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Despite clinical advancements with targeted and immune therapies, lung cancer remains 

the leading cause of cancer related deaths in the United States. Scant improvements in the five-

year survival rate over the past decade necessitate the development of more efficacious 

therapeutic approaches. Epidemiological reports and preclinical studies have demonstrated 

involvement of the estrogen pathway, mediated through estrogen receptor β-1 (ERβ), in the 

development and promotion of lung tumorigenesis. Strategies for targeting the estrogen pathway 

include anti-estrogens and aromatase inhibitors (AIs), either as single agents or combined with 

other therapies.  The primary objective of this study was to identify and target interactions between 

the estrogen signaling pathway and the fibroblast growth factor (FGF) pathway and identify 

additional estrogen-related tumor promoting mechanisms in non-small cell lung cancer 

(NSCLC).   Fibroblast growth factor receptor 1 (FGFR1) was significantly over-expressed in ERβ 

high tumors, while the decoy receptor, fibroblast growth factor receptor like-1 (FGFR5), was 

down-regulated. NSCLC cell lines lacking FGFR1 amplification expressed multiple FGFRs and 

secreted several FGFs. β-estradiol (E2) treatment significantly enhanced FGF2 release, an effect 

blocked by the anti-estrogen fulvestrant. Furthermore, co-targeting the E2 and FGF pathways with 

fulvestrant and the pan-FGFR inhibitor AZD4547 resulted in greater anti-tumor effects both in 

vitro and in vivo compared to single pathway inhibition. These results demonstrate crosstalk 

between the two pathways in NSCLC, and suggest clinical utility of a pan-FGFR inhibitor in 

combination with an anti-estrogen in a subset of NSCLC patients. Previous reports of aromatase 
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expression in pulmonary tumor macrophages, and up-regulation of anti-oxidant signaling with AIs, 

indicate a potential interaction between estrogen signaling and inflammation in lung 

cancer.  Utilizing an in vivo NSCLC xenograft model, the AIs exemestane and letrozole 

significantly inhibited tumor proliferation, reduced Ki67 expression, altered tumor histology, and 

increased anti-inflammatory signaling. Finally, we demonstrated fulvestrant enhanced therapeutic 

sensitivity and inhibited the migration of NSCLC cells resistant to the heat shock protein 90 

(HSP90) inhibitor ganetespib, but not through a reversal of epithelial-mesenchymal transition. 

Together, the results of this study highlight the pervasive role of estrogen signaling in lung cancer 

and provide rationale for combinatorial strategies involving hormonal agents for lung cancer 

treatment. 
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1. INTRODUCTION 

1.1 LUNG CANCER INCIDENCE AND EPIDEMIOLOGY 

Lung cancer remains the leading cause of cancer related deaths in the United States (U.S.) 

and worldwide [1]. Despite declining trends in incidence since the 1990’s for men and 2000’s for 

women, lung cancer is the second most prevalent carcinoma with an estimated 222,500 new cases 

in 2017 alone [1]. While advancements in early detection with the use of low-dose computed 

tomography for high-risk patients and the development of targeted therapies and immunotherapies 

have improved therapeutic options and patient outcomes [2-4], the five-year survival rate for lung 

cancer remains a dismal 17% for all stages combined [1]. Scarce improvements in the survival rate 

over last decade indicate the need to further identify risk factors and mechanisms driving lung 

carcinogenesis to enable the development of more personalized and efficacious therapeutic 

strategies. 

Lung cancer is broadly classified as one of two forms: small cell lung cancer (SCLC) and 

non-small cell lung cancer (NSCLC). NSCLC accounts for the majority of lung cancer cases (85%) 

and can be further differentiated into histologically unique subtypes including adenocarcinomas, 

squamous cell carcinomas, and large cell carcinomas (Figure 1).  
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                                       Figure 1. Lung Cancer Histological Subtypes 

 

NSCLCs harbor more genetic abnormalities compared to SCLC, are less responsive to 

chemotherapy, and the subtype adenocarcinoma is the most common form of lung cancer in 

patients who have never smoked [5]. Interestingly, as smoking prevalence declined over the past 

few decades incidence of squamous cell carcinomas declined among men, while incidence of 

adenocarcinomas increased among both men and women [6]. This variation in subtype incidence 

has partially been attributed to ventilation in cigarette filters [7]; however, other individual genetic 

and environmental factors are being investigated to better understand this observation.  

Among identified risk factors for the development of lung cancer, cigarette smoking and 

tobacco inhalation account for the majority of cases and reportedly 80% of lung cancer deaths in 

the U.S. [1]. Exposure to environmental toxins such as radon gas, asbestos, and polycyclic 

aromatic hydrocarbons (PAH) have also been implicated in lung tumorigenesis [8]. Comorbidities 

such as chronic obstructive inflammatory disease (COPD) may also act as oncogenic drivers 

through increased cell proliferation, exposure to inflammatory cytokines, and oxidative stress [9]. 

Viral infections such as such as human papilloma virus (HPV), Simian Virus 40 (SV40), and 

Epstein Bar Virus (EBV) have also been implicated as potential contributors to lung cancer 

development [10]. While additional correlative studies are still required, the presence of HPV 
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strain 16/18 DNA in circulating blood was reported to be associated with increased risk of lung 

cancer development in non-smoking females, and both SV40 and EBV have suggested roles in 

mesothelioma pathogenesis [10-12]. Furthermore, while a specific genetic link has yet to be 

identified, studies have observed an increased risk of lung cancer incidence in patients who have 

a family history of the disease suggesting genetic factors are involved [13]. Moreover, studies 

assessing familial aggregations of lung cancer have found that affected individuals tend to be 

younger at the age of onset and female [14]. In addition to familial aggregation trends, several 

other sex differences have been observed in the epidemiology and presentation of lung cancer 

suggesting endogenous and exogenous hormones may also act as risk factors for the disease [15]. 

1.2 TREATMENT STRATEGIES FOR LUNG CANCER  

Significant advancements in the diagnosis and treatment of lung cancer have been made 

over the past few decades. Differential clinical response based on histology to the nitrogen mustard 

chemotherapy cyclophosamide observed in 1969 was among the first evidence that lung tumors 

varied in location, histology, biology, and therapeutic response [16]. Chemotherapy options 

diversified over the next 30 years with the development of anti-mitotic vinca alkaloids such as 

vinorelbine, mitotic inhibiting taxanes paclitaxel and docetaxel, and platinum-based regimens 

cisplatin and carboplatin [17]. It wasn’t until the early 2000’s, however, that a shift in the oncology 

therapeutic paradigm occurred with the use of molecular profiling to identify and target genetic 

abnormalities driving an individual’s disease.  

For both early and advanced SCLC patients, however, platinum-based chemotherapy 

combinations remain the standard of care, most commonly cisplatin plus etoposide or carboplatin 

plus etoposide [18]. Four randomized clinical trials have been conducted to compare cisplatin 
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efficacy to carboplatin in these patients, and a recent meta-analysis of individual patient data from 

these studies found no statistically significant survival advantage of one therapy over the other 

[19]. Compared to NSCLC patients, significantly higher (50-80%) response rates are observed in 

SCLCs treated with these therapies, however due to frequent and early relapse the five-year 

survival rate for both NSCLC and SCLC advanced stage patients remain similar (1-5%) [20,21]. 

Clinical strategies for SCLC are restrained to these systemic regimens, however, with failed 

clinical development of targeted therapies and a dearth of identified molecular events other than 

TP53 and RB1 inactivation in these patients [20]. Although, early occurrence of chemotherapy-

resistant disease has led to “non-cross-resistant” approaches and multi-drug combinations 

incorporating cytotoxic taxanes such as paclitaxel to be administered in later cycles to improve 

clinical benefit [18].  

The general therapeutic approach for patients diagnosed with NSCLC significantly varies 

from that of SCLC patients. Surgical resection is the standard treatment option for eligible early-

stage patients, with adjuvant radiation or chemotherapy depending on localization and staging of 

the disease [17]. For advanced-stage NSCLC patients, several considerations are made regarding 

therapy regimens due to the development and approval of targeted and immune therapies.  

1.2.1 Targeting Oncogenic Molecular Drivers in Advanced NSCLC 

Paul Ehrlich’s theory for the development of “magic bullet” therapies selectively targeting 

molecular drivers of disease led to the century-long evolution of targeted small molecule anti-

cancer agents [22]. Currently 13 targeted agents, including small molecule inhibitors and 

monoclonal antibodies, that selectively interfere with molecular targets propagating uncontrolled 
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proliferation, angiogenesis, and cell survival are approved for the treatment of metastatic NSCLC 

with several more in the pipeline.  

Preclinical investigations and molecular profiling have identified several genetic 

oncogenic driver mutations and alterations among the various NSCLC histologies as shown in 

Figure 2. The frequency and distribution of these genetic drivers indicates lung cancer is a complex 

and heterogeneous disease, and the development of small molecule inhibitors targeting specific 

alterations within an individual patient’s disease allows for a more directed and efficacious 

treatment strategy.  

 

 

 

Figure 2. Molecular Alterations in NSCLC by Histology. Frequency of molecular alterations including 

gene amplification, mutations and fusions in NSCLC based on histological subtype. Data adapted from 

references [23,24].  

 

Therapies targeted against epidermal growth factor receptor (EGFR), anaplastic lymphoma 

kinase (ALK), ROS1, and BRAF are FDA-approved for the treatment of NSCLC in patients whose 

tumors express these alterations, while off-label use of agents targeting HER2, MET and RET is 

also pursued for NSCLC patients who have progressed on standard therapies. With the 

incorporation of genotyping, improved screening technology, and enhancements in pathological 
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techniques, physicians are now able to acquire a much more comprehensive analysis of each 

patient’s carcinoma. Improved diagnosing coupled with the development of novel targeted agents 

has enabled treatment strategies to be stratified based on histology, staging, driver mutations and 

most recently expression of the immune regulatory protein programmed death-ligand 1 (PD-L1) 

as shown in Figure 3 [17].    

 

Figure 3. First-line Treatment Strategies for Advanced NSCLC Based on Molecular Testing. Adapted 

from NCCN guidelines and literature search as of July 7th, 2017 for FDA approved treatment strategies for 

metastatic NSCLC [17]. *Pemetrexed is only indicated for adenocarcinoma and large cell histological 

subtypes.  
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Following TP53 and KRAS, mutations in the EGFR gene are among the most commonly 

observed molecular alterations in NSCLC. Widely expressed in a majority of epithelial cells, 

EGFR signaling is fundamental in supporting normal development and physiology [25]. EGFR is 

activated by numerous ligands such as epidermal growth factor (EGF) and transforming growth 

factor alpha (TGF-α) leading to receptor homo- and hetero-dimerization and subsequent activation 

of downstream effector molecules that mediate cellular proliferation, invasion, and survival [26]. 

Overexpression of EGFR is reported in multiple malignancies including lung cancer, and often 

correlated with poor prognosis and shorter survival prompting the development of EGFR tyrosine 

kinase inhibitors (TKIs) [27-29]. Following broad approval of EGFR TKIs gefitinib and erlotinib 

in refractory NSCLC patients, the discovery of EGFR sensitizing mutations in exons 19 and 21 

conferring increased response rates revolutionized NSCLC EGFR treatment strategies [30,31]. 

The FDA ultimately re-labeled these agents for restricted use only in patients harboring these 

mutations. As such, erlotinib is now given as a first-line monotherapy to patients with an activating 

EGFR mutation. A meta-analysis of 13 clinical trials assessing EGFR TKI efficacy confirmed 

therapeutic benefit of the targeted agents in mutant patients observing significantly improved 

progression-free survival (PFS) among EGFR mutant patients receiving EGFR TKIs compared to 

wild-type patients [32]. However, with the advent of targeted therapies came the discovery of 

intrinsic and acquired resistance mechanisms such as the EGFR T790M mutation observed in 

approximately 60% patients previously treated and whom initially responded to an EGFR TKI 

[17,33]. The prevalence of this acquired resistance mutation led to the development and recent 

approval of the third-generation EGFR TKI, osimertinib and second generation afatanib which 

target tumors harboring T790M [17].  

In addition to EGFR inhibitors, agents targeted against the fusions of the anaplastic 

lymphoma kinase (ALK) gene and rearrangement of the proto-oncogene ROS1 have also been 
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approved for treatment of NSCLC patients harboring these genetic alterations. ALK gene fusions 

are observed in 3-7% of NSCLC cases. Fusion of the ALK gene to the echinoderm microtubule-

associated protein-like 4 (EML4) gene leads to constitutive activation of the kinase domain and 

downstream pathways promoting proliferation and tumor progression [34,35].  ALK kinase 

inhibitors crizotinib, and second-generation ceritinib, were clinically developed revealing a robust 

response in ALK-positive patients with superior clinical benefit compared to chemotherapy [36]. 

These clinical observations led to the approval of crizotinib as a first-line therapy for advanced 

and metastatic NSCLC with the fusion gene mutation. Due to 77% amino acid homology in the 

ATP binding sites in both ALK and ROS1, crizotinib was also identified as a potent inhibitor of 

the ROS1 kinase [37-39]. ROS1 rearrangements are observed in approximately 1% of NSCLC 

patients, and upon clinical investigation of crizotinib therapy in 50 patients harboring this 

mutation, the therapy received FDA approval with reports that 66% of patients experienced either 

partial or complete responses [37].  

Drug discovery efforts have initiated the development of several other therapies targeting 

the molecular alterations referenced in Figure 2. Mutations in the tumor suppressor p53 gene are 

the most frequently observed genetic alterations in lung cancer with increased mutation frequency 

associated with tobacco consumption [40]. While several research efforts have focused on 

developing therapies to deplete mutant p53 or restore wild-type function, the challenging chemical 

structure of the transcription factor has hindered the clinical development of pharmacologic 

inhibitors and activators [41,42]. Moreover, several efforts have focused on targeting the RAS-

Raf-MEK-ERK and the PI3K-Akt-mTOR signaling cascades as they are two of the most 

commonly dysregulated networks involved in the promotion of lung tumorigenesis. Mutations in 

the effector molecules of these pathways account for the largest percentage identified molecular 

alterations in NSCLC making them attractive targets for selective inhibition. While therapies 
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targeted against KRAS (Kirsten-rous avian sarcoma) mutations have had limited success, targeting 

downstream proteins such as BRAF and MEK have been more successful. Dabrafenib, a potent 

inhibitor of wild-type and V600E mutant BRAF, combined with the MEK1/2 inhibitor trametinib, 

revealed synergistic anti-proliferative effects in vitro prompting a recent phase II multi-center trial 

assessing the combination in BRAF V600E-mutant NSCLC patients. The study reported a 63% 

overall response rate in BRAF mutant patients leading to the recent FDA approval of dabrafenib 

plus tramedinib for advanced NSCLC patients with this mutation [43,44].  

Agents targeting phosphatidylinositide 3-kinases (PI3K) have also been studied in NSCLC, 

but have failed to demonstrate efficacy as a monotherapy. Akt and dual PI3K-mTOR inhibitors 

have also been developed and are in early clinical development as combination strategies in 

NSCLC [45]. Amplification of fibroblast growth factor receptor 1 (FGFR1), conferring sensitivity 

to FGFR inhibitors, is reported in 23% of squamous cell carcinomas and pan-FGFR inhibitors such 

as AZD4547 are in early phase I/II clinical evaluation in NSCLC (NCT02965378, NCT01824901, 

NCT02664935). Several other inhibitors targeting HER2, RET DDR2, PTEN, and EPH have also 

been developed but await further clinical evaluation in NSCLC.  

1.2.2 Immunotherapy for the Treatment of NSCLC 

Lung cancer has been historically considered nonimmunogenic due to a loss of major 

histocompatibility complex (MHC) antigen expression, secretion of immunosuppressive 

cytokines, and suppression of cytotoxic T-cells [46-48]. However, the field of immuno-oncology 

is rapidly evolving and various therapeutic strategies have been investigated in lung cancer to 

override the disease’s evasion of immunosurveillance. Among these strategies check-point 

blockade antibodies inhibiting the programmed cell death-1 (PD-1) receptor and PD-1 ligand (PD-
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L1) have revealed great clinical benefit in patients with tumors expressing elevated levels of PD-

L1 [3,49,50]. The PD-1 receptor is expressed on T cells, natural killer (NK) cells, and some B cells 

and recognizes both the PD-L1 and PD-L2 ligands commonly expressed on a range of antigen-

presenting cells, tumor cells, and cells within the tumor microenvironment [48]. The binding of 

the PD-1 receptor to its ligands induces inhibition of T-cell activation down regulating the immune 

response. Elevated PD-L1 expression has been reported in 13-70% of lung cases, which led to the 

clinical development of PD-1 inhibitors nivolumab and pembrolizumab which consistently reveal 

improved overall response rates compared to chemotherapy in NSCLC PD-L1 positive (PD-L1 

expression >50%) patients [49,50]. The promising results of these studies led to the approval of 

pembrolizumab as a first line agent in advanced NSCLC patients lacking driver mutations with at 

least 50% PD-L1 positive tumor cells, and nivolumab for advanced NSCLC who have progressed 

on or after platinum-based regimens [17]. Monoclonal antibodies targeted against PD-L1 including 

BMS936559, Medi-4736 and MPDL3280 are also in early phase I or phase II clinical development 

in combination with other therapies.  

Additional immunogenic therapies undergoing clinical investigation in lung cancer include 

ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibody, along with tumor antigen 

specific vaccines and whole tumor vaccines. CTLA-4 is a checkpoint protein expressed on 

activated T-cells that trigger immune resistance by competitively binding to CD80 and CD86, 

blocking CD28 T-cell activation [51]. Assessment of CTLA-4 antibodies in preclinical murine 

models revealed synergy when combined with chemotherapies [52,53]. These preclinical results 

led to the current phase III clinical evaluation of ipilimumab in combination with chemotherapy 

in NSCLC and SCLC patients and FDA approval of the therapy in metastatic melanoma patients 

(NCT01285609, NCT01450761).  

https://clinicaltrials.gov/show/NCT01285609
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Lung cancer vaccines have also been developed to induce de novo anti-tumor immunity. 

Developed against either specific lung tumor antigens such as melanoma-associated antigen-A3 

(MAGE-A3), membrane-associated glycoprotein (MUC-1), and EGFR, or against whole tumor 

cells such as tergenpumatucel-L composed of genetically altered NSCLC cells [51]. While early 

clinical results for vaccines are modest and variable, these therapies represent novel approaches 

for stimulating patients’ innate and adaptive immune responses for enhanced elimination of 

neoplastic cells.  

Incredible advancements in precision medicine with molecular profiling and the 

development of targeted TKIs and immunotherapies have significantly improved the treatment 

options available for lung cancer patients.  However, the lack of improvement in overall clinical 

benefit indicates a need for the continued discovery of novel oncogenic targets and development 

of more effective treatment strategies.  

1.3 SEX DIFFERENCES IN LUNG CANCER  

The rise of lung cancer incidence in women between the 1950’s to 1980’s was so severe 

that the 1980 Surgeon General’s report declared smoking-related lung cancer an epidemic among 

women [54]. However, as smoking prevalence declined among men and women during the 1990’s 

corresponding declines in lung cancer incidence were observed in men, but not in women [55]. 

Instead female lung cancer cases continued increasing during this time (Figure 4), precipitating 

multiple investigations to identify potential sex differences in the epidemiology of lung cancer.  
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Figure 4. Lung Cancer Incidence Rates Among Men and Women in U.S. Lung cancer incidence rates 

stratified by sex from 1975 to 2014 adapted from National Cancer Institute Surveillance, Epidemiology, and 

End Results Program [55]. Red squares=female; blue circles=male. 

 

Several cohort studies have subsequently assessed whether women are more susceptible 

than men to the development of smoking-related lung cancer. While earlier results reported 

increased risk in women compared to men upon adjustment for age and smoking history, more 

recent studies challenge these findings by showing both sexes may have comparable risk of 

tobacco-induced incidence [56-59].  Alternatively, cohort studies assessing lung cancer incidence 

in never-smokers have consistently observed significantly 2.25-fold increased incidence of the 

disease in women compared to men (P<0.0001) [60,61].  As mentioned previously women are 

more susceptible to the disease in the event of familial aggregation, and tend to be diagnosed at a 

younger age. Upon diagnosis, however, female patients have significantly improved 5-year 

survival outcomes compared to male patients (P=0.001) [56,62,63].  
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Altered metabolism of carcinogens is another clinical characteristic reportedly 

predisposing women to lung cancer. Some tobacco carcinogens including PAHs are inhaled as 

pro-carcinogens requiring activation by phase 1 cytochrome P450 enzymes such as CYP1A1. 

Oxidation of PAHs and other pro-carcinogens generates reactive epoxide species that when not 

conjugated and detoxified by phase II enzymes can bind to DNA forming adducts causing 

irreversible DNA damage [64]. Female lung cancer patients have been shown to have higher levels 

of DNA adducts correlating with increased expression of CYP1A1 compared to male patients 

[65,66]. DNA adduct levels are considered a measure carcinogen metabolism comparing phase 1 

activation to phase II detoxification. Elevated PAH-DNA adduct levels and upregulated expression 

of CYP1A1, coupled with decreased DNA repair capacity, put women at a significantly greater 

risk of tobacco-induced lung carcinogenesis than men with an odds ratio of 7.6 (P<0.001). [67]. 

Furthermore, while relatively few studies have evaluated the effects of testosterone levels on lung 

cancer risk and incidence a recent in vitro analysis showed that female sex hormones had more 

potent inhibitory effects on tobacco-carcinogen detoxification in NSCLC cell lines compared to 

testosterone [68]. These results, in addition to the fact that circulating serum estrogen levels are up 

to 7.5 times greater (1.5nM) in premenopausal women compared to men, support the hypothesis 

that sex differences in lung cancer development and incidence may be attributed more so to female 

hormones as opposed to androgens [68].  

Further investigations into sex differences in the presentation of lung cancer have also 

identified distinctly varying histological and biological characteristics between men and women.  

Compared to men, women are diagnosed more frequently with adenocarcinoma than any other 

histological subtype accounting for up to 60% of cases[15]. Albeit a heterogeneous disease, trends 

in mutation profiles have also been identified between sexes. Female patients diagnosed with 

adenocarcinomas are more likely to have activating EGFR mutations [69]. This observation may 
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in part relate to the demonstrated crosstalk between the estrogen receptor (ER) and EGFR 

pathways in lung cancer and suggest that females may gain more therapeutic benefit from EGFR 

inhibitors than males due to EGFR mutant patients responding better to targeted EGFR therapies 

compared to wild-type [70,71]. Furthermore, while the KRAS mutation frequency is 32% in 

adenocarcinoma NSCLC, genotyping of over 3,000 lung adenocarcinomas revealed the KRAS 

G12C transversion mutation is significantly more common in women than men (P=0.007) [72]. 

Female patients with this KRAS variant were younger on average and smoked less than males 

harboring the same mutation [72]. Taken together theses genetic and biological variations in 

presentation of lung cancer between men and women suggest hormones, specifically estrogens, 

impact the development and progression of the disease.  

1.4 ENDOCRINE THERAPIES AND LUNG CANCER RISK AND MORTALITY 

Further evidence of a hormonal influence in lung cancer comes from multiple cohort 

studies assessing the effects of hormone replacement therapy (HRT) on subsequent lung cancer 

incidence in women. The first study to suggest a potential role of estrogens in lung cancer was the 

1973 Coronary Drug Project Trial. The trial was designed to assess the influence of various 

therapies including equine estrogens on long-term treatment of coronary artery disease in men with 

a history of myocardial infarction. Patients were randomly assigned to receive either estrogen or 

placebo, and interestingly the study observed a significantly increased risk of lung cancer mortality 

in the estrogen treated group leading to early termination of the treatment arm in the study [73]. 

Over a decade later, Wu et.al. reported a potential link between HRT use and lung cancer risk in a 

case-control study where differences in risk were observed between women who used HRT and 

those who did not [74]. Adami et.al. reported similar findings of increased lung cancer risk among 
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women who used HRT in a much larger population study of over 20,000 women [75]. Following 

these initial reports, multiple case-control, cohort, and retrospective studies looked to further assess 

a link between HRT and lung cancer risk in women. While some subsequent studies demonstrated 

a significant correlation between HRT and lung cancer [76], and HRT and decreased overall 

survival (OS) in female lung cancer patients [77], others studies have alternatively reported a 

protective effect, or no effect at all, of HRT use against lung cancer development and mortality 

[78-80].  

While type and duration of HRT use were not accounted for in these earlier cohort studies, 

the recent Vitamins and Lifestyle large-scale population based cohort study adjusted for 

confounding variables such as smoking, age, HRT formulation and duration. The study assessed a 

prospective cohort of 36,588 women among which 344 were diagnosed with lung cancer and 

observed a duration-dependent positive association between estrogen plus progestin (E+P) use and 

lung cancer incidence [81]. A separate, randomized, double-blind, placebo-controlled trial 

conducted by the Women’s Health Initiative (WHI) also evaluated lung cancer risk associated with 

specific HRT formulations. The trial enrolled over 16,000 healthy post-menopausal women who 

were randomly assigned to either E+P therapy or matching placebo. While the results of the study 

did not indicate increased incidence of lung cancer with E+P treatment, increased mortality was 

observed[82]. Interestingly, these negative effects of HRT use were only observed in the E+P 

treated groups and not estrogen alone. Progesterone receptor (PR) expression is reported to have a 

protective effect in lung cancer, with multiple studies observing improved clinical outcome with 

elevated PR expression compared to low [83,84]. Circulating progesterone levels in post-

menopausal women are typically inadequate for PR activation [84] and with not knowing the PR 

status of the women in these studies it is impossible to make conclusive remarks regarding these 

observations. Finally, while a correlation study has yet to be conducted, leveling lung cancer 
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incidence trends among women beginning during the early 2000’s, as shown in Figure 4, may 

coincide with a reported 18% decline in HRT use among post-menopausal women from 1999-

2010 (P=0.004) [85].   

Alternatively, studies assessing lung cancer risk associated with antiestrogen use have 

further supported the role of estrogen signaling in development of the disease. A recent prospective 

cohort study assessing over 6,000 women diagnosed with breast cancer registered in the Geneva 

Cancer Registry, reported a significantly (P<0.001) decreased lung cancer mortality rate among 

women who received antiestrogen therapy compared to rates of the general population [86]. 

Similar findings were reported by a retrospective cohort analysis of 2,320 female patients 

diagnosed with NSCLC in the Manitoba Cancer Registry. The study reported a significant decrease 

in lung cancer mortality among female patients who received antiestrogen therapy before and/or 

after diagnosis and remained constant across age and disease staging [87]. Furthermore, a study 

evaluating lung cancer incidence and mortality in 6,361 female breast cancer patients treated at 

Sun Yat-Sen Cancer Center reported longer OS in patients diagnosed with lung cancer who 

received antiestrogen therapy compared to those who did not [88]. In addition to observations of 

improved survival with antiestrogen use, a recent population study investigating subsequent lung 

cancer incidence in 40,900 breast cancer patients in the Taiwan National Health Insurance database 

reported significantly decreased incidence among women ≥50 who received antiestrogen therapy 

compared to women who did not [89]. Together, antiestrogens’ protective effect against lung 

cancer incidence and mortality coupled with the adverse risks associated with HRT therapy 

highlight the integral role of estrogens in lung tumorigenesis prompting investigation of estrogenic 

mechanisms underlying lung cancer pathology. 
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1.5 ROLE OF ESTROGEN SIGNALING IN LUNG CANCER 

Several preclinical studies have elucidated the role of estrogen signaling as a driver of 

NSCLC. The estrogen receptors are requisite mediators of intracellular estrogen signaling, of 

which there are two isoforms: estrogen receptor α (ERα) and estrogen receptor β (ERβ). ERα 

overexpression is well documented and characterized in breast cancer, but has been variable and 

less frequently reported in NSCLC tissue [84,90-92]. Alternatively, ERβ, which was not 

discovered until the late 1990’s, has been identified as the predominant isoform found in NSCLC 

among both men and women [90,92-95]. In addition to differential expression among tissues, ERα 

and ERβ are both expressed in the nucleus and cytoplasm of lung tumor cells. Cellular localization 

of ER expression is an important distinction to make, due to varying clinicopathological 

correlations between nuclear ER and cytoplasmic ER in lung cancer. While copy number 

alterations and activating mutations of ERβ have yet to be identified in lung tumors, some studies 

have reported nuclear ERβ expression as a positive prognostic indicator, whereas survival analysis 

of 183 NSCLC primary tumors revealed elevated cytoplasmic ERβ expression is a poor prognostic 

indicator [84,91,96].  

ER signaling is activated following ligand-receptor interaction with one of three 

endogenous estrogens: 17β-estradiol (E2), estrone (E1), and estriol (E3). E2 is the primary 

estrogen found in both sexes, and synthesized not only by Leydig and granulosa cells in the male 

and female reproductive tracts, but also locally within NSCLC lung tumors. Significantly elevated 

levels (2.2-fold, P=0.002) of E2 have been reported in NSCLC tumor tissue when compared to 

adjacent healthy epithelial tissue [90]. The cytochrome-P450 enzyme aromatase, CYP19A1, is 

responsible for catalyzing the conversion of testosterone into estradiol. Acting as an integral 

enzyme in estradiol synthesis, multiple studies have evaluated aromatase expression in lung tumors 
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and reported elevated co-expression of aromatase and E2, and aromatase and ERβ [84,90,97,98], 

while increased aromatase expression is clinically associated with poorer prognosis and female 

NSCLC patients [99]. 

1.5.1 Estrogen Signaling Drives Lung Tumorigenesis 

ER expression in both the nucleus and cytoplasm allows estrogen to exert both genomic 

and non-genomic receptor-mediated effects. Liganded ERβ dimerizes and undergoes a 

conformational change in the AF-2 domain enabling a surface for interaction with coactivator 

proteins such as GRIP1/TIF2 [100]. Ligand-bound ERβ then translocates to the nucleus where the 

receptor binds directly to estrogen response elements (ERE) or AP-1 sites located in the promoter 

region to induce transcription of target genes [93,101]. Genomic ER signaling promotes cellular 

proliferation in lung cancer in part through increased transcription of cell cycle regulatory genes 

such as cyclin D1 and c-myc [100].  

The oncogenic effects of non-genomic ER signaling in lung cancer largely occur through 

interactions with other growth factor receptor pathways such as EGFR. EGFR, as previously 

mentioned, is a prominent pathway in lung cancer pathogenesis due to activation of downstream 

mitogen-activated protein kinase (MAPK) and PI3K signaling cascades that promote cell survival 

and proliferation [26]. Crosstalk between the ER and EGFR pathways in lung cancer was 

established through in vitro observations that E2 rapidly stimulated activation of MAPK signaling 

and release of EGFR ligands HB-EGF and TGFα [70] Furthermore, co-targeting the ER and EGFR 

signaling pathways enhanced inhibition of proliferation in vitro and in vivo [70]. Co-inhibition of 

these interacting pathways was further validated as a viable therapeutic strategy in lung cancer 

with synergy reported between the aromatase inhibitor (AI) anastrozole and gefitinib, and re-
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sensitization of gefitinib-resistant lung cancer cells with the addition of the anti-estrogen 

fulvestrant [102,103].  

 

1.5.2 Strategies to Target Estrogen Signaling in Lung Cancer 

Anti-estrogen therapies have made arguably the most pivotal improvement in the treatment 

and prevention of hormonal positive breast cancers, reducing the mortality rate by 28% over the 

past 35 years and becoming the first-line standard of care treatment [1]. Clinical evaluation of anti-

estrogens in NSCLC are currently under way as well. Strategies for targeting the estrogen signaling 

pathway include estrogen blocking agents: anti-estrogens and AI’s. Anti-estrogens include 

selective estrogen receptor modulators (SERMs) such as fulvestrant and tamoxifen. However, 

following reports that tamoxifen exhibits partial agonist properties in some tissues, including lung, 

use of ER-antagonists in lung cancer evaluations is now limited to fulvestrant [104]. ER turnover 

is frequent and rapid with a reported 3-5 hour half-life regulated by ligand-induced ubiquitination 

following recruitment of coactivator proteins [105]. Fulvestrant acts as an ER-downregulator by 

selectively interacting with ERs leading to immobilization and similar methods of receptor 

degradation by independent activation of the ubiquitination-proteosomal pathway [106].  

AIs on the other hand inhibit estrogen synthesis by targeting the enzyme responsible for 

converting hormonal precursors to estrogens (Figure 5).  
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Figure 5. Role of Aromatase Inhibitors in Estrogen Synthesis. Adapted from  Figure 1 published in 

reference [107]. Both steroidal and nonsteroidal AIs block activity of the enzyme that converts 

androstenedione and testosterone into estrogens.   

 

AIs are classified based on chemical structure as either steroidal or nonsteroidal. Steroidal 

inhibitors such as exemestane are covalent and irreversible inhibitors of the aromatase enzyme, 

while nonsteroidal inhibitors such as letrozole interfere noncovalently and reversibly [107]. Both 

classes of compounds potently inhibit estrogen synthesis, but are clinically reserved for 

postmenopausal female patients.  

Increasing reports of interactions between estrogen signaling and several other tumor 

promoting pathways and biological mechanisms provide evidence for combination treatments with 

hormonal therapies as well. For example, following preclinical evidence of crosstalk between 

EGFR and ER signaling, a phase 1 trial demonstrated safety and tolerability and a phase II trial 

evaluated early efficacy of combined targeting with the EGFR TKI erlotinib and fulvestrant 

treatment. While statistically significant clinical benefit was not observed with the combination 

treatment, the trial was conducted before the advent of molecular profiling to identify patients with 
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EGFR activating mutations. Retrospective analysis of the enrolled patients did reveal significantly 

improved PFS and OS for patients positive for EGFR-sensitizing mutations [108]. Furthermore, 

additional clinical trials are assessing AIs alone (NCT02666105) and in combination with 

chemotherapy regimens in metastatic patients as well (NCT01664754).  

As hormonal therapies inhibiting ER signaling undergo early clinical evaluation in 

NSCLC, preclinical studies further elucidating the pathway’s carcinogenic mechanisms indicate 

single-agent inhibition may not be sufficient in all lung cancer settings. Therefore, the aim of this 

investigation was to utilize estrogen-blocking agents to identify additional pathways and 

mechanisms propagating lung tumorigenesis through cross-communication with estrogen 

signaling. 
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2.0  TARGETING CROSSTALK BETWEEN THE ESTROGEN RECEPTOR AND 

FIBROBLAST GROWTH FACTOR RECEPTOR PATHWAYS IN NSCLC 

2.1 INTRODUCTION 

Albeit an integral pathway in normal embryonic development, dysregulation of the 

fibroblast growth factor receptor (FGFR) pathway has been implicated in multiple carcinomas, 

including NSCLC [109-111]. The FGFR family consists of 18 ligands and 5 receptors and ligand-

bound activation of FGFR signal transduction is reliant on docking proteins recruited to the 

cytoplasmic juxtamembrane domain such as fibroblast growth factor receptor substrate 2 (FRS2). 

FRS2 is a critical mediator of FGFR signal transduction interacting with effector molecules for 

subsequent activation of RAS-Raf-ERK and PI3K-Akt-mTOR signaling (Fig. 6) [112].  

 

 

 

 

 

 

 

 

 

Figure 6. FGFR Signal Transduction in NSCLC. Adapted from Figure 1 in reference [113]. Diagram of 

ligand-activated FGFR signaling resulting in phosphorylation of docking protein FRS2 leading to 

downstream activation of ERK and AKT signaling cascades.  
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Clinically, amplification of the FGFR1 gene is reported in approximately 20% of squamous 

cell lung carcinomas and serum levels of its associated pro-angiogenic ligand FGF2 are 

significantly elevated (P<0.05) in NSCLC patients compared to healthy controls, both of which 

are adverse prognostic biomarkers associated with aggressive disease [114-116]. Genetic 

alterations in the FGFR2 and FGFR3 genes have also been reported at a combined mutation 

frequency of 6% in NSCLC [117]. Preclinical studies evaluating activating FGFR2 and FGFR3 

mutations and FGFR3 gene fusions revealed constitutive activation of the signaling pathway 

promoting tumor proliferation in xenograft mouse models and enhanced sensitivity to pan-FGFR 

inhibitors [117,118]. Co-expression of FGF ligands and their corresponding receptors observed in 

NSCLC cell lines also suggest an autocrine signaling loop within the tumor microenvironment 

providing further evidence that the FGFR signaling axis is an attractive molecular target for lung 

cancer [111]. Several selective FGFR kinase inhibitors have been developed, among which 

AZD4547 (Figure 7) has shown significant preclinical efficacy and currently undergoing 

evaluation in a phase II clinical trial for NSCLC with FGFR genetic abnormalities (NCT02664935) 

[119].  

 

 

 

 

Figure 7. AZD4547 Chemical Structure 

 

Individually the estrogen and FGF signaling pathways have identified roles in the 

promotion of lung tumorigenesis with several preclinical studies demonstrating the anti-tumor 
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effects of targeted inhibition. Recent studies in breast cancer cells have also suggested a potential 

interaction between the two signaling axes and an opportunity for co-inhibition. In ERα-positive 

breast cancer cells, FGF2 and E2 treatments both increased cellular proliferation, while the 

addition of anti-estrogens fulvestrant and tamoxifen significantly inhibited FGF2-induced  

proliferation [120]. Fillmore et.al., also showed estrogen induced FGF-dependent cancer stem cell-

like (CSC) phenotypes and induced secretion of multiple FGF ligands including FGF2 [121]. 

Furthermore, in FGFR1 amplified breast cancer cell lines FGFR signaling has been identified as a 

potential compensatory mechanism of resistance to endocrine therapies by increasing activation 

of the downstream ERK and AKT signaling pathways [122]. Clinical investigation for co-targeting 

these pathways using AZD4547 in combination with AIs is underway in advanced stage breast 

cancer patients (NCT01791985).  

Recent evidence of crosstalk between the ER and FGFR pathways in breast cancer, in 

addition to the pre-existing evidence for each pathway’s role within lung cancer led us to 

investigate whether a druggable interaction exists within NSCLC as well. In this study, we 

evaluated inhibition of the FGFR pathway in NSCLC using AZD4547 in combination with the 

anti-estrogen fulvestrant under the hypothesis that co-targeting these pathways would provide 

greater clinical benefit for patients who lack FGFR genetic alterations. The experimental design 

for this project was done in collaboration with Dr. Jill Siegfried’s laboratory at the University of 

Minnesota and published in Oncotarget. For a more detailed view of these methods, results, and 

additional related data see reference [123]. 



 25 

2.2 METHODS AND MATERIALS  

2.2.1 Cell Lines and Reagents  

NSCLC H1703, H1581, H520, A549, and H23 were purchased from American Type 

Culture Collection (ATCC; Manassas, VA). 128-88T, 273T, and 201T cell lines were established 

in our laboratory from primary lung tumor specimens [124]. Cells were cultured in either Basal 

Medium Eagle (BME) +10% fetal bovine serum (FBS) or RPMI 1640 + 10% FBS and maintained 

at 370C in 5% CO2. E2 and fulvestrant were both purchased from Sigma-Aldrich (St. Louis, MO) 

and diluted in water and ethanol respectively to create 100mM and 10μM stock solutions. 

AZD4547 was purchased from ChemieTek (Indianapolis, IN) and reconstituted in DMSO to create 

10mM stock solutions [123].  

2.2.2 Microarray Gene Expression Analysis  

The High Pure FFPE RNA Isolation Kit (Roche) was used to isolate RNA from formalin 

fixed paraffin-embedded (FFPE) sections from 64 lung cancer specimens that we have previously 

stratified based on high ERβ (n = 15) and low ERβ (n = 49) protein expression using 

immunohistochemistry (IHC). Tumors were stratified using the Allred IHC scoring system taking 

into account cytoplasmic ERβ staining positivity and intensity and classified as either low or high 

expressing tumors based on a median cutoff score of  ≤7 or >7, respectively [84]. mRNA profiles 

were compared in the ERβ high versus ERβ low expressing lung tumors using the Illumina Whole-

Genome DASL Assay (HT-12 V4 Bead Chip platform) and analyzed using BeadStudio software 

and Biometric Research Branch (BRB) array tools Version 4.2.1. TaqMan q-RT-PCR was used to 

validate FGFR1/FGFRL1 expression in ERβ high expressing tumors [123].  



 26 

2.2.3 Fluorescence In Situ Hybridization  

Following fixation of cells on glass slides, slides were denatured in hybridization buffer 

(Agilent Technologies, CA), and 0.5ng of FGFR1 (8p11) probe (Kreatech, Leica Biosystems) at 

70 0C for 12 minutes and then incubated overnight in a 37 0C humidified chamber. Following 

hybridization, slides were washed at 45 0C with 2x sodium citrate buffer multiple times, blocked, 

and then counterstained with 4′,6-diamidine-2′-phenylindole (DAPI). Gene copy number was 

determined by comparing the number of centromeres to number of gene copies and anything 

greater than two was considered amplified. 

2.2.4  Protein Extraction and Western Blotting Analysis 

Determination of basal FGFR and ERβ protein levels was conducted using cells grown to 

80-90% confluency in T75 flasks. Cells were washed 2x with cold phosphate-buffered saline 

(PBS) and lysed using RIPA lysis buffer (1X PBS, 1% NP40, 0.5% sodium deoxycholate, 0.1% 

SDS containing 0.5  protease inhibitor cocktail/5ml buffer (Roche Diagnostics, Indianapolis, IN)) 

and briefly sonicated. The insoluble cellular debris was pelleted using centrifugation at 10,000 rpm 

for 10 minutes at 40C. The BCA 200 Protein Assay Kit (Pierce, Rockford, IL) was then used to 

quantitate protein concentrations in the lysate supernatant. Equal amounts of protein (40μg) were 

loaded and separated on 10% Tris-glycine SDS-PAGE gels and transferred to nitrocellulose 

membranes. Membranes were then blocked with 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 

0.1% Tween-20 (1X TBST) containing 5% nonfat dry milk at room temperature (RT) for1 hour. 

Primary antibodies were then diluted in 1X TBST containing 5% non-fat milk or 5% bovine serum 

albumin (BSA) and added to membranes for an overnight incubation at 40C on an orbital shaker. 

Primary antibodies and dilutions used included: FGFR1 (1:1000; 3427s; Cell Signaling 
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Technology), FGFR2 (1:500; ab58201; Abcam), FGFR3 (1:1000; ab52246, Abcam), FGFR4 

(1:1000; 8562s; Cell Signaling Technology), FGFR5 (1:500; ab95940; Abcam), ERβ (1:500;Clone 

68-4; Millipore), pFRS2 (1:1000; ab195826; Abcam), GAPDH (1:5000; 2188s, Cell Signaling 

Technology) and β-actin (1:5000; Clone C4; Millipore). Following incubation with primary 

antibodies, membranes were rinsed with 1X TBST 3x for 10 minute intervals. Next HRP coupled 

anti-mouse or rabbit secondary antibodies were applied to membranes for 2 hours at RT. Protein 

bands were visualized using SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher 

Scientific, Waltham, MA) and autoradiography. For pFRS2 experiment, cells were seeded at 75% 

confluency and serum-deprived in phenol-red-free/serum-free BME for 24 hours post attachment. 

Cells were then subjected to DMSO, AZD4547 (2µM), fulvestrant (2μM), or the combination. 

Cells were harvested 72 hours following treatment and used for immunoblotting in the same 

manner as other FGFRs [123].  

2.2.5 FGF Enzyme Linked Immunosorbent Assays 

NSCLC cell lines were seeded onto 100mm tissue culture treated dishes at 75% 

confleuncy. Following 24 hours, cells were serum-starved in phenol-red-free/serum-free BME+ 

10% charcoal-stripped serum for 48 hours at 370C at which point conditioned media was collected. 

Collected media was concentrated using Amicon®Ultra-4 Centrifugal Filter Devices (Millipore) 

by centrifugation at 4000 x g for 5 minutes at RT. Concentrated conditioned media was evaluated 

using commercially available enzyme-linked immunosorbent assay (ELISA) kits for FGF 2, 9, and 

19 from R&D systems (Minneapolis, MN), for FGF 3, 6 and 10 from Antibodies Online (Atlanta, 

GA), for FGF4 from Abcam and for FGF8 from USCN Life Sciences. The corresponding cells 

from the conditioned media were harvested for each sample to normalize FGF secretion to protein 
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concentration. Assays were performed in triplicate for each sample. Estrogen-induced FGF2 

secretion experiments were performed by treating cells with 10nM of E2 or vehicle control (sterile 

water) for 15 minutes to 6 hours following 48 hour serum deprivation with conditioned media and 

protein lysates collected at each time point. For fulvestrant in vitro studies a dose of 5μM was 

chosen based on previous studies in our laboratory and others that show the IC50 for fulvestrant is 

well above 10μM in NSCLC cells, with no cytostatic or cytotoxic effect at the selected 

concentration [103,123,125]. A 24-hour fulvestrant pre-treatment was selected based on previous 

unpublished results in our laboratory identifying this as a standard time period to elicit inhibition 

of biological ligand release in NSCLC.  

2.2.6 Cell Proliferation Assay  

Cells were seeded on 96-well plates at a concentration of 10,000 cells per well and 

incubated overnight at 370C to allow for attachment. To determine the IC50 for each line, cells 

were then treated with a serial-dilution of AZD4547 compound (0-25μM) in triplicate with each 

assay performed a minimum of three times. Anti-proliferative effects of fulvestrant treatment in 

combination with AZD4547 was evaluated by treating cells after attachment with 5μM of 

fulvestrant with and without AZD4547 at concentrations below the determined IC50 for each cell 

line. Fulvestrant dose was selected based on the ligand-release studies and previous publications 

indicating 5μM was capable of inducing biological effects, but not impacting cell viability 

[103,125]. Following 72 hour treatment Cell Titer96 AQueous One Solution Cell Proliferation 

Assay (Promega, Madison, WI) was added to each well and cells were analyzed at 490nm using a 

Biorad microplate absorbance reader (Hercules, CA). 
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2.2.7 In vivo NSCLC Cell Line Tumor Xenograft Model 

Female immunocompromised athymic nude mice were purchased from Harlan 

(Indianapolis, IN). A549 and 273T NSCLC tumor cells were grown, harvested, and resuspended 

in a 50% sterile serum-free PBS/50% matrigel (BD Biosciences, San Jose, CA). Cells (1x106) were 

then injected into the rear flank on both sides of each mouse. Tumors were grown to approximately 

100mm3 at which point mice were randomized into four treatment groups: (a) vehicle control, (b) 

AZD4547, (c) fulvestrant, and (d) AZD4547 plus fulvestrant. AZD4547 was administered daily 

via oral gavage at a dose of 12.5 mg/kg in 0.2mL of the vehicle 4% DMSO/30%PEG in sterile 

deionized water. Fulvestrant (30mg/kg) or vehicle control (peanut oil) was administered twice a 

week by subcutaneous injection. Tumor volume was measured twice a week and recorded as a 

relative tumor volume calculated (l x w x h) (mm3), where l is length, w is width, and h is height 

of the tumor. At the completion of the treatment period the mice were sacrificed and tumors were 

collected [123]. Animal care was in agreement with IACUC and University of Pittsburgh 

guidelines.  

2.2.8 Immunohistochemistry 

Fixed xenografts were paraffin embedded, sliced, and mounted on slides. Paraffin was 

removed from slides using xylenes and slides were then subjected to rehydration, antigen retrieval, 

and incubation with 3% hydrogen peroxide for 15 minutes to quench endogenous peroxidase. 

Slides were stained with hematoxylin and eosin (H&E) and analyzed for Ki67 expression. For 

Ki67, ERα, and ERβ staining, slides were rinsed with PBS and blocked in 1.3% goat serum (MOM 

Kit, Vector Labs), then incubated with Ki67 (ab833; Abcam), ERα (SC-543; Santa Cruz), ERβ 

(MCA1974ST; AbD Serotec) overnight in a humidified 40C chamber. Slides were then incubated 
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for 1 hour with horseradish peroxidase labeled secondary antibody (1:200) and cell nuclei were 

counterstained with hematoxylin. Bright field images were taken using 40X magnification using 

the 4000B LED Leica microscope and LASv4.7 software (Leica Biosystems). Four images were 

captured from three separate animals per treatment group and Ki67 cell proliferation index was 

determined by counting the number of Ki67 positive cells per field divided by the total tumor cell 

count per field [123].  

2.2.9 Statistical Analyses 

All values are expressed as the mean ± standard error of the mean (S.E.M.). Analyses were 

performed using GraphPad Prism software version 7 for Mac (GraphPad Software, San Diego 

California USA). Statistical significance was determined using unpaired t-tests or ANOVA with a 

95% confidence interval (P<0.05). 

2.3 RESULTS  

2.3.1 FGFR1 is Highly Expressed in NSCLC Tumors Expressing High ERβ 

We previously published that elevated ERβ protein expression is a poor prognostic 

indicator for NSCLC patients [84]. To identify additional biological factors interacting with ER 

signaling in lung cancer, we performed an mRNA analysis using the Illumina HT-12 V4 Bead 

Chip comparing RNA from patient samples identified for having high ERβ expression versus 

patient samples with low ERβ expression. The mRNA analysis revealed that 165 genes were 

significantly differentially expressed between the two groups (P<0.001). The top ten differentially 
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expressed genes are reported in Table 1. and show that the fibroblast growth factor receptor 1 

(FGFR1) gene was one of the most significantly upregulated genes (2.41-fold change) in the ERβ 

high expressing tumors, while the decoy-receptor, fibroblast growth factor receptor like 1 

(FGFRL1 or FGFR5), was among the most down-regulated genes (0.54-fold change). 

 

Symbol Gene P Value Fold Change 

ZNF334 Zinc Finger Protein 334 1.00E-06 2.7 

FGFR5 FGF receptor-like 1 (decoy receptor) 8.00E-06 0.54 

ARMCX1 Armadillo repeat-containing protein 1.40E-05 1.59 

POFUT1 Protein O-fucosyltransferase 1 2.77E-05 2.16 

TNKS Tankyrase 3.10E-04 1.84 

PIAS Protein inhibitor of STAT,1 5.90E-04 1.92 

SFTPB Surfactant protein B 2.57E-03 0.38 

FGFR1 FGF receptor 1 3.51E-03 2.41 

SLIT2 Slit homolog 2 3.59E-03 0.44 

TNRSF13B TNF receptor superfamily, member 13B 7.25E-03 0.35 

 

Table 1. Top Ten Differentially Expressed Genes Between ERβ High and ERβ Low Expressing 

Tumors. Most significantly differentiated genes listed according to P value identified by Illumina HT-12 V4 

Bead Chip comparing RNA between high ERβ expressing tumors and low ERβ expressing tumors.  

 

 While genes such as TNKS and SLIT2, have potential implications in lung carcinogenesis, 

we further pursued investigation of FGFR1 based on its well-established role in lung cancer and 

the identified interaction with ER signaling in breast cancer. Furthermore, Ingenuity Pathway 

Analyses of the ten genes in Table 1 showed they form one interacting network with FGF signaling 

identified as one of the top canonical pathways (P=0.00072).  Quantitative RT-PCR of tumor RNA 

from the same tumor cohorts confirmed the Illumina microarray results with observed increased 

levels of FGFR1 mRNA (P=0.004) and down-regulated levels of FGFRL1 mRNA (P= 0.0116) in 

ERβ high expressing tumors compared to low (data not shown).  
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2.3.2 FGFR1 is Amplified in Some NSCLC Cell Lines Characterized  

In order to elucidate potential communication between the ER and FGFR pathways in 

NSCLC we first determined FGFR1 amplification status in eight NSCLC cell lines. In 

collaboration with the University of Pittsburgh Molecular Pathology Lab, amplification status was 

determined using fluorescence in situ hybridization (FISH) analysis to examine the gene copy 

number in each cell line (Table 2).  Any cell line with a gene copy number greater than two was 

classified as amplified, and three of the eight lines were identified as FGFR1 amplified. 

 

Cell Line  Histology 
FGFR1 Gene 

Copy Number 
Amplification Status 

NCI-H1703 Squamous 21.00 Amplified 

NCI-H1581 Large Cell  6.70 Amplified 

NCI-H520 Squamous  10.00 Amplified 

273T Squamous 1.31  Not Amplified 

A549 
Bronchiolo 

alveolar 
1.24 

 Not Amplified 

128-88T Squamous 1.10  Not Amplified 

201T Adenocarcinoma 1.01  Not Amplified 

NCI-H23 Adenocarcinoma 0.95  Not Amplified 

 

Table 2. NSCLC Cell Line Histology and FGFR1 Gene Amplification Status. Gene amplification 

 status was determined by FISH analysis. Gene copy numbers were calculated based on the ratio  

of the number of copies of the gene to the number of centromeres of the associated chromosome found 

within the nucleus of each cell line. Copy number greater than two was classified as amplified. 
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2.3.3 NSCLC Cell Lines Express Multiple FGFRs and Secrete Multiple FGF Ligands 

Protein expression of all 5 FGFR family members was assessed in the five non-amplified 

cell lines by western blotting analysis. Since amplification of the gene leads to constitutive 

activation of the FGFFR signaling pathway, identification an interacting pathway is less prominent 

and more challenging. At least three FGFRs were expressed in each cell line, with all lines 

expressing detectable levels of FGFR2, FGFR3 and the decoy receptor FGFRL1. Furthermore, 

each of the lines were assessed for ERβ and revealed moderate and invariable expression of the 

protein. No correlation was observed between ERβ protein levels and FGFR expression (Fig.8). 

In order to fully characterize the FGF/FGFR profile for each NSCLC cell line we also evaluated 

basal levels of FGF ligand secretion. Relative un-stimulated levels of FGF ligand release for each 

cell line as measured by ELISA is shown in Fig. 9 and summarized in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. FGFR and ERβ Protein Expression in NSCLC Cell Lines. Each of the five non-amplified 

NSCLC cell lines were analyzed for basal FGFR and ERβ protein expression using whole cell lysate 

immunoblotting with β-actin assessed as a loading control. 
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Figure 9. FGF Ligand Secretion in NSCLC Cell Lines. Following 48 hour serum-deprivation conditioned 

media was collected from each cell line and analyzed using ELISAs for FGF2,3,4,6,8,9,10 and 19. 

Corresponding whole cell lysates were collected and quantitated for normalization of FGF release to total 

protein content.  

 

 

 

 

 

 

Table 3. Summary of Basal FGF Ligand Secretion in NSCLC Cell Lines. ND= not detectable; + = 0.1-

10pg/mg protein; ++ = 11-100pg/mg protein; +++ = >100pg/mg protein  
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FGF ligand release was variable across cell lines. FGF2, 3 and 19 had the highest overall 

secretion levels among all cell lines, while FGF4 and FGF8 were not detectable. FGF3 and 10, 

both ligands for the FGFR1 and FGFR2 receptors, had a detectable range of 18.9-30.7 pg/mg 

protein and 3-27.5pg/mg protein respectively. FGF2, a ligand with affinity for each FGFR 

receptor, release ranged from 1.8-49.3 pg/mg of protein. FGF19, a FGFR4 ligand, release was 

greatest in 273T and H23 cells reaching a maximum secretion of 1459.6 pg/mg protein with the 

lowest concentration observed in 128-88T cells at 9.9 pg/mg protein. Finally, FGF6 was minimally 

detected at a concentration below 1 pg/mg protein, while FGF9 was minimal and variable and 

FGF4 and FGF8 were not detected in any of the lines.  

2.3.4 E2 Stimulates FGF2 Release in NSCLC Cells 

Indicative of crosstalk between the ER and FGFR pathways in breast cancer, E2 has been 

shown to induce FGF2 secretion in breast cancer cell lines [121]. We evaluated whether E2 would 

stimulate FGF2 release in NSCLC. With previous observations of rapid stimulation of growth 

factor release in NSCLC cells in response to 10nM E2, a time-course from 15 minutes to 6 hours 

(Appendix 1, Figure 28) was performed. A 10nM concentration of E2 was selected based on 

previous studies by our laboratory having reported optimal biological responses and ERβ receptor 

selectively with 10nM E2 compared to 1 and 100nM concentrations [70,126] In this experiment, 

following E2 exposure, conditioned media was analyzed using a FGF2 ELISA and normalized to 

total protein content of the cells. Significant increases in FGF2 release upon estrogen stimulation 

were observed at 1-2 hours in all three cell lines tested (Fig. 10). The most significant effect 

occurred in 201T cells at 2 hours (Fig. 10B) with a 3.8-fold increase compared to control and a 

nearly 2-fold increase at 2 hours in A549 cells (Fig.10C). Furthermore, fulvestrant treatment prior 
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to E2 exposure completely inhibited E2-induced FGF2 secretion as observed in A549 cells (Fig. 

10D). 

 

 

Figure 10. E2 Stimulates FGF2 Secretion in NSCLC Cell Lines while Fulvestrant Inhibits E2-induced 

FGF2 Release. Cells were treated with 10nM of E2 following 48 hour serum-deprivation. Conditioned media 

and whole cell lysates were collected at 1, 2, and 4 hours after E2 treatment in A. 273T, B. 201T, and C. 

A549 cell lines. FGF2 release was evaluated by ELISA and normalized to the protein concentration of each 

sample. D. A549 cells were serum-deprived and pre-treated with 5μM of fulvestrant 24 hours prior to E2 

treatment for 2 hours. Media was collected, concentrated, analyzed by ELISA, and normalized to total 

protein. Results are the mean ± S.E.M of three independent samples and reported as picogram FGF2 released 

per milligram protein. *P< 0.05, **P < 0.01. 
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2.3.5 Fulvestrant Increases the Anti-Proliferative Effects of Pan-FGFR Inhibitor 

AZD4547 

FGFR and ER are both known to promote cellular proliferation, and based on the 

hypothesis of these two pathways interact, we evaluated the effect of co-inhibition using the anti-

estrogen fulvestrant and pan-FGFR inhibitor AZD4547 on NSCLC cellular proliferation. The IC50 

of AZD4547 was determined for both amplified and non-amplified cell lines (data not shown) and 

revealed that NSCLC cells lacking FGFR genetic abnormalities were less sensitive to the inhibitor 

with IC50 values ranging from 7μM in 273T to 18µM in A549 cells (Fig.11A). The addition of 

fulvestrant, however, significantly enhanced the sensitivity of these cell lines to the anti-

proliferative effects of AZD4547. Combination treatment was evaluated and compared to single 

agent therapies in each of the cell lines that revealed E2-induced FGF2 secretion. To evaluate 

efficacy of co-inhibition, a concentration of AZD4547 that produced 30-40% inhibition was used 

singularly and in combination with 5μM fulvestrant. Dose-responses to fulvestrant alone were 

previously performed (data not shown) in each cell line as well and showed minimal cytostatic 

effect at the selected concentration which we pursued further following ligand-release studies. 

Significant inhibition was observed in the combination treatments compared to control and single 

agents in all three cell lines (P<0.01, Fig. 11). 201T cells showed a 70.7% inhibition with 

combination treatment compared to control, while a 61.4% inhibition was observed in 273T cells 

and 59.9% in A549.   
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Figure 11. Fulvestrant Increases the Anti-Proliferative Effects of Pan-FGFR Inhibitor AZD4547. (A). 

Representative IC50 curves for AZD4547 in 201T, 273T and A549 cells. (B-D). NSCLC cells were treated 

with 5μM fulvestrant, 5 or 10μM AZD4547, or the combination for 72 hours. Cells were incubated for 1 

hour, analyzed at 490nm wavelength following addition of 20μL of Cell Titer 96 Aqueous One MTS Solution 

to each well. Results are presented as the mean ± S.E. from three separate experiments with six independent 

samples per treatment group. ANOVA, * P < .05; ** P < .01;***P < .001. (B). 201T; (C) 273T; (D). A549. 

2.3.6 Co-targeting ER and FGFR Signaling Maximally Inhibits Phosphorylation of FGFR 

Docking Protein FRS2 

Since the NSCLC cell lines were not reliant on one particular FGFR or FGF ligand for 

activation of the FGFR signaling axis, we chose phosphorylation of the FRS2 docking protein as 

a marker of pathway activation [112]. Levels of phospho-FRS2 (pFRS2) expression were probed 

for in 201T and 273T cells following treatment with vehicle control (DMSO), AZD4547, 
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fulvestrant, or the combination. Levels of pFRS2 expression were normalized to constitutively 

expressed glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and reported as band densities 

relative to the control. Singularly, AZD4547 effectively inhibited phosphorylation by 60% and 

40% in 201T and 273T cells respectively. Fulvestrant alone had marginal effects on FRS2 

phosphorylation with only a 10% inhibition observed in 201T cells and 30% inhibition in 273T 

cells. The greatest inhibitory effect on FRS2 phosphorylation was observed in the combination 

treatment groups in both cell lines with 98% inhibition in 201T and 70% in 273T and suggestive  

of crosstalk between these two pathways.  

 

 

 

 

 

 

 

 

Figure 12. Inhibitory Effect of Fulvestrant and AZD4547 on Phosphorylation of FGFR Docking 

Protein FRS2. Following 24 hour serum deprivation 201T and 273T cells were treated with DMSO (control), 

AZD4547, fulvestrant, or the combination. Whole cell lysates were collected following 72-hour treatment. 

pFRS2 levels were assessed by immunoblotting and quantified by densitometry with normalization to 

GAPDH.  *Experiment was performed by Mariya Farooqui, PhD. 
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2.3.7 Combined Targeting of the ER and FGFR Pathway Enhances Anti-tumor Activity 

in NSCLC Xenograft Models 

The identification of crosstalk between the ER and FGFR pathways in NSCLC and 

enhanced anti-proliferative effects when targeting both pathways led us to evaluate co-inhibition 

of the ER and FGFR pathways using fulvestrant and AZD4547 in vivo. Female athymic nude mice 

bearing ERβ-positive NSCLC tumors began treatment once xenografts reached an average volume 

of 100mm3. In A549 xenografts, mice were randomized into four treatment groups receiving 

vehicle control, AZD4547, fulvestrant, or the combination for 24 days at which point mice were 

sacrificed and tumors were harvested for IHC analysis. Both single agent therapies reduced tumor 

volume by 33% compared to placebo (P<0.05, Fig. 13). Combined fulvestrant and AZD4574 

therapy using both inhibitors resulted in an even more significant anti-tumor effect with an 85% 

reduction in tumor volume after 24 days of treatment when compared to control (P<0.001) and 

52% reduction compared to single agent therapies (P<0.01). Mouse weight and gait was 

maintained and no signs of toxicity were observed in any of the treatment groups.  
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Figure 13. Combined Targeting of ER and FGFR Enhances Inhibition of A549 Tumor Growth In Vivo. 

A549 cells (1x106) were injected into immunocompromised nude mice and grown for approximately two 

weeks until xenografts reached an average volume of 100mm3. Mice were randomized and received one of 

four treatments for 24 days: Control (4% DMSO/30%PEG in sterile deionized water), AZD4547 (12.5mg.kg 

daily via oral gavage), fulvestrant (30mg/kg s.c. injection 2x/week), or combination. Tumor growth was 

measured using calipers twice a week and results are reported as the relative mean tumor volume ± S.E. or 

6-8 tumors per group. ANOVA *P<.05, **P<0.01, ***P<0.001.  

 

Immunohistochemical analysis of the xenografts following sacrifice revealed important 

histological changes among treatment groups. Examination of H&E staining revealed increased 

stromal content and fewer neoplastic cells comprising the tumors receiving treatment with the 

greatest changes observed in the combination therapy group (Fig. 14A). Measurement of Ki67 

protein expression was also performed as a quantitative assessment of actively proliferating tumor 

cells. A significant reduction in Ki67 expression was observed across treatment groups when 
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compared to placebo, with the most significant loss of S-phase labeling observed in the 

combination treatment group. A mean value of 70 cells per field stained positive for Ki67 in the 

control placebo tumors, while combined AZD4547 and fulvestrant treatment showed significantly 

reduced staining compared to placebo (P<0.001) and single treatments (P<0.05 Fulvestrant; 

P<0.01 AZD4547) with an average of 18.5 Ki67 positive cells per field (Fig. 14B).  

 

 

Figure 14. Combined Targeting of ER and FGFR Altered Tumor Histology and Reduced Ki67 

Proliferative Index in A549 Xenografts. (A) Representative H&E and Ki67 stained sections of xenograft 

tumors harvested from the four treatment groups imaged at 40X magnification. Scale bars represent 150 

μm.(B) Quantitation of Ki67 labeling was performed by counting 5 fields per tumor and represented as the 

average of three independent tumors per experimental group ANOVA *P<0.05; **  P < .01;*** P < .001.  

 

 Combination treatment was also assessed in a 273T xenograft model. In this study, a 30% 

reduction in tumor volume was observed with fulvestrant treatment alone (P<0.05), with both the 

AZD4547 single agent treatment and combination treatment groups showed a 67% reduction in 
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tumor growth compared to placebo (P<0.001) (Fig. 15). Mouse weight and mobility was 

maintained in all treatment groups, with no signs of toxicity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 15. No Enhanced Effect on Tumor Growth with Combined ER and FGFR Targeting in 273T 

Xenografts. 273T cells (1x106) were injected into immunocompromised nude mice and grown until 

xenografts reached an average volume of 100mm3. Mice were randomized and treated for 34 days according 

to protocol described in Figure 13. Tumor growth was recorded twice a week using calipers and results are 

reported as the relative mean tumor volume ± S.E. or 6-8 tumors per group. ANOVA *P<.05, **P<0.01 

***P<0.001. 

 

 Interestingly in the study, tumor volumes were the same among AZD4547 treatment and 

combination treatment groups. However, similar to the A549 xenografts, IHC analysis revealed 

increased stromal content from single treatment groups to the combination treatment, suggesting 

that despite similar tumor volumes the combination therapy treated tumors were composed of 

fewer malignant cells (Fig. 16A). Ki67 protein expression supported this observation with the most 
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significant reduction in Ki67 labeling observed in the combination treatment group compared to 

placebo (P<0.001) and significantly less staining in combination treatment compared to AZD4547 

alone (P<0.01) and fulvestrant alone (P<0.001, Fig. 16B).  

 

Figure 16. Combined Targeting of ER and FGFR Altered Tumor Histology and Reduced Ki67 

Proliferative Index in 273T Xenografts. (A) Representative H&E and Ki67 stained sections of xenograft 

tumors from the four treatment groups imaged at 40X magnification. Scale bars represent 150μm. (B) 

Quantitation of Ki67 labeling was performed by counting 5 fields per tumor and represented as the average 

of three independent tumors per experimental group ANOVA **  P < .01;***  P < .001 

 

 Expression of ERα and ERβ were also probed in both the 273T and A549 xenografts using 

IHC. Analysis of staining revealed undetectable levels of ERα in all experimental groups, while 

ERβ was ubiquitously expressed among treatment groups with slight reduction in fulvestrant 

treated groups. Levels were similar among both the 273T and A549 xenografts, with representative 

staining shown for 273T in Figure 17.  
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Figure 17. ERα and ERβ Protein Expression in 273T Xenografts. Representative staining of both ERα 

and ERβ expression in 273T tumors from the four treatment groups with positive and negative controls for 

comparison. 

2.4 CONCLUSIONS AND FUTURE DIRECTIONS 

Bleak improvement in the 5-year survival rate for lung cancer patients over the past decade 

necessitates continued development of novel therapies and treatment strategies. The clinical 

success of drugs selectively targeted against molecular alterations driving certain NSCLCs 

provides rationale for further identification and targeted inhibition of pathways promoting lung 

tumorigenesis. Both ER and FGFR signaling have identified roles in proliferation and lung 

carcinogenesis largely through activation of similar downstream pathways such as RAS-Raf –

MEK and PI3k-AKT-ERK. To fully abrogate activation of these signaling cascades promoting cell 

proliferation and survival, combinational strategies targeting multiple upstream activators are 

being clinically evaluated in NSCLC patients. Our lab previously identified crosstalk between the 

ER and EGFR pathway and observed enhanced anti-tumor effects when co-targeting these 

pathways compared to single pathway inhibition [70]. This led to phase II clinical evaluation of 

the EGFR TKI erlotinib in combination with the anti-estrogen fulvestrant in advanced NSCLC 
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patients and while the combination treatment failed to statistically improve response rates 

compared to erlotinib alone, a significantly improved clinical benefit rate with the combination 

was interestingly observed in wild-type EGFR patients [108]. Here we sought to elucidate potential 

crosstalk between ER and FGFR signaling in NSCLC and whether co-inhibition of these pathways 

would enable enhanced anti-tumor activity in NSCLC cell lines lacking FGFR genetic alterations.  

From our mRNA analysis comparing ERβ high expressing NSCLC patient tumors to ERβ 

low expressing tumors, FGFR1 was identified as one of the top ten differentially expressed genes 

with significant up-regulation in the ERβ high expressing tumors. Pathway analysis of the most 

differentially expressed genes revealed they were involved in one interacting network connected 

to STAT3 and PTEN signaling as well. While FGFs are fundamental in normal lung development, 

deregulated FGFR signaling is involved in pathogenesis and promotion of lung cancer. Therefore, 

upregulated FGFR1 in ERβ high expressing tumors associated with poorer prognosis provided 

initial rationale for further investigation of a targetable interaction between these pathways in 

NSCLC.  

We focused our investigation on ERβ expressing NSCLC cell lines lacking FGFR1 

amplification under the hypothesis that enhanced activity of combined inhibition may be more 

prevalent and targetable in a non-amplified setting. In amplified cell lines we were unable to show 

ER-dependence on FGF2 secretion, and saw no enhanced anti-proliferative or anti-tumor effects 

when blocking both FGFR signaling and estrogen synthesis (data not shown). An interaction 

between ER and FGFR signaling is therefore more challenging to identify and target among cell 

lines harboring FGFR abnormalities since they may be more singularly reliant on FGFR signaling. 

This observation parallels the clinical results of co-targeting ER and EGFR in NSCLC, indicating 

combinational strategy may provide more clinical benefit to patients lacking FGFR abnormalities 

because FGFR1 amplified patients are likely more sensitive to FGFR inhibitors alone.  
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Characterization of the non-FGFR1 amplified NSCLC cell lines reveled expression of 

multiple FGFRs, invariably FGFR2 and FGFR5 and detectable levels of at least two other FGFRs 

in each cell line. Similarly, FGF secretion profiles revealed basal release of multiple FGFs 

indicating activity of FGF/FGFR signaling in these cells was not reliant on one particular receptor 

or ligand. Expression of multiple receptors in these cells provided rationale for utilizing a pan-

FGFR inhibitor to target the pathway in our investigation. Following the establishment of FGFR 

signaling and ERβ expression in each cell line we demonstrated cross-communication among the 

pathways by showing E2 stimulated significantly increased FGF2 secretion in multiple cell lines. 

ER dependence on FGF2 release was further evidenced when the induced effect was completely 

blocked with the addition of fulvestrant. In addition, maximal inhibition of FRS2 phosphorylation, 

was achieved when combining fulvestrant and AZD4547, further indicating an interaction between 

the two pathways in NSCLC. In separate studies (data not shown) assessing the effects of estrogen 

signaling on lung tumorigenesis in a tobacco-carcinogen (4-(methylnitrosoamino)-1-(3-pyridyl)-

1-butanone; NNK) induced murine model we demonstrated that ER blocking agents significantly 

reduced FGF ligand and FGF-dependent stem cell marker (SOX2 and Nanog) expression in both 

pre-neoplasias and adenomas. Alternatively, in a separate NNK murine model in which mice were 

supplemented with E2 or placebo alongside exposure to NNK, expression of FGF2, FGF9, SOX2, 

and Nanog all significantly increased in preneoplasia tissue [123].  

Identification of crosstalk between FGFR and ER signaling in these studies led us to 

evaluate whether co-inhibition of these pathways may have a greater anti-tumor effect compared 

to single agent therapies. The addition of fulvestrant to AZD4547 treatment in vitro significantly 

enhanced sensitivity of the cells to the anti-proliferative effects of the FGFR inhibitor. Fulvestrant 

alone had no effect on cell viability at concentrations as high as 30μM. While half-maximal 

inhibition of proliferation using AZD4547 varied among the cell lines, but was consistently higher 
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in our non-amplified cells compared to more sensitive FGFR1 amplified cells. Simultaneous 

targeting of ER and FGFR in vivo revealed improved anti-tumor effects including enhanced 

inhibition of tumor proliferation, increased stromal component, and reduced Ki67 labeling 

compared to placebo and single agent treatments in the A549 xenografts. While 273T xenografts 

showed no significant difference in final tumor volumes between AZD4547 treatment and 

combination treatment, changes in tumor histology suggested increased stromal content and fewer 

actively dividing malignant cells. Differential responses to growth inhibition may be attributed to 

the increased sensitivity of the 273T cells to AZD4547 alone. In the in vitro studies evaluating the 

combination treatment, A549 and 201T cells required twice as much AZD4547 compared to 273T 

cells in order to obtain a significant combination effect, explaining the decreased combination 

effect in vivo. Furthermore, A549 cells are KRAS (G12S) mutant while 273T are wild-type for 

KRAS [127]. KRAS mutations result in constitutive activation of the RAS-Raf-MEK cascade that 

is downstream of ER and FGFR signaling. Lateral targeting of both ER and FGFR pathways in 

the A549 cell line therefore potentially enabled greater inhibition of hyper-activated downstream 

signaling involved in cellular proliferation.   

While both ER isoforms are involved in estrogen signaling, IHC revealed undetectable 

levels of ERα expression in all of our xenografts, and clearly detectable ERβ expression in each 

of the treatment groups. Numerous studies have identified ERβ as the predominant isoform in lung 

cancer [93], and our observations herein indicate communication between ER and FGFR signaling 

in these NSCLC cell lines is largely conducted through the β isoform, which upon further clinical 

evaluation may act as a biomarker for therapeutic decision-making. 

Taken together these studies demonstrate simultaneously co-targeting ER and FGFR 

signaling enhanced the anti-tumor and inhibitory effects of AZD4547 in non-FGFR1 amplified 

NSCLC cell lines. These results suggest combined inhibition of the ER and FGFR pathways may 
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act as a novel therapeutic strategy and provide clinical benefit for NSCLC patients lacking FGFR1 

genetic abnormalities.  

Clinical evaluation of this combination strategy is an evident future direction, while other 

future studies are warranted as well. Herein, we demonstrated an interaction between the ER and 

FGFR pathway, but did not identify specifically which FGFR receptor was the point of interplay. 

Additional studies utilizing gene silencing techniques would be beneficial to demonstrate the exact 

location of crosstalk by individually knocking down each receptor and evaluating estrogen 

stimulation of FGF2 or altered co-targeting effects on proliferation. Furthermore, the Ingenuity 

pathway analysis of differentially expressed genes could be utilized to evaluate other pathways 

within the network connecting ER and FGFR such as STAT3.  
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3.0  ELUCIDATING INTERACTIONS AMONG ESTROGEN SIGNALING, THE 

TUMOR MIVROENVIRONMENT, AND EPITHELIAL-MESENCHYMAL 

TRANSITION IN NSCLC 

Greater examination of solid tumor composition over the past decade has highlighted the 

immense complexity and heterogeneity of tumor biology.  Progression of neoplastic disease is 

reliant not only on actively dividing neoplastic cells, but also neovasculature that recruits 

infiltration of stromal cells enabling fluid interaction with the local tumor microenvironment. In 

addition to the intracellular effects of ER signaling, recent reports indicate the pathway may also 

interact with elements of the local tumor microenvironment. In a murine tobacco-induced lung 

carcinogenesis prevention model, Stabile et.al. demonstrated the use of ER blocking agents 

anastrozole and fulvestrant, especially when in combination, significantly reduced tobacco 

carcinogen-induced lung tumor formation and size [128]. In addition, the study reported 

infiltration of inflammatory macrophage cells in the lung neoplasias, and that aromatase expression 

was exclusively observed in the macrophages and not in the tumor cells, while ERβ was expressed 

in both [128]. Furthermore, AIs such as exemestane have proven efficacy when used as 

chemopreventive agents in post-menopausal women at elevated risk for breast cancer, with 

preclinical evidence eluding to a potential anti-oxidant and anti-inflammatory mechanism through 

activation of cytoprotective nuclear receptor erythroid-2 related factor 2 (NRF2)/ antioxidant 

response element (ARE) signaling (Figure 18) [129,130]. The role of inflammation in the 

development of several carcinomas including lung is well established[131], but this observation 

of potential interplay between the inflammatory response and estrogen synthesis presents as 

another novel co-targeting strategy for lung cancer.  
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Figure 18. Proposed Mechanism of Exemestane Activated NRF2 Signaling in NSCLC. Figure is based 

on in vitro studies reporting increased nuclear receptor erythroid-2 related factor 2 (NRF2) signaling and 

NAD(P)H:quinone oxidoreductase 1 (NQO1) activity in response to exemestane, [130]. Schema represents 

potential mechanism by which exemestane leads to phosphorylated NRF2 activation inducing translocation 

to the nucleus and binding to antioxidant response elements (ARE) which subsequently upregulates 

transcription of cytoprotective enzymes 

 

Estrogen signaling within the lung tumor microenvironment may also abrogate tumor 

immunosurveillance. Recently, Svoronos et.al. reported a potential interaction between estrogen 

and anti-tumor immunity in an ovarian mouse model. The study found that estrogen signaling 

mobilizes and enhances the immunosuppressive effects of myeloid derived suppressor cells 

(MDSCs) ultimately promoting ovarian carcinogenesis [132]. Evidence this interaction may also 

exist in lung cancer comes from a quantitative high-throughput screen of more than 2,000 

compounds that identified fulvestrant as the lead candidate for enhancing lung cancer cell 

sensitivity to immuno- and chemotherapies. The study showed that fulvestrant was capable of re-

sensitizing immunoresistant lung cancer cells to immune-mediated lysis with TNF-related 

apoptosis inducing ligand (TRAIL) [133]. The study also reported downregulation of 
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mesenchymal markers in lung cancer cells treated with fulvestrant, suggesting inhibition of ER 

signaling may not only restore immunocompetence, but also reverse the morphogenic epithelial-

mesenchymal transition (EMT) process that is often associated with drug resistance and more 

aggressive disease [133]. Here, using both types of estrogen blocking agents, we evaluated the 

potential interactions among estrogen signaling, inflammation, drug resistance, and EMT in 

NSCLC. 

3.1 METHODS AND MATERIALS  

3.1.1 Cell Lines and Reagents 

A549 cells were purchased from American Type Culture Collection (ATCC; Manassas, 

VA). H460 and ganetespib resistant A549GR-100 cells were generously gifted from Dr. Timothy 

Burns and generated as previously described [134].  A549 cells were grown in RPMI 1640 + 10% 

FBS and A549GR-100 cells were grown in RPMI 1640 + 10% FBS supplemented with ganetesib 

(100nM). Both cell lines were maintained at 370C in 5% CO2. Fulvestrant, exemestane, letrozole, 

and androstenedione were purchased from Sigma-Aldrich (St. Louis, MO). Ganetespib was also 

generously gifted from Dr. Timothy Burns and originally sourced from Synta Pharmaceutical 

Corp. Recombinant soluble TRAIL was purchased from Peprotech (Rocky Hill, NJ). E-cadherin, 

Vimentin, and Actin antibodies were acquired from Cell Signaling Technology (Danvers, MA).  
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3.1.2 Evaluation of AI Therapies in a Xenograft Model of NSCLC 

Ovariectomized female immunocompromised athymic nude mice were purchased from 

Harlan (Indianapolis, IN). A549 cells were grown, harvested, and resuspended in a 50% sterile 

serum-free PBS 50% matrigel (BD Biosciences, San Jose, CA). Cells (2.5x106) and injected into 

the rear flank on both sides of each mouse. Mice were supplemented with subcutaneous injections 

of androstenedione (0.1mg/mouse in peanut oil) 3x/week for two weeks prior to AI treatment 

initiation. Once tumors reached approximately 100mm3, blood was collected via the saphenous 

vein for serum analysis and mice were randomized into four treatment groups (n=12-14): (a) 

vehicle control 0.1mL/mouse daily (5%DMSO/ 0.3%hydroxypropylcellulose/0.9%NaCL) (b) 

exemestane 150μg/0.1ml/mouse daily via oral gavage (Exemestane-L) (c) exemestane 

250μg/0.1ml/mouse daily via oral gavage (Exemestane-H) (d) letrozole 10μg/0.1mL/mouse daily 

via oral gavage. Doses were selected based on previous lung and breast cancer xenograft studies 

evaluating these compounds and demonstrating tumor growth inhibition at these concentrations 

[135,136]. Administration of androstenedione (0.1mg/mouse) continued 3x/week throughout the 

duration of the treatment period. Tumor volume was measured 2x/week and recorded as a relative 

tumor volume as previously described in methods 2.2.7. Treatment concluded after 28 days at 

which point half of the mice were sacrificed following cardiac puncture blood collection and 

tumors were harvested and processed as described in 2.2.7. Remaining mice were monitored for 

two weeks post-treatment with continued androstenedione injections (3x/week) and tumor growth 

measurements twice weekly. At day 42 remaining mice were sacrificed following cardiac puncture 

blood collection and tumors were harvested for IHC and protein analysis. All blood samples were 

processed by centrifugation within 1 hour of collection and serum supernatant was collected. 

Animal care was in compliance with IACUC and University of Pittsburgh DLAR guidelines. 
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3.1.3 Immunohistochemistry 

Immunohistochemical analysis for H&E and Ki67 stained slides was performed as 

described in 2.2.8 methods. For p-NRF2 staining, slides were rinsed with PBS and blocked in 

background sniper (Biocare Medical), then incubated with p-NRF2 primary antibody (ab76026; 

1:500; Abcam) for 50 minutes at room temperature. Slides were then incubated for 24 hour with 

horseradish peroxidase labeled secondary antibody (1:1000) and cell nuclei were counterstained 

with hematoxylin. Images were obtained as described in 2.2.8. pNRF2 was quantitated by taking 

into account staining positivity and intensity. Staining intensity was classified as strong, moderate, 

or low and proportions were attributed to the total score (ranging 0-300) utilizing the following 

formula: (3 x % strongly stained nuclei) + (2 x % moderately stained nuclei) + (% of weakly 

stained nuclei). Mean H-scores are represented as the average score of four fields from three 

independent samples per treatment.  

3.1.4 Serum Cytokine Analysis  

Serum was collected from blood samples by 10-minute centrifugation at 1300 rpm in serum 

collection tubes (BD Lifesciences). Samples were analyzed using a commercially available VPlex 

Pro-inflammatory Panel 1 Mouse Kit for IFN-γ, IL-10, IL-1β, IL-6, TNF-α from Meso Scale 

Delivery (Rockville, MD). 

3.1.5 Cell Viability Assays  

For TRAIL cell viability assays H460 cells were seeded at density of 1000 cells/well in a 

96-well plate. Following 24-hour incubation half of the wells were pre-treated with 5μM of 
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fulvestrant or ethanol vehicle control for 48 hours. TRAIL was then added to all wells at increasing 

concentration (0-100nM) and fulvestrant was replenished in wells that were pre-treated. Cells were 

incubated 24 hours following TRAIL addition and cell viability was evaluated by adding 20μL of 

Cell Titer 96 Aqueous One reagent to each well and measuring at 490nm within 1 hour. For 

ganetespib cell viability assays A549 cells were seeded at a density of 2,000cells/well in a 96 well 

plate and incubated for 24 hours. Half of the plate was subjected to 5μM of fulvestrant or ethanol 

vehicle control for 48 hours. Ganetespib was then added to all wells at increasing concentration 

(0-100nM) and fulvestrant was replenished in wells that were pre-treated. Following 72-hour 

incubation cell viability was measured the same way as TRAIL assays. 

3.1.6 Protein Extraction and Western Blot Analysis 

Basal levels of e-cadherin and vimentin protein levels was conducted using cells grown to 

80-90% confluency in T75 flasks and whole cell lysate collection, quantitation and 

immunoblotting analysis was performed as previously detailed in 2.2.4. Primary antibodies and 

dilutions used included: e-cadherin (1:1000; 3195s; Cell Signaling Technology), Vimentin 

(1:1000; 5741; Cell Signaling Technology), actin (1:5000; Clone C4; Millipore). For fulvestrant 

treated experiment, cells were plated at 75% confluency in 100mm dishes and incubated for 24 

hours post attachment. Cells were then treated with ethanol vehicle control or fulvestrant (5μM) 

for 6-48 hours. Cells were harvested at time point.  

3.1.7 Wound Healing Assays  

A549 and A549-GR100 cells (500,000) were seeded into 6-well plates and incubated 24 

hours post-seeding. Cells were then pre-treated for 48 hours with fulvestrant (5μM) or ethanol 
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vehicle control. Following 48 hour pre-treatment, and once 90-95% confluent, wells were 

scratched using a p200 tip in three vertical strokes. Wells were rinsed with DPBS to remove any 

floating cells and wells were imaged using 20x magnification light microscopy at 0 and 72 hours. 

Wounds were measured in μm using the measure tool on Leica Application suite. Percent 

migration was calculated by comparing wound measurements at 72 hours to 0 hours.  

3.1.8 Statistical Analyses  

Statistical analysis was performed for these studies as described in 2.2.9 

3.2 RESULTS 

3.2.1 Aromatase Inhibitors Suppress Tumor Growth in A549 Xenografts  

Since the aromatase enzyme is responsible for the conversion of hormonal intermediates 

to estrogens, the in vitro assessment of AI efficacy is challenging with 2-D cell cultures lacking 

requisite supplies of endogenous substrates. However, even with the addition of the aromatase 

substrate androstenedione to cell proliferation assays evaluating exemestane and letrozole, we 

failed to observe any effect on cell viability up through 100μM in multiple NSCLC cell lines (data 

not shown). Therefore, to investigate the effect of AIs on tumor proliferation and inflammation in 

NSCLC we utilized an in vivo xenograft model using ovariectomized female mice regularly 

supplemented with androstenedione, ensuring elements of the tumor microenvironment and 

aromatase substrates were fully intact. Furthermore, since both steroidal and non-steroidal class 

AIs have been developed we treated mice bearing A549 flank tumors with two doses of  hormonal 
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mimetic exemestane, the nonsteroidal letrozole, or vehicle control, to identify if AI classification 

affects anti-tumor efficacy or inflammation in NSCLC.  

Compared with placebo, each AI treatment group significantly (P<0.05, Fig. 19) inhibited 

tumor proliferation when treatment was stopped at day 28 and half of the mice were sacrificed, 

tumors were fixed for IHC, and blood was collected for post-treatment serum analysis. Tumor 

measurements of all the mice at the end of treatment showed exemestane at a dose of 150μg/day 

inhibited tumor growth by 45%, exemestane at dose of 250μg/day inhibited tumor growth by 50%, 

and letrozole treatment inhibited tumor volume by 52% when compared to placebo. Relative tumor 

volume at the end of treatment was comparable among the AI treated groups, indicating 

exemestane (at both doses) and letrozole were all similarly effective at inhibiting NSCLC tumor 

growth in this study. Mouse weight and mobility were monitored and maintained throughout study 

among all treatment groups. 
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Figure 19. Exemestane and Letrozole Inhibit In Vivo A549 Xenograft Tumor Growth. Ovariectomized 

female athymic nude mice bearing A549 tumors were supplemented with androstenedione (0.1mg/3x/week) 

two weeks prior to initiation of AI treatment. Once tumors reached an average volume of 100mm3, mice were 

randomized into four treatment groups: vehicle control, low-dose exemestane (150μg/daily, exemestane-L), 

high-dose exemestane (250μg/daily, exemestane-H), or letrozole (10μg/daily). Mice continued to receive 

subcutaneous injections of androstenedione three times per week for the duration of AI treatment. Tumor 

growth was measured twice weekly and results are reported as the relative mean tumor volume ± S.E. for 6-

8 tumors per group. ANOVA *P<.05. 

 

To evaluate long-term efficacy of AI therapies, tumor growth in the remaining half of mice 

was monitored an additional two weeks (Fig.20). During this time mice continued to receive 

androstenedione. At 14 days post-treatment, the only experimental group that exhibited significant 

tumor growth was the placebo group which had a 45% increase in relative tumor volume from day 

28 to day 42 (P<0.05). Both the exemestane and letrozole treated groups showed no significant 
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increase in tumor growth two weeks following termination of treatment. Comparison of relative 

tumor volumes from day 42 with day 28 showed even more significant anti-tumor effects in the 

AI treated groups compared to placebo, indicating both AI therapies exhibit cytostatic efficacy in 

suppressing NSCLC tumor proliferation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. AI Therapies Exhibit Prolonged Tumor Growth Inhibition Post-Treatment. Tumor growth 

was evaluated in mice (n=3-4 per group) two weeks after AI treatment was stopped. Mice continued to 

receive regular androstenedione injections. Tumor growth was measured twice a week and reported as 

relative tumor volume ± S.E. ANOVA **P<0.01, ***P<0.001.  

3.2.2 Exemestane and Letrozole Treated Xenografts Show Reduced Ki67 Staining and 

Increased Phosphorylated-NRF2 Staining 

Immunohistochemical analysis was performed to assess changes in tumor histology and 

measure levels of Ki67 staining and phosphorylated-NRF2 (p-NRF2) in tissue harvested from 
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mice sacrificed at day 28 and day 42. Histologically, both exemestane and letrozole treated 

xenografts revealed increased stromal content compared to placebo, with similar levels of stroma 

observed irregardless of AI treatment group (Fig. 21). The Ki67 proliferative index was calculated 

for each experimental group to further assess the effects of AI therapy on tumor proliferation. Ki67 

staining supported the tumor growth inhibition observed among AI treated mice with 60% reduced 

s-phase labeling in the exemestane and letrozole treated groups compared to placebo (P<0.001). 

All three AI treated groups showed similar reductions in Ki67 positive cells when compared with 

each other.  

 

Figure 21. AI Treatments Show Decreased Ki67 Staining and Increased Stromal Content and p-NRF2 

Staining. (A) Representative H&E, Ki67, and p-NRF2 stained sections from different xenograft treatment 

groups at day 28 imaged at 20X magnification. Scale bars represent 115μm. (B) Ki67 quantitation performed 

by counting four fields per tumor for three tumors per treatment group. (C) p-NRF2 quantitation representes 

mean pNRF2 H-Scores, determined by counting high, medium, and low intensity stained tumor cells from 

four fields of three separate tumors per treatment group. ANOVA **P<0.01, ***P<0.001.  
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To address whether aromatase inhibition increased anti-oxidant NRF2 signaling, protein 

levels of p-NRF2 were assessed (Fig. 21C). H-score quantitation of p-NRF2 revealed a significant 

1.7-fold increase in staining in the high-dose exemestane treated mice (P<0.001) and a 1.62-fold 

increase in the letrozole treated mice (P<0.01) compared to placebo. While a significant increase 

was not demonstrated in the low-dose exemestane treatment group, an increase in staining was 

still observed, indicating the activation may increase with increasing dose. These results suggest 

both exemestane and letrozole stimulate activation of the anti-inflammatory NRF2/ARE pathway 

in this xenograft model and warrant continued investigation to further validate this potential 

interaction. Finally, we compared the IHC of tissue from the end of treatment to tissue two weeks 

post-treatment and found no observable changes in histology, Ki67 staining, or phospho-NRF2 

staining. 

3.2.3 AI Treatments Did Not Alter Circulating Pro-Inflammatory Cytokine Levels in 

A549 Xenografts  

For a more comprehensive analysis of the potential anti-inflammatory effects of 

exemestane and letrozole treatment, a panel of pro-inflammatory cytokines was screened in serum 

collected from the mice. For an internal control, serum was collected for each mouse just before 

AI treatment was initiated and again prior to sacrifice either at the end of the treatment period or 

two weeks post treatment. Concentrations of circulating cytokines commonly implicated in 

inflammation including: IFN-γ, IL-1β, IL-6, IL-10, and TNFα, were evaluated using a multiplex 

assay kit. Trends were evaluated among pre-treatment serum, serum at the conclusion of the 

treatment period, and serum two-weeks post-treatment. When compared with placebo, both 
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exemestane and letrozole failed to demonstrate statistically significant alterations in the serum 

levels of circulating cytokines evaluated. Combined post-treatment (day 28 and day 42) serum IL-

6 levels showed a decreased trend with mean the concentration observed in the high-dose 

exemestane treated mice 53.7 pg/mL, compared to a mean concentration of 91.93 pg/mL in 

placebo (P=0.17, Fig. 22).  

 

 

 

 

 

 

 

 

 

 

Figure 22. Decreasing Trend in Serum IL-6 of Exemestane Treated Mice. Post-treatment IL-6 serum 

levels were evaluated for differences among treatment groups. Blood was collected via cardiac puncture prior 

to sacrifice and serum was isolated following centrifugation in serum microcontainers. Cytokine 

concentrations were analyzed using a validated multiplex pro-inflammatory cytokine detection assay. Serum 

levels are reported as pg/mL and line represents the mean. 

 

Interestingly, serum collected from mice at the end of the letrozole treatment period 

showed increased levels of every cytokine screened when compared to placebo, including IL-6. 

However, serum two-weeks post-letrozole treatment then showed decreasing levels of each 

cytokine relative to placebo, suggesting perhaps letrozole has a delayed effect on the inflammatory 

response following treatment.  Variability in cytokine levels among mice in each experimental 
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group, both before and after treatment, greatly attributed to difficulty in evaluating significant 

mediation of inflammatory markers with exemestane and letrozole therapy. 

3.2.4 Fulvestrant Enhances Immune-Mediated Lysis of H460 Cells 

To further address a potential immune-modulating effect of endocrine therapies we 

evaluated the inhibitor effects of fulvestrant in combination with immune-based TRAIL therapy. 

A recent study demonstrated fulvestrant was capable of re-sensitizing H460 NSCLC cells 

exhibiting EMT-related drug resistance to immune-mediated apoptosis with TRAIL [133]. We 

sought to further investigate this observation with prior studies indicating TRAIL is regulated by 

IFN-γ, mediates immune surveillance, and potently induces death-receptor mediated apoptosis in 

certain NSCLC neoplastic cells [137,138]. While the cells utilized by the previous study were 

clonally selected based on a mesenchymal phenotype, protein analysis of our H460 cells (Figure 

25) showed exclusive expression of the mesenchymal marker vimentin suggesting our cells were 

characteristically mesenchymal as well. Following the protocol utilized by Hamilton et.al. [133], 

H460 cells in this study were subjected to either fulvestrant or vehicle control pre-treatment for 48 

hours prior to and during TRAIL treatment. Based on cell viability results from the previous 

chapter, prior unpublished studies in our laboratory, and published results reporting an IC50 well 

beyond 10μM for fulvestrant in H460 cells, we chose to again use a concentration of 5μM for the 

anti-estrogen [125]. Cell viability was evaluated 24 hours following the addition of TRAIL and 

showed significantly enhanced sensitivity to TRAIL-mediated apoptosis in cells pre-treated with 

fulvestrant (Figure 23). A nearly 2.5-fold enhancement of TRAIL-induced cytotoxicity in H460 

cells with fulvestrant treatment implicates a potential role of ER signaling in immune-based drug 

resistance (P<0.001).  
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Figure 23. Fulvestrant Pre-Treatment Enhances TRAIL Mediated Apoptosis in H460 Cells.H460 cells 

were seeded and pre-treated with 5μM fulvestrant or ethanol for 48 hours. TRAIL was then added at 

increasing concentrations (0.5-100nM) to each well while fulvestrant was maintained in combination with 

TRAIL in pre-treated wells. Following 24 hour incubation, 20μL of Cell Titer 96 Aqueous One reagent was 

added to each well and the plate was read at 490nm. Cell viability at each concentration is the mean ± S.E. 

of three samples from one independent trial. ANOVA ***P<0.001.  

3.2.5 Enhanced Therapeutic Sensitivity of Ganetespib-Resistant Cells with Fulvestrant 

Treatment is Not Reliant on EMT Reversal 

While the complex mechanisms underlying drug resistance are still under investigation, 

recent studies show the broadly classified morphogenic process of EMT may be involved in 

conferring resistance to targeted and traditional chemotherapies in neoplastic cells [139,140]. It 

was demonstrated that chemoresistant NSCLC cells could be re-sensitized to cytotoxic 

chemotherapies such as cisplatin with fulvestrant treatment, resulting not only in downregulation 

of ERs but also the reversal of an EMT phenotype [133]. To further elucidate the effects of ER 

inhibition on drug resistance and mediation of EMT we utilized NSCLC cells with acquired 

resistance to the heat shock protein 90 (HSP90) inhibitor ganetespib. HSP90 is a molecular 

chaperone for several client proteins including ER, and pathways modulated by ER, such as EGFR, 
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AKT [141]. While HSP90 inhibitors revealed promising preclinical efficacy in lung cancer, these 

therapies remain clinically limited due to nearly inevitable acquired and intrinsic drug resistance 

[142]. While hyper-activation of pathways downstream of ER signaling are identified 

compensatory mechanisms involved in acquired resistance of NSCLC cells to ganetespib therapy 

[134], our primary focus for using the ganetespib-resistant (GR) NSCLC model was as a tool. The 

focus of these studies was to evaluate fulvestrant’s effects on EMT and drug resistance rather than 

pharmacologic interactions between ER antagonists and HSP90.  

Cell proliferation assays were performed to establish ganetespib resistance and determine 

whether fulvestrant would subsequently re-sensitize GR cells to the HSP90 inhibitor. An initial 

fulvestrant dose-response revealed no effect on GR cell viability up through 100μM, and 

fulvestrant (5μM) in combination with increasing doses of ganetespib also had no significant effect 

on the GR cells in a 72-hour proliferation assay (data not shown). However, based on the results 

of the TRAIL experiment, evaluation of a 48-hour pre-treatment with 5μM fulvestrant prior to a 

combined fulvestrant and ganetespib treatment, re-sensitized GR cells to ganetespib therapy. This 

treatment strategy was evaluated in both H460 and A549 cells with acquired resistance to 

ganetespib, however, greater effects of fulvestrant treatment on ganetespib sensitivity were 

observed in resistant A549 cells (A549-GR100) shifting the IC50 from over 250nM to 30nM 

(P<0.001, Figure 23).  
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Figure 24. Fulvestrant Pre-Treatment Enhanced Sensitivity of A549-GR100 Cells to Combined 

Ganetespib and Fulvestrant Treatment. A549-GR100 cells were seeded and subjected to fulvestrant or 

vehicle control for 48 hours prior to addition of increasing concentrations of ganetespib (0.5-250μM). 

Fulvestrant was replenished in pre-treated cells with the addition of ganetespib. Cell proliferation was 

measured following 72-hour incubation and subsequent addition of Cell Titer 96 Aqueous One reagent. 

Results are plotted as the average percent growth inhibition ± S.E. ***P<0.001. 

 

  Following demonstration that fulvestrant could re-sensitize GR cells to ganetespib, we 

characterized a panel of parental non-resistant NSCLC cell lines to evaluate basal levels of EMT 

markers e-cadherin and vimentin. Expression of e-cadherin, a cell surface transmembrane protein 

identified for its role in cell-cell adhesion, is a commonly used identifier of an epithelial phenotype 

[143]. Whereas expression of vimentin, an intermediate filament protein associated with increased 

motility and migration, is a marker associated with a mesenchymal phenotype [144].  
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Figure 25. Basal EMT Marker Expression in NSCLC Cell Panel. Immunoblotting analysis of e-cadherin 

and vimentin expression in whole cell lysates collected from NSCLC cell lines. Blot was also probed for 

actin as a loading control.  

 

Traditionally, studies have characterized cell lines based on their exclusive expression of 

either mesenchymal or epithelial markers. However, we observed a hybrid EMT phenotype with 

both epithelial and mesenchymal markers expressed in A549 cells and to a lesser extent in H1975, 

HCC4001 and HCC4006 cells.  We chose to move forward with A549 and A549-GR100 cells 

based on this dual EMT marker profile and previous studies showing upregulated expression of 

ERβ and vimentin in A549-G100 cells compared to parental (data not shown).  

To determine whether fulvestrant’s ability to enhance therapeutic sensitivity of GR cells is 

reliant on reversal of EMT, we evaluated alterations in e-cadherin and vimentin expression with 

and without fulvestrant treatment at multiple time points (Figure 26) 
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Figure 26. Fulvestrant Treatment Demonstrates Limited Modulation of Vimentin Expression in 

A549 and A549-GR100 Cells. A549 and A549-GR100 cells were seeded and treated with fulvestrant  

(5μM) or ethanol for 6-48 hours. Whole cell lysates were collected at each time point and probed for 

 EMT markers using immunoblotting. Blots were stripped and probed for actin protein to confirm  

equal loading. 

 

Fulvestrant down-regulated vimentin expression by 23% relative to control at the 12-hour 

time point in A549-GR100 cells. This effect was transient, however, with expression returning to 

basal levels by 24 hours. While fulvestrant had no apparent effect on e-cadherin expression at any 

particular time point in GR cells, overall e-cadherin expression increased 2.5-fold from 6 to 48 

hours. Samples were also collected in the more epithelial A549 parental line to act as a phenotypic 

control. Fulvestrant treatment markedly reduced vimentin expression by 48% in A549 cells at 6 

hours. However, the inhibitory effect was again short-term with basal expression returning by 12 

hours. Furthermore, regardless of fulvestrant treatment total vimentin expression increased 2.3-

fold in A549 cells throughout the duration of the time course. Based on these results, and several 

repeated efforts, fulvestrant treatment had no consistent or robust effect on the expression of these 

EMT markers in either the more mesenchymal GR or epithelial parental cell lines. Independent 

upregulation of the markers observed in each cell line over time may potentially be attributed to 

increased cell density by the 48 hour mark compared to the shorter time points.  
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3.2.6 Fulvestrant Inhibits Migration in A549-GR100 NSCLC Cells 

Loss of e-cadherin expression is associated with enhanced migration, a hallmark phenotype 

of EMT in mesenchymal cells [145]. Aside from modulation of protein markers associated with 

epithelial and mesenchymal phenotypes, we were interested to further characterize the functional 

EMT phenotypes of the parental and resistant cells by assessing their migratory capacity. 

Migration patterns for A549 parental and A549-GR100 cells were evaluated in wound-healing 

assays. In addition to basal un-treated migration, we assessed whether pharmacologic inhibition of 

ER signaling with fulvestrant treatment impacted migration in either the parental or GR cells. Un-

treated A549-GR100 cells exhibited 1.7-fold increased migration by 72 hours following wounding 

compared to A549 cells (Figure 27). In this study, cells receiving fulvestrant were pre-treated 48 

hours prior to wounding and then maintained in fulvestrant for the 72 hours following wounding.  

A549-GR100 cells treated with fulvestrant in this way showed 35% less migration compared to 

control, while no statistically significant effect on migration was observed with fulvestrant 

treatment in A549 parental cells. 
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Figure 27. Fulvestrant Treatment Inhibits Migration in A549-GR100 Cells. (A) Representative images 

of wound healing at 0 and 72 hours in A549 and A549-GR100 cells. (B) Mean migration in A549 and A549-

GR100 cells +/- fulvestrant treatment. Cells were grown on 6-well plates and treated with 5μM fulvestrant 

or ethanol for 48 hours prior to and during the 72 hours following wounding. Wounds were imaged at 0 and 

72 hours with 20X light microscopy. Migration was measured by comparing wound size at three different 

locations for each sample at 72 hours versus 0 hours and is reported as a percentage of wound closure for 

three independent samples ±  S.E. per experimental group. ANOVA ***P<0.001. 
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3.3 CONCLUSIONS AND FUTURE DIRECTIONS  

Preclinical studies have consistently demonstrated that estrogen signaling promotes lung 

tumorigenesis by inducing cellular proliferation through both genomic and non-genomic 

mechanisms [70,100]. However, recent efforts focused on targeting this pathway indicate an 

increasingly pervasive role of estrogen signaling as a driver of the disease with interactions among 

not only growth factor pathways, but also inflammation, EMT, therapeutic resistance, and 

immunosurveillance. In this portion of the study, we used selective agents targeted against the 

synthesis and signaling of estrogen to evaluate these associations and the potential added benefits 

of inhibiting the pathway in NSCLC.  

Our results further demonstrated the potential clinical benefit of aromatase inhibitors 

exemestane and letrozole in NSCLC by showing both agents significantly inhibited tumor 

proliferation in an A549 NSCLC xenograft model for up to two weeks post-treatment. These 

results revealed that regardless of chemical structure both steroidal and nonsteroidal aromatase 

inhibitors function as anti-tumor agents in NSCLC effectively blocking tumor growth, reducing 

actively proliferating cells, and increasing tumor stroma. Furthermore, in this study the higher dose 

of exemestane did not statistically improve tumor growth inhibition compared to the low-dose, 

suggesting further evaluation of dose-dependent effects on tumor proliferation. Together, these 

results provide further rationale for current phase I evaluations of AIs in post-menopausal with 

late-stage NSCLC (NCT01664754).  

Utilizing the in vivo model also enabled examination of a potential interaction between the 

ER signaling and the inflammatory response. Based on the hypothesis that AI therapies would 

exhibit anti-inflammatory effects, our analysis of NRF2 phosphorylation revealed increased 

activation of the pathway in high-dose exemestane (P<0.001) and letrozole treated mice (P<0.01) 
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compared to placebo. These results suggest AI therapies may upregulate NRF2 signaling and 

further evaluation of an interaction between the E2 and NRF2 pathways should be conducted 

through IHC staining and immunoblotting analysis of downstream effector molecules and 

cytoprotective enzymes. Furthermore, while we failed to identify any significant shifts in 

circulating pro-inflammatory cytokine serum levels in response to either AI, a trend towards 

decreased IL-6 in the high-dose exemestane treated group warrants further exploration since IL-6 

is an identified regulator of tumor associated macrophage (TAM) aromatase activity in breast 

cancer and aromatase expression is reported in infiltrating TAMs in NSCLC [146]. Furthermore, 

IL-6 is a well-known activator of the tumor promoting STAT3 signaling pathway [147], and 

evaluation of phosphorylated STAT3 in the xenografts may be beneficial for assessing whether 

exemestane abrogates STAT3 signaling as well. Additionally, recently submitted work from our 

laboratory showed AIs combined with non-steroidal anti-inflammatory drugs (NSAIDS) 

prevented tumor development following carcinogen exposure in a murine model, suggesting this 

combined approach should be further analyzed for the potential prevention and treatment of lung 

cancer. Finally, it is important to note that the use of an immunocompromised mouse model likely 

impacted our evaluation of the adaptive immune response and future studies elucidating this 

interaction should utilize immunocompetent mice in a syngeneic or carcinogen-induced murine 

model.  

 In our investigation of an immunoregulatory effect with ER inhibition, we show that  

fulvestrant significantly enhances sensitivity of H460 cells to TRAIL-mediated apoptosis. Pre-

treatment with the fulvestrant followed by combination treatment with recombinant TRAIL shifted 

the IC50 nearly 4-fold from the TRAIL treated control. However, because H460 cells are KRAS-

STK11-PIK3CA triple mutant and TRAIL signaling alternatively has been shown to actually 

promote cancer progression through PI3K signaling in KRAS mutant cells with elevated TRAIL-
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Receptor 2 (TRAIL-R2), the expression of TRAIL-R2 should be evaluated in these cells to 

determine whether ER blockade is interacting with the immune response or inhibiting a 

compensatory mechanism of resistance [148]. While performed in triplicate, the results for this 

study are only from one independent trial necessitating additional studies to ensure accuracy of the 

pharmacologic response of H460 cells to TRAIL following fulvestrant pre-treatment. However, 

the results for this study were in support of previously published data [133] and prompted our 

continued investigation of fulvestrant in a NSCLC drug-resistant setting.  

Previous studies showing enhanced TRAIL sensitivity with fulvestrant treatment attributed 

the increased therapeutic response to fulvestrant’s effect on EMT reversal [133]. Therefore, we 

examined the role of fulvestrant and ER inhibition on EMT in A549-GR100 cells. While neoplastic 

cells are often categorized as epithelial or mesenchymal based on their expression of either e-

cadherin or vimentin, immunoblotting revealed dual expression of both markers in our A549 and 

A549-GR100 cells. An emerging theory of partial EMT versus complete EMT has been recently 

reported by a few studies also demonstrating co-expression of epithelial and mesenchymal markers 

in NSCLC cell lines [149]. Cells characterized by partial EMT in these studies exhibited more 

aggressive, resistant, and migratory behavior compared with strictly mesenchymal cells, and in 

breast cancer identification of hybrid EMT cells was associated with poorer prognosis [149]. Based 

on the EMT marker expression in our cells H460 appeared to have already undergone EMT, while 

A549/A549-GR100 cells were characteristic of partial EMT.  

The hypothesis that fulvestrant treatment was re-sensitizing A549-GR100 cells through 

modulation of EMT was partially disproved by minimal alteration of vimentin expression 

throughout a time course. While vimentin expression decreased with fulvestrant treatment at 12 

hours, the effect was limited and expression returned by 24 hours.  Since therapeutic enhancement 

with fulvestrant treatment was observed at 48 hours, the data suggests this is not due to modulation 
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of EMT. However, our inability to detect changes in these markers may include the fact that marker 

modulation may be less evident in hybrid cells, since most studies focus on strictly changes in 

marker expression in complete EMT cells. Furthermore, we only evaluated two markers when 

several others are representative of the various phases of EMT morphogenesis and a larger screen 

of EMT markers is warranted.  Also, as mentioned previously, the HSP90 drug-resistant model 

was used primarily as a tool, but using a model with resistance to a therapy selectively targeting a 

mediator of ER may have impacted our ability to detect anti-estrogen modulatory effects on EMT. 

Moreover, with time in culture the resistant cells became less responsive to fulvestrant treatment, 

indicating the cells became more resistant over time and in the future a more stable model should 

be used. Despite these confounding experimental variables, the results from these studies support 

the continued debate over whether the EMT is a mediator or merely an accompanying phenotype 

of drug resistance. Future studies are required to elucidate other methods by which fulvestrant is 

capable of enhancing therapeutic sensitivity across such a broad range of therapeutics. While 

cellular senescence and arrest are usually identified for their negative effects on therapeutic 

response, fulvestrant was only capable of enhancing therapeutic sensitivity to either compound 

with a 48-hour pre-treatment, suggesting future studies should evaluate cell cycle mediation during 

fulvestrant pre-treatment periods. 

Increased migratory and invasive behavior is associated with down-regulated e-cadherin 

expression and indicative of EMT. As anticipated, the more mesenchymal A549-GR100 cells 

exhibited significantly greater migration compared to parental A549. Enhanced migratory 

behavior in the GR cells was inhibited by fulvestrant, implicating ER signaling in NSCLC 

migration, specifically cells exhibiting mesenchymal characteristics. Since fulvestrant potently 

targets both ER isoforms, we also attempted to identify which receptor was responsible for 

modulation of migration through a genetic approach. A549-GR100 cells were transiently 



 75 

transfected with ERα and ERβ siRNA pools (data not shown). Both siRNA transfection pools 

failed to appropriately and selectively down-regulate each receptor individually, requiring the 

experiment to be optimized and repeated in order to make valid conclusions. In this experiment, 

cells transfected with ERα siRNA exhibited knockdown of ERβ, which may likely be due to off-

target effects since a comparison of sequences in each pool failed to show significant homology. 

Despite this off-target effect, we observed acquisition of a spindle-like morphology in the 

transfected cells expressing down-regulated ERβ and 36% decreased migration (data not shown). 

As mentioned, future studies are required to draw conclusions regarding which receptor is 

responsible for migration, and a more effective approach would instead utilize stably knocked 

down cell lines due to the extended period of the wound healing experiment. 

Ultimately, inhibition of estrogen synthesis with AI therapy presents as a novel mechanism 

for tumor growth inhibition in NSCLC. In other ongoing studies in our laboratory, the combination 

of the AI anastrozole with either aspirin or ibuprofen has been shown to have enhanced anti-tumor 

effects in murine models of lung carcinogenesis, meriting continued investigation of this 

combination in NSCLC, not only in regards to tumor growth, but also NRF2 activation.  Exciting 

results showing fulvestrant enhances therapeutic sensitivity in several cell models prompts 

continued investigation of other settings in which this anti-estrogen therapy may restore 

therapeutic sensitivity and by which mechanisms it is doing so. Furthermore, while not an apparent 

mediator of e-cadherin and vimentin expression, fulvestrant may modulate other markers 

associated with EMT. Finally, ER inhibition significantly reduces migration, the specifics of which 

have potential impact on the invasive and metastatic capacity of NSCLC cells [144]. Taken 

together these findings highlight an expanding network of interactions between estrogen signaling 

and various elements of the tumor microenvironment, affirming the need to further elucidate the 

widespread therapeutic effects of estrogen inhibition in NSCLC.  
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4.0  DISCUSSION  

The primary focus of this study was to utilize estrogen-blocking agents to identify and 

target interactions between estrogen signaling and tumor promoting mechanisms such as growth 

factor pathways, inflammation, and EMT in NSCLC. Our efforts in this study were concentrated 

on identifying additional druggable mechanisms by which the estrogen signaling pathway 

promotes lung tumor progression.  

 The first aspect of this study involved the identification and targeted inhibition of crosstalk 

between ER and FGFR signaling. Having previously published that elevated ERβ expression in 

lung tumors is a poor prognostic indicator, an mRNA study comparing ERβ high expressing lung 

tumors with ERβ low expressing tumors identified the FGFR1 gene significantly upregulated in 

the ERβ high tumors.  The FGFR signaling pathway is also well characterized in lung cancer with 

several therapies such as AZD4547 already under clinical evaluation for NSCLC patients 

[119,150]. These results coupled with recent reports of estrogen mediated FGFR signaling in breast 

cancer prompted our investigation of a non-genomic interaction between the two pathways in 

NSCLC as well. Following characterization of a panel of NSCLC cell lines for FGFR1 

amplification and FGFR/FGF expression and secretion profiles, we chose to focus our studies on 

non-amplified cells since they were less solely reliant on FGFR as a molecular driver making 

crosstalk more readily identified and targeted in these cells. We demonstrated estrogen treatment 

significantly stimulated FGF2 secretion and fulvestrant was capable of blocking this effect, 

suggesting FGF ligand secretion was reliant on estrogen. We also established crosstalk between 

the pathways by showing greater abrogation of FGFR signaling with AZD4547 combined with 

fulvestrant compared to AZD4547 alone. Preclinical studies showed significantly enhanced anti-
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proliferative effects of the combined ER and FGFR inhibitor both in vitro and in vivo compared to 

either single agent treatment or placebo. Combined with the additional data (covered in detail in 

reference [123]) that showed the co-targeting strategy also significantly inhibited the acquisition 

of a stem cell-like phenotype, the results of this study provide rationale for clinical evaluation of a 

pan-FGFR inhibitor combined with an ER targeting agent in NSCLC patients lacking FGFR1 

amplification. Having selected inhibitors for this study with established safety and tolerability 

profiles, renders these results and combination strategy even more readily translatable to the clinic.  

Furthermore, with studies having now identified interactions between ERβ and EGFR [70] and 

ERβ and FGFR, these results suggest continued investigation of interactions between estrogen 

signaling and additional growth factor pathways.  

The second aspect of this study focused on using AIs and ER antagonists to broadly 

evaluate interactions between estrogen signaling and: inflammation, therapeutic resistance, EMT, 

and migration in NSCLC. Already under early clinical evaluation in post-menopausal women with 

advanced NSCLC (NCT01664754), we further demonstrated the potential clinical benefit of AIs, 

by showing both exemestane and letrozole significantly inhibited NSCLC in vivo tumor growth. 

While AI therapies exhibited inhibition of tumor proliferation, the estrogen synthesis inhibitors 

did not significantly alter the serum levels of pro-inflammatory cytokines, but did significantly 

enhance activation of NRF2 signaling. Failure to observe modulation of pro-inflammatory proteins 

with AI treatment may be attributed to the fact that AI therapies may require being combined with 

NSAIDs to observe an effect on circulating cytokines. Additionally, our use of an 

immunocompromised mouse model distorted the adaptive immune and inflammatory response, 

whereas most murine models assessing inflammation are conducted in mice with intact immune 

systems. Regardless, we were still able to observe enhanced NRF2 phosphorylation with both 

high-dose exemestane and letrozole treatments. IHC and protein analysis of cytoprotective 
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enzymes downstream of NRF2 activation will help to further validate whether the anti-

inflammatory response is fully initiated by exposure to the AI therapies. This initial evidence of 

estrogen inhibition inciting an immune response in NSCLC supports further investigation of E2 

mediation of inflammation and other components of tumor immune regulation such as PD-L1 

expression. The clinical efficacy of PD-L1 targeted therapies in lung cancer has sparked several 

research efforts to evaluate other interacting elements for potential combination strategies. Most 

recently, preliminary results in our laboratory evaluating whether estrogen treatment stimulates 

PD-L1 cell surface expression in NSCLC cells showed increased expression with E2 treatment in 

2 out of 3 cell lines assessed. We not only plan to repeat and expand these studies, but also 

determine if fulvestrant alternatively down-regulates PD-L1 and whether anti-estrogens can 

enhance the clinical utility of PD-L1 immunotherapies.  

The final aspect of this study focused on evaluating fulvestrant’s effects on drug resistance 

and EMT phenotypes. Our evaluation was based on results from a study showing fulvestrant was 

capable of enhancing the therapeutic sensitivity of mesenchymal/resistant NSCLC cells to chemo-

and immune therapies, and did so by reversing EMT [133]. We were able to demonstrate that 

fulvestrant treatment has the potential to enhance sensitivity of H460 mesenchymal cells to TRAIL 

mediated cytotoxicity. In addition, while the GR model became increasingly resistant to both 

ganetespib and fulvestrant throughout the entirety of this investigation, fulvestrant was initially 

capable of re-sensitizing GR cells to ganetespib therapy. Furthermore, because we did not observe 

robust modulation of e-cadherin and vimentin expression following fulvestrant treatment, 

therapeutic enhancement in GR cells was not solely due to a reversal of EMT. Here we chose to 

focus on modulation of just one epithelial and one mesenchymal marker, however, there are up to 

20 other identified markers representative of these associated phenotypes [144] and fulvestrant 

may not directly mediate the markers we selected. Ultimately, conclusive remarks regarding 
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whether estrogen signaling, or inhibition thereof, mediates EMT are challenging to make based on 

our limited evaluation of associated markers and use of a model with acquired resistance to the 

molecular chaperone HSP90.  In addition to EMT protein studies, however, we also evaluated cell 

migration as it is a representative functional phenotype of mesenchymal cells. Wound healing 

assays revealed GR cells were more mesenchymal than parental A549 by exhibiting significantly 

increased migration. Observations that fulvestrant treatment significantly blocked migration in the 

resistant cells, but had no protective effect against migration in the epithelial parental cells, 

implicates ER signaling in migration and a potential role for anti-estrogens specifically in the 

metastatic setting. While our final experiments assessing the impact of ER specific knockdown on 

migration encountered several challenges and require re-evaluation, a recent publication 

successfully demonstrated with RNAi that migration in NSCLC is reliant on the ERβ isoform and 

matrix-metalloproteinase-2 protein expression, supporting continued investigation of the beta 

receptor [151]. Further analysis of fulvestrant’s effects on NSCLC migration should also be 

conducted using three-dimensional tumor spheroids since key elements of the tumor 

microenvironment are conserved in these models. 

In summary, the results of this study indicate the estrogen signaling pathway is implicated 

in a wide-range of tumor promoting mechanisms in NSCLC. While each of the interactions 

outlined in this study require further investigation, the overall findings provide rationale for the 

use of combination strategies involving hormonal therapies as novel therapeutic approaches for 

the treatment of lung cancer. 
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APPENDIX A 

 

 

 

 

 

 

 

 

Figure 28. Complete Time Course for FGF2 Release in A549 Cells. Representative time course data for 

A549 cells. Initially performed in 201T and 273T cells as well. Media was collected and concentrated 4-fold 

for ELISA analysis and corresponding whole cell lysates were collected for protein normalization.  
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