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ANDREEV BOUND STATES IN SUPERCONDUCTOR-QUANTUM DOT

CHAINS

Zhaoen Su, PhD

University of Pittsburgh, 2017

Andreev bound states in superconductor-quantum dot chains can provide a platform for

quantum simulation and topologically protected quantum computation. This thesis focuses

on quantum transport in superconductor-semiconductor nanowire hybrid structures. With

InSb nanowires, we study Andreev bound states in single, double and triple dot chains. We

first implement highly tunable single quantum dots in nanowires coupled to superconductors

facilitated by local gates and transparent contacts. We explore the tunneling resonance of

Andreev bound states in a wide parameter regime: from co-tunneling regime to spinfull

singlet Andreev bound states, and find simultaneous transitions of superconducting and

normal transports as the dot is tuned to be strongly coupled to the superconductor. In the

open dot regime we investigate the zero bias feature that is strongly relevant to Majorana

zero modes based on continuous nanowire sections. With two copies of this superconductor-

quantum dot structure, we study the hybridization of Andreev bound states in a double

dot. We observe tunneling spectra of the hybridized Andreev bound states and resolve

their spin structure. Finally we implement a chain made of three superconductors and

three quantum dots in series. Each dot is strongly coupled to a superconductor and has

a single electron near the superconductor chemical potential. Spectroscopy measurement

demonstrates resonances through Andreev bound states in the triple dot. A zero-bias peak

is observed when a magnetic field is applied and it sustains in magnetic fields for a wide

range, which can provide a signature of Majorana zero modes in this chain structure. We

also evaluate the potential of Ge/Si core/shell nanowires for the realization of Majorana zero
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modes. To that end we establish three of the necessary ingredients for realizing Majorana

zero modes based in nanowires: we achieve induced superconductivity from NbTiN, we

estimate spin-orbit coupling (lSO ≈ 100− 500 nm) based on spin blockade, and we measure

g-factors (up to 8) in Ge/Si double dots.
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1.0 INTRODUCTION

This thesis is about combining semiconductor quantum dots and superconductors to provide

platforms for topological quantum computation and quantum simulation. In this chapter,

we introduce these two materials, their combination, and potential applications in quantum

computation and quantum simulation.
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1.1 TOPOLOGICAL QUANTUM COMPUTATION AND QUANTUM

SIMULATION WITH QUANTUM DOTS AND SUPERCONDUCTORS

Semiconductors are among the most versatile materials in modern technology and science

[1]. Their conductivity can be engineered over a huge range by either doping or gating. One

can utilize spin-orbit interaction and the Zeeman effect in the semiconductors to engineer

the electron spins. Low-dimensional semiconductors can be grown in film, wire and dot

form. This thesis focuses on quantum dots created in nanowires. A quantum dot is a

semiconductor island of sub-micrometer scale. Their small sizes lead to strong Coulomb

interaction and discrete quantum dot energy levels, which makes them atom-like. After

fast development of fabrication in the past years, currently quantum dots can be created

by well controllable semiconductor growth, fabrication or gating. Quantum dot parameters

such as charging energy, discrete levels, and coupling to the environment can be engineered

experimentally, and the quantum dots can be described by models characterized by these

parameters. The high versatility and controllability make quantum dots promising building

blocks for implementing more advanced quantum devices.

In recent years, “adding” superconductivity in low-dimensional semiconductors has drawn

a lot of attentions in the search for robust quantum computation [2, 3, 4]. Superconductiv-

ity originates from microscopic interaction, i.e., although electrons in superconductors are

fermions and all have negative charge, some of them trend to be bind pairwise. Fortunately,

introducing superconductivity into semiconductor can be achieved, which is known as super-

conducting proximity effect: when a normal conductor, a semiconductor in our case, makes

a good electrical contact to a superconductor, the superconductivity “leaks” into the normal

conductor. Close to the interface, the semiconductor behaves like a superconductor. By

inducing the desired superconductivity into the versatile semiconductors, elaborated engi-

neering can be performed to realize important physical systems, such as transmon qubits,

topological quantum computers and quantum simulators [5, 3, 4, 6].

Specifically, inducing superconductivity in quantum dots leads to a number of remarkable

quantum phenomena [7, 8, 9]. Even in a single quantum dot coupled to a superconductor,

rich physics takes place due to the interplay between several important interactions such as

2



Coulomb interaction, superconductivity, the Zeeman effect and spin-orbit interaction. One of

the most remarkable phenomena is the formation of Andreev bound states. Andreev bound

states in single dots have been studied extensively. Recently they attract great attention

because of their strong connection to Majorana zero modes in superconductor-nanowire

hybrid structures, because both share great similarities in experimental observations and

device structures. [10, 11, 12, 13].

A Majorana fermion is a fermion that is its own antiparticle [14]. In condensed matter,

they are quasiparticles that are predicted to exhibit non-abelian exchange statistics, i.e.,

exchanging two Majorana zero modes twice ends up with a state different from the initial

state. This differs from the exchange statistics of bosons and fermions. Importantly, by ex-

changing Majorana zero modes in a process called “braiding” in 2+1 space-time dimensions,

robust quantum computation operations can be performed [15]. This leads to the so-called

“topological quantum computation” where robust quantum computation can be achieved

using quantum levels based on Majorana zero modes instead of using physical properties

such as electron spins [16]. Majorana zero modes have been predicted to be created in

superconductor-ballistic semiconductor nanowires containing the following ingredients: in-

duced superconductivity, the Zeeman effect and strong spin-orbit interaction [3, 4].

In this thesis, we realize and study superconductor-single dots in a new superconductor-

semiconductor combination (NbTiN-InSb nanowire). In addition to exploring the connection

between Andreev bound states in single dots and Majorana zero modes, we gain a number of

new physical insights into the hybrid systems. We then scale the structure to superconductor-

quantum dot chains, motivated by the following.

First, scaling the superconductor-quantum dot structure to chains provides an alternative

approach to realize robust Majorana zero modes other than that based on the superconductor-

nanowire structures [2, 17, 18, 19]. Moreover, it is suggested that Majorana zero modes gener-

ated in the chain structure are insensitive to disorder which, in contrast, can be a dominating

destructive factor for the implementation of Majorana zero modes based in nanowires.

More generally, we suggest that when the superconductor-quantum dot structure is scaled

to chains or arrays, quantum simulation might be performed. The chains or arrays can work

as quantum simulators whose state basis is formed with electron states near the highest

3



occupied quantum dot levels. Quantum simulators enable us to explore Hamiltonians of im-

portant quantum systems in condensed-matter physics, atomic physics, quantum chemistry

[6]. Modeling these quantum systems can advance our knowledge and bring breakthroughs

to physics such as room temperature superconductivity. These systems, however, can be

impossible to model with classical computers as they are beyond the computation power of

supercomputers. Quantum simulation makes the modeling of these systems realizable by

mapping them onto the assemblies of well-understood quantum systems. Such simulation

has been achieved with ultracold atoms in optical lattices [20], trapped ions [21] and super-

conducting circuits [22]. As mentioned previously, quantum dots provide high controllability

and can be well-understood. Besides, integrated circuits have shown the accessibility of inte-

grating billions of semiconductor devices. Therefore, with multiple semiconductor quantum

dots, the quantum simulators might be realized using quantum dot chains and arrays as seen

in other physical systems. At last, in the solid state implementation, intrinsic properties such

as superconductivity, large g-factors, and strong spin-orbit interactions can be incorporated

into the modeled Hamiltonians naturally.

4



1.2 OUTLINE OF THE THESIS

The content of this thesis is as follow:

Chapter 2 introduces the theory and background of Andreev bound states.

Chapter 3 describes the materials, device fabrication techniques and measurement setup

used in this thesis.

Chapter 4 shows the realization of single dots in InSb nanowires coupled to supercon-

ductors (NbTiN), and the measurements of single dot Andreev bound states in the hybrid

structures.

Chapter 5 demonstrates the hybridization of Andreev bound states in an InSb double

quantum dot where each dot is coupled to a superconducting reservoir.

Chapter 6 studies quantum transport through a chain made of three superconductor-

InSb quantum dots.

Chapter 7 shows the observation of induced superconductivity in Ge/Si core/shell

nanowires.

Chapter 8 implements double quantum dots in Ge/Si nanowires and uses them to mea-

sure the spin-orbit interaction and g-factors in Ge/Si nanowires. These properties, together

with the induced superconductivity studied in Chapter 7, are the ingredients to evaluate the

potential of Ge/Si-based devices for the study of Majorana zero modes.

Chapter 9 includes concluding remarks and outlook.
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2.0 THEORY AND BACKGROUND

This chapter introduces the theories and background to quantum dots, Andreev bound states

in superconductor-quantum dot hybrid structures and the Kitaev model.

6



2.1 INTRODUCTION

We first introduce the physics of electrons in small semiconductor islands: quantum dots.

Quantum dots in semiconductors have been studied intensively in the past years. Since

it is one of the experimental backbone components in this thesis, some of the most iconic

phenomena in quantum transport through quantum dots are discussed, such as Coulomb

blockade due to Coulomb interaction and spin blockade due to the Pauli exclusion princi-

ple [23]. In Section 2.2, they are introduced without considering superconductivity in the

dots. These transport features are crucial even in measurements where superconductivity is

present, because they can be used to trace quantum dot occupations and parities.

We then describe the quantum states in the dots when superconductivity is introduced.

Superconductivity competes with Coulomb interaction because it favors pairing of electrons

while Coulomb interaction in these systems makes electrons repeal. One of the most impor-

tant results is the formation of Andreev bound states. I will explain them in two steps. (1) In

Section 2.3, we introduce the superconductor-single quantum dot structures and the Hamil-

tonian of a minimum model. Instead of presenting comprehensive theoretical approaches

immediately, we summarize the most significant properties of Andreev bound states in sin-

gle dots which will be the foundation to understanding the experimental chapters. (2) In

Section 2.4, we then present technical details of the models of our specific experimental

systems, numerical approaches to solve the Hamiltonians and simulation of transport. Im-

portantly, these theoretical approaches solve hybridized Andreev bound states in double dots

with soft gap superconductivity, which had not been developed before.

Finally, superconductor-nanowire structure and chains made of superconductors and

quantum dots have been proposed to realize the Kitaev chain model [2, 17, 18, 19]. This

model is thus introduced and possible experimental realizations are discussed. Although

both InSb and Ge/Si nanowires where electrons as well as holes as charge carriers are studied

in this thesis, they share generic theoretical models. Unless specified, the description and

discussion are based on electron systems.
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2.2 QUANTUM DOTS

2.2.1 Single quantum dots

QD 

e- 

Source Drain 

I VSD 

VG 

Figure 2.1: Illustration of a weakly coupled quantum dot. A quantum dot is weakly coupled
to the left lead (source) and right lead (drain) via tunnel couplings. The chemical potential of states
in the dot is tuned by the gate voltage (VG). A bias voltage (VSD) can be applied to the source
lead and current through the quantum dot is measured on the drain side.

We start with a single quantum dot with two normal leads. As shown by the illustration

of a weakly coupled system (Fig.2.1), the quantum dot is a semiconductor island that can

be connected to leads. The minimal model describing the system takes two factors into ac-

count: Coulomb charging effect and discrete quantum levels. Coulomb interactions between

electrons in the dot, and between electrons in the dot and in the environment, are often char-

acterized by a single parameter that is the sum of capacitances (C) between the quantum dot

and gate (CG), source (CS) and drain (CD). Secondly, due to quantum confinement, there

is a single-particle spectrum. Together, the total energy of a quantum dot at ground state

having N electrons with voltages VG, VS and VD on the gate, source and drain, respectively,

is

UQD(N) =
1

2C
[−|e|(N −N0) + CSVS + CDVD + CGVG]2 +

N∑
n=1

En, (2.1)

where −|e| is electron charge, N0 describes the background charge, En is the single particle

energy level of the n-th electron, C = CS + CD + CG, and VS, VD and VG can be tuned
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continuously in measurements [23]. The electrochemical potential that will be called chemical

potential for short, defined as the energy required to add the N-th electron, is

µ(N) = UQD(N)− UQD(N − 1) =

(
N −N0 −

1

2

)
U − (CSVS + CDVD + CGVG)

U

|e|
+ EN ,

(2.2)

where U = e2/C is charging energy. One can see from Eq.2.2 that the energy cost of adding

the N-th electron to the dot consists of two parts: energy to overcome the charging effect

and discrete level energy.

In electrical transport experiments, a bias voltage, VSD = VS − VD can be applied across

the dot and the current through the dot can be measured to analyze the quantum states in

the dot. The bias voltage opens an electron transport window (|e|VSD). When a quantum dot

chemical potential is tuned to be inside the window, one electron moves from source to the

dot resulting in N +1 electrons in the dot, then leaves the dot to drain (Fig.2.2a). Note that

this is a successive process and only one electron is transferred at a time. In contrast, when

there are no quantum dot levels within the source-drain bias window, electron transport

stops and the dot has a fixed electron occupation (Fig.2.2b). When the charging effect is

involved, this phenomenon is called Coulomb blockade [24]. As seen in Eq.2.2, the chemical

potential in the dot can be tuned by VG such that it can be shifted into the source-drain bias

window and Coulomb blockade is lifted. Within the source-drain bias window, if there are

chemical potentials associated with excited quantum dot levels, there can also be resonant

transport through the dots. Fig.2.2c depicts electron transport via resonant tunneling when

the Fermi level of the source is aligned with a chemical potential associated with an excited

level. Experimentally, current or differential conductance (dI/dV ) is often measured as a

function of the source-drain voltage and gate voltage, which gives rise to a bias vs. gate

diagram. An example is shown in Fig.2.2d where the current is zero inside the diamond-

shape regimes (Coulomb diamonds) and the quantum dot has a fixed electron number.

By increasing VG the dot undergoes from one diamond to another with increasing electron

number. Outside the Coulomb diamonds, current flows. Transport via dot excited states

are observed as current increments (or conductance peaks) outside Coulomb diamonds and

the directions are parallel to the diamond edges (If the leads are superconducting, they are

9



Figure 2.2: Electron transport though a quantum dot in InSb nanowire. a, Coulomb
blockade is lifted when a level is shifted into the bias window by tuning the chemical potential
level ladder using the gate voltage (VG). b, Coulomb blockade. No quantum dot levels are within
the source-drain bias window (eVSD) and no electrons flow through the quantum dot. c, Resonant
tunneling via an excited level in the dot. d, Bias vs. gate diagram of a quantum dot in InSb
weakly coupled to two NbTiN leads. Current through a quantum dot as a function of source-drain
voltage (VSD) and gate voltage (VG) is measured. Electron numbers in Coulomb diamonds are N-2,
N-1, N etc, where N is an integer. The three scenarios depicted in a, b and c are marked in the
corresponding positions in d.

observed as current peaks or conductance peaks of opposite signs such as Fig.2.2d. Here, the

superconductors are weakly coupled to the dot and do not change the quantum dot states.

However, transport features can be different because the density of states in superconductors

differs from that in normal leads. Detailed discussion is presented in section 4.7.). Later in

Chapter 4, where single dots are studied, we will use Coulomb blockade to trace quantum

dot occupations and study the evolution of quantum states formed due to the presence of
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superconductivity.

We shall end this section by discussing spin states of single dot systems. When there is

a single electron (or electrons of odd numbers) in the dot, the spin state is either spin-up

(|↑〉) or spin-down (|↓〉). These two spin states are degenerate at zero magnetic field, and

are thus called spin doublets. Their energies split in magnetic field, following the relation of

Zeeman effect; when there are two electrons (or electrons of even numbers), the spin state is

a singlet (|↓↑〉) due to the Pauli exclusion principle. The energy of a spin singlet single dot

remains under a finite magnetic field.

2.2.2 Double quantum dots

e- 

DL DR Source Drain 

I VSD 

VL VR 

t 

Figure 2.3: Illustration of a double quantum dot in series. Each dot is coupled to a lead.
Electrochemical potential of each dot is tuned by its gate separately. Two dots are coupled via a
tunneling barrier, allowing electrons to tunnel from one dot to the other. The system configuration
can be controlled by the gate voltages (VL, VR). Current is measured to probe the double dot
states.

A double quantum dot, in this thesis, consists of two quantum dots in series [25]. Each of

the dots is connected to a lead and they are coupled via a tunneling barrier, as schematically

shown in Fig.2.3. The chemical potential of each dot can be controlled separately by changing

the voltages on the gates (VL and VR) under the dots. Like in single dots, Coulomb interaction

forbids transport in some regimes and in these regimes the electron occupations are definite.

To describe a double dot configuration, the notation (NL, NR) is used to denote the dot
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occupations on the left dot (NL) and right dot (NR). At a low source-drain bias, the transfer

of an electron from the left source to the right drain is accomplished via the following

transport cycle: (NL, NR) → (NL + 1, NR) → (NL, NR + 1) → (NL, NR). The transport

is allowed only when all of the three transitions involved are allowed. At a bias close to

zero, it means the initial and final states of every transition should have the same chemical

potentials in the leads or dots. These conditions give rise to a VL vs. VR stability diagram

where the transport is blocked except at points where all of the three conditions are met.

These points are called triple points. The triple points form a honeycomb structure in the

stability diagram (See Fig.2.4) where each blockade regime of the honeycomb structure has

a fixed double dot configuration, (NL, NR). Note that the triple points grow into triangles

as the bias is increased.

Besides Coulomb interaction, the transport can be blocked due to the Pauli exclusion

principle [26]. This is illustrated in Fig.2.5a, where, at a forward bias, the double dot is

initialized in the (0,1) configuration whose single electron is either spin-up or spin-down. An

electron can enter the left dot and form a spin-singlet (S(1,1)) or spin-triplet (T(1,1)) with the

electron in the right dot. When a T(1, 1) forms, the electron in the left dot cannot continue

to the right dot as it would form a T(0,2) state whose level would be higher than T(1,1). At

the same time, the electron cannot go back to the source, as its chemical potential is lower

than the Fermi level of the source. In other words, the electron is trapped in the left dot. As

long as this event, called spin blockade, occurs, the current stops flowing. In experimental

systems, the electron spin flips after some time so weak but non-zero current can be observed

in a DC measurement. Note that although we use 0, 1 and 2 to denote the dot occupations,

spin blockade can occur at transitions between configurations of higher occupations. What

matters are the parities of the dot configurations and typical spin blockade occurs at the

(odd, odd) → (even, even) transitions. At the opposite bias, spin blockade does not happen

at the (0,2) → (1,1) transition, because the new electron can only form S(0,2) with the

electron that is already in the right dot. As a result, it continues to the left dot and forms

a S(1,1) (Fig.2.5b).

Spin blockade has practical importance for state initialization and readout in quantum

computation based on semiconductor spins [27]. In our experiments, we use it to determine
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Figure 2.4: Stability diagram of a double dot. At a fixed bias of 5 mV, current is measured
as a function of plunger gate voltages of left and right dots (VL and VR) via a double dot in a Ge/Si
core/shell nanowire. The dashed lines connect the triple points and define a honeycomb structure.
Inside each honeycomb cell there is a definite double dot configuration (NL, NR). At this finite
bias (5 mV), the triple points are shown as triangles. Note that the dot occupations increase as
the gate voltages are decreased because it is a hole double dot in a Ge/Si nanowire.

the parities in the quantum dots (Chapter 5) and to extract spin-orbit coupling in Ge/Si

core/shell nanowires (Chapter 8). In semiconductor nanowires, the spins and momenta of

electrons are coupled due to bulk-induced-asymmetry (Dresselhaus type) such as in InSb

whose crystal structure is zinc-blende, and surface-induced-asymmetry (Rashba type) [28].

Spin-orbit coupling is one of the mechanisms that can cause the spin of the trapped electron

to flip [29].
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Figure 2.5: Spin blockade in a double dot. a, Spin blockade at a positive bias for the (1,1)
→ (0,2) transition. It occurs when an electron in the left dot fills T(1,1). Moving forward to the
right dot is forbidden, because forming a T(0, 2) requires energy that is not accessible and forming
a S(0,2) that would require a spin flip. Moving backward to the source is not allowed either. b,
No spin blockade at the opposite bias. A spin-down electron is transferred via S(0,2) then S(1,1).

2.3 ANDREEV BOUND STATES: PROPERTIES

The Anderson impurity model has been widely used to describe a single quantum dot coupled

to metallic leads [30]. Only a single spin-degenerate level is considered in the model. This

single level approximation is valid for the Andreev bound states that we are interested in here,

because the discrete quantum level spacing is on the order of meV, whereas the NbTiN-InSb

hybrid structures studied in this thesis have induced superconducting gaps on the order of

100 µeV. As we shall discuss later, the energy difference between the ground and first excited

states is within superconducting gap, which validates the single level approximation. The

Hamiltonian for our systems consists of several terms:

H = HL +HR +HQD +Ht, (2.3)
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where HQD corresponds to a single uncoupled quantum dot. It is given by

HQD =
∑

σ={↑,↓}

εc†σcσ + Un↑n↓, (2.4)

where c†σ creates an electron with spin σ on the level of ε in the quantum dot and U is the

Coulomb interaction between two electrons of opposite spin in the dot.

HL(R) represents the left (right) lead. In our case, they are superconducting electrodes.

The theory describing the conventional superconductivity, the Bardeen-Cooper-Schrieffer

(BCS) theory, is well explained in Introduction to Superconductivity by M. Tinkham [31].

The superconducting lead Hamiltonian can be written as:

Hv={L,R} =
∑
kσ

ξk,vd
†
k,σvdk,σv +

∑
k

(
∆vd

†
k↑,vd

†
−k↓,v + H.C.

)
, (2.5)

where d†σ creates an electron (quasiparticle) with spin σ and momentum k on the level of

ξk,v in the superconducting lead and ∆v is the superconducting order parameter on lead v.

Finally Ht expresses the coupling between the dot and the leads,

Ht =
∑
kσ,v

(
Vk,vd

†
kσ,vcσ +H.C.

)
. (2.6)

The hopping parameter Vk,v can be simplified by assuming a constant normal density of

states (ρv) in the leads near the Fermi level around superconducting gap and its momentum

dependence is neglected. As a result, the lead-dot coupling can be characterized with a single

parameter:

Γv = πρv|Vv|2. (2.7)

The system Hamiltonian involves the interplay of two interactions in the dot: Coulomb

interaction and superconductivity. We first provide a qualitative discussion in two limits.

(1) When the superconductivity is dominated by the charging effect completely, we can

equivalently set ∆v to zero such that only the first term in Eq.2.5 is kept. Furthermore, if

we consider the case where Γ’s are small, the system is what we have discussed previously:

a quantum dot weakly coupled to normal leads. (2) Whereas in the limit where Γv � U ,

the quantum dot is strongly coupled to the leads and is called an open quantum dot. It

15



is dominated by the induced superconductivity from the superconductor by the proximity

effect (also called Holm-Meissner effect). The proximity effect occurs when a superconductor

makes good contact with a normal conductor. It results in superconductivity in the normal

material over mesoscopic distances. In this case, the quantum dot becomes effectively an

extension of the superconductor. If the dot is coupled to two superconductors strongly, it

serves as a weak link between the two superconductors and Josephson supercurrent can flow

through it [7].

Superconductor Normal conductor 

S S S N 

a 

b c 

Figure 2.6: Andreev reflection. a, Schematics of Andreev reflection at a superconductor-
normal conductor (S-N) interface. An electron (solid dot) in the normal conductor meets the
interface, which produces a Cooper pair (ellipse) in the superconductor and a reflected hole (circle)
in the normal conductor. Note the electron and reflected hole have opposite spins and momentums.
b, Andreev reflections in a 1D S-N-S structure whose normal conductor has a finite size. Andreev
reflection occurs at two S-N interfaces. The dashed semicircles depict the two Andreev reflections.
c, Andreev reflection and normal reflection in a 1D S-N-N structure whose normal conductor in the
middle has a finite size. Andreev reflection and normal reflection occur at the S-N interface, and
N-N interface with a barrier, respectively. The dashed semicircles depict the Andreev reflections.

Theoretical studies of this simplified Hamiltonian fascilitate the explaintion of a number

of interesting physical phenomena. Various theoretical approaches have been applied to solve

this single dot Hamiltonian, such as the co-tunneling approach [32], diagrammatic approaches

[33], diagonalization by numerical methods [34], functional renormalization group [35] and
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quantum Monte-Carlo [36]. Ref.[37] provides a complete review of these approaches. Note

that without superconductivity, analytical results such as the Kondo effect can be obtained

[38], which will be mentioned later as well. Superconductivity brings additional complexity

to the problem [37]. As a result, numerical approaches, such as numerical renormalization

group and exact diagonalization [39, 40, 41, 42], have been currently developed to the specific

tunneling regime explored in this thesis. We also develop numerical approaches to model

single dot systems and extend it to double dot systems (and in principle systems containing

an arbitrary number of dots). This will be presented in Section 2.4.

In this section, we focus on the properties of Andreev bound states in single dots which are

the results of an interplay between Coulomb interaction and superconductivity. The origin

of Andreev bound states comes from a process called Andreev reflection at superconductor-

normal conductor interfaces where an electron in the normal conductor is converted into

a Cooper pair in the superconductor necessitating a reflected hole (See Fig.2.6a). When

the normal conductor has a finite size, Andreev reflection and normal reflection can occur

at multiple interfaces in the normal conductor. Andreev bound states form as a result

of coherent superposition of all possible Andreev reflection and normal reflection processes

(See Fig.2.6b and c). When the size of the normal conductor is small, such as a quantum

dot, Coulomb interaction becomes important in determining how Andreev bound states

(also called Yu-Shiba-Rusinov states or Shiba states [43]) form. Experimentally, Andreev

bound states in single dots have been studied in InAs nanowires by the Tarucha Group [41],

Franceschi Group [8, 40, 42], Marcus Group [44], Xu Group [45], Shtrikman Group[46], in

carbon nanotubes by the Joyez Group[47], Mart́ın-Rodero Group [48], Strunk Group [49],

and in graphene by the Nadya Group [50].

Here we summarize the most significant properties of Andreev bound states in a single

dot found in the experiments listed above. The spectrum of the single dot system in the

Andreev bound state regime consist of spin-singlets (|S〉) (|0〉+| ↑↓〉 and |0〉−| ↑↓〉) and spin-

doublets (|D〉) (| ↑〉 and | ↓〉). Without considering the effect of magnetic field, the ground

and first excited states have different parities as they differ by one electron. The transitions

between these states of different parities, are associated with the so-called Andreev bound

states. First we consider the regime where the coupling to the superconductor, ΓS, is small
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Figure 2.7: Phase diagram of spin states in a single dot. a, Phase diagram of spin states
in a single dot coupled to a superconductor, as a function of µ/U and ΓS/U , where µ is chemical
potential, U is charging energy and ΓS is superconductor-dot coupling. The green regime has |S〉
ground state while the orange regime has |D〉 ground state. When the dot occupation is even, i.e.,
µ/U < 1 or µ/U > 2, the phase is always spin singlet. Whereas when the dot occupation is odd,
i.e., 1 < µ/U < 2, the ground state can be either a spin singlet or a doublet. The singlet-doublet
phases are separated by a arc-like boundary. b-e, The spectra in different regimes of the phase
diagram denoted in a respectively. In regimes b and e, the ground states are singlets; in regime c
the ground state is |D〉; spot d is on the phase boundary and the ground state is singlet-doublet
degenerate.

(close to the x-axis of the phase diagram in Fig.2.7a). The ground state is |D〉 when the

dot occupation is odd and the ground state is |S〉, meaning |0〉 if the dot occupation is 0,

and | ↑↓〉 if the dot occupation is 2. As ΓS/U is increased, the range of chemical potential,

where the ground state is |D〉, shrinks. The ground state can be |S〉 even when the dot

occupation is odd and the singlet is a superposition of |0〉 and | ↑↓〉. This is indeed the effect

of the induced superconductivity as superconductivity favors electron pairs and therefore it

partially screens the single electron spin. As ΓS/U is further increased, the ground state and
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the first excited states move close to each other and at some point they are degenerate (See

Fig.2.7d). Finally, the ground state becomes |S〉 over the entire µ/U range (See Fig.2.7e).

Fig.2.7a depicts the phase boundary between the singlet and doublet as a function of µ/U

and ΓS/U . The exact shape of the phase boundary is determined by more than charging

energy and induced superconductivity. The Kondo effect can also screen a single spin in

a spin-full quantum dot as the electron is coupled to conductance electrons in the normal

lead or quasiparticles in the superconducting leads [51, 52]. Thus, both superconductivity

and the Kondo effect can make the ground state |S〉 in a spinfull dot. Although the Kondo

effect is not directly observed in our experiments, probably because it is suppressed in the

superconductor-quantum dot structures as the energies of the quasiparticles are gapped by

∆v (Although we notice that our NbTiN-InSb hybrid structures have finite subgap density

of states thus the single electron can also be coupled to the subgap quasiparticles.). On the

other hand, no practical methods have been found to separate the effect by superconducting

pairing from the Kondo effect [8]. In this thesis, although the Kondo effect is a suppressed

effect, we are aware that it cannot be excluded in our experiments.

2.3.1 Transport cycle through Andreev bound states

Experimentally, we observe the transitions between the eigenstates of the superconductor-dot

systems, i.e., Andreev bound states, by electrical transport. Each transport cycle through

Andreev bound states transfers two quasiparticles from the probe that is either a normal

conductor, a superconductor or a semiconductor with induced superconductivity, and results

in a Cooper pair in the superconducting reservoir. In Fig.2.8, we depict the transport cycle

in 4 steps for a normal conductor probe at positive bias. (1) The system starts in a ground

state (Fig.2.8a). (2) When the energy level (ζ) associated with the transition energy between

the ground and excited states is aligned with the chemical potential of the probe, an electron

enters the dot on level ζ and changes its spin state (i.e., from |S〉 to |D〉 or the other way

around) (Fig.2.8b). (3) Andreev reflection at the superconductor-quantum dot interface

generates a Cooper pair in the superconductor and reflects a hole (Fig.2.8c). (4) Finally, the

hole enters the probe and the system is relaxed back to the ground state (Fig.2.8d). The
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Figure 2.8: Transport cycle through single dot Andreev bound states. Schematics of
transport cycle for a normal conductor probe. a, The transport starts with a ground state. The
quantum dot level below the Fermi level of the probe (solid-line level in the dot) is filled and the
quantum dot level above (dashed-line level in the dot) is unfilled. b, The chemical potential of the
probe is aligned with the resonance level that are associated with Andreev bound states. An electron
enters the resonance level. c, The electron undergoes Andreev reflection at the superconductor-
quantum dot interface. A Cooper pair is formed in the superconductor and a hole is reflected. d,
The hole enters the probe and the system is relaxed back to a.

complete transport cycle ends up with two electrons less in the probe, an extra Cooper pair

in the superconducting reservoir, and 2ζ of energy dissipated. The resonance occurs when

the dissipated energy is compensated by the bias |Vbias|, i.e, |eVbias| = ζ. The resonance at

Vbias = −ζ/e involves a similar transport cycle. When the Fermi level of the probe is aligned

with the −ζ level, a hole enters the level. At the superconductor-dot interface, an electron

is reflected and a Cooper pair is annihilated in the superconductor. Finally, the reflected

electron enters the probes and the system is relaxed back to the initial state. A complete

cycle ends up with a Cooper pair annihilated in the superconductor and two extra electrons

in the probe.

The energies of Andreev bound states, ±ζ, can be tuned by the dot chemical potential

(µ). Their relation is revealed in terms of resonances in differential conductance (dI/dV ) in

bias vs. gate spectroscopies. In Fig.2.9 we simulate the transport through Andreev bound

states numerically and plot differential conductance as a function of bias and µ. They are

obtained using the theoretical approaches that will be described in Section 2.4. In Fig.2.9a, a

small value is chosen for ΓS such that the ground state is |D〉 in the spinful dot. Effectively,
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Figure 2.9: Theoretical simulation of transport through Andreev bound states. Trans-
port simulation in three regimes obtained using the theoretical approaches described in Section
2.4. a, In the regime where the odd occupation has |D〉 ground state. ΓS = 1.2. b, Close to the
|D〉 / |S〉 phase transition. ΓS = 1.77. c, In the regime where the ground state is |S〉 over entire µ
range. ΓS = 2.0. Other simulation parameters are the same for a, b and c: U = 3.5, ε = 1.75, t
= 0.1, where ε is quantum dot level spacing. All parameters and Vbias have the same unit, h̄.

this is transport shown along a horizontal line cut through the arc-like boundary shown

in Fig.2.7a. The ground states from left to right are |S〉, |D〉, |S〉 respectively, separated

by the two zero bias crossings. At the center of the closed loop, |ζ| is maximum, which is

associated with a quantum dot level arrangement where the filled and unfilled quantum dot

levels are equally apart from the superconductor chemical potential (See Fig.2.8). As the

dot chemical potential is tuned off from this arrangement, either tuned up or down, |ζ| is

decreased. Importantly, the resonances have non-linear gate dependence due to the interplay

between superconductivity and Coulomb interaction.

As ΓS is increased to some value, 1.77, the system is at the phase transition point

(Fig.2.9b), which corresponds to the horizontal line cut that is tangent to the arc-like bound-

ary in Fig.2.7a. The ground states are |S〉, except at the degenerate point. This |ζ| = 0 point

is associated with the same quantum dot level arrangement depicted in Fig.2.8 but with a

larger ΓS. As the dot chemical potential is tuned off from this spot, either tuned up or down,

|ζ| is increased. Finally, when a large value is chosen for ΓS in Fig.2.9c where the ground
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state is |S〉 for the entire µ range, i.e., this is transport along a horizontal line cut above the

arc-like boundary in Fig.2.7a. The simulation displays anti-crossing-like resonances with one

branch at positive bias and the other at negative bias. Similarly, the minimum gap, 2|ζ|, is

associated with the same quantum dot level arrangement depicted in Fig.2.8. Tuning the

dot chemical potential away from this spot increases |ζ|. These simulation results are found

to be consistent with the experimental observations in Chapter 4.

2.3.2 Magnetic field dependence of Andreev bound states

Spin structure of Andreev bound states can be resolved by measuring the transitions as a

function of magnetic field [8]. In the case where the ground state is |S〉, the excited state is

|D〉. When a magnetic field is applied, the two doublets, |↑〉 and |↓〉, gain Zeeman energies

of ± 1
2
gµBB respectively, where g is the Landé g-factor and µB is the Bohr magneton, and

the ground state which is a singlet remains (See Fig.2.10a). As a result, two transitions take

place. One has increasing transition energy whereas the other has decreasing energy. In

other words, the two transitions which are degenerate at zero field evolve into two branches

in magnetic field. On the other hand, when the ground state is |D〉, one of the doublets

becomes the ground states at finite fields (say |↑〉). The only allowed transition is from it to

the excited |S〉. The transition between the two doublets is not allowed, because a transition

involves adding or removing one electron (See Fig.2.10b). Therefore for the doublet phase,

resonances of increasing values are observed as magnetic field. This provides an experimental

approach to resolve the spin structure. Note the illustrations in Fig.2.10 do not take the

effect that the induced gap is decreased in magnetic field into account. Because of the

decreasing induced gap, the linear field dependences in Fig.2.10 can be absent [8]. This

effect is particularly pronounced with hybrid structures where low critical magnetic field

superconductors such as evaporated Al are involved. Besides, the linearity can be missing

when the transition energy is close to the induced gap, because the transition energy cannot

exceed the induced gap [13].
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Figure 2.10: Illustrative magnetic field dependence of Andreev bound states in a
single dot. a, The transition between the ground state |S〉 and excited state |D〉, as a function
of magnetic field. Two transitions from the ground states to the |↑〉 and |↓〉 excited take place. b,
The transition between the ground state |D〉 and excited state |S〉. Only the transition from the
ground |D〉 states to the excited |S〉 is allowed.

2.4 ANDREEV BOUND STATES: THEORETICAL APPROACHES1

We model our superconductor-quantum dot systems with finite subgap density of states to

approximate the soft gap induced superconductivity. In this section we focus on the double

dot systems. The results, energy spectra and transport simulation, will be presented together

with the experimental observation in the Chapter 5 for convenient comparison.

2.4.1 Hamiltonians

We first simplify the Hamiltonian of a single dot coupled to a single superconductor by

assuming an infinite superconducting gap. Instead, we use a single parameter, τ , to describe

the strength of Andreev reflection of electrons from the superconductor. The model thus

yields

HS-QD =
∑

σ={↑,↓}

εσnσ + Un↑n↓ −
(
τd†↑d

†
↓ + H.c.

)
, (2.8)

1THIS SECTION IS ADAPTED FROM REF.[61].
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where εσ is the energy of an electron with spin σ on the quantum dot which is set by the gate

voltage and the magnetic field, nσ = d†σdσ is the number operator for electrons with spin σ

on the dot, U is the charging energy for double occupancy of the dot, and d†σ and dσ are

the electron creation and annihilation operators. The spectrum of this Hamiltonian consists

of two spin-singlets (sin(θ)|0〉 + cos(θ)| ↑↓〉 and cos(θ)|0〉 − sin(θ)| ↑↓〉) and a spin-doublet

(| ↑〉 and | ↓〉). The parity of the ground state, as well as the angle θ, is determined by the

coupling constants and can be tuned from even to odd to even by varying ε↑ and ε↓.

As we will see, this simplified Hamiltonian preserves the essence of Andreev bound states

and will lead to less computation when to numerically compute systems of two or more

dots. On the other hand, we are fully aware that it would fail to capture the following

effects. (1) The Kondo effect. Because the quasiparticles have infinity energy so that the

coupling between the electron in the dot and the quasiparticles in the leads is zero; (2)

Multiple Andreev reflection. Multiple Andreev reflection can occur in a quantum dot strongly

coupled to two superconducting leads. A particle undergoes Andreev reflections for multiple

time and each time gains energy of |e|VSD where VSD is the bias across the dot. It results

in transport resonances at VSD = 2∆/|e|n where n’s are integers. Thus the assumption

(∆ = inf) eliminates multiple Andreev reflection. This does not cause issues because in

our experiments, the quantum dots are strongly coupled to only a superconductor and thus

multiple Andreev reflection is not explored and observed.

To describe the hybridization of Andreev bound states in double dots that we call An-

dreev molecular states at zero bias we need to couple two atomic Andreev bound states. The

corresponding Hamiltonian becomes

HS-QD-QD-S =
∑

i={L,R}

 ∑
σ={↑,↓}

εi,σni,σ + Uini,↑ni,↓ −
(
τid
†
i,↑d
†
i,↓ + H.c.

) (2.9)

− t
∑

σ={↑,↓}

(
d†L,σdR,σ + H.c.

)
, (2.10)

where the subscripts L and R stand for the left and the right quantum dots and t is the

interdot tunneling matrix element. The eigenstates of HS-QD-QD-S are the Andreev molecular

states plotted in Fig.5.1c.
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In the following section, we discuss a more detailed model of Andreev molecular states at

nonzero bias voltages, which describes both Andreev reflections and interdot coupling while

keeping track of the charging energy of the two superconducting leads.

2.4.2 “Two-fluid” model

In the experiment presented in Chapter 5, the structure of the device is superconductor-

single dot-single-dot-superconductor. In the experiment, we measure the resonance through

the Andreev molecular states and clearly it is probed by the superconducting leads. The

reason that the superconducting leads can serve as probes are the presence of subgap quasi-

particles in the so-called “soft gap” induced superconductivity in the nanowires. To account

for the presence of sub-gap quasi-particles, we model each lead as having a superconducting

component and a normal metal component (see Fig. 2.11). The superconducting component

is a conventional BCS superconductor with a hard gap ∆, which provides a condensate of

Cooper pairs and drives Andreev reflection processes. The normal component, which we

model as a non-interacting Fermi gas with a low density of states at the Fermi surface,

provides the low energy electronic excitations that are necessary for sub-gap transport. Fi-

nally, to model the application of bias, Vbias, we tie the electro-chemical potentials of the two

components together and fix them to the applied bias voltage [see Fig. 2.11].

One of the key features observed in the experimental data are discrete and narrow An-

dreev bound state-like features. As the strong resonant tunneling of electrons from the

normal component of the leads to the quantum dot sub-system tends to broaden the discrete

levels of the quantum dot sub-system, we restrict our modeling to the regime where single-

electron tunneling (between the quantum dot system and the normal metal component of

the leads) is the weakest coupling in the system.

Our transport model is encoded by the Hamiltonian

H = HQD +HS +HT,S +HN +HT,N , (2.11)

where HQD describes the double-dot subsystem, HS describes the electro-chemical potential

energy of the Cooper pairs in the superconducting leads, HT,S describes Andreev reflec-

tion, HN is the Hamiltonian of the normal component of the leads, and HT,N describes the
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Figure 2.11: Theoretical schematic of the system. Hybrid superconductor-double dot-
superconductor system, consisting of an array of two quantum dots tunnel-coupled to supercon-
ducting leads. Each lead is modeled as having a standard BCS superconducting (S) component
and a normal metal (N) component. The coupling to the BCS components give rise to Andreev
reflection processes, whereas the coupling to the normal components provide low-energy electronic
excitations which are responsible for sub-gap transport. The strength of the interdot tunneling
is set by t, while τL and τR (tL and tR) control the coupling of the left and right dots to the
superconducting (normal) components of the left and right leads. The leads are biased by the
source (drain) voltages VS(D) and the chemical potential on the left (right) dot is controlled by the
side-gate voltage VL(R).

tunneling between the QDs and the normal components of the leads. HQD is given by

HQD =
∑
jσ

εjσnjσ + U
∑
j

nj↑nj↓ − t
∑
σ

(
d†R,σdLσ + d†LσdR,σ

)
, (2.12)

where njσ = d†jσdjσ is the number operator of the electrons on QD j = {L,R} with spin σ,

energy εjσ (controlled by the electro-chemical potential in quantum dot j). The strength

of the Coulomb repulsion and of the interdot coupling is set by U and t, respectively. The

model Hamiltonian for the leads is a combination of the superconducting component

HS =
∑

j∈{S,D}

eVjNj, (2.13)

and the normal component

HN =
∑

j∈{S,D}

∑
kσ

(ξk + eVj) c
†
jkσcjkσ, (2.14)
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where j = {S,D} indicates the source and drain leads, Nj represents the electron number

operator for the superconducting component, c†jkσ (cjkσ) creates (annihilates) an electron

with momentum k and spin σ with energy ξk in the normal component of lead j, and both

components are biased by the same voltages Vj. The Andreev reflection (i.e. pair tunneling)

is described by the Hamiltonian

HT,S = −τLS+
S dL↓dL↑ − τRS

+
DdR↓dR↑ + H.c., (2.15)

where the operator S+
j increases the number of electrons in the superconducting condensate

of the j-th superconducting lead by two: Nj → Nj + 2. Keeping track of the number of

electrons in the superconducting condensates in the two leads is an essential feature of the

model that allows us to describe Andreev reflection between the QDs and both leads when

there is a voltage difference between the leads [53]. The coupling between the QDs and the

normal leads is given by the conventional tunneling Hamiltonian

HT,N = −tL
∑
kσ

c†SkσdLσ − tR
∑
kσ

c†DkσdRσ + H.c.. (2.16)

Here τj and tj (taken to be real) set the strength of the pair (Andreev reflection) and single-

electron tunneling between QD and lead j.

As tL and tR are the weakest couplings in the system, we call HAMH = HQD +HS +HT,S

the Andreev molecular Hamiltonian and treat HT,N as a perturbation to HAMH. That is, the

Andreev molecular Hamiltonian gives rise to the Andreev molecular states, and HT,N drives

transitions between these states.

2.4.3 Eigenstates of the Andreev molecular Hamiltonian at finite bias

The Andreev molecular Hamiltonian preserves the total electron number NT , total parity,

total spin ST , and spin projection Sz. Therefore, the Andreev molecular states of the S-QD-

QD-S system can be split into subspaces of even and odd parity; the even subspace consists

of singlet (S) and triplet (T0,±) Andreev molecular states, whereas the odd parity subspace

consists of doublet (D±) Andreev molecular states.
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Figure 2.12: Ladder of Andreev molecular states. Ladder of Andreev molecular states for the

doublet subspace |D(c,s)
+ 〉 ≡ |NT = 2N + 1, S = 1/2, Sz = 1/2, c, s〉 for Vbias = VD − VS = 0.2∆/e,

τL(R) = 0.8∆, t = 0.01∆. We show the set of four color eigenstates corresponding to three shifts (a)
s = −1, (b) s = 0, and (c) s = 1. The s = 0 reference shift corresponds to the set of color states
whose maximum components have minimum Cooper pair imbalance between the leads. From those
states, we generate the set of states for the subsequent s = 1 (s = −1) shift by transferring one
Cooper pair from the drain (source) lead to the source (drain) lead. For convenience, we choose to
count electrons relative to N , which is equivalent to set N = 0.

In terms of the number of Cooper pairs in the source and drain leads, NL and NR,

what do eigenstates of the Andreev molecular Hamiltonian look like at finite bias? A good

analogy is the spatially localized eigenstates of a quantum particle in a tilted washboard

potential. Although the ground state corresponds to the particle at the “bottom” of the

washboard, there is a whole ladder of eigenstates ψi, one eigenstate for each lattice site, that

lead to Bloch oscillations. Given the eigenstate ψi we can find the state ψi+1 by shifting the

wavefunction one lattice site down. Hence the eigenstates can be thought of as forming a

ladder, with the rungs labeled by the expectation value for position 〈x〉i. Similarly, Andreev

molecular states “live” on ladders, with rungs corresponding to the “shift” s ≈ NL − NR

[which will be precisely defined in the next paragraph]. Given an eigenstate on a particular
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rung, we can obtain the eigenstate on the next rung by shifting a Cooper pair from the left

lead to the right lead. For the case of the double quantum dot system there are 16 ladders

(4 spin up doublets, 4 spin down doublets, 3 triplets and 5 singlets), which we label by the

spin state and “color”.

Consider, for example, the singlet Andreev molecular subspace with NT = 2N elec-

trons. Due to Pauli blockade, there are only five possible ways of electrons occupying the

double-dot orbitals, namely |0, 0〉 , |0, ↑↓〉 , |↑↓, 0〉 , |↑↓, ↑↓〉 and (|↑, ↓〉 − |↓, ↑〉) /
√

2. When

coupled to the superconducting leads via Andreev reflection, those five double-dot, sin-

glet states hybridize with the bare states of the superconductors |NS, ND〉, which rep-

resent a given distribution of Cooper pairs between the leads. Thus, we can generate

any state in this subspace from five reference states of the S-QD-QD-S system, such as

|N, 0, 0, N〉 , |N, 0, ↑↓, N − 2〉 , |N − 2, ↑↓, 0, N〉 , |N − 2, ↑↓, ↑↓, N − 2〉 and (|N, ↑, ↓, N − 2〉−

|N, ↓, ↑, N − 2〉)/
√

2, by transferring Cooper pairs from one lead to the other using the

transfer operators T± |NS,QDL,QDR, ND〉 = |N1 ± 2,QDL,QDR, N2 ∓ 2〉. This is possi-

ble since all remaining states of the span correspond to one of the reference states, but

with a different Cooper pair configuration. By linearity, the same considerations apply

to the eigenstates. Hence, the whole ladder of singlet Andreev molecular states |S(c,s)〉 ≡

|NT = 2N,ST = 0, Sz = 0, c, s〉 can be constructed from the five reference eigenstates, which

we refer to by the “color” quantum number (c = 1, 2, . . . , 5). The number of unique color

eigenstates corresponds to the number of unique Andreev molecular states. As a result, the

triplet and doublet subspaces can be generated from sets of three and eight color eigenstates,

respectively. Here we also introduce the “shift” quantum number (s = 0,±1,±2, . . .), de-

fined as the number of times one needs to apply T± to a reference eigenstate to generate an

eigenstate with a different Cooper pair configuration.

We define the s = 0 reference shift as the eigenstates whose maximum components

show minimum Cooper pair imbalance between the leads. We remark that this definition is

arbitrary, and alternative definitions should not physical results. Note that the eigenenergies

for non-zero shifts (s 6= 0) can then be easily obtained from the relation

Ec,s
NT ,Sz

= Ec,0
NT ,Sz

+ 2s e(VS − VD). (2.17)
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As an example, we show in Fig. 2.12 the s = 0 color states for the D+ subspace for different

bias voltages. At larger bias voltages, the eigenstates are well localized in Hilbert space,

showing a narrow distribution of Cooper pairs. As the bias voltage decreases towards zero,

the number of Cooper pairs is allowed to fluctuate and, as a result, the eigenstates spread.

Figure 2.13: Ladder of s = 0 color Andreev states. Reference s = 0 color states for the

doublet Andreev molecular subspace |D(c,0)
+ 〉 ≡ |NT = 2N + 1, S = 1/2, Sz = 1/2, c, s = 0〉 for (a)–

(c) eVbias/∆ = 0.2, 0.02, 0.002, showing the spreading of the probability amplitudes at low bias
voltages.

2.4.4 Classical master equation

To describe the experimentally observed sub-gap transport through the S-QD-QD-S device,

we now consider the effects of the coupling to the normal component of the leads. We de-

scribe the state of the S-QD-QD-S device by the probability distribution P , which gives the

probability of finding the system in a particular eigenstate |NT , ST , Sz, c, s〉 of the Andreev

molecular Hamiltonian. The S-QD-QD-S system is pushed out of equilibrium by a nonzero

source-drain bias voltage. Energy is dissipated by single electrons tunneling from the quan-

tum dots to the normal components of the leads. Such incoherent processes drive transitions
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between Andreev molecular subspaces of different parity, as illustrated in Fig. 2.14.

Figure 2.14: Schematic diagram of the transitions between Andreev bound states of
different parities. Transitions between the even and odd Andreev molecular subspaces of the
S-QD-QD-S system driven by single electron tunneling between the normal leads and the double
dot subsystem. Depending on the spin of the exchanged electron, these transitions couple doublet
states to either singlet or triplet states.

We write a classical master equation that accounts for the transitions between the various

Andreev molecular levels. Depending on the spin of the exchanged electron, these transitions

couple doublet states to either singlets or triplets. As we are interested in describing the

transport dynamics in the long time limit, the non-equilibrium probability distribution P is

given by the steady state solution of the rate equation

dP (n)

dt
=
∑
m

(
Γn←mP (m)− Γm←nP (n)

)
, (2.18)

where the first (second) term represents the probability of tunneling into (out of) state

|n〉 ≡ |NT , ST , Sz, c, s〉 and Γn←m are the transition rates between levels m and n due to the

exchange of one electron with the normal leads [54]. Specifically, if the transition rate Γn←m

results from the addition of an electron to the S-QD-QD-S system, it is given by

Γ(gain)
n←m = 2π

∑
j,σ

t2j | 〈n| d
†
j,σ |m〉 |2nF (En − Em − eVj), (2.19)
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whereas if it results in the loss of an electron to the normal leads, we have

Γ(loss)
n←m = 2π

∑
j,σ

t2j | 〈n| dj,σ |m〉 |2
(
1− nF (Em − En − eVj)

)
. (2.20)

Here nF represents the Fermi-Dirac distribution, which gives the probability to find an

electron in the normal leads, and {Em} represent the eigenenergies of the S-QD-QD-S system.

The rate equation Eq.2.18 takes into account all possible single-electron transitions between

Andreev molecular states. However, as we show below, we can use the symmetries of the

Andreev molecular Hamiltonian to effectively reduce Eq.2.18 to involve only transitions

between two subspaces of opposite parity, containing a total of 2N and 2N + 1 electrons

(N � 1).

As shown in Fig. 2.14, the 2N and 2N + 1 subspaces are directly coupled by transitions

involving either the addition of an electron to the 2N subspace or the removal of an electron

from the 2N + 1 subspace. Using Eqs. (2.19) and (2.20), those rates are given by

Γ
(gain)
αO←βE = 2π

∑
j,σ

t2j | 〈2N + 1, αO, c
′, s′| d†jσ |2N, βE, c, s〉 |2nF

(
Ec′,s′

2N+1,αO
− Ec,s

2N,βE
− eVj

)
,

(2.21)

Γ
(loss)
αE←βO = 2π

∑
j,σ

t2j | 〈2N,αE, c′, s′| djσ |2N + 1, βO, c, s〉 |2
(

1− nF
(
Ec,s

2N+1,βO
− Ec′,s′

2N,αE
− eVj

))
.

(2.22)

For simplicity of notation, here and henceforth we label the spin subspaces by αE(O), βE(O) =

S, T0,±(D±), where the E,O subscripts emphasize that these are transitions between the

NT = 2N (even) and NT = 2N + 1 (odd) Andreev molecular subspaces of the S-QD-QD-S

system.

We refer to transitions described by Eqs. (2.21) and (2.22) as type 1 transitions. Type

2 transitions connect the 2N and 2N + 1 subspaces to the 2N − 1 and 2N + 2 subspaces

(see Fig. 2.14). Type 2 transitions can be mapped back onto the 2N and 2N + 1 subspaces

because when the number of Cooper pairs is changed by one on a lead at fixed bias voltage,
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within our model, the eigenenergies are trivially shifted according to the change in electro-

chemical potential energy, i.e., Ec,s
NT±2,α = Ec,s

NT ,α
±2eVj. Thus, by using this relation and the

operators S+ and S−, we can write the following identities:

| 〈2N + 1, α′, c′, s′| djσ |2N + 2, α, c, s〉 |2
(

1− nF
(
Ec,s

2N+2,α − E
c′,s′

2N+1,α′ − eVj
))

= | 〈2N + 1, α′, c′, s′| djσS+ |2N,α, c, s〉 |2
(

1− nF
(
Ec,s

2N,α − E
c′,s′

2N+1,α′ + eVj
))
, (2.23)

| 〈2N + 2, α, c′, s′| d†jσ |2N + 1, β, c, s〉 |2nF
(
Ec′,s′

2N+2,α − E
c,s
2N+1,β − eVj

)
= | 〈2N,α, c′, s′|S−d†jσ |2N + 1, β, c, s〉 |2nF

(
Ec′,s′

2N,α − E
c,s
2N+1,β + eVj

)
, (2.24)

Eq.2.23 and Eq.2.24 thus show how transitions of type 2 can be effectively mapped onto a

transition between the 2N and 2N + 1 subspaces. Note that those transitions are driven

by the exchange of a single electron with the normal leads together with the creation or

annihilation of a Cooper pair on the superconducting component of the same lead. The

rates for type-2 transitions are then given by

Γ̃
(gain)
αE←βO = 2π

∑
j,σ

t2j | 〈2N,αE, c′, s′|S−d
†
jσ |2N + 1, βO, c, s〉 |2nF

(
Ec′,s′

2N,αE
− Ec,s

2N+1,βO
+ eVj

)
,

(2.25)

Γ̃
(loss)
αO←βE = 2π

∑
j,σ

t2j | 〈2N + 1, αO, c
′, s′|S+djσ |2N, βE, c, s〉 |2

(
1− nF

(
Ec,s

2N,βE
− Ec′,s′

2N+1,αO
+ eVj

))
,

(2.26)

which describe either the removal of an electron from an even parity state or the addition of

an electron to an odd eigenstate.

It is easy to generalize this mapping to all other NT subspaces and show that any single-

electron transition rate are of type 1 or 2 and, hence, can be calculated from Eqs. (2.21),

(2.22), (2.25), or (2.26). Those effective transitions between the 2N and 2N + 1 subspaces

are illustrated in Fig. 2.15. In this way, we reduce Eq.2.18 to a single even (2N) and odd

(2N + 1) subspaces. From now on, we simply refer to those subspaces as even and odd.
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Figure 2.15: Allowed transitions between the states of even and odd parities. Effective
transitions between the even (NT = 2N) and odd (NT = 2N + 1) Andreev molecular subspaces
of the S-QD-QD-S system. The solid, blue arrows represent transitions of type 1, which involve
the exchange of an electron between the normal leads and the quantum dots (see Eqs. (2.21) and
(2.22)). Transitions of type 2 (dashed, green arrows), on the other hand, are driven by the exchange
of an electron between the dots and the normal lead, but followed by the creation or annihilation
of a Cooper pair in the superconducting component of the same lead (see Eqs. (2.25) and (2.26)).

We obtain the steady-state solution of Eq.2.18 from the eigenvalue equation

Mout
S M in

S←D+
M in

S←D− 0 0 0

M in
D+←S Mout

D+
0 M in

D+←T+ M in
D+←T0 M in

D+←T−

M in
D−←S 0 Mout

D−
M in

D−←T+ M in
D−←T0 M in

D−←T−

0 M in
T+←D+

M in
T+←D− Mout

T+
0 0

0 M in
T0←D+

M in
T0←D− 0 Mout

T0
0

0 M in
T−←D+

M in
T−←D− 0 0 Mout

T−





~PS

~PD+

~PD−

~PT+

~PT0

~PT−


= 0, (2.27)

where the matrices M in
α←β = Γα←β + Γ̃α←β and Mout

α = −
∑

β

(
Γβ←α + Γ̃β←α

)
describe the

influx and outflux of probability of subspace α (with α, β = S,D±, T0,±). Note that the

vectors ~Pα have dimension dαc d
α
s , where dαc (dαs ) is the number of color (shift) states in

subspace α. Similarly, Mout
α and M in

α←β are matrices of dimension equal to dαc d
α
s × dαc dαs and

dαc d
α
s × dβc dβs .

2.4.5 Steady-state Current

The steady-state current is obtained from the rate at which electrons go through the S-QD-

QD-S device and is given by

I = −e
∑
α,β

(
γ

(gain)
R,α←β − γ

(loss)
R,α←β

)
~Pβ (2.28)
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where the matrices γ
(gain)
R,α←β and γ

(loss)
R,α←β (of dimension dαc d

α
s × dβc dβs ) provide the current rates

for transitions to the odd subspace, which are given by

γ
(gain)
R,αO←βE = 2πt2j | 〈α

(c′,s′)
O | d†jσ |β

(c,s)
E 〉 |2nF

(
Ec′,s′

αO
− Ec,s

βE
− eVj

)
(2s′ − 2s− 1), (2.29)

γ
(loss)
R,αO←βE = 2πt2j | 〈α

(c′,s′)
O |S+djσ |β(c,s)

E 〉 |2
(

1− nF
(
Ec,s
βE
− Ec′,s′

αO
+ eVj

))
(2s′ − 2s− 1),

(2.30)

and for transitions to the even subspace, which are given by

γ
(gain)
R,αE←βO = 2πt2j | 〈α

(c′,s′)
E |S−d†jσ |β

(c,s)
O 〉 |2nF

(
Ec′,s′

αE
− Ec,s

βO
+ eVj

)
(2s′ − 2s− 1), (2.31)

γ
(loss)
R,αE←βO = 2πt2j | 〈α

(c′,s′)
E | djσ |β(c,s)

O 〉 |2
(

1− nF
(
Ec,s
βO
− Ec′,s′

αE
− eVj

))
(2s′ − 2s− 1). (2.32)

We solve the master equation Eq.2.27 and compute the current with Eq.2.28 numerically,

by first finding the set of even and odd eigenstates of the S-QD-QD-S Hamiltonian (2.11)

via exact diagonalization. As discussed above, we restrict this calculation to even and odd

subspaces with a total of 2N and 2N + 1 electrons. Note that because of the conservation

of the total electron number, the exact value of N only sets an overall offset and, hence, N

can be taken as an arbitrary parameter. After diagonalizing H, we select the reference color

eigenstates and eigenenergies for each subspace. Together with the Cooper pair transfer

operators T±, we then construct the ladders of Andreev molecular states, whose energies are

calculated from Eq. (2.17). We use the ladders of Andreev states to compute the transition

probabilities between the even and odd subspaces and their respective Fermi electron (hole)

occupation probabilities on the normal leads. Finally, this allow us to calculate the transition

rates (2.21), (2.22), (2.25), (2.26), and (2.29)–(2.32) and then to construct and solve both

the master equation Eq.2.27 and the current equation Eq.2.28.
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2.5 KITAEV MODEL

In 2000, A. Y. Kitaev studied a quantum wire made of L (L � 1) fermionic sites with the

following Hamiltonian [2]:

HKitaev =
∑
j

(
−t(c†jcj+1 + c†j+1cj)− µ(c†jcj −

1

2
) + (∆cjcj+1 +H.C.)

)
, (2.33)

where j is the number of the site, t is the inter-site hopping amplitude, µ is the chemical

potential and ∆ = |∆|eiθ is the superconducting gap. Notice that no spin subindices are

present because it is assumed that the quantum wire has only one spin component. As a

result, ∆ pairs particles of same spin and favors the triplet form, i.e., the paring is p-wave

or f-wave type.

By rewriting the fermion operators in terms of Majorana operators:

a2j−1 = ei
θ
2 cj + e−i

θ
2 c†j, (2.34)

and

a2j = −iei
θ
2 cj + ie−i

θ
2 c†j, (2.35)

the Hamiltonian becomes

HKitaev =
i

2

∑
j

(−µa2j−1a2j + (t+ |∆|)a2ja2j+1 + (−t+ |∆|)a2j−1a2j+2) . (2.36)

Note that the conjugate of either Majorana operator is itself, i.e., a†2j−1 = e−i
θ
2 c†j +

ei
θ
2 cj = a2j−1 and a†2j = ie−i

θ
2 c†j − iei

θ
2 cj = a2j. The study of the Hamiltonian is presented

comprehensively in the paper [2]. Here, just by considering two very special cases, we can

already unveil two dramatically different results:
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• |∆| = t = 0 and µ < 0. The Hamiltonian becomes

HKitaev =
i

2

∑
j

(−µa2j−1a2j) , (2.37)

where only the first term remains. The Majorana operators, a2j+1 and a2j+2 are paired

within same site (See Fig.2.16a). It is a trivial case where fermionic sites build the

quantum wire.

• |∆| = t > 0 and µ = 0. The Hamiltonian becomes

HKitaev = i
∑
j

(|∆|a2ja2j+1) , (2.38)

where only the second term survives. The Majorana operators, a2j and a2j+1 from

neighboring sites are paired (See Fig.2.16b). Importantly, two Majorana operators, a1

and a2L at the two ends of the quantum wire are not included in the Hamiltonian. They

are left unpaired. These quasiparticle modes with zero energy are called Majorana zero

modes.

The parameter regime where unpaired Majorana zero modes are present is called the

topological regime. Note that |∆| = t > 0 and µ = 0 are the conditions to create Majorana

zero modes completely localized at the two end sites of the wire. More relaxed conditions of

the topological regime are given by the following: 2|t| > |µ| and |∆| > 0 [2].

A great amount of experimental [10, 46, 45, 55, 56, 11, 13, 12] and theoretical [3, 4]

works have been devoted to implementing the Kitaev model. Except for the chains of iron

atoms formed on the surface of superconducting leads [55], most of them are based on

one-dimensional nanowires. These works are based on the arguments in Ref. [3, 4] that

the Kitaev model can be realized in superconductor-nanowire hybrid structures, given the

following ingredients: nanowires that have strong spin-orbit coupling and facilitate ballistic

transport, induced superconductivity in the nanowires from s-wave superconductors that

sustains at sufficiently high magnetic fields, and a sufficiently strong magnetic field.

The experimental study of Majorana zero modes based in nanowires, one direction,

has gained significant developments by demonstrating the prime feature of Majorana zero

modes — the zero bias peak — in various experiments [10, 46, 45, 56, 11, 13, 12]. More
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Figure 2.16: Two types of pairing in the Kitaev model. Schematics of the Kitaev model in
two parameter regimes. The quantum wire has L sites. Each site, enclosed with a red ellipse, is a
fermion (cj) that can be expressed as superposition of two Majorana operators, a2j−1 and a2j . a,
|∆| = t = 0 and µ < 0. The Majorana operators are paired within each site. b, |∆| = t > 0 and µ =
0. The Majorana operators of neighboring sites are paired, i.e, a2j and a2j+1, where j = 1, 2, ..., L,
are paired except for a1 and a2L.

fundamental properties of Majorana zero modes beside the zero bias feature, however, remain

to be observed before the existence of Majorana zero modes in solid states can be concluded.

Another direction, the implementation of the Kitaev chain model in terms of the literal

chain structure, has been less explored. More recently, theoretical proposals have detailed

the chain geometry and necessary ingredients to create Majorana zero modes [17, 18, 19],

i.e., strong spin-orbit interaction, a high g-factor in the semiconductor dots and induced su-

perconductivity. Notice that the necessary ingredients remain the same, except that ballistic

transport is no longer necessary. Actually, in the experimental realization of Majorana zero

modes based on nanowires, realizing ballistic transport is challenging because of disorder

and variation of chemical potential generated by gating. Indeed, as suggested by these the-

oretical works [17, 18, 19], more robust realization of Majorana zero modes can be realized

with chain structures, because ensuring ballistic transport is no longer necessary. Further
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discussion in this direction will be continued in Chapter 6.

We shall end the discussion of the Kitaev model by connecting these two directions,

continuous and chain implementations, to our experiments. The former, is explored in

Chapter 4 based on NbTiN-InSb single dots in the open dot regime. The latter, is explored

by studying the Andreev bound states in single dots (Chapter 4), double dots (Chapter 5)

and triple dots (Chapter 6). Also, in Chapter 7 and Chapter 8 we explore the experimental

feasibility of realizing Majorana zero modes based on a different type of nanowires, Ge/Si

nanowires, by exploring the individual ingredients: induced superconductivity, spin-orbit

coupling and g-factors.
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3.0 FABRICATION AND MEASUREMENT SETUP

This chapter describes the InSb nanowires used in Chapter 4, Chapter 5 and Chapter 6,

and the Ge/Si core/shell nanowires used in Chapter 7 and Chapter 8; the nanofabrication

techniques involved in making the superconductor-semiconductor nanowire hybrid devices

based on InSb and Ge/Si nanowires, and the measurement setup used to perform low-

temperature electrical quantum transport measurements on these devices.
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3.1 SEMICONDUCTOR NANOWIRES

Semiconductor nanowires are a versatile platform for studying quantum systems. The di-

mensions and crystal direction of nanowires can be precisely controlled during growth. Also,

thanks to the quasi-one-dimensional structure, heterostructures of various material combi-

nations can be realized, because the area of interface can be much smaller than those in film

or bulk. As a result, the strain accumulated due to lattice constant mismatch at the inter-

face can be much lower, giving access to a broader range of material combinations. The 1D

nature also enables studies of interesting physics in one and zero dimensional systems, such

as one-dimensional diffusive and ballistic transport [57], quantum point contacts [58], field

effect transistors [59] and Josephson junctions [60]. In this thesis, the nanowires particularly

facilitate the implementation of highly tunable quantum dots and quantum dot chains using

local electrode gates [61].

The InSb nanowires used in this thesis are grown by Diana Car, Sébastien R. Plissard and

Erik P.A.M. Bakkers at Eindhoven University of Technology. The Ge/Si core/shell nanowires

are grown by Binh-Minh Nguyen, Jinkyoung Yoo and Shadi A. Dayeh in Los Alamos National

Laboratory. These nanowires are then sent to the University of Pittsburgh, where further

device fabrication and quantum transport measurements are performed.

3.1.1 InSb nanowires

The InSb nanowires used in this thesis have zinc blende lattice structure. The nanowire

axis is along [111] direction, which yields a hexagonal cross section. They are 80-120 nm in

diameter and 2-4 µm in length. They are grown using a technique called metalorganic vapor

phase epitaxy (MOVPE) [62]. After the growth, the nanowire chip (also called the mother

chip) is taken out from the growth reactor and native oxide quickly grows on the nanowire

surface. Careful removal of the native oxide will be an important step of device fabrication

later.

InSb nanowires have recently attracted interest because of several properties. The small

bandgap (0.17 meV in bulk at room temperature) of InSb facilitates bipolar transistor oper-
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Figure 3.1: InSb nanowires on mother chips. a, Scanning electron micrograph (SEM) of
an InSb nanowire consisting of several sections: InP stem, InAs stem, InSb nanowire and gold
particle. The nanowire is grown using randomly deposited gold catalyst particles. b, SEM of
arrays of nanowires grown by patterning the substrate with Au catalyst particles with electron
beam lithography (EBL). Panels are adapted from Ref.[63]. The scale bars are 200 nm and 1 µm,
respectively.

ations in conduction and valance bands [64]. The g-factor is impressively large (∼ 30− 50)

[60, 10], which facilitates a large Zeeman energy using a low magnetic field. The electron

mobility in InSb nanowires is high — up to 104 cm2 V−1 s1 — and the signatures of ballistic

transport can be observed in the nanowire channels [63, 58]. Also, the spin-orbit interaction

is strong (spin-orbit length is ∼ 200 nm)[29]. Finally, transparent contacts of various normal

metals and superconductors have been developed to InSb nanowires [60, 10, 13]. Particu-

larly because of the latter four merits, InSb nanowires are among the prime materials for

the study of Majorana zero modes based on nanowires [10, 11, 13].

3.1.2 Ge/Si core/shell nanowires

The Ge/Si core/shell nanowires used in this thesis have pure Ge core of 30-50 nm in diameter

and Si shell of 1 - 4 nm in thickness. The core has diamond cubic lattice structure and its
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nanowire axis is along [111] direction. The nanowires are grown in a low pressure, cold

wall chemical vapor deposition (CVD) [65]. Similarly, when the nanowires leave the growth

reactor, native oxide grows on the surface.

a 

Ge 

Si Ge Si 

VB 

CB 

EF 

b 

c d 

base 

Figure 3.2: Ge/Si core/shell nanowire schematics and images. a, Schematic of the
core/shell structure whose core is pure Ge and shell is Si. b, Schematic of the band structure
of the core/shell heterostructure where the Fermi level lies in the valance band (VB) of Ge core.
c, Transmission electron micrograph (TEM) near the surface. Crystal structure without disorder
and impurities is displayed. The inset shows the atomically sharp boundary between Ge and Si.
d, Tilted SEM image of dense Ge/Si nanowires grown on a mother chip. The thicker ends of the
nanowires are the bases on the substrate. The scale bars are 5 nm and 2 µm in c and d, respectively.
Panel c is adapted from Ref.[65].

Ge/Si core/shell nanowires exhibit promising properties for further applications. First,

with sufficiently small lattice constant mismatch (4.1%) between Ge and Si, Ge/Si is a

suitable combination for 1D heterostructure (Lattice matching is better in GeSi/Si het-

erostructure such that 2D materials can be made [66]). Also, the band structure of the

heterostructure has a type II band mismatch. The large valance band offset (500 meV)

between the Ge core and Si shell in this heterostructure enables accumulation of free holes

in the Ge channel, as shown in Fig.3.2b. In this way, the hole gas is formed without doping
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with acceptors which would reduce the mean free path. Besides, the Si shell serves as a pas-

sivation layer that suppresses surface scattering. Scattering caused by surface roughness is

one of the most critical factors that prevent ballistic transport in low dimensional materials.

Finally, rich electronic properties are predicted for the hole carriers: first the angular mo-

ment of holes in Ge/Si nanowires is a mixture of 3/2 and 1/2 and the spin-orbit interaction

is expected to be larger than that of electrons in the conductance band [67]; the spin-orbit

interaction of holes is predicted to be enhanced by an order of magnitude using external

electric fields [67].

3.2 DEVICE FABRICATION

3.2.1 General fabrication process

Metal 

Dielectric 
Gates 

nanowire 

Substrate 

Metal 

Figure 3.3: Illustration of nanowire device fabrication. Nanowire device fabrication consists
of making metal-nanowire contacts such that electrons can flow through the nanowire, and gate
fabrication. The latter is necessary to define and tuned quantum stats in the nanowires, using local
gates (orange rectangles). The dielectric layer between gates and the metal-nanowire structure
prevent current flowing from gates to meta-nanowire structure.

Many successive nano-fabrication steps are necessary to create a device. The parts of a

full nanowire device are outlined in Fig.3.3. First, metal-nanowire contacts are fabricated

to facilitate current through the device such that electrical measurements can be performed.

Besides, gate fabrication is necessary as gates provide on-chip control knobs that can define

44



and tune the quantum states in the device. In InSb nanowires in which we study electron

charge carriers, a local gate below a nanowire section with a positive voltage attracts electrons

to the section, while a gate with a negative voltage repels electrons. These local gates will

be introduced in subsection 3.2.2 in detail. These gates can be used to define and control

quantum dots along the nanowire, which is widely used in the later chapters. The tuning

is reversed for Ge/Si nanowires, i.e., gates with positive (negative) voltages repel (attract)

charge carriers, because the charge carriers are holes.

Next, we go through the general fabrication steps of a full device from scratch chronolog-

ically. Some of the processes are experiment-specific techniques and will be discussed further

in subsections 3.2.2 - 3.2.6 separately.

1. Fabrication of markers. Since fabrication begins with an empty Si/SiO2 chip, a coordinate

system must be fabricated on the chip for alignment during the following steps. We

fabricate a coordinate system, four encoded locating markers for each local device field,

and large metal pads for later wire-bonding. Their fabrication follows the standard

electron-beam (e-beam) lithography with metals Ti/Au (5/60 nm). Steps 5 - 9, 11,

and 12, described below, introduce e-beam lithography for nanowire contact fabrication,

which is also the process to fabricate the markers in this step.

2. Gate fabrication. Two types of gates are used for experiments: global and local gates.

Global gate chips have a doped Si layer on the back of the chip. The gate dielectric is a

thermally grown, 285 nm, SiO2 layer on the doped Si layer. For this reason these type of

global gates are also called backgates. Backgates are simple and often used for nanowire

characterization, contact recipe development, and for simple devices like the Josephson

junctions of Chapter 7. Local gates will be discussed in subsection 3.2.2.

3. Transfer of nanowires onto substrates. Each time only a small number of nanowires

are transferred to the sample substrate (Fig.3.4a). Two transfer methods are used: (I)

Random deposition. A cleanroom tissue tip is wiped on the surface of the mother chip

and wiped across the substrate. This scatters wires randomly across the surface of the

chip. It is suitable for backgate devices since precise nanowire placement is not necessary.

(II) Micromanipulation. Under an optical microscope, a micromanipulator equipped with

a sharp indium tip (a few hundred nanometers) is used to break a single nanowire off of
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the mother chip and then accurately place the nanowire onto the sample substrate. This

method is often used for local gate devices where nanowires need to be put exactly on

top of local gates with a certain orientation.

4. Elimination of ill-attached nanowires. A small proportion of nanowires may be not well

attached to the substrate by Van der Waals force. They can move or simply leave

substrate in the later fabrication steps. A solution to this problem is to submerge the

sample in isopropyl alcohol (IPA) and manually shake it gently, which would adjust those

nanowire be well attached, or remove them.

5. Nanowire location and device computer aided design (CAD). To know the location of the

placed nanowires, we take SEM images of the nanowires with location markers nearby.

The images are then inserted into a CAD program like Klayout or AutoCAD by aligning

the markers. Finally, we draw the contacts to the nanowires and gates in the CAD

layout. The drawn patterns will be metalized later by lithography.

6. Resist coating. One or multiple layers of electron-beam (e-beam) lithography resist called

poly(methyl methacrylate) (PMMA) are spin coated on the substrate. The PMMA

coating is followed by baking at 175 ◦C for 15 - 30 min.

7. E-beam exposure (Fig.3.4b). With an electron-beam lithograph (EBL) setup, the PMMA

coated chip is now exposed with a focused electron beam, but only on areas designated

by the CAD pattern. The e-beam exposure increases the solubility of the resist.

8. Development (Fig.3.4c). The sample is immersed in the developer (MIBK:IPA = 1:3)

that dissolves the areas where e-beam exposure has taken place while leaving the rest of

the PMMA surface intact. This results in voids in the PMMA coating.

9. Removal of resist residue. Even given proper e-beam exposure and development, resist

residue is commonly left on the substrate. This residue can lead to poor adhesion between

the metal film and the substrate. More importantly, in the subsequent wet etch, the resist

residue on the surface of nanowires prevents the etchant from reacting with native oxide.

Gentle oxygen plasma cleaning is used to remove the residue efficiently.

10. Removal of surface oxide (Fig.3.4d). Surface cleaning can be done by physical or chemical

methods. In this thesis, we will explore the technique of using argon plasma to physically

mill the surface oxide and two chemical etching approaches. Surface cleaning techniques
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Figure 3.4: Successive e-beam lithography steps to fabricate contacts to nanowires. a,
A nanowire (green) covered with native oxide (red) is deposited on top of substrate. b, PMMA
is coated over the entire sample surface and e-beam exposes the designed area (orange). c, The
exposed PMMA is removed by development. d, The native oxide on the surface of nanowire is
removed with an etch method. e, Metal is deposited to the entire sample surface. f, The lift-off
process removes the unexposed PMMA together with the metal on top of the unexposed PMMA,
and leaves the nanowire covered with contacts in the designed area.

are often material specific. The approaches for InSb and Ge/Si nanowires are individually

described in subsection 3.2.3.

11. Metalization (Fig.3.4e). Standard electron-beam evaporation and magnetron sputtering

are used. Various normal metals (Au, Pd and Ni) and superconductors (NbTiN, NbTi,

Al, Ti and V) are explored.

12. Lift-off (Fig.3.4f). After metalization, the sample surface is covered with metal. When

it is immersed in the lift-off agent (acetone in our case), the resist is dissolved in the

remover. As a result, the metal on top of the resist is lifted off the substrate while the

metal in the developed area remains.
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13. Post-deposition treatment. Some operations can be performed after lift-off to improve

device quality such as contact transparency and device charge stability. In Section 3.2.4,

I will describe the effect of annealing on Al-Ge/Si contacts.

For nanodevice-based quantum transport experiments, device fabrication is often the

most headache inducing but also important processes. I will discuss some aspects in dealing

with superconductor-nanowire devices based on InSb and Ge/Si in detail in the following

sections.

3.2.2 Bottomgates

Local gates provide the ability to define and tune quantum dots in the nanowires. In our

experiments, using the e-beam lithography described above in steps 5 - 9, 11, and 12, they are

fabricated at the bottom the nanowire devices, thus they are called bottomgates. In this way,

they can be fabricated directly on the flat substrate. The center-to-center distance between

neighboring gates (pitch) can be as small as 60 nm. We achieve bottomgates whose pitch

can be as low as 100 nm at University of Pittsburgh (see Fig.3.5a) with an EBL setup whose

maximum e-beam accelerating voltage is 30 kV. The bottomgates used in the experiments in

this thesis have a smaller pitch (60 nm, see Fig.3.5b), and are fabricated by Möıra Hocevar in

Centre Nationnal de la Recherche Scientifique (CNRS) Grenoble, using an EBL setup whose

e-beam accelerating voltage can be above 100 kV. A higher accelerating voltage facilitates

higher e-beam exposure resolutions and finer gates.

E-beam lithography of dense gate electrodes is technically difficult. To work well, each

gate should have no breaks and neighboring gates should not be shorted. The former requires

sufficient e-beam exposure while the latter would fail given too high dose. Besides, the e-

beam exposure proximity effect, i.e., exposure of neighboring area, plays an important role

in defining these dense patterns. For these reasons, the following parameters need to be

fine tuned: (1) dose. Only a small range of dose is suitable and the doses for parts of

different dimensions differ. For example, the “extended arms” need a higher dose than the

center horizontal dense electrodes because they are far apart whereas the later needs a lower

dose due to proximity effect (See Fig.3.5b). (2) e-beam. The e-beam exposure should have
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Figure 3.5: Bottomgates. a, A zoom-in SEM of bottomgates without dielectric. The pitch,
depicted as the distance between centers of two neighboring gates, is 100 nm. The electrodes
are closely arranged but not connected. They are fabricated at University of Pittsburgh. b, An
overview SEM of a bottomgate set with dielectric. The center area is patterned with horizontal
electrodes with pitch of 60 nm. Away from the center, they spread out as “arms” for easier
alignment of the contacts to them. The center area is covered with a rectangular HfO2 film. A
nanowire is placed on top. These bottomgates are fabricated in CNRS. The scale bars are 5 um
and 200 nm in a and b, respectively.

the smallest spot size, i.e., maximum accelerating voltage, minimum working distance and

minimum aperture are preferred. (3) PMMA structure. Tall PMMA structures are unstable

so thin PMMA films are desired (950 PMMA A2, 80 nm). After development, the PMMA

structures have to be preserved, meaning there should be no heating and metalization should

be performed as soon as possible. (4) metal deposition. Because the PMMA layers are thin,

the gate metal has to be thin as well. Ti/Au (5/10 nm) are used for our bottomgates.

A dielectric layer is deposited on the gate electrodes. Charge leakage can occur in a

dielectric when the voltage across the dielectric exceeds its breakdown voltage. It can even

occur starting from zero voltage at dielectric defects (pinholes). Two bottomgate dielectrics

are tested. HfO2 of 30 nm grown by atomic layer deposition (ALD) at Carnegie Mellon

University is observed to have an average breakdown voltage of 22 V. Si3N4 of the same

thickness grown by sputtering at University of Pittsburgh is found to break-down at 11 V

on average. Pinhole density is also found to be lower in HfO2 than in Si3N4. The dielectric
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used in the experiments, HfO2 of 10 nm, is grown in CNRS and has an average breakdown

voltage that is higher than 10 V.

3.2.3 Superconducting contacts

In experiments studying Andreev bound states, elaborate superconductor-semiconductor

contacts are required. As explained by the Blonder-Tinkham-Klapwijk model [68], the trans-

parency of superconducting contacts directly determines the ratio of Andreev reflection to

normal reflection. This necessitates a clean nanowire surface without oxides or impuri-

ties introduced during contact fabrication. Smooth nanowire-superconductor interface, and

matching between superconductors and semiconductors are also necessary to ensure high

transparency.

Superconducting contacts to InSb nanowires. With proper surface oxide cleaning,

InSb nanowires are found to make good contacts to various superconductors such as Ti,

Al, NbTi, NbTiN and V. Ti/NbTi/NbTiN is used in most of the experiments presented.

The following two surface oxide cleaning approaches are used and the discussion is based on

Ti/NbTi/NbTiN contacts:

• In-situ argon plasma cleaning. The bombardment by argon ions removes the atoms

on the nanowire surface. This approach yields junction devices with low saturation

resistances (a few kΩ) at low temperature. A saturation resistance of a nanowire device

is the resistance when the device is tuned to be as open as possible.

• Ex-situ sulfur passivation. Wet etch removes the oxide by a chemical reaction using

a recipe developed based on Ref.[69]. (1) Mix and stir ammonia solvent with sulfur

powder with a ratio of 10 mL/g for 30 minutes. (2) Dilute the resulted ammonium

polysulfide (NH4)2Sx solution with water (1:400). (3) Immerse the sample in the diluted

ammonium polysulfide solution at 55 ◦C for 30 min. (4) Wash away sulfur residue on

the sample substrate before metalization. Sulfur passivation can yield junction devices

of low saturation resistances at low temperature as well.

In our experiments, tunneling transport demonstrates that induced superconductivity

in plasma-cleaned devices have a higher subgap density of states than that measured in
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devices cleaned with sulfur passivation. This is probably due to surface roughness after

argon bombardment. Combining these two approaches, by performing sulfur passivation

followed by gentle argon cleaning for a short period, yields better induced superconducting

gap than either of them alone. Probably because although sulfur passivation does not cause

surface roughness, sulfur residue can be left on the nanowire surface. This residue can be

removed by the gentle plasma cleaning.

Superconducting contacts to Ge/Si nanowires. We explore contacts using various

superconductors such as Ti, Al, NbTi and NbTiN to Ge/Si nanowires intensively. Regarding

contacts based on NbTiN, it is found that depositing a thin interlayer of Ti or Al prior to

NbTiN improves contact transparency. Surface oxide cleaning also plays an important role

in determining the contact quality. Two surface oxide cleaning approaches are tested:

• In-situ argon plasma etch is tested with various cleaning time and powers. The opti-

mized recipe yields uniform but relatively high saturation resistances (a few tens kΩ)

and contact interface barriers at low temperature. They might be a result of interface

roughness caused by argon ion bombardment.

• Alternatively, a more gentle etch method by buffered hydrofluoric acid (BHF) is found to

produce transparent contacts, although the yield of devices with low junction resistance

(<10 k Ω) is low (∼ 10%). Varying etch time is found to have little effect on the junction

resistance, although long etches (> 1 min) are not suggested because it can remove the

lithography resist from substrate. With the same BHF etch method, we also test the

contact qualities of nanowires with Si shell thicknesses varying from ∼ 0.5 to ∼ 4 nm.

No statistical difference is found. Note that in our test, chemical vapor deposited (CVD)

Si3N4 dielectric is grown on top of the substrate to protect SiO2 from being etched quickly

by BHF solution.

3.2.4 Annealing effects of Al-Ge/Si contacts1

To improve the yield of transparent contacts we explore contact annealing in the presence of

forming gas (5% H2 and 95% N2) at 1 bar. For NbTiN contacts with thin Al or Ti interlayers

1This section is adapted from Ref.[135].
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Figure 3.6: Annealing effect of Al-Ge/Si contacts and effect of Al interlayer thickness
on device pinch-off. a, Al-Ge/Si-Al device after a rapid annealing at 180 ◦C. The arrows
indicate alloyed regions of the nanowire. b, Pinch-off voltages of 21 devices with various Al/NbTiN
thicknesses. The average value for each Al/NbTiN thickness combination is indicated by the red
dot. c, Typical pinch-off traces of devices for various Al/NbTiN thickness combinations. The
conductance is normalized by conductance σ0 measured for each device at backgate voltage, Vbg =
−24 V.

(3 nm), no measurable change in the saturation resistance is observed after annealing at

temperatures up to 400 ◦C for a few minutes. However, we observe that pure Al contacts

alloy rapidly, within seconds, at temperatures as low as 180 ◦C. Fig.3.6a displays the alloying

of 200 nm regions next to each contact. Saturation junction resistances are reduced by more

than one order of magnitude after the annealing in some devices. Low resistance (≤ 10 kΩ)

devices are obtained with a high yield of ∼ 1/4 for pure Al contacts. It is important
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to be aware of the Al-alloying effect because such low annealing temperature is close to

the temperature used during standard nanofabrication. For example, electron beam resist

PMMA is commonly baked at 175 ◦C, so if following fabrication steps such as top gate

fabrication are performed after pure Al contacts, those contacts are going to be annealed

with the nanowires.

3.2.5 The effect of Al interlayer thickness on Ge/Si device pinch-off2

Besides that depositing a thin interlayer of Ti or Al prior to NbTiN improves contact trans-

parency, we observe a dramatic and systematic change in the device pinch-off voltages with

aluminum thickness.

With increasing thickness of the Al interlayer, we find that the pinch-off voltages of the

junctions can be modified. Fig.3.6b,c show the low temperature pinch-off voltage data from

many unannealed devices with different Al and NbTiN layer thicknesses. Devices based on

NbTiN with a thin Al interlayer have large positive pinch-off voltages. The increase of Al

thickness reduces the average pinch-off voltages, which become negative for pure Al contacts.

We argue that the pinch-off shift is due to remote doping of the nanowire that is a result

of workfunction mismatch between the Ge core and the metal contacts. The workfunction

of Ge (5.15 eV) [70] exceeds that of Al (4.06 - 4.26 eV) [71] consistent with n-doping. The

workfunction of NbTiN alloy is not known; however the workfunctions of Nb (3.95 - 4.87

eV) [71] and TiN (4.5 eV) [72] are in between those of Ge and Al, which suggests lower

n-doping with NbTiN than with Al. For thinner interlayers, no continuous Al film is formed

and the contact is dominated by NbTiN. As Al thickness is increased, the doping of the

nanowire is increasingly determined by the properties of the Al/Ge interface. The pinch-off

voltages can also be affected by the interface between the nanowire and the gate dielectric.

We observe that the pinch-off voltages tend to shift positively when HfO2 is used instead of

Si3N4. Interfacial charges at the semiconductor/dielectric interfaces are likely responsible for

this effect [73]. Combined, the effects of dielectric and interlayer thickness on pinch-off allow

for the device working point to be set to zero gate voltage, which is expected to minimize

2This section is adapted from Ref.[135].
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charge instabilities and gate leakage.

3.2.6 Sputtered NbTiN

NbTiN alloy is used in most of the experiments in this thesis. This superconductor has a

critical temperature of up to 14 K and a critical magnetic field beyond 10 T. Furthermore,

it does not oxidize, thus no cap layers are necessary to protect it.
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Figure 3.7: Sputtering process and sputtered structures. a, Illustration of sputtering
deposition on a wide PMMA void. b, The resulted structure of a after lift-off. “Dog ears” at the
edges of sputtered patterns are caused by the non-directional deposition on the PMMA walls. c,
Deposition on a narrow PMMA void by sputtering. Little material arrives at the substrate. d,
SEM of structures of three widths (400, 200 and 100 nm) after sputtering NbTiN (250 nm) on
PMMA (160 nm). The narrower patterns result in thinner deposition. The scale bar is 200 nm.

NbTiN is deposited by DC sputtering of NbTi alloy (7:3) in the argon-nitrogen mixed-gas

plasma. Sputtering enables depositions of materials with high melting points and chemical

compounds from multiple sources, such as NbTiN. However, it can also give rise to fabrication

difficulties.
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First, because of the scattering in the plasma during sputtering, the deposition is not

directional. Fig.3.7a depicts a profile of a sputtered film near a developed area. The central

regime of the developed area receives materials from more directions and gains a higher

thickness than those near the the walls of the PMMA void. Non-directional deposition can

also take place on the walls of the PMMA void. After lift-off, the film often breaks near

some sharp corners on the walls, which results in vertical structures at the edges called “dog

ears”. They are depicted in Fig.3.7b and can be also seen in the SEM (Fig.3.7d). The

non-directional deposition gives rise to a severe problem for thin patterns. Fig.3.7c depicts

sputtered structure near a narrow PMMA void: the sputtering process deposits material on

the walls of the void much faster than to the bottom of the gap. As a result, little material

is deposited on the bottom of the void before the material building on the walls closes the

narrow void. Fig.3.7d shows structures after sputtering NbTiN (250 nm) on patterns of

PMMA (160 nm). The patterns that are 400 nm wide (two horizontal large parts in the

SEM) are closer to 230 nm thick. The patterns that are 200 nm wide (the three lines with

turns) are 120 nm thick. At last, the narrowest patterns (100 nm, the tips of the three lines)

are very thinly coated (∼ 20 nm). This causes narrow contacts to fail to make contact to

nanowires. Several methods have been explored to solve the problem, however, they cause

new problems. For instance, decreasing the PMMA thickness helps alleviate the issue, but,

to cover the nanowires, the PMMA film should be thicker than the nanowires (∼ 100 nm).

Sputtering at high temperatures would make the material fill the PMMA voids however

high temperature sputtered films fail to lift-off. Using a sputtering collimator improves

the directional uniformity of the plasma significantly, however, it also increases the stress

of NbTiN film which aggravates another issue discussed below. For three-terminal devices

developed in Chapter 6, we achieve narrow NbTiN contacts by tilting the sample during

deposition and depositing only 40 nm from one side of the nanowires.

Sputtered films often have stress that can cause damage to thin nanostructures. For sim-

ple designs such as two-terminal devices whose two contacts are close in space, the nanowires

are more resistant to stress as the torque is small. For devices with large contact spacings

and/or side contacts, the stress can bend or break the nanowires. In Fig.3.8a, the nanowire

in a NbTiN-Ge/Si-NbTiN device with a large contact separation (∼ 600 nm) is bent; in
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Figure 3.8: Damage to nanowires caused by NbTiN stress. a, SEM of a bent Ge/Si
nanowire in a NbTiN-Ge/Si-NbTiN junction. The long Ge/Si channel (∼ 500 nm) is bent by the
stress in NbTiN film. b, SEM of a broken InSb nanowire connected to three NbTiN contacts. The
nanowire is broken by the torque of the stress.

Fig.3.8b, the InSb nanowire is broken by the torque with the vertical contacts. The stress in

sputtered films is attributed to bombardment of high energy neutral argon atoms on the film

[74]. To mitigate the effects of the bombardment, sputtering power can be lowered; argon

pressure in sputtering process can also be increased to thermalize the neural argon atoms

before they reach the film. As mentioned, plasma can be adjusted to be more directional by

using a collimator. Although this can solve the difficulty in depositing on narrow structures,

it is found to generate larger stress. In control experiments, the damage to NbTiN-InSb-

NbTiN devices fabricated with a collimator is found to be more severe than that without

a collimator. This is because using a collimator reduces the thermalization, which leads to

stronger bombardment of neutral argon atoms on the film and stronger stress [74].
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Figure 3.9: Low temperature electrical measurement setup. a, An internal photo of a
3He/4He dilution refrigerator (Leiden Cryogenics). The plates from top to bottom and their typical
working temperatures in parenthesis are the following: top-plate (room temperature), 50K-plate
(50 K), 3K-plate (3-4 K), still (100-200 mK), 50mK-plate (50-60 mK) and mixing chamber (20-40
mK). At the center of each plate, there is a hole for the measurement probe to pass through. b,
Probe and cold finger. This lowest part of the probe (marked as “To MC”) is thermally connected
to mixing chamber (MC) of the fridge during measurements such that it is the coldest part. Cold
finger is connected to this coldest part. Low-temperature RC-filters are installed on the cold finger
(covered by teflon in the photo). c, Chip carrier. The sample is loaded into the carrier embedded
in a PCB and devices are connected to measurement wires via bonding pads.
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3.3 MEASUREMENT SETUP

Low temperature is critical to perform the quantum transport measurements, to see the

charging effect of quantum dots, to keep the devices leads superconducting, to suppress

thermal excitation and quasiparticles in the superconductors, and to resolve the tunneling

spectroscopy of Andreev bound states whose broadening must be at least one order of mag-

nitude lower than the induced superconducting gap (a few hundred micro-electron volts).

These low temperature measurements are performed at 20 - 40 mK (base temperature) in

3He/4He dilution refrigerators (Fig.3.9a). The coldest part of a refrigerator is called mixing

chamber where 3He-rich mixture is diluted in 4He-rich mixture and heat is absorbed from the

environment. This is where the measurement chips are thermally attached to. The dilution

refrigerators used for the measurements in this thesis are “top loading” type, meaning the

body of a dilution refrigerator can keep cold, and cooling down a measurement chip is done

by mounting it to a cold-insertable probe (Fig.3.9b) and inserting the probe into the fridge

body. After the insertion, the lowest part of the probe, the cold finger, is attached the mixing

chamber of the refrigerator such that it can have a same lowest temperature. The cold finger

is where we mount the measurement chip.

The measurement chip thermally connected to the mixing chamber can reach the same

lattice temperature of mixing chamber. However, in order to perform electrical measure-

ments, wires have to be used to connect the devices (source, drain and gates) to room

temperature setups, which introduces heat load to the mixing chamber and leads to a higher

base temperature. Moreover, the effective electron temperature in the device can be much

higher than the lattice temperature in the devices, because the devices are directly connected

to room temperature setups and the electrical noise increases the effective electron temper-

ature significantly. Next we shall describe the wiring from the room temperature setup to

the measurement chip and the techniques we apply to reduce the effect of electrical noise.

Digital-to-analog converters (DACs) controlled by computer are used to apply a bias to

the device leads, and voltages to gates. The signal of the device is measured with a DC

amplifier and a standard lock-in amplifier. The former allows us to measure DC signals such

as current, while the latter allows us to measure differential conductance with suppressed
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noise. To avoid interference from city electricity and computers, all measurement setups

except the lock-in amplifier are powered by DC batteries, and the DACs are controlled by

computers via optical fiber connection. In addition, each wire is passed through a π filter at

room temperature which filters noise in the range of 10 MHz - 100 MHz.

The wires are then passed through plates of various temperatures in the measurement

probe. These plates have thermal connection to the corresponding plates in the refrigerator

(See 3K-plate, still and 50mK-plate in Fig.3.9a). When the wires are passed through each

plate, they are thermally well attached to the plate, which is called thermal anchoring.

This reduces the heat load on mixing chamber and lowers the effective electron temperature.

Before the measurement chip, the wires are passed through copper powder filters which filter

high frequency noise (up to a few GHz) and RC-filters with a cut-off frequency around 10

kHz. These two types of filters are equipped right before the measurement chip to avoid

extra noise between room temperature and mixing chamber. Together with the π-filters at

room temperature, non-low frequency noise is filtered and effective electron temperature can

be efficiently reduced (The lock-in amplifier frequency is 77 Hz in the experiments thus lock-

in signals are not filtered by them.). Finally, these wires are connected to a polychlorinated

biphenyl board (PCB) where a chip carrier is loaded. The measurement chip is mounted in

the chip carrier (Fig.3.9c) and the quantum devices are connected to the pins on the chip

carrier by wire bounding.

Magnetic fields are generated by superconducting magnets in the dilution refrigerators.

A solenoid magnet capable of producing magnetic fields up to 9 T is used in all experiments.

A vector magnet which enables rotating fields in two-dimensions is used in the experiments

in Chapter 8.
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4.0 ANDREEV BOUND STATES IN INSB SINGLE QUANTUM DOTS

Here we implement highly tunable single quantum dots coupled to superconductors and

study Andreev bound states comprehensively in a large parameter space.

60



4.1 INTRODUCTION

In this chapter we realize Andreev bound states in NbTiN-InSb single dot structures and

demonstrate quantum transport through these states in this chapter. This is technically

important. On the one hand, the double dot and triple dot chains, in the later chapters,

will be built upon a number of such building blocks: NbTiN-InSb single dot structures. On

the other hand, although Andreev bound states have been observed in hybrid structures

using InAs nanowires, carbon nanotubes or graphene, and superconductors like Al, V or Nb

[47, 41, 44, 8, 46], neither InSb nor NbTiN has been reported for the study of Andreev bound

states.

In addition, there is a broader interest in the exploration of quantum transport through

low-dimensional structures involving semiconductors and superconductors. First of all, these

hybrid structures, such as NbTiN-InSb nanowire and Al-InAs nanowire structures, have been

used for the study of Majorana zero modes [10, 75, 11, 13]. In those experiments, nanowire

sections of finite lengths, ranging from a few tens nanometers to a few micrometers, are used.

The superconductor-single quantum dot structures used to study Andreev bound states in

this chapter have similarities to those devices, particularly in the open quantum dot regime.

Indeed, theories suggest that Andreev bound states in a single quantum dot can be precursors

for Majorana zero modes [76, 77, 78, 79]. Furthermore, the same superconductor (NbTiN)

and semiconductor (InSb nanowires) combination is used both in the study of Andreev

bound states in this thesis, and in the studies of Majorana zero modes [10, 11, 13]. Thus

studying Andreev bound states in NbTiN-InSb single dot structures can contribute to the

experimental studies of Majorana zero modes. Finally, as will be shown in this chapter,

although superconductor-single dots has been studied previously, a number of new physical

insights into the system are obtained in our study, such as the simultaneous transitions of

superconducting and normal transport as the dot is tuned to be open to a superconducting

reservoir, and complexities in the probe and superconducting reservoir.
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4.2 SINGLE DOT DEVICES
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Figure 4.1: Design and SEM image of a highly controllable superconductor-quantum
dot system. a, A building block of a chain consists of a superconductor and a quantum dot. In
the quantum dot, the chemical potential is µ, the coupling to the superconductor is ΓS and the
tunnel coupling to a probe is t. b, SEM image of the device used to create a single dot coupled to
the right superconducting lead. The quantum dot, depicted by the green dot, is confined and tuned
by three fine gates below the nanowire: Vt, Vp, and VS . The probe is a nanowire section coupled
to the left superconducting lead. c, The side-view schematic. The red line depicts a potential well
controlled by the gates to confine the quantum dot.

As explained in Chapter 2, to tune Andreev bound states in a superconductor-quantum

dot hybrid structure, three parameters should be controlled in sufficiently large ranges and

quasi-independently, i.e., ΓS is the coupling between the dot and the superconducting reser-

voir, µ is the dot chemical potential, and t is the tunnel coupling to a probe (See Fig.4.1a).

Quantum dots can be partially defined by contact barriers or disorder [47, 41, 44, 8, 46].

This limits degree to which ΓS, µ and t can be tuned. Also, if there are not enough gates,
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independent control is not possible. The randomness and low controllability determine that

spontaneously formed quantum dots by contact barriers or disorder are not applicable to

build complex devices like chains.

We facilitate the high and independent controllability of the three parameters by two

key techniques. First, we elaborate three local fine gates whose center-to-center distance is

60 nm for a single dot (See the three gates marked as t, p and S in Fig.4.1b) and apply

gate voltages Vt, Vp and VS to them separately. They can be used to control t, µ and ΓS,

respectively and quasi-independently. For instance, by decreasing VS we effectively reduce

ΓS, and by changing Vp we tune µ. Note that a thin and high-κ gate dielectric (HfO2, 10

nm) is used to maximize locality of the gate effect. Indeed, cross capacitance coupling from

a nearest neighboring gate is only ∼ 1/3 of that from Vp, and this effect can be compensated

by tuning Vp in the opposite direction. In this way, all three parameters can be controlled

independently by a combination of three gates. The second key technique to facilitate the

controllability is highly transparent superconductor-nanowire contacts. With such contacts,

ΓS can be tuned from a sufficiently high regime where singlet ground states form in spinfull

dots, to as low as required by decreasing VS. High transparency of the probe contact is

also important to prevent undesired dots from forming near the superconductor-nanowire

interfaces. The device studied in this chapter has resistance of 4 kΩ when the device is tuned

to the most open at low temperature, which implies low contact resistance. No unintentional

dots are observed either. Finally, the same device can also be used to form a single dot that is

strongly coupled to left superconductor (See Supplementary information), or form a double

dot where each dot is strongly coupled to a superconducting lead (See Chapter 5).

With these techniques, a single device can demonstrate rich transport phenomena of a

superconductor-quantum dot structure in a number of regimes. Here we summarize these

phenomena in prior to detailing them in individual sections. At first we shall demonstrate

the transition from co-tunneling regime to Andreev bound state regime. Specifically, in

Section 4.3 we focus on the evolution of the lowest conductance peaks from horizontal peaks

into loop-like peaks within superconducting gap; in Section 4.4 we study the transition of

transport where quantized charging effect is removed above the superconducting gap. The

relation of these two transitions, within and above the gap, is then discussed. Next, in
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Section 4.5, we study zero bias peaks generated by Andreev bound states in the open dot

regime and map out the spin state phase diagram of Andreev bound states as a function of

magnetic field and chemical potential. Besides these phenomena that can be explained with

the theory in Chapter 2, there are some features that require additional discussions which

we call “anomalies”. They are discussed in sections 4.6 and 4.7.

Note that the couplings to the leads are intentionally tuned to be highly asymmetric

such that the left lead is weakly coupled to the dot and only serves as a tunneling probe

(i.e., ΓS � t). This is done by setting Vt around the pinch-off voltage and VS in a more open

regime, and is further verified by the |D〉/|S〉 phase transition that is controlled by VS. Also,

for better comparison, while we vary ΓS and t, we also tune Vp to maintain the same dot

occupations. A black arrow on top of each plot is used to denote the same dot occupation.

4.3 FROM CO-TUNNELING REGIME TO ANDREEV BOUND STATE

REGIME

We first look at the transport in the co-tunneling regime. Fig.4.2a measures the differential

conductance, dI/dV , as a function of bias and Vp. Besides the Coulomb diamonds from

which we can extract charging energy (U ∼ 2.5meV) and quantum dot level spacing (∆E ∼ 1

mV), there are bias symmetric and gate independent conductance peaks inside the Coulomb

diamonds. The absolute bias of the lowest resonances is 600 ± 200 µV. Similar features

have been observed and explained in terms of co-tunneling theory where co-tunneling of

quasiparticles from one superconducting lead to the other through virtual states in the

quantum dot is enhanced at the singularities of density of states at superconducting gap

edges in the leads (See Fig.4.3a) [80] . By assuming equal gap values in the leads and

symmetric tunnel couplings, the authors estimate that the horizontal peaks correspond to

2∆induced, where ∆induced is the induced gap [80], following the energy diagram shown in

Fig.4.3a. Applying the same argument yields ∆induced = 300± 100 µeV for our NbTiN-InSb

structure.

Horizontal resonances at higher biases appear to be extensions of the diagonal resonance
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Figure 4.2: Horizontal resonances. a, Bias vs. gate measurement in the co-tunneling regime.
VS = 50 mV and Vt = -500 mV. Horizontal resonances at multiple biases are observed. They
seem to be extensions of the diagonal line in the Coulomb peak triangles, depicted by the green
dashed lines. “Even” and “Odd” mark the parities of dot occupations. The black arrow is used to
track dot occupations. b (c,) Magnetic field dependence of the resonance peaks in an odd (even)
occupation diamond, along the red (blue) dash-dotted arrow in a. Black dashed lines track the
field evolution of the lowest resonances while green dashed lines track the field evolution of the high
bias resonances.

peaks outside the Coulomb diamonds (depicted by the green dashed lines). These diagonal

resonance peaks can be associated with transitions through excited quantum dot states or

due to nonuniform density of states in the leads [80].

In Fig.4.2b we scan a combination of Vbias and Vp along the dash-dotted arrow depicted

in a Coulomb diamond of odd occupation in Fig.4.2a as magnetic field is stepped. The

lowest resonance at positive (negative) bias goes up (down) as magnetic field with a slope

of 2.5 mV/T. The resonances at high biases display the same magnetic field dependence
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(Fig.4.2b). A scan of similar manner along the dash-dotted arrow in a Coulomb diamond of

even occupation demonstrates different magnetic field evolution (Fig.4.2c), i.e., the lowest

resonances appear to split as field with a slope of 1.9 mV/T and meet at zero bias at ∼ 0.3

- 0.4 T. No clear splitting behaviors are observed for the high bias resonances. Soon we will

see that it is not surprising that Fig.4.2b and c demonstrate different types of magnetic field

behaviors, as they are associated with Andreev bound states of doublet and singlet ground

states, respectively.

Figure 4.3: Two pictures for the horizontal conductance peaks. a, Co-tunneling picture.
Co-tunneling of quasiparticles from the left superconducting lead to the right superconducting lead
through virtual states in the quantum dot is enhanced at the singularities of density of states at
superconducting gap edges in the leads. The solid lines in the dot depict quantum dot levels. b,
Andreev bound state picture. The levels associated with Andreev bound states are ±ζ. In the weak
superconductor-dot coupling limit, ζ ≈ ∆. Note that here we consider transport of quasiparticles
from the probe gap edge.

Next, starting from this co-tunneling regime, we present a transition to Andreev bound

state regime. Note that although it is mainly accomplished by increasing VS, Vt is also fine

tuned to balance broadening and strength of the resonances. From Fig.4.4a (VS = -25 mV,

Vt = -600 mV) that shows the horizontal resonances, we gradually increase ΓS by tuning VS

to 50 mV. We observe that near the Coulomb peaks, the horizontal resonances start to grow

round, move closer to zero bias (Fig.4.4b). As VS is increased to 220 mV, the resonances

develop into loop-like resonances with nonlinear gate dependence (Fig.4.4c). These nonlinear

features are the transport resonances through Andreev bound states introduced in Chapter

2. This evolution, in the opposite direction from VS = 220 mV to -25 mV, demonstrates that
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when ΓS is low, the levels associated with Andreev bound states (ζ) have a gate-independent

value, except at the charge degeneracies. This provides a different picture explaining the

horizontal resonances where the resonances are through levels of Andreev bound states that

are close to ±∆induced (See Fig.4.3b).
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Figure 4.4: From co-tunneling regime to Andreev bound state regime. a-e, Bias vs.
gate measurements of subgap resonances through Andreev bound states at various VS respectively
(VS = -25, 50, 220, 240, 260 mV for a-e, respectively). The arrows mark the same quantum dot
occupation. Note that Vt = -600 mV for a-b, and Vt = -685 mV for panels c-e, as Vt is tuned to
balance broadening and strength of the resonances.

Next we look at the spin state phase transition in the Andreev bound state regime. The

resonances in Fig.4.4c exhibit a closed-loop with two zero bias crossings. The ground states

are doublets (|D〉) between the two zero bias crossings, and singlets (|S〉) otherwise, which

is verified by: (1) magnetospectroscopy measurements in Section 4.6; (2) the |D〉/|S〉 phase

transition. As we continue increasing ΓS, the loop keeps shrinking and the two zero bias

crossings move closer. A phase transition is reached when the two zero bias crossings merge

(VS ≈ 240 mV, Fig.4.4d). Here, the ground state of the system is |D〉/|S〉 degenerate at this

touch-point and |S〉 otherwise. With a larger VS, the system enters a phase where the ground

state is |S〉 regardless of quantum dot occupation and the resonances through Andreev bound

states evolve into anti-crossing-like structures in bias vs. gate scans (Fig.4.4e).
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The decrement of differential conductance from Fig.4.4c to e is at first sight counter-

intuitive. The maximum strength in Fig.4.4c-e decreases (∼ 0.17, 0.14, 0.035 G0, where

G0 = 2e2/h). while the superconductor-dot coupling is increased (VS = 220, 240, 260 mV).

This phenomenon can be explained by tunneling coupling asymmetry, i.e., the maximum

conductance (G) through a normal probe-quantum dot-superconductor follows the relation:

G/2G0 = 4Γ2
St

2/(ε + Γ2
S + t2)2 where ε is the quantum dot level [81]. The maximum con-

ductance is reached at quantum dot degenerate points (ε = 0) and can be up to 2G0 when

the barriers are symmetric, where the factor of 2 comes from transferring Cooper pairs.

The relation provides an naive explanation: given t fixed, increasing ΓS enhances the asym-

metries thus the conductance decreases (Plugging the maximum conductance values of the

resonances in the three plots into the relation yields t/ΓS ≈ 0.15, 0.13, 0.07, respectively.).

4.4 TRANSITIONS OF SUPERCONDUCTING AND NORMAL

TRANSPORT FROM CLOSED TO OPEN DOT REGIMES

Having seen the transition of the subgap (superconducting) transport as a function of ΓS,

in this section we shall discuss the transition of above-gap (normal) transport as the same

parameter, ΓS. At the end of the section, we will show the relation between these two

transitions.

Through a quantum dot coupled to normal leads, current is carried by sequential tun-

neling, in the closed dot regime; while in the regime where the dot is strongly coupled to

contacting reservoirs, Fabry-Perot interferences can be observed [82]. Here we study a sin-

gle quantum dot strongly coupled to one reservoir. What is new is that the reservoir is a

superconductor such that both normal and superconducting couplings are involved.

As an example in the closed dot regime, Fig.4.5a shows Coulomb peaks (1 to 6 in yellow)

and Coulomb diamonds (Odd occupations are marked as I, II and III in black) above gap.

After increasing VS from 75 mV to 150 mV, every two Coulomb peaks, for example peaks

5 and 6 in Fig.4.5a, merge together and become one single broadened resonance marked as

III in white in Fig.4.5b (A series of scans in Supplementary Figure 4.13 with smaller step
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Figure 4.5: Superconducting and normal transport through the closed and open quan-
tum dot coupled to a superconducting reservoir. a, Bias vs. gate measurement in a large
bias range at VS = 75 mV (closed dot regime). Six sharp broadened Coulomb peaks are marked
as 1 to 6 in yellow. Three odd occupations are marked as I, II, and III in black. b, Bias vs. gate
measurement in a large bias range at VS = 150 mV (open dot regime). Three broadened peaks are
marked as I, II, and III in white. c, Transport current as a function of Vp and VS at Vbias = 1 mV.
Vt = -555 mV in this figure and Fig.4.13.

size in the change of VS show that the Coulomb diamonds smear gradually from Fig.4.5a to

Fig.4.5b). As a result, only three broadened resonances, marked as I, II and III in white

in Fig.4.5b, are present eventually. Periodicity of the conductance oscillations changes from

one peak per electron added to one peak for every two electrons added.

In Fig.4.5c we measure current in the Vp range studied in Fig.4.5a-b at a fixed bias (1

mV), as VS is increased continuously. In the closed dot regime (VS < 100 mV), the parallel

thin lines marked from 1 to 6 are associated with the Coulomb peaks marked in Fig.4.5a

(VS = 75 mV). In a large range of VS (35 mV < VS < 100 mV), widths of the Coulomb

peaks do not undergo significant change. When VS is close to ∼ 100 mV, the current in odd

diamonds (marked as I, II, and III in Fig.4.5a), starts to grow. When VS is increased to

∼125 mV, Coulomb peaks 1-2, 3-4, and 5-6, merge pairwise and form three broadened peaks,

69



which exhibits the same change of periodicity from one to two electrons per conductance

peak discussed with Fig.4.5a-b.

This change of periodicity is associated with decreasing quantized charging energy. In

the closed dot regime, each quantum dot orbital is associated with two Coulomb peaks,

corresponding to filling the orbital with electrons of spin-up and spin-down. In the open

quantum dot regime, there is only one conductance peak, occurring when the orbital level

is aligned with the Fermi level in the probe, meaning orbital quantization remains, but

quantized charging effect is removed. On the other hand, the average gate voltage required

to add an electron changes little: extracting charging energy from Vp values of neighboring

above-gap resonances yields 2.7 ± 0.5 meV, assuming gate-dot coupling and quantum dot

level spacing unchanged; while the quantized charging energy is the closed dot regime is close

to it (∼ 2.5 meV).
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Figure 4.6: Andreev bound state phase transition and smearing of Coulomb blockade.
Left (blue), Bias values of the subgap resonances at the center of “III” odd occupation in Fig.4.5.
Positive signs are assigned to crossing-type resonances (left cartoon) while negative signs are as-
signed to anti-crossing-type resonances (right cartoon). The error bars are half-width-at-half-high
of the resonances. Right (red), Current along the center of “III” odd occupation at 1 mV as a
function of VS . It is taken along the line cut depicted in Fig.4.5c in green.

Having analyzed the transitions of superconducting and normal transport as a same pa-

rameter, ΓS, we now examine their relation. To clarify discussion, we take the Coulomb

diamond of odd occupation marked as III in Fig.4.5a as an example, and extract the in-
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formation of normal and superconducting transport. First, we extract current through this

diamond (along the green dashed line cut depicted in Fig.4.5c), and plot it in red as a

function of VS in Fig.4.6. When VS is low, the current is near zero because of Coulomb

blockade. As VS is increased, the dot becomes open and the current starts to increase and

finally reaches 4 nA.

Following the same odd occupation in the superconducting state, we then extract the bias

values of the subgap resonances (ζ) at the center of the occupation. We extract data points

from fourteen bias vs. gate plots in Fig.4.5a-b and Fig.4.13 corresponding to a number of

VS values, and plot them in blue in Fig.4.6. To distinguish the two spin states, we adopt the

convention that ζ > 0 for |D〉 ground states and ζ < 0 for |S〉 ground states (See cartoons

in Fig.4.6). One can see that the value decreases from positive to negative as a function of

VS. Interestingly, the phase transition point (centered resonance = 0) occurs at VS ≈ 22

mV where the current of above-gap transport is also around the middle value (≈ 2.4 nA)

between the saturated current (≈ 4.2 nA) and zero (Another way to visualize the |D〉 / |S〉

transition is to follow the zero bias crossings which denote the degeneracies between |D〉 and

|S〉 as a function of VS. See supplementary Figure 4.16 from a different device.).

Qualitatively, the simultaneous transitions seem to be natural, because both transitions

can be characterized by a same parameter, ΓS/U [42]. Whether the simultaneous transi-

tion are governed by some fundamental mechanism, however, requires theoretical modeling

of the system, which is in progress. A comprehensive understanding of the phenomenon is

important, because as we shall see in Chapter 6, low charging energy is favored when imple-

menting the Kitaev model in term of superconductor-quantum dots, and it can be achieved

by increasing the superconductor-dot coupling, just like what has been performed here. In

addition, in fusion experiments, manipulation of Majorana zero modes are accomplished

exactly by tuning the dots closed and open to superconducting reservoirs [75].

71



1 

-1 

0 

1 

-1 

0 

390 470 
VP (mV) 

1 

-1 

0 

B = 0 

B = 0.1 T 

B = 0.3 T 

a 

b 

c 
V

bi
as

 (m
V

) 
V

bi
as

 (m
V

) 
V

bi
as

 (m
V

) 
1 2 3 4 

Figure 4.7: Spectroscopies at various magnetic fields in the open quantum dot regime.
a-c, Subgap resonances as a function of Vp and bias Vbias at 0, 0.1, and 0.3 T, respectively. They
have the same dot occupations. The green (yellow) dashed line depicts the branch at positive
(negative) bias in a. The green and yellow arrows illustrate the directions of the evolutions of
resonances as the magnetic field is increased. The numbers, 1 - 4, on top of c denotes the four zero
bias crossings.

4.5 ZERO BIAS PEAKS IN THE OPEN DOT REGIME

Theories suggest connections between Andreev bound states in superconductor-quantum dot

structures and Majorana zero modes in superconductor-nanowire of finite lengths [77, 78].

Furthermore, all components required to realize Majorana zero modes, i.e., strong spin-orbit

coupling, a large g-factor and induced superconductivity from a high critical field supercon-

ductor, are present in our NbTiN-InSb structure. In this section, we demonstrate zero bias

peaks produced by Andreev bound states at finite magnetic fields in our superconductor-dot

structure. Zero bias peaks are the prime feature in the study of Majorana zero modes states

[10, 56, 11, 13, 12]. We then discuss the similarities and differences between zero bias peaks
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associated with Andreev bound states and Majorana zero modes.

We tune the system to the open dot regime where the ground states are |S〉 regardless

of dot occupations and then monitor the evolution of the subgap resonances as a function of

magnetic field (Fig.4.7). At zero magnetic field, the transport resonances are anti-crossing-

like with one branch at positive bias and the other at negative bias, as depicted by the dashed

lines in Fig.4.7a. Thus no resonances are across zero bias. Note that the conductance at zero

bias is not precisely zero due to resonance broadness and that the anticrossings are not far

from zero bias. As an in-plane magnetic field (field-nanowire axis angle ≈ 30◦) is applied,

a split resonance at positive (negative) bias marches to zero bias, illustrated by the green

(yellow) arrow at positive (negative) bias. At some magnetic field, the resonances depicted

by the green and yellow dashed lines touch at zero bias and form a single zero bias peak. At

higher magnetic fields, the resonance depicted by green (yellow) dashed line marches further

to the negative (positive) bias. They form a loop-like structure with two crossings at zero

bias, as demonstrated in Fig.4.7b and c.

This magnetic field behavior is further investigated by measuring the resonances at zero

bias as a function of Vp and magnetic field. In Fig.4.8a, two zero bias differential conductance

structures appear to be round-V-shape-like. The V-shape structures can be explained by

Fig.4.8b and Fig.4.7. Take the V-shape structure on the right as an example: (1) at zero

magnetic field, the V-shape structure has not started. That is because the ground states are

|S〉 in the entire Vp range. The associated bias vs. gate plot is Fig.4.7a where no resonances

are through zero bias. (2) At ∼ 50 mT, the V-shape structures starts to appear. That is

when the lower |D〉, say |↑〉, crosses the |S〉 ground state (marked by the vertical dashed line

in Fig.4.8b) and the two branches of the anticrossing meet. (3) Afterwards, the structure

grows into two branches. This is when |↑〉 becomes the ground state where the resonances

are loop-like in bias vs. gate scans (See Fig.4.7b,c). Each loop gives rise to two zero bias

crossings (marked as 1 and 2 in Fig.4.7c) which exhibit as two branches (1 and 2 denoted in

Fig.4.8a).

We thus map out the spin state phase diagram of Andreev bound states as a function

of magnetic field and Vp: above the V-shape structures, the ground state is |D〉 and outside

the V-shape structure, the ground state is |S〉. Notice that the branches do not have linear
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Figure 4.8: Magnetic field evolution of the resonances in open quantum dot regime.
a, The differential conductance as a function of Vp and magnetic field (B) at zero bias. This plot
is taken with the same dot occupations as in Fig.4.7. The fixed field line cuts denoted in a, b and
c in red on the right are associated with Fig.4.7a-c, and the four branches marked with numbers,
1-4, correspond to the four zero bias crossings in Fig.4.7c. The V-shape structures are outlined by
the yellow dash-dotted lines. D (doublet) and S (singlet) mark the spin states. b, Schematic of
Andreev bound states as magnetic field. c, Topological phase boundary (in black), EZ =

√
µ2 + ∆2,

where EZ is Zeeman energy. TS marks the topological supercondcuting phase (in orange) while out
of the V-shape boundary the phase is trivial. d, Experimental measurement of the phase diagram
of zero bias peaks in Ref.[13]. The data points are onsets of zero bias peaks. The red line plotted
theoretical prediction of topological phase boundary, i.e., EZ =

√
µ2 + ∆2. Panel d is adapted from

Ref.[13].

dependence on magnetic field, particularly near the bases of the V-shape structures thus “V-

shape” is actually not precise description. (Far away from the base of the V-shape structures,

slopes of 15± 10 mV/T (absolute value) can be estimated by assuming linear magnetic field

dependence. With a gate coupling factor (∼1/4) extracted from Fig.4.4a, one can estimate

a energy/magnetic field ratio of 4± 2 mV/T and a g-factor of (13± 9) ∗ 10.).

The spin state phase diagram of Andreev bound states as a function of magnetic field and

chemical potential shares similarities with that of Majorana zero modes. Theories predict

that Majorana zero modes exist in the following topological superconducting (TS) regime:

EZ >
√
µ2 + ∆2, where EZ is Zeeman energy (Fig.4.8c) [3, 4] (This relation has been ex-
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Figure 4.9: Bias vs. field measurements at various Vp in the open quantum dot regime.
a, Bias vs. gate measurement in the strong ΓS regime. Dashed lines depict the line cuts vs. field
scans in b-d. b-d, Bias vs. field scans at the center, on the left and one the right of the anti-crossing
resonances.

perimentally explored with NbTiN-InSb nanowire structures [13], which yields a boundary

between regimes with and without zero bias peaks (Fig.4.8d).). This topological regime is

where a zero bias peak is expected, meaning, Majorana zero modes exhibit as a zero bias

conductance peak that starts from a finite magnetic field and sustains for a magnetic field

range in a bias vs. field scan. Also, in the topological regime, the zero bias conductance

peak is present over a chemical potential range at a finite field in a bias vs. gate scan.

The |S〉/|D〉 spin state boundary (yellow dashed lines in Fig.4.8a) shows some resem-

blance to that of a TS boundary (Fig.4.8c), i.e., both are round-V-shape and start at some

finite fields (EZ0), however, a few differences are found. (1) In the case of Majorana zero

modes, EZ0 is fixed to ∆; while in the case of Andreev bound states, EZ0 is determined

by ΓS and is tunable. (2) The zero bias resonances due to Andreev bound states are only

present at the phase boundary while the zero bias resonances due to Majorana zero modes

(in the unpaired limit) fill the parameter space inside the V-shape boundary. This is further
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supported by tracking the subgap resonances as a function of bias and magnetic field at

different Vp values in Fig.4.9, where the zero energy peaks are crossings of resonances at

finite fields.

Then can one be confident that a zero bias peak is associated with Majorana zero modes

when EZ0 is ∆ and zero bias conductance fills the parameter space above the V-shape

boundary? Probably no. The first difference can be not applicable to distinguish the two

types of boundaries, because in devices for the study of Majorana zero modes, if the zero bias

peaks are associated with Andreev bound states, EZ0 can be close to ∆ given large ΓS, and

cannot be varied as ΓS is not tunable because the nanowire sections are directly covered by

superconductors with transparent contacts [10, 56, 13, 11, 12]. The second difference might

be absent as well: the zero bias crossings can be “stretched” into long peaks in bias vs. field

scans due to suppression of induced gaps or interactions of extra states [8]. Therefore, in

practice, these two differences might not be sufficient to distinguish Andreev bound states

from Majorana zero modes. Considering the zero bias peaks are the prime feature to signal

Majorana zero modes, extra caution should be taken to distinguish them from zero bias

peaks due to Andreev bound states.

4.6 ANOMALY I: REPLICAS AT HIGH BIAS

In the NbTiN-InSb quantum dot-NbTiN structures, some transport features can be well-

understood by the theory in Chapter 2, while others require additional discussions. We call

them “anomalies”.

In this section, we discuss the first anomaly, i.e., high bias resonances may appear as

replicas of the resonances around zero bias. In Fig.4.10a, the replicas at positive (negative)

bias repeat the positive (negative) half of the lowest loop-like structure. The biases of the

resonances at the center of odd occupations are ∼ 3.42, 1.93, 1.33, 0.76 and 0.19 mV, marked

as 1, 2, 3, 4 and L in Fig.4.10a, where L denotes the lowest resonance. Notice that the highest

bias can be 2 times of the superconducting gap in bulk NbTiN (1.76 mV). Also, negative

differential conductance can accompany these high bias replicas as well. With Vp fixed in the
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|S〉 regime, we step magnetic field in Fig.4.10b. The lowest resonances display splitting field

behavior with an absolute slope of 0.18 mV/T (The plot only exhibits the branch at negative

bias clearly because of asymmetric dot barriers.). No obvious splitting, however, is observed

with the replicas at high bias, although they shift by the same energy in field, implying same

g-factors. Fig.4.10c displays the magnetic field behavior with Vp fixed at the center of the

loop structure (|D〉), splitting is observed with neither the lowest bias resonances nor the

high bias replicas. They share a slope of 0.42 mV/T. Resonances at high bias are also present

when system is in the open dot regime where the ground states are always |S〉 regardless of

Vp (See Fig.4.10d). These high bias resonances appear to be replicas of the lowest resonances

as well.

We first discuss the origin of the high bias replicas by comparing them to known phe-

nomena that also show multiple copies. First, fitting these values except for the lowest

resonances with the following relation: Vbias = 2∆/en where e is electron charge, ∆ is

bulk gap in NbTiN (1.76 meV) and n are integers, yields n ≈ 1.0, 1.8, 2.6 and 4.6. These

values suggest possible connection to multiple Andreev reflections which would yield n val-

ues of increasing integers (1, 2, 3, 4, ...). Multiple Andreev reflections can take place in

superconductor-normal conductor-superconductor (S-N-S) hybrid structures where quasi-

particles are transferred from the lower gap edge of the source to the upper gap edge of the

drain after multiple Andreev reflections at the two S-N interfaces. Every process involving

an Andreev reflection increases the energy of the particle by |eVbias|. The energy gained af-

ter n reflections, compensates the energy required to transfer the quasiparticle, which yields

eVbias = 2∆/n. Thus, multiple Andreev reflection requires Andreev reflection at both the left

and right side of the dot. With highly asymmetric barriers and in such a low conductance

regime (∼ 0.04 (2e2/h)), however, multiple Andreev reflections are supposed to be greatly

suppressed [83]. Besides, supercurrent that usually accompanied with multiple Andreev re-

flections in InAs and InSb nanowires [40, 60] is not present here. Another phenomenon

predicted to exhibit resonances of multiple copies is multiple Andreev bound states in the

dot [84]. When there are multiple discrete quantum levels within the superconducting gap,

multiple Andreev bound states can form, which is predicted to produce complex features in

spectroscopy measurements (See Ref.[84]). In contrast, in our measurements, the replicas at
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Figure 4.10: Replicas of subgap resonance at high bias. a, Bias vs. gate resonance
measurement in a large bias range in the closed dot regimes. VS and Vt are the same as in Fig.4.4c.
The numbers, 1 - 4, depicts the replicas from high to low biases. “L” and “-L” denote the lowest
resonances centered at zero bias. As an example, replica-4 is depicted by the dotted line. b,
Magnetic field dependence of the resonances (3, 4 and −L) at the gate position marked with b
in panel a. Zero bias is denoted by the green arrow. Note that at this gate position, only the
negative bias branch of the lowest resonance has high conductance due to asymmetric dot barriers.
c, Magnetic field dependence of the resonances (2, 3, 4 and ±L) at the gate position marked with
c in panel a. d, Bias vs. gate resonance measurement in a large bias range in the open dot regime.
VS and Vt are the same as in Fig.4.4e. The numbers, 1 - 4, depicts the replicas from high to low
biases. “L” and “-L” denotes the lowest resonances centered at zero bias. Note that the position
(and existence) of replica-2 is not clearly shown in the data.

positive (negative) bias simply repeat the positive (negative) half-loop structure at lowest

bias. In addition, the discrete quantum dot levels have spacing of ∼ 1 meV, which is larger

than ∆induced thus multiple Andreev bound states are not expected in this dot [84].

The replicas might come from states in the nanowire probe on the left of the dot, and

nanowire section on the right of the dot. Here we propose a minimum model that can explain

most of the observed features. This model considers multiple Andreev bound states in the

nanowire probe. As illustrated by Fig.4.11a, on the right side, the quantum dot is coupled

to a NbTiN-covered nanowire section that has a induced gap (∆induced); on the left side, it
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Figure 4.11: Schematic of high bias transport. a, Schematic of device structure. The
quantum dot (QD) is probed by the nanowire probe (NW probe) with multiple levels; it is coupled
to a nanowire (∆induced) covered by NbTiN (∆bulk) on the right. b, Schematic transport diagram.
The nanowire probe has multiple levels associated with multiple Andreev bound states within
∆bulk. The dot is coupled to a superconducting reservoir with ∆induced, and it has two levels (±ζ)
associated with dot Andreev bound states due to ∆induced. The dashed bar is used to approximate
subgap density of states. The level at the probe chemical potential can be used to explain the
anomaly in Section 4.7.

is connected to a nanowire probe. Because this nanowire probe has a finite size in length

and diameter, and it is strongly coupled to the left NbTiN lead (∆bulk), Andreev bound

states can form in it, which has been observed in Al-InAs nanowire section hybrid structures

[56, 75]. On the other hand, this nanowire probe has a large length (> 1 µm), which can give

rise to a dense discrete quantum level spectrum. When there are multiple discrete quantum

levels below ∆bulk, multiple Andreev bound states can form [84]. As a result, each of these

levels can give rise to an extra copy of resonance in bias vs. gate scans when it is aligned

with the levels (±ζ) in the dot. Theoretical modeling of transport through the dot Andreev

bound states and multiple Andreev bound states in the nanowire probe is in progress.
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4.7 ANOMALY II: SUBGAP NEGATIVE DIFFERENTIAL

CONDUCTANCE

Another anomaly has been displayed in Fig.4.4: subgap negative differential conductance.

Note that this feature is observed in most of scans in our experiments, although the negative

differential conductance is more pronounced in the Andreev bound state regime (See Fig.4.4c-

e) than in the co-tunneling regime (See Fig.4.4a). To clarify the discussion, we take Fig.4.4c

as an example where the ground state is |D〉 within some gate range. The bias vs. gate

plot shows loop-like resonances of positive differential conductance accompanied by sharp

negative differential conductance resonances within the gap (300 - 500 µV). Different features,

such as resonances without negative differential conductance below gap [47], and resonances

with negative differential conductance above gap [40], have been observed in experiments

and can be explained with the following transport diagrams (Fig.4.12).

Fig.4.12a illustrates resonances through a superconductor-dot structure probed by a nor-

mal lead. The Fermi level of the probe can map out the position of the levels, ±ζ, as a func-

tion of Vp (Fig.4.12b). The resulting resonances have only positive differential conductances

(depicted in red in Fig.4.12a) within ±∆ and can cross zero bias [8]. In Fig.4.12c, a hard gap

superconducting lead serves as the probe and transport resonances are observed when the

lower (upper) gap edge is aligned with +ζ (−ζ) in the dot. The resulting resonance in a bias

vs. gate diagram is a loop gapped by 2∆ (Fig.4.12c). The conductance resonance at each

bias consists of a positive conductance peak followed by a negative conductance dip because

current through the system spikes on resonance due to the singularities of density of states

(DOS) at the edges, and a derivative of the current spike produces two peaks of opposite

signs [47]. In superconductors with finite subgap DOS, a Fermi level is pinned to the center

of the gap in the probe. This leads to a resonance copy when this chemical potential in the

probe is aligned with ±ζ in the dot. As a result, both features in Fig.4.12a and c are present

(Fig.4.12e) [40]. Note that, importantly, the loop centered at zero bias has only positive

differential conductance, assuming constant subgap density of states.

The features observed in our experiments, however, differ from all of the three scenarios

(Fig.4.12a-f) and experimental observations. Although we are aware that the induced su-
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Figure 4.12: Illustrative bias vs. gate plots with different tunneling probes. a, Illus-
trative bias vs. gate plot with a normal conductor probe. Positive dI/dV resonances are depicted
in red. b, Schematic energy diagram at resonance with the normal probe. c-d, Illustrative bias
vs. gate plot and energy diagram with a hard gap superconducting probe. The blue curves in c
depict negative dI/dV resonances. e-f, Illustrative bias vs. gate plot and energy diagram with
a soft gap superconducting probe whose subgap density of states (dashed) is approximated as a
Fermi level pinned at the center of the gap. g, Illustrative bias vs. gate plot of transport through
a NbTiN-InSb quantum dot-NbTiN structure. h, Proposed schematic energy diagram to explain
the experimental measurements. The probe has an energy level near the probe chemical potential,
which serves to produce the subgap negative dI/dV feature in g.

perconductivity in our hybrid structure has a soft gap which can explain the loop centered

at zero bias, the transport picture based on tunneling resonance illustrated by Fig.4.12e and

f, fails to explain the negative dI/dV resonances centered at zero bias (The origin of soft

gap can be non-uniformity of superconducting gap in NbTiN leads and/or non-uniformity of

induced superconductivity in the nanowires.). The subgap negative differential conductance

implies a level or DOS peak around the chemical potential of the nanowire probe (Fig.4.12h).

In this way, similar to the singularities at superconducting gap edges, current from this level

or DOS peak through the dot can spike on resonance and lead to positive dI/dV peaks
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followed by negative dI/dV peaks.

Importantly, one can rule out the possibility that the level or DOS peak around zero

chemical potential in the probe is a Majorana zero mode, because the subgap negative dif-

ferential conductance is observed regardless the presence of magnetic field that is a necessary

ingredient for Majorana zero modes. Instead, the origin of the near-chemical potential level

or DOS peak in the probe can be, like the case in Section 4.6, levels associated with multiple

Andreev bound states in the nanowire probe (See Fig.4.1b).

Finally, we comment that the anomalies observed in sections 4.7 and 4.7 not only demon-

strate rich transport features, but also can provide insights into the study of Majorana zero

modes based on superconductor-nanowires. At first, in a superconductor-nanowire device,

all quantum states are probed by the nanowire section. As shown here, the probe can be

much more complex than a Fermi level or BCS DOS, as quantum states can form in the

nanowire section that has confinement. The same applies to the nanowire section covered by

the superconductor. Thus, incorporating the complexities in the probe and superconducting

reservoir can be necessary for the understanding of some experimental observations.
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4.8 SUPPLEMENTARY INFORMATION
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Figure 4.13: Bias vs. gate normal and superconducting spectroscopies at various VS
values. VS = -25, 0, 25, 55, 60, 65, 75, 100, 125, 150, 175, 200, 225, 250 mV. Vt = -555 mV. Note
that in each plot Vp is tuned to compensate the change to maintain same dot occupations.
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Figure 4.15: Another dot created with the same device. Another quantum dot is created
on the other side of the same device. The dot is strongly coupled to left superconducting lead.
dI/dV scans as a function of bias and Vp at various VS and Vt. a, VS = 50 mV and Vt = -700 mV.
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zero bias. When VS < 50 (150) mV, the resonances of structure 1 (2) in bias vs. gate plots are
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5.0 ANDREEV BOUND STATES IN DOUBLE QUANTUM DOTS1

In this chapter we present the hybridization of Andreev bound states in a double dot coupled

to two superconductors.

1THIS CHAPTER IS ADAPTED FROM REF.[61].

86



5.1 INTRODUCTION

Quantum simulation is a way to study unexplored Hamiltonians by mapping them onto as-

semblies of well-understood quantum systems [6] such as ultracold atoms in optical lattices

[20], trapped ions [21] or superconducting circuits [22]. Semiconductor nanostructures which

form the backbone of classical computing hold largely untapped potential for quantum sim-

ulation [85, 86, 87]. In particular, chains of quantum dots in semiconductor nanowires can

be used to emulate the ground states of one-dimensional Hamiltonians such as the toy model

of a topological p-wave superconductor [2, 17, 18, 19]. Here we realize a building block of

this model, a double quantum dot with superconducting contacts, in an indium antimonide

nanowire [63]. In each dot, tunnel-coupling to a superconductor induces Andreev bound

states [48, 88, 41, 47, 50, 44, 8]. We demonstrate that these states hybridize to form the

double-dot Andreev molecular states. We establish the parity and the spin structure of An-

dreev molecular levels by monitoring their evolution in electrostatic potential and magnetic

field. Understanding Andreev molecules is a step towards building longer chains which are

predicted to generate Majorana bound states at the end sites [10, 55]. Two superconducting

quantum dots are already sufficient to test the fusion rules of Majorana bound states, a

milestone towards fault-tolerant topological quantum computing [75, 89, 90, 91].

5.2 DOUBLE DOT CONFIGURATIONS AND SUBGAP RESONANCES

In order to realize Andreev molecules we fabricate a device depicted in Fig.5.1a. Super-

conductivity in the InSb nanowire is induced by two NbTiN contacts placed on top of the

nanowire [11], the segments of the wire below the contacts labeled SL and SR act as su-

perconducting reservoirs for the left and right dots. The reservoirs are characterized by the

induced gap ∆ ∼ 400 µeV. We use voltages on five electrostatic gate electrodes placed un-

der the nanowire to define the two quantum dots. Voltages on the two outer gates set the

couplings ΓL and ΓR to the superconducting reservoirs. Gate voltages VL and VR control the

chemical potentials on the left and right dots. The middle gate labeled Vt controls the cou-
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Figure 5.1: Double dot coupled to superconductors and spectra. a, Scanning electron
micrograph of the InSb nanowire device, green circles indicate positions of the two quantum dots.
The direction of magnetic field B is indicated by arrow. b, Spectrum of Andreev states in two
quantum dots separated by a large barrier as a function of detuning ε. On the left(right) dot, the
ground states are |SL(R)〉, |DL(R)〉 and |SL(R)〉 with dot occupations 2, 1, 0 (0, 1, 2) respectively.
Vertical lines connect levels that hybridize to form molecular states plotted in d. c, Molecular
Andreev spectrum of a double quantum dot as a function of detuning (main panel) and energy
level shift (inset). Charge configurations in b and c are labeled in b and separated by dashed lines.
d, Transport resonance at positive bias occurs when Andreev chemical potentials −ζL(VL, µS) and
ζR(VR, µD) are aligned. The hashed bars depict subgap states included in the numerical model.

pling t between the dots. While all couplings are tunable in a wide range, here we focus on

the regime where the system is approximately left/right symmetric, and with ΓL,ΓR > t. In

this regime the two dots are strongly coupled to their respective superconducting reservoirs

and weakly coupled to each other. The charging energy on each dot U ∼ 1 − 2 meV > ∆

thus the dots can be filled by electrons one at a time rather than in Cooper pairs.

In superconductor-semiconductor hybrid structures, electrons arriving from a semicon-
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diagram at the bias of -200 µV and at zero magnetic field. The measurements in chis chapter focus
on a 3x3 configuration window enclosed by the yellow square.

ductor with energies below the superconducting gap are prohibited from entering the super-

conductor and are reflected back into the semiconductor as quasiholes via Andreev reflection

[68]. Through this mechanism, an electron-hole standing wave, known as an Andreev bound

state, can form in the semiconductor. In a single quantum dot, Andreev bound state spec-

trum consists of a spin-singlet state (S) which is a superposition of 0 and 2 electrons on

the quantum dot, and two doublet states D↑ and D↓, both of which correspond to a single

electron on a quantum dot either in the spin up or spin down state. In Fig. 5.1b, we de-

pict the Andreev spectra of two decoupled quantum dots along the energy level detuning

axis, meaning that the electrostatic energies on the two dots are changed in the opposite

directions. From negative to positive detuning, the left dot is occupied with 2, 1 and 0
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electrons, while the right dot is occupied with 0, 1, and 2. In the (2,0) and (0,2) double dot

configurations, singlet states on both dots are lower in energy than doublets. In the (1,1)

configuration, doublets are the ground states. We note that in the experimental system the

charge occupations of the dot are unknown but the discussion is provided in terms of 0,1,2

electrons on each dot for clarity and because in superconducting systems properties most

strongly depend on parity (even or odd) of the charge occupations.
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Figure 5.3: Spin blockade and parities. a, At bias of 200 µV the (1, 1)↔(2,0) degeneracy
point has smaller current. Parities of double dot configurations are indicated in brackets. b, At
the reverse bias the (1, 1)↔(0,2) degeneracy point has suppressed current. c, d, Spin blockade is
lifted by a magnetic field of 50 mT, with all four degeneracy points showing similar current. In
e, f, gates are swept through the spin blockade region (arrows in a and in b) as magnetic field is
stepped. The current has a zero-field dip, consistent with magnetic field behaviors of spin blockade
reported previously in InSb nanowires [29].

When the two dots are tunnel-coupled, each of the states on one dot will hybridize with

each of the states on the other dot (Fig.5.1c). The new singlet states are S(0,2), S(2,0) and

S(1,1): these three states hybridize at their degeneracy points due to tunnel coupling. The
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four doublet states hybridized of D(0,1) and D(1,0), D(2,1) and D(1,2) are nearly degenerate

at zero field and are designated as D in Fig.5.1c and are always the excited states. When the

chemical potentials µL and µR on the left and right dots are tuned along the energy shift axis,

such that µL = µR = µ the double dot can transition from (0,0) to (1,1) configuration. In

this case, S(0,0) and S(1,1) are hybridized by superconducting correlations (Fig. 1c(inset)).

A new type of levels appears below the gap in a double quantum dot: the three triplet

states T+(1,1)=(↑, ↑), T−(1,1)=(↓, ↓) and T0(1,1)=(↑, ↓) + (↓, ↑) trace back to the symmetric

combinations of single-dot doublet states. T(0,2) and T(2,0) are above the induced gap due

to the large orbital energy and thus they do not correspond to bound Andreev states.

In experiment, source-drain voltage bias Vbias is applied between SL and SR to tune

the chemical potentials in the source and drain superconductors µS and µD (Fig.5.1d). On

the left and right quantum dots, chemical potentials that correspond to transitions between

ground and excited Andreev bound states, ±ζL and ±ζR, are arranged symmetrically around

the chemical potential of the left(right) superconductor. The splitting between particle-like

and hole-like Andreev resonances +ζ and −ζ on each dot is tunable with gate voltages on

that dot. A resonance in conductance through the double dot occurs when µS − µD =

ζL + ζR, and thus for each setting of gates VL and VR the transport resonance corresponds

to a unique value of Vbias. In Fig.5.2 we plot the overview the device in terms of a charge

stability diagram of the double dot in large gate voltage ranges.

Measurements below are focused on a double dot stability diagram presented in Fig.5.3a.

Four degeneracy points are observed at which the current has a local maximum. The upper-

left maximum of current is lower than the other three. In reverse Vbias, the lower-right

maximum has the lowest current (See Fig.5.3b). This is due to spin blockade which occurs

between (1,1) and (0,2) or (2,0) double dot states due to Pauli exclusion [29]. Further evi-

dence is provided by magnetic field evolution of the blockade. The blockade is lifted at a finite

magnetic field, as shown in Fig.5.3c where 50 mT is applied and the strength of the current

at the upper-left maximum is no longer suppressed. In Fig.5.3e, a line cut depicted by the

yellow arrow in Fig.5.3a is scanned while magnetic field is stepped, the current shows a dip at

zero field and the suppression is removed. Same behaviors are observed at the opposite bias

(See Fig.5.3d,f). Spin blockade is a manifestation of hybridized quantum states on the two
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Figure 5.4: Stability diagrams. a, Current at Vbias = 200 µV. The plot is repeated for a
better comparison with the theoretical plot (b). b, Numerically computed current at low interdot
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numerically reproduced spin blockade. c, Differential conductance dI/dV at Vbias = 200 µV over
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dots, and it allows us to identify and label the parity of nine configurations in Fig.5.3a. The

regime is closely reproduced by a numerical model of the superconducting double dot dis-

cussed below, including the spin blockade regime (Fig.5.4b). In differential conductance the

double dot stability diagram is defined by arc-shaped resonances that connect the degeneracy

points (Fig.5.4c-f).

The arcs in double dot stability diagrams originate from loop-like resonances in gate
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vs. bias scans (Fig.5.5). The loop resonances appear most clearly when one dot is fixed

at a degeneracy point and the other dot is swept (Fig.5.5a-b). Loop-like resonances are

also observed when the energy levels on the two dots are tuned simultaneously (Fig.5.5c-d),

though deep within the (1,1) region the interdot tunnel coupling is reduced and the current

is suppressed. The loop resonances are accompanied by copies in negative differential con-

ductance. This is because on resonance (Fig.5.1d) current has a maximum, hence differential

conductance changes from positive to negative. The origin of arcs in Figure 2 can now be

understood: indeed, if Andreev resonances are loop-like in Vbias for any cut through the

double dot stability diagram, a scan at fixed Vbias would reveal arc resonances when Vbias

matches the interdot Andreev resonance condition.
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Figure 5.5: Bias spectroscopy of Andreev molecular states. a, c, e, Source-drain bias
spectroscopy along various cuts depicted by the dashed-line arrows in Fig. 5.4c, i.e., right dot is
fixed to 0/1 degeneracy point and left dot is swept in a, along detuning in c, and along energy level
shift axis in e (see additional complementary data in the supplementary information). Both VL and
VR are tuned in each panel, but either VR or VL is used to denote the x-axis. Parity configurations
indicated in brackets in each region. b, d and f, Corresponding numerically computed differential
conductance as function of left dot chemical potential with fixed right dot chemical potential (b),
along detuning (d) and energy level shift axis (f). “SB”s in d mark the numerically reproduced
spin blockade corners at positive and negative biases.

The observed Andreev loops are closed, i.e. the conductance resonances reach zero bias.

This is counter-intuitive given that both leads of the system are superconductors and thus an
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energy gap is expected around zero bias [47, 88]. We ascribe this to sub-gap quasi-particles

that enable single-particle transport through the Andreev molecular states. When this effect

is included in the numerical model, simulations reproduce the closed loops and negative

differential conductance, as well as bias asymmetries due to spin blockade (Figs.5.5b, d,

f). We model each lead as being composed of two parts: a conventional superconductor

with a hard superconducting gap and a normal Fermi gas with gapless excitations. The

electrochemical potentials of the normal and the superconducting parts are pinned together

at the value set by the voltage applied to the physical lead. In our model, Andreev reflection

off the superconducting part results in the formation of Andreev molecules. The normal part

induces transitions between the Andreev molecular states (see supplementary information

for details). For simplicity, the model assumes leads with a superconducting gap much larger

than the single dot energy U [92].

5.3 SPIN STRUCTURE

We investigate the spin structure of Andreev molecular states by monitoring the evolution

of subgap transport features in magnetic field. In Fig. 5.6a we plot differential conductance

as a function of magnetic field and source drain bias for a double quantum dot in the (2,2)

configuration. At zero magnetic field we observe two peaks, one at positive bias and one

at negative bias. The application of magnetic field results in the splitting of both peaks.

Two of the peaks move to higher bias towards the gap edge, while the other pair meets at

zero bias. The two merged resonances stick to zero bias at finite field. This effect has been

investigated as a signature of Majorana fermions [10]. Here, given the narrow range of field

over which the zero-bias peak is observed, we associate it with level repulsion from the gap

edge or from other subgap states [8]. By comparing measurements to numerical spectra and

transport calculations, we assign the peaks to the transitions between the S(2, 2) ground

state and the D(↑, 2) and the D(↓, 2) excited states (Fig.5.6b,c). Magneto-transport of the

double quantum dot system in the (0,0), (0,2) and (2,0) configurations is qualitatively the

same as in the (2,2) configuration (see supplementary information).
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Figure 5.6: Magnetic field evolution of Andreev molecular states. a, d, g, Bias spec-
troscopy of Andreev resonances as a function of magnetic field for (2, 2), (1, 1) and (1, 0) double dot
configurations. b, e, h, Numerically computed spectra of Andreev molecular states as a function
magnetic field for Vbias = 0. The black (gray) arrows and numbers label the allowed transitions
in the simulated spectra (b, e, h) and the associated high (low) conductance resonances in the
numerical dI/dV transport plots (c, f, i). In e the crossed dashed arrow labels the forbidden tran-
sition between T+(1, 1) and D(↓, 0). The light blue dashed lines in c, f, i plot the bias voltage at
which the levels on the dots come into resonance. The dI/dV plots use the same model parameters
as in the spectrum plots.

In the (1,1) configuration only a single pair of differential conductance peaks is observed

at all fields, one at positive and one at negative bias (Fig.5.6d). Both peaks shift to higher

bias at higher magnetic fields. The explanation for this behavior originates in the Andreev

molecular level structure depicted in Fig.5.6e. The low energy manifold consists of S(1, 1)

ground state that is almost degenerate with the three triplet states T+, T0, T−. At finite
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field T+ plunges below the S(1, 1) and becomes the ground state. Transitions from this

triplet state are allowed only to the doublet states D(↑, 0), while transitions to D(↓, 0) are

strongly suppressed because they involve an additional spin flip. Both states T+ and D(↑, 0)

shift to lower energies with magnetic field, but the triplet states shifts with gµBB while the

doublet states shifts with gµBB/2, thus the energy difference between them grows with field.

Transport calculations using our detailed model confirm this picture (Fig.5.6f).

Odd total parity configurations (0,1), (1,0), (2,1) and (1,2) offer a richer variety of trans-

port behavior (Fig.5.6g, and supplementary information). The common features include

asymmetry with respect to bias and kinks in the conductance peaks at which the effective

g-factor increases. In some regimes we also observe the magnetic-field induced splitting of

conductance peaks into as many as three sub-peaks. In Fig.5.6h we plot the Andreev molec-

ular spectrum in the (0,1) configuration as a function of magnetic field at zero bias. While

D(0, ↑) is the well-separated ground state at finite field, there are two singlet states (S(0, 2)

and S(1, 1)) and two triplet states (T+ and T0) that can contribute to transport (transport

via the state T− requires a spin flip and is therefore suppressed). Numerically computed

transport demonstrating both a kink feature as well as the asymmetry with respect to bias,

is plotted in Fig.5.6i. The model indicates that the origin of the kink feature is that as B

increases the D(↑, 0) → T+(1, 1) transition (labeled 2 in Fig.5.6h,i) becomes dimmer while

the D(↑, 0) → S(2, 0) transition (labeled 1 in Fig.5.6h,i) becomes brighter. In the model,

the dimming and brightening of the transitions is associated with proximity to the interdot

resonances that occur at higher bias. The bias asymmetry is associated with the different

parities of the left and right dots, the asymmetry flips if the parities are switched, which can

be seen in the spin structure of the full 3x3 configurations in Fig.5.7.

In Fig.5.7 we plot the magnetic field behaviors of the subgap resonance for all of the 3x3

configurations. Firstly, along diagonal of the map, bias symmetry is observed as branches at

both biases are measured with similar strength. Along off-diagonal, the bias asymmetry is

swapped, meaning in (2,0) the resonance at negative bias is strong while that at positive bias

it is hardly visible. Across the bias symmetric (1,1) configuration, the resonance strength

has an opposite relation with bias in (0,2).
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Figure 5.7: Spin map. The magnetic field dependence of the subgap resonances in the 3x3
double dot configurations around (1,1). Within each configuration, the magnetic field dependence
of the resonances is measured at a few fixed gate voltages. Scans in each configuration demonstrate
consistent magnetic field behavior and one typical scan is presented here. Note that the positive
(negative) bias branch in (2,0) ((0,2)) is missing, which is a consequence of spin blockade and
asymmetric couplings.

5.4 CONCLUSION

The elucidation of Andreev molecular spectra and of their evolution in magnetic field opens

several avenues for future research. Andreev molecule is a building block for the emula-

tion of the Kitaev chain model [18, 17], in which tuning of longer quantum dot chains is

to be performed pairwise along the chain. This taps into the largely unexplored potential

of semiconductor systems for quantum simulation research [93]. Simulations of quantum

dynamics of Andreev states in quantum dots chains can be attempted in hard gap nanowires
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[94, 95, 11]. In topological qubits, double quantum dots have been proposed for fusion

and readout of Majorana quantum states [75]. These operations transmute topologically

protected Majorana states into Andreev molecular states. Andreev molecules with topologi-

cally superconducting reservoirs will become building blocks of topological quantum circuits,

and can be realized in the same nanowires with longer quantum dots (200 nm or longer)

subjected to higher magnetic fields (0.5 Tesla) [11, 13].

5.5 SUPPLEMENTARY INFORMATION

5.5.1 Complimentary data on spectroscopy and magnetic field dependence

In Fig.5.8 we further explore the arcs connecting the current maximal regimes in the stability

diagrams. We measure the stability diagrams at Vbias = -200 µV at various magnetic field, as

shown in Fig.5.8c-g. We then take line cuts through the center of (1,1) depicted in Fig.5.8c

and step magnetic field. In Fig.5.8a, for B ≤ 100 mT, the high current lines that define the

(1,1) region move apart. At higher fields, the lines exhibit kinks. They are consistent with

the previously observation in InSb nanowire single quantum dots. The origin is the change

of ground states by magnetic field [60]. Based on it, the spins of the electrons added to the

dot are depicted by arrows along the high current lines.

Spectroscopy of the molecular device has at least three dimensions: VL, VR and Vbias.

In the main text, we present bias vs. detuning and bias vs. energy shift plots. In Fig.5.9

we present scans along more directions: Fig.5.9b is obtained by sweeping chemical potential

of the left dot when the chemical potential of the right dot is fixed at a degenerate point.

Fig.5.9c is obtained by the other way around. When the line cut is along the energy shift

direction but through the (1,1) ↔ (2,0) degenerate points, we observe Fig.5.9d.

Notice that the magnetic field evaluation of the subgap resonance in (even, odd) and

(odd, even) are less clear. We thus take a closer look at it by measuring the field evolution

at various spots in (2, 1) configuration. Recall in (2,1), the resonance at positive bias is

weaker. We measure a series of bias vs. field scans at chemical potential settings farther and
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Figure 5.8: Magnetic field evolution of the charge stability diagrams. (a-b), The evolu-
tion of current along line cuts a and b shown in panel c, Vbias = -200 µV. c-g, Double dot stability
diagrams at 0, 140, 300, 500, 800 mT, Vbias = -200 µV. We notice that the higher current lines
connected the spin blockade points (lower branch of a and higher branch of b) also have lower
current at zero field. It is specially demonstrated with a zoomed-in scan of the lower branch from
0 to 50 mT (h). The color bar of b is on its right side. The other plots share the color bar on the
right side of a.

farther away from the degeneracy point, depicted by the yellow diamond, green triangle, blue

square and black dot in Fig.5.10a. One can see that the splitting behavior at spots closer

to the generate points evolves into very broadened resonance (See Fig.5.10b-e). This shows

qualitatively the same features that are observed within the same quadrant of the double
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Figure 5.9: Spectroscopy measurements of Andreev molecular resonances along com-
plimentary line cuts. a, Gate vs. gate differential conductance diagrams at the bias of 200 µV.
The plot is repeated to illustrate the line cuts used in b-d. b, With the right dot fixed at its
degeneracy point. Here we extend the plot to display adjacent Andreev loops. c, With the left
dot fixed at its degeneracy point. d, Along the symmetric cut through the (1,0)↔(2,1) degeneracy
point.

dot stability diagram in Fig.5.7.

Magnetic field behaviors can be also seen in terms of finite field spectroscopy. In Fig.5.11,

we plot the spectroscopy of the subgap resonance at 0 and 35 mT. On the left, the bias vs.

gate plots along the line cuts depicted in Fig.5.11e are presented. On the right, we plot the

associated measurements at a finite field. Clearly for both bias directions, resonances are

doubled at finite field in the (even, even) configurations; while in (1,1) a resonance does not

split.
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Figure 5.10: Detailed magnetic field data in the (even, odd)/(odd, even) configuration.
a, The spectroscopy along the detuning cut through the (2,1)↔(1,2) degeneracy point. b-e, A series
of bias vs. field scans in (2,1) at spots farther and farther away from the degeneracy point, depicted
by the yellow diamond, green triangle, blue square and black dot marked in panel a.

5.5.2 Strong interdot coupling regime

Remarkably, the theoretical model not only produces the consistent magnetic fields behaviors

for the (odd, odd), (even, even), and (odd, even)/(even, odd) configurations individually, it

also exhibit inter-configuration pattern which matches the experimental spin structure shown

in Fig.5.7. This can be seen by comparing the measured spin map with the full 3x3 simulated

spin map plotted in Fig.5.12. First, (0,0) and (2,2) show resonances symmetrically at both

biases, while only the negative (positive) branch has high conductance in (2,0) ((0,2)). Then,

in (1,0) and (2,1) the kinks occur at the positive bias while in (0,1) and (1,2) the kinks occur

at the negative bias. We notice that even with stronger interdot coupling (Fig.5.14), such

consistency is still valid.

By increasing interdot coupling, we see stronger hybridization between Andreev bound

states in the two dots. For best comparison, we re-tune the device to lower the interdot

barrier by adjusting gate Vt from −685 mV to −635 mV, while at the same time all other

101



a

e

b 

 

e 

c  b

d

 

715 
585 

610 

VR (mV) 

V L
 (m

V)
 

745 

0 

0.04 

dI/dV 
(2e2/h) 

-0.03 

V b
ia

s (
μV

) 

300 

-300 

0 

722 738 VR (mV) 722 738 VR (mV) 
V b

ia
s (
μV

) 

300 

-300 

0 

722 738 VR (mV) 722 738 VR (mV) 

d 

V b
ia

s (
μV

) 

300 

-300 

0 

732 739 VR (mV) 732 739 VR (mV) 

c 

V b
ia

s (
μV

) 

300 

-300 

0 

719 727 VR (mV) 719 VR (mV) 727

0 mT

0 mT

0 mT

0 mT 35 mT

35 mT

35 mT

35 mT

Figure 5.11: Finite field spectroscopy. a-d, The spectroscopy measurements at 0 mT (left)
and 35 mT (right) along different cuts depicted by the yellow arrows in e which is the same as
Fig.5.9b. a-b, Resonances are doubled at 35 mT in the (0, 0) and (2,2) configurations; while in
(1,1) a resonance does not split. c, Along the energy shift cut through the (2,0)↔(1,1) degeneracy
point. d, Along the detuning cuts through (2,1)↔(1,2) degeneracy point.

gates are tuned to keep the same dot occupations. VΓL and VΓR remain almost the same.

The measured spectra are qualitatively similar to those in the weaker interdot coupling

regime. However, owning to the stronger interdot coupling, a few features which are less

clearly resolved in the weaker interdot coupling regime are more pronounced here. First,

the resonances away from the degeneracy points are clearly visible. Secondly, we are able

to observe the resonances that close to zero bias and within the loop-like resonances clearly.
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Figure 5.12: Theoretical spin map. Simulated magnetic field dependence of the 3x3 config-
urations around (1, 1). Besides the good fitting between measurements and simulations in each
individual configuration, the experimental (Fig.5.9) and the simulated maps exhibit impressively
similar patterns.

These resonances are due to charge degeneracy in the right dot.

Magnetrospectroscopy is performed for the 3x3 double dot configurations around (1,1)

in the stronger interdot coupling regime as well. In each configuration a typical example is

presented (See Fig.5.14). Although the resonances are more broadened, qualitatively similar

magnetic field dependencies are observed: that resonances do not split but move away from

zero bias in (1,1), that resonances split in the (even, even) configurations, and that resonances

exhibit kinks at positive (negative) bias and broadened structures at negative (positive) bias

in (1,0) and (2,1) ((0,1) and (1,2)).
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Figure 5.13: Spectroscopy in strong interdot coupling regime. a-b, The gate vs. gate
differential conductance diagrams at biases of 200 µV and -200 µV. c and d, The spectroscopy
scans along the detuning and energy shift cuts. e, scan the left dot when the right dot is fixed at
the degeneracy point. The line cuts of panels c,d,e are depicted in b.

5.5.3 Strong superconductor-quantum dot coupling regime.

In this strong superconductor-dot coupling regime, the ground state of Andreev bound states

in each dot is |S〉 when the other dot is removed. The ground state of the molecular Andreev

bound states also becomes |S〉 regardless the dot chemical potentials. In Fig. 5.15 we show

the spectroscopy of a double dot system with a different device in the strong superconductor-

quantum dot coupling regime. The four degeneracy points are broadened due to increased

superconducting coupling to the leads (Fig.5.15a). In the bias vs. gate plots where the

chemical potential of one dot is scanned when the other is fixed (Fig.5.15b-c), the resonances

display structures of anti-crossing-like.
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Figure 5.14: Spin map in the stronger interdot coupling regime. The voltage of the barrier
gate , Vt is −635 mV.
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6.0 ANDREEV BOUND STATES IN INSB TRIPLE QUANTUM DOT

CHAINS

In this chapter we implement a triple dot chain. There are three superconductors and each

is strongly coupled to a quantum dot. We measure transport resonances through Andreev

bound states in the triple dot and explore the magnetic field evolution of the resonances.
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6.1 INTRODUCTION

Implementing chains of superconductor-quantum dot structures is important because they

are potential platforms for quantum simulation [85, 86, 87] and topological quantum com-

putation. For the latter, a more intensively explored direction to realize the Kitaev model

is based on superconductor-nanowire structures [10, 56, 11, 13, 12], where practical chal-

lenges lie in nonuniform chemical potential along the nanowires, weak tunability of carrier

density in the nanowires covered by the superconductors due to screening effect, and disor-

der in the semiconductor materials (Topological states break time reversal symmetry thus

the superconducting gap, unlike that in s-wave superconductors, is suppressed by disorder

[17, 18, 19].). Chains of superconductor-quantum dot structures not only provide an al-

ternative direction for the realization of the Kitaev model [2], but also might avoid these

challenges [17, 18, 19].

In addition to circumventing current challenges with the superconductor-nanowire struc-

ture, studying the chain structure allows us to explore the Kitaev model deeper, e.g., explor-

ing the effect of Coulomb interactions which are not considered in the Kitaev model.

In the rest of this section, we shall revisit the Kitaev model introduced in Chapter 2, and

the Hamiltonian of a chain consisting of superconductors and quantum dots, which would

guide us to tune a triple dot chain to the desired topological regime.

The Kitaev model made of N (N � 1) fermionic sites is given by:

HKitaev =
∑
j

(
−t(c†jcj+1 + c†j+1cj)− µ(c†jcj −

1

2
) + (∆cjcj+1 +H.C.)

)
, (6.1)

where j is the number of the site, t is the inter-site hopping amplitude, µ is the chemical

potential and ∆ = |∆|eiθ is the superconducting gap [2].

This model is a toy model and it places a few unusual assumptions: (A1) there is no

charging energy within each site; (A2) there is only one spin component; (A3) ∆ pairs par-

ticles of same spin. Two conditions define the topological regime where unpaired Majorana

zero modes are present, i.e., (C1) |∆| > 0 and (C2) 2|t| > |µ| [2].
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Figure 6.1: Schematic of the realization of the Kitaev chain with quantum dots and
superconductors. A building block is a quantum dot strongly coupled to an s-wave superconduc-
tor. The chain has a number of building blocks. The quantum dots are defined in a semiconductor
nanowire. Each quantum dot has a single electron at its chemical potential. Neighboring quantum
dots are tunnel coupled. Spin-orbit interaction (SOI) can make an electron in a dot undergo spin
rotation after tunneling to the next dot. Magnetic field parallel to the nanowire axis is applied to
polarize the electron spins.

In our implementation, a fermionic site of the Kitaev chain is emulated by a quantum

dot coupled to a superconducting reservoir which represents a building block in our scheme

(Fig.6.1). The Hamiltonian of a chain having N building blocks consists of several terms:

H =
N∑
j=1

HS,j +
N∑
j=1

HQD,j +
N∑
j=1

HS-QD,j +
N−1∑
j=1

Ht,j, (6.2)

where HS,j corresponds to the BCS Hamiltonian of the j-th superconducting reservoir, given

by (omitting index j)

HS =
∑
kσ

ξkd
†
k,σdk,σv +

∑
k

(
∆d†k↑d

†
−k↓ + H.C.

)
, (6.3)

where d†σ creates an electron (quasiparticle) with spin σ and momentum k on the level of ξk in

the superconducting reservoir and ∆ is the superconducting order parameter. Importantly,

∆ pairs electrons of opposite spins.
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HQD,j corresponds to the j-th single uncoupled quantum dot, given by (omitting index j)

HQD =
∑

σ={↑,↓}

εσc
†
σcσ + Un↑n↓, (6.4)

where c†σ creates an electron with spin σ on the level of εσ in the quantum dot. Here we

include Zeeman energy, i.e., ε↑ = ε − 1/2gµBB and ε↓ = ε + 1/2gµBB, where g is g-factor,

µB is Bohr mageton and B is magnetic field. When B > 0, level ε↑ has a lower energy and is

filled before level ε↓. At last U is the Coulomb interaction between two electrons of opposite

spins in the dot;

HS-QD,j corresponds to the coupling between the j-th superconducting reservoir and the

j-th quantum dot, given by (omitting index j)

HS-QD =
∑
kσ

(
Vkd

†
kσcσ + H.C.

)
, (6.5)

where Vk expresses the superconductor-dot hopping;

Ht,j expresses the interdot coupling between the j-th and (j+1)-th quantum dots, given

by

Ht,j = tje
iλiσ

∑
σ={↑,↓}

d†j,σdj+1,σ + H.C., (6.6)

where tj is the interdot hopping amplitude between the j-th and (j+1)-th quantum dots,

vector σ is the Pauli matrices, and vector λj characterizes the spin rotation acquired during

a hopping between the j-th and (j+1)-th quantum dots due to spin-orbit coupling [18].

Now, let’s specifically examine how the three assumptions of the Kitaev model and the

two topological conditions can be realized in a superconductor-dot chain. (A1) To reach low

charging energy (U) in the dot, the superconductor is strongly coupled to the dot within

each building block. (A2) To realize the spinless assumption, an odd number of levels below

the Fermi level per dot can be tuned, and a magnetic field is applied to break time-reversal

symmetry such that the single electrons in the dots have the same spin polarization. (A3) The

superconducting pairing of electrons of same spin can be fulfilled by spin-orbit coupling and

induced s-wave superconductivity. Within each building block, the s-wave superconductivity

is induced from the superconductor that is strongly coupled to it. Neighboring quantum dots
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are coupled by tunnel coupling (t), and electrons undergo rotation in spin polarization during

hopping from one dot to the other in the presence of spin-orbit coupling. This hopping with

spin-orbit coupling leads to some component of spin polarizations in opposite directions,

which enables the induced s-wave superconductivity to pair the electrons. This also fulfills

the first topological condition: (C1) |∆| > 0. The second condition, (C2) 2|t| > |µ|, can

be realized by tuning the dot level close to the Fermi level. Given all assumptions and

conditions fulfilled, unpaired Majorana zero modes are expected to appear at the two ends

of the chain. In practice, a chain has a finite length thus the two Majorana zero modes at

the two ends are coupled. Note that in the Kitaev model, all fermionic sites are coupled to

a single superconductor that has a single phase, while in the herein chain discussed, the N

superconductors do not necessarily have the same phase. Controlling the phase differences

can be performed by applying magnetic field fluxes through superconducting circuits made

of these N superconducting leads and is not implemented in this thesis.

6.2 THE TRIPLE DOT DEVICE

In this chapter, we explore a chain made of three dots. The three dots can be created along

a nanowire. Two gate tunable barriers located between neighboring dots can be used to

control the interdot coupling (tLM , tRM) (Fig.6.2a). Besides, it is necessary to be able to

control the dot chemical potentials (µL, µM , µR) and superconductor-quantum dot couplings

(ΓL,ΓM ,ΓR).

This complex quantum device is challenging to implement, because there are at least 8

parameters that must be independently controlled (t’s, ΓS’s and µ’s). In addition, unlike

the double dot where the two superconducting contacts can be made on the two ends of

a nanowire, here there are three superconducting terminals involved. To accomplish all of

the ingredients based on an InSb nanowire, we design the following geometry (Fig.6.2b): on

top of bottomgates that are almost perpendicular to the nanowire, we fabricate three highly

transparent NbTiN contacts to the nanowire. Two leads connecting the nanowire from the

two ends are labeled superconducting reservoirs L and R. Closely next to reservoir-L, three
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Figure 6.2: Schematic of triple dot chain and device SEM. a, Schematic of triple dot chain
based on a nanowire and three superconductors connected from one side. The chemical potential
(µ) in each dot is gate tunable. The coupling between each quantum dot and a superconductor
above it, ΓS should be also tunable. t’s control the tunnel couplings between neighboring dots. b,
Device SEM image. The InSb nanowire device is fabricated on top of bottomgates with a dielectric
layer in between. Three NbTiN superconductors (L, M and R) are fabricated to make contacts to
the nanowire. In a measurement, two of the three contacts are connected into the measurement
circuit while the rest is floating. The contact in the middle is carefully fabricated to ensure a contact
area of as small as possible. Three quantum dots, depicted by the red circles, can be defined with
bottomgates. Note some parameters are tuned with more than a gate in practice. Magnetic fields
parallel to the nanowire axis can be applied in the experiment.

gates denoted with ΓL, µL and tLM are used to define dot-L whose chemical potential is

tuned by gate µL and coupling to reservoir-L is controlled by gate ΓL. The same for the

right end of the nanowire where dot-R is defined.

So far dot-L and dot-R can be made in the typical manner that is used in a double dot

chain, which, however, is not suitable to create the third dot in the nanowire. In order to

incorporate the third contact, we make a tip-shape superconducting reservoir (M) that is in

the middle and is closer to the right lead than to the left lead. It covers the nanowire in a

very small area (half-covered or less). The middle dot (dot-M) can be defined on the left

side of contact-M by gate ΓM and gate tRM . Two tunnel barriers gates tLM and tRM are used

to tune the interdot couplings between dot-L and dot-M , and between dot-M and dot-R,
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respectively. Note that we make the contact area of the middle reservoir as small as possible

to ensure direct interdot tunnel coupling between dot-M and dot-R, instead of through the

middle contact (A wide middle contact can suppress the electronic wavefunction overlap

between dot-M and dot-R.). Experimentally, we confirm that superconductivity is induced

in dot-M in spite of the small contact area (∼ 0.002 µm2) by observing Andreev Bound

states in dot-M . Importantly, this design allows implementing long chains by fabricating

a number of such middle contacts. At last, these three superconducting reservoirs are also

used as source and drain for electrical transport studies, i.e., each time two of them are

connected to the measurement circuit while the third one is kept floating.

6.3 TUNING UP THE TRIPLE DOT CHAIN

In this device, we create Andreev bound states in a triple dot where each dot is strongly

coupled a superconducting reservoir and the three dots in series are coupled via tunnel

couplings. This is done in three levels: (1) generating Andreev bound states in individual

dots; (2) hybridizing Andreev bound states pairwise in neighboring dots; (3) tuning the

entire chain. By the end of the tuning, we aim to adjust the superconductor-quantum dot

couplings (ΓL,ΓM ,ΓR) and interdot couplings (tLM , tRM) to the desired parameter regime

defined by the assumptions (A1-A3) and topological conditions (C1, C2). The exploration

of the remaining assumptions and conditions, i.e., dot chemical potential (µL, µM , µR) and

magnetic field, is presented in the next sections.

Specifically, we create dot-R by first connecting reservoirs M and R to the measurement

circuit and keeping reservoir-L floating. Tuning Andreev bound states in a single dot is

analogous to the procedure discussed in Chapter 4. More specifically, we employ three

gates, VΓR, VR and VMR, to form a well-defined single quantum dot, which is confirmed by

the observation of Coulomb diamonds. We then gradually increase the superconductor-dot

coupling (ΓS), which yields loop-like subgap resonances through Andreev bound states in

bias vs. VR scans. Finally, we increase ΓS until the loop-like resonances evolve into anti-

crossing-like, which signals the |D〉/|S〉 phase transition of Andreev bound states. Note that
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tMR � ΓR and dot-R is strongly coupled to reservoir-R only.

Then we connect reservoirs M and L into the measurement circuit, and keep reservoir-

R floating. We create Andreev bound states in single dot-M that is strongly coupled to

reservoir-M , by applying a similar procedure as used for defining dot-R.

At this point, Andreev bound states in dot-R and dot-M are created. We then connect

reservoirs L and R into the measurement circuit and measure the resonance through hy-

bridized Andreev bound states in dot-M and dot-R. As expected, fine tuning is necessary

because the change of configuration by cross coupling between gates of different dots needs

to compensate. An analogous procedure has been used in Chapter 5, in the context of double

dots.

Next, we connect reservoirs L and M into the measurement circuit, and keep reservoir R

floating. We open dot-M , define dot-L and tune Andreev bound states in dot-L using again

a similar methodology as employed for dot-R and dot-M . We subsequently form dot-M

again and hybridize Andreev bound states in dot-L and dot-R, as previously done for the

pair, dot-R and dot-M .

As a last step, we connect reservoirs L and R to the measurement circuit, keep reservoir-

M floating, and fine tune the gates for the entire chain. Finally, we obtain three dots in

series, where each dot is strongly coupled to a superconductor. The chain will be explored

with these five parameters, ΓL, ΓM , ΓR, tLM and tRM , fixed in the following sections.

6.4 TRANSPORT THROUGH TRIPLE DOT ANDREEV BOUND STATES

We explore the Andreev bound states in the triple dot in terms of transport resonances by

applying a voltage bias across the triple dot and measuring the differential conductance,

dI/dV . We thus first discuss the condition of resonance in the triple dot chain. Because in

this triple dot, each dot is tuned to a regime where Γ � t such that the neighboring dots

are weakly coupled, one can naively model the transport through Andreev bound states in

the chain as transport through Andreev bound states in three uncoupled dots. As studied

in single quantum dots (Chapter 4), in each dot of the triple dot, there are two subgap
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Figure 6.3: Transport cycle through Andreev bound states in a triple dot. a, Schematic
of resonance condition in a triple dot in the weak interdot coupling limit: −ζL level is aligned
with +ζM level, −ζM level is aligned with +ζR level, and eVbias = ζL + 2ζM + ζR. Reservoir-L
and reservoir-R are source and drain, respectively. Reservoir-M is floating. Note that the middle
dot also has two resonance levels associated to Andreev bound states because it is coupled to
superconducting reservoir-M (floating, not drawn). The blue dashed bars within the gaps are used
to approximate subgap density of states.

resonance levels, ±ζ, associated with Andreev bound states. We can then build the following

transport cycle based on these single dot Andreev bound states in a weak interdot coupling

regime. Fig.6.3a illustrates the diagram at resonance, i.e., −ζL level is aligned with +ζM

level, −ζM level is aligned with +ζR level, and |eVbias| = ζL + 2ζM + ζR. Specifically, the

complete cycle to transfer two quasiparticles from reservoir-L to reservoir-R is accomplished

in two steps: first transferring two subgap quasiparticles from reservoir-L and form a Cooper

pair in reservoir-M , then transferring two subgap quasiparticles from reservoir-M and from

a Cooper pair in reservoir-R. The individual steps have the same transport cycle through

double dot Andreev bound states discussed in Chapter 5. What is new here is that reservoir-

M is floating and its voltage is determined by the resonance condition, i.e., e(µL − µM) =

ζL + ζM , and e(µM − µR) = ζM + ζR. In reservoir-M , Cooper pairs can be converted into

subgap quasiparticles at its chemical potential without extra energy cost or relaxation. As

a result, the energy costs in the first and second steps are ζL + ζM , and ζM + ζR, receptively,

which is compensated by the bias, |eVbias|. Although this naive transport cycle picture does
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not include hybridization of Andreev bound states in the triple dot, it explains many features

in our transport measurements.

Before we discuss the transport plots, we define a notation which would clarify the

discussions. As previously discussed in Chapter 4, in the strong ΓS regime, the minimum

distance between the two anticrossing resonance branches appears at the center position of

an odd dot occupation. This occupation is defined by two charge degeneracies, i.e, 2n↔2n+1

and 2n+1↔2n+2, where they are numbers of electrons in the dot. If we adapt as a convention

that the 2n↔(2n+1) degeneracy corresponds to ε = 0, the minimum distance between the

anticrossing branches occurs at ε = −U/2, while the (2n+1)↔(2n+2) degeneracy is at

ε = −U , where U is the charging energy of this dot (See a schematic diagram in Fig.6.9). In

this way, we can use notation (εL, εM , εR) to denote the triple dot configuration. For example,

(εL = −UL/2, εM = −UM/2, εR = −UR/2) corresponds to a triple dot configuration where

ζL, ζM and ζR are minimum. Note that in each dot ε is equal to µ with an offset and is also

tuned by the plunger gate of the doe, i.e., VL controls εL, VM controls εM , and VR controls

εR.
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Figure 6.4: Bias spectroscopy of triple dot Andreev bound states as a function of
individual chemical potentials. a, Resonances are measured in dI/dV as a function of bias
and VL with εM = −UM/2 and εR = −UR/2. b, Resonances are measured in dI/dV as a function
of bias and VM with εL = −UL/2 and εR = −UR/2. c, Resonances are measured in dI/dV as a
function of bias and VR with εL = −UL/2 and εM = −UM/2. d, Depiction of the resonances in
a-c as a function of bias and ε. The minimum distance between the two anticrossing branches is
at ε = −U/2. Two bias asymmetric anti-crossing branches are presented inside some bias values
depicted by the dashed lines.
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The following measurements demonstrate the same resonances through the Andreev

bound states in the triple dot along different parameter cuts. First, we measure dI/dV

as a function of bias and VL, given εM = −UM/2 and εR = −UR/2 in Fig.6.4a. Anti-

crossing-like resonances are observed within ± ∼ 800 µV, which appears to be analogous to

the resonances through single dot Andreev bound state in the open dot regime in Chapter

4. The minimum distance between the anti-crossing branches (∼ 200 µV) is measured at

VL ≈ 675 mV, which corresponds to εL = −UL/2. Shifting to left or right of 675 mV, the

resonance at positive (negative) bias increases (decreases) in bias. Similarly, anticrossing-like

structures are observed in the bias vs. VM scan taken with εL = −UL/2 and εR = −UR/2,

and the bias vs. VR scan measured with εL = −UL/2 and εM = −UM/2, as shown in

Fig.6.4b and Fig.6.4c, respectively. In Fig.6.4d we depict a scheme of the anti-crossing of the

resonances, analogous to Fig.6.4a-c, where ζ0 corresponds to the minimum distance between

the anticrossing branches expected at (εL = −UL/2, εM = −UM/2, εR = −UR/2).
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Figure 6.5: Bias vs. VR scans with various VM . a, Bias vs. VM scan with εL = −UL/2 and
εR = −UR/2. The dashed lines of various colors denote the VM values chosen for scans b-f. b-f,
Resonance as a function of bias and VR with VM denoted in a.

We take a panel from Fig.6.4 and vary the gate of a different dot to investigate its

effect on bias spectroscopy. In Fig.6.5b-f, we repeat the bias vs. VR scan with VM fixed at
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various values, as indicated by the dashed lines in Fig.6.5a, and εL = −UL/2. First, Fig.6.5b

displays the bias vs. VR scan, with εL = −UL/2 and εM = −UM/2. We then move VM

away from εM = −UM/2 to a value denoted by the orange dashed line in Fig.6.5a, which

yields Fig.6.5c whose minimum distance between the two anticrossing branches grows. As

VM is further decreased and εM is increased, the two anticrossing branches move further and

further apart(Fig.6.5d,e,f). Eventually, the minimum distance between the two branches

is as large as 600 µV and the resonances appear at bias up to ±800 µV (measured from

the centers of the broadened resonances). Similar effect is observed when monitoring other

pairwise combinations, e.g., monitoring bias vs. VL scans when VM is varied. This effect can

be explained by the resonance condition (|eVbias| = ζL + 2ζM + ζR), i.e., increasing ζ in any

dot yields resonances at higher biases.
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Figure 6.6: Resonances through triple dot Andreev bound states at fixed biases. a,
dI/dV as a function of VM and VR at a fixed bias of 300 µV , given εL = −UL/2. b, dI/dV as a
function of VL and VM at a fixed bias of 250 µV , given εR = −UR/2. Letters, a-e, mark the gate
settings of panels a-e in Fig.6.8.

Finally we measure the resonances as a function of chemical potentials at fixed biases.

First, we measure dI/dV as a function of VM and VR, with Vbias = 300 µV and εL =

−UL/2. We observe four strong conductance areas at four corners (Fig.6.6a). The structure

is associated with the fixed-bias cuts in the bias vs. gate scans in Fig.6.4b-c. Similar structure

is observed in the VL vs. VM scan, given Vbias = 250 µV and εR = −UR/2 (Fig.6.6b). Notice

that the strength of right half of the structure in Fig.6.6b is lower but not zero. Compared to
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the counterparts of Andreev bound states in double dots (See Fig.5.4 where Andreev bound

states have doublet ground states in individual dots), a significant differences is found, i.e.,

looking from the center of the structures, the arcs connecting the four maximum dI/dV

corners are concave here, while the arcs are convex in Fig.5.4. The concave structure here

is consistent with the fact that bias resonances are anti-crossing-like. Take Fig.6.6b as an

example, when εM is close to −UM/2, ζM is small, in order to see the resonance at the fixed

bias, ζL should be large according to the relation, |eVbias| = ζL + 2ζM + ζR, meaning VL has

to be far apart from the gate position that is associated with εL = −UL/2. When εM is far

apart from −UM/2, ζM is large, in order to see the resonance at the fixed bias, ζL should be

small, meaning VL has to be close to the gate position that is associated with εL = −UL/2.

As a result, the fixed bias resonance is anticipated to exhibit a concave structure. The convex

structure in Fig.5.4 can be explained in a similar manner, except that driving ε away from

−U/2 decreases ζ because the resonances there are loop-like.

The relation of resonance in weak interdot coupling limit, |eVbias| = ζL + 2ζM + ζR,

explains a number of transport features in Fig.6.4, Fig.6.5 and Fig.6.6. Taking hybridization

of Andreev bound states in individual dots due to interdot couplings into account makes the

triple dot spectroscopy complex. Theoretical simulation of the triple dot can be, in principle,

accomplished based on the theoretical approach introduced in Chapter 2. In practice, the

computation required to simulate coherent transport through such superconductor-quantum

dot chains grows exponentially as the number of dot numbers, thus simulation of triple dot

chains is not implemented in this thesis (Simulated spectroscopies of a double dot chain are

presented in Supplementary Figure 6.10).

At last, the transport measurements in this section not only demonstrate the spectr-

socpoy of the triple dot Andreev bound states, but also provide an experimental method

to tune the quantum levels in the dots to the regime favored by the Kitaev model. By

monitoring the resonances as a function of VL, VM and VR, we can effectively determine the

triple dot configuration. For instance, minimizing the minimum distance between the two

anticrossing branches adjusts the triple dot configuration to (εL = −UL/2, εM = −UM/2,

εR = −UR/2). This is necessary because eventually we want to realize that an odd level is

tuned close to the superconductor chemical potential in every dot.
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6.5 MAGNETIC FIELD EVOLUTION OF TRIPLE DOT ANDREEV

BOUND STATES

In this section, we explore the magnetic field evolution of the resonances through Andreev

bound states in the triple dot. The magnetic field that we applied is parallel to the nanowire

axis. Among measurements at various chemical potential settings, two distinct types of

magnetic field behaviors are observed. The first type is shown in Fig.6.7a. At low magnetic

field (< 0.25 T), the resonance at either positive or negative bias splits as magnetic field

linearly into two branches with slopes of ± 0.5 mV/T. A short zero bias peak forms at the

crossing of split branches at ∼ 0.25 T.

B (T) 

0.005 dI/dV  
(2e2/h) 

0 
a 

b 

500 

-500 

0 

500 

-500 

0 

B (T) 

0 0.4 

0 

1000 

-1000 

dI/dV  
(2e2/h) 

0 

0.007 

B (T) 
0 0.2 

dI/dV  
(2e2/h) 

0 

0.004 

0 0.5 1.0 

0 0.5 1.0 

0 

1000 

-1000 

B (T) 

c 

d 

V
bi

as
(µ

V
)

V
bi

as
(µ

V
)

V
bi

as
(µ

V
)

V
bi

as
(µ

V
)

Figure 6.7: Magnetic field evolutions of the resonances through triple dot Andreev
bound states. a, Bias vs. field plot at VL = 680 mV, VM = 798 mV, and VR = 88 mV. b, Bias
vs. field plot at VL = 688, VM= 784 and VR = 88 mV. c, Bias vs. field plot at VL = 673, VM= 716
and VR = 112 mV. d, Bias vs. field plot at VL = 653, VM= 706 and VR = 88 mV. Note that panels
c-d are taken after the triple dot is removed and re-created, while all other panels in the main
text are taken before the re-creation. The gate settings in c and d correspond to (εL > −UL/2,
εM > −UM/2, εR > −UR/2), and (εL > −UL/2, εM > −UM/2, εR < −UR/2).

The second type of behavior, shown in Fig.6.7b, is dramatically different from the first
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type. At zero bias, we still observe two bias symmetric resonances at ± 250 µV. As magnetic

field is increased, no clear splitting is observed. On the other hand, a zero bias peak emerges

at about 60 mT and sustains for more than 0.5 T within visibility. Remarkably, although

the strength of the zero bias feature is only 0.002 (2e2/h), the sharp peak keeps a width of

only 50 µV for the entire range of 0.5 T. At last, the zero bias peak does not originate from

merging of split branches, which is a stark difference from Fig.6.7a where the zero bias peak

is simply a crossing of two split branches. More examples of the two types of magnetic fields

behaviors are presented in Fig.6.7c-d focusing on lower field ranges.

More measurements of the field dependence with gradual variations in the dot chemical

potentials demonstrate that the two distinct types of magnetic field behaviors evolve from

one to the other continuously. In Fig.6.8, we plot the bias vs. field dependence of the reso-

nances at five gate settings depicted in Fig.6.6b. Fig.6.8a (e) plots the same measurement as

in Fig.6.7a (b), except that the differential conductance is column normalized here, meaning

in each column, pixels have values normalized by the maximum dI/dV value of this column.

While in such plots we lose the relative strength of the resonances, the continuous evolution

of the two types of magnetic field dependence can be visualized better (The original plots as-

sociated with Fig.6.8b-d are in Supplementary Figure 6.11.). The normalized plots, Fig.6.8a

and e display the extreme of the two distinct behaviors discussed above, i.e., splitting be-

havior and emerging of the zero bias peak, respectively. The remaining plots, Fig.6.8b-d,

show the gradual crossover between these two behaviors. At finite bias, the splitting be-

havior starting at zero field becomes less and less pronounced (See Fig.6.8c-d), and finally

completely disappear in Fig.6.8e. Specifically, at positive (negative) bias, the branch that

moves up (down) remains but with a decreasing slope. More significantly, the branch that

moves down (up) grows weaker (Fig.6.8d) and disappears eventually in Fig.6.8e. As a result,

the connection between the split branches and the resonances near zero bias also decreases.

In other words, the evolution ends up with a zero bias peak that does not evolve from a

crossing of the branches and it sticks to zero bias separately from all finite-bias resonances.

Similar splitting magnetic field behavior shown in Fig.6.7a,c has been observed in single

quantum dots (Chapter 4) and in double quantum dots (Chapter 5). In both cases, Andreev

bound states are associated with |S〉 ground states and |D〉 first excited states, and the zero
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Figure 6.8: Gradual evolution from splitting to zero bias peak. a-e, The magnetic field
dependence of the resonances through triple dot Andreev bound states at various triple dot gate
settings denoted in Fig.6.6b.

bias crossings simply originate from the degeneracies of distinct spin states, i.e., |S〉 and

|D〉, at some finite field. Here in the triple dot case, the splitting behavior might have the

similar origin, although we have no sufficient evidence to conclude that it is associated with

Andreev bound states in part of or the entire triple dot.

The zero bias peak behavior shown in Fig.6.7b,d, however, is hard to understand in terms

of Andreev bound states. Here we first discussion a few trivial cases where zero bias peaks
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can be observed, and then the possibility that the zero bias peak is associated with Majorana

zero modes.

Although the gradual crossover shown in Fig.6.8 suggests a strong connection between

the zero bias peak and Andreev bound states, the fact that the zero bias peak does not

split as a function of field cannot be explained in terms of Andreev bound states alone.

Because resonances through Andreev bound states are associated with transitions between

states of different spins. If the zero energy mode is associated with degeneracy of Andreev

bound states, naively it is expected to split as as a function magnetic field dramatically. For

example, if the zero bias resonance is associated with a transition between two states whose

spins differ by 1/2, the resonance would move by 1.45 mV in bias after the magnetic field is

increased by 0.5 T, given a common g-factor of 50 in InSb nanowires. In stark contrast, here

the width of the observed zero bias peak remains at approximately 50 µV irrespective of

the large field range. We are aware that, in practice, the zero bias crossings associated with

degeneracies of Andreev bound states can be “stretched” into long zero bias peaks, either due

to closing of gap [8] or interactions of complex states [79]. In both cases, however, significant

splitting at low field is anticipated, which is not observed in our triple dot chain either.

Thus, the herein observed zero bias feature cannot be explained in terms of magnetic field

behaviors of Andreev bound states that been observed or predicted. Similarly, we should be

able to rule out that the zero bias peak is a Kondo peak, because the latter is expected to

split as a function of field by the same amount, 1.45 mV.

Another possible origin of the zero bias peak is a supercurrent. As it has been previously

observed, supercurrents might appear as a zero bias peak at finite field [96]. We, however,

also notice that supercurrent through our device should be highly suppressed because of

the potential barriers generated by gates along the nanowire, particularly the high interdot

barriers, i.e., low tLM and tMR. Indeed, the differential conductance is only as high as 0.005

(2e2/h), while in contrast, the conductance in Ref.[96] is ∼ 2e2/h. To conclusively rule out

the possibility of supercurrent in devices of next generations, normal tunneling probes can

be used.

Finally, the herein discussed zero bias feature strongly resembles the zero bias peak

that has been interpreted a signature of Majorana zero modes reported in superconductor-
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nanowire structures [10]. Interestingly, both originate at finite magnetic fields and seem not

to result from the merging of split resonances. We thus discuss whether an interpretation of

Majorana zero modes in a chain can explain the observed zero bias feature, by examining the

assumptions in the Kitaev model and the topological conditions. (A1) As done in Section

6.3, the superconductor-dot coupling is strong therefore charging energy has been tuned to

be low. (A2) Here a magnetic field has been applied. (A3, C1) S-wave superconductivity

has been induced in InSb where strong spin-orbit coupling is present. (C2) 2|t| > |µ| can

be fulfilled at some gate settings where dot levels close to the Fermi levels, i.e., ε ∼ 0 at

the finite magnetic field. With all assumptions and conditions fulfilled, it is theoretically

possible that the zero bias feature is indeed associated with Majorana zero modes in a chain.

However, as always, people should be extreme cautious determining the signature of

Majorana zero modes. First of all, we do not have further evidence of Majorana zero modes

other than the zero bias peak. Besides, some inconsistencies between the experimental

observation and theoretical prediction of Majorana zero modes by ideal models [2, 17, 19]

are found. (1) According to the p-wave paring assumption and the topological condition,

2|t| > |µ|, the zero bias peak can be present near the regime (εL = 0, εM = 0, εR = 0), and

absent far away from it. Experimentally, the evolution of the field behaviors does not follow

this relation exactly. Fig.6.7d supports the relation: it has the significant zero bias feature

and is taken closer to (εL = 0, εM = 0, εR = 0). Fig.6.7b, however, is a counterexample:

it also exhibits the zero bias peak but it is taken when εL and εR are closer to −UL/2 and

−UR/2, respectively. (The exact position of ε = −U/2 can be determined because it is at the

minimum distance between the anticrossing branches. However, the exact position of ε = 0

is unknown.). (2) Strength of the zero bias feature is only 0.002 (2e2/h) that is much lower

than the predicted value: 2e2/h. (3) The triple dot is a short chain therefore considerable

coupling is expected between Majorana zero modes at the two ends of the triple dot, if they

are present [2]. The coupling leads to oscillating features near zero bias as predicted by the

theories. The observed zero bias peak, however, sticks to zero bias and keeps a width of ∼

50 µV. Whether these inconsistencies can be explained and confirming that the zero bias

feature is indeed Majorana zero mode require comprehensive modeling of the experiment.
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6.6 CONCLUSION

We have implemented a superconductor-quantum dot chain made of three quantum dots

based in an InSb nanowire and three NbTiN leads, which importantly, displays an exper-

imentally accessible approach to scale the system to long chains based in nanowires. We

demonstrate that the chain structure is a promising platform to emulate the Kitaev model

by realizing the assumptions and topological conditions in the model. Various spectroscopy

measurements are performed to map out the resonances through Andreev bound states in the

triple dot. Furthermore, we explore the magnetic field evolution of resonances. Two distinct

magnetic field behaviors are observed. The first, splitting field behavior, can be explained

with Andreev bound states, while the second is a zero bias peak starting at a finite field and

sustaining for ∼ 0.5 T. The zero bias feature is hard to understand in terms of degeneracies of

Andreev bound states, the Kondo effect or supercurrent. Theoretical modeling is necessary

to understand the measurements and confirm its relation to Majorana zero modes. Chains

of next generation, made of hard gap hybrid structures, are desired to rule out trivial states

due to subgap density of states, because the zero bias peak might also originate from subgap

states with complex interactions. Phase control of the superconductors is another factor to

consider for future devices.
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6.7 SUPPLEMENTARY INFORMATION

Figure 6.9: Energy diagram in an open dot. a, The anticrossing illustrates resonances
through Andreev bound states in a single dot in the open dot regime. The dashed lines depict
Coulomb diamonds when the superconductivity in the device is turned off. The dot occupation is
even, odd, and even from left to right. The two degeneracies are marked with b and d. The center
of them where the minimum distance between the anticrossing branches locates is marked with c.
b-d, Energy diagram of quantum dot level and resonance levels (±ζ) associated with transitions
between Andreev bound states in the open dot regime. The levels are relative to the chemical
potential of the superconductor (dashed line). Here we trace the single electron quantum dot level,
ε. b, ε = 0. There are two resonance levels (±ζ). c, ε = −U/2. Two resonance levels are closest
(±ζ0). d, ε = −U . There are two resonance levels (±ζ).

Fig.6.12 and Fig.6.13 are taken after the triple dot is removed and re-created. Likely

they exhibit the same dot occupations as the figures in the main text, however, their gate

voltages differ.

Fig.6.14 is taken after a different re-creation. Likely it exhibits the same dot occupations

as the figures in the main text, however, its gate voltages differ.
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Figure 6.10: Simulated spectroscopies. a, Simulation of the transition between ground states
and first allowed excited states as a function of bias (vertical axis) and µL and µR to help picture
the spectroscopy, in the strong superconductor-dot coupling regime. ΓS = 0.6 b, Simulation of the
transition between ground states and first allowed excited states as a function of bias (vertical axis)
and µL and µR to help picture the spectroscopy, in the weak superconductor-dot coupling regime.
ΓS = 0.35. Other simulation parameters are the same for a and b: U = 1, ∆ε = 0.35, t = 0.025,
where ∆ε is quantum dot level spacing. All parameters and Vbias have the same unit, h̄. Note that
these are simulations for double dot chains.

127



0 

-500 

0 

500 

-500 

0 

500 

-500 

500 

-500 

0 

b 

-500 

500 

-500 

0 

c 

0 

-500 

500 

-500 

0 

d 

B (T) 
0 0.5 1.0 1.5 

dI/dV  
(2e2/h) 

0.004 

0.002 

0.000 

dI/dV  
(2e2/h) 

0.004 

0.002 

0.000 

dI/dV  
(2e2/h) 

0.004 

0.002 

0.000 

0.006 

V
bi

as
(µ

V
)

V
bi

as
(µ

V
)

V
bi

as
(µ

V
)

Figure 6.11: Gradual evolution from splitting to zero bias peak: original data. b-d, The
magnetic field dependence of the resonances through triple dot Andreev bound states at various
triple dot gate settings denoted with letter b-d in Fig.6.6b.
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Figure 6.12: Complementary data of magnetic field evolution. a(b), dI/dV as a function
of bias and VR at 0 mT (200 mT), given εL > −UL/2 and εM = −UM/2. c(d), bias vs. field with
VM at the position marked by the green (yellow) arrow marked in a.
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Figure 6.13: Bias spectroscopy at finite magnetic field. a, dI/dV as a function of bias and
VR at 0 mT (left) and 200 mT (right), given εL = −UL/2 and εM = −UM/2. VL = 676 mV and
VM = 740 mV. b, dI/dV as a function of bias and VR at 0 mT (left) and 200 mT (right), given
εL > −UL/2 and εM = −UM/2. VL = 672 mV and VM = 712 mV. c, dI/dV as a function of bias
and VR at 0 mT (left) and 200 mT (right), given εL = −UL/2 and εM > −UM/2. VL = 662 mV
and VM = 700 mV. d, dI/dV as a function of bias and VR at 0 mT (left) and 200 mT (right), given
εL > −UL/2 and εM > −UM/2. VL = 672 mV and VM = 700 mV.
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7.0 INDUCED SUPERCONDUCTIVITY IN GE/SI NANOWIRE-NBTIN

HYBRID STRUCTURES1

Transparent contacts between high critical field superconductors and nanowires are crucial

in the context of Majorana zero modes based on superconductor-nanowire hybrid structures.

In this chapter we achieve such contacts between NbTiN and Ge/Si core/shell nanowires

and characterize the induced superconductivity.

1THIS CHAPTER IS ADAPTED FROM REF.[135].
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7.1 INTRODUCTION

Josephson junctions based on semiconductor nanowires have become a fertile research plat-

form in recent years. Charge tunanbility of semiconductors has been used to implement

supercurrent transistors [7], Josephson π-junctions [97] and Cooper-pair beam splitters [9].

More recently, theoretical proposals for realizing Majorana zero modes in semiconductor-

superconductor hybrid structures [3, 4] have led to a series of experiments that began ac-

cumulating evidence for these exotic quantum states [10, 46, 45, 56, 11, 13, 12]. Majorana

studies have focused on InAs and InSb nanowires which are characterized by strong spin-

orbit interaction, large effective Landé g-factors, ballistic transport along the nanowire, and

induced superconductivity in the nanowire.

Ge/Si core/shell nanowires have been proposed for Majorana studies owing to the strong

spin-orbit coupling in the valence band [98]. Recent experiments have established the one-

dimensional hole gas [99] and ballistic quantum transport [57]. Strong spin-orbit interaction

and large effective Landé g-factors have been extracted from both quantum dot and bulk

nanowire measurements [100, 101, 102, 57, 103]. The last component, induced superconduc-

tivity from high critical magnetic field superconductors, is missing. Although supercurrent

is observed in Al-Ge/Si-Al junctions [104], pure Al contacts are not suitable for topological

quantum circuits based on Majorana zero modes due to the low bulk critical magnetic field

of Al.

In this chapter, we report superconductivity in Ge/Si nanowires induced by niobium

titanium nitride (NbTiN) whose critical magnetic field is large. We demonstrate the Joseph-

son supercurrent through NbTiN-Ge/Si-NbTiN junctions to high magnetic fields of order 1

Tesla, as required for Majorana experiments. We evaluate the induced gap in the nanowire

through co-tunneling in the pinched-off regime of the junctions.

The devices are fabricated on doped Si substrates which serve as back gates. The sub-

strates are covered by thermal SiO2 (285 nm) and chemical vapor deposited Si3N4 (50

nm) (Fig.7.1a). Ge/Si nanowires with core diameters of 20-40 nm and shell thickness of

2 nm [105, 106, 65, 107] are randomly deposited on the substrate. The superconducting

leads are patterned by electron beam lithography with nominal spacing of 200 nm followed
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Figure 7.1: NbTiN-Ge/Si-NbTiN devices, Josephson current and the magnetic field
dependence. a-Top, Scanning electron micrograph of a Ti/NbTiN-Ge/Si-Ti/NbTiN device. a-
Bottom, Side view schematic of the device. b, IV characteristics of device A at Vbg = −23 V
(red), 0 V (blue) and 58 V (green). c,d The differential resistance dV/dI as a function of current
bias and magnetic field for device A at Vbg = −10 V (panel c) and device B at Vbg = 0 V (panel
d). In-plane magnetic field orientations are indicated by the cartoons.

by magnetron sputtering of NbTiN. One 3 nm interlayer of Ti (devices A and B) or Al

(device C) is deposited prior to NbTiN. Before the metal deposition, a 2-second BHF etch is

performed to remove the native oxide on the surface of nanowires. Note that substrate has

bilayer and the chemical vapor deposited Si3N4 is used to protect SiO2 from being etched

quickly. The measurements are performed in a dilution refrigerator at 20-40 mK.
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7.2 SUPERCURRENT AND MAGNETIC FIELD DEPENDENCE

Typical current-voltage (IV) characteristics are shown in Fig.7.1b. Because the charge car-

riers in Ge/Si nanowires are holes, a more negative back gate voltage Vbg leads to a lower

normal state resistance (Rn) and a higher switching supercurrent (Ic). The excess current

(Iexc) due to Andreev reflection extracted from the IV traces is in the range of 1 − 4 nA.

Contact transparency of ∼ 50% is estimated using the Octavio-Tinkham-Blonder-Klapwijk

theory from the ratio eIexcRn/∆ ∼ 0.05, where e is the elementary charge and the bulk gap

∆ is 1.7 mV given Tc = 11 K [108, 109]. Note that this is a lower bound estimate on the

contact transparency since the ratio above is reduced for finite length junctions [110]. On

the other hand, the eIcRn/∆ ratio is 0.03 which is lower than the theoretical limit of π.

Finite contact transparency and premature switching out of the supercurrent state caused

by thermal activation can contribute to the reduction of the IcRn product [31]. The fact

that supercurrent in Ge/Si nanowires is carried by holes which have a different momentum J

than electrons in the contact superconductor may also contribute to this reduction, though

this remains an open question.

Magnetic field evolution of supercurrents in two devices is presented in Figs.7.1c,d. The

switch out of the supercurrent state and into the finite voltage state corresponds to a peak in

dV/dI. It is clearly visible up to 400 mT and 800 mT but can also be traced to higher fields.

Both devices demonstrate monotonous decrease in Ic as magnetic field is increased. The fact

that supercurrent survives to higher fields in device B is consistent with the field aligned

closer to the nanowire axis in this device, which reduces the magnetic flux threading the

junction area for a given field. No nodes or oscillations in the switching current are observed

up to fields of 1 Tesla, throughout the range of resolved supercurrent features. Assuming

purely Fraunhofer-type interference within the junction only (zero field in the leads), the first

node is expected at 300 mT for device A and 600 mT for device B. Detailed understanding

of the field evolution of supercurrents in few-mode nanowires [111, 112] will be reported in a

separate numerical study which includes the effects of geometry, Zeeman splitting, spin-orbit

coupling, vector potential and Meissner effect.
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Figure 7.2: Induced superconducting gap measured by co-tunneling transport. a,
Coulomb diamond measurements on an accidental quantum dot in device C in the near pinch-off
regime, a dashed line marks a line cut shown in panel b. b, A line cut showing dI/dV as a function
of the bias voltage. Peaks separated by 4∆in are marked by dashed lines.

7.3 INDUCED SUPERCONDUCTING GAP

The induced superconducting gap ∆in is studied in the pinched-off regime through uninten-

tional quantum dots formed in the junctions near pinch-off [80]. Fig.7.2a shows differential

conductance in device C as a function of back gate voltage. The boundaries of Coulomb

diamonds are broadened due to co-tunneling, as the quantum dot barriers remain low. We

observe a pair of sharp horizontal resonances of high differential conductance located sym-

metrically around zero bias at Vsd = 2∆in = ± 440 µV . At biases in between the peaks,

conductance is suppressed but remains non-zero. Thus the induced superconducting gap

here is of the so-called “soft gap” type (see Fig.7.2b). The “soft gap” induced supercon-

ductivity has been observed in various experiments and attracted particular attention in

the Majorana study. While the underline cause remains mysterious, possible attributes are

disorder, quasiparticle poisoning [113, 114] and finite interface transparency. We also notice

that the soft gap observed here is of the same magnitude as in the Majorana studies based
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on InSb nanowires [10, 11, 13]. Since the same NbTiN alloy are used in both InSb and Ge/Si

cases, the soft gap measured here indicates that the soft gap is not unique to InSb-NbTiN

hybrid structures and the “soft gap” may be associated to the properties of the NbTiN film,

such as its granularity and alloy disorder.

7.4 CONCLUSION

We have developed and optimized superconducting contacts to Ge/Si nanowires based on

NbTiN and demonstrate gate-tunable supercurrent in NbTiN-Ge/Si-NbTiN junctions and

observe supercurrents up to magnetic fields of order 1 Tesla. The induced superconducting

gap of 220 µeV is characterized in the co-tunneling regime of transport through quantum

dots. The sub-gap conductance remains significant and research on suppressing the subgap

conductance is desired [94].
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8.0 SPIN-ORBIT COUPLING AND G-FACTORS IN GE/SI DOUBLE

DOTS1

To measure the spin-orbit coupling and g-factors in Ge/Si core/shell nanowires, we perform

transport measurements on double quantum dots defined in Ge/Si core/shell nanowires and

focus on Pauli spin blockade. By studying the magnetic field evolution of spin blockade, we

estimate a lower bound on the spin-orbit coupling and extract Landé g-factors.

1THIS CHAPTER IS ADAPTED FROM REF.[103].
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8.1 INTRODUCTION

Holes in Ge/Si nanowires offer an unexplored platform for the study of Majorana zero modes

based on superconductor-nanowires [115]. Particularly, strong spin-orbit interaction is pre-

dicted [116] and suggested by experiments [117, 118, 119, 120] to be strong in Ge/Si core/shell

nanowires. Strong spin-orbit coupling is desired because it is a key component for imple-

menting Majorana zero modes based on superconductor-nanowires. We use the fact that

spin blockade in double dot can be lifted by spin-orbit coupling [121] to extract the spin-

orbit coupling in Ge/Si core/shell nanowires. By monitoring the magnetic field dependence

of double dot quantum states, we can also measure the g-factor in Ge/Si nanowires that is

another key component for realizing Majorana fermions [3, 4, 10, 122].

Besides, the study of spin blockade in quantum dots have a broader perspective as it

is also motivated by the proposals to build a spin-based quantum computer [123], as spin

blockade can be used for qubit initialization and readout [23, 124]. Firstly, spin blockade

and its lifting mechanisms offer a direct insight into spin relaxation and dephasing processes

in semiconductors and provide deeper understanding of interactions between spin localized

in a quantum dot and its environment, be it the lattice and its vibrations or nuclear spins,

spin-orbit interaction, or coupling to spins in nearby dots or in the lead reservoirs [125, 126,

127, 128, 77]. Secondly, the potential of strong spin-orbit coupling offers a path to electrical

spin manipulation [129, 27]. Moreover, holes weakly couple to nuclear spins due to their

p-wave Bloch wave symmetry. Last and importantly, hyperfine interaction is expected to be

greatly reduced owing to the low abundance of nonzero nuclear spin isotopes in the group

IV materials [130]. As a result, qubits based on group-IV semiconductors are expected to

come with longer spin relaxation times [131].

In this work we perform transport measurements on electrostatically defined double

quantum dots [23] made in Ge/Si core/shell nanowires, and detect Pauli spin blockade at

several charge degeneracy points. We expand and adapt a previously developed rate equation

model to analyze the magnetic-field evolution of the leakage current [121]. We also extract

relatively large effective g-factors, up to 8.0 [132, 133, 134], which is promising for Majorana

fermion and spin qubit implementations.
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Figure 8.1: Double dot stability diagram in large gate ranges. Current through the double
dot as a function of voltage on left gate (VL) versus voltage on right gate (VR) at a fixed voltage on
barrier gate (Vt). The measurement is taken with a source-drain bias of 4 mV and at zero magnetic
field. The inset shows a scanning electron micrograph of a representative Ge/Si nanowire device
with Al/NbTiN lithographic contacts (labeled “Source” and “Drain”) and tuning gate electrodes
labeled L, t and R. The other gates are fixed at zero voltage.

The devices are fabricated with contacts of Al/NbTiN (15/42 nm) on bottomgates of 60

nm pitch. We note that despite the fact that Al and NbTiN are both superconductors the

contact between the leads and the nanowire has high resistance and low transparency in these

devices, therefore no effects of induced superconductivity are observed on the dots as opposed

to nominally the same devices that showed high contact transparency [135]. Furthermore,
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the applied source-drain bias exceeds the superconducting gap of NbTiN, which remains

superconducting at all fields applied here. Thus we do not consider any contribution from

the superconductivity of the leads on the leakage current. The measurements are performed

in a dilution refrigerator at a base temperature of 30 mK.

The double quantum dot is defined by applying positive voltages to three adjacent gates:

VL and VR are used to set the outer barriers, and Vt defines the interdot barrier. Since all

three gates are in close proximity they all influence the charge occupation of the dots, as

well as all three tunneling barriers.

8.2 TRANSPORT THROUGH GE/SI DOUBLE DOTS

The main panel of Fig. 8.1 shows the measured double dot charge stability diagram which

consists of a grid of charge degeneracy points connected by co-tunneling lines at higher charge

occupations. Many charge degeneracy points are observed before the gate-induced energy

barriers to the source and drain get too high to detect the current at the positive gate voltage

extremes of the plot. This is in strong contrast with quantum dots defined using similar gates

in InAs [27] or InSb [29] nanowires, where only a few charge degeneracy points are visible

between complete pinch-off and the open transmission regime. The current is too low to

measure at the charge degeneracy points corresponding to the last few holes in both dots,

meaning that the tunneling barriers pinch off completely before the dots are emptied. In the

regime studied here both dots still contain tens of holes. This is confirmed by asymmetric

gate tuning such that as holes are expelled from one dot, the occupation of the other dot is

increased and the tunneling barrier is lowered to ensure detectable current. The fact that

so many holes fit in a small volume of a double dot (less than 120 nm in length and 30

nm in diameter) is consistent with the large effective hole masses as compared to those of

electrons in III-V semiconductors, indicating that the hole wavefunctions are predominantly

of a heavy-hole character.
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8.3 MEASUREMENTS OF SPIN-ORBIT COUPLING AND G-FACTORS

In double quantum dots with multiple charges per dot, spin blockade does not necessarily

occur at each (odd, odd) to (even, even) charge transition as expected for simple few-electron

quantum dots [27, 29, 23, 136, 137, 138]. In fact, spin blockade may not occur for multiple

transitions in a row [139]. This can be either due to the complex spin structure of the higher

orbital states or due to a suppressed energy splitting between the ground state singlet and

a higher orbital triplet.

When spin blockade does occur we assume that it can be effectively understood in the

same way as the simplest (1, 1) → (0, 2) spin blockade: close to zero detuning, the NL—th

hole in the source dot can only enter the drain dot if it can form a spin-singlet state with the

NR—th hole on the drain dot. Entering an (NL − 1, NR + 1) state in a triplet configuration

requires occupation of a higher orbital state which becomes energetically accessible only

when an additionally applied interdot energy level detuning ε exceeds the singlet-triplet

energy level splitting in the drain dot. For small detuning the system is thus expected to be

blocked in one of the three triplet states, which are in principle degenerate and split in energy

under the influence of a magnetic field due to the Zeeman effect. For clarity we will refer to

the (NL, NR) states as (1, 1) and to the (NL − 1, NR + 1) states as (0, 2). Current through

the double dot in the spin blockade regime due to various spin non-conserving processes is

referred to as the leakage current.

The primary signature of spin blockade in this study comes from the magnetic field de-

pendence of the leakage current (Fig. 8.2), which can be explained in terms of the simple

spin blockade picture described above. We vary the (1,1) to (0,2) energy level detuning, ε

by scanning VL and VR perpendicular to the base of bias triangles (as indicated in the inset),

while stepping the magnetic field. The associated singlet-triplet splitting of ∼ 2 meV is rep-

resentative of the several charge degeneracy points studied (see supplementary information).

A smaller rise in the leakage current at lower detuning, marked with the tilted dashed

line in Fig. 8.2, is assigned to a resonance between the lowest (1, 1) state T+ and the singlet

S(0, 2) state: below this resonance (for smaller ε), S(0, 2) is energetically not accessible from

the ground state T+(1, 1) and the system is in Coulomb blockade. Since the energy of S(0, 2)
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Figure 8.2: Current as a function of detuning and magnetic field. Current through the
double quantum dot measured as a function of the detuning ε and the magnetic field B, with an
applied source-drain voltage of VSD = 6.5 mV. The magnetic field is applied normal to the substrate
plane. The resonances associated with T+(1, 1) → T+(0, 2) and T+(1, 1) → S(0, 2) transitions are
marked with dashed lines. From the field dependence of the latter we find g = 8.0± 0.2. Inset: the
charge degeneracy point at finite bias with the detuning axis used in the main panel indicated by
ε.

is not expected to depend on the magnetic field, the B-dependence of this resonance reflects

the B-dependence of the energy of T+(1, 1). The pattern formed by two current resonances

marked by dashed lines T+(1, 1) → T (0, 2) and T+(1, 1) → S(0, 2) is the main signature

of spin blockade in this study. Note that a copy resonance follows the T+(1, 1) → S(0, 2)

transition in field, which is not accounted for in the simple spin blockade picture used here.

Using the slope of the resonance labeled T+(1, 1)→ S(0, 2), we obtain g = 8.0± 0.2 for

Fig.8.2. While full g-tensor measurements were not performed, we find lower g-factors for

fields deviating from normal to the substrate, in agreement with other studies (see supple-

mental material) [133, 134]. The highest g-factors extracted here are larger than previously

reported for Ge/Si nanowires [118, 133, 134]. One possible reason for this is larger wire
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diameters used here: indeed, a relevant theory predicts diameter-dependent g-factors [116].
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Figure 8.3: Magnetic field evolution of the leakage current in two different spin block-
aded transport configurations. In both cases the field is applied in the plane of the nanowire
and gates, perpendicular to the gates but making an angle of ∼ 30◦ with the wire. In the left
panels we show the dependence of the leakage current on magnetic field and detuning, and on the
right side we show the corresponding charge degeneracy points (top) and a line cut of the data at
zero detuning (bottom). The zero-detuning cuts include fits to the theory presented in the main
text. a, In this configuration, where a bias voltage VSD = 6.5 mV is applied, the leakage current
has a single-peak structure both as function of the detuning and magnetic field. The corresponding
charge stability diagram is taken at B = 5 T. In the figure we plot two different theory curves on top
of the data, both with ξ = 0.03, g = 4.4, and an added constant current of 0.8 pA to account for the
background signal observed in the data. We further used Γ = 300 MHz, t = 50 µeV, γ = 0.0075,
and α = 0.4 (solid red curve) and Γ = 25 MHz, t = 150 µeV, γ = 0.66, and α = 0.4 (dashed
green curve). b, Leakage current at a different charge degeneracy point, with VSD = 4 mV. The
corresponding bias triangle is taken at B = 0 T. Here the current shows a double-peak structure
in the magnetic field, which can also be seen in the zero-detuning cut. The theory curve (red solid
line) uses ξ = 0.03, g = 4, Γ = 256 MHz, t = 150 µeV, γ = 0.061, and α = 0.37.

In Fig.8.3a,b (left panels) we plot the measured leakage current in the spin blockade

regime of two representative charge degeneracy points which show a qualitatively different
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field-dependent behavior. The current in Fig.8.3a shows a single peak centered at zero field,

whereas in Fig.8.3b we observe a double-peak structure with a dip at zero magnetic field.

We note that beyond the difference in charge numbers, we cannot independently quantify

differences in other double dot parameters across the two regimes of Fig.8.3. We speculate

that the interdot tunnel coupling as well as the couplings to the leads are not the same in

the two regimes.

A zero-field dip in the leakage current is known to occur in double dots hosted in materials

with strong spin-orbit interaction [127, 140, 141, 142, 143]. The dip is usually explained in

terms of a competition between different types of spin-mixing processes: the combination

of spin-orbit interaction and Zeeman splitting due to the applied field enables transitions

between triplet and singlet configurations. This mechanism becomes more efficient at higher

magnetic field and thus it produces a dip in the leakage current around zero field [121].

Other processes that mix spin states, such as the hyperfine interaction between the electrons

or holes and the nuclear spins in the host material [144] or spin-flip co-tunneling processes

with the leads [145], can be independent of the magnetic field or even become less efficient

with increasing B. If one of such processes provides the dominant spin-mixing mechanism,

then there will appear no dip in the current around zero field. Since the spin-orbit-mediated

mechanism scales with the interdot tunnel coupling, one can expect to observe a transition

from having a zero-field dip to no zero-field dip when changing the tuning of the double dot.

8.4 THEORETICAL MODEL

Ignoring the potentially more complicated nature of spin blockade in the valence band, we

assume that in the present case we can describe the leakage current with a model based on

the following ingredients: (i) S(1, 1), has the same singlet configuration as S(0, 2) and is

thus strongly coupled to that state, with a coupling energy t. (ii) The state S(0, 2) decays

to the drain lead with a rate Γ. Immediately after such a transition a new hole enters the

system from the source, bringing it in one of the (1, 1) states again. (iii) T±(1, 1) split off

in energy when a magnetic field is applied. (iv) Spin-orbit interaction results in a coherent
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non-spin-conserving coupling between the (1, 1) triplet states and S(0, 2). The energy scale

characterizing spin-orbit coupling tso is proportional to t. (v) There can be other spin-mixing

and spin-relaxation processes causing transitions between the different (1, 1) states.

In our data both the dip and the peak are relatively wide: they appear on a field scale of

B ∼ 1 T which is of the order of 3 K. First of all, this rules out hyperfine interaction as the

dominant spin-mixing mechanism in the single-peak data of Fig. 8.3a. Hyperfine interaction

is known to lift spin blockade around zero field producing a peak in current, but the width

of the hyperfine peak is comparable to the typical magnitude of the effective nuclear fields

in the dots. We estimate the effective nuclear fields in the present system to be less than 10

mT, which is orders of magnitude smaller than the peak width observed here [146].Secondly,

the analytic theory of Ref. [121], which is often used to extract model parameters such as

the magnitude of spin-relaxation rates and α = tso/t, is valid for t, tso, B � Γ and also

assumes the spin-relaxation rates to be isotropic, based on the assumption B � T , where T

is the temperature. From here on we will use h̄ = kB = gµB = e = 1. In the present case,

however, we have B � T for most fields of interest, and spin relaxation will thus mostly be

directed towards the (1, 1) ground state instead. Furthermore, the suppression of current

at the highest fields could indicate that B exceeds at these fields the effective level width

of S(0, 2) by such an amount that the system is pushed into a Coulomb blockade in the

lowest-lying (1, 1) triplet state.

We thus cannot straightforwardly apply the theory of Ref. [121] to model the data shown

in Fig. 8.3. Instead we present a modified version of the theory, where we include only spin

relaxation to the ground state and do not expand in large Γ. We start from the five-level

Hamiltonian

H =



0 iB 0 0 iαt

−iB 0 0 0 iαt

0 0 0 0 iαt

0 0 0 0 t

−iαt −iαt −iαt t 0


, (8.1)

written in the basis {|Tx〉 , |Ty〉 , |Tz〉 , |S〉 , |S02〉}, where |Tx,y〉 = i1/2∓1/2{|T−〉∓|T+〉}/
√

2 and

|Tz〉 = |T0〉 are the three (1, 1) triplet levels and |S〉 and |S02〉 the (1, 1) and (0, 2) singlets,
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respectively. The interdot detuning was set to zero and α parametrizes the strength of the

effective spin-orbit interaction in the dots, where α ∼ 1 corresponds to the strong limit.

In principle, the three α’s coupling |Tx,y,z〉 to |S02〉 can be different, constituting a vector

α = (αx, αy, αz) (see Ref. [121]). The length of this vector corresponds to the strength of the

spin-orbit interaction and its direction is related to the direction of the effective spin-orbit

field. In a physical nanowire, the precise orientation of α depends on many details and is

hard to predict. We therefore make the simplifying assumption that all three components

are of the same magnitude. We diagonalize the Hamiltonian and use its eigenbasis to write

a time-evolution equation for the density matrix [121],

dρ̂

dt
= −i[Hdiag, ρ̂] + Γρ̂+ Γrelρ̂. (8.2)

The operator Γ describes (i) decay of all states |n〉 (with n = 0 . . . 4) to the drain lead

with the rates Γ|〈n|S02〉|2 and (ii) immediate reload into one of the eigenstates with the

probabilities {1− |〈n|S02〉|2}/4. For the relaxation operator Γrel we take a simple form: We

assume that all four excited states relax with the same rate Γrel to the ground state.

We first discuss this model on a qualitative level, and investigate how it differs from the

model of Ref. [121]. For small fields, B � Γ, the different spin relaxation model used here

only yields different numerical factors in some of the results. At B = 0 we have three blocked

states at zero energy that can relax to the hybridized (1, 1)–(0, 2) ground state which quickly

decays to the drain lead; this results on average in four holes being transported through the

system in a time 3Γ−1
rel , thus yielding a leakage current of I(0) = 4

3
Γrel. Adding a finite

magnetic field induces a coupling of ∼ αB between two of the blocked states and |m〉, which

provides an alternative escape route and leads to an increase of the current.

This increase becomes significant only when the rate of this escape ∼ (αB)2Γ/t2 becomes

comparable to Γrel, which happens at B ∼ (t/α)
√

Γrel/Γ. For larger fields the current tends

to its maximum value Imax = 4Γrel, reached when only one truly blocked state is left and

on average four holes are transported in a time Γ−1
rel . We see that this picture predicts a

zero-field dip in the current of width Bdip ∼ (t/α)
√

Γrel/Γ and a maximal suppression of the

current, by a factor 3, at B = 0. This is, apart from numerical factors, the same result as

found in Ref. [121].
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Qualitative differences appear when we investigate what happens at even higher fields.

Since Γ is finite in the present model and all relaxation is directed toward the ground state,

we can enter a situation of Coulomb blockade in the (1, 1) ground state |T+〉. When we

increase B, the current will thus eventually be suppressed to zero, producing in general

a double-peak structure in I(B). A näıve guess for the field scale where this suppression

sets in would be ∼ Γ: however, the actual field scale of current decay is rather set by the

competition of this escape rate with Γrel: only when the B-induced suppression becomes so

strong that escape from |T+〉 is the main bottleneck for the leakage current, the decrease in

current becomes significant. We thus compare this escape rate ∼ (αt)2Γ/B2 with Γrel and

find an estimate for the width of the overall double-peak structure Bc ∼ αt
√

Γ/Γrel.

We can also understand how our model could result in an apparent single-peak I(B).

Indeed, Bdip and Bc show a different dependence on the model parameters, and their ratio

Bdip/Bc ∼ Γrel/α
2Γ (which determines the relative visibility of the zero-field dip) could be

large or small, depending on the detailed tuning of all parameters. For Bdip/Bc � 1 one

could be in the situation where the central dip around zero field is too narrow to be observed.

We will now support these arguments with a more quantitative investigation of the

model. We can solve Eq. 8.2 in steady state, dρ̂/dt = 0, and find the current from the

resulting equilibrium occupation probabilities pn = ρ̂nn as I =
∑

n pnΓ|〈n|S02〉|2, yielding

I(B) = Γrel
[w −B2 + τ 2][w(1 + 4γ) +B2 − τ 2]

6γw2 + 2B2α2t2
, (8.3)

where we use the notation w =
√

(B2 − τ 2)2 + 8B2α2t2, the small parameter γ = Γrel/Γ, and

τ = t
√

1 + 3α2 (which is the total tunnel coupling energy). To obtain Eq. 8.3 we assumed

γ � 1, which we will also do below.

The current given by Eq. 8.3 indeed shows in general a double-peak structure. At zero

field we find I(0) = 4
3
Γrel, and the current has two maxima at B = ±τ where I = 4Γrel.

The half-width of the resulting zero-field dip follows as Bdip = t(
√
β2 + 2 − β)/

√
2, where

β = α/
√

6γ. In the limit of large β (small
√
γ/α) we find Bdip ≈ t

√
3γ/α. At high fields,

the current drops to zero, and from Eq. 8.3 we find the half-width-half-maximum of the full

double-peak structure to be Bc = t(
√
β2 + 2 + β)/

√
2 which reduces to Bc ≈ αt/

√
3γ for

large β. We see that in the limit of small γ these results agree with the conclusions of our
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qualitative discussion above. Further study of the two behaviors are presented in Ref.[103]

where difference between g-factors in the two dots are introduced. Recent studies on similar

materials found g-factors differing by 2–5% between two dots in a double dot [143, 147].

The introduction of such mechanism yields theoretical plots where reasonable agreement is

gained.

8.5 CONCLUSION

To conclude, assuming linear Rashba spin-orbit interaction as the dominant relaxation

term [116] in these gate-defined double quantum dots with α = 0.1–0.4, and a dot-to-dot

distance of order 50 nm, we find a spin-orbit length of lso = 100–500 nm. While this corre-

sponds to a substantial spin-orbit interaction, it does not greatly exceed that measured in

InAs or InSb nanowires. One possibility for this could be that α is not maximal for the field

orientation at which data is obtained here as a consequence of spin-orbit anisotropy [29],

although the magnetic field was not oriented in the direction expected for the spin-orbit

field. Another factor for lower-than-expected spin-orbit interaction is the low strain between

the thin Si shell and relatively thick Ge core. Thus, it is conceivable that spin-orbit inter-

action can be enhanced by tailoring the nanowire morphology. A more detailed insight into

spin-orbit coupling and other double dot parameters could be obtained from electric dipole

spin resonance.

8.6 SUPPLEMENTARY INFORMATION

8.6.1 Charge stability diagrams

We have measured three different nanowire devices, A, B, and C, in three different dilution

refrigerators all at base temperatures below 30 mK. All three devices have the same fabri-

cation recipe as mentioned in the main text. In this supplemental material we show more
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data on Device A, the device investigated in the main text, as well as data from the other

two devices.
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Figure 8.4: Charge stability diagrams in opposite biases. Double quantum dot charge
stability diagrams at VSD = 4 mV (top) and VSD = −4 mV (bottom). The plots show the absolute
value of measured leakage current across the dots from one reservoir to the other while scanning
VL vs. VR at a fixed Vt. Some charge transitions that show bias asymmetric behavior are circled.
Measurements are performed at zero magnetic field.

In Fig. 8.4 we show part of the charge stability diagram shown in Fig.8.1, in both source-

drain bias directions. We remove parts of the scan with lower gate values from Fig.8.1 to

improve the visibility of charge transitions with fewer hole occupation in dots and circle

some charge transitions with asymmetric current near the triangles bases to illustrate how

we search for spin blockaded transitions. Taking bias asymmetry near zero detuning as an

initial signature of a spin blockade candidate charge degeneracy point, we study the magnetic

field evolution to determine if spin blockade is present or not.

Fig. 8.5 shows the bias triangle of Fig.8.1b of the main text at zero field where spin

blockade is stronger, and at finite magnetic field where the spin blockade is lifted.
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Figure 8.5: Spin blockade lifted at a finite magnetic field. Bias triangle at zero magnetic
field (left) and at B = −0.8 T (right) at VSD = 4 mV. The current is suppressed at the base
of the triangle (lower left) at zero field and there is an excess current at the side which can be
representative of the hole exchange between the dot and the reservoir where their Fermi energy
levels are equal. At finite magnetic field we can see the increase in the leakage current at the base
of the triangle associated with lifting the spin blockade.
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Figure 8.6: Double quantum dot charge stability diagrams of Device B in opposite
bias directions. The plots show the absolute value of measured leakage current across the dots
from one reservoir to the other while scanning VL vs. VR at a fixed Vt at 5 mV (left) and -5 mV
(right). The arrows show characteristics of spin blockade explained in the text.

In Fig. 8.6 we see a few charge transitions from Device B in two opposite bias directions.

These transitions manifest some indicators of possible spin blockade at zero magnetic field

such as suppressed current at the base of the triangles (green arrow), enhanced current on
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the side of the triangles that can be related to spin exchange with the reservoir leads (yellow

arrows), and triplet hats at the triangle tops (orange arrow). However, these features are not

conclusive for this set of triangles. In order to accurately identify spin blockade one needs

to study the magnetic field dependence of the leakage current, as shown for Device A in the

main text and in the supplemental materials.
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Figure 8.7: Measurements of double dot on Device C. a,b The bias triangles at 4 and -4
mV at zero magnetic field. The colorbar is the absolute value of the leakage current. c, The leakage
current through the double quantum dot measured as a function of detuning and magnetic field
at VSD = 4 mV. The double-peak behavior in the bottom panel is highlighted by a line cut in the
colorplot.

In Fig. 8.7 we present magnetic field evolution of the leakage current obtained from

Device C. A similar pattern is observed here compared with Fig.8.2 of the main text, i.e.
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base of the triangle moves to higher detuning with applied magnetic field. The top panel

shows a charge degeneracy point studied at bias voltages VSD = ±4 meV. The bias triangle

at positive bias is smaller than the one in opposite bias suggesting the suppression of current

at its base, which we attribute to spin blockade. In the middle panel we show the leakage

current as a function of detuning ε (as indicated in the top left plot) and the applied magnetic

field. In this regime the double-peak structure is observed in the field dependence at low

detuning.

8.6.2 Bias asymmetry of spin blockade

For the transition between (1, 1) and (0, 2), spin blockade occurs at one bias direction but

not at the opposite bias direction. Fig. 8.8 shows the leakage current as a function of the

magnetic field and the gate voltages controlling the detuning, for both bias directions applied

across the charge degeneracy points studied in Fig.8.2 (top) and Fig.8.3a (bottom) of the

main text. The left panels show a field-dependent behavior of the leakage current, where the

detuning at which the current sets on increases with field, whereas in the right panels that

are taken at the opposite bias direction the leakage current onsets always at the bottom of

the colormap (where zero detuning is located) and the onset voltage does not demonstrate

a linear magnetic field dependence. Charge instabilities are responsible for the onset voltage

fluctuations, these fluctuations are not symmetric upon magnetic field reversal.

8.6.3 g-factor anisotropy

Remarkable g-factor anisotropy is observed in Ge/Si nanowires. In Figs. 8.9 and 8.10 we show

multiple scans of the leakage current through different double quantum dot configurations

as a function of magnetic field and detuning for Device A. As we see, not all the scans reveal

very sharp steps in the current, but they are still clear enough to read off an effective g-factor

from the slope of the resonance associated with T+(1, 1) → S(0, 2) transition, as shown by

dashed lines. When extracting g-factors, we neglect the orbital effect of the magnetic field in

the two dots on the energy of the T+(1, 1)→ S(0, 2) transition. The dots are likely occupied

with heavy holes with a large effective mass, m∗ = 0.2me, for which we estimate a shift
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Figure 8.8: Magnetic field evolution of the leakage current in opposite bias directions.
Field evolution of the leakage current as a function of detuning controlled by gate voltages VG.
They have opposite bias directions: left panels have positive biases and right panels have negative
biases. They are associated with the two double quantum dot configurations shown in Fig.8.2 (top)
and Fig.8.3a (bottom), respectively.

of ≈ 10% in orbital level splitting using ∆E = h̄
√
ω2

0 + ω2
c/4 − h̄ω0 at B = 3 T, where

ωc = h̄eB/m∗ and ω0 ≈ 2 meV. At the same time, Zeeman shifts are comparable to the

singlet-triplet energy level spacing in the same field range greatly exceeding the estimated

orbital effect for these dots.

We apply magnetic fields in two different directions: (i) normal to the plane of the

nanowire and local gates (B⊥) and (ii) in-plane with the nanowire and gates, where the

nanowire makes an angle of ∼ 30◦ with the field (Bz).
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Figure 8.9: Perpendicular and in-plan g-factors. Leakage current is measured as a function
of magnetic field and detuning. a, Field is applied normal to the substrate. b, In-plane magnetic
field. The dashed lines show the slope of the resonance line moving as a function of field and
detuning from which we extract the effective g-factor.

Fig. 8.9 shows the leakage current through a charge degeneracy point in both directions

of applied magnetic field. The slopes from which we can read the effective g-factors are

different for the two cases of applied field, larger for the out-of-plane magnetic field and

smaller for the in-plane field.

Fig. 8.10 shows more examples of the in-plane magnetic field evolution of the leakage

current at two other charge degeneracy points, where g-factor values deviate from those

measured in B⊥ shown in Fig.8.9a and Fig.8.2. Also from these scans we extract a singlet-

triplet energy splitting EST ∼ 1–2 meV.
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Figure 8.10: In-plane g-factors. Leakage current through two different double dot configura-
tions both as a function of in-plane magnetic field and detuning. Dashed lines are used to extract the
effective g-factors along the direction of the magnetic field, and the singlet-triplet energy splittings
are shown by solid lines.

156



9.0 CONCLUSIONS

To explore experimental platforms for topological quantum computation and quantum simu-

lation, this thesis studies quantum transport in superconductor-semiconductor hybrid struc-

tures, based on two types of semiconductor nanowires, InSb nanowires and Ge/Si core/shell

nanowires.

Our experiments based in InSb nanowires explore Andreev bound states in chains that

are made of quantum dots coupled to superconductors. These devices have the potential

for applications in quantum computation including in the simulation of topological super-

conductors and Majorana zero modes. On the one hand, the chain structure is predicted to

circumvent challenges encountered in common implementation of Majorana zero modes that

is based on a single continuous nanowire section covered by a single superconductor. On the

other hand, the chain implementation is complex and challenging in device fabrication and

measurement. Because a chain contains a number of building blocks, each building block of

a chain is already a hybrid structure made of a quantum dot coupled to a superconductor,

and three parameters (ΓS, µ, t) in every building block must be controlled and tuned to the

desired parameter regime. We accomplish the chain implementation in the three following

steps.

We first achieve individual highly tunable building blocks, NbTiN-single quantum dot in

InSb nanowires, by developing local fine gates and highly transparent contacts. In this way,

we can tune all of the necessary parameters to create and control Andreev bound states in a

single building block independently and in a large parameter space. We explore rich transport

features in a number of regimes as ΓS is increased: from co-tunneling regime to Andreev

bounds state regime of |D〉 and |S〉 ground states. This is the subgap (superconducting)

transport. Transition of above-gap (normal) transport as ΓS is increased is also investigated:
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the quantized charging effect is removed as the dot is tuned to be strongly coupled to the

superconductor. Interestingly, we observe that the |D〉/|S〉 transition within the gap and

the suppression of quantized charging effect above gap take place simultaneously as the same

parameter, ΓS, is increased. In the open dot regime, we measure the zero bias peaks as a

function of µ and magnetic field, which maps out the |D〉/|S〉 phase boundary of Andreev

bound states. This phase boundary is found to be similar to the topological phase boundary

predicted. Finally, the single dot exhibits two transport anomalies that have not been

reported, i.e., high bias replicas and low bias negative differential conductance. We propose

a minimum model to explain these anomalies.

As a subsequent step aiming for chains, we study the hybridization of Andreev bound

states in two coupled dots. This is realized with a tunnel coupled double dot in an InSb

nanowire. The nanowire is connected to two superconducting leads from two ends such that

each quantum dot can be tuned to be strongly coupled to a superconductor. We measure the

double dot spectra as a function of bias and dot chemical potential (µL, µR), and also map

out the spin structure of the double dot Andreev bound states, meaning the spin states of

ground and first excited states in all representative double dot configurations. Importantly,

the spectra and the spin state map demonstrate that the Andreev bound states in two dots

are hybridized into molecular states, which is essential to the realization of coupled Andreev

bound states in chains.

Finally, we implement a superconductor-quantum dot chain made of three quantum dots

based on an InSb nanowire and three NbTiN leads. In the chain, we first create Andreev

bound states in individual building blocks, then hybridize the Andreev bound states between

neighboring building blocks, and finally realize the entire chain. The implementation, im-

portantly, demonstrates an experimentally realizable method to scale these hybrid structures

to long chains based in one-dimensional nanowires. We perform spectroscopy measurements

to explore the resonances through Andreev bound states in the triple dot as a function of a

function of bias and triple dot chemical potentials. Two types of magnetic field behaviors

are observed. The first type is splitting and can be explained in terms of Andreev bound

states. The second is a zero bias peak appearing from no merging of of split branches. This

zero bias peak starts at a finite magnetic field, and sustains for ∼ 0.5 T in magnetic field.
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This zero bias feature is hard to understand in term of Andreev bound states, the Kondo

effect, and supercurrent. Instead, it strongly resembles the previously reported zero bias

peak that has been interpreted as Majorana zero modes. Chains of next generation with a

few improvements (discussed below), however, are necessary to provide further evidence.

To sum up the experiments based on InSb nanowires, the elucidation of Andreev bound

states in single, double and triple dots open doors to future research. Importantly, they lead

to a direction of realizing the Kitaev model in terms of quantum dot chains. In addition, the

experiments demonstrate high tunability achieved in the chains, which displays the largely

unexplored potential of semiconductor systems for quantum simulation.

We suggest future directions starting from these specific experiments based on chains.

First, the triple dot devices are still far away from the long chain limit. Hence, the two Ma-

jorana zero modes at the two ends of the chain, if present, would be coupled considerably [2].

Therefore, long chains made of a large number of quantum dots is a natural direction in the

future. Besides, the phase differences between the three superconductors are not controlled

in the triple dot experiment. Controlling the phase differences can be accomplished by fab-

ricating superconducting circuits and applying local magnetic fluxes through the circuits. In

addition, although the chain implementation is realized based on 1D nanowires and can be,

in principle, scaled to long chains by fabricating multiple-terminal superconducting contacts

of small contact areas, it has been shown that incorporating such many components in a 1D

nanowire and controlling a large number of parameters independently place great challenges

in device fabrication and measurement. Some of these challenges can be solved in 2D semi-

conductors because more degrees of freedom are present. Two dimensional semiconductors

with strong spin-orbit coupling, sufficiently large g-factors and well-developed transparent

superconducting contacts, if found, would facilitate easier and more robust fabrication and

measurement of such complex chain structures.

More generally, for the entire community that is devoted to realize Majorana zero modes

based on superconductor-semiconductor hybrid structure, hard gap induced superconductiv-

ity is highly desired. This would eliminate ambiguities in experiments by ruling out trivial

states at zero bias caused by subgap quasiparticles. Also simulations of quantum dynamics

of Andreev bound states in quantum dot chains can be performed with hybrid structures
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of hard gap superconductivity [94, 95, 11]. Recently, epitaxial growth has been applied to

grow thin superconductor shells on the surface of InAs and InSb nanowires. This gives rise

to a significant improvement to the induced gap [94, 148]. Indeed, tunneling experiments

show that at zero magnetic field, the subgap density of states in devices with epitaxial su-

perconductors can be 100 times lower than those with evaporated superconductors. This

technique, however, may still not be sufficient for the study of Majorana zero modes because

even in these nanowires the subgap density of states increases as a magnetic field is applied,

which corresponds exactly to the regime where Majorana zero modes are predicted to ap-

pear. Further efforts in material engineering are necessary to generate even “harder” induced

superconducting gaps. Meanwhile, the search of intrinsic topological superconductors should

get attention.

Regarding measurement approaches, most of the current experiments focus on the prime

feature of Majorana zero modes: the zero bias feature. There is no doubt that a combination

of different signatures would provide stronger evidence of Majorana zero modes. In the short

term, non-local measurements should be explored. Because Majorana zero modes form in

pairs at the two ends of 1D channels, non-local effects are expected to be observed, if the

Majorana zero modes are present. Further experiments directed at investigating braiding

could directly test the non-abelian statistics of Majorana zero modes.

Our experiments, based on Ge/Si core/shell nanowires, explore the ingredients required

for the study of Majorana zero modes based on superconductor-nanowire hybrid structures:

induced superconductivity from superconductors with high critical magnetic fields, strong

spin-orbit coupling and sufficiently large g-factors. For the first ingredient, we develop su-

perconducting contacts based on NbTiN and observe supercurrent up to ∼ 1 T and induced

superconductivity with a soft gap. The induced superconductivity is comparable to that

in some devices reported for the study of Majorana zero modes [10, 13], and is worse than

that achieved with best current technique [12, 56]. For the other two ingredients, we study

quantum transport through hole double dots in Ge/Si nanowires. By implementing spin

blockade and examining its magnetic field evolution, we extract a spin-orbit length of 100–

500 nm that is similar to those in InSb and InAs nanowires. G-factors up to 8 are measured,

which can be sufficient. Therefore, in terms of the three ingredients necessary for the study
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of Majorana zero modes, Ge/Si nanowires have the potential to implement Majorana zero

modes. However, Ge/Si nanowires currently exhibit low feasibility to advanced devices for

the study of Majorana zero modes based on superconductor-nanowire structures or quan-

tum dot chains, because the yields of transparent superconducting contacts and high quality

nanowires without disorder or impurities are low. Epitaxially grown superconducting shells

may improve the former. Developing and optimizing nanowire growth technique and de-

vice fabrication can help the latter. Finally, all of the discussion for future improvements

discussed previously also applies to Ge/Si nanowires.
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Erik PAM Bakkers, Andrew J Daley, David Pekker, and Sergey M Frolov. Andreev
molecules in semiconductor nanowire double quantum dots. Nature Communications,
8, 2017.

[62] Philippe Caroff, Jakob B. Wagner, Kimberly A. Dick, Henrik A. Nilsson, Mattias Jepps-
son, Knut Deppert, Lars Samuelson, L. Reine Wallenberg, and Lars-Erik Wernersson.
High-quality inas/insb nanowire heterostructures grown by metalorganic vapor-phase
epitaxy. Small, 4:878–882, 2008.

167



[63] Sbastien R. Plissard, Dorris R. Slapak, Marcel A. Verheijen, Mora Hocevar, George
W. G. Immink, Ilse van Weperen, Stevan Nadj-Perge, Sergey M. Frolov, Leo P.
Kouwenhoven, and Erik P. A. M. Bakkers. From insb nanowires to nanocubes: Looking
for the sweet spot. Nano Letters, 12(4):1794–1798, 2012.

[64] V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen,
PlissardS. R., E. P. A. M. Bakkers, and L. P. Kouwenhoven. Electrical control of single
hole spins in nanowire quantum dots. Nat Nano, 8:170–174, 2013.

[65] Shadi A. Dayeh, Wei Tang, Francesca Boioli, Karen L. Kavanagh, He Zheng, Jian
Wang, Nathan H. Mack, Greg Swadener, Jian Yu Huang, Leo Miglio, King-Ning Tu,
and S. Tom Picraux. Direct measurement of coherency limits for strain relaxation
in heteroepitaxial core/shell nanowires. Nano Letters, 13(5):1869–1876, 2013. PMID:
23030346.

[66] O. P. Pchelyakov, Yu B. Bolkhovityanov, A. V. Dvurechenskii, L. V. Sokolov, A. I.
Nikiforov, A. I. Yakimov, and B. Voigtländer. Silicon-germanium nanostructures with
quantum dots: Formation mechanisms and electrical properties. Semiconductors,
34(11):1229–1247, 2000.

[67] Christoph Kloeffel, Mircea Trif, and Daniel Loss. Strong spin-orbit interaction and
helical hole states in ge/si nanowires. Phys. Rev. B, 84:195314, Nov 2011.

[68] G. E. Blonder, M Tinkham, and T. M. Klapwijk. Transition from metallic to tunneling
regimes in superconducting microconstrictions: Excess current, charge imbalance, and
supercurrent conversion. Physical Review B, 25(7):4515, 1982.

[69] D. B. Suyatin, C. Thelander, M. T. Bj́’ork, I. Maximov, and L. Samuelson. Sulfur pas-
sivation for ohmic contact formation to inas nanowires. Nanotechnology, 18(10):105307,
2007.

[70] J. Hölzl, F. K. Schulte, and H. Wagner. Solid Surface Physics. Springer Berlin Heidel-
berg, 1979.

[71] William M. Haynes and David R. Lide. CRC Handbook of Chemistry and Physics : A
Ready-reference Book of Chemical and Physical Data. Raton, Fla.: CRC, 2011.

[72] C. Henkel, S. Abermann, O. Bethge, P. Klang, and E. Bertagnolli. Impact of sputter
deposited tan and tin metal gates on zro2/ge and zro2/si high-k dielectric gate stacks.
In 2009 10th International Conference on Ultimate Integration of Silicon, pages 197–
200, March 2009.

[73] Wenjuan Lu, Yuehua Dai, Feifei Wang, and Bo Jin. Impact of native defects and
impurities in mhfo2 and si3n4 on charge trapping memory devices: A first principle
hybrid functional study. physica status solidi (b), pages n/a–n/a, 2016.

168



[74] Matsunaga T., H. Maezawa, and T. Noguchi. Characterization of nbtin thin films
prepared by reactive dc-magnetron sputtering. IEEE Transactions on Applied Super-
conductivity, 13(2):3284–3287, June 2003.

[75] David Aasen, Michael Hell, Ryan V. Mishmash, Andrew Higginbotham, Jeroen Danon,
Martin Leijnse, Thomas S. Jespersen, Joshua A. Folk, Charles M. Marcus, Karsten
Flensberg, and Jason Alicea. Milestones toward majorana-based quantum computing.
Phys. Rev. X, 6:031016, 2016.

[76] D. Chevallier, P. Simon, and C. Bena. From andreev bound states to majorana fermions
in topological wires on superconducting substrates: A story of mutation. Phys. Rev.
B, 88:165401, Oct 2013.

[77] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and Ali Yazdani. Proposal for realizing
majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B,
88:020407, Jul 2013.

[78] Jelena Klinovaja, Peter Stano, Ali Yazdani, and Daniel Loss. Topological supercon-
ductivity and majorana fermions in rkky systems. Phys. Rev. Lett., 111:186805, Nov
2013.

[79] Chun-Xiao Liu, Jay D Sau, Tudor D Stanescu, and S Das Sarma. Andreev bound
states versus majorana bound states in quantum dot-nanowire-superconductor hybrid
structures: Trivial versus topological zero-bias conductance peaks. arXiv preprint
arXiv:1705.02035, 2017.

[80] K. Grove-Rasmussen, H. I. Joddrgensen, B. M. Andersen, J. Paaske, T. S. Jespersen,
J. Nyg̊ard, K. Flensberg, and P. E. Lindelof. Superconductivity-enhanced bias spec-
troscopy in carbon nanotube quantum dots. Phys. Rev. B, 79:134518, Apr 2009.

[81] J. C. Cuevas, A. Levy Yeyati, and A. Martin-Rodero. Kondo effect in normal-
superconductor quantum dots. Physical Review B, 63(9):094515, 2001.

[82] Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham, , and
Hongkun Park. Fabry - perot interference in a nanotube electron waveguide. Nature,
411:665–669, 2001.

[83] B. M. Andersen, K. Flensberg, V. Koerting, and J. Paaske. Nonequilibrium trans-
port through a spinful quantum dot with superconducting leads. Phys. Rev. Lett.,
107:256802, Dec 2011.

[84] Cristina Bena. Metamorphosis and taxonomy of andreev bound states. The European
Physical Journal B-Condensed Matter and Complex Systems, 85(6):1–11, 2012.

[85] Tim Byrnes, Na Young Kim, Kenichiro Kusudo, and Yoshihisa Yamamoto. Quantum
simulation of fermi-hubbard models in semiconductor quantum-dot arrays. Phys. Rev.
B, 78:075320, 2008.

169



[86] A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. I. Kat-
snelson, A. Pinczuk, L. N. Pfeiffer, K. W. West, and V. Pellegrini. Two-dimensional
mott-hubbard electrons in an artificial honeycomb lattice. Science, 332(6034):1176–
1179, 2011.

[87] Pierre Barthelemy and Lieven M. K. Vandersypen. Quantum dot systems: a versatile
platform for quantum simulations. Annalen der Physik, 525:808–826, 2013.

[88] A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden, C. Schönenberger, and
H. Bouchiat. Tuning the josephson current in carbon nanotubes with the kondo effect.
Phys. Rev. B, 79:161407, 2009.

[89] D. Sherman, J. S. Yodh, S.M. Albrecht, J. Nyg̊ard, P. Krogstrup, and C. M. Mar-
cus. Normal, superconducting and topological regimes of hybrid double quantum dots.
Nature nanotechnology, 12(3):212–217, 2017.

[90] Torsten Karzig, Christina Knapp, Roman M Lutchyn, Parsa Bonderson, Matthew B
Hastings, Chetan Nayak, Jason Alicea, Karsten Flensberg, Stephan Plugge, Yuval
Oreg, et al. Scalable designs for quasiparticle-poisoning-protected topological quantum
computation with majorana zero modes. Physical Review B, 95(23):235305, 2017.

[91] Stephan Plugge, Asbjoddrn Rasmussen, Reinhold Egger, and Karsten Flensberg. Ma-
jorana box qubits. New Journal of Physics, 19(1):012001, 2017.

[92] Tobias Meng, Serge Florens, and Pascal Simon. Self-consistent description of andreev
bound states in josephson quantum dot devices. Phys. Rev. B, 79:224521, Jun 2009.

[93] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider,
S. Das Sarma, and L. M. K. Vandersypen. Quantum simulation of a Fermi-Hubbard
model using a semiconductor quantum dot array. ArXiv e-prints, February 2017.

[94] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup, J Nygärd, and
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