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A majority of ACL injuries in female soccer players occur during the later stage of a game when 

fatigue is likely present. In a fatigued condition, reductions in the strength ratio of hamstrings to 

quadriceps and the lower extremity muscular strength and power can cause altered landing 

techniques that predispose female athletes to a higher risk of ACL injuries. Additionally, a 

significant reduction in the muscle glycogen content has been reported after a simulated soccer 

game. The current study investigates a role of the muscle glycogen content with knee strength 

and power in the presence of fatigue.  

Seventeen female subjects participated in the study (age:21.5±2.9yrs, 

height:166.9±7.2cm, and weight:63.7±6.6kg). Before and after an intermittent running protocol, 

subjects completed a battery of testing including maximal isokinetic knee flexion and extension 

muscular strength normalized to their body weight (%BW), a depth -jump onto a force plate to 

measure reactive strength index (RSI), and non-invasive ultrasound-based muscle glycogen 

content of six lower limb muscle groups. Based on normality, paired t-tests or Wilcoxon signed-

rank test were performed to compare the strength, RSI, and muscle glycogen content pre- and 

post-fatigue. Additionally, correlation analyses were used to examine the relationships between 

the baseline muscle glycogen level and the changes (post/pre-fatigue values) in muscle glycogen 

content with the changes in muscular strength and power. Significance was set at p<0.05 a priori.  
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After the fatigue protocol, knee flexion strength, knee extension strength, and the 

flexion/extension strength ratio were significantly decreased while RSI was significantly 

increased. There were no significant differences in muscle glycogen content before and after the 

fatigue protocol (p>0.05). For correlational analyses, the baseline vastus medialis muscle 

glycogen content was significantly correlated in the positive direction with the changes in the 

changes in knee flexion strength and knee extension strength. There were no significant 

correlations in any other comparisons (p>0.05). A lack of significant findings on muscle 

glycogen content indicates potential limitations with the current noninvasive ultrasound-based 

system. Future studies should continue exploring methodologies to measure muscle glycogen 

content and its relationship with other neuromuscular characteristics during a fatigued condition.  
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1.0  INTRODUCTION 

Soccer is a sport characterized by intermittent running, causing increased physiological 

demands.34 Over the last 30 years, high school soccer participation has increased nearly 30-fold 

among girls.83, 117 As a consequence of increased soccer participation, a high prevalence of 

musculoskeletal injuries have been reported.1, 12, 37, 74, 95 Particularly, female soccer players suffer 

anterior cruciate ligament (ACL) injuries up to six times higher rates than male soccer players.1, 

12, 37, 74, 95 Previous studies have revealed that female athletes tend to have diminished knee 

proprioception, altered landing techniques with less knee flexion angle, and weaker muscular 

strength than male counterparts, predisposing them to a higher risk of ACL injuries.66, 99, 107 It is 

also reported that a majority of ACL injuries occur through a non-contact mechanism and during 

the later stage of a game when fatigue is most likely present.23, 60, 89, 94 In a fatigued condition, it 

has been shown that hamstring strength decreases more than quadriceps strength, causing further 

muscular imbalance between two muscle groups.91 This disparity of the strength ratio of 

hamstrings to quadriceps in addition to decreased muscular strength and power caused by fatigue 

may contribute to altered landing techniques.30, 53, 91, 98 Therefore, it is important to investigate a 

role of fatigue induced by intermittent running on muscular strength and power. 

From the perspective of energy demands of soccer, the anaerobic energy systems and 

muscular glycogen are believed to be the most important systems and substrate for energy 

production, respectively.5, 7 In fact, a 36-43% reduction in the muscular glycogen content in the 
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lower extremity in addition to a significant decline in sprint performance has been reported after 

a simulated soccer match.61, 96 Although it is important to understand a role of muscular glycogen 

content in relation to fatigue, there have been fewer studies have been conducted in the past, 

largely due to methodological limitations: invasive nature of muscle biopsy or a limited access to 

nuclear magnetic resonance (NMR) spectroscopy or magnetic resonance spectroscopy (MRS) to 

assess muscle glycogen content.61, 96 Recently, a new technique has been developed to utilize 

diagnostic musculoskeletal ultrasound imaging to estimate muscle glycogen content and 

validated by comparing ultrasound-based muscle glycogen content with muscle glycogen content 

of muscle biopsy before and after a steady-state cycling over 90 minutes.52, 82 Since few studies 

have included this technology (ultrasound-based muscle glycogen content assessment), basic 

research questions have not been addressed yet. The current investigation will help to answer 

some questions: 1) Is this technology sensitive enough to differentiate muscle glycogen content 

before and after an intermittent running fatigue protocol? 2) Does a decline in muscle glycogen 

content correlate with a reduction in knee strength and power? 3) Does the baseline muscle 

glycogen content correlate with the changes in knee strength and power after the fatigue 

protocol? Based on the outcomes from the current study, this ultrasound-based muscle glycogen 

measurement might be included in the future studies to examine a role of muscle glycogen 

content on musculoskeletal injuries, neuromuscular risk factors, nutrition, and performance in 

soccer.  
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1.1 MUSCULOSKELETAL INURIES AND NEUROMUSCULAR RISK FACTORS 

IN SOCCER 

Female athletes are at greater risk than male athletes in sustaining serious knee ligament 

injuries.1, 12, 37, 54, 74, 83, 95 A longitudinal study reported that per 1,000 collegiate athlete exposures, 

female soccer players had a significantly greater incidence of ACL ruptures at a rate of 0.32 than 

did male players at a rate of 0.12.76, 83 It is generally accepted that 70-84% of all ACL injuries 

have a non-contact mechanism.60, 89 Additionally, non-contact ACL injuries have been reported 

to occur when athletes are under fatigued conditions; therefore, a fatigued state can be 

considered as a risk factor.23, 94 Risk factors are often categorized into two groups: intrinsic and 

extrinsic factors. Intrinsic risk factors include anatomical, hormonal, physiological, 

biomechanical, and neuromuscular characteristics.1 Extrinsic risk factors include intensity level 

of competition, footwear, playing surface, protective, weather, and referee involvement.95 

Extrinsic factors may influence intrinsic factors and game specific skill involvements that 

include passing, shooting, dribbling, tacking, trapping, high speed running, and sprinting.27 For 

the purpose of this thesis, intrinsic neuromuscular risk factors and fatigue are investigated. 

Several intrinsic neuromuscular risk factors for ACL injury have been identified.66, 99, 107 

Female athletes have demonstrated high ground reaction forces, decreased proprioception, 

decreased knee flexion angles and decreased lower leg internal rotation when landing, increasing 

risk of injury by causing increased stress on the ACL.66 ACL injury may result as a combination 

of knee valgus, anterior tibial translation force, and decreased time to peak knee flexion, 

especially during a side-cut maneuver.1, 79 Another risk factor for injury is a decreased relative 

hamstring to quadriceps strength ratio, and female athletes have been shown to be quadriceps 

dominant, altering proper dissipation of high impact forces.66, 79 Hamstring to quadriceps 
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strength imbalance may be due to low hamstring strength and/or high quadriceps strength.13 

Female athletes have demonstrated lower peak hamstring torque and decreased activation of the 

hamstrings during dynamic movements such as running, cross-cutting, and side cutting, and side-

cutting compared to male athletes.20, 79 It is reported that the ability to stability joint may be 

compromised in a fatigued state.16, 105 Fatigue would likely contribute and exacerbate altered 

landing kinematics with decreased knee flexion angles, increased knee valgus angles, and 

increased hip abduction, contributing to a higher risk of ACL injury.1, 10, 12, 70, 74 

1.2 ENERGY DEMANDS AND SUBSTRATE UTILIZATION IN SOCCER 

The energy systems that contribute to short duration sprinting common in team sports (2-3 

seconds) are phosphocreatine (PCr) metabolism and anaerobic glycolysis.108 Phosphocreatine 

and adenosine triphosphate (ATP) are depleted with repeated sprinting, and have the capacity to 

partially resynthesize during recovery periods.7 There are contributions of PCr metabolism and 

anaerobic glycolysis in a soccer match, yet the activity profile relies more on aerobic 

metabolism.5 Energy required for activity is dependent on the form and availability of fuel for 

metabolism, which are carbohydrates, fats, and protein. In particular, ingested carbohydrate is 

stored in muscles and the liver in a more complex form, glycogen.58 

Glycogen, stored within the muscle, is a readily available fuel for power production in 

under both aerobic and anaerobic conditions, with regard to adenosine triphosphoate- 

phosphocreatine (ATP-PCr), which contributes only several seconds of energy output.58 

Prolonged exercise can deplete glycogen stores in the liver and skeletal muscle.58 Carbohydrate 

ingestion has been shown to offset muscle glycogen depletion during a soccer match and after 
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intermittent shuttle running.18, 113 Glycogen availability determines the rate of ATP regeneration, 

if levels are inadequate a subsequent drop in force production follows.85 The physiological 

demands of intermittent activity may deplete glycogen stores at a different rate than endurance 

exercise, and contribute to decreased motor control, decreased power output, and increased rate 

of fatigue.113  

Reductions in glycogen content in the lower extremities have been correlated with 

decreased work rate and power output in soccer players.91, 94 The rate of glycogen depletion and 

glycolytic rate influence the power output over repeated sprints.108 A soccer match has been 

shown to deplete muscle glycogen by 85-90%, and even after 45 minutes of soccer, some players 

have shown marked depletions of glycogen.108 Soccer athletes with lower muscle glycogen 

content were shown to sprint less and walk more, as opposed to players with higher muscle 

glycogen content.102 Limitations to energy supply, metabolite accumulation, and mechanical 

stress during high intensity intermittent running can cause athletes to fatigue, characterized by 

decreased power output or maintenance of energy output, and negatively influence 

neuromuscular characteristics.28, 64, 65 

1.3 EFFECTS OF FATIGUE ON NEUROMUSCULAR CHARACTERISTICS AND 

RISK FACTORS 

Fatigue is defined as a decrease in force output attributed to reduced muscle fiber recruitment,43 

displayed with a decrease in power and performance.91 Muscular fatigue is a risk for ligament 

injuries, as joint stability is comprised of static and dynamic components.79 As stated earlier, a 

large percentage of noncontact knee injuries occur in the last 15 minutes of the first half and in 
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the last 30 minutes of the second half of soccer matches.46, 47 These events most likely 

correspond to times during which athletes succumb to the mental and physiological demands of 

the game.72 Fatigued muscles are less capable of dissipating destabilizing forces, which may 

compromise the integrity of elastic joint components.1, 69  

Fatigue has been shown to cause proprioceptive deficiencies and delayed motor 

responses, both of which decrease joint control in the lower limbs.72 Fatigue is believed to play a 

major role in the musculotendinous mechanoreceptors (muscle spindles and golgi tendon organs) 

and articular mechanoreceptors and negatively influence the proprioceptive feedback and the 

regulation of muscle stiffness during dynamic tasks.39, 50, 63, 72 Female athletes have different 

muscle-activation strategies than male athletes during the landing phase of jumping and cutting 

movements, characterized by the quadriceps dominance/activation and a lack of effective muscle 

agonist and antagonist co-activation.26, 48, 72 Fatigue can influence landing biomechanics such as 

increased initial and peak knee abduction and internal rotation angles, increased peak knee 

internal rotation, adduction, and abduction moments, with the abduction being more prominent 

in female athletes.1, 8, 72 For the purpose of this thesis, the effects of fatigue on muscle glycogen, 

strength, and power are described further below. 

1.3.1 Effects of Fatigue on Muscle Glycogen Content 

A previous investigation investigated muscle glycogen degradation in elite male soccer athletes 

during a simulated fatiguing soccer match.96 Using NMR to assess the muscular glycogen 

content, it was found that the muscular glycogen was decreased from 135 mmol/kg to 87 

mmol/kg after a simulated soccer match.96 Furthermore, data analysis also revealed moderate 

correlation (r = 0.62) between net muscle glycogen to time to exhaustion.96 This study utilized 
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NMR technology that may be impractical for coaches, and subjects included male athletes. 

Similarly, glycogen content in lower limb muscles was shown to decrease progressively from the 

start of a soccer match to the conclusion of the match.61 Muscle biopsies after a soccer match 

revealed that muscle glycogen was drained, and the force production was affected with fatigue 

and changes in muscle glycogen content.61 It is important to examine muscle glycogen content, 

strength, and power and to explore the relationship among those variables. 

1.3.2 Effects of Fatigue on Muscular Strength 

Strength capabilities of the quadriceps and hamstrings is important for running acceleration and 

deceleration, sprinting, and other sport specific movements. In addition to the major role of 

strength in performance, the quadriceps muscles, or strength imbalances between the quadriceps 

and hamstrings, play a role in the ACL strain and possible injuries.1, 10 Female athletes tend to 

display a greater peak torque of quadriceps than the hamstrings, as well as being quadriceps 

dominant, and have decreased proprioception which may influence strength balance and 

stabilization strategies.66, 79, 94, 99 

The type of exercise that induces fatigue has an effect on the capacity of the knee flexors 

and extensors to resist fatigue, and the disparity of strength losses influences the imbalances of 

strength relationship of these two muscle groups.104 As fatigue causes strength deficits, the 

length-tension relationship of the hamstrings shifts towards extension, causing decreased 

hamstring force and stabilization strategies.13 Powerful changes in direction or landing 

mechanics as an athlete fatigues may lead to poor biomechanics, thus increasing the risk of 

injury.23 Aerobic fatigue paired with localized lower extremity fatigue has resulted in increased 

peak anterior tibial shear force and decreased knee flexion angles.20 This may put the knee joint 
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at risk for anterior tibial displacement and lack of knee stabilization.66 Strength imbalances in the 

presence of fatigue during may result in increased risk of injury during dynamic sport specific 

tasks. 

1.3.3 Effects of Fatigue on Power 

For soccer athletes, power is an important characteristic due to acceleration, explosive changes in 

direction, jumping, and cutting demands of the sport. Leg strength has been associated with 

power output, as triple hop distance has been correlated with the vertical jump and strength of 

the quadriceps and hamstrings during concentric contractions.45 Power can be measured by 

vertical jump and kicking distance, and improved through plyometric movements.100 Plyometric 

movements utilize rapid, powerful movements that are preceded by a preloading 

countermovement which activates the stretch shortening cycle.38 Assessing the stretch shortening 

cycle that an athlete possesses can be measured by the squat jump and the countermovement 

jump.109 An athlete who utilizes the stretch shortening cycle effectively should have a short time 

to takeoff during a countermovement jump but still have the ability to achieve a high just 

height.109 

Stretch shortening cycle has been used as a model to study fatigue.81 It is generally 

accepted that fatigue induced by intermittent running or jumping to exhaustion result in 

immediate reduction in strength and power performance through three mechanisms: structural 

changes of the musculoskeletal system, metabolic changes (a lack of available energy substrate), 

and neural changes (presynaptic inhibition).55, 81 Particularly, this type of fatigue protocol can 

have a negative influence in drop -jump power as well as the neuromuscular characteristics 

during landing and jumping.55 Therefore, it is important to include a measurement of power 
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during a depth -jump in addition to muscular strength. A specific power parameter of depth -

jump evaluated in the current study is the reactive strength index (RSI), and describes an 

athlete’s explosive capabilities in dynamic jumping activity.38 Reactive strength index has not 

been evaluated in reference to fatigue, muscle glycogen content, and strength.  

1.4 DEFINITION OF PROBLEM 

A simulated soccer match (intermittent running) relies on intramuscular glycogen stores to meet 

energy demands. Although depletion of glycogen has been speculated to be a cause of fatigue,7, 

61 there is a lack of evidence if the activity of soccer results in depletion of glycogen to elicit 

fatigue. The effect of fatigue on muscular glycogen, and corresponding strength and power 

characteristics is yet to be determined. Similarly, relationships among muscle glycogen content, 

strength, and power after fatigue are still largely unknown.  

Also, there is little research regarding non-invasive muscular glycogen content in lower 

limbs compared before and after intermittent high intensity running. It is largely unknown if 

ultrasound-based muscle glycogen measurement is sensitive enough to detect significant changes 

after intermittent running. Lately, it is largely unknown if baseline muscle glycogen content may 

be related to the rate of reductions in strength and power characteristics. 
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1.5 PURPOSE 

The primary purpose of this study was to evaluate and compare strength, power, and muscle 

glycogen content before and after intermittent running. A secondary purpose was to evaluate 

relationships between change in strength, power, and muscle glycogen content. Lastly, another 

purpose of the study was to evaluate the relationship between the baseline muscle glycogen 

content and changes in strength and power after the fatigue protocol. 

1.6 SPECIFIC AIMS AND HYPOTHESES 

Specific Aim 1: To examine the peak isokinetic knee flexion and extension torque and ratio, 

reactive strength index of a depth -jump task, and ultrasound-based muscle glycogen content of 

thigh/calf muscles and compare these variables before and after a fatigue protocol (intermittent 

running). 

Hypothesis 1: It was hypothesized that knee strength, power, and muscle glycogen content would 

significantly decrease after the fatigue protocol. 

1a. The peak isokinetic knee flexion and extension torque would be significantly 

reduced after the fatigue protocol. Also, the peak knee flexion/extension strength ratio 

would be significantly lower after the fatigue protocol. 

1b. The reactive strength index would be significantly reduced after the fatigue 

protocol. 
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1c. The ultrasound-based muscle glycogen content of thigh and calf muscles (rectus 

femoris, vastus medialis, vastus lateralis, lateral hamstring, medial hamstring, and 

gastrocnemius/soleus) would be significantly reduced after the fatigue protocol. 

Specific Aim 2: To examine the relationships between the change (calculated as a proportion of 

post-fatigue/pre-fatigue values and expressed in percentage) in the peak isokinetic knee flexion 

torque, extension torque, torque ratio, and reactive strength index and the change in muscle 

glycogen content. 

Hypothesis 2: It was hypothesized that the changes in knee strength and power would be 

significantly correlated in the positive direction with the changes in muscle glycogen content. 

2a. The change in the peak isokinetic knee flexion, extension, and torque ratio would 

be significantly correlated to the change in muscle glycogen content in the positive 

direction. 

2b. The change in the reactive strength index would be significantly correlated to the 

change in muscle glycogen content in the positive direction. 

Specific Aim 3: To examine the relationship between baseline (pre-fatigue protocol) muscle 

glycogen content to the change in knee strength and power. 

Hypothesis 3: It was hypothesized that the baseline muscle glycogen content would correlate 

negatively to the change in strength and power. 

3a. The change in the peak isokinetic knee flexion, extension, and torque ratio would 

be significantly correlated to the baseline muscle glycogen content in the positive 

direction. 

3b. The change in the reactive strength index would be significantly correlated to the 

baseline muscle glycogen content in the positive direction. 
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1.7 STUDY SIGNIFICANCE  

This research study would help to determine the relationship among knee strength, power, and 

muscle glycogen content before and after an intermittent running fatigue protocol. It would also 

aid in determining if the presence of higher muscle glycogen content affects the onset of fatigue 

(as quantified in reductions in the peak knee torque and power). Results of this study could be 

utilized to design interventions to minimize the negative impact of fatigue on female soccer 

players and maintain performance over time. For example, recovery strategies before and after 

training and competition could incorporate methods to replenish muscle glycogen stores. 

Incorporating strategies that replenish glycogen stores could enable an athlete to recover from 

sport activity that might have damaged muscle fibers. The utilization of ultrasound-based muscle 

glycogen measurement (if it could detect significant changes in glycogen content before and 

after the fatigue protocol) would have implications for field settings, and could be useful for 

determining the concentration of available fuel (muscle glycogen).  
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2.0  LITERATURE REVIEW 

In this chapter, topics covered in the introduction were further described in detail, including 

‘musculoskeletal injuries and neuromuscular risk factors in soccer’, ‘energy demands and 

substrate utilization in soccer’, and ‘effects of fatigue on neuromuscular characteristics and risk 

factors’. Additionally, methodological considerations were described. 

2.1 MUSCULOSKELETAL INJURIES AND NEUROMUSCULAR RISK FACTORS 

IN SOCCER 

Among women’s sports, soccer accounted for the highest estimated number of injuries per year 

and the highest competition injury rate in the NCAA Injury Surveillance Program.59 Lower 

extremity injury is common among women’s soccer, distribution of injuries occurring in games 

and practices included 16.7% of injuries reported being ankle ligament sprains, 3.7% of injuries 

being ACL injuries, and 5.3% of injuries being concussions.54 The severity of these injuries is 

varied, however 88% of the ACL injuries reported by various athletes across several sports 

resulted in over ten days of time lost from sport.31, 54 Long-term health implications are 

associated with ACL injuries that influence the injured athlete’s ability to return to their pre-

injured level of sport participation.76 Mechanisms of ACL injury may be either contact or non-

contact, involving sudden deceleration, jumping, cutting, or player collision.76 Female athletes 
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are at higher risk of ACL injury than their male counterparts.3, 76 Female athletes have a threefold 

increase of injury in games compared to practices.31 Approximately 70% of the injuries to female 

soccer athletes reported to the NCAA Injury Surveillance System included the lower extremity 

during practices and games. Ankle ligament sprains, knee internal derangements, concussions, 

and leg contusions were most prevalent during games. Upper leg muscle strains, ankle ligament 

sprains, knee internal derangements, and hip muscle strains were most prevalent during 

practices.. Ankle ligament sprains are the most common injury seem in both practices and 

games, however knee internal derangement resulted in the greatest time loss.31 Most of the ACL 

injuries occurred from non-contact mechanisms.31  

Hamstring injuries are also a contributor to loss of time from sport, with 12% of injuries 

over the course of two seasons.116 Some predisposing factors for hamstring injuries include poor 

flexibility, muscle imbalances, muscle weakness, neural tension, fatigue, and previous injury.116 

Hamstring strains are more likely to occur than quadriceps strain.116 The common occurrence of 

hamstring strains is accepted, however the pathophysiology and diagnostic investigation is still 

limited.116 The proper function of the hamstrings may influence injury risk, and a low hamstrings 

to quadriceps strength (both concentric and eccentric) ratio may be the greatest predictor for 

hamstring strains and knee instability.13  

The role of the hamstrings is to decelerate the tibia and apply posterior shear force that 

aids to decrease strain on ligaments that stabilize the knee.20 Stabilization of the knee is increased 

with greater knee flexion angles and co-activation of the hamstrings and quadriceps during 

landing tasks.49, 79 These mechanisms help to protect against knee abduction, dynamic knee 

valgus, and high loads on the ACL.49 Medial knee movement is associated with femoral 

adduction, ankle eversion, knee abduction,49 femoral internal rotation in relation to the hip, tibial 
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external rotation in relation to the femur,79 and contributes to knee valgus and frontal plane 

movement.48, 73 Strength and activation strategies of hip adductors, hip abductors, ligaments of 

the knee, gluteus medius, and hamstrings reflect knee abduction movement in female athletes.48, 

73 Hip abduction control influences femoral internal rotation and adduction, indicating that the 

gluteus medius strength and activation strategies have a role in frontal plane knee movement.73 

Muscle strength or activation patterns that lead to increased joint load limit the effectiveness of 

the active muscular control system working with the passive joint restraints to create dynamic 

knee stability.79 Due to injuries occurring in the second half of matches, fatigue has a role in 

injury risk.78, 116 Fatigue has been shown to increased quadriceps contraction, decreased 

hamstring activation, or a combination of factors that predispose an athlete to injury. 20 The 

following sections describe the energy demands and substrate utilization in soccer first; then, 

basic information about fatigue is described. 

2.2 ENERGY DEMANDS AND SUBSTRATE UTILIZATION IN SOCCER 

Pathways for energy metabolism are determined by intensity and duration of exercise, as well as 

the fitness level of an athlete.57 Anaerobic and aerobic metabolism are explored in later sections, 

but both have implications over glycogen storage and utilization. Anaerobic metabolism involves 

energy production without the presence of oxygen.58 Aerobic metabolism involves energy 

production in the presence of oxygen, but takes longer to produce ATP.58 ATP is the only fuel 

that can be used directly for muscle force generation, and available ATP will fuel about 2 

seconds of maximum intensity exercise.57 Anaerobic metabolism is short in duration with a high 

rate of force production over a very short period of time, lasting several seconds.57, 58 As rate of 
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energy production decreases and the demand for force production remains high, aerobic 

metabolism contributes to energy production.57, 58 Together, these processes are responsible for 

energy production, and can be modified with training.57, 58 

Ingested carbohydrate, or exogenous carbohydrate, is broken down into glucose,57, 58 

synthesized into glycogen in a process called glycogenesis.58 Glycogen content in skeletal 

muscle at rest is between 12-16g/kg.57 At high intensities, muscle glycogen is broken down very 

rapidly and is depleted in a relatively short period of time, especially when high intensity 

exercise is performed intermittently.57 High intensity exercise requires high rates of ATP re-

synthesis from anaerobic glycolysis, causing rapid breakdown of muscle glycogen.57 The liver is 

responsible for releasing glucose in the bloodstream when blood glucose concentration drops.57 

During high intensity exercise, liver glucose output increases dramatically.57 High intensity 

exercise causes a mismatch between glucose uptake and glucose production by the liver.57 At 

80% VO2max or greater, the liver produces glucose at higher rate than the rate that it is taken up 

by the muscle due to neural feedforward mechanisms.57 Unless an athlete’s resting glycogen 

levels are below 25mmol, muscle glycogen availability may not be explanation for fatigue in 

high intensity sports.57 

Low carbohydrate availability may be an explanation for metabolic disturbances in 

instances of low energy availability if an athlete is attempting to lose weight.18 However, when 

intensities of exercise reach 95-100% VO2max, very low carbohydrate diets may limit 

performance.57 Low glycogen levels during training and competition will decrease performance 

and cause muscle damage, leading to impaired glycogen storing capacity.24 Muscle fibers that 

are recruited most frequently may become depleted more quickly, and reduces the number of 

fibers recruited to compensate for loss in muscle force.91  
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Dietary interventions that manipulate muscle glycogen have implications over 

performance, amount of ground covered, velocity of ground covered, and ability of the muscle to 

resynthesize intramuscular glycogen.18 It has been shown that in an intermittent sport such as 

soccer, more ground was covered at higher velocities when athletes consumed a high 

carbohydrate diet, compared with a low carbohydrate diet.102 

2.2.1 Anaerobic Metabolism 

Adenosine triphosphate (ATP) is the most immediately available source of energy that can be 

utilized by the body.58 Cells can only hold limited amounts of ATP, and new ATP must 

generated for metabolism and muscle contraction.58 ATP is generated through the ATP-PCr 

system, glycolysis, and the oxidative (aerobic) system.58 The first two forms of energy 

production occur without the presence of oxygen and comprise the components of anaerobic 

metabolism.58 

The ATP-PCr system is the simplest of energy systems, and utilizes a high energy 

molecule called phosphocreatine, or PCr.58 The breakdown of stored PCr by the enzyme creatine 

kinase within a muscle cell contributes to regenerating ATP.58 Available ATP within the cell, 

and the activation of the ATP-PCr system to produce energy is rapid and requires no additional 

structures to produce energy.58 As PCr levels decline due to powerful muscle contraction or rapid 

force production, levels of ATP become depleted and cannot provide the energy for contraction 

and relaxation of muscle.58 ATP and PCr stores account for about 3-15 seconds of a sprint.58 The 

role of PCr as a source of energy to resynthesize ATP after bouts of high intensity activity is very 

important as an energy buffer for anaerobic metabolism during a soccer match.7 Intramuscular 

stores of glycogen and PCr responsible for anaerobic metabolism can be drained after sprints 
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over a long duration, causing decrease in power.115 Exercise of high energy demand for longer 

than 15 seconds cause anaerobic glycolysis to become primary source for energy production.58   

Anaerobic glycolysis requires the breakdown of glucose, a substrate that accounts for 

99% of all the sugars circulating in the blood.58 Glucose, similar to the role PCr plays in energy 

production, goes through a series of enzymatic reactions to produce energy.58 Glycogen, which is 

synthesized from glucose, can also enter the glycolysis pathway,58 which begins once glycogen 

or glucose is broken down into glucose 6-phosphate.58 The 10-12 enzymatic reactions that follow 

this initial conversion results in pyruvic acid, which is broken down to form lactic acid.58 For 

each molecule of glycogen broken down, 3 moles of ATP are generated; whereas 2 moles are 

generated if glucose is used, due energy being needed to convert glucose to glucose 6-

phosphate.58 This system does not produce large amounts of ATP itself, but combined with the 

ATP-PCr system, accounts for the energy requirements in the early minutes of high intensity 

exercise.58 Without oxygen, lactic acid is formed due to anaerobic glycolysis, which 

disassociates to lactate.58 High energy events lasting 1-2 minutes cause high demands on the 

glycolytic system.58 This results in high concentrations of lactic acid.58 The decreasing pH of 

muscle cells cause a decreased rate of glycolysis due to inhibition of glycolytic enzymes.58 In 

addition, the decreasing pH causes the muscle fibers’ calcium-binding capacity to be inhibited.58 

Hydrogen ion buildup due to increase concentrations of lactate, causes decreased pH within the 

muscle cell, and has been previously thought to inhibit anaerobic metabolism.115 The availability 

of glycogen, as well as the ability of the muscles to utilize and resynthesize glycogen as activity 

continues are determinants of high intensity exercise performance.115Blood glucose 

concentrations have been shown to be higher during a soccer match than at rest, due to duration 

of soccer athletes spent at high intensity running and number of sprints performed.5 It is 
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important to understand that energy systems overlap, and that they do not act independently to 

produce energy. During a six second sprint, muscle glycolysis contributes 50% to energy 

production, 48% from PCr, and 2% from ATP.115 In addition, resistance training of repeated 30 

second maximal bouts of knee extensions caused greater adaptations to the anaerobic glycolysis 

system than to the ATP-PCr system.58 After about 2 minutes of high intensity effort, the aerobic 

metabolism system contributes greatly to energy production.58  

2.2.2 Aerobic Metabolism 

Aerobic metabolism requires oxygen and has a slower rate of energy production and anaerobic 

systems, but has a much larger energy–producing capacity.58 Oxidative energy can come from 

carbohydrates or fats.58 As intensity and duration of exercise drains PCr and glycogen, aerobic 

metabolism increases in contribution to energy production. Glycolysis can occur for both 

anaerobic and aerobic metabolic processes, but the end product is different between the two.58 

Lactic acid that is produced from anaerobic glycolysis leaves the cell through the bloodstream to 

the liver, where it becomes oxidized and can enter the aerobic pathway in the presence of 

oxygen.101 Aerobic glycolysis results in pyruvic acid, which is converted to Acetyl CoA that is 

further broken down in series of chemical reactions known as the Krebs cycle.58 The Krebs cycle 

is paired with another series of chemical reactions known as the electron transport chain,58 that 

buffers the H+ ions that accumulate throughout glycolysis and the Krebs cycle.58 This process 

involves enzymes, coenzymes, and proteins within the mitochondria that are utilized to maintain 

cell pH and produce more ATP.58  

One molecule of glycogen results in 33 molecules of ATP while one molecule of glucose 

yields 32 molecules of ATP.58 The presence of oxygen allows the oxidation of glycogen to 
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occur, and also allows triglycerides to be utilized for energy.58 Triglycerides must be broken 

down into glycerol and free fatty acids (FFAs), fatty acids being the preferred energy source for 

fat metabolism.58 FFAs enter the muscle fibers through diffusion, mediated by concentration of 

FFAs in the bloodstream; the higher the concentration in the blood, the higher the rate of 

diffusion.58 Once FFAs enter the muscle cell, they are prepared for breakdown and converted to 

Acetyl CoA. Acetyl CoA is broken down through the Krebs cycle and, similarly to oxidative 

glycolysis, the byproducts are utilized by the electron transport chain.58 A given amount of fat 

results in a greater number of units of Acetyl CoA that enter the Krebs cycle compared to the 

same given amount of carbohydrates, thus making fat oxidation of greater energy-producing 

capability than glycogen.58 FFA oxidation produces about twelve times more ATP than 

anaerobic glycolysis.115 

The mitochondria are essential components of the cell that utilize oxygen to produce 

energy from glycogen, fats, and even proteins.58 The number and size of mitochondria may be 

increased with training, and have been known to be more prevalent in type I fibers compared to 

type II muscle fibers.58 Intramuscular buffering capacity, after high intensity anaerobic exercise 

associated with oxidative metabolism, could influence the maintenance of performance of 

intermittent exercise despite individual peak anaerobic power, rate of anaerobic glycolysis, and 

percentage of fast twitch muscle fibers.87 Endurance exercise at moderate intensities has been 

shown to deplete type I fibers to a greater extent that type II fibers.58 

2.2.3 Muscle Glycogen Content 

The importance of proper nutrition for any sport has been generally accepted, and nutritional 

habits of athletes have an effect over their overall performance. Carbohydrate intake has been of 
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special interest due the key component glucose, which stored in the muscle and liver as 

glycogen.57, 58 Glycogen is a molecular part of carbohydrate, and is a molecule that is stored 

predominantly within muscle cells and the liver,57, 58 and can be readily used for energy 

production both under anaerobic and aerobic conditions.57, 58 Maintaining adequate levels of 

intramuscular glycogen and blood glucose can reduce glycogen depletion and delay fatigue.113 

However, different forms of exercise and different durations of exercise affect the dependence of 

force production on glycogen as well the rate of glycogen use and synthesis. 

Carbohydrate (CHO) intake has been shown to improve performance reflected through 

time spent during high intensity activity.113 Delayed time to fatigue with ingestion of CHO 

during high intensity activity and maintenance of cognitive and motor skill performance has been 

the rationale for sports drink consumption.113 Sports drinks have been used before, during, and 

after exercise to replenish and to maintain glycogen levels of various modes of exercise.22 

Intermittent activity increases both the work of skeletal muscle and the removal of glucose, while 

low intensity prolonged exercise causes a decreased rate of glycogen depletion.22 Muscular 

concentration of glycogen reflects the capability of ATP regeneration. With decreased levels of 

glycogen, the muscle is unable to maintain adequate levels of ATP, leading to compromised 

force production due to decreased excitation-contraction coupling capability.85 

Glycogen has been found to reside in pools within muscle fibers, not evenly distributed 

throughout the muscle.85 Decreased glycogen has been shown to have an effect on sarcoplasmic 

reticulum release of calcium. Tetanic Ca2+ has been shown to decrease at a faster rate when 

muscle fiber glycogen content is low.85 Even when global myoplasmic ATP levels are high, 

glycogen content affects the excitation contraction coupling in single muscle fibers.85 Each 
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glycogen granule within the muscle fiber has its own regulatory proteins and enzymes, which is 

also dependent on the location of these pools within the cell.85  

Glycogen pools have been located in three areas: directly beneath the sarcolemma, 

between the myofibrils lying close to the sarcoplasmic reticulum and the mitochondria, and in 

the myofibril.85 The glycogen pool located between the myofibrils accounts for the largest 

distribution of glycogen, although distribution may be partially dependent on training status and 

fiber type.85 The pool of glycogen located within the myofibril may have an effect on Na, K-

ATPase activity. The conversion of the action potential to SR Ca2+ release is partially dependent 

on Na, K-ATPase activity, which may be influenced by the amount of glycogen between the t-

tubules and the sarcoplasmic reticulum.85 

The concentration of glycogen pools varies depending on fiber type and exercise type, as 

revealed by type II fibers becoming depleted of glycogen to a greater extent than type I after 

intermittent high- intensity exercise.113 Both intermittent high intensity exercise and longer 

duration steady state exercise causes a decrease in blood glucose and higher free fatty acid 

concentrations.113 This decreases CNS function and elevate brain serotonin, which decreases 

motor control skills and perceived mood.113 Peripheral fatigue is attributed to muscle damage, 

metabolic disturbances, glycogen depletion, and physiological processes involving the 

movement of calcium.2, 98 Due to intermittent exercise causing greater peripheral fatigue than 

central fatigue, muscular glycogen decrement due to fatigue may decrease performance 

characteristics and muscular contraction capabilities compared to pre-fatigue. 
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2.3 FATIGUE 

Fatigue is defined as a decrease in force output attributed to reduced muscle fiber recruitment,43 

displayed with a decrease in power and performance.91 Fatigue, both central and peripheral, has 

been shown to have adverse effects on movement coordination, reaction times, motor and 

postural control, proprioception, muscle power output, and biomechanical properties such as 

lower extremity kinematics.43, 105, 118 Physical fatigue reduces neuromuscular characteristics and 

sensorimotor control, which contributes to decreased performance and increased risk of injury.118 

Fatigue induced by exercise compromises distal mechanisms such as the neuromuscular junction, 

sarcolemma excitability, and muscular contractile properties.90 Proximal mechanisms such as 

descending pathways, motivation, spinal synapses, and motoneuron pool excitability are also 

negatively affected.90 New motor units are activated under fatigued conditions so that force 

production may continue as both high intensity and low intensity exercise may change frequency 

of fatigue.17 Fatigue frequency refers to occurs alteration in the action potential propagation or 

the excitation- contraction coupling failure.86 It is excitation-contraction coupling failure that has 

been observed with muscle twitch contractile properties and isometric strength changes during 

exercise such as high intensity uphill running.90  

Intermittent activity mimicking the profile of soccer has been shown to elicit greater 

physiological responses of fatigue compared to steady state exercise,43 although laboratory 

protocols cannot properly replicate the multidirectional nature of soccer, the varying durations of 

high intensity to low intensity velocities simulate match play.43 Racinais, Girard, Micallef, and 

Perrey90 compared continuous versus intermittent modes of running exercise on central fatigue, 

and it was found that exercise intensity and duration had influenced the effect on central fatigue. 

It was determined that both intermittent and continuous running caused decreased motoneuron 
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pool excitability due to presynaptic inhibition, as both subject groups completing the exercise 

performed similar durations of work. In a study performed by Miura et al.77, it was found that 

proprioception was decreased to a greater extent under central fatigue rather than peripheral 

fatigue. Grieg, McNaughton, and Lovell43 found that the ratio of low intensity work to high 

intensity work dissipated the cumulative nature of physiological stress, yet intermittent activity 

that replicated the movement patterns of a soccer match are likely to impose greater mechanical 

stress on the musculoskeletal system.43 Due to the varying intensity of movements during a 

soccer match, it appears as if peripheral fatigue causes more limitations to performance than 

central fatigue.11 

Mechanical fatigue has been shown to be more influential to injury risk and decreased 

performance.43 Mechanical fatigue refers to decreased biomechanical function and inhibited 

musculoskeletal response to perturbations.43 Altered kinematics as a result of fatigue highlights 

the mechanical implication of injury incidence.43, 47 The mechanical stress of soccer may 

increase peripheral stress such as the decrease in contractile strength of the muscle, changes in 

intracellular environment and within the muscle fibers, and impaired excitation-contraction 

coupling.17 The intramuscular buffering capacity and the ability to recover after high intensity 

anaerobic exercise associated with oxidative metabolism could influence the resistance to fatigue 

of this kind of intermittent exercise.87 Fatigue protocols yield various effects depending on the 

nature of the protocol. The mode of exercise, duration, frequency, and physical demands have 

varied effects on central or peripheral fatigue mechanisms, and the extent that force output is 

influenced.17 Injury prevention programs that include fatigue elements should use protocols that 

replicate the aspect of fatigue associated with the sport and the joints most affected.105 
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2.3.1 Central Fatigue 

Central fatigue refers to a decline in voluntary activation of the muscle, caused by the number 

and the rate of discharge of motor units to generate force.17, 65 Decreases in motoneuron 

excitation due to spinal or supraspinal influence is classified as central fatigue. Decreases in 

force output may also involve neurotransmitter and hormonal changes due to exercise.17 

Neurotransmitter depletion and accumulation cause a decrease in corticospinal descending 

excitation.17 Increased serotonin levels due to increased concentrations of the transport enzyme 

tryptophan during prolonged exercise result in decreased recruitment of motor units.17 Afferents 

at the muscular level may limit voluntary activation by acting upstream to the motor cortex, 

while motoneuron and motor cortex excitation remain unaffected.17 Decreased motoneuron 

activity may be caused by peripheral reflexes due to extracellular increase in lactate and 

potassium caused by exercise.17 The impairment of voluntary muscle activation seems to occur 

during low intensity muscle contractions due to muscle afferents.17 

There are four groups of afferents within skeletal muscle. Groups Ia/II are muscle spindle 

afferents, group Ib and Golgi tendon organs, group III are non-spindle afferents, and groups IV 

are unmyelinated afferents.39 Group Ia and II afferents are located parallel to muscle fibers and 

signal the neuromuscular system with changes in muscle length.17 The decreases or changes of 

discharge rate of afferent signaling may limit motoneuron activity.14, 17, 39 Inhibitory afferents 

stimulated under local changes of the muscle may cause decreased motoneuron function at the 

spinal level.17 Lactic acid accumulation or mechanical changes to the intramuscular environment 

may cause increased afferent activity.65 The Golgi tendon organs’ (group Ib afferents) inhibit 

neuronal activity as they signal the central nervous system with feedback on intramuscular 

tension.17 Under conditions of fatigue, the Golgi tendon organs and muscle spindles may inhibit 
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motoneuron firing.39, 72 Progressive decrease in the number of firing motor units or number of 

recruited motor units results in a decreased force generation.17  

Other alterations in force generation that may be a result of central fatigue include 

propagation to the motoneurons from the central nervous system and activation of the motor 

units and muscles.17 Preserved motoneuron excitability can be linked to consistent afferent 

activity, even after repeated sprint activity.65 However, it has been shown that exercise intensity 

and duration have varying effects on central fatigue and the recovery of the central nervous 

system.90  

2.3.2 Peripheral Fatigue 

Peripheral fatigue refers to changes with the excitation-contraction coupling, availability of 

metabolic substrates, propagation of the action potential, intracellular environment, and 

performance of contractile properties.17 Neuron signaling and transmission may be altered by ion 

movement and concentration, specifically hydrogen, sodium, potassium, and calcium.17 

Intramuscular calcium concentrations, movement of calcium within the sarcoplasmic reticulum, 

and permeability of the sarcoplasmic reticulum to calcium influence the regeneration of ATP and 

the efficiency of the cell to produce energy.17 

Anaerobic and aerobic energy production influences neurotransmitter quantities and 

release, actin and myosin cross-bridge action, the availability of substrate, and the overall 

function of cellular components.12 Neuron firing at the neuromuscular junction occurs as the 

nerve action potential transforms into muscle action potential.17 Speed of action potential 

transmission into muscle action potential has a role in force production and muscle metabolism. 

Energy production occurs as ATP is synthesized, and regeneration of ATP allows force 
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production to continue.57 The rate of energy production and demand may cause changes to the 

intracellular environment and limit muscle contraction. When oxygen supply is limited or under 

conditions where glycolytic activity exceeds mitochondria’s oxidative capacity, increases in 

hydrogen ions and a drop in muscle cell pH result.17 This reliance on anaerobic glycolysis may 

increase the concentration of inorganic phosphate, which may impact force production to a 

greater extent than decreased pH.17 The accumulation of inorganic phosphate may indirectly 

decrease the action of the cross-bridges, decrease the muscle cell sensitivity to calcium, 

decreased stores of calcium capable of being released, and subsequent levels of available ATP.17 

Shifts in ATP concentrations and inorganic phosphate determine the quantities of calcium 

available.17 The efficiency of regulatory mechanisms of calcium, buffering capacity of hydrogen 

and inorganic phosphate, capacity of mitochondria for aerobic metabolism, and other local 

factors influence the maintenance of force production and resistance to fatigue. High demand and 

rate of force output necessary for high intensity short duration forms of running have been shown 

to cause substantial peripheral fatigue.86 Markers of peripheral fatigue commonly associated with 

fatigue include decreased intracellular pH, increased concentration of hydrogen ions, and 

increased concentrations of inorganic phosphates.64 Peripheral parameters that inhibit the 

excitation contraction coupling by influencing the release of Ca2+ are of interest with the onset of 

fatigue.64 Impairment in muscle function following repeated sprints was mainly due to peripheral 

alterations, as high intensity short duration exercise induces peripheral fatigue.86  

2.3.3 Physiological Responses to Fatigue 

In a study performed by Dittrich et al.32, an intermittent running protocol elicited greater mean 

running velocity, greater VO2, and greater lactate response compared to a continuous running 
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protocol, with each corresponding with the subjects’ maximal lactate steady state. Time to 

exhaustion increased for the continuous mode of exercise compared to the intermittent mode, 

implying a greater metabolic demand with the intermittent nature of exercise. Although soccer 

match play involves a greater reliance on aerobic contribution over anaerobic,94 metabolic 

processes and metabolic byproduct accumulation tend to cause impaired excitation contraction-

coupling.17, 28  

Rapid force development may increase byproduct accumulation, as muscle lactate was 

shown to be four times higher after intense bursts of activity during a soccer match compared to 

pre-match.61 The anaerobic component of soccer causes an increase in hydrogen ion 

concentration, decrease in available ATP, increase in inorganic phosphate by the breakdown of 

phosphocreatine, and decrease of glycogen stores.28 The increases in inorganic phosphates and 

hydrogen ions as a byproduct of anaerobic glycolysis slow calcium release and calcium 

sensitivity, thus decreasing the rate of muscle fiber contraction and the number of contracting 

fibers.17 Additional chemical changes such as sodium and potassium concentrations fluctuating 

as a result of repeated depolarization may also cause decreased contractile capabilities.17, 86  

Force reduction is commonly associated with intracellular acidosis, but recent studies 

have revealed that accumulation of inorganic phosphates has a larger role than acidosis.64 Lactate 

accumulation and lowered pH have low correlation to cause of fatigue.61 High concentrations of 

inorganic phosphates reduce calcium release in the sarcoplasmic reticulum, the number of 

involved cross-bridges, and myofibrillar sensitivity to calcium.64 Repeated uphill running was 

shown to cause some loss in voluntary isometric torque of the knee extensors which could be 

attributed to excitation-contraction coupling failure, although central fatigue may have played a 

small role in fatigue.64, 65 As opposed to sprint training, high intensity interval training has been 
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shown to elicit greater accumulation of pH buffering,28 therefore high intensity intermittent 

training can increase metabolic capabilities of an athlete who is required to possess anaerobic 

endurance and power. Greater accumulation of pH buffering enzymes can delay fatigue by 

increasing synthesis of PCr between high intensity activity bouts during periods of recovery, and 

by maintaining lactate concentrations or by increasing clearance capability of lactate. 28     

2.4 EFFECTS OF FATIGUE ON NEUROMUSCULAR CHARACTERISTICS AND 

RISK FACTORS 

2.4.1 Effects of Fatigue on Muscle Glycogen Content 

Numerous studies have investigated the relationship between anaerobic and aerobic metabolism 

influences on performance, measured by intermittent running.5-8, 61 Anaerobic metabolism 

contributes to rapid rates of force production without the presence of oxygen, utilizing glycogen 

to produce ATP. Aerobic metabolism contributes to lower rates of force production with the 

availability of oxygen, utilizing the breakdown of triglycerides to free fatty acids to produce 

ATP. Together, these two systems account for force production, and the reliance on these 

systems becomes evident with concentrations of plasma glucose and glycerol. After a high 

intensity soccer-specific running protocol until exhaustion, there was a significant increase in 

plasma FFAs and glycerol, indicating a greater contribution of aerobic metabolism as high 

intensity work was no longer able to be maintained.96 

The use of glycogen and the availability of glycogen are important for the maintenance of 

high intensity energy output and high rate of force production. Several studies have evaluated 
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glycogen availability and decrement as well as the influence of glycogen content on performance 

during a soccer match.61, 62, 96 Soccer is characterized by sprints of 3-4 seconds with intermittent 

periods of lower intensity before the next bout of high intensity, reflecting the alternating 

metabolic systems contributing to exercise.115 Saltin102 observed differences between two 

samples of soccer players, one with low pre-match glycogen levels and one with normal pre 

match glycogen levels. The low glycogen group had almost depleted glycogen stores by half 

time, while the normal glycogen group had comparatively high glycogen stores at halftime and 

but were significantly lowered towards the end of the game. This is supported by the relationship 

of resting glycogen content and muscle glycogen utilized during specific exercise modes.96 

A fatiguing soccer simulated protocol caused resting muscle glycogen to be decreased by 

36% at exhaustion.96 This indicates a high correlation between muscle glycogen and muscle 

degraded during the test, as well as a possible role for an athletes’ muscle glycogenolytic 

capacity in fatigue during soccer specific performance.96 Research has revealed that glycogen 

levels towards the end of a game may not be high enough to maintain maximal glycolytic rate, 

while others argue that glycogen is still available.7 Blood glucose levels and muscle glycogen 

concentrations may vary due to individual player position, style, level of play, and other factors.7 

However, it has been shown that individual muscle fibers may be depleted of glycogen to an 

extent that prevents maximal effort sprints and decreases the amount of high intensity activity.7  

Previous research has shown that high intensity running decreases towards the end of the 

match, regardless of player position.5-8, 78 Soccer involves short periods of high intensity running 

with periods of low intensity activity and sport-specific movements. It has been shown that 

oxidation of FFAs contributes to energy production more so in the second half matches,7 which 

means that rate of glycolysis is higher in the first half.  As muscle glycogen is lowered, lipolysis 
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increases in proportion to the utilization of glycogen.7 This is supported by findings of decreased 

lactate, elevated catecholamine concentrations, lowered insulin concentrations, and elevated 

glycerol concentrations at the end of a match as a result of high intensity and long in duration 

demands of energy production.5, 7 A high intensity soccer-specific test to fatigue caused glycogen 

decrement of 36% from pre-exercise to post-exercise, specifically 135 mmol/kg to 87 mmol/kg 

in elite soccer players.96 It is important to note that in this study, noninvasive glycogen content 

was quantified; however the reliability and validity of the noninvasive data collection was not 

specified. 

In relation to high intensity running and intermittent activity, Saltin102 revealed that 

players with low muscle glycogen covered less ground and performed activity at lower 

intensities than players with high muscle glycogen. A low carbohydrate diet of 30% daily intake 

compared to an intake of 65% carbohydrate in soccer players resulted in the higher carbohydrate 

diet participating in 30% more high intensity running during a match.115 More recent studies 

have also revealed that low carbohydrate diets are associated with decreased glycogen 

concentrations and reductions in work performed during high intensity intermittent exercise.18 

Intermittent exercise, jump ability, and sprint ability have been shown to decrease after a soccer 

match.61 

Muscle fiber contribution to activity depends on fiber type, exercise intensity, and 

duration of force output. Muscle fiber composition and contribution to exercise is partially reliant 

on the specificity of training. Individuals that ran on a treadmill positioned uphill, downhill, and 

level at 70% of their VO2 max for a total of 2 hours were evaluated for glycogen content in the 

vastus lateralis, gastrocnemius, and soleus.58 Regardless of treadmill position, the gastrocnemius 

displayed the greatest extent of glycogen depletion, suggesting that lower limb muscles may 
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become fatigued before thigh muscles in distance running.58 Before a soccer match, muscle 

biopsy of lower limb muscle revealed 73% of muscle fibers were full of glycogen while only 

17% of fibers were full post-match.61 Further fiber analysis revealed that 54% of type I, 46% of 

type IIa, and 25% of type IIx fibers were almost depleted after the soccer match.61 Faster 

depletion rates of glycogen in type II fibers than type I fibers may indicate a decrease in power 

output or the capability of certain muscles to exert maximal force output in the presence of 

fatigue. Muscle biopsies have revealed that muscle glycogen stores were slightly above 50% of 

their resting values 42 hours post-match for an athlete consuming a high carbohydrate diet.7 High 

carbohydrate diet can enhance glycogen recovery after exercise, and restricted or low 

carbohydrate intake can cause decreased ability to recover and store muscle glycogen.24 

Damaged muscle fibers, such as from fatiguing eccentric exercise, display diminished glycogen 

resynsthesis.24 Sprint performance was decreased temporarily after periods of intense exercise 

during a match, and was decreased at the end of the game compared to pre-match.61 Glycogen 

utilization between fiber types and glycogen concentrations at the start of a match or training 

bout may be indicative of amount of high intensity activity performed. 

2.4.2 Effects of Fatigue on Muscular Strength 

Soccer-specific intermittent running is more likely to cause peripheral fatigue rather than central 

fatigue. Decline in squat jump performance and decreased sprint speed by halftime of a match 

reveals the strength reduction of the quadriceps muscles due to soccer activity.98 Anaerobic 

metabolism, paired with decreased ATP re-synthesis, may limit force production caused by a 

decrease in calcium release by the sarcoplasmic reticulum due to an increase in inorganic 

phosphates.17  
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Increases in work intensity during an intermittent protocol is likely to elicit an anaerobic 

cellular environment.43 Energy production becomes restricted without the presence of oxygen to 

clear lactate and resynthesize ATP, as intracellular conditions become increasingly acidic. As the 

intracellular environment changes, the excitation-contraction coupling capability decreases along 

with a decrease in neurotransmitter release. As these factors accumulate, the efficiency of 

working muscle to produce force decreases. If muscular imbalances are present before the onset 

of peripheral fatigue, the decline of muscle efficiency may increase the chance of injury or 

incorrect movement patterns.104 The amount of tibial shear and anterior tibial displacement 

during landing may predict injury risk, both of which are influenced by strength of surrounding 

elastic components and landing strategies.20, 49, 79 

A study by Mendez-Villanueva et al.75 investigated neuromuscular fatigue in 

recreationally active males during a series of repeated sprints. They found that power output and 

EMG amplitude decreased throughout exercise protocol, implying a decline in motor unit 

activity reflected through decreased EMG amplitude. The disparity between agonist and 

antagonist muscle strength may become not only a hindrance to performance and athletic 

efficiency but also a risk factor for injury especially during the latter moments of a soccer match. 

After about a half period of a soccer match, it has been shown that squat jump height and 

quadriceps and hamstrings maximal voluntary isometric torque were significantly decreased.98 

Soccer match activity involving velocities determined by Bangsbo et al.8 revealed that by 

halftime, decreases in concentric maximal voluntary torque of the quadriceps muscle were 

evident.98 In addition, isometric contractions of the hamstrings declined by halftime compared to 

baseline, and concentric contractions revealed significant declines by the end of the match.98 

Squat jump height, sprint speed, and stride frequency were reduced at halftime of a soccer match, 
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and were farther decreased at the end of the match.98 It is important to note that torque of the 

knee flexors in the eccentric condition is more prominent than the concentric condition, 

especially in regard to the nature of soccer activity. 

During an intermittent soccer shuttle test, eccentric hamstring peak torque has been 

shown to decrease.29 Although eccentric contractions reflects the involvement of the hamstrings 

during various activities common with soccer,29  other authors have found that the concentric 

hamstrings peak torque decreases due to soccer activity.42 Fatigue has a greater influence on the 

hamstrings, which are predominantly type II fibers, compared to the type I muscle fibers that 

compose the quadriceps.29, 30,104  

Due to the nature of soccer, the eccentric hamstring strength to concentric quadriceps 

strength ratio (He:Qc) is an appropriate screening tool for injury risk. 30 A higher He:Qc ratio can 

reflect the ability of the hamstrings to counteract the force of the quadriceps, and therefore be of 

importance in determining strength imbalances and injury risk.30 In addition, fatigue resistance is 

greater in the quadriceps potentially due to muscle fiber composition of the quadriceps compared 

to the hamstrings.104 High quadriceps peak torque may reveal a low H:Q ratio, thus increasing 

the risk of hamstring injuries.13 A high hamstrings to quadriceps peak torque ratio may protect 

individuals from ACL injuries.1 This ratio can indicate muscle group strength imbalances.79 

Tibial shear force is influenced by the orientation of the patellar tendon.1 The orientation of the 

patellar tendon is influenced by knee flexion angle during landing and magnitude of pull exerted 

from the quadriceps.1  
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2.4.3 Effects of Fatigue on Power 

The influence of power, rapid contraction causing high rate of force production, is important to 

intermittent sports. Rapid changes in direction, jumping, deceleration, and sprinting ability are 

influenced by the rate of contraction and force output. Mathematically the equation of power is 

as follows: work x time = power.56 A component of muscle power is the stretch shortening cycle 

which involves a combination of eccentric and concentric muscle actions.56 The length changes 

of muscle fibers before contraction activates muscle spindle, therefore increasing force 

production.58 Muscle spindles are of importance in the stretch reflex, by sending sensory 

information to the spinal to elicit activation of a-motor neurons of motor units in the muscle 

group of the muscle spindle, causing force production.58 The sensory capability of the muscle 

spindles sense the changes in muscle tension and allow the length to change to increase tension 

in the subsequent contraction.58 Stretch shortening cycle exercise utilizes the stretch reflect to 

facilitate recruitment of motor units, and stores energy in the elastic and contractile components 

of muscle during the eccentric contraction that can be recovered during the concentric 

contraction.58 It has been shown that stretch shortening cycle exercise such as a depth jump or 

countermovement jump induces myofibril damage.55 Muscle damage may be caused by eccentric 

exercise by increases in creatine kinase, revealing a relationship between decreases in stretch 

shortening cycle performance and stretch reflex sensitivity.55 The stretch shortening cycle is 

characterized by a stretch reflex and possible recruitment of fast type motor units.55 Motor unit 

recruitment may differ in concentric and eccentric muscle activation, and stretch shortening 

cycle action may be influenced with concentric or eccentric contractions.55 Possible mechanisms 

to stretch shortening cycle fatigue and damage may involve pre-synaptic inhibition or reductions 

in muscle spindle sensitivity.55 Concentric muscle function is more affected by acute metabolic 



 36 

fatigue after stretch shortening cycle exercise.55 Jump height, joint power-work delivery, and 

EMG activity are affected with eccentric contractions, influenced by muscle damage and stretch 

shortening cycle performance.55 Motor recruitment strategies may differ between concentric and 

eccentric exercise, as fast motor units may be recruited preferentially during eccentric 

contractions.55 Motor recruitment will also reflect metabolism for force production. Power output 

is dependent on rate of motor unit recruitment and energy availability. Anaerobic power output is 

dependent predominately on the ATP-PCr and anaerobic glycolysis metabolic pathways.58 

Maximal efforts lasting 6 seconds place the greatest demands on the breakdown and re-synthesis 

of ATP and PCr.58 Anaerobic power tests include the Wingate anaerobic test, vertical jump test, 

triple hop test, squat jump test, and depth jump test. The Wingate test is a test in which subjects 

pedal on a cycle ergometer at maximal speed for 30 seconds against a high braking force.58 This 

test is longer in duration than the other maximal power tests listed, as it stresses the anaerobic 

glycolytic system for energy. The other tests utilize the ATP-PCr test, due to the short duration 

of the tests. The vertical jump test has been established as an accurate measure of lower body 

power.100 The squat jump and countermovement jump have also been used to measure power.106 

Both of these tests examine jump height as the outcome variable, expressing an athlete’s 

plyometric abilities. A commonly used plyometric exercise to utilize the stretch shortening cycle 

is the depth jump, in which an athlete steps from a measured drop height onto the ground, and 

immediately performs a maximal vertical jump.38 A depth jump onto a force plate reveals jump 

height, ground contact time, and reactive strength index.38 The stretch shortening cycle involves 

stored energy of the eccentric action enhances the concentric action, and the reactive strength 

calculation is an indirect method to examine an athlete’s use of the stretch shortening cycle.109 

Effective stretch shortening cycle utilization should result in high jump height and short time to 



 37 

takeoff.109 Time to takeoff has been theorized to be an indicator of the rate of force development 

for reaching maximal jump height,109 but is not a reliable measure for reactive strength index.38 

Depth jumps have been shown to affect the stretch shortening cycle due to fatigue caused by 

muscle damage during the eccentric phase of the movement.55 Fatigue caused by repeated depth 

jumps caused peak power decreases in both the eccentric and concentric contractions of lower 

limb muscles.55 Joint power production and stretch shortening cycle efficiency is influenced by 

acute metabolic fatigue and muscle damage.55  

2.5 METHODOLOGICAL CONSIDERATIONS 

2.5.1 Muscle Glycogen Content Measurements 

Muscle tissue biopsy with direct biochemical measurement has been the predominant method of 

assessing metabolite concentrations and muscle structure, including muscle glycogen content.35, 

61, 110 Much of the previous literature evaluating muscle glycogen has been gathered by muscle 

biopsies.24, 61, 62, 85 Muscle biopsies cause discomfort to the subject, have limitations on number 

of measurements, and are difficult to carry out accurate analyses on small samples.110 Therefore, 

noninvasive ways to measure muscle glycogen content have been investigated, including NMR 

spectroscopy, MRS, and diagnostic musculoskeletal ultrasound.52, 82, 97, 110 

Nuclear magnetic resonance (NMR) spectroscopy is a noninvasive way to measure 

intramuscular glycogen concentration, using a spectrometer technology for scan collection.110 

Intramuscular glycogen measurements through NMR technology are in agreement with muscle 

biopsy measurement at both high and low glycogen levels.110 There was a strong relationship 
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between muscle biopsy measurements and NMR measurements of intramuscular glycogen (r = 

0.95; P < 0.001).110 

Similarly, magnetic resonance spectroscopy (MRS) technology can be used to assess 

glycogen content.97 A major limitation of this study and technique is that investigators97 did not 

conduct a validation study comparing between the MRS-based muscle glycogen and muscle 

biopsy measurements. Instead, the authors96 utilized this MRS-based technique to evaluate the 

effects of fatigue induced a simulated soccer game on muscle glycogen content and reported 

significant reductions in muscle glycogen content after exhaustion (before: 135 mmol/kg; after: 

87 mmol/kg, p < 0.001), supporting utilization of MRS-based muscle glycogen content 

measurement. Although it is noninvasive, limitations of these techniques include expensive cost 

of NMR/MRS equipment and accessibility to facility.  

Diagnostic musculoskeletal ultrasound is a noninvasive diagnostic tool commonly used to 

assess skin, muscle, tendon, nerves, blood vessels, bone, joint, and subcutaneous tissue structure 

and appearance.11 More recently, new technology has been developed to estimate muscle 

glycogen content based on musculoskeletal ultrasound imaging with grey-scale analysis 

software.52, 82 Ultrasound-based muscle glycogen content has been shown to correlate with 

muscle biopsy muscle glycogen content of the rectus femoris and vastus lateralis muscles (r = 

0.87 – 0.92, p < 0.001).82 Another study that evaluated glycogen content changes in trained 

cyclists utilized muscle biopsy and ultrasound methodology found high correlations between 

both techniques (r = 0.93 – 0.94; P < 0.001).52 Because this methodology is non-invasive and 

easy to carry and use virtually anywhere (inside or outside), it will be used to measure muscle 

glycogen content in this study. 
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2.5.2 Muscular Strength Measurement 

In order to assess the imbalance between the knee flexors and extensors, conventional 

hamstrings: quadriceps ratio (HC:QC) is used.30, 53 This calculates the maximal concentric knee 

flexion strength divided by the maximal concentric knee extension strength at the same angular 

velocity.30 A high HC:QC ratio has been shown to decrease chance of injury, while a low HC:QC 

ratio may increase the risk of injury.53 With increasing velocities, higher HC:QC ratios tend to 

result due to decreased force production during concentric contractions.53 The hamstrings to 

quadriceps strength ratio is important to consider, especially in the presence of fatigue when 

decreased force capability hinders motor unit firing.42 Due to the hamstrings being type II muscle 

fibers, force production tends to decrease faster than the quadriceps, as well as having a lower 

capability to restore muscle glycogen.30, 42, 91, 104 The hamstrings’ role to eccentrically contract 

repeatedly due to the nature of soccer enables the knee joint to regain stabilization.29  

Leg dominance, soccer specific movements, and the differences in muscle metabolism 

are reasons for decreases in HC:QC ratio in the presence of fatigue.104 Female athletes have been 

shown to be leg dominant, resulting in muscular imbalances and stabilization changes.49, 66, 79 

Under fatigued conditions, the dominant leg displays greater decreases in force production, and 

the hamstrings fatigue to a greater extent than the quadriceps on the dominant leg,73 especially at 

high velocities.53 30, 104 Increases in fatigue during a soccer match cause increases in muscle 

soreness and muscular damage, which may be a result of reliance on the hamstrings to stabilize 

the knee and ACL during sprinting, jumping, and kicking a ball.29 Comparisons of HC:QC ratios 

before, at halftime, and after a soccer specific protocol revealed highest values at the start of the 

protocol, but progressively decreasing ratio values both at halftime and at the conclusion.34, 91 

Greco, da Silva, Camarda, and Denadai42 found that after a soccer-specific protocol, HC:QC and 
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Heccentric:Hconcentric were affected due to fatigue. Rate of force development decreased after the 

soccer-specific intermittent protocol. Muscle breakdown markers such as plasma creatine kinase 

and loss of strength after a soccer specific protocol revealed the relative strength loss was 

dependent on contraction type.42 Previous testing of conventional HC:QC ratios has revealed that 

a value of 0.60 and below should elicit a hamstring training program, and that a healthy HC:QC 

ratio should be above 0.60.13, 53 Overly strong knee extensors compared to the hamstrings may 

cause a low HC:QC, which does not reflect weak hamstrings.13 Muscle imbalances between the 

hamstrings and quadriceps may predispose an athlete to injury, and the corresponding risk of 

injury may be increased in the presence in fatigue. It has been shown that both conventional and 

functional H:Q ratios were similar in division 1 and division 2 soccer players.13 At an angular 

velocity of 60°/s-1, players with a low H:Q ratio may have higher quadriceps peak torque 

compared to players with a high H:Q, rather than low hamstring strength.13 Isokinetic strength 

testing has been previously shown to be reliable ICC range= 0.914-0.943) according to the 

methods of Nagai et al.80 

2.5.3 Power Measurement 

There have been various ways to measure the power capability of athletes, which includes the 

squat jump, vertical jump, triple horizontal hop, short sprints, and the Wingate Anaerobic Test.45, 

106 An athlete’s ability to maintain power during the Wingate test may be a predictor of running 

speed in female soccer athletes.71 The standard 30-second Wingate Anaerobic Power Test may 

not be applicable to evaluate stretch shortening cycle, as its outcome measures (mean power 

output and peak power output) are more applicable for short distance running performance.44 The 

vertical jump test has been widely used as an effective measurement of power of athletes.100 
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Lower body power has been linked to an athlete’s ability to accelerate and move efficiently in 

sport specific attacking or defending positions.71 The ability of an athlete to change from 

eccentric to concentric muscular contraction can express their explosive capabilities.38 The 

effectiveness of the stretch shortening cycle (SSC) has implications over power output expressed 

through jumping and plyometric movements.96 Actions such as sprinting, backwards and 

sideways running, tackles, vertical jumps, and side-cutting demands intense force demands from 

the SSC and measuring the SSC has implications over an athlete’s capability to produce power.56 

The combination of eccentric and concentric actions that are unique to the SSC involves different 

impact loading and metabolic loading compared to pure concentric and eccentric exercise.81 

Loading of braking and push-off phases of a SSC action can be measured by ground contact 

time.81 Intense and exhaustive SSC exercise may be related to changes in mechanical behavior 

and structural modifications of the muscle-tendon unit.81 Variables such as jump height, ground 

contact time, mean and peak power output, and rate of force development have been measured as 

indicators of power. 38, 56 It has been shown that jump height and contact time determined from 

depth jumps are highly reliable, revealed by high single-measure intraclass correlations (>0.9).38, 

67 Intraclass correlation values for jump height, peak power, and time to takeoff ranged from 

0.89-0.99 during squat jumps compared and countermovement jumps.109 Men’s soccer players 

have displayed high efficiency of the SSC due to reactive strength jump height and peak power 

values compared to other sports.109 Reactive strength can be measured several ways; relationship 

between squat jump height and countermovement jump height, relationship between 

countermovement jump time to takeoff and jump height,109 and relationship between depth jump 

height and ground contact time.38 Unlike countermovement jumps and squat jumps, the reactive 

strength index gathered from depth jumps involves higher loaded braking and push-off actions, 
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which are more characteristic of sport activity with the inclusion of ground contact time data.81 

The Triple Hop test has been correlated with countermovement jump height (r = 0.695; P < 

0.1),45 however, the reactive strength index includes ground contact time, which provides 

coaches and clinicians with additional information concerning stress placed on the 

musculotendinous complex during plyometric exercises.38     
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3.0  METHODOLOGY 

3.1 RESEARCH DESIGN 

The first aim of the current research project was to examine muscular strength, power, and 

ultrasound-based muscle glycogen content and compare pre- and post-fatigue protocol 

(intermittent running). An intermittent running fatigue protocol consisted of two sessions: the 

first and second session lasting about 45 minutes and about 12 minutes, respectively. The same 

battery of testing (muscular strength, power, and ultrasound-based muscle glycogen content) was 

repeated three times: before, during and, after the intermittent running fatigue protocol. For the 

purpose of this investigation, only two time points (pre- and post-intermittent running fatigue 

protocol) were used to address the first specific aim and hypotheses. Therefore, a research design 

was repeated measures (within-subjects) design. The independent variable was a time with two 

levels (pre/post-intermittent running protocol). The dependent variables included knee strength 

(peak isokinetic knee flexion torque, extension torque, and torque ratio), power (reactive strength 

index during a depth jump task), and muscle glycogen content in thigh/calf muscles (rectus 

femoris, vastus lateralis, vastus medialis, lateral hamstring, medial hamstring, and 

gastrocnemius/soleus). 

The second specific aim was to examine the relationships between the change in the 

strength and power variables and the change in muscle glycogen content. The third specific aim 
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was to examine the relationships between the baseline muscle glycogen content (pre-intermittent 

running fatigue protocol) and the change in strength and power variables. Research design for 

both aims was correlational analyses.  

3.2 SUBJECTS 

Subjects included recreationally active female (age 18-30) athletes. The female participants must 

have been capable of participating in a full range of dynamic activities required to compete in 

athletic events. Subjects were currently physically active individuals performing moderate to 

high intensity exercise training at least 3 times per week for 60 minutes at a time, or performing 

programmed soccer fitness training. Subjects must meet the following inclusion criteria. Subjects 

with any one of exclusion criteria would be excluded from the current investigation. 

 

Inclusion Criteria: 

• Healthy female recreational/college athletes 

• Cleared for full athletic competition by team physician or athletic trainer 

• No history injury within the two months of competition requiring medical attention or 

requiring more than loss of two consecutive games or training  

• Currently able to fully participate in training and competition 

Exclusion Criteria: 

• Currently on special eating plans that restrict calorie intake and carbohydrate intake 

• Concussion or neuromuscular injury diagnosed by medical professional or clinician 

within the last twelve months 
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• Pre-existing condition that corresponds with inability, pain, or compromised               

health condition to complete testing procedures 

• Lower extremity surgery or injection, currently participating in rehabilitation 

• Previous history of grade III or ankle sprain  

• Currently pregnant  

3.2.1 Power Analysis 

To calculate an effective number of subjects, a power analysis was performed using G*Power 

3.1.9.2 (Franz Faul, Unviersitat Kiel, Germany). A power of 0.80 was calculated at a two-tailed 

alpha of 0.05 to determine the number of subjects, with an effect size of 0.79 (dz).21 Under the 

condition of statistical test as the difference between two dependent means (matched pairs), 

sample size was determined to be 15 subjects. To account for attrition, an increase in sample size 

was applied, increasing the sample size to 17 subjects. Demographic data is represented in Table 

2.  

3.3 INSTRUMENTATION 

3.3.1 Biodex Isokinetic Dynamometer 

Peak torque of the hamstrings and quadriceps muscles, as well as hamstrings to quadriceps ratio 

were measured using the Biodex System 3 Multi Joint Testing and Rehabilitation System 
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(Biodex Medical Inc, Shirley, NY). The torque measurements on the Biodex System 3 is 

reported to be very reliable (ICC = 0.99 – 1.00).33 

3.3.2 Force Plate 

Force plates (Kistler 9286A, Amherst, NY) were used to quantify peak ground reaction forces 

during the depth jump task to gather jump height, flight time, and ground reaction force for RSI 

calculation.  

3.3.3 Heart Rate Monitor 

Each subject’s heart rate (beats per minute) was monitored throughout the intermittent running 

fatigue protocol. A Polar heart rate monitor strap (Polar USA, Lake Success, NY) was used to 

collect heart rate data.  

3.3.4 Treadmill 

A treadmill (Woodway USA Inc, Waukesha, WI) was used for the intermittent running fatigue 

protocol. 

3.3.5 Ultrasound 

A portable diagnostic ultrasound, Philips Lumify (Koninklijke Philips N.V, Eindhoven, 

Netherlands) with L12-4 broadband linear array 12 MHz transducer, was used to capture 

ultrasound images. Aperture size of this device was 34mm. MuscleSound software 
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(MuscleSound LCC, Denver, CO) was used to process ultrasound images. Previous studies have 

validated and have correlated with glycogen assessment of muscle biopsies (r = 0.93 – 0.94).52, 82  

3.3.6 Anthropometrics 

Height was measured using a stadiometer (Seca North America, East Hanover, MD), and mass 

was measured using a weight scale (Seca North America, East Hanover, MD). A tape measure 

was used to measure aspects of the lower extremities to locate muscles of interest. All 

anthropometric measurements were taken prior to testing. 

3.4 PROCEDURES 

3.4.1 Order of Testing 

All procedures were conducted in the morning, when subjects were in the fasted state. Testing 

procedures took 2-2.5 hours to complete. Before the day of testing and upon review of subjects’ 

eligibility, subjects were informed of all testing procedures and were asked to refrain from eating 

the day of testing. Informed consent approved by the University’s IRB was taken before testing 

procedures began. During the subjects’ visit to the laboratory after informed consent, subjects 

were taken through a familiarization process, subjects were fitted with a Polar heart rate monitor, 

and anthropometric data was collected. Anthropometric data was collected and recorded in 

kilograms (weight) and centimeters (height). Subjects were free to ask questions concerning the 
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testing during this time. After anthropometric data was collected, baseline testing began. Order 

of testing procedures is listed in Figure 1. 

 

  

Figure 1. Order of Procedures 

 

3.4.2 Average Peak Knee Flexion and Extension Torque  

The Biodex System 3 Pro Isokinetic Dynamometer was used for strength testing for knee flexion 

and extension using concentric/concentric reciprocal contractions at 60°/s-1. The system was 

calibrated prior to testing on each day according to instructions in the Biodex manual. Biodex 

testing velocity at 60°/s-1 of HC:QC strength ratios has been used previously.13 Subjects were 

seated in the Biodex chair, with dominant limb secured with the appropriate Biodex attachment 

for the knee flexion and extension. Subjects were secured at the chest, waist, thigh, and lower 

limb to ensure proper stabilization. Limb weight was taken prior to testing, and range of motion 

limits were set with the knee in both flexion and extension. Strength testing was described to 

ASA 24 Dietary Recall

Strength testing, Drop jump, Glycogen Measurement

Uphill Running Fatigue Protocol

Strength testing, Drop jump, Glycogen Measurement

Intermittent Running Protocol

Strength testing, Drop jump, Glycogen Measurement
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subjects as a maximal test in which the subject should move as fast and as hard as possible in a 

continuous motion without stopping, and was instructed to continue breathing throughout the 

entire test.  

Peak knee flexion and extension torque protocol was similar to that used by Nagai and 

colleagues.80 Tests began with the knee fully flexed, and subjects were given 3 practice trials 

performed at 50% maximal effort. Instructions were repeated to the subject for the test, and 

questions from subjects (if any) were answered. An additional set of 3 practice trials were 

performed at 100% effort. After a 60-second recovery period, testing began. Subjects performed 

5 maximal effort repetitions as fast and as hard as possible for knee extension and flexion. Only 

the dominant limb was tested for peak torque values. 

3.4.3 Non-Invasive Glycogen Content Measurement 

The Philips Lumify portable ultrasound transducer was utilized with a portable electronic tablet, 

and integration and processing of image data was accomplished by Lumify Mobile App v1.2 and 

MuscleSound technology. Subjects were informed of the muscle groups of interest: rectus 

femoris (RF), the vastus lateralis (VL), vastus medialis (VM), lateral hamstring (LH) and medial 

(MH), and gastrocnemius/soleus (GS) muscles. Three images for each muscle group per set of 

scans ( 5 sets of scans for each muscle group, taken pre- during, and post- fatigue) were taken for 

consistency in location and image quality. Locations of each muscle of interest are described 

below: 

• Rectus Femoris (RF): The midpoint distance between the top of the kneecap and the 

ASIS using a measuring tape and a surgical marker to mark the RF point of reference. 
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• Vastus Lateralis (VL): The VL was found by using the RF mark as a reference point, and 

sliding the transducer laterally. Using the RF image reference medially on the screen, the 

VL was located as the RF muscle could no longer be seen. 

• Vastus Medialis (VM): Using the RF reference point, the transducer was moved 

medially. Fascia brightness indicated the disparity of the vastus medalis apart from the 

rectus femoris. The transducer was moved medially just until the rectus femoris was no 

longer visible. 

• Lateral Hamstring (LH): The belly of the lateral hamstring was defined as the location 

halfway between the greater trochanter and the head of the fibula. To aid in location 

specificity, subjects flexed their knee and raised their heel toward the ceiling, thus 

causing the belly of the muscle to be more prominent. The intersection of the medial and 

lateral hamstring was located with the short axis of the transducer. The transducer was 

moved laterally until the intersection was no longer in view. The transducer was then 

shifted long axis for image capture.   

• Medial Hamstring (MH): Returning to the intersection of the medial and lateral hamstring 

that was found in locating the hamstring muscle group, the transducer was moved along 

the bicep femoris. Both heads of the bicep femoris muscle were moved into view the long 

head thickness being about 2 cm. When the long head of the biceps tendon reached about 

2 cm in thickness, the transducer was moved medially until the bicep femoris was just 

lateral to the image on the screen.  

• Gastrocnemius/Soleus (GS): The GS was found by the subject plantarflexing at the ankle, 

allowing the medial and lateral aspect of the calf to be prominent. Once the division 

between the inside and outside of the calf was located, the probe was moved upwards 
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about a half inch towards the mid-belly of the muscle. This area revealed continuous 

fascia that formed an apex as the division between gastrocnemius lateral and medial 

muscle fibers. The apex of the lateral and medial gastrocnemius also revealed the soleus, 

deep to the gastrocneumius. 

 

Subjects were asked to lie supine on a treatment table for ultrasound image capture of the 

RF, VL, and VM. For scans of the LH, MH, and GS, subjects laid face down on treatment table. 

The transducer was oriented short axis for images collected for all muscles except for the 

hamstring muscles. Due to the linear orientation of the hamstring muscle group, image capture 

occurred with the transducer oriented on the long axis. Ultrasound gel was applied on the skin 

for each image capture. Each muscle was scanned three times consecutively before a new muscle 

was located. Preliminary intra-rater test-retest reliability with 95% confidence interval (95% CI) 

and precision data is summarized in Table 1. Based on the preliminary results, this procedure is 

reliable (ICC = 0.716 – 0.907) and precise (SEM = 1.822 – 2.958) for each muscle group. Image 

capture occurred in the order of capture was RF, VL, VM, LH, MH, GS. Standard error 

measurement was calculated by the following mathematical equation using standard deviation 

and ICC value: SEM = SD√(1-ICC). MuscleSound technology relied on the shading of the scans 

and linear striations of muscles to calculate the amount of glycogen in the muscle under 

observation. Examples of muscle groups scanned by ultrasound are shown in Figure 2. Scan 

depth was consistent among subjects and muscle groups, set at 3.5cm, as well as transducer 

frequency of 12Hz. 
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Table 1. Intrarater Test-Retest Reliability, 95% Confidence Interval (95% CI) and Standard Error 

Measurement (SEM) 

Muscle Group ICC (2,1) 95% CI SEM 

Rectus Femoris 0.725 0.220, 0.924 2.232 

Vastus Lateralis 0.744 0.118, 0.935 1.822 

Vastus Medialis 0.888 0.632, 0.971 2.792 

Lateral Hamstring 0.716 0.233, 0.926 2.958 

Medial Hamstring 0.907 0.674, 0.976 2.225 

Gastrocnemius/Soleus 0.764 0.296, 0.936 2.497 
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Figure 2. Scanned Images (from top left/right to bottom): Rectus Femoris, Vastus Lateralis, 

Vastus Medialis, Lateral Hamstring, Medial Hamstring, and Gastrocnemius/Soleus 
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3.4.4 Reactive Strength Index 

Reactive strength index was collected through a depth jump protocol that was similar to the 

validated protocol by Flanagan and colleagues.38 Force plate sampling frequency of 1500 Hz 

remained constant throughout all testing procedures. Collected data were passed from analog to 

digital signal, and corresponding software was utilized to process depth jump data. Subjects 

began by standing on a box 30cm high. They were instructed to step off the box and down onto 

the force plate. On contact with the force plate, subjects were asked to jump up as high as 

possible, minimizing the time spent on the force plate. For accurate data collected, subjects were 

asked to stick the landing of the jump and regain stabilization by standing as still as possible on 

the force plate for 7 seconds after the jump. 

 The reactive strength index (RSI) was calculated by dividing jump height (JH) by the 

time on the ground required to make the vertical jump. Prior to initial data collected, subjects 

were given as many practice trials necessary to feel comfortable with the procedures and 

maximize consistent performance of the protocol, similar to the study performed by Wikstrom 

and colleagues114 as referenced in the work of Flanagan and colleagues.38 Jump height and 

ground contact time (CT) were shown to be highly reliable with this protocol from trial to trial 

(Cronbach α > 0.95), high single measure ICCs, (>0.9) and high average measures ICCs 

(>0.95).38 Due to the above variables being highly reliable, RSI therefore was a reliable measure 

gathered through this protocol.  
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3.4.5 Fatigue Protocol 

An intermittent soccer-specific treadmill protocol was performed on a motorized treadmill. 

Subjects performed isokinetic strength testing, depth jumps, and ultrasound glycogen 

quantification before and after the soccer-specific intermittent running protocol. Prior to testing, 

subjects performed a self-paced warm up on the treadmill for 5 minutes. After the 5 minute 

warm up, subjects were taken through the treadmill speeds used for the intermittent running 

protocol. The speeds and duration of the intervals were previously used by Drust et al.34 and 

described in Figure 3 below. Speeds described in that protocol were 6 km/h (walking), 12 km/h 

(jogging), 15 km/h (cruising), and 21 km/h (sprinting). The intermittent running described in the 

above research was divided into two equal parts: 22 minutes in duration separated by a 1 minute 

rest period. The intermittent running protocol that simulated soccer activity was based off video 

analysis of an elite men’s soccer match.34 Speeds in the current study were decreased in order to 

account for the lower fitness levels of the subjects participating in the study. Each subject 

performed the intermittent running protocol for nearly 45 minutes in duration.  

 

  

Figure 3. Intermittent Running Protocol Simulating 22 Minutes of Soccer Match Play 
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The fatigue protocol was timed, from the start of the uphill treadmill running protocol 

until volitional exhaustion. The purpose of the exhaustive running protocol was to ensure fatigue, 

due to varying fitness of the athletes. The initial speed of the treadmill was set at 5 km/h-1 at 18% 

grade and increased by 1 km/h-1 every two minutes until volitional exhaustion.64 Heart rate, 

rating of perceived exhaustion (RPE) using the OMNI scale, and lactate measurement were 

recorded to assess fatigue.15, 88, 112 Lactate measure was taken during baseline testing, after the 

intermittent running protocol, and immediately after the uphill running protocol until fatigue. 

Rating of perceived exertion was taken during the intermittent treadmill protocol, at each 2 

minute stage of the fatigue protocol, and at the time of exhaustion. This uphill running protocol 

was originally developed as a tool to evaluate neuromuscular recovery after peripheral lower 

extremity fatigue.64  

3.4.6 Ultrasound Glycogen Measurement  

MuscleSound software was used for image interpretation and objectification of glycogen content 

to numerical score. Muscles of interest were scanned pre-, during, and post-intermittent running 

fatigue protocol. MuscleSound processing cropped images so that only ultrasound images 

remained.  The ultrasound images were based on reflected sound waves from the transducer. The 

reflective nature of bone, ligaments, tendons, muscles, and other soft tissue is based on the 

degree of absorption versus reflection of the sound waves.84 Areas of tissue that have little 

reflection of the sound waves are revealed in darker shaded scans, which are considered as being 

hypoechoic. Images that are brighter in appearance (bone, cortical surfaces, fascial layers) are 
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considered hyperechoic. During image processing, MuscleSound software highlighted the area 

that it analyzed as the muscle of interest. This highlighted area was a component of the 

MuscleSound software, and the area inside the highlighted region to be processed for glycogen 

quantification could not be altered by the researcher. Areas within a scan that appeared 

hypoechoic signified a higher concentration of glycogen, while areas that were hyperechoic 

signified areas that were depleted of glycogen. Gaussian blur was applied via image smoothing 

technique, so that the ultrasound image could be converted to binary black and white image. 

Morphing techniques were applied to fill in holes, which connected portions of the muscle scans. 

Connective tissue is considered a critical artifact and was digitally subtracted. The image then 

was then returned to gray scale. Subsequent cropping and filtering visually removed skin, fat, 

connective tissue, and artifact. Connective tissue that remained was portrayed at 255 pixel 

intensity, and the muscle glycogen score was determined as a measure of pixel intensity. Pixels 

were averaged and linked across images automatically, and the pixel intensity was proportionally 

reduced. Pixel intensity determined through subjective image converted to objective value by 

pixel intensity ranging from 1-255 pixel intensity. For simplicity of interpretation, scale of 

intensity was simplified to a scale of 0-100 (higher values represented higher muscle glycogen 

content).103  

3.4.7 Biodex Peak Torque Measurement  

The Biodex Isokinetic Dynamometer System 3 was used to measure peak knee flexion and 

extension torque (Nm). The average of five torque values for each direction was calculated by 

the Biodex. The average peak knee flexion and knee extension torque (Nm) was normalized to 

body weight (kg) and expressed in percentage of body mass (%BM) for statistical analyses. After 
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the average peak torque values for knee flexion and extension were calculated, torque ratio was 

calculated by dividing the average peak knee flexion torque by the average peak knee extension 

torque for statistical analyses.  

3.4.8  Force Plate Measurement for RSI 

Force plate data determined ground reaction force from which initial foot contact to landing.38 

The time points between takeoff and landing signified flight time. Flight time was used to 

calculate RSI [(9.81x flight time2)/8]. Jump height, flight time, initial contact, and landing forces 

were converted from analog to digital signal through BioWare force plate technology. 

3.4.9 Dietary Recall 

Subjects performed an online dietary recall using the ASA 24 recall questionnaire. After the 

testing procedures, each subject reported their dietary intake 24 hours prior to testing. The ASA 

24 software generated macronutrient and micronutrient data based on subjects’ reported dietary 

intake.   

3.5 STATISTICAL ANALYSIS  

Data analyses were conducted using SPSS (version 22.0; IBM Corp, Armonk, NY). Descriptive 

statistics were calculated for all dependent variables (means and standard deviations). Each 

variable was checked for normality using the Shapiro-Wilk test. For the first specific aim, paired 



 59 

t-tests or Wilcoxon signed rank test (non-parametric test) was used to compare each dependent 

variable before and after the intermittent running fatigue protocol. Fort the second specific aim 

and hypotheses, changes in strength, power, and muscle glycogen before and after the fatigue 

protocol were calculated and checked for normality using the Shapiro-Wilk test. Then, 

correlation analyses were used to examine the relationship between the change in strength and 

power and muscle glycogen content using Pearson’s correlations or Spearman’s rank tests (non-

parametric test). Similarly, for the third specific aim and hypotheses, the same correlation 

analyses were used to examine the relationship between the baseline muscle glycogen content 

and the change in strength and power variables. Statistical significance was set a priori at alpha 

equal to 0.05.  
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4.0  RESULTS 

4.1  SUBJECT DEMOGRAPHICS 

Due to feasibility in recruitment, subjects recruited for testing were recreationally active females 

who participated in moderate to intense exercise a minimum of three times per week for 60 

minutes. A majority of subjects (15 subjects) were current soccer players at the college level or 

active members of an amateur soccer league; training for this league included twice a week 

sessions each lasting two hours, and one weekly match. All athletes were between the ages 18-

30, fitting the inclusion criteria. Two potential subjects were denied participation into the study 

due to a history of lower limb surgery (ankle surgery and knee surgery) within the past year. 

Demographic information is included in Table 2. The dominant limb was left in three subjects 

while the rest of subjects were right limb dominant.  

 

Table 2. Demographics of Subjects: Means ± Standard Deviations (SDs) 

 Means ± SDs 

Age (years)   21.5 ± 2.9 

Height (centimeters) 166.9 ± 7.2 

Mass (kilograms)   63.7 ± 6.6 
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4.2 FATIGUE DATA 

All subjects completed the intermittent running protocol, and each subject performed the uphill 

running bout until volitional failure. Blood lactate was taken immediately before and after the 

intermittent running protocol (Table 3). The rating of perceived exertion in the OMNI scale (0-

10) and heart rate results were taken at the end of the intermittent running bout #1-3 (Table 3). 

 

Table 3. Blood Lactate, Heart Rate, and RPE during the Intermittent Running Protocol 

Variables Means ± SDs 

Baseline Blood Lactate (mmol/l)   2.9 ± 2.1 

Baseline Heart Rate (bpm)   84.0 ± 16.8 

RPE at the end of bout #1   5.0 ± 1.1 

Heart Rate at the end of bout #1 (bpm) 161.8 ± 17.2 

RPE at the end of bout #2   6.0 ± 1.4 

Heart Rate at the end of bout #2 (bpm) 168.8 ± 15.0 

RPE at the end of bout #3   7.0 ± 1.4 

Heart Rate at the end of bout #3 (bpm) 173.3 ± 14.7 

Post-Protocol Blood Lactate (mmol/l)   7.0 ± 4.7 

       RPE = rating of perceived exertion; bpm = beats per minute; mmol/l = millimoles per liter  

 

After the intermittent running protocol, subjects completed the knee strength, power, and 

ultrasound muscle glycogen content assessments. The results of these assessments were not a 

part of the current thesis proposal and therefore not included in the current document. 

Immediately after the assessments, subjects were asked to complete the uphill running bout until 
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volitional failure. The RPE in the OMNI scale and heart rate results taken at the end of each 2-

minute stage and at the volitional failure during the uphill running protocol (Table 4). 

Additionally, blood lactate was measured immediately after the uphill running protocol (Table 

4). Two athletes finished in the stage #3 while 14 athletes finished in the stage #4. Only one 

athlete finished in the stage #5. After the blood lactate was taken, subjects were asked to 

complete the last/final set of the knee strength, power, and muscle glycogen content assessments. 

 

Table 4. Blood Lactate, Heart Rate, and RPE during the Uphill Running Protocol 

Variables Means ± SDs 

RPE at the end of stage #1     4.7 ± 1.6 

Heart Rate at the end of stage #1 (bpm)   159.8 ± 16.0 

RPE at the end of stage #2     6.0 ± 1.4 

Heart Rate at the end of stage #2 (bpm)   172.0 ± 20.3 

RPE at the end of stage #3     8.1 ± 1.4 

Heart Rate at the end of bout #3 (bpm)   182.1 ± 10.7 

RPE at the end of stage #4     8.7 ± 1.4 

Heart Rate at the end of bout #4 (bpm)   184.1 ± 11.1 

RPE at the volitional failure     8.4 ± 1.4 

Heart Rate at the volitional failure (bpm) 185.7 ± 9.5 

Post-Protocol Blood Lactate (mmol)   11.3 ± 5.0 

         RPE = rating of perceived exertion; bpm = beats per minute; mmol/l = millimoles per liter  
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4.3 EFFECTS OF FATIGUE PROTOCOL ON STRENGTH, REACTIVE 

STRENGTH INDEX, AND MUSCLE GLYCOGEN CONTENT 

4.3.1 Effects of Fatigue Protocol on the Knee Flexion and Extension Strength and 

Flexion/Extension Ratio  

Average peak torque over the five trials performed on the Biodex System 3 at 60°/sec-1 was 

collected pre- and post- fatigue protocol. Average peak strength and peak strength ratio between 

hamstrings and quadriceps were compared pre- to post- fatigue to examine changes in force 

output. All strength variables were screened for normally using Shapiro-Wilk tests. They were 

normally distributed (p = 0.089 – 0.908) except post-fatigue flexion/extension strength ratio (p = 

0.011). 

In order to address specific aim 1 and hypothesis 1a, the average peak knee flexion, 

extension, and flexion/extension strength ratio were compared before and after the fatigue 

protocol. Descriptive data (means and standard deviations) is shown in Table 5. Average peak 

knee flexion and extension and ratio of knee flexion to extension were significantly decreased 

from pre-post fatigue protocol (p < 0.05), supporting hypotheses 1a.  

 

Table 5. Effect of Fatigue on Strength 

Dependent Variables Pre-Fatigue Post-Fatigue P-Value 

Flexion (%BW) 129.1 ± 22.7 115.9 ± 25.7 <0.001 

Extension (%BW) 231.9 ± 28.5 218.8 ± 39.6 0.016 

Flex/Ext Ratio (%)* 55.8 ± 8.5   53.4 ± 10.2 0.039 

* Wilcoxon Signed Rank test; %BW = percent of body weight 
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4.3.2 Effects of Fatigue Protocol on Reactive Strength Index 

All subjects performed three trials of the depth jump task pre and post-fatigue protocol, and the 

RSI was calculated. The RSI pre- and post-fatigue protocol was tested for normality using 

Shapiro-Wilk normality test, and the pre-fatigue RSI was significant (p = 0.006). Therefore, non-

parametric test (Wilcoxon signed rank test) was used to compare the RSI pre and post-fatigue.  

In order to assess hypothesis 1b, pre-fatigue RSI and post-fatigue RSI were compared using 

Wilcoxon signed rank test. Significant increases in RSI were found from pre-fatigue to post-

fatigue shown in Table 6 (pre-fatigue RSI = 0.671 ± 0.236, post-fatigue RSI =0.749 ± 0.276, p = 

0.006). Contrary to hypothesis 1b, RSI was significantly increased from pre- to post- fatigue. 

 

Table 6. Effect of Fatigue on Reactive Strength Index 

Dependent Variables Pre-Fatigue Post-Fatigue P-Value 

Reactive Strength Index* 0.671 ± 0.236 0.749 ± 0.276 0.006 

   *Wilcoxon Signed Rank test 

4.3.3 Effects of Fatigue Protocol on Muscle Glycogen Content 

Glycogen content was analyzed per muscle group using MuscleSound technology. Average score 

of 15 ultrasound images per muscle were analyzed pre- and post-fatigue protocol. Average 

glycogen score per muscle group was analyzed for normality using Shapiro Wilk normality test. 

The post-fatigue lateral hamstring was significant (p = 0.001).   
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In order to address hypothesis 1c, paired t-tests (Wilcoxon Signed Rank test for lateral 

hamstring) were performed to compare the muscle glycogen content before and after the fatigue 

protocol. Descriptive statistics and t-test results are shown in Table 7. Contrary to hypothesis 1c, 

no significant changes were observed in glycogen content in any muscle group examined pre- to 

post-fatigue protocol.   

 

Table 7. Effect of Fatigue on Muscle Glycogen Content 

Dependent Variables Pre-Fatigue Post-Fatigue P-Value 

Rectus Femoris 44.3 ± 1.3 45.1 ± 1.4    0.079 

Vastus Lateralis 46.0 ± 1.3 45.8 ± 1.3    0.261 

Vastus Medialis 46.3 ± 1.4 46.3 ± 1.5    0.787 

Lateral Hamstring* 48.3 ± 1.6 47.9 ± 1.6    0.177 

Medial Hamstring 46.3 ± 1.6 46.4 ± 2.2    0.733 

Gastrocnemius/Soleus 47.1 ± 1.5 46.9 ± 1.1    0.471 

* Wilcoxon Signed Rank test 

4.4 RELATIONSHIP BETWEEN THE CHANGE IN STRENGTH AND REACTIVE 

STRENGTH INDEX AND THE CHANGE IN MUSCLE GLYCOGEN CONTENT 

Knee flexion and extension peak torque expressed as a ratio from pre- to post-fatigue, as well as 

flexion to extension ratio pre- to post-fatigue, were analyzed for normality using Shapiro-Wilk. 

Similarly, the pre- to post-fatigue reactive strength index and muscle glycogen content of six 

muscle groups were also screened for normality. Based on Shapiro-Wilk normality tests, the 
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post/pre-fatigue knee extension value was significant (p = 0.008); and the assumption of 

normality was violated. The post/pre-fatigue reactive strength index was also significant, and the 

assumption of normality was violated (p = 0.001). All muscle groups were normally distributed 

except the post/pre-fatigue in the medial hamstring (p = 0.014). 

Descriptive statistics of pre/post-fatigue strength variables, reactive strength index, and 

muscle glycogen content were shown in Table 8. As previously observed in specific aim #1, 

systematic declines in strength variables were observed (89.3 – 95.5%) while an increase in the 

reactive strength index was observed (112.6%). However, only small changes were observed in 

muscle glycogen content (99.3 – 101.7%). 

 

Table 8. Descriptive Statistics of Post/Pre-Fatigue Values in Knee Strength Variable, Reactive 

Strength Index, and Muscle Glycogen Content 

Strength and RSI Variables Means ± SDs 

Post/Pre-Fatigue Flexion Strength (%)   89.3 ± 8.5 

Post/Pre-Fatigue Extension Strength (%)   93.9 ± 9.5 

Post/Pre-Fatigue Strength Ratio (%)   95.5 ± 7.7 

Post/Pre-Fatigue Reactive Strength Index (%) 112.6 ± 23.8 

Muscle Glycogen Content Statistics 

Post/Pre-Fatigue Rectus Femoris (%) 101.7 ± 3.7 

Post/Pre-Fatigue Vastus Lateralis (%)   99.5 ± 1.8 

Post/Pre-Fatigue Vastus Medialis (%)   99.9 ± 1.4 

Post/Pre-Fatigue Lateral Hamstring (%)   99.3 ± 2.8 

Post/Pre-Fatigue Medial Hamstring (%) 100.2 ± 3.0 



 67 

Post/Pre-Fatigue Gastrocnemius/Soleus (%)   99.6 ± 2.4 

    SDs = standard deviations; % = percent 

 

In order to examine hypotheses 2a and 2b, the post/pre-fatigue values in muscle glycogen 

content for each muscle group were evaluated for correlations with the post/pre-fatigue values in 

the knee strength variables and reactive strength index. Correlations were analyzed using two-

tailed Pearson’s correlations for normally distributed values while Spearman’s correlations were 

used for non-parametric analyses (Table 9). Contrary to hypotheses 2a and 2b, there were no 

significant correlations between the post/pre-fatigue muscle glycogen content and post/pre-

fatigue knee strength and reactive strength index.  

 

 
Rectus 

Femoris 

Vastus 

Lateralis 

Vastus 

Medialis 

Lateral 

Hamstring 

Medial 

Hamstring* 

Gastrocnemius 

Soleus 

Knee Flexion 

Strengtha 

r = -0.202 

p = 0.438 

r = -0.187 

p = 0.473 

r = -0.032 

p = 0.903 

r = -0.171 

p = 0.511 

r = -0.162 

p = 0.535 

r = -0.146 

p = 0.577 

Knee Extension 

Strengtha* 

r = -0.328 

p = 0.198 

r = -0.208 

p = 0.422 

r = 0.132 

p = 0.613 

r = -0.213 

p = 0.411 

r = -0.363 

p = 0.152 

r = -0.020 

p = 0.940 

Knee Flex/Ext 

Strength Ratioa 

r = 0.023 

p = 0.930 

r = 0.180 

p = 0.490 

r = 0.040 

p = 0.879 

r = -0.177 

p = 0.496 

r = 0.152 

p = 0.560 

r = 0.017 

p = 0.947 

Reactive r = -0.098 r = -0.140 r = 0.213 r = -0.181 r = -0.056 r = -0.064 
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Table 9. Correlations of Post/Pre- Fatigue Muscle Glycogen Content and Post/Pre-Fatigue 

Strength and Reactive Strength Index 

     a Units of measurement are percentages (%). 
   *Spearman’s correlation analyses were used. 
 

4.5 RELATIONSHIP BETWEEN THE CHANGE IN STRENGTH AND REACTIVE 

STRENGTH INDEX AND THE BASELINE MUSCLE GLYCOGEN CONTENT  

The post/pre-fatigue knee flexion, extension, flexion/extension ratio, and reactive strength index 

were already assessed for normality previously. Similarly, the pre-fatigue muscle glycogen 

content was already assessed for normality previously with the Shapiro-Wilk normality test. 

Post/pre-fatigue extension strength and post/pre-fatigue reactive strength index violated the 

assumption of normality. Therefore, Spearman’s correlational analyses were used. Descriptive 

statistics of pre-fatigue muscle glycogen content and post/pre-fatigue strength variables and 

reactive strength index are shown in Table 10. 

 

Table 10. Descriptive Statistics of Pre-Fatigue Muscle Glycogen Content and Post/Pre-Fatigue 

Values in Knee Strength Variable and Reactive Strength Index 

Strength and RSI Variables Means ± SDs 

Post/Pre-Fatigue Flexion Strength (%) 89.3 ± 8.5 

Post/Pre-Fatigue Extension Strength (%) 93.9 ± 9.5 

Strength Indexa* p = 0.708 p = 0.593 p = 0.411 p = 0.486 p = 0.830 p = 0.808 
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Post/Pre-Fatigue Strength Ratio (%) 95.5 ± 7.7 

Post/Pre-Fatigue Reactive Strength Index (%) 112.6 ± 23.8 

Muscle Glycogen Content Statistics 

Pre-Fatigue Rectus Femoris 44.3 ± 1.3 

Pre-Fatigue Vastus Lateralis 46.0 ± 1.3 

Pre-Fatigue Vastus Medialis 46.3 ± 1.4 

Pre-Fatigue Lateral Hamstring 48.3 ± 1.6 

Pre-Fatigue Medial Hamstring 46.3 ± 1.6 

Pre-Fatigue Gastrocnemius/Soleus 47.1 ± 1.5 

    SDs = standard deviations; % = percent 

 

In order to examine hypothesis 3a and 3b, the pre-fatigue muscle glycogen content for 

each muscle group was assessed during baseline measures; average score was quantified as an 

average of fifteen scans per muscle group. The pre-fatigue muscle glycogen content values were 

correlated to the post/pre-fatigue knee flexion strength, post/pre-fatigue knee extension strength, 

post/pre-fatigue flexion/extension strength ratio, and post/pre-fatigue reactive strength index.  

 

Table 11. Correlations of Post/Pre- Fatigue Ratio (%) Between Strength, RSI, and Baseline 

Glycogen Content 

Dependent 

Variables 

Rectus 

Femoris 

Vastus 

Lateralis 

Vastus 

Medialis 

Lateral 

Hamstring 

Medial 

Hamstring 

Gastrocnemius 

Soleus 

Knee Flexion 

Strengtha 

r = -0.020 

p = 0.940 

r = 0.180 

p = 0.490 

r = -0.616 

p = 0.008 

r = -0.201 

p = 0.440 

r = -0.243 

p = 0.348 

r = 0.278 

p = 0.280 
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Knee Extension 

Strengtha* 

r = -0.093 

p = 0.722 

r = -0.015 

p = 0.955 

r = -0.603 

p = 0.010 

r = -0.135 

p = 0.606 

r = -0.380 

p = 0.133 

r = 0.123 

p = 0.639 

Knee Flex/Ext 

Strength Ratioa 

r = 0.002 

p = 0.993 

r = -0.005 

p = 0.985 

r = -0.145 

p = 0.579 

r = -0.114 

p = 0.663 

r = 0.073 

p = 0.780 

r = -0.060 

p = 0.818 

Reactive 

Strength Indexa* 

r = 0.000 

p = 1.000 

r = 0.260 

p = 0.314 

r = -0.265 

p = 0.305 

r = -0.211 

p = 0.417 

r = -0.402 

p = 0.110 

r = 0.074 

p = 0.779 

a Units of measurement are percentages (%). 
*Spearman’s correlation analyses were used. 

 

It was hypothesized that pre-fatigue muscle glycogen content per muscle group would be 

negatively correlated with the post/pre-fatigue strength variables (hypothesis 3a) and reactive 

strength index (hypothesis 3b). However, only post/pre-fatigue knee flexion and knee extension 

strength had moderate negative correlation to the pre-fatigue glycogen measures of the vastus 

medialis (knee extension: r = -0.616, p = 0.008; knee extension: r = - 0.603, p = 0.010) as shown 

in Table 11. As mentioned previously in the methods section (Section 3.4.6), measurement for 

baseline glycogen content is quantified as a value 0-100 without a unit (higher values represent 

more muscle glycogen in the muscle). Contrary to hypothesis 3b, there was no significant 

relationship (in the negative direction) between RSI and baseline muscle glycogen content for 

any of the muscle groups (Table 11). 
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5.0  DISCUSSION 

5.1 EFFECTS OF FATIGUE PROTOCOL ON STRENGTH, POWER, AND MUSCLE 

GLYCOGEN CONTENT 

The primary purpose of this study was to evaluate the changes in strength, power, and muscle 

glycogen content before and after an intermittent running protocol and uphill running bout. It 

was hypothesized that knee strength, power, and muscle glycogen content would significantly 

decrease after the fatigue protocol. For hypothesis 1a, it was hypothesized that the peak 

isokinetic knee flexion and extension torque would be significantly reduced after the fatigue 

protocol. Also, it was hypothesized that the peak knee flexion/extension ratio would be 

significantly lower after the fatigue protocol. The current results support the hypothesis 1a as the 

knee strength and strength ratio were significantly decreased after fatigue protocol. 

Strength and power of the lower limbs have been shown to be decreased due to soccer 

simulated exercise, as well as lower limb intramuscular glycogen content.91 The current study 

revealed that knee extension and flexion strength significantly declined pre- to post- fatigue 

protocol. As expected in hypothesis 1a, average peak torque of the hamstrings and quadriceps 

decreased pre- to post- fatigue in agreement with previous studies.30, 91 Peak torque of the knee 

extensors and flexors has been shown to decrease due to fatigue induced by exercise simulating a 

full soccer match.30  
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Additionally, the peak torque ratio of the hamstrings to quadriceps significantly declined 

after the fatigue protocol. It has been shown that fatigue caused by soccer simulated exercise 

decreases the HC:QC ratio.30 The current findings support previous research that soccer play 

causes concentric maximal torque of the hamstrings and quadriceps to decline.98 Previous 

research using soccer match modeling revealed that even by halftime, decreases in hamstring and 

quadriceps strength were evident.98 Protocols utilized in the literature vary in duration and mode 

to analyze soccer activity and strength relationships, 98,111 while the protocol used in the current 

study was short in duration (~45 minutes), significant decreases in quadriceps and hamstring 

peak torque and HC:QC ratio were found, suggesting that a short duration (~45 minutes) 

intermittent running fatigue protocol was sufficient to observe subjects’ fatigue. The findings of 

the current study are in agreement with previous research described above with changes peak 

torque of knee flexors, extensors, and peak torque ratio caused by fatigue and should be 

considered in terms of athlete performance in the presence of fatigue.  

For hypothesis 1b, it was hypothesized that RSI would be significantly reduced after the 

fatigue protocol. The RSI was in fact significantly increased after the fatigue protocol, rejecting 

hypothesis 1b. The explanation for the rejection of hypothesis 1b may be multifaceted. The RSI 

calculation is dependent on rate of force development and expression of the SSC. Short contact 

times and high jump heights will result in a high RSI output, reflecting rapid rate of force 

development and efficient function of the stretch shortening cycle. Unlike the isokinetic 

dynamometer, the subject’s ability to properly carry out the testing measure has a direct 

implication to the RSI output. Descriptive data shown in Appendix A show changes in ground 

contact time (CT) and jump height (JH), which are components of the RSI output. The 

descriptive data, although not statistically analyzed, shows that there is a decrease in CT from 
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pre- to post- fatigue, and an increase in JH pre- to post- fatigue.  This may indicate a learning 

curve, as movement efficiency potentially increased. As subjects became more accustomed to the 

movement, they were able to perform the sport specific movement pattern with greater 

efficiency. Previous research indicates that rate of force development decreases due to fatigue 

induced by soccer activity,111 and that SSC is decreased in the presence of fatigue.98 The current 

findings revealed that reactive strength values increased from pre-fatigue to post fatigue, 

partially attributable to a learning curve.  

The athletic nature of the task may be the reason for the confounding results, and may 

also be cause for the development of the RSImod,36 a modified method of the RSI calculation 

used in the current study and validated previously.38 Due to the calculation of RSI being 

dependent on ground reaction forces and contact times, manipulation of the ground contact time 

and jump height will cause RSI values to shift, and improper execution of the task can cause 

varied results due to eccentric and concentric phases of the movement.  Therefore, it is likely that 

the explanation for the rejection of hypothesis 1b is improper task execution.   

For hypothesis 1c, it was hypothesized that the ultrasound-based muscle glycogen content 

of thigh and calf muscles (rectus femoris, vastus medialis, vastus lateralis, lateral hamstring, 

medial hamstring, and gastrocnemius/soleus) would be significantly reduced after the fatigue 

protocol. Based on the current results, muscle glycogen content was not significantly reduced 

after the fatigue protocol, rejecting hypothesis 1c. The current findings are not consistent with 

previous research involving fatigue and glycogen quantification. For example, it was found that 

glycogen stores decline pre- soccer match to post- soccer match,102 and some muscle fibers can 

be almost completed depleted of glycogen at the end of a match. 61  
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It has been shown that both distance running and soccer match play causes muscle 

glycogen decrement. 58, 61 The different intensities of continuous and intermittent running cause 

metabolic contributions to shift. The higher intensity of soccer match play causes a greater 

reliance on muscle glycogen, as research has revealed decreased running velocities and higher 

FFA utilization towards the end of a soccer match.5, 7 Muscle glycogen concentration and 

utilization may be dependent on training status and running mechanics.25 Fatigue caused by 

running at ~80% VO2max was not attributed to decline in glycogen content, however caution 

should be taken due to small sample size of the study and the varied training status of the 

subjects. 25 However, training status, intensity and duration of exercise, and utilization of 

glycogen has a role on glycogen depletion. One study revealed that glycogen levels were 

depleted by 36% after a soccer simulated protocol, and that there was a moderate relationship 

between glycogen utilized and time to exhaustion.97 Degradation of glycogen is associated with 

both central and peripheral fatigue. Contributions to fatigue during a soccer match may be 

attributed to both central and peripheral factors,7 thus creating a relationship between fatigue and 

glycogen utilization. 

The sensitivity to detect changes may be a methodological challenge of the MuscleSound 

technology, as the shading of the scans determined pixel intensity. Scans that appeared dark 

(hypoechoic) indicated a muscle area being concentrated with glycogen, while lighter areas 

(hyperechoic) indicated regions that were depleted of glycogen. Ligament and bone are 

characterized by their hyperehoic nature.51 Scans analyzed by MuscleSound software were 

highlighted for areas corresponding with the muscle of interest. However, the highlighted area 

previously mentioned and described in Section 3.4.6 may have included various types and 

concentrations of tissue that altered the hypoechoic or hyperechoic nature of the scan. Muscle 



 75 

size, bone, and fascia may have been factors that affected the shading of the scans and thus the 

quantification of glycogen.  

Athletes in the current study were allowed to drink water ad libitum, as previous research 

has indicated that water intake does not affect glycogen utilization,51 or the reflective nature of 

the scans. It has been shown that as muscle glycogen is utilized and leaves the cell, water also 

leaves the cell.51 As exercise induces fatigue and depletes glycogen stores, it has also been 

shown that blood vessel dilation and decreases in muscle size result from intense exercise.51 

Physiological changes and metabolic changes that are evident with fatiguing exercise may be 

cause for changes in the reflective nature of the scans. Structures such as bone and artifact being 

included in the MuscleSound quantification of the muscle region scanned may have been a 

potential cause for the lack of changes pre- to post- fatigue.  

In addition, the correlations between MuscleSound glycogen score and muscle biopsy 

were utilized in the current study to convert the glycogen score to a numeric value. The previous 

study conducted by Hill52 found that RF MuscleSound glycogen score to be 59.8 ± 15.9 pre- 

exercise and 39.8 ± 13.9 post- exercise. Muscle biopsy revealed glycogen levels to be 97.2 ± 

34.1 mmol*kg-1 pre- exercise to 62.4 ± 22.8 mmol*kg-1 post- exercise. In the current study, 

average MuscleSound RF muscle glycogen score was 44.3 ± 1.3, and using the correlation found 

in the previous study, the RF glycogen score would be around 84.73 mmol*kg-1. The correlation 

equation between muscle biopsy and MuscleSound score was found in the study by Hill52 as 

follows: MuscleSound Score = 0.4324 (muscle biopsy glycogen level) + 17.719. It’s important to 

note that this relationship changed pre- exercise to post- exercise. The data presented in the 

previous study reveals that there are two separate relationships of MuscleSound quantification to 

muscle biopsy pre- to post- exercise52, which may indicate some methodological shortcomings of 
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the noninvasive technology to detect changes in muscle glycogen score.  The correlation of the 

baseline RF muscle biopsy glycogen level of the current study is over 10 mmol*kg-1 less than the 

previous findings.52 The disparity between resting RF levels of glycogen might be attributed to 

the demographic differences of the subjects (female soccer players in the current study and male 

cyclists in the previous study), the fasted state of the athletes in the current study, and the 

differences in fatigue protocols (intermittent repeated run and uphill run in the current study 

compared to steady pace long-duration cycling on stationary bicycles in the previous study).  

Performance variables such as knee strength and running velocity have been shown to 

decrease from the first to second half of matches, elucidating the onset of fatigue before the 

match has concluded.91 The intermittent running protocol utilized in the current study, although 

modified for females, has been previously shown to be reliable and repeatable.34, 91 Significant 

decreases in quadriceps and hamstrings peak torque were found halfway through the soccer 

simulated running bout used in the previous study, confirming that effects of fatigue on 

performance even at halftime are evident.91 In addition, the previously mentioned running bout 

has been shown to cause significant changes in the HC:QC ratio after ~45 minutes of soccer 

simulated running.91 The participants of the previous study were highly trained male soccer 

players. Due to the inclusion criteria of subjects recruited for the current study, an additional 

uphill running bout was included to increase peripheral fatigue. The uphill running protocol 

included in the current study was utilized previously by Lattier et al.64 to evaluate maximal 

aerobic velocity (MAV) and neuromuscular fatigue.64, 65 Volitional fatigue (mean MAV = 9.4 ± 

0.9 km*h-1) during the previous study have shown that this protocol resulted in decreased 

neuromuscular activation due to central and peripheral fatigue.64 In the current study, the 
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performance decline following the intermittent running protocol and subsequent uphill running 

bout can be evidence that those protocols used in the current study did indeed cause fatigue.  

5.2 RELATIONSHIP OF CHANGES OF KNEE STRENGTH AND POWER TO 

CHANGE IN MUSCLE GLYCOGEN CONTENT DUE TO FATIGUE PROTOCOL 

Another aim of the current study was to evaluate the relationships of the changes in knee strength 

and power (expressed as a proportion of post-fatigue/pre-fatigue values) to the changes in muscle 

glycogen (also expressed as a proportion of post-fatigue/pre-fatigue values) due to the fatigue 

protocol. It was hypothesized that fatigue at the peripheral level caused by intermittent running 

would cause positive correlations between the changes in knee strength and power with changes 

in muscle glycogen. For hypothesis 2a, it was expected that changes in knee flexion, extension, 

and torque ratio would be significantly correlated to muscle glycogen in the positive direction. 

However, the current results show no correlation between changes in knee strength and strength 

ratio to changes in muscle glycogen, therefore we reject hypothesis 2a. It was also hypothesized 

in hypothesis 2b that there would be a positive correlation with changes in power to the changes 

in muscle glycogen content. Similar to the findings for hypothesis 2a, no positive relationship 

was found between changes in power post-fatigue/pre-fatigue and changes in muscle glycogen 

post-fatigue/pre-fatigue. Possible explanations for the current findings are discussed below.  

The proportion of decline in knee strength and strength ratio was hypothesized to be 

related in the positive direction to proportion of decline in muscle glycogen content. It was 

shown in the current study that there was a decline in proportion of muscle strength output due to 

fatigue. Statistics in Table 7 and Table 8 describe the lack of positive relationship between 
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changes in strength and changes in muscle glycogen. It is shown that there is a decline in knee 

strength and strength ratio, however muscle glycogen changes are minimal. Surprisingly, there 

was an increase in muscle glycogen content in the RF from pre-fatigue to post- fatigue, which 

does not coincide with previous research regarding glycogen fuel utilization and simulated 

soccer activity.96 A predominant contributing factor to fatigue is depletion of glycogen,61, 96 

consequently leading to the hypothesis of strength decrement to be related to glycogen depletion. 

The findings of the current study may reveal the sensitivity of the MuscleSound technology to 

detect changes may not be precise enough to cause trends in glycogen utilization, which is 

supported by the descriptive pre-/post- fatigue data in Table 7 and the proportion of glycogen 

utilization post-/pre- fatigue in Table 9.  

Similar reasoning for the lack of relationship between power changes post-/pre- fatigue to 

glycogen changes post-/pre- fatigue can explain the current findings. Descriptive data in Table 8 

reveals that there was highly variable individual data, and that this may be that the RSI protocol 

was not executed similarly for each subject. Each subject was given similar instructions, 

however subjects’ ability to perform short contact time with initial touch onto the force plate and 

maximal vertical jump into the air was subjective. It was expected that there would be a decline 

in power measures pre-fatigue to post-fatigue, due to glycogen content decline. As muscular 

strength declines due to fatigue, fatigue induces rate of force decrements which may lead to 

impaired ability to exert explosive actions necessary for high intensity activity in soccer.111 

Decreases in force output are related to changes in contractile properties caused by metabolic 

changes as a result of fatigue.64 Fatigue response at the metabolic and neural level is very 

individual and thus a fixed exercise duration may not reveal true effects of fatigue,81 thus 

intermittent activity could cause power decrement. It has been shown that both contractile 
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properties and sprint ability declines pre- to post- soccer match,92 as does vertical jump height,98 

attributed to fatigue and likely linked to glycogen availability. It has been shown that both 

resistance training and plyometric training cause increased rate of force of development, 

increased area of type-II muscle fibers, increased motor unit recruitment, and increased motor 

unit firing frequency.56 The training status of the athletes (e.g college athletes, recreational 

athletes) in the current study, the difficulty in proper execution of the power protocol (which has 

been previously validated), and the potential lack of sensitivity of the glycogen measurement are 

likely contributors for the lack of correlation between proportion of changes in power and 

glycogen content due to fatigue.   

5.3 RELATIONSHIP OF CHANGES OF KNEE STRENGTH AND POWER TO 

BASELINE GLYCOGEN CONTENT 

An additional area of investigation of the current study was to evaluate any relationship to 

changes in knee strength and power output as a proportion post-/pre- fatigue to baseline glycogen 

content. As the intermittent running bout caused fatigue, it was hypothesized that resting 

glycogen levels would have a relationship to the changes (expressed as a proportion post-

fatigue/pre-fatigue) in knee strength and power. Specifically, hypothesis 3 was that the changes 

in strength and power would have a positive relationship with baseline glycogen. That is, it was 

expected that the higher the resting level of muscular glycogen, the less the change post-

fatigue/pre-fatigue knee strength and power output (higher proportion of post-/pre-fatigue 

values). Addressing peak torque, it was expected in hypothesis 3a that the changes in knee 

extension, knee flexion, and torque ratio would have a positive relationship with baseline 
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glycogen levels. In addition, it was hypothesized in hypothesis 3b that the changes in power 

would also have a positive relationship to baseline glycogen levels. The current research 

however has revealed no significant relationship between knee strength, strength ratio, or power 

to baseline glycogen content, except between the knee flexion and extension strength changes 

and baseline the VM glycogen content. Therefore, hypothesis 3 was largely rejected.   

It has been shown that resting intramuscular glycogen levels influence performance 

variables, especially in the presence of fatigue.85 Baseline glycogen levels have an impact over 

high intensity activity over the duration of a soccer match, and may inhibit maximal effort in 

repeated sprint performance and high intensity running.7, 102 Although the level of depletion of 

glycogen tends to vary on an individual basis, decline in high intensity running as increases of 

free fatty acid concentrations in the blood indicates the decline of glycogen availability and 

utilization.7, 61 It has been shown that soccer athletes who ingest carbohydrate before a 90 minute 

soccer simulated exercise had an increased intermittent running capacity and elevated 

performance.4, 7 It has also been found that there may be a threshold glycogen concentration that 

is an indicator of performance decline. Glycogen levels above ~200 mmol/kg-1 dry weight has 

been shown to be an unlikely factor that influences the onset of transient fatigue.4, 7 Therefore, if 

glycogen levels are not depleted sub-threshold, performance decrement may be attributed to 

various other factors influenced by the onset of fatigue.  

The current study reveals that there was a decline in knee strength output and knee 

strength ratio, however there seems to be little relationship between the changes in strength and 

baseline glycogen content. Table 11 reveals that baseline glycogen content in the vastus medialis 

was significantly related to changes in knee extension strength and knee flexion strength. It 

appears curious that baseline glycogen content of the VM was the only muscle group that had a 
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relationship to changes in knee strength. Baseline glycogen in the other muscle groups showed 

no relationship to knee strength or to power output (Table 11). Although baseline glycogen in 

most of the muscle groups revealed no relationship to changes in strength and power, there may 

be an explanation to the significance of baseline glycogen in the VM to changes in knee 

extension and knee flexion strength. It has been found that glycogen is not uniformly distributed 

in a cell, and does not provide average concentrations within the cell.85 Distribution of glycogen 

within pools is largely dependent on factors such fiber type and training status.85 One study 

found that the soleus muscle appeared to phosphorylate more glycogen than the vastus lateralis 

and gastrocnemius and could store more glycogen, which would reduce the likelihood of isolated 

muscle fatigue at the soleus.25 It has also been shown that muscle fiber type is a factor in 

glycogen utilization, as some fibers were nearly depleted post- soccer match and some fibers still 

had glycogen available.61 Although glycogen depletion occurs in both fiber types, specific 

depletion in type II muscle fibers may result in power decrement.4 Thus it appears as though 

muscle fiber type and glycogen availability within the cell may influence glycogen utilization. 

The rate of glycogen depletion may be related to glycogen availability.96  

Baseline glycogen values have also been correlated with the onset of fatigue as well as 

the muscle glycogen degradation during a simulated soccer fatigue protocol.96 The previous 

study revealed a high correlation (r = 0.87) between resting muscle glycogen and glycogen 

utilized during a soccer-specific running test. There was a moderate correlation (r = 0.62) 

between net muscle glycogen used and time to exhaustion of the soccer- specific running test.96 

It is understood that just half a soccer match can impair knee flexor and extensor strength 

output.98 The onset of central and peripheral fatigue may cause these changes in strength output, 

as well as muscular damage that may occur with eccentric contractions and repetitive explosive 
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movements occurring in a match.98 The efficiency of the stretch shortening cycle and rate of 

force development may also decline during a soccer match due to fatigue.98 Depletion of 

glycogen at the cellular level, specifically within the sarcoplasmic reticulum, hinders the release 

of calcium which reduces peak power output.4 However, it has been shown that peripheral 

fatigue that causes contractile impairments is attributed to several factors including muscle 

damage, metabolic disturbances, and muscle glycogen depletion.98 Other research has indicated 

that the baseline glycogen level has implications on muscle power output, due to changes within 

the sarcoplasmic reticulum,41, 85 and that power decrement due to glycogen depletion is explained 

by decrease in the rate of glycogenolysis.19 The current study reveals that there were significant 

changes in knee strength and strength ratio, and that baseline glycogen content in the VM was 

moderately correlated to knee extensor and knee flexor strength. The current findings may 

highlight various mechanisms contributing to fatigue as well as the questioned sensitivity of the 

noninvasive glycogen quantification using ultrasound-based technology. This explanation also 

applies to the lack of relationship between the changes in power and baseline glycogen pre-/post- 

fatigue. An additional explanation to the lack of relationship with changes in power and baseline 

glycogen can be attributed to the difficulty of the power protocol and the varied efficiency in task 

execution. 

In order to understand the relationship between baseline glycogen measurement by 

MuscleSound and subjects’ nutritional intake, each subject reported their diet recall by means of 

the ASA 24 online dietary recall.  Data analysis of the subject’s nutritional intake was not a 

specific aim for the current study, however, descriptive statistics of subjects’ macronutrients and 

caloric intake are included in Appendix B. Means and standard deviations of absolute values and 

macronutrients intake g/kg are included in Appendix B. A future aim using the current study as 
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framework could be to understand absolute values of nutritional components to performance 

variables in the presence of fatigue. In addition, strength, power, and glycogen data collected 

between the intermittent running protocol and the uphill running bout until fatigue are included 

in Appendix A. Although not a specific aim of the current study, trends in the data collected 

between exercise bouts could be an area of potential research to investigate the relationships 

between the rate of fuel usage and performance changes.  

5.4 LIMITATIONS  

The confounding factors and limitations of this study may be cause for the lack of support for 

some of the hypotheses. A limitation of the current study may be the duration and type of 

exercise protocol utilized to induce soccer simulated fatigue. Much of the previous research 

involving soccer play and glycogen utilization included protocols such as the LIST,92, 93 an actual 

soccer match,7, 111or other protocols that simulated soccer play for durations ~90 minutes.96 

These protocols were of various modes and durations, participants were of varied skill level and 

training status, and there were methodological differences in dependent variables collection. 

Another limitation as described in the study is the difficult execution of the RSI measurement. 

The RSI measurement has previously demonstrated reliability,38 however the current study 

reveals that the precision of execution is vital to an accurate measure of power. This is due to the 

multifaceted approach to assess both rate of force development and the stretch shortening cycle. 

The RSI protocol was developed in order to describe an individual’s ability to change from an 

eccentric to concentric muscular contraction and express explosive capabilities.38 This measure 

implies an athletes’ plyometric performance,38 as rate of force development (short force plate 
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contact times) and maximal vertical jump (expression of the SSC) together comprise the power 

capability of an athlete assessed by reactive strength index.   A recently developed modified RSI 

measurement (RSImod)36 may be a more feasible option for a power measurement that still 

includes rate of force development and stretch shortening cycle efficiency. Another 

methodological consideration that may have influenced the current findings is the use of the 

noninvasive glycogen measurement and use of glycogen analyzing software. The portable 

ultrasound has demonstrated high intrarater reliability in the current study. Previous research has 

also established that the portable ultrasound and MuscleSound glycogen software to be valid.52 

The previous study revealed high correlations between muscle biopsy muscle glycogen 

quantification and Musclesound quantification in lower limb muscles of trained cyclists before 

and after a steady state cycling bout.52, 82 Although the results in that study show high 

correlations between MuscleSound glycogen measurements to muscle biopsy quantification,52 

results must be interpreted carefully. Several measures of MuscleSound glycogen from pre- to 

post- exercise actually increased, causing questioning of the sensitivity of MuscleSound to detect 

precise changes in muscle glycogen concentrations.  Alternatives to noninvasive MuscleSound 

technology to assess glycogen with decreased likelihood of subjective instrument are 13C-MRS 

technology, or nuclear magnetic resonance. 

5.5 FUTURE RESEARCH 

The current study has the potential to serve as the framework for future research to investigate 

the effect of glycogen depletion due to soccer play. An area of investigation may be the 

relationship of nutritional intake to glycogen availability and utilization. A number of studies 
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have investigated carbohydrate intake, recovery strategies, fasted state exercise, and nutritional 

halftime strategies of soccer matches to understand the role of glycogen and performance 

decrement.4, 40, 41, 61, 68Although not analyzed in the current study, caloric intake and 

macronutrient components of pre-participation diet were collected. Energy intake and 

contribution from carbohydrates, fats, and protein may have an effect on glycogen availability, 

performance variables, and onset of fatigue. For example, carbohydrate proportion to total 

caloric intake may be related to baseline glycogen levels and subsequent exercise or sport 

performance. Another area of future research may include comparing the muscle glycogen 

utilization in lower limb muscles across varied modes of exercise such as running,25 cycling,82 

and sport play.61 The validation of the ultrasound-based muscle glycogen quantification 

technology utilized only trained cyclists,52 as other glycogen studies have also used cyclists for 

data collection.9 Running mechanics differ from cycling mechanics and therefore may cause 

dissimilar glycogen utilization based on muscle group contribution to exercise.25 Understanding 

the contribution of glycogen utilization among various exercises can be helpful in understanding 

the various rates of glycogen depletion. The current study has a number of applications that can 

be built upon to grow the body of pertinent literature to decrease injury risk and influence 

performance characteristics.  

5.6 CONCLUSION 

The current study investigated the effect of fatigue on strength, power, and noninvasive 

measurement of intramuscular glycogen. Simulated soccer activity and uphill running bout to 

cause aspects of central and peripheral fatigue were hypothesized to be related to glycogen 



 86 

utilization and baseline glycogen levels, as well as have an influence on strength and power. 

Knee extension, knee flexion, HC:QC ratio, and power were all significantly altered due to 

fatigue. However, changes in these variables as a proportion post-/pre- fatigue showed little 

correlation to with changes in glycogen content or baseline glycogen levels. Changes in glycogen 

content were not significant, and baseline glycogen content had no relationship to the changes in 

knee strength and power observed due to the fatigue protocol. Contradictory findings in previous 

research that relate glycogen to performance variables may lead to methodological 

considerations as cause for error in the current study. Decline in knee strength and strength ratio 

after only ~45 minutes of intermittent running may reveal that rate performance decrement may 

be affected by factors such as fitness level and recovery strategies.   
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APPENDIX A 

DESCRIPTIVE DATA PRE-, DURING-, AND POST-FATIGUE STRENGTH, POWER, 

GROUND CONTACT TIME, JUMP HEIGHT, AND MUSCLE GLYCOGEN CONTENT 

Strength and Power Variables Pre-Fatigue During-Fatigue Post-Fatigue 

Flexion (%BW) 129.1 ± 22.7 119.1 ± 24.0 115.9 ± 25.7 

Extension (%BW) 231.9 ± 28.5 224.2 ± 35.6 218.8 ± 39.6 

Flex/Ext Ratio (%) 55.8 ± 8.5 53.5 ± 10.3 53.4 ± 10.2 

Reactive Strength Index 0.671 ± 0.236 0.741 ± 0.237 0.749 ± 0.276 

Contact Time 0.547 ± 0.012 0.377 ± 0.070 0.330 ± 0.030 

Jump Height 0.275 ± 0.024 0.319 ± 0.013 0.315 ± 0.007 

Muscle Glycogen Content Pre-Fatigue During Post-Fatigue 

Rectus Femoris 44.3 ± 1.3 44. 9 ± 1.3    45.1 ± 1.4 

Vastus Lateralis 46.0 ± 1.3 46.0 ± 1.2   45.8 ± 1.3 

Vastus Medialis 46.3 ± 1.4 46.1 ± 1.5  46.3 ± 1.5 

Lateral Hamstring 48.3 ± 1.6 48.1 ± 1.2 47.9 ± 1.6 

Medial Hamstring 46.3 ± 1.6 46.3 ± 1.8 46.4 ± 2.2 

Gastrocnemius/Soleus 47.1 ± 1.5 46.7 ± 1.1 46.9 ± 1.1 
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APPENDIX B 

DESCRIPTIVE DATA OF TOTAL CALORIE INTAKE AND TOTAL 

CARBOHYDRATE, PROTEIN, AND FAT INTAKE 

Dietary Recall Variable Means ± SD 

Total Calorie Intake 2068.08 ± 747.61 

Total Carbohydrate Intake (g) 241.01 ± 79.50 

Normalized Total Carbohybrate Intake (g/kg)   3.77 ± 1.18 

Total Protein Intake (g)   90.61 ± 52.34 

Normalized Total Protein Intake (g/kg)   1.42 ± 0.80 

Total Fat Intake (g)   84.55 ± 39.35 

Normalized Total Fat Intake (g/kg)   1.34 ± 0.68 
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