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PROBING THE LARGE SCALE STRUCTURE OF THE UNIVERSE

THROUGH LUMINOUS RED GALAXIES

Abhishek Prakash, PhD

University of Pittsburgh, 2017

The study of Baryon Acoustic Oscillations (BAO) has become a key tool for exploring

the nature of Dark Energy. BAO refers to periodic fluctuations in the density of baryonic

matter in the universe that were caused by acoustic oscillations created by radiation pressure

differences. Luminous Red Galaxies (LRGs) have played a vital role in the detection of BAO.

These are the most massive galaxies in the z∼1 universe, showing a characteristic 4000Å

break in their spectral energy distributions (SEDs). This thesis establishes a new algorithm

for selecting high redshift LRGs for spectroscopic surveys like SDSS-IV/eBOSS and DESI,

which aim to precisely measure the BAO signal at high redshifts. We further adapt these

methods for assembling the next generation eBOSS LRG sample and explain these methods

in detail. These methods have been used by other international teams to assemble high

redshift LRG sample for various investigations.

Large-scale clustering measurements are prone to systematic uncertainties associated

with imaging surveys. This thesis establishes modern statistical techniques to overcome

these challenges. A multivariate regression analysis, primarily applied on the eBOSS LRG

and quasar samples, is presented for a better understanding of the systematic uncertainties

and their effects on the clustering measurements. Another key aspect of this work is the

development of a machine learning algorithm for estimating photometric redshifts. Applying

this machinery yields accurate estimates of the distances of galaxies using their photometric

properties alone, i.e., their colors and magnitudes. This work culminates with new cluster-

ing measurements that use these photometric redshifts in an attempt to detect BAO in the

iii



eBOSS LRG sample. We also presented initial results from an ongoing effort to measure

the clustering of LRGs around quasars using the first two years of spectroscopic data from

eBOSS.
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1.0 INTRODUCTION

Nearly a century ago, in 1929, Edwin Hubble established that our universe is expanding

(Hubble, 1929). Following that discovery, the field of cosmology has grown considerably,

adding to our knowledge of the universe in which we live. For many subsequent decades,

physicists believed that the expansion of the universe should be slowing with time. This

was motivated by the understanding that if the universe contains just matter and radiation,

then the gravitational attraction between matter should slow down this expansion. In 1998,

measurements of distances to Type Ia supernovae (SN Ia) surprised the whole scientific

community by establishing that the expansion of the universe is, in fact, accelerating (Riess

et al., 1998; Perlmutter et al., 1999). This was also demonstrated by the constraints on the

flatness of the universe by Cosmic Microwave Background (CMB) data. This discovery has

inspired massive efforts to probe the expansion history of the universe through observational

techniques. The origin of the accelerating universe continues to be the most important

unknown in physics.

1.1 AN UNKNOWN ENERGY OR MANIFESTATION OF GRAVITY?

Many theories have been proposed to explain the accelerated expansion of the universe.

However, the two widely accepted plausible theories are 1) the presence of an unknown

component of the energy density of the universe, commonly referred to as “dark energy” or 2)

the breakdown of Einstein’s General Relativity (GR) at large scales. It is possible to decouple

scenarios of acceleration that require dark energy from those that require modifications to

GR by independently probing both the cosmic expansion history and the growth rate of

1



the structure. For this thesis, I focus on scenarios that require the presence of dark energy.

Recent measurements of the CMB by the Planck satellite (Planck Collaboration et al., 2014)

support a picture where the acceleration is driven by “dark energy” in a spatially flat universe.

Although (if we discard the possibility of deviations from GR) evidence for the presence of

dark energy is conclusive, its nature is not understood.

Many theoretical explanations for dark energy have been put forward. The simplest

explanation for dark energy is that it is an intrinsic, fundamental energy of space. This is

also referred to as “vacuum energy” because it is the energy density of an empty vacuum

(Weinberg, 1987). This contribution to the energy density of the universe could be explained

by Einstein’s cosmological constant (Λ), introduced into his General Theory of Relativity

(GTR) to counteract the attractive force of gravity. Another popular theory proposes that

the accelerated expansion is driven by the potential energy of a smooth dynamical scalar

field, commonly referred to as “quintessence” (Peebles & Ratra, 1988). This field must be

very sparse (not dense) in order to not clump and form structure like matter. Unlike the

cosmological constant, a scalar field can vary in space-time.

1.2 EFFORTS TOWARDS UNDERSTANDING DARK ENERGY

Dark energy may be characterized by the equation of state w = P/ρ, where P is the pressure

and ρ is mass density of the dark energy when treated as a perfect fluid. The parameter w,

usually called the “equation of state parameter”, is a dimensionless number. Evolution of w

with time may be described by a second parameter, wa = dw/da(t), where a(t) is the scale

factor describing the relative expansion of the universe (Johri & Rath, 2007). One of the cen-

tral goals of many past, current, and future cosmological surveys is determining constraints

on these dark energy parameters (e.g., the Sloan Digital Sky Survey (SDSS) II, III/Baryon

Oscillation Spectroscopic survey (BOSS), IV/ extended Baryon Oscillation Spectroscopic

survey (eBOSS), the Dark Energy Survey (DES), and the Dark Energy Spectroscopic In-

strument (DESI); York et al. (2000a); Eisenstein et al. (2001); Cannon et al. (2006); Dawson

et al. (2013a)). Astronomers can distinguish different models for dark energy based on the
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values of these parameters. For example, an equation of state where w = −1 with wa = 0

would be equivalent to the cosmological constant model. On the other hand, significant

deviations from these values would rule out a cosmological constant.

A measurement of the expansion of the universe as a function of redshift probes the

energy content of the universe and can be used to study the properties of the dark energy.

Currently, four primary observational techniques are accepted as the most powerful toward

obtaining this goal (e.g., Albrecht et al. 2006): SN Ia, weak lensing, galaxy clusters, and

baryon acoustic oscillations (BAO). This thesis is focused on the BAO probe. Spectroscopy

of galaxies and quasars provides a 3D map of the large-scale structure of the universe in

which the BAO feature is embedded.

1.2.1 What are Baryon Acoustic Oscillations (BAO)?

The term BAO refers to periodic fluctuations in the density of the visible baryonic matter

of the universe caused by acoustic oscillations due to differences in radiation pressure in the

early universe (analogous to sound waves created in air by pressure differences). These pres-

sure differences arise due to density perturbations in the early universe and the interaction

between radiation and matter. After the big bang, the early universe was hot and opaque

which caused photons and baryons to move outwards together. This expansion continued

for ∼ 105 years. As the universe expanded and cooled, the electrons and baryons combined

to form neutral atoms, making the universe essentially transparent to photons. This phase

of the universe occurred approximately 400,000 years after the big bang and is referred to

as “recombination.” The photons, no longer interacting strongly with the baryonic matter,

diffused away to be observed as the CMB. This ceased the outward pressure on the system;

for a perfectly isolated, compact density fluctuation, the consequence would be a shell of

baryonic matter at a fixed radius. This radius is often referred to as the “sound horizon.” It

is expected that these slight under-densities and over-densities of baryons were frozen into

place at the moment of recombination and should be imprinted on the galaxy distribution

today.

The BAO feature may be used to compare the apparent size of the length scale today
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(and at different redshifts or different times) to the sound horizon at the time of recombi-

nation. These sizes may be determined using galaxy clustering (closer to the present epoch)

or the CMB (for the sound horizon at recombination). Thus, the BAO provides a standard

ruler that can be used to understand the accelerated expansion of the universe completely

independent of other methods.

Using BAO to measure the expansion of the universe is a well-developed field. BAO

signals have been detected and measured to ever-greater precision using data from a number

of large galaxy surveys including the SDSS-I and -II (York et al., 2000a; Abazajian et al.,

2009), SDSS-III/BOSS (Dawson et al., 2013a), Two-degree-Field Galaxy Redshift Survey

(2dFGRS, Croom et al., 2005), and WiggleZ (Blake et al., 2011).

1.2.1.1 BAO using Luminous Red Galaxies (LRGs)

A precise measurement of the BAO scale requires large ensembles of galaxies with their

redshifts measured accurately using wide-field spectroscopy spanning a large volume of

the universe. This presents a great challenge and requires careful planning in assembling

uniformly-distributed galaxy or quasar samples. This is due to the fact that the BAO signal

is very weak, so clustering of samples due to systematics on BAO-like scales can obscure

the signal. Traditionally, massive galaxies are used for BAO studies, since the detection of

BAO requires measuring the clustering of matter (or galaxies). Dark matter halos are the

matter over-densities in which galaxy formation takes place. Their presence is inferred from

their gravitational effects on galaxy rotation curves. Massive galaxies, and in particular red,

elliptical galaxies, tend to reside in massive dark matter halos and cluster strongly, which in

turn enhances the BAO signal (e.g., Postman & Geller, 1984; Kauffmann et al., 2004). The

most luminous and reddest (in rest-frame color) galaxies are typically referred to as ‘Lumi-

nous Red Galaxies’ or LRGs. LRGs populate a narrow range of rest-frame colors (Postman

& Lauer, 1995). Given both their bright intrinsic luminosities (allowing them to be studied

to higher redshifts than typical L∗ galaxies) and their strong clustering, LRGs are excellent

tracers of the large-scale structure of the universe.

LRGs have been previously used to study large-scale structure by a variety of investi-
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gations, most notably the SDSS (York et al., 2000a) and the SDSS-III /BOSS, as well as the

2dF-SDSS LRG and QSO survey (e.g. Eisenstein et al., 2001; Cannon et al., 2006). Due to

this, LRGs are currently the best-understood sample for large scale structure studies. It is

worth noting that the BAO signature was first detected in the LRG sample of SDSS-I and

II (Eisenstein et al., 2005). Increasing our current sample of LRGs to higher redshifts will

allow measurements of the BAO feature, and hence of the expansion rate of the universe (Seo

& Eisenstein, 2003; Lin & Mohr, 2003; Ross et al., 2008), during the era when accelerated

expansion began.

1.3 THE SLOAN DIGITAL SKY SURVEY (SDSS)

For almost 20 years, the SDSS (York et al., 2000a) has provided the largest spectroscopic

samples for cosmological analysis using a 2.5-meter telescope at Apache Point Observatory

(APO). The first two generations of SDSS, SDSS-I and -II, measured the redshifts of nearly

one million galaxies (Abazajian et al., 2009). This led to the first detection of the BAO

scale (Eisenstein et al., 2005) which is one of the signature accomplishments of SDSS. BOSS

(Dawson et al., 2013a) performed spectroscopic observations of more than 1.5 million galaxies

and more than 150,000 quasars. Measurements of BAO with BOSS have led to 1%-2%

precision measurements of the cosmological distance scale for redshifts z < 0.6 and z ∼= 2.5.

Building on the success of BOSS, SDSS-IV/eBOSS is performing a spectroscopic survey of

galaxies and quasars at redshifts uncharted by BOSS. The work presented in this thesis

has played a central role in building the eBOSS survey, which is explained in detail in the

following chapters.

1.3.1 SDSS-IV/extended Baryon Oscillation Spectroscopic Survey (eBOSS)

eBOSS concentrates its efforts on the observation of galaxies and quasars, at redshift 0.6 <

z < 2.2, a time interval currently left relatively unexplored by other three-dimensional

maps of the large-scale structure of the universe. In filling this gap, we will create the
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largest volume survey of the universe to date. eBOSS is using four different tracers of the

underlying matter density field to map large-scale structure. 1) Using more than 350,000

new, spectroscopically confirmed LRGs at a median redshift z ∼ 0.71, we project that

eBOSS will yield measurements of the angular diameter distance, dA(z), to an accuracy of

1.2% and measurements of Hubble parameter, H(z), to 2.1% when combined with the z < 0.6

sample of BOSS galaxies. 2) With ∼195,000 new emission line galaxy (ELG) redshifts, we

expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective

redshift of z ∼ 0.87. 3) A sample of more than 500,000 spectroscopically confirmed quasars

will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2,

with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. This is the first

instance of quasars being targeted as direct tracers of the underlying dark matter distribution

to measure the BAO scale. 4) Finally, with 60,000 new quasars and the re-observation of

60,000 BOSS quasars, we will obtain new Ly-α forest measurements at redshifts z > 2.1;

these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44

relative to SDSS-III/BOSS.

1.3.2 Dark Energy Spectroscopic Instrument (DESI)

DESI is a ground-based dark energy survey that will study BAO and the growth of structure

with a wide-area galaxy and quasar redshift survey. Although DESI is a much larger survey

and will map the universe at much higher density, it is very similar to eBOSS in survey

design. eBOSS target selection methods are based on tests for DESI target selection. DESI

will be used to conduct a five-year survey designed to cover 14,000 deg2 of the sky. DESI aims

to measure dA(z) and H(z) with sub-percent level precision. As in eBOSS, spectroscopic

targets will be selected in four classes from imaging data: 1) LRGs up to z = 1.0, extending

the BOSS LRG survey in both redshift and survey area; 2) ELGs up to z = 1.7; 3) quasars

as direct tracers of the underlying dark matter distribution, and, 4) at higher redshifts

(2.1 < z < 3.5), the Ly-α forest absorption features in QSO spectra, which will be used to

trace the distribution of neutral hydrogen. In addition, when moonlight prevents efficient

observations, usually called “bright time,” DESI will conduct a magnitude-limited Bright
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Galaxy Survey (BGS) comprising approximately 10 million galaxies with median z ∼ 0.2.

Overall, ∼30 million galaxy and quasar redshifts will be obtained to measure the BAO

feature, probe whether GR is accurate using redshift space distortion (Jennings et al., 2012),

and constrain theories of galaxy evolution, among other science goals.

1.4 DISSERTATION OVERVIEW

The chapters of this thesis are designed as a series of steps toward the goal of using the BAO

technique to study the expansion history of the universe and are relatively self-contained.

This allows readers with various backgrounds to focus in on certain chapters or sections

according to their level of interest or expertise.

In Chapter 2, I establish a new method of combining optical and infrared photometry

to select luminous red galaxies (LRGs) at redshifts z > 0.6. I also demonstrate the need

for this new method by showing the shortcomings of previously-used methods. I use a

combination of optical photometry from the Canada France Hawaii Telescope Legacy Survey

(CFHTLS) and the Hubble Space Telescope (HST), infrared photometry from the Wide-Field

Infrared Survey Explorer (WISE) satellite, and spectroscopic or photometric redshifts from

the DEEP2 Galaxy Redshift Survey and COSMOS. I present a variety of methods for testing

the success of this selection and present methods for optimization given a set of rest-frame

color and redshift requirements. I present tests of this selection in two different regions

of the sky, the COSMOS and Extended Groth Strip (EGS) fields, to reduce the effect of

cosmic/sample variance. I have used these methods to assemble large samples of LRGs for

two different ancillary programs as a part of the SDSS-III/BOSS. I have shown that these

methods can select high-redshift LRGs efficiently with minimal stellar contamination; this

is extremely difficult to achieve with selections that rely on optical photometry alone.

In Chapter 3, I present the application of the methods developed in Chapter 2 for

selecting ∼600,000 LRG targets for SDSS-IV/eBOSS, which began observations in Fall 2014.

In a six-year program, eBOSS will provide us with secure and accurate redshift information

for a sample of ∼375,000 LRGs over ∼7,500 deg2 of the sky. This will allow us to measure
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the BAO feature with ∼ 1% precision in the redshift range 0.6 < z < 1.0. I present results

from an SDSS-III/BOSS ancillary program, SEQUELS, which was a survey validation effort

for SDSS-IV/eBOSS. We perform a number of tests using spectroscopic data from SDSS-

III/BOSS ancillary programs to determine the redshift reliability of our target selection

and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high

enough signal-to-noise ratio that at least ∼ 89% of the target sample yields secure redshift

measurements. We also present tests of the uniformity and homogeneity of the sample,

demonstrating that it should be clean enough for studies of the large-scale structure of the

universe at higher redshifts than the SDSS-III/BOSS LRG sample.

In Chapter 4, I present a similar analysis for the SDSS-IV/eBOSS quasar sample,

which will probe the large scale structure of the universe at a much higher redshift range,

0.8 < z < 2.2. This will be the first study in which quasars are being targeted as direct tracers

of the underlying matter density on BAO scales. The primary limitation of this approach

is the sparse number density of quasars. eBOSS overcomes this difficulty by mapping an

enormous volume over a broad redshift range. I discuss some characteristic features of this

sample. Finally, I present the details of a uniformity and homogeneity analysis of the quasar

sample, similar to the analysis of LRGs in Chapter 3, and establish the mask for large-scale

structure measurements with the eBOSS survey.

In Chapter 5, I present an analysis for detecting the BAO signal within the eBOSS

LRG sample using photometric redshifts. Traditionally, spectroscopic redshifts are used

to estimate distances to galaxies and, in turn, to measure galaxy clustering. However,

acquiring spectroscopic redshifts is a time consuming and expensive process. Large multi-

band imaging surveys have made it possible to estimate more accurate photometric redshifts

than was possible before. I present a machine-learning algorithm that can make improved

estimations of photometric redshifts once augmented with a subset of spectroscopic redshift

training samples. Although photometric redshifts are less accurate, they are significantly

easier to obtain, and for a given amount of time, one can image wider areas to fainter limits

than can be reached with spectroscopy, allowing one to probe both larger scales and larger

volumes. This is possible as photometric redshift estimates depend on the strong features

in the spectra of astronomical objects that can be detected by broad-band filters of large
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imaging surveys.

In Chapter 6, I present an analysis of the cross-correlations of eBOSS quasars with

eBOSS LRGs using spectroscopic redshifts from the first two years of eBOSS observations.

Quasar clustering measurements can be used to infer their lifetimes and large-scale environ-

ments, which help address issues such as the physical mechanism fueling quasars and their

impact on galaxy formation and evolution. For this study, we used samples of ∼ 30, 600

quasars and ∼ 120, 000 LRGs in the redshift range, 0.6 < z < 1.0. Unfortunately, quasars

are found to have relatively low number density, which causes large uncertainties in cluster-

ing amplitudes estimated from the autocorrelation function especially at low redshifts where

they are rare. It is possible to make more precise measurements of quasar clustering by

studying the clustering of galaxies around quasars (i.e., by measuring the cross-correlation

function of quasars and galaxies), as the number density of galaxies is much higher.

Lastly, in Chapter 7, I summarize the many key techniques that this dissertation has

yielded for current and future cosmological probes. I describe many key aspects of a spec-

troscopic survey which are essential to be understood for robust science results. I conclude

by discussing ways that this work can be expanded upon in the future, especially through

the further study of machine learning and advanced statistical methods.
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2.0 LUMINOUS RED GALAXIES: SELECTION AND CLASSIFICATION

BY COMBINING OPTICAL AND INFRARED PHOTOMETRY

The contents of this chapter have been published in Prakash, Licquia, Newman, and Rao,

2015 April 20, The Astrophysical Journal, Volume 803, Number 2.

2.1 INTRODUCTION

LRGs exhibit a strong 4000 Å break in their spectral energy distributions (SEDs; Eisenstein

et al., 2005). At lower redshifts (z ≤ 0.6), LRGs can be efficiently selected and their redshifts

estimated using optical photometry alone, by taking advantage of this feature. This method

was used to select LRG targets for the Sloan Digital Sky Survey (SDSS) and the SDSS-III /

Baryon Oscillation Spectroscopic Survey (BOSS), as well as the 2dF- SDSS LRG and QSO

survey (2SLAQ; Eisenstein et al., 2001; Cannon et al., 2006). However, this method becomes

extremely difficult at greater distances as cosmic expansion redshifts the 4000 Å break into

longer wavelength filters, therefore requiring long imaging exposure times to overcome the

brightness of the night sky in the near-infrared (NIR). A new method is required in order to

efficiently select LRGs at higher redshifts.

Old stellar populations exhibit global maxima in their SEDs at a rest-frame wavelength

of 1.6 µm, corresponding to the minimum in the opacity of H- ions in their stellar atmo-

spheres (John, 1988). Since the light measured from LRGs is predominantly produced by old

stars, we expect this feature to dominate their overall SEDs. This enables efficient selection

of LRGs at higher redshifts.

In this chapter, we demonstrate that a simple cut in optical-infrared color-color space
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provides an efficient method for differentiating LRGs from other types of objects. The meth-

ods described here will be applied for selecting LRG targets for next generation spectroscopic

surveys like The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) and the Dark

Energy Spectroscopic Instrument (DESI) Survey, and may be easily adapted to meet the

needs of future prospects.

This chapter is organized as follows: In Section 2.2, we describe the construction of

samples used to test LRG selection methods, including both the imaging and spectroscopic

datasets used. In Section 2.3, we present a simple selection method for identifying LRGs

based on optical and infrared photometry and analyze the efficiency of this selection method

for a set of nominal selection cuts applied to our sample. In Section 2.4, we explore methods

for optimizing the LRG selection algorithm by adjusting the parameters of our cuts in color-

color space. In Section 2.5, we summarize our results and conclude with plans for future

work. For this work, we assume a standard ΛCDM cosmology with H0=100h km s−1 Mpc−1,

ΩM = 0.3, and ΩΛ = 0.7.

2.2 DATA

In this chapter, we make use of 5 cross-matched catalogs that cover two different regions

of the sky, the Extended Groth Strip (EGS), with 214.0◦ < α < 215.70◦ and 52.14◦< δ <

53.22◦, and the COSMOS field, with 149.41◦< α < 150.82◦and 1.49◦< δ < 2.92◦. These

two regions have been surveyed by a variety of telescopes, providing photometry over a wide

range of wavelengths. We have cross-matched objects based on their positions on the sky as

recorded by each survey. In order to avoid duplicate matches, we match each object in the

catalog with the lowest surface density to its nearest neighbors in the denser catalogs that are

closer than 1.5 arcseconds. For DEEP 2 objects in the EGS, we use the cross-identifications

provided by Matthews et al. (2013). Below, we briefly describe each of the catalogs used in

this study.
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2.2.1 Optical Photometry

Canada-France-Hawaii Telescope Legacy Survey (CFHT LS): CFHT LS consist of

two parts. The Wide Survey covered ∼ 150 deg2 divided over 4 fields with magnitude

limits (50% completeness for point sources) of u? ∼ 26.0, g′ ∼ 26.5, r′ ∼ 25.9, i′ ∼ 25.7, and

z′ ∼ 24.6. The Deep Survey consists of 4 fields of 1 deg2 area each, each with magnitude

limits of u? ∼ 27.5, g′ ∼ 27.9, r′ ∼ 27.7, i′ ∼ 27.4, and z′ ∼ 26.2. We use both the D2 Deep

field which lies within the COSMOS region, and D3, which overlaps with EGS. We also use

both the Wide survey and the Deep survey in the EGS.

We use the COSMOS ugriz magnitudes and their corresponding errors from the CFHT

LS catalogs produced by Gwyn (2011a), which were created using the MegaPipe data pipeline

at the Canadian Astronomy Data Centre.

CFHT LS uses MegaCam filters which are slightly redder than their SDSS counterparts.

We convert CFHT LS photometry to SDSS pass-bands by inverting the filter relations given

in Equations 1-5. The relations for the g, r, i and z -bands come from analyses by the

SuperNova Legacy Survey (SNLS) group.1 The relation for the u band is taken from the

CFHT web pages.2 3 The transformed equations are:

uSDSS = uMega + 0.181(uMega − gMega), (2.1)

gSDSS = gMega + 0.195(gMega − rMega), (2.2)

rSDSS = rMega + 0.011(gMega − rMega), (2.3)

iSDSS = iMega + 0.001(rMega − iMega), and (2.4)

zSDSS = zMega + 0.099(iMega − zMega), (2.5)

where uMega, gMega, rMega, iMega, and zMega represent the ugriz magnitudes measured by

CFHT LS and uSDSS, gSDSS, rSDSS, iSDSS, and zSDSS are the standard SDSS magnitudes.

The resulting SDSS-passband magnitudes are then corrected for Galactic extinction using

1http://www.astro.uvic.ca/ pritchet/SN/Calib/ColourTerms-2006Jun19/index.html
2http://cfht.hawaii.edu/Instruments/Imaging/MegaPrime

/generalinformation.html
3http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/megapipe/

docs/filt.html
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the dust map of Schlegel et al. (1998a), hereafter SFD. To calculate the extinction in a given

band, A(λ), we interpolate the standard total-to-selective extinction ratios, i.e. A(λ)/E(B-

V) from Table 6 of Schlegel et al. (1998a) for the effective wavelengths given in the filter list

of CFHT LS.4 We obtain E(B-V) values from the SFD dust map (Schlegel et al., 1998a) via

the routine dust getval.pro provided in the idlutils package.5

2.2.2 Infrared photometry

Wide-Field Infrared Survey Explorer (WISE) catalog: WISE completed a mid-

infrared survey of the entire sky by July 2010 in four infrared channels, labeled W1,W2,W3

and W4, centered at 3.4, 4.6, 12, and 22 µm, respectively. This was achieved using a 40

cm telescope with much higher sensitivity than previous infrared survey missions. WISE

achieved 5σ point source sensitivities better than 0.08, 0.11, 1, and 6 mJy, corresponding to

19.1423, 18.7966, 16.4001, and 14.4547 AB magnitudes,6 with angular resolutions of 6.1, 6.4,

6.5, and 12.0 arcseconds in the W1,W2,W3 and W4 channels, respectively (Wright et al.,

2010a).

A detection by WISE is required for an object to be in our catalog. This restriction

will have negligible effect on LRGs, since they are bright in the W1 -band but greatly reduces

the number of objects to which we must apply our selection cuts. Based on color-magnitude

diagram, we observe that all z < 20.5 LRGs are detected in W1 band at greater than 5-

sigma. 3.4 micron (W1 ) magnitudes are taken from the publicly available WISE All-Sky

Data Release catalog of Wright et al. (2010a). We convert these to the AB magnitude

system and correct them for reddening using the SFD dust map (Schlegel et al., 1998a) and

interpolate extinction ratios, much as above.

4http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/megapipe/
docs/filt.html

5http://www.sdss3.org/dr8/software/idlutils.php
6MAB = - 2.5 × log10(Fν/ 3631 Jy)

13



2.2.3 Redshifts

COSMOS: The COSMOS photometric redshift (‘photo-z’) catalog from Ilbert et al. (2008a)

is a magnitude-limited catalog with I< 25. This catalog provides photometric redshifts over

the ∼ 2 deg2 COSMOS field. The redshifts are computed using 30 bands covering the

UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT) and mid-IR (Spitzer/IRAC). A χ2

template-fitting method yields photo-z estimates which are calibrated with spectroscopic

redshift measurements from VLT-VIMOS and Keck-DEIMOS. For details of photo-z deter-

minations and accuracy, see Mobasher et al. (2007).

EGS: In the EGS we use the DEEP2 spectroscopic catalog. DEEP2 is a high-resolution

redshift survey of ∼53,000 galaxies at redshifts z ≥ 0.7 using the DEIMOS spectrograph at

Keck Observatory (Newman et al., 2013). The survey covers an area of 2.8 deg2 over four

different fields. DEEP2 targeted galaxies brighter than RAB ∼ 24.1 with a spectral resolu-

tion of R (= ∆λ/λ)∼ 6000 and a central wavelength of 7800Å (Newman et al., 2013).

Since the DEEP2 catalogs only provide BRI photometry, Matthews et al. (2013) have

created a catalog to supplement them with ugriz photometry from CFHTLS and SDSS.

Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to

objects in the DEEP2 catalogs. We use the Matthews et al. (2013) catalog in the EGS field

to obtain ugriz photometry. We correct this photometry for extinction as described above

in Section 2.1.

All objects in our datasets are required to have reliable redshifts. This is important

as this information is used in determining the rest-frame colors of galaxies. For the COS-

MOS field, we use the photometric redshifts, zp gal, taken directly from Ilbert et al. (2008a).

We don’t consider objects with zp best= NULL as these are the objects in masked area.

For the galaxies in the EGS, we make use of the heliocentric reference-frame spectroscopic

redshift, ZHELIO, provided in the DEEP2 extended photometry catalog of Matthews et al.

(2013). We also ensure that each galaxy in our sample has a securely measured redshift (

i.e., we require redshift quality flags, ZQUALITY of 3 or 4 in DEEP2).
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2.2.4 Object type identification

COSMOS: In order to distinguish stars, galaxies, and X-ray sources within the COSMOS

field from each other, we apply a variety of cuts based upon the photometric redshift esti-

mates, zp best, as well as the reduced chi-squared value associated with the separate star and

galaxy template fits to each object’s SED, Chi star and Chi gal.7 The parameters we use

have been provided by Ilbert et al. (2008a). To identify different objects, we use the criteria:

X-ray sources : zp best > 9, (2.6)

Galaxies : (Chi gal < Chi star)

AND (0.011 < zp best < 9), (2.7)

Stars : (chi gal > chi star)

OR (chi gal < chi star)

AND (zp best < 0.011 OR zp best > 9)) (2.8)

These criteria distinguish galaxies from stars and X-ray sources. An object is flagged as a

star if its SED is best fit with a stellar template or if it yields an extremely low redshift in

case where a galaxy template is the better fit. An object identified as a galaxy should not

only fit the galaxy template best but also yield a redshift between 0.011 and 9. Once the

objects are identified, zp final is our redshift indicator and its value is set to the photometric

redshift, zp gal, if the object is identified as a galaxy. The zp final value is set to 0.0 for stars

and −9.99 for X-ray sources.

EGS: We use the Hubble Space Telescope-Advanced Camera for Surveys (HST-ACS)

general catalog for objects in the EGS field. The HST-ACS General Catalog is a photomet-

ric and morphological catalog created using publicly available data obtained with the ACS

7Variables defined the same way they appear in the catalogs.
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instrument on the Hubble Space Telescope (HST). This provides a large sample of objects

with reliable structure measurements. It includes approximately 470,000 sources originally

observed in a variety of sky surveys, including the All-Wavelength Extended Groth Strip

International Survey (AEGIS), COSMOS, GEMS, and GOODS (Griffith et al., 2012). A

single Sersic model for each object is assumed for deriving quantitative structural parame-

ters (e.g., surface brightness and effective radius).

Our goal is to be able to estimate the stellar contamination in the EGS. DEEP2 avoided

targeting stars, so we can not assess this from the spectroscopic sample on its own. No such

effort is required for the COSMOS field since the catalog of Ilbert et al. (2008a) contains

both stars and galaxies. We use the same definition as Griffith et al. (2012) for identifying

compact objects (presumed to be stars) based upon their larger surface brightness, mu HI,

and lower effective half-light radius, RE Galfit HI (for more details, see Figure 5 of Grif-

fith et al. (2012)). Specifically, we identify objects with mu HI < 18.5 or (mu HI > 18.5 &

RE Galfit HI < 0.03) as stars, where RE Galfit HI is given in arc-seconds. Once the number

of the stars is determined, we assume that the fraction of objects which are stars is uniform

over the entire EGS. This gives us the total number of selected objects by our color-cut

(galaxies, x-ray sources, and stars) which is then used to calculate the normalized Figure of

Merit, see Figure 2.12. This step is necessary since the HST-ACS general catalog of Griffith

et al. (2012) covers only a portion of the entire EGS.

2.3 METHOD OF LRG SELECTION

Our goal is to develop a method for selecting LRGs at high redshift, i.e., z > 0.6. One of the

main challenges in LRG selection based on optical photometry alone is stellar contamination.

The color overlap of stars with galaxies is illustrated in Figures 2.1 and 2.2, where contours

depicting the density of stars are overlaid on the locations of galaxies (shown as dots) in g-r

vs. r-i (Figure 2.1) and r-i vs. i-z (Figure 2.2) color-color plots. The strong overlap of these

populations makes them difficult to separate cleanly.
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Figure 2.1: g-r vs r-i optical color-color plot of galaxies (data points) observed by CFHT LS with COSMOS
photometric redshifts. Star density contours are over-plotted to show the overlap with galaxies. This overlap
makes LRG selection difficult at higher redshifts, requiring a new method of selecting them.
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Figure 2.2: r-i vs i-z optical color-color plot of galaxies (data points) observed by CFHT LS and the COSMOS
survey, similar to Figure 2. Star density contours are overplotted to show the overlap with galaxies. Stars
overlap almost entirely with high-redshift LRGs.
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SDSS gri WISE 3.4µm

Figure 2.3: 1 arcminute square SDSS and WISE (3.4 micron) images of a z ∼ 1 LRG. This object is at the 5
sigma detection limit in SDSS r and i but dominates the WISE image. Due to the redshifted ‘1.6 µm bump’,
LRGs at z ∼ 1 look much brighter in the WISE 3.4 micron band than at optical wavelengths, providing a
new method of selecting them.

In this chapter, we present a new technique for identifying high-redshift LRGs which

combines optical and infrared photometry. The lowest wavelength channel of imaging from

the WISE satellite is centered around 3.4 µm. This overlaps with the red-shifted ‘1.6 µm

bump’ at redshifts of z ∼ 0.6− 1, causing LRGs at those redshifts to appear very bright in

this band. This phenomenon is illustrated in Figure 2.3, where a typical LRG at z ∼ 1.0,

which is barely detected in a 1′ × 1′ region of SDSS optical imaging, is the brightest object

in the WISE NIR image of the same area. The relative brightness of LRGs in the WISE

3.4 µm band compared to the optical bands increases monotonically up to z ∼ 1 and then

declines past z ∼ 1.1 (at which point optically bright LRGs become rare).

To match the expected spectroscopic depth of DESI LRGs, we restrict the dataset for

all analyses in this chapter to those objects which have SDSS z -band magnitude z < 20.5.

We now present a new technique which combines both optical and infrared photometry as

a means of selecting galaxies that are intrinsically red and at high redshift while circum-

venting most stellar contamination. In Figure 2.4, we show both stars and galaxies in a
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plot of r-W1 color based on WISE and SDSS-passband photometry as a function of their

SDSS r-i color. Here we can easily see that the two populations (stars, shown as green

diamonds, and galaxies, shown as all other colored diamonds) exhibit a natural separation

in the NIR-optical color space. In fact, the separation between the two populations grows as

a function of galaxy redshift, allowing clean identification of the LRGs at higher redshifts,

z > 0.6. Simultaneously, r-i color increases with increasing redshift as the 4000 Å break

shifts redward, particularly for intrinsically red galaxies, allowing a selection specifically for

intrinsically red, higher-redshift objects.

As a result, a simple cut in the optical-infrared color-color plot enables us to efficiently

select LRGs at higher redshifts, rejecting bluer galaxies, lower-redshift objects, and stars.

As a nominal scenario, we select all objects that have both r-i > 0.98 and r-W1 > 2.0 ×

(r-i), where r and i are extinction-corrected SDSS magnitudes and W1 is the magnitude in

the WISE 3.4 micron pass-band on the AB system (Figure 2.4). We have determined these

cuts through visual optimization by examining the populations in Figure 2.4.

Overall, our LRG color-cut selection has three free parameters: the minimum allowed

r-i color (corresponding to the vertical line in Figure 2.4), and the slope and intercept of the

line determining the minimum allowed r-W1 color at a given r-i color (corresponding to the

inclined line in Figure 2.4). The latter of these two criteria determines the degree to which

stars are rejected from our sample of LRGs. The r-i cut will mostly affect the properties

of the galaxies we select (e.g., their redshift distribution). We investigate the performance

of this color-cut in Figure 2.6, 2.7, and 2.8. For an object to be classified as a high-redshift

LRG, we generally require it to have both a rest-frame color U − B ≥ 1 and a redshift z >

0.6, though we also consider other redshift thresholds. We use the k-correct package to

obtain rest-frame U −B color for all galaxies; see Blanton & Roweis (2007) for details.

To further justify our choice of redness threshold, U − B ≥ 1, we have plotted the

standard color-magnitude diagram for DEEP2 galaxies in Figure 2.5, clearly showing the

red-sequence, blue sequence and the green valley. From Figure 2.6, we observe that with our

nominal color-cut, 85.8% of the galaxies selected have rest-frame U −B ≥ 1, indicating that

they are intrinsically red in rest-frame color, adopting the same criterion employed by Gerke

et al. (2007). The remaining galaxies selected are still relatively red and massive, but have
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Figure 2.4: Optical/Infrared color-color plot for galaxies observed by WISE, CFHT LS and the COSMOS
survey. Blue symbols represent all the galaxies at z < 0.6. Pink diamonds represent galaxies at z > 0.6
while red crosses represent z > 0.8. Cyan triangles represent galaxies at higher redshift of z > 1.0. Stars
are represented by green diamonds. The triangular region represents the LRG selection region used in
Figures 2.6, 2.7 and 2.8.
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some ongoing star formation.

In Figure 2.7, we show a histogram of the redshifts measured for each of the objects

selected, indicating that 77.6% of the galaxies selected by our nominal cuts fall within the

redshift range of interest, i.e., 0.6 ≥ z ≥ 1.0, and < 1% are stars.

2.4 OPTIMIZATION OF LRGS SELECTION

2.4.1 Optimization using Receiver Operating Characteristic

As a first attempt to optimize the efficiency of our selection method, we begin by varying the

minimum allowed r-i color (corresponding to shifting the vertical line in Figure 2.4), while

keeping all other parameters fixed. We interpret the results of varying this color criterion

using a Receiver Operating Characteristic (ROC) plot, as shown in Figure 2.8. The ROC

plot provides a visualization of the performance of a classification system; in our case, this

quantifies our ability to segregate out the high-redshift LRGs in contrast to galaxies which

are either blue or at lower redshift (‘non-LRGs’ for short). Each individual curve shows the

result of using a different threshold on the minimum-allowed z to be a ‘high-redshift’ LRG;

we only consider LRGs above the desired minimum redshift as our target population.

The y-axis of the ROC plot represents the True Positive Rate (TPR), also known as

the ‘sensitivity’. The TPR is defined as the fraction of all true high-redshift LRGs in the

underlying sample that are within a given color cut. One of our main goals is to maximize

the TPR. Of course, if the minimum-allowed r-i color was shifted so blue as to select all

galaxies this would be achieved by definition. However, there is a cost associated with doing

this; we would select many galaxies that are not LRGs. This misidentification is quantified

as the False Positive Rate (FPR) which is plotted on the x -axis of the ROC plot. The FPR

is the fraction of all non-LRGs (in our case, all z < 20.5, WISE-selected objects that are

blue (U −B < 1) and/or below the desired redshift) that are placed in the LRG sample by

a given color cut. Our goal is to minimize this quantity when varying the color cuts used to
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Figure 2.5: Standard color-magnitude diagram of DEEP2 DR4 galaxies in redshift range 0.5 < z < 1.0.
Restframe U-B color is plotted on the y-axis, and the absolute B-band magnitude is plotted on the x-axis.
We clearly see two different overdensities, one around U-B ∼ 0.4 - 0.7 and another around U-B ∼ 1.25. The
galaxies with U-B ≥ 1.0 are commonly referred to as the red-sequence galaxies while galaxies having U-B
< 1.0 form the blue cloud. The low density region in between these overdensities is generally referred to as
the green valley. Restframe U-B colors and absolute magnitudes are obtained using the k-correct package
which assumes h = 1; see Blanton & Roweis (2007) for details. Choosing a different value of h will not
change U-B, just MB .
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Figure 2.6: Rest-frame U-B colors of WISE-detected, z < 20.5 galaxies as a function of redshift. Red dots
represent the galaxies from the LRG selection region of Figure 2.4). Blue dots represent the galaxies excluded
by this color selection. The red sequence corresponds well to those galaxies with U-B ≥ 1.0. Of the galaxies
selected by our color cut, 85.8% have U-B greater than 1.0; most selected objects that miss this cut are only
slightly bluer than the red sequence.
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Figure 2.7: Redshift histogram of WISE-detected, z < 20.5 galaxies. The blue histogram depicts the redshift
distribution of the full WISE-detected, z < 20.5 sample, with an arbitrary renormalization applied. The red
histogram represents galaxies from the LRG selection region of Figure 2.4. The selected objects predomi-
nantly fall in the redshift range 0.6 < z < 1, with a modest 0.63% contamination by stars (appearing at
z ∼ 0).
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pick our sample while at the same time maximizing the TPR.

One common way of assessing the performance of a selection algorithm is the Area

Under Curve (AUC) diagnostic (Hanley & McNeil, 1982). This is calculated by integrating

the ROC curve over all FPRs. Here, we assess the efficiency of selecting LRGs using 3

different redshift thresholds, z ≥ 0.55, 0.6, or 0.65. We have varied the minimum allowed

r-i color over the range in values from 0.8 to 1.2, and calculated the TPR and the FPR for

each selection. Figure 2.8 shows that, with our chosen cuts, we are able to attain a TPR

of 85 − 95% (depending on the choice of the minimum allowed ’high’ redshift, threshold z)

while at the same time keeping the FPR below ∼3%. Based on the AUC, we conclude that

our selection algorithm performs best for a threshold redshift of z ≥ 0.6 (corresponding to

the blue curve in Figure 2.8), as it encompasses the maximum area.

2.4.2 Optimization using Figure Of Merit for large scale structure studies

To optimize the efficiency of our methods further, we attempt to account for the contribution

to cosmological analyses from those non-LRG objects which are selected. While LRGs are

the prime targets we are after, those galaxies which are not red and have a redshift of z ≥ 0.6

(hereafter, ‘high-z blue galaxies’), still provide useful information. To assess this, we define

a Figure Of Merit (FOM) as

FOM = a× nLRGs + b× nhigh−z blue gals, (2.9)

where a and b are constants weighting the targets, and nLRGs and nhigh−z blue gals represent the

number density (number per unit area) of LRGs and high-redshift blue galaxies, respectively,

for a given set of color cut criteria. Since LRGs are our prime targets, we assign a = 1.0

and b < a. For the purpose of this chapter, we adopt b = 0.75 as an example; a more

ideal weighting would set b/a according to the relative contribution of each class of objects

towards, e.g., the uncertainty in the BAO scale. We assume that stars, X-ray sources (which

tend to be at higher z), and galaxies at z ≤ 0.6 contribute nothing towards the FOM. We

want to optimize not only the total FOM but also the FOM per object which we will refer
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Figure 2.8: The Receiver Operating Characteristic plot for changes in the minimum allowed r-i for selecting
LRGs over the range 0.8 < r-i < 1.2. For each curve, we only consider intrinsically red objects that have
redshifts above a different specified minimum redshift, z, to be high-z LRGs. The brown triangles represent
the performance at the threshold of r-i = 0.98. Similarly, the red diamonds and the blue stars represent the
performance at the threshold of r-i = 0.9 and r-i = 1.1, respectively. Based on the commonly-used Area
Under Curve criterion, our color cuts perform slightly better for LRGs with minimum redshift of z ∼ 0.6
than 0.55 or 0.65.
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to as the Normalized FOM. The total FOM represents the total constraining power of the

whole sample and will increase even when we select lower-value high-z blue galaxies. On the

other hand, the Normalized FOM will increase only when LRGs make up a higher fraction of

the sample and, therefore, can be more useful for optimization. Both should be considered;

selecting all the objects regardless of color would yield a large total FOM but little value per

object; while an extremely restrictive selection could have normalized FOM∼ 1, but have

little total constraining power due to the small number of objects chosen. We then create

a 3-dimensional grid to tabulate the FOM for each possible combination of the minimum

allowed r-i and the slope and intercept of the line marking the minimum allowed r-W1 for

a given r-i color. Figure 2.8 shows that our nominal cut of r-i = 0.98 performs quiet well on

this metric.

To simplify the search space, we next fix our r-i cut at the optimal value and analyze

the FOM when varying the two parameters associated with the r-W1 cut. In Figure 2.9, we

plot the FOM as a function of the slope and the intercept of the r-W1 threshold line. We

overplot the contours of constant FOM to highlight the linear nature. It is clear that the

FOM depends primarily on a fixed combination of these parameters. As a result, the optimal

value of the slope of the line, Sr−W1, given a value the intercept, ir−W1, can be obtained

from the relation:

Sr−W1 = 2.0− 0.4× ir−W1. (2.10)

Although the exact form of this optimal relation is dependent on the value of b in Equa-

tion 2.9, the existence of this correlation is significant, as it reduces our selection algorithm

from a 3-parameter to a 2-parameter problem. We find that similar linear correlations occur

for different values of b in Equation 2.9 (e.g. b = 0.25 or 0.5). In contrast to FOM, the

normalized FOM depends little on the slope/intercept in the relevant parameter range, so

in this case, our decisions are driven by FOM.

Based on this approximation, we define a new variable v:

v = (2.0− Sr−W1)− 0.4× ir−W1. (2.11)
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Figure 2.9: The LRG selection figure of merit (see Equation 2.9) as a function of the slope and intercept of
the r-W1 cut, using a fixed r-i threshold of 0.98. The visible pattern and the overplotted contours of constant
FOM show that these parameters can be effectively replaced by a single linear combination of the two, as in
Equation 2.10.
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This is defined such that v=0 at our nominal parameter values for the r-W1 cut. Next, we

create a 2-dimensional grid to tabulate the FOM at each possible combination of the two

parameters in our model, the minimum allowed r-i and v. This grid is then analyzed to

determine the parameter values which maximize the FOM. In Figure 2.10, we have plotted

the maximum of the FOM over all ir−W1 values as a function of the r-i color cut. The

maximum FOM decreases monotonically as the threshold r-i color moves redward (corre-

sponding to moving the vertical line in Figure 2.4 to the right). This result is consistent with

our expectation, since we select a decreasing number of both LRGs and high-z blue galaxies

as the r-i cut is moved redward.

In Figure 2.11, we have shown the FOM and normalized FOM as a function of v as-

suming r-i = 0.98. We have also overplotted the fraction of objects selected as a consistency

check. The flatness of the curves in Figure 2.11 can be understood with the help of Fig-

ure 2.4, as well as Equations 2.10 and 2.11. As v becomes positive, the intercept of the r-W1

threshold line becomes negative. This region lies within the empty region separating stars

and galaxies in Figure 2.4. Hence, we do not see any significant change in any of the quanti-

ties plotted. As v is further increased, the r-W1 cut starts including stars into our sample.

This causes an abrupt increase in the fraction of objects selected and a corresponding abrupt

decrease in the FOM normalized by the number of selected objects. However, the total FOM

remains mostly unaffected as stars do not contribute to it.

Figure 2.8 illustrates that r-i = 0.98 is a well-optimized cut for our purposes. Any

decrease in this parameter causes the FPR to increase significantly without any significant

gain in the TPR. Overall, we conclude that our nominal cuts of r-i > 0.98 and r-W1 > 2.0

× (r-i), are well optimized and are the final cuts used in this selection. We find that when

varying our threshold redshift marginally, e.g. z > 0.55 or z > 0.65, our analysis yields

similar results for the optimal value of selection parameters.

The analyses described so far all rely on our COSMOS field sample. It is worthwhile

to test whether adding more data from different regions of the sky, which will reduce sam-

ple/cosmic variance, can improve our optimization. As explained in Section 2, in the EGS,

we have obtained DEEP2 extended photometry from the catalog of Matthews et al. (2013).

We repeat the same analysis as was done for the COSMOS field to estimate the FOM for our
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Figure 2.10: The maximum FOM for a given r-i color threshold for z < 20.5 galaxies, using data in the
COSMOS region. Each individual curve shows the result of using a different choice for the minimum-allowed
z for a high redshift LRG. In the top panel, the monotonic decrease in FOM as the threshold r-i color
moves redward (corresponding to moving the vertical line in Figure 2.4 to the right) is consistent with our
expectations, since we select a decreasing number of both LRGs and high-z blue galaxies as the r-i cut is
moved to the right. In the bottom panel, we analyze the normalized FOM as the threshold r-i color moves
redward. For r-i < 1.05, as the color cut moves redder, it selects a higher fraction of high-z LRGs, increasing
the purity of the sample and hence the normalized FoM monotonically.
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Figure 2.11: The FOM at r-i = 0.98 for z< 20.5 galaxies as a function of the combined slope/intercept
parameter (v) in the COSMOS region. Only galaxies above a threshold redshift of z > 0.6 are counted in the
FOM. Each individual curve shows a different quantity. The second y-axis (on the right) is used for plotting
both the Normalized FOM (FOM normalized by the total number of objects selected by a given color cut)
and the fraction of all z < 20.5 objects that are targeted. Values of v around 0 are roughly optimal for both
the total and normalized FOM.
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2-parameter model. However, to estimate the total number of objects selected by a given

color cut, we need to estimate the stellar contamination. Since DEEP2 avoided targeting

stars (Newman et al., 2013), this is done separately using the HST-ACS general catalog of

Griffith et al. (2012), as described in Section 2.4. We otherwise repeat the same analysis

as done for the COSMOS field to estimate the stellar contamination for a given color cut

in 2D parameter space. The FOM in the EGS region shows a very similar behavior as in

the COSMOS field as can be seen in Figure 2.10 and 2.11, indicating that sample/cosmic

variance is not a major issue.

In Figure 2.12, we show the behavior of the FOM averaged over both the EGS + COS-

MOS fields. The plot shows a very consistent behavior, enabling us to conclude that our

baseline color selection, r-i > 0.98 and r-W1 > 2.0 × (r-i) is indeed well-suited for selecting

z > 0.6 LRGs using this method.

2.5 CONCLUSIONS AND FUTURE WORK

We have found a reliable and efficient method of identifying and selecting LRGs at higher

redshifts by combining optical and infrared photometry. We have explored a variety of

methods for optimizing our color cuts, given a particular set of rest-frame color and redshift

requirements. With these optimization procedures, we can, for instance, tune the redshift

range to select LRGs as required by different surveys.

These methods have now been used to assemble large samples of LRGs. More than

10,000 z < 20, SDSS+WISE selected LRGs were targeted by a BOSS Ancillary program in

2012-2013 (SDSS DR12, in prep.). This will not only provide a good check on our selection

methods but will also greatly increase the sample that we can use to optimize the selection

process further. We have also selected LRGs based on similar methods, but using colors

derived only from SDSS i,z and WISE W1 (i.e., using i-W1 and i-z colors). Selection in

these redder bands helps for targeting higher-z LRGs, but they are not as efficient as the

combination of r, i, and W1 in star-galaxy separation.

We have created a sample of LRGs over the entire SDSS footprint which has been
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Figure 2.12: The FOM for r-i = 0.98 as a function of the combined slope/intercept parameter (v), averaged
over both the COSMOS and the EGS fields. Only galaxies above a threshold redshift of z > 0.6 are countedd
in the FOM. Similar to Figure 2.11, values of v around 0 prove to be roughly optimal for both the total and
normalized FOM.
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used in selecting targets for a second BOSS ancillary survey, the SDSS Extended Quasars,

Emission line galaxy, and LRGs Survey (SEQUELS). In SEQUELS, we have targeted ∼

70,000 z < 20 LRGs selected by one of two color cuts: One which utilizes r-i, r-W1, and

a minimum value of i-z, and a second which uses only i-z and i-W1 colors. The work of

analyzing the resulting spectra is in progress and will be reported in future publications. The

same methods are being used for selecting LRG targets for eBOSS, which began observations

in Fall 2014. The results from these selection algorithms have been described in Chapter 3

(also see the companion paper, Prakash et al. (2016)).

We are also investigating even deeper selections of LRGs using r, z, and W1 photometry

for the proposed DESI survey (see DESI Conceptual Design Report).8 Optical/IR LRG

selections have proved to be effective in our tests, and will provide a cornerstone sample for

BAO surveys through the next decade.

8http://desi.lbl.gov/cdr/
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3.0 THE SDSS-IV EXTENDED BARYON OSCILLATION

SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET

SELECTION

The contents of this chapter have been published in Prakash, Licquia, Newman, et al., 2016

June 8, The Astrophysical Journal Supplement Series, Volume 224, Number 2

3.1 INTRODUCTION

Surveys like the Sloan Digital Sky Survey (SDSS; York et al., 2000a) and the SDSS-III /Baryon

Oscillation Spectroscopic Survey (BOSS ), as well as the 2dF-SDSS LRG and QSO survey

(e.g. Eisenstein et al., 2001; Cannon et al., 2006) have successfully targeted LRGs for BAO

detection. In combination, SDSS-I, SDSS-II and SDSS-III targeted LRGs at z ∼< 0.7 to a

magnitude limit of i < 19.9 and ifiber2 < 21.5 (Eisenstein et al., 2001, 2005, 2011; Dawson

et al., 2013a). The methods used to select LRGs for these studies are limited in redshift

range as a result of using optical photometry alone for selection. Identifying LRGs with

shallow optical photometry becomes prohibitively difficult at higher redshifts as the 4000 Å

break passes into the near-infrared and colors overlap strongly with M stars.

New multi-wavelength imaging is now available which allows high-redshift LRGs to be

selected much more efficiently than optical-only imaging would make possible. In particular,

optical-infrared (optical-IR) colors provide a powerful diagnostic for separating galaxies and

stars(Prakash et al., 2015), as well as a diagnostic of redshift. As a result, infrared observa-

tions from satellites such as the Wide-field Infrared Survey Explorer (WISE ; Wright et al.,

2010a) provides additional information for targeting LRGs in regions of optical color space
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that would otherwise be heavily contaminated by stars.

Increasing our current sample of LRGs to higher redshifts will allow measurements

of the Baryon Acoustic Oscillation (BAO) feature, and hence of the expansion rate of the

universe (Seo & Eisenstein, 2003; Lin & Mohr, 2003; Ross et al., 2008), during the era

when accelerated expansion began. An optical + WISE selection makes it possible to target

LRGs in the redshift range 0.6 ∼< z ∼< 1 efficiently (Prakash et al., 2015); with spectroscopy

of these targets, we can obtain stronger constraints on the BAO scale at these redshifts. At

even higher redshift, other tracers such as quasi-stellar objects (quasars) and Emission Line

Galaxies (ELGs) can be used to provide further complementary probes of the BAO scale. In

combination, these target classes can provide powerful constraints on the evolution of cosmic

acceleration across a wide range of redshifts. This led to the conception of a new survey, the

extended Baryon Oscillation Spectroscopic Survey (eBOSS Dawson et al., 2016) as part of

SDSS-IV.

The LRG component of eBOSS will obtain spectra for ∼375,000 objects. Approxi-

mately 265,000 of these are expected to be LRGs in the redshift range 0.6 < z < 1.0, with

a median redshift of z ∼ 0.7. The main goal of this spectroscopic campaign is to produce

more precise measurements of the BAO signal at 0.6 < z < 1.0, thus extending probes of the

BAO scale using LRGs beyond the BOSS redshift range. eBOSS LRGs are also expected

to yield a 4% measurement of Redshift Space Distortions (RSD) which will allow improved

tests of General Relativity at these redshifts (e.g., Beutler et al., 2014a,b; Samushia et al.,

2014).

Altogether, SDSS-IV /eBOSS will produce a spectroscopic sample of both galaxies

and quasars over a volume that is 10 times larger than the final SDSS-III BOSS sample,

although at lower target density. This sample will enable a wide range of scientific studies

beyond a BAO measurement. For example, the resulting sample of hundreds of thousands

of LRGs extending to z = 1 will be useful for a variety of studies of the evolution of the

brightest elliptical galaxies, including measurements of luminosity functions, mass functions,

size evolution, and galaxy-galaxy lensing.

In this chapter, we describe the algorithm used to select LRG targets for the eBOSS

survey. Further technical details about eBOSS can be found in companion papers on Quasar
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selection (Myers et al., 2015), ELG selection (Comparat et al., 2015a), survey strategy (Daw-

son et al., 2016), and the Tractor analysis of WISE data (Lang et al., 2014).

The chapter is organized as follows. In Section 2, we outline the goals of eBOSS and the

requirements placed on the LRG sample to meet these goals. The parent imaging data used

for eBOSS LRG target selection is outlined in Section 3. In Section4, we describe our new

method of LRG selection and supporting tests for this method that were conducted during

BOSS. In Section 5, we describe the eBOSS LRG targeting algorithms and the meaning of

the relevant targeting bits, while Section 6 uses the latest results from eBOSS to test the

target selection algorithm. An important criterion for any large-scale structure survey is

sufficient homogeneity to facilitate modeling of the distribution of the tracer population, i.e.,

the ‘mask’ of the survey. In Section 7, we use the full eBOSS target sample to characterize

the homogeneity of eBOSS LRGs. We present conclusions and future implications for eBOSS

LRGs in Section 8.

Unless stated otherwise, all magnitudes and fluxes in this chapter are corrected for

extinction using the dust maps of Schlegel et al. (1998a), hereafter SFD, and are expressed

in the AB system (Oke & Gunn, 1983a). The SDSS photometry has been demonstrated to

have colors that are within 3% of being on an AB system Schlafly & Finkbeiner (2011a).

We use a standard ΛCDM cosmology with H0=100h km s−1 Mpc−1, h = 0.7, ΩM = 0.3,

and ΩΛ = 0.7, which is broadly consistent with the recent results from Planck (Planck

Collaboration et al., 2014).

3.2 COSMOLOGICAL GOALS OF EBOSS AND IMPLICATIONS FOR

LRG TARGET SELECTION

3.2.1 Overall Goals for the Luminous Red Galaxy Sample

The primary scientific goals of the eBOSS LRG survey are to constrain the scale of the BAO

to 1% accuracy over the redshift regime 0.6 < z < 1.0. This requires selecting a statistically

uniform set of galaxies with the desired physical properties for which spectroscopic redshifts
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can be efficiently measured. The density of selected LRGs must not strongly correlate with

either tracers of potential imaging systematics (e.g., variations in the depth of the imaging)

or with astrophysical systematics such as Galactic extinction and stellar density.

3.2.2 Target Requirements for LRGs

As explained in Dawson et al. (2016), a density of 50 deg−2 spectroscopic fibers are allocated

to eBOSS LRGs and a density of 40 deg−2 LRGs with redshifts 0.6 < z < 1.0 is required,

over the projected 7,500 deg−2 survey footprint, to meet the eBOSS scientific goals (see

Dawson et al. (2016) for more details). If one were to consider eBOSS in isolation, this

corresponds to a requirement that 80% of eBOSS LRG targets result in a spectroscopically

confirmed galaxy with 0.6 < z < 1.0. However, given that BOSS observed a density of 12

deg−2 LRGs (assuming half of the BOSS galaxies with z > 0.6 are LRGs, consistent with

Ross et al. (2014), eBOSS can obtain its required number density of LRGs if it observes

28 deg−2 additional LRGs with 0.6 < z < 1.0. Additionally, we require the redshifts be

accurate to better than 300 km s−1 RMS and robust such that the fraction of catastrophic

redshift errors (exceeding 1000 km s−1) is < 1% in cases where the redshifts are believed to

be secure. The construction of a sample designed to fulfill these requirements is described

in Sections 3.4 and 3.5.

A further requirement to obtain robust BAO measurements is that the density of se-

lected LRGs must not strongly correlate with either tracers of potential imaging systematics

(e.g., variations in the depth of the imaging) or with astrophysical systematics such as Galac-

tic extinction and stellar density.BOSS has shown that fluctuations associated with surveys

artifacts can be handled effectively via weighting schemes provided the amplitude of fluc-

tuations is relatively small (Ross et al., 2012a). To facilitate weighting schemes in future

clustering studies, we require that that fluctuations in the expected target density as a func-

tion of potential imaging systematics, stellar density, and Galactic extinction be less than

15% (total variation around mean density). We require density differences due to imaging

zero point variations in any single band to be below 15% as well. Tests of the homogeneity

of the LRG target sample are presented in Section 3.7.
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3.3 PARENT IMAGING FOR TARGET SELECTION

3.3.1 Updated calibrations of SDSS imaging

All eBOSS LRG targets rely on imaging from the SDSS -I /II /III. SDSS photometry was

obtained by the SDSS telescope (Gunn et al., 2006) using its wide-field imaging camera

(Gunn et al., 1998) in the ugriz system (Fukugita et al., 1996a). SDSS -I /II primarily

obtained imaging over the ∼ 8400 deg2 “Legacy” area, ∼ 90% of which was in the North

Galactic Cap (NGC). This imaging was released as part of SDSS Data Release 7 (DR7;

Abazajian et al., 2009). The legacy imaging area of the SDSS was expanded by ∼ 2500 deg2

in the South Galactic Cap (SGC) as part of DR8 (Aihara et al., 2011). The SDSS -III /BOSS

survey used this DR8 imaging for target selection over ∼ 7600 deg2 in the NGC and ∼

3200 deg2 in the SGC (Dawson et al., 2013a). LRG targets for eBOSS have been selected over

the same footprint covered by BOSS ; however, ultimately eBOSS will obtain spectroscopy

for LRGs over a roughly 7500 deg2 subset of this BOSS area, utilizing 50% of the dark time

for 6 years in SDSS-IV. In this available time, it would not be possible to observe the full

extragalactic footprint available from SDSS imaging.

Although conducted over the same area as BOSS, eBOSS target selection takes ad-

vantage of updated calibrations of the SDSS imaging. Schlafly et al. (2012) have applied

the “uber-calibration” technique of Padmanabhan et al. (2008) to imaging from the Pan-

STARRS survey (Kaiser et al., 2010), achieving an improved global calibration compared

to SDSS DR8. The improvements in the photometric accuracy is very modest compared to

DR8, typically less than 0.5%. More importantly, BOSS was still acquiring imaging during

its program, and therefore there was no single photometric solution for the full footprint. In

contrast, eBOSS is targeting from a single photometric solution. Targeting for eBOSS is con-

ducted using SDSS imaging that is calibrated using the Schlafly et al. (2012) Pan-STARRS

solution. We will refer to this as the “updated” photometry below.

Specifically, targets are selected using the updated SDSS photometry stored in the

calib obj files, the basic imaging catalog files used in the SDSS -III data model.1 The

1e.g., http://data.sdss3.org/datamodel/files/PHOTO_SWEEP\/RERUN/calibObj.html
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updated Pan-STARRS-calibrated photometry will be made available as part of a future SDSS

Data Release. The magnitudes provided in these files are Pogson magnitudes (Jones, 1968)

rather than the asinh magnitudes used for some SDSS data releases (Lupton et al., 1999).

We use Model Magnitudes for all colors and fluxes used in selection. The Model Magnitudes

are obtained by first determining what type of model (exponential or deVaucouleurs) best

fits the object image in the ’canonical’ band (typically r, but other bands may be used if

they have higher signal-to-noise), and then using the model fit from the canonical band

(convolved with the appropriate PSF) to obtain fluxes in each filter. Additionally, we also

apply flux limits based upon an object’s fiber2mag values; i.e., the total flux within a 2”

diameter of the object center, corresponding to the aperture of a BOSS spectroscopic fiber

(Smee et al., 2013a), after convolving the imaging data to achieve a standard 2” seeing.

3.3.2 WISE

The eBOSS LRG target selection algorithm also relies on infrared photometry from the

Wide-Field Infrared Survey Explorer (WISE ; Wright et al., 2010a). WISE observed the full

sky in four infrared channels centered at 3.4, 4.6, 12, and 22 microns, which we refer to as

W1, W2, W3, and W4, respectively. For eBOSS LRGs, we use the W1 band only. WISE

magnitudes are commonly measured in the Vega system, but we convert to the AB system

for LRG selection.2 Over the course of its primary mission and the ‘NEOWISE post-cryo’

continuation, WISE completed two full scans of the sky in the W1 and W2 bands. Over 99%

of the sky has 23 or more exposures in W1 and W2, and the median coverage is 33 exposures.

We use the ‘unWISE’ forced photometry from Lang et al. (2014), which photometered custom

coadds of the WISE imaging at the positions of all SDSS primary sources. Using forced

photometry allows accurate flux measurements to be obtained even for significantly blended

sources, including objects below the significance threshold for WISE only detections. Since

the WISE W1 point-spread function is relatively broad (6.1 arc-seconds FWHM, ∼4 times

larger than typical SDSS seeing), many sources are blended and forced photometry presents

substantial advantages. Additionally, forced photometry allows us to leverage the relatively

2W1AB = W1Vega + 2.699
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deep SDSS photometry to measure fluxes of WISE sources that are otherwise below the

detection threshold. The same canonical morphological model is used in fitting photometry

of the optical SDSS and infrared WISE images, therefore consistently measuring colors across

all bands. Using unWISE photometry instead of the Wright et al. (2010a) WISE catalog

increases the size of the resulting eBOSS LRG sample by ∼ 10%.

3.4 SELECTION OF HIGH-Z LRGS

Our overall goal is to cleanly select a sample of LRGs at redshifts beyond 0.6. In this

redshift regime, however, optical photometry alone becomes insufficient for discriminating

these high-z objects from foreground stars in our galaxy because both LRGs and red stars

occupy the same region in optical color-color space. It is also not feasible to separate stars

from galaxies reliably based on morphological information, as the S/N of SDSS photometry

for these objects is low. Prakash et al. (2015) presented a new technique which eliminates

almost all stellar contamination by combining both optical and infrared imaging data and

applying a simple cut in optical-infrared color-color space. This takes advantage of the

prominent 1.6 micron ‘bump’ in the spectral energy distributions of LRGs and other objects

with old stellar populations (John, 1988), which results from the minimum in the opacity of

H− ions. The lowest wavelength channel of the WISE satellite is centered at 3.4 microns,

almost perfectly in sync with the bump at z ∼ 1. In that chapter, the authors presented a

variety of optimization tests based on CFHTLS photometry, DEEP2 spectroscopic redshifts

and COSMOS photometric redshifts. This method has been adapted here to meet eBOSS

requirements specifically.

Figure 3.1 shows both stars and galaxies in a plot of r-W1 verses r-i color, where W1

indicates the magnitude of a source in the WISE 3.4 micron pass-band (on the AB system)

and r and i indicate SDSS model magnitudes in the appropriate passband. Stars separate

increasingly from the galaxy population in near-IR/optical color space as redshift increases,

allowing clean discrimination of galaxies at z > 0.6 from stars. Simultaneously, r-i color

increases with increasing redshift (particularly for intrinsically red galaxies) as the 4000 Å

42



break shifts redward, allowing a selection specifically for higher-redshift objects. While

the combination of optical and IR imaging provides an excellent means of removing stellar

contamination from an LRG target sample, this approach also means that we are limited

to objects that are detected by both SDSS and WISE. The detections are performed on

the optical SDSS images only. WISE -only detections have not been utilized in the eBOSS

target catalogs.

As a basic color selection for characterizing potential eBOSS LRG targets, we select

all objects that satisfy the criteria

r-i > 0.98, and (3.1)

r-W1 > 2.0× (r − i), (3.2)

where all magnitudes are corrected for Galactic extinction. These cuts were determined by

examining the location of objects of known redshift and rest-frame color in color-color space,

as in Figure 3.1. The clear separation seen between the locuses of stars and galaxies in

Figure 3.1 is not so clear when a similar plot is made using SDSS photometry because of

the latter’s lower signal-to-noise ratio; i.e., the gap between the two populations is partially

filled in due to objects with noisy measurements. The selection cuts above were optimized

by assessing a figure of merit (FOM) which is a linear combination of fraction LRGs and

low redshifts galaxies selected by a given color selection and normalized by the total number

of selected objects (see Equation 9 and Figure 11 of Prakash et al. (2015)). Hence, we are

primarily optimizing for the purity of the sample, rather than its completeness. Further

details on the motivation for this selection and various tests on optimization can be found

in Prakash et al. (2015).

To test this new selection technique, we targeted 10,000 objects satisfying this selection

in a BOSS ancillary program in 2012-2013 (see the Appendix of Alam et al., 2015). Selection

was limited to objects with zModel < 20; 98% of the spectra yielded secure redshift measure-

ments. These redshift estimates were found to be reproducible when observed multiple times.

An additional 5,000 LRGs were selected by relaxing the r-i color requirement to r-i > 0.85

in order to estimate the number of LRGs missed by the color cuts in Equation 3.1. The
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distributions of observed colors as a function of redshift for the resulting sample of 15,000

LRGs is presented in Figure 3.2.

Our method of combining optical and infrared photometry for this selection is unique;

however, the specific choice of color cuts is not. We are able to cleanly select similar samples

of LRGs by using different color combinations; e.g., r-W1 and r-z, or i-W1 and i-z. As can

be seen in Figure 3.2, incorporating multiple colors can improve the efficiency of identifying

true LRGs in the redshift range of interest by rejecting lower-redshift objects. We tested

two parallel selection algorithms with different color selections in another BOSS ancillary

program, SEQUELS, to select the algorithm which is best poised to meet eBOSS require-

ments, as described in Section B.0.1. The purity of the eBOSS sample (i.e., the level of

contamination by stars and low-z galaxies) will be discussed further in Section 3.6.

3.5 THE EBOSS LRG TARGET SELECTION ALGORITHM

In this section, we describe in detail the final selection algorithm for SDSS-IV /eBOSS LRGs.

At the redshifts of the LRGs (z > 0.6), the 4000 Å break moves into the SDSS i -band. As

some objects are too faint to be detected by SDSS imaging in the r band, flux measurements

can occasionally be negative; by making color cuts in flux space rather than magnitude space,

this poses no problems. However, for convenience, we describe the selection algorithm and

flux limits in terms of extinction-corrected AB magnitudes and colors here.

To summarize our selection methods: We first employ photometric processing flags

to eliminate those objects with problematic imaging.4 To ensure robust selection while

maintaining a sufficient signal-to-noise ratio in eBOSS spectra, we also apply a variety of

flux limits. Finally, to maximize the fraction of targets that are in fact high-redshift LRGs,

we apply several color cuts. In the following sub-sections, we detail all the selections used

for creating the eBOSS LRG sample.

4https://www.sdss3.org/dr8/algorithms/photo_flags_recommend.php
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Figure 3.1: Optical/infrared color-color plot for galaxies observed by WISE and CFHT LS with photometric
redshifts from the COSMOS survey. Blue symbols represent galaxies with photometric redshifts of z < 0.6,
red diamonds represent galaxies at 0.6 < z < 1.0, and cyan triangles represent galaxies at z > 1.0. Stars are
represented by green diamonds. The triangular area depicts the broad selection presented in Equations 3.1
and 3.2. Photometric redshifts are taken from the COSMOS photo-z catalog of Ilbert et al. (2008b) and
optical photometry is from the catalog of Gwyn (2011b), transformed to SDSS passbands. The conversion
relation can be found on the CFHT LS webpage.3
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Figure 3.2: Plots of r − i, i − z and r −W1 color as a function of redshift for 15,000 LRGs targeted via a
BOSS ancillary program (see the Appendix of Alam et al., 2015), which utilized broader selection criteria
than those used for eBOSS. The blue lines represent the cuts applied as part of the eBOSS target selection
algorithm. Selecting objects with r-i > 0.98, i-z > 0.625 and r−w1 > 2 ∗ (r− i) rejects a significant number
of z < 0.6 galaxies while missing relatively few z > 0.6 LRGs.

3.5.1 Photometric flags for the LRG sample

Since many of the SDSS imaging runs overlap on the sky, an object may be observed twice or

more (Stoughton et al., 2002). Only one observation is designated as the primary observation

of the object during the resolve process. Hence, to exclude duplicate objects we enforce

the following logical condition on the RESOLVE STATUS bit-mask:

(Resolve status & Survey primary) 6= 0. (3.3)

3.5.2 Magnitude limits

The median 5-σ depth for photometric observations of point sources in the SDSS is u = 22.15,

g = 23.13, r = 22.70, i = 22.20, z = 20.71 (Dawson et al., 2016). Additionally, we require

a detection of the flux in the W1 forced photometry for an object to be targeted. Keeping

these requirements in mind, we apply the following flux limits to the entire sample:
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MODEL IV ARr,i,z 6= 0, (3.4)

zFiber2 ≤ 21.7, (3.5)

19.9 ≤ iModel ≤ 21.8, (3.6)

zModel ≤ 19.95, (3.7)

W1vega 6= 0, and (3.8)

W1AB ≤ 20.299, (3.9)

where MODEL IVAR are the inverse variances on the model fluxes in r, i, and z bands. Equa-

tion 3.4 implies that errors in flux measurement are physically meaningful. The application

of Equation 3.5 serves to maintain a sufficiently high signal-to-noise ratio of the eBOSS spec-

tra. This cut is similar in spirit to the iFiber2 cut that was used for the BOSS CMASS galaxy

sample (Eisenstein et al., 2011). We apply the lower limit defined in Equation 3.6 in order

to avoid targeting i < 19.9 BOSS CMASS galaxies, which generally lie at lower redshifts

and have been observed previously. W1vega being nonzero implies that the photometry is

reliable, while Equation 3.9 ensures that WISE flux measurements have a signal-to-noise

ratio greater than 5 (Wright et al., 2010a). The i and z faint magnitude limits are set to

achieve the required target density of ∼60 targets deg−2 matching the eBOSS fiber allo-

cation for LRGs (Dawson et al. 2015 ), while maximizing the brightness of targets. LRGs

are given lower priority for selection than the other main target class, QSOs, and hence a

non-negligible fraction cannot be targeted due to fiber collisions. As a result, we must select

60 targets per square degrees to end up with 50 LRG targets per square degree placed on

fibers.

3.5.3 Color Selection

We use the r-W1 (optical-infrared) color for separating LRGs from stars.5 The optical colors

of galaxies are used to ensure that the targeted objects are intrinsically red and lie in the

5Note that we do not explicitly use any morphological cuts, but rather separate stars and galaxies based
only on their colors.
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desired redshift range. We thus apply the following three selection criteria:

r − i > 0.98, (3.10)

r −W1 > 2.0× (r − i), and (3.11)

i− z > 0.625. (3.12)

Equations 3.10 and 3.11 represent the basic LRG color selection discussed at the beginning

of Section 3.4 and are identical to Equations 3.1 and 3.2, the color curs used in initial tests

of LRG selection. We use Equation 3.12 to reduce contamination from z < 0.6 galaxies.

The overall eBOSS LRG selection algorithm is shown schematically as a flow chart in

Figure 3.3. The details of this algorithm were optimized based upon a pilot survey, the Sloan

Extended Quasar, ELG and LRG Survey (SEQUELS ), which is summarized in the appendix

of Alam et al. (2015); the SEQUELS LRG selection algorithm is detailed in an Appendix

(see Section B.0.1).

In addition to the LRGs targeted by Equations 3.3–3.12, we target a small number of

objects, ∼200 over the 10,000 deg2 SDSS imaging area, via a different but related algorithm.

These objects have iModel ≥ 21.8 and are designated LRG IDROP. These are not significant for

BAO studies but constitute a separate sample designed to identify rare objects at extremely

high redshifts. Further details are provided in an Appendix to this chapter (see Section A).

3.6 TESTS OF THE TARGET SELECTION ALGORITHM

In this section, we assess the results of our target selection methods using the current eBOSS

data. We use the automated spectral classification, redshift determination, and parameter

measurement pipelines of SDSS-III BOSS which are described in Bolton et al. (2012), to

reduce and analyze spectra of eBOSS targets. To assess the true redshifts of LRG sample, we

have conducted a visual inspection of a subset of eBOSS spectra, employing the idlspec2d

package for this purpose.6

6http://www.sdss3.org/dr8/software/products.php
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Figure 3.3: Schematic flow chart for the eBOSS LRG target selection algorithm. All quantities are corrected
for Galactic extinction. Refer to the text for a full description of all of the quantities shown in this figure.
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Specifically, we present results based on 2,557 LRG candidates from eight plates that

were visually inspected to assess the quality of spectra and robustness of redshift measure-

ments by a team of eBOSS members. Each plate was inspected by multiple individuals to

cross-check the results. Visual inspectors selected what they believed to be the best estimate

of the correct redshift for each spectrum, as well as assessing the security of that redshift

according to a simple four level confidence metric, z conf (confidence of inspector in the

measured redshift). Targets are assigned z conf values of 0 to 3, with 2 and 3 corresponding

to measurements which were believed to be robust. A value zconf = 1 denotes a spectrum

that is ambiguously classified, i.e., where more than one of the chi-squared minima corre-

spond to models which are a possible fit, while z conf = 0 is used for objects where it is

not possible to classify the objects and establish their redshift. These objects are considered

unreliable and not used in the calculations of redshift distributions or related quantities.

In the remainder of this section, we briefly present the expected basic characteristics of

the eBOSS LRG sample (e.g., its redshift distribution, spectral quality, and redshift success)

derived from this sample with visual inspections. We also test the efficiency of our target

selection algorithm against the science requirements for the eBOSS LRG sample as described

in Section 3.2.

Two redshift distributions are presented in Table 3.1. The more conservative estimate

(the one with a higher rate of “Poor spectra”) assumes that only objects given z conf > 1

have been assigned a correct redshift. The less conservative estimate includes all objects

with z conf > 0; this is a relevant scenario, since it is likely that a great majority of

z conf = 1 redshifts are correct, but will inevitably include at least some incorrect redshifts.

It is likely that the true distribution lies between these two bounds. It is expected that

pipeline improvements now underway will enable at least some redshifts currently assigned

z conf < 2 to be recovered automatically in the future.

As can be seen in the Table 3.1, even with the conservative scenario (z conf > 1),

the SDSS spectral pipeline generates a secure redshift solution for ∼ 89% of the LRG

candidates visually inspected. However, the fit determined to be correct via visual inspection

sometimes does not correspond to the minimum chi-squared solution from the pipeline,
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but rather an alternative chi-squared minimum.7 Pipeline improvements now under way

(which include both improved two-dimensional extractions and reductions in the freedom

of template+polynomial fitting) are expected to improve the automated redshift-finding, so

this figure should be a floor to the actual performance of eBOSS LRGs.

The remaining ∼ 11−12% of the LRG targets without a secure redshift determination

typically have spectra with low signal-to-noise ratios. An additional ∼ 9% of the LRG targets

are found to be stars. These two factors (low S/N and stellar contaminants), in combination,

make it impossible for this sample to meet the eBOSS-only LRG requirement that that 80%

of all targets be LRGs within the range 0.6 ∼< z ∼< 1.0, even before the redshift distribution

of the galaxies is considered. In the end, 68–72% of all LRG targets are in fact galaxies with

definitive redshift measurements that lie in the desired regime. For detailed discussion of the

pipeline results, visual inspections, templates and sources of redshift failures, see Dawson

et al. (2016).

In Figure 3.4, we present the overall redshift distribution (N(z)) of the visually-

inspected eBOSS LRGs. Although we fail to meet the requirement of 80% efficiency at

targeting 0.6 < z < 1.0 LRGs, our target selection algorithm still exceeds the median

redshift requirement, which is calculated only for actual galaxies (and hence includes only

non-stellar targets with robust redshift measurements). In Figure 3.5, we show examples of

LRG spectra across the redshift range of interest for eBOSS. There is an excellent match

between the measured SEDs and the templates, confirming the robustness of these redshift

measurements. The eBOSS LRG sample can be augmented with z > 0.6 BOSS CMASS

LRGs to meet our requirements on the total number of LRG redshifts within the range

0.6 < z < 1.0; as a result, we still expect to achieve a 1% measurement of the LRG BAO

scale at z ∼ 0.7, even though the LRG sample falls short of its requirements.

7The SDSS pipeline generates a set of possible fits; cf. Bolton et al. (2012).
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Table 3.1. Redshift distribution of eBOSS LRGs based upon visual inspection of spectra.

LRGs LRGs

z conf > 0 z conf > 1

Poor spectra 4.0 6.7

Stellar 5.3 5.3

Galaxy N/A N/A

0.0 < z < 0.5 0.6 0.6

0.5 < z < 0.6 6.2 5.9

0.6 < z < 0.7 15.2 14.8

0.7 < z < 0.8 15.3 14.7

0.8 < z < 0.9 9.4 8.7

0.9 < z < 1.0 3.2 2.7

1.0 < z < 1.2 0.6 0.5

Targets 60 60

Total Tracers 43.1 41.0

Note. — Redshift distribution of eBOSS
LRGs, based upon results for a sample of
2,557 visually inspected spectra. The sur-
face densities are presented in units of deg−2,
normalizing to the total surface density of
the parent sample for these spectra. Entries
highlighted in bold font denote the subset of
the sample that lies in the redshift range used
to assess the high-level science requirements
for the LRG sample.
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Figure 3.4: Redshift histogram of 2,119 visually inspected LRGs (blue bar) observed with eBOSS. The
median redshift of confirmed galaxies is 0.712 (black line), with 9% stellar contamination (red bar). We use
only objects with secure redshifts (z conf > 1) here.
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Figure 3.5: Representative spectra of galaxies from the eBOSS LRG sample, smoothed with a 21 pixel
boxcar kernel. Shown are four LRGs covering the entire redshift regime of 0.6 ∼< z ∼< 1. Flux errors are
plotted in red while the template model fits are in blue. Black curves depict the observed spectra.
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3.7 TESTS OF HOMOGENEITY AND IMPLICATIONS FOR

LARGE-SCALE CLUSTERING MEASUREMENTS

As discussed in Section 3.2.1, we require that the target sample be highly uniform to prevent

non-cosmological signals from contaminating clustering measurements. Exploring system-

atics that can affect the inferred clustering of targets is often considered only when survey

data is used for science analyses. We instead have investigated these issues while explor-

ing target selection methods, enabling more informed decisions regarding survey strategy.

For instance, foreknowledge of which areas of the survey may pose problems for controlling

clustering measurements potentially allows the survey footprint to be shifted.

We assess the uniformity of the target sample by comparing the observed density of

targets to maps of local imaging conditions and Galactic structure. We apply a regression

analysis of surface density against a broad set of tracers of potential systematics; the intention

is similar to, e.g., Scranton et al. (2002); Ross et al. (2011a); Ho et al. (2012); Leistedt et al.

(2013); Giannantonio et al. (2014), but unlike those works, we simultaneously fit for the

impact of a wide variety of systematics rather than correlating against one at a time. This

has the advantage of producing a model of systematic-affected density that will provide

accurate predictions for the combined effects of all the systematics considered, even if the

input systematic maps are covariant with each other (as, for instance, stellar density and

dust extinction must inevitably be).

We focus on systematics associated with imaging data characteristics or with known

astrophysical effects such as dust extinction and stellar density. Using the results of the

regression analysis (described below) we assemble maps of the observed density and the

predicted density. We identify regions within our footprint where the total span of target

density fluctuation is less than 15%, and consider the portion of sky with larger variations

to be contaminated at an unacceptable level; this criterion is based on prior experience with

the level of systematics that may be corrected reliably in BOSS Ross et al. (2011a). We

note that fluctuations in density within the final 0.6 < z < 1.0 LRG catalog are likely to be

smaller than this, as once spectra are obtained, stars and redshift outliers can be removed;

such objects are naturally expected to be less homogenous over the SDSS survey area than
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the true LRGs.

3.7.1 Homogeneity of eBOSS LRG targets

To begin, we identify a broad set of imaging parameters that could affect eBOSS target

selection:

1. W1covmedian: The median number of single-exposure frames per pixel in the WISE W1

band.

2. moon lev: The fraction of frames that were contaminated with scattered moon light in

the WISE W1 band.

3. W1median: The median of accumulated flux per pixel in the WISE W1 band measured

in units of DN (data number).8.

4. Galactic Latitude: used as a proxy for stellar contamination.

5. Galactic extinction: We use r band extinction, as given by SFD.

6. FWHM in the SDSSz -band: We use FWHM as an estimate of the ’seeing’ or imaging

quality for the SDSS imaging.

7. SKYFLUX in the SDSSz -band: the background sky level affects the detection of faint

objects is more difficult in the brighter regions of the sky .

We create maps of the WISE systematics over the entire SDSS footprint using the metadata

tables associated with the Atlas images and source tables provided by WISE survey team;

W1covmedian, W1median, and moon lev are all quantities in these tables.9 We use the seeing

and the sky-background in the z band since the eBOSS LRG selection algorithm is flux-

limited in that bandpass filter. Due to the scan strategy of SDSS, the seeing and sky

background in other SDSS bands should correlate strongly with this quantity, making the

use of multiple filters’ quantities redundant.

Next, we break the sky up into equal-area pixels of 0.36 deg2 and weight all pixels

equally. The observed density, SDobs, in each pixel can be expressed as a combination of a

mean level, the impact of all of the systematics, and random noise:

8 The accumulated photons in each pixel are represented by a number in units of DN
9http://wise2.ipac.caltech.edu/docs/release/allsky/expsup\/sec2_4f.html
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SDobs = S0 +
7∑
i=1

Si × xi + ε, (3.13)

where S0 is the constant term representing the mean density of objects in each pixel, Si are

the coefficients for the values of each individual source of potential systematics fluctuations

in that pixel (xi), and ε represents the combined effect of Poisson noise (or shot noise) and

sample/cosmic variance in that pixel. For larger pixels such that the mean pixel target

density is ∼15 or more, the Poisson noise can be approximated as a Gaussian. Under these

conditions, multi-linear regression provides an effective means of determining the unknown

coefficients, S0 and Si. We derive a best-fit model based on minimizing the value of reduced-

χ2 (χ2 per degree of freedom). We have explored larger or smaller pixelizations and find that

our results are unchanged.

The coefficients obtained from this multi-linear regression are then used in combination

with the maps of potential systematics to predict the target density across the whole foot-

print, producing a statistic that we will refer to as the Predicted Surface Density or PSD.

We also define a Residual Surface Density, or Residual SDj, for any particular systematic

as the difference between SDobs and the Reduced PSDj (which is calculated by omitting the

j’th systematic term in calculating the PSD). This quantity should be linear in systematic j

with a slope corresponding to Sj if our linear regression model is appropriate to the problem.

To summarize our formalism:

PSD = S0 +
n∑
i=1

Si × xi, (3.14)

Reduced PSDj = PSD − Sj × xj, and (3.15)

Residual SDj = SDobs − (PSD − Sj × xj), . (3.16)

where the j index indicates a single systematic of interest.
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3.7.2 Predicted Surface Density for eBOSS LRG targets

The PSD is highly useful for testing the uniformity of the target sample across the whole

footprint, enabling comparisons to survey requirements. We find that the effects of systemat-

ics produce significantly different best-fit models (in terms of both the mean density and the

coefficients for each systematic) in the areas of SDSS imaging around the Northern Galactic

Cap (NGC) and the Southern Galactic Cap (SGC). However, for both the regions consid-

ered independently, multi-linear regression provides an acceptable best-fit model. Hence we

analyze these regions separately.

The resulting regression fits are shown in Figure 3.6. In these plots, we plot the

Residual SD for each individual systematic which was been left out in calculatingResidual SDj.

The data points plotted are averages over 4000 sky pixels in the NGC or 2000 sky-pixels in the

SGC; the error bars represent the standard error on the mean for each point. The straight

lines represent the prediction from the regression model for the impact of the systematic

indicated on the x-axis, xj (cf. Eqn. 3.13); i.e., we plot y = Sj × xj.

3.7.3 Analysis of regression results

Our regression analysis allows us to determine what fraction of the survey footprint satisfies

the requirement of less than 15% total variation in target density (point 6 in Section 3.2.2).

This 15% window is not necessarily symmetric around the mean, so we fix its limits such

that the footprint area satisfying the requirement is maximized. The windows containing

regions with PSD variation < 15% are overplotted on the histograms of predicted density in

Figure 3.7. In the NGC, ∼ 97% of the imaging area meets the eBOSS survey requirements

for homogeneity. However, in the SGC, only ∼ 82% of the area meets these requirements. At

worst, these fluctuations will require that 8% of the total 7500 deg2 eBOSS area is masked.

However, these fluctuations may be reduced once spectroscopic redshifts are obtained; we

will perform a similar analysis on the final spectroscopic sample in later work.

Differences in the observed number density between the NGC and SGC were found

for the BOSS CMASS and LOWZ samples, and were analyzed in depth by Ross et al. (2012a).

These differences matched the photometric offsets between the two regions determined by
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Figure 3.6: The residual surface density (number of targets deg−2) from the regression model with a single
systematic omitted as a function of the systematic left out, along with the corresponding predictions from
the regression model, for all systematic maps considered. Individual points have been averaged over 4000
sky pixels in the Northern Galactic Cap (NGC) or 2000 pixels in the Southern Galactic Cap (SGC). The
straight line shows the prediction of the regression model for the impact of the systematic indicated on the
x-axis (cf. equation 3.13). The overplotted histograms show the distribution of pixel values, and correspond
to the y axis at the right side of each plot. The left-hand column of plots are for pixels in the NGC, while
the right-hand column of plots are for the SGC. A linear model appears to be appropriate for all systematics
considered.
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Figure 3.7: Histogram of the surface density predicted by the regression models described in Section 3.7.1.
The blue bars represent the NGC, with solid blue lines depicting the 15% window within which samples
are expected to be sufficiently homogeneous for robust large-scale-structure measurements. Similarly, the
green bars represent the density in the SGC, with dotted green lines depicting the 15% window. We find
that ∼ 97% of the NGC footprint with SDSS imaging meets the homogeneity requirements of eBOSS (see
Section 3.2.2). However, in the SGC, only ∼ 82% of the possible eBOSS footprint meets these requirements.
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Schlafly & Finkbeiner (2011a). These offsets have been incorporated into the re-calibrated

photometry used for eBOSS ; any difference in target density between the regions is therefore

due to still-unknown differences between the two regions. This issue will require further

investigation in future eBOSS studies.

Based on the regression model, we can assess which systematics are most strongly

affecting target selection. We find that all of the potential WISE imaging systematics have

relatively weak effects on the density of selected targets. This can be seen from the flatness of

Residual SD for these parameters in Figure 3.6. The most significant effects are associated

with dust extinction, stellar contamination, and the SDSS sky background level, as seen from

the steep slopes in Figure 3.6. It is unclear whether dust or stellar contamination is more

fundamentally responsible for variations in density, since the two correlate with each other

strongly. Given the variation in coefficients, it is likely that the same phenomenon is being

ascribed more to dust in the NGC and to Galactic latitude in the SGC, and those differences

in coefficient are not truly significant. Fortunately, the regression model will still predict

the correct density from covariant variables such as these, regardless of which covariate is

actually responsible.

We depict the observed surface density, the predicted surface density, and the mask of

the survey across the whole footprint of SDSS in Figure 3.8.

3.7.4 Impact of zero point variations

We next assess the expected level of variation in target density due to errors in zero-point

calibrations, which can then be compared to the targeting requirements. We investigate this

by determining the fractional derivative in the number of targets selected (N) as we shift all

magnitudes in a given band (m) by a constant amount – i.e., we calculate 1
N
dN/dm – and

then assess what impact this sensitivity has on target density. We find that zero-point errors

of 0.01 magnitude in the r, i, z, and W1 bands causes fractional changes of 2.26%, 2.5%,

6.24%, and 0.6%, respectively, in the target density of the LRG sample. Finkbeiner et al.

(2014) estimate that the 1σ zero point uncertainties (σzp) after recalibration of SDSS are 7,

7, and 8 millimagnitudes in the SDSS r, i, and z bands respectively, while WISE calibration
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Figure 3.8: Observed surface density map of eBOSS LRGs over the area of the SDSS imaging footprint
used to derive targets for the BOSS survey. eBOSS will target more than ∼375,000 LRGs over a ∼7500
deg2 subset of this area, corresponding to a surface density of ∼50 deg−2. The color scale in this panel
is dominated by Poisson noise and sample/cosmic variance. The middle panel shows a similar plot based
on the predicted density, while the third panel shows the regions which would be masked to reach eBOSS
homogeneity requirements. Pixels shown with a shade that is fainter or darker than the typical are those
which fail to meet the 15% target density variation requirement of Section 3.2.2.

uncertainties in the W1 band are approximately 0.016 mag (Jarrett et al., 2011a).

Assuming that zero point errors will be Gaussian-distributed, 95% of all points on the

sky will be within ±2σ of the mean zero point. Hence, the total fractional variation in den-

sity over that area will be 4
N
× | ∆N/∆m | ×σzp. We present the results of this calculation

in Table 3.2 and Figure 3.9. For all bands but z, the impact of zero point variations on the

density of LRG targets will be minimal. However, the estimated level of z band zero point

uncertainty is sufficiently large that more than 13% of the eBOSS area will go beyond the

15% target density variation requirement. The impact of this variation and strategies for

mitigating it will be explored in future eBOSS papers.
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Table 3.2. Summary of variations in target density due to errors in SDSS imaging zero

points.

Bands Derivative of RMS zero-point 95% range of variation
fractional density error in fractional density

| 1
N∆N/∆m | (σzp) 4× | ∆N̄/∆Mag | ×σzp

SDSS r 2.26 7× 10−3 0.063

SDSS i 2.5 7× 10−3 0.070

SDSS z 6.24 8× 10−3 0.199

WISE W1 0.60 16× 10−3 0.038

Note. — The impact of zero point uncertainties on the density of targets.
The eBOSS LRG sample meets the requirement that density variations due to
zero-point errors be less than 15% in the SDSS r and i bands, but fails to meet
that criterion in the z band with current calibrations.

3.8 CONCLUSIONS

The LRG component of SDSS-IV /eBOSS will obtain spectroscopy of a sample of over

375,000 potential intrinsically luminous early-type galaxies at z > 0.6. Based on the initial

set of eBOSS data, we find that the efficiency of this selection for selecting 0.6 < z < 1.0 spec-

troscopically confirmed LRGs with secure redshift measurements is ∼ 68 − 72%. Although

this is lower than the required level for eBOSS to achieve its science goals in isolation, once

augmented with BOSS LRGs the required galaxy density should be attained. One reason the

success rate does not approach 80% is that 9% of LRG targets prove to be stars, a result of

noisy SDSS photometry. The sample is flux-limited to keep the selection algorithm robust,

as well as to maintain a sufficient signal-to-noise ratio to enable the resulting LRG spectra

to provide secure redshift measurements. The LRG sample is uniform and homogenous over

∼ 92% of the BOSS survey footprint, showing little or no dependence on imaging system-

atics and flux calibrations. The remaining ∼ 8% of the footprint will have to be assessed

carefully for systematic effects before being included in cosmology measurements if they fall
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Figure 3.9: Change in target density as a function of an overall shift in all magnitudes in either the SDSS r, i,
z, or the WISE W1 band. Given the current level of zero point uncertainty in SDSS and WISE photometry,
the LRG target selection is only sensitive to the uncertainty in the zero point of the z band.
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within the eBOSS footprint.

The primary science drivers of the eBOSS LRG sample are to study the large-scale

structure of the universe out to z ∼ 1. With careful control of incompletenesses and selec-

tion effects, the eBOSS LRG algorithm will also provide a large sample for galaxy evolution

studies of giant elliptical galaxies. The SDSS-IV /eBOSS LRGs will cover a volume either

not probed, or not probed at high density, by SDSS-III /BOSS, and will enable both BAO

and RSD measurements with a highly uniform set of luminous, early-type galaxies. The

SDSS-IV /eBOSS LRG sample will provide a powerful extension of SDSS-III /BOSS for the

study of structure and galaxy evolution at high redshifts.
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4.0 THE SDSS-IV EXTENDED BARYON OSCILLATION

SPECTROSCOPIC SURVEY: QUASAR TARGET ANALYSIS

The contents of this chapter have been published in Myers, Palanque-Delabrouille, Prakash,

et al., 2015 December 2, The Astrophysical Journal Supplement Series, Volume 221, Number

2

4.1 INTRODUCTION

Quasars are the most luminous (Lbol ∼ 1047−48 erg s−1) non-transient objects in the universe,

and are expected to be powered by accretion of matter onto supermassive black holes at their

center. Almost half a century has elapsed since quasars were discovered as bright, bluer than

main sequence stars, unresolved, extragalactic sources in optical imaging (Schmidt, 1963).

Ever since, a number of imaging surveys have employed a UV-excess (UVX) criterion, visi-

ble in simple optical color cuts, to provide algorithms for selecting quasars (e.g., Sandage &

Luyten, 1969; Green et al., 1986; Boyle et al., 1990). This approach, which mainly targets

quasars at redshifts around 0.5 < z < 2.5, has greatly increased the number of spectro-

scopically confirmed quasars through subsequent spectroscopic surveys, like the 2dF QSO

Redshift Survey (Croom et al., 2005), and the 2dF-SDSS LRG and QSO Survey (Croom

et al., 2009).

UVX approach was further modified to enable quasar targeting over all of optical color

space beyond the stellar locus, and rather than just the blue side (e.g. Warren et al., 1987;

Kennefick et al., 1995; Newberg & Yanny, 1997). This extended the selection of large numbers

of quasars to z > 2.5. This methodology was effectively employed by the Sloan Digital Sky
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Survey (SDSS ; York et al., 2000b) on imaging taken using a new ugriz filter system (Fukugita

et al., 1996b). SDSS eventually spectroscopically confirmed an unprecedentedly large sample

of over 100,000 quasars (Richards et al., 2002; Schneider et al., 2010) as part of the SDSS-I

and II surveys.

Detecting BAO features using quasars as direct tracers of matter density has been a

challenge due to their low space density. For this reason, most of the surveys use quasars to

study the distribution of neutral hydrogen in the universe at high redshifts, usually called

Lyman-α forest. BOSS spectroscopically identified ∼ 170,000 new quasars of redshift 2.1 ≤

z < 3.5 to a depth of g < 22 with a goal to study the Lyman-α forest (Dawson et al., 2013b).

Mid-IR colors provide a powerful mechanism for separating stars from galaxies. This

is also true for quasars that otherwise resemble stars in optical color space (e.g. Stern et al.,

2012; Assef et al., 2013; Yan et al., 2013). This enables us to use Wide-field Infrared Survey

Explorer (WISE ; Wright et al., 2010b) data to extract additional information for targeting

quasars. Due to the addition of new and extensive multi-wavelength and multi-epoch imaging

it has been possible to target many quasars which may have been missed by previous surveys.

In combination, SDSS-I /II /III targeted quasars at 2.1 ∼< z ∼< 4 to a magnitude limit

of g < 22 or r < 21.85 (Ross et al., 2012b) and quasars at all redshifts to i < 19.11

(Richards et al., 2002). There remains an obvious, highly populated discovery space using

SDSS imaging data—namely, z < 2.1 quasars fainter than i = 19.1.

The potential of SDSS and other imaging for targeting new quasars provides an exciting

opportunity to use BAO as direct tracers of the underlying matter density and to measure

the expansion of the Universe (Seo & Eisenstein, 2003; Lin & Mohr, 2003). No strong

BAO constraint currently exists in the redshift range 1 ∼< z ∼< 2, and BAO measurements at

yet higher redshift remain a particularly potent constraint on the evolution of the angular

diameter distance, dA(z) and of the Hubble Parameter, H(z) (Aubourg et al., 2014). These

factors led to the conception of eBOSS (Dawson et al., 2016) as part of SDSS-IV.

As mentioned before, it has been difficult to detect BAO features using quasars as

direct tracers due to their low space density. eBOSS overcomes this challenge by surveying

1In addition, smaller dedicated programs affiliated with SDSS have targeted higher redshift quasars to
fainter limits
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quasars over a huge volume, corresponding to 7,500 deg2 of sky. The quasar component of

eBOSS will attempt to statistically target and measure redshifts for ∼ 500,000 quasars at

0.8 < z < 2.2 (including spectroscopically confirmed quasars from SDSS-I /II, which will not

need to be retargeted). We refer to this homogeneous tracer sample as the eBOSS CORE

quasars. In contrast to BOSS, eBOSS will open up the i > 19.1, z < 2.2 parameter space

to directly use quasars themselves as cosmological tracers.

In total, at the conclusion of eBOSS, the SDSS surveys will have spectroscopically

confirmed more than 800,000 quasars. The scope of the science that can be conducted

with a large sample of quasars across a range of redshifts has been shown to be vast. In

addition to higher-redshift studies, SDSS-IV /eBOSS will produce a z < 2.2 sample of

quasars about six times larger than the final SDSS-II quasar catalog (Schneider et al., 2010)

and will further benefit from upgrades conducted for SDSS-III (such as larger wavelength

coverage for spectra; see Smee et al., 2013b, for extensive details of upgrades). Many high-

impact projects that used the original SDSS-I /II quasar samples can therefore potentially

be revisited using much larger samples with eBOSS, such as composite quasar spectra, rare

types of quasars, and precision studies of the quasar luminosity function (e.g. Vanden Berk

et al., 2001; Inada et al., 2003; McLure & Dunlop, 2004; Hennawi et al., 2006; Richards et al.,

2006; York et al., 2006; Netzer & Trakhtenbrot, 2007; Kaspi et al., 2007; Shen et al., 2008;

Boroson & Lauer, 2009).

In this chapter, we present a detailed analysis of quasar sample of the SDSS-IV /eBOSS

survey. The details of quasar selection is beyond the scope of this thesis and is presented in

detail in Myers et al. (2015). Further technical details about eBOSS can be found in our

companion papers which include an overview of eBOSS (Dawson et al., 2015) and discussions

of targeting for Luminous Red Galaxies (see Chapters 2 and 3), and Emission Line Galaxies

(Comparat et al., 2015b). eBOSS will run concurrently with two surveys; the SPectroscopic

IDentification of ERosita Sources survey (SPIDERS ) and the Time Domain Spectroscopic

Survey (TDSS ; Morganson et al., 2015). These associated surveys are further outlined in

our companion overview paper (Dawson et al., 2015).

In Section 4.2, we discuss how forecasts for BAO constraints at different redshifts

drive targeting goals for eBOSS quasars. The parent imaging used for eBOSS quasar target
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selection is outlined in Section 4.3. An important criterion for any large-scale structure survey

is sufficient homogeneity to facilitate modeling of the distribution of the tracer population—

the “mask” of the survey. In Section 4.4, we use the full eBOSS quasar target sample to

characterize the homogeneity of eBOSS quasar selection. In Section 4.5, we provide our

overall conclusions regarding eBOSS quasar targeting.

Unless we state otherwise, all magnitudes and fluxes in this chapter are corrected

for Galactic extinction using the dust maps of Schlegel et al. (1998b). Specifically, we

use the correction based upon the recalibration of the SDSS reddening coefficients mea-

sured by Schlafly & Finkbeiner (2011b). For WISE we adopt the reddening coefficients

from Fitzpatrick (1999). The SDSS photometry has been demonstrated to have colors that

are within 3% (Schlafly & Finkbeiner, 2011b) of being on the AB system (Oke & Gunn,

1983b). WISE is calibrated to be on the Vega system. We use a cosmology of (Ωm, ΩΛ,

h ≡ H0/100 km s−1 Mpc−1) = (0.315, 0.685, 0.67) consistent with recent results from Planck

(Planck Collaboration et al., 2014).

4.2 COSMOLOGICAL GOALS OF EBOSS AND IMPLICATIONS FOR

QUASAR SAMPLE

4.2.1 CORE quasars

eBOSS quasar survey aims to study the scale of the BAO in two redshift regimes; z ∼ 1.5

using the clustering of quasars, and z ∼ 2.5 using high redshift quasars to illuminate the

intervening Lyman-α Forest. The first approach requires a sample of statistically selected

quasars in the redshift range 0.9 < z < 2.2, which we will refer to as “CORE quasars” and

quasars selected at z > 2.1, which are referred to as “Lyman-α quasars”. In this thesis

we focus on the CORE quasars only. The selection of CORE quasars must be statistically

uniform and reproducible. In fact, the full redshift range of the CORE sample will extend

well beyond 0.9 < z < 2.2, and many CORE quasars can thus be utilized as Lyman-α

quasars.
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4.2.2 Requirements for CORE quasar sample

As explained in Dawson et al. (2016), a density of 90 deg−2 spectroscopic fibers are allocated

to eBOSS quasars and a density of 58 deg−2 quasars with redshifts 0.9 < z < 2.2 is required

over the projected 7,500 deg−2 survey footprint, to meet the eBOSS scientific goals (see

Dawson et al. (2016) for more details). Additionally, we require the redshifts be accurate

to better than 300 km s−1 RMS and robust such that the fraction of catastrophic redshift

errors (exceeding 3000 km s−1) is < 1% in cases where the redshifts are believed to be secure.

The construction of the quasar sample designed to fulfill these requirements is driven by

instrument capabilities and a 2% measurement of the BAO distance scale (G. Zhao et al.

2016, in preparation).

A further requirement to obtain robust BAO measurements is that the density of

selected quasars must not strongly correlate with either tracers of potential imaging system-

atics (e.g., variations in the depth of the imaging) or with astrophysical systematics such as

Galactic extinction and stellar density. BOSS has shown that fluctuations associated with

surveys artifacts can be handled effectively via weighting schemes provided the amplitude of

fluctuations is relatively small (Ross et al., 2012a). To facilitate weighting schemes in future

clustering studies, we require that fluctuations in the expected target density as a function

of potential imaging systematics, stellar density, and Galactic extinction be less than 15%

(total variation around mean density). We require density differences due to imaging zero

point variations in any single band to be below 15% as well. Tests of the homogeneity of the

quasar target sample are presented in Section 4.4.

4.3 PARENT IMAGING FOR TARGET SELECTION

4.3.1 Updated calibrations of SDSS imaging

The parent imaging from SDSS and WISE for quasar selection is identical to the one for LRGs

presented in 3.3 of Chapter 3. In addition, we also use the Palomar Transient Factory (PTF)

photometry. We present it here for the sake of completeness of this chapter and convenience
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of the readers. All eBOSS quasar targets rely on imaging from the SDSS -I /II /III. SDSS

photometry was obtained by the SDSS telescope (Gunn et al., 2006) using its wide-field

imaging camera (Gunn et al., 1998) in the ugriz system (Fukugita et al., 1996a). SDSS -I /II

primarily obtained imaging over the ∼ 8400 deg2 “Legacy” area, ∼ 90% of which was in

the North Galactic Cap (NGC). This imaging was released as part of SDSS Data Release

7 (DR7; Abazajian et al., 2009). The legacy imaging area of the SDSS was expanded by

∼ 2500 deg2 in the South Galactic Cap (SGC) as part of DR8 (Aihara et al., 2011). The

SDSS -III /BOSS survey used this DR8 imaging for target selection over ∼ 7600 deg2 in the

NGC and ∼ 3200 deg2 in the SGC (Dawson et al., 2013a). Quasar targets for eBOSS have

been selected over the same footprint covered by BOSS ; however, ultimately eBOSS will

obtain spectroscopy for quasars over a roughly 7500 deg2 subset of this BOSS area, utilizing

50% of the dark time for 6 years in SDSS-IV. In this available time, it would not be possible

to observe the full extragalactic footprint available from SDSS imaging.

Although conducted over the same area as BOSS, eBOSS target selection takes ad-

vantage of updated calibrations of the SDSS imaging. Schlafly et al. (2012) have applied

the “uber-calibration” technique of Padmanabhan et al. (2008) to imaging from the Pan-

STARRS survey (Kaiser et al., 2010), achieving an improved global calibration compared

to SDSS DR8. The improvements in the photometric accuracy is very modest compared to

DR8, typically less than 0.5%. More importantly, BOSS was still acquiring imaging during

its program, and therefore there was no single photometric solution for the full footprint. In

contrast, eBOSS is targeting from a single photometric solution. Targeting for eBOSS is con-

ducted using SDSS imaging that is calibrated using the Schlafly et al. (2012) Pan-STARRS

solution. We will refer to this as the “updated” photometry below.

Specifically, targets are selected using the updated SDSS photometry stored in the

calib obj files, the basic imaging catalog files used in the SDSS -III data model.2 The

updated Pan-STARRS-calibrated photometry will be made available as part of a future SDSS

Data Release. The magnitudes provided in these files are Pogson magnitudes (Jones, 1968)

rather than the asinh magnitudes used for some SDSS data releases (Lupton et al., 1999).

We use Model Magnitudes for all colors and fluxes used in selection. The Model Magnitudes

2e.g., http://data.sdss3.org/datamodel/files/PHOTO_SWEEP\/RERUN/calibObj.html
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are obtained by first determining what type of model (exponential or deVaucouleurs) best

fits the object image in the ’canonical’ band (typically r, but other bands may be used if

they have higher signal-to-noise), and then using the model fit from the canonical band

(convolved with the appropriate PSF) to obtain fluxes in each filter. Additionally, we also

apply flux limits based upon an object’s fiber2mag values; i.e., the total flux within a 2”

diameter of the object center, corresponding to the aperture of a BOSS spectroscopic fiber

(Smee et al., 2013a), after convolving the imaging data to achieve a standard 2” seeing.

4.3.2 WISE

The eBOSS quasar targets also relie on infrared photometry from the Wide-Field Infrared

Survey Explorer (WISE ; Wright et al., 2010a). WISE observed the full sky in four infrared

channels centered at 3.4, 4.6, 12, and 22 microns, which we refer to as W1, W2, W3, and

W4, respectively. For eBOSS LRGs, we use the W1 band only. WISE magnitudes are

commonly measured in the Vega system, but we convert to the AB system for LRG selec-

tion.3 Over the course of its primary mission and the ‘NEOWISE post-cryo’ continuation,

WISE completed two full scans of the sky in the W1 and W2 bands. Over 99% of the sky

has 23 or more exposures in W1 and W2, and the median coverage is 33 exposures. We

use the ‘unWISE’ forced photometry from Lang et al. (2014), which photometered custom

coadds of the WISE imaging at the positions of all SDSS primary sources. Using forced

photometry allows accurate flux measurements to be obtained even for significantly blended

sources, including objects below the significance threshold for WISE only detections. Since

the WISE W1 point-spread function is relatively broad (6.1 arc-seconds FWHM, ∼4 times

larger than typical SDSS seeing), many sources are blended and forced photometry presents

substantial advantages. Additionally, forced photometry allows us to leverage the relatively

deep SDSS photometry to measure fluxes of WISE sources that are otherwise below the

detection threshold. The same canonical morphological model is used in fitting photome-

try of the optical SDSS and infrared WISE images, therefore consistently measuring colors

across all bands. Using unWISE photometry instead of the Wright et al. (2010a) WISE

3W1AB = W1Vega + 2.699
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catalog increases the size of the resulting eBOSS quasar sample since many of our targets

have WISE fluxes below the “official” WISE catalog detection limits.

4.3.3 The Palomar Transient Factory (PTF)

The Palomar Transient Factory4 (PTF ) is a wide-field photometric survey aimed at a sys-

tematic exploration of the optical transient sky via repeated imaging over 20,000 deg2 in the

Northern Hemisphere (Rau et al., 2009; Law et al., 2009). The PTF image processing is

presented in Laher et al. (2014), while the photometric calibration, system and filters are

discussed in Ofek et al. (2012). In February 2013, the next phase of the program, iPTF (in-

termediate PTF ), began. Both surveys use the CFHT12K mosaic camera, mounted on the

1.2 m Samuel Oschin Telescope at Palomar Observatory. The camera has an 8.1 deg2 field of

view and 1′′ sampling. Because one detector (CCD03) is non-functional, the usable field of

view is reduced to 7.26 deg2. Observations are mostly performed in the Mould-R broad-band

filter, with some in the SDSS g-filter. Under median seeing conditions, the images are ob-

tained with 2.0′′ FWHM, and reach 5σ limiting AB magnitudes of mR ' 20.6 and mg′ ' 21.3

in 60-second exposures. The cadence varies between fields, and can produce one measure-

ment every five nights in regions of the sky dedicated to supernova searches. Four years

of PTF survey operations have yielded a coverage of ∼ 90% of the eBOSS footprint. Two

automated data processing pipelines are used in parallel in the search for transients; a near-

real-time image subtraction pipeline at Lawrence Berkeley National Laboratory (LBNL),

and a database populated on timescales of a few days at the Infrared Processing and Analy-

sis Center (IPAC). The eBOSS analysis uses the individual calibrated frames available from

IPAC (Laher et al., 2014).

We have developed a customized pipeline based on the SWarp (Bertin et al., 2002)

and SCAMP (Bertin, 2006) public packages to build coadded PTF images on a timescale

adapted to quasar targeting—i.e., typically 1 to 4 epochs per year depending on the cadence

and total exposure time within each field. Using the same algorithms, a full stack is also

constructed by coadding all available images. This full stack is complete at 3σ to g ∼ 22.0,

4See http://irsa.ipac.caltech.edu/Missions/ptf.html for the public PTF data
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and has over 50% completeness to quasars at g ∼ 22.5. The full stack is used to extract a

catalog of PTF sources from each of the coadded PTF images. The light-curves (flux as a

function of time) for all of these PTF sources are measured.

4.4 TESTS OF THE HOMOGENEITY OF THE CORE QUASAR SAMPLE

In order to perform clustering measurements to characterize the BAO scale, it is necessary

to mimic the angular distribution imposed by the target selection. This survey “mask” is

often expressed as a random catalog, or control sample, that mimics the characteristics of

the targeted population but in the absence of any clustering. At its simplest, this process

involves uniformly distributing random points over the footprint of the target imaging. This

simple approach, however, is rarely adequate because survey systematics such as seeing,

sky brightness, Galactic extinction etc. alter the target density in a complex manner. A

related issue is that zero-point calibrations in SDSS imaging can vary across the survey, also

producing non-cosmological variations in target density.

4.4.1 Overall characteristics of eBOSS quasars

Beyond the cosmological goals of eBOSS, the quasar sample produced by SDSS -IV should

be unparalleled, exceeding the depth and numbers of any previous quasar sample. As there is

likely to be significant interest in the nature of eBOSS for quasar science, quasars observed as

part of SEQUELS are broadly characterized in this section. Because SEQUELS observations

were conducted in tandem with BOSS, some quasars that would not normally receive a fiber

in eBOSS because of existing BOSS spectroscopy did receive a SEQUELS fiber. We treat

such objects as if they had the DO NOT OBSERVE bit set by correctly incorporating (non-

SEQUELS ) redshifts and classifications.

The overall expected quasar numbers for eBOSS can be estimated from the number

densities. Assuming a minimum eBOSS area of 7500 deg2, eBOSS should, conservatively,

comprise at least 500,000 spectroscopically confirmed 0.9 < z < 2.2 quasars selected in a
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uniform manner with which to pursue quasar clustering studies such as the BAO scale, and at

least 500,000 total new quasars (at any redshift) that have never before been spectroscopically

identified and characterized. Overall, at the completion of eBOSS, the SDSS surveys will

have provided unique spectra of over 800,000 total quasars, including SDSS areas outside of

the eBOSS footprint as well as new quasars observed by the TDSS and SPIDERS surveys.

4.4.2 Target density fluctuations due to systematics

Previous studies of large-scale galaxy clustering over the SDSS footprint (e.g., Ross et al.,

2011b) have demonstrated that systematics that produce target density variations at a level

of ∼15% or less can be controlled for by weighting the random catalog by a model of the effect

of that systematic. Beyond the 15% level, systematics become more difficult to “weight”

for, perhaps because some major systematics are covariant. When the effect of systematics

exceeds the 15% level, that area of the survey may have to be excised from clustering analyses.

As part of eBOSS target selection, a set of regression tests have been devised to

study how possible systematics in SDSS and WISE imaging may affect target density—

and whether such effects are below the ∼ 15% level that could be modeled with a suitable

weighting scheme. The slate of systematics, which represents a reasonable (but not neces-

sarily exhaustive) list of quantities that could bias eBOSS target density, is further detailed

in Chapter 3 (see also the companion paper Prakash et al. (2016)). Relevant to the WISE

imaging; the systematics include the median numbers of exposures per pixel, the fraction

of exposures contaminated by the Moon, and the total flux per pixel, all in the W1 band

(W1covmedian, moon lev, W1median). Relevant to the SDSS imaging; the systematics in-

clude the FWHM and background sky-level in SDSS z-band, which are used to track the

quality of the seeing and the sky brightness. Additional systematics include Galactic latitude

(to map the density of possible contaminating stars) and Galactic dust (extinction in the

r-band is used to represent this systematic).

The adopted regression technique is also detailed in Chapter 3 (see also the companion

paper Prakash et al. (2016)). Briefly, the potential eBOSS imaging footprint is deconstructed

into equal-area pixels of 0.36 deg2. The eBOSS CORE quasar target density and the mean
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Figure 4.1: Histograms of the surface density of CORE quasar targets predicted by the regression models
described in Section 4.4.2 (the “PSD”). The blue histogram represents the NGC, with solid blue lines
depicting the window within which angular fluctuations in quasar target density meet the ≤ 15% requirement
of Section 4.2.2. The green histogram and dotted green lines depict the same quantities for the SGC.
The histograms demonstrate that ∼ 97% (∼ 77%) of the NGC (SGC) footprint meets the homogeneity
requirements of eBOSS (see Section 4.2.2). The PSD and the fractional deviation from the mean PSD in
each pixel are depicted as a sky map in Figure 4.2.
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Figure 4.2: Actual and theoretical maps of eBOSS CORE quasar targets in J2000 Equatorial Coordinates
(degrees). The left-hand panel shows the observed surface density sky-map of targets over the BOSS foot-
print. eBOSS will target quasars over a ∼7500 deg2 subset of this area. As CORE quasar targets are
relatively scarce (∼ 115 deg−2) fluctuations in this map are dominated by Poisson noise and sample vari-
ance. The central panel shows the theoretical map of CORE quasar target density predicted by the linear
regression from imaging systematics (the PSD described in Section 4.4.2). The color bars above the left-hand
and central panels represent target densities in deg−2. The right-hand panel rescales the map in the central
panel so that it is expressed as a fractional deviation from the mean (i.e. the color-bar above this panel
represents the quantity PSD/〈PSD〉).

value of each systematic is determined for each of these pixels. The observed surface density

(SDobs) of eBOSS CORE quasar targets in each pixel can be expressed as a linear model of

systematics

SDobs = S0 +
7∑
i=1

Sixi + ε, (4.1)

where S0 is the mean target density across the pixels, Si is the weight accorded to fluctuations

in target density (xi) due to systematic i, and ε is the combined effect of noise and variance,

which is approximated as a Gaussian. Multi-linear regression is used to determine S0 and

Si by minimizing the value of reduced χ2 across the pixels. This regression is conducted

separately in each Galactic hemisphere, such that different coefficients are derived for the

NGC and SGC regions of the SDSS imaging.

Once the coefficients of the linear regression model for systematics have been estab-

lished, a statistic designated the Predicted Surface Density or “PSD” is computed. The PSD
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Figure 4.3: eBOSS Quasar survey mask based on theoretical map. The map is made using healpix pixeliza-
tion scheme (NSIDE=512). The black color represents the regions showing less than 15% variation in the
density around mean. The regions showing more than 15% variation in target density is excluded from LSS
studies.
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Figure 4.4: Systematics distributions and linear regression surface density models for eBOSS CORE quasar
targets. Each row of panels corresponds to one of the systematics outlined in Section 4.4.2 (“Latitude” refers
to Galactic latitude). The left-hand (right-hand) column of panels displays results for these systematics for
the NGC (SGC). The green histograms depict the distribution of pixels as a function of the mean value of
each systematic in each pixel. The number of pixels is quantified on the right-hand axis of each plot. The
red data points and blue lines depict, instead, measures of the Residual SD (Eqn. 4.3), which is quantified
on the left-hand axis of each plot. The points are the measured values of the Residual SD averaged over
4000 sky pixels in the NGC or 2000 pixels in the SGC. The error bars depict the standard error on the mean
across the pixels. The lines show the best-fit regression models. A linear regression model appears to be an
adequate description of how each displayed systematic affects eBOSS CORE quasar target density.
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is obtained by using S0 and Si to calculate what the eBOSS CORE quasar density should

be in a given pixel if the linear regression model is an adequate description

PSD = S0 +
7∑
i=1

Sixi . (4.2)

Figure 4.1 presents a histogram of the CORE quasar PSD as predicted from the derived linear

regression model coefficients across all of the systematics. We further present the mask of

eBOSS quasar survey in Figure 4.3. A total of 96.7% of the SDSS imaging footprint in

the NGC5 fluctuates in CORE quasar PSD at less than 15%. The corresponding fraction is

76.7% in the SGC footprint.

Figure 4.2 illustrates these deviations on the sky using a map of the PSD statistic,

which serves to illustrate the most problematic areas of the SDSS footprint for eBOSS. The

right-hand panel of Figure 4.2 approximates the “mask” that will be necessary to ameliorate

the effects of systematics on clustering measurements that use eBOSS CORE quasars. The

effective area or random catalog in each region of the eBOSS footprint can be re-weighted

by the values displayed in the right-hand panel of Figure 4.2, although regions that deviate

by more than 15% from expectation may need to be excised from the survey in order to

reach the target density variation requirement of Section 4.2.2. The central panel of Fig-

ure 4.2 is a particularly clear illustration of why the PSD is regressed separately in the NGC

and SGC regions—the NGC appears to be more robust to systematics than the SGC. To

determine whether a linear regression adequately models the effect of systematics on the tar-

get density of eBOSS CORE quasars, the statistics designated the Reduced PSDj and the

Residual PSDj as described in Chapter 3 can be calculated. The Reduced PSDj is derived

from the PSD by omitting the j’th systematic term when calculating the PSD—in order to

represent the deviation from the PSD caused by each systematic. The difference between

the PSD and the observed sky density of targets, called the Residual Surface Density, or

“Residual SD,” is then calculated. If a linear model is an appropriate representation of the

regression of a given systematic, then the Residual PSD should be well-represented by a

model with a slope of Sj. Formally:

5only the area that could be useful for eBOSS targeting, due to scheduling constraints, is considered (see
Dawson et al., 2015, and Figure 4.2)
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Reduced PSDj = PSD− Sj × xj ,

Residual SDj = SDobs − Reduced PSDj . (4.3)

Figure 4.4 shows how the CORE quasar Residual SD varies as a function of each of

the individual systematics, together with the underlying distributions of those systematics.

In general, a linear regression seems to be adequate for modeling variations in CORE quasar

target density. Figure 4.4 suggests that sky brightness, and, in particular, Galactic extinc-

tion, are the main culprits in causing variations in eBOSS CORE quasar target density. The

SGC has a 68% range of r-band extinction of 0.075 to 0.19 with a median of 0.12, whereas

the NGC has a 68% range of r-band extinction of 0.032 to 0.10, with a median of only

0.057. The corresponding numbers for z-band sky flux are 4.1 to 6.8 with a median of 5.1

in the SGC and 3.3 to 4.6 with a median of 3.8 in the NGC. The higher median and wider

range of values of these systematics in the SGC are likely responsible for both the suppressed

density of SGC targets and the larger RMS in predicted surface density that can be seen

in Figure 4.2. These systematics will act to reduce the effective depth of an exposure and

hence to increase the error on the fluxes of a test object being assigned a quasar probability

by the XDQSOz method. In effect, as the flux errors for a test object increase, the for-

mal probability that the object is a quasar is reduced, and fewer objects are then assigned

PQSO(z > 0.9) > 0.2 by XDQSOz.

Overall, the eBOSS quasar sample outlined in this chapter for clustering measurements

is expected to be robust against systematics across essentially the entire NGC and across

about three-quarters of the SGC. This statement may be pessimistic, as eBOSS does not

attempt to restrict the CORE quasar redshift range to 0.9 < z < 2.2 in advance of spectro-

scopic confirmation. Quasars at z > 2.2 are closer to the stellar locus in optical color space,

so the target density of quasars at z > 2.2 may fluctuate more due to systematics than at

z < 2.2. Weighting for systematics as a function of quasar redshift is a possible avenue

for further improving eBOSS clustering measurements once target redshifts have been con-

firmed by spectroscopy. The final eBOSS footprint is yet to be derived but in the worst-case

scenario that the entire SGC has to be observed, only ∼ 86.7% of eBOSS will meet the
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Table 4.1: Results of how zero-point fluctuations affect target density

N−1(∆N/∆m) zero-point error fluctuation

(1) (2) (3)

u 0.544 13× 10−3 2.8%

g 0.856 9× 10−3 3.1%

r 0.514 7× 10−3 1.4%

i 0.475 7× 10−3 1.3%

z 0.061 8× 10−3 0.2%

W 0.223 20× 10−3 1.8%

Note. — (1) Fractional deviation in target density that results from a ±0.01 mag scatter in each band;
(2) Zero-point RMS error in each band in magnitudes. Values for the SDSS are taken from D. Finkbeiner
et al. (2016, in preparation). Values for the WISE stack are estimated from Jarrett et al. (2011b); (3) 95%
(±2σ) values in target density fluctuation corresponding to 100%× 4× [zero-point error]× [N−1(∆N/∆m)]

requirements of Section 4.2.2. This fraction of useful area is almost exactly offset by the

expected excess of eBOSS CORE quasars. eBOSS will confirm (0.95 × 72.0 =) 68.4 deg−2

0.9 < z < 2.2 quasars. Serendipitously, 68.4 deg−2×0.867 = 59.3 deg−2, exceeding the

requirement of 58 deg−2 0.9 < z < 2.2 quasars noted in Section 4.2.2.

4.4.3 Target density fluctuations due to zero-point variations

A further requirement of eBOSS is that fluctuations in target density due to shifting zero-

point calibrations across the SDSS imaging footprint are well-controlled. Similar to Sec-

tion 4.4.2, such fluctuations need to be kept below the 15% level (see also Section 4.2.2)6.

To study how changes in zero-point affect the density of eBOSS CORE quasar targets, each

of the bands used in the eBOSS CORE quasar selection is offset by ±0.01 mags (i.e. scaled

by 1% in flux) and the resulting fractional changes in target density are determined after

6This 15% limit is on the two-tailed distribution (i.e. between the peaks due to a positive and a negative
fluctuation in zero-point)
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re-running the target selection pipeline. Each SDSS band is tested individually. As the

WISE bands are only incorporated into eBOSS CORE quasar target selection, both W1

and W2 are simultaneously shifted by ±0.01 mags and the result is reported as a single band

(henceforth denoted W ).

The resulting fractional fluctuations in target density from these offsets (N−1[∆N/∆m])

can then be multiplied by the zero-point RMS error expected for the imaging calibrations

used by eBOSS (see Section 4.3) to determine the expected RMS variation in number density

due to zero-point calibrations shifting across the eBOSS footprint. We adopt the zero-

point errors in [u, g, r, i, z] of [13, 9, 7, 7, 8] mmag RMS from D. Finkbeiner et al. (2016,

in preparation) and conservatively estimate a zero-point error of 20 mmag RMS for the

W stack (see Jarrett et al., 2011b). Assuming that the zero-point errors can be modeled

using a Gaussian distribution, 95% of CORE quasar targets in eBOSS will be within ±2σ

of the expected RMS variation. In other words, 95% fractional variance in target density

can be interpreted as meaning that 95% of the area of the sky is expected to be described

by fluctuations of ±2σ. Thus, the overall 95% fractional variance in target density due

to zero-point errors can be expressed (as a percentage) as 100% × 4 × [zero-point error] ×

[N−1(∆N/∆m)]. Table 4.1 displays the results of this analysis, which indicate that g-band

is the least robust to zero-point variations when selecting eBOSS CORE quasars. Even

g-band, however, causes a (2σ) variation of only 3%, far less than the 15% limit outlined in

Section 4.2.2. eBOSS CORE quasar target selection is thus completely robust to zero-point

errors.

4.5 CONCLUSIONS AND SUMMARY

The SDSS-IV will include the eBOSS, a project with an ambitious goal of using galaxies

and quasars to measure the BAO scale across a range of redshifts. This chapter details

the properties of a sample of quasars, referred to as the eBOSS “CORE” sample, that

can provide the first 2% constraints on the BAO scale at redshifts 0.9 < z < 2.2 through

clustering measurements. Not all such sources, however, are targeted for spectroscopy in
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eBOSS. The eBOSS survey does not place a fiber on any target that has an existing good

spectrum from earlier iterations of the SDSS.

Ultimately, eBOSS will uniformly target in excess of 500,000 quasars in the redshift

range 0.9 < z < 2.2, exceeding previous such clustering samples by a factor of more than ten.

Samples of new spectroscopically confirmed quasars across all redshifts in eBOSS will exceed

500,000 quasars, which will be at least three times larger than all previous samples across

the eBOSS footprint combined. At the conclusion of eBOSS, in excess of 800,000 confirmed

quasars should have spectra from some iteration of the SDSS. In essence, eBOSS is the

next-generation quasar survey, and, in the wake of 20 years of observations from SDSS -I, II,

III and IV, eBOSS will usher in the era of million-fold spectroscopic quasar samples.
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5.0 SDSS-IV/EBOSS: THE CLUSTERING OF LUMINOUS RED

GALAXIES USING PHOTOMETRIC REDSHIFTS

5.1 INTRODUCTION

The spatial distribution of galaxies is a powerful cosmological probe for studying structure

formation and evolution in the universe. The observed galaxy density is expected to have

a simple relationship to the overall density of matter (primarily dark matter) density. The

BAO feature which is embedded in the spatial distribution of galaxies can be used as a

standard ruler for cosmology (Eisenstein & Hu, 1998). The distinguishing feature of the

BAO appears in galaxy clustering at large scales as a peak in the two-point autocorrelation

function at a comoving length of roughly 100 h−1Mpc. The BAO scale may also be observed

via the locations of the first peak in the power spectrum of the CMB, corresponding to the

redshift of hydrogen recombination at z ∼ 1100 (Peebles & Yu, 1970; Sunyaev & Zeldovich,

1980). The measurement of the expansion of the universe using the apparent size of a

standard ruler at different redshifts probes the energy content of the universe and can be

used to study the properties of the dark energy (Hu, 2005; Eisenstein et al., 2005).

The comoving scale of the BAO feature is determined by the matter and radiation

densities at hydrogen recombination. This is due to that fact that the speed of a sound wave

in a plasma is determined by the ratio of baryons and photons. As mentioned in Chapter 2,

this feature was first detected in the SDSS Luminous Red Galaxy sample (Eisenstein et al.,

2005). This has inspired astronomers to push LRG sample selection to higher redshifts, as

well as exploring other suitable tracers to make 3D maps of the universe. Measuring the

apparent size of the BAO features at different redshifts opens up the possibility of directly

estimating the angular diameter distance as a function of redshift (Eisenstein & Hu, 1998;
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Seo & Eisenstein, 2003; Lin & Mohr, 2003; Ross et al., 2008).

Traditionally, spectroscopic redshifts are used to measure galaxy clustering. However,

acquiring spectroscopic redshifts is a time-consuming and expensive process even with mod-

ern multi-fiber spectrographs. Additionally, the ultimate accuracy of distance estimates from

spectroscopy is limited by peculiar velocities, which can reach 1000 km/s, and lack of knowl-

edge of cosmological parameters. Photometric redshifts, first developed in 1960s (Baum,

1962), are an estimate of the redshifts of galaxies using their photometry alone. This implies

using the flux (or brightness) of the objects as seen through different wavelength channels

(or filters). This technique relies on the astronomical objects having a strong feature in

their spectrum that can be detected by the relatively crude broad-band filters. The tech-

nique was replaced by spectroscopic redshifts which use spectroscopy to measure the shift

in spectral features from their laboratory positions. However, large sky surveys in the 1990s

highlighted the necessity of photometric redshifts as the limited telescope time restricted the

spectroscopic follow-up of objects to a very small fraction.

Large multi-band imaging surveys enable us to estimate more accurate photometric

redshifts than it was possible before. These photometric redshifts can be improved further

using advanced machine learning algorithms applied to large spectroscopic redshift training

samples. Although photometric redshifts are less accurate than spectroscopic redshifts, they

are significantly easier to obtain, and for a constant amount of time, one can image both

wider areas and deeper magnitude limits than would be possible with spectroscopy, allowing

one to probe both larger scales and larger volumes.

The aim of this chapter is to demonstrate the practicality of using photometric redshifts

for large-scale clustering measurements with real data. We start with the photometrically

selected sample of eBOSS LRGs which is described in detail in Chapter 3. SDSS and WISE

imaging augmented with the spectroscopic training sample of ∼100,000 LRGs spectroscop-

ically confirmed in the first two years of eBOSS observations make an accurate estimation

of photometric redshifts possible. We then measure the angular clustering in redshift bins

of ∆z = 0.05. We pay particular attention to the impact of systematics and revisit the mul-

tivariate analysis method first developed in Section 3.7 using a Healpix pixelization scheme.

The chapter is organized as follows. In Section 5.2, we briefly outline the eBOSS
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LRG sample used for this work. In Section 5.3, we explain the Random forest machine

learning algorithm used for estimating photometric redshifts. A study of the uniformity

and homogeneity of the LRG sample as a function of redshift is outlined in Section 5.4.

Section 5.5 then discusses the two-point correlation statistics which are employed to measure

the correlation function. We present the results and discussion in Section 5.6 and conclude

with future possibilities.

Unless stated otherwise, all magnitudes and fluxes in this chapter are corrected for

extinction using the dust maps of Schlegel et al. (1998a), hereafter SFD, and are expressed

in the AB system (Oke & Gunn, 1983a). The SDSS photometry has been demonstrated to

have colors that are within 3% of being on an AB system (Schlafly & Finkbeiner, 2011a).

We use a standard ΛCDM cosmology with H0=100h km s−1 Mpc−1, h = 0.7, ΩM = 0.3,

and ΩΛ = 0.7, which is broadly consistent with the recent results from Planck (Planck

Collaboration et al., 2014).

5.2 DATA

5.2.1 Photometric data

For this analysis, we use the SDSS-IV /eBOSS photometric sample of ∼600,000 LRGs se-

lected over the entire SDSS-III /BOSS footprint of 10,000 deg2. SDSS-IV /eBOSS is an

ongoing effort to obtain spectra of ∼370,000 LRGs over 7,500 deg2 of the SDSS footprint in

the redshift range 0.6 < z < 1.0, with a median redshift of z ∼ 0.71. The selection of this

sample has been presented in detail in Chapter 3.

5.2.2 Spectroscopic data

In the first two years of observations, eBOSS has obtained spectra of ∼100,000 LRGs. The

redshifts from these spectroscopically confirmed LRGs are used as training sets for building

machine learning algorithms, which are then used for estimating photometric redshifts of the

entire LRG sample. A majority of LRGs are within the redshift range 0.5 < z < 1.0, with
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very few LRGs outside this range. Hence, only the LRGs within the redshift range 0.4 < z <

1.1 are selected for training purposes. The spectroscopic target dataset is estimated to have

∼10% stellar contamination. By construction, stars are excluded from the training datasets.

5.3 PHOTOMETRIC REDSHIFTS

The redshifts used in this work for measuring clustering are estimated using the Random

forest machine learning algorithm. Random forest is an ensemble method that operates by

building a number of decision trees and outputting the class that is the mode of the classes

(in the case of classification) or mean prediction (for regression) of the individual trees (Ho,

1995). For this work, the relevant output is the regression. The Random forest regressor is

a supervised learning algorithm which builds decision trees based on a set of given criteria

provided by the training sample. It applies the general technique of bootstrap aggregating to

decision tree learners: that is, the algorithm selects a set of random samples with replacement

from the training set and fits trees to these samples (Ho, 1998). This bootstrapping procedure

leads to better model performance because it decreases the variance of the model (Amit &

Geman, 1997). The predictions of a single tree are highly sensitive to noise in its training

set. However, the average of many uncorrelated trees is not (Friedman et al., 2000). The

bootstrap sampling is a way of de-correlating the trees by showing them different training

sets (Breiman, 1996). For these reasons, Random forest has been proved to have better

performance on noisy data.

For this work, we use the implementation of Random forest algorithm provided in

the software package Scikit-learn (Pedregosa et al., 2011). The main parameters to adjust

when using this implementation of the Random forest algorithm are the maximum number

of features, the number of estimators, and the depth of individual trees (Buitinck et al.,

2013). The number of features is a parameter dependent on the task at hand. The number

of features parameter determines the maximum number of features of the training sample

to consider when looking for the best split. If this keyword parameter is set to “auto”, the

routine considers all the features present in the training set. For regression, the maximum
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number of features in the training sample (max features = n features) is a good empirical

value for this parameter. The number of estimators is the number of trees in the forest. The

larger the number of estimators, the better. However, it also takes longer to compute, and

the results will stop getting significantly better beyond a critical number of trees. The depth

of trees is the parameter which enables individual tree learners to learn highly irregular

patterns. One should be careful about this parameter as trees which run too deep tend

to overfit their training sets, that is, the statistical model describes random error or noise

instead of the underlying relationship in the training sets.

Here, we determine the optimum value of these parameters using the training-test split

method. In this technique, a random subset of the training sample is kept aside for testing

the results of training. The predictions of the forest tree learners are tested against the known

(or expected) output of the test sample. For best results, it is desirable that the training sets

are true representatives of the datasets on which these algorithms are ultimately applied.

In this work, we split the spectroscopic sample of ∼100,000 LRGs into two randomly-

selected datasets of sizes 80% and 20%. The larger dataset, comprising of 80% of the

randomly selected LRGs, is used as the training set. The smaller dataset, comprising of the

remaining 20% of the randomly selected LRGs, is kept for testing purposes. At this point,

we start building Random forest models on the training sample. To begin with, we use a

large number for the maximum depth of trees, ∼40, and attempt to optimize the number of

estimators. This optimization is achieved by building Random forest models with increasing

numbers of estimators and evaluating them using the same test sample. Here, we start with

five estimators and increase in steps of five till 70. To test the predictions of models, we use

the standard deviation (SD) and median absolute deviation (MAD) statistics. These results

are shown in Figure 5.1.

Based on these results, values larger than 60-65 yield minimal gains. Choosing a

smaller number carries the risks of higher variance in the predictions. At this point, we fix

the number of estimators (60) and repeat the same process to tune the maximum depth of

individual trees. We vary the depth of trees in an increment of 1 and repeat the measurement

of our test statistics. The results are shown in Figure 5.2. Although the trend continues

to be downward, which implies that we can achieve better performance with even deeper
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Figure 5.1: Random forest regression results as a function of the number of decision trees. The standard de-
viation and median absolute deviations are estimated from the predicted photo-z and spectroscopic redshifts
of the test sample.
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trees, we adopt 20 as the depth parameter. The motive behind this is to keep the runtime

reasonable as it scales as the cubic power of the depth of trees. We also assess the fraction

of outliers as a function of depth of trees in Figure 5.3. Outliers have been identified as

those objects for which the error in predicted photometric redshift is greater than 0.15 (i.e.,

zspec−zphot
1+zspec

> 0.15).

At this point, we have obtained near-optimal values of the main parameters of the

Random forest algorithm. The final algorithm assumes these values for the key parameters

of the Random forest; 1) The number of estimators = 60, 2) the depth of trees = 20, and

3) the number of features = ”auto.” The results of photometric redshift estimation using

these parameter values is plotted in Figure 5.4. We have achieved a standard deviation of

σz
1+z
∼ 0.028, which is an acceptable error for cosmological studies which employ photometric

redshifts. For example, Padmanabhan et al. (2007) detect BAO feature in the SDSS LRG

sample using photometric redshifts at z < 0.6 with σz
1+z
∼ 0.03. The final model is ready

to be applied on the full LRG sample, and we present the resulting photometric redshift

distribution in Figure 5.5.

5.4 UNIFORMITY AND HOMOGENEITY OF EBOSS LRGS USING

PHOTOMETRIC REDSHIFTS

In this section, we revisit the uniformity and homogeneity of eBOSS LRGs in detail using

a Healpix pixelization scheme. As discussed in Section 3.2.1, we require that the target

sample should be highly uniform to prevent non-cosmological signals from contaminating

clustering measurements. The general methods we use for regression analysis have already

been discussed in detail in Section 3.7.3. Here, we briefly review the key steps of regression

analysis and incorporate the results into clustering measurements. The important difference

here is that we perform this regression analysis in redshift bins of ∆z = 0.05, and the

resulting Predicted Surface Density or PSD is used for creating random catalogs against

which we measure the angular clustering.

As in Sections 3.7.1 and 4.4, we assess the uniformity of the target sample by comparing

91



Figure 5.2: Random forest regression results as a function of the depth of individual decision trees. The stan-
dard deviation and median absolute deviations are estimated from the predicted photo-z and spectroscopic
redshifts of the test sample.

92



Figure 5.3: Fraction of outliers as a function of the depth of decision trees estimated from Random forest
photometric redshifts and spectroscopic redshifts from a test sample. Outliers have been identified as those
objects for which the error in predicted photometric redshift is greater than 0.15 (i.e.,

zspec−zphot

1+zspec
> 0.15)

the observed density of targets to maps of local imaging conditions and Galactic structure.

We perform a multivariate linear regression analysis of the observed surface density against

the set of identified potential systematics and simultaneously fit for their impact, rather

than correlating against one at a time. This has the advantage of producing a model of

systematic-affected density that provides accurate predictions for the combined effects of all

the systematics considered.

Using the results of the regression analysis we assemble maps of the observed density

and the predicted density in different redshift bins. We then identify regions within our

footprint where the total span of target density fluctuation is less than 15% and consider the

portion of sky with larger variations to be contaminated at an unacceptable level based on

prior experience in BOSS (Ross et al., 2011a). This analysis, similar to the one performed

in Section 3.7.1, results in establishing the ”mask” of the eBOSS LRG survey.
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Figure 5.4: The photometric redshifts vs spectroscopic redshifts plots for the test sample using Random forest
routine. The blue histogram represents the photo-z’s and the red histogram represents the spectroscopic
redshifts.
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Figure 5.5: The photometric redshift histogram of the entire eBOSS LRG sample estimated using Random
forest algorithm. The green bars represent the distribution of spectroscopic redshifts from the first two years
of eBOSS observations. The stellar contamination, estimated to be ∼11%, is visible as the bar at z ∼ 0.
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5.4.1 Imaging systematics associated with WISE and SDSS

As described in Section 3.7.1, we have identified a broad set of seven imaging parameters

that could affect eBOSS target selection. We reproduce them here for convenience:

1. W1covmedian: The median number of single-exposure frames per pixel in the WISE W1

band.

2. moon lev: The fraction of frames that were contaminated with scattered moonlight in

the WISE W1 band.

3. W1median: The median of accumulated flux per pixel in the WISE W1 band measured

in units of DN (data number).1.

4. Galactic Latitude: used as a proxy for stellar contamination.

5. Galactic extinction: We use r band extinction, as given by Schlegel et al. (1998a).

6. FWHM in the SDSSz -band: We use FWHM as an estimate of the ’seeing’ or imaging

quality for the SDSS imaging.

7. SKYFLUX in the SDSSz -band: the background sky level affects the detection of faint

objects which is more difficult in the brighter regions of the sky.

We create all-sky maps of the WISE systematics using the metadata tables associated with

the Atlas images and source tables provided by WISE survey team; W1covmedian, W1median,

and moon lev are all quantities in these tables.2 We also create similar SDSS maps over the

entire SDSS footprint. We use the seeing and the sky background in the z band since the

eBOSS LRG selection algorithm is flux-limited in that bandpass filter. We present these

maps in Figures 5.6, 5.7, 5.8, and 5.9.

5.4.2 Regression analysis using photometric redshifts

Next, we break the sky up into equal-area pixels of 0.8 deg2 using a Healpix (Górski et al.,

2005) pixelization scheme (NSIDE = 64) and weight all pixels equally. Using the methods

described in Section 3.7.1, we calculated the observed density, SDobs, and the predicted

1 The accumulated photons in each pixel are represented by a number in units of DN
2http://wise2.ipac.caltech.edu/docs/release/allsky/expsup\/sec2_4f.html
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Figure 5.6: WISE all-sky systematics map for Median and Coverage Median. The maps are made using
Healpix pixelization scheme (NSIDE=512). W1 covmedian is defined as the median number of single-
exposure frames per pixel in the WISE W1 band. W1 median (bottom panel) is defined as the median of
accumulated flux per pixel in the WISE W1 band measured in units of DN (data number).
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Figure 5.7: WISE all-sky systematics map for moon light contamination. The maps are made using Healpix
pixelization scheme (NSIDE=512). W1 moonlev is defined as the fraction of frames that were contaminated
with scattered moonlight in the WISE W1 band
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Figure 5.8: SDSS systematics map for dust extinction in r-band and observing conditions. LRG sample is
flux limited in z-band. The maps are made using Healpix pixelization scheme (NSIDE=512).
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Figure 5.9: SDSS systematics map for sky background in z-band. The maps are made using Healpix
pixelization scheme (NSIDE=512).
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surface density, PSD. This analysis is restricted over the SDSS footprint as dictated by the

SDSS imaging systematic maps and LRG footprint.

5.4.3 Analysis of regression results

The PSD is highly useful for testing the uniformity of the target sample. Multivariate linear

regression provides an acceptable best-fit model which has been demonstrated in Chapter 3

by the residual analysis in Figure 3.6. This regression analysis is performed by dividing the

LRG sample in redshift bins of ∆z = 0.05 using the photometric estimations from Section 5.3.

The Predicted Surface Density (PSD) from regression is shown along side the observed LRG

density in Figures 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15.

In addition to the regression analysis in different redshift bins, we also perform the

regression over the entire sample spanning the whole redshift range 0.55 < z ∼ 1.0. This

regression analysis allows us to determine what fraction of the survey footprint satisfies the

requirement of less than 15% total variation in target density as described in Section 3.2.2.

When the effect of systematics exceeds the 15% level, that area of the survey is excised from

clustering analyses. This 15% window is not necessarily symmetric around the mean, so

we fix its limits such that the footprint area satisfying the requirement is maximized. We

depict the observed surface density, the predicted surface density, and the mask of the survey

across the whole footprint of SDSS in Figures ?? and ??. The LRG sample is estimated to

be uniform and homogeneous over ∼ 92% of the BOSS survey footprint, showing little or

no dependence on imaging systematics and flux calibrations.

5.4.4 Random catalogs

The construction of random catalogs is an important step in measuring clustering. To

extract precise clustering measurements, the randoms should reflect the underlying redshift

distribution of the datasets (i.e., the distribution with no fluctuations from clustering). In

addition, the randoms should also reflect the effects of all the imaging systematics such as

seeing, sky brightness, Galactic extinction, etc., which may alter the target density in a

complex manner. In a nutshell, the random sample should demonstrate the true redshift
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Figure 5.10: LRG predicted density and observed density at redshifts 0.55 < z < 0.60. The maps are
made using Healpix pixelization scheme (NSIDE=512). The observed density (top panel) of obtained by
splitting the sample based on random forest photo-z’s. The predicted density (bottom panel) is the result
of multivariate regression of the observed density in this bin against the source of systematic errors.
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Figure 5.11: LRG predicted density and observed density at redshifts 0.60 < z < 0.65. The maps are
made using Healpix pixelization scheme (NSIDE=512). The observed density (top panel) of obtained by
splitting the sample based on random forest photo-z’s. The predicted density (bottom panel) is the result
of multivariate regression of the observed density in this bin against the source of systematic errors.
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Figure 5.12: LRG predicted density and observed density at redshifts 0.65 < z < 0.70. The maps are
made using healpix pixelization scheme (NSIDE=512). The observed density (top panel) of obtained by
splitting the sample based on random forest photo-z’s. The predicted density (bottom panel) is the result
of multivariate regression of the observed density in this bin against the source of systematic errors.
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Figure 5.13: LRG predicted density and observed density at redshifts 0.70 < z < 0.75. The maps are
made using healpix pixelization scheme (NSIDE=512). The observed density (top panel) of obtained by
splitting the sample based on random forest photo-z’s. The predicted density (bottom panel) is the result
of multivariate regression of the observed density in this bin against the source of systematic errors
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Figure 5.14: LRG predicted density and observed density at redshifts 0.75 < z < 0.85. The maps are
made using Healpix pixelization scheme (NSIDE=512). The observed density (top panel) of obtained by
splitting the sample based on random forest photo-z’s. The predicted density (bottom panel) is the result
of multivariate regression of the observed density in this bin against the source of systematic errors
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Figure 5.15: LRG predicted density and observed density at redshifts 0.85 < z ∼ 1.0. The maps are
made using Healpix pixelization scheme (NSIDE=512). The observed density (top panel) of obtained by
splitting the sample based on random forest photo-zs. The predicted density (bottom panel) is the result of
multivariate regression of the observed density in this bin against the source of systematic errors
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Figure 5.16: eBOSS LRGs observed and predicted density maps over the entire redshift range 0.5 < z < 1.0.
The maps are made using Healpix pixelization scheme (NSIDE=512). The observed density (top panel)
represents the full sample. The predicted density (bottom panel) is the result of multivariate regression of
the observed density against the sources of systematic errors.
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Figure 5.17: eBOSS LRG survey mask based on predicted density and the sample post masking. The maps
are made using Healpix pixelization scheme (NSIDE=512). The survey (top panel) represents the regions
showing less than 15% variation in the density around mean. The regions showing more than 15% variation
in target density is excluded from LSS studies. The LRG sample post masking is shown in the bottom panel.
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distribution of the datasets, and include all the effects which are not due to the clustering

at relevant scales, including the mask of the survey (i.e., the detailed geometry of the area

covered).

In the simplest approach, we generate random points with identical limits on sky

coverage as the datasets. These points are assigned redshifts which are randomly drawn

from the data. In addition, we associate a random number, <, between 0 to 1 to each point

that will be used to modulate the density of the randoms. We then normalize the PSD maps

presented in the previous section to the same scale and refer to it as the Normalized Predicted

Surface Density, NPSD ( i.e., the maximum value of NPSD over the entire redshift range

is 1). Now that the NPSD maps and the random factor associated with each point are on

the same scale of 0 to 1, the random points with < values greater than that of the NPSD in

that pixel are thrown away. The remaining points provide a random sample which not only

matches the actual redshift distribution of a dataset but also includes the density modulation

effect of systematics. We present the resulting random samples in Figures 5.18 and 5.19.

5.5 THE 2-POINT CORRELATION STATISTICS

The two-point autocorrelation function, which is typically referred to simply as the corre-

lation function, is the excess probability of finding a galaxy in a volume element, dV , at a

separation, r, from another randomly chosen galaxy:

dP = n[1 + ξ(r)]dV, (5.1)

where n is the mean number density of the galaxies in question (Peebles, 1980). The excess

probability means that the strength of correlation would be zero for uniformly distributed

objects.

To measure the correlation function, we have to measure the counts of the pairs of

galaxies as a function of their separation and normalize it by what is expected from a uniform

distribution. This is typically done by constructing a random sample which is populated by

random points but has the same three-dimensional distribution as the data barring variations
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Figure 5.18: The redshift distribution of the eBOSS LRG and random sample. The data histogram is scaled
by a constant factor to be more easily compared to the random histogram.
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Figure 5.19: The random sample covers a footprint identical to that of the eBOSS LRG sample. Only a
subset of total random sample is presented here for efficiency. The color bar represents the surface density
in numbers per pixel. The pixels are 0.01 deg2 created using Healpix (NSIDE= 512).
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due to the correlations we wish to measure and hence should have identical sky coverage and

redshift distribution. The ratio of galaxy pair counts observed from the data relative to pair

counts described using random catalogs is used for estimating ξ(r).

A few estimators have been proposed and tested over time. In this work, we use the

Landy & Szalay estimator (LS, Landy & Szalay, 1993) to measure the two-point autocorre-

lation function in LRG samples. The LS estimator has been found to be better at handling

edge effects and reaches minimum variance compared to other more naive estimators (Ker-

scher et al., 2000):

ξLS =
(DD− 2DR− RR)

RR
, (5.2)

where DD are data pairs, DR are data-random pairs, and RR are random-random pairs at

a given separation. If one could obtain a map of galaxies in real space (rather than redshift

space), one could compute the two point autocorrelations function, ξ(r) from this estimator.

Once computed, ξ(r) can be modeled approximately as a power law, ξ(r) = ( r
r0

)γ. Here,

r0 is the characteristic scale length of galaxy clustering, defined as a length scale at which

ξ(r) = 1. The canonical value of the scale parameter γ is ∼1.8 and has remain unchanged

for more than 30 years (Peebles, 1980; Totsuji & Kihara, 1969).

In real galaxy surveys, we measure positions in redshift space, not real space, so we must

use other statistics to constrain ξ(r). This is complicated further when redshift information is

not available for a given sample, as it is observationally expensive. However, it is possible to

measure the spatial distribution of galaxies in two dimensions as projected on the sky. This

is measured as the projected angular correlation function, w(θ). This quantity is defined,

similarly to three-dimensional correlation function, as the excess probability of finding a

galaxy at an angular separation of θ:

dP = n[1 + w(θ)]dΩ, (5.3)

where n is the mean number density of the galaxies per steradian and dΩ is the solid angle

of a second galaxy at a separation θ from a randomly chosen galaxy. The angular correlation

function can be approximated as a power law too, w(θ) = Awθ
δ. Here Aw is the clustering

amplitude and δ=(1-γ) is the slope of the correlation function. As the two-dimensional
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clustering seen on the sky is simply the projection of the three-dimensional clustering along

the line of sight, w(θ) is directly related to its three-dimensional analog ξ(r). It is possible

to estimate ξ(r) from w(θ) using Limber’s equation (Limber, 1954):

w(θ) =

∫ ∞
0

y4φ2(y)dy

∫ ∞
0

ξ(
√
x2 + y2θ2)dx, (5.4)

where y is the comoving distance and φ(y) is the radial selection function normalized such

that
∫
y2 φ(y) dy = 1. If one assumes a power-law form for the three-dimensional correlation

function, ξ(r) = ( r
r0

)γ, then the parameters, r0 and γ can be estimated from amplitude and

slope of angular clustering:

rγ0 =
A Γ(γ

2
)

Γ(γ−1
2

) Γ(1
2
)
, (5.5)

where Γ is the usual gamma function.

In this work, we measure the angular correlation, w(θ), at different redshifts using

photometric redshifts and obtain the values of the parameters, A and δ, using a power-

law fit. These parameters are optimized using the least square errors technique. These

parameters can then be used to infer the three dimensional correlation function, ξ(r) in

future, using equation 5.5.

5.6 RESULTS AND DISCUSSION OF LRG CLUSTERING

We present the results of our LRG angular correlation function measurements in Figures 5.20,

5.21, and 5.22 as a function of angular separation on the sky. The angular clustering is

computed using the software package CUTE (Alonso, 2012). In Figures 5.23 and 5.24, we

show the clustering as a function of physical scales as projected on the sky. The solid

line is the power-law fit and the parameters are estimated using least square error. The

angular correlation appears to be consistent with a power law. However, we do not see

a clear and obvious acoustic peak at ∼100h−1Mpc. Theoretical estimations using Fisher

matrix predict a ∼ 2σ detection of BAO for the given errors on photometric redshifts and
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the number of galaxies per unit redshift interval, dN
dz

. In practice, the actual detection will

always be smaller than this since Fisher matrix predictions do not always take into account

the systematic errors. For the eBOSS LRG sample, we have pushed the photometry to its

limit causing larger errors on magnitude and photo-z’s. We suspect that our non-detection is

primarily due to systematic errors. In addition, a combination of one or more of the factors

below could be responsible for diluting BAO signal:

1. Stellar contamination: The average stellar contamination estimated in the spectro-

scopic sample is ∼ 11%. This is expected to be higher in the photometric sample. We

have attempted to use machine learning methods, but have not found a reliable way to

improve star-galaxy separation for this sample. Machine learning methods explained in

this work have failed to implement star-galaxy separation at desirable efficiency. This is

expected to be one of the main effects diluting the BAO signal. Stellar contamination

would not affect the BAO peak but weakens the BAO signal overall.

2. Systematic effects: Systematics effects may alter target density in a very complex way.

The noisy SDSS photometry and the fact that these LRGs are at the edge of photometric

detection make things more complex. The BAO peak is an extremely weak signal. It is

critical to mitigate systematics effects in order to have a robust detection. Although we

have implemented multivariate regression to estimate the combined effect of systematics,

more work is required to completely understand these effects. As we accumulate more

spectroscopic data, we will get a better understanding of systematic effects.

3. Probability: It is also possible that the volume we are probing has a very weak signal.

In this case, the detection using photo-z becomes even harder. It is possible that we are

probing a volume where any significant detection would require accurate spectroscopic

redshifts. As discussed before, BAO is a feature at a scale of 100h−1Mpc. This implies

that even in an enormous volume of 1h−1Gpc3, we would have ∼ 1000 realizations of

the BAO peak. Due to this, the errors in the correlation function at BAO scale are large

which also makes a robust detection difficult.

The values of the power-law fit parameters, A0 and γ, are consistent with previous

studies. This work can be effectively used to constrain the projected accuracy of the 3D-
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correlation function for future surveys. We have successfully demonstrated the applicability

of machine learning photo-z’s for measuring clustering. This is critical for the future gen-

eration photometric surveys like LSST, where the spectroscopic follow-up of even a small

fraction of detected objects will not be possible.
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Figure 5.20: The clustering of the eBOSS LRGs as a function of angular separation at redshifts 0.55 < z <
0.60 and 0.60 < z < 0.65. The solid curve represents the power law fit whose parameters are optimized using
the least square error method.
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Figure 5.21: The clustering of the eBOSS LRGs as a function of angular separation at different redshifts
0.65 < z < 0.70 and 0.70 < z < 0.75. The solid curve represents the power law fit whose parameters are
optimized using the least square error method.
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Figure 5.22: The clustering of the eBOSS LRGs as a function of angular separation at redshifts 0.75 < z <
0.85. The solid curve represents the power law fit whose parameters are optimized using the least square
error method.
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Figure 5.23: The clustering of the eBOSS LRGs as a function of their physical separation at different redshifts
ranging from 0.55 to 0.85. The black dashed curve is the power-law fit to the clustering.
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Figure 5.24: The clustering of the eBOSS LRGs as a function of their separation at different redshifts,
zoomed in. We do not see an obvious BAO peak which seems to be due to a combination of factors including
stellar contamination and systematic effects.
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6.0 SDSS-IV/EBOSS: THE CLUSTERING OF QUASARS AND LRGS

6.1 INTRODUCTION

Quasar clustering measurements can be used to infer their active lifetimes and large-scale

environments which, in turn, can be used to understand their exact fueling mechanism and

the impact they have on galaxy formation and evolution (Kaiser, 1984; Mo & White, 1996).

Feedback from active galactic nuclei (AGN) appears to have a profound effect on galaxy

formation and evolution (Gebhardt et al., 2000). The observed correlation between central

black hole mass and the velocity dispersion of stars in the bulge of a galaxy provides evidence

for the possibility that AGN feedback influences their host galaxies (Springel et al., 2005).

Unfortunately, quasars are found to have relatively low number density, which causes large

uncertainties in clustering amplitudes estimated from the autocorrelation function especially

at low redshifts where they are rare. It is possible to make more precise measurements of

quasar clustering by studying the clustering of galaxies around quasars (i.e., by measuring

the cross-correlation function of quasars and galaxies), as the number density of galaxies

is much higher. Cross-correlation clustering measurements also provide a measure of the

local environment in which quasars reside, which is relevant to understanding the physics of

quasar fueling (Kauffmann & Haehnelt, 2000).

In this chapter, we present measurements of the quasar LRG cross-correlation function

at redshifts 0.55 < z < 1.0 using data from the first two years of SDSS/eBOSS observations.

Although spectroscopically confirmed quasars are available over a much wider redshift range,

the redshift range of the LRG sample limits this investigation to the lowest redshifts of eBOSS

quasars. We measure the clustering strength as a function of scale in the range 0.1 h−1Mpc

< r < 30 h−1Mpc in redshift bins of ∆z = 0.05.
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The chapter is organized as follows. In Section 6.2, we briefly outline the eBOSS

LRG and quasar sample used for this work and explain the procedure for creating the

eBOSS large scale structure and random catalogs. In Section 6.3, we explain the cross-

correlation statistics which are used for clustering measurements. In Section 6.4, we present

the results of cross-correlation measurements of LRGs around quasars. We also present

the autocorrelation measurements for the eBOSS LRGs, which is then combined with the

cross-correlation measurements to give an estimate of quasar bias at different redshifts. We

conclude with what this means for the halo masses in which these quasars reside and discuss

ways to take this work further.

6.2 DATA

For this study, we use samples of ∼ 30, 600 quasars and ∼ 120, 000 LRGs in the redshift

range 0.6 < z < 1.0 covering ∼ 2, 000 deg2 of the sky. These LRGs and quasars have

spectroscopically confirmed redshifts from the first two years of eBOSS observations. These

datasets constitute the large scale structure (LSS) catalog of eBOSS created for large scale

clustering measurements (Tojero et al., in prep.). The distribution of LRGs and quasars is

discontiguous and distributed over both the NGC and SGC portions of the SDSS footprint.

The sky map and redshift distribution of both samples are shown in Figures 6.1 and 6.2. The

LRGs and quasars from previous programs that used eBOSS target selection algorithms such

as the SDSS-III/BOSS ancillary program SEQUELS are also included in this investigation.

Next, we explain the methods used for creating the eBOSS LSS catalogs briefly.

6.2.1 Large scale structure catalogs

The LSS catalog created for eBOSS follows the same prescription used for BOSS DR12

(Reid et al., 2016). In particular, Laurent et al. (2017) found that the clustering amplitude

of the quasar sample and its redshift evolution are consistent with the assumptions used

in Zhao et al. (2016), and that the clustering can be modeled with the type of simulation
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Figure 6.1: The sky coverage of the eBOSS LRG and quasar samples used in this analysis. These galaxies
and quasars have spectroscopically confirmed redshifts from the first two years of eBOSS observations. These
datasets cover ∼2,000deg−2 spread over both the NGC and the SGC regions of the SDSS footprint. The LRG
and quasar samples completely overlap with each other on the sky since they are observed simultaneously
in eBOSS.
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Figure 6.2: The redshift distributions of the eBOSS LRG and quasar samples. These galaxies and quasars
have spectroscopically confirmed redshifts from the first two years of eBOSS observations. The quasar sample
is primarily designed for higher redshifts and quasars are rare in the low-z universe resulting in a low number
density at redshifts z < 1.0.
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techniques that have been successfully applied to galaxy samples.

6.2.1.1 Footprint

Once the targets are selected using the final target selection algorithms they are fed into a

tiling algorithm (Blanton et al., 2003), which assigns spectroscopic fibers to these targets

within a 3 degree tile. This allocation is done in a way to maximize the number of fibers

assigned to targets keeping in mind the constraints placed by the 62 arcsecond exclusion

radius (Dawson et al., 2016). Targets that lie within this exclusion radius can not be assigned

different spectroscopic fibers. For this reason, this radius is often referred to as the “fiber

collision” radius. The tiling algorithm is sensitive to this fact, and over-dense regions of

the sky receive more tiles. Quasars are assigned higher priority than LRGs in the eBOSS

survey, and a fraction of LRGs suffer fiber collisions. Some of these collisions are resolved

by overlapping tiles while others are dealt with separately. We use MANGLE software to

divide the sky into unique sectors and within each sector, we compute the following:

• Nstar: the number of spectroscopically confirmed stars

• Ncp: The number of targets that did not receive a spectroscopic fiber due to fiber collisions

• NMissed: The number of targets that will be observed in the future

• NLegacy: The number of targets that already have good spectroscopic redshifts (excluded

from tiling)

• NzFailed: The number of targets that did not yield good spectroscopic redshifts

• NBadClass: The number of targets with spectroscopic classification that does not match

its target class; for, the quasar sample, these are exclusively galaxies.

• NGood: The number of targets that yield good spectroscopic redshifts.

We then define a targeting completeness parameter per sector and per target class as

CeBOSS =
NGood +NzFailed +NBadClass +Ncp +Nstar

NGood +NzFailed +NBadClass +Ncp +Nstar +NMissed

(6.1)

All sectors with CeBOSS > 0.5 are retained in the LSS catalog; the average completeness of

the remaining sectors is ∼93% in both galactic caps. In addition, we also define a redshift

completeness parameter in each sector as:
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Cz =
NGood

NGood +NzFailed

, (6.2)

which evaluates target redshift efficiency averaged over each sector. Sectors with Cz > 0.5

are retained in the LSS catalogs.

6.2.1.2 Veto Mask

We apply the same veto mask as was applied on BOSS DR12 regions to exclude sectors in

problematic areas (Reid et al., 2016). These include:

• Bright stars mask: Regions around bright stars based on the Tycho catalog (Høg et al.,

2000).

• Bright object mask: Regions around bright galaxies and stars not included in the

Tycho catalog (Rykoff et al., 2014).

• Bad photometry mask: Regions strongly affected by dust extinction and bad seeing.

• Center posts: Center posts anchor the spectrographic plates and prevent any fibers

from being placed there.

6.2.1.3 Spectroscopic completion and systematic weights

Spectroscopic completeness is affected by a combination of factors mentioned in Section 6.2.1.1.

For example, targets missed due to fiber collisions are preferentially in denser regions of the

sky. They do not happen randomly on the sky and have a higher bias that should be taken

into account. These fiber collisions are corrected by transferring the weight of the lost target

to the nearest neighbor of the same target class with a valid redshift and spectroscopic clas-

sification. The spectroscopic redshift completeness weights are identified in the LSS catalogs

as wc.

Similar to spectroscopic weights, we also assign a systematics weight. This is estimated

based on the relation between the target number density and the sources of potential sys-

tematics as explained in the Section 3.7.1. The systematic weights are identified in the LSS

catalogs as wsys. In the end, a total weight, wtot = wc ?wsys, is assigned to each target which

is used in clustering measurements.
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6.2.2 Random catalogs

Random catalogs have been constructed in a way that matches the angular and redshift

distribution of the data, but with approximately 40 times the number density. These catalogs

are necessary to compute the correlation functions of the quasars and LRGs. In the simplest

approach, we began by generating a set of points randomly distributed over the eBOSS

footprint where the angular number density in each sector is subsampled to match the value

of CeBOSS in that sector. This is implemented using the MANGLE software. Next, we

apply the same veto masks, that are applied on the LRG and quasar datasets, on these

random points. Each random point is then assigned a redshift which is drawn randomly

from the datasets. Finally, each random redshift drawn from the LRG and quasar datasets

is weighted by the total LRG and quasar weight, which includes spectroscopic completeness

weight (wc) and systematic weight (wsys), wtot = wc ? wsys. Random samples generated in

this way represent the true distribution of the LRG and quasar sample in the absence of any

cosmological clustering.

6.3 CROSS-CORRELATION STATISTICS

Cross-correlation functions are defined similarly to the two-point autocorrelation function.

The two-point autocorrelation function (typically referred to as the correlation function) is

the excess probability of finding a galaxy in a volume element, dV , at a separation, r, from

another randomly chosen galaxy:

dP = n[1 + ξ(r)]dV , (6.3)

where n is the mean number density of the galaxies in question (Peebles, 1980). The definition

implies that the strength of correlation would be zero for uniformly distributed objects. In a

way, the two-point correlation functions provide a measure of lumpiness of the distribution

of a sample. Analogously to the auto-correlation function, the two-point cross-correlation
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function is the excess probability of finding an object from a given sample in a volume

element, dV , at a separation, r, from a random object in another sample. In this work, we

measure the cross-correlation of the eBOSS LRGs with eBOSS quasars:

dP (LRG|Q) = nLRG[1 + ξQ,LRG(r)]dV , (6.4)

which is the excess probability of finding an LRG in a volume element dV at a separation r

from a quasar (Q), where nLRG is the number density of LRGs.

Here we use the Landy & Szalay estimator (LS, Landy & Szalay, 1993) to measure the

cross-correlation function between the quasar and LRG samples. The LS estimator has been

found to be better at handling edge effects and minimizes variance compared to more naive

estimators (Kerscher et al., 2000). It is defined by:

ξLS =
(DD − 2DR−RR)

RR
, (6.5)

where DD are counts of data pairs, DR are data-random pairs, and RR are random-random

pairs at a given separation. This form of the LS estimator is suited for two-point autocor-

relations, which incorporates only one dataset. For cross-correlations, we have two different

datasets with separate randoms corresponding to each of them. Hence the LS estimator

needs to be generalized in order to compute cross correlations. Specifically, we measure the

observed number of galaxies around each quasar as a function of distance as well as the

observed number of galaxy and quasar pairs for random distributions. This information is

then used to calculate the generalized LS estimator which is computed as:

ξLS(r) =
(GQ−GRQ −QRG −RGRQ)

RGRQ
, (6.6)

where GQ are LRG-quasar pairs, RQ and RG are the randoms corresponding to the quasar

and the LRG samples, respectively, RGRQ are random-random pair counts from the randoms

corresponding to the LRG and quasar samples, and GRQ are the LRG-quasar random pair

counts, while QRG are the quasar-LRG random pair counts.

We then compute the cross-correlation function, ξQ,LRG(r), in real space using co-

moving distances in redshift bins of ∆z = 0.05. ξ(r) can then be modeled as a power law,

ξ(r) = ( r
r0

)γ. A power-law fit to the computed cross-correlation function can be used to

recover the values of r0 and γ.
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6.4 RESULTS AND DISCUSSION OF QUASAR-LRG CLUSTERING

We show the results of LRG-quasar cross-correlations in Figures 6.4, 6.5, 6.6, and 6.7. The

blue line is the observed cross-correlation function between the eBOSS quasar sample and

LRGs. The solid red line is a power-law fit to the observed cross-correlation function. The

error bars are estimated from jackknife resampling of the LRGs and quasar samples.

For Jackknife resampling, we start with dividing the sky into regions of equal area

(pixels). This is a straightforward exercise using the Healpix pixelization scheme (Górski

et al., 2005). The LRGs and quasars are assigned to these pixels based on their position on

the sky. The current spectroscopic datasets spans almost 88 of these equal area pixels. Next,

we combine four contiguous nearby pixels to yield 22 non-overlapping regions of equal area

on the sky. Once the datasets are divided into smaller independent subsets, we measure the

clustering in each of these regions. The error bars are the standard errors σ√
(n−1)

on ξ(r),

where σ is the standard deviation.

We present the values for the parameters, r0 and γ, in Figures 6.8. We obtain a mean

value for r0 ∼ 4.75 ± 0.15h−1Mpc for the quasar-LRG cross-correlation with γ ∼1.5. The

best fits are derived using the least square error method over the jackknife samples. We

present the redshift dependence of these parameters in Figure 6.9. Although, it seems that

r0 evolves with the redshift, the evidence is not strong enough. The slope of clustering, γ,

is consistently around 1.5. These values are within reasonable deviations with the results

reported in literature, e.g., Porciani et al. (2004) report r0 ∼ 4.7 h−1Mpc and a slope of

γ ∼1.8 for the auto-correlations of quasars.

Using the overlapping spectroscopic LRG sample, we compute the auto-correlations

for LRGs in each redshift bin. These auto-correlations are modeled as power laws and we

estimate the parameters r0 and γ in a similar fashion to the cross-correlations. We show the

results of LRG auto-correlations in Figures 6.10, 6.11, 6.12, and 6.13. We present the values

for the parameters, r0 and γ, in Figures 6.14. We also present the redshift dependence of the

power-law parameters in Figure 6.15. The values of the parameters, r0 ∼ 6.8± 0.20h−1Mpc

and γ ∼1.8, are also consistent with values in the literature. This enables us to compute

the relative bias of quasars with respect to LRGs, bq,lrg =
ξq,lrg(r)

ξlrg(r)
, assuming a linear bias.
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Figure 6.3: The jackknife resampling the eBOSS LRG and QSO samples. The datasets are split into 22 non-
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estimate the uncertainty and robustness of r0 and γ.
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Figure 6.4: The clustering of the eBOSS LRG and QSO samples at redshifts 0.55 < z < 0.60 and 0.60 < z <
0.65. The error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.5: The clustering of the eBOSS LRG and QSO samples at redshifts 0.65 < z < 0.70 and 0.70 < z <
0.75. The error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.7: The clustering of the eBOSS LRG and QSO samples at redshifts 0.85 < z < 0.90 and 0.90 < z <
1.0. The error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.8: The parameters r0 vs. γ, for the cross-correlation function of the eBOSS LRG and QSO samples.
These parameters are optimized using least square errors and jackknife resampling.

We present the relative bias of quasars at ravg ∼ 5h−1Mpc and ravg ∼ 10h−1Mpc in different

redshift bins in Figure 6.16. Our results imply that quasars live in halos which are less

massive than the dark matter halos in which LRGs reside. This seems consistent with the

fact that quasar cluster similar to the normal blue galaxies.

LRGs and quasars are observed simultaneously in eBOSS. Since quasars are accorded

higher priority within eBOSS, LRGs that are very close to quasars suffer from fiber colli-

sions and cannot be simultaneously observed. Fiber collisions result in under-sampling of

the regions of the sky with a higher density of targets. This under-sampling leads to under-

estimating the correlation function on small scales. More work is needed to understand the

effects of fiber collisions on galaxy-quasar clustering. For the reasons of fiber collisions and

the fact that a power-law does not necessarily represent the clustering at very small scales,

the regions within r < 2.5 are avoided in our modeling.

Once the impact of fiber collisions is accounted for, the behavior of the cross-correlation

function at small scales can be explained better. These results will be more robust when we

have a large spectroscopic sample for analysis. This will be possible in the future.
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Figure 6.9: The parameters, r0 and γ, as a function of redshift for the cross-correlation function of the eBOSS
LRG and QSO samples. These parameters are optimized using least square errors and jackknife resampling.
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Figure 6.10: The clustering of the eBOSS LRG sample at redshifts 0.55 < z < 0.60 and 0.60 < z < 0.65.
The error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.11: The clustering of the eBOSS LRG sample at redshifts 0.65 < z < 0.70 and 0.70 < z < 0.75.
The error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.12: The clustering of the eBOSS LRG sample at redshifts 0.75 < z < 0.80 and 0.80 < z < 0.85.
The error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.13: The clustering of the eBOSS LRG sample at redshifts 0.85 < z < 0.90 and 0.90 < z < 1.0. The
error bars are the standard errors on the clustering amplitudes derived from jackknife resampling.
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Figure 6.14: The parameters r0 vs γ for the auto-correlation function of the eBOSS LRG sample. These
parameters are optimized using least square errors and Jackknife resampling.
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Figure 6.15: The parameters, r0 and γ, as a function of redshift for the auto-correlation function of the
eBOSS LRG sample. These parameters are optimized using least square errors and Jackknife resampling.
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Figure 6.16: The relative bias, bq,lrg, of quasars with respect to LRGs as a function of redshift for the eBOSS
quasar sample. This parameter is estimated from the auto-correlation and cross-correlation of LRGs and
quasars.
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7.0 DISSERTATION CONCLUSION

In this dissertation, we have focused on applying new and innovative techniques to assemble

the next generation of galaxy and quasar catalogs for spectroscopic surveys such as SDSS-

III/IV and DESI, which aim to precisely measure the BAO scales. These galaxy catalogs

have undergone (or are undergoing) successful spectroscopic follow-up observations. We have

employed modern statistical tools to understand the systematic errors associated with the

SDSS and WISE imaging data which were used to assemble these samples. These systematic

errors can limit our ability to measure clustering on large scales. Overcoming these chal-

lenges is crucial for extending our knowledge of the universe through these samples.

The methods developed in this thesis have been adopted by other international teams,

such as the 2-degree Field Lensing Survey (2dFLenS), to assemble and analyze different

galaxy samples. We have developed a machine learning algorithm for estimating redshifts of

galaxies using their brightness and color. This is an important step for data-intensive astron-

omy as the next generation of photometric surveys such as LSST, WFIRST, and TMT will

produce an unprecedented volume of data. Although photometric redshifts are less accurate

than spectroscopic redshifts, they are invaluable in cases where obtaining spectroscopy is

either extremely difficult or impractical.

The SDSS-IV/eBOSS quasar sample provides another unique tracer for studying the

large-scale structure of the universe, and has been used to obtain the first successful detection

of a BAO feature at z ∼1.5 (Ata et al., 2017). Going forward, quasars can be effectively used

as direct tracers of matter density rather than using tracers of intervening neutral hydrogen

alone (i.e., the Lyman-α forest). Readers who are interested in the technical details of the

SDSS-IV/eBOSS survey validation results produced in this dissertation should refer to Ap-

pendix B. In the following section, I will briefly summarize each of the preceding chapters

145



and then conclude with ideas on how to further this work.

7.1 SUMMARY OF PREVIOUS CHAPTERS

In Chapter 2, we established a new method for selecting high redshift (z > 0.6) LRGs by

combining optical and infrared photometry. We emphasized the key role LRGs play in trac-

ing the large-scale structure of the universe. We then explained in detail the construction

of datasets which are used for LRG selection and various key aspects of these data sets.

We used a combination of optical photometry from CFHTLS and HST, infrared photom-

etry from the WISE satellite, and spectroscopic or photometric redshifts from the DEEP2

Galaxy Redshift Survey or COSMOS to establish this selection algorithm. We presented

the shortcomings of previously used methods for selecting LRGs at redshifts z > 0.6. These

methods depended on optical photometry alone for selecting LRGs. Identifying LRGs with

shallow optical photometry becomes prohibitively difficult at higher redshifts as the 4000

Å break passes into the near-infrared, and LRG colors overlap strongly with the colors of

M stars. We demonstrated that a simple cut in optical-infrared color-color space provides

an efficient method for differentiating LRGs from other types of objects. We presented

further optimization of this algorithm by fine-tuning the free parameters of the selection

while analyzing the results using ROC and FOM statistics. The methods explained in this

chapter have been adapted by other investigators for assembling multiple LRG catalogs for

the SDSS-III/BOSS, SDSS-IV/eBOSS, DESI, and 2dFLenS surveys, the goal of which is to

measure the BAO feature in LRG samples at higher redshifts.

In Chapter 3, we presented an application of the methods developed in Chapter 2 to

assemble LRG targets for SDSS-IV/eBOSS. In a six-year program which started in 2014,

eBOSS will perform spectroscopic observations of more than 375,000 new LRGs with a me-

dian redshift z ∼ 0.71 over an area of 7,500 deg2, making it the largest galaxy survey to date

by volume. The eBOSS LRG sample is designed to achieve measurements of the angular

diameter distance, dA(z), to an accuracy of 1.2% and measurements of H(z) to 2.1% when

combined with the z < 0.6 sample of BOSS galaxies. We began by explaining the success-
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ful historical background of previous LRG surveys which inspired astronomers to push the

detection of LRGs to higher redshifts. We explained, in brief, the SDSS and WISE imaging

surveys which are used to select LRG targets. The detailed explanation of the algorithm

employed for the eBOSS LRG selection followed, with some key features of the sample. We

presented the results from the SDSS-III/BOSS SEQUELS ancillary program, which was a

key survey validation effort for eBOSS.

Exploring systematics that can affect the inferred clustering of targets is often consid-

ered only when survey data is used for science analyses. In this thesis, we investigated these

issues while simultaneously exploring target selection methods, enabling more informed de-

cisions regarding survey strategy. For instance, foreknowledge of which areas of the survey

may pose problems for controlling clustering measurements allows the survey footprint to

be modified. We assessed the uniformity of the target sample by comparing the observed

density of targets to maps of local imaging conditions and Galactic structure. We applied

a multivariate linear regression analysis of surface density against a broad set of tracers of

potential systematics; the intention is similar to, e.g., Scranton et al. (2002); Ross et al.

(2011a); Ho et al. (2012); Leistedt et al. (2013); Giannantonio et al. (2014), but unlike these

investigations, we simultaneously fit for the impact of a wide variety of systematics rather

than studying correlation against one systematic at a time. Our approach has the advantage

of producing a model of systematics-affected density that will provide accurate predictions

for the combined effects of all the systematics considered, even if the input systematic maps

are covariant with each other (as, for instance, stellar density and dust extinction must in-

evitably be). The full potential of this LRG sample can only be realized a few years down

the line when most, if not all, of the spectroscopic observations are complete.

In Chapter 4, we presented a detailed analysis of core quasar targets from SDSS-

IV/eBOSS. The target selection algorithm used to assemble the quasar sample is beyond

the scope of this thesis. Instead, we focused on the key features and statistical analysis of

the quasar sample, a work which we led. eBOSS will perform spectroscopic observations of

more than 500,000 new quasars in the redshift range 0.9 < z < 2.2, and will provide the first

quasar based BAO distance measurements with the expected precision of 2.8% and 4.2%

on dA(z) and H(z), respectively. eBOSS is the first instance of quasars targeted as direct
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tracers of the underlying dark matter distribution on BAO scales, requiring that challenges

presented by the target selection requirements of clean and uniform selection be overcome.

Similar to the analysis of the eBOSS LRG sample in Chapter 3, we presented a detailed

investigation of the uniformity of the target sample through a multivariate linear regression

analysis of surface density against a broad set of tracers of potential systematics. The quasar

sample shows different statistical dependences on potential systematics than LRGs, which

was expected since quasars look very similar to stars in optical imaging. The resulting model

of systematic-affected density that will enable accurate predictions for the combined effects of

all the systematics considered is analyzed separately in the NGC and SGC regions for reasons

explained in the chapter. Quasar and LRG observations are carried out simultaneously in

eBOSS, and the full potential of this quasar sample will be realized in a few years when most

of the spectroscopic observations are complete. It is worth noting that the quasar sample

has already yielded a successful detection of the BAO signal at z ∼ 1.5 using the first two

years of eBOSS data, resulting in a determination of the angular diameter distance, dA(z),

to an accuracy of 4.4% (Ata et al., 2017).

In Chapter 5, we discussed the efforts towards measuring BAO in the eBOSS LRG

sample using photometric redshifts. The eBOSS LRG sample consists of ∼600,000 galaxies

ranging from redshift z = 0.5 to 1.0 over 10,000 deg2 of the sky, with a median redshift of

0.71. The photometric redshifts are estimated using the Random forest machine learning

algorithm, resulting in an RMS error of σz/(1 + z) ∼ 0.028. We achieved this precision

through building robust machine-learning models using a training sample of ∼100,000 LRGs

from the first two years of eBOSS observations. We presented the measurement of the an-

gular clustering of this sample, in 8 different redshift bins ranging from z = 0.5 to 0.95. We

also explained, in detail, the construction of random samples capturing the actual redshift

distribution of the LRG sample and the effects of systematic variations in target density.

Although there was no clear detection of BAO, we demonstrated the ability to make precise

clustering measurements with photometric surveys. This lack of robust detection of BAO

could be due to a combination of factors, including but not limited to bad luck, systematic

errors, redshift precision, or dilution by stellar contamination. This work has the potential

for better measurements with a better understanding of systematic errors, star-galaxy sep-
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aration, and more accurate photometric redshifts (as will be provided by BASS/MzLs and

DeCALS surveys over the DESI survey footprint; Zhou et. al., in prep.).

Finally, in Chapter 6, we presented initial results from an ongoing effort to measure the

clustering of eBOSS quasars around eBOSS LRGs using cross-correlation statistics. Quasar

clustering measurements can be used to infer their lifetimes and large-scale environments,

which helps to explore questions such as the physical mechanism fueling quasars and their

impact on galaxy formation and evolution. For this study, we used samples of ∼ 30, 600

quasars and ∼ 120, 000 LRGs in the redshift range 0.6 < z < 1.0. These LRGs and quasars

have spectroscopically been confirmed over the first two years of eBOSS observations. We

modeled the observed clustering using a power law and estimated the robustness of param-

eters using Jackknife resampling. We presented the initial measurements in redshift bins of

∆z = 0.05. LRGs are lower priority targets than quasars in eBOSS, and hence the cross-

correlation is strongly affected by fiber collisions. More work is needed to understand the

effects of this on the clustering measurements at small scales. This work is still in progress.

7.2 FUTURE WORK

There are many ways that the work described in this dissertation may be expanded upon,

particularly relating to dark energy experiments. The LRG selection methods detailed in

Chapter 2 have already been adopted by several international teams to assemble and an-

alyze different galaxy samples. A generalization of our LRG selection method has been

implemented to create a massive galaxy catalog for investigating Sunyaev-Zeldovich effects

in the CMB. These methods have the potential to be adapted further for targeting even

higher redshift (z > 1.0) LRGs using redder wavelength channels.

Understanding systematic effects is among the most important aspects of wide field

spectroscopic surveys. Spectroscopic probes will only be able to meet the projected cosmo-

logical constraints if the final clustering measurements are limited by statistical errors alone.

This requirement demands stringent control of systematic uncertainties that can modulate

the data on large scales, such as the impact of stellar contamination and dust extinction
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on target selection efficiency, variations in seeing that alter target selection and redshift

success, and so on. As we push our measurements to higher redshifts, systematic effects

present even greater challenges. The multivariate regression technique discussed in Chapters

3 and 4 provides a robust method for understanding and handling all the relevant systemat-

ics collectively. Studies of systematics at the target selection phase of surveys also provide

a significant advantage as they enable well-informed decisions regarding survey strategies.

These include, but are not limited to, possibly avoiding regions of the sky with excessive

dust extinction, stellar contamination, etc.

Another important extension of this work would be to investigate the possible im-

provements in the machine learning approach for estimating photometric redshifts. The

next generation of dark energy experiments like LSST, WFIRST, Euclid, etc., will provide

an unprecedented volume of data for which spectroscopic follow-up is neither feasible not

financially practical. Machine learning presents a cheaper, fast and efficient alternative. In

Chapter 5, we have demonstrated that photometric redshifts can be used to study large

scale structure with imaging surveys. They are useful for spectroscopic surveys like DESI

and EUCLID, as well, to provide early survey results. An adaptation of our methods would

be to use realistic galaxy templates as a training sample to train models which should provide

better estimates of photometric redshifts for objects lacking analogs in training sets. The

next generation of photometric surveys will provide deeper and less noisy images compared

to imaging surveys like the SDSS, which will improve photo-z estimations. The field of ma-

chine learning has grown exponentially over the last two decades and will continue to do so.

The possibilities of its application in astronomy are endless, and the methods employed here

are only one simple example. The undergoing and planned Dark Energy BAO experiments

have the ability to enhance our understanding of the universe in an unprecedented way.
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APPENDIX A

A.0.1 LRG IDROP

Objects with LRG-like colors which are too faint for detection in the i band but still have

a robust detection in the z -band can be targeted via a different color-cut. The r band

photometry for these objects becomes quite noisy and hence it is not used in selection.

Instead, we can use a similar selection in a different optical-infrared color-color space:

iModel > 21.8, (A.1)

zModel ≤ 19.5, (A.2)

i− z > 0.7, (A.3)

i−W1 > 2.143× (i− z)− 2.0. (A.4)

Equations A.3 and A.4 represent an analogous color selection to equations 3.10 and 3.11,

but using the i and z bands instead of r and i. Equation A.2 ensures that the objects are

well-detected in the z -band despite having a noisy detection (if any) in bluer bands. This

selection contributes a few targets, ∼ 200 over the entire footprint, which are expected to

be at higher redshifts than the standard eBOSS LRG sample.
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APPENDIX B

B.0.1 RESULTS FROM A LARGE PILOT SURVEY, SEQUELS

As mentioned in Section 3.4, the basic ideas underlying the eBOSS selection algorithm can

be implemented in a variety of optical-infrared color spaces. To determine the optimum

selection algorithm between two candidate methods, we selected ∼70,000 LRGs over an area

of ∼700 deg2 with 120.0◦< α < 210.0◦and 45.0◦< δ < 60.0◦. These LRGs were selected by

algorithms utilizing two different optical-IR color spaces, and were used to test our selection

efficiency and redshift success. The parameters of the selection algorithms were tuned such

that one obtains a target density of ∼60 deg−2 from each one. In the following sub-sections,

we explain the two selection algorithms with their commonalities and major differences.

B.0.2 COMMON CUTS FOR SEQUELS LRG SAMPLES

First, we require that the RESOLVE STATUS bit corresponding to SURVEY PRIMARY is

nonzero in order to remove duplicate objects. We also require the photometric flag have the

CALIB STATUS bit set for all of the r, i, and z bands used for photometric color determi-

nations. In addition, the following flux limits are applied over the entire sample:

zFiber2 ≤ 21.7, and (B.1)

iModel ≥ 19.9, (B.2)
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B.0.2.1 r/i/z/WISE LRG selection In the first selection, we identify LRGs using r-

W1, r-i and i-z color. This selection algorithm is very similar to the selection described in

Section 3.5, differing only due to changes in flux limits to improve completeness. In addition

to the common cuts described above, we apply the following selection criteria:

zModel ≤ 19.95, (B.3)

r − i > 0.98, (B.4)

r −W1 > 2.0× (r − i), and (B.5)

i− z > 0.625, (B.6)

where all variables have the same meanings as in section 3.5.2. These equations and their

relevance have been explained previously in Section 3.5.

B.0.2.2 i/z/WISE LRGs The second selection is implemented exclusively in i-W1 and

i-z optical-IR color-color space, eliminating any use of the r band. This selection algorithm

is similar to the one explained in Section A, differing primarily in its flux limits, which have

been tuned to produce the same target density as the r/i/z/WISE selection. In addition to

the common cuts, we apply the following selection criteria:

zModel ≤ 19.5, (B.7)

i− z > 0.7, and (B.8)

i−W1 > 2.143× (i− z)− 2.0 (B.9)

The equations and their relevance are the same as explained previously in LRG IDROP

(Section A).
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B.0.3 DETAILS OF THE SEQUELS SURVEY

SEQUELS was conceived as a precursor of eBOSS enabling us to test the reliability and

efficiency of our selection algorithms while simultaneously producing data that could be

combined with the full eBOSS dataset to constrained cosmology. It provided a sufficiently

large dataset to enable robust tests of selection algorithms. It was also critical in testing

and demonstrating our ability to meet eBOSS requirements via these selection algorithms.

We applied both of the selection algorithms explained in the section Section B.0.2 in parallel

over the entire SDSS footprint. The final SEQUELS LRG sample consisted of the objects

selected by either or both of the selection algorithms explained above.

B.0.3.1 Targeting bits In order to identify LRGs selected via different algorithms, we

assign them different values of the eBOSS TARGET0 tag. For LRGs selected in i/z/WISE color

space, eBOSS TARGET0 is set bit-wise to 1.1 For LRGs selected via r/i/z/WISE selection,

eBOSS TARGET0 is set bit-wise to 2. LRGs which pass both of the selection criteria have both

bits set.

B.0.3.2 Overall characteristics of SEQUELS LRGs The two classes of LRGs, i.e.,

r/i/z/WISE selected and i/z/WISE selected, were analyzed separately. We found that ∼>

87% of spectra yielded secure redshift measurements. Redshift measurements are checked

via visual inspection of the spectra. The remaining 13% were found to have small differences

between the depths of the lowest chi-squared minima, and hence were judged not to be

reliable; this generally occurred due to low signal-to-noise ratio in the spectra. 8% of the

total targets were both classified securely and found to be stars. These two factors (13%

of targets having no definitive redshift measurement and another 8% being stars) make it

impossible to reach the required efficiency at targeting 0.6 < z < 1.0 LRGs of 80%. We

meet the requirement set on the eBOSS median redshift using the r/i/z/WISE algorithm,

but not the i/z/WISE algorithm. Among the objects which failed to yield a secure redshift

measurement, most were noise-dominated. We tabulate the key results in Table B1.

1bit 0, 1, 2 are used to indicate 20 = 1, 21 = 2, and 22 = 4, respectively.
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Table B1. Summary of r/i/z/WISE and i/z/WISE in comparison to key eBOSS

requirements.

Requirement r/i/z/WISE i/z/WISE Summary

# of targets: 450,000 450,000 Easily achievable
> 375, 000 (∼ 60 targets deg−2) (∼ 60 targets deg−2)

Median Redshift: 0.716 0.697 i/z/WISE failing
>0.71 marginally

Fraction at 0.6 ∼< z ∼< 1.0: ∼ 71% ∼ 64% Both samples
> 80% fail to meet

Note. — The r/i/z/WISE selection meets the basic median redshift requirement which is nec-
essary to achieve our science goals. However, both algorithms fail to meet the redshift efficiency
requirement. r/i/z/WISE selects more high-redshift LRGs and hence was chosen as the preferred
selection algorithm for eBOSS.

In Figure B1 we present the redshift distributions, N(z), of r/i/z/WISE and i/z/WISE

LRGs. We find that the i/z/WISE selection algorithm selects a significantly higher fraction

of fraction of galaxies at 0.4 < z < 0.5 compared to the r/i/z/WISE selection. This causes

the median redshift and targeting efficiency to fall below our requirements, as seen also in

Table B1. Overall, r/i/z/WISE was found to be more suitable for eBOSS. It gains greater

efficiency by requiring targets to be red in both r-i and i-z, providing a veto in cases where

one color is affected by bad photometry. However, at redshifts z ∼> 0.75 both of the candidate

selection algorithms yielded similar results.

B.0.4 DIFFERENCES BETWEEN SEQUELS AND eBOSS TARGETS

Post SEQUELS, we made a few improvements in our target selection algorithm. These

changes are expected to improve our secure redshift measurement rate by removing objects

whose counterparts yielded extremely low signal-to-noise spectra in SEQUELS. For eBOSS

LRGs, we add two additional criteria to the SEQUELS r/i/z/WISE selection:
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Figure B1: Redshift histogram of ∼1500 visually inspected LRGs targeted by two different selection algo-
rithms as part of SEQUELS. r/i/z/WISE selects more LRGs at higher redshift. In contrast, i/z/WISE
selects more LRGs at lower redshifts which are less useful for eBOSS. Hence, r/i/z/WISE is the preferred
choice for the eBOSS LRG sample.
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W1AB ≤ 20.299, and (B.10)

iModel ≤ 21.8 (B.11)

Equation B.10 effectively requires a 5σ detection in the first channel (W1 ) of WISE. In

addition, we put a faint limit on iModelflux through equation B.11; this was not applied in

SEQUELS. These additional flux limits reduce the number of noise-dominated LRG spectra

significantly when applied to the SEQUELS sample.
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