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             Chemotherapy is the mainstream method of cancer therapy. In addition to direct cytotoxic 

effects on tumor cells, chemotherapy can induce antitumor immunity. The shortcomings of traditional 

chemotherapy are attributed to low solubility in aqueous solutions, rapid elimination, and lack of 

selectivity. In addition, cancers rapidly establish an immunological tolerance to the chemotherapy-

induced antitumor immunity. The immune tolerance and suppression represent a major barrier to 

successful cancer treatment and are potential target for new therapeutics. Recent evidence demonstrates 

that an important mechanism underlying the immunological tolerance is the upregulated indoleamine-

2,3-dioxygenase (IDO) expression in tumor cells or tumor-associated immune cells. Therefore, IDO 

pathway inhibition offers a potential for enhanced anti-tumor responses of chemotherapeutic agents.  

              In our previous study, systemic delivery of paclitaxel (PTX) using the PEG2k-Fmoc-NLG 

nanocarrier, a PEG-modified prodrug of NLG919 (an IDO1 selective inhibitor), led to a significantly 

enhanced anti-tumor effect of PTX by reactivating immunogenic responses. In this study we examined 

the therapeutic potential of a new nanocarrier that is based on a prodrug of 1-methyl-d-trptophan (1-D-

MT). 1-D-MT is also an IDO inhibitor but has been reported to enhance antitumor immunity via 

different mechanism. The nanocarrier will be developed via reversible addition fragmentation transfer 
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(RAFT) polymerization. In addition to the simplicity of the synthesis of the nanocarrier, the amount of 

1-D-MT that can be incorporated into the polymer can be readily tuned via controlling the degree of 

polymerization. 

               Two 1-D-MT-based monomers were first synthesized followed by RAFT polymerization to 

give well-defined di-block co-polymers. Several polymers were synthesized and they varied in the molar 

ratio of hydrophilic POEG block/hydrophobic 1-D-MT block and the type of linker. Preliminary data 

showed that a 1-D-MT polymer with ethylene glycol vinyl ether linker can only load limited amounts of 

PTX and doxorubicin (DOX). Introduction of a vinylbenzyl chloride linker led to an improvement in 

drug loading capacity. More studies on the biophysical and biological properties of the new carrier are 

currently underway.  
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                                                      INTRODUCTION 

1.1 CURRENT TREATMENT REGIMEN FOR BREAST CANCER 

      Chemotherapy can be used as adjuvant and neoadjuvant chemo before or after breast cancer surgery, 

the benefit of which is particularly pronounced in triple negative (ER-, PR-, HER2-) tumors
1
. The most 

frequently used therapeutic regimen includes paclitaxel (PTX) and docetaxel and doxorubicin (DOX).  

 

 

1.2 LIMITATIONS OF TRADITIONAL CHEMOTHERAPY 

       The general shortcomings of traditional chemotherapy are attributed to aqueous solubility and lack 

of selectivity.  

1.2.1 Aqueous Solubility 

       The poor water-solubility of the aforementioned compounds is due to their bulky polycyclic 

structure, based on which it is hard for those high lattice energy molecules to dissolve in aqueous 

solutions. In addition, the bulky polycyclic nature makes it difficult for those molecules to form 

hydrogen bonds with water
2
. The solubility issue of anticancer drugs is further magnified when taking 

intravenous administration into consideration
3
 because most anticancer drugs are delivered 
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intravenously in clinical application. As for those irritating anticancer drugs, intravenous infusion is 

usually applied to achieve a more desirable pharmacokinetic profile and prevent gastrointestinal toxicity. 

A drug with poor solubility is unviable for this route of administration. Thus, these drugs deserve more 

attention in order to make them safe and effective for clinical applications.   

 

1.2.2 Lack of Selectivity 

        The other major problems of anticancer drugs are associated with the effect of their toxicities on 

healthy cells and the difficulty for them to be delivered efficiently to designated sites.  

        The mechanisms of action (MOA) of those compounds are largely focused on inhibition of DNA 

synthesis and cell division
4
. Therefore, they are highly efficient at killing cancer cells that are dividing at 

a much faster rate than most of normal cells
5
. However, some healthy cells also have high proliferation 

rates, such as the cells in the hair follicles
6
, digestive tract and bone marrow

5
. As for those cells, they are 

also sensitive to anticancer drugs. This results in severe side-effects, including hair loss, inflammation of 

the lining of the digestive tract, and decreased production of blood cells and immune cells.  

        In addition, anticancer drugs are broadly distributed in all body tissues after the intravenous 

injection, which significantly limits the efficiency of their delivery to tumor tissues
5
. It has been reported 

that less than 5% of those anticancer drugs can reach the tumor sites. Therefore, large doses of 

anticancer drugs are given to patients aiming to achieve effective dosage at designated sites. However, 

this strategy results in undesirable side effects at the same time because it can increase the distribution of 

anticancer drugs in normal tissues. Thus, there is an urgent need to improve the distribution profiles of 

anticancer drugs.  
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Table 1. Solubility, Partition Coefficient Data and Mechanisms of Selected Anticancer Drugs 

Drug Aqueous Solubility 

(25℃)*f 

Partition Coefficient Category Function 

Chemotherapeutic drugs      

Paclitaxel           ＜0.3 ug/mL 3.5   

  Mitosis inhibitors 

  

Target microtubules and 

associated proteins 

required  in cell division 
Docetaxel             4.93 ug/mL 2.92 

Doxorubicin. HCl               2.6 mg/ml 0.52 Antitumor antibiotics Bind DNA to prevent DNA 

and/or RNA synthesis 

Biopharmaceutics Classification System (BCS): poorly water-soluble drug was defined as the drug that its highest dose strength is not or 

less soluble in 250ml of aqueous media over the PH range of 1 to 7.5.  

 

1.3 PROSPECTIVE  OF NANOMEDICINE IN CANCER THERAPY 

       Nanotechnology has its distinctive features for drug delivery by enhancing the pharmaceutical 

properties of therapeutic agents
7
. These vehicles can improve the solubility of water-insoluble drugs and 

meanwhile increase efficacy or reduce toxicities of therapeutic molecules by improving their distribution 

at desired target sites. Those features encourage people to apply this technology to cancer therapy. Until 

now, there are a number of nanocarrier systems under investigation around the world. Among all the 

platforms, liposomes, albumin nanoparticles and polymeric micelles have been approved for cancer 

treatment
8
. Many other nanotechnologies have demonstrated great potentials in preclinical studies and 

are currently under clinical investigation.               

 

1.3.1 EPR Effect for Passive Targeting 

         The preferential accumulation of intact nanoparticles within solid tumors is generally attributed to 

the leaky tumor vessels and poor lymphatic drainage systems of the tumor tissues, known as the 
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enhanced permeability retention (EPR)
9
 effect. The enhanced permeability of the leaky tumor 

vasculatures facilitates the entry of nanoparticles into the tumor interstitial space given that the sizes of 

the particles are in the range of 100~500 nm. On the other hand, the poorly developed lymphatic 

drainage systems increase the retention times of those nanoparticles within solid tumor tissues. The 

aforementioned effect is fundamental for the selectivity and therapeutic activity of those nanoparticles, 

which was well characterized in xenografted human and murine models in mice. Recently, the existence 

of this phenomenon in human tumors has been published by Lee and Davis group. The Mark E. Davis 

group
10

 observed that CRLX101 nanoparticles, consisting of a cyclodxtrin-based polymer and 

camptothecin, can accumulate in gastric tumors following intravenous injection in a clinical trial of five 

patients. In addition, the accumulation of 
64

Cu-labled nanoparticles
11

 within tumor sites was found in 

patients, the results of which were validated by PET/CT imaging. The aforementioned evidence of 
64

Cu-

labled nanoparticles establishes that the EPR effect is present in human metastatic tumors.   

 

1.3.2 Polymeric Micelles as Nanocarriers for Cancer Treatment 

        Polymeric micelles are an aggregate of block amphiphilic copolymers (di-block, tri-block and graft 

block), homogenously dispersed in aqueous solutions. They are regarded as one of the most promising 

modalities among all drug carriers. Usually, polymeric micelles have a core-shell structure, composed of 

an inner hydrophobic core and an outer hydrophilic shell. The hydrophobic core can provide a loading 

space for poorly water-soluble drugs due to hydrophobic-hydrophobic interactions. The surrounded 

hydrophilic shell helps to improve the solubility of those limited-solubility drugs. The most commonly 

used hydrophilic segment was polyethylene glycol (PEG), which is a safe, non-toxic and biodegradable 

polymer. Apart from enhancing their solubility, PEG modification enhances the stability of polymeric 
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micelles and increases their circulation time in the blood. At first, PEG reduces the undesirable 

aggregation of polymeric micelles through secondary interactions among those particles. In addition, 

PEG modifications prevent the recognition and binding of plasma proteins, minimizing the nonspecific 

uptake of polymeric micelles by the reticuloendothelial system (RES).    

        The growing interest of polymeric micelles is attributed to their attractive features. Polymeric 

micelles can be prepared by an easy method and can be sterilized simply by filtration, taking advantage 

of their small sizes (10nm-100nm). Compared with micelles formed by low-molecule surfactants, these 

micelles are more kinetically stable. In addition, polymeric micelles can preferentially accumulate at 

tumor sites through the EPR effect. One prominent advantage of polymeric micelles is that they can be 

easily modified to achieve functional and tunable effects. Currently, several polymeric micelles are 

under clinical investigation
8
 such as Genexol-PM, NK-105 and CRLX-001, among which Genexol-PM 

was approved in South Korea for breast cancer and non-small-cell lung carcinoma (NSCLC) treatment.  

 

1.3.3 Rationale of Combination Therapy Using Pharmacologically Active Polymeric Micelles 

         The stability of polymeric micelles largely depends on the type and molecular weight of their 

hydrophobic block
12

. In most cases, the higher the molecular weight of a hydrophobic domain, the more 

stable the polymeric micelles are. Nonetheless, most of the carrier materials do not have biological 

activities other than the function of delivery. The use of large amounts of carrier materials also raises 

some safety concerns
13

. One strategy to address this issue is to use hydrophobic therapeutic agents to 

replace the inert internal domains of the polymeric micelles. These prodrugs-based carriers not only 

solve the solubility issue of internal hydrophobic drugs by conjugating them with a hydrophilic 
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polymeric shell, but also prevent the burst release of the aforementioned internal domain through 

modulating their release profile. 

         In addition, monotherapy based on an individual drug has some limitations such as drug resistance, 

narrow therapeutic windows and inevitable side effects induced by high dosages of a single drug. 

Therefore, this type of pharmacologically active vehicle provides a unique strategy to achieve 

combination therapy, which circumvents the aforementioned problems through the loading of another 

poorly water-soluble drug within the hydrophobic core. By applying such a pharmacologically active 

carrier, the overall antitumor effects can be enhanced by a synergistic effect achieved through 

simultaneous co-delivery of two drugs to tumor sites.  

 

1.4 1-D-MT BASED NANOCARRIER SYSTEMS 

1.4.1 Combination of Chemotherapy and Immunotherapy 

        The combination of traditional chemotherapeutic agents and immunotherapies is regarded as a valid 

therapeutic approach to cancer treatment
14

, which was supported by data from clinical studies. The 

mechanism behind this successful combination might due to the enhanced immune response of 

conventional anticancer drugs in addition to their direct killing effects on tumor cells. Taxanes 

(paclitaxel and docetaxel) and anthracycline (doxorubicin) are the most popular chemotherapeutics in 

clinical application for breast cancer treatment. Those drugs can induce a protective immune response
15

, 

which might help to enhance the overall antitumor efficacy
16

. However, the effectiveness of those 

chemotherapeutics-induced immune responses is limited by a variety of feedback suppressive circuits 

during tumor development and cancer treatment.  
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         Therefore, a blockade of inducible negative feedback mechanisms represents one of the most 

promising approaches to enhance the immune response for cancer treatment. Indeed, exciting results 

have been obtained from preclinical and clinical trials with the use of the CTLA-4 and PD-1 pathway 

inhibitors, known as Ipilimumab (Yevoy®       iv  u      Opdivo®)
17

. The aforementioned CTLA-4 

and PD-1 are two important inhibitory proteins involved in immune checkpoint pathways and their 

expressions are upregulated on activated T cells. Indoleamine 2,3-dioxygenase (IDO) is another counter 

regulatory protein, which plays an important role in generating an immunosuppressive 

microenvironment. Interestingly, IDO enzyme is reported to interact both with CTLA-4 and PD-1 

checkpoints via complex loops that are not clearly elucidated
18,19

. Based on the existing evidence, the 

expression of CTLA-4 on regulatory T (Treg) cells leads to upregulation of IDO enzymes on dendritic 

cells (DCs), while the upregulated IDO enzymes can increase the expression of PD-1 on Treg cells.  

 

1.4.2 IDO is a Potential Therapeutic Target for Enhancing Immune Response 

         L-Tryptophan is known as an essential amino acid with a typical indole ring on its structure, which 

can be metabolized to kynurenine by three distinctive IDO enzymes
20

, including indoleamine 2,3-

dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO). 

Generally, the IDO enzyme was found to be upregulated in the tumor cells themselves, in tumor 

associated endothelial cells as well as in some host immune cells such as macrophages and dendritic 

cells during the late stage of tumorigenesis, which directly or indirectly participates in the 

immunosuppressive pathway.  

        The decreased amount of tryptophan activates the stress-response kinase GCN2, which leads to 

inhibition of the proliferation of T cells (CD4
+
 T cells and CD8

+ 
T

 
cells), and a biased differentiation of 
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naïve CD4
+
 T cells toward Treg cells. The increased kynurenine metabolites are capable of activating 

the aryl hydrocarbon receptor (AhR), which causes a biased differentiation of macrophages toward 

tumor associated macrophages (TAMs), an immunosuppressive phenotype. In addition, the IDO 

enzymes and IDO-activated Treg cells are highly associated with the increased suppressive function of 

myeloid-derived suppressor cells (MDSC). The increased infiltration of MDSCs, Tregs and TAMs is an 

important clinical indicator for poor patient prognosis and possible resistance to therapies. Therefore, the 

pharmacological inhibition of IDO enzymatic activity represents a promising approach to enhance 

immune response. For these reasons, numerous IDO inhibitors have been developed for increasing the 

therapeutic efficacy of cancer treatment. 
19

 

Table 2. IDO pathway inhibitors in clinical trials 

 
IDO Pathway Inhibitors Clinical Trials 

Indoximod Phase II (multiple) 

Epacadostat (INCB024360) Phase II (multiple) 

GDC-0919 (NLG919) Phase I/II (multiple) 

BMS-986205 Phase I (Entry) 

PF-06840003 Phase I (Entry) 

 

1.4.3 1-Methyl-Trptophan 

1.4.3.1 1-Methyl-D-Tryptophan (Indoximod) 

         1-methyl-D, L-tryptophan (1-D, L-MT), a racemic mixture of two stereoisomers (1-D-MT, 1-L-

MT), is one of the first well-studied IDO inhibitors. There has been a long-standing debate as to which 

stereoisomer is superior for cancer immunotherapy. Interestingly, the L counterpart of 1-MT has a 

higher potency in cell based assays, while its D counterpart has proved to be more effective regarding 
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immunostimulatory effects in vivo
21

. Hence, 1-methy-D-tryptophan (indoximod) is selected as the 

potential candidate in clinical trials as an adjunct approach to conventional chemotherapy.  

Table 3. Ongoing clinical trials testing the clinical profile of indoximod in cancer patients 
21

 

Indications Phase Status Notes Reference 

Brain neoplasms  I/II Recruiting Combined with temozolomide NCT02052648 

Breast carcinoma I/II Active, not recruiting Combined with an experimental DC-based vaccine 

   

Combined with docetaxel 

NCT01042535 

 II Recruiting NCT01792050 

Melanoma I/II Recruiting Combined with ipilimumab NCT02073123 

Pancreatic carcinoma I/II Not yet Recruiting  Combined with gemcitabine and paclitaxel NCT02077881 

Prostate carcinoma II Recruiting Combined with sipuleucel-T NCT01560923 

 

1.4.3.2 Unclear Mechanism of Action by 1-Methyl-D-Tryptophan 

       1-D-MT was firstly known as an IDO1-specific inhibitor. One remaining puzzling issue has been 

the fact that this compound does not exhibit a significant inhibitory activity on IDO1 enzyme in vitro, 

but somehow shows an effect that closely mimics the biological consequence of IDO1 enzymatic 

inhibition in vivo.  

        Experimental evidence accumulated from a large number of studies has confirmed that 1-D-MT 

does participate in the inhibition of IDO1 pathway. However, the current experimental data also point to 

the conclusion that 1-D-MT might be involved in several other mechanisms: 1) preferential inhibition of 

the IDO2 isoform
22

; 2) racemization of the D-isomer to the L-counterpart or alternative formation of 1-

D-MT metabolites in vivo; 3) inhibition of tryptophan transport; 4) inhibition of WARS1 or WARS2, the 

enzymes which are involved in tryptophan sensing; 5) alteration of autophagy or bypassing the mTOR-

inactivated mechanisms under the conditions of amino acid deprivation. These mechanisms warrant 

further investigation.   
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1.4.3.3 Pharmacokinetics and Formulations of 1-Methyl-D-Tryptophan 

        Indoximod is an oral medication with a favorable pharmacokinetic (PK) profile (T1/2~10h, 

Tmax~3h) and a good safety profile in animals
23

. However, clinical pharmacokinetic studies have 

demonstrated that indoximod failed to exhibit linear PK characteristics at doses above 800mg/kg and up 

to 2000mg/kg, with its maximum drug exposure levels (AUC(0~last)) of ~100uM.h and plasma 

concentration (Cmax) of 15uM. This is different from studies in mice in which greater drug exposure 

(>300uM.h) and higher Cmax (>20uM) can be  achieved via oral dosing at 200 mg/kg b.i.d.
24

 Thus, the 

therapeutic activity of this investigational drug might be limited and it is desirable to increase the drug 

exposure and Cmax so as to reach better levels for therapeutic efficacy. However, this problem cannot 

be solved merely by increasing the doses of this drug to patients due to its non-linear PK profile. 

         For these reasons, different formulation forms of indoximod have been investigated such as salts, 

spray dry dispersion and a series of prodrugs with different salt forms. Nevertheless, the results of these 

studies showed that only a few selected prodrugs can result in improved solubility and increased in vivo 

exposure upon oral administration
24

. In addition, there are other issues that negatively affect the 

therapeutic efficacy such as fast blood clearance of small molecules, which necessiates frequent dosing 

regimens. These existing have prompted us to develop an intravenous strategy for improving the 

bioavailability of indoximod at tumor tissues.  

 

1.4.4 PEG-Derivatized 1-D-MT Based Dual Functional Nanocarrier Systems  

         The free base form of 1-D-MT is barely soluble in aqueous solutions. One common strategy to 

enhance the solubility of hydrophobic drugs is to solubilize them in organic solvents at first and then 

dilute this stock solution with aqueous buffers
2
. However, the solubility of 1-D-MT in these organic 
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solvents is limited as well, such as tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and methanol 

and dimethylformamide (DMF). It is difficult to load 1-D-MT into a micelle carrier due to the limited 

solubility of 1-D-MT in both volatile solvents and aqueous solvents. In order to address this issue, 1-D-

MT can be conjugated with PEG to generate a “PEGylated polymeric prodrug” to enhance its solubility 

in aqueous solutions. An additional advantage is that the PEG modification can prevent the rapid 

elimination of these small molecules and prolong their circulation time in the body due to the following 

reasons: 1) PEG has shielding effects by masking the 1-D-MT agent from recognition by host immune 

system (reduced antigenicity and immunogenicity), 2) with the modification of PEG, the overall 

hydrodynamic size of the 1-D-MT-PEG micelles is increased, which  helps to reduce their renal 

clearance, 3) PEG modification can  prevent the interaction of amine group with plasma proteins 

through the PEG outer shell. Unlike linear PEG, poly(oligo(ethylene glycol) methacrylate) (POEG) is a 

hydrophilic block chain, which can be polymerized into polymeric backbone in a tunable manner. POEG 

shall provide similar effects compared to PEG
25

.    

           As previously mentioned, the major application of 1-D-MT in cancer treatment is in combination 

with another traditional chemotherapeutic agent
21

.  We hypothesize that our polymeric micellar carrier 

that is based on a prodrug of 1-D-MT can simultaneously deliver the 1-D-MT agent and another 

conventional therapy such as doxorubicin into the tumor sites to achieve a synergistic effect.  We have 

recently shown that delivery of paclitaxel (PTX) using the PEG2k-Fmoc-NLG nanocarrier, a PEG-

derivatized prodrug of NLG919, leads to significantly improved tumor immune microenvironment and 

enhanced antitumor response. NLG919 is also an IDO1 inhibitor but with much higher specificity. In 

this study we examined the therapeutic potential of a new nanocarrier that is based on a prodrug of 1-

methyl-d-trptophan (1-D-MT). 1-D-MT is also an IDO inhibitor but has been reported to enhance 

antitumor immunity via different mechanism. The nanocarrier will be developed via reversible addition 
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fragmentation transfer (RAFT) polymerization. In addition to the simplicity of the synthesis of the 

nanocarrier, the amount of 1-D-MT that can be incorporated into the polymer can be readily tuned via 

controlling the degree of polymerization. 

 

1.5 OVERVIEW OF THE THESIS 

 
 
 

 

Figure 1. Overview of the Design Concept 
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          Two 1-D-MT-based monomers were first synthesized followed by RAFT polymerization
26

 to give 

well-defined di-block co-polymers with five steps. Several polymers were synthesized and they varied in 

the molar ratio of hydrophilic POEG block/hydrophobic 1-D-MT block and the type of linker. 

Preliminary data showed that a 1-D-MT polymer with ethylene glycol vinyl ether linker can only load 

limited amounts of PTX and doxorubicin (DOX). Introduction of a vinylbenzyl chloride linker led to an 

improvement in drug loading capacity. Interestingly, with the assistance of its primary amine group, it 

showed potential to interact with plasmid DNA. More studies on the biophysical and biological 

properties of the new carrier are currently underway.  
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MATERIALS AND METHODS 

2.1 MATERIALS 

1-methyl-d-trptophan (1-D-MT) was purchased from Sigma-Aldrich (MO, USA). Vinylbenzyl chloride, 

potassium carbonate (K2CO3), Azobisisobutyronitrile (AIBN), Sodium hydroxide (NaOH), 2-

Hydroxyethyl methacrylate, N,N'-Dicyclohexylcarbodiimide (DCC), 4-Dimethylaminopyridine (DMAP) 

di-tert-butyl dicarbonate, 1,4-Dioxane,  Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), 

Tetrahydrofuran (THF), Ethylacetate (EA), Doxorubicin hydrochloride (DOX·HCl) was obtained from 

LC Laboratories (MA, USA), Triethylamine (TEA) ---Fisher Scientific, 4-Cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid, Poly(ethylene glycol) methyl ether methacrylate 

(OEGMA, Mn=500);  
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2.2 SYNTHESIS OF 1-D-MT BASED POLYMERS 

2.2.1 Synthesis of Boc-Protected 1-D-MT 

         1-D-MT (200mg, 0.909mmol, 1.0 eq), NaOH (86mg, 2.15mmol, 2.36 eq) and di-tert-butyl 

dicarbonate (470mg, 2.15mmol, 2.36eq) were dissolved in a mixed solvent of THF (9ml) and H2O 

(9.8ml). 
27

The mixture was stirred at room temperature for 48h. THF was evaporated under reduced 

pressure, and the remaining aqueous layer was acidified with 1N HCl to PH=3. 1-D-MT-Boc was 

extracted by ethylacetate for three times, and the organic layer was collected and concentrated to give 

the product as a yellow solid (264mg, 0.825mmol, 90% yield).   

 

2.2.2 Sythesis of POEG MacroCTA 

         POEG MacroCTA was synthesized and purified following a published literature. Briefly, OEGMA 

500 (3.05g, 6.10mmol, 20.5 eq), 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid 

(120mg, 0.297 mmol, 1.0 eq), AIBN (8mg, 0.048mmol) and 5ml anhydrous THF were mixed in a 

schlenk tube. The mixture was then purged with nitrogen so as to remove the oxygen dissolved in the 

reaction solvents by using a freeze-pump-thawing method. Then, the tube was immersed in an oil bath at 

85℃ for 2.5h under nitrogen protection. After polymerization, the reaction was first quenched in a 

liquid nitrogen bath. Next, the POEG MacroCTA was purified by precipitation and extraction using cold 

diethyl ether for three times. Finally, POEG was obtained in the form of yellow liquid oil (2.3977g, 91% 

yield), followed by vacuum drying. The conversion rate was 86% as determined by 
1
H NMR 

spectroscopy.  
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2.2.3 Synthesis of POEG-G-1-D-MT Polymers 

 

 

Figure 2. Synthesis scheme of POEG-G-1-MT polymers via RAFT polymerization 

 
 
2.2.3.1 Synthesis of G-1-D-MT Monomer 

         1-D-MT-Boc (264mg, 0.825mmol, 1.0 eq), 2-hydroxyl methacrylate (129mg, 0.99mmol, 1.2 eq), 

N,N'-Dicyclohexylcarbodiimide (DCC, 205mg, 0.99mmol, 1.2 eq), and 4-Dimethylaminopyridine 

(DMAP, 20mg, 0.165mmol, 0.2 eq) were dissolved in 5ml DCM and the mixture was then stirred 

overnight at ambient temperature. The insoluble dicyclohexylurea (DCU) was filtered through cotton at 

first and the organic layer was collected and washed with HCl (PH=2) and saturated NaCl solution. 

Then, the organic solvent was removed under reduced pressure to afford a crude product. The crude was 
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finally purified by a column chromatograph (diethyl ether/petroleum ether, 5/5) to afford the product as 

a colorless oil form (264mg, 0.825mmol, 90% yield).   

 

2.2.3.2 Synthesis of POEG-G-1-D-MT-Boc Polymers 

            POEG MacroCTA (170mg, 0.0192mmol, 1.0 eq), G-1-D-MT-Boc monomer (140mg, 

0.325mmol, 16.9 eq ), AIBN (2mg, 0.0122mmol) and 2ml anhydrous 1,4-Dioxane were added into a 

Schlenk tube. After three-times free-pump-thaw cycles, the deoxygenated mixture was immersed into a 

90℃ oil bath under nitrogen protection. The polymerization was stopped after 18h reaction, and then the 

reaction mixture was precipitated in petroleum ether for three times. The POEG-G-1-D-MT-Boc 

polymers were finally obtained after vacuum drying. Conversion of G-1-D-MT-Boc monomer was 50%.  

 

2.2.3.3 Deprotection of POEG-G-1-D-MT-Boc Polymers 

            The POEG-G-1-D-MT-Boc polymers were de-protected in the mixture solution of DCM/TFA 

(6/5, v/v) at ambient temperature. After 1.5 hours, the reaction mixture was precipitated in diethyl ether 

for one time. The crude product was dissolved in the mixed solvents of DCM/Ethanol and was then 

precipitated by ether again. The de-protected polymers were dried in vacuum to give the product in a 

sticky and brown oil form.   
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2.2.4 Synthesis of POEG-V-1-D-MT Polymers 

 

 

Figure 3. Synthesis scheme of POEG-V-1-MT polymers via RAFT polymerization 

 
 

2.2.4.1 Synthesis of V-1-D-MT-Boc Monomer 

            1-D-MT-Boc (264mg, 0.825mmol, 1.0 eq), vinylbenzyl chloride (130mg, 0.852mmol, 1.03 eq) 

and K2CO3 (571mg, 4.13 mmol, 5.0 eq) were dissolved in 5.5ml DMF and the mixture was then stirred 

overnight at 50℃. The c   e  re cti    ixture w s tr  sferre  t  50   w ter     the cru e pr  uct w s 

extracted by DCM. The organic phase was collected and washed by H2O for three times to remove the 

remaining DMF and K2CO3. Then the organic phase was evaporated to give the crude product, 
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following being dried by sodium sulfate. The purified product was given via silica gel chromatography 

(diethyl ether/petroleum ether, 1/9). The V-1-D-MT-BOC monomer was finally obtained in a colorless 

yellow oil form.  

 

2.2.4.2 Synthesis of POEG-V-1-D-MT-Boc Polymers 

            POEG MacroCTA (194mg, 0.0219mmol, 1.0 eq), G-1-D-MT-Boc monomer (161mg, 

0.371mmol, 14.5 eq ), AIBN (1.4mg, 0.00852mmol) and 2.3ml anhydrous 1,4-Dioxane were added into 

a Schlenk tube. The mixture was de-oxygenated for three times using a free-pump-thaw method. Then 

the tube was immersed in an oil bath at 90 ℃. After polymerization for 5 hours/18 hours, POEG-V-1-D-

MT5-Boc polymers and POEG-V-1-D-MT10-Boc polymers were obtained separately. The crude product 

was further purified using a petroleum precipitation method for three times, and the polymers were 

given after vacuum drying.   

 

2.2.4.3 Deprotection of POEG-V-1-D-MT-Boc Polymers 

            The Boc groups of POEG-V-1-D-MT-Boc polymers were de-protected in DCM/TFA (v/v: 6/4) 

at ambient temperature for 1.2 hours. Then the reaction mixture was precipitated in diethyl ether for one 

time. The crude product was dissolved in the mixed solvents of DCM/Ethanol and was then precipitated 

by ether again. The de-protected polymers were dried in vacuum to give the product in a sticky and 

brown oil form.   

 



 20 

2.3 PREPEATATION OF MICELLES 

2.3.1 Preparation of POEG-G-1-D-MT Based Blank Micelles 

         A dialysis method was used to prepare the POEG-G-1-D-MT micellar solution. Briefly, POEG-G-

1-D-MT polymers (15mg) were dissolved in 400ul DMSO, followed by dialysis against 500ml distilled 

water for 24h. The dialysis bag is with 3500 molecular weight cut-off membrane.   

         The size distribution of POEG-G-1-D-MT based blank micelles was measured by dynamic light 

scattering (DLS) through a Malvern Zeta Nano-sizer.  

 

2.3.2 Preparation of POEG-G-1-D-MT Based Plasmid Micelles  

         The various amounts of POEG-G-1-D-MT polymers (PH was adjusted into 5.5 with PBS buffer) 

were mixed with 1 μg (100 μL) of plasmid DNA in the labeled tubes, respectively. Then, these tubes 

were allowed to stand at minimum for half an hour at 37℃. The 2.7 μg/μL stock solution of plasmid 

DNA was diluted (PBS buffer: PH=5.5) into 1 μg/100 μL (7.4 μL was added into 2ml distilled water). 

The amount of POEG-G-1-D-MT polymers used to complex plasmid DNA was determined based on the 

designed N/P ratios (0.5, 1, 5, 10, 20, and 40) which were calculated as the number of nitrogen atoms (N, 

positively charged, polymers: 12630/12=1052.5) in POEG-G-1-D-MT polymers to the number of the 

phosphate groups (P, negatively charged, plasmid: Mw/P(N)=330) in plasmid DNA. After 30min 

incubation, the PH of POEG-G-1-D-MT and plasmid DNA complexation was adjusted to 7.4.   
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2.3.3 Preparation of POEG-V-1-D-MT Based Blank Micelles 

         A dialysis method was used to prepare the POEG-V-1-D-MT micellar solution. Briefly, POEG-V-

1-D-MT polymers (10mg) were dissolved in 400ul DMSO, followed by dialysis against 500ml distilled 

water for 24h. The dialysis bag is with 3500 molecular weight cut-off membrane.   

         The size distribution of POEG-V-1-D-MT blank micelles was measured by DLS through a 

Malvern Zeta Nano-sizer. The morphology of POEG-V-1-D-MT blank micelles was observed by 

transmission electron microscopy (TEM).  

 

2.3.4 Preparation of POEG-V-1-D-MT Based Dox-Loaded Micelles 

          The doxorubicin free base (DOX) was used for Dox-loaded micelle preparation. Doxorubicin 

hydrochloride (DOX.HCl) was reacted with 1.5M equivalents of trimethylamine (TEA) in DMSO for 24 

hours (5mg DOX.HCl, 1.0 ml DMSO and 7ul TEA). The DOX solution and POEG-V-1-D-MT 

polymers (15mg) solution were homogenously mixed with a total amount of 400ul. Then, the mixed 

DMSO solutions were dialysis against 500ml distilled water for 24 hour, using a dialysis membrane with   

3500 molecular weight cut-off at room temperature. POEG-V-1-D-MT micelles incorporating DOX 

were further purified through 220nm pore-sized filters to afford sterilized micelles.  

         The Dox concentrations of POEG-V-1-D-MT micelles were measured by a Water 2475 

Fluorescence Plate Reader. The plate was read with an excitation wavelength of 490nm and the emission 

wavelength of 590nm. The size distribution of POEG-V-1-D-MT DOX loaded micelles was measured 

by DLS through a Malvern Zeta Nanosizer. The morphology of POEG-V-1-D-MT was observed by 

TEM.  
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2.4 GEL RETARDATION ASSAYS OF OF POEG-G-1-D-MT BASED PLASMID MICELLES 

       The running gel was prepared as follows: 50ml TAE buffer and 0.5g agarose were mixed to afford 1% 

agarose solution at 1min microwave heat. Then 4 ul ethidium bromide (EB) was added into the solutions 

to prepare the electrophoresis gel, followed by a PH 7.4 adjustment using acetic acid. After formation of 

the gel, the 1-D-MT polyplex with different N/P rations was loaded onto the gel (3ul loading buffer and 

15ul sample, the control plasmid DNA is calculated as 1ug/200ul*15ul*15/18(6.25ul Plasmid 

DNA+8.75ul H2O)). Then, the electrophoresis was carried out at a constant voltage of 100 V for 30min 

in TAE buffer. Free plasmid DNA bands were separated by electrophoresis and visualized using 

ultraviolet (UV) imaging system.   
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RESULTS 

3.1 SYNTHESIS OF 1-D-MT BASED POLYMER 

3.1.1 Synthesis of Boc-Protected 1-D-MT 

1-D-MT-Boc 
1
H NMR of 1-D-MT-Boc (400Hz, DMSO):  12.54 (s, 1H),  7.30-7.40 (d, 1H),  7.50-7.60 

(d, 1H),  7.10-7.20 (brm, 2H), 6.85-7.10 (brm, 2H), 4.10-4.20 (brm, 1H), 3.72 (s, 3H), 3.00-3.10 (brm, 

1H), 2.80-3.00 (brm, 1H), 1.45-1.20 (brm, 9H);   

 

         

Figure 4. 
1
H NMR spectrum of 1-D-MT-Boc in DMSO 

 
 

3.1.2 Syntheis of POEG MacroCTA 

POEG MacroCTA Conversion Rate 
1
H NMR of POEG MacroCTA before purification (400Hz, 

CDCl3): 6.15 (s, 1H), 5.60 (s, 1H), 3.37 (s, 3H), 3.65 (s, 30H);  
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Conversion rate of OMEGA: (1-0.14)*100%=86%        

(6.1 mmol/0.305mmol)* 86%=17 

 

 

Figure 5. 
1
H NMR spectrum of POEG MacroCTA in CDCl3 

 

3.1.3 Synthesis of POEG-G-1-D-MT Polymers 

3.1.3.1 Synthsis of G-1-D-MT Monomer 

G-1-D-MT MONOMER 
1
H NMR of G-1-D-MT monomer: 6.80-7.70 (brm, 6H), 6.15 (s, 1H), 5.60 (s, 

1H), 4.95-5.10 (d, 1H), 4.60-4.80 (d, 1H), 4.25-4.50 (brm, 2H), 3.75 (m, 3H), 3.30 (s, 1H), 1.95 (s, 3H), 

1.30-1.50 (brm, 9H);  
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Figure 6. 
1
H NMR spectrum of G-1-D-MT monomer in CDCl3  

 
 
 
 
3.1.3.2 Synthsis of POEG-G-1-D-MT-Boc Polymers 

POEG-G-1-D-MT-BOC POLYMERS 
1
H NMR of POEG-G-1-D-MT10-Boc polymers:  

 

Figure 7. 
1
H NMR spectrum of POEG-G-1-D-MT10-Boc polymers 
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3.1.3.3 Synthesis of POEG-G-1-D-MT Polymers 

POEG-G-1-D-MT POLYMERS 
1
H NMR of POEG-G-1-D-MT10 polymers: 

 

 

Figure 8. 
1
H NMR spectrum of G-1-D-MT monomer in CDCl3 

 

 

3.1.4 Synthesis of POEG-V-1-D-MT Polymers 

3.1.4.1 Synthesis of V-1-D-MT-Boc Monomer 

V-1-D-MT MONOMER 
1
H NMR of V-1-D-MT monomer: 7.00-7.80 (brm, 8H), 6.68-6.88 (brm, 1H), 

6.51 (s, 1H), 5.81 (d, 1H), 5.31 (d, 1H), 5.00-5.25 (m, 2H), 4.60-4.80 (s, 1H), 3.60-3.80 (s, 3H), 3.20-

3.40 (s, 2H), 1.60-1.70 (s, 1H), 1.30-1.40 (m, 9H);  
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Figure 9. 
1
H NMR spectrum of V-1-D-MT monomer in CDCl3 

 
 
3.1.4.2 Synthesis of POEG-V-1-D-MT4 Polymers 

POEG-V-1-D-MT4-Boc POLYMERS 
1
H NMR of POEG-V-1-D-MT4-Boc polymers:  

 

Figure 10. 
1
H NMR spectrum of POEG-V-1-D-MT4-Boc Polymers in DMSO 

 
 
POEG-V-1-D-MT4 POLYMERS 

1
H NMR of POEG-V-1-D-MT4 Polymers:  
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Figure 11. 
1
H NMR spectrum of POEG-V-1-D-MT4 Polymers in DMSO 

 
 
 
3.1.4.3 Synthesis of POEG-V-1-D-MT10 Polymers 

POEG-V-1-D-MT10-Boc POLYMERS 
1
H NMR of POEG-V-1-D-MT10-Boc polymers: 

 

Figure 12.  
1
H NMR spectrum of POEG-V-1-D-MT10-Boc Polymers in DMSO 
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POEG-V-1-D-MT10 POLYMERS 
1
H NMR of POEG-V-1-D-MT10 polymers:  

 

Figure 13. 
1
H NMR spectrum of POEG-V-1-D-MT10 Polymers in DMSO 
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3.2 CHARACTERIZATION OF BLANK AND DOX-LOADED MICELLES 

      As shown in Figure 14, the size of drug-free POEG-G-1MT10 micelles demonstrated a homogenous 

distribution of 92.5nm and the drug loading capacity of POEG-G-1MT10 micelles is zero.  

 

 

 
 

Table 4. Physicochemical Characterizations 

 
Block polymer Size(nm) DLC(%) 

POEG
18

-G-1MT
10 

 92.5 0 

 

 
Figure 14. Size distribution of drug-free POEG-G-1MT10 micelles 
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      As shown in Figure 15 (A, C), the size of drug-free POEG-V-1MT4 micelles and DOX loaded 

POEG-V-1MT4 micelles demonstrated a homogenous distribution of 240.2nm and 90.61nm, 

respectively. TEM images (Figure 15 (B, D)) indicated spherical morphologies for both drug-free 

POEG-V-1MT4 micelles and DOX-loaded POEG-V-1MT4 micelles. As shown in Table 5, POEG-V-

1MT4 micelles showed a drug loading capacity of 28.5% and a drug loading efficiency of 52.1%.  

 

 

Figure 15. Size distribution of drug-free POEG-V-1MT micelles: (A) and DOX-loaded POEG-V-1MT 

micelles (C). Morphology of drug-free POEG-V-1MT micelles (B) and DOX-loaded POEG-V-1MT micelles (D). 

Size was examined by dynamic light scattering and morphology was examined by TEM, respectively. (Scale bar, 

100 nm) 
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Table 5. Physicochemical Characterizations 

 

 

3.3 GEL RETARDATION ASSAY 

      Because plasmid DNA is negatively charged, it can run toward the positive electrode in the 

electrophoresis process. As complexation occurs between cationic polymers (POEG-G-1-D-MT 

polymers) and negatively plasmid DNA, the positive charges of POEG-G-1-D-MT polymers was 

neutralized by the negative charges of plasmid DNA. Therefore, the phenomenon of plasmid DNA 

retardation was observed. As shown in Figure 16., as the N/P ratio increased from 1 to 10, the plasmid DNA 

band became weaker than that of the naked plasmid DNA, which indicates the partial complexation between the 

plasmid DNA and cationic polymers. However, the full neutralization of the plasmid DNA was not observed.   
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Figure 17. Gel retardation assay. POEG-G-1MT/plasmid DNA complexes at various N/P ratios were analyzed 

on a 1% agarose gel. The mobility of plasmid was visualized by GelRed staining. The N/P ratio of POEG-G-

1MT/plasmid was 0.5, 1, 5, 10, 20 and 40. (P represents plasmid DNA) 
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DISCUSSION 

 
  
          An unblocked primary amine group remains in 1-D-MT after conjugation with PEG, whose group 

is positively charged and can form hydrogen bonds with water. Therefore, the inner core is not entirely 

hydrophobic as usual and this might have an unexpected effect on drug loading ability. Preliminary data 

have shown that a 1-D-MT polymer with a linear ethylene glycol vinyl ether linker can only load limited 

amounts of PTX and DOX. This result is consistent with our hypothesis. Furthermore, the poor loading 

efficiency might be due to the hydrophobicity of the indole ring as well as the charge effects of amine 

group. Next, the introduction of a vinylbenzyl chloride linker was found to lead to an improvement in 

drug loading capacity. However, there is no linear correlation between the drug loading capacity and the 

number of repeated 1-D-MT units and the optimal repeated units are between four and nine. This result 

further verifies the importance of the amine group and indole ring within the structure of 1-D-MT. More 

studies on the biophysical and biological properties of the new carrier are currently underway.  

          Generally, most of the reported polymeric prodrug micelles are constructed using a post-

modification method, and the modified drug was covalently attached to the hydrophilic polymer 

backbone. The major disadvantage of this strategy is the complicated synthesis steps. In addition, some 

reactive groups, owing to the steric hindrance, might still remain in the polymer backbone following 

incomplete conjugation, which might lead to the destruction of the micellar structure and to undesirable 

side effects through interacting with potential bioactive molecules in vivo. In contrast, polymerization of 

those drug-based monomers represents a better approach to obtain well-defined amphiphilic polymeric 

prodrugs. By using reversible addition fragmentation transfer (RAFT) polymerization method, the batch 

to batch difference of the synthesized polymeric micelles can be well controlled
28

. In this work, the 

hydrophilic monomers and two 1-D-MT based hydrophobic monomers are prepared first, followed by 
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RAFT polymerization to give well-defined di-block co-polymers with fewer steps. The properties of 

such polymers can be adjusted with different hydrophilic POEG block/hydrophobic 1-D-MT block 

molar ratios and the type of linker.  

           In summary, our studies have shed some insights into the structure-activity relationship of 1-D-

MT polymer. One such polymer was obtained that was effective in loading of both DOX and PTX in 

preliminary studies. More studies on the potential of this carrier for combination therapy with 

chemotherapeutic agents are ongoing. 
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