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ABSTRACT

ELECTRON-ELECTRON INTERACTIONS IN COMPLEX-OXIDE

NANODEVICES

Michelle Tomczyk, PhD

University of Pittsburgh, 2017

Strontium titanate (SrTiO3) is a superconducting semiconductor [1] possessing characteris-

tics which suggest an unconventional pairing mechanism [2, 3]; however, direct experimental

insight into the nature of electron pairing in SrTiO3 has remained elusive. SrTiO3-based in-

terfaces can provide new clues about electronic interactions leading to pairing. In particular,

the electronic system at the interface of LaAlO3 and SrTiO3 hosts a broad array of emergent

phenomena, including superconductivity [4], spin-orbit coupling [5, 6], and magnetism [7],

providing a tantalizing platform to study electronic interactions.

In this dissertation, nanodevices with well-characterized quantum behavior are used as

probes of the interfacial electronic system. These devices enable coherent single-electron and

single-subband resolution of electronic states, which can elucidate the microscopic details of

electronic interactions. Tunneling behavior through nanowire quantum dots reveals the

existence of electron pairs far outside the superconducting regime [8]. While this suggests

strong attractive interactions, Andreev transport at higher gate voltages indicates a gate-

tunable sign change of electron-electron interactions [9]. Ballistic transport over micrometer

distances produces quantum interference oscillations in nanowire cavities [10], and also leads

to quantized conductance plateaus in electron waveguide devices [11]. Evolution of the

plateaus in an applied magnetic field reveals details of the strength and variation of the

electron pairing, and other related physical properties. These results provide guidance to

theoretical predictions of the microscopic origins of the electron pairing interactions.
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1.0 INTRODUCTION

Understanding how electrons interact and the impact of their interactions is an overarching

objective in solid state physics. Fermi liquid theory successfully describes the behavior of

many electronic systems by redefining electrons, with their inherent Coulomb interactions,

as weakly-interacting quasiparticles. However, Fermi liquid theory breaks down when elec-

tron correlations become more significant, for example in one-dimensional systems. While

Fermi liquid theory explains why much of the basis of solid state physics is well-described

by non-interacting models, many active research areas such as high-temperature supercon-

ductivity, Majorana quasiparticle statistics, and fractional quantum Hall effect now focus on

phenomena that can only be explained by understanding the underlying electron-electron

interactions.

In particular, superconductivity is a well-known phenomenon, first observed in 1911

when a sample of mercury was cooled with liquid helium, and the resistance suddenly van-

ished below 4.2 K. In the past century, significant advances in both experiment and theory

have led to numerous Nobel prizes, as well as current and future applications in medicine,

transportation, energy and quantum computation.

At the heart of superconductivity in electronic systems are attractive electron-electron

interactions. The conventional Bardeen-Cooper-Schrieffer (BCS) microscopic description of

electronic superconductivity [12] requires only a very weak attraction to bind electrons into

pairs. The weakness of the attraction, combined with the high carrier density (of order

1022cm−3), means that the average pair size is much larger than the inter-electron distance.

The electrons bind into pairs and the pairs condense into a coherent superconducting state

simultaneously.

1



By tuning the strength of the electron-electron interaction, a crossover occurs, with the

pair size decreasing as the attraction increases. On the far side of this crossover sits the

Bose-Einstein condensate (BEC), where electrons form tightly-bound pairs relative to the

inter-electron distance. While most low-temperature superconductors are well described by

conventional BCS theory, the electron pairing mechanism leading to superconductivity in

high-temperature superconductors is highly debated. Understanding the pairing mechanism

in unconventional classes of superconductors is therefore very important in developing a

room-temperature superconductor for the realization of many future applications. About

50 years ago, there was theoretical speculation about the possibility of electron pairs on

the unconventional BEC side of the crossover existing outside of the superconducting state,

in low-carrier-density superconductors. In particular, this was predicted for doped bulk

strontium titanate (SrTiO3) [13]. At higher temperatures, electrons were postulated to

form tightly bound pairs; below the BEC transition temperature, superconductivity could

emerge. The unconventionally low carrier densities at which SrTiO3 superconducts, along

with the similarities to high-temperature superconductors, which weren’t discovered until

1986, suggest that understanding electron-electron interactions in SrTIO3 can provide insight

into the pair formation mechanism for high-temperature superconductors.

In this dissertation, the hallmark of BEC-regime physics— electron pairing without

superconductivity— is observed and studied at a conductive SrTiO3-based interface, con-

sisting of a thin film of lanthanum aluminate (LaAlO3) on bulk single-crystal SrTiO3 [8, 9,

10, 11]. Specifically, it is found that electron pairs persist up to pairing temperatures of

TP ∼ 1 − 10 K and magnetic fields of Bp ∼ 1 − 10 T, far higher than the superconducting

critical temperature Tc ∼ 0.3 K and upper critical magnetic field µ0Hc2 ∼ 0.2 T. The ratio

of pairing temperature to Fermi temperature TP/TF ∼ 0.1 − 0.8 is much larger than that

of conventional BCS (Bardeen-Cooper-Schrieffer) superconductors [12], indicating that the

pairing interactions in low density SrTiO3 are indeed quite strong and attractive, and hence

are in the BEC-BCS crossover regime. As carrier density is increased, a transition to repul-

sive interactions is observed, providing insight into the potential role of the Ti-orbitals on

electron pairing. Finally, transport of electron pairs reveals their surprisingly ballistic nature,

in contrast to localized pairs believed to exist at the superconductor-insulator transition.
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Various reduced-dimension quantum devices are integral to observing and studying this

fascinating new electronic phase. By combining the rich physics at the LaAlO3/SrTiO3

interface with the well-developed paradigm of semiconductor nanoelectronics, both fields

benefit: correlated materials provide new functionalities to existing nanodevices, while nan-

odevices made out of interesting materials can probe the electronic behavior of the material

with single-electron and single-subband resolution, revealing details about the underlying

electron states. In this work, quasiparticle tunneling spectroscopy through superconduct-

ing single-electron transistors (SETs) reveals the existence of pair-tunneling over a much

larger phase space than expected in a typical semiconducting or conventional superconduct-

ing SET; additionally, the evolution of the tunneling behavior suggests that the sign of the

electron-electron interactions is gate-tunable. Quantum interference in a nanowire cavity de-

vice implies long coherence and elastic scattering lengths; these are confirmed by quantized

ballistic transport through electron waveguides.

The next sections in Chapter 1 describe in more detail the current state of knowledge

of the physics at the LaAlO3/SrTiO3 interface. Chapter 2 describes the methods used to

grow and prepare the samples and perform the experiments presented in the rest of the

thesis. Chapters 3 through 6 present my main research projects: tunneling experiments

through superconducting single electron transistors, revealing electron pairing without su-

perconductivity (Ch. 3) and tunable electron-electron interactions (Ch. 4); quantum inter-

ference in electron Fabry-Perot cavities (Ch. 5); and quantized ballistic transport in electron

waveguides (Ch. 6). The final chapter (Ch. 7) discusses future experimental directions and

conclusions.

1.1 STRONTIUM TITANATE

1.1.1 Ferroelastic Transition

Strontium titanate (SrTiO3) is a complex oxide with a perovskite crystal structure, which

is cubic at room temperature with a lattice constant of aSTO = 3.905Å (Fig. 1(a)). Like
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many perovskites, SrTiO3 undergoes symmetry-reducing structural transitions as a function

of temperature. In particular, at 105 K SrTiO3 undergoes an anti-ferrodistortive transition

in which the oxygen octahedra rotate in opposite directions, causing two of the lattice vec-

tors to contract, while the third lengthens along the axis of the rotations. This results in

a tetragonal unit cell, with triply-degenerate domains along X, Y or Z, creating ferroelastic

domain boundaries (Fig. 1(b)) throughout the bulk SrTiO3. While much of the early work

on the LaAlO3/SrTiO3 interface neglects considering any influence from these domain walls,

recent work has highlighted their importance in both normal state [14, 15] and supercon-

ducting [16] transport at the interface. Further details of the LaAlO3/SrTiO3 interface will

be discussed in § 1.2.

1.1.2 Incipient Ferroelectric Transition

At even lower temperatures T < 38 K [18], SrTiO3 begins to approach a second transition

to a ferroelectric state [19] (Fig. 1(c)). While it never actually reaches this transition due

to quantum fluctuations, the incipient ferroelectric behavior results in an enormous static

dielectric constant ε ≈ 20, 000 at low temperature, which stabilizes in the quantum para-

electric regime T < 4 K [19]. The large dielectric constant makes SrTiO3 a common choice

of substrate for samples requiring effective backgating; it also results in unusually large gate

capacitance for single-electron transistors, as discussed in Chapter 3.

1.1.3 A Superconducting Semiconductor

While bulk SrTiO3 is a band insulator with a band gap of 3.2 eV, electrons can be introduced

via doping (for example, Nb or La), oxygen vacancies [20], or electrolytic gating [21]. Doping

bulk SrTiO3 to carrier densities as low as 1017 cm−3 results in a superconductor with a small

Fermi surface (Fermi temperature TF ∼ 13 K) [20], low superconducting critical tempera-

ture (Tc ≈ 0.3 K) [20], and low upper critical field Bc ≈ 0.2 T [1]. The superconducting

properties of SrTiO3 have been previously investigated by electrical transport [1], tunneling

spectroscopy[22], and the Nernst effect [20]. The superconducting critical temperature is

non-monotonic as a function of carrier density, leading to a dome-shaped phase diagram in
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Figure 1: SrTiO3 crystal structure. a, The perovskite structure of SrTiO3 is cubic at room

temperature. b, Below 105 K, a structural transition to a tetragonal state leads to the

formation of structural domain walls. From ref. [14]. c, As-grown SrTiO3 approaches

a ferroelectric phase transition below 37 K, but only reaches a ferroelectric phase when

strained. From ref. [17].
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which Tc is suppressed at high carrier density; on the other side of the dome, the super-

conducting state extends to carrier densities much lower than expected for a conventional

superconductor with weak, phonon-mediated electron interactions. In a 1969 paper, Eagles

argued that the superconductivity in low-density Zr-doped SrTiO3 involves Bose-Einstein

Condensation (BEC) of strongly paired electrons [13], in contrast to conventional Bardeen-

Cooper-Schrieffer (BCS) superconductivity in which electron pairing is weak and electron

pair size is much larger than the inter-electron spacing [12]. A direct consequence of the

strong pairing theory is that above Tc the electrons no longer condense into a supercon-

ducting state, but remain in bound pairs. The general phenomenology of transitioning from

strong to weak pairing interactions, known as the BEC-BCS crossover, has been thoroughly

investigated both theoretically and experimentally in ultracold atoms [13, 23, 24]. How-

ever, for 50 years after the prediction of strong pairing in SrTiO3, the BEC-BCS crossover

remained unrealized in solid state systems.

1.2 EMERGENT PROPERTIES AT THE LaAlO3/SrTiO3 INTERFACE

New insights into the properties of electronic interactions in SrTiO3 come from heterointer-

faces [25] that enable transport in reduced dimensions. Lanthanum aluminate (LaAlO3) is

closely lattice-matched to SrTiO3 with a cubic lattice constant aLAO = 3.789 Å, permitting

clean, epitaxial heterostructure growth. The interface between TiO2-terminated (001)SrTiO3

and a thin layer of LaAlO3 supports a conducting system [25] that exhibits a variety of gate-

tunable behavior, derived from the parent SrTiO3 substrate. This conducting system can

be considered a two-dimensional electron liquid, as compared to an electron gas, due to the

importance of electron-electron interactions.

1.2.1 Metal-Insulator Transition

A metal-insulator transition occurs at the interface of LaAlO3 and SrTiO3 as a function of

the LaAlO3 thickness. When LaAlO3 is grown at a thickness of three or fewer unit cells
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Figure 2: Emergent physics at the LaAlO3/SrTiO3 interface. a, Thickness-dependence of

the metal-insulator transition. b, Electrostatic gating of the metal-insulator transition. (a

and b from ref. [26]. c, Simplified 3d t2g orbital structure at the interface. From ref. [27].

d, Superconducting transition. From ref. [4]. e, Superconductivity peaks at the Lifshitz

transition. From ref. [28]. f, Phase diagram similar to high-Tc superconductors. From

ref. [3]. g, Electrostatic gating of spin-orbit coupling. From ref. [6]. h, Kondo minimum.

From ref. [7]. c, Ferromagnetic domains imaged by SQUID. From ref. [29].
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on bulk, TiO2-terminated (001)SrTiO3, the interface is insulating. At a thickness of four or

more unit cells, as shown in Fig. 2(a), a two-dimensional conducting system forms at the

interface and extends into the SrTiO3 [25]. While this critical-thickness dependence of the

interface metal-insulator transition was originally observed for (001)-oriented SrTiO3, (111)

and (110)-oriented SrTiO3 substrates have also exhibited conducting interfaces with LaAlO3

above critical thicknesses of 9 and 7 unit cells, respectively [30].

When LaAlO3 is grown just below the critical thickness, the interface is insulating but can

be hysteretically and reversibly tuned through the metal-insulator transition [26]. A positive

voltage applied to the backgate induces the metal-insulator transition, and the interface

becomes conducting; when the voltage is removed, the interface remains conducting. When

a negative voltage is subsequently applied to the backgate, the insulating state is restored

at the interface, as shown in Fig. 2(b). This cycle can be repeated multiple times with no

degradation of the electronic system [26].

This work studies (001)-oriented SrTiO3 with sub-critical thickness LaAlO3 (3.4 unit

cells), so that the interface is insulating but highly tunable.

1.2.2 Electronic Structure at the LaAlO3/SrTiO3 Interface

The relevant orbitals contributing to electronic behavior at the LaAlO3/SrTiO3 interface are

the 3d t2g orbitals derived from the Ti-ions near the interface [31]. Due to confinement in

the z-direction at the interface, the dxz and dyz orbitals are raised in energy compared to

the dxy orbital [32, 33] (Fig. 2(c)). The Fermi level determines which orbitals participate in

transport, and the point where the Fermi level crosses the bottom of the dxz,yz orbitals is

called the “Lifshitz transition”. This transition is expected to significantly impact electronic

properties [28]. Additional confinement in nanowires at the interface can further split these

orbitals into subbands.

1.2.3 Superconductivity

Superconductivity at the LaAlO3/SrTIO3 interface (Fig. 2(d)) behaves like the supercon-

ducting phase in the parent SrTiO3: it shares a similar critical temperature Tc ≈ 200 mK [4]
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and a phase diagram like that of high-temperature superconductors [3]. The superconducting

transition is tunable with electrostatic gating [2], and in particular, Tc peaks at the Lifshitz

transition (see Fig. 2(e)), suggesting a close relationship between the relevant orbitals and

the pairing mechanism [28]. Additionally, a pseudogap phase observed in tunneling spec-

troscopy [3] hints at the existence of pre-formed electron pairs outside the superconducting

regime (Fig. 2(f)).

1.2.4 Rashba Spin-Orbit Coupling

Atomic spin-orbit interaction, combined with inversion-symmetry breaking, like that at a sur-

face or interface, can lead to a Rashba-type spin-orbit coupling with a momentum-dependent

spin splitting [34]. This was observed in magnetotransport measurements at the LaAlO3 in-

terface [6, 5]. Similar to the superconducting transition temperature, the magnitudes of the

Rashba spin splitting and coupling constant can be gated electrostatically [5], exhibiting a

very small Rashba effect at low gate voltages, and a sharp increase that coincides with the

onset of superconductivity as the gate voltage increases (see Fig. 2(g)) [6].

1.2.5 Magnetism

The observation of magnetic signatures at the LaAlO3/SrTiO3 interface is surprising, not

only due to the non-magnetic nature of the parent compounds, but also because ferromag-

netism is inimical to any spin-singlet superconductivity. The first signature of magnetism was

a hysteresis loop in magnetotransport and Kondo-like temperature-dependence (Fig. 2(h)),

reported in 2007 [7]. Since then, other transport signatures such as an anomalous Hall

effect [35] have been observed, as well as real-space imaging of ferromagnetic patches like

in Fig. 2(i), with various techniques such as scanning SQUID magnetometry [29], magnetic

force microscopy[36, 37], and x-ray magnetic circular dichroism [38, 39].
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1.3 NANOSTRUCTURES AND DIMENSIONALITY

Dimensionality has a profound effect on electron transport. When electrons are confined in

two dimensions (2D), new behaviors such as the integer [40] and fractional [41] quantum

Hall effect emerge. Electrons confined in one dimension (1D) lose nearly all of their recog-

nizable features [42, 43]. For example, the electron spin and charge can separate and move

independently of one another [44], and the charge itself can fractionalize [45].

When discussing dimensionality, it is useful to define a few relevant length scales. Three

common length scales related to scattering effects include the elastic scattering length, also

known as the mean free path (le or lmfp), the inelastic scattering length lin, and the phase

coherence length lφ. The mean free path is the distance electrons travel ballistically between

elastic scattering events. When the length of a device is much shorter than lmfp, the device

can be considered ballistic; that is, most electrons travel through the device without scatter-

ing. When the length of the device is much longer than lmfp, the device is diffusive; that is,

the electron paths are randomized. However, since elastic collisions preserve phase, electron

wavefunctions can still interfere, resulting in phenomena such as weak localization and uni-

versal conductance fluctuations, which are hallmarks of diffusive two-dimensional quantum

transport [46].

Similarly, the inelastic scattering length lin is the distance electrons travel ballistically

between inelastic, phase-randomizing scattering events. Typically, lin � lmfp at the low

temperatures (T ∼ 50 mK) used in experiments throughout this dissertation. Therefore, in

a device large enough to be in a diffusive regime, many elastic collisions will occur between

each phase-breaking collision, and the effective device length over which the phase remains

coherent is reduced due to diffusion. Thus, a more experimentally-relevant quantity is the

effective phase coherence length, which is related to the elastic and inelastic scattering lengths

by l2φ = lmfplin/d, where d is the dimensionality. Whether a specific device is ballistic or

diffusive depends on the relationship between the mean free path and the size of the device

length and width; whether a device behaves classically or quantum mechanically, with the

phase of the electron wavefunction affecting transport, depends on the relationship between

phase coherence length and the device length and width.
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For example, if a nanowire-based quantum dot has dimensions smaller than the phase

coherence length, quantum tunneling can occur through the dot. As the transparency of the

tunneling barriers is increased, the dot becomes conducting, and the barriers act as large

scattering centers. If the elastic scattering length is smaller than the length between the

barriers, the barriers will just be two among many scattering centers contributing to coher-

ent but diffusive transport; application of a magnetic field would likely produce universal

conductance fluctuations expected for diffusive quantum transport. However, if the length

between the barriers is smaller than the elastic scattering length, scattered electrons will in-

terfere in a way identical to an optical Fabry-Perot cavity, creating a quasi-periodic pattern

of quantum oscillations in the conductance.

Another important length scale is the inter-electron distance, which can be estimated

from the carrier density as le-e = n−1/d. When an electron system is confined, e.g. at

an interface, in a plane with a height close to le-e, the system is quasi-two-dimensional.

Similarly, if a channel has both height and width near le-e, the channel can be called quasi-

one-dimensional. At the LaAlO3/SrTiO3 interface, a typical two-dimensional carrier density

of 1 × 1013 cm−2 gives an average inter-electron distance le-e ≈ 3 nm. This means that

nanowires created with c-AFM lithography (described in § 2.2), which have a width around

10 nm, operate near the one-dimensional regime.

For 1D systems in the quasi-ballistic or ballistic regime (channel length is close to or

much smaller than the mean free path), the conductance becomes quantized in units of e2/h

[47]. Quasi-1D transport was first reported in narrow constrictions, also known as “quantum

point contacts” [48, 49]. The conductance through these narrow channels is given by the

number of allowed transverse modes, which is tunable by an external gate. The confined bal-

listic regions are generally short, of the order 100−200 nm, with a channel length set by the

distance between the top gate electrodes and the high-mobility buried layer. There have been

many attempts to engineer more extended 1D quantum wires using other growth techniques

and different materials. For example, cleaved-edge overgrown III-V quantum wires exhibit

quantized transport in devices as long as 2 µm [50]. Other one-dimensional systems include

carbon nanotubes [51], graphene nanoribbons [52], and compound semiconductor nanowires

[50, 53]. In all of these systems, electron transport is sensitive to minute amounts of disor-
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der. For example, when 2D semiconductor heterostructures are patterned into 1D channels,

the mobility drops tremendously [54]. Theoretically, this sensitivity to disorder can be un-

derstood within the framework of Tomonaga-Luttinger liquid theory, which predicts that

repulsive interactions promote full backscattering from even a single weak impurity [55, 56].

Conversely, attractive interactions are predicted to strongly suppress impurity scattering

[56, 57].

The 2D electron mobility in LaAlO3/SrTiO3 interfaces is relatively low (µ ∼ 103 cm2/Vs)

compared with high-mobility GaAs/AlGaAs heterointerfaces (µ ∼ 107 cm2/Vs). However,

despite the modest mobility of the LaAlO3/SrTiO3 2D interface, there is an increasing body

of evidence suggesting that 1D geometries are able to support ballistic transport [58, 59, 60,

10]. This will be explored in Chapters 5 and 6.

Additionally, since the LaAlO3/SrTiO3 interface is superconducting, it is useful to keep

in mind the relevant superconducting length scales: the superconducting coherence length ξ

and the London penetration depth λ. In optimally-doped bulk SrTiO3, λ is close to a micron

due to the very low carrier density [29]. At the LaAlO3/SrTiO3 interface, the conducting

system extends about 10 nm into the SrTiO3, so the thickness of the superconducting system

is much less than the penetration depth. In the case of two-dimensional superconductivity,

where d � λ, a more useful parameter is the Pearl length, Λ = 2λ2/d. In LaAlO3/SrTiO3,

this is estimated to be nearly 10 mm [29]. The superconducting coherence length is around

50-100 nm for both bulk SrTiO3 [20] and the LaAlO3/SrTiO3 interface [4].
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2.0 EXPERIMENTAL METHODS

This chapter describes in detail the experimental methods used in the following work. In par-

ticular, it presents sample growth methods, the canvas fabrication photolithography process,

c-AFM lithography methods, and low-temperature transport methods.

2.1 LaAlO3/SrTiO3 SAMPLE PREPARATION

2.1.1 Sample Growth

LaAlO3/SrTiO3 samples are grown using pulsed laser deposition by Sangwoo Ryu, Hyungwoo

Lee and Jung-Woo Lee in Prof. Chang-Beom Eom’s research group in the Department of

Materials Science and Engineering at the University of Wisconsin-Madison [61, 62, 63]. The

commercially-purchased single-crystal SrTiO3 substrates are cut in the (001) orientation,

resulting in alternating layers of SrO and TiO2. Before LaAlO3 is grown on these substrates,

the (001) crystals are TiO2−terminated by etching in buffered HF for 60 seconds either once

or twice to improve substrate quality, and annealed at 1000◦C for 2− 12 hours to achieve an

atomically smooth surface with single unit cell height steps. A thin (3.4 unit cell) LaAlO3 film

is epitaxially grown on top of SrTiO3 by pulsed laser deposition at a temperature of 550◦C and

1 × 10−3 mbar oxygen pressure, and gradually cooled to room temperature. Precise layer-

by-layer film growth is monitored in-situ by high-pressure reflection high-energy electron

diffraction (RHEED). Peaks marked by vertical lines in Fig. 3(a) indicate the deposition

of each complete LaAlO3 unit cell. Atomic force microscopy image and profile of LaAlO3

surface topography (Fig. 3(b,c)) show the single unit cell height steps.
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Figure 3: LaAlO3 growth on SrTiO3 substrate. a, RHEED intensity oscillations during film

growth. b, AFM height image of LaAlO3 surface. c, Height profile along red linecut in (b).
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Figure 4: LaAlO3/SrTiO3 canvases. a, AFM deflection image of a canvas surrounded by

16 interface electrodes. b, Optical image (5 mm × 5 mm) of a sample with 18 canvases,

each with an associated 16 bonding pads. c, Optical image of sample on chip carrier with

wirebonds.

2.1.2 Canvas Fabrication

Once the samples are delivered to our lab in Pittsburgh, conventional photolithography, ion

etching, and sputtering techniques are used by lab members Mengchen Huang and Jianan

Li to pattern electrical contacts to the LaAlO3/SrTiO3 interface, forming “canvases” on

which we can “draw” interface nanowires (See §2.2 for details on creation of nanowires). A

typical 5 mm × 5 mm sample contains 18 canvases (Fig. 4(b)). Each canvas is defined by

16 interface contacts forming a 30 µm×30 µm square (Fig. 4(a)). Gold electrodes deposited

on the surface extend from each of the interface contacts to a macroscopic bonding pad. A

wirebond machine is used to form gold wirebonds from the bonding pads to the ceramic chip

carrier (Fig. 4(c)) to obtain electrical connection with various laboratory instruments. The

samples are glued to the chip carrier using conductive silver epoxy, which allows backgating

(notice the wirebond to the far left in Fig. 4(c)).
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To create the canvases, photolithography is used to pattern the structures. Photoresist

AZ4210 is uniformly spin-coated to 2.1 µm thickness on the LaAlO3 surface and soft-baked

at 95◦C for 1 minute (Fig. 5(b)). The photoresist is then exposed to λ = 320 nm UV light,

using a photomask with a mask-alignment system to selectively let through UV light, thereby

transferring the predefined pattern onto the photoresist layer. After UV exposure, the sample

is soaked in developer (AZ400K), which dissolves the exposed photoresist (Fig. 5(c)).

The sample is then put in a vacuum chamber and electrical contact to the interface is

made by using a high energy (500eV) Ar+ beam to etch 25 nm, through the exposed LaAlO3

and deep into the SrTiO3 (Fig. 5(d)). Areas still covered with photoresist are protected from

the ion milling. Sputter deposition is performed to deposit interface contacts (Fig. 5(e)).

First 4 nm of Ti are deposited to serve as an adhesion layer, followed by 20− 25 nm of Au,

which makes an ohmic contact to the LaAlO3/SrTiO3 interface. Finally, the photoresist is

removed by the lift-off process, in which the sample is soaked in 1165 photoposit remover for

several hours and then ultrasonically cleaned for 2 minutes while submerged in acetone and

isopropanol alcohol (Fig. 5(f)). The photoresist dissolves and any metal on the photoresist

washes away, leaving only the patterned interface electrodes. The photolithography and

sputtering steps are repeated a second time to form the surface electrodes (Fig. 5(g—j)).

Any photoresist residue left on the sample surface is removed by oxygen plasma cleaner at

100 W for 24 seconds (Fig. 5(k)).

2.2 c-AFM LITHOGRAPHY

The interface between the two complex oxides LaAlO3 and SrTiO3 has remarkable properties

that can be locally reconfigured between conducting and insulating states using a conductive

atomic force microscope (c-AFM). The c-AFM fabrication technique [64] provides great

versatility in the creation of nanoscale devices, including nanowire junctions [64], sketched

field-effect transistors (SketchFETs) [64], photodiodes [65], THz emitters and detectors [66],

and sketched single-electron transistors (SketchSETs) [67].
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Figure 5: Photolitography procedure. a, Unpatterned sample. b—f, Photolithography, ion

milling and sputtering steps to deposit interface electrodes. g—j, Photolithography and

sputtering steps to deposit surface electrodes. k, Final oxygen plasma cleaning step.
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Figure 6: AFM operation. a, Schematic of the essential components for contact mode

AFM. b, Illustration of force-distance curves and corresponding AFM modes. Adapted from

http://www.teachnano.com/education/AFM.html.

2.2.1 AFM Operation

Atomic force microscopy (AFM) is a member of a family of scanning probe techniques that

originated with scanning tunneling microscopy (STM) in 1981 [68]. When it was found

that significant forces between the tip and the substrate surface atoms had to be accounted

for in STM experiments, it was speculated that those same atomic forces could provide

the basis for a second type of scanning probe microscopy [69]. With the realization of

atomic force microscopy [70], it was expected that near-atomic resolution could be achieved

for insulators as well as metals, and without the need for high-vacuum conditions or special

surface preparation [69]. In the three decades since its birth, AFM has matured into a widely-

used technique with many variations, including force sensing, lithography, nanomanipulation,

and nanoindentation, to characterize and manipulate materials at the nanoscale.

AFM uses a very sharp tip with a radius of curvature on the order of 10 nm to obtain

high-resolution topography of a sample surface (see Fig. 6(a)). As the tip, which is mounted
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under a cantilever, scans across the surface, the atomic forces between the atoms at the

end of the tip and the atoms of the sample surface cause the cantilever to bend. This

bending of the cantilever is detected and converted into height information. Cantilever

movement is typically detected by shining a laser onto the top of cantilever, which has

a highly-reflective coating. The laser spot reflects onto a quad-segmented photodetector;

vertical bending or lateral twisting of the cantilever is revealed in the position of the laser

spot on the photodetector, and the analog output of the photodiodes is called deflection.

There are three distinct modes in which AFM can be performed: contact, tapping and

non-contact. In contact mode, the tip is pressed into direct contact with the sample surface

so that the atomic forces are repulsive, as opposed to non-contact, where the tip is oscillated

above the sample surface and atomic forces are attractive. Tapping mode exists between

these two, as shown in Fig. 6(b).

Here we use contact mode in an Asylum MFP3D AFM to image the canvases and perform

conducting AFM (c-AFM) lithography. In contact mode, the force exerted on the sample

by the tip, given by F = −k × D, where k is the cantilever’s spring constant and D is

the deflection distance, is kept constant. This is achieved using a feedback loop where the

deflection signal from the photodetector serves as the error signal, and the feedback output

adjusts the height of the cantilever by controlling the Z-piezo. Mapping the Z-piezo height

change as a function of position results in a surface topography image.

2.2.2 c-AFM Lithography

For LaAlO3/SrTiO3 samples grown with an LaAlO3 thickness just below the critical thickness

of 4 u.c. at which the two-dimensional electron liquid forms, the interface is insulating, but

reversibly and hysteretically tunable through the metal-insulator transition (MIT) by use of a

back gate, or a top gate [26]. A voltage-biased c-AFM tip placed in contact with the LaAlO3

surface can locally induce the MIT at the interface. Positive voltages (V ∼ +10 V) applied

to the tip locally switch the LaAlO3/SrTiO3 interface to a conductive state (“write”), while

negative voltages (V ∼ −10 V) applied to the tip locally restore the LaAlO3/SrTiO3 interface

to an insulating state (“erase”). Moving the positively-biased tip across the surface creates
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conducting structures less than 10 nm wide [71] at the interface. Moving the negatively-

biased tip perpendicularly across an existing nanowire “cuts” the nanowire (see Fig. 7(b)).

The width profile of the current drop (blue line in Fig. 7(b)) allows an estimation of the

nanowire width at room temperature; typical widths are between 2-20 nm.

When a very small negative voltage (−0.05 V < Vtip < −0.5 V) is used to cut a nanowire,

the nanowire will remain conducting; however, a nanoscale potential barrier is created in the

wire. The size of the barrier is characterized by monitoring the change in resistance during the

cutting process at room temperature. Using these “write” and “erase” c-AFM procedures, a

number of reconfigurable nanostructures can be created with nanoscale precision (∼ 2 nm).

2.2.3 Water-Cycle Mechanism

The mechanism for writing (erasing) is attributed to protonation (de-protonation)of the

LaAlO3 surface [72, 73]. Water molecules in the atmosphere dissociate into H+ and OH−,

which adsorb on the LaAlO3 surface (Fig. 8(a)). A positively-biased c-AFM tip removes some

of the OH− ions, leaving a path of excess H+ on the surface (Fig. 8(b)). The protonated

LaAlO3 surface in critical-thickness LaAlO3/SrTiO3 heterostructures creates an attractive

confining potential that defines the nanowire. A negatively-biased c-AFM tip removes H+

ions from the surface, restoring a balanced surface charge density so that the net attractive

potential disappears and the insulating state is restored at the interface (Fig. 8(c)). This

water-cycle mechanism allows for multiple write-erase cycles without physically modifying

the heterostructure [73].

Because the protons are physically separated from the conducting region by a highly

insulating LaAlO3 barrier, this nanofabrication method can be viewed as analogous to the

modulation doping technique [74] commonly used in III-V semiconductor heterostructures.

The separation of dopants from the conducting region minimizes scattering from imper-

fections; this suggests that c-AFM lithography may be a very useful technique to reduce

dimensionality while not disturbing transport by introducing disorder in the way more con-

ventional lithography techniques tend to do. A key difference from III-V nanostructures is

the relative proximity between the dopant layer and conducting channel, here only 1.2 nm.
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Figure 7: c-AFM procedure. a, As a positively-biased c-AFM tip moves across the green

path, a conducting nanowire is formed at the interface (left panel). This allows a current

(right panel) to be measured between the gold electrodes. b, A negatively-biased tip, moved

across the wire (left panel), locally restores the insulating state at the interface. “Cutting”

the nanowire results in the current dropping to zero (right panel). Data is adapted from

Ref. [71].
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Figure 8: Water-cycle mechanism for c-AFM lithography. a, In atmosphere, water dissociates

and is adsorbed on the LaAlO3 surface. b, Writing removes OH−, leaving H+ ions to

effectively modulation-dope the interface. c, Erasing restores ionic balance at the surface,

and the insulating state at the interface. (Adapted from C. S. Hellberg, APS talk)
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2.3 LOW-TEMPERATURE TRANSPORT

This section describes the hardware, software, and experimental techniques used to perform

the low-temperature transport measurements reported in later chapters.

2.3.1 Physical Property Measurement System Operation

A Quantum Design Physical Property Measurement System (PPMS) is used to bring the

samples to low temperatures and apply magnetic fields up to ±9 T. Immediately after

creating a device with c-AFM lithography in an Asylum Research AFM, the sample is

transferred to the PPMS and put under vacuum within 5 minutes, and the temperature

reaches below the freezing point of water within 10 minutes.

The innermost part of the PPMS consists of a sample probe surrounded by a supercon-

ducting magnet (Fig. 9(a)). The probe and magnet are submerged in a liquid helium bath

(inner part pictured in Fig. 9(b)), which is surrounded by vacuum jackets (colored blue) and

an outer liquid nitrogen jacket (colored green) to reduce the helium boil-off rate. At atmo-

spheric pressures, the boiling temperature of helium is 4 K; however, a base temperature of

1.8 K is achieved by pumping on the helium bath.

2.3.2 Superconducting Magnet Operation

Magnetic fields of up to ±9 T are applied using a superconducting magnet, labeled in

Fig. 9(a). Superconducting wire is wrapped around the sample space; a magnetic field

is created inside the sample space, where the sample is located, by running current through

the coil. The wire is made out of superconducting material with a large critical current,

which allows large currents to be carried, achieving large magnetic fields. The magnet cir-

cuit is shown in Fig. 9(c), with the superconducting wire in blue. The magnet operates in

two modes: “driven” and “persistent”. In driven mode, pictured in Fig. 9(c), a small heater

circuit is closed, which opens the persistent switch. The current is forced to run through the

magnet power supply, so the power supply can be used to change the current (and therefore

the magnetic field). The current measured through the driven circuit is calibrated to the
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Figure 9: PPMS schematic. a, Sample probe and magnet. b, PPMS dewar components.

Sample probe in (a) is inserted into the liquid helium bath space during installation. (adopted

from PPMS hardware manual) c, Superconducting magnet circuit.
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strength of the magnetic field at the sample position by the manufacturer, and afterward

is used to determine the magnetic field strength. When the persistent switch is closed, the

magnet is in persistent mode, with a fully superconducting circuit and no dissipation. The

magnetic field strength at the sample is then constant, and the magnet power supply can be

turned off; this mode conserves helium.

2.3.3 Dilution Refrigerator Operation

For the results presented in this thesis, a Quantum Design dilution refrigerator (DR) insert

is used in conjunction with the PPMS to achieve a base temperature of 50 mK. The DR

is inserted in the PPMS sample space, and utilizes a turbopump and diaphragm pump

to circulate the 33% 3He/66% 4He mixture. As shown in Fig. 10(a), the mixture phase-

separates in the mixing chamber into a concentrated (dark blue), mostly-3He phase and a

dilute (∼ 6% 3He, light blue) phase. Pumping on the still with the turbopump decreases the

still temperature to around 600 mK, and reduces the 3He concentration in the still. This

draws 3He from the concentrated phase into the dilute phase in the mixing chamber, which

absorbs heat, providing cooling power to the sample stage. The turbopump is backed by a

diaphragm pump which then sends the 3He gas through the condenser. The liquid 3He then

flows through the impedance, into the still heat exchanger and through the continuous heat

exchanger, where the liquid 3He is further cooled before returning back into the concentrated

side of the mixing chamber.

2.3.4 Software: LabVIEW

LabVIEW is utilized to interface with the data acquisition (DAQ) hardware in both the

MFP3D AFM and PPMS setups. A crucial aspect is the software-based lock-in amplifier,

which is used to apply voltage signals to the device. This same software program measures

voltage and current signals from the device, and is able to perform lock-in demodulation of

those measured signals.

There are two typical types of measurements performed, direct current (dc) and alter-

nating current (ac), colloquially termed “I-V” and “lock-in”. I-V measurements use a low
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Figure 10: DR components.
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ac oscillation frequency (0.2 − 1 Hz), large ac oscillation amplitude (1 − 3 mV), and typi-

cally a sawtooth or triangle waveform, shifted in phase by 180 degrees. While the lock-in

program is used to source this voltage signal, no demodulation of the measured signal is

performed; instead, the full waveform of the sourcing voltage and the measured current and

voltage signals are used to achieve 2-terminal (measured current versus sourcing voltage) and

4-terminal (measured current versus measured differential voltage) I − V curves, revealing

details of zero- and finite-bias transport behavior. On the other hand, lock-in measurements

use a fast ac oscillation frequency (in this work, typical frequencies are 1.346 − 13.46 Hz),

small ac oscillation amplitude (∼ 100 µV to obtain an effectively zero-bias measurement),

and sine waveform. The lock-in program demodulates the measured current and voltage

signals with respect to the fast sourcing frequency to obtain a single current or voltage value

for each cycle. This type of measurement can be used to perform fast, sensitive experiments;

for example, to examine the zero-bias conductance while sweeping a side-gate and magnetic

field.

2.3.5 Hardware

2.3.5.1 Peripheral Component Interconnect Extension (PXI) The PXI chassis

(Fig. 11(a)) holds several PXI cards with DAQ analog inputs (AI) and analog outputs (AO)

(Fig. 11(b); red box in (a)). AO channels are used as voltage sources. If the AO channel is

to be used as a gate voltage, a large series resistor (∼ 100 MΩ− 1 GΩ) is used to limit any

potential current flow. Gate voltages are typically much larger than source-drain voltages

(Vgate ∼ 100 mV; Vsd ∼ 1 mV), and could result in hundreds of nanoamperes of current run-

ning through the nanowire. Large currents are likely to damage the nanowires; the transport

properties would irreversibly and drastically change, likely becoming completely insulating,

or more colloquially, being “fried”. AI channels receive the signals from the sample, after

passing through transimpedance or differential voltage amplifiers (Femto models DDPCA-

300 and DLPVA, Fig. 11(c, d); green box in (a)). The signals from the AO channels are

then demodulated by the lock-in program to give the measured voltage or current reading.
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Figure 11: DAQ setup.
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2.3.5.2 Pickering At low temperatures, it is desirable to switch the measurement con-

figuration without physically touching the cable connections. Small static discharge, which is

unnoticeable at room temperature, can damage the nanowires at low temperatures. There-

fore, a Pickering Matrix Module (yellow box, Fig. 11(a)) is used. The eight electrodes

coming from the sample breakout box (white box, Fig. 11(a)) are electrically connected to

the X-channels in the Pickering Matrix (Fig. 11(e)). The AO and AI channels are connected

(sometimes with resistors or amplifiers in between, as described above) to the Y-channels.

Inside the Pickering, any crosspoint matrix can be achieved between the X and Y channels,

and they all share a common ground. A LabVIEW program interfaces with the Pickering

Matrix Module to set the desired measurement configurations.
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3.0 ELECTRON PAIRING WITHOUT SUPERCONDUCTIVITY

3.1 INTRODUCTION

The contents of this chapter represent a collaborative work published in Cheng, Tomczyk,

Lu, Veasey, Huang, Irvin, Ryu, Lee, Eom, Hellberg and Levy, Nature 521 196, 2015 May

14. The attractive Hubbard model calculation in § 3.4.2 was performed by C. S. Hellberg.

The superconducting single-electron transistor (SSET), consisting of an electrically gated 

superconducting quantum dot (QD) coupled to superconducting leads by tunneling barriers, 

presents a particularly powerful tool for probing fundamental properties of superconductors 

[75]. Generally, transport characteristics depend on the relative magnitudes of the charging 

energy Ec, superconducting gap energy ∆, and orbital level spacing δE in the QD. Transport 

signatures of metallic superconducting islands include even—odd parity effects, Cooper pair 

tunneling, and parity-affected superconductivity [76].

Here we perform transport experiments with nanowire-based single-electron transistors at

the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic

gating reveals a series of two-electron conductance resonances—paired electron states—that

bifurcate above a critical magnetic field Bp of about 1−4 tesla, an order of magnitude larger

than the superconducting critical magnetic field. For magnetic fields below Bp, these reso-

nances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances

exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as

high as 900 mK, well above the superconducting transition temperature (∼ 300 mK). These

experiments demonstrate the existence of a robust electronic phase in which electrons pair

without forming a superconducting state. Key experimental signatures are captured by a
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model involving an attractive Hubbard interaction that describes real-space electron pairing

as a precursor to superconductivity.

3.2 DEVICE GEOMETRY AND FABRICATION

Quantum transport measurements are performed on LaAlO3/SrTiO3 SSETs fabricated by

conductive atomic force microscope (c-AFM) lithography [71, 64]. The devices are con-

structed from three basic elements: superconducting nanowires [77], nanoscale potential

barriers created by c-AFM erasure [67] and electrical side gates. Figure 12(a) shows a

schematic of a typical structure, consisting of a nanowire (between leads 1 and 5) of width

w ≈ 5 nm, three voltage probes (leads 2-4) and a side gate. Voltage leads are located a

distance L = 2.5 µm apart, separating the main channel into two segments. The upper

segment (between leads 2 and 3) is open, that is, without barriers, while the lower nanowire

segment forms an LQD = 1 µm QD bounded by two barriers. A side gate tunes the chemical

potential of both the upper wire and the QD, and modulates the tunnel coupling between

the QD and the external leads.

In this work, c-AFM lithography is used to create 58 QD devices with varying dimensions

(for example, 250 nm < Lb < 1 µm) and barrier heights R (see section § 3.2.2 below) and

on multiple SrTiO3 substrates. We show data from eight representative devices named

A through H; device parameters for all eight devices are summarized later in Table 1 in

§ 3.4.1.1. We primarily focus on data from device A (Figs. 12,15,16), which exhibits features

qualitatively similar to the whole set of devices.

3.2.1 Barrier Fabrication

In Fig. 13(a), a single barrier device, which has a similar design to device A but contains

only one barrier instead of two, is shown in order to demonstrate the barrier fabrication

technique. During barrier fabrication, the four-terminal resistance difference ∆R = RQD −

Ro is monitored in real time and serves as a figure of merit for low-temperature barrier
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Figure 12: Device schematic and transport characteristics. a, Device schematic. The

nanowire width w = 5 nm, the nanowire QD length is 1 µm, and barriers are 0.75 µm

away from the sense leads 3 and 4. The length of the open wire is 2.5 µm, equal to the

nanowire QD length plus total distances from barrier to sense leads. b, dI/dV characteris-

tics (color coded) as a function of four-terminal voltage V23 and side gate voltage Vsg in the

open wire in device A. c, dI/dV characteristics of the nanowire QD in device A measured

simultaneously with data shown in (b).
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Figure 13: Nanoscale potential barrier engineering and low-temperature transport charac-

teristics. a, Single-barrier device schematic. It has the same structure as device A except

that only one barrier is integrated in the design. b, Resistance change during barrier cutting

(Methods); t is time. c, The differential conductance dI/dV as a function of Vsg at T = 75

mK. The wire can be pinched off by Vsg at the barrier site.

performance, where RQD and Ro are the resistances of the QD wire and the open wire. RQD

and Ro are obtained simultaneously by two four-terminal measurements using two hardware-

simulated lock-in amplifiers, such that wire decay is eliminated from the measurement and

∆R is very precise. Prior to barrier cutting, RQD and Ro are nominally the same with

∆R < |5| kΩ (within 1% difference). A sharp AFM tip (nominal radius of curvature ∼ 8

nm) moves perpendicularly across the wire at 200 nm s−1 speed with small negative voltages

(−0.1 V to −0.5 V) multiple times, which causes ∆R to increase discretely, as shown in

Fig 13(b). Low-temperature transport study (T = 75 mK) shows the wire conductance can

be pinched off by Vsg for a single barrier device with ∆R ≈ 120 kΩ. The conductance

oscillations (30 mV < Vsg < 50 mV) indicate quantum mechanical tunneling through the

barrier (Fig. 13(c)).
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Figure 14: Transport properties of three 500 nm confined nanowire devices of different single

barrier heights at T = 50 mK. Plots show color-coded dI/dV as a function of Vsg and source-

drain voltage V34. a, Device F (∆R/2 = 20 kΩ) requires a back gate voltage Vbg = −5.6

V to pinch off the device since Vsg has limited tunability due to leakage at high absolute

values. b, Device G (∆R/2 = 110 kΩ) shows similar properties to device A. c, Device H

(∆R/2 = 305 kΩ) shows no conductance diamonds.
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3.2.2 Impact of Barrier Height on Transport

The barrier resistance ∆R is a good indicator of the tunnel barrier width and strongly influ-

ences the low-temperature transport properties. Figure 14 shows transport characteristics

of three 500 nm QD devices (devices F, G and H). The device designs are similar to that

of device A, but with a shorter distance of 500 nm between the two barriers. The only

difference among devices F, G and H is the single barrier resistance ∆R/2, with ∆R/2 =

20, 110 and 305 kΩ respectively. The resulting difference in transport is clear. Device F

shows the most conductance diamonds for the smallest barrier resistance (superconductivity

is suppressed in this device after applying a Vbg = −5.6 V), while device H, with the largest

barrier resistance, is virtually featureless. Conductance diamonds and superconductivity-

related phenomena in dI/dV of device G have Vsg-dependence that is very similar to that

of device A. Since the single barrier tunneling rate decays exponentially with the barrier

width, the differences in transport of devices F, G and H can be understood as a result of

suppressed quantum tunneling rates under the assumption that the two barriers are slightly

asymmetric.

3.3 EXPERIMENTS AND RESULTS

3.3.1 Transport at B=0 T

The low-temperature (T = 50 mK) differential conductance (dI/dV ) versus side-gate voltage

(Vsg) measurements for the nanowire QD and open wire show contrasting transport charac-

teristics (device A, Fig. 12(b), (c)). While the open wire (Fig. 12(b)) exhibits superconduc-

tivity [77] at all Vsg values shown, the QD (Fig. 12(c)) exhibits a sequence of diamond-shaped

insulating regions for Vsg < −10 mV. Figure 15 explores the transport behavior of the QD

in more detail. The conductance increases by several orders of magnitude only when an

available state in the QD is aligned within kBT of either the source or the drain chemical

potential; this condition defines the diamond-shaped insulating regions in Fig. 15(b). Within

the diamonds, conductance through the QD is highly suppressed (dI/dV < 10−2 e2/h), as

35



observed between the conductance peaks in the zero-bias (V34 = 0 V) line cut in Fig. 15(a)

at low Vsg, and at V34 = 0 V in Fig. 15(c). Resonant supercurrent is occasionally observed

between insulating regions, e.g. at Vsg = −25 mV (Fig. 15(d)). In the regime Vsg > 0 mV,

where the barriers are highly transparent, supercurrent recovers through the QD (Fig. 15(e)).

3.3.2 Transport at Finite Magnetic Field

Figure 16(a)-(e) shows how the conductance diamonds evolve as a function of an applied

out-of-plane magnetic field B. At B = 0 T, two zero-bias peaks (ZBPs) are visible, with

some narrowing of the lineshape taking place at B = 1 T. The diamond pattern remains

relatively unchanged at B = 2 T, though the size of the diamond is slightly reduced. At

B = 3 T, new diamonds emerge and separate as the magnetic field is increased further

to B = 4 T. A high-resolution scan of the conductance versus gate voltage at zero bias

(Fig. 16(f)) enables the ZBP to be fitted and tracked versus magnetic field. A global shear

of all of the ZBP splittings above Bp is observed and offset in Fig. 16(f) (see Fig. 17 and

§ 3.3.2.1). This shear, which appears in 60% of the total devices and is possibly attributable

to orbital effects [76], does not influence the analysis of Bp (§ 3.3.2.2).

The ZBP at Vsg = −27 mV splits above a critical magnetic field Bp = 1.8 ± 0.1 T

(Fig. 16(f)), corresponding to the emergence of new diamonds (Fig. 16(a-e)). The critical

magnetic field at which this occurs is one order of magnitude larger than the upper critical

field for superconductivity µ0Hc2 ≈ 0.2 T. The ZBPs at Vsg = −19 mV and Vsg = −17 mV

have successively smaller values for Bp and show pronounced superconducting resonances

below |B| < 0.2 T (indicated by the red arrow in Fig. 16(f)). For |B| > Bp, the energy

difference between the split peaks increases Zeeman-like with magnetic field: EZ = gµB(B−

Bp). The Landé g-factor g = 1.2±0.1 (Fig. 16(g)) is calculated from the slope by taking into

account the experimentally determined coupling factor α = 0.10±0.01 eV V−1 (§ 3.4.1.1). At

much larger magnetic fields the Zeeman-split ZBPs occasionally intersect and lock together

(re-entrant pairing) before separating again (for example, at Vsg = −25 mV). The energy

associated with Bp, Ep = gµBBp, ranges between 100 µeV and 900 µeV for the four devices

shown here (Fig. 16(h)) and decreases non-monotonically with increasing Vsg for each device.
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Figure 15: Transport characteristics of device A. a, Zero-bias line cut of the dI/dV map

in b; filled black symbols show positions of line cuts displayed in c-e. b, dI/dV versus V34

and Vsg. c—e, Full suppression of transport in device A at Vsg = −25 mV (c), resonant

tunneling transport at Vsg = −19 mV (d), and fully superconducting transport at Vsg = 0

mV (e).
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Figure 16: Out-of-plane magnetic field dependence of device A at T = 50 mK. a—e, Top

panels, dI/dV dependence on V34 and Vsg at B = 0− 4 T. New diamonds emerge at B = 3

T in d. Color scale (top right), 0 − 80 µS. Bottom panels, zero-bias line profiles in a—e.

f, Top panel, magnetic field dependence of ZBPs. All the ZBPs split above some critical

fields, Bp. Color scale, 0 − 40 µS. Bottom panel, line profile (black markers) of ZBP at

B = 3.8 T in the top panel, indicated by the horizontal black arrow. Red line is the fit to

extract peak locations (see Methods). Right panel, line profile at Vsg = −19 mV indicated

by the vertical black arrow. The sharp peak at B = 0 T is due to superconductivity (SC).

g, Energy difference EZ of two Zeeman splitting branches of the ZBP at Vsg = −27 mV.

Bp and g factor can be extracted from the intercepts and slopes in the linear fits. h, Ep

dependence on rescaled V ∗sg for all available ZBP splittings in four devices A, B, C and D,

where V ∗sg = (Vsg − V min
sg )/(V max

sg − V min
sg ), and V max

sg and V min
sg are maximum and minimum

ZBP locations of each device. Ep roughly decreases with increasing Vsg.
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3.3.2.1 Universal Shift with Magnetic Field Below Bp, the ZBPs are generally in-

sensitive to magnetic fields. Above Bp, the centers of the ZBP splittings move nonlinearly

with magnetic fields, as shown in the red trace Vsg(B) in Fig. 17(a). This movement, pos-

sibly arising from the orbital effect, is only observed in a fraction of devices. A similar

effect has been reported in ref. [78]. This is corrected (Fig 17(b)) by offsetting the magnet-

ically induced global shift to keep the centers of ZBP splittings relatively constant, that is,

Vsg(B) = Vsg0(B)− δVsg(B). This shift procedure does not influence the analysis of Bp, nor

does it change the relative spacing between splittings. A waterfall plot (Fig. 18) of Fig. 16(f)

is included to provide clear line cuts of the ZBPs at all fields.

3.3.2.2 Analysis of Bp Above the pairing field Bp, single electron tunneling occurs and

standard Coulomb blockade physics analysis applies. Closely spaced Coulomb blockade ZBPs

can be fitted to a multi-peak hyperbolic cosine expression [79]

dI/dV = G0 +
∑
i

Ai cosh−2[Bi(Vsg − V i
sg)] (3.1)

where G0, Ai and Bi are constants. Equation 3.1 is used to examine two peaks that have

split from a single ZBP at low magnetic fields in order to extract the ith peak location as

a function of field (V i
sg(B) indicated in the red trace in the main panel of Fig. 16(f)). This

fit was performed for multiple pairs of split peaks in many devices. The energy difference of

the split peaks, EZ(B) = α(V 2
sg(B)− V 1

sg(B)), where α is the coupling factor as described in

§ 3.4.1.1, can be fitted to a straight line as in Fig. 16(g). The slope of this fit gives the Landé

g-factor according to EZ = gµB(B − Bp), where the Zeeman energy difference is offset by

the pairing energy Ep = gµBBp. As mentioned in § 3.3.2.1, ‘straightening’ the magnetically

induced global shift to keep the centers of ZBP splittings relatively constant does not disturb

this analysis. Both peak positions V 1
sg(B) and V 2

sg(B) have the same offset at each field, so

EZ(B), from which g and Bp are calculated, remains unaffected.
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Figure 17: Global shift correction of data from device A. a, Original data for Figs 16(f) and

22(a). The global shift is illustrated by the red trace, Vsg(B). b, Data shown in Figs 16(f)

and 22(a) are corrected by Vsg(B) = Vsg0(B)− δVsg(B).
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Figure 18: Waterfall plot of Fig. 16(f). Plot shows lock-in dI/dV data at small (100 µV)

bias as a function of Vsg, taken as the magnetic field is slowly swept from −9 T to 9 T.
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3.3.3 Temperature Dependence

Temperature-dependent transport measurements (Fig. 19) show Bp to be nearly independent

of temperature up to the highest value measured (T = 900 mK). Of four devices, only device

B, which shows the lowest Bp, exhibits a threefold suppression at T = 900 mK. Figure 19(a)

shows a representative conductance map versus Vsg and B acquired at T = 100 mK. The

conductance at B = 6 T shows two well-resolved split peaks at T = 100 mK. As the

temperature is increased while the magnetic field is held constant at B = 6 T, the side-gate

splitting between the two peaks ∆Vsg increases, shown in Fig. 19(c). Assuming that the

g-factor is constant over this temperature range, this result implies that dBp/dT < 0, which

is also consistent with the fitting result summarized in Fig. 19(d).

3.4 DISCUSSION

3.4.1 Pair Tunneling and Resonant Superconductivity

The quantum transport behavior of LaAlO3/SrTiO3 nanowire QDs contrasts sharply with

conventional Coulomb blockade behavior in other semiconductor nanostructures [80]. Gen-

erally, the ‘addition energy’ (the difference of chemical potentials µN and µN+1) required to

change the charge state of a QD from N to N + 1 electrons is the sum of both the classical

charging energy Ec and the orbital energy δE of the device: Eadd(N) = Ec(N) + δE(N).

For QD systems involving semiconductors, carbon nanotubes or superconductors [80], Eadd

is usually dominated by Ec, resulting in regularly spaced Coulomb diamonds. In device

A, Eadd decreases (non-monotonically) from 640 µeV (at Vsg = −47 mV) to 210 µeV (at

Vsg = −13 mV). The level spacing is non-uniform, signifying that orbital contributions

dominate the addition energy. Resonant supercurrent flowing through the QD is observed

when the addition energy Eadd falls below the superconducting gap [3] ∆ ≈ 40 µeV (for

example, at Vsg = −39 mV and −19 mV), consistent with Andersons criterion for nanoscale

superconductivity (δE < ∆) [81].
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Figure 19: Temperature dependence of Bp. a, Out-of-plane field dependence of ZBPs from

device B at T = 100 mK. Trace of red dots reveals the actual peak locations extracted by

fitting. b, Line profiles at B = 6 T of different temperatures from 100 mK (blue) to 900

mK (red) with 100 mK spacing. Red triangles mark actual peak positions. Curves are offset

for clarity. c, Vsg difference ∆Vsg between two splitting branches in (b) as a function of

temperature. A larger ∆Vsg at higher temperatures indicates lower Bp. d, Temperature

dependence of Bp for the most isolated ZBP splittings in four devices B, C, D and E. Bp

in device B, which is the lowest among the four devices, decreases non-monotonically with

increasing temperature. Error bars, s.e.m. from the linear fitting errors of the positive and

negative critical magnetic fields.
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Experiments in Al-based superconducting SETs report pair tunneling only in the su-

perconducting state, and in the pair-tunneling condition Ec < 2∆ when the pairing energy

dominates over the Coulomb charging energy [76]. The high permittivity of SrTiO3 leads to

a significant reduction of the charging energy for LaAlO3/SrTiO3 nanowire SSETs, enabling

them to operate in the pair-tunneling regime (see §§ 3.4.1.1 and 3.4.1.2 for estimates and

analysis). The observed ZBP splitting indicates that electron pairing is the preferred ground

state that persists in magnetic fields far larger than µ0Hc2, above which superconductivity

is suppressed.

3.4.1.1 Device Transport Parameters As mentioned previously, bulk SrTiO3 is an

incipient ferroelectric at low temperatures with a divergently large and gate-tunable dielectric

constant [19] εr ≈ 20, 000. Consequently, estimation of the gate-dot capacitance yields Csg ≈

100 fF, using a parallel wire model Csg = πεrε0L/ cosh−1[d/2r] with vacuum permittivity ε0,

QD length L = 1 µm, QD-gate spacing d = 1 µm, and nanowire radius rQD = 5 nm = side

gate radius rsg = 5 nm. The corresponding charging energy is vanishingly small in the ideal

case (that is, zero Vsg) Ec = e2/CΣ < e2/Csg = 2 µeV, where CΣ is the total capacitance of

the QD. The actual Ec could be larger since εr is expected to be reduced by electric field

and strain effects at the interface.

For a nanowire with length L = 1 µm and width w = 5 nm, the number of carriers

can be estimated as N = nsLw = 500 by using a typical two-dimensional LaAlO3/SrTiO3

carrier density ns ≈ 1013cm2. The mean level spacing between spin-degenerate levels can

be estimated by using a ‘particle in a one-dimensional box’ model and effective mass [82]

m∗ = 0.7me. This gives δE = ∂E
∂N

= π2Nh̄2

m∗L2 ≈ 500 µeV, which is consistent with the values of

Eadd. As one can see, the addition energy is dominated by orbital level spacing δE.

The ability of the side gate to tune the chemical potential of the device is characterized

by α = Csg/CΣ. The coupling factor can be calculated using the slopes β and γ which

define the diamonds in the dI/dV map, 1/α = 1/β + 1/γ. Coupling factors vary from

α ≈ 0.03− 0.13 eV/V, with a typical α ≈ 0.10 eV/V. For all devices, the coupling factor is

observed to decrease at high Vsg values; this variation is reflected in Table 1.
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Table 1: Parameters of eight SSET devices. All devices have a schematic similar to that of

device A but with different control (open) wire length Lw, distance between two barriers Lb,

single barrier resistance ∆R/2, and range of side gate coupling factor α for all the diamonds.

Device Name Lw (µm) LQD (µm) ∆R/2 Coupling Factor Range (eV/V)

A 2.5 1 32 0.08-0.13

B 2.5 1 30 0.06-0.11

C 2.5 1 15 0.04-0.10

D 2.5 1 15 0.04-0.10

E 2.5 1 25 0.03-0.06

F 2 0.5 20 0.03-0.06

G 2 0.5 110 0.06-0.12

H 2 0.5 305 0.07-0.09

3.4.1.2 Constant Interaction Model The constant interaction model is widely used

to analyze QD transport characteristics through two independent variables: Coulomb inter-

actions and single-particle energy levels [80]. Here, superconductivity is combined with the

constant interaction model and the analysis from ref. [83] is extended by including non-zero

orbital level spacing. In a QD with N electrons, the excess charge has two parts: the integer

part n = N − N0 and a continuous part CsgVsg/e representing electrostatic charge induced

by the gate, where N0 is the charge at zero gate voltage. The system ground state energy

E(N) can be written as

E(N) =
N∑
i=1

Ei + Ec(n− Vsgαe/Ec)2/2 + pδp (3.2)

where Ei are single-particle energy levels, p is a parity factor with p = 0(1) for even (odd)

N and δp is parity energy. The first term in equation 3.2 is the electrochemical contribution

determined by quantum confinement, the second term is electrostatic part induced by Vsg

and the third term is the extra energy p = E(Nodd)−(E(Nodd+1)+E(Nodd−1))/2 which the
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odd electron has to pay to enter the QD. The addition energy Eadd, which is the difference

(of chemical potential µ) of a difference (of total energy E), is directly measured in the

tunneling spectroscopy measurement. Namely, the chemical potential is

µ(N) = E(N)− E(N − 1) = EN + Ec(n− 1/2)− eαVsg + βδp (3.3)

where β = −1(1) for even (odd) number of electrons (N). Eadd can subsequently be written

as

Eadd = µ(N + 1)− µ(N) = Ec + δE(N) + γδp (3.4)

where γ = 2(−2) for even (odd) number of electrons. Interestingly, Eadd = Ec − 2δp can be

negative in the odd case (δE(Nodd) = 0) if Ec < 2δp, suggesting this unpaired electron is

not stable and wants to pair with a partner. In a BCS superconductor, the parity energy is

approximately the gap energy (δp ≈ ∆) in the limit of small level spacing δE(N) compared

to the superconducting gap ∆ (δE < ∆). In the opposite extreme limit δE � ∆, δp can

be enhanced such that δp = δE/2ln(δE/∆) due to quantum fluctuations [84]. Either way it

is reasonable to assume Ec < 2δp based on the estimate of Ec, suggesting pair tunneling is

the preferred transport mechanism in the devices explored here. Note in the case of pairing

without superconductivity, the parity energy δp should be replaced by the pair binding energy

∆b in equations 3.2-3.4. When the temperature and magnetic field are increased, δp and ∆b

are suppressed to zero at the same Bp where the Zeeman splitting of the peaks occurs.

3.4.2 Attractive Hubbard Model

Electron pairing without superconductivity can be described by a phenomenological Fermi-

Hubbard model (equation 3.5) with an attractive on-site potential U < 0 [85]. The QD is

represented by a one-dimensional chain of local pairing sites that can be occupied with zero,

one, or two electrons. For sufficiently attractive U < 0, electrons will bind into pairs. This

is the regime of the parity effect: in zero external field, the ground state as a function of

gate voltage (represented by the chemical potential in equation 3.5) will always contain an

even number of electrons. The external magnetic field B favors polarized states, breaking

the pairs. For magnetic fields greater than a critical field B > Bp, ground states with odd
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electron numbers can be stabilized. The interaction between pairs causes the critical field to

decrease monotonically with increasing filling (increasing chemical potential or gate voltage).

The Hamiltonian is written as:

H = −t
∑
i,σ

(c+
i+1,σci,σ + c+

i,σci+1,σ) + U
∑
i

ni↑ni↓ + gµBB
∑
i

Szi − µ
∑
i,σ

ni,σ (3.5)

where c+
i,σ and ci,σ, are creation and annihilation operators for electrons on site i with spin

σ =↑, ↓; the kinetic parameter t > 0 quantifies the effective hopping between adjacent pairing

sites; ni,σ = c+
i,σci,σ is the number operator; Szi = (1/2)(ni,↑−ni,↓) is the spin operator; U < 0

represents the on-site attractive interaction strength; B is the applied magnetic field; and µ

is the chemical potential.

Here, the Hubbard model is solved on an infinite chain with zero, one and two electrons.

The Bethe ansatz may be used to solve the model for arbitrary filling, but it is much more

complicated than the approach presented here [86]. For zero and one electrons, the energies

are simply given by:

E0 = 0 (3.6)

E1 = −2t− 1

2
gµBB − µ (3.7)

Only the low-field two-electron ground state, which is a spin singlet [87, 88], is considered

for this analysis. The triplet will be the ground state at higher fields for two electrons.

The ground state has zero momentum, so the wavefunction depends only on the separation

between the electrons and must behave exponentially. Thus the non-normalized wavefunction

is

φ(i, j) = e−ζ|i−j| (3.8)

for electrons on sites i and j. For i 6= j, Schrodingers equation gives

E2 = −2t(e−ζ + eζ)− 2µ (3.9)
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while for i = j it gives:

E2 = U − 4te−ζ − 2µ. (3.10)

Combining equations (9) and (10) yields

ζ = log
−U +

√
16t2 + U2

4t
, (3.11)

E2 = −
√

16t2 + U2 − 2µ. (3.12)

Thus the binding energy for an electron pair is

∆b = 2E1 − E2 =
√

16t2 + U2 − 4t− gµBB (3.13)

and the ‘size’ of the pair is simply 1/ζ. The boundary between the phases with 0 and 1

electrons is given by:

B0,1 = −4t+ 2µ

gµB
. (3.14)

The boundary between the phases with 1 and 2 electrons is given by

B1,2 = −−4t+ 2
√

16t2 + U2 + 2µ

gµB
(3.15)

and the boundary between the phases with 0 and 2 electrons is independent of B:

µ0,2 = −1

2

√
16t2 + U2. (3.16)

The plot of these three boundaries will have the shape of the letter Y. The three bound-

aries meet at a critical point given by:

µp = −1

2

√
16t2 + U2, (3.17)

Bp =
−4t+

√
16t2 + U2

gµB
. (3.18)
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To expand the discussion, the lowest eigenvalues of the Hubbard Hamiltonian (equa-

tion 3.5) are solved on a 16-site chain using the iterative Lanczos algorithm, which is partic-

ularly efficient for sparse matrices [89, 90, 91, 92]. The full Hilbert space has 416 states, which

are split into smaller subspaces using the total electron number, Ne =
∑

i,σ ni,σ, the total

z-component of spin, Sz =
∑

i S
z
i , and the mirror symmetry of the system. The total spin

is an additional symmetry of the Hamiltonian which is not exploited. The largest subspace

contains 82,820,900 states.

Figure 20(a) shows the energy of the ground state for Ne ≤ 16 in zero applied magnetic

field. The lowest-energy state has total Sz = 0 for Ne even and Sz = 1/2 for Ne odd. The

ground state always has an even number of electrons, which can be seen by shifting all the

energies by a suitable function of µ, chosen here as quadratic. This does not change their

relative order but can make the energy differences easier to visualize. In Fig. 20(b), the

parity effect is apparent: the ground state always contains an even number of electrons.

Increasing the magnetic field reduces the energy of the higher spin states relative to the

S = 0 ground states at B = 0. The ground state is polarized in the −z direction, so the

total spin S is identical to the z-component of spin Sz. The phase diagram as a function

of magnetic field and chemical potential µ is shown in Fig. 21. At low magnetic fields,

the system consists of electron pairs: Ne is even, and the total spin S = 0. At slightly

higher fields, it becomes favorable to have a single unpaired electron, resulting in odd Ne

and S = 1/2. Increasing the field further results in two unpaired electrons. Now Ne is even

again, but with total spin S = 1. The pattern continues with increasing field—the number

of unpaired electrons increases monotonically.

The zero-temperature stability diagram of the 16-site model (Fig. 22(b)) qualitatively

captures many of the experimentally observed features: the existence of a critical pairing

field Bp, a Zeeman-like splitting for |B| > Bp, a decrease of Bp with increasing µ, and re-

entrant pairing at higher magnetic fields (Fig. 16(f)). The Hamiltonian (equation 3.5) has no

disorder, resulting in the even level spacing seen in Fig. 22(b). Adding some disorder to the

Hamiltonian, either in the energy levels of each pairing site or in the kinetic hopping between

pairing sites, makes the level spacings less regular, more closely resembling the spacings seen

in the experimental ZBPs (Fig. 22(a)). Additionally, the superconducting regime of the
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Figure 20: Parity effect. a, Energies Ei of the Hubbard model (equation 3.5) of a one-

dimensional 16-site chain with open boundary conditions, t = 1 meV, U = 0.8 meV, and

B = 0 for fillings Ne ≤ 16. The slope of each line is proportional to Ne; red (blue) lines have

even (odd) Ne. For all chemical potentials µ, the ground state has even Ne. b, Energies

of the Hubbard model for the same parameters as a shifted by a quadratic function of µ,

E∗i (µ) = Ei(µ) + cµ2, where c is arbitrary. The lowest energy for each value of µ is easier to

discern. The ground state always has even Ne

50



Figure 21: Phase diagram of the Hubbard model on a one-dimensional 16-site chain with

t = 1 meV and U = 0.8 meV. The total number of electrons Ne and total spin S are labeled

for some of the larger phases as Ne(S). The quantum numbers of the other phases can be

deduced from their neighbors.
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attractive Hubbard model is not explored here, but is covered extensively in the literature

[93]. Being phenomenological, equation 3.5 does not specify a physical mechanism for the

attractive on-site interaction.

3.4.3 Pairing Mechanisms

The attractive Hubbard model does not specify a physical origin of the pairing mechanism.

Here we discuss two possible forms of pairing sites: negative-U centers and bipolarons. The

negative-U center, which hosts a bounded electron pair, was first proposed in ref. [94] to

account for the diamagnetism in amorphous semiconductors. Its existence has been reported

in various materials, for example, hydrogenic [95] or oxygen impurities [96] in GaAs. Mean-

while, negative-U centers have been proposed as a pairing mechanism in some unconventional

superconductors such as Tl-doped PbTe (refs [97, 98]). In SrTiO3, negative-U centers can

possibly originate from oxygen vacancies (or vacancy clusters) since the lowest threshold car-

rier density is only observed in vacancy doped samples but not in samples with other n-type

dopants (for example, Nb) [99]. Another possible mechanism for local pairing is bipolaron

formation. Bipolarons are bound states of two polarons [93], which are self-localized elec-

tronic states formed from lattice distortions; for example, via the Jahn-Teller effect [100].

When two polarons meet, they can share the same lattice distortion, lowering the total en-

ergy per electron and thus forming a bound state under certain conditions. The existence of

polarons in SrTiO3 has been extensively reported (see, for example, refs [101, 102]). While

there is no definitive experimental evidence of bipolaron formation in SrTiO3, there are re-

ports of bipolarons in other titanites [103]. Such specific mechanisms for strong pairing are

not directly implied by the measurements reported here, although some predictions may be

testable with suitable refinements of this experimental approach.

3.4.4 Alternative Explanations

Alternative explanations for the ZBP splittings have been considered. The Kondo ridge in

Coulomb diamonds can split above a critical magnetic field [104]. However these splittings

are generally observed at non-zero biases; furthermore, other Kondo parity signatures [105]
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Figure 22: Comparison between experiment and attractive Hubbard model. a, Dependence

of ZBPs on Vsg and B of device A on a larger Vsg scale. b, Simulation result from the

attractive Hubbard model of 16 sites with t = 1 meV and U = 0.8 meV.
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are not observed here. In ultrasmall superconducting grains where δE � ∆ , quantum

fluctuations may promote the even-odd parity energy, leading to a possibly similar ZBP

splitting [84]. Such an effect, however, is only expected for T < Tc.

Charge traps that exist in parallel with tunneling barriers can release additional electrons

to the transport [106], resulting in occasional resonance-doubling features. A single-electron

charge trap can be modeled with a series of capacitances that reflect the coupling between the

trap and the QD, source and drain, as described in ref. [106]. When the trap is in series with

the QD, a large source-drain bias is needed to pass through the typically misaligned energy

levels of the trap and QD. Namely, the conductance diamonds will have a large gap close to

the zero-bias region (in contrast to our observations). When the trap is in parallel with the

QD, the contribution to the conductance will be negligible since the coupling between the

trap and either source or drain will be very weak due to the small trap size (compared to

the 1 µm nanowire QD length). A more realistic scenario is a combination of both the series

and parallel coupling. Namely, the trap is in parallel with one of the tunnel barriers and

can occasionally release an electron to QD, which is commonly referred as the background

or offset charge [107, 108]. The transport signatures of this type of trap are ‘sawtooth’-

like diamonds, and abrupt shifts of ZBPs in external magnetic fields. Such features are

not present in results reported here. Finally, perturbations of charge traps to the QD only

happen occasionally, while the main features reported here are consistently reproduced in

more than 50 devices (see Fig. 23 for more examples), and do not fit the statistical profile

of charge traps.

3.5 CONCLUSION

The existence of electron pairs outside the superconducting regime does not automatically

imply that the electron pairing described here contributes to the superconductivity itself.

It would, however, be a remarkable coincidence for the two phenomena to be superimposed

without any interrelationship. In fact, electron pairing and superconductivity are demonstra-

bly linked. The vertical linecut in Fig. 16(f) shows a sharp superconducting enhancement
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Figure 23: Transport characteristics of devices B, C, D and E, which are all of the same

geometry as device A. Device letter is shown at lower right-hand corner of all plots. a,c,e,g,

dI/dV as a function of Vsg and V34 at T = 100 mK, and Vbg = 0.7 V, −4.4 V, −1.4 V

and −2.2 V for devices B, C, D and E respectively. A small gap close to zero-bias in the

diamonds is due to the absence of normal carriers in the superconducting source/drain leads.

b,d,f,h, Devices B, C, D and E ZBP splitting in an out-of-plane magnetic field B.
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of the ZBP at Vsg = −19 mV. Like the other ZBPs, the paired electron state bifurcates

at Bp ≈ 2 T. This marked enhancement of conductance in the superconducting regime

demonstrates that the electron pairs couple strongly to the superconducting leads.

Note that spin-orbit coupling is neglected in this analysis, even though such effects are

known to be important in two-dimensional transport experiments [5, 6]. Spin-orbit coupling

makes electron pairs less sensitive to magnetic fields and leads to the violation of the Pauli

limit in SrTiO3 (µ0H
P
c = 1.84Tc ≈ 0.5 T) [5, 109]. However, it is not clear how such

coupling will increase the pairing energy above Tc. At the LaAlO3/SrTiO3 interface, spin-

orbit coupling is known [5, 6] to be strongly dependent on the carrier density ns. Direct

measurements of carrier density are not feasible in the geometry employed here, although

the density is believed to increase monotonically with gate voltage.

The existence of pre-formed electron pairs in this SrTiO3-based system, forming a super-

conducting condensate at lower temperatures and lower magnetic fields, follows the paradigm

of BEC superconductivity. In this regime, pairing is local and precedes the formation of a su-

perconducting state. The only well-established physical embodiments of fermionic BEC-like

superfluidity have been in ultracold atomic gases, where the BEC-BCS (Bardeen-Cooper-

Schrieffer) crossover can be tuned via a Feshbach resonance [24]. Although it is not clear if

the electron pairing in our system can be tuned (for example, via strain), a crossover to BCS-

like superconductivity at higher electron density is expected. The ability to confine electrons

at nanoscale dimensions, combined with an inherent affinity for strong pairing, suggests that

our system constitutes an ideal ‘laboratory’ in which to explore strongly correlated electronic

phases in a solid-state host.
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4.0 TUNABLE ELECTRON-ELECTRON INTERACTIONS IN

LaAlO3/SrTiO3 NANOSTRUCTURES

4.1 INTRODUCTION

The contents of this chapter represent a collaborative work published in Cheng, Tomczyk,

Tacla, Lee, Lu, Veasey, Huang, Irvin, Ryu, Eom, Daley, Pekker and Levy, Physical Review

X 6 041042, 2016 December 1. The conductance calculation in § 4.4.1.1 was performed by

A. Tacla. The sub-gap density-of-states calculation in §§ 4.4.1.3 and 4.4.1.4 was performed

by D. Pekker.

Electron-electron interactions lead to many remarkable properties in the solid state,

ranging from superconductivity and quantum magnetism to fractionalized excitations [110,

111, 112], Wigner crystals [113], and a variety of predicted topological phases [114]. While the

natural Coulomb interaction is repulsive, many of these properties rely on effective attractive

interactions, which can be mediated by phonons [12] or other degrees of freedom. Although

the fine details of electron-electron interactions usually depend on carrier density, qualitative

details like the interaction sign are usually density-independent.

While the dome-shaped phase diagram extracted from gate-dependent transport experi-

ments on LaAlO3/SrTiO3 marks the boundary of superconductivity, it does not reveal details

of the underlying nature of the electron-electron interactions. The non-monotonic depen-

dence of the transition temperature on carrier density bears a striking resemblance to that

of high-temperature superconductors. However, while there is experimental and theoretical

work suggesting that pairing in cuprates is mediated by repulsive interactions [115, 116],

there is no analogous work to describe the superconducting dome in LaAlO3/SrTiO3.
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The previous chapter studying sketched quantum dot devices revealed a phase in which

electrons form pairs, implying a strongly attractive electron-electron interaction. In this

chapter, we locally probe local electron-electron interactions at the LaAlO3/SrTiO3 inter-

face using a superconducting single electron transistor (SSET), a sensitive and local probe

of single electron/pair tunneling. These devices can exhibit a gate-tunable transition from

a pair-tunneling regime with strong electron-electron interactions to a single-electron (An-

dreev bound state) tunneling regime where the interactions become repulsive. The electron-

electron interaction sign change is associated with a Lifshitz transition within the supercon-

ducting dome where the dxz and dyz bands start to become occupied. These observations

provide crucial constraints that may lead to a fundamental understanding of electron pair-

ing and superconductivity in SrTiO3-based systems, as well as providing a novel tool for

controlling electron transport in these materials.

4.2 DEVICE GEOMETRY AND FABRICATION

We investigate electron-electron interactions at the LaAlO3/SrTiO3 interface by measuring

transport through an SSET. The geometry of an SSET consists of a QD proximity coupled

to two superconducting nanowire leads and a side gate. This setup is geometrically similar

to the one reported in Ref. [8], but here we investigate higher electron densities on the QD

and different gap structures in the leads.

The SSET devices are fabricated by c-AFM lithography [8], as shown in Fig. 24(b) and

described in section 3.2. Using a voltage-biased c-AFM tip (Vtip = 12 V), we first “write” a

nanowire network consisting of main channel leads (1 and 5) and three voltage sense leads

(2, 3, and 4). The c-AFM tip is then directed to cut across the main channel with a small

negative voltage applied (Vtip = −0.3 V) to engineer two tunnel barriers separated by 1 µm

and located between leads 3 and 4. The tunnel barriers define the QD, and their strength

determines the initial coupling strength to the leads. The nanowire section between leads 2

and 3 has no barriers and serves as a control wire. Finally, a side gate nanowire is written 1

µm away from the main channel to tune the chemical potential µ, interaction strength U ,
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Figure 24: Superconducting single electron transistor (SSET). a, The excitation spectra of

a QD depends on the sign of the interaction strength U . When U < 0 (top two panels),

the 2-electron ground state (top left panel) is lower than the 1-electron ground state. When

U > 0 (bottom two panels), the 1-electron ground state is lowest (bottom right panel). b,

Electron-electron interactions are probed by an SSET fabricated by c-AFM lithography. The

nanowire QD is defined by two barriers between leads 3 and 4 separated by 1 µm. A side

gate tunes the chemical potential of the QD.
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and tunneling coefficient t. All of the nanowires have width w ∼ 10 nm at room temperature

[71]. The entire setup can be regarded as a superconducting nanowire-QD-nanowire system.

4.3 EXPERIMENTS AND RESULTS

Transport is measured in a four-terminal setup: we extract the differential conductance

dI/dV of the QD by passing a current through the main channel and simultaneously measur-

ing the voltage drop between leads 3 and 4. Figure 25(a) shows the differential conductance

dI/dV of a typical SSET device as a function of the source-drain bias V34 and side gate volt-

ages Vsg at low temperatures (T = 50 mK) and zero magnetic field (B = 0 T). Four distinct

transport regimes can be identified in terms of Vsg ranges: (i) well-defined conductance dia-

monds associated with resonant pair tunneling (Vsg < −40 mV), (ii) sub-gap transport via

pair bound states (−40 mV < Vsg < −30 mV), (iii) sub-gap transport via Andreev bound

states (−30 mV < Vsg < −10 mV) and (iv) Josephson transport (Vsg > −10 mV).

(i) The well-defined conductance diamonds regime (Vsg < −40 mV) is qualitatively

similar to the transport reported in Chapter 3, in which we have associated the diamonds

with resonant tunneling of strongly bound electron pairs. A series of zero-bias conductance

peaks (ZBPs) are present near the “tips” of the diamonds as indicated in Fig. 25(a). The

ZBPs bifurcate as we increase the magnetic field above a critical value (Bp ∼ 1 − 2 T),

indicating the breaking of strongly bound pairs [Fig. 25(c)]. Bp is typically much larger than

the upper critical magnetic field µ0Hc2 ∼ 0.3 T for destroying superconductivity [8].

The diamonds have a nearly insulating gap of roughly 4∆/e, where ∆ ∼ 48 µeV, in

contrast to those observed in Chapter 3 without the insulating gap. This conductance gap,

which is determined by the superconducting gap ∆s in the source lead (as will be discussed

later), is only weakly dependent on Vsg since the source lead is weakly coupled to the side gate.

Moreover, the diamonds are offset horizontally while still being connected by a straight line

[see Fig. 25(a)], which (as will be discussed below) indicates that the drain lead has gapless

excitations while the source lead remains gapped. Such gapless excitations can arise from

nanoscale imperfections (e.g., in carrier density), although the source and drain leads should
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Figure 25: Transport characteristics of an SSET. At T = 50 mK, dI/dV is measured as

function of V34 and Vsg at a, B = 0 T and b, B = 1 T. The dashed line in (a) is a guide to

the eye showing how the diamonds are offset. The fact that the diamonds can be connected

by a straight line indicates that one lead has a gap while the other is not gapped. The red

arrow indicates the location of zero-bias peak. c, Zero-bias line cuts at B = 0− 4 T in low

Vsg range (−60 mV< Vsg < −35 mV). The ZBPs bifurcate above Bc (1 ∼ 2 T), signifying

pair tunneling. Curves are shifted by 1.16 µS starting from B = 4 T data for clarity. d,

Zero-bias line cuts at B = 0− 4 T in high Vsg range (−30 mV< Vsg < −10 mV). The ZBPs

do not bifurcate, signifying single electron tunneling. Curves are shifted by 7.75 µS starting

from B = 4 T data for clarity.
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be nominally identical. At sufficiently large magnetic fields, the pairing gap and the offset

between the diamonds are simultaneously suppressed, see Fig. 25(b). The field (∼ 1 T) at

which the offset vanishes coincides with Bp for electron pairing, suggesting the source lead

is still gapped even when the superconductivity is suppressed above the upper critical field

µ0Hc2 ∼ 0.3 T.

(ii) The regime of sub-gap transport via pair bound states (−40 mV < Vsg < −30 mV) is

characterized by the appearance of relatively stronger conductance features inside the gap.

These “X”-shaped features extend all the way across 4∆/e gap and appear to be particle-

hole symmetric. We ascribe these features to pair bound states on the QD: electron pairs

that are in a superposition of being a bound pair on the QD and in the superconducting

lead.

(iii) The sub-gap transport via Andreev bound states (ABS) regime (−30 mV < Vsg <

−10 mV) is characterized by a dramatic change of the transport characteristics. The

gap shrinks from 4∆/e to 2∆/e and at the same time the sub-gap features become much

“brighter” (dI/dV increases ∼ 10−fold) as well as changing shapes from characteristic “X”

features to “loop” features. We ascribe the dramatic change of the transport to the appear-

ance of Andreev reflections. The absence of features at V34 = 2∆/ne, (n=1,3,4) suggests

that multiple Andreev reflection processes are irrelevant. Rather, the well-defined smooth

loop features are a clear manifestation of transport via ABS.

In the diamond regime and the pair-bound state regime, the lowest excited state of the

QD corresponds to adding (or removing, depending on Vsg) a pair of electrons from the

dot. The emergence of ABS loops indicates the lowest excited QD level is characterized

by adding (or removing) a single electron to the dot, as illustrated in Fig. 24(a). This

assignment of the QD excitation structure can be further confirmed by examining the field

dependence of the ZBPs. As shown in Fig. 25(d), no signs of ZBP bifurcation are observed

up to B = 4 T in the ABS regime, except for a decrease in amplitude of the ZBPs due to

suppression of superconductivity. In contrast, in the diamond regime the ZBPs bifurcate

above Bp ∼ 1− 2 T. Since Bp is generally decreasing with increasing Vsg[8], this observation

supports the conclusion that the origin of the ZBPs is single-particle in nature.
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All the over 50 SSET devices we fabricated show electron pairing without superconduc-

tivity in the diamond regime. However, in order to observe closed ABS loops the QD has to

be coupled to one gapped superconducting lead and one gapless “probe” lead. Although we

did not purposefully design the gap structure in our devices, about 10% of the devices did

have pronounced ABS loops. The existence of nanoscale imperfections which will sometimes

make a particular lead gapless is probably the primary factor in creating conditions necessary

to observe ABS.

(iv) The Josephson regime (Vsg > −10 mV) appears at high side gate voltages (and

hence, electron densities). In this regime the electron tunneling matrix element between

the QD and the superconducting leads becomes large enough to enable coherent Josephson

transport through the QD. The I − V characteristics in this regime are consistent with the

resistively and capacitively shunted junction (RCSJ) model [117, 118] of transport through

a shunted Josephson junction with a typical critical current Ic ∼ 2.8 nA (see § 4.4.1.5).

4.4 DISCUSSION

4.4.1 Theoretical Model of Transport in the SSET

The experimental signatures of attractive and repulsive electron-electron interactions in

transport can be well described by a minimal model of the SSET device. The ingredi-

ents for the model are (1) a superconducting lead with gapped excitations, which acts as a

source of electron pairs; (2) a QD with a single-electron level of either attractive or repul-

sive interactions; (3) and a normal lead with gapless excitations, which acts as a sensor of

electronic states on the QD. The reason for including both a gapless and a superconduct-

ing lead in the model is the fact that sketched LaAlO3/SrTiO3 nanowires tend to show at

the same time both electron pairing and gapless excitations. This dual nature has been

observed in previous tunneling experiments [3] and is consistent with our observations of

sub-gap transport all the way to zero bias.
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We shall now discuss the origin of the conductance features that appear in transport

measurements. Our starting point is the single-level QD Hamiltonian

HQD =
∑

σ={↑,↓}

εσnσ + Un↑n↓ (4.1)

where nσ = d+
σ dσ is the electron number operator, d+

σ (dσ) creates (annihilates) an electron

with spin σ on the QD, εσ is the single-electron energy on the QD (which is tuned by

Vsg and B field), and U is the electron interaction parameter that can be both positive

(repulsive) and negative (attractive). As we have described in the introduction, in zero

magnetic field (ε↑ = ε↓) the parity of the QD ground and first excited state depends on

the sign of interactions. Specifically, for the case of attractive interactions (U < 0) the QD

ground state has even parity as does the first excited state and the odd parity states lie at

higher energies [see Fig. 24(a)].

4.4.1.1 Weak Coupling Regime How does the unusual level structure in the presence

of attractive interactions on the QD reflect on transport through the QD? We begin by

considering the case in which both the superconducting and the normal leads are weakly

coupled to the QD. In this case the electrons move by a series of resonant pair tunneling

processes: the electron pair tunnels from the source lead to the QD and then to the drain lead.

In order for the resonant tunneling processes to take place the two-electron excitation on the

QD must be resonant with an occupied two-electron state in the source lead and an empty

two-electron state in the drain lead. The two-electron spectral function in a superconductor

has a 4∆ gap, as compared to the one-electron spectral function that has a 2∆ gap. Taking

into account this gap we find the conductance maps (see Fig. 26). We observe that in order

to connect the two diamonds with a straight line, as seen in the experiment, we must have

one lead gapless, resulting in a 4∆/e gap as shown in Fig. 25(a). We note that the electron

pairs in the source and drain leads can still tunnel through the QD, however, the contributed

conductance is very small due to the low density of states. The conductance peak at zero-

bias, shown in Fig. 26(b), is consistent with the observation in Fig. 25.
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Figure 26: Simulation of pair conductance diamonds on varying gapped excitations in the

leads. a, When both source and drain leads only have gapped excitations, the diamonds are

offset away from the gapless excitations indicated by the dashed lines. An insulating gap of

4(∆s + ∆d)/e appears between the tips of diamonds, where ∆s and ∆d are the pairing gaps

of source and drain leads. b, When the drain lead has gapless excitations, one side of the

diamonds stay connected by a straight line. Note electron pairs can still tunnel through the

device when |V34| < 2∆s/e, as shown in the conductance peak at zero-bias in the bottom

panel.
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To calculate the conductance in the well-defined conductance diamonds regime, where

the strong electron-electron attraction dominates the spectrum of the QD, we treat the

electrons on the QD as being tightly bound into pairs, and low energy excitations of the QD

correspond to adding or removing an electron pair from the QD. The effective Hamiltonian

for the QD becomes

HQD = (CsgVsg − 2ne)2/CΣ (4.2)

where Csg and CΣ are the effective gate capacitance and total capacitance for adding electron

pairs, and n is the number of pairs on QD. We model the transport through the QD using

a master equation that describes the hopping of electron pairs between the leads and the

QD. To connect the QD to the leads we need the two-electron spectral functions A
(2)
1 (ω) and

A
(2)
2 (ω) in the two superconducting leads along with the pair distribution functions. We can

split the spectral function in the leads into three contributions [119]:

(1) a peak at ω = 0 corresponding to the pair condensate (this peak is expected to be

significantly broadened for 1D superconductors, like our leads) ;

(2) a finite spectral weight for ω < 2∆ corresponding to bound pairs at finite momentum

(i.e. the phase and amplitude modes);

(3) a large spectral weight at ω ≥ 2∆ corresponding to pairs of free propagating particles

(either hole-like or electron-like).

Instead of computing the spectral function and the pair distribution function from first

principles, we use a phenomenological model. To account for the fact that the pairs are

made of electrons, we use the Fermi-distribution function nF to model the pair distribution

function. We model the spectral function using the expression

A
(2)
j (ω) = Re(

1√
ω2 − (2∆j)2 + iγ2

j

) (4.3)

which has peaks at ω = ±2∆ associated with type (3) excitation and a finite weight at

0 ≤ ω < 2∆ associated with type (1) and (2) excitations.

Consider the Vsg range near the tip of one of the conductance diamonds where the QD

level with n+ 1 pairs becomes degenerate with the QD level with n pairs. The populations
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with n and n+ 1 pairs on the QD follow

ċn = −cn
∑
j=1,2

Aj(µj − ε)nF (µj − ε) + cn+1

∑
j=1,2

Aj(µj − ε)(1− nF (µj − ε)), (4.4)

ċn+1 = cn
∑
j=1,2

Aj(µj − ε)nF (µj − ε)− cn+1

∑
j=1,2

Aj(µj − ε)(1− nF (µj − ε)) (4.5)

where µ1 = eV34/2 and µ2 = −eV34/2 are the chemical potentials in the two leads and

ε = α(Vsg − Vsg0) converts Vsg to energy with the lever arm α and Vsg0 is the degeneracy

point between states with n and n+ 1 pairs on the QD. The corresponding current is

I(µ1, µ2, ε) =
A

(2)
1 (µ1 − ε)A(2)

2 (µ2 − ε)[nF (µ1 − ε)− nF (µ2 − ε)]
A

(2)
1 (µ1 − ε) + A

(2)
2 (µ2 − ε)

. (4.6)

The dI/dV obtained from this formula is plotted in Fig. 26.

4.4.1.2 Intermediate Coupling Regime As the coupling between the QD and the

superconducting lead becomes stronger, the QD begins to coherently exchange electrons

with the superconductor. We describe these processes by supplementing HQD with HSC

that describes the conventional gapped Bolgoliubov excitations in the superconducting lead,

and HT that describes the electron tunneling between the superconducting lead and the QD

H = HSC +HQD +HT (4.7)

HSC =
∑
kσ

ξkc
+
kσckσ + ∆

∑
k

(c+
k↑c

+
−k↓ + c−k↓ck↑) (4.8)

HT =
∑
kσ

tc+
kσdσ + h.c. (4.9)

where c+
kσ and ckσ are the electron creation and annihilation operators in the superconducting

lead, ξk is the electron energy in the absence of the pairing gap ∆, and t is the tunneling

coefficient.
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The experimentally-observed sub-gap features can be readily seen in the one- and two-

electron density of states (DOS) computed within our model (see §§ 4.4.1.3 and 4.4.1.4 for

details). For the case of strong attractive interactions (U < −∆), only the two-electron

spectral function has sub-gap features. These “X”-shaped features originate in pair bound

states on the QD and have particle-hole symmetry [see Fig. 27(a)]. On the other hand, for

the case of strongly repulsive interactions (U > ∆) only the one-electron spectral function

has sub-gap features, and these originate in the ABS [see Fig. 27(b)]. The qualitative ap-

pearance of these sub-gap features is not sensitive to details such as the tunneling strength

t or the exact value of the interaction strength U . By comparing the sub-gap spectral

function features with the experimental transport data we can identify two regimes in the

transport data: the pair bound state regime and the ABS regime. We therefore identify the

experimentally-observed transition in the character of transport with the change in the sign

of electron-electron interactions on the QD.

To model the experimentally observed transition from attractive to repulsive interactions,

we extend the QD to 4 levels with the lower 2 levels of attractive character and the upper

2 levels of repulsive character. The corresponding one- and two-electron spectral functions

[see Fig. 28(b)] show two distinct regimes: “X”-shaped two-electron features at low electron

densities on the QD, and loop-shaped features at high electron densities. The simple 4-level

QD calculation agrees with the experimental data quite well [see Fig. 28(a)].

4.4.1.3 Spectral Functions Following Eqs. 4.7-4.9, we work in the Bogoliubov quasi-

particle representation with ξk = h̄2k2/(2m∗)−EF , where EF is the Fermi energy and m∗ is

the effective mass of the electron. The quasiparticle creation and annihilation operators can

be constructed into the electron operators as

ck↑ = ukγk↑ + vkγ
+
k↓ (4.10)

and

c−k↓ = ukγk↓ − vkγ+
k↑, (4.11)

where uk =
√

1
2
(1 + ξk

Ek
) and vk =

√
1
2
(1− ξk

Ek
).
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Figure 27: Theoretical calculation of DOS spectra in a single level QD in the presence of

a, attractive (U = −4∆) and b, repulsive (U = 2∆) electron-electron interaction. For

the case (a) of strong attractive interactions, the two-electron “X”-shaped resonances are

dominant, whereas for case (b) of strong repulsion, the dominant sub-gap “loop” features

are one-electron resonances with Andreev bound states.
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Figure 28: Comparison between data and calculation. a, Magnified data plot in −33 mV<

Vsg < −19 mV. b, Calculation of the DOS on the QD in the same Vsg range. The QD is

restricted to 4 levels, with negative (positive) interaction for the bottom (upper) 2 levels in

band 1 (2).
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This brings HSC to diagonal form

HSC =
∑
kσ

Ekγ
+
kσγkσ (4.12)

where Ek =
√

∆2 + ξ2
k. Then we can write HT as

HT =
∑
kjσ

[tj(ukγ
+
kσ + σvkγkσ)djσ + h.c.] (4.13)

where the tunneling coefficients tj only depend on the QDs energy level j. We then numer-

ically reconstruct the QDs DOS by computing the one- and two-electron spectral functions,

which are given by

A
(1)
j,σ(V ) =

∑
n

|〈ψn|djσ|ψg〉|2δ(En − Eg − eV ) + |〈ψn|d+
jσ|ψg〉|2δ(En − Eg − eV ) (4.14)

A
(2)
1,j(V ) =

∑
n

|〈ψn|di↑dj↓|ψg〉|2δ(En − Eg − eV ) + |〈ψn|d+
i↑d

+
j↓|ψg〉|

2δ(En − Eg − eV ) (4.15)

where |ψg〉 represents the ground state of the composite S-QD system and {|ψn〉} the manifold

of excited states, with Eg and {En} being their respective energies. The QDs DOS is then

given by

NQD(V ) =
∑
j,σ

A
(1)
j,σ(V ) +

∑
i,j

A
(2)
i,j (V ). (4.16)

In the calculations of this work, we account for broadening effects by replacing the delta

functions in Eqs. 4.14 and 4.15 for (unity normalized) Lorentzians with width Γ of the form

δ(Ee − Eg − eV )→ Γ/(2π)

(Ee − Eg − eV )2 + (Γ/2)2
. (4.17)
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4.4.1.4 Numerical Calculation of the DOS In tunnel experiments, one can typically

express the tunneling current in terms of the spectral functions. In particular, if the DOS

of the tunneling probe can be assumed to be approximately constant, one can show that to

lowest order in the tunneling

dI

dV
∝
∑
j,σ

A
(1)
j,σ(−eV ), (4.18)

which allows for a direct mapping between the one-electron DOS of the device and the

measured dI/dV .

We numerically reconstruct the QDs DOS by diagonalizing the model Hamiltonian as a

function of chemical potential µ(Vsg) to compute the one- and two-electron spectral functions,

as instructed by Eq. 4.16. We first consider the superconductors quasiparticle modes in the

continuum limit, so that

HSC =
∑
σ

∫ ∞
∆

dE γ†σ(E)Eγσ(E), (4.19)

HT =
∑
j,σ

tj

∫ ∞
∆

dE g(E)(u(E)γ†σ(E) + σv(E)γσ(E))dj,σ + h.c. (4.20)

where γσ(E) = g(E)γkσ and

g(E) =

√
L

2π

dk

dE
=

(
L

2π

√
m√
2h̄

E

(E2 −∆2)3/4

)1/2

(4.21)

with L being the length of the superconducting wire. We then discretize the energy integrals

and the energy-dependent quasi-particle operators into M effective modes according to

∫ Ei+1

Ei

dE f(E) ∼= εf(Ei+1/2), (4.22)

γσ(Ei+1/2) = γiσ/
√
ε (4.23)

where

ε =
Ec −∆

M
(4.24)
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is the energy spacing between two consecutive quasiparticle levels, defined in terms of an

energy cutoff Ecut. Putting these results together gives the final form of the discretized

superconductor and tunneling Hamiltonians

HSC =
∑
σ

M∑
i=1

Ei+1/2γ
†
iσγiσ, (4.25)

HT =
∑
j,σ

M∑
i=1

τij

(
u(Ei+1/2)γ†iσ + σv(Ei+1/2)γiσ

)
dj,σ + h.c. (4.26)

where

τij = tj
√
εg(Ei+1/2) = t̃j

(
εEi+1/2/∆

2

(E2
i+1/2/∆

2 − 1)3/4

)1/2

(4.27)

with

t̃j = tj

(
L

2π

√
m∆√
2h̄

)1/2

(4.28)

which we treat as a free parameter. Other free parameters include the QDs energies εjσ and

the interaction coefficients Uij, which we adjust in order to reproduce the subgap features in

the observed dI/dV characteristics shown in Fig. 28(a). We use the experimental estimate of

∆ = 48 µeV for the superconducting gap (at Vsg = −40 mV) and assume a linear relationship

between Vsg and µ, phenomenologically found to be approximately given by µ ∼= eVsg/20.

The calculated DOS is shown in Fig. 28(b). This simulation is for a 4-level QD, with two

levels lying within each band, with electrons in band 1 being strongly attracting (U1 < 0)

and in band 2 repulsive (U2 > 0). We also allow for interband interactions (U12 6= 0). To

make this calculation numerically tractable, we reduce the size of the Hilbert space of the SC

to the one- and the two-quasiparticle sectors, with the latter being restricted to the subspace

of two-quasiparticle states of opposite spins. In addition, we further reduce the size of the

total Hamiltonian matrix by only considering the coupling between states whose overall

energies lie within the energy window set by the energy cutoff Ecut = 6∆. The broadening

of resonance lines is qualitatively captured by replacing the delta functions by Lorentzians

in the spectral functions and by adjusting the width Γ.
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4.4.1.5 Strong Coupling Regime and RCSJ Model At sufficiently high Vsg values

(Vsg > −10 mV), the two barriers become transparent and coherent Josephson transport

becomes dominant. The I − V curves can be well fitted by the extended resistively and

capacitively shunted junction (RCSJ) model [117, 118]. We take into account the lead

resistance RL (of wire sections from the barriers to lead 3 and 4) and shunt resistance RJ of

the QD [Fig. 29]. The I − V curve takes the following form

I(V34) =

(
IcIm

[I1−iη(Ich̄/2ekBT )

I−iη(Ich̄/2ekBT )

]
+
V34

RJ

)
RJ

RJ +RL

(4.29)

where η = h̄V34/2eRkBT , kB is the Boltzman constant and Iα(x) is the modified Bessel

function of complex order α. The extracted critical current Ic = 2.8 nA (at Vsg = 0 mV) is

larger than the switch current Is = 1 nA. Theoretically, the maximum of critical current Icmax

has a simple relation with ∆ in the strong-coupling regime, Icmax = 2π∆a/h by assuming

equal coupling strength of two barriers, where h is the Planck constant [120]. Taking ∆ =

48 µeV, the calculated Icmax = 11.7 nA is about 4 times of the measured result. This is in

fact in excellent agreement considering only a room temperature microwave (RF) filter is

used in the experiment, as electromagnetic radiation is the major reason for this discrepancy.

4.4.2 Mechanisms for Density-Tuned Interactions

While electron-electron interactions are generally tuned by the electron density, it is impor-

tant to consider why the observed transition from attractive to repulsive interactions is such

an abrupt function of the electron density. We suspect that the underlying mechanism is

connected to the Lifshitz transition at the LaAlO3/SrTiO3 interface. The 2DEG at the in-

terface is formed from the three titanium t2g d electron bands. Interfacial confinement effects

split these d electron bands into a lower dxy band and higher dxz/dyz bands [28]. Lateral

(1D) confinement can create subband structure but is expected to preserve the underlying

orbital character.

We conjecture that the dxy electrons have attractive character while the dxz/dyz elec-

trons have repulsive character. At low electron densities only the dxy levels are available

and hence the interactions on the QD are attractive. At a critical electron density, marked
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Figure 29: RCSJ model fitting. a, Schematic. b, RCSJ fitting of I −V curve at Vsg = 0 mV

yielding Ic = 2.8 nA, RJ = 40.4 kΩ and RL = 5.0 kΩ.
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by the Lifshitz transition point (on the QD), the higher dxz/dyz bands become available

and the interactions on the QD become repulsive. This interpretation, that the lower dxy

band is the cradle of attractive interactions, is consistent with the measurement at the 2D

LaAlO3/SrTiO3 interface, which shows that the optimal doping for superconductivity hap-

pens at the Liftshitz transition [28]. We note that an alternative description of phenomena

ascribed to the Lifshitz transition has been presented by Maniv et al. [121], who ascribes the

onset of superconductivity as arising from population of the dxz/dyz bands, and interactions

within those bands that map out the superconducting dome.

Titanium dxy ferromagnetism has been reported at the 2D LaAlO3/SrTiO3 interface [38],

which might imply that the dxy band has repulsive electron-electron interactions. However,

there is evidence from a variety of experiments that dxy electrons can pass through a mobility

edge [122], with the localized electrons giving rise to moments available for magnetic ordering,

while the latter giving rise to other transport phenomena. Indeed, there are several reports

showing a coexistence of superconducting and ferromagnetic order [29, 123].

We now consider alternative explanations aside from the Lifshitz transition for the abrupt

change in the character of transport. Abruptly increasing the tunneling matrix element t (e.g.

by gating the barrier between the QD and the superconducting lead) may seem like a viable

candidate for affecting the ground state parity [124], but an increase in t (with increasing

Vsg) neither favors an odd parity ground state nor does it bring down the single-electron

states into the gap, which conflicts with the observation here. A more workable possibility

is to abruptly introduce a large Zeeman field, in the presence of attractive interactions, to

break the electron pairs on the QD and thus drive a transition from the two-electron to the

one-electron transport regime. However, the only possible origin of such a Zeeman field is

the exchange interaction between electron spins on the QD and a magnetic impurity spin in

a charge trap. Loading an electron into the charge trap has a large impact on the transport

characteristics [8, 106, 107], either giving rise to a sudden “sawtooth-like” diamond if the

trap is in parallel with the QD [107, 108] or causing a large insulating gap independent of

the opening and closing of the pairing gap inside the diamonds if the trap is in series with

the QD. Because these trap signatures are not observed here, it is highly unlikely that the

transition could be attributed to the presence of impurity spin.
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4.4.3 Signatures of Pre-Formed Pairs

So far we have discussed our observations of ABS at the strongly correlated LaAlO3/SrTiO3

interface. In other strongly correlated systems like high-Tc cuprates, ABS is predicted to

exist in the pseudogap regime [125]. We now explore the correlation between ABS and

pre-formed pairs in LaAlO3/SrTiO3 by studying the low-magnetic-field dependence of ABS

loops. As shown in Fig. 30(a)-(h), the amplitude and width (2∆ in V34 direction) of the

ABS loops shrink with increasing magnetic field. This evolution is more clearly visible by

examining the average line-cuts in the range −15 mV < Vsg < −10 mV [see Fig. 30(i)]. The

ABS peaks are completely suppressed above µ0Hc2 = 0.3 T. The remaining dip at zero bias

is an indication of the pairing gap at higher fields. At B < µ0Hc2, additional ZBP features

appear inside the loops and carry supercurrent at Vsg = −20 mV, −15 mV, and −6 mV

where the QD levels align with the source and drain chemical potentials. These features are

a consequence of coherent pair tunneling across the QD and are not present in every device.

The extracted pairing energy (for the lead) decreases linearly with increasing field, with a

zero-energy field intercept Bi = 1.3 T which is consistent with Bp in the lower Vsg regime.

4.5 CONCLUSIONS

The sign of the electron-electron interaction at the LaAlO3/SrTiO3 interface has a profound

influence on the electron transport in SSET devices. The attractive interaction in the low Vsg

regime results in electrons tunneling in pairs even at conditions where superconductivity is

suppressed. Meanwhile, the emergence of single-particle ABS loops in the high Vsg regime is

characteristic of repulsive electron-electron interactions. This abrupt sign change of electron-

electron interactions, tuned by a single parameter Vsg, is postulated to be driven by the

discontinuity of band structure at the Lifshitz transition.

The nature of superconductivity in SrTiO3 is still not well understood, more than

fifty years after its discovery. The observation of tunable electron-electron interactions in

LaAlO3/SrTiO3 nanostructures provides important insights into basic mechanisms that lead
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Figure 30: Low-field dependence of ABS. a—h, ABS loops at B = 0 T, 0.06 T and 0.18 T to

0.78 T in step of 0.12 T. i, Average vertical line cuts (averaged in −14 mV< Vsg < −11 mV).

Curves are shifted for clarity. j, Extracted pairing gap size as function of B.
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to electron pairing in SrTiO3. At the same time, the ability to program the sign of electron-

electron interactions can potentially play a critical role in solid-state quantum nanodevices

and/or simulation.
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5.0 MICROMETER-SCALE BALLISTIC TRANSPORT OF ELECTRON

PAIRS

5.1 INTRODUCTION

The contents of this chapter represent a collaborative work published in Tomczyk, Cheng,

Lee, Lu, Annadi, Veasey, Huang, Irvin, Ryu, Eom and Levy, Physical Review Letters 117

096801, 2016 August 26.

5.1.1 Summary

High-mobility complex-oxide heterostructures and nanostructures offer new opportunities

for extending the paradigm of quantum transport beyond the realm of traditional III-V

or carbon-based materials. Recent quantum transport investigations with LaAlO3/SrTiO3-

based quantum dots have revealed the existence of a strongly correlated phase in which elec-

trons form spin-singlet pairs without becoming superconducting. Here we report evidence

for micrometer-scale ballistic transport of electron pairs in quasi-one-dimensional (quasi-1D)

LaAlO3/SrTiO3 nanowire cavities. In the paired phase, Fabry-Perot-like quantum inter-

ference is observed, in sync with conductance oscillations observed in the superconducting

regime (at zero magnetic field). Above a critical magnetic field Bp, electron pairs unbind and

conductance oscillations shift with magnetic field. These experimental observations extend

the regime of ballistic electronic transport to strongly correlated phases.
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5.1.2 Clean One-Dimensional Transport

Compared with the superconductor-insulator transition in two-dimensional systems, the na-

ture of correlated electron transport in one-dimensional systems remains largely unexplored.

SrTiO3-based heterostructures and interfaces exhibit a relatively short phase coherence, of

order ∼100 nm [126, 20]. Exploring the regime where the device dimensions are smaller

than the coherence length is challenging; in devices created by optical or electron-beam

lithography, the carrier mobility generally decreases as the channel width is reduced to sub-

micrometer scales [127, 128]. However, there is growing evidence that scattering lengths,

both elastic and inelastic, are greatly enhanced for ultranarrow devices created by con-

ductive atomic force microscope (c-AFM) lithography [71], as described in Section 2.2. It

is believed that the tip induces surface protonation and deprotonation [73, 72], effectively

modulating the interface conductivity [74] without disrupting the integrity of the interface,

which allows long scattering lengths to be achieved.

Previous transport measurements of ∼10 nm-wide channels at the LaAlO3/SrTiO3 inter-

face show a nearly two-order-of-magnitude enhancement of room-temperature Hall mobility

compared with two-dimensional counterparts [58]. At low temperature, nanowire mobilities

exceed 104 cm2/Vs while mobility measurements of two-dimenional devices generally remain

an order of magnitude lower [58, 129, 130, 131]. Quasi-one-dimensional LaAlO3/SrTiO3

nanowires exhibit conductance values that hover near the single-channel conductance quan-

tum e2/h, independent of channel length [59]. Additionally, conductance steps have been

reported in edge-defined LaAlO3/SrTiO3 quantum wires [60]. While conductance steps can

arise from any point-like constriction [48], and have also been reported in top-gated SrTiO3

structures that do not possess a one-dimensional geometry [132], such step-like features

suggest that LaAlO3/SrTiO3 nanowires may be able to cleanly resolve individual energy

subbands.

Quantum interference experiments can provide useful information about electron scatter-

ing. Analogous to photonic interference in an optical Fabry-Perot cavity, multiple reflections

of electrons from the endpoints of a nanowire cavity can lead to strong interference effects

when the elastic scattering length exceeds the cavity length. This interference requires not
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only phase coherence but also absence of scattering [133]; many systems with long coherence

lengths have much shorter elastic scattering lengths. In ballistic Fabry-Perot cavities, the

conductance through the cavity oscillates as a function of the Fermi wavelength, which varies

with the chemical potential and is usually controlled by a nearby gate electrode. Only a few

material systems have been shown to be capable of supporting micrometer-scale quantum in-

terference: suspended single-wall carbon nanotubes [134], high-mobility graphene structures

[135], and III-V semiconductor systems such as high-mobility heterostructures [136] and

stacking-fault-free nanowires grown by vapor-liquid-solid techniques [133]. However, these

systems often operate in a regime where electron correlations can be neglected; exceptions

include Wigner crystal phases, and magnetically and structurally confined one-dimensional

systems (i.e., Tomonaga-Luttinger liquids [55]).

Here, we observe evidence of long-range ballistic transport of electron pairs in a complex

oxide system. This constitutes a new regime in which strong electronic correlations combine

with ballistic electron transport.

5.2 DEVICE GEOMETRY AND FABRICATION

To investigate the ballistic nature of transport in LaAlO3/SrTiO3 nanostructures, quasi-1D

Fabry-Perot cavities are created at the LaAlO3/SrTiO3 interface using c-AFM lithography

[71]. To create the geometry shown in Fig. 31(a), first a nanowire of width w ≈ 10 nm is

written, followed by erasure steps to create semitransparent barriers at both ends of the

cavity. Devices are transferred to a dilution refrigerator within 5 minutes of writing to min-

imize decay, and are cooled to a base temperature T = 50 mK for transport measurements.

Current flows through the main channel containing the two barriers. Independent voltage

leads enable four-terminal measurements of the cavity conductance, as well as that of an

adjoining “open” nanowire, i.e., without barriers. The cavity lengths L between the barriers

ranged from 250 nm to 4 µm. The distance from each barrier to the nearest voltage lead

was held constant for all devices at 750 nm. The total distance between voltage leads 3 and

4 in Fig. 31(a) was therefore L + 1.5 µm. The 4-terminal voltage between leads 2 and 3 in
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Figure 31: Device schematic and Fabry-Perot oscillations. a, Schematic of cavity device

defined by two barriers separated by length L. Interference due to coherent scattering in

the cavity results in conductance oscillations periodic in Fermi momentum. b, Background-

subtracted zero-bias differential conductance (dI/dV ) of the cavity [between voltage leads

3 and 4 in (a)] and the open wire (between leads 2 and 3) in the superconducting (red),

paired (green), and normal (blue) phases of Device A clearly reveals large oscillations are

only present in the cavity.
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Fig. 31(a) was measured to characterize a segment of nanowire equal in length to the total

L + 1.5 µm, but without manufactured barriers. This “open” segment acts as a control.

The side gate was created with the same c-AFM lithography as the device, running parallel

to the main current-carrying channel, about 1 µm away. The applied side gate voltage Vsg

tunes both the transparency of the barriers and the Fermi level in the cavity. The differential

conductance is extracted numerically from I − V curves measured as a function of Vsg and

magnetic field. Lock-in measurements are performed at reference frequency f = 13.46 Hz

and amplitude 100 µV. Cavities of length L = 0.25 − 4 µm were studied, and all show

qualitatively similar behavior.

5.3 EXPERIMENTS AND RESULTS

There are three distinct transport regimes [8] as a function of the applied magnetic field:

superconducting (SC), paired (P), and normal (N). At temperatures below Tc ≈ 300 mK,

and for out-of-plane magnetic fields below Bc = µ0Hc2 ≈ 0.2 T, the LaAlO3/SrTiO3 interface

exhibits a sharp increase in conductance that is attributed to superconductivity, both for 2D

heterostructures [4] and 1D nanowires [137]. The regime Bc < B < Bp has been previously

identified as a strongly correlated phase in which electrons exist as spin-singlet pairs without

forming a superconducting condensate [8]. At sufficiently large magnetic fields (above Bp ≈

2− 5 T), electrons are unpaired and behave “normally”.

5.3.1 Equilibrium (zero-bias) Transport

As a function of Vsg, typical differential conductance G = dI/dV measurements of the cavity

exhibit quasi-periodic oscillations at zero-bias, i.e., V4T = 0 V. The variation in conductance

G after subtraction of a slowly-varying background (see § 5.3.1.1) shows clear oscillations in

the cavity, but not in the open wire, in all three phases [Fig. 31(b)]. In the superconducting

state, the conductance oscillations correspond to modulation of the critical current (see

§ 5.3.1.2).

84



0.8

0.6

0.4

0.2

0.0

dI
/d

V
 (

e2 /h
)

-100 -80 -60 -40 -20 0 20 40
Vsg (mV)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

dI
/d

V
 (

e2 /h
)

-100 -80 -60 -40 -20 0 20 40
Vsg (mV)

B=0 T (SC)
B=1 T (P)
B=3 T (N)

Open wireCavity

a b

Figure 32: Differential conductance. a—b, Zero-bias differential conductance (dI/dV ) of

the cavity (between voltage leads 3 and 4 in Fig. 31(a)) and the open wire (between leads 2

and 3) in the superconducting (red), paired (green) and normal (blue) phases of Device A.

5.3.1.1 Background Subtraction The original zero-bias dI/dV linecuts from which

the panels in Fig. 31(b) were derived are shown in Fig. 32 for both the cavity (a) and the open

wire (b). A high-order polynomial fit to a Vsg subset from -105 to -48 mV was performed and

the resulting slowly-varying background is overlaid with the original data in Fig. 33 for both

the cavity and open wire in the superconducting (a), paired (b) and normal (c) phases. The

root-mean-square amplitude of the fluctuations in the open wire are suppressed by over 90%

compared to the cavity. Interestingly, the background conductance of the normal-state cavity

reveals step-like features superimposed beneath the oscillations, reminiscent of interference

oscillations originally predicted in ballistic devices with quantized conductance [138]. While

these steps are clearly much less than e2/h, this suggests that perhaps, with refinement of

these experiments, quantized conductance is possible to achieve in these ballistic LAO/STO

nanowires.

5.3.1.2 Superconducting Phase and Modulation of Critical Current At mag-

netic fields |B| < Bc, the device is superconducting and the conductance is significantly

enhanced (Fig. 32, red) compared to the non-superconducting paired phase (green) and the
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Figure 33: Background subtraction. a—c, dI/dV of the cavity (dash) and open wire (solid

color) for Device A at B = 0 T (a), B = 1 T (b) and B = 3 T (c). Data shown here is

the subset -100 mV< Vsg < −50 mV of the corresponding red, green and blue curves in

Fig. 32. A slowly-varying background is overlaid on each curve (solid black). The result ∆G

(Fig. 31(b)) of subtracting the slowly-varying background from dI/dV reveals Fabry-Perot

interference in the cavity.
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Figure 34: Critical Current Modulations. Critical current Ic of the cavity (red dash) can be

greatly modulated with Vsg, while Ic of the open wire (red solid) is mostly constant. ∆G of

the cavity (black dash) and open wire (black solid) are overlaid with Ic.

normal phase (blue). While a zero-resistance superconducting state is usually not achieved

in nanowires, likely due to the increased susceptibility of low-dimensional superconductors

to thermally-activated phase slips and other effects [77], the nanowire cavity shows a strong

enhancement of conductance oscillations in the superconducting regime (Fig 31(b)). These

features are associated with a modulation of the critical current Ic (Fig. 34), similar to su-

percurrent transistors [139]. While such strong Ic modulation does not occur in the open

wire, a slight anti-correlation is observed between the Ic of the cavity and open wires (e.g.

80 mV < Vsg < 70 mV). To study the critical current as a function of gate voltage, Ic is

defined as the location of the resistance peaks in the dV/dI versus I curve. This switching

current can be smaller than the true critical current due to dissipation events which prevent

a zero-resistance state, but nonetheless can qualitatively characterize the superconducting

behavior.

5.3.2 Transconductance

The transconductance dG/dVsg (Fig. 35, left panels), which is computed by numerically dif-

ferentiating the zero-bias conductance G with respect to side gate, reveals distinct features in
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Figure 35: Magnetic field dependence of conductance oscillations for three devices. Left pan-

els, Transconductance dG/dVsg from a lock-in amplifier measurement of G at small (100 µV)

bias versus B and Vsg. Alternating red and blue regions correspond to conductance oscil-

lations. Right panels, Linecuts of G versus B, at Vsg =0, -2, and 0 mV for (a), (b), and

(c) respectively, show a sharp peak attributed to superconductivity at |B| < Bc ≈ 0.2 T

(shaded red), while the conductance in the paired (shaded green) and normal (shaded blue)

phases is reduced.
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the superconducting, paired and normal regimes. The superconducting state is characterized

by a sharp conductance peak below B < Bc, (Fig. 35, right panels, shaded red); correspond-

ingly, the transconductance exhibits large oscillations. For B > Bc, the oscillations decrease

in amplitude, yet maintain a definite phase relationship with the superconducting state mod-

ulations, confirming that transport continues to be dominated by electron pair states despite

the loss of superconducting coherence. This phase relationship is preserved over the mag-

netic field range Bc < B < Bp (shaded green). A magnetically-induced universal phase shift,

which occurs throughout the field range but is hysteretic and not symmetric with field, is

subtracted from the data [8]. This global effect does not alter the internal structure of the

conductance oscillations. Across |B| < Bp, the universal shift is generally very small com-

pared to the shift at large fields (see § 5.3.2.1), indicating an overall insensitivity to magnetic

fields, consistent with the spin-singlet nature of the paired state. For B > Bp (shaded blue),

the electron pairs break and the transconductance oscillations split and change markedly

with magnetic field.

5.3.2.1 Universal shift A global shifting of the conductance features along the side

gate axis can result from a number of effects. Many of these are mundane; for example, over

the course of a 12-hour experiment, a device might become slightly more (or less) resistive.

Temperature fluctuations can also cause such shifting. As the magnet in our system sweeps

across zero field, the temperature spikes, then gradually decays back to base temperature,

causing a slight asymmetry in the data. Additionally, as the field sweeps, any localized

moments in the vicinity of the device can interact with the field and affect the device.

This global shift in each device is not repeatable or single-valued as a function of magnetic

field. Fig. 36 shows consecutive field sweeps from 9 to -9 T, and then from -9 to 9 T, for

Device C. Clearly the global shift is different for each of these measurements, though in

each case, the least drastic shift occurs across |B| < Bp. Additionally, the effect of the

instrumental temperature spike across zero field can be observed in the asymmetry of the

amplitude of the superconducting peak— in the reverse sweep (Fig. 36(a)), the amplitude is

larger on the positive field side, then sharply drops at zero field, while in the forward sweep

(Fig. 36(b)), the opposite occurs.
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Figure 36: Non-repeatable global shift. a, Magnetic field sweep from +9 T to -9 T. b,

Magnetic field sweep from −9 T to +9 T for the same device.

In Fig. 35(a) (Device B), a universal shift along the side gate axis has been subtracted

from the data in the same way as described in Ref. [8]; namely, the side gate axis plotted

in Fig. 35(a) is given by Vsg(B) = Vsg0(B)− δVsg(B). The global offset δVsg(B) is depicted

in Fig. 37. At |B| < Bp, the shift is small; above Bp, the shift increases in magnitude. The

shift is very asymmetric.

5.3.3 Non-Equilibrium Transport

Transmission resonances through the cavity occur when the quantum phase associated with

round-trip passage is altered by a change in chemical potential or magnetic (Zeeman) inter-

action. In the “equilibrium” case [Fig. 38(a),(c),(e), colored lines], in which there is no net

bias across the cavity, oscillations appear as a function of the applied side gate voltage, which

changes the wavelength of the propagating electron states. In the “non-equilibrium” regime

[Fig. 38(b),(d),(f)], an applied source-drain bias can also change the phase; the result is a
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characteristic “checkerboard” pattern similar to what has been reported for other systems

such as carbon nanotubes [134, 133]. In Fig. 38(a),(c), and (e), the non-equilibrium linecuts

(black) are out-of-phase with the zero-bias oscillations, creating the checkerboard patterns.

The observed transconductance oscillations are consistent with Fabry-Perot interference in

cavity devices up to 4 µm in length (Fig. 38).

5.4 DISCUSSION

5.4.1 Modeling of Fabry-Perot Interference

The band structure of the material determines the detailed nature of the observed Fabry-

Perot oscillations [140]. Resonant transmission through a cavity of length L is periodic in

the Fermi momentum, kF = nπ/L, so that the period is inversely proportional to length;

however, a quadratic relationship between kF and Fermi energy EF leads to a resonance

period which depends on the effective mass of the energy band, and increases with energy

(see Fig. 39). This is in contrast to the constant periodicity of Fabry Perot oscillations in

carbon nanotube systems, which have a linear dispersion [134]. Additionally, bulk SrTiO3 has

three degenerate 3d conduction bands with t2g orbital character, and interfacial confinement

produces an approximately 50 meV upward shift of the dxz and dyz bands relative to the

lighter dxy band [32]. The finite width of the quasi-1D nanowire can introduce a manifold of

transverse subbands. When new subbands become accessible, abrupt changes in oscillation

frequency are expected and observed, and beating between oscillations due to different bands

can disrupt a simple checkerboard pattern. These effects can lead to checkerboards appearing

in the different subsets mentioned above, and can obscure a direct linear relationship between

device length and the interference Vsg period. Additionally, inter-mode scattering can affect

the Fabry-Perot checkerboards, but is not included in the simple transmission model in

Fig. 39.

Both the geometry of the device and the band structure of the material contribute to

the interference signatures in a Fabry-Perot cavity [140, 141]. For materials with a single
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Figure 38: Fabry-Perot interference signatures at finite bias for an L = 4µm cavity (Device

E). a, c, e, Zero-bias and finite-bias dG/dVsg linecuts as a function of Vsg at B = 0 T

[(a), SC], B = 1 T [(c), P], and B = 7 T [(e), N]. b, d, f, dG/dVsg vs V4T and Vsg in the

superconducting phase [(b), B = 0 T], paired phase [(d), B = 1 T] and normal, unpaired

electron phase [(f), B = 7 T], showing checkerboard features in each phase.
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band, resonant transmission through a cavity of length L is periodic in the Fermi momentum,

kF = nπ/L. While a linear dependence of Fermi energy EF on momentum leads to a constant

Vsg resonance period, a quadratic energy dispersion leads to a Vsg period which depends on

the effective masses of the various bands, and increases with energy [140] (1-band model

in Fig. 39 (a,b)). Bulk STO has three degenerate 3d conduction bands with t2g orbital

character. Interfacial confinement produces a ∼50 meV upward shift of the dxz/dyz bands

relative to the dxy band [32], while lateral confinement in quasi-1D nanowires is expected

to create a manifold of transverse subbands. Here, we simulate these multiple modes in a

double-barrier transmission model. Fig. 39 (b) shows an expected interference pattern for

a nanowire with three distinct transverse subbands. Although the orbital character of the

carriers is not known in these experiments, we assume the three subbands originate from the

same dxy orbital.

Total conductance is calculated from the Landauer formula

G =
e2

h

∑
i

Ti (5.1)

where Ti are the transmission of each energy subband i. In this analysis, each subband

is assumed to contribute e2/h, not 2e2/h, because the simulation is being compared with

data taken in large magnetic fields which drive the LAO/STO interface system normal and

break electron pairs [8], so that energy subbands are not assumed to be spin degenerate.

Transmission in a quasi-classical approximation [141] is given by

Ti =
1

P 2 +Q2 + PQcos2kiL
;

P (εL, εR) =
√

(1 + e−2πεL)(1 + e−2πεR);

Q(εL, εR) = e−π(εL+εR);

(5.2)

where εL,R = (EF − Vb)/h̄ω give the Fermi energy EF normalized by the barrier height Vb

and width ω. At each EF , the momentum ki for each subband i with subband bottom Ei

below EF was calculated for a parabolic dispersion

ki =

√
2meff (EF − Ei)

h̄
. (5.3)
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Figure 39: Semi-classical transmission model. a, Resonant states periodic in momentum are

depicted by symbols for parabolic dispersion of three transverse subbands. b, Conductance

oscillations due to the lowest energy subband in (a) (red) and conductance oscillations due

to coherent transport of all three subbands depicted in (a) (black). c, Zero-bias (V4T = 0)

differential conductance (dI/dV ) of Device A (L = 0.25 µm, B = 3 T) for both the cavity

and the open wire. Cavity conductance features quasi-periodic oscillations that qualitatively

resemble a multimode transmission model. d, dI/dV versus V4T and Vsg for Device A show

a smoothly-changing period over a subset of Vsg.
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The three-subband model in Fig. 39 uses an effective mass [82] meff = 0.7me for all

subbands, assuming that the subbands all originate from the same orbital. Other parameters

used are E1 = 300 µeV, E2 = 730 µeV and E3 = 1200 µeV, barrier height Vb = 100 µeV,

barrier width ω = 1x1013 s−1, and length of the cavity L = 250 nm. The momentum states

which give a maximum in Ti are shown in Fig. 39 (a) for the energy dispersion in Eq. (5.3).

For the lowest subband depicted (red circles), the conductance in units of e2/h is calculated

according to Eqs. (5.1-5.2). Since Fig. 39 (a-b) share an axis, it is easy to see that each

resonant state in the dispersion of the lowest (red) subband in Fig. 39 (a) corresponds to a

peak in conductance in the red curve in Fig. 39 (b). The resonant states occur periodically in

ki, and therefore the spacing between resonances increases as a function of EF . Finally, the

conductance for all three subbands was calculated according to Eqs. (5.1-5.2) (Fig. 39 (b),

black). In this case, beating between the resonances occurs, resulting in what appear to be

random fluctuations in conductance. Zero-bias dI/dV linecuts in the normal, unpaired state

(Fig. 39 (c)) clearly show the qualitative similarity between the multiband model and the

conductance oscillations observed in cavity devices, contrasted with the lack of such features

in the open wires with no barriers. A plot of dI/dV extended to finite bias shows a slowly-

increasing period between resonances, as expected, for a small range of Vsg (Fig. 39 (d)).

5.4.1.1 Coupling Factor The coupling factor, or lever arm, of the side gate can be

determined from Fig. 39 (d) by comparing the size of the oscillations along the Vsg and V4T

axes, similar to how the coupling factor is determined for coulomb diamonds. Here, in the

gate range -92 mV < Vsg < -83.5 mV, there are 3 oscillations with an average period of

2.8 mV, extending to V4T = 125 µeV, which can be directly converted to energy. This

gives a coupling factor of 0.125 meV/2.8 mV = 0.045 eV/V. This coupling factor was used

to determine the equivalent energy scale for Fig. 39 (c). The energy ranges in Fig. 39 (b)

and (c) are the same size, though an exact quantitative match is not expected due to the

assumptions in the model, such as effective mass, subband spacing, number of subbands,

and barrier characteristics- specifically, that the barriers are identical. However, qualitative

features- namely, the subsets of quasi-periodic oscillations- are present in both the model and

normal-state data. Finally, we note that there is no established transport theory of electron
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pairs, so the paired regime, while in some ways qualitatively similar to the normal regime,

represents new physics that extends beyond this model.

5.4.2 Finite-Bias Transport

Despite all cavity devices exhibiting zero-bias conductance oscillations, full checkerboard pat-

terns extending to finite source-drain bias only appear in small subsets of gate voltage in most

devices. For example, the 4 µm cavity exhibits checkerboards for −15 mV < Vsg < 20 mV

in the superconducting and paired phases, and for −75 mV < Vsg < −45 mV and 10 mV <

Vsg < 40 mV in the normal-state at B = 7 T (Fig. 38). Non-equilibrium effects such as

heating and the availability of a range of momentum states can dephase transport and damp

the oscillations at sufficiently high bias values [Fig. 38(a),(c),(e), black lines]. The preemi-

nence of dips, rather than peaks, has been explained by inter-mode coupling at the scattering

centers [134]; the occupation of multiple subbands within the cavity increases the likelihood

of inter-mode coupling, which can also lead to suppression of coherence signatures at finite

bias.

5.4.3 Single-Barrier Devices

Twelve devices were made with a single barrier, rather than the two barriers which define a

cavity. The four-terminal leads were between 0.5− 1.5 µm from the barrier, for a total wire

length of 1−3 µm between the leads for the dozen devices. Half of the devices show no block-

ade or Fabry-Perot, like Device G in Fig. 40. Compared to a cavity device like Fig. 39 (c),

Device G clearly has no quasi-periodic oscillations, even at zero-bias. The only non-linear

behavior occurs as the device is pinched off by a low side gate voltage. Above a conductance

value of ∼ e2/h, the conductance increases monotonically with increasing gate bias. The

other half of the single barrier devices exhibit both blockade behavior and Fabry-Perot inter-

ference. This suggests that an unintentional second barrier exists in these devices, forming

a cavity and resulting in the associated interference patterns. These unintentional potential

barriers may contribute additional features in some of the devices with two engineered barri-

ers. However, the disorder is not strong enough to cause blockade or Fabry-Perot signatures
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in open nanowires with no intentionally manufactured barriers, further supporting the claim

of a long elastic scattering length.

5.4.4 Transport through the Open Wire

While conductance oscillations through the cavity are evident for all values of magnetic field

explored (up to 9 T), the open wire shows strong suppression of oscillations in all three

phases [Fig. 31 (b)]. The root-mean-square amplitude of conductance fluctuations of the

open wire is reduced by an order of magnitude compared with the cavity, suggesting that

imperfections in the nanowires contribute negligibly to scattering. The pattern of behavior

described here, for both cavities and open wires, is consistently observed for all of the 50

cavity devices studied.

5.5 CONCLUSION

While systems which support Fabry-Perot interference are expected to act as quantum dots

when tuned to a tunneling regime, not all 1D quantum dot systems can exhibit Fabry-

Perot interference [142]. Resonant tunneling observed in LaAlO3/SrTiO3 nanowire-based

quantum dots at low Vsg suggests that extended coherent states exist [8], but does not

rule out disorder, which randomizes carrier paths in the transport regime at high Vsg. In

contrast, Fabry-Perot interference as described here demonstrates micrometer-scale elastic

scattering lengths in these nanowire cavities. Interestingly, such clean 1D transport differs

from behavior reported in 2D devices. However, local probes have revealed the existence

of narrow channel flow along ferroelastic domain boundaries [14, 15], so understanding the

distinctive transport in quasi-1D structures is possibly relevant for transport measurements

of the 2D LaAlO3/SrTiO3 interface.

The observation of Fabry-Perot interference in the paired regime provides evidence for

ballistic transport of electron pairs in the quasi-1D LaAlO3/SrTiO3 nanowire system. This

result is in sharp contrast to Cooper pair insulators, in which electron pairs surviving outside

98



150

100

50

0

-50

-100

V
4T

 (
µV

)

150100500
dI/dV
(µS)

3.0

2.0

1.0

0.0

dI
/d

V
 (

e2 /h
)

100806040200

Vsg (mV)

a

b

Figure 40: Single barrier device. a, dI/dV versus V4T and Vsg for Device G at B = 3 T. b,

dI/dV linecut at zero-bias (V4T = 0). No Fabry Perot conductance oscillations are observed.
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of the superconducting state are localized [143]. Metallic Bose phases have been observed

in both optical lattice [144] and solid state [143] systems, but even in clean superconductors

where the mean free path is longer than the superconducting coherence length, the mean free

path is only on the order of 10 nm [145]. Additionally, these metallic Bose phases always

appear below the upper critical field for superconductivity in their systems. The results

observed here in LaAlO3/SrTiO3 nanowires are distinct due to both the ballistic nature of

transport of the uncondensed electron pairs, and the persistence of this ballistic pair state

well above the upper critical field for superconductivity in LaAlO3/SrTiO3.

Coherent, ballistic transport can be associated with delocalization of the electron wave-

function. For the case of ballistic electron pairs, this description is inadequate since it does

not describe the strong correlations leading to the formation of composite bosons. Further-

more, what happens when this delocalization length greatly exceeds the superconducting

coherence length? In LaAlO3/SrTiO3, the superconducting coherence length is ∼ 100 nm

[4], much shorter than the micrometer-scale ballistic transport of electrons and electron pairs.

Can competition between superconductivity and delocalization alter or suppress the super-

conducting state in these nanowires? A theoretical framework is necessary for answering the

questions raised by the ballistic transport of electron pairs.

Long-range coherent and ballistic transport in a strongly-correlated electronic phase sug-

gest LaAlO3/SrTiO3 nanowires are promising candidates for studying the rich theoretical

predictions for one-dimensional transport [43], including charge/spin separation [55]. These

results, along with the reconfigurable nature of this interface system, indicate further appli-

cations of this system as a platform for quantum information and simulation by using these

ballistic nanowires as quantum buses for both electrons and electron pairs with modifiable

correlations.
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6.0 QUANTIZED BALLISTIC TRANSPORT OF ELECTRONS AND

ELECTRON PAIRS IN AN ELECTRON WAVEGUIDE

The contents of this chapter represent a collaborative work submitted in Annadi, Lu, Lee,

Lee, Cheng, Tylan-Tyler, Briggeman, Tomczyk, Huang, Pekker, Eom, Irvin and Levy,

arXiv:1611.05127. The non-interacting waveguide model and tight-binding calculations in

§§ 6.4.1 and 6.4.2, and KWANT calculations in § 6.4.6 were performed by A. Tylan-Tyler.

Phase diagram calculations in § 6.4.4 were performed by D. Pekker.

6.1 INTRODUCTION

Electrons undergo profound changes in their behavior when constrained to move along a sin-

gle axis. Theories of one-dimensional (1D) transport of interacting electron systems depend

crucially on the sign of the electron-electron interaction. To date, 1D electron transport

has only been explored within material systems with repulsive electron-electron interac-

tions. SrTiO3-based heterointerfaces support quasi-two-dimensional (2D) electron systems

that are analogous to III-V semiconductor heterostructures, but also possess superconduct-

ing, magnetic, spintronic, ferroelectric and ferroelastic degrees of freedom. Despite these rich

properties, the relatively low mobilities of 2D complex-oxide interfaces appear to preclude

ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting

quantized ballistic transport of electrons and (non-superconducting) electron pairs can be

formed at the interface between the two band insulators LaAlO3 and SrTiO3. These electron

waveguides are created using a well-established conductive atomic-force microscope (c-AFM)
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lithography technique that enables nanoscale control of the metal-insulator transition at the

LaAlO3/SrTiO3 interface. Quantized ballistic transport within conducting nanowires at low

temperature ranges from truly single-mode (1D) to three-dimensional (3D), depending on

the applied magnetic field and gate voltage, revealing a manifold of electronic subbands that

cleanly resolve both lateral and vertical transverse modes. These electron waveguides ex-

hibit no valley degeneracies and can be tuned to the lowest spin-polarized conduction plateau

(G = e2/h), with no signatures of sub-structure or “0.7 anomalies” [146]. Quantization of

the lowest e2/h plateau indicates a ballistic mean-free path lMF ∼ 20 µm, with comparable

values for ballistic electron pair transport. One feature that distinguishes this system from

previously explored 1D channels is the existence of strong attractive electron-electron inter-

actions which lead to electron pairing and superconductivity. We report quantized ballistic

transport of electron pairs in magnetic fields as high as B = 11 T. The pair transport is

essentially dissipationless; however, it is not superconducting. Transport of re-entrant elec-

tron pairs is also observed at crossings between states with different transverse modes; a

phase diagram for this re-entrant paired phase is calculated theoretically using a Hartree-

Bogoliubov Hamiltonian. These results yield new insights into the electronic structure of

the LaAlO3/SrTiO3 system and offer a new platform for the study of strongly interacting

1D electronic systems.

6.2 DEVICE GEOMETRY AND FABRICATION

The geometry used to investigate electron waveguide transport (Fig. 41) consists of a nano-

wire channel of total length LC , surrounded by two narrow, highly transparent barriers

(width LB ∼ 5−20 nm) separated by a distance LS ∼ 10−1000 nm. The chemical potential

µ of the nanowire segment can be tuned by a side-gate voltage Vsg, which is positioned

about 800 nm away from the nanowire. The wires are written at a tip voltage Vtip = 15

V, except for the waveguide, which is created by a two-step voltage sequence. First, we

move the AFM tip with Vtip = 8 V across the LaAlO3 surface to create the main channel.

Next, we repeat the same tip path with a small base voltage (Vtip = 1 V) and apply two
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Figure 41: Waveguide writing schematic. To create the waveguide, a c-AFM tip first writes

the channel using the voltage profile labeled “Step 1”, then re-writes the channel with the

voltage profile labeled “Step 2” to create two weak spots in the channel.
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negative voltage pulses (Vtip = −7.5 V) to create two transparent barriers, which act to

slightly decouple the waveguide from the source and drain leads. This allows the chemical

potential of the waveguide to be tuned efficiently with the side gate voltage Vsg. The barrier

height is determined by the amplitude and duration of the negative pulses. Four-terminal

transport measurements are carried out at or close to the base temperature of a dilution

refrigerator (T = 50 mK) and subject to out-of-plane magnetic fields B.

Transport through a coherent quantum conductor can be described by Landauer’s for-

mula, G = (e2/h)
∑

i Ti(µ), where each energy subband available at chemical potential µ

contributes one quantum of conductance e2/h with transmission probability Ti(µ). The

transmission probability is given by Ti(µ) = T̄FT (µ−Ei) where T̄ encompasses any tunnel-

ing resonances, cavity interference effects, or backscattering processes, FT (E) is a thermal

broadening from the Fermi distribution function of the leads at a finite temperature, and Ei

represents the energy minimum of the ith electron subband [147]. Within this framework,

the conductance of a channel with all Ti = 1 increases in steps of e2/h every time the chem-

ical potential crosses a subband energy minimum. That is, transport through the channel

is ballistic and dissipationless; however, the measured resistance is given by R = h/(Ne2),

where N is the number of occupied subbands. The apparent contradiction between dissipa-

tionless transport within the waveguide and finite resistance was understood by Landauer,

and put on a rigorous footing by Maslov and Stone, who developed a Luttinger liquid model

of energy dissipation within the leads [148]. However, in experiments, even the cleanest sys-

tems do not have infinite scattering lengths; each subband can backscatter electrons, leading

to a suppression which can be modeled as T̄ = exp(−L/Li) [149], where L is the channel

length and Li is the mode-dependent scattering length. When Li ∼ L, the system is in the

ballistic or quasi-ballistic regime, and when Li � L, the system enters a quantized ballistic

regime.

The expected properties of an ideal few-mode (i.e., few-subband) electron waveguide

are illustrated in Fig. 42(b-g). The conductance of the waveguide depends on the number

of accessible quantum channels (shown in Fig. 42(d-e) as energy-shifted parabolic bands).

Fig. 42(b) and Fig. 42(d) depict a state in which a single spin-resolved subband is occupied.

As the chemical potential µ is increased, more subbands in the waveguide become occupied.
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Figure 42: Expected transport characteristics of electron waveguides. a, Schematic of

LaAlO3/SrTiO3 electron waveguide. b, c, Energy diagrams of the waveguide for two dif-

ferent values of chemical potential , which is controlled by Vsg. For (b), a single subband

is occupied, while for (c) three subbands are occupied. d, e, depict the energy subbands

corresponding to (b) and (c). Thick colored bands indicate occupied states. f, Zero-bias con-

ductance quantization as a function of chemical potential. g, Waveguide subband structure

(with both lateral and vertical confinement) as a function of magnetic field and chemical

potential.
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Fig. 42(c) and Fig. 42(e) depict a state in which N = 3 subbands contribute to transport.

Each spin-resolved subband contributes e2/h to the total conductance (Fig. 42(f)). The

energy at which µ crosses a new subband (at kx = 0) can generally shift in an applied

magnetic field due to Zeeman and orbital effects. When lateral and vertical confinement

energies are comparable, a more complex subband structure can emerge, as illustrated in

Fig. 42(g).

6.3 EXPERIMENTS AND RESULTS

The experimentally-measured conductance dI/dV of LaAlO3/SrTiO3 waveguides is shown

in Fig. 43(a-d). Here we focus on two distinct devices: device A (LC = 500 nm, LS = 50 nm,

LB = 20 nm) and device B (LC = 1.8 µm, LS = 1 µm, LB = 20 nm). Fig. 43(a,c) shows

the zero-bias conductance G = dI/dV as a function of side-gate voltage Vsg (or chemical

potential µ) for a sequence of magnetic fields between B = 0 T and 9 T. (Analysis of the

non-equilibrium conductance, described in § 6.3.1, enables the lever-arm ratio α ≡ dµ
dVsg

and

g-factor g ≡ µ−1
B

dµ
dB

(where µB is the Bohr magneton) for the two devices A (B), to be

extracted: αA(B) = 4.5 (9.9) µeV/mV and gA(B) = 0.6 (0.6).) For Device A (Fig. 43(a)),

clear conductance steps of G = 2e2/h are visible for magnetic fields above ∼ 1 T. These

steps split into e2/h steps, up to N = 6, at fields above ∼ 3 T. When only a single barrier

is present, no conduction quantization is observed (see discussion in § 6.4.6 and Fig. 50(b))

because the tunneling barriers are extremely narrow, in contrast to traditional semiconductor

heterostructures. This conclusion is also supported by transport simulations (§ 6.4.6).

We attribute the observed conduction plateaus to Landauer quantization [47], for which

the total conductance depends on the number of available quantum channels (subbands).

The subband structure of these LaAlO3/SrTiO3 electron waveguides is clearly revealed by

examining the transconductance dG/dµ as a function of µ and external magnetic field B

(Fig. 43(b,d)). The transconductance shows an intricate set of bands (bright areas) which

mark the boundaries where new subbands become available (as illustrated in Fig. 42(g)).

These bands are separated by dark areas (dG/dµ → 0) where the conductance is highly
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Figure 43: Transport for devices A and B at T = 50 mK, and comparison with theory. a, c,

Zero-bias G of device A (a) and device B (b) as a function of µ for B = 0−9 T. b, d, dG/dµ

shown as a function of µ and B for device A (b) and device B (d). The white arrow in (b)

indicates the pairing field BP ≈ 1 T. e, f, Theoretical zero-bias G and dG/dµ, modeling

device A, for a non-interacting channel. Transitions have been broadened by a 65 µeV-wide

Lorentzian. 107



quantized. At low magnetic fields (and low µ), the subbands scale roughly as B2 and become

more linear at larger magnetic fields. A pattern of subbands repeats at least twice, spaced

by approximately 500 µeV. The transconductance of the two devices A (LS = 50 nm) and B

(LS = 1 µm) are remarkably similar, despite the large difference in channel length and the

fact that the coupling constant for the two devices differs by a factor of two.

While the lowest N = 1 state remains highly quantized for both devices (see Fig. 43),

the plateaus do not fully reach the integer values for higher N for device B. The relationship

between two length scales—the length scale of the device and the elastic scattering length

(which is typically much shorter than the inelastic scattering length in quantum devices)—

determines whether transport is ballistic. In electron waveguides at the LaAlO3/SrTiO3

interface, the elastic scattering length can be estimated assuming an exponential decay of

the conductance G = G0exp(−L/L0), where L0 is the scattering length and L is the length

of the device. The location of the minimum in the transconductance is used to find the value

of the plateaus, as seen in Fig. 44. The first plateau conductances averaged over magnetic

fields 5 T < |B| < 9 T for device A (B), with length L = 0.05 µm (L = 1 µm), is 0.995e2/h

(0.955e2/h). This gives a scattering length of 10 µm ±2.5 µm (22 µm ±1.7 µm), which

is much longer than any of the waveguide devices; the electron waveguides are therefore

effectively dissipationless over the relevant length scale of the device size. The conductance

of these modes are not exactly e2/h, however, in part because they are not topologically-

protected edge modes, nor are they quantum Hall edge states. A similar analysis for the

second conductance plateau gives scattering lengths of 3 µm ±0.5 µm and 12 µm ±0.7 µm

for devices A and B, respectively.

6.3.1 Finite Bias Spectroscopy

Finite-bias spectroscopy is performed through current-voltage (I − V ) measurements as a

function of Vsg and B to further characterize the electron waveguides. As shown in Fig. 45(a),

a large finite bias (Vsd ≥ V ∗sd, where eV ∗sd is the energy between subsequent subbands) can un-

evenly populate subbands occupied by oppositely traveling electrons, which gives rise to the

so-called half plateaus [150, 151]. The application of Vsd alters the chemical potentials of the
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Figure 44: Quantization of the 1 e2/h plateau. a, The first conductance plateau for device A,

plotted with the transconductance on the right axis. At the middle of the transconductance

dip, the conductance is 0.995e2/h, indicated by the blue square. b, The first conductance

plateaus and transconductance for device B. For the 1 µm long waveguide, the conductance

of the first plateau, 0.955e2/h, gives a scattering length of 22 µm

drain lead (µd) and the source lead (µs) to EF ±eVsd/2. The energy difference µd−µs = eV ∗sd

[as indicated by two red lines Fig. 45(a)] equals the subband spacing between the subbands

|0, 0, ↓〉 and |0, 0, ↑〉. When Vsd ≤ V ∗sd, electrons traveling in opposite directions occupy the

same subband |0, 0, ↓〉 with conductance quantized to e2/h. When Vsd reaches |V ∗sd| (−|V ∗sd|),

subband |0, 0, ↑〉 becomes available for electrons transmitting from drain (source) and gives

rise to half plateau conductance (1.5e2/h). Fig. 45(b) is the finite-bias transconductance plot

of device A at B = 7 T. The dark regions marked by the numbers are where conductance is

quantized. The 0.5e2/h and 1.5e2/h plateaus can be clearly seen in the conductance plot at

Vsd = V ∗sd = 200 µV (Fig. 45(c)). The observation of these half plateaus is indicative of very

clean transport through the electron waveguide devices, since back scattering is more likely

to happen when unoccupied subbands become available at finite biases.

6.3.1.1 Lever Arm The finite-bias spectroscopy is used to extract the lever-arm α,

which converts gate voltage to chemical potential. As illustrated in Fig. 45(b), the bright

crossing (V ∗sd = 200 µV, Vsg = 80 mV) marks the transition from one subband to another
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Figure 45: Finite bias analysis. a, Illustration of electron occupation of subbands |0, 0, ↓〉

and |0, 0, ↑〉 at a finite bias Vsd and B = 7 T. (b) Transconductance map of device A as a

function of Vsd and Vsg at B = 7 T. Each bright band marks the transition between the

conductance plateaus, labeled by quantization. c, G vs Vsg curves of zero bias (Vsd = 0

V) and finite bias (Vsd = V ∗sd = 200 µV) at B = 7 T. Half plateaus are clearly visible at

finite bias (blue curve). d, V ∗sd dependent on ∆Vsg at magnetic fields from 3 T to 9 T in

step of 1 T. The linear relationship and negligible intercept clearly establishes eV ∗sd = α∆Vsg

with α = 4.5 µeV/mV. e, Zeeman splitting between subbands |0, 0, ↓〉 and |0, 0, ↑〉 with the

same field variation in (d). The g factor extracted from the slope is g = 0.6. Remarkably,

subbands |0, 0, ↓〉 and |0, 0, ↑〉 only split above a critical magnetic field Bp = 1.1 T, which is

marked by the intercept in the B axis.
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due to the bias. At this condition, the energy gain induced by the bias V ∗sd should equal

the subband spacing marked by α∆Vsg at zero bias, namely eVsd = α∆Vsg. Then α =

eV ∗sd/∆Vsg can be precisely extracted by the slope of the V ∗sd−∆Vsg plot at different magnetic

fields (Fig. 45(d)). For device A, αA is found to 4.5 µeV/mV, and the fitted linear curve

passes across zero as expected. Similarly, αB = 9.9 µeV/mV can be extracted for device B,

suggesting a stronger coupling of side gate to the waveguide, possibly due to the larger size.

6.3.1.2 g-Factor The Zeeman splitting between two spin-resolved subbands |0, 0, ↑〉 and

|0, 0, ↓〉 can be used to extract the electron g factor. Fig. 45(d) shows the energy splitting

(eV ∗sd) between these two subbands at various magnetic fields, where spin degeneracy is

removed. Then the g factor is given by g = (eV ∗sd)/(µBB), where µB is the Bohr magneton.

The extracted g factors for device A and B are (within measurement error) the same: gA(B) =

0.6.

6.4 DISCUSSION

6.4.1 Non-Interacting Waveguide Model

Many of the features in the transconductance spectra shown in Fig. 43(a-d) are captured by

a waveguide model of non-interacting electrons in a 3D waveguide. The waveguides confining

potential can be regarded as translationally invariant along the propagation direction (x) and

convex along the two transverse directions (lateral y and vertical z). Since the measured

carrier density in conductive nanostructures created by c-AFM lithography is typically in

the range of 0.5 − 1.0 × 1013 cm−2 [152], only the Ti dxy band, being lower in energy than

the dxz and dyz bands at the LaAlO3/SrTiO3 interface [32], is expected to be occupied at

these carrier densities. Thus we assume that all of the conducting channels are derived from

the lower dxy band.

We use a potential Uy = 1
2
m∗yω

2
yy

2 to describe the lateral confinement, where m∗x = m∗y is

the effective mass in the x− y plane and ωy = h̄/(m∗yl
2
y) is the confinement frequency with ly
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being the characteristic width of the waveguide. In the vertical direction, the confinement at

the interface is modeled by a half-parabolic potential, namely, Uz = 1
2
m∗zω

2
zz

2 for z > 0 and

Uz = +∞ for z ≤ 0, where ωz = h̄/(m∗zl
2
z) is the confinement frequency, m∗z is the effective

mass of the dxy band in the z direction, and lz is the penetration depth into the SrTiO3.

Within this single-particle picture, the full Hamiltonian can be written in the Landau gauge

as

H =
(px − eBy)2

2m∗x
+

p2
y

2m∗y
+

p2
z

2m∗z
+
m∗yω

2
y

2
y2 +

m∗zω
2
z

2
z2 − gµB

2
Bσz (6.1)

where σz is the Pauli matrix. This Hamiltonian is readily solved to yield energy eigenstates

|n,m, s〉 ⊗ |kx〉 with corresponding energy

Em,n,s,kx = h̄Ω(n+ 1/2) + h̄ωz

(
(2m+ 1) + 1/2

)
− gµBBs+

h̄2k2
x

2m∗x

(
1− ω2

c

Ω2

)
(6.2)

where ωc = eB/m∗y is the cyclotron frequency, Ω =
√
ω2
y + ω2

c is the effective frequency of the

waveguide and magnetic field, n (m) enumerates the lateral (vertical) states, and s = ±1/2

is the spin quantum number. Distinct spin-resolved subbands [153] are associated with the

discrete quantum numbers |n,m, s〉. Fig. 46(a) plots the eigenenergies for parameters that

have been adjusted to resemble the experimentally measured transconductance (Fig. 43(d)).

These values are also used to compute the expected conductance and transconductance versus

chemical potential (Fig. 43(e,f)). The corresponding wavefunctions φn,m,kx,s(y, z) (defined in

Eq. 6.3) for selected states are illustrated in Fig. 46(c):

φn,m,k,s(y, z) ≡ 〈y, z, s; k|n,m, s〉 ⊗ |kx〉

= Nn,m,ke
−
m∗yΩ

4h̄

(
y− h̄ω2

c
m∗yΩ

k

)2

Hn

(√
m2
yΩ

h̄

(
y − h̄ω2

x

m∗yΩ
k
))

e−
m∗zωz

4h̄
z2

H2m+1

(√
m∗zωz
h̄

z

)
(6.3)

Here, Hn(x) are the Hermite polynomials. The wavefunctions are displaced laterally

by the magnetic field by an amount that depends quadratically on the kinetic energy

(Fig. 46(b)). The set of parameters for device A (B), ly = 26 (27) nm, lz =8.1 (7.9) nm,

m∗x = m∗y =1.9 (1.8) me, and m∗z =6.5 (6.4) me is obtained by maximizing agreement with
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a tight-binding model that includes spin-orbit interactions (see below). At low magnetic

fields, the energy scales quadratically with magnetic field, as it is dominated by the geomet-

rical confinement contribution; at higher magnetic fields, the confinement from the cyclotron

orbits dominates, producing a linear scaling. The crossover occurs near ωB = eB
m∗y
∼ ωy.

6.4.2 Tight-Binding Hamiltonian for Electron Waveguide

As the magnetic field couples to motion in the x − y plane, the characteristic length scale

and mass in the y−direction may be extracted directly form the transconductance data. To

extract lz and m∗z from ωz, it is necessary to use a more complete tight-binding model which

includes the atomic spin-orbit coupling between the 3 Ti t2g orbitals. The inclusion of this

term then allows us to vary the mass m∗z of the dxy band (and the corresponding masses of

the dyz and dzx bands) to see the reduction in the electron g factor (see later discussion in

Sec. V). The resulting tight-binding Hamiltonian takes the form

H =
∑
i,j,k

[∑
α,s

(
− tαxe

i e
h̄
Bjd2

φ0 aαs†i,j,ka
αs
i+1,j,k − tαya

αs†
i,j,ka

αs
i,j+1,k − tαz a

αs†
i,j,ka

αs
i,j,k+1

)

+
∆aso

2

∑
s,s′

(
− iss′y a

dxys′†
i,j,k a

dyzs′

i,j,k + iss
′

x a
dxys†
i,j,k a

dxzs′

i,j,k + iss
′

z a
dyzs†
i,j,k a

dxzs′

i,j,k

)
,+h.c.

]

+
∑

i,j,k,s,α

[(
m
dxy∗
y ω2

y

2
(jd)2 +

m
dxy∗
z ω2

z

2
(kd)2 + 2tαx + 2tαy + 2tαz

)
aαs†i,j,ka

αs
i,j,k +

g

2
µBBσza

αs†
i,j,ka

αs
i,j,k

]
(6.4)

where tαi is the hopping in the i-direction for the band α, d is the lattice constant, φ0 is

the magnetic flux quantum, ∆aso = 19.3 meV is the atomic spin-orbit coupling [33], g is the

bare-electron g factor, µB is the Bohr magneton, and a
αs(†)
i,j,k destroys (creates) an electron

at site i, j, k with spin s in band α. From this, the effective g factor can be extracted and

compared to the experimental value to extract lz and m∗z from ωz.
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Figure 46: Non-interacting waveguide model. a, Eigenenergies for a quantum wire for the

Hamiltonian described in Eq. 6.1 are plotted as a function of magnetic field B. Selected

spin-up states are highlighted in color. b, Magnetically induced displacement of these states

along the y direction as a function of eigenstate energy for B = 4 T. c, Six corresponding

wavefunctions, labeled by |n,m, s〉, at kx = 0 and B = 4 T. Red and blue colors indicate

opposite sign of the wavefunction.
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6.4.3 Electron Pairs at Low Magnetic Fields

While the single-particle model captures the overall subband structure, clear deviations in

the experimental results are apparent. These electron waveguides exhibit electron pairing

without superconductivity below a critical magnetic field Bp, similar in nature to reports

for strongly confined quantum dot structures [8]. The extracted pairing field for the |0, 0, s〉

states is Bp ≈ 1 T for device A and B (see Fig. 43). In other devices, electron pairing is much

stronger. Device C, written on a different sample, exhibits highly quantized conduction but

with a subband structure that differs qualitatively from devices A and B. There are three

pairs of subbands that generate 2e2/h steps (Fig. 47(a)). These pairs unbind at a critical field

Bp ≈ 11 T (Fig. 47(c), dashed lines). Superimposed over these pairs is a separate subband

(with higher curvature) that contributes e2/h to the conductance (Fig. 47(b)). At B ≈ 3 T

two paired subbands are superimposed with the unpaired subband, leading to a plateau near

5e2/h (highlighted in green). Finally, re-entrant electron pairing is observed when electron

subbands become degenerate; this phenomenon will be discussed in more detail in § 6.4.4.

6.4.4 Re-Entrant Pairing

Deviations from the single particle model arise from electron-electron interactions within the

waveguide. The effects of these interactions become apparent in the transconductance data

in the vicinity of subband crossing points (both at zero magnetic field and at finite field).

Specifically, we observe extended regions of 2e2/h conductance steps which we associate

with a transition from a vacuum phase directly into a paired phase. That is, when a pair

of subbands with opposite spin (e.g. |1, 0, ↑〉 and |0, 1, ↓〉) intersect at a finite magnetic

field they are found to pair re-entrantly before separating again (Fig. 43 and Fig. 48). This

observation is consistent with previously studies of one dimensional fermions with attractive

interactions using both the Bethe Ansatz approach [154] (for the case of equal masses) and

numerical approaches [155, 156] (for the case of unequal masses).

Here, we present a simple self-consistent Hartree-Bogoliubov model of crossing subbands

that is both consistent with the more refined approaches and highlights the relevant physics
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Figure 47: Strongly paired electron waveguides. a, Conductance of device C (LB = 5 nm,

LC = 350 nm, LS = 10 nm) versus chemical potential for magnetic fields ranging from 0 T

to 15 T. This device shows strong electron pairing and associated 2e2/h conductance steps.

b, Transconductance plot shows three strongly paired states and a superimposed state with

higher curvature associated with a conductance of e2/h. The value of the latter state can

be seen at B = 3 T in the conductance curve in panel a (highlighted in green) where it

combines with the second strongly paired subband into a plateau near 5e2/h. c, Linecuts of

transconductance plotted at magnetic fields from 0 T to 15 T in 1 T steps. The 2e2/h peaks

split above a pairing field Bp ≈ 11 T, as indicated by the dashed lines.
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Figure 48: Electron-electron interaction in device A. a, Electron pairing (blue lines), avoided

crossing (white lines), and re-entrant pairing (black lines) fittings of device A. b, Detailed

view of re-entrant pairing and avoided crossing data in (a). c, Combined model fitting of

data shown in (b). Here the black lines shows the fitting of re-entrant pairing between

subband |0, 1, ↓〉 and |1, 0, ↑〉, with ∆rp = 13 µeV. The white lines are the fitting to the

avoided crossing between subband |0, 1, ↓〉 and |1, 0, ↓〉, with ∆1,2 = 16 µeV. (Full set of

fitting parameters are listed in Tables 2 and 3).
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without added complication. We start with the two-band, one-dimensional Hubbard model:

H = −
∑
i,α

tα(c†α,icα,i+1 + h.c.) +
∑
i,α

Vα(Vsg, B)nα,i + U
∑
i

n1,in2,i (6.5)

where i is the site index, α is the subband index, Vα(Vsg, B) describes the electrochemical

potential as a function of the side gate voltage and magnetic field, and U < 0 models the

electron-electron attraction. At the mean field level, this model is described by the single-

particle Hamiltonian


ξ1,k + Σ1 0 0 ∆rp

0 −(ξ1,k + Σ1) ∆rp 0

0 ∆rp ξ2,k + Σ2 0

∆rp 0 0 −(ξ2,k + Σ2)

ψβ,k = Eβ,kψβ,k (6.6)

where we use the {c1,k, c
†
1,k, c2,−k, c

†
2,−k} basis, {1,2} are the subband labels, ψβ,k and Eβ,k

are the quasi-particle wave functions and eigenenergies, ξα,k(µ,B) corresponds to the non-

interacting energy of an electron in the transverse subband α with momentum k along the

wire, in magnetic field B, and chemical potential µ (that is tuned by Vsg). Σ1,Σ2, and ∆rp

are the mean fields that must be found self-consistently. Σα represent the Hartree shifts due

to the electrons in the opposite subband ᾱ:

Σα = UH

∫
dk

2π
〈c†ᾱ,kcᾱ,k〉 (6.7)

and ∆rp represents the re-entrant pairing field

∆rp = UB

∫
dk

2π
〈c2,−kc1,k〉 (6.8)

For concreteness, we have made the minimal assumption that the interactions are inde-

pendent of momentum (i.e. local in real space) when writing the mean fields. We caution

that a nonzero value of ∆ should not be interpreted as a signature of superconductivity but

only as a signature of pair formation as we are working in one dimension. Finally, when

computing the matrix elements, we must keep in mind that the basis we are using is twice as

big as the physical basis, and consequently, quasi-particle wave functions come in conjugate
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pairs. However, only one member of the pair should be used (for example, the one that has

the positive eigenvalue and thus corresponds to the quasi-particle creation operator).

We solve the Hartree-Bogoliubov model self-consistently to obtain a phase diagram near

the crossing point of the |0, 1, ↓〉 and |1, 0, ↑〉 subbands (Fig. 49). The locations of the

non-interacting subbands are plotted with dashed lines. By turning on the attractive inter-

subband interaction, the Hartree shift tends to pull down the upper subband away from the

crossing point; and pairing prevails closer to the crossing point which results in the merger

of the two subbands into a single paired subband. Following the Maslov and Stone theorem,

the conductance in the paired (spin-gapped) phase must be 2e2/h [157]. We expect that

these qualitative predictions are generic for systems with attractive inter-band interactions

and not particularly sensitive to the assumptions that we have made: i.e. using the Hartree-

Bogoliubov model with local interactions.

Provided the phase diagram in Fig. 49, we use a phenomenological model containing the

phase boundaries to describe inter-band re-entrant pairing. The basic scenario is when two

subbands E1 (= k1B+b1) and E2 (= k2B+b2) with opposite spins are tuned closely in energy,

they combine as an electron pair, which breaks when the energies are tuned further away.

These two subbands would simply cross (red dashed lines) if there were no electron-electron

interaction. In the presence of the attractive pairing interaction, the higher energy subband

undergoes an energy shift of −2δ1(2) so that it can be written as E ′1(2) = k1(2)B+b1(2)−2δ1(2).

And a middle section representing the paired phase emerges. The re-entrant pairing energy

∆rp can then be extracted: ∆rp = δ1 +δ2. We are now able to use this model to extract these

parameters from the experimental data using the fittings shown in Fig. 48(a) and Fig. 48(c).

This process then gives a pairing field range 3.3 T < B < 3.5 T and a pairing energy

∆rp = 13 µeV for subbands |1, 0, ↑〉 and |0, 1, ↓〉 in device A (see Table 2 for the full fitting

parameters).

6.4.5 Avoided Crossings

Experimentally, we observe that when two subbands |n1,m1, s〉 and |n2,m2, s〉 share the

same spin quantum number s and are nearly degenerate in energy (Em1,n1,s ≈ Em2,n2,s), e.g.,
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Figure 49: Phase diagram of the Hartree-Bogoliubov model in the -B plane and near the

crossing point of |0, 1, ↓〉 and |1, 0, ↑〉. In producing this diagram we used the band parameters

for device A and set the attractive interaction constants to be UH = UB = 100 µeV.

Table 2: Re-entrant pairing fitting parameters for device A and B.

Device Subbands k (µeV/T) b (µeV) ∆rp (µeV)

Device A
|1, 0, ↑〉 133 168

13
|0, 1, ↓〉 15 566

Device B
|1, 0, ↑〉 130 120

10
|0, 1, ↓〉 14 585
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|1, 0, ↑〉 and |0, 1, ↑〉, they form an avoided crossing (Fig. 43(b,d) and Fig. 48). It is tempt-

ing to associate avoided crossings with repulsive electron-electron interactions, however the

phase diagram of the repulsive version of the model (Eq. 6.5) does not admit this interpre-

tation. However, an avoided crossing arises naturally if the transverse confinement potential

is not separable [158, 159]. To model these avoided crossings, a simple two-level effective

Hamiltonian of the form

Heff =

 E1 ∆1,2

∆1,2 E2

 (6.9)

is used, where ∆1,2 models the non-separability of the confinement potential by coupling the

two states E1 and E2. The chemical potentials at which the two transverse subbands become

occupied follows

EAV± =
1

2
(E1 + E2)± 1

2

√
(E1 − E2)2 + 4∆2

1,2 (6.10)

To fit the experimental data, and extract the parameter ∆1,2, we approximate the single

particle energy eigenvalue Ei with a linear magnetic field dependence Ei = kiB + bi in the

vicinity of the avoided crossing (see Fig. 48(a,c), as well as Table 3).

6.4.6 Single vs Double Barriers

In GaAs-based heterostructure devices, the number of transverse channels that are transmit-

ted through a quantum point contact is typically controlled by a split top gate. In the case of

electron waveguides at the LaAlO3/SrTiO3 interface, the channel width is determined by the

c-AFM lithography writing parameters [71]; Vsg does not appreciably alter the characteristic

width of the potential. Instead, Vsg tunes the chemical potential of the channel (with length

Ls), with negligible effects on the grounded leads, as shown in Fig. 42(b-e).

To examine this scenario numerically, we look at the simplest case where the barriers do

not disrupt the characteristic potentials of the quantum waveguide and only act as regions

in which the chemical potential is continuously changed from that in the leads to that set

by Vsg. For spinless particles, we may write a simple tight-binding Hamiltonian of the form
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Table 3: Avoided crossing fitting parameters for device A and B.

Device Subbands k (µeV/T) b (µeV) ∆rp (µeV)

Device A

|1, 0, ↑〉 167 8
20

|0, 1, ↑〉 58 534

|1, 0, ↓〉 91 195
16

|0, 1, ↓〉 15 566

Device B

|1, 0, ↑〉 168 -58
34

|0, 1, ↑〉 63 529

|1, 0, ↓〉 95 139
40

|0, 1, ↓〉 14 585

H =
∑
i,j

[
tdxyx

(
e
i e
h̄
Bjd2

φ0 a†i,jai+1,j + a†i,jai,j+1 + h.c.
)

+
(

4tdxyx +
m∗yω

2
y

2
(jd)2 − VB(id, µ)

)
a†i,jai,j

]
(6.11)

where VB(x, µ) is the chemical potential along the waveguide with µ being the chemical

potential of the separated region. This function smoothly connects the chemical potential

of the lead (chosen to be 4tdxyx so all subbands are occupied in the leads) to the chemical

potential µ set by Vsg in the separate region over a characteristic length Lb/2 at the beginning

and end of a region with characteristic length Ls.

Using the KWANT package [160] to calculate the transport properties of such a system,

a single barrier (LS = 0) device does not show quantization at any µ or magnetic field as

seen in Fig. 50(a). This is what we expect from our model where a single barrier allows

continuous tunneling between the leads which may be continuously tuned by changing the

barrier height, as experiments show in Fig. 50(b). Finally, when two barriers are examined

(LS > 0), quantized conductance appears as the magnetic field is increased in Fig. 50(c), in

agreement with the experimental data in Fig. 43.
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Figure 50: Single barrier vs double barriers. a, Single barrier simulation. Conductance

quantization is smeared by tunneling directly across the barrier (from source to drain). b,

Transport data of device D with only one barrier. No precise conductance quantization is

observed at all magnetic fields, qualitatively in agreement with a. The high conductance

at zero field is likely due to superconductivity. c, Double barrier simulation. Two barriers

isolate the electron waveguide from the leads and allow the side gate to tune the chemical

potential. Direct tunneling from source to drain is also suppressed. Clear conductance

quantization is observed at high magnetic fields.
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6.4.7 Comparison with Quantum Hall Effect

The observed conductance plateaus are not consistent with a quantum Hall state. The

integer quantum Hall effect is defined by an insulating 2D bulk with chiral edge states that

are responsible for the quantized conductance. By contrast, LaAlO3/SrTiO3-based electron

waveguides lack the insulating bulk region that prevents backscattering. That is to say, the

magnetic length (lB ∼ 15 nm for B = 3 T) and the confinement length (ly = 26 (27) nm for

device A (B)) are comparable and no well-defined bulk region is present.

The 3D structure of the electron waveguides is also inconsistent with quantum Hall

physics. The cross-section of our waveguides is ellipsoidal with an aspect ratio of 0.5 (verti-

cal/lateral, see Fig. 46(c)), which is well within the 3D regime. This regime is not expected

to support stable quantum Hall bilayer states as multiple vertical subbands are occupied. For

example, in Fig. 6.4.4(a), the |0, 0, ↑〉 and |0, 1, ↓〉 subbands would be unstable and therefore

not quantized in a quantum Hall regime, according to Ref. [161]. The fact that quantized

transport is observed provides further proof that this form of transport is not described by

quantum Hall effects.

Finally, the lack of observable quantization at low fields is a consequence of the close

spacing of lateral subband modes. The single-particle theory, illustrated in Fig. 43(e,f),

shows that broadening of the subband transitions prevents the individual subbands from

becoming resolvable at low magnetic fields; however, they become visible as soon as the

magnetic dispersion can clearly separate them in energy. In other waveguides with larger

subband spacing, conductance quantization is observable at small magnetic fields (Fig. 51).

6.5 CONCLUSION

The observation of quantized conduction in the paired regime (G = 2e2/h and |B| < Bp)

signifies that these (non-single-particle) states propagate ballistically, forming an extended

state in which electron pairs are bound together while the center-of-mass coordinate remains

delocalized. Conduction quantization with steps of 2e2/h, rather than (2e)2/h, is consistent
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Figure 51: Critical magnetic field for splitting the lowest two spin subbands for additional

devices D and E a,c, Zero-bias conductance G as a function of Vsg and B for device D

(LB = 20 nm, LC = 1500 nm, Ls = 700 nm) and E (LB = 20 nm, LC = 500 nm, Ls =

250 nm) fabricated on different samples. Curves are offset for clarity b,d, Corresponding

transconductance dG/dVsg plots reveal Bp at which subbands |0, 0, ↓〉 and |0, 0, ↑〉 start to

split. Bp values are high for device D (∼ 2.5 T) and E (> 9 T) compared to device A and

B in Fig. 43.
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with the notion that dissipation takes place not within the channel itself but in the leads,

and that electron pairs unbind before they dissipate energy [162, 163]. This interpretation is

also consistent with the theorem of Maslov and Stone, who argued that the conductance of

a Luttinger liquid is determined by the properties of the leads [148]. Specifically, the charge

conductance of the channel remains 2e2/h when a spin (i.e. pairing) gap is opened in the

channel.

The range of pairing fields previously observed in tunneling experiments (§ 3) is consistent

with the variation observed in these electron waveguides. For device A and B, Bp ≈ 1 T is

relatively low compared to Bp ≈ 11 T in device C. Fig. 51 shows additional variation of Bp

in two other devices. No specific dependence of Bp on device length can be inferred. Clearly,

there are hidden variables that regulate the strength of electron pairing that have yet to be

revealed experimentally.

The experiments described here show that electron waveguides provide remarkably de-

tailed insight into the local electronic structure of these oxide interfaces. The level of re-

producibility and reconfigurability illustrated by these experiments represents a significant

advance in control over electronic transport in a solid-state environment. Correlated elec-

tron waveguides offer unique opportunities to investigate the rich physics that is predicted

for 1D quantum systems [43]. For example, the number of quantum channels can be tuned

to the lowest spin-polarized state (with G = e2/h), forming an ideal spin-polarized Luttinger

liquid. These 1D channels form a convenient and reproducible starting point for emulating

a wider class of 1D quantum systems or for creating quantum channels that can be utilized

in a quantum computing platform. While the lowest spin-polarized state is robust to disor-

der, the higher modes are very sensitive, which makes them potentially useful for nanoscale

sensing.
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7.0 FUTURE DIRECTIONS AND CONCLUSIONS

7.1 FUTURE DIRECTIONS

7.1.1 Pascal-Liquid Phase in an Electron Waveguide

Electron-electron interactions can lead to new quasiparticle states with properties that are

profoundly different from individual electrons. For example, when there is even a weak ef-

fective attraction between electrons, pairing and superconductivity can take place. Ballistic

electron waveguides which support multi-mode transport are a useful probe of the strong

attractive interactions at the LaAlO3/SrTiO3 interface, clearly revealing the magnetic field

behavior of the single- and paired-electron states as demonstrated in Ch. 6 of this thesis.

Ballistic electron waveguides are also starting to reveal new families of emergent quasiparti-

cle states where electrons bunch together in groups of increasing number (Fig. 52(c)). These

composite particles with charge ne, where n = 1, 2, 3, 4, 5, ..., produce quantized conduc-

tance in steps (Fig. 52(a)) that mirror the third row of Pascal’s triangle- 1, 3, 6, 10...e2h

(Fig. 52(b)). The stability of this Pascal liquid phase is governed by strong electron-electron

interactions that not only favor these multi-electron phases, but also appear to alter the

overall band structure of the waveguide to achieve these low-energy states. The ubiquity

of this phase, occurring in a dozen devices so far, also offers new insight into the variety of

correlated electronic states that can exist within SrTiO3. The combination of control over

two transverse degrees of freedom provided by the waveguides and the rich physics at the

LaAlO3/SrTiO3 interface provide a unique platform for exploration of novel 1D transport

and the discovery of new Pascal liquid phases.
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Figure 52: Pascal liquid phases in an electron waveguide. a, Conductance G as a function

of chemical potential µ at B = 6.5 T showing quantized plateaus at 1, 3, 6, and 10 e2/h. b,

Pascal’s triangle, highlighting the series observed in conduction plateaus in LaAlO3/SrTiO3

waveguides. c, Transconductance dG/dVµ highlighting the bunching 2 and 3 electrons into

a pair and trion phase.
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Figure 53: Frictional drag device setup.

7.1.2 Frictional Drag as a Probe of Electronic Interactions

Coulomb drag occurs between two electrically-isolated conductors, which are close enough

that when current is driven through one conductor, the Coulomb interaction between elec-

trons drives the motion of electrons in the other conductor, creating a drag voltage. In fact,

any electron-electron interaction can be probed by such frictional drag measurements, not

just conventional Coulombic interactions.

A device consisting of two closely-spaced parallel nanowires at the LaAlO3/SrTiO3 in-

terface (Fig. 53) is expected to exhibit interesting behavior due to the strong attractive and

gate-tunable interactions demonstrated and studied throughout this thesis. Of particular

interest is the behavior as the drive and drag nanowires transition between the supercon-

ducting, paired, and single-particle regimes.

7.2 CONCLUSION

Electron-electron interactions at the LaAlO3/SrTiO3 interface have resulted in novel elec-

tronic states with surprising behaviors. Nanodevices have been key in discovering the nature

of the electronic interactions and their consequences in transport. The amazing flexibility of
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the c-AFM lithography technique promises a wide range of future experiments limited only

by imagination: What impact might the frictional drag between two arms of an Arahanov-

Bohm device have on the interference oscillations? What impact might the frictional drag

between two arms of a SQUID device have on the critical current oscillations? Nanodevices

will be a useful tool to probe the relationship between electron pairing and dimensional-

ity, and understanding why c-AFM nanowires can support such clean transport compared

to their 2D counterparts. Additionally, the ability to distinguish the behavior of individ-

ual electron states can be used to study and stabilize higher-order composite particles, to

understand what role they might play in transport and superconductivity.

In conclusion, nanodevices at the LaAlO3/SrTiO3 interface will continue to be an im-

portant platform for exploring the mechanisms and consequences of electron-electron inter-

actions and other emergent properties in this rich complex-oxide system.

130



BIBLIOGRAPHY

[1] Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting
SrTiO3. Physical Review Letters 12, 474–475 (1964).

[2] Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground
state. Nature 456, 624–627 (2008).

[3] Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature
superconductor. Nature 502, 528–531 (2013).

[4] Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317,
1196–1199 (2007).

[5] Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning
spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magne-
totransport study. Physical Review Letters 104, 126802 (2010).

[6] Caviglia, A. D. et al. Tunable rashba spin-orbit interaction at oxide interfaces. Physical
Review Letters 104, 126803 (2010).

[7] Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides.
Nature Materials 6, 493–496 (2007).

[8] Cheng, G. L. et al. Electron pairing without superconductivity. Nature 521, 196–+
(2015).

[9] Cheng, G. L. et al. Tunable electron-electron interactions in LaAlO3/SrTiO3 nanos-
tructures. Physical Review X 6 (2016).

[10] Tomczyk, M. et al. Micrometer-scale ballistic transport of electron pairs in
LaAlO3/SrTiO3 nanowires. Physical Review Letters 117 (2016).

[11] Annadi, A. et al. Dissipationless transport of electrons and cooper pairs in an electron
waveguide. submitted arXiv:1611.05127 (2016).

[12] Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Physical
Review 108, 1175–1204 (1957).

131



[13] Eagles, D. M. Possible pairing without superconductivity at low carrier concentra-
tions in bulk and thin-film superconducting semiconductors. Physical Review 186, 456
(1969).

[14] Kalisky, B. et al. Locally enhanced conductivity due to the tetragonal domain structure
in LaAlO3/SrTiO3 heterointerfaces. Nature Materials 12, 1091–1095 (2013).

[15] Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3.
Nature Materials 12, 1112–1118 (2013).

[16] Noad, H. et al. Variation in superconducting transition temperature due to tetragonal
domains in two-dimensionally doped SrTiO3. Physical Review B 94 (2016).

[17] Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430,
758–761 (2004).

[18] Sawaguchi, E., Kikuchi, A. & Kodera, Y. Dielectric constant of strontium titanate at
low temperatures. Journal of the Physical Society of Japan 17, 1666–& (1962).

[19] Muller, K. A. & Burkard, H. SrTiO3 - intrinsic quantum paraelectric below 4 k.
Physical Review B 19, 3593–3602 (1979).

[20] Lin, X., Zhu, Z., Fauqu, B. & Behnia, K. Fermi surface of the most dilute supercon-
ductor. Physical Review X 3, 021002 (2013).

[21] Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mate-
rials 7, 855–858 (2008).

[22] Binnig, G., Baratoff, A., Hoenig, H. E. & Bednorz, J. G. Two-band superconductivity
in nb-doped SrTiO3. Physical Review Letters 45, 1352–1355 (1980).

[23] Nozieres, P. & Schmittrink, S. Bose condensation in an attractive fermion gas - from
weak to strong coupling superconductivity. Journal of Low Temperature Physics 59,
195–211 (1985).

[24] Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W.
Vortices and superfluidity in a strongly interacting fermi gas. Nature 435, 1047–1051
(2005).

[25] Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3

heterointerface. Nature 427, 423–426 (2004).

[26] Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable
quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–
1945 (2006).

132



[27] Kim, Y., Lutchyn, R. M. & Nayak, C. Origin and transport signatures of spin-orbit in-
teractions in one- and two-dimensional SrTiO3-based heterostructures. Physical Review
B 87, 245121 (2013).

[28] Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A universal critical density
underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nature Commu-
nications 3, 1129 (2012).

[29] Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and supercon-
ductivity at the LaAlO3/SrTiO3 interface. Nature Physics 7, 767–771 (2011).

[30] Herranz, G., Snchez, F., Dix, N., Scigaj, M. & Fontcuberta, J. High mobility conduc-
tion at (110) and (111) LaAlO3/SrTiO3 interfaces. Scientific Reports 2, 758 (2012).

[31] van Benthem, K., Elsasser, C. & French, R. H. Bulk electronic structure of SrTiO3:
Experiment and theory. Journal of Applied Physics 90, 6156–6164 (2001).

[32] Salluzzo, M. et al. Orbital reconstruction and the two-dimensional electron gas at the
LaAlO3/SrTiO3 interface. Physical Review Letters 102, 166804 (2009).

[33] Zhong, Z. C., Toth, A. & Held, K. Theory of spin-orbit coupling at LaAlO3/SrTiO3

interfaces and SrTiO3 surfaces. Physical Review B 87 (2013).

[34] Bercioux, D. & Lucignano, P. Quantum transport in rashba spin-orbit materials: a
review. Reports on Progress in Physics 78 (2015).

[35] Seri, S., Schultz, M. & Klein, L. Interplay between sheet resistance increase and
magnetotransport properties in LaAlO3/SrTiO3. Physical Review B 86 (2012).

[36] Bi, F. et al. Room-temperature electronically-controlled ferromagnetism at the
LaAlO3/SrTiO3 interface. Nature Communications 5, 5019 (2014).

[37] Bi, F. et al. LaAlO3 thickness window for electronically controlled magnetism at
LaAlO3/SrTiO3 heterointerfaces. Applied Physics Letters 107 (2015).

[38] Lee, J. S. et al. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nature
Materials 12, 703–706 (2013).

[39] Salluzzo, M. et al. Origin of interface magnetism in bimno3/SrTiO3 and
LaAlO3/SrTiO3 heterostructures. Physical Review Letters 111 (2013).

[40] Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination
of the fine-structure constant based on quantized hall resistance. Physical Review
Letters 45, 494–497 (1980).

[41] Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum hall effect.
Reviews of Modern Physics 71, S298–S305 (1999).

133



[42] Luttinger, J. M. An exactly soluble model of a many-fermion system. Journal of
Mathematical Physics 4, 1154–1162 (1963).

[43] Giamarchi, T. Theoretical framework for quasi-one dimensional systems. Chemical
Reviews 104, 5037–5055 (2004).

[44] Auslaender, O. M. et al. Spin-charge separation and localization in one dimension.
Science 308, 88–92 (2005).

[45] Steinberg, H. et al. Charge fractionalization in quantum wires. Nat Phys 4, 116–119
(2008).

[46] Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys Rev Lett
55, 1622–1625 (1985).

[47] Landauer, R. Spatial variation of currents and fields due to localized scatterers in
metallic conduction. Ibm Journal of Research and Development 1, 223–231 (1957).

[48] van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional
electron gas. Physical Review Letters 60, 848–850 (1988).

[49] Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic
resistance. Journal of Physics C: Solid State Physics 21, L209 (1988).

[50] Yacoby, A. et al. Nonuniversal conductance quantization in quantum wires. Physical
Review Letters 77, 4612–4615 (1996).

[51] Frank, S., Poncharal, P., Wang, Z. L. & Heer, W. A. d. Carbon nanotube quantum
resistors. Science 280, 1744–1746 (1998).

[52] Lin, Y.-M., Perebeinos, V., Chen, Z. & Avouris, P. Electrical observation of subband
formation in graphene nanoribbons. Physical Review B 78, 161409 (2008).

[53] van Weperen, I., Plissard, S. R., Bakkers, E. P. A. M., Frolov, S. M. & Kouwenhoven,
L. P. Quantized conductance in an insb nanowire. Nano Letters 13, 387–391 (2013).

[54] Timp, G. et al. Quantum transport in an electron-wave guide. Physical Review Letters
59, 732–735 (1987).

[55] Haldane, F. D. M. Luttinger liquid theory of one-dimensional quantum fluids .1.
properties of the luttinger model and their extension to the general 1d interacting
spinless fermi gas. Journal of Physics C-Solid State Physics 14, 2585–2609 (1981).

[56] Kane, C. L. & Fisher, M. P. A. Transport in a one-channel luttinger liquid. Physical
Review Letters 68, 1220–1223 (1992).

[57] Giamarchi, T. & Schulz, H. J. Anderson localization and interactions in one-
dimensional metals. Physical Review B 37, 325–340 (1988).

134



[58] Irvin, P. et al. Anomalous high mobility in LaAlO3/SrTiO3 nanowires. Nano Letters
13, 364–368 (2013).

[59] Cheng, G. et al. Anomalous transport in sketched nanostructures at the
LaAlO3/SrTiO3 interface. Physical Review X 3, 011021 (2013).

[60] Ron, A. & Dagan, Y. One-dimensional quantum wire formed at the boundary between
two insulating LaAlO3/SrTiO3 interfaces. Physical Review Letters 112, 136801 (2014).

[61] Park, J. W. et al. Creation of a two-dimensional electron gas at an oxide interface on
silicon. Nature Communications 1, 94 (2010).

[62] Bark, C. W. et al. Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3

(001) interface by epitaxial strain. Proceedings of the National Academy of Sciences of
the United States of America 108, 4720–4724 (2011).

[63] Bark, C. W. et al. Switchable induced polarization in LaAlO3/SrTiO3 heterostructures.
Nano Letters 12, 1765–1771 (2012).

[64] Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science
323, 1026–1030 (2009).

[65] Irvin, P. et al. Rewritable nanoscale oxide photodetector. Nature Photonics 4, 849–852
(2010).

[66] Ma, Y. et al. Broadband terahertz generation and detection at 10 nm scale. Nano
Letters 13, 2884–2888 (2013).

[67] Cheng, G. L. et al. Sketched oxide single-electron transistor. Nature Nanotechnology
6, 343–347 (2011).

[68] Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Helvetica Physica Acta 55,
726–735 (1982).

[69] Giessibl, F. J. Advances in atomic force microscopy. Reviews of Modern Physics 75,
949–983 (2003).

[70] Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Physical Review
Letters 56, 930–933 (1986).

[71] Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room
temperature. Nature Materials 7, 298–302 (2008).

[72] Brown, K. A. et al. Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces
governed by surface protonation. Nat Commun 7 (2016).

[73] Bi, F. et al. ”water-cycle” mechanism for writing and erasing nanostructures at the
LaAlO3/SrTiO3 interface. Applied Physics Letters 97, 173110 (2010).

135



[74] Dingle, R., Stormer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in
modulation-doped semiconductor heterojunction super-lattices. Applied Physics Let-
ters 33, 665–667 (1978).

[75] vonDelft, J., Zaikin, A. D., Golubev, D. S. & Tichy, W. Parity-affected superconduc-
tivity in ultrasmall metallic grains. Physical Review Letters 77, 3189–3192 (1996).

[76] Tinkham, M., Ralph, D. C., Black, C. T. & Hergenrother, J. M. Discrete energy levels
and superconductivity in nanometer-scale al particles. Czechoslovak Journal of Physics
46, 3139–3145 (1996).

[77] Veazey, J. P. et al. Oxide-based platform for reconfigurable superconducting nanoelec-
tronics. Nanotechnology 24, 8 (2013).

[78] Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete elec-
tronic states in single metal particles. Physical Review Letters 74, 3241–3244 (1995).

[79] Beenakker, C. W. J. Theory of coulomb-blockade oscillations in the conductance of a
quantum dot. Physical Review B 44, 1646–1656 (1991).

[80] Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K.
Spins in few-electron quantum dots. Reviews of Modern Physics 79, 1217–1265 (2007).

[81] Anderson, P. W. Theory of dirty superconductors. Journal of Physics and Chemistry
of Solids 11, 26–30 (1959).

[82] Santander-Syro, A. F. et al. Two-dimensional electron gas with universal subbands at
the surface of SrTiO3. Nature 469, 189–193 (2011).

[83] Averin, D. V. & Nazarov, Y. V. Single-electron charging of a superconducting island.
Physical Review Letters 69, 1993–1996 (1992).

[84] Matveev, K. A. & Larkin, A. I. Parity effect in ground state energies of ultrasmall
superconducting grains. Physical Review Letters 78, 3749–3752 (1997).

[85] Anderson, P. W. The resonating valence bond state in la2cuo4 and superconductivity.
Science 235, 1196–1198 (1987).

[86] Schlottmann, P. Exact results for highly correlated electron systems in one dimension.
International Journal of Modern Physics B 11, 355–667 (1997).

[87] Lin, H. Q. Dilute gas of electron pairs in the t-j model. Physical Review B 44, 4674–
4676 (1991).

[88] Hellberg, C. S. & Manousakis, E. 2-dimensional t-j model at low electron density.
Physical Review B 52, 4639–4642 (1995).

136



[89] Cullum, J. & Willoughby, R. A. Computing eigenvalues of very large symmetric-
matrices - an implementation of a lanczos-algorithm with no reorthogonalization. Jour-
nal of Computational Physics 44, 329–358 (1981).

[90] Cullum, J. & Willoughby, R. A. A survey of lanczos procedures for very large real
symmetric eigenvalue problems. Journal of Computational and Applied Mathematics
12-3, 37–60 (1985).

[91] Hellberg. Low-Temperature Thermodynamics of Quantum Systems, 43–52 (Springer-
Verlag Berlin Heidelberg, 2000).

[92] Hellberg, C. S. Theory of the reentrant charge-order transition in the manganites.
Journal of Applied Physics 89, 6627–6629 (2001).

[93] Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band
systems with local nonretarded attractive interactions. Reviews of Modern Physics 62,
113–171 (1990).

[94] Anderson, P. W. Model for electronic structure of amorphous semiconductors. Physical
Review Letters 34, 953–955 (1975).

[95] Ashoori, R. C. et al. Single-electron capacitance spectroscopy of discrete quantum
levels. Physical Review Letters 68, 3088–3091 (1992).

[96] Alt, H. C. Experimental evidence for a negative-u center in gallium-arsenide related
to oxygen. Physical Review Letters 65, 3421–3424 (1990).

[97] Matsushita, Y., Bluhm, H., Geballe, T. H. & Fisher, I. R. Evidence for charge kondo
effect in superconducting tl-doped pbte. Physical Review Letters 94, 157002 (2005).

[98] Dzero, M. & Schmalian, J. Superconductivity in charge kondo systems. Physical Review
Letters 94, 157003 (2005).

[99] Geballe, T. H. & Kivelson, S. A. Paired insulators and high temperature superconduc-
tors. arXiv:1406.3759 (2014).

[100] Stashans, A., Pinto, H. & Sanchez, P. Superconductivity and jahn-teller polarons in
titanates. Journal of Low Temperature Physics 130, 415–423 (2003).

[101] Gervais, F., Servoin, J. L., Baratoff, A., Bednorz, J. G. & Binnig, G. Temperature
dependence of plasmons in nb-doped SrTiO3. Physical Review B 47, 8187–8194 (1993).

[102] van Mechelen, J. L. M. et al. Electron-phonon interaction and charge carrier mass
enhancement in SrTiO3. Physical Review Letters 100 (2008).

[103] Kolodiazhnyi, T. & Wimbush, S. C. Spin-singlet small bipolarons in nb-doped batio3.
Physical Review Letters 96 (2006).

137



[104] Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of kondo
alloys. Physical Review Letters 85, 1504–1507 (2000).

[105] Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391,
156–159 (1998).

[106] Hofheinz, M. et al. Individual charge traps in silicon nanowires - measurements of
location, spin and occupation number by coulomb blockade spectroscopy. European
Physical Journal B 54, 299–307 (2006).

[107] Jung, S. W., Fujisawa, T., Hirayama, Y. & Jeong, Y. H. Background charge fluctuation
in a gaas quantum dot device. Applied Physics Letters 85, 768–770 (2004).

[108] Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N. & Ralph, D. C. Metal-nanoparticle
single-electron transistors fabricated using electromigration. Applied Physics Letters
84, 3154–3156 (2004).

[109] Kim, M., Kozuka, Y., Bell, C., Hikita, Y. & Hwang, H. Y. Intrinsic spin-orbit coupling
in superconducting delta-doped SrTiO3 heterostructures. Physical Review B 86 (2012).

[110] Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in
the extreme quantum limit. Physical Review Letters 48, 1559–1562 (1982).

[111] Laughlin, R. B. Anomalous quantum hall-effect - an incompressible quantum fluid
with fractionally charged excitations. Physical Review Letters 50, 1395–1398 (1983).

[112] Jain, J. K. Composite-fermion approach for the fractional quantum hall-effect. Physical
Review Letters 63, 199–202 (1989).

[113] Matveev, K. A. Conductance of a quantum wire in the wigner-crystal regime. Physical
Review Letters 92 (2004).

[114] Pesin, D. & Balents, L. Mott physics and band topology in materials with strong
spin-orbit interaction. Nature Physics 6, 376–381 (2010).

[115] Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates:
the ’plain vanilla’ version of rvb. Journal of Physics-Condensed Matter 16, R755–R769
(2004).

[116] Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons.
Nature 450, 1177–1183 (2007).

[117] Jorgensen, H. I., Novotny, T., Grove-Rasmussen, K., Flensberg, K. & Lindelof, P. E.
Critical current 0-pi transition in designed josephson quantum dot junctions. Nano
Letters 7, 2441–2445 (2007).

[118] Eichler, A. et al. Tuning the josephson current in carbon nanotubes with the kondo
effect. Physical Review B 79 (2009).

138



[119] Diener, R. B., Sensarma, R. & Randeria, M. Quantum fluctuations in the superfluid
state of the bcs-bec crossover. Physical Review A 77 (2008).

[120] Beenakker, C. & Van Houten, H. Resonant josephson current through a quantum dot.
http://arxiv.org/abs/condmat/0111505 (2001).

[121] Maniv, E. et al. Strong correlations elucidate the electronic structure and phase dia-
gram of LaAlO3/SrTiO3 interface. Nature Communications 6 (2015).

[122] Pallecchi, I. et al. Giant oscillating thermopower at oxide interfaces. Nature Commu-
nications 6 (2015).

[123] Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and
two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Physics 7,
762–766 (2011).

[124] Lee, E. J. H. et al. Spin-resolved andreev levels and parity crossings in hy-
brid superconductor-semiconductor nanostructures. Nature Nanotechnology 9, 79–84
(2014).

[125] Choi, H. Y., Bang, Y. Y. & Campbell, D. K. Andreev reflections in the pseudogap
state of cuprate superconductors. Physical Review B 61, 9748–9751 (2000).

[126] Rakhmilevitch, D. et al. Phase coherent transport in SrTiO3/LaAlO3 interfaces. Phys-
ical Review B 82, 235119 (2010).

[127] Schneider, C. W., Thiel, S., Hammerl, G., Richter, C. & Mannhart, J. Microlithography
of electron gases formed at interfaces in oxide heterostructures. Applied Physics Letters
89, 122101 (2006).

[128] Chang, J. W. et al. Quantum electrical transport in mesoscopic LaAlO3/SrTiO3 het-
erostructures. Applied Physics Express 6 (2013).

[129] Caviglia, A. D. et al. Two-dimensional quantum oscillations of the conductance at
LaAlO3/SrTiO3 interfaces. Physical Review Letters 105, 236802 (2010).

[130] Stornaiuolo, D. et al. In-plane electronic confinement in superconducting
LaAlO3/SrTiO3 nanostructures. Applied Physics Letters 101, 222601 (2012).

[131] Banerjee, N., Huijben, M., Koster, G. & Rijnders, G. Direct patterning of functional
interfaces in oxide heterostructures. Applied Physics Letters 100 (2012).

[132] Gallagher, P., Lee, M., Williams, J. R. & Goldhaber-Gordon, D. Gate-tunable super-
conducting weak link and quantum point contact spectroscopy on a strontium titanate
surface. Nature Physics 10, 748–752 (2014).

139



[133] Kretinin, A. V., Popovitz-Biro, R., Mahalu, D. & Shtrikman, H. Multimode fabry-
perot conductance oscillations in suspended stacking-faults-free inas nanowires. Nano
Letters 10, 3439–3445 (2010).

[134] Liang, W. J. et al. Fabry-perot interference in a nanotube electron waveguide. Nature
411, 665–669 (2001).

[135] Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317,
1530–1533 (2007).

[136] Simmons, J. A., Tsui, D. C. & Weimann, G. Quantum interference effects in high-
mobility mesoscopic gaas/alxga1-xas heterostructures. Surface Science 196, 81–88
(1988).

[137] Veazey, J. P. et al. Nonlocal current-voltage characteristics of gated superconducting
sketched oxide nanostructures. Epl 103 (2013).

[138] Kirczenow, G. Resonant conduction in ballistic quantum channels. Physical Review B
39, 10452–10455 (1989).

[139] Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent
transistors in carbon nanotubes. Nature 439, 953–956 (2006).

[140] Wang, Q. et al. Conductance oscillations induced by longitudinal resonant states
in heteroepitaxially defined ga0.25in0.75as/inp electron waveguides. Applied Physics
Letters 76, 2274–2276 (2000).

[141] Connor, J. N. L. On analytical description of resonance tunnelling reactions. Molecular
Physics 15, 37–46 (1968).

[142] Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schonenberger, C. Mul-
tiwall carbon nanotubes as quantum dots. Physical Review Letters 88, 156801 (2002).

[143] Phillips, P. & Dalidovich, D. The elusive bose metal. Science 302, 243–247 (2003).

[144] Deissler, B. et al. Delocalization of a disordered bosonic system by repulsive interac-
tions. Nature Physics 6, 354–358 (2010).

[145] Tsen, A. W. et al. Nature of the quantum metal in a two-dimensional crystalline
superconductor. Nature Physics 12, 208–+ (2016).

[146] Micolich, A. P. & Zulicke, U. Tracking the energies of one-dimensional sub-band edges
in quantum point contacts using dc conductance measurements. Journal of Physics-
Condensed Matter 23 (2011).

[147] Datta, S. Atom to transistor: A bottom-up viewpoint. Abstracts of Papers of the
American Chemical Society 230, U2776–U2777 (2005).

140



[148] Maslov, D. L. & Stone, M. Landauer conductance of luttinger liquids with leads.
Physical Review B 52, R5539–R5542 (1995).

[149] Nikolic, K. & Mackinnon, A. Conductance and conductance fluctuations of narrow
disordered quantum wires. Physical Review B 50, 11008–11017 (1994).

[150] Glazman, L. I. & Khaetskii, A. V. Nonlinear quantum conductance of a lateral micro-
constraint in a heterostructure. Europhysics Letters 9, 263–267 (1989).

[151] Patel, N. K. et al. Ballistic transport in one-dimension - additional quantization pro-
duced by an electric-field. Journal of Physics-Condensed Matter 2, 7247–7254 (1990).

[152] Bi, F. et al. Electro-mechanical response of top-gated LaAlO3/SrTiO3. Journal of
Applied Physics 119 (2016).

[153] Topinka, M. A. et al. Imaging coherent electron flow from a quantum point contact.
Science 289, 2323–2326 (2000).

[154] Guan, X. W., Batchelor, M. T. & Lee, C. Fermi gases in one dimension: From bethe
ansatz to experiments. Reviews of Modern Physics 85, 1633–1691 (2013).

[155] Wang, B., Chen, H. D. & Das Sarma, S. Quantum phase diagram of fermion mixtures
with population imbalance in one-dimensional optical lattices. Physical Review A 79
(2009).

[156] Orso, G., Burovski, E. & Jolicoeur, T. Luttinger liquid of trimers in fermi gases with
unequal masses. Physical Review Letters 104 (2010).

[157] Maslov, D. L. Transport through dirty luttinger liquids connected to reservoirs. Phys-
ical Review B 52, R14368–R14371 (1995).

[158] Salis, G. et al. Mode spectroscopy and level coupling in ballistic electron waveguides.
Physical Review B 60, 7756–7759 (1999).

[159] Fischer, S. F., Apetrii, G., Kunze, U., Schuh, D. & Abstreiter, G. Magnetotransport
spectroscopy of spatially coincident coupled electron waveguides. Physical Review B
71 (2005).

[160] Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software
package for quantum transport. New Journal of Physics 16 (2014).

[161] Sawada, A. et al. Phase transition in the nu=2 bilayer quantum hall state. Physical
Review Letters 80, 4534–4537 (1998).

[162] Beenakker, C. W. J. & Vanhouten, H. Josephson current through a superconducting
quantum point contact shorter than the coherence length. Physical Review Letters 66,
3056–3059 (1991).

141



[163] Kanasz-Nagy, M., Glazman, L., Esslinger, T. & Demler, E. A. Anomalous conductances
in an ultracold quantum wire. Physical Review Letters 117 (2016).

142


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Parameters of eight SSET devices.
	2. Re-entrant pairing fitting parameters for device A and B.
	3. Avoided crossing fitting parameters for device A and B.

	LIST OF FIGURES
	1. SrTiO3 crystal structure.
	2. Emergent physics at the LaAlO3/SrTiO3 interface.
	3. LaAlO3 growth on SrTiO3 substrate.
	4. LaAlO3/SrTiO3 canvases.
	5. Photolitography procedure.
	6. AFM operation.
	7. c-AFM procedure.
	8. Water-cycle mechanism for c-AFM lithography.
	9. PPMS schematic.
	10. DR components.
	11. DAQ setup.
	12. Device schematic and transport characteristics.
	13. Nanoscale potential barrier engineering.
	14. Transport properties of different barrier heights.
	15. Transport characteristics of device A.
	16. Out-of-plane magnetic field dependence of device A.
	17. Global shift correction of device A data.
	18. Waterfall plot of Fig.16(f).
	19. Temperature dependence of Bp.
	20. Parity effect.
	21. Phase diagram of the Hubbard model on a one-dimensional 16-site chain.
	22. Comparison between experiment and attractive Hubbard model.
	23. Transport characteristics of devices B, C, D and E.
	24. Superconducting single electron transistor (SSET).
	25. Transport characteristics of an SSET.
	26. Simulation of pair conductance diamonds on varying gapped excitations in the leads.
	27. Theoretical calculation of DOS spectra.
	28. Comparison between data and calculation.
	29. RCSJ model fitting.
	30. Low-field dependence of ABS.
	31. Device schematic and Fabry-Perot oscillations.
	32. Differential conductance.
	33. Background subtraction.
	34. Critical Current Modulations.
	35. Magnetic field dependence of conductance oscillations.
	36. Non-repeatable global shift.
	37. Global shift correction.
	38. Fabry-Perot interference signatures at finite bias.
	39. Semi-classical transmission model.
	40. Single barrier device.
	41. Waveguide writing schematic.
	42. Expected transport characteristics of electron waveguides.
	43. Transport of devices A and B at T=50 mK, and comparison with theory.
	44. Quantization of the 1 e2/h plateau.
	45. Finite bias analysis.
	46. Non-interacting waveguide model.
	47. Strongly paired electron waveguides.
	48. Electron-electron interaction in device A.
	49. Phase diagram of the Hartree-Bogoliubov model.
	50. Single barrier vs double barriers.
	51. Critical magnetic field for splitting the lowest two spin subbands for additional devices.
	52. Pascal liquid phases in an electron waveguide.
	53. Frictional drag device setup.

	PREFACE
	1.0 INTRODUCTION
	1.1 Strontium Titanate
	1.1.1 Ferroelastic Transition
	1.1.2 Incipient Ferroelectric Transition
	1.1.3 A Superconducting Semiconductor

	1.2 Emergent Properties at the LaAlO3/SrTiO3 Interface
	1.2.1 Metal-Insulator Transition
	1.2.2 Electronic Structure at the LaAlO3/SrTiO3 Interface
	1.2.3 Superconductivity
	1.2.4 Rashba Spin-Orbit Coupling
	1.2.5 Magnetism

	1.3 Nanostructures and Dimensionality

	2.0 EXPERIMENTAL METHODS
	2.1 LaAlO3/SrTiO3 Sample Preparation
	2.1.1 Sample Growth
	2.1.2 Canvas Fabrication

	2.2 c-AFM Lithography
	2.2.1 AFM Operation
	2.2.2 c-AFM Lithography
	2.2.3 Water-Cycle Mechanism

	2.3 Low-Temperature Transport
	2.3.1 Physical Property Measurement System Operation
	2.3.2 Superconducting Magnet Operation
	2.3.3 Dilution Refrigerator Operation
	2.3.4 Software: LabVIEW
	2.3.5 Hardware
	2.3.5.1 Peripheral Component Interconnect Extension (PXI)
	2.3.5.2 Pickering



	3.0 ELECTRON PAIRING WITHOUT SUPERCONDUCTIVITY
	3.1 Introduction
	3.2 Device geometry and fabrication
	3.2.1 Barrier Fabrication
	3.2.2 Impact of Barrier Height on Transport

	3.3 Experiments and Results
	3.3.1 Transport at B=0 T
	3.3.2 Transport at Finite Magnetic Field
	3.3.2.1 Universal Shift with Magnetic Field
	3.3.2.2 Analysis of Bp

	3.3.3 Temperature Dependence

	3.4 Discussion
	3.4.1 Pair Tunneling and Resonant Superconductivity
	3.4.1.1 Device Transport Parameters
	3.4.1.2 Constant Interaction Model

	3.4.2 Attractive Hubbard Model
	3.4.3 Pairing Mechanisms
	3.4.4 Alternative Explanations

	3.5 Conclusion

	4.0 TUNABLE ELECTRON-ELECTRON INTERACTIONS IN LAALO3/SRTIO3 NANOSTRUCTURES
	4.1 Introduction
	4.2 Device Geometry and Fabrication
	4.3 Experiments and Results
	4.4 Discussion
	4.4.1 Theoretical Model of Transport in the SSET
	4.4.1.1 Weak Coupling Regime
	4.4.1.2 Intermediate Coupling Regime
	4.4.1.3 Spectral Functions
	4.4.1.4 Numerical Calculation of the DOS
	4.4.1.5 Strong Coupling Regime and RCSJ Model

	4.4.2 Mechanisms for Density-Tuned Interactions
	4.4.3 Signatures of Pre-Formed Pairs

	4.5 Conclusions

	5.0 MICROMETER-SCALE BALLISTIC TRANSPORT OF ELECTRON PAIRS
	5.1 Introduction
	5.1.1 Summary
	5.1.2 Clean One-Dimensional Transport

	5.2 Device Geometry and Fabrication
	5.3 Experiments and Results
	5.3.1 Equilibrium (zero-bias) Transport
	5.3.1.1 Background Subtraction
	5.3.1.2  Superconducting Phase and Modulation of Critical Current

	5.3.2 Transconductance
	5.3.2.1 Universal shift

	5.3.3 Non-Equilibrium Transport

	5.4 Discussion
	5.4.1 Modeling of Fabry-Perot Interference
	5.4.1.1 Coupling Factor

	5.4.2 Finite-Bias Transport
	5.4.3 Single-Barrier Devices
	5.4.4 Transport through the Open Wire

	5.5 Conclusion

	6.0 QUANTIZED BALLISTIC TRANSPORT OF ELECTRONS AND ELECTRON PAIRS IN AN ELECTRON WAVEGUIDE
	6.1 Introduction
	6.2 Device Geometry and Fabrication
	6.3 Experiments and Results
	6.3.1 Finite Bias Spectroscopy
	6.3.1.1 Lever Arm
	6.3.1.2 g-Factor


	6.4 Discussion
	6.4.1 Non-Interacting Waveguide Model
	6.4.2 Tight-Binding Hamiltonian for Electron Waveguide
	6.4.3 Electron Pairs at Low Magnetic Fields
	6.4.4 Re-Entrant Pairing
	6.4.5 Avoided Crossings
	6.4.6 Single vs Double Barriers
	6.4.7 Comparison with Quantum Hall Effect

	6.5 Conclusion

	7.0 FUTURE DIRECTIONS AND CONCLUSIONS
	7.1 Future Directions
	7.1.1 Pascal-Liquid Phase in an Electron Waveguide
	7.1.2 Frictional Drag as a Probe of Electronic Interactions

	7.2 Conclusion

	BIBLIOGRAPHY



