30 0.50 

Well Age <0.01 
 

0.03 0.20 

Bacterial Load 0.30 0.03 
 

0.98 

OTUs 0.50 0.20 0.98 
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Table B6: Spearman coefficients for the correlation of bacterial abundances (97% OTU table) with the 

operational parameters TDS concentration, well age, the bacterial load (as 16S rRNA copies) and the 

number of OTUs. 

 
Bacterial Load TDS Well age OTUs 

Halanaerobiales -0.208 0.045 -0.519* -0.812* 

Pseudomonadales -0.055 -0.020 0.147 0.457 

Bacteroidales 0.306* -0.213 0.573* 0.550* 

Bacillales 0.170 -0.133 0.269 0.610* 

Actinomycetales 0.072 0.089 0.139 0.547* 

Lactobacillales 0.023 0.279 -0.000 0.684* 

Clostridiales 0.262 -0.166 0.601* 0.511* 

Erysipelotrichales 0.169 0.318 -0.251 0.433 

Rhodobacterales -0.169 0.156 0.0274 0.429 

Rhizobiales -0.076 0.147 0.098 0.632* 

Desulfovibrionales -0.170 0.112 0.015 0.498 

Campylobacterales -0.070 0.075 0.186 0.718* 

Enterobacteriales -0.102 0.031 0.187 0.445 

Oceanospirales -0.115 -0.009 0.127 0.263 

Minor orders 0.0234 0.109 0.354 0.654* 

*Denotes P < 0.05     
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Table B7: Alpha diversity results for all analyzed samples. 
 

Sample Observed OTUs Chao1 Index Shannon Index 

Site 1, Well 1 25 38 1.24 

Site 1, Well 2 54 60 1.29 

Site 1, Well 3 19 30 0.78 

Site 2, Well 1 77 129 2.28 

Site 3, Well 1 25 33 1.64 

Site 3, Well 2 187 252 4.62 

Site 3, Well 3 6 7 0.51 

Site 4, Well 1 42 75 1.70 

Site 4, Well 2 48 75 1.63 

Site 4, Well 3 12 17 0.54 

Site 4, Well 4 147 237 2.76 

Site 5, Well 1 39 41 2.51 

Site 5, Well  2 39 70 2.13 

Site 5, Well 3 42 66 2.23 

Site 6, Well 1 26 30 2.43 

Site 6, Well 2 20 24 1.75 

Site 6, Well 3* 96 131 4.38 

Site 7, Well 1 21 30 0.86 

Site 7, Well 2 19 24 1.06 

Site 7, Well 3 84 113 3.59 

Site 8, Well 1 25 34 1.13 

Site 9, Well 1 120 199 3.21 

Site 9, Well 2 55 88 1.78 

Site 9, Well 3 35 61 1.53 

Site 10, Well 1 22 28 0.88 

Site 11, Well 1 50 76 3.79 

Site 11. Well 2 92 114 4.18 

Site 11, Well 3 28 83 2.75 

Site 12, Well 1* 43 89 1.38 

Site 12, Well 2 101 178 1.74 

Site 12, Well 3 38 65 1.16 

Site 13, Well 1 19 41 0.66 

Site 13, Well 2 12 33 0.73 

Site 13, Well 3 22 40 0.78 

Site 14, Well 1 151 233 4.34 

Site 14, Well 2* 54 108 0.99 

Site 15, Well 1 22 127 0.98 

Site 15, Well 2 51 76 1.86 

Site 16, Well 1 83 162 3.98 

Site 16, Well 2 20 29 0.55 

Site 17, Well 1 66 103 2.75 

Site 18, Well 1 28 51 1.65 
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* Samples for which  less than 2000 OTU assigned sequence were available for alpha diversity analysis 

Table B8: Spearman coefficients for the correlation of alpha diversity (Number of OTUs, Shannon 

index and Chao1 index) with the operational parameters biocide treatment combination, TDS 

concentration, and well age and the bacterial load (as 16S rRNA copies per mL).* indicates P < 

0.05. 

 

 

 
TDS Well Age Bacterial load 

OTUs 0.106 0.204 -0.004 

Chao1 Index 0.225 0.101 -0.021 

Shannon Index -0.058 0.494* 0.114 
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Table B9: Genome characteristics of Marcellus Shale draft genome Halanaerobium and four published, available Halanaerobium genomes. 

Genome Paper 
Accession 

number 
DNA Source Genome size 

Number 

of contigs 

Coding 

sequences* 

GC 

content 

CheckM 

Complete- 

ness 

CheckM 

Contamin- 

ation 

Halanaerobium 

sp. MDAL1 
This paper MIJU00000000.1 Metagenome 2,389,586 bp 129 2219 34.20% 83.30% 9.60% 

Halanaerobium 

sp.T82-1 

Daly et al, 

2016 
LSBN00000000.1 Metagenome 2,765,245 bp 393 2825 33.30% 85.30% 28.90% 

Halanaerobium 

saccharolyticum 

subsp. 

Saccharolyticum 

Kivisito et 

al, 2013 

NZ_CAUI000000

00.1 
Metagenome 2,873,865 bp 24 2645 32.30% 90.60% 16.20% 

Halanaerobium 

praevalens 

Ivanova et 

al, 2011 
CP002175.1 Isolate 2,309,262 bp 1 2129 30.30% 98.20% 0.50% 

Halanaerobium 

hydrogeniforma

ns 

Brown et al, 

2011 
CP002304.1 Isolate 2,613,116 bp 1 2474 33.10% 96.70% 1.80% 
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Table B10: Proteins of interest for hydraulic fracturing industry identified in Halanaerobium sp. 

Strain MDAL1 
 

Fermentation 

Protein EC number Putative function 

Lactose dehydrogenase Ldh EC 1.1.1.27 Pyruvate to lactate 

Phosphate acetyltransferase Pta  EC 2.3.1.8 Pyruvate to acetate 

Alcohol dehydrogenase Adh EC 1.1.1.1 Pyruvate to ethanol 

Pyruvate formate lyase Pfl  EC 2.3.1.54 
Pyruvate to hydrogen and carbon 

dioxide 

Thiosulfate reduction 

Protein EC number Putative function 

Thiosulfate sulfurtransferase rhodanese Mpst EC 2.8.1.1 Thiosulfate to adenyl sulfate 

Anaerobic sulfite reductases AsrA  N/A 

Sulfite to sulfide Anaerobic sulfite reductases AsrB N/A 

Anaerobic sulfite reductases AsrC  EC 1.8.1.- 

Rhodanese-like gene RdlA N/A Adenyl sulfate to sulfite 

Trk type sulfate permease  N/A Thiosulfate uptake 

ABC type sulfate like transporter N/A Thiosulfate uptake 

Biofilm formation 

Protein EC number Putative function 

Sporulation two-component response regulator 

Spo0A 
N/A Surface attachment initiation 

Glycosyl transferase group 2 family protein 

gene Glt2 
N/A Capsular-polysaccharide synthesis 

Diguanylate cyclase gene AdrA N/A Cellulose biosynthesis induction 

Stress response 

Protein EC number Putative function 

Potassium transporter TrkA N/A Hyperosmotic potassium uptake 

Potassium transporter TrkH N/A Hyperosmotic potassium uptake 

Potassium uptake protein KtrB N/A Potassium transport 

Glycine and betaine ABC transport protein 

ProX 
TC 3.A.1.12.1 Glycine and betaine uptake 

L-proline glycine betaine ABC transport system 

permease protein ProW 
TC 3.A.1.12.1 Glycine and betaine uptake 

High-affinity betaine transport system OpuA  EC 3.6.3.32 Glycine and betaine uptake 

Sensitive transcriptional regulator PerR N/A Oxidative stress response 

Superoxide reductase Sor EC 1.15.1.2 Oxidative stress response 
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Table B10 (continued)   

Rubredoxin N/A 
Electron transfer, oxidative stress 

response 

Outer membrane porin gene OmpH  N/A Periplasmic stress response 

Universal stress protein UspA N/A 

Environmental stress response, gene 

expression regulation, starvation, 

high temperature stress 

The heat shock protein GrpE N/A 

Hyperosmotic and heat shock 

response, preventing the aggregation 

of stress-denatured proteins 

Heat shock chaperones GroES N/A Protein folding 

Heat shock chaperones GroEL N/A Protein folding 

Chemotaxis protein MotA N/A Chemotaxis 

Chemotaxis protein MotB N/A Chemotaxis 

Flagella assembly protein family Flg N/A Flagella assembly and motility 

Flagella assembly protein family Fli N/A Flagella assembly and motility 

Flagella assembly protein family Flh N/A Flagella assembly and motility 

Flagellin FliC N/A Flagella assembly 
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Figure B1: Sequence header descriptor for 16S rRNA sequences deposited in MG-RAST. 

Sequences were uploaded in FASTQ format and can be accesses under the accession number 

4696241.3. This header represents an example.  
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Figure B2: Well age (A), total dissolved solids (TDS) (B) and biocide treatment combinations (C) 

versus bacterial load (16S rRNA copies per mL) in hydraulic fracturing produced water samples. R2 

was found to be 0.12 for well age, and 0.01 for TDS. Biocide treatment combinations were 

determined from data reported on fracfocus.org (Table B2). 
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Figure B3: Genus level taxonomy based on 16S rRNA gene sequencing across all analyzed 

produced water samples. If sequenced could not be classified down to the genus level lowest 

identified phylogenetic level was listed. 
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Figure B3 (continued) 
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Site Site 2 Site 8 Site 10 Site 14 Site 17 Site 18

Well Well 1 Well 2 Well 3 Well 1 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 4 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 1 Well 1 Well 2 Well 3 Well 1 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 Well 4 Well 1 Well 1 Well 2 Well 1 Well 2 Well 1 Well 1

Methanomicrobiales 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.07% 0.36% 0.39% 0.00% 0.05% 0.00% 0.00% 0.00% 1.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.76% 0.00% 0.74% 0.00% 0.03% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10%

Methanosarcinales 0.07% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.82% 0.04% 0.02% 0.33% 0.00% 0.00% 0.03% 0.19% 0.00% 0.00% 0.01% 0.00% 0.00% 0.09% 0.00% 0.32% 0.00% 0.01% 0.01% 0.49% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.02% 0.03%

Acidobacteria-6 CCU21 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria-6 iii1-15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria Sva0725 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria RB41 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidimicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.59% 0.00% 0.00% 0.42% 0.00% 0.00% 0.01% 0.00% 0.11% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bifidobacteriales 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Coriobacteriales 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gaiellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Solirubrobacterales 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cytophagales 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Flavobacteriales 0.00% 0.03% 0.01% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.01% 0.00% 0.00% 0.21% 0.00% 0.00% 0.17% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.03% 0.03% 0.00% 0.01% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00%

Sphingobacteriales 0.00% 0.00% 0.00% 0.10% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Saprospirales 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaerolineales 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Chloroflexi 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria MLE1-12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Stramenopiles 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00%

Streptophyta 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.02% 0.00% 0.00%

Oscillatoriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pseudanabaenales 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deferribacterales 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.01% 0.00% 0.00% 0.00% 0.03% 0.08% 0.00% 0.00% 0.00%

Gemellales 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00%

Thermoanaerobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Fusobacteriales 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemmatimonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.39% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nitrospirales 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.08% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Planctomycetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Alphaproteobacteria BD7-3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Caulobacterales 0.00% 0.06% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% 0.08% 0.00% 0.01% 0.62% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.04% 0.04% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00%

Kiloniellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00%

Rhodospirillales 0.00% 0.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.02% 0.24% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Rickettsiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Sphingomonadales 0.03% 0.28% 0.05% 0.20% 0.00% 0.00% 0.00% 0.06% 0.00% 0.03% 1.02% 0.00% 0.03% 0.17% 0.06% 0.11% 0.41% 0.03% 0.00% 0.35% 0.07% 0.00% 0.22% 0.00% 0.00% 0.14% 1.94% 0.02% 0.00% 0.03% 0.03% 0.01% 0.07% 0.08% 0.00% 0.07% 0.61% 0.26% 0.05% 0.06% 0.26% 0.00%

Unclassified Betaproteobacteria 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Burkholderiales 0.03% 0.50% 0.03% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.02% 0.37% 0.00% 0.00% 0.28% 0.00% 0.01% 0.00% 0.00% 0.00% 1.23% 0.30% 0.00% 0.25% 0.00% 0.00% 0.05% 1.51% 0.01% 0.00% 0.00% 0.00% 0.02% 0.01% 0.01% 0.00% 0.00% 0.05% 0.00% 0.20% 0.09% 0.02% 0.00%

Gallionellales 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00%

Hydrogenophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00%

Methylophilales 0.00% 0.09% 0.00% 0.00% 0.00% 0.48% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.62% 0.00% 0.00% 0.05% 0.00% 0.21% 0.01% 0.00% 0.00% 0.00% 1.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.02% 0.00%

Neisseriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodocyclales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Deltaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bdellovibrionales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfarculales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfobacterales 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.95% 0.00% 0.00% 0.00% 0.25% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.07%

Desulfuromonadales 0.08% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.07% 0.00% 0.03% 0.05% 0.00% 0.00% 0.00%

Deltaproteobacteria GMD14H09 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17%

Myxococcales 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Spirobacillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unlcassified Gammaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidithiobacillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 1.04% 0.00% 0.08% 0.03% 0.00% 0.00% 0.00% 1.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aeromonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Alteromonadales 0.00% 0.56% 0.02% 0.10% 0.00% 0.00% 0.00% 0.13% 0.03% 0.00% 0.45% 0.28% 0.06% 0.24% 0.09% 0.02% 0.52% 0.00% 0.00% 0.45% 0.11% 0.25% 0.19% 0.00% 0.00% 0.05% 0.34% 0.05% 0.06% 0.01% 0.00% 0.01% 0.11% 0.01% 0.00% 0.00% 0.07% 0.24% 0.50% 0.05% 0.08% 0.00%

Chromatiales 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gammaproteobacteria HTCC2188 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pasteurellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.01% 0.00% 0.02% 0.00%

Vibrionales 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.07% 0.06% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.90% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.53% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Xanthomonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphaerochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.25% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Spirochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Brachyspirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synergistales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.34% 0.01% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

CW040 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

I025 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Unclassified Mollicutes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acholeplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaeroplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mollicutes RF39 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thermotogales 0.04% 0.09% 0.21% 0.03% 0.00% 0.00% 0.02% 0.09% 0.00% 0.02% 0.00% 0.00% 0.67% 1.92% 0.00% 0.13% 0.00% 0.00% 0.00% 0.09% 0.07% 0.00% 0.00% 0.18% 0.00% 0.02% 0.05% 0.24% 0.00% 0.02% 0.02% 0.00% 0.01% 0.19% 0.05% 0.00% 0.00% 0.00% 0.42% 0.00% 0.00% 0.00%

Verrucomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chthoniobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Site 6 Site 7 Site 9 Site 11 Site 12 Site 13 Site 15 Site 16Site 1 Site 3 Site 4 Site 5

Figure B4: Abundances for minor orders (<2%) across all analyzed samples 
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FIGURE B5: HALANAEROBIALES ABUNDANCE VERSUS WELL AGE (A) AND TDS 

Figure B5: Halanaerobiales abundance versus well age (A) and TDS concentration (mg/L) (B). R2 was 

found to be 0.30 for well age and < 0.01 for TDS concentration. 
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Figure B6: Well age (A) and TDS (B) versus number of observed OTUs (per 2000 sequences). R2 

was found to be 0.01 for well age and 0.03 for TDS. 
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Figure B7: Well age (A) and TDS (B) versues Chao1 diversity index (per 2000 

sequences). R2 was found to be <0.01 for well age and 0.05 for TDS. 
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Figure B8: Well age (A) and TDS (B) versus Shannon diversity index (per 2000 

sequences). R2 was found to be 0.22 for well age and <0.01 for TDS. 
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Figure B9: Number of observed OTUs (A), Chao1 diversity index (B) and Shannon diversity index 

(C) versus bacterial load (16S rRNA gene copies per mL) in hydraulic fracturing produced water 

samples. R2 was found to be  <0.01 for observed OTUs, <0.01 for Shannon diversity index, and 

<0.01 for Chao1 diversity index. 
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Figure B10: Number of observed OTUs (A), Shannon diversity index (B), and Chao1 

diversity index (C) versus biocide treatment combination. 
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Figure B11: Nonmetric multidimensional scaling (NMDS) ordination plot showing the 

relationship between environmental variables and sites (based on weighted UniFrac distances). 
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Figure B12: UPGMA tree based on weighted UniFrac distances, correlating operational 

parameters (Panels A-C) with analyzed samples. Sample were divided into five groups 

increasing by total TDS concentration (Panel A), seven groups increasing by well age (Panel B), 

and nine groups representing the nine biocide treatment combinations (Table B2). Each tree 

branch represents one sample, operational parameters are colorcoded based on TDS 

concentration, well age, or bioicde treatment combination. Bar distance represents weighted 

UniFrac distance. 
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APPENDIX C 

CHAPTER 5 - SUPPLEMENTAL INFORMATION 
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Table C1: Well site characteristics. Formation abbreviations:  BKN = Bakken 

formation, TF1 = First bench of Three Forks formation, TF2 = Second bench of Three 

Forks formation. 

 

Well # Well age at first sampling point Formation 

1 9 months BKN 

2 9 months TF1 

3 6 months BKN 

4 6 months TF1 

5 36 months BKN 

6 36 months TF1 

7 6 months BKN 

8 6 months BKN 

9 54-60 months* TF1 

10 18 months BKN 

11 12 months BKN 

12 12 months TF1 

13 12 months TF2 

14 12 months BKN 

15 12 months TF1 

16 10 months BKN 

17 10 months TF1 

*best available information at time of sampling 
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Table C2: Total dissolved solids (TDS) concentrations across all four sampling time point. For samples labeled N/A no data was obtained. 

  

  Separator 

 

Tank 

 

 October 

(10/7/2014) 

November 

11/1/2014 

January 

1/14/2015 

March 

3/25/2015 

October 

(10/7/2014) 

November 

11/1/2014 

January 

1/14/2015 

March 

3/25/2015 

Well 1 324250 325000 311000 245250 328750 323250 N/A 293250 

Well 2 335000 340750 322500 285500 326250 332250 N/A 311750 

Well 3 326500 N/A 312500 326250 292750 N/A 309500 298750 

Well 4 321250 330750 320500 322750 313500 324000 286500 308000 

Well 5 N/A 326500 317500 323750 317250 N/A 300750 321500 

Well 6 N/A N/A 326750 330000 330500 N/A 307750 275500 

Well 7 307000 328000 305000 329750 310250 302250 N/A 298750 

Well 8 311500 320250 319250 302750 321500 308750 N/A 303000 

Well 9 250750 281000 N/A N/A N/A 281500 N/A N/A 

Well 10 307000 295250 293000 300750 293500 299250 N/A 301250 

Well 11 311500 246250 258750 223000 259750 278000 N/A 196000 

Well 12 274750 287500 284250 298500 269250 295250 N/A 288250 

Well 13 315750 318000 279750 285000 305250 N/A 280000 285000 

Well 15 283250 N/A 297750 265750 276000 270250 300250 278000 

Well 16 277250 294250 N/A 285500 288750 285000 N/A 288250 

Well 17 294750 305500 293500 301750 291500 297500 276500 305250 

Well 18 324750 306500 315500 304000 308500 N/A 303250 308250 
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Table C3: Alpha Diversity results, *Samples for which less than 1000 OTU assigned 

sequence were available for alpha diversity analysis. 
 

SEPARATOR 

Sampling Time Sample ID 

Number of 

sequences 

Number of 

OTUs Chao1 Index 

Shannon 

Index 

October 

Well 1 1922 81 21 1.10 

Well 3  2020 169 106 4.62 

Well 4 2969 213 115 3.89 

Well 5 2367 249 98 5.59 

Well 10 1413 129 51 3.85 

Well 12 2236 186 103 4.34 

Well 13 3228 139 238 5.00 

Well 15 1622 158 96 4.81 

November 

Well 1 8469 107 181 3.33 

Well 2 3240 49 108 3.02 

Well 3 5496 64 122 3.86 

Well 4 4707 97 172 3.83 

Well 5 4323 78 107 4.02 

Well 7  2565 55 98 3.30 

Well 8 1862 76 113 3.67 

Well 9 1656 93 158 2.79 

Well 10 8531 112 190 4.22 

Well 11 9519 153 319 5.32 

Well 12 509* 63 44 3.75 

Well 13 6503 115 166 4.39 

Well 14 526* 60 143 3.50 

Well 15 7442 63 107 3.45 

Well 16 3113 162 334 5.37 

March  

Well 1 1366 31 53 2.86 

Well 3 678* 99 55 4.21 

Well 4 2670 99 195 3.95 

Well 5 3990 60 85 3.49 

Well 6 2690 58 86 3.45 

Well 7 2696 128 333 4.10 

Well 10 8385 150 316 4.98 

Well 11 10192 168 330 5.40 

May  

Well 1 7252 55 78 2.99 

Well 2 6495 70 123 2.88 

Well 3 3291 52 77 3.21 

Well 4 6198 83 110 4.27 
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Well 5 6019 57 73 3.13 

Well 6 2105 59 217 3.38 

Well 7 10209 58 71 3.28 

Well 8 786* 37 31 3.06 

Well 10 3953 94 145 4.34 

Well 11 5721 175 348 5.28 

Well 12  1215 87 181 2.90 

Well 15 386* 169 45 3.68 

Well 17 3282 60 105 3.44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C3 (continued) 
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Table C3 (continued): Alpha diversity results, *Samples for which less than 1000 OTU assigned 

sequence were available for alpha diversity analysis. 

 

STORAGE TANK 

Sampling Time Sample ID 

Number of 

sequences 

Number of 

OTUs Chao1 Index Shannon Index 

January 

Well 2 1874 168 90 5.10 

Well 5 1698 139 104 5.29 

Well 6 1567 105 76 4.50 

Well 8  1677 144 77 5.00 

Well 11 2469 147 78 4.75 

Well 16 332* 10 12 3.02 

Well 17 1327 87 53 4.61 

November 

Well 1 2970 73 130 2.77 

Well 2 8161 46 130 2.97 

Well 3 391* 48 30 3.46 

Well 4 6653 85 48 4.12 

Well 5 4837 53 44 3.86 

Well 8 7290 72 107 3.65 

Well 9 2774 103 148 4.39 

Well 10 2735 89 122 4.04 

Well 11 1348 65 121 2.19 

Well 12 7868 112 215 3.69 

Well 13  1886 67 112 3.68 

Well 14 2497 158 323 4.99 

Well 16 4725 104 161 4.25 

Well 17 389* 43 39 3.94 

January 

Well 3 2145 109 171 4.09 

Well 4 2912 27 23 3.03 

Well 5 6619 57 93 3.00 

Well 6 1735 78 122 3.77 

Well 13 1207 83 134 4.03 

Well 14 3597 88 174 4.04 

March 

Well 2 6108 173 49 2.26 

Well 3 1862 34 54 2.80 

Well 4 5947 89 138 3.51 

Well 5 6872 162 291 5.34 

Well 7 6573 61 93 3.20 

Well 8 7352 157 313 5.24 

Well 10 6846 100 147 4.20 

Well 11 5613 64 117 3.59 

Well 12 4882 54 87 2.57 

Well 15  1551 103 173 3.79 
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Figure C1: Sequence header descriptor for 16S rRNA sequences deposited in MG-RAST. 

Sequences were uploaded in FASTQ format and can be accesses under the accession number    . 

This header represents an example.  
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Well 1 Well 2 Well 3 Well 4 Well 5 Well 7 Well 8 Well 9 Well 10 Well 11 Well 12 Well 13 Well 14 Well 15 Well 16 Well 1 Well 2 Well 3 Well 4 Well 5 Well 8 Well 9 Well 10 Well 11 Well 12 Well 13 Well 14 Well 16 Well 17

Actinomycetales 0.96% 1.32% 1.12% 3.02% 4.79% 0.60% 0.85% 2.10% 2.14% 0.67% 3.31% 3.66% 1.39% 0.68% 1.01% 2.56% 1.07% 2.46% 1.51% 5.21% 0.67% 2.08% 3.14% 1.35% 3.15% 0.77% 0.56% 1.53% 4.62%

Bacteroidales 0.23% 0.03% 1.68% 0.16% 0.04% 0.09% 0.52% 0.21% 0.36% 1.70% 0.55% 1.19% 0.00% 0.05% 1.33% 0.28% 0.08% 1.48% 0.02% 0.10% 0.20% 1.95% 0.22% 0.25% 0.61% 0.77% 3.71% 1.37% 0.00%

Flavobacteriales 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.13% 0.30% 0.00% 0.04% 0.00% 0.00% 0.32% 0.02% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.19% 0.37% 0.00% 0.00%

Bacillales 24.30% 96.01% 55.21% 29.58% 77.11% 92.15% 87.32% 8.27% 48.95% 18.65% 80.66% 15.52% 75.64% 87.60% 27.46% 94.22% 96.57% 76.35% 93.73% 90.16% 84.61% 26.17% 82.24% 3.37% 78.32% 86.59% 1.20% 23.25% 72.69%

Lactobacillales 0.75% 0.20% 0.39% 0.74% 1.88% 0.05% 0.59% 0.84% 1.11% 0.02% 0.55% 0.69% 0.93% 0.05% 0.19% 0.88% 0.07% 0.00% 0.18% 1.53% 0.23% 0.32% 0.85% 0.25% 1.14% 0.06% 0.09% 1.62% 0.00%

Halanaerobiales 0.62% 0.04% 32.60% 0.85% 5.50% 2.23% 2.88% 0.14% 26.71% 15.04% 1.38% 2.75% 0.46% 0.97% 15.16% 0.08% 0.01% 5.42% 0.04% 0.36% 2.37% 44.06% 2.54% 0.00% 6.41% 4.09% 18.63% 46.40% 2.10%

Clostridiales 8.86% 0.16% 2.40% 13.60% 1.35% 0.70% 0.59% 14.23% 1.78% 5.08% 3.59% 11.25% 2.32% 1.52% 6.47% 0.33% 0.99% 3.45% 1.09% 0.44% 0.83% 5.85% 3.59% 14.76% 0.68% 2.23% 8.71% 3.90% 4.20%

Fusobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.72% 0.07% 0.13% 0.85% 0.00% 0.00% 0.00% 0.00% 0.63% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.03% 0.42% 0.08% 0.94% 0.00% 1.39% 0.03% 0.00%

Caulobacterales 0.00% 0.01% 0.00% 0.16% 0.00% 0.05% 0.00% 0.00% 0.13% 0.46% 0.00% 0.02% 0.46% 0.00% 0.25% 0.02% 0.00% 0.00% 0.04% 0.02% 0.00% 0.26% 0.02% 0.00% 0.11% 0.51% 0.65% 0.00% 0.00%

Rhizobiales 0.13% 0.01% 0.05% 0.32% 0.18% 0.23% 0.59% 0.56% 0.83% 1.17% 0.00% 1.56% 0.00% 0.06% 1.33% 0.08% 0.00% 0.00% 0.22% 0.17% 0.02% 0.73% 0.18% 0.00% 0.75% 0.00% 1.30% 0.03% 0.00%

Rhodobacterales 0.04% 0.10% 0.00% 0.16% 0.11% 0.00% 0.46% 0.14% 0.94% 2.97% 0.00% 0.33% 0.00% 0.00% 2.35% 0.11% 0.00% 0.00% 0.02% 0.00% 0.42% 0.19% 0.00% 0.17% 0.11% 0.00% 3.24% 3.08% 0.00%

Rickettsiales 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.23% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphingomonadales 0.08% 0.22% 0.15% 0.08% 1.45% 0.00% 0.07% 0.00% 0.98% 1.61% 0.00% 0.46% 1.62% 0.23% 1.40% 0.00% 0.00% 0.00% 0.42% 0.31% 0.02% 1.05% 0.25% 0.00% 0.09% 0.13% 1.67% 0.64% 0.84%

Neisseriales 0.08% 0.00% 0.00% 0.29% 0.50% 0.00% 0.00% 0.07% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.11% 0.49% 0.04% 0.15% 0.00% 0.00% 0.00% 0.08% 0.02% 0.00% 0.00% 0.00% 0.00%

Desulfovibrionales 0.02% 0.00% 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 0.28% 1.38% 0.83% 0.37% 0.00% 0.00% 0.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 1.39% 0.15% 0.00%

Desulfuromonadales 0.00% 0.00% 0.00% 0.16% 0.00% 0.09% 0.00% 0.00% 0.17% 1.63% 0.00% 0.00% 0.00% 0.00% 0.76% 0.00% 0.00% 0.00% 0.02% 0.00% 0.35% 0.00% 0.34% 0.00% 0.00% 0.13% 1.76% 0.00% 0.00%

Syntrophobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Campylobacterales 1.12% 0.12% 0.12% 1.59% 3.23% 0.84% 0.78% 1.61% 7.53% 14.95% 1.10% 7.24% 0.93% 0.77% 14.65% 0.07% 0.26% 0.00% 0.05% 0.00% 0.60% 7.51% 2.13% 1.10% 0.02% 0.45% 22.43% 7.81% 0.00%

Alteromonadales 1.42% 0.15% 0.12% 1.40% 0.35% 0.19% 0.13% 1.40% 0.60% 2.23% 0.00% 2.25% 0.23% 0.24% 2.16% 0.00% 0.00% 0.00% 0.02% 0.00% 0.08% 0.22% 0.05% 1.43% 0.00% 0.13% 1.76% 0.46% 0.00%

Oceanospirillales 1.14% 0.03% 4.35% 1.83% 0.00% 0.05% 0.52% 2.03% 0.81% 4.37% 0.00% 4.05% 2.55% 0.87% 3.42% 0.00% 0.01% 0.00% 0.26% 0.10% 0.25% 1.57% 1.12% 1.77% 0.44% 0.32% 3.89% 2.01% 0.00%

Pseudomonadales 58.97% 1.27% 1.58% 44.92% 1.67% 2.42% 2.81% 67.55% 5.69% 25.09% 7.73% 47.14% 11.83% 6.81% 19.59% 1.09% 0.64% 9.36% 2.15% 0.99% 7.84% 5.97% 1.53% 74.37% 3.28% 3.58% 24.93% 6.04% 14.71%

Vibrionales 0.26% 0.00% 0.00% 0.05% 0.07% 0.00% 0.13% 0.28% 0.02% 0.28% 0.00% 0.00% 0.93% 0.05% 0.00% 0.07% 0.00% 0.00% 0.05% 0.15% 0.00% 0.06% 0.00% 0.25% 0.15% 0.00% 0.28% 0.27% 0.00%

Xanthomonadales 0.10% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.01% 0.00% 0.02% 0.00% 0.68% 0.32% 0.00% 0.00% 2.84% 0.00% 0.00% 0.00% 0.00%

Minor 0.92% 0.32% 0.22% 0.77% 1.77% 0.19% 1.05% 0.49% 0.68% 1.49% 0.28% 1.21% 0.46% 0.08% 0.89% 0.18% 0.16% 0.99% 0.09% 0.31% 0.83% 1.60% 1.37% 0.76% 0.89% 0.06% 2.04% 1.40% 0.84%

November 2014

Taxa Separator Tank

Well 1 Well 3 Well 4 Well 5 Well 10 Well 12 Well 13 Well 15 Well 2 Well 5 Well 6 Well 8 Well 11 Well 17

Actinomycetales 0.33% 6.65% 6.94% 7.80% 6.64% 6.31% 6.90% 2.92% 20.12% 20.08% 8.27% 12.78% 13.50% 29.65%

Bacteroidales 0.33% 5.26% 9.29% 10.09% 16.61% 6.70% 9.03% 8.48% 5.41% 8.43% 5.66% 3.13% 4.18% 6.98%

Flavobacteriales 0.00% 0.46% 2.48% 2.75% 0.33% 1.16% 0.41% 0.58% 1.20% 0.40% 0.58% 1.70% 0.00% 0.58%

Bacillales 0.99% 0.46% 1.12% 0.92% 2.33% 2.84% 0.57% 1.75% 1.50% 2.61% 3.05% 3.13% 4.18% 2.91%

Lactobacillales 0.00% 2.63% 1.36% 1.38% 1.66% 0.52% 0.82% 1.46% 9.01% 15.46% 10.16% 10.23% 12.22% 5.81%

Halanaerobiales 93.70% 22.72% 32.47% 23.85% 50.50% 53.35% 25.04% 44.74% 25.23% 19.08% 32.22% 27.84% 36.33% 36.05%

Clostridiales 0.88% 5.10% 4.34% 3.67% 2.99% 2.71% 5.75% 7.02% 1.50% 2.21% 12.05% 7.67% 8.04% 6.40%

Fusobacteriales 0.00% 0.00% 0.37% 2.75% 0.33% 0.00% 0.00% 1.75% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00%

Caulobacterales 0.00% 0.00% 0.00% 0.46% 0.00% 0.13% 0.00% 0.29% 0.00% 0.20% 0.00% 0.28% 0.96% 0.00%

Rhizobiales 0.11% 0.00% 0.62% 0.92% 3.99% 0.52% 0.08% 1.17% 0.90% 0.00% 0.00% 0.28% 2.25% 0.00%

Rhodobacterales 0.00% 2.16% 2.97% 2.29% 0.00% 0.64% 1.72% 3.22% 3.60% 5.22% 2.18% 0.57% 0.32% 0.58%

Rickettsiales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.29% 0.30% 0.00% 0.00% 2.27% 0.00% 0.58%

Sphingomonadales 0.00% 1.85% 3.47% 2.75% 0.00% 1.80% 0.66% 2.92% 2.70% 3.41% 2.32% 2.84% 3.86% 0.58%

Neisseriales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.64% 0.00%

Desulfovibrionales 0.00% 0.46% 0.25% 0.00% 0.00% 0.26% 0.82% 0.00% 0.00% 0.40% 2.47% 0.00% 0.00% 0.58%

Desulfuromonadales 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Syntrophobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Campylobacterales 2.10% 6.03% 20.32% 9.63% 0.66% 2.32% 11.49% 6.14% 3.90% 11.45% 4.50% 8.81% 0.96% 2.91%

Alteromonadales 0.11% 0.93% 0.87% 0.92% 0.33% 2.71% 3.86% 0.88% 0.30% 0.40% 0.15% 0.85% 0.96% 0.00%

Oceanospirillales 0.33% 36.94% 5.20% 0.92% 0.66% 7.60% 28.24% 5.26% 4.80% 1.00% 6.97% 5.97% 0.96% 1.74%

Pseudomonadales 0.66% 6.80% 5.20% 13.30% 11.63% 9.15% 1.07% 7.89% 16.82% 6.22% 4.35% 5.40% 6.43% 0.58%

Vibrionales 0.00% 0.00% 1.24% 0.92% 0.00% 0.39% 2.63% 0.58% 0.30% 0.00% 0.00% 1.99% 0.64% 0.00%

Xanthomonadales 0.00% 0.00% 0.25% 0.92% 0.00% 0.00% 0.00% 0.29% 0.30% 0.00% 0.58% 0.00% 0.00% 2.33%

Minor 0.44% 1.24% 1.24% 12.84% 1.33% 0.90% 0.90% 2.34% 2.10% 3.41% 4.50% 3.98% 3.54% 1.74%

Taxa

October 2014

Separator Tank

Figure C2: Abundances for all major orders (>2%) 
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Well 1 Well 3 Well 4 Well 5 Well 6 Well 7 Well 10 Well 11 Well 3 Well 4 Well 5 Well 6 Well 13 Well 14

Actinomycetales 0.23% 6.81% 2.39% 0.92% 2.90% 2.50% 0.39% 0.92% 1.95% 3.39% 1.26% 4.11% 0.40% 1.73%

Bacteroidales 0.00% 1.43% 0.27% 0.07% 0.63% 1.83% 2.30% 1.98% 1.52% 0.33% 0.00% 0.00% 0.00% 0.56%

Flavobacteriales 0.00% 0.00% 0.14% 0.00% 0.00% 0.49% 0.42% 1.10% 0.36% 0.00% 0.00% 0.15% 0.00% 0.04%

Bacillales 98.91% 53.76% 82.85% 88.34% 87.49% 22.41% 1.69% 19.07% 21.23% 71.68% 96.04% 81.38% 44.01% 26.90%

Lactobacillales 0.00% 1.43% 0.45% 0.85% 1.29% 1.34% 0.17% 0.77% 1.37% 1.18% 0.52% 0.51% 0.60% 0.00%

Halanaerobiales 0.08% 0.36% 0.23% 0.36% 0.03% 47.07% 23.02% 17.76% 46.35% 3.48% 0.04% 0.81% 0.20% 43.10%

Clostridiales 0.63% 2.87% 1.89% 6.18% 0.90% 2.32% 6.19% 5.85% 4.19% 2.49% 0.43% 2.27% 4.33% 1.98%

Fusobacteriales 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 1.33% 0.67% 0.00% 0.05% 0.00% 0.07% 0.00% 0.00%

Caulobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.43% 0.39% 0.29% 0.00% 0.19% 0.00% 0.00% 0.00% 0.08%

Rhizobiales 0.00% 2.15% 0.00% 0.07% 0.02% 0.18% 0.78% 0.94% 0.00% 0.19% 0.05% 0.22% 0.00% 0.20%

Rhodobacterales 0.00% 0.00% 0.09% 0.00% 0.00% 0.55% 3.77% 2.57% 0.29% 0.24% 0.02% 0.00% 2.22% 2.50%

Rickettsiales 0.00% 0.36% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphingomonadales 0.00% 0.00% 0.27% 0.43% 0.00% 0.73% 1.61% 1.65% 0.36% 1.22% 0.20% 0.29% 0.00% 2.14%

Neisseriales 0.08% 0.00% 0.18% 0.07% 0.05% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.07% 0.00% 0.00%

Desulfovibrionales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.11% 1.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfuromonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.97% 1.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Syntrophobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Campylobacterales 0.00% 0.00% 0.27% 0.07% 0.00% 5.86% 19.20% 15.30% 3.90% 0.28% 0.13% 0.37% 1.11% 9.76%

Alteromonadales 0.00% 0.72% 0.32% 0.00% 0.00% 0.18% 2.55% 2.20% 0.36% 0.19% 0.00% 0.00% 0.30% 0.00%

Oceanospirillales 0.00% 0.36% 0.32% 0.07% 0.00% 3.17% 5.19% 4.28% 3.25% 0.38% 0.22% 0.07% 1.51% 0.85%

Pseudomonadales 0.08% 29.03% 8.64% 2.42% 6.15% 8.49% 26.10% 20.78% 13.36% 12.46% 0.86% 8.87% 45.12% 7.70%

Vibrionales 0.00% 0.00% 0.36% 0.00% 0.00% 0.37% 0.25% 0.08% 0.51% 0.00% 0.04% 0.29% 0.00% 0.00%

Xanthomonadales 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.02% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00%

Minor 0.00% 0.72% 1.26% 0.14% 0.52% 2.08% 1.58% 1.51% 1.01% 1.98% 0.20% 0.51% 0.20% 2.46%

Separator TankTaxa

January 2015

Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 10 Well 11 Well 12 Well 15 Well 17 Well 2 Well 3 Well 4 Well 5 Well 7 Well 8 Well 10 Well 11 Well 12 Well 16

Actinomycetales 1.31% 1.90% 2.26% 9.60% 1.15% 1.76% 2.84% 0.00% 2.58% 1.20% 0.85% 2.63% 0.40% 0.93% 0.41% 3.06% 2.69% 1.60% 0.72% 1.91% 0.77% 0.73% 5.26%

Bacteroidales 0.20% 0.05% 0.00% 0.43% 0.04% 0.29% 0.08% 0.83% 0.47% 1.70% 0.19% 0.00% 0.06% 0.04% 0.06% 0.36% 2.11% 0.06% 1.17% 0.76% 0.34% 0.00% 0.59%

Flavobacteriales 0.03% 0.00% 0.37% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.44% 0.26% 0.19% 0.42% 0.80% 0.06% 0.03% 0.07%

Bacillales 92.99% 92.19% 95.58% 64.71% 94.00% 94.26% 92.69% 94.20% 67.52% 9.37% 11.23% 70.30% 83.80% 68.62% 98.55% 34.06% 11.26% 94.55% 25.16% 71.60% 82.26% 35.64% 27.95%

Lactobacillales 0.43% 0.25% 0.10% 0.43% 0.42% 0.12% 1.46% 0.00% 0.34% 0.12% 0.47% 1.50% 0.12% 0.43% 0.06% 0.31% 0.36% 0.32% 0.50% 0.71% 0.24% 0.29% 1.56%

Halanaerobiales 0.23% 1.65% 0.10% 4.16% 0.00% 0.23% 0.54% 0.00% 2.65% 20.53% 1.23% 0.75% 3.59% 0.26% 0.06% 1.20% 16.13% 0.11% 16.30% 3.86% 0.36% 0.34% 0.89%

Clostridiales 0.36% 0.99% 0.66% 1.18% 0.57% 0.47% 0.82% 0.00% 3.89% 4.52% 15.28% 1.13% 1.78% 0.67% 0.17% 1.84% 4.64% 1.10% 5.13% 3.90% 2.02% 0.16% 7.04%

Fusobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.58% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.88% 0.00% 0.28% 0.02% 0.00% 0.00% 0.15%

Caulobacterales 0.03% 0.00% 0.00% 0.00% 0.14% 0.06% 0.01% 0.00% 0.03% 0.54% 0.00% 0.00% 0.01% 0.00% 0.00% 0.29% 0.68% 0.02% 0.59% 0.00% 0.02% 0.00% 0.00%

Rhizobiales 0.03% 0.00% 0.00% 0.00% 0.18% 0.12% 0.02% 0.28% 0.29% 1.12% 0.09% 0.75% 0.00% 0.87% 0.00% 0.00% 1.04% 0.06% 0.95% 0.16% 0.02% 0.57% 0.00%

Rhodobacterales 0.02% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 3.53% 0.00% 0.00% 0.16% 0.04% 0.00% 0.00% 3.54% 0.00% 2.34% 0.31% 0.04% 0.00% 0.07%

Rickettsiales 0.00% 0.00% 0.07% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphingomonadales 0.58% 0.14% 0.03% 0.00% 0.44% 0.00% 0.10% 0.00% 0.41% 1.04% 0.00% 0.00% 0.40% 0.00% 0.00% 0.00% 1.20% 0.06% 1.34% 0.05% 0.00% 0.00% 0.22%

Neisseriales 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.72% 0.04% 0.28% 0.00% 0.00% 0.02% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.02% 0.00% 0.22%

Desulfovibrionales 0.00% 0.00% 0.00% 0.47% 0.00% 0.00% 0.00% 0.00% 0.22% 1.58% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.79% 0.00% 1.03% 0.00% 0.00% 0.00% 0.00%

Desulfuromonadales 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 1.20% 0.00% 0.00% 0.03% 0.00% 0.00% 0.13% 0.81% 0.00% 1.00% 0.00% 0.00% 0.00% 0.00%

Syntrophobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Campylobacterales 0.02% 0.00% 0.00% 0.55% 0.04% 0.00% 0.01% 0.69% 3.76% 18.58% 1.79% 0.00% 0.75% 0.14% 0.00% 1.42% 16.20% 0.04% 12.18% 1.64% 0.44% 0.26% 1.11%

Alteromonadales 0.07% 0.00% 0.00% 0.92% 0.00% 0.00% 0.01% 0.00% 0.39% 2.12% 0.94% 0.75% 0.21% 0.10% 0.00% 0.87% 1.69% 0.00% 1.42% 0.33% 0.42% 0.00% 1.26%

Oceanospirillales 0.05% 0.00% 0.00% 0.55% 0.12% 0.23% 0.34% 0.00% 0.60% 4.27% 1.60% 0.38% 0.94% 0.30% 0.00% 1.11% 3.12% 0.10% 3.90% 0.91% 0.30% 0.42% 1.41%

Pseudomonadales 3.17% 2.21% 0.70% 15.14% 1.84% 2.23% 0.69% 4.01% 13.73% 25.13% 65.38% 21.80% 6.86% 27.08% 0.64% 54.34% 29.67% 1.56% 23.68% 11.69% 12.45% 60.43% 50.85%

Vibrionales 0.05% 0.11% 0.00% 0.04% 0.14% 0.00% 0.31% 0.00% 0.92% 0.12% 0.19% 0.00% 0.03% 0.10% 0.00% 0.07% 0.06% 0.00% 0.17% 0.13% 0.06% 0.55% 0.15%

Xanthomonadales 0.03% 0.11% 0.00% 0.04% 0.10% 0.06% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.09% 0.06% 0.00% 0.00% 0.00% 0.02% 0.03% 0.38% 0.00% 0.00% 0.15%

Minor 0.40% 0.38% 0.13% 1.49% 0.81% 0.18% 0.07% 0.00% 0.50% 2.36% 0.47% 0.00% 0.72% 0.32% 0.06% 0.51% 1.75% 0.23% 1.70% 0.84% 0.20% 0.60% 1.04%
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March 2015

Separator Tank

Figure C2 (continued): Abundances for all major orders (>2%) 

Figure C2 (continued): Abundances for all major orders (>2%) 
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Well 1 Well 3 Well 4 Well 5 Well 10 Well 12 Well 13 Well 15 Well 2 Well 5 Well 6 Well 8 Well 11 Well 14

Methanomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 0.00% 0.00% 0.00% 0.00%

Methanosarcinales 0.00% 0.00% 0.00% 0.46% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria iii1-15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria B110 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloracidobacteria RB41 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00%

Acidimicrobiales 0.00% 0.00% 0.00% 1.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bifidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Coriobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gaiellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Solirubrobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00%

Armatimonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteroidetes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cytophagales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphingobacteriales 0.00% 0.00% 0.12% 0.92% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.64% 0.00%

Rhodothermale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Saprospirales 0.00% 0.00% 0.00% 1.83% 0.00% 0.39% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaerolineales 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloroflexi AKYG885 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria MLE1-12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria YS2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Stramenopiles 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Streptophyta 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.58%

Nostocales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chroococcales 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Oscillatoriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 0.00% 0.00% 0.00% 0.00%

Pseudanabaenales 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synechococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deferribacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemellales 0.11% 0.15% 0.25% 0.00% 0.33% 0.13% 0.00% 0.29% 0.00% 1.81% 0.15% 0.28% 0.00% 0.00%

Thermoanaerobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Erysipelotrichales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.29% 0.60% 0.20% 0.15% 0.00% 0.00% 0.58%

Victivallales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nitrospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerae MSBL9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pirellulale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Planctomycetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Alphaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Alphaproteobacteria BD7-3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Kiloniellales 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodospirillales 0.00% 0.00% 0.37% 0.46% 0.00% 0.00% 0.49% 0.00% 0.30% 0.20% 0.00% 0.00% 0.00% 0.00%

Unclassified Betaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.64% 0.00%

Burkholderiales 0.11% 0.15% 0.00% 0.46% 0.33% 0.00% 0.08% 0.29% 0.00% 0.00% 0.87% 0.28% 0.64% 0.00%

Hydrogenophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.73% 0.00% 0.00% 0.00%

Betaproteobacteria MND1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.32% 0.00%

Procabacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodocyclales 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 1.42% 0.00% 0.00%

Bdellovibrionales 0.00% 0.00% 0.00% 0.92% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Myxococcales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00%

Entotheonellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Gammaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.42% 0.00% 0.00%

Gammaproteobacteria 34P16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidithiobacillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aeromonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chromatiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Enterobacteriales 0.00% 0.00% 0.12% 0.46% 0.33% 0.00% 0.00% 0.58% 0.00% 1.20% 0.29% 0.00% 1.29% 0.00%

Legionellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pasteurellales 0.00% 0.00% 0.00% 0.46% 0.33% 0.00% 0.00% 0.29% 0.00% 0.00% 0.44% 0.00% 0.00% 0.00%

Thiotrichales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Marinicellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphaerochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Spirochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Leptospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synergistales 0.00% 0.00% 0.00% 0.92% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 1.45% 0.00% 0.00% 0.00%

Unclassified Mollicutes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acholeplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaeroplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mollicutes RF39 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thermotogales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Verrucomicrobia 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Verrucomicrobiales 0.11% 0.31% 0.12% 1.38% 0.00% 0.00% 0.00% 0.00% 0.60% 0.00% 0.00% 0.28% 0.00% 0.58%

Pedosphaerales 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chthoniobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteria 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Taxon Separator Storage Tank

October 2014

Figure C3: Abundances for all minor orders (<2%), October samples. 
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Well 1 Well 2 Well 3 Well 4 Well 5 Well 7 Well 8 Well 9 Well 10 Well 11 Well 12 Well 13 Well 14 Well 15 Well 16 Well 1 Well 2 Well 3 Well 4 Well 5 Well 8 Well 9 Well 10 Well 11 Well 12 Well 13 Well 14 Well 16 Well 17

Methanomicrobiales 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methanosarcinales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria iii1-15 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Acidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria B110 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloracidobacteria RB41 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidimicrobiales 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bifidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Coriobacteriales 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gaiellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Solirubrobacterales 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Armatimonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteroidetes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cytophagales 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.99% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.37% 0.00% 0.00%

Sphingobacteriales 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Rhodothermale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Saprospirales 0.02% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.40% 0.00%

Anaerolineales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloroflexi AKYG885 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria MLE1-12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria YS2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Stramenopiles 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Streptophyta 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.02% 0.00% 0.00% 0.06% 0.00% 0.06% 0.00%

Nostocales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chroococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Oscillatoriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pseudanabaenales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synechococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deferribacterales 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemellales 0.03% 0.01% 0.07% 0.03% 1.70% 0.00% 0.00% 0.07% 0.00% 0.02% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.10% 0.03% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thermoanaerobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Erysipelotrichales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.06% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.19% 0.09% 0.00%

Victivallales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nitrospirales 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.33% 0.07% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.70% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerae MSBL9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pirellulale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Planctomycetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Alphaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Alphaproteobacteria BD7-3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Kiloniellales 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodospirillales 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.06% 0.13% 0.00% 0.00% 0.00% 0.00% 0.37% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.46% 0.00%

Unclassified Betaproteobacteria 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.51% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Burkholderiales 0.01% 0.00% 0.00% 0.08% 0.00% 0.09% 0.07% 0.00% 0.02% 0.16% 0.00% 0.07% 0.00% 0.02% 0.25% 0.03% 0.00% 0.00% 0.00% 0.05% 0.10% 0.03% 0.00% 0.00% 0.64% 0.00% 0.19% 0.03% 0.00%

Hydrogenophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.32% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Betaproteobacteria MND1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylophilales 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Procabacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodocyclales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.23% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.42% 0.00% 0.00% 0.05% 0.00% 0.09% 0.00% 0.00%

Bdellovibrionales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Desulfobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.25% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.09% 0.00% 0.00%

Myxococcales 0.00% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Entotheonellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Gammaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Gammaproteobacteria 34P16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidithiobacillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aeromonadales 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Chromatiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Enterobacteriales 0.58% 0.00% 0.02% 0.56% 0.04% 0.09% 0.07% 0.35% 0.13% 0.37% 0.00% 0.85% 0.23% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.16% 0.18% 0.51% 0.02% 0.00% 0.28% 0.37% 0.00%

Legionellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pasteurellales 0.10% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.02% 0.00% 0.07% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thiotrichales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Marinicellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphaerochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Spirochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Leptospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synergistales 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.02% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00%

Unclassified Mollicutes 0.05% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acholeplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaeroplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mollicutes RF39 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thermotogales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Verrucomicrobia 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Verrucomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pedosphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chthoniobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteria 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Taxon

November 2014

Separator Tank

Figure C3 (continued): Abundances for all minor orders (<2%), November samples. 
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Well 1 Well 3 Well 4 Well 5 Well 6 Well 7 Well 10 Well 11 Well 3 Well 4 Well 5 Well 6 Well 13 Well 14

Methanomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methanosarcinales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria iii1-15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04%

Acidobacteria B110 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloracidobacteria RB41 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00%

Acidimicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.85% 0.00% 0.00% 0.10% 0.00%

Bifidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00%

Coriobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00%

Gaiellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Solirubrobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00%

Armatimonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteroidetes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cytophagales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphingobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00%

Rhodothermale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Saprospirales 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaerolineales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloroflexi AKYG885 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria MLE1-12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria YS2 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Stramenopiles 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Streptophyta 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nostocales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chroococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Oscillatoriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pseudanabaenales 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.06% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synechococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deferribacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemellales 0.00% 0.00% 0.09% 0.14% 0.00% 0.43% 0.00% 0.02% 0.22% 0.00% 0.07% 0.29% 0.00% 0.36%

Thermoanaerobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Erysipelotrichales 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.32%

Victivallales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nitrospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.04% 0.00% 0.00% 0.12%

Phycisphaerae MSBL9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gemmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00%

Pirellulale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Planctomycetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Alphaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Alphaproteobacteria BD7-3 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Kiloniellales 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodospirillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.03% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Betaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Burkholderiales 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00%

Hydrogenophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.48%

Betaproteobacteria MND1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00%

Procabacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodocyclales 0.00% 0.00% 0.00% 0.00% 0.50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bdellovibrionales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Myxococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Entotheonellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Gammaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gammaproteobacteria 34P16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidithiobacillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aeromonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chromatiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Enterobacteriales 0.00% 0.36% 0.77% 0.00% 0.02% 0.49% 0.22% 0.33% 0.36% 0.05% 0.00% 0.07% 0.10% 0.40%

Legionellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pasteurellales 0.00% 0.36% 0.05% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.14% 0.05% 0.07% 0.00% 0.20%

Thiotrichales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12%

Marinicellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphaerochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Spirochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Leptospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synergistales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.36% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Mollicutes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acholeplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaeroplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mollicutes RF39 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thermotogales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Verrucomicrobia 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Verrucomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pedosphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chthoniobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40%

Unclassified Bacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Taxon

January 2015

Separator Tank

Figure C3 (continued): Abundances for all minor orders (<2%), January samples. 
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Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 10 Well 11 Well 12 Well 15 Well 17 Well 2 Well 3 Well 4 Well 5 Well 7 Well 8 Well 10 Well 11 Well 12 Well 16

Methanomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methanosarcinales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria iii1-15 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidobacteria B110 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Chloracidobacteria RB41 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.22%

Acidimicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bifidobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Coriobacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07%

Gaiellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Solirubrobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Armatimonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteroidetes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cytophagales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.11% 0.02% 0.00% 0.00% 0.00%

Sphingobacteriales 0.00% 0.00% 0.03% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodothermale 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Saprospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaerolineales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chloroflexi AKYG885 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria MLE1-12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Cyanobacteria YS2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00%

Stramenopiles 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Streptophyta 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.01% 0.00% 0.01% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00%

Nostocales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.34% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chroococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00%

Oscillatoriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pseudanabaenales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Synechococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deferribacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Gemellales 0.00% 0.00% 0.00% 0.49% 0.32% 0.12% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.07% 0.00% 0.00% 0.00% 0.04% 0.06% 0.16% 0.22%

Thermoanaerobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Erysipelotrichales 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.10% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00%

Victivallales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Nitrospirales 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerae MSBL9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Phycisphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00%

Gemmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pirellulale 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Planctomycetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Alphaproteobacteria 0.13% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Alphaproteobacteria BD7-3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Kiloniellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodospirillales 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.16% 0.00% 0.08% 0.02% 0.00% 0.00% 0.00%

Unclassified Betaproteobacteria 0.00% 0.00% 0.00% 0.08% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.06% 0.00% 0.00% 0.03% 0.00%

Burkholderiales 0.03% 0.00% 0.00% 0.02% 0.02% 0.06% 0.01% 0.00% 0.00% 0.17% 0.00% 0.00% 0.01% 0.10% 0.00% 0.00% 0.06% 0.02% 0.14% 0.11% 0.00% 0.00% 0.00%

Hydrogenophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Betaproteobacteria MND1 0.00% 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Procabacteriales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rhodocyclales 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bdellovibrionales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 0.00% 0.22% 0.00% 0.00% 0.00% 0.00%

Myxococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Entotheonellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00%

Unclassified Gammaproteobacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Gammaproteobacteria 34P16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acidithiobacillales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Aeromonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chromatiales 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.03% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00%

Enterobacteriales 0.02% 0.07% 0.00% 0.88% 0.00% 0.00% 0.00% 0.00% 0.45% 0.83% 0.38% 0.00% 0.07% 0.06% 0.00% 0.24% 0.29% 0.02% 0.20% 0.29% 0.06% 0.34% 0.30%

Legionellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00%

Methylococcales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Pasteurellales 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.06% 0.06% 0.02% 0.00% 0.00% 0.22%

Thiotrichales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00%

Marinicellales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sphaerochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Spirochaetales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Leptospirales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

Synergistales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.22% 0.16% 0.04% 0.00% 0.00%

Unclassified Mollicutes 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Acholeplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Anaeroplasmatales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mollicutes RF39 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thermotogales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00%

Unclassified Verrucomicrobia 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Verrucomicrobiales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00%

Pedosphaerales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Chthoniobacterales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.02% 0.00% 0.00%

Taxon

March 2015

Separator Tank

Figure C3 (continued): Abundances for all minor orders (<2%), March samples. 
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Well 1 Well 3 Well 4 Well 5 Well 10 Well 12 Well 13 Well 15 Well 2 Well 5 Well 6 Well 8 Well 11 Well 16 Well 17

Corynebacterium 3.13% 5.41% 6.09% 5.07% 3.85% 0.00% 5.44% 1.47% 15.06% 15.29% 0.00% 8.55% 0.00% 8.00% 25.73%

Unclassified Micrococcaceae 0.00% 0.15% 0.00% 0.00% 7.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Micrococcus 3.13% 0.31% 0.50% 0.46% 0.00% 0.00% 0.25% 0.29% 2.11% 2.41% 0.00% 2.56% 0.00% 0.00% 1.75%

Rothia 0.00% 0.00% 0.00% 0.46% 3.85% 0.00% 0.16% 0.29% 0.90% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteroidales 0.00% 1.55% 1.49% 2.76% 0.00% 0.00% 3.62% 0.88% 0.90% 0.60% 0.00% 1.99% 0.00% 0.00% 0.00%

Bacteroides 0.00% 0.31% 0.12% 0.00% 0.00% 0.00% 0.08% 0.59% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Marinilabiaceae 0.00% 0.00% 2.49% 0.00% 0.00% 2.13% 2.88% 0.59% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Salegentibacter 0.00% 0.31% 0.62% 1.38% 0.00% 2.13% 0.08% 0.29% 0.90% 0.20% 0.00% 0.28% 0.00% 0.00% 0.00%

Unclassified Bacillales 6.25% 0.00% 0.00% 0.00% 3.85% 4.26% 0.00% 0.00% 0.00% 0.00% 5.45% 0.00% 4.76% 20.00% 0.00%

Unclassified Bacillaceae 21.88% 0.00% 0.12% 0.00% 0.00% 12.77% 0.00% 0.00% 0.00% 0.00% 16.36% 0.00% 33.33% 4.00% 0.00%

Bacillus 0.00% 0.00% 0.00% 0.00% 7.69% 4.26% 0.00% 0.29% 0.30% 0.00% 1.82% 0.00% 0.00% 0.00% 0.00%

Lysinibacillus 0.00% 0.00% 0.00% 0.00% 0.00% 2.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Staphylococcus 0.00% 0.31% 0.12% 0.92% 0.00% 0.00% 0.49% 1.47% 0.90% 2.01% 0.00% 2.28% 14.29% 0.00% 2.92%

Lactobacillus 0.00% 0.31% 0.12% 0.00% 0.00% 0.00% 0.08% 0.00% 0.60% 0.80% 0.00% 0.28% 9.52% 0.00% 2.92%

Lactococcus 0.00% 0.77% 0.75% 0.46% 0.00% 0.00% 0.16% 0.59% 7.23% 12.88% 1.82% 9.40% 0.00% 0.00% 0.00%

Streptococcus 0.00% 1.55% 0.37% 0.92% 0.00% 4.26% 0.41% 0.88% 1.20% 1.61% 0.00% 0.57% 0.00% 0.00% 2.92%

Unclassified Clostridiales 0.00% 0.31% 0.62% 0.46% 0.00% 0.00% 0.08% 0.88% 0.00% 0.00% 0.00% 0.57% 0.00% 0.00% 0.58%

Clostridiisalibacter 0.00% 0.00% 1.49% 0.00% 0.00% 0.00% 2.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Clostridium 0.00% 0.00% 0.00% 0.00% 0.00% 2.13% 0.00% 0.00% 0.30% 0.00% 0.00% 0.00% 9.52% 0.00% 0.00%

Unclassified Lachnospiraceae 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.25% 0.00% 0.00% 0.40% 0.00% 0.00% 0.00% 0.00% 1.17%

Unclassified Peptostreptococcaceae 0.00% 0.93% 0.25% 0.00% 0.00% 0.00% 0.00% 1.47% 0.00% 0.00% 1.82% 0.00% 0.00% 0.00% 0.58%

Sporomusa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Peptoniphilus 0.00% 1.24% 0.00% 0.46% 0.00% 0.00% 0.00% 0.88% 0.30% 0.40% 1.82% 4.84% 0.00% 0.00% 0.00%

Unclassified Halanaerobiaceae 18.75% 21.79% 30.60% 23.50% 30.77% 10.64% 24.14% 44.12% 24.10% 18.51% 16.36% 26.50% 4.76% 36.00% 33.92%

Halanaerobium 6.25% 0.62% 1.49% 0.00% 19.23% 0.00% 0.74% 0.29% 0.60% 0.40% 3.64% 1.14% 4.76% 0.00% 0.58%

Halanaerobacter 0.00% 0.00% 0.00% 0.00% 0.00% 6.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Propionigenium 0.00% 0.00% 0.00% 2.76% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Thalassospira 3.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Hyphomonas 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.82% 0.00% 0.00% 0.00% 0.58%

Unclassified Rhodobacteraceae 0.00% 1.70% 2.11% 2.30% 0.00% 0.00% 1.48% 2.94% 3.61% 4.63% 5.45% 0.57% 0.00% 0.00% 0.00%

Loktanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Sphingomonadales 0.00% 0.77% 2.49% 2.76% 0.00% 0.00% 0.33% 2.35% 2.71% 3.42% 0.00% 2.85% 0.00% 0.00% 0.00%

Unclassified Erythrobacteraceae 0.00% 0.62% 0.00% 0.00% 0.00% 2.13% 0.00% 0.00% 0.00% 0.00% 1.82% 0.00% 0.00% 0.00% 0.00%

Erythrobacter 0.00% 0.00% 0.00% 0.00% 0.00% 6.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Methylophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.76% 0.00% 0.00%

Unclassified Neisseriaceae 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Neisseria 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.76% 0.00% 0.00%

Unclassified Rhodocyclaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.82% 1.42% 0.00% 0.00% 0.00%

Desulfomicrobium 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Desulfuromonadaceae 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 0.66% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.58%

Desulfuromonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Arcobacter 15.63% 5.87% 20.40% 9.68% 0.00% 2.13% 11.12% 6.18% 3.92% 11.07% 1.82% 8.83% 4.76% 0.00% 2.92%

Campylobacter 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40% 3.64% 0.00% 0.00% 0.00% 0.00%

Marinobacter 0.00% 0.31% 0.50% 0.46% 3.85% 6.38% 0.99% 0.59% 0.30% 0.00% 1.82% 0.85% 0.00% 0.00% 0.00%

Idiomarina 0.00% 0.62% 0.37% 0.46% 0.00% 2.13% 2.80% 0.00% 0.00% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00%

Shewanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Alcanivorax 0.00% 0.00% 0.37% 0.00% 0.00% 2.13% 2.31% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Halomonadaceae 3.13% 35.24% 1.49% 0.46% 3.85% 2.13% 0.91% 0.88% 0.60% 0.60% 1.82% 0.85% 0.00% 0.00% 1.75%

Halomonas 0.00% 0.77% 1.62% 0.00% 0.00% 0.00% 13.10% 1.76% 1.20% 0.00% 1.82% 3.99% 0.00% 0.00% 0.00%

Marinobacterium 6.25% 0.00% 1.00% 0.46% 0.00% 4.26% 9.47% 1.47% 2.11% 0.00% 1.82% 1.14% 0.00% 0.00% 0.00%

Oleibacter 0.00% 0.77% 0.75% 0.00% 0.00% 0.00% 0.08% 0.59% 0.60% 0.40% 7.27% 0.00% 0.00% 0.00% 0.00%

Unclassified Moraxellaceae 3.13% 0.77% 0.87% 0.46% 0.00% 0.00% 0.16% 1.18% 0.30% 1.01% 0.00% 0.00% 0.00% 0.00% 0.00%

Acinetobacter 3.13% 0.62% 0.50% 1.84% 7.69% 8.51% 0.08% 0.59% 0.00% 0.40% 5.45% 0.28% 0.00% 4.00% 0.00%

Enydrobacter 0.00% 3.40% 1.37% 7.83% 0.00% 0.00% 0.41% 1.18% 13.25% 0.80% 0.00% 0.28% 0.00% 0.00% 0.58%

Psychrobacter 0.00% 0.62% 1.00% 0.92% 3.85% 2.13% 0.00% 2.35% 0.00% 1.21% 3.64% 0.00% 0.00% 8.00% 0.00%

Unclassified Pseudomonadaceae 0.00% 0.00% 0.00% 0.46% 0.00% 2.13% 0.00% 0.88% 0.00% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00%

Pseudomonas 6.25% 1.39% 1.49% 1.84% 3.85% 2.13% 0.41% 1.76% 3.31% 2.41% 0.00% 4.84% 0.00% 12.00% 0.00%

Unclassified Xanthomonadaceae 0.00% 0.00% 0.25% 0.92% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.34%

Stenotrophomonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Minor genera 0.00% 7.42% 11.07% 23.50% 0.00% 6.38% 12.77% 13.24% 9.04% 9.26% 10.91% 14.25% 4.76% 8.00% 12.28%

Taxon Separator Storage Tank

October 2014

Figure C4: Genus level taxonomy based on 16S rRNA sequencing, October samples. 
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Well 1 Well 2 Well 3 Well 4 Well 5 Well 7 Well 8 Well 9 Well 10 Well 11 Well 12 Well 13 Well 14 Well 15 Well 16 Well 1 Well 2 Well 3 Well 4 Well 5 Well 8 Well 9 Well 10 Well 11 Well 12 Well 13 Well 14 Well 16 Well 17

Corynebacterium 0.46% 0.84% 0.70% 2.62% 3.87% 0.37% 0.33% 1.12% 0.70% 0.33% 2.76% 2.38% 0.95% 0.47% 0.57% 1.86% 0.93% 1.48% 1.01% 4.40% 0.38% 0.00% 1.92% 0.93% 2.27% 0.51% 0.37% 0.85% 2.94%

Unclassified Micrococcaceae 0.05% 0.02% 0.00% 0.03% 0.07% 0.00% 0.00% 0.00% 0.31% 0.03% 0.00% 0.09% 0.00% 0.03% 0.00% 0.05% 0.04% 0.00% 0.06% 0.22% 0.00% 0.04% 0.17% 0.00% 0.06% 0.00% 0.00% 0.07% 0.00%

Micrococcus 0.10% 0.09% 0.07% 0.08% 0.47% 0.00% 0.26% 0.21% 1.20% 0.08% 0.55% 0.59% 0.24% 0.03% 0.19% 0.28% 0.06% 0.00% 0.19% 0.47% 0.07% 0.27% 0.47% 0.00% 0.25% 0.19% 0.00% 0.11% 0.42%

Rothia 0.02% 0.06% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.02% 0.03% 0.00% 0.00% 0.11% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacteroidales 0.13% 0.00% 1.34% 0.13% 0.00% 0.09% 0.20% 0.14% 0.00% 1.28% 0.00% 0.04% 0.00% 0.00% 0.70% 0.00% 0.00% 0.99% 0.00% 0.00% 0.05% 0.57% 0.00% 0.25% 0.00% 0.64% 2.41% 0.11% 0.00%

Bacteroides 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.45% 0.00% 0.00% 0.00% 0.00% 0.28% 0.70% 0.00%

Unclassified Marinilabiaceae 0.00% 0.00% 0.22% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.05% 0.00% 0.00% 0.00% 0.05% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Salegentibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacillales 7.23% 27.32% 1.07% 0.85% 21.02% 1.86% 1.96% 0.63% 7.88% 4.20% 1.66% 4.07% 20.57% 24.83% 0.63% 26.96% 26.69% 0.00% 27.27% 24.46% 24.17% 5.00% 23.51% 0.00% 22.43% 1.85% 0.00% 3.14% 1.26%

Unclassified Bacillaceae 14.23% 61.45% 53.22% 26.77% 47.99% 89.03% 84.38% 4.77% 11.55% 9.00% 75.97% 8.69% 50.83% 55.98% 26.32% 60.10% 63.10% 75.37% 59.88% 57.93% 53.86% 11.97% 49.39% 1.26% 49.28% 82.95% 0.93% 8.45% 68.91%

Bacillus 1.74% 5.34% 0.19% 0.74% 4.49% 0.79% 0.20% 1.75% 38.30% 0.92% 0.55% 1.61% 3.31% 4.69% 0.13% 5.08% 4.77% 0.49% 5.63% 5.25% 4.42% 1.21% 4.43% 1.52% 4.23% 0.83% 0.00% 0.48% 0.42%

Lysinibacillus 0.32% 0.17% 0.00% 0.26% 0.18% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.29% 0.00% 0.48% 0.00% 0.18% 0.14% 0.00% 0.19% 0.14% 0.34% 0.00% 0.60% 0.08% 0.21% 0.19% 0.00% 0.26% 0.00%

Staphylococcus 1.14% 0.62% 0.17% 0.69% 2.34% 0.09% 0.72% 0.84% 0.78% 0.23% 1.66% 0.26% 0.95% 0.43% 0.19% 0.69% 0.58% 0.00% 0.70% 1.62% 0.75% 0.72% 2.64% 0.42% 0.90% 0.51% 0.28% 0.52% 1.68%

Lactobacillus 0.16% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.24% 0.00% 0.13% 0.28% 0.00% 0.00% 0.00% 0.19% 0.02% 0.23% 0.04% 0.08% 0.00% 0.00% 0.00% 0.07% 0.00%

Lactococcus 0.15% 0.00% 0.19% 0.19% 0.04% 0.00% 0.13% 0.00% 0.06% 0.03% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.04% 0.60% 0.07% 0.04% 0.00% 0.00% 0.33% 0.00% 0.09% 1.33% 0.00%

Streptococcus 0.17% 0.20% 0.17% 0.37% 1.82% 0.05% 0.46% 0.35% 1.29% 0.00% 0.00% 0.04% 0.47% 0.03% 0.06% 0.55% 0.06% 0.00% 0.14% 0.74% 0.09% 0.04% 0.82% 0.08% 0.84% 0.06% 0.00% 0.30% 0.00%

Unclassified Clostridiales 0.00% 0.00% 0.05% 0.08% 0.00% 0.23% 0.00% 0.14% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.14% 0.00% 0.00% 0.00% 0.05% 0.34% 0.09% 0.00% 0.03% 0.00% 0.28% 1.07% 0.00%

Clostridiisalibacter 0.13% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.55% 0.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 1.34% 0.00% 0.00% 0.00%

Clostridium 1.21% 0.00% 0.00% 0.61% 0.00% 0.00% 0.00% 1.68% 0.00% 2.02% 2.49% 1.50% 1.18% 0.40% 0.00% 0.00% 0.00% 1.48% 0.00% 0.00% 0.00% 1.25% 0.06% 2.02% 0.00% 0.00% 0.19% 0.04% 0.84%

Unclassified Lachnospiraceae 0.00% 0.00% 0.00% 0.05% 0.00% 0.05% 0.07% 0.07% 0.00% 0.87% 0.00% 0.00% 0.00% 0.00% 0.57% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.27% 0.00% 0.00% 0.00% 0.38% 0.56% 0.15% 0.00%

Unclassified Peptostreptococcaceae 6.66% 0.09% 0.49% 12.06% 0.00% 0.19% 0.00% 11.84% 0.00% 0.41% 0.28% 9.44% 0.24% 0.75% 3.23% 0.00% 0.00% 0.00% 0.60% 0.00% 0.00% 0.19% 2.57% 12.65% 0.00% 0.00% 4.82% 0.00% 1.68%

Sporomusa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 0.00%

Peptoniphilus 0.00% 0.03% 0.19% 0.56% 0.69% 0.00% 0.26% 0.00% 0.00% 0.05% 0.28% 0.00% 0.47% 0.00% 0.19% 0.23% 0.10% 0.99% 0.00% 0.14% 0.00% 0.00% 0.19% 0.00% 0.06% 0.00% 0.00% 0.00% 0.84%

Unclassified Halanaerobiaceae 0.51% 0.02% 28.90% 0.66% 5.26% 1.77% 2.48% 0.14% 26.47% 11.40% 0.83% 2.03% 0.24% 0.98% 14.33% 0.05% 0.01% 5.42% 0.04% 0.03% 2.19% 41.76% 1.55% 0.00% 0.09% 3.96% 17.42% 47.31% 2.10%

Halanaerobium 0.14% 0.03% 3.40% 0.19% 0.36% 0.05% 0.13% 0.00% 3.27% 5.00% 0.28% 0.77% 0.24% 0.00% 0.82% 0.03% 0.00% 0.00% 0.00% 0.00% 0.24% 9.44% 0.84% 0.00% 0.00% 0.13% 1.20% 7.71% 0.00%

Halanaerobacter 0.00% 0.00% 0.00% 0.00% 0.04% 0.42% 0.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.00% 6.50% 0.00% 0.00% 0.00% 0.00%

Propionigenium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.72% 0.00% 0.00% 0.79% 0.00% 0.00% 0.00% 0.00% 0.57% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 1.20% 0.04% 0.00%

Thalassospira 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Hyphomonas 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.85% 0.00%

Unclassified Rhodobacteraceae 0.03% 0.00% 0.00% 0.05% 0.04% 0.00% 0.13% 0.07% 0.00% 1.79% 0.00% 0.02% 0.00% 0.00% 0.63% 0.07% 0.00% 0.00% 0.00% 0.00% 0.38% 0.11% 0.00% 0.00% 0.02% 0.00% 0.65% 1.73% 0.00%

Loktanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Sphingomonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Erythrobacteraceae 0.00% 0.03% 0.02% 0.00% 0.91% 0.00% 0.00% 0.00% 0.00% 0.62% 0.00% 0.00% 0.71% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.87% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00%

Erythrobacter 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.44% 0.00%

Unclassified Methylophilales 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Neisseriaceae 0.04% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.06% 0.49% 0.02% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Neisseria 0.05% 0.00% 0.00% 0.29% 0.36% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.02% 0.11% 0.00% 0.00% 0.00% 0.08% 0.02% 0.00% 0.00% 0.00% 0.00%

Unclassified Rhodocyclaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfomicrobium 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 1.44% 0.83% 0.26% 0.00% 0.00% 0.44% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.83% 0.00% 0.00%

Unclassified Desulfuromonadaceae 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.46% 0.00% 0.00%

Desulfuromonas 0.00% 0.00% 0.00% 0.13% 0.00% 0.09% 0.00% 0.00% 0.00% 1.13% 0.00% 0.00% 0.00% 0.00% 0.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.11% 0.00% 0.00%

Arcobacter 1.08% 0.12% 0.12% 1.59% 3.03% 0.84% 0.78% 1.61% 4.19% 15.07% 1.10% 7.22% 0.95% 0.75% 14.01% 0.05% 0.27% 0.00% 0.02% 0.00% 0.58% 8.68% 1.86% 1.10% 0.02% 0.45% 21.41% 8.93% 0.00%

Campylobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Marinobacter 0.39% 0.12% 0.12% 0.69% 0.00% 0.00% 0.00% 0.42% 0.00% 0.90% 0.00% 0.51% 0.00% 0.08% 0.76% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.28% 0.55% 0.00%

Idiomarina 1.01% 0.00% 0.00% 0.58% 0.22% 0.05% 0.00% 0.98% 0.00% 0.13% 0.00% 1.54% 0.24% 0.00% 0.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.27% 0.00% 1.35% 0.00% 0.13% 0.09% 0.00% 0.00%

Shewanella 0.01% 0.00% 0.00% 0.13% 0.18% 0.14% 0.13% 0.00% 0.00% 1.05% 0.00% 0.20% 0.00% 0.13% 0.95% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.06% 0.00% 0.00% 0.00% 1.39% 0.00% 0.00%

Alcanivorax 0.15% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00% 0.00% 0.44% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Halomonadaceae 0.48% 0.03% 4.25% 1.03% 0.00% 0.05% 0.52% 0.49% 0.00% 2.31% 0.00% 2.09% 2.13% 0.30% 2.66% 0.00% 0.00% 0.00% 0.12% 0.00% 0.12% 1.02% 0.20% 0.42% 0.36% 0.32% 3.52% 1.25% 0.00%

Halomonas 0.27% 0.00% 0.10% 0.42% 0.00% 0.00% 0.00% 0.77% 0.00% 1.26% 0.00% 1.14% 0.24% 0.32% 0.00% 0.00% 0.01% 0.00% 0.12% 0.03% 0.09% 0.72% 0.19% 1.35% 0.09% 0.00% 0.09% 0.92% 0.00%

Marinobacterium 0.15% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.42% 0.00% 0.74% 0.00% 0.13% 0.00% 0.02% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00%

Oleibacter 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15% 0.00%

Unclassified Moraxellaceae 0.01% 0.00% 0.02% 0.19% 0.00% 0.37% 0.59% 0.07% 0.03% 2.67% 0.00% 1.43% 0.00% 0.27% 2.47% 0.00% 0.00% 0.00% 0.00% 0.03% 0.68% 0.00% 0.02% 0.08% 0.28% 0.19% 3.52% 0.15% 0.00%

Acinetobacter 0.04% 0.00% 0.02% 0.03% 0.07% 0.00% 0.00% 0.07% 0.00% 1.08% 0.55% 0.15% 0.00% 0.00% 1.14% 0.03% 0.03% 0.49% 0.00% 0.16% 0.03% 0.00% 0.00% 0.00% 0.21% 0.26% 0.65% 0.00% 1.26%

Enydrobacter 0.52% 0.00% 0.07% 0.48% 0.00% 0.79% 1.11% 0.00% 0.00% 0.00% 0.00% 0.51% 0.00% 0.00% 9.19% 0.00% 0.00% 0.00% 0.23% 0.44% 0.00% 0.00% 0.11% 0.00% 0.13% 1.72% 16.03% 1.00% 0.00%

Psychrobacter 0.01% 0.00% 0.05% 0.05% 0.15% 0.00% 0.00% 0.00% 0.03% 16.91% 0.00% 1.10% 0.00% 1.70% 0.00% 0.00% 0.01% 0.00% 0.08% 0.00% 1.35% 0.34% 0.71% 0.00% 0.11% 0.19% 0.09% 3.06% 0.00%

Unclassified Pseudomonadaceae 5.18% 0.21% 0.00% 0.08% 0.51% 0.05% 0.00% 0.00% 0.62% 0.87% 0.00% 4.91% 0.95% 0.75% 0.19% 0.18% 0.06% 0.00% 0.04% 0.05% 0.63% 1.67% 0.22% 0.08% 0.62% 0.13% 0.09% 1.66% 1.68%

Pseudomonas 53.07% 1.01% 1.36% 44.10% 0.99% 1.21% 1.05% 67.41% 1.12% 4.82% 7.18% 39.38% 11.11% 4.26% 6.47% 0.90% 0.49% 8.87% 1.01% 0.16% 5.19% 3.49% 0.50% 74.20% 2.11% 1.09% 4.54% 0.52% 11.76%

Unclassified Xanthomonadaceae 0.05% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.43% 0.00% 0.00% 0.00% 1.25% 0.00% 0.00% 0.00% 0.00%

Stenotrophomonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.27% 0.00% 0.00% 0.00% 1.67% 0.00% 0.00% 0.00% 0.00%

Minor genera 2.86% 2.21% 3.47% 2.54% 4.60% 1.30% 3.14% 3.22% 2.07% 9.58% 2.49% 6.54% 3.55% 1.98% 10.59% 2.37% 2.33% 3.94% 2.55% 2.67% 3.25% 7.01% 6.12% 1.85% 5.63% 1.98% 14.92% 5.68% 4.20%

Separator TankTaxon

November 2014

Figure C4 (continued): Genus level taxonomy based on 16S rRNA sequencing, November samples. 
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Well 1 Well 3 Well 4 Well 5 Well 6 Well 7 Well 10 Well 11 Well 3 Well 4 Well 5 Well 6 Well 13 Well 14

Corynebacterium 0.00% 5.73% 1.76% 0.97% 2.44% 1.19% 0.37% 0.50% 1.36% 1.11% 0.61% 3.23% 0.21% 1.39%

Unclassified Micrococcaceae 0.00% 0.00% 0.00% 0.19% 0.02% 0.35% 0.03% 0.03% 0.00% 0.21% 0.02% 0.00% 0.00% 0.06%

Micrococcus 0.00% 0.36% 0.23% 0.00% 0.25% 0.91% 0.00% 0.05% 0.09% 0.74% 0.15% 0.37% 0.10% 0.06%

Rothia 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.08% 0.09% 0.05% 0.06% 0.07% 0.00% 0.17%

Unclassified Bacteroidales 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 1.29% 0.97% 1.45% 0.00% 0.00% 0.00% 0.00% 0.00%

Bacteroides 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.29% 0.21% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Marinilabiaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.11% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Salegentibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacillales 2.03% 0.36% 1.62% 26.90% 25.53% 4.88% 0.60% 5.57% 5.98% 19.14% 27.41% 2.57% 12.63% 8.03%

Unclassified Bacillaceae 96.25% 48.75% 78.80% 58.67% 55.37% 12.76% 0.92% 12.27% 10.42% 45.74% 61.17% 77.13% 26.18% 15.30%

Bacillus 0.23% 0.00% 1.49% 6.43% 4.42% 1.05% 0.06% 1.21% 2.08% 5.92% 5.16% 0.51% 2.87% 1.15%

Lysinibacillus 0.00% 0.00% 0.00% 0.19% 0.29% 0.56% 0.00% 0.11% 0.09% 0.21% 0.30% 0.00% 0.21% 0.35%

Staphylococcus 0.00% 2.87% 0.59% 0.97% 0.81% 1.88% 0.03% 0.29% 0.45% 3.44% 0.94% 0.73% 1.33% 1.79%

Lactobacillus 0.00% 0.36% 0.00% 0.58% 0.00% 0.28% 0.00% 0.00% 0.36% 0.05% 0.02% 0.00% 0.00% 0.00%

Lactococcus 0.00% 0.36% 0.00% 0.00% 0.29% 0.07% 0.00% 0.32% 0.18% 0.00% 0.22% 0.00% 0.00% 0.00%

Streptococcus 0.00% 0.72% 0.45% 1.36% 0.99% 0.91% 0.17% 0.08% 0.72% 1.16% 0.30% 0.51% 0.00% 0.00%

Unclassified Clostridiales 0.31% 0.00% 0.32% 1.17% 0.34% 0.21% 0.14% 0.13% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00%

Clostridiisalibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00%

Clostridium 0.08% 1.08% 0.14% 0.00% 0.02% 0.00% 2.29% 2.39% 0.00% 0.11% 0.00% 0.07% 0.31% 0.00%

Unclassified Lachnospiraceae 0.08% 0.00% 0.05% 0.00% 0.36% 0.70% 1.06% 0.58% 1.27% 0.05% 0.04% 0.00% 0.00% 0.00%

Unclassified Peptostreptococcaceae 0.00% 1.08% 0.68% 0.00% 0.00% 0.00% 0.72% 0.53% 0.00% 0.00% 0.04% 0.59% 2.98% 0.52%

Sporomusa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Peptoniphilus 0.16% 0.36% 0.36% 0.19% 0.00% 0.00% 0.00% 0.03% 0.00% 0.21% 0.20% 0.37% 0.00% 0.00%

Unclassified Halanaerobiaceae 0.08% 0.36% 0.23% 0.39% 0.02% 47.63% 16.36% 13.06% 48.19% 3.60% 0.04% 0.81% 0.00% 39.38%

Halanaerobium 0.00% 0.00% 0.00% 0.00% 0.02% 5.72% 7.42% 5.86% 9.87% 0.32% 0.00% 0.00% 0.21% 6.64%

Halanaerobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06%

Propionigenium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.15% 0.55% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00%

Thalassospira 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Hyphomonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Rhodobacteraceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 1.95% 1.05% 0.27% 0.05% 0.00% 0.00% 1.13% 1.04%

Loktanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Sphingomonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Erythrobacteraceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.70% 0.37% 0.76% 0.09% 0.85% 0.00% 0.07% 0.00% 0.40%

Erythrobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Methylophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.36% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Neisseriaceae 0.08% 0.00% 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00%

Neisseria 0.00% 0.00% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Rhodocyclaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfomicrobium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.60% 0.68% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Desulfuromonadaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfuromonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.60% 0.53% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Arcobacter 0.00% 0.00% 0.27% 0.00% 0.00% 6.56% 18.10% 14.48% 4.26% 0.21% 0.11% 0.37% 1.13% 8.66%

Campylobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Marinobacter 0.00% 0.36% 0.00% 0.00% 0.00% 0.14% 0.72% 0.68% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Idiomarina 0.00% 0.36% 0.32% 0.00% 0.00% 0.00% 0.03% 0.03% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00%

Shewanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 1.66% 1.21% 0.09% 0.21% 0.00% 0.00% 0.00% 0.00%

Alcanivorax 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.00%

Unclassified Halomonadaceae 0.00% 0.36% 0.27% 0.00% 0.00% 1.60% 2.69% 2.26% 2.72% 0.26% 0.07% 0.07% 0.00% 0.69%

Halomonas 0.00% 0.00% 0.05% 0.19% 0.00% 0.91% 1.58% 1.00% 1.00% 0.11% 0.02% 0.00% 0.00% 0.12%

Marinobacterium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.72% 0.53% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00%

Oleibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.49% 0.06% 0.05% 0.00% 0.00% 0.00% 0.00% 1.54% 0.00%

Unclassified Moraxellaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.72% 1.60% 0.18% 0.26% 0.04% 0.07% 0.00% 0.00%

Acinetobacter 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 1.29% 0.68% 0.00% 0.11% 0.09% 0.07% 0.00% 0.12%

Enydrobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.00%

Psychrobacter 0.00% 2.51% 0.23% 0.19% 0.00% 0.21% 17.59% 13.79% 1.63% 0.00% 0.00% 0.07% 0.00% 0.00%

Unclassified Pseudomonadaceae 0.00% 0.36% 0.05% 0.00% 0.68% 0.14% 0.66% 1.08% 0.18% 1.16% 0.26% 0.00% 4.21% 1.04%

Pseudomonas 0.00% 26.16% 8.37% 0.00% 5.59% 1.53% 4.10% 3.84% 1.72% 7.46% 0.37% 8.36% 41.48% 6.29%

Unclassified Xanthomonadaceae 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00%

Stenotrophomonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00%

Minor genera 0.63% 7.53% 3.42% 1.36% 2.55% 7.32% 10.08% 10.64% 4.53% 6.93% 2.26% 3.52% 3.18% 6.76%

Separator TankTaxon

January 2015

Figure C4 (continued): Genus level taxonomy based on 16S rRNA sequencing, January samples.  
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Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7 Well 8 Well 10 Well 11 Well 12 Well 15 Well 17 Well 2 Well 3 Well 4 Well 5 Well 7 Well 8 Well 10 Well 11 Well 12 Well 15

Corynebacterium 0.85% 1.16% 1.30% 8.29% 0.89% 1.35% 2.24% 0.00% 1.93% 0.81% 0.28% 0.75% 0.29% 0.71% 0.23% 1.49% 0.38% 1.25% 0.43% 1.24% 0.46% 0.53% 3.56%

Unclassified Micrococcaceae 0.07% 0.11% 0.00% 0.15% 0.08% 0.00% 0.06% 0.00% 0.17% 0.04% 0.00% 0.00% 0.03% 0.00% 0.00% 0.13% 0.00% 0.07% 0.04% 0.06% 0.00% 0.00% 0.00%

Micrococcus 0.22% 0.02% 0.13% 0.75% 0.10% 0.18% 0.16% 0.00% 0.22% 0.09% 0.28% 0.38% 0.05% 0.05% 0.00% 0.66% 0.08% 0.14% 0.04% 0.15% 0.04% 0.00% 0.74%

Rothia 0.02% 0.06% 0.30% 0.41% 0.00% 0.00% 0.00% 0.00% 0.02% 0.13% 0.00% 0.38% 0.00% 0.05% 0.00% 0.00% 0.04% 0.00% 0.07% 0.04% 0.00% 0.00% 0.15%

Unclassified Bacteroidales 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 1.50% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 1.51% 0.00% 0.78% 0.17% 0.00% 0.00% 0.00%

Bacteroides 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 0.33% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00%

Unclassified Marinilabiaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.14% 0.00% 0.04% 0.00% 0.00%

Salegentibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Bacillales 26.47% 26.20% 2.49% 17.37% 28.00% 1.70% 25.92% 1.24% 20.30% 2.69% 0.09% 1.88% 24.36% 20.44% 1.56% 12.69% 0.38% 26.84% 2.21% 20.69% 1.92% 9.14% 0.37%

Unclassified Bacillaceae 59.42% 59.24% 91.66% 40.30% 58.66% 90.98% 59.10% 92.27% 49.17% 5.65% 8.96% 65.41% 53.21% 47.59% 96.12% 25.28% 0.67% 59.31% 5.56% 44.69% 78.97% 20.73% 25.13%

Bacillus 4.75% 4.76% 0.27% 3.65% 5.37% 0.47% 4.83% 0.14% 3.34% 0.47% 1.32% 2.63% 4.30% 4.44% 0.35% 3.64% 0.08% 5.18% 0.46% 3.92% 0.67% 4.00% 0.82%

Lysinibacillus 0.19% 0.15% 0.00% 1.11% 0.12% 0.00% 0.16% 0.00% 0.14% 0.00% 0.28% 0.00% 0.20% 0.52% 0.00% 0.07% 0.00% 0.16% 0.07% 0.15% 0.08% 0.53% 0.07%

Staphylococcus 1.24% 0.66% 0.96% 1.31% 0.68% 0.41% 1.52% 0.14% 1.79% 0.30% 0.38% 0.00% 0.56% 0.71% 0.00% 1.06% 0.13% 1.36% 0.36% 0.81% 0.12% 0.53% 1.33%

Lactobacillus 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.22% 0.00% 0.00% 0.09% 0.09% 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.59%

Lactococcus 0.24% 0.07% 0.10% 0.00% 0.00% 0.12% 0.72% 0.00% 0.02% 0.00% 0.00% 0.00% 0.02% 0.12% 0.00% 0.00% 0.13% 0.18% 0.43% 0.02% 0.10% 0.14% 0.00%

Streptococcus 0.12% 0.18% 0.00% 0.54% 0.35% 0.00% 0.37% 0.00% 0.33% 0.00% 0.38% 0.75% 0.03% 0.24% 0.00% 0.13% 0.08% 0.21% 0.18% 0.32% 0.10% 0.00% 0.67%

Unclassified Clostridiales 0.00% 0.00% 0.40% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.13% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.25% 0.04% 0.04% 0.00% 0.22%

Clostridiisalibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 0.15%

Clostridium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.98% 1.88% 1.32% 0.00% 0.29% 0.00% 0.00% 0.70% 2.05% 0.00% 2.35% 0.41% 0.14% 0.00% 0.89%

Unclassified Lachnospiraceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00% 0.81% 0.00% 0.00% 0.00% 0.00% 0.06% 0.13% 1.09% 0.00% 1.21% 0.09% 0.00% 0.00% 0.00%

Unclassified Peptostreptococcaceae 0.00% 0.15% 0.00% 0.10% 0.02% 0.06% 0.01% 0.00% 1.43% 0.51% 13.02% 0.38% 1.31% 0.31% 0.00% 0.60% 0.71% 0.02% 0.64% 2.53% 1.63% 0.00% 5.19%

Sporomusa 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.00%

Peptoniphilus 0.07% 0.28% 0.00% 0.00% 0.23% 0.18% 0.15% 0.00% 0.31% 0.04% 0.19% 0.38% 0.00% 0.00% 0.06% 0.00% 0.13% 0.72% 0.00% 0.15% 0.00% 0.00% 0.37%

Unclassified Halanaerobiaceae 0.24% 1.40% 0.10% 2.47% 0.00% 0.23% 0.45% 0.00% 2.39% 14.80% 0.09% 0.75% 3.26% 0.24% 0.06% 0.96% 14.06% 0.02% 13.87% 3.19% 0.24% 0.36% 0.89%

Halanaerobium 0.00% 0.28% 0.00% 1.16% 0.00% 0.00% 0.06% 0.00% 0.74% 6.37% 0.00% 0.00% 0.41% 0.00% 0.00% 0.56% 6.61% 0.07% 6.92% 0.75% 0.00% 0.00% 0.00%

Halanaerobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.13% 0.00% 0.02% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.12% 0.00% 0.00%

Propionigenium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.84% 0.00% 0.25% 0.02% 0.00% 0.00% 0.00%

Thalassospira 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Hyphomonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.29% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00%

Unclassified Rhodobacteraceae 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.05% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 2.38% 0.00% 1.28% 0.15% 0.00% 0.00% 0.00%

Loktanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00%

Unclassified Sphingomonadales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Erythrobacteraceae 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.28% 0.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.54% 0.00% 0.53% 0.02% 0.00% 0.00% 0.00%

Erythrobacter 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.04% 0.00% 0.00% 0.00%

Unclassified Methylophilales 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Neisseriaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.93% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.22%

Neisseria 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.95% 0.00% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00%

Unclassified Rhodocyclaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Desulfomicrobium 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.24% 1.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.17% 0.00% 1.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Desulfuromonadaceae 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00%

Desulfuromonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.68% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.54% 0.00% 0.68% 0.00% 0.00% 0.00% 0.00%

Arcobacter 0.02% 0.00% 0.00% 0.59% 0.04% 0.00% 0.01% 0.69% 3.17% 17.54% 1.79% 0.00% 0.75% 0.07% 0.00% 1.49% 18.74% 0.05% 14.09% 1.67% 0.38% 0.25% 1.04%

Campylobacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.07%

Marinobacter 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.22% 0.94% 0.38% 0.00% 0.00% 0.00% 0.00% 0.50% 0.54% 0.00% 0.64% 0.02% 0.08% 0.00% 0.15%

Idiomarina 0.00% 0.00% 0.00% 0.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.57% 0.75% 0.08% 0.02% 0.00% 0.13% 0.04% 0.00% 0.00% 0.08% 0.34% 0.00% 1.11%

Shewanella 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.02% 0.86% 0.00% 0.00% 0.14% 0.02% 0.00% 0.27% 1.00% 0.00% 1.14% 0.24% 0.00% 0.00% 0.00%

Alcanivorax 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.19% 0.00% 0.03% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 0.00%

Unclassified Halomonadaceae 0.05% 0.00% 0.00% 0.00% 0.06% 0.12% 0.23% 0.00% 0.02% 2.22% 0.19% 0.38% 0.36% 0.02% 0.00% 1.09% 1.92% 0.09% 2.50% 0.47% 0.18% 0.03% 0.52%

Halomonas 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.12% 0.00% 0.22% 1.28% 0.94% 0.00% 0.45% 0.17% 0.00% 0.20% 1.05% 0.00% 1.39% 0.28% 0.12% 0.11% 0.89%

Marinobacterium 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.00% 0.26% 0.34% 0.09% 0.00% 0.00% 0.05% 0.00% 0.00% 0.59% 0.00% 0.93% 0.11% 0.00% 0.14% 0.00%

Oleibacter 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.17% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Unclassified Moraxellaceae 0.00% 0.00% 0.07% 0.08% 0.02% 0.00% 0.00% 0.00% 0.00% 2.05% 0.19% 0.38% 0.03% 0.00% 0.00% 0.17% 2.59% 0.00% 2.64% 0.21% 0.04% 0.00% 0.00%

Acinetobacter 0.12% 0.00% 0.03% 0.08% 0.00% 0.06% 0.03% 0.00% 0.00% 1.03% 0.19% 0.38% 0.08% 0.00% 0.00% 0.13% 0.96% 0.02% 1.03% 0.34% 0.00% 0.00% 0.15%

Enydrobacter 1.71% 0.07% 0.23% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.75% 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.05% 0.00% 0.02% 0.00% 0.00% 0.00%

Psychrobacter 0.00% 0.00% 0.00% 7.93% 0.00% 0.23% 0.04% 0.00% 0.84% 15.23% 0.09% 0.00% 2.64% 0.00% 0.00% 2.55% 22.89% 0.14% 19.15% 2.36% 0.00% 0.00% 2.15%

Unclassified Pseudomonadaceae 0.07% 0.26% 0.00% 2.19% 0.12% 0.00% 0.18% 0.00% 0.46% 1.37% 0.19% 0.00% 0.44% 1.86% 0.00% 5.60% 0.67% 0.14% 1.50% 0.86% 0.02% 4.58% 0.07%

Pseudomonas 1.32% 1.85% 0.37% 5.69% 1.70% 1.93% 0.38% 4.01% 3.80% 5.60% 63.96% 21.05% 3.82% 19.29% 0.64% 35.65% 3.56% 1.09% 4.56% 8.14% 12.39% 56.13% 50.33%

Unclassified Xanthomonadaceae 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.00% 0.06% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.15%

Stenotrophomonas 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 0.00% 0.00% 0.00%

Minor genera 2.73% 3.06% 1.59% 4.84% 3.38% 1.87% 2.87% 1.52% 5.27% 10.18% 1.70% 3.38% 2.60% 2.90% 0.93% 3.68% 10.92% 2.87% 10.27% 5.01% 1.64% 2.65% 2.00%

March 2015

Separator TankTaxon

Figure C4 (continued): Genus level taxonomy based on 16S rRNA sequencing, March samples. 
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Figure C5: PCoA plot based on weighted UniFrac distances, showing all analyzed samples 

coded by formation (Bakken red, Three Forks blue) and source (Separator Square, Storage Tank 

round). 
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Table D1: Pseudomonas fluorescens genes found to be upregulated (at least 2-fold induced, 

with P < 0.01) in four, three, or two replicates. 
 

Locus Tag Gene Annotation 
Rep1 Rep2 Rep3 Rep4 

Fold upregulated 

In all Replicates 

PFLU_RS02795 - hypothetical membrane protein  5.41 6.14 2.52 9.20 

PFLU_RS08440 ohr organic hydroperoxide resistance protein  73.50 32.70 4.41 9.54 

PFLU_RS14265 mexE MexE family multidrug efflux RND 

transporter periplasmic adaptor 
4.97 8.77 3.40 6.65 

PFLU_RS14570 ahpC alkyl hydroperoxide reductase subunit C 3.40 3.10 5.93 11.69 

PFLU_RS14575 ahpF alkyl hydroperoxide reductase subunit F 2.05 2.56 2.09 4.11 

PFLU_RS17150 - hypothetical protein 11.26 6.17 3.23 19.55 

PFLU_RS25330 - thioredoxin-disulfide reductase 2.36 2.88 3.28 3.58 

PFLU_RS28745 araC AraC family transcriptional regulator 13.57 21.00 2.53 2.04 

In 3 Replicates 

PFLU_RS03250 copZ copper resistance protein copZ 2.43 
 

3.41 3.80 

PFLU_RS18105 - hypothetical protein 13.49 6.68 
 

2.48 

PFLU_RS27245 - translocase, transcription regulator 14.15 5.97 8.84 
 

PFLU_RS28155 - thioesterase, DNA ligase B like 2.26 
 

2.70 3.42 

In 2 Replicates 

PFLU_RS03275 lysR LysR family transcriptional regulator 2.57 
 

3.37 
 

PFLU_RS03890 tRNA hypothetical protein, probably tRNA 15.47 
  

2.47 

PFLU_RS03900 tRNA hypothetical protein, probably tRNA 13.97 
  

2.41 

PFLU_RS05735 - 
hypothetical protein, leucyl-tRNA 

synthetase like 
2.66 2.32 

  

PFLU_RS06620 - Pseudomonas membrane protein 4.07 13.01 
  

PFLU_RS06855 arsR ArsR family transcriptional regulator 
  

2.17 5.19 

PFLU_RS07315 araJ 
MFS transporter, arabinose efflux 

permease like  
∞ 

 
2.4 

PFLU_RS08225 kdpA 
potassium-transporting ATPase subunit 

KdpA   
2.34 2.31 

PFLU_RS08265 - acyl-CoA thioesterase 
  

4.23 3.18 

PFLU_RS09260 tRNA hypothetical protein, probably tRNA 2.77 
 

∞ 
 

PFLU_RS09270 tRNA hypothetical protein, probably tRNA 
 

∞ 
 

∞ 

PFLU_RS10265 - lysine transporter LysE 
  

3.50 4.58 

PFLU_RS10505 - hypothetical protein 2.33 
 

2.60 
 

PFLU_RS10540 terC TerC like membrane protein 14.26 7.10 
  

PFLU_RS13120 - hypothetical protein 8.89 2.43 1.53* 
 

PFLU_RS13625 ssuF organosulfonate utilization protein SsuF 3.81 2.38 
  

PFLU_RS14210 tetR TetR family transcriptional regulator 2.97 
 

2.75# 6.08 

PFLU_RS17975 - cysteine dioxygenase 3.31 10.45 1.98* 
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PFLU_RS19180 - hypothetical protein 7.99 
 

7.80 
 

PFLU_RS20310 - 50S ribosomal protein 3.21 2.40 1.21* 
 

PFLU_RS20635 tRNA hypothetical protein, probably tRNA 23.28 17.55 
  

PFLU_RS20645 - hypothetical protein ∞ ∞ 
  

PFLU_RS21115 - hypothetical protein 13.99 
 

∞ 
 

PFLU_RS21300 - isochorismatase 2.20 
 

3.18 
 

PFLU_RS22250 - 
hypothetical protein, probably anti-sigma 

factor 
2.91 5.57 

  

PFLU_RS24380 - hypothetical protein 2.90 
 

4.71 
 

PFLU_RS24860 iscR 
Fe-S cluster assembly transcriptional 

regulator IscR  
1.87* 2.02 2.36 

PFLU_RS25630 yedY 
sulfoxide reductase catalytic subunit 

YedY 
4.77 3.20 

  

PFLU_RS27035 catA catalase CatA 
 

1.73 2.15 3.89 

PFLU_RS28760 potAB ABC transporter permease 59.60 18.43 
  

PFLU_RS29925 - hypothetical protein 
  

3.71 50.18 

*upregulated less than 2-fold 
# P-value > 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table D1 (continued) 
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Table D2: Pseudomonas fluorescens genes found to be downregulated (at least 2-fold induced, with 

P < 0.01) in four, three, or two replicates. 

 

Locus Tag Gene Annotation 
Rep1 Rep2 Rep3 Rep4 

Fold downregulated 

In all Replicates 

PFLU_RS05700 bfd (2Fe-2S)-binding protein -2.43 -3.66 -5.46 -2.18 

PFLU_RS10595 - hypothetical protein -2.22 -2.80 -2.54 -3.61 

In 3 Replicates 

ssuB ssuB 
aliphatic sulfonates import ATP-binding 

protein 
-2.82 

 
-2.34 -3.10 

PFLU_RS08920 yjcH membrane like membrane protein  -3.75 -4.00 -2.69 

PFLU_RS00955 cysW 

sulfate ABC transporter permease subunit 

CysW  
-2.53 -3.81 -3.21 

PFLU_RS00960 cysA 
sulfate ABC transporter ATP-binding 

protein  
-2.13 -2.77 -5.50 

PFLU_RS10525 pbuE MFS transporter, PbuE like 
 

-6.51 -2.12 -2.58 

PFLU_RS01135 pbpB 
amino acid ABC transporter substrate-

binding protein  
-2.24 -2.05 -2.24 

PFLU_RS24285 kgtP alpha-ketoglutarate permease  -2.43 -1.97* -2.24 

PFLU_RS29235 - uncharacterized DNA-binding protein -1.70* -2.31 -3.18 -2.01 

In 2 Replicates 

actP actP Cation/acetate symporter ActP   -2.85 -2.10 

PFLU_RS01185 - 
N5,N10-methylene tetrahydromethanopterin 

reductase   
-2.29 -2.02 

PFLU_RS01245 tauD 
alpha-ketoglutarate-dependent taurine 

dioxygenase  
-2.73 -1.77* -5.76 

PFLU_RS03330 msdh 
methylmalonate semialdehyde 

dehydrogenase  
-1.19* 

 
-2.92 -2.50 

PFLU_RS04590 aidA type V secretory pathway protein 
 

-1.60* -1.91* -2.01 

PFLU_RS04960 - 
amino acid ABC transporter substrate-

binding protein 
  -2.96 -2.03 

PFLU_RS06425 lysM peptidoglycan-binding protein  
 

-1.72* -2.08 -2.49 

PFLU_RS06610 - protein of unknown function   -2.81 -8.17 

PFLU_RS07415 - NAD(P)-dependent oxidoreductase   -3.84 -3.52 

PFLU_RS10165 - acetylornithine deacetylase 
  

-18.00 -6.28 

PFLU_RS19350 arsR ArsR family transcriptional regulator -2.25 -3.49 
  

PFLU_RS21225 ydfG 
NADP-dependent 3-hydroxy acid 

dehydrogenase 
-2.56 

 
-5.17 -3.62 

mailto:cys@
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PFLU_RS23355 - acetyl-coenzyme A synthetase 
  

-3.87 -2.03 

PFLU_RS23670 csbD hypothetical protein, CsbD like 
  

-2.56 -2.52 

PFLU_RS24655 ptsA 
PTS N-acetyl-D-glucosamine transporter, 

PtsA like 
-2.15 

 
-1.99* -2.24 

PFLU_RS24285 kgtP ketoglutarate permease KgtP  -2.43 -1.97* -2.24 

PFLU_RS26395  lipoprotein/hydrolase -2.00  -4.68  

PFLU_RS28830 ssuD alkanesulfonate monooxygenase 
  

-2.54 -4.13 

*downregulated less than 2-fold 
# P-value > 0.01 

 

Table D2 (continued) 
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