
ARCHITECTURE- AND WORKLOAD-AWARE

GRAPH (RE)PARTITIONING

by

Angen Zheng

 BS, Beijing Information Science and Technology University, 2009

 MS, Beijing University of Posts and Telecommunications, 2012

Submitted to the Graduate Faculty of

the DIETRICH SCHOOL OF ARTS AND SCIENCES in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Angen Zheng

Dr. Alexandros Labrinidis, Department of Computer Science, University of Pittsburgh

Dr. Panos K. Chrysanthis, Department of Computer Science, University of Pittsburgh

Dr. Jack Lange, Department of Computer Science, University of Pittsburgh

Dr. Peyman Givi, Department of Mechanical Engineering and Materials Science,

University of Pittsburgh

Dissertation Director: Dr. Alexandros Labrinidis, Department of Computer Science,

University of Pittsburgh

ii

ARCHITECTURE- AND WORKLOAD-AWARE

GRAPH (RE)PARTITIONING

Angen Zheng, PhD

University of Pittsburgh, 2017

Graph partitioning and repartitioning have been studied for several decades. Yet, they are

receiving more attention due to the increasing popularity of large graphs from various do-

mains, such as social networks, web networks, telecommunication networks, and scientific

simulations. Traditional well-studied graph (re)partitioners often scale poorly against these

continuously growing graphs. Recent works on streaming graph partitioning and lightweight

graph repartitioning usually assume a homogeneous computing environment. However, mod-

ern parallel architectures may exhibit highly non-uniform network communication costs.

Several solutions have been proposed to address this, but they all consider the network as

the primary bottleneck of the system, even though transferring data across modern high-

speed networks is now as fast as the local memory access. As such, minimization of the

network data communication may not be a good choice. We found that putting too much

data communication into partitions assigned to cores of the same machines may result in

serious contention for the shared hardware resources (e.g., last level cache, memory con-

troller, and front-side bus) on the memory subsystems in modern multicore clusters. The

performance impact of the contention can even become the dominant factor in limiting the

scalability of the workload, especially for multicore machines connected via high-speed net-

works. Another issue of existing graph (re)partitioners is that they are usually not aware of

the runtime characteristics of the target workload. To enable efficient distributed graph com-

putation, this thesis aims to (1) understand the performance impact of non-uniform network

communication costs, the impact of contention on the memory subsystems, as well as the

iii

impact of workload runtime characteristics on distributed graph computation; and (2) design

and implement new scalable graph (re)partitioners that take these factors into account.

iv

TABLE OF CONTENTS

PREFACE . xix

1.0 INTRODUCTION . 1

1.1 Research Overview . 3

1.1.1 Thesis Statement . 3

1.1.2 Target Computing Infrastructure 3

1.1.3 Assumptions . 4

1.1.4 Main Contributions . 4

1.1.5 Main Impact . 6

1.2 Outline . 6

2.0 BACKGROUND AND MOTIVATION 8

2.1 Literature Review . 8

2.1.1 Distributed Graph Computation 8

2.1.2 Graph Partitioning and Repartitioning 9

2.2 Importance of Architecture-Awareness . 12

2.2.1 Network Characteristics of Modern HPC Infrastructures 13

2.2.2 Resource Contention on HPC Memory Subsystems 14

2.2.3 Understanding the Performance Impact of Heterogeneity and Con-

tentiousness . 17

3.0 ARCHITECTURE-AWARE STATIC GRAPH PARTITIONING . . . 21

3.1 Problem Statement . 21

3.2 ARGO: Architecture-Aware Graph Partitioning 22

3.2.1 Algorithm Design and Implementation 22

v

3.2.1.1 Graph Partitioning Model 22

3.2.1.2 Incorporating Heterogeneity Awareness 23

3.2.1.3 Incorporating Contention Awareness 24

3.2.2 Evaluation . 25

3.2.2.1 Setup . 25

3.2.2.2 Effectiveness of Being Architecture-Aware 27

3.2.2.3 Scalability in terms of Graph Size 30

3.2.2.4 Scalability in terms of Number of Partitions 31

3.3 Chapter Summary . 33

4.0 ARCHITECTURE-AWARE DYNAMIC GRAPH PARTITIONING . 34

4.1 Problem Statement . 34

4.2 ARAGON: Architecture-Aware Graph Repartitioning 37

4.2.1 Algorithm Design and Implementation 37

4.2.1.1 Inter-Node Graph Repartitioning 37

4.2.1.2 Intra-Node Graph Repartitioning 42

4.2.2 Evaluation . 44

4.2.2.1 Setup . 44

4.2.2.2 Varying Number of Partitions 46

4.2.2.3 Varying Number of Computation Steps 47

4.2.2.4 Varying Sized 3D-Torus 48

4.2.2.5 Communication and Migration Volume Breakdown 49

4.2.2.6 Degree of Imbalance . 50

4.2.2.7 Repartition Time . 50

4.2.3 Section Summary . 51

4.3 PARAGON: Parallel Architecture-Aware Graph Repartitioning 52

4.3.1 Algorithm Design and Implementation 52

4.3.1.1 Partition Grouping . 53

4.3.1.2 Shuffle Refinement . 55

4.3.1.3 Group Server Selection 56

4.3.1.4 Reducing Communication Volume 57

vi

4.3.1.5 Master Node Selection 57

4.3.1.6 Incorporating Contention-Awareness 58

4.3.2 Evaluation . 58

4.3.2.1 Setup . 58

4.3.2.2 MicroBenchmarks . 60

4.3.2.3 Real-World Applications (BFS & SSSP) 65

4.3.2.4 Billion-Edge Graph Scaling 68

4.3.3 Section Summary . 69

4.4 PLANAR and PLANAR+: Parallel Lightweight Architecture-Aware Graph

Repartitioning . 70

4.4.1 PLANAR: Algorithm Design and Implementation 70

4.4.1.1 Phase-1a: Minimizing Communication Cost 71

4.4.1.2 Phase-1b: Ensuring Balanced Partitions 74

4.4.1.3 Phase-2: Physical Vertex Migration 77

4.4.1.4 Phase-3: Convergence . 77

4.4.1.5 Incorporating Contention-Awareness 78

4.4.2 PLANAR: Evaluation . 79

4.4.2.1 Setup . 79

4.4.2.2 Parameter Selection . 81

4.4.2.3 Microbenchmarks . 81

4.4.2.4 Real-World Applications (BFS & SSSP) 85

4.4.2.5 Billion-Edge Graph Scaling 87

4.4.3 PLANAR+: Optimized PLANAR 90

4.4.3.1 Eliminating Per Adaptation Superstep Physical Vertex Mi-

gration . 90

4.4.3.2 Optimizing Network Communication Cost Measurement . 91

4.4.3.3 Optimizing Vertex Gain Computation 93

4.4.4 PLANAR+: Evaluation . 96

4.4.4.1 Setup . 96

4.4.4.2 Partitioning Quality . 97

vii

4.4.4.3 Scalability Study . 100

4.4.4.4 Real-World Workload (PageRank) 102

4.4.5 Section Summary . 104

5.0 SKEW-RESISTANT GRAPH PARTITIONING 106

5.1 Traversal-Style Graph Workload Characterization 107

5.1.1 Active Vertex Distribution Across Supersteps (Table 5.1) 108

5.1.2 Active Vertex Distribution Across Partitions (Fig. 5.1 & 5.2) . . . 109

5.1.3 Workload Predictability (Fig. 5.3 & 5.4) 111

5.2 Multi-Label Graph Partitioning . 113

5.2.1 Problem Statement . 113

5.2.2 Streaming-Based Implementation 114

5.2.2.1 Graph Partitioning Model 114

5.2.2.2 Streaming Heuristic . 114

5.2.2.3 Restreaming Model . 115

5.3 Skew-Resistant Graph Partitioning . 115

5.3.1 MLGP: Traversal-Style Graph Workloads 116

5.3.1.1 Avoiding Algorithmic Skewness 116

5.3.1.2 Avoiding Structural Skewness 116

5.3.2 MLGP: Multiphase Graph Workloads 117

5.3.3 MLGP: Graph Database Partitioning 117

5.4 Evaluation . 118

5.4.1 Setup . 118

5.4.2 Microbenchmarks . 119

5.4.2.1 Effectiveness in terms of Skewness 119

5.4.2.2 Effectiveness in terms of Partitioning Quality 120

5.4.3 Real-World Workloads (BFS & SSSP) 121

5.4.4 Scalability Study . 123

5.4.4.1 Scalability in terms of Graph Size 123

5.4.4.2 Scalability in terms of # of Partitions 124

5.5 Chapter Summary . 125

viii

6.0 CONCLUSIONS AND FUTURE WORK 126

6.1 Main Contributions . 126

6.2 Main Impact . 129

6.3 Discussion and Future Work . 130

7.0 BIBLIOGRAPHY . 133

ix

LIST OF TABLES

2.1 State-of-the-art Graph (Re)Partitioners . 12

2.2 Intra-node shared resource contention . 16

2.3 Workload execution time in seconds on com-orkut dataset 18

2.4 Workload LLC misses in millions on com-orkut dataset 20

3.1 Datasets used in our experiments . 26

3.2 Cluster compute node configuration . 26

3.3 Workload execution time in seconds on com-orkut dataset with varying mes-

sage grouping size . 27

3.4 Workload LLC misses in millions on com-orkut dataset with varying message

grouping size . 28

3.5 Workload execution time in seconds as the graph size increased 30

3.6 Workload execution time in seconds as the # of partitions increased 31

4.1 Relative network communication costs . 38

4.2 Original combustion simulation dataset . 44

4.3 Synthetic datasets . 44

4.4 Four flavors of Aragon . 45

4.5 Cache access latencies . 46

4.6 Degree of imbalance . 50

4.7 Datasets used in our experiments . 59

4.8 Cluster compute node configuration . 60

4.9 BFS job execution time (s) . 65

4.10 SSSP job execution time (s) . 65

x

4.11 Relative network communication costs . 73

4.12 BFS job execution time (s) . 86

4.13 SSSP job execution time (s) . 86

4.14 Skewness of the resulting decompositions . 100

4.15 PageRank communication volume breakdown in GB 104

5.1 Active vertex distribution across supersteps of BFS & SSSP execution with

one randomly selected source vertex . 108

5.2 BFS and SSSP execution time in seconds on com-orkut dataset with varying

message grouping size . 122

5.3 BFS execution time in seconds with 10 randomly selected source vertices on

varying sized graphs . 123

5.4 BFS execution time in seconds with 10 randomly selected source vertices on

varying number of partitions . 124

6.1 A summary of the Proposed Graph Repartitioners: Part1 128

6.2 A summary of the Proposed Graph Repartitioners: Part2 128

xi

LIST OF FIGURES

2.1 Example architectures of modern compute nodes 13

2.2 Theoretic bandwidth for different generations of InfiniBand and memory tech-

nologies [16]. 15

2.3 Memory transactions of inter- and intra-node data communication 16

3.1 Breakdown communication volume for the execution of BFS, SSSP, and PageR-

ank on com-orkut partitionings. 29

3.2 Partitioning time on Twitter dataset . 32

3.3 Argo partitioning time as a percentage of CPU time saving 32

4.1 Old Decomposition . 38

4.2 Better Decomposition . 38

4.3 Best Decomposition . 38

4.4 Topology Tree . 42

4.5 Varying num. of partitions (RR) . 46

4.6 Varying num. of partitions (SMP) . 46

4.7 Num. of computation steps . 48

4.8 Different sized 3D-torus . 48

4.9 Normalized communication and migration volume distribution in terms of the

number of hops each byte travels. 49

4.10 Refinement time and normalized communication costs of the com-lj decom-

positions after being refined with varying degree of refinement parallelism on

two 20-core compute nodes. 61

xii

4.11 Y-axis corresponds to the communication costs of the com-lj decompositions

after being refined with varying number of shuffle refinement times on two 20-

core compute nodes when they were normalized to that of the decompositions

refined by Aragon; X-axis denotes the corresponding refinement time; the

labels on each data point were the number of refinement times. 62

4.12 Communication cost of the initial decompositions computed by HP, DG,

LDG, and Metis across cores of two 20-core compute nodes for a variety of

graphs. 63

4.13 Paragon’s sensitivity to varying initial decompositions in terms of the com-

munication cost for a variety of graphs, which were initially partitioned by

HP, DG, LDG, and Metis across cores of two 20-core compute nodes. . . . 63

4.14 Overhead of the refinement on varying decompositions that were initially par-

titioned by HP, DG, LDG, and Metis across cores of two 20-core compute

nodes. 64

4.15 The breakdown of the accumulated communication volume across all super-

steps for BFS on PittMPICluster. 66

4.16 The breakdown of the accumulated communication volume across all super-

steps for BFS on Gordon. 66

4.17 BFS JET with Graph Dynamism . 67

4.18 BFS JET vs Graph Size . 68

4.19 Refinement Time vs Graph Size . 68

4.20 Old Decomposition . 72

4.21 Better Decomposition . 72

4.22 Best Decomposition . 72

4.23 Planar parameter selection . 80

4.24 Planar parameter selection . 80

4.25 Planar parameter selection . 80

4.26 Planar parameter selection . 80

4.27 Communication costs of the initial decompositions partitioned by HP, DG,

LDG, and Metis into 40 partitions. 82

xiii

4.28 Communication cost of the resulting decompositions and improvement achieved

after running Planar over varying initial decompositions generated by HP,

DG, LDG, and Metis across two 20-core machines. 82

4.29 Overhead of the adaptation on varying initial decompositions computed by

HP, DG, LDG, and Metis into 40 partitions. 83

4.30 Planar converge time in terms of supersteps 84

4.31 Planar convergence study on the wave dataset 84

4.32 Planar convergence study on the com-lj dataset 84

4.33 The communication volume breakdown of SSSP on both clusters. 87

4.34 BFS Job Execution Time (JET) . 88

4.35 Repartitioning Time . 89

4.36 Percentage of hopcut and edgecut reduced by the repartitioners over the de-

compositions initially generated by LDG. 98

4.37 Percentage of vertices migrated the repartitioners 99

4.38 Percentage of hopcut reduced after running the repartitioners over the de-

compositions with varying number of partitions. 100

4.39 Repartition time of the repartitioners over the decompositions with varying

number of partitions. 101

4.40 PageRank execution time on Friendster and Twitter datasets with varying

message grouping sizes. 102

5.1 BFS active vertex distribution across partitions for the most time-consuming

superstep (Step 4 of Table 5.1) on com-orkut dataset with one randomly

selected source vertex. The distribution was measured, when the graph was

partitioned across six 20-core machines with one partition per core. 110

5.2 BFS active high-degree vertex distribution across partitions for the most time-

consuming superstep (Step 4 of Table 5.1) on com-orkut dataset with one

randomly selected source vertex. The distribution was measured, when the

graph was partitioned across six 20-core machines with one partition per core. 110

5.3 Repeatability of BFS and SSSP execution trace: tr1 with respect to different

traces on the Orkut dataset. 112

xiv

5.4 Distribution of BFS and SSSP execution trace repeatability across all trace

pairs. 112

5.5 Active (high-degree) vertex distribution across partitions for the most time-

consuming superstep of a BFS execution on com-orkut dataset with one

randomly selected source vertex. The distribution was measured when the

dataset was partitioned across six 20-core machines with one partition per core.120

5.6 The quality of the partitionings computed by different partitioners over a

variety of graphs, as well as the corresponding partitioning overhead (in log

scale). The datasets presented were partitioned across six 20-core machines

with one partition per core. 121

xv

LIST OF ALGORITHMS

1 TopoFM . 40

2 Paragon . 53

3 Planar Overview . 70

4 Phase-1a: Vertex Migration . 71

5 Phase-1b: Quota Allocation . 75

6 Phase-1b: Vertex Migration . 77

7 Planar+ Full Repartitioning . 90

8 Phase-1a: Migration Destination Selection . 94

9 Planar: Vertex Gain Computation . 94

10 Planar+: Vertex Gain Computation . 96

xvi

LIST OF EQUATIONS

3.1 Equation (3.1) . 21

3.2 Equation (3.2) . 21

3.3 Equation (3.3) . 22

3.4 Equation (3.4) . 23

3.5 Equation (3.5) . 23

3.6 Equation (3.6) . 23

3.7 Equation (3.7) . 24

4.1 Equation (4.1) . 34

4.2 Equation (4.2) . 35

4.3 Equation (4.3) . 36

4.4 Equation (4.4) . 36

4.5 Equation (4.5) . 39

4.6 Equation (4.6) . 39

4.7 Equation (4.7) . 39

4.8 Equation (4.8) . 40

4.9 Equation (4.9) . 40

4.10 Equation (4.10) . 40

4.11 Equation (4.11) . 43

4.12 Equation (4.12) . 56

4.13 Equation (4.13) . 58

4.14 Equation (4.14) . 72

4.15 Equation (4.15) . 72

xvii

4.16 Equation (4.16) . 72

4.17 Equation (4.17) . 72

4.18 Equation (4.18) . 73

4.19 Equation (4.19) . 74

4.20 Equation (4.20) . 76

4.21 Equation (4.21) . 94

4.22 Equation (4.22) . 94

4.23 Equation (4.23) . 94

4.24 Equation (4.24) . 95

4.25 Equation (4.25) . 95

4.26 Equation (4.26) . 95

5.1 Equation (5.1) . 111

5.2 Equation (5.2) . 113

5.3 Equation (5.3) . 113

5.4 Equation (5.4) . 114

5.5 Equation (5.5) . 114

5.6 Equation (5.6) . 114

5.7 Equation (5.7) . 115

6.1 Equation (6.1) . 128

xviii

PREFACE

First and foremost, I want to thank my advisor Alexandros Labrinidis and co-advisor Panos

K. Chrysanthis. It has been an honor to be their Ph.D. student. They have taught me,

both consciously and unconsciously, how good scientific research is done. I appreciate all

their contributions of time, ideas, and funding to make my Ph.D. experience productive and

stimulating.

The members of the ADMT group have contributed immensely to my personal and

professional time at Pitt. The group has been a source of friendships as well as good advice

and collaboration.

For this dissertation, I would like to thank my thesis committee members: Alexandros

Labrinidis, Panos K. Chrysanthis, Jack Lange, Peyman Givi, and Patrick Pisciuneri for

their time, interest, insightful questions, and helpful comments. I would also like to thank

Christos Faloutsos at the Carnegie Mellon University for his collaboration on the last piece

of my thesis work. I also want to thank Juli Stresing, Wenchen Wang, Zhaohong Wu, and

Xiang Xiao for proofreading my thesis.

I gratefully acknowledge the funding sources that made my Ph.D. work possible. My

work was supported by the NSF awards CBET-1250171, CBET-1609120, and OIA-1028162.

My time at Pitt was made enjoyable in large part due to the many friends and groups

that became a part of my life. I am grateful for the time spent with roommates and friends,

and for many other people and memories.

Lastly, I would like to thank my family for all their love and encouragement.

xix

1.0 INTRODUCTION

Large graph datasets are becoming increasingly popular nowadays. For example, graphs like

Web Graphs, Biological Networks, and Social Networks, are often at the scale of hundreds of

billions or even a trillion (1012) edges, and they are continuously growing. As a consequence,

many distributed graph computing frameworks, such as Pregel [1], GraphLab [2] and Pow-

erGraph [3], have been developed. In addition to the data that is inherently represented

as graphs, many problems in scientific simulations [4] as well as machine learning and data

mining [2] can be modeled as graph problems.

In such systems, distributing vertices of the graph evenly across partitions often cor-

responds to an even load distribution, while minimizing the edgecut (the number of edges

connecting different partitions) helps minimize the amount of data communication. This is

known as the balanced graph partitioning problem. Balanced graph partitioning has been

extensively studied and proved to be NP-hard [5, 6, 4, 7, 8, 9, 10]. The most well-known

heuristic-based approaches are multi-level ones [5, 6, 4] and streaming ones [8, 9, 10].

One of the pitfalls of a big portion of the proposed solutions is that minimal data com-

munication does not always mean minimal network communication cost, since the comput-

ing infrastructures may exhibit highly non-uniform network communication costs. Several

hopcut-based solutions [11, 12, 13, 14] have been proposed to make the graph partitioning

procedure aware of the issue of non-uniform network communication costs.

Nevertheless, both edgecut- and hopcut-based solutions are designed with the assumption

that the network is the primary bottleneck and should be avoided at all costs. This assumption

has been broken by new advancements in HPC (high performance computing) infrastruc-

tures. It is common to see clusters that are, nowadays, connected via high-performance

networks with RDMA (remote direct memory access) capabilities, like Infiniband. In fact,

1

Infiniband was reported to connect 65% of the HPC platforms, and 39% of the overall

TOP500 systems by November 2016 [15]. It was also reported that transferring data across

the network (like Infiniband) has been almost as fast as local memory access [16]. The

next generation of Infiniband (EDR Infiniband) is even able to deliver up to 100Gbps net-

work bandwidth. As a result, focusing on minimizing network data communication may not

always lead to performance improvement.

At the same time, the microprocessor industry has shifted from boosting the clock speed

of uniprocessors to multicore processors by continuously integrating many small processing

units onto a single chip. Multicore machines nowadays have become the backbone of modern

HPC infrastructures. Due to the increasing core count per node, the contention for the

shared resources (e.g., last level cache, memory controller, and front-side bus) on the memory

subsystems is becoming more and more notorious. It has been shown that the contention can

significantly impact the performance of the collocated workloads [17, 18] even for collocated

processes from the same distributed workload [19]. What is even worse is that the core

count per node is continuously increasing. It is expected that there will be nodes with

hundreds of cores in the near future. The fast development of high-speed networks further

aggravates the issue. Nevertheless, none of the existing graph partitioning algorithms is

aware of the contention issue. In fact, they may even increase the degree of the contention

on the memory subsystems, especially the hopcut-based solutions. This is because existing

solutions always try to avoid network data communication even at the cost of increasing

intra-node data communication (data communication among partitions assigned to cores of

the same machine), despite the fact that excess intra-node data communication may saturate

the memory subsystems, amplifying the contention.

As mentioned earlier, existing graph (re)partitioners often assume that distributing ver-

tices of the graph evenly across partitions corresponds to an even load distribution. In other

words, they assume that vertices of the graph are always active during the computation.

Nevertheless, for some workloads, like Breadth-First Search (BFS) and Single-Source Short-

est Path (SSSP), only a subset of the vertices participate in the computation in a specific

time period. As a result, the execution of such workloads on the partitionings computed by

existing graph (re)partitioners may suffer from significant time-varying skewness, leading to

2

resource underutilization. Another issue of existing graph (re)partitioners is that many of

them assume that vertices of the graph have uniform computation requirements and uni-

form communication requirements with their neighbors. Nevertheless, the computation and

communication requirements of the vertices are highly application-dependent.

In this dissertation, we argue that computations performed on the partitionings com-

puted by existing graph partitioning algorithms could not always fully utilize the underlying

computing infrastructures, which impedes the efficiency of the computing infrastructures as

well as the scalability of the target workload. To enable efficient distributed graph compu-

tation on modern HPC infrastructures, we advocate for architecture- and workload-aware

graph partitioning. Architecture-aware means that we should consider the performance im-

pact of these new hardware trends while partitioning, whereas workload-aware indicates that

the (re)partitioner should be aware of the runtime characteristics of the target workload.

1.1 RESEARCH OVERVIEW

1.1.1 Thesis Statement

Architecture- and workload-aware graph partitioning enables efficient distributed graph com-

putation on modern HPC infrastructures.

1.1.2 Target Computing Infrastructure

In this thesis, we study the graph partitioning problem for distributed graph computing on

dedicated HPC clusters. In such clusters, the compute nodes are equipped with multiple

CPU sockets and each CPU socket has multiple cores. Compute nodes of the cluster are

often connected via high-speed networks, like Infiniband. To perform a computation on such

systems, users need to first submit their jobs to the cluster. The cluster manager will allocate

the resources requested for the user. Once allocated, the user will have dedicated access to

the allocated resources.

3

1.1.3 Assumptions

In our study of the problem, we assume (1) that graphs are partitioned across cores of the

allocated compute nodes with one partition per core for parallel processing; (2) that the

mapping of a partition to a core, as well as the number of partitions remains unchanged

throughout the computation; and (3) that the set of the allocated cores used for graph

processing is also the set of cores used for the (re)partitioning.

1.1.4 Main Contributions

We first investigated the performance impact of the new hardware trends (i.e., multicore

machines connected via high-speed networks) on distributed graph workloads. As a result of

this study, we identified two important factors that one should be aware of while partitioning

the graphs: (a) the non-uniform network communication costs of the underlying computing

infrastructures; and (b) the contention for the shared hardware resources on the memory

subsystems of modern HPC clusters. We also provided a holistic view on: (a) why we have

to be aware of such factors for distributed graph workloads; and (b) to what extent these

factors may impact the performance of distributed graph workloads.

To avoid such negative performance impact, we proposed an architecture-aware graph

partitioning algorithm, Argo [20], for efficient distributed graph computation on static

graphs. Argo follows the same streaming partitioning model proposed by others. In this

model, vertices arrive at the partitioner in a certain order along with their adjacency lists.

The partitioner decides the placement of each newly arrived vertex to one of the partitions

permanently based on the placements of the vertices previously arrived. The key novelty of

Argo lies in making the vertex placement aware of (a) the non-uniform network communi-

cation costs of the underlying computing infrastructures; and (b) the contentiousness of the

memory subsystems of modern HPC clusters. We also make Argo aware of the non-uniform

computation and communication requirements of the vertices by encoding such information

into the vertex and edge weights of the graph. Since making the (re)partitioner aware of such

workload characteristics is fairly straightforward, we will primarily focus on the discussion

of architecture-awareness throughout the thesis.

4

We also proposed four new architecture-aware graph repartitioning algorithms:

Aragon [21], Paragon [22], Planar [23], and Planar+ [24] for efficient distributed

graph computation on dynamic graphs. They all attempt to adapt the current partitioning

to the changes in the graph by migrating vertices among the partitions. The migration is

only allowed if the gain of moving the vertex from its current partition to an alternative

partition is positive. The gain of migrating a vertex is defined as the reduction in the com-

munication cost incurred by the vertex during the computation. One of the key contributions

of this thesis is that we make the vertex gain computation process aware of both the com-

munication heterogeneity and contentiousness of the underlying computing infrastructures.

Nevertheless, Aragon is a centralized solution with the assumption that the graphs are

small enough to be held in the memory of a single machine, whereas Paragon is a parallel

version of Aragon designed for median-sized graphs. Planar and Planar+ overcome

the drawbacks of Paragon by scaling it to even larger graphs and by increasing the degree

of parallelism the repartitioning algorithm can have. In addition to being highly scalable, the

partitionings computed by them also have much lower hopcut/edgecut than that of Aragon

and Paragon. Planar+ further reduces the overhead of Planar, by introducing an effi-

cient way of modeling the communication heterogeneity and contentiousness. This, in turn,

enables an optimized vertex gain computation. Making the partitioning algorithms scale

efficiently against large graphs is another key contribution of the thesis. Similar to Argo,

Aragon, Paragon, Planar, and Planar+ are all aware of the non-uniform computation

and communication requirements of the vertices.

Finally, we examine a special type of workload-aware graph partitioning: skew-resistant

graph partitioning. In particular, we would like to distribute the vertices that are ac-

tive in the same time period evenly across the partitions and thus avoid the issue of time-

varying skewness. Towards this, we studied the runtime characteristics of two representative

traversal-style graph workloads: BFS and SSSP. Based on the study, we introduced the idea

of multi-label graph partitioning (MLGP) and an application of this idea is to do skew-

resistant graph partitioning. We also identified a set of target workloads that MLGP can be

applied to.

5

1.1.5 Main Impact

The main impact of this thesis is that we identified an important aspect that has been

ignored by the current graph processing community, that is, the performance impact of the

underlying HPC infrastructures, especially the contentiousness of the memory subsystems,

on distributed graph computation. In fact, this is also a blind spot for general distributed

computation, where people often assume that the network is the bottleneck.

In particular, we made an in-depth analysis about the factors that one should consider

while (re)partitioning the graph for distributed graph computing, namely, the non-uniform

network communication costs (Section 2.2.1) and the contention on the memory subsys-

tems (Section 2.2.2). We also experimentally demonstrated that (1) the network may not

always be the bottleneck in modern HPC clusters (Section 2.2.3); and (2) the contention

on the memory subsystems can impact the performance of distributed graph computation

significantly (Section 2.2.3). Based our analysis and our observations, we showed that even

with simple managed graph (re)partitioning we can achieve significantly better performance

(Chapters 3 & 4). All these observations will enable the graph processing community to

rethink the design of graph (re)partitioning algorithms and even the design of distributed

graph computing frameworks.

1.2 OUTLINE

The rest of the dissertation is organized as follows:

In Chapter 2, we will first review the literature on the topics of distributed graph compu-

tation and graph partitioning and then motivate our work by demonstrating the importance

of architecture-awareness.

In Chapter 3, we will introduce Argo, an architecture-aware graph partitioning algo-

rithm we proposed for static graph partitioning.

In Chapter 4, we will study the problem of architecture-aware graph partitioning for

dynamic graphs. In particular, we will present four solutions we proposed: Aragon,

6

Paragon, Planar, and Planar+.

In Chapter 5, we will investigate the problem of skew-resistant graph partitioning.

Finally, we will conclude in Chapter 6

7

2.0 BACKGROUND AND MOTIVATION

2.1 LITERATURE REVIEW

In this section, we review the topic of distributed graph computation as well as the state-of-

the-art graph partitioning and repartitioning algorithms.

2.1.1 Distributed Graph Computation

Recently, many distributed graph computing frameworks, such as Pregel [1], Giraph [25],

GraphLab [2], PowerGraph [3], Mizan [26], Giraph++ [27], GoFFish [28], and Blogel [29],

have been proposed for big graph processing. These systems hide the complexity of data

partitioning, computation parallelization, and fault tolerance from users, providing a simple

and elegant way for users to design and implement scalable distributed graph algorithms.

Pregel, as one of the most popular graph computing engines, adopts the vertex-centric

model. In such a model, users only need to specify the logic for one vertex, whereas the

system will hide the complexity of executing the logic on all the vertices in a distributed

fashion. The execution is carried out in a sequence of supersteps separated by a global

synchronization barrier. In each superstep, the vertex can change its state and the state of

its outgoing edges, send messages to its neighbors to be processed in the next superstep, or

even modify the structure of the graph. Vertices can vote to halt at the end of each superstep

and be reactivated by messages from its neighbors. The execution ends when all the vertices

are inactive.

However, the vertex-centric model has its own drawbacks (e.g., high communication

cost for graphs with high average vertex degree and long convergence time for graphs with

8

large diameters). To address these limitations, Giraph [25] allows the use of customized

graph partitioners to mitigate the communication cost, and Mizan [26] exploits dynamic load

balancing to avoid runtime skewness. GraphLab [2] introduces the asynchronous execution

mode to eliminate the need of per superstep global synchronization, whereas PowerGraph [3]

proposes the idea of vertex-cut graph partitioning to speed up the processing of power-law

graphs. In addition to Giraph++ [27], GoFFish [28], and Blogel [29], which adopt the

block- or subgraph-centric model, there are also query-centric systems, like Horton [30] and

Quegel [31], which are designed for online querying of big graphs.

2.1.2 Graph Partitioning and Repartitioning

A common characteristic of these graph computing engines is that the distribution of the

graph (the partitioning of the graph) across the computing elements can impact the perfor-

mance greatly. Most of the systems adopt the edgecut-based graph partitioning solution,

where vertices of the graph are distributed across the partitions while edges connecting

different partitions are cut. This is also the type of graph partitioners this thesis focuses on.

Heavyweight Graph Partitioning Edgecut-based graph partitioning have been exten-

sively studied [32, 33, 34, 35, 36]. Among these, the multi-level graph partitioner, Metis [32],

is the most well-known one. Nevertheless, these graph partitioners often scale poorly against

large graphs, even if performed in parallel like ParMetis [33] and Zoltan [36]. Besides,

none of them is architecture-aware. Although work [11] and [12] are heterogeneity-aware (i.e.,

they consider the issue of non-uniform network communication costs while partitioning), nei-

ther of them is contention-aware (i.e., none considers the contention issue on the memory

subsystems of modern multicore clusters). Last but not the least, they both rely on the use

of heavyweight graph partitioners, making them infeasible for large graph partitioning.

Streaming Graph Partitioning To address the scalability issue of the heavyweight graph

partitioners, a new family of graph partitioning heuristics, namely streaming graph partition-

ing [8, 10, 37], has been proposed recently for online graph partitioning. They can produce

partitionings that are comparable to Metis in terms of partitioning quality (edgecut) but

within a relatively short time. However, they are not architecture-aware. Although [13, 14]

9

are two heterogeneity-aware streaming graph partitioners, they are not contention-aware. To

address this issue, we proposed Argo, an architecture-aware (heterogeneity- and contention-

aware) streaming graph partitioner.

In addition to these streaming graph partitioners, a new distributed architecture-agnostic

graph partitioner, Sheep [38], has been proposed for large graph partitioning. It is similar

in spirit to Metis. They both first reduce the original graph to a smaller tree or a sequence

of smaller graphs, then do a partition of the tree or the smallest graph, and finally map the

partitioning back to the original graph. In terms of partitioning time, Sheep performs better

than both Metis and streaming partitioners. For partitioning quality, Sheep is competi-

tive with Metis for a small number of partitions and is competitive with streaming graph

partitioners, such as LDG [8], for larger numbers of partitions.

Lightweight Graph Repartitioning The majority of the above referenced graph parti-

tioners (except ParMetis and Zoltan) are designed for static graph partitioning. However,

many graphs are dynamic, continuously evolving over time. The changes can be either in the

graph structure (like vertex/edge addition/deletion) or in the graph properties (like changes

in vertex weights and edge weights). As a result, the quality of the partitioning computed on

the stale graph may degrade over time, requiring the graph to be repartitioned periodically to

maintain good performance. Indeed, the model adopted by the streaming graph partitioners

can handle a certain type of graph dynamism (e.g., vertex/edge addition). However, they

tend to lead to suboptimal performance for the computation in the presence of dynamism [39]

and they are incapable of handling other types of dynamism. Although we could potentially

use existing graph partitioners to compute a new partitioning for the changed graph from

scratch, they usually lead to high migration costs. Besides, existing graph partitioners cannot

be used as online graph repartitioners, since they scale poorly against large graphs.

Consequently, many lightweight graph repartitioners [40, 39, 41, 26, 42] have been pro-

posed for dynamic graph partitioning. They tackle the scalability issue of heavyweight

graph (re)partitioners and the issue of streaming graph partitioners with dynamic graphs

by incrementally migrating vertices among the partitions on-the-fly based on some heuris-

tics. Nevertheless, they are architecture-agnostic. Also, many of them assume uniform

vertex weights (uniform computation requirements of the vertices) and vertex sizes (uniform

10

amount of application state associated with the vertices), and some [39, 41] even assume

uniform edge weights (uniform amount of data communication along the edges). However,

real-world graphs often have non-uniform vertex weights, vertex sizes, and edge weights. In

fact, the weights and sizes are highly algorithm-dependent.

Work [26] is a Pregel-like graph computing engine, which allows it to migrate vertices

based on the runtime characteristics of the target workload (i.e., the number of messages

sent/received by each vertex and response time). Paper [42] also presents a repartitioning

system which migrates vertices on-the-fly based on some runtime statistics (i.e., the average

compute and communication time of each superstep, and the probability of a vertex becoming

active in the next superstep). Because of this, they are tightly coupled with their systems. In

contrast, we encode such workload characteristics into the vertex and edge weights, avoiding

coupling our proposed solutions with a specific graph computing engine.

Vertex-Cut Graph Partitioning Several vertex-cut graph partitioners [43, 44, 3, 45]

were also proposed to improve the performance of distributed graph computation on power-

law graphs. In this case, edges are mapped to partitions and vertices are cut if their edges

happen to be assigned to different partitions. Although they belong to a different type of

graph partitioners, they all have to face the heterogeneity and contention issue as edgecut-

based solutions. Work [45] is a first vertex-cut attempt to address the heterogeneity issue.

State-of-The-Art Graph (Re)Partitioners We summarize the state-of-the-art edgecut

graph (re)partitioners in Table 2.1, according to three dimensions: the supported graph

properties, architecture-awareness, and algorithmic properties. In terms of graph properties

(GP), we characterize each approach as to whether it can handle graphs with (a) dynamism,

(b) weighted vertices (i.e., non-uniform computation), (c) weighted edges (i.e., non-uniform

data communication), and (d) vertex sizes (i.e., non-uniform data sizes on each vertex). In

terms of architecture-awareness (AA), we distinguish three aspects: (a) CPU heterogeneity,

(b) network heterogeneity, and (c) resource contention. Lastly, in terms of algorithmic

properties (AP), we characterize each approach as to whether it (a) runs in parallel, and

(b) is lightweight. The reason why we omit the comparison of vertex-cut solutions is because

the focus of this thesis is edgecut-based solutions.

11

Table 2.1: State-of-the-art Graph (Re)Partitioners

Graph RePartitioners

Algorithm Properties Graph Properties

Parallel Lightweight
Architecture-Aware

Dynamism
Weighted

Vertex Size
CPU Network Contention Vertex Edge

Graph Partitioners

Metis [32] X X

Chaco [35] X X

ICA3PP’08 [11] X X X X

SoCC’12 [12] X X X

LDG [8] X Limited

Fennel [10] X Limited

arXiv’13 [37] X X

TKDE’15 [13] X X X Limited X X

Sheep [38] X X

Argo [20] X X X Limited X X

Graph Repartitioners

ParMetis [33] X X X X X

Zoltan [36] X X X X X

Scotch [34] X X X X

CatchW [40] X X X X X

xdgp [39] X X X

Hermes [41] X X X X

Mizan [26] X X X X X

LogGP [42] X X X X X

Aragon [21] X X X X X

Paragon [22] X X X X X X X

Planar [23]
X X X X X X X X

Planar+ [24]

2.2 IMPORTANCE OF ARCHITECTURE-AWARENESS

In this section, we first describe two important factors that one should consider while par-

titioning the graphs for efficient distributed graph computation on modern HPC clusters

(Section 2.2.1 & 2.2.2), followed by an experimental demonstration of their performance

impact on three representative distributed graph workloads (Section 2.2.3).

12

Memory Controller
(Northbridge)

Memory

Socket 0 Socket 1

L2 L2
FSB Interface

core core core core

L1 L1 L1 L1

FSB Interface
L2 L2

FSB Interface

core core core core

L1 L1 L1 L1

FSB Interface

FSB FSB

(a) Uniform Memory Access (UMA) Node

core core core core

L2 L2 L2 L2
L3

Memory
Controller

Inter-socket
Link Controller

Memory

Socket 1

core core core core

L1 L1 L1 L1
L2 L2 L2 L2

L3

Memory
Controller

Inter-socket
Link Controller

Memory

Socket 0

QPI/HT

L1 L1 L1 L1

(b) Non-uniform Memory Access (NUMA) Node

Figure 2.1: Example architectures of modern compute nodes

2.2.1 Network Characteristics of Modern HPC Infrastructures

For distributed graph computations on multicore systems, communication can be either

inter-node (i.e., among cores of different compute nodes) or intra-node (i.e., among cores

of the same compute node). In general, intra-node communication is an order of mag-

nitude faster than inter-node communication. This is because in many modern parallel

programming models like MPI [46, 47], a predominant messaging standard for HPC appli-

cations, intra-node communication is implemented via shared memory/cache [48, 49], while

inter-node communication needs to go through the network interface. Additionally, both

inter-node and intra-node communication are themselves non-uniform.

Non-uniform Inter-Node Network Communication Modern parallel architectures,

like supercomputers, usually consist of a large number of compute nodes linked via a network.

Consequently, the communication costs among compute nodes vary a lot because of their

varying locations. For example, in the Gordon supercomputer [50], the network topology is

a 4x4x4 3D torus of switches with 16 compute nodes attached to each switch. As a result,

the distance to different compute nodes starting from a single node varies from 0 to 6 hops.

Also, supercomputers often allow multiple jobs to concurrently run on different compute

nodes and contend for the shared network links, limiting the effective network bandwidth

available for each job and thus amplifying the heterogeneity.

Non-uniform Intra-Node Network Communication Communication among cores of

13

the same compute node is also non-uniform because of the complex memory hierarchy. Com-

munication among cores sharing more cache-levels can achieve lower latency and higher ef-

fective bandwidth than cores sharing fewer cache-levels. For example, in the architecture

described by Figure 2.1a, communication among cores sharing L2 caches (e.g., between the

first and second core of Socket 0) offers the highest performance, while communication among

cores of the same socket but not sharing any L2 cache (e.g., between the first and third core

of Socket 0) delivers the next highest performance. Communication among cores of different

sockets performs the worst. Similarly, in Figure 2.1b, cores of the same socket (intra-socket

communication) usually communicate faster than cores residing on different sockets (inter-

socket communication). This is because intra-socket communication can be achieved via the

shared caches, while inter-socket communication has to go through the front-side bus and

the off-chip memory controller (Figure 2.1a) or the inter-socket link controller (Figure 2.1b).

Take-away To improve the performance of graph-based big-data applications, we should not

only minimize the number of edges across different partitions (edgecut), but also the number

of edges connecting partitions having higher network communication costs (hopcut). This is

the major difference between architecture-agnostic solutions (that only minimize edgecut)

and architecture-aware ones (that try to minimize both edgecut and hopcut).

2.2.2 Resource Contention on HPC Memory Subsystems

Clearly, it is critical to make the graph partitioning or repartitioning procedure aware of

the non-uniform network communication costs in cases where the network is the bottleneck.

Nevertheless, network nowadays may no longer be the bottleneck due to the presence of

remote direct memory access (RDMA) technology [16]. RDMA-enabled networks allow a

compute node to read/write data from/to the memory of another compute node without

involving the processor, cache, or operating system of either node, enabling true zero-copy

data communication [51] (Figure 2.3a). Besides, the bandwidth of modern RDMA-enabled

networks has been reported to be in the same ballpark as memory bandwidth [16]. As shown

in Figure 2.2, DDR3 memory bandwidth is currently between 6.25GB/s (DDR3-800) and

16.6GB/s (DDR3-2133) per memory channel, whereas InfiniBand bandwidth ranges from

14

Figure 2.2: Theoretic bandwidth for different generations of InfiniBand and memory tech-

nologies [16].

1.7GB/s (FDR 1x) to 37.5GB/s (EDR 12x) per NIC port. Thus, the memory bandwidth of

a machine with 4-channel DDR3-1600 memory can be roughly provided by four dual-port

FDR 4x NICS. As a result, the contention for the shared resources on the memory subsystem

of modern multicore machines is becoming more and more noticeable.

Inherent Contention in Multicore Machines Multicore machines usually consist of

multiple sockets and each socket has multiple cores. Each core is a logical processing unit,

but they are not physically isolated. Cores of the same socket have to contend with each other

for the shared hardware resources. For example, in the architecture depicted in Figure 2.1a,

cores sharing the L2 caches have to compete with each other for the shared L2, Front-Side

Bus (FSB), and the Memory Controller. Although cores on different sockets do not share

the L2, they may still contend for the shared FSB and Memory Controller. In fact, even

if they are residing on different sockets, they may have to contend for the shared Memory

Controller. Table 2.2 provides a concise summary for the resources that different cores may

have to contend for, in the Uniform Memory Access (UMA) architecture of Figure 2.1a and

the Non-Uniform Memory Access (NUMA) architecture of Figure 2.1b. The summary is

based on whether the cores are on the same socket and whether they share the last level

cache (LLC).

Contention and Intra-Node Data Communication The fact that intra-node data

communication is often achieved via shared memory further amplifies the contention, because

15

Memory Chipset CPU

Sending Host

Memory Chipset

Receiving Host

IB HCA IB HCA

4x Infiniband
Ch 2 TX/RX Prs

Ch 4 TX/RX Prs

Ch 1 TX RX Prs

Ch 3 TX RX Prs

CPU

(a) Inter-node data communication via
RDMA [51]

Send Buffer Receive BufferShared Buffer

Sending Core Receiving Core

1. Load
2a. Load

2b. Write

3. Load
4b. Write

4a. Load

(b) Intra-node data communication via shared
memory

Figure 2.3: Memory transactions of inter- and intra-node data communication

Table 2.2: Intra-node shared resource contention

Cores/Resources Sharing Contention

Core Groups Socket LLC LLC FSB/QPI(HT) Memory Controller

G1 X X X X X

UMA G2 X X X

Fig. 2.1a G3 X

NUMA G1 X X X X

Fig. 2.1b G2 X

intra-node data communication requires additional data copies [48, 49], which, in turn, may

lead to significant cache pollution and thus saturate the memory controller. Figure 2.3b

shows the corresponding memory/cache transactions for sending a message from one core

to another. The sending core first needs to load the message from the application sending

buffer into its cache (Step 1 in Figure 2.3b) and then write the data to the shared buffer

(Step 2b). However, the write may require loading the shared buffer block into the sender’s

cache first (Step 2a). Then, the receiving core reads the data from the shared memory (Step

3). Finally, the receiver writes the data to the receiving buffer (Step 4b), which may again

require loading the receiving memory block into the receiver’s cache first (Step 4a).

Thus, if the sending core shares the same last level cache with the receiving core, there

will be multiple copies of the same message in LLC. This is because in addition to the cached

message for the sending and receiving buffer, the message in the shared memory has also to

be cached in the LLC. Even if the sender and receiver do not share LLC, the LLC of both

sender and receiver may still have to maintain multiple copies of the message as long as they

16

reside on the same machine (one for the shared memory buffer and the other one for the

sending or receiving buffer). Clearly, intra-node data communication may lead to serious

cache pollution and therefore saturate the memory controller.

What is even worse is that cores of the same machine are often communicating with

each other at the same time for parallel computation and the number of cores per node is

continuously increasing. The fact that graph workloads often have poor locality [52] (because

of the irregular and unstructured nature of real-world graphs) and high memory access to

computation ratio [52] (since graph algorithms are often based on the exploration of the

graph structure with little computation work per vertex) further aggravates the contention.

Take-Away Focusing solely on minimizing the edgecut or the hopcut may not be sufficient for

scalable performance. This is because edgecut-based solutions have no guarantee on how the

edgecut is distributed across the partitions. They may end up with lots of data communication

among partitions that are assigned to the same machine, leading to contention on the memory

subsystems. On the other hand, hopcut-based solutions advocate for grouping neighboring

vertices as close as possible, further aggravating the contention on the memory subsystems.

2.2.3 Understanding the Performance Impact of Heterogeneity and Contentious-

ness

In this section, we experimentally demonstrate and quantify the performance impact of

architecture-awareness (especially contentiousness) on distributed graph computing using

four graph partitioners: (a) Metis, the most well-known graph partitioner [32], (b) LDG,

the most well-known streaming graph partitioner [8], (c) Argo, an architecture-aware graph

partitioner presented in Chapter 3, and (d) Argo-H, a variant of Argo that only considers

the communication heterogeneity. The demonstration was achieved by comparing runs of

an MPI implementation of three classic graph workloads: PageRank, Breadth-First Search

(BFS), and Single-Source Shortest Path (SSSP) with different process (rank) affinity pat-

terns.

For presentation clarity, we labelled an execution of a workload under a specific parti-

tion (rank) to core mapping as m:s:c, where m, s, and c, respectively, denote the number

17

Table 2.3: Workload execution time in seconds on com-orkut dataset

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

Metis LDG Argo-H Metis LDG Argo-H Metis LDG Argo-H

1:2:8 53.05 95.82 68.61 633 2,632 1,549 174 690 859

2:2:4 55.01 105.71 88.17 654 2,565 1,505 222 619 618

4:2:2 36.85 55.82 64.02 521 631 861 202 269 247

8:2:1 19.16 45.81 14.84 222 280 132 95.84 133 108

of machines used, the number of sockets used per machine, and the number of cores used

per socket. For example, label 1:2:8 indicates that the experiment was performed on one

dual-socket machine with eight MPI ranks per socket (one rank per core). To quantify the

performance impact of the contention, we ran each workload with a fixed number of MPI

ranks (16) under four different configurations: {1:2:8, 2:2:4, 4:2:2, 8:2:1}. Note that the de-

gree of contention gradually decreased from configuration 1:2:8 to configuration 8:2:1. This

is because the number of active cores per socket of the configurations gradually decreased

from 8 to 4, to 2, and finally to 1. This also explains why we only used 16 cores per node

at most (8 cores per socket) in this experiment, although each compute node of the cluster

had 20 cores. More details about the evaluation platform are presented in Section 3.2.2.

To mitigate the impact of other factors, executions of BFS/SSSP under different config-

urations all started from the same set of randomly selected source vertices (10 by default).

Also, given the long execution time of the jobs, we grouped multiple (256) messages sent

by the same MPI rank to the same destination into a single one. In the experiment, the

com-orkut dataset was partitioned into 16 partitions across corresponding cores (one parti-

tion per core) using Metis, LDG, Argo, and Argo-H. Orkut is a social network ran by

Google for people across the world to discuss their common interests [53]. The dataset used

is a subset of the Orkut user population (around 11.3% at the time crawled by A. Mislove

et. al. [54]). The dataset has around 3M vertices and 234M edges. The degree distribution

of the dataset follows the power-law distribution with average and maximal vertex degree

equal 76.281 and 33,313, respectively. The maximal diameter of the dataset is 10 with the

effective diameter of 5.4489.

18

Results in terms of execution time (Table 2.3) Table 2.3 shows the resulting execution

time of the workloads under different configurations on the com-orkut dataset. As expected,

the higher the contention, the longer the execution time would be. When compared with

configuration 8:2:1, the slowdown caused by the contention can be as high as 5.94, 11.69, and

7.94 times for the execution of BFS, SSSP, and PageRank, respectively. We also noted that

even if we reduced the number of active cores per socket by half (configuration 2:2:4), the

application may still suffer from serious contention. We believe the reason why the execution

of BFS under configuration 2:2:4 sometimes took longer than that of configuration 1:2:8 was

because configuration 2:2:4 and configuration 1:2:8 has similar degree of contentiousness,

but configuration 2:2:4 required data communication across machines (which was typically

slower than intra-node data communication).

Another interesting observation was that Metis performed better than LDG and Argo-

H in most configurations except configuration 8:2:1. We believe this was because the par-

titionings computed by Metis had the lowest edgecut and thus the lowest amount of con-

tention on the memory subsystems. The reason why Argo-H was worse than Metis and

sometimes even worse than LDG in dense configurations (i.e., 1:2:8, 2:2:4, and 4:2:2) was

because Argo-H was a hopcut-based solution. It aims to avoid inter-machine data commu-

nication by gathering neighbouring vertices as close as possible, which may lead to significant

intra-node data communication and thus increase the contention on the memory subsystems.

However, Argo-H outperformed Metis and LDG on two out of the three workloads

under configuration 8:2:1. This was expected because under configuration 8:2:1 reducing

inter-machine data communication became more critical than mitigating the contention.

This also confirmed the fact that the network may not always be the bottleneck. The reason

why Argo-H did not outperform Metis on PageRank execution was because PageRank was

more communication-intensive than BFS and SSSP, and thus the contention on the memory

subsystems was still the dominant factor even under the sparsest configuration.

Results in terms of LLC misses (Table 2.4) To confirm that the slowdown was indeed

caused by the contention on the memory subsystems, we also reported the LLC misses

for each execution of the workloads in Table 2.4. The LLC misses were collected via the

PAPI L3 TCM event provided by the hardware performance counter programming tool,

19

Table 2.4: Workload LLC misses in millions on com-orkut dataset

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

Metis LDG Argo-H Metis LDG Argo-H Metis LDG Argo-H

1:2:8 609 424 283 10,292 44,117 23,632 1,945 6,216 10,209

2:2:4 662 601 766 10,626 44,689 23,770 2,719 6,836 9,087

4:2:2 59 73 70 2,541 1,061 2,787 48 100 82

8:2:1 52 67 66 96 187 141 44 98 87

PAPI [55], and the values reported were the average LLC misses across partitions (MPI

processes). By comparing Tables 2.4 and 2.3, we observed that the timing results were

highly consistent with the LLC miss results. The denser the configuration was, the larger

the LLC misses and thus the longer the execution time of the workload. We also observed

that under configuration 8:2:1 Argo-H had much higher LLC cache misses than that of

Metis for BFS and SSSP, but it still outperformed Metis in terms of the execution time.

This further confirmed our observation that under configuration 8:2:1 reducing inter-machine

data communication was more critical to the performance than mitigating contention on the

memory subsystems (e.g., cache pollution caused by inter-socket data communication) for

BFS and SSSP.

Discussions The above experimental results can be summarized as follows:

Take-Away 1 The contention on the memory subsystem can also have significant per-

formance impact on distributed workloads, especially for multicore machines connected via

high-speed networks.

Take-Away 2 Heterogeneity-aware graph (re)partitioners are designed for cases where the

network is the bottleneck, especially for geo-distributed clusters or cloud computing environ-

ments.

20

3.0 ARCHITECTURE-AWARE STATIC GRAPH PARTITIONING

In this chapter, we first formally define the problem of architecture-aware graph partitioning

for static graphs (Section 3.1). Then, we introduce a streaming-based implementation of

such a graph partitioner, Argo (Section 3.2).

3.1 PROBLEM STATEMENT

Let G = (V,E) be a graph, where V is the vertex set and E is the edge set.

Workload-Awareness To make the partitioning aware of the runtime characteristics of

the target workload, we assign each vertex and edge a weight for partitioning. Vertex weight,

w(v), indicates the computation requirement of vertex v, while edge weight w(e) reflects the

amount of the data communicated along edge e during the computation. Since the encoding

of such information to the vertex and edge weights is fairly straightforward, we will primarily

focus on the discussion of how to make the partitioning algorithm architecture-aware here.

Architecture-aware graph partitioning aims to partition the graph into n balanced

partitions:

P = {Pi : ∪ni=1Pi = V and Pi ∩ Pj = φ for any i 6= j} (3.1)

such that the communication cost of the partitioning is minimized.

We define the communication cost of a partitioning P as:

comm(G,P) =
∑

e=(u,v)∈E
and u∈Pi and v∈Pj and i 6=j

w(e) ∗ c(Pi, Pj) (3.2)

21

where c(Pi, Pj) can be either the relative network communication cost, the degree of shared

resource contentiousness between Pi and Pj or a hybrid of both. Existing architecture-

agnostic graph partitioners usually assume c(Pi, Pj) = 1, which fails to reflect the charac-

teristics of modern HPC infrastructures. Thus, to minimize comm(G,P), we should avoid

data communication among partition pairs having high c(Pi, Pj) as much as possible.

We say a partitioning is balanced if the skewness of the partitioning is within a user-

defined threshold. The skewness of a partitioning P is defined as:

skewness(G,P) =
max{w(P1), w(P2), · · · , w(Pn)}∑n

i=1 w(Pi)

n

(3.3)

where w(Pi) =
∑

v∈Pi
w(v).

Assumptions Throughout this chapter, we assume that (a) Pi is assigned to server Mi for

parallel processing; (b) Pi and Mi are used interchangeably; and (c) the server can be either

a hardware thread, a core, a socket, or a machine. By default, the servers are cores since we

target for clusters of multicore machines.

3.2 ARGO: ARCHITECTURE-AWARE GRAPH PARTITIONING

In this section, we introduce Argo, an architecture-aware graph partitioner we implemented

for static graph partitioning. Argo is short for Architecture-Aware Graph PartitiOning.

3.2.1 Algorithm Design and Implementation

3.2.1.1 Graph Partitioning Model Argo follows the same streaming partitioning

model first proposed by [8]. In such a model, vertices arrive at the partitioner in a certain

order along with their adjacency lists. Upon the arrival of each vertex, the partitioner

decides the placement of the vertex to one of the partitions based on the placements of

vertices previously arrived. The placement of the vertex never changes once it is assigned to

a partition.

22

A variety of heuristics have been proposed by [8] for the vertex placement, among which

the linear deterministic greedy (LDG) performs the best. LDG tries to assign a vertex, v,

to a partition, Pi, which maximizes:

(1− w(Pi)

C(Pi)
) ∗

∑
e=(u,v)∈E and u∈Pi

w(e) (3.4)

where w(Pi) is the aggregated weights of vertices that have been assigned to Pi (indicating

the computational requirement of the vertices of the partition), C(Pi) denotes the maximal

amount of work Pi can have, and w(e) is the edge weight (reflecting the amount of data

communication along the edge). Essentially, LDG places each vertex to a partition with the

maximum number of its neighbors while penalizing the placement based on the load of the

partition.

3.2.1.2 Incorporating Heterogeneity Awareness Argo takes the non-uniform net-

work communication costs into account by replacing the vertex placement heuristics to max-

imize the following objective:

(1− w(Pi)

C(Pi)
) ∗ 1

comm(v, Pi) + 1
(3.5)

where comm(v, Pi) is defined as

comm(v, Pi) =
∑

e=(u,v)∈E and u∈Pj and i 6=j

w(e) ∗ c(Pi, Pj) (3.6)

Thus, if c(Pi, Pj) represents the relative network communication cost between Pi and Pj,

comm(v, Pi) defines the communication cost that v would incur during the computation

if it is assigned to Pi. As a result, the above heuristic will put neighboring vertices to

partitions as close as possible according to the relative network communication cost matrix.

We denote this version of Argo as Argo-H, since it only considers the heterogeneity of the

network communication costs while ignoring the contentiousness of the underlying computing

infrastructures.

23

3.2.1.3 Incorporating Contention Awareness As analyzed and demonstrated in Sec-

tion 2.2, edgecut (e.g., LDG) and hopcut (e.g., Argo-H) based solutions may lead to serious

resource contention on the memory subsystems of modern multicore clusters. One common

way to avoid this contention issue is to disallow the use of all the cores of the machine, which

leads to resource underutilization.

Fortunately, we found that the contention is caused by the excess data communication

among cores of the same node and can be avoided by offloading a certain amount of intra-node

data communication across compute nodes. This is because inter-node data communication

is often implemented using RDMA and rendezvous protocols [56], which allows a compute

node to read/write data from/to the memory of another compute node without involving

the processor, cache, or operating system of either node (Figure 2.3a), thus alleviating the

traffic on memory subsystems and cache pollution. In fact, with Intel Data Direct I/O

technology [57], it is even possible to transfer data from one machine directly into the cache

of another. Another reason why offloading intra-node data communication across compute

nodes (via contention-aware graph partitioning) works is that graph workloads are often

data-driven. The computations performed by a graph algorithm are dictated by the vertex

and edge structure of the graph on which it is operating rather than being directly expressed

in code [52].

Recall that guided by a relative network communication cost matrix, Argo-H can gather

neighboring vertices close to each other (Eq. 3.5), which causes contention on the mem-

ory subsystems due to the excess intra-node data communication. Thus, to make Argo

contention-aware, we penalize intra-node network communication costs via a penalty score.

The score is computed based on the degree of contentiousness between the communication

peers. By doing this, the amount of intra-node data communication and the contention

on the memory subsystems will decrease accordingly. Specifically, we refine the intra-node

network communication costs as follows:

c(Pi, Pj) = c(Pi, Pj) + λ ∗ (s1 + s2) (3.7)

where Pi and Pj are two partitions collocated in a single compute node; λ is a value between

0 and 1, denoting the degree of contention; and s1 denotes the maximal inter-node network

24

communication cost, while s2 equals 0 if Pi and Pj reside on different sockets and equals

the maximal inter-socket network communication cost otherwise. s1 is used to avoid excess

intra-node data communication, whereas s2 is used to prevent load imbalance on the memory

controllers and to further avoid the contention on the shared LLC.

Clearly, if λ = 0, Argo degrades to Argo-H, and λ = 1 means that contention on

the memory subsystems is the biggest bottleneck and should be prioritized over the com-

munication heterogeneity. Argo with any λ ∈ (0, 1] considers both the contention and the

communication heterogeneity. Considering the impact of resource contention and commu-

nication heterogeneity is highly application- and hardware-dependent; users will need to do

simple profiling of the target applications on the actual computing infrastructures to deter-

mine the ideal λ for them. Typically, for multicore clusters with high-speed network, a larger

λ is recommended, and vice-versa.

3.2.2 Evaluation

3.2.2.1 Setup In our experimental study, we first evaluated the effectiveness of Argo

in avoiding contention using three representative graph workloads: Breadth-First Search

(BFS), Single-Source Shortest Path (SSSP), and PageRank (Section 3.2.2.2). Then, we

examined the scalability of Argo in terms of both graph size and the number of partitions

(Section 3.2.2.3 & 3.2.2.4).

Workload Implementation All the workloads were implemented using MPI [58] based on

the idea presented in [59, 60]. The specific MPI implementation we used in the experiment

was OpenMPI 1.8.6 [46]. Note that the workloads were implemented using MPI Isend and

MPI Irecv functions.

Algorithms We compared Argo to three graph partitioners: (a) Metis, the most well-

known multi-level graph partitioner [32], (b) LDG, a state-of-the-art streaming graph par-

titioner [8], and (c) Argo-H, a variant of Argo that only considers the communication

heterogeneity.

Datasets Table 3.1 describes the datasets used. com-orkut and Friendster datasets were

undirected, whereas the original Twitter dataset was directed but was treated as an undi-

25

Table 3.1: Datasets used in our experiments

Dataset |V | |E| Description

com-orkut [61] 3,072,627 234,370,166 Social Network

Friendster [61] 124,836,180 3,612,134,270 Social Network

Twitter [62] 52,579,682 3,926,527,016 Social Network

Table 3.2: Cluster compute node configuration

Socket

(2 Intel Haswell Sockets)
Memory

Cores/Socket Clock speed L3 Cache Capacity Bandwidth

10 2.6GHz 25MB 128 GB 65 GB/s

rected graph in the experiment. Note that these datasets were all scale-free and small-world

graphs. The vertex degree-distribution of the scale-free graphs asymptotically follow a power

law distribution [63, 64], whereas small-world graphs are known to have low diameters.

Throughout our experimental study, the graphs were partitioned with the vertex weights

(i.e., computational requirement) set to their vertex degree and the edge weights (i.e., amount

of data communicated) set to 1. The vertex degree is a good approximation of the compu-

tational requirement of each vertex for the execution of BFS, SSSP, and PageRank, while

an edge weight of 1 is a close estimation of their communication patterns. By default, the

graphs were partitioned across cores of a given set of machines with one partition per core.

During the partitioning, we allowed up to 2% load imbalance among the partitions. Note

that for the streaming graph partitioners: LDG, Argo, and Argo-H, the vertices of the

graphs were presented to the partitioner in the BFS order [8].

Evaluation Platform All the experiments were performed on a 32-node university clus-

ter [65]. The cluster had a flat network topology with all the compute nodes connected to a

single switch via 56Gbps FDR Infiniband. Table 3.2 depicts the compute node configuration

of the cluster.

Network Communication Cost Modeling The relative network communication costs

among the partitions were approximated using a variant of the osu latency benchmark [66].

26

To ensure the accuracy of the cost matrix, we bound each MPI rank (process) to a core

using the options provided by OpenMPI 1.8.6 [46]. OpenMPI 1.8.6 is the specific MPI

implementation that was available on the cluster.

3.2.2.2 Effectiveness of Being Architecture-Aware

Configuration This experiment evaluated the effectiveness of Argo in avoiding con-

tentiousness using BFS, SSSP, and PageRank on the com-orkut dataset. In the experiment,

the dataset was partitioned across three 20-core compute nodes with one partition per core.

As demonstrated in Section 2.2.3, the contention on the memory subsystems on the cluster

was the primary bottleneck. Hence, we set λ (from Eq. 3.7) to 1 for all the experiments

presented below.

Table 3.3: Workload execution time in seconds on com-orkut dataset with varying message

grouping size

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

64 128 256 64 128 256 64 128 256

Metis 196 27.27 8.59 3,730 787 125 1,435 121 32.74

LDG 136 33.32 9.52 3,003 523 71.84 1,110 161 48.93

Argo-H 306 40.84 9.28 4,750 1,033 147 2,088 179 31.81

Argo 73.11 19.12 5.20 1,528 196 49.84 406 71.74 16.68

Results in terms of Execution Time (Table 3.3) Table 3.3 shows the workload exe-

cution time on decompositions computed by Metis, LDG, Argo-H, and Argo with three

different message grouping sizes: 64, 128, and 256. During the execution of BFS, SSSP, and

PageRank, we grouped multiple messages sent by each MPI rank to the same destination

into a single one. As expected, Argo had the lowest workload execution time in all the

cases. In comparison to Metis, LDG, and Argo-H, Argo, respectively, speeded up the

execution of BFS by up to 2.67, 1.85, and 4.18 times; the execution of SSSP by up to 4,

2.66, and 5.26 times; and the execution of PageRank by up to 3.53, 2.93, and 5.14 times.

Interestingly, we found that Argo-H performed the worst in almost all the cases. This

was also expected because Argo-H aimed to group neighbouring vertices as close as possible,

27

which may cause an increase in the intra-node data communication and thus aggravate the

contention on the memory subsystems. However, as the message grouping size increased,

the gap between Argo-H and Metis/LDG gradually closed up. This was because, the

larger the message grouping size was, the fewer messages were exchanged and thus the less

contention on the memory subsystems. As a result, the importance of reducing inter-machine

data communication gradually increased, calling for heterogeneity-aware graph partitioners.

This also explained the reason why the improvement achieved by Argo decreased sometimes

as the message grouping size increased.

Take-Away Argo performs better for workloads with a large number of small message ex-

changes, whereas Argo-H seems to be more suitable for workloads with lots of large message

exchanges.

Table 3.4: Workload LLC misses in millions on com-orkut dataset with varying message

grouping size

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

64 128 256 64 128 256 64 128 256

Metis 843 50 17 38,942 6,313 471 10,605 529 22

LDG 194 27 22 30,096 1456 59 4,605 69 43

Argo-H 1,702 36 22 51,774 8,173 589 17,360 748 35

Argo 35 26 21 8,702 163 49 142 49 37

Results in terms of LLC Misses (Table 3.4) To further show that the improvement

was indeed caused by the reduced contention on the memory subsystems, we also recorded

the LLC misses for the execution of the workloads in Table 3.4. As shown, the LLC miss

results were highly consistent with the timing results: (1) Argo had the lowest LLC misses

in almost all the cases whereas Argo-H had the highest LLC misses in most cases; and (2)

the larger the message grouping size was, the fewer the misses were.

Interestingly, we found that with message grouping size of 256, Metis actually had lower

LLC misses than that of Argo for the execution of BFS and PageRank. However, Argo still

beat Metis in terms of execution time (Table 3.3). We attributed this to two facts (1) that

intra-node data communication required the involvement of the CPU (CPU spending time in

28

communicating the data), while inter-machine data communication relieved the CPU from

the communication (allowing it to focus on computation: processing the messages received);

and (2) that the larger message grouping size allowed a larger degree of overlap between

the computation and communication, further amplifying the benefits of RDMA-enabled

networks.

Take-Away It is important to take both the contention on the memory subsystems and the

communication heterogeneity into account while partitioning.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

C
o
m

m
 V

o
lu

m
e
(M

B
)

64 128 256

Inter−Node
Inter−Socket
Intra−Socket

(a) BFS

 0

 5,000

 10,000

 15,000

 20,000

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

C
o

m
m

 V
o

lu
m

e
(M

B
)

64 128 256

Inter−Node
Inter−Socket
Intra−Socket

(b) SSSP

 0

 5,000

 10,000

 15,000

 20,000

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

M
E
TIS

LD
G

A
R
G

O
−H

A
R
G

O

C
o

m
m

 V
o

lu
m

e
(M

B
)

64 128 256

Inter−Node
Inter−Socket
Intra−Socket

(c) PageRank

Figure 3.1: Breakdown communication volume for the execution of BFS, SSSP, and PageR-

ank on com-orkut partitionings.

Results in terms of Communication Volume (Figure 3.1) To further confirm that

the reduction in the contention was indeed caused by the reduced intra-node data commu-

nication, we also present the breakdown communication volume for each execution of the

workloads in Figure 3.1. Here, intra-socket, inter-socket, and inter-node, respectively, rep-

resent the communication volume among partitions that were assigned to the same sockets,

the communication volume among partitions that were residing on different sockets but on

the same machines, and the communication volume among partitions of different machines.

As shown, Argo had the lowest intra-node data communication in all the cases, while

Argo-H had the highest intra-node data communication. When compared with Metis

and LDG, Argo, respectively, reduced the intra-socket data communication by up to 70%

and 40% for the execution of BFS, by up to 70% and 50% for the execution of SSSP, and

by up to 70% and 50% for the execution of PageRank. All these matched the timing and

LLC miss results. Another interesting observation was that even though Metis had lower

overall communication volume than that of Argo, Argo still outperformed Metis in terms

29

of execution time due to the reduced communication volume in critical components (intra-

node data communication).

Take-Away Putting too much data communication into cores of the same machine may

lead to significant contention on the memory subsystems and thus hurt the performance.

Counter-intuitively, offloading a certain amount of intra-node data communication across

machines may sometimes achieve better performance due to the presence of RDMA-enabled

networks.

Table 3.5: Workload execution time in seconds as the graph size increased

of Edges (in Billion)
BFS (5 Source Vertices) SSSP (5 Source Vertices) PageRank (15 Iterations)

LDG Argo-H Argo LDG Argo-H Argo LDG Argo-H Argo

Friendster

0.9 10.74 16.46 7.93 111 266 54.46 36.79 65.92 18.80

1.8 37.46 74.76 24.24 599 1,700 243 156 479 108

2.7 78.78 147 49.87 2,273 3,429 1,007 476 4,972 1346

3.6 156 470 80.26 3,243 4,531 1,687 757 2,259 361

Twitter

0.98 13.10 15.68 7.58 126 414 66.09 51.46 79.88 33.65

1.96 44.94 157 28.44 1,190 1,932 437 262 1,019 169

2.94 146 399 72.08 3,788 4,690 2,071 1,071 2,071 430

3.92 285 607 105 6,875 8,610 4,688 2,208 2,951 617

3.2.2.3 Scalability in terms of Graph Size

Configuration This experiment evaluated the scalability of Argo as the size of the graph

increased. Towards this, we generated six additional datasets by sampling the edge set of the

Friendster and Twitter datasets. Then, we examined the execution time of the workloads

on the datasets when they were partitioned across four 20-core machines (with one partition

per core and message grouping size of 512). Note that Metis failed to partition the datasets

(even the smallest size graphs of this experiment, i.e., 09 billion and 0.98 billion edges).

Results (Table 3.5) Table 3.5 shows the corresponding workload execution time as the

size of the graphs increased. As can be seen, Argo outperformed both LDG and Argo-H

in all the cases, whereas Argo-H was always the worst. Compared to LDG, Argo achieved

by up to 2.71x, 2.72x, and 3.58x speedups for the execution of BFS, SSSP, and PageRank,

30

respectively. As expected, the speedups against Argo-H were much higher, since what

Argo-H did during the partitioning aggravated the contention issue. The speedups were

quite consistent in spite of the increasing graph size, showing the stability and scalability of

Argo.

Table 3.6: Workload execution time in seconds as the # of partitions increased

Number of Partitions

(cores)

BFS (5 Source Vertices) SSSP (5 Source Vertices) PageRank (15 Iterations)

LDG Argo-H Argo LDG Argo-H Argo LDG Argo-H Argo

Friendster

80 156 470 80.26 3,243 4,531 1,687 757 2,259 361

100 68.66 212 37.72 1,747 3,304 541 350 1,248 182

120 42.71 210 21.52 878 2,210 262 252 975 141

140 42.63 121 22.07 384 2,059 162 152 626 83.43

160 29.20 81.81 20.45 228 1,732 151 134 441 65.40

180 24.26 61.88 18.81 201 1,350 72.42 82.94 282 52.49

200 20.17 48.47 18.83 146 1,079 120 58.28 244 51.79

Twitter

80 285 607 105 6,875 8,610 4,688 2,208 2,951 617

100 124 457 69.83 3,647 4,859 2,062 651 2,012 359

120 85.93 160 39.10 2,297 3,903 848 488 1,427 241

140 75.20 149 24.81 948 2,737 351 264 880 128

160 35.32 145 23.84 475 1,765 174 173 305 108

180 25.37 80.12 22.88 283 1,754 158 118 260 64.37

200 28.24 57.74 21.36 261 1,177 135 116 214 63.81

3.2.2.4 Scalability in terms of Number of Partitions

Configuration This experiment inspected the effectiveness of Argo as the number of par-

titions increased. Towards this, we partitioned the original Friendster and Twitter datasets

across four up to ten 20-core machines (one partition per core) and then examined the BFS,

SSSP, and PageRank execution time on the partitionings (with message grouping size of

512) computed by LDG, Argo-H, and Argo.

Results in terms of Execution Time (Table 3.6) Table 3.6 presents the corresponding

results. As expected, Argo performed the best in all the cases whereas Argo-H performed

the worst. In comparison to LDG, Argo, respectively, speeded up the execution of BFS by

31

up to 3.03x, the execution of SSSP by up to 3.36x, and the execution of PageRank by up

to 3.58x. The corresponding speedups against Argo-H were as high as 9.78x, 12.70x, and

6.9x, respectively.

We also noted that the workload execution time decreased, as the number of partitions

increased. One of the reasons for this was that as the number of partitions increased, the de-

gree of parallelism also increased. Another possible reason was that the degree of contention

on the memory subsystems decreased due to the reduced intra-node data communication vol-

ume. The drop in the intra-node data communication was caused by the increasing number

of inter-machine communication peers. For example, with four machines (80 partitions), each

partition only had 60 inter-machine communication peers, whereas with five machines (100

partitions), the number of inter-machine communication peers of each partition increased to

80. This also explains the reason why the improvement achieved by Argo became smaller as

the number of partitions increased. Nevertheless, the improvement was still non-negligible,

since Argo reduced the execution time of each core used by this much.

 0

 2

 4

 6

 8

 10

 12

 14

80 100
120

140
160

180
200

P
a
r
t
i
t
i
o
n
i
n
g

T
i
m
e
(
m
i
n
)

LDG
ARGO

Figure 3.2: Partitioning time on Twitter

dataset

 0.0%

 0.5%

 1.0%

 1.5%

 2.0%

 2.5%

 3.0%

 3.5%

80 100
120

140
160

180
200

Figure 3.3: Argo partitioning time as a per-

centage of CPU time saving

Results in terms of Partitioning Overhead (Figures 3.2 & 3.3) We also reported

the partitioning overhead (vertex placement decision time) of Argo in Figure 3.2. The

main reason for the extra overhead was because Argo loaded vertices of the graph from the

file system in blocks and streamed each in-memory vertex block twice to further improve

the partitioning quality. Also, the time complexity of Argo was O(|E|+ |V | ∗ k2) whereas

that of LDG was O(|E| + |V | ∗ k). Here, |V |, |E|, and k, respectively, denote the number

of number of vertices of the graph, the number of edges of the graph, and the number

32

of partitions. The reason why the overhead of LDG remained quite stable was because

the overhead was dominated by the iterating of each vertex’s neighbors. However, if we

compare the partitioning time to the CPU time saved by Argo against LDG, the overhead

was negligible. The CPU time saving was the reduction in the workload execution time

multiplied by the number of CPU cores used (e.g., Figure 3.3 shows the partitioning time of

Argo as a percentage of the CPU time saved by Argo for the execution of SSSP with 5

randomly selected vertices on Twitter dataset with different number of partitions). Besides,

the partitioning only has to be performed once and can be used multiple times. Also, graph

analytics often require the processing of the entire graph (e.g., SSSP for a large set of source

vertices or PageRank with more iterations) which will have significantly longer execution

time.

3.3 CHAPTER SUMMARY

In this chapter, we first defined the problem of architecture-aware graph partitioning and

then presented a streaming-based implementation of such partitioner, Argo. In addition to

being aware of the the contentiousness of the memory subsystems and the heterogeneity in

the network communication costs, it also considers the runtime characteristics of the target

workload while partitioning. Our experimental results show that Argo achieved up to 12x

speedups for the execution of BFS, SSSP, and PageRank on real-world graphs and scaled

quite well in terms of both graph size (up to 3.9 billion edges) and the number of partitions

(up to 200 partitions).

33

4.0 ARCHITECTURE-AWARE DYNAMIC GRAPH PARTITIONING

In our previous chapters, we have demonstrated the importance of architecture-awareness

(Chapter 2) and presented an architecture-aware graph partitioner, Argo (Chapter 3), for

static graph partitioning. Although the partitioning model adopted by Argo can handle

a certain type of dynamism (vertex/edge addition/deletion), it may lead to suboptimal

performance in the presence of graph dynamism and it is incapable of dealing with other types

of dynamism. In other words, to maintain the performance, the graph has to be repartitioned

periodically. Towards this, we will first define the problem of architecture-aware dynamic

graph partitioning in Section 4.1. Dynamic graph partitioning is also known as the graph

repartitioning problem. Then, we will introduce four architecture-aware graph repartitioners

we proposed: Aragon (Section 4.2), Paragon (Section 4.3), and Planar/Planar+

(Section 4.4). For the presentation of Aragon, Paragon, Planar, and Planar+, we

will primarily focus on explaining how we make them heterogeneity-aware, since we can

easily make them contention-aware by penalizing the intra-node data communication costs

in the same way as Argo does.

4.1 PROBLEM STATEMENT

Let G = (V,E) be a graph, where V is the vertex set and E is the edge set, and P be a

partitioning of G with n partitions, where

P = {Pi : ∪ni=1Pi = V and Pi ∩ Pj = φ for any i 6= j} (4.1)

34

and M be the current assignment of the partitions to the servers, where Pi is assigned to

server Mi. Throughout this chapter, Pi and Mi are used interchangeably. The server that

each partition is assigned to can be either a hardware thread, a core, a socket, or a machine.

By default, the servers are cores since we target for clusters of multicore machines. Here, we

assume that this is also the set of servers used for repartitioning.

Workload-awareness To make the repartitioning workload-aware, we allow each vertex

of the graph to be assigned a weight and size. Vertex weight, w(v), denotes the computation

requirement of v, whereas vertex size, vs(v), indicates the amount of application data repre-

sented by v. Each edge of the graph can also be assigned a weight for repartitioning. Edge

weight, w(e), reflects the amount of data communicated along the edge in each computation

superstep. Again, given the easiness of encoding such information into the graph, we will

focus on the discussion of how to make the repartitioning architecture-aware here.

Architecture-aware graph repartitioning aims to improve the mapping of the applica-

tion communication pattern to the underlying hardware topology by modifying the current

partitioning of the graph, such that the communication cost of the target application, given

the specific hardware topology, is minimized. The modification usually involves migrating

vertices from one partition to another partition. Hence, in addition to the communication

cost, the repartitioning should also minimize the data migration cost among the partitions.

Also, to ensure balanced load distribution in terms of the computation requirement, the

refinement/repartitioning should keep the skewness of the partitioning as small as possible.

We define the communication cost of a partitioning P as:

comm(G,P) = α ∗
∑

e=(u,v)∈E
and u∈Pi and v∈Pj and i 6=j

w(e) ∗ c(Pi, Pj) (4.2)

where α specifies the relative importance between communication and migration cost, which

is usually set to be the number of supersteps carried out between two consecutive refinemen-

t/repartitioning steps, and c(Pi, Pj) can be either the relative network communication cost,

the degree of shared resource contentiousness between Pi and Pj or a hybrid of both. Ex-

isting architecture-agnostic graph (re)partitioners usually assume c(Pi, Pj) = 1, which fails

to reflect the reality of modern computing infrastructures. Thus, to minimize comm(G,P),

35

we should avoid data communication among partition pairs having high c(Pi, Pj) as much

as possible.

The migration cost of the refinement is defined as:

mig(G,P, P ′) =
∑
v∈V

and v∈Pi and v∈P ′
j and i 6=j

vs(v) ∗ c(Pi, P ′j) (4.3)

where P ′ denotes the partitioning after being refined/repartitioned. Note that c(Pi, P
′
j)

refers only to the relative network communication costs between Pi and Pj. Similarly, to

keep mig(G,P, P ′) minimized, we should avoid migrating both (a) vertices having large

neighborhoods or application state and (b) the migration among partitions having high

network communication costs. Generally speaking, communication cost is more important

than migration cost, since data communication occurs in every superstep, whereas migration

is performed only once at the end of each repartitioning phase.

The skewness of a partitioning, P , is defined as:

skewness(G,P) =
max{w(P1), w(P2), · · · , w(Pn)}∑n

i=1 w(Pi)

n

(4.4)

where w(Pi) =
∑

v∈Pi
w(v).

36

4.2 ARAGON: ARCHITECTURE-AWARE GRAPH REPARTITIONING

In this section, we introduce our centralized architecture-aware graph repartitioner, Aragon,

for small dynamic graph partitioning.

4.2.1 Algorithm Design and Implementation

Aragon is a two-level hierarchical repartitioner, that performs inter-node repartitioning

(Section 4.2.1.1) and intra-node repartitioning (Section 4.2.1.2). The goal of inter-node

repartitioning is to rebalance the load across compute nodes while minimizing the inter-

node communication and migration costs. The latter is achieved by minimizing the number

of hops each data item needs to traverse, by grouping together vertices that communicate a

lot. In contrast, intra-node repartitioning aims to equalize the load assigned to each compute

node across its different cores while minimizing the intra-node communication and migration

cost, by co-locating vertices communicating a lot to cores sharing more cache levels.

4.2.1.1 Inter-Node Graph Repartitioning Inter-node repartitioning consists of three

phases: (1) A regrouping phase in which Aragon regroups partitions currently assigned to

the same compute node into a single partition; (2) A repartitioning phase where Aragon

repartitions this regrouped graph into balanced parts using existing topology-agnostic graph

repartitioners, such as Zoltan [36] and ParMetis [33]; and (3) A refinement phase where

the decomposition produced by the previous phase is modified according to the current

mapping of partitions to compute nodes and the relative inter-node communication costs via

a topology-aware refinement algorithm, to further reduce the communication and migration

cost. We named this refinement algorithm TopoFM and present it next.

The regrouping and repartitioning phases are straightforward. They take the mapping of

vertices to compute nodes (rather than the mapping of vertices to the old partition number)

as input. The mapping of partitions to compute nodes (i.e., the mapping of vertices to

compute nodes) is readily available in the initial partitioning, which is part of the input to

our algorithm.

37

h

i
j a

d

b
c

f

g
e

P1(N1)P3(N3)

P2(N2)

Figure 4.1: Old Decomposi-

tion

h

i
j

a
d

b

c

f

g
eP2(N2)

P3(N3)
P1(N1)

Figure 4.2: Better Decompo-

sition

h

i
j

a d

b
c

f

g
eP2(N2)

P3(N3) P1(N1)

Figure 4.3: Best Decomposi-

tion

Table 4.1: Relative network communication costs

N1 N2 N3

N1 1 6

N2 1 1

N3 6 1

TopoFM Overview TopoFM is an iterative algorithm and is a variant of the Fiduccia-

Mattheyses (FM) algorithm [67]. Its input includes two partitions of the k-way decompo-

sition, the current mapping of partitions to compute nodes, and the relative network com-

munication costs among the compute nodes. During each iteration, TopoFM tries to find a

single vertex, v, such that moving it from its current partition to the alternative partition

would lead to a maximal gain, g(v). The gain is defined as the reduction in the communi-

cation and migration cost. This process is repeated until all the vertices are moved once or

the decomposition cannot be further improved after a certain number of vertex movements.

Since TopoFM can only refine one partition pair at a time, it is repeatedly applied to all the

partition pairs sequentially.

Motivating Example Before we dive into the details of TopoFM, we first go through a

simple motivating example. Let us assume that the graph in Figure 4.1 captures the com-

putation and communication pattern of an application. For simplicity, we assume that all

weights and sizes of the graph are 1. Originally, the graph is partitioned into 3 partitions,

and partition Pi is assigned to compute node Ni for the parallel execution of the applica-

38

tion. Vertices of the same color belong to the same partition, whereas the relative network

communication costs among N1, N2, and N3 are shown in Table 4.1.

A topology-agnostic repartitioner (i.e., assuming uniform network communication costs)

could repartition the decomposition of Figure 4.1 into the one of Figure 4.2, reducing the

number of edges among the partitions from 4 to 3. However, if we consider the case where

all network costs are not equal, i.e., we want to make our repartitioner architecture- and

topology-aware (e.g., using the communication costs from Table 4.1), then the decomposition

in Figure 4.2 can be further improved by moving vertex a to P2 (Figure 4.3). Even though

the movement increases the communication cost between P1 and P2 by 1, it actually reduces

the communication cost between a and its neighbors in P3 by 5, since the network cost

between N1 and N3 is 6, while that of N2 and N3 is 1. For the same reason, moving a to P2

also decreases the migration cost of a by 5, since vertex a originally belonged to N1.

Architecture-Aware Vertex Gain Computation Motivated by the example above, for

the vertex gain computation, we first focus on how the movement of vertex v will impact

the communication between v’s current partition and the refinement partner. For notation

simplicity, let Pi and Pj be the two partitions of the k-way decomposition of graph G = (V,E)

we want to refine, and Ni and Nj be the compute nodes that hold Pi and Pj, respectively,

and Pi be the partition that v currently belongs to. We define the gain of moving v in terms

of its impact on the communication between Pi and Pj as:

gstd(v) = α ∗ (djext(v)− diint(v)) ∗ d(Ni, Nj) (4.5)

Here, d(Ni, Nj) is the relative network cost between Ni and Nj, whereas djext(v) is the relative

external communication volume of v with respect to Pj, formally defined as

djext(v) =
∑

e=(v,u)∈E and v∈Pi and u∈Pj and i 6=j

w(e) (4.6)

Here, w(e) denotes the edge weight. In contrast, diint(v) is the relative internal communication

volume of v with respect to Pi, formally defined as

diint(v) =
∑

e=(v,u)∈E and v∈Pi and u∈Pi

w(e) (4.7)

39

Algorithm 1: TopoFM
Data: Two balanced partitions (Pi, Pj), partition assignment A, inter-node communication cost

matrix c
1 orderedList← {}
2 unmarkVertices(Pi, Pj)
3 computeInitialGain(Pi, H1, A, c)
4 computeInitialGain(Pj , H2, A, c)
5 while exists unmarked vertex and # of useless moves ≤ LIMIT do
6 heap = FMHeapSelection(Pi, Pj , H1, H2)
7 v = heapGetMaxGainVertex(heap)
8 mark(v)
9 append(v, orderedList)

10 updateNborGain(Pi, Pj , H1, H2, v, A, c)

11 applyMove(Pi, Pj , orderedList)

We then consider the impact of moving v from Pi to Pj on the communication between

v and its neighbors which do not belong to either Pi or Pj, defined as:

gtopo(v) = α ∗
∑

e=(v,u)∈E
and v∈Pi and u∈Pk
and k 6=i and k 6=j

w(e) ∗ (d(Ni, Nk)− d(Nj, Nk)) (4.8)

Here, Nk is the compute node where Pk belongs.

Next, we consider the impact of moving v from Pi to Pj on the migration cost. Let vs(v)

be the amount of data vertex v represents and Pk be the partition that contained v in the

old decomposition. We formally define the gain of moving v to Pj in terms of its impact on

the migration cost as:

gmig(v) = vs(v) ∗ (d(Ni, Nk)− d(Nj, Nk)) (4.9)

Thus, the total gain of moving vertex v from its current partition to the refinement partner

is:

g(v) = gstd(v) + gtopo(v) + gmig(v) (4.10)

TopoFM Implementation Algorithm 1 presents the basic idea of TopoFM. The input to

TopoFM includes two balanced partitions (Pi, Pj) of the k-way decomposition, the current

assignment of the partitions to the compute nodes, A, and the relative inter-node commu-

nication costs, c. First, TopoFM unmarks all the vertices of Pi and Pj, indicating that no

40

vertex has been moved. Second, it computes the initial gain of these vertices and inserts

vertices having edges connecting to the other partitions, referred as boundary vertices, into

corresponding heaps (one heap per partition), which are sorted by the gain.

Then, the following procedure is repeated until all the vertices are moved once or the

communication and migration cost could not be further reduced after a certain number of

vertex movements. As a first step, TopoFM attempts to find an umarked vertex v with

maximum gain from Pi or Pj. As long as the imbalance between Pi and Pj is within the

user-defined threshold (2% by default), TopoFM always selects the max gain vertex from

the partition whose max gain vertex has the largest value. Otherwise, it will return the max

gain vertex from the overloaded partition. Then, TopoFM marks v as moved, and appends

v to the end of an ordered list. Subsequently, TopoFM updates the gain of v’s neighbors

that are in Pi or Pj as if v was moved. During the update, TopoFM checks whether any

boundary vertices are no longer boundary ones. If so, these vertices are removed from the

corresponding heaps. TopoFM also checks if any non-boundary vertices become boundary

vertices. If so, TopoFM interts them into the corresponding heaps.

Once the procedure terminates, TopoFM finds the best number of moves θ in the ordered

list such that
∑θ

i=0 g(v) is maximized. Only if the sum is positive will these θ vertices be

moved. Otherwise, TopoFM simply terminates.

Moreover, although TopoFM is topology-aware, it is also topology-independent since it

only requires that the relative inter-node communication costs are available, and its im-

plementation is similar to that of standard FM algorithms, like [68]. The differences in-

clude:

1. In standard FM algorithms, g(v) = α ∗ (djext(v) − diint(v)), which is unaware of the

communication heterogeneity.

2. The refinement between Pi and Pj of standard FM only needs to consider moving bound-

ary vertices of Pj/Pi with respect to Pi/Pj. However, TopoFM needs to consider bound-

ary vertices of Pi/Pj with respect to all the partitions.

3. In standard FM algorithms, refinement only happens between partition pairs that com-

municate. In contrast, TopoFM needs to refine all the partition pairs even though no

41

communication occurs between the partition pair.

4. Unlike TopoFM, standard FM algorithms usually select max gain vertices alternatively

from Pi and Pj. Thus, our maximal gain vertex selection policy has a greater potential

to improve the decomposition while satisfying the balance requirement, and speed up the

convergence of a good decomposition.

	

0	
 1 2 3 0 1 2 3
Cores:

Caches:

Sockets:

Node:

Figure 4.4: Topology Tree

4.2.1.2 Intra-Node Graph Repartitioning Partitions computed by the inter-node

repartitioning are treated as individual subgraphs, each of which requires one round of paral-

lel intra-node repartitioning. For each such round, we offer two repartitioners: FlatCacheLB

and HierCacheLB, both of which try to equalize the load assigned to each compute node

across its cores, while minimizing the communication and migration cost (by co-locating

frequently communicating vertices to cores sharing more cache levels).

HierCacheLB HierCacheLB first models the topology of each compute node as a tree like

[69] does. For example, the tree in Figure 4.4 denotes a compute node with two quad-

core sockets, where two cores in the same socket share a cache, like the one in Figure 2.1a.

Then, HierCacheLB partitions the subgraph assigned to the compute node hierarchically

according to the tree. This automatically minimizes the communication volume across tree

nodes at each level. At the end of each level’s partitioning, HierCacheLB remaps the new

decomposition to the old one to maximize the amount of data in place.

For instance, assume that we want to repartition a subgraph assigned to a compute node

modeled by Figure 4.4. HierCacheLB will first partition the subgraph into two balanced

partitions while minimizing the edgecut, which approximates equalizing the load across the

42

sockets while minimizing the inter-socket communication cost. Then, HierCacheLB remaps

these two partitions to the old decomposition to minimize the migration cost. This step is

recursively applied to the next level until it reaches the leaf level.

The remapping phase can be done in an efficient way using the Hungarian algorithm

[70], because the topology tree is small. The algorithm takes as input a cost matrix, M ,

where M [i][j] denotes the migration cost of assigning partition i of the subgraph to the jth

socket/cache/core of the compute node. Along with this input, the Hungarian algorithm will

output an assignment of the partitions to the sockets/caches/cores of the node with minimal

migration cost.

Since each process may monopolize a vertex portion of each subgraph due to the parallel

inter-node repartitioning, to compute M [i][j] all processes need to iterate over its vertex

portion of partition i to see if the socket/cache/core originally owning the vertex is the jth

one. If not, the assignment will lead to a migration cost of moving the vertex from its original

socket/cache/core to the jth one. The migrating cost of a vertex is the vertex size. Then,

an MPI reduce operation is performed to aggregate the result.

FlatCacheLB Unlike HierCacheLB, FlatCacheLB first partitions the subgraph assigned

to each node directly into the corresponding number of partitions. Then, it explores all

possible assignments of the partitions to the cores of each compute node to find the one with

minimal cost. The exploration phase takes two cost matrices M and C as its input. As with

HierCacheLB, M [i][j] denotes the migration volume of assigning partition i of the subgraph

to core j of the node. C[i][j] reflects the communication volume between partition i and j,

defined as the aggregated weights of edges crossing partition i and j. The computation of

C[i][j] is similar to that of M [i][j] except that we are visiting edges of the subgraph now.

The cost of an assignment, A, where partition i is assigned to core A[i] of the compute node,

is defined as:

n∑
i=1

M [i][A[i]] ∗ 2 ∗DLn + α ∗
n∑
i=1

n∑
j=i+1

C[i][j] ∗ c(A[i], A[j]) (4.11)

where n is the number of subgraph partitions, while c(A[i], A[j]) is the communication cost of

64B data within a compute node (64B is the typical cache line size), which is approximated

by the access latency to the first cache level shared by core A[i] and A[j]. The inter-socket

43

communication cost and the intra-node migration cost of 64B data within a compute node

are both approximated by 2 times of the access latency to the highest cache level. Although

FlatCacheLB needs to explore all possible combinations to figure out the optimal assignment,

this is feasible since in practice each compute node only has dozens of cores at most.

4.2.2 Evaluation

In section, we first describe our experimental setup, followed by an evaluation of Aragon

in improving the quality of the partitionings using a dataset generated from a scientific

simulation.

Table 4.2: Original combustion simulation dataset

|V | |E|
Vertex Degree

Min Max Avg.

115, 351 1, 432, 950 7 26 24

Table 4.3: Synthetic datasets

Graph Num. of Partitions Degree of Imbalance (Eq. 4.4)

G8 8 2.51

G64 64 2.81

G128 128 2.82

G256 256 2.85

G512 512 2.98

4.2.2.1 Setup

Datasets For our experimental study, we used data provided by the authors of [71]. The

dataset (Table 4.2) is a 26-degree mesh, which models the computation and communication

pattern of the large eddy simulation (LES) of Sandia Flame D [72]. Out of this dataset, we

constructed 5 synthetic graphs (Table 4.3) in order to evaluate a range of workloads. For

each new graph, we first randomized its edge weights to between 20% and 50% of the sum

of the pairwise vertex sizes, and then partitioned the graph into balanced parts using the

44

partitioner from [36]. Later, 20% of the partitions are selected and the weights and sizes

of vertices in these partitions are randomly increased to between 1.5 and 7.5 times of their

original values, to simulate load fluctuations of the simulation.

Platform The evaluation was performed with a simulated supercomputer, whose compute

nodes are interconnected by a 3D-torus interconnect (5*5*5 by default). Each compute node

has 2 quad-core sockets with shared L3 caches and private L1/L2 caches. Partitions of each

graph are mapped to cores of the supercomputer at the beginning of each experiment as

follows. We first sort the randomly allocated compute nodes by their x coordinates, then

by their y coordinates and finally by their z coordinates. Then, we either map partitions of

each graph to cores sequentially starting from cores of the first compute node as in the SMP

policy [73] or place sequential partitions to the compute node next in the list following the

RR policy [73]. In the end, the partitioned graph along with the mapping of partitions to

cores and the relative inter-node communication costs serves as the input to repartitioners.

The relative inter-node communication costs were estimated by the number of hops (the

Manhattan Distance) among compute nodes. We need to clarify here that we do not aim

to simulate a full-featured supercomputer. Instead, we just want to evaluate the impact of

inter- and intra-node topology on graph repartitioners.

Table 4.4: Four flavors of Aragon

Aragon InterNode Repartitioner IntraNode Repartitioner

PTF ParmetisRepart + TopoFM FlatCacheLB

PTH ParmetisRepart + TopoFM HierCacheLB

ZTF ZoltanRepart + TopoFM FlatCacheLB

ZTH ZoltanRepart + TopoFM HierCacheLB

Algorithms We compared Aragon with two widely used architecture-agnostic reparti-

tioners: ZoltanRepart [36] and ParmetisRepart [33]. For Aragon, we evaluated 4 different

combinations of our inter- and intra-node repartitioners (Table 4.4). For intra-node reparti-

tioning, we only considered the partitioner from [36] because Parmetis [33] kept failing due to

an error originating from its code with our dataset. Supposedly, both inter- and intra-node

repartitioning can be any (re)partitioners. All the results presented are the means of 5 trials

45

Table 4.5: Cache access latencies

Cache L1 L2 L3

Latency (ns) 1 7 15

with 8 MPI processes on an 8-core machine with our simulated architecture. Initially, the

graph was evenly distributed across processes for parallel repartitioning.

Metrics The quality of a decomposition in terms of the expected communication and mi-

gration cost is defined by Equation 4.2 and 4.3. Throughout the evaluation, the cost of

communicating or migrating 64B data among compute nodes is approximated by 2 times of

the access latency to the highest cache level weighted by the number of hops. In contrast,

the communication cost of 64B data between two cores of the same compute node was es-

timated by the access latency to their first shared cache level. In cases where cores of the

same node share no caches, we used 2 times of the access latency to the highest cache level as

an approximation. The same process was used for the intra-node migration cost. Table 4.5

shows the cache access latencies used.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8 64 128 256 512

E
x
p
e
c
te

d
 C

o
m

m
 a

n
d
 M

ig
 T

im
e
 (

m
in

s
)

Number of Partitions

RR Partition Placement

ZoltanRepart
ParmetisRepart

PTF
PTH
ZTF
ZTH

Figure 4.5: Varying num. of partitions (RR)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8 64 128 256 512

E
x
p
e
c
te

d
 C

o
m

m
 a

n
d
 M

ig
 T

im
e
 (

m
in

s
)

Number of Partitions

SMP Partition Placement

ZoltanRepart
ParmetisRepart

PTF
PTH
ZTF
ZTH

Figure 4.6: Varying num. of partitions (SMP)

4.2.2.2 Varying Number of Partitions Our first experiment investigated Aragon’s

robustness to graphs (Table 4.3) of varying partitions with α = 500 (number of compu-

46

tation steps). The results in Figures 4.5 & 4.6 indicate that if only a few compute nodes

are needed, Parmetis may obtain decompositions of similar quality as Aragon (i.e., PT-

F/PTH/ZTF/ZTH) and sometimes even better, especially when Aragon uses Zoltan for

its inter-node repartitioning (i.e., ZTF/ZTH). We believe this was caused by the limited

heterogeneity among a small number of compute nodes allocated on a relative small sized

3D-torus (providing limited refinement space for TopoFM). In contrast, with more compute

nodes, Aragon can outperform Zoltan and Parmetis by up to 60% and 46%, respectively,

and the improvement became bigger as the number of partitions increased (due to the in-

creasing heterogeneity). Since scientific computation usually requires hundreds of compute

nodes, we believe that our approach will be beneficial for most applications.

The difference between PTF/H and ZTF/H was probably caused by the fact that Zoltan

embraces the hypergraph model rather than the graph model like Parmetis. Thus, before

Zoltan starts to (re)partition a graph, it first needs to convert the graph to a hypergraph,

which may result in information loss from the original graph, leading to decompositions of

lower quality.

Finally, we found that the improvement under the RR placement policy was bigger

than that of SMP, which further confirms the general belief that SMP usually produces

better partition mappings than RR, thus offering a smaller refinement space for TopoFM.

Except for this difference, the results under both polices were similar. As such, given the

space limitation, for the rest of our experimental study we will only present results under

SMP policy, although the RR policy consistently showed bigger gains for Aragon over its

competitors in our experiments.

4.2.2.3 Varying Number of Computation Steps This experiment evaluated the in-

fluence of α values (number of computation steps) using G512. The results in Figure 4.7

show that PTF/H and ZTF/H improved the decomposition quality by around 30% and 17%,

respectively. We also observed that the improvement became more evident as α increased.

As was the case in our previous experiment, the results of PTF/PTH were similar and al-

ways outperformed those of ZTF/ZTH. As such, for the rest of our experimental study, we

will only present the results of PTH against Zoltan and Parmetis. The reason we prefer

47

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700 800 900 1000

E
x
p

e
c
te

d
 C

o
m

m
 a

n
d

 M
ig

 T
im

e
 (

m
in

s
)

alpha

SMP Partition Placement

ZoltanRepart
ParmetisRepart

PTF
PTH
ZTF
ZTH

Figure 4.7: Num. of computation steps

PTH over PTF is that PTH does not require any quantitative information about the cache

architecture (i.e., cache access latency).

 0

 5

 10

 15

 20

 25

 30

 35

4*4*4 5*4*4 5*5*4 5*5*5 6*5*5 6*6*5 6*6*6

C
o

m
m

 a
n

d
 M

ig
 T

im
e

(m
in

s)

3D−torus

 SMP Partition Placement

PTH
ZoltanRepart
ParmetisRepart

Figure 4.8: Different sized 3D-torus

4.2.2.4 Varying Sized 3D-Torus This experiment evaluated the impact of different-

sized interconnects using G512 with α = 500. Figure 4.8 shows that PTH outperformed

Zoltan and ParMetis by 26%-32%, and that the expected communication and migration

time of PTH increased slower than that of Zoltan and ParMetis, as the size of interconnect

increased, indicating PTH’s robustness to increasing heterogeneity.

Also, we expect a bigger difference between PTH and its competitors if the evaluation

was carried out with a real application on a real supercomputer. This is because in our

simulation-based evaluation, we did not consider the contention for the memory bandwidth

48

and interconnect links, which usually plays a critical role in communication cost. This

contention would further favor PTH due to its ability to reduce the communication cost

(and the resulting contention). We expect the network link contention (and therefore the

difference of PTH with the state-of-the-art) to increase further, as the size of the datasets

becomes bigger.

 0

 0.5

 1

 1.5

 2

 2.5

 3

IntraSocket InterSocket 1 2 3 4 5 6

N
o
rm

al
iz

ed
 C

o
m

m
 a

n
d
 M

ig
 V

o
lu

m
e

Number of Hops

SMP Partition Placement

PTH
ZoltanRepart
ParmetisRepart

Figure 4.9: Normalized communication and migration volume distribution in terms of the

number of hops each byte travels.

4.2.2.5 Communication and Migration Volume Breakdown To pinpoint the source

of the improvement, we computed the breakdown of the communication and migration vol-

ume of G512 decompositions output by different algorithms over the different network dis-

tances (i.e., number of hops that the data needs to travel) with α = 500. Figure 4.9 presents

the overall communication and migration volume distribution in terms of the number of

hops each byte traversed, normalized to that of PTH1 As shown, PTH produced lower inter-

node volume than ZoltanRepart and ParmetisRepart in all the cases, and the reduction in

inter-node volume became more significant as the number of hops increased. All these reduc-

tions added together contributed to around 30% and 35% reduction in the overall inter-node

volume of PTH against ZoltanReapart and ParmetisRepart, respectively. The reduction

is mainly due to the ability of TopoFM in grouping the most communication-heavy ver-

tices as close as possible and the design of the two-tier architecture offering more freedom

1The first and second group of columns represent the aggregated communication and migration volume
among partitions within and across each socket in each compute node, whereas groups 3-8 denote the
aggregated communication and migration volume among partitions that require 1-6 hops, respectively.

49

for inter-node repartitioning to group the frequently-communicating vertices into a single

partition.

The reduction in inter-node volume also explained the increase in intra- and inter-socket

volume. The improvement in intra-socket volume also demonstrated the effectiveness of Flat-

CacheLB and HierCacheLB in clustering the vertices communicating a lot to cores sharing

more cache levels. Also, we noticed that PTH maintained the same total communication and

migration volume as ZoltanReapart and ParmetisRepart, implying that PTH can improve

the communication mapping without deteriorating the decomposition.

Table 4.6: Degree of imbalance

Algorithms Average Std. Deviation

PTH 1.0340 0.0053

ZoltanRepart 1.0428 0.0156

ParmetisRepart 1.0525 0.0163

4.2.2.6 Degree of Imbalance In terms of the imbalance degree, PTH produced de-

compositions slightly better than ZoltanRepart and ParmetisRepart. The average imbalance

degree of different algorithms over all the experiments we ran and their standard deviations

are presented in Table 4.6.

4.2.2.7 Repartition Time Currently, PTH is 4 to 10 times slower than ZoltanRepart

due to the sequential refinement phase. However, this time is negligible compared to the

actual simulation time, because scientific simulations often run for a very long time, and

repartitioning is not a frequent operation as load changes during each computation step are

often negligible but the accumulated changes across computation steps are usually significant.

Besides, we plan to further parallelize and evaluate the refinement phase with a real workload

in the future.

50

4.2.3 Section Summary

In this work, we proposed an architecture-aware graph repartitioner, Aragon, that is par-

ticularly suited for data- and compute-intensive applications on modern parallel computing

infrastructures, i.e., typical Big Data scientific applications. Aragon considers the charac-

teristics of both the underlying computing infrastructures and target workload while reparti-

tioning. For compute-intensive applications that are also data-intensive, such considerations

are extremely crucial. In fact, we showed that Aragon outperforms the state-of-the-art

(Parmetis and Zoltan) by up to 60% using data derived from a real dataset.

51

4.3 PARAGON: PARALLEL ARCHITECTURE-AWARE GRAPH

REPARTITIONING

The main problem of Aragon is that it requires the use of the heavyweight graph repar-

titioners for its inter-node repartitioning and has a centralized component, TopoFM. To

address the issue, Paragon first separates TopoFM out from Aragon and then makes

a parallel implementation of the algorithm. In other words, Paragon is a parallel im-

plementation of TopoFM, which can be used to improve the mapping of the application

communication and computation pattern to the underlying computing infrastructures. Be-

cause of this, we will refer Aragon as the centralized implementation of TopoFM for the

rest of the thesis.

4.3.1 Algorithm Design and Implementation

In our previous implementation, Aragon requires all the servers to send their local partitions

to a single server for TopoFM to be carried out. The centralized server is responsible for

the refinement of all the partition pairs. Although such a solution, only requires sending the

entire graph over the network once, the server has to be able to store the entire graph in

memory. As a result, the server can easily become a performance and scalability bottleneck.

Another naive implementation of Aragon could be as follows: server Mi is responsible

for the refinement of Pi with all its partners Pi+1, Pi+2, · · · , Pn, and server Mi+1 can not

start its refinement for Pi+1 until server Mi finishes its refinement. One major issue of this

approach is that it requires the entire graph to be sent across the network n−1
2

times. An

advantage of this approach is that each server only needs to hold two partitions in memory

at a time (one for its local partition and the other one for the refinement partner).

To address the issues identified above, Paragon takes a middle point of the two extremes

for TopoFM parallelization, where it allows multiple servers to do the refinement in parallel,

each of which is responsible for the refinement of a group of partitions. In this way, we can

enjoy the benefits of both extremes without worrying about their drawbacks.

Algorithm 2 describes the main idea of Paragon. During the refinement, each server

52

Algorithm 2: Paragon
Data: Pl, c
Result: new locations of vertices of Pl

1 masterNodeSelection(c)
2 partitionStat(Pl, ps)
3 if server M [l] is master node then
4 pg = partitionGrouping()
5 gs = optGroupServerSelection(pg, ps, c)
6 partitionGroupServerBcast(gs);

7 sendPartitionToGroupServers(Pl, gs)
8 if server M [l] is a group server then
9 pg = recvPartitionsFromMyGroupMembers(gs)

10 foreach Pi ∈ pg do
11 foreach Pj ∈ pg do
12 if i 6= j then
13 AragonRefinement(Pi, Pj , c)

14 shuffleRefinement(pg)
15 vertexLocationUpdate(pg)

16 physicalDataMigraton(Pl)

runs an instance of the algorithm with its local partition Pl and the relative network com-

munication cost matrix c as its input. The algorithm first selects a server as master node

(Line 1), and then computes everything needed by the master node to make the parallization

decision (Line 2). The master node decides how to split the partitions into groups such that

each group can be refined independently on different servers and the selection of the group

servers (Line 4–6). The group servers take responsibility for the refinement of each group.

Once the decision has been made, each server will send their vertices to the corresponding

group servers (Line 7). Upon receiving all the vertices from their group members, the group

servers will start to do the refinement of each group independently (Line 8–13). After finish-

ing the refinement of its group, the group servers will notify their group members about the

new locations of their vertices (Line 15). Then, each server will physically migrate vertices

to their new owners accordingly (Line 16).

4.3.1.1 Partition Grouping To assign a partition to a group, we consider three fac-

tors: (1) to minimize the refinement time, each group should have roughly equal number of

53

partitions; (2) members of each group should be carefully selected, since the gain of refining

each partition pair may vary a lot. Thus, to maximize the effectiveness of the refinement,

we should group together partitions leading to high refinement gain; and (3) we should

minimize the cross-group refinement interference, because the gain of refining one partition

pair heavily relies on the amount of data they communicate with other partitions. This is

different from the standard FM algorithms, which solely compute the gain of migrating each

vertex based on the data it communicates with vertices of the partition pair. For example,

in the decomposition of Figure 4.2, the communication between vertex a and j contributes

most to the gain of moving a from P1 to P2 for Paragon. However, for standard FM algo-

rithms, the gain of migrating a to P2 will be -1, since a has two neighbors in P1 and 1 in P2.

Unfortunately, there is no clear way to do the grouping, since we could not use the state-of-

the-art graph partitioners (i.e., Metis) to compute a high-quality initial decomposition, due

to their poor scalability. As a result, the input decomposition to Paragon will probably

have edge-cuts across all the partitions. Fortunately, we found that random grouping along

with the shuffle refinement (the remedy technique presented below) works quite well.

Theoretically, the number of groups we can have can be any integer between 1 and n
2
,

where n is the number of partitions of the graph. Clearly, if the number of groups equals 1,

Paragon degrades to Aragon, in which all servers will send their local partitions to a single

group server for sequential refinement. The reason why there is an upper bound is because

each group needs to have at least 2 partitions for the refinement to proceed. Typically,

the higher the number is, the faster the refinement will finish. However, there is a tradeoff

between the degree of parallelism and the quality of the resulting decomposition we can have.

This is because the higher the number is, the fewer partitions each group will have and thus

the fewer partition pairs will be refined. Given a graph with n partitions and m groups,

Paragon only refines n(n−m)
2m

partition pairs, while Aragon refines all n(n−1)
2

partition

pairs. In other words, Aragon will eventually select an optimal migration destination

among all the partitions for each vertex, whereas Paragon only considers a subset of the

partitions for each vertex. This also explains the reason why the resulting decompositions

computed by Paragon are usually poorer than those of Aragon. Fortunately, the shuffle

refinement technique we proposed helps to address the issue.

54

4.3.1.2 Shuffle Refinement To mitigate the impact of cross-group refinement interfer-

ence and increase the gain of the refinement, we perform an additional round of refinement

once all the group servers finish the refinement of their own groups. We call this shuffle

refinement. In this round, each group server first exchanges the changes it made to the

decompositions such that each group server has the up-to-date load information of each par-

tition and the up-to-date locations of the neighbors of each vertex. Then, each group server

swaps some of its partitions randomly with other group servers. Subsequently, each group

server starts another round of refinement with the new grouping.

The reason why shuffle refinement is a remedy to the above issue is because it increases the

number of partition pairs refined by Paragon and thus the solution space that Paragon

explores. For example, for a graph with 4 partitions and 2 groups, Paragon originally

only refines 2 out of the 6 partition pairs. However, if the group servers swap one of their

partitions, Paragon will refine 4 partition pairs instead of 2. In fact, we can repeat this

shuffle refinement multiple times to further expand the solution space Paragon explores,

thus further alleviating the impact of cross-group refinement interference and increasing the

gain we can obtain.

The idea of shuffle refinement is very straightforward, but it is not easy to efficiently

implement, especially the propagation of the changes that each group server made. One easy

way to achieve this is to use a distributed data directory, like the one provided by Zoltan [36].

In this scheme, each group server only needs to make an update to the data directory first,

and then all the group servers can pull the up-to-date locations for the neighbors of their

vertices. We found that this approach is very inefficient for really big graphs in terms of both

memory footprint and execution time. It requires around O(|V |+ |E|) data communication.

Another way to achieve this is to maintain an array at each group server, forming a

mapping from vertex global identifiers2 to their locations. In this way, the exchange can easily

be achieved via a single (MPI) reduce operation, requiring only O(|V |) data communication.

This approach is much more efficient than the distributed data directory approach in terms

of execution time, but it is not memory scalable for large graphs.

2In distributed graph computation, each vertex has a unique global identifier across all the partitions and
a unique local identifier within each partition.

55

In our implementation, we adopt a variant of the second approach. That is, we first

chunk the entire global vertex identifier space into multiple smaller equal sized regions.

Each region contains vertices within a contiguous range. By default, the region size equals

k = min{226, |V |}, where V is the vertex set of the entire graph. Correspondingly, the

exchange is split into multiple rounds. Each round only exchanges the locations of vertices

of one region. With this scheme, we only need to maintain a smaller array at each group

sever and thus the amount of data communication remains unchanged. Although this scheme

requires scanning the edge lists of each partition multiple times, it is much more efficient

than the distributed data directory approach.

4.3.1.3 Group Server Selection Once the master node finishes the grouping process,

it will select an optimal server for each group, such that the cost of sending partitions of

the group to the group server is minimized. For example, in case of Figure 4.2, where we

assume that P1, P2, and P3 are of one group, we should select server M2 as the group server

intuitively since c(P1, P2) = c(P2, P3) = 1 while c(P1, P3) = 6. To achieve this, we define the

cost of selecting server Ms as the group server for group g as:∑
Pi∈g

ps[i] ∗ c(Pi, Ps) ∗ (1 +
σ(s)

drp
) (4.12)

Here, ps[i] denotes the number of edges associated with vertices of Pi, which is a good

approximation for the amount of data each server needs to send to their group servers. σ(s)

is the number of group servers that have been designated on the compute node that server

Ms belongs to. It should be noticed that server Ms can be a hardware thread, a core, a

socket, or a machine. drp is the degree of refinement parallelism (number of group servers).

The last term (1 + σ(s)
drp

) is the penalty that is added to avoid the concentration of multiple

group servers into a single compute node, reducing the chance of memory exhaustion. Once

all the group servers are selected, the master node will broadcast the group servers of the

groups to the slave nodes. Then, each server will send its vertices (as well as their edge

lists) to their corresponding group servers, after which the group servers will start to refine

partitions of their own groups independently.

56

4.3.1.4 Reducing Communication Volume Clearly, Paragon with the shuffle re-

finement disabled requires the entire graph to be sent over the network once, and Paragon

with the shuffle refinement enabled demands more data communication. For really big

graphs, the communication volume may get very high. Thus, we follow the same approach

proposed in [68] to reduce the communication volume. Specifically, instead of sending the

entire partition to their group servers, each server only needs to send vertices that can be

reached by a breadth-first search from boundary vertices of each partition within k-hop

traversal. Boundary vertices are vertices that have neighbors in other partitions. The ra-

tionale behind this is that if a vertex is very far from the boundary vertex, the chance that

it get moved by Paragon to another partition to improve the decomposition is very small.

Surprisingly, we found that Paragon is not sensitive to k in terms of the partitioning qual-

ity, and that a larger k does not always lead to partitionings of higher quality. However,

it may increase the refinement time greatly. Thus, in our implementation, we set k = 0

by default. In other words, we only send boundary vertices of each partition to the group

servers.

In fact, [68] has presented a solution to parallellize the standard FM algorithms [67].

However, it may require a graph with n partitions to be sent over the network n − 1 times

in case the initial decomposition has edge-cuts across all partition pairs. Furthermore, the

presence of communication heterogeneity complicates things greatly. First, Aragon has

to be applied to all the partition pairs, whereas standard FM algorithms, which assume

uniform network communication costs, only need to refine partition pairs that have edge-

cuts between them. Second, during each refinement iteration of a single partition pair,

standard FM algorithms only need to consider migrating vertices of both partitions that

have neighbors in the alternative partition. On the other hand, Paragon has to consider

migrating all boundary vertices.

4.3.1.5 Master Node Selection As presented so far, each server (slave node) needs

to send some auxiliary data (i.e., the number of vertices/neighbors) of their local partitions

to the master node for the parallelization decision, and the master needs to broadcast the

decision it made to all the slave nodes. To reduce the communication cost between the

57

master node and the slave nodes, we also select the master node in an intelligent way using

the following heuristic:

min
m∈[1,n]

n∑
i=1 and i 6=m

c(Pi, Pm) (4.13)

The heuristic tries to find a server M [m] that will result in minimal network communication

cost as the master node. For example, in case of Figure 4.2, we should select server M2 as

the master node. Clearly, the selection of master node can be made locally by each server

without synchronizing with each other.

4.3.1.6 Incorporating Contention-Awareness To make Paragon also aware of the

issue of shared resource contention on the memory subsystems, we adopt the same solution

as Argo, where we penalize intra-node network communication costs by a score. The score

is computed based on the degree of the contentiousness between the communication peers.

By doing this, the amount of intra-node communication will decrease accordingly. The

parameter λ can be used to specified the degree of contention. Similar to Argo, if λ = 0,

Paragon will only consider the communication heterogeneity, whereas λ = 1 means that

intra-node shared resource contention is the biggest performance bottleneck, which should

be prioritized over the communication heterogeneity. It should be noticed that Paragon

with any λ ∈ (0, 1] considers both the contention and the communication heterogeneity.

Again, considering the impact of the resource contention and communication heterogeneity

is highly application- and hardware-dependent, users will need to do simple profiling of the

target applications on the actual computing environment to determine the ideal λ for them.

4.3.2 Evaluation

4.3.2.1 Setup In this section, we first evaluate the sensitivity of Paragon to varying

input decompositions computed by different initial partitioners and the impact of its two

important parameters: the degree of parallelism and the number of shuffle refinement times

(Section 4.3.2.2). We then validate the effectiveness of Paragon using two real-world graph

workloads: Breadth-First Search (BFS) [59] and Single-Source Shortest Path (SSSP) [60],

58

which we implemented using MPI (Section 4.3.2.3). Finally, we demonstrate the scalability

of Paragon via a billion-edge graph (Section 4.3.2.4).

Table 4.7: Datasets used in our experiments

Dataset |V | |E| Description

wave [74] 156,317 2,118,662 2D/3D FEM

auto [74] 448,695 6,629,222 3D FEM

333SP [75] 3,712,815 22,217,266 2D FE Triangular Meshes

CA-CondMat [61] 108,300 373,756 Collaboration Network

DBLP [62] 317,080 1,049,866 Collaboration Network

Email-Eron [61] 36,692 183,831 Communication Network

as-skitter [61] 1,696,415 22,190,596 Internet Topology

Amazon [61] 334,863 925,872 Product Network

USA-roadNet [76] 23,947,347 58,333,344 Road Network

PA-roadNet [61] 1,090,919 6,167,592 Road Network

YouTube [62] 3,223,589 24,447,548 Social Network

com-LiveJournal [61] 4,036,537 69,362,378 Social Network

Orkut [61] 3,072,627 234,370,166 Social Network

Friendster [61] 124,836,180 3,612,134,270 Social Network

Twitter [62] 52,579,682 3,926,527,016 Social Network

Datasets Table 4.7 describes the datasets used. By default, the graphs were (re)partitioned

with vertex weights (i.e., computational requirement) set their vertex degree, with vertex

sizes (i.e., amount of the data of the vertex) set their vertex degree, and with edge weights

(i.e., amount of data communicated) set to 1. The degree of each vertex is often a good ap-

proximation of the computational requirement and the migration cost of each vertex, while a

uniform edge weight of 1 is a close estimation of the communication pattern of many graph

algorithms, like BFS and SSSP. Given the fact that communication cost is usually more

important than migration cost, all the experiments were performed with α = 10 (Eq. 4.2).

Unless explicitly specified, all the graphs were initially partitioned by DG (deterministic

greedy heuristic), a state-of-the-art streaming graph partitioner [8], across cores of the com-

59

Table 4.8: Cluster compute node configuration

Node Configuration
MPICluster

(Intel Haswell Processor)

Gordon

(Intel Sandy Bridge Processor)

Sockets 2 2

Cores 20 16

Clock Speed 2.6 GHz 2.6 GHz

L3 Cache 25 MB 20 MB

Memory Capacity 128 GB 64 GB

Memory Bandwidth 65 GB/s 85 GB/s

pute node used (one partition per core). The partitionings were then improved by Paragon.

During the (re)partitioning, we allowed up to 2% load imbalance among the partitions. For

fairness, DG/LDG were extended to support vertex- and edge-weighted graphs. Vertices of

the graphs were presented to DG/LDG in some unknown random order.

Platforms We evaluated Paragon on two clusters: MPICluster [65] and Gordon supercom-

puter [50]. MPICluster had a flat network topology, with all 32 compute nodes connected

to a single switch via 56Gbps FDR Infiniband. On the other hand, the Gordon network

topology was a 4x4x4 3D torus of switches connected via QDR Infiniband with 16 compute

nodes attached to each switch (with 8Gbps link bandwidth). Table 4.8 depicts the compute

node configuration of the clusters. The results presented were the means of 5 runs, except

the execution of SSSP on Gordon (Section 4.3.2.3) and the scalability test (Section 4.3.2.4).

Network Communication Cost Modelling The relative network communication costs

among the partitions (cores) were approximated using a variant of the osu latency bench-

mark [66]. To ensure the correctness of the cost matrix, each MPI rank (process) was bound

to a core using the mechanism provided by MVAPICH2 1.9 [47] on Gordon and OpenMPI

1.8.6 [46] on MPICluster. MVAPICH2 and OpenMPI were two different MPI implementa-

tions available on the clusters.

4.3.2.2 MicroBenchmarks

Varying Degree of Parallelism In this experiment, we examined the impact of the degree

60

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 6 8 10 12 14 16 18 20R
e
f
i
n
e
m
e
n
t

T
i
m
e
(
s
)

Degree of Refinement Parallelism

(a) Refinement time

 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

1 2 4 6 8 10 12 14 16 18 20

N
o
r
m
a
l
i
z
e
d

C
o
m
m

C
o
s
t

Degree of Refinement Parallelism

(b) Comm cost of the resulting partitionings

Figure 4.10: Refinement time and normalized communication costs of the com-lj decom-

positions after being refined with varying degree of refinement parallelism on two 20-core

compute nodes.

of parallelism in terms of the refinement time (i.e., the time that the refinement took) and the

refinement quality (i.e., the communication cost of the resulting decomposition). Towards

this, we first partitioned the com-lj dataset into 40 partitions using DG across two compute

nodes of MPICluster, and then applied Paragon to the decompositions with varying degree

of refinement parallelism but with shuffle refinement disabled.

Results (Figures 4.10a & 4.10b) Figure 4.10a plots the runtime of Paragon on the

com-lj dataset for various degrees of parallelism. As expected, the higher the degree of

parallelism, the faster the refinement would finish, and Paragon significantly reduced the

refinement time of Aragon (Paragon with degree of parallelism of 1). However, the

speedup was achieved at the cost of higher communication cost of the resulting decompo-

sitions (Figure 4.10b). The communication costs presented were normalized to that of the

initial decomposition computed by DG. However, in the end, Paragon still resulted in

lower communication cost in all the cases when compared to the initial decompositions.

Impact of Shuffle Refinement In our second experiment, we were interested to see

whether the shuffle refinement technique could address the issue we identified in the previous

experiment. Towards this, we repeated the same experiment but with a fixed degree of

refinement parallelism (8) and varying number of shuffle refinement times (from 0 to 15).

Results (Figure 4.11) Figure 4.11 shows the corresponding refinement time and the

normalized communication costs of the resulting decompositions with the decompositions

computed by Aragon as the baseline. As shown, Paragon (with shuffle refinement en-

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 C
om

m
 C

os
t

Refinement Time (s)

0 1 2 3 4 5 6 7 8 9 10111213 1415

Figure 4.11: Y-axis corresponds to the communication costs of the com-lj decompositions

after being refined with varying number of shuffle refinement times on two 20-core compute

nodes when they were normalized to that of the decompositions refined by Aragon; X-axis

denotes the corresponding refinement time; the labels on each data point were the number

of refinement times.

abled) not only produced decompositions of lower communication costs than Aragon (when

the number of shuffle refinement times was greater than 11), but also completed the refine-

ment faster (Aragon took around 33s to finish the refinement vs 8.12s by Paragon with

11 shuffle refinement times).

Impact of Initial Partitioners This experiment examined the refinement overhead and

the quality of the resulting decompositions, when Paragon was provided with decompo-

sitions computed by four different partitioners: (a) HP, the default graph partitioner of

many parallel graph computing engines; (b) DG and LDG, two state-of-the-art streaming

graph partitioning heuristics [8]; and (c) Metis, a state-of-the-art multi-level graph parti-

tioner [32]. The graphs were initially partitioned across cores of the same two machines used

in our prior experiments but with both the degree of refinement parallelism and the number

of shuffle refinement times set to 8.

Quality of the Initial Decompositions (Figure 4.12) Figure 4.12 denotes the commu-

nication cost of the initial decompositions computed by HP, DG, LDG, and Metis for a

62

 0

 20

 40

 60

 80

 100

 120

 140

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

C
o
m
m

C
o
s
t

(
1
0
^
7
)

HP
DG
LDG
METIS

Figure 4.12: Communication cost of the initial decompositions computed by HP, DG, LDG,

and Metis across cores of two 20-core compute nodes for a variety of graphs.

variety of graphs. As anticipated, Metis performed the best and HP was the worst. How-

ever, Metis is a heavyweight serial graph partitioner, making it infeasible for large-scale

distributed graph computation either as an initial partitioner or as an online repartitioner

(repartitioning from scratch). It was reported in prior work [10] that Metis took up to 8.5

hours to partition a graph with 1.46 billion edges. Unexpectedly, DG outperformed LDG,

the best streaming partitioning heuristic among the ones presented in [8]. This was probably

because the order in which the vertices were presented to the partitioner favored DG over

LDG (the results of DG and LDG rely on the order in which vertices are presented). This

was also the reason why we picked DG as the default initial partitioner for Paragon.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

C
o
m
m

C
o
s
t

(
1
0
^
7
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(a) Communication cost of the decompositions af-
ter being refined.

 0%

 20%

 40%

 60%

 80%

 100%

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

I
m
p
r
o
v
e
m
e
n
t

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(b) Improvement achieved by Paragon against
the initial decomposition.

Figure 4.13: Paragon’s sensitivity to varying initial decompositions in terms of the com-

munication cost for a variety of graphs, which were initially partitioned by HP, DG, LDG,

and Metis across cores of two 20-core compute nodes.

63

Quality of the Resulting Decompositions (Figures 4.13a & 4.13b) Figures 4.13a

and 4.13b show the corresponding communication cost of the resulting decompositions and

the improvement achieved by Paragon in terms of the communication cost when compared

to the initial decompositions. As shown, the better the initial decomposition was, the bet-

ter the resulting decomposition would be. In comparison with the initial decompositions

computed by HP, DG, and LDG, Paragon reduced the communication cost of the de-

compositions by up to 58% (43% on average), 29% (17% on average), and 53% (36% on

average), respectively. Although Paragon did not improve significantly the decomposi-

tions computed by Metis for easily partitioned FEM and road networks (left 7 datasets),

it achieved an improvement of up to 4.5% for complex networks (right 5 datasets). Given

the size of the dataset, the improvement was still non-negligible. Fortunately, we found

that Paragon with DG as its initial partitioner can achieve even better performance than

Metis on real-world workloads (Section 4.3.2.3).

 0

 1

 2

 3

 4

 5

 6

 7

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−ljM
i
g
r
a
t
i
o
n

C
o
s
t

(
1
0
^
7
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(a) Migration Cost

 0

 5

 10

 15

 20

 25

 30

 35

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

R
e
f
i
n
e
m
e
n
t

T
i
m
e
(
s
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(b) Refinement Time

Figure 4.14: Overhead of the refinement on varying decompositions that were initially par-

titioned by HP, DG, LDG, and Metis across cores of two 20-core compute nodes.

Refinement Overhead (Figures 4.14a & 4.14b) We also noticed that the quality of

the initial decomposition impacted the refinement overhead greatly. Figures 4.14a and 4.14b

plot the migration cost (Eq. 4.3) and the refinement time. Clearly, the poorer the initial de-

composition was, the higher the migration cost and the longer the refinement time would be.

Finally, for decompositions, which Paragon failed to make much improvement, Paragon

only led to a very small amount of overhead.

64

4.3.2.3 Real-World Applications (BFS & SSSP)

Configuration This experiment evaluated Paragon using BFS and SSSP on the YouTube,

as-skitter, and com-lj datasets. Initially, the graphs were partitioned across cores of three

compute nodes of the two clusters using DG. Then, the decomposition was improved by

Paragon with the degree of refinement parallelism and the number of shuffle refinement

times both set to 8. During the execution of BFS/SSSP, we grouped multiple messages sent

by each MPI rank to the same destination into a single one (8 for YouTube and as-skitter

dataset and 16 for com-lj dataset). The reason why we picked 8 and 16 was because any

larger values would make the execution time too short for consideration, especially for the

execution of BFS.

Resource Contention Modeling To capture the impact of resource contention, we car-

ried out a profiling experiment for BFS and SSSP with the 3 datasets on both clusters by

increasing λ gradually from 0 to 1. Interestingly, we found that intra-node shared resource

contention was more critical to the performance on MPICluster, while inter-node communi-

cation was the bottleneck on Gordon. This was probably caused by the differences in network

topologies (flat vs hierarchical), core count per node (20 vs 16), memory bandwidth (65GB

vs 85GB), and network bandwidth (56Gbps vs 8Gbps) between the two clusters, and that

BFS/SSSP had to compete with other jobs running on Gordon for the network resource,

while there was no contention on the network communication links on MPICluster. Hence,

we fixed λ to be 1 on MPICluster and 0 on Gordon for the experiment.

Table 4.9: BFS job execution time (s)

Algorithm/Dataset YouTube as-skitter com-lj

MPICluster

DG 30 59 218

Metis 8.50 67 27

ParMetis 29 (21.00) 59 (9.65) 185 (4.71)

uniParagon 25 (2.70) 27 (2.26) 159 (7.54)

Paragon 8 (4.00) 10 (3.31) 40 (10.00)

Gordon

DG 322 577 4319

uniParagon 264 (2.70) 350 (2.07) 3310 (6.98)

Paragon 220 (3.83) 228 (2.96) 2586 (9.08)

Table 4.10: SSSP job execution time (s)

Algorithm/Dataset YouTube as-skitter com-lj

MPICluster

DG 2136 1823 5196

Metis 545 822 955

ParMetis 1842 (19.00) 582 (9.28) 3268 (4.50)

uniParagon 1805 (2.45) 1031 (2.07) 3136 (6.98)

Paragon 468 (3.88) 472 (3.14) 1549 (9.71)

Gordon

DG 3436 7092 10732

uniParagon 3402 (2.76) 3355 (2.13) 7831 (9.75)

Paragon 2838 (3.89) 2731 (2.97) 6841 (29.00)

Job Execution Time (Tables 4.9 & 4.10) Tables 4.9 and 4.10 show the overall execution

time of BFS and SSSP with 15 randomly selected source vertices on the three datasets and

65

the overhead of Paragon. The execution time of a distributed graph computation is defined

as: JET =
∑n

i=1 SET (i), where n is the number of supersteps the job has, while SET (i)

denotes the execution time of the ith superstep and is defined as the ith superstep execution

time of the slowest MPI rank. In the table, DG and Metis mean that BFS/SSSP was

performed on the datasets without any repartitioning/refinement, ParMetis is a state-of-

the-art multi-level graph repartitioner [33], uniParagon was a variant of Paragon that

assumes homogeneous and contention-free computing environment, and the numbers within

the parentheses were the overhead of repartitioning/refining the decomposition computed by

DG.

As expected, Paragon beat DG, ParMetis, and uniParagon in all the cases. Com-

pared to DG, Paragon reduced the execution time of BFS and SSSP on Gordon by up

to 60% and 62%, respectively, and up to 83% and 78% on MPICluster, respectively. If we

time the improvements by the number of MPI ranks (48 for Gordon and 64 for MPIClus-

ter), the improvements were more remarkable. Yet, the overhead Paragon exerted (sum

of the refinement time and physical data migration time) was very small in comparison to

the improvement it achieved and the job execution time. By comparing the results of uni-

Paragon with DG, we can conclude that Paragon not only improved the mapping of the

application communication pattern to the underlying hardware, but also the quality of the

initial decomposition (edgecut). What we did not expect was that Paragon with DG as

its initial partitioner outperformed the gold standard, Metis, in 4 out the 6 cases and was

comparable to Metis in other cases.

 0

 500

 1,000

 1,500

 2,000

 2,500

DG METIS

PARMETIS

uniPARAGON

PARAGON

DG METIS

PARMETIS

uniPARAGON

PARAGON

DG METIS

PARMETIS

uniPARAGON

PARAGON

C
o
m
m

V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

Figure 4.15: The breakdown of the accumu-

lated communication volume across all super-

steps for BFS on PittMPICluster.

 0

 500

 1,000

 1,500

 2,000

 2,500

DG uniPARAGON

PARAGON

DG uniPARAGON

PARAGON

DG uniPARAGON

PARAGON

C
o
m
m

V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

Figure 4.16: The breakdown of the accumu-

lated communication volume across all super-

steps for BFS on Gordon.

66

Communication Volume Breakdown (Figures 4.15 & 4.16) To further confirm our

observations, we also collected the total amount of data remotely exchanged per superstep by

BFS and SSSP among cores of the same socket (intra-socket communication volume), among

cores of the same compute node but belonging to different sockets (inter-socket communi-

cation volume), and among cores of different compute nodes (inter-node communication

volume). Since we observed similar patterns for BFS and SSSP in all the cases, we only

present the breakdown of the accumulated communication volume across all the supersteps

for the execution of BFS here.

As shown in Figures 4.15 (for MPICluster) and 4.16 (for Gordon), Paragon and uni-

Paragon have much lower remote communication volume than DG in all the cases, and

Paragon has the lowest inter-node communication volume and highest intra-node (inter-

socket & intra-socket) communication volume on Gordon (vice versa on MPICluster), which

was expected given our choices of λ. It is worth mentioning that on MPICluster, intra-

node data communication was the bottleneck. Another interesting thing was that in spite

of its higher total communication volume when compared to Metis, ParMetis, and uni-

Paragon, Paragon still outperformed them in most cases due to the reduced communi-

cation on critical components.

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

S1 S2 S3 S4 S5

B
F
S

J
E
T
(
s
)

Snapshots

DG
METIS
PARMETIS
uniPARAGON
PARAGON

Figure 4.17: BFS JET with Graph Dynamism

Graph Dynamism (Figure 4.17) To further validate the effectiveness of Paragon in the

presence of graph dynamism, we split the YouTube dataset (a collection of YouTube users

and their friendship connections over a period of 225 days) into 5 snapshots with an interval

of 45 days. Thus, snapshot Si denotes the collection of YouTube users and their friendship

connections appearing during the first 45 ∗ i days. We then ran BFS on snapshot S1 across

67

three 20-core machines and injected vertices newly appeared in each snapshot to the system

using DG whenever BFS finished its computation for every 15 randomly selected vertices.

The injection also triggered the execution of Paragon, uniParagon, and ParMetis on

the decomposition.

Figure 4.17 plots the BFS execution time for 15 randomly selected source vertices on

each snapshot. As shown, both architecture-awareness and the capability to cope with

graph dynamism were critical to achieve superior performance. This is especially true as

the graph changes a lot from its original version: at snapshot S5, Paragon performed 90%

better than DG, 85% better than Metis, 73% better than ParMetis, and 89% better than

uniParagon.

4.3.2.4 Billion-Edge Graph Scaling

Configuration In this experiment, we investigated the scalability of Paragon as the

graph scale increased. Towards this, we generated three additional datasets by sampling the

edge list of the friendster dataset (3.6 billion edges). We denote the datasets generated as

friendster-p, where p was the probability that each edge was kept while sampling. Hence,

friendster-p would have around 3.6 ∗ p billion edges. Interestingly, the number of vertices

remained almost unchanged in spite of the sampling. We ran the experiment on three

compute nodes of MPICluster with the degree of refinement parallelism, the number of

shuffle refinement times, and the message grouping size set to 10, 10, and 256, respectively.

200
2500

5000

7500

10000

12500

15000

0 0.9 1.8 2.7 3.6

B
F
S
 J
E
T
(s

)

Approximate # of edges (billions)

DG
PARAGON

Figure 4.18: BFS JET vs Graph Size

0

100

200

300

400

500

0 0.9 1.8 2.7 3.6R
e
fin

e
m

e
n
t

T
im

e
(s

)

Approximate # of edges (billions)

PARAGON

Figure 4.19: Refinement Time vs Graph Size

Results (Figures 4.18 & 4.19) Figures 4.18 and 4.19 present the execution time of BFS

with 15 randomly selected source vertices and the overhead of Paragon at different graph

68

scales. As shown, Paragon not only led to lower job execution times, but also to lower

speed in which the job execution time increased as the graph size increased. It should be

noticed that Paragon reduced the execution time of all machines (3*20 cores) not just

one. Also, the refinement time increased at a much slower rate (from 140s, to 236s, to 312s,

and to 410s) than that of the graph size. The reason why we did not present the results of

Metis or ParMetis here was because they failed to (re)partition the graphs (even for the

first dataset, of 0.9 billion edges).

4.3.3 Section Summary

In this work, we presented Paragon, a parallel architecture-aware graph partition refine-

ment algorithm that bridges the mismatch between the application communication pattern

and the underlying hardware topology. Paragon achieves this by modifying a given de-

composition according to the non-uniform network communication costs and consideration

of the contentiousness of the underlying computing infrastructures. To further reduce its

overhead, we made Paragon itself architecture-aware. Compared to the state-of-the-art,

Paragon improved the quality of graph decompositions by up to 53%, achieved up to 5.9x

speedups on real workloads, and successfully scaled up to a 3.6 billion-edge graph.

69

4.4 PLANAR AND PLANAR+: PARALLEL LIGHTWEIGHT

ARCHITECTURE-AWARE GRAPH REPARTITIONING

In this section, we first introduce our Parallel Lightweight Architecture-Aware graph Repar-

titioner, Planar (Section 4.4.1) that we designed for large dynamic graph partitioning. We

then introduce an optimized implementation of Planar, Planar+ (Section 4.4.3). They

both overcome the scalability limitation of Paragon by increasing the degree of parallelism

that the repartitioning algorithm can have; Planar+ introduces implementation optimiza-

tions that reduces the cost of repartitioning by up to 9x compared to Planar+. We describe

and evaluate Planar first, and then describe Planar+ along with some additional exper-

imental results.

4.4.1 PLANAR: Algorithm Design and Implementation

Algorithm 3: Planar Overview
Data: Pl, c, σ, τ

1 if the partitioning has not converged then
2 // Phase-1 (Section 4.4.1.1 & 4.4.1.2)
3 LogicalVtxMigration(Pl, c,&pv)
4 // Phase-2 (Section 4.4.1.3)
5 PhysicalVtxMigration(Pl, pv)
6 // Convergence Check (Section 4.4.1.4)
7 CheckPartitionConvergence(σ, τ);

Rather than costly repartitioning the entire graph at once, Planar adapts the current

partitioning in the presence of changes by incrementally migrating vertices among the parti-

tions, while considering the non-uniformity of the network communication costs. Algorithm 3

presents Planar at a high level. It is triggered whenever there are enough changes in the

graph or imbalance among the partitions. Once triggered, it is performed at the beginning

of each superstep until the partitioning is convergent. We say a partitioning is convergent

if the improvement achieved in the expected communication cost (Eq. 4.2) between two

consecutive adaptations is within a user-defined threshold σ, after τ consecutive adaptation

(Section 4.4.1.4).

Each of such adaptations has two phases: logical vertex migration phase (Phase-1) and

70

Algorithm 4: Phase-1a: Vertex Migration
Data: Pl, c

1 identify boundary vertices of Pl

2 foreach boundary vertex v ∈ Pl do
3 optimal migration destination selection

4 foreach boundary vertex v ∈ Pl do
5 marked v as moved with a probability proportional to the gain

physical vertex migration phase (Phase-2). Phase-1 attempts to improve the decomposition

by logically migrating vertices among the partitions while considering the communication

heterogeneity. Logically means that we only locally mark vertices chosen by Planar for

migration as if they were moved. Phase-2 (Section 4.4.1.3) is responsible for the actual ver-

tex and application data migration. Phase-1 is further split into two sub phases: Phase-1a

and Phase-1b. Phase-1a (Section 4.4.1.1) tries to improve the decomposition in terms of

communication cost as much as possible. Phase-1b (Section 4.4.1.2) aims to improve the de-

composition in terms of load distribution without significantly increasing the communication

cost of the decomposition determined in Phase-1a.

4.4.1.1 Phase-1a: Minimizing Communication Cost In this phase, each server runs

an instance of Algorithm 4 in parallel to decide which vertices should be moved out from

its local partition and which partition should each vertex migrate to, such that both the

communication and migration cost are minimized. The input to the algorithm includes the

local partition Pl owned by each server and the relative network communication cost matrix

c. The algorithm first tries to identify vertices of Pl having neighbors in other partitions

(boundary vertices). Then, each boundary vertex independently selects the partition leading

to a maximal gain as its optimal migration destination. Afterwards, boundary vertices are

locally marked with a migration probability that is proportional to their gain.

Architecture-Aware Vertex Gain Computation The gain of moving a vertex, v, from

its current partition to an alternative partition is defined as the reduction in the communi-

cation cost. The communication cost consists of two parts: the communication that v would

incur during the computation and the cost of migrating v. The communication cost that v

71

would incur during the computation when it is placed in Pi is defined as:

comm(v, Pi) = α ∗
n∑

k=1 and k 6=i

dext(v, Pk) ∗ c(Pi, Pk) (4.14)

where c(Pi, Pk) indicates the relative network communication costs between Pi and Pk,

whereas dext(v, Pk) represents the amount of data that v communicates with vertices of

Pk and is further defined as:

dext(v, Pk) =
∑

e=(u,v)∈E and u∈Pk

w(e) (4.15)

Here, w(e) is the edge weight, indicating the amount of data communicated along the edge

in a single computation superstep. The cost of migrating v from its current partition Pi to

another partition Pj is defined as:

mig(v, Pi, Pj) = vs(v) ∗ c(Pi, Pj) (4.16)

Here, vs(v) denotes the amount of application state associated with the vertex, indicating

the cost of migrating the vertex. Hence, the gain of migrating v from Pi to Pj is:

gi,j(v) = comm(v, Pi)− comm(v, Pj)−mig(v, Pi, Pj) (4.17)

In case of Pi = Pj, g
i,j(v) becomes 0. If gi,i(v) happens to be maximal, v will choose to

stay. Clearly, migrating non-boundary vertices of Pl to other partitions would not lead to

any gain since they only communicate with vertices of Pl.

h

i
j a

d

b
c

f

g
e

P1(N1)P3(N3)

P2(N2)

Figure 4.20: Old Decomposi-

tion

h

i
j

a
d

b

c

f

g
eP2(N2)

P3(N3)
P1(N1)

Figure 4.21: Better Decompo-

sition

h

i
j

a d

b
c

f

g
eP2(N2)

P3(N3) P1(N1)

Figure 4.22: Best Decomposi-

tion

Migration Destination Selection Example (Figures 4.20–4.22) Consider a decompo-

sition given by Figure 4.20 with three partitions and unit weights and sizes, and the relative

72

Table 4.11: Relative network communication costs

N1 N2 N3

N1 1 6

N2 1 1

N3 6 1

network communication costs among the partitions as shown in Table 4.11. Now, let us

examine how vertices in P3 make their migration decisions with α = 1 (equal importance of

communication and migration costs). Take for example vertex a, the only boundary vertex

of P3. Clearly, the gain of moving a from P3 to P1 (Figure 4.21) and to P2 (Figure 4.22)

is 0 and 9, respectively, since comm(a, P3) = 13, comm(a, P1) = 7, comm(a, P2) = 3,

mig(a, P3, P1) = 6, and mig(a, P3, P2) = 1. Thus, vertex a would select P2 as its migra-

tion destination. On the other hand, architecture-agnostic repartitioners would choose the

decomposition of Figure 4.21 over Figure 4.22 due to its lower edgecut (3 vs 4).

Cross-Partition Migration Interference As is evident, the gain of migrating a vertex

from its current partition to another partition heavily relies on the amount of data that the

vertex communicates with its neighbors in other partitions. For example, in Figure 4.20,

the amount of data communicated between vertex a and P1 contributes most to the gain of

moving a to P2. However, due to the independent nature of the migration decisions, neighbors

of vertex a that are in P1 may decide to migrate to other partitions. Consequently, the gain

of moving vertex a to P2 may no longer exist.

To mitigate this cross-partition migration interference, each vertex u is migrated with a

probability proportional to the gain they may introduce. Considering the gain of migrating

the vertices may vary significantly. A vertex, v, is migrated from its current partition Pi to

its optimal destination Pj with a probability of

0.5 +

−1 ∗ avgGain
g(v,Pi,Pj)

∗ 0.05 g(v, Pi, Pj) < avgGain

g(v,Pi,Pj)

avgGain
∗ 0.05 Otherwise

(4.18)

73

where avgGain denotes the average of the gain of migrating vertices of my Pi to their

optimal migration destinations. In this way, vertices having a higher possible gain are more

likely to be migrated (maximizing the chance of performance improvement), and vice versa.

This also reduces the chance of migrating a high-degree vertex, since the gain of migrating a

high-degree vertex is often small according to our gain heuristic given its large neighborhood.

Analysis As presented, each vertex only needs to know the locations of its neighbors and

the amount of data it communicates with each partition for the migration decisions. The

former is readily available to each partition in real-world systems for neighboring vertices

to communicate with each other, while the latter can be locally computed. Each vertex

only has to examine the accumulated weights of its edges that have one endpoint in another

partition. Clearly, Phase-1a is lightweight, since it does not require any global coordination.

Also, Algorithm 4 only requires two arrays of size O(n) and O(|Vl|) to store the in-

formation about the amount of data a vertex communicates with each partition and the

information about boundary vertices. Here, n denotes the number of partitions and |Vl| is

the number of (boundary) vertices of each partition. The time complexity of Algorithm 4

is O(|El|+ n2 ∗ |Vl|) with El denoting the edge set of each partition, because the identifica-

tion of boundary vertices takes O(El) and the selection of optimal migration destination for

boundary vertices takes O(|El|+ n2 ∗ |Vl|).

4.4.1.2 Phase-1b: Ensuring Balanced Partitions Since each partition makes its

migration decisions independently in Phase-1a, vertices in different partitions may decide

to migrate to the same partition, leading to load imbalance. To ensure a balanced load

distribution, we carry out another quota-based vertex migration phase (if necessary), where

we only allow a limited number of vertices to be migrated from each overloaded partition to

each underloaded one. To achieve this, Planar needs to decide: (1) How much work should

Pi migrate to Pj? and (2) What vertices should Pi move to Pj?

To resolve our first question, we first compute the amount of work that needs to be

moved out from each overloaded partition:

Q(Pi) = w(Pi)− C(Pi) (4.19)

74

Algorithm 5: Phase-1b: Quota Allocation
Data: Pl, Q, c
Result: quotal

1 load information exchange
2 potentialGainCompute(Pl, Q, c, pg)
3 insert Pi, Pj and pg(Pi, Pj) into a heap sorted by the gain
4 foreach popped partition pair Pi and Pj do
5 quota[i][j] = max {0, min {Q(Pi), -Q(Pj)}}
6 update Q(Pi) and Q(Pj)

7 quotal[i][j] = quota[i][j] * λ

where w(Pi) is the aggregated weight of vertices in Pi and C(Pi) denotes the maximal load

that Pi can have. C(Pi) = (1 + ε) ∗
∑n

i=1 w(Pi)

n
with ε denoting the user-defined imbalance

tolerance. Clearly, −Q(Pi) corresponds to the remaining capacity of Pi.

Architecture-Aware Quota Allocation Algorithm 5 describes how Planar distributes

the remaining capacity of each underloaded partition across the overloaded ones. It is an

iterative, architecture-aware quota allocation algorithm. During each iteration, the algorithm

attempts to find a single partition pair, (Pi, Pj), such that allocating as much quota as

possible from the underloaded partition, Pj, for the overloaded partition, Pi, would lead to

a maximal gain. To do this, Planar first computes the potential gain of migrating vertices

of each overloaded partition to each underloaded partition. The partition number of each

partition pair is then inserted into a heap sorted by the potential gain. Then, Planar

computes the quota allocation iteratively starting from the heap top. For each popped

partition pair (Pi, Pj), Pj will allocate quota[i][j] = max{0, min {Q(Pi),−Q(Pj)}} quota

share for Pi. quota[i][j] = 0 indicates that either Pi is already balanced or the remaining

capacity of Pj is 0. Upon each allocation, Q(Pi) is also updated to reflect the allocation.

This process is repeated until all the partitions are balanced.

Thanks to Phase-1’s vertex migration, each server may hold a vertex portion of Pi,

requiring quota[i][j] to be properly distributed across the servers. Here, we take a simple yet

effective approach (line 7), where quota[i][j] is distributed across the servers proportionally

to the amount of work of Pi held by each server. To this end, each server first exchanges

the amount of work (vertices) it migrated to every other server with each other. By doing

this, each server knows exactly how much work it imports from other partitions. Let IW (Pi)

75

denote the amount of work server Mi/Pi imported from others. If IW (Pi) ≥ Q(Pi), each

server can simply scale quota[i][j] by wl(Pi)
IW (Pi)

, where wl(Pi) denotes the amount of work of Pi

held by each server. In case of IW (Pi) < Q(Pi), quota[i][j] is scaled by 1− IW (Pi)
Q(Pi)

for Pi and

by wl(Pi)
Q(Pi)

for others.

Potential Gain Computation The potential gain of migrating vertices from an overloaded

partition Pi to an underloaded partition Pj is defined as:

pg(Pi, Pj) =
∑
v∈Pi

gi,j(v) (4.20)

Each server only needs to consider migrating boundary vertices of the overloaded partitions

to each underloaded ones, and only needs to count vertices that lead to positive gain for

pg(Pi, Pj). To facilitate our next step’s vertex migration, we maintain a sorted heap to keep

track of the gain of migrating each vertex to each possible migration destination here.

Analysis As presented, Phase-1b only requires a small amount of global coordination to

compute the load distribution for quota allocation decisions. In addition to this, Algorithm 5

can be run in parallel on each server without coordination with other nodes. The time

complexity of Algorithm 5 is O(n ∗ |Vl| + n2), since the complexity of the partition pair

potential gain computation phase (Line 2) and the final quota allocation phase (Line 3–7)

are O(n ∗ |Vl|) and O(n2), respectively.

Also, Algorithm 5 only requires a small amount of additional memory, including two

arrays of size n (for Q(Pi) and dext(v, Pj)), one n ∗ n matrix (for pg(Pi, Pj)), a heap of n2

elements (to record the potential gain of each partition pair), another heap of size n∗ |Vl| (to

keep track of the gain of migrating boundary vertices of the overloaded partitions to all the

possible migration destinations), and another n ∗ n matrix (for the quota allocation result).

Given the quota allocation, each overloaded server knows how much work it should

migrate to each underloaded partition. Along with the sorted heap we maintained while

computing the potential gain, we can easily figure out the vertices to migrate and their

optimal migration destinations, which is described by Algorithm 6. Clearly, Algorithm 6

does not require any global coordination, and its time complexity is O(n∗|Vl|). This indicates

that our Phase-1b vertex migration is also lightweight.

76

Algorithm 6: Phase-1b: Vertex Migration
Data: Pl, quota, sortedHeap

1 for i = 0→ size(sortedHeap) do
2 HeapGet(sortedHeap, i,&v,&dest,&gain)
3 if v’s current owner o(v) is overloaded then
4 if quota[o(v)][dest] > 0 then
5 mark v as moved to the dest partition
6 update Q(o(v)) and quota[o(v)][dest]

4.4.1.3 Phase-2: Physical Vertex Migration Based on the result of Phase-1 vertex

migration, Planar will physically migrate vertices that were chosen to move out to their

destinations (including the associated application data). For example, in SSSP, each vertex

often maintains two fields: {prev(v), dist(v)}, where prev(v) is the vertex preceding v on

the current shortest path and dist(v) is the length of the current shortest path [60]. To

ensure correctness, we also need to migrate these two fields along with the vertex. Clearly,

physical vertex migration is highly application-dependent and developing a general-purpose

solution is out of the scope of this work. Hence, the output of Planar will simply be an

array indicating the new location of each vertex, based on which the physical migration can

be performed either using a customized migration service or a general migration service (like

the one provided by Zoltan [36]).

4.4.1.4 Phase-3: Convergence To avoid unnecessary execution of Planar at the

beginning of each superstep, we check if the partitioning converges and discontinue Planar

if does. However, Planar can be re-enabled in the presence of sufficient load imbalance

and graph dynamism. We define as convergent the state where the improvement achieved

by each adaptation in terms of the communication cost is within a user-defined threshold

σ after τ consecutive adaptations. Normally, the partitioning converges quickly, since each

adaptation usually produces a better partitioning and after a certain point the partitioning

could not be further improved (Section 4.4.2.2).

However, there may exist cases where the improvement achieved never meets the thresh-

old, or it oscillates around the threshold. To eliminate this issue, we double σ every τ

supersteps or once we detect two consecutive oscillations. We define as oscillation the sit-

77

uation where a newly computed partitioning fails to meet the threshold, but its immediate

prior has met the threshold. In this way, the algorithm will always converge timely, thus

reducing the overhead of Planar.

Also, there is a chance that Planar outputs a decomposition worse than its immediate

prior during some adaptation supersteps, since vertex migration is performed using only local

information available to each partition. One way to avoid this is to rollback the movements

we made. However, to do this we have to put the convergence check before the physical

data migration phase. As a result, each server would first need to exchange the up-to-date

vertex locations with each other, because each vertex needs to know the up-to-date vertex

locations of their neighbors for convergence check, leading to additional coordination over-

head. In contrast, if we put the convergence check after the physical data migration phase,

we can combine the vertex location updates along with the updates of other application

data (i.e., the mapping of global vertex identifiers to local vertex identifiers3), thus reducing

the communication overhead. Furthermore, the rollback may be an overreaction, because

these movements may lead to a big performance improvement in the following adaptation

supersteps. Besides, we only observed this negative performance impact in few adaptation

supersteps on the datasets we tested and the deterioration was very small (less than 1%).

This has convinced us that it is not beneficial to tackle this issue.

It should be noted that we assume that the changes in the graph during each of Planar’s

adaptation supersteps is not drastic. This is a reasonable assumption, since repartitioning

is performed in a periodic manner in real-world scenarios.

4.4.1.5 Incorporating Contention-Awareness To make Planar also aware of the

issue of shared resource contention on the memory subsystems, we adopt the same solu-

tion as Argo, where we penalize intra-node network communication costs by a score. The

score is computed based on the degree of contentiousness between the communication peers.

By doing this, the amount of intra-node communication will decrease accordingly. The pa-

rameter λ can be used to specified the degree of contention. If λ = 0, Planar will only

3In distributed graph computation, each vertex has one global identifier unique across partitions and one
local identifier unique within each partition.

78

consider the communication heterogeneity, whereas λ = 1 means that intra-node shared re-

source contention is the biggest bottleneck and should be prioritized over the communication

heterogeneity. It should be noticed that Planar with any λ ∈ (0, 1] considers both the con-

tention and the communication heterogeneity. Considering the impact of resource contention

and communication heterogeneity is highly application- and hardware-dependent; users will

need to do simple profiling of the target applications on the actual computing environment

to determine the ideal λ for them.

4.4.2 PLANAR: Evaluation

4.4.2.1 Setup In this section, we first evaluate the sensitivity of Planar to (a) its two

important parameters (Section 4.4.2.2) and (b) varying input decompositions computed by

different initial partitioners (Section 4.4.2.3). We then validate the effectiveness of Planar

using two graph workloads: Breadth-First Search (BFS) [59] and Single-Source Shortest

Path (SSSP) [60] (Section 4.4.2.4). Finally, we demonstrate the scalability of Planar using

a billion-edge graph (Section 4.4.2.5). Towards this, we implemented the two workloads and

a prototype of Planar using MPI [46, 47].

Datasets Table 4.7 describes the datasets used. By default, the graphs were (re)partitioned

with both the vertex weights (i.e., computational requirement) and vertex sizes (i.e., amount

of the data of the vertex) set to their vertex degree. Their edge weights (i.e., amount of data

communicated) were set to 1. Vertex degree is a good approximation of the computational

requirement and the migration cost of each vertex, while an edge weight of 1 is a close es-

timation of the communication pattern of BFS and SSSP. Considering the communication

cost is more important than migration cost, all the experiments were performed with α = 10

(Eq. 4.2). Unless explicitly specified, the graphs were initially partitioned by the determinis-

tic greedy heuristic, DG [8], across cores of the machines used (one partition per core). The

partitionings were then improved by Planar until it converges. During the (re)partitioning,

we allowed up to 2% load imbalance among partitions. It should be noted (a) that DG/LDG

were extended to support vertex- and edge-weighted graphs for fair comparison; and (b) that

vertices of the graphs were presented to DG/LDG in some unknown order.

79

Platforms We evaluated Planar on two clusters: MPICluster [65] and Gordon supercom-

puter [50]. MPICluster had a flat network topology, where all the 32 compute nodes were

connected to a single switch via 56Gbps FDR Infiniband. On the other hand, the Gordon

network topology was a 4x4x4 3D torus of switches connected via QDR Infiniband with 16

compute nodes attached to each switch (with 8Gbps link bandwidth). Table 4.8 depicts the

compute node configuration of both clusters. All results presented were the means of 5 runs,

except the execution of SSSP on Gordon.

Network Communication Cost Modelling The relative network communication costs

among the partitions were approximated using a variant of osu latency benchmark [66]. To

ensure the accuracy of the cost matrix, we bound each MPI rank (process) to a core using

the options provided by OpenMPI 1.8.6 [46] on MPICluster and MVAPICH2 1.9 [47] on

Gordon. OpenMPI and MVAPICH2 were two different MPI implementations available on

the clusters.

1

5

10

15

20

 0 5 10 15 20 25 30Im
p
ro

v
e
m

e
n
t

(%
)

Adaptation Supersteps

wave
auto

333SP

Figure 4.23: Planar parameter selection

1

5

10

15

20

 0 5 10 15 20 25 30Im
p
ro

v
e
m

e
n
t

(%
)

Adaptation Supersteps

PA-roadNet
USA-RoadNet
CA-CondMat

DBLP

Figure 4.24: Planar parameter selection

1

5

10

15

20

 0 5 10 15 20 25 30Im
p
ro

v
e
m

e
n
t

(%
)

Adaptation Supersteps

Amazon
Email-Enron

Figure 4.25: Planar parameter selection

1

5

10

15

20

 0 5 10 15 20 25 30Im
p
ro

v
e
m

e
n
t

(%
)

Adaptation Supersteps

YouTube
as-skitter

com-lj

Figure 4.26: Planar parameter selection

80

4.4.2.2 Parameter Selection

Configuration This experiment studied the sensitivity of Planar to its two critical pa-

rameters: σ and τ (Section 4.4.1.4). Theoretically, σ should be a value large enough, so

that Planar can converge quickly, especially for decompositions that it cannot improve

much. Also, it should be small enough, offering Planar sufficient time to refine graph

decompositions with large improvement space. Towards this, we applied Planar to var-

ious graph decompositions computed by the deterministic greedy (DG) partitioner across

cores of two 20-core compute nodes for 30 consecutive adaptation supersteps, and examined

the improvement achieved by Planar in terms of communication cost in each adaptation

superstep (against the input decomposition to each adaptation superstep).

Results Figures 4.23 to 4.26 present the corresponding results. Interestingly, we found that

most of the improvements were achieved in the first 5 adaptation supersteps. After that,

the improvement achieved in each adaptation superstep dropped quickly below 1%, and as-

skitter and Email-Enron were the only two datasets exhibiting some small oscillations. Thus,

in our implementation, we set σ and τ to 1% and 10, respectively, and do not perform any

convergence check for the first 5 adaptation supersteps.

4.4.2.3 Microbenchmarks

Configuration This experiment examined the effectiveness of Planar in terms of parti-

tioning quality (Eq. 4.2 and 4.3), when it was provided by various decompositions computed

by HP, DG, LDG, and Metis. HP is the default graph partitioner used by many parallel

graph computing engines; DG and LDG are two state-of-the-art streaming graph partition-

ing heuristics [8]; and Metis is a state-of-the-art multi-level graph partitioner [32]. The

graphs were initially partitioned across two 20-core compute nodes on MPICluster.

Quality of the Initial Decompositions (Figure 4.27) Figure 4.27 presents the initial

communication costs of the decompositions computed by HP, DG, LDG, and Metis for a

variety of graphs in log-scale. As expected, Metis performed the best and HP was the worst.

However, Metis is a heavyweight serial graph partitioner, making it infeasible for large-scale

distributed graph computation either as an initial partitioner or as an online repartitioner

81

 1

 10

 100

 1,000

 10,000

 100,000

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

C
o
m
m

C
o
s
t
(
1
0
^
5
)

HP
DG
LDG
METIS

Figure 4.27: Communication costs of the initial decompositions partitioned by HP, DG,

LDG, and Metis into 40 partitions.

(repartitioning from scratch). It was reported in [10] that Metis took 8.5 hours to partition

a graph with 1.46 billion edges. Surprisingly, DG performed better than LDG, the best

streaming partitioning heuristic among the ones presented in [8]. This was probably because

the order (some unknown random order) in which vertices were presented to the partitioner

favored DG over LDG, since the results of streaming partitioning heuristics rely on the

order in which vertices are presented to them.

 1

 10

 100

 1,000

 10,000

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

C
o
m
m

C
o
s
t
(
1
0
^
5
) PLANAR+HP

PLANAR+DG
PLANAR+LDG
PLANAR+METIS

(a) Communication Cost

 0%

 20%

 40%

 60%

 80%

 100%

 120%

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

I
m
p
r
o
v
e
m
e
n
t

PLANAR+HP
PLANAR+DG
PLANAR+LDG
PLANAR+METIS

(b) Improvement Achieved

Figure 4.28: Communication cost of the resulting decompositions and improvement achieved

after running Planar over varying initial decompositions generated by HP, DG, LDG, and

Metis across two 20-core machines.

Quality of the Resulting Decompositions (Figures 4.28a & 4.28b) Figures 4.28a

and 4.28b, respectively, plot the log-scale communication cost of resulting decompositions

and the improvements achieved by Planar in terms of communication cost against the

initial decompositions. As shown, the better the initial decomposition was the better the

resulting decomposition would be, and Planar reduced the communication cost of decom-

82

positions computed by HP, DG, and LDG by up to 68%, 46%, and 69%, respectively,

whereas it only slightly improved the decompositions computed by Metis. One reason for

this is that Metis usually produces decompositions much better than others, providing

Planar limited improvement space. Yet, Planar still achieved an improvement by up to

4.6% for complex networks (right 5 datasets) against Metis. On the other hand, this also

showed the stability of Planar, since it did not deteriorate any decompositions computed

by Metis. Also, we found that Planar with DG as its initial partitioner can achieve even

better performance than Metis in real-world workloads (Section 4.4.2.4).

 1

 10

 100

 1,000

 10,000

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−ljM
i
g
r
a
t
i
o
n

C
o
s
t
(
1
0
^
5
)

PLANAR+HP
PLANAR+DG
PLANAR+LDG
PLANAR+METIS

(a) Migration Cost

 0.0

 0.5

 1.0

 1.5

 2.0

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

M
i
g
r
a
t
i
o
n

R
a
t
i
o PLANAR+HP

PLANAR+DG
PLANAR+LDG
PLANAR+METIS

(b) Accumulated Vertex Migration Ratio

Figure 4.29: Overhead of the adaptation on varying initial decompositions computed by HP,

DG, LDG, and Metis into 40 partitions.

Migration Cost (Figures 4.29a & 4.29b) In the experiment, we also examined the mi-

gration cost introduced by Planar in terms of Eq. 4.3 and the accumulated vertex migration

ratio (# of vertices migrated as a percentage of the entire graph) across all the adaptation

supersteps. Figures 4.29a and 4.29b present the corresponding results. As shown, the better

the initial decomposition was, the lower the migration cost was. The reason why the migra-

tion ratio exceeded 1 in some cases was because each vertex may be migrated multiple times

during the repartitioning. We also observed that Planar improved the decompositions

computed by DG only with a very small amount of data migration for most of the datasets.

Also, Planar only led to a very small amount of data migration for decompositions with

limited improvement space, further demonstrating the stability of Planar.

Convergence Time (Figure 4.30) Another item of interest in this experiment is the

average number of supersteps Planar took to converge (Figure 4.30). As presented, for

graph decompositions that have limited improvement space, Planar only took around 8

83

 0

 5

 10

 15

 20

 25

 30

 35

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

C
o
n
v
e
r
g
e

T
i
m
e

PLANAR+HP
PLANAR+DG
PLANAR+LDG
PLANAR+METIS

Figure 4.30: Planar converge time in terms of supersteps

supersteps to converge. In contrast, graph decompositions with large improvement space

were provided with sufficient time. This further validated the robustness of σ and τ ’s default

values. The reason why the converge time dropped below 15 in some cases was because we

made some additional optimizations to the convergence check phase.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

R
a
ti

o

Time (supersteps)

Migration Ratio
Hop-Cuts

Figure 4.31: Planar convergence study on

the wave dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

R
a
ti

o

Time (supersteps)

Migration Ratio
Hop-Cuts

Figure 4.32: Planar convergence study on

the com-lj dataset

Convergence Process (Figures 4.31 & 4.32) Another thing of interest is the exact

converge process: the number of vertices migrated by Planar (with DG as its initial par-

titioner) during each adaptation superstep and the evolution of the corresponding hopcut

across the adaptation supersteps. Figures 4.31 and 4.32 show the accumulated vertex mi-

gration ratio and the normalized hopcut (with the initial decomposition as the baseline) for

the wave and the com-lj dataset, respectively. In both figures, superstep 0 corresponds to

the initial decomposition. All the datasets followed the same pattern where Planar greatly

reduced the hopcut in the first 5 adaptation supersteps, which were also the places where

84

most vertices got migrated.

4.4.2.4 Real-World Applications (BFS & SSSP)

Configuration This experiment evaluated Planar using BFS and SSSP on the YouTube,

as-skitter, and com-lj datasets. Initially, the graphs were partitioned across cores of three

machines of two clusters using DG. Then, the decomposition was improved by Planar until

convergence. During the execution, we grouped multiple messages sent by each MPI rank

to the same destination into a single one (8 for the YouTube and as-skitter dataset and 16

for the com-lj dataset). The reason why we picked 8 and 16 was because larger values would

make the execution time too short, especially for the execution of BFS.

Resource Contention Modelling To capture the impact of resource contention, we ran a

profiling experiment for BFS and SSSP with the three datasets on both clusters by increasing

λ gradually from 0 to 1. Interestingly, we found that intra-node shared resource contention

was more critical to the performance on MPICluster, while inter-node communication was

the bottleneck on Gordon. This was probably caused by the differences in network topologies

(flat vs hierarchical), core count per node (20 vs 16), memory bandwidth (65GB vs 85GB),

and network bandwidth (56Gbps vs 8Gbps) of the two clusters, and that BFS/SSSP had to

compete with other jobs running on Gordon for the network resource, while there was no

contention on the network communication links on MPICluster. Hence, we fixed λ to be 1

on MPICluster and 0 on Gordon for our experiments.

Results in terms of Job Execution Time (Tables 4.12 & 4.13) Tables 4.12 and 4.13

show the execution time of BFS and SSSP with 15 randomly selected source vertices on the

three datasets. The job execution time is defined as: JET =
∑n

i=1 SET (i), where n corre-

sponds to the number of supersteps the job has, while SET (i) is the ith superstep execution

time of the slowest MPI rank. In the table, DG and Metis mean that BFS/SSSP was

performed on the datasets without any repartitioning/refinement, uniPlanar is a variant

of Planar assuming homogeneous and contention-free computing environment (serving as

a representative of the state-of-the-art adaptive solutions). We also show the overhead of

each algorithm (in parentheses). Note that Metis is performed offline, and typically takes

85

Table 4.12: BFS job execution time (s)

Algorithm/Dataset YouTube as-skitter com-lj

MPICluster

DG 21 79 221

Metis 5.28 (off) 66 (off) 23 (off)

ParMetis 21 (21.92) 51 (9.75) 175 (4.89)

uniPlanar 10 (1.78) 36 (1.90) 109 (4.13)

Aragon 8.99 (21.18) 13 (17.41) 55 (61.97)

Paragon 9.03 (4.12) 12 (3.44) 67 (10.43)

Planar 7.95 (6.74) 8.76 (6.91) 21 (17.20)

Gordon

DG 353 660 956

uniPlanar 222 (3.14) 217 (2.97) 587 (6.59)

Aragon 240 (21.18) 238 (17.10) 501 (59.94)

Paragon 217 (3.76) 248 (2.98) 558 (9.03)

Planar 166 (7.43) 205 (6.63) 477 (16.07)

Table 4.13: SSSP job execution time (s)

Algorithm/Dataset YouTube as-skitter com-lj

MPICluster

DG 2166 1754 4693

Metis 520 (off) 694 (off) 907 (off)

ParMetis 1908 (21.91) 492 (9.70) 3055 (4.76)

uniPlanar 1128 (2.61) 615 (2.61) 2043 (5.47)

Aragon 303 (21.26) 291 (16.95) 1283 (61.86)

Paragon 405 (4.08) 312 (3.36) 1439 (10.38)

Planar 257 (7.68) 288 (7.08) 890 (18.76)

Gordon

DG 3581 6517 11011

uniPlanar 2691 (4.62) 2184 (4.15) 7080 (9.04)

Aragon 2874 (20.66) 3474 (15.41) 7395 (68.75)

Paragon 2613 (3.85) 2741 (2.94) 7363 (9.03)

Planar 2322 (9.16) 2801 (8.11) 6381 (17.57)

a long time to complete (even hours for large graphs).

As expected, Planar beat DG, ParMetis, and uniPlanar in almost all the cases.

Compared to DG, Planar reduced the execution time of BFS and SSSP on Gordon by up

to 69% and 57%, respectively, and by up to 90% and 88% on MPICluster, respectively. So,

in the best case, Planar was 10 times better than DG. Yet, the overhead Planar exerted

(sum of the repartitioning time and physical data migration time) was very small compared

to the improvement it achieved and the job execution time. By comparing the results of

uniPlanar with DG, we can conclude that Planar not only improved the mapping of the

application communication pattern to the underlying hardware, but also the quality of the

initial decomposition (edgecut). What we did not expect was that Planar, with DG as

its initial partitioner, outperformed the gold standard, Metis, in 3 out the 6 cases and was

comparable to Metis in other cases, and that Planar performed even better than both

Aragon and Paragon. We attributed this to the greedy nature of our Phase-1 vertex

migration.

Results in terms of Communication Volume Breakdown (Figures 4.33a & 4.33b)

To further confirm our observations, we also measured the total amount of data remotely

86

 0
 1,000
 2,000
 3,000
 4,000
 5,000
 6,000
 7,000

DG METIS

PARMETIS

uniPLANAR

ARAGON

PARAGON

PLANAR

DG METIS

PARMETIS

uniPLANAR

ARAGON

PARAGON

PLANAR

DG METIS

PARMETIS

uniPLANAR

ARAGON

PARAGON

PLANAR

C
o
m
m

V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

(a) MPICluster

 0
 1,000
 2,000
 3,000
 4,000
 5,000
 6,000
 7,000

DG uniPLANAR

ARAGON

PARAGON

PLANAR

DG uniPLANAR

ARAGON

PARAGON

PLANAR

DG uniPLANAR

ARAGON

PARAGON

PLANAR

C
o
m
m

V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

(b) Gordon

Figure 4.33: The communication volume breakdown of SSSP on both clusters.

exchanged per superstep by BFS and SSSP among cores of the same socket (intra-socket

communication volume), among cores of the same compute node but belonging to different

sockets (inter-socket communication volume), and among cores of different compute nodes

(inter-node communication volume). Since we observed similar patterns for BFS and SSSP

in all the cases, we only present the breakdown of the accumulated communication volume

across all the supersteps for the execution of SSSP on both clusters here.

As shown in Figures 4.33a and 4.33b, comparing to the architecture-agnostic solutions

(i.e., DG, Metis, ParMetis, and uniPlanar), Planar had the lowest intra-node (inter-

socket & intra-socket) communication volume on MPICluster and lowest inter-node com-

munication volume on Gordon. It should be noticed that on MPICluster intra-node com-

munication was the bottleneck, and vice verse on Gordon. In comparison to Aragon and

Paragon, Planar not only led to lower communication volume on critical components,

but also had lower total remote communication volume. Another interesting thing was that,

in spite of the higher total communication volume of the architecture-aware solutions (i.e.,

Aragon, Paragon, and Planar) when compared to Metis, ParMetis, and uniPla-

nar, architecture-aware solutions still outperformed them in most cases due to the reduced

communication on critical components.

4.4.2.5 Billion-Edge Graph Scaling

Configuration This experiment investigated the scalability of Planar using the friendster

dataset (3.6 billion edges) in three different setups: (1) Scalability of Graph Size; (2) Scal-

ability of Number Partitions; and (3) Hybrid. In Setup 1, we demonstrated the scalability

87

200

2500

5000

7500

10000

12500

15000

0 0.9
1.8

2.7
3.6

B
F
S
 J
E
T
 (

s
)

Approximate # of edges (billions)

DG

uniPLANAR

PARAGON

PLANAR

(a) Scalability of Graph Size
(3*20 Partitions)

200

2500

5000

7500

10000

12500

15000

0 1*20
2*20

3*20
4*20

5*20
6*20

B
F
S
 J
E
T
 (

s
)

#-Machines*#-Cores

DG

uniPLANAR

PARAGON

PLANAR

(b) Scalability of # of Partitions
(3.6B Edges)

0
1000
2000
3000
4000
5000

0 2
*2

0
@

1
.2

3
*2

0
@

1
.8

4
*2

0
@

2
.4

5
*2

0
@

3
.0

6
*2

0
@

3
.6

B
F
S
 J
E
T
 (

s
)

#-Machines*#-Cores@#-Edges

DG

uniPLANAR

PARAGON

PLANAR

(c) Hybrid Scalability

Figure 4.34: BFS Job Execution Time (JET)

of Planar as the graph scaled (from 0.9 up to 3.6 billion edges) but with a fixed num-

ber of partitions (60). In Setup 2, we showed the scalability of Planar using the original

com-friendster dataset when it was partitioned into varying number of partitions (from 60

up to 120). In Setup 3, we exhibited the scalability of Planar as the number of partitions

increased (from 40 up to 120) but with an approximately fixed number of edges per partition.

That is, we varied the graph size accordingly (from 1.2 up to 3.6 billion edges) as the number

of partitions increased.

Towards this, we generated some additional datasets by sampling the edge lists of the

friendster dataset. We denoted the datasets as friendster-p, where p (0 < p ≤ 1) was the

probability that each edge was kept while sampling. Hence, friendster-p would have around

3.6 ∗ p billion edges. Interestingly, the number of vertices remained almost unchanged in

spite of the sampling. The experiment was performed on MPICluster with BFS message

grouping size set to 256. We would only present the results of DG, Paragon, uniPlanar,

and Planar, since Metis, ParMetis, and Aragon failed to (re)partition the graphs even

for the smallest graph of this experiment, due to their heavyweight nature.

Results in terms of BFS Execution Time (Figures 4.34) Figures 4.34 plots the BFS

execution time with 15 randomly selected source vertices in different setups. As shown,

Planar had the lowest BFS execution time in all the cases. We also noticed that in Setup

1 (Figure 4.34a), Planar had the lowest speed in which the BFS execution time increased

as the graph scaled, and that in Setup 2 & 3, the more the machines used, the faster BFS

88

completed. Interestingly, we found that the improvement achieved by Planar gradually

decreased as the number of partitions increased. This was probably because the fraction of

intra-node communication dropped greatly as the number of partitions increased due to the

increasing inter-node communication peers, weakening the impact of architecture-awareness

on MPICluster. Even though the improvement decreased, Planar still achieved up to 2.9x

speedups with 6 machines (Setup 2). It should be noted that Planar reduced the execution

time of all the computing elements (6*20 cores) by this much not just one.

0

100

200

300

400

500

0 0.9
1.8

2.7
3.6

R
e
p
a
rt

.
T
im

e
 (

s
)

Approximate # of edges (billions)

PARAGON PLANAR

(a) Scalability of Graph Size
(3*20 Partitions)

0

200

400

600

800

1000

0 1*20
2*20

3*20
4*20

5*20
6*20

R
e
p
a
rt

.
T
im

e
 (

s
)

#-Machines*#-Cores

PARAGON PLANAR

(b) Scalability of # of Partitions
(3.6B Edges)

0
200
400
600
800

1000

0 2
*2

0
@

1
.2

3
*2

0
@

1
.8

4
*2

0
@

2
.4

5
*2

0
@

3
.0

6
*2

0
@

3
.6

R
e
p
a
rt

.
T
im

e
 (

s
)

#-Machines*#-Cores@#-Edges

PARAGON PLANAR

(c) Hybrid Scalability

Figure 4.35: Repartitioning Time

Results in terms of Repartitioning Time (Figures 4.35) Figure 4.35 shows the corre-

sponding repartitioning time of Planar and Paragon. As shown, Planar’s repartitioning

time increased at a much slower rate than that of Paragon in all the setups. The reason

why Planar had higher repartitioning time for smaller graphs was because Planar re-

quires a migration phase at the end of each adaptation superstep (the major source of the

overhead). Fortunately, as the graph and the deployment scale increased, Planar was the

clear winner. This was because Paragon requires more knowledge about the graph for

repartitioning and has lower degree of repartitioning parallelism. In fact, if we average the

repartitioning time across the adaptation supersteps, the overhead introduced by Planar

in each adaptation superstep would be very small.

89

4.4.3 PLANAR+: Optimized PLANAR

In this section, we introduce three major optimizations made by Planar+ to further reduce

the repartitioning overhead of Planar. The main optimizations include: (a) the elimination

of per adaptation superstep physical vertex migration; (b) an optimized relative network

communication costs measuring method; and (c) an optimized vertex gain computation

algorithm.

Algorithm 7: Planar+ Full Repartitioning
Data: Pl, c, σ, τ

1 while the partitioning has not converged do
2 // Phase-1 (Section 4.4.1.1 & 4.4.1.2)
3 LogicalVtxMigration(Pl, c,&pv)
4 // Vertex Location Update (Section 4.4.3.1)
5 VertexLocationUpdate(Pl, pv)
6 // Convergence Check (Section 4.4.1.4)
7 CheckPartitionConvergence(σ, τ)

8 // Phase-2 (Section 4.4.1.3)
9 PhysicalVtxMigration(Pl, pv)

4.4.3.1 Eliminating Per Adaptation Superstep Physical Vertex Migration In

our previously published work, Planar repartitions the graph in an adaptive manner, where

it (Algorithm 3) is performed at the beginning of each computation superstep until the par-

titioning converges. As a result, it requires a physical migration phase at the end of each

adaptation superstep, which could potentially increase the repartitioning overhead. To ad-

dress the issue, Planar+ provides an alternative full repartitioning mode. Algorithm 7

describes the whole process of full repartitioning. In the full repartitioning mode, Planar+

(Algorithm 7) only needs to be executed once and will automatically adapt the graph con-

tinuously until the partitioning converges. As can be seen, we eliminate the need of the

physical vertex migration during each adaptation superstep (Line 2–7) and only require one

physical vertex migration at the end of the whole reparitioning process (Line 9). However,

we do need an update of the vertex location in each adaptation superstep (Line 5), because

each vertex needs to know the up-to-date locations of its neighbors for the convergence check

as well as the execution of the next adaption superstep.

To support efficient vertex location update, we choose one MPI process as the root.

90

The root maintains an array to keep track of the locations of all the vertices, with A[i]

specifying the location of vertex vi. Note that we could potentially increase the number

of root processes and let each root process take responsibility for a small range of vertices,

in cases where one root process could not hold the locations of all the vertices in memory.

Then, each MPI process takes advantages of the MPI one-sided data communication [77] to

update the locations of vertices at the end of Phase-1 vertex migration. MPI one-sided data

communication allows each MPI process to directly read/write a dedicated memory region

of the root process potentially more efficiently than regular two-sided data communication

(e.g., MPI collective and point-to-point operations).

Once the root process has the up-to-date vertex locations, it will broadcast the locations

to all the processes, such that each partition can update the location information for its

neighboring list. To avoid memory exhaustion, we divide the vertex neighbor location update

into multiple rounds. Within each round, the root process will only broadcast locations of

vertices within a fixed size contiguous range. Correspondingly, the MPI processes will only

update the locations of their vertex neighbors of the specified range in each round. For

example, for a graph with |V | vertices, we may choose to only update the locations of

vertices whose IDs are in the range of [i ∗ |V |
R
, (i + 1) ∗ |V |

R
) in the ith round. Here, R is

the total number of rounds required and i ∈ [0, R). We also note that the performance of

MPI one-sided data communication may vary greatly for different MPI implementations.

Towards this, Planar+ also provides a fall back solution that is proposed in our previous

work [22] for the vertex location update.

4.4.3.2 Optimizing Network Communication Cost Measurement The effective-

ness of Planar/Planar+ relies on a fairly accurate measurement of the relative network

communication costs among the computing elements. This section describes how we measure

the relative network communication costs among the computing elements.

Possible Solutions: Clearly, one straightforward approach would be measuring the rel-

ative network communication costs for all the communication peers quantitatively. The

measurement for a single pair can be achieved via a sequence of pingpong messages with

varying message sizes like benchmark [66] does. The problem of such a solution is that the

91

measurement may take very long time to finish. For example, to measure the relative net-

work communication costs among processes running on five 20-core machines (one process

per core), we have to measure the costs for 100∗99
2

= 4950 pairs. Assuming the measurement

of a single pair takes 1s, 4950 pairs would take more than an hour, leading to significant

resource waste.

On the other hand, we could also measure the relative network communication costs

qualitatively using the knowledge of the network topology. For example, we could assign a

cost of 1 for process pairs running on cores of the same CPU socket, a cost of 2 for process

pairs running on cores of different CPU sockets but on the same machine, a cost of 3 for

process pairs running on cores of different machines but connected to the same switch, and a

cost of 4 for process pairs running on cores of different machines connected via two switches.

Although the measurement is extremely fast, the information about the network topology

may not always be available. Besides, manually assigning the cost also compromises the

accuracy.

Proposed Solution: Towards this, Planar+ proposes a hybrid approach where we still

measure the relative network communication costs quantitatively but with the help of a

minimum amount of topology information to speed up the measurement. Specifically, we

first categorize the relative network communication costs into three types: inter-node, inter-

socket, and intra-socket network communication costs. Inter-node network communication

costs denote the communication costs among processes running on cores of different ma-

chines, inter-socket network communication costs correspond to the communication costs

among processes running on cores of the same machine but on different CPU sockets, and

intra-socket communication costs are the communication costs among processes running on

cores of the same CPU socket.

With such a categorization, we only need to select one process as a representative for

the processes running on cores of the same machine to measure the relative inter-node net-

work communication costs (the relative network communication costs among the selected

processes). Similarly, to measure the relative inter-socket network communication costs, we

only have to pick one process as a representative for all the processes running on cores of

the same CPU socket. Note that the measurement of inter-socket costs of different machines

92

can be performed in parallel. For processes running on cores of the same CPU socket, we

only measure the cost for one process pair and use the cost for all the process pairs running

on the same CPU socket. Clearly, our proposed approach only requires the knowledge of the

machine architecture. Such information can be easily obtained via the HwLoc [78] library.

Benefits of the Proposed Solution: By measuring the relative network communication

costs in this way, we significantly reduce the number of communication peers we have to

measure. For our previous example with 100 processes running on five 20-core machines (10

cores per CPU socket), we only have to measure 25 pairs in total: 5∗4
2

= 10 pairs for the

inter-node network communication costs, 5 pairs for the inter-socket network communication

costs (one pair per machine), and 10 pairs for the intra-socket network communication costs

(1 pair per socket). An additional benefit of this is that with such a significant decrease

in the number of pairs to be measured, we can spend more time in measuring the per pair

network communication costs to further increase the accuracy.

4.4.3.3 Optimizing Vertex Gain Computation In addition to making the measure-

ment of the relative network communication costs faster, measuring the network costs in

this way also provides us a way to speed up our Phase-1a vertex migration (Algorithm 4 &

Section 4.4.1.1). Algorithms 8 and 9 show how Planar implements Line 3 of Algorithm 4.

As illustrated, the time complexity for a vertex, v, to find its optimal migration destination is

O(d(v)+n2), where d(v) and n, respectively, denote the degree of the vertex and the number

of partitions. This is because the computation of dext(v, Pk) (Line 2–4 of Algorithm 8) takes

O(d(v)) time and the optimal migration destination selection (Line 5–9 of Algorithm 8) takes

O(n2).

As can be seen, computing the gain of moving v from its current partition Pi to Pj

(Algorithm 9) always takes O(n) time regardless of where Pj may be. This is suboptimal.

For example, in cases where Pi and Pj are assigned to cores of the same CPU socket, the

amount of data that v communicates with any other partitions has no impact on the gain of

moving v from Pi to Pj. This is because, in such cases, c(Pi, Pk) and c(Pj, Pk) are exactly the

same for any Pk other than Pi and Pj. Because of this, the difference between comm(v, Pi)

93

Algorithm 8: Phase-1a: Migration Destination Selection
Data: v, c

1 //implementation of Equation 4.15
2 foreach u ∈ {Neighbors of v} do
3 //Pk is the partition that u currently belongs to
4 dext(v, Pk) += weight of edge (u, v)

5 foreach Partition Pj where j ∈ [1, n] do
6 //Pi is the partition v that currently belongs to
7 gi,j(v) = VertexGainComputation(v, Pi, Pj , dext, c)
8 if gi,j(v) is greater than maxGain then
9 update maxGain and the optimal migration destination

10 return maxGain and the optimal migration destination

Algorithm 9: Planar: Vertex Gain Computation
Data: v, Pi, Pj , dext, c

1 comm(v, Pi) = 0
2 comm(v, Pj) = 0
3 //implementation of Equation 4.14
4 foreach Partition Pk where k ∈ [1, n] do
5 comm(v, Pi) += dext(v, Pk) ∗ c(Pi, Pk)
6 comm(v, Pj) += dext(v, Pk) ∗ c(Pj , Pk)

7 //implementation of Equation 4.17
8 gain = (comm(v, Pi) - comm(v, Pj)) * α - mig(v, Pi, Pj)
9 return gain

and comm(v, Pj) becomes

(dext(v, Pj)− dext(v, Pi)) ∗ c(Pi, Pj) (4.21)

In other words, we reduce the computation of comm(v, Pi) to

dext(v, Pj) ∗ c(Pi, Pj) (4.22)

and comm(v, Pj) to

dext(v, Pi) ∗ c(Pi, Pj) (4.23)

both of which can be computed in O(1) time.

Similarly, in cases where Pi and Pj are on cores of the same machine but of different

CPU sockets, the amount of data that v communicates with partitions that are residing on

other machines has no impact on the gain of moving v from Pi to Pj, since c(Pi, Pk) and

94

c(Pi, Pk) are exactly the same for any Pk that are on other machines. In other words, we

only have to consider the partitions that are assigned to the same machine as Pi and Pj for

the gain computation, reducing the computation of comm(v, Pi) to

dskt(v, sj) ∗ cskt(si, sj) + (dskt(v, si)− dext(v, Pi)) ∗ cskt(si, si) (4.24)

and of comm(v, Pj) to

dskt(v, si) ∗ cskt(si, sj) + (dskt(v, sj)− dext(v, Pj)) ∗ cskt(sj, sj) (4.25)

Here, si represents the CPU socket that Pi is assigned to, whereas cskt(si, sj) represents the

relative network communication costs the among processes running on cores of socket si and

sj. Term dskt(v, si) denotes the amount of data that v communicates with partitions that

are assigned to cores of socket si. Clearly, with the help of dskt this can be computed in O(1)

time. Here, we assume that each machine has two CPU sockets for the ease of presentation,

but our solution obviously handles arbitrary number of CPU sockets. It is worth mentioning

that if Pi and Pj are on the same CPU socket, the difference between Eq. 4.24 and 4.25 is

the same as that of Eq. 4.22 and 4.23.

In fact, even if Pi and Pj are assigned to cores of different machines, we can still reduce

the time complexity from O(n) to O(m), where m represents the number of machines used.

The rationale behind this is that Pi has the same relative network communication costs to all

the partitions that are residing on a single machine. That is, we can reduce the computation

of comm(v, Pi) to
m∑

k=1 and k 6=i

dmach(v,Mk) ∗ cmach(Mi,Mk) (4.26)

where dmach(v,Mk) represents the amount of data that v communicated with partitions of

machine Mk, Mi denotes the machine which Pi is assigned to, and cmach(Mi,Mk) is the

relative network communication cost between machine Mi and machine Mk. Note that we

still need to consider the communication cost that v incurs among partitions that are assigned

to machine Mi (Eq. 4.24).

Algorithm 10 presents the optimized implementation of the vertex gain computation

process in Planar+. The new algorithm takes as input four extra parameters: dskt, dmach,

95

Algorithm 10: Planar+: Vertex Gain Computation
Data: v, Pi, Pj , dext, dskt, dmach, c, cskt, cmach

1 comm(v, Pi) = 0
2 comm(v, Pj = 0
3 //optimized implementation of Equation 4.14
4 if Pi and Pj are on different machines then
5 foreach Machine Mk where k ∈ [1,m] do
6 comm(v, Pi) += dmach(v,Mk) ∗ cmach(Mi,Mk)
7 comm(v, Pj) += dmach(v,Mk) ∗ cmach(Mj ,Mk)

8 comm(v, Pi) += the value of Equation 4.24
9 comm(v, Pj) += the value of Equation 4.25

10 //implementation of Equation 4.17
11 gain = (comm(v, Pi) - comm(v, Pj)) * α - mig(v, Pi, Pj)
12 return gain

cskt, and cmach. The former two can be easily computed in the same way as dext with the

knowledge of the partition to socket/machine mapping, whereas the latter two are readily

available from the way the relative network communication costs are measured. Although the

optimization only reduces the time complexity by a constant factor, the improvement is still

non-negligible considering that we have to compute the gain for each boundary vertex once

per adaptation superstep, and the repartitioning consists of multiple adaptation supersteps.

4.4.4 PLANAR+: Evaluation

4.4.4.1 Setup In this section, we first evaluate the effectiveness of Planar+ in im-

proving the quality of the partitionings (Section 4.4.4.2). We then validate the scalability

of Planar+ with respect to the number of partitions using two billion-edge graphs (Sec-

tion 4.4.4.3). Lastly, we access the effectiveness of Planar+ using an MPI implementation

of PageRank on two billion-edge graphs (Section 4.4.4.4).

Algorithms We compared Planar+ to (a) three architecture-aware graph repartitioners:

Aragon [21], Paragon [22], and Planar [23], (b) a state-of-the-art streaming graph

partitioner, LDG [8], and (c) uniPlanar+, the architecture-agnostic version of Planar+,

serving as a representative of existing lightweight graph repartitioners.

Datasets Table 4.7 describes the datasets used. By default, the graphs were (re)partitioned

with both the vertex weights (i.e., computational requirement) and vertex sizes (i.e., amount

96

of the data of the vertex) set to their vertex degree. Their edge weights (i.e., amount of data

communicated) were set to 1. Vertex degree is a good approximation of the computational

requirement and the migration cost of each vertex, while an edge weight of 1 is a close

estimation of the communication pattern of PageRank. Considering the communication cost

is more important than migration cost, all the experiments were performed with α = 10

(Eq. 4.2). Unless explicitly specified, the graphs were initially partitioned by the linear

deterministic greedy heuristic, LDG [8], across cores of the machines used (one partition per

core). The partitionings were then improved by the repartitioners until convergence. During

the (re)partitioning, we allowed up to 2% load imbalance among the partitions. Noted that

(a) LDG was extended to support vertex- and edge-weighted graphs for fair comparison;

(b) vertices of the graphs were presented to LDG in the BFS order; and (c) Paragon was

performed with the degree of parallelism set to 1
4

of the number of partitions and the number

of shuffle refinement times of 10.

Platforms We evaluated Planar+ on a local cluster we had at the University of Pitts-

burgh: MPICluster [65]. MPICluster had a flat network topology, where all the 32 compute

nodes were connected to a single switch via 56Gbps FDR Infiniband. Table 4.8 depicts the

compute node configuration of the cluster. All results presented were the means of 5 runs.

MPI Libraries The specific MPI implementation used in our experiments was OpenMPI

1.10.2 [46]. During the evaluation, we bound each MPI rank (process) to a core using the

options provided by OpenMPI 1.10.2.

4.4.4.2 Partitioning Quality

Configuration In this experiment, we access the effectiveness of Planar+ in improving

the quality of the partitionings. Towards this, we first partitioned some datasets of Table 4.7

into 40 partitions using LDG across cores of two 20-core machines. Then, we examined the

quality of the resulting decompositions. In particular, we measured the quality of a parti-

tioning in terms of (a) hopcut (Eq. 4.2), (b) edgecut (the number of edges across partitions),

(c) vertex migration ratio (percentage of vertices migrated), and (d) skewness (Eq. 4.4).

Results in terms of hopcut and edgecut (Figures 4.36a and 4.36b) Figures 4.36a

97

 0%

 10%

 20%

 30%

 40%

 50%

YouTube

as−skitter

com−lj

orkut

H
o
p
c
u
t

R
e
d
u
c
e
d ARAGON

PARAGON
PLANAR
PLANAR+
uniPLANAR+

(a) hopcut

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

YouTube

as−skitter

com−lj

orkut

E
d
g
e
c
u
t

R
e
d
u
c
e
d ARAGON

PARAGON
PLANAR
PLANAR+
uniPLANAR+

(b) edgecut

Figure 4.36: Percentage of hopcut and edgecut reduced by the repartitioners over the de-

compositions initially generated by LDG.

and 4.36b, respectively, present the percentage of the hopcut and edgecut reduced by the

repartitioners on a variety of datasets, when compared with the initial decompositions gen-

erated by LDG. Interestingly, we observed similar patterns among Aragon, Paragon,

Planar, and Planar+ in terms of both hopcut and edgecut, where Planar+ was always

the winner whereas Paragon always performed the worst. In the best case, Planar+ re-

duced the hopcut and edgecut of the initial decomposition by 42.4% and 34.4%, respectively.

The reason why Planar+ was slightly better than Planar was probably because of the

changes we made to the vertex migration probability in our Phase-1a vertex migration as

well as the effect of full repartitioning. The greedy nature we had in Planar and Pla-

nar+’s vertex migration policy was probably responsible for their superiority over Aragon

and Paragon. The reason why Aragon was slightly better than Paragon was because

Paragon was a parallel version of Aragon, where we traded the quality of the result-

ing decompositions for scalability. The decompositions computed by Paragon was quite

comparable to Aragon in terms of both edgecut and hopcut.

As expected, uniPlanar+ outperformed Planar and Planar+ in terms of edgecut,

but was beaten by them in terms of hopcut. The rationale behind this is that uniPlanar+ is

architecture-agnostic whereas Planar and Planar+ are architecture-aware. Architecture-

aware graph repartitioners focus more on minimizing the hopcut even at the cost of increasing

edgecut. Nevertheless, the decompositions computed by Planar and Planar+ were still

much better than the initial decompositions in terms of edgecut in spite of being architecture-

98

aware. What we did not expect was that Aragon and Paragon were always outperformed

by uniPlanar in terms of hopcut. This was probably caused by the fact that the parti-

tionings output by uniPlanar+ had significantly lower edgecut than that of Aragon and

Paragon.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

YouTube

as−skitter

com−lj

orkut

M
i
g
r
a
t
i
o
n

R
a
t
i
o ARAGON

PARAGON
PLANAR
PLANAR+
uniPLANAR+

Figure 4.37: Percentage of vertices migrated the repartitioners

Results in terms of vertex migration ratio (Figure 4.37) Another item of interest in

this experiment was the percentage of the vertices migrated by the repartitioners. Figure 4.37

shows the corresponding vertex migration ratio of different repartitioners. Note that the ratio

of Planar reported here was the accumulated vertex migration ratio across its adaptation

supersteps. As expected, Planar had the highest vertex migration ratio in all the cases,

since it had a physical vertex migration phase in each of its adaptation superstep. As a

result, a vertex may be migrated multiple times before it was moved to its final optimal

destination. It is also expected that Planar+ had much lower vertex migration ratio than

Planar, since it eliminated the need of per adaptation superstep physical vertex migration.

Specifically, Planar+ reduced the vertex migration ratio of Planar by up to 20%. We

also noticed that both Aragon, Paragon, and uniPlanar had lower migration ratio than

that of Planar and Planar+. This was also reasonable considering the fact that they

achieved much lower improvement in terms of hopcut (Figure 4.36a).

Results in terms of partition skewness (Table 4.14) We also examined the skewness

of the resulting decompositions computed by the repartitioners. Table 4.14 shows the corre-

sponding results when the repartitioners were executed with degree of imbalance tolerance

of 1.02. As shown, none of the repartitioners was able to guarantee the exact load balance,

99

Table 4.14: Skewness of the resulting decompositions

Algorithm/Dataset YouTube as-skitter com-lj orkut

Aragon 1.010 1.040 1.010 1.010

Paragon 1.002 1.044 1.002 1.000

Planar 1.022 1.026 1.020 1.020

Planar+ 1.056 1.038 1.020 1.020

uniPlanar+ 1.022 1.066 1.020 1.020

but in most cases they were able to provide the approximate load balance.

4.4.4.3 Scalability Study

Configuration In this experiment, we examined the behavior of the repartitioners as the

number of partitions increased. Towards this, we initially partitioned the Friendster and

Twitter dataset of Table 4.7 across cores of three up to twelve 20-core machines using LDG.

We then applied the repartitioners to the decompositions to improve their quality.

 0%

 5%

 10%

 15%

 20%

 25%

60 120
240

H
o
p
c
u
t

R
e
d
u
c
e
d PARAGON

PLANAR
PLANAR+
uniPLANAR+

(a) Friendster

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

60 120
240

H
o
p
c
u
t

R
e
d
u
c
e
d PARAGON

PLANAR
PLANAR+
uniPLANAR+

(b) Twitter

Figure 4.38: Percentage of hopcut reduced after running the repartitioners over the decom-

positions with varying number of partitions.

Results in terms of hopcut (Figures 4.38a and 4.38b) Figures 4.38a and 4.38b show

the percentage of the hopcut reduced by the repartitioners against the initial decompositions

with varying number of partitions. As expected, Planar and Planar+ were always better

than Paragon and uniPlanar+. Also, Planar+ was almost as good as Planar in all

the cases yet being much faster (Figures 4.39a & 4.39b). We also noticed that as the number

100

of partitions increased, the improvement achieved by Paragon seemed to drop much more

significantly than that of Planar and Planar+. Although we can slow down the trend

by increasing the number of shuffle refinement times of Paragon, it would increase the

overhead of repartitioning. Nevertheless, the improvement was still non-negligible, if we

consider the absolute number of the hopcut reduced.

 0

 200

 400

 600

 800

 1,000

 1,200

60 120
240R

e
p
a
r
t
i
t
i
o
n

T
i
m
e
(
s
)

PARAGON
PLANAR
PLANAR+
uniPLANAR+

(a) Friendster

 0

 100

 200

 300

 400

 500

 600

 700

 800

60 120
240R

e
p
a
r
t
i
t
i
o
n

T
i
m
e
(
s
)

PARAGON
PLANAR
PLANAR+
uniPLANAR+

(b) Twitter

Figure 4.39: Repartition time of the repartitioners over the decompositions with varying

number of partitions.

Results in terms of repartition time (Figures 4.39a and 4.39b) We also report the

repartition time of each algorithm in Figures 4.39a and 4.39b. As shown, in terms of the

repartition time, Planar+ was always better than Planar. This was because Planar+

is an optimized implementation of Planar. The optimizations included: the memorization

technique that Planar+ used to avoid repeated vertex gain computation, the elimination

of per adaptation step physical vertex migration, and the use of the hardware topology

knowledge to speed up the process of vertex gain computation. Specifically, Planar+

speeded up the repartitioning process of Planar by up to 9x without compromising the

quality of the partitioning.

We also observed that Planar+ had lower repartition time than that of Paragon in

spite of producing better partitionings. One of the reasons behind this was that Planar+

required less data communication than Paragon for repartitioning. Another reason for this

was that Planar+ had higher degree of parallelism than that of Paragon. The maximal

degree of parallelism that Paragon can have was 1
2
n, whereas the degree of parallelism that

Planar+ had was always n. Here, n was the number of partitions. The reason why the

gap was closing up as n increased was because as n increased the improvement achieved by

101

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

friendster

twitter

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
)

LDG

PARAGON

PLANAR+

uniPLANAR+

(a) Grouping size of 256

 0

 50

 100

 150

 200

 250

 300

 350

 400

friendster

twitter

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
)

LDG

PARAGON

PLANAR+

uniPLANAR+

(b) Grouping size of 512

 0

 20

 40

 60

 80

 100

friendster

twitter

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
)

LDG

PARAGON

PLANAR+

uniPLANAR+

(c) Grouping size of 1024

Figure 4.40: PageRank execution time on Friendster and Twitter datasets with varying

message grouping sizes.

Paragon had a tendency to drop greatly, making its execution terminate earlier. This also

explained why Paragon was faster than Planar sometimes.

We also observed that uniPlanar was always faster than others. This was expected

as the vertex gain computation process of uniPlanar+ was simpler than the architecture-

aware ones. Another thing worth mentioning here was that regardless of the increasing

number of partitions, the overhead of Planar+ and uniPlanar+ remained quite stable

in comparison to that of Planar. This further highlighted the effectiveness of the optimiza-

tions we made to Planar+.

4.4.4.4 Real-World Workload (PageRank)

Configuration In this section, we evaluated Planar+ with an MPI implementation of

PageRank on the Friendster and Twitter datasets. To this end, we first partitioned the graphs

across cores of MPICluster using LDG. Then, we ran PageRank on the decompositions

that were improved by the repartitioners. During the execution of PageRank, we grouped

multiple messages sent by each MPI rank to the same destination into a single one. Given

the superiority of Planar+ over Planar, we would only present the results of Planar+

with its competitors in this section.

Resource Contention Modelling To capture the impact of resource contention, we

ran a profiling experiment for PageRank with the datasets on the cluster by increasing λ

gradually from 0 to 1. Interestingly, we found that intra-node shared resource contention

was more critical to the performance on the cluster. Hence, we fixed λ to be 1 throughout

the experiment.

102

Results in terms of PageRank execution time (Figures 4.40a to 4.40c) Fig-

ures 4.40a to 4.40c present the resulting execution time of PageRank (20 iterations) with

different message grouping sizes, when the datasets were partitioned across six 20-core ma-

chines. As expected, Planar+ outperformed others in almost all the cases, and architecture-

aware solutions (Paragon and Planar+) performed better than architecture-agnostic ones

(LDG and uniPlanar+) in most of the cases.

When compared with LDG, Planar+ reduced the workload execution time, respec-

tively, by 68%, 45%, and 34% on the Friendster dataset for message grouping size of 256,

512, and 1024, and, respectively, by 10%, 10%, and 7% on the Twitter dataset for message

grouping size of 256, 512, and 1024. In comparison to uniPlanar+, Planar+ reduced

the workload execution time, respectively, by 61%, 35%, and 25% on the Friendster dataset

for message grouping size 256, 512, and 1024, and, respectively, by 12% and 20% on the

Twitter dataset for message grouping size of 256 and 512. One thing worth mentioning here

is that Planar+ reduced the execution time of all the computing elements (120 cores) by

this much. This is essentially equivalent to many hours of CPU time saving.

We also noted that as the message grouping size increased, the improvement achieved by

Planar+ against LDG and uniPlanar tended to decrease. This was because, the larger

the message grouping size was, the fewer the messages were exchanged and thus the less

contention on the memory subsystems. As a result, the importance of reducing intra-node

data communication gradually decreased. This indicates that architecture-aware solutions

(Paragon and Planar+) work better with workloads dominated with a large number of

small message exchanges. On the other hand, because of the weakening impact of the intra-

node data communication, the importance of reducing edgecut increased. This also explains

the reason why uniPlanar+ performed better than Planar+ for message group size of

1024 on the Twitter dataset.

Another interesting thing here was that even though uniPlanar reduced the edgecut

of the decompositions computed by LDG greatly, it was still outperformed by LDG some-

times, especially with smaller message grouping size. This was because with smaller message

grouping size the contention on the memory subsystems can impact the performance greatly.

Consequently, lower edgecut did not always lead to better performance.

103

Table 4.15: PageRank communication volume breakdown in GB

Friendster Twitter

Intra-Socket Inter-Socket Inter-Node Intra-Socket Inter-Socket Inter-Node

LDG 27.1 29.2 303 37.2 40.6 416

Paragon 19.6 23.9 310 30.7 35.6 424

Planar+ 16.6 20.8 272 27.8 32.5 409

uniPlanar+ 23.2 25.5 263 35.5 38.3 397

Results in terms of PageRank communication volume (Table 4.15) To further

confirm the effectiveness of Planar+ in avoiding contention (reducing intra-node data

communication), we also report the breakdown of the communication volume for the ex-

ecution of PageRank in Table 4.15. Note that message grouping size did not change the

amount of data communicated by the execution of PageRank. It only impacted the number

of messages exchanged. As shown, Planar+ had the lowest intra-node communication

volume. When compared with LDG, it, respectively, reduced the intra- and inter-socket

communication volume by 38% and 28% on the Friendster dataset, and by 25% and 19% on

the Twitter dataset. In comparison with uniPlanar+, it, respectively, reduced the intra-

and inter-socket communication volume by 28% and 18% on the Friendster dataset, and

by 21% and 15% on the Twitter dataset. Another thing worth mentioning here was that

Planar+ also had much lower overall communication volume than others and much lower

inter-node communication volume than LDG and Paragon.

4.4.5 Section Summary

In this work, we presented a lightweight architecture-aware graph repartitioner, Planar+,

for large dynamic graphs. Planar+ can not only efficiently respond to graph dynamism

by migrating vertices among the partitions, but can also improve the mapping of the ap-

plication communication pattern to the underlying hardware topology. Planar+ only

requires a small amount of local information plus a minimal amount of global coordination

for repartitioning, making it quite feasible for large-scale, graph-based big data applications.

104

Considering the size of real-world graphs, features like being lightweight, architecture-aware,

and workload-aware (which are all present in Planar+) are absolutely essential for online

repartitioners. Our evaluation confirmed Planar+’s superiority in terms of repartitioning

time (up to 9x speedup against Planar), performance improvement (up to hours reduction

in the CPU time), and scalability (up to two billion-edge graphs).

105

5.0 SKEW-RESISTANT GRAPH PARTITIONING

As demonstrated in the previous chapters, there are dozens of graph partitioners, from the

“classic” ones, like [6, 4, 32, 34], to new, (re)streaming graph partitioners, like [8, 10, 13,

9], which address the scalability challenge of partitioning the graphs. However, despite

the large amount of work so far (including our own works: Argo, Aragon, Paragon,

Planar, and Planar+), largely overlooked are the effects of different types of skewness

on the performance of distributed graph computation. In particular, we distinguish between

two types: algorithmic skewness and structural skewness, which we explain next.

Algorithmic Skewness Current graph partitioners all assume that a balanced partitioning

of the graph is equivalent to an even load distribution. Put simply, they all assume that

vertices of the graph are always active during the computation. This is true for always-

active-style graph algorithms, like PageRank. However, for traversal-style graph algorithms,

like Breadth-First Search (BFS) and Single-Source Shortest Path (SSSP), only a subset of

vertices are explored in each superstep. As a result, vertices active in the same superstep

may be concentrated into a few partitions by existing graph partitioners, leading to load

imbalance, resource underutilization, and contention on the network interface. One way to

avoid this algorithmic skewness is to migrate vertices dynamically based on some system

metrics [40, 26, 42]. However, this is too late and the migration is not cost-free. Migrating a

vertex to a new partition requires migrating both its edge list and its associated application

data plus an update of the vertex location.

Structural Skewness Existing graph partitioners often do not care about what vertices

each partition will have. As a result, high-degree vertices may be concentrated into a few

partitions, causing a new type of imbalance, structural skewness. This is because high-

106

degree vertices are often the computation and communication hotspots given their large

neighborhood. Unfortunately, graphs from various important domains are scale-free, where

the vertex degree-distribution asymptotically follows a power law distribution [63, 64].

Side-Effect of Algorithmic and Structural Skewness Another side effect of the skew-

ness on modern multicore machines is that it may lead to contention for the shared resources

in the memory subsystems, especially when the partitions that contain most of the active

vertices are assigned to the cores of the same machine for parallel processing. This is because

intra-node data communication (the communication among cores of the same machine) is

often implemented via shared memory [48, 49], requiring additional data copies. Thus, hav-

ing too much data communication among partitions that are residing on the same machine

may lead to serious cache pollution and therefore contention for the shared last level cache,

front side bus, and memory controller (which has been experimentally demonstrated in our

previous chapters).

Contributions To address the needs of efficient distributed graph computation, we make

the following contributions in this work:

1. To better understand the skewness issue, we experimentally demonstrate the runtime

characteristics of two classic traversal-style-graph workloads (Section 5.1.1) and their

predictability using real-world graphs (Section 5.1.2).

2. We introduce the idea of multi-label graph partitioning (MLGP) (Section 5.2) and an

application of MLGP to do skew-resistant graph partitioning (Section 5.3).

5.1 TRAVERSAL-STYLE GRAPH WORKLOAD CHARACTERIZATION

In this section, we motivate our work by examining the runtime characteristics of two repre-

sentative traversal-style graph workloads: BFS and SSSP. It is well known that traversal-style

graph workloads only explore a subset of the vertices of the graph in each superstep [40].

Thus, a balanced partitioning of the entire graph cannot always guarantee an even load

distribution over all the supersteps. In particular, we are interested in the runtime char-

107

acteristics of such workloads on scale-free and small-world graphs. This is because many

real-world graphs are scale-free yet small-world and current graph partitioners may lead to

serious structural skewness.

5.1.1 Active Vertex Distribution Across Supersteps (Table 5.1)

Configuration In this experiment, we examined the runtime characteristics of BFS and

SSSP on the Orkut dataset. Orkut is a social network run by Google [53] for people across

the world to discuss their common interests. The dataset used is a subset of the Orkut

user population (around 11.3% at the time crawled by A. Mislove et. al. [54]). The degree

distribution of the dataset follows a power-law distribution with average and maximal vertex

degree equal 76.281 and 33,313, respectively. The maximal diameter of the dataset is 10 with

the effective diameter of 5.4489.

In the experiment, the graph was partitioned across six 20-core machines using three

different techniques with one partition per core. The techniques examined included: (a)

Metis, a well-known multilevel graph partitioner [32]; (b) LDG, a state-of-the-art streaming

graph partitioner [8]; and (c) reLDG, a state-of-the-art restreaming graph partitioner [9].

Table 5.1: Active vertex distribution across supersteps of BFS & SSSP execution with one

randomly selected source vertex

com-orkut # of Active Vertices

Supersteps BFS SSSP

0 1 1

1 72 45

2 5,871 4,663

3 215,425 297,943

4 1,753,891 1,421,993

5 1,088,870 1,229,917

6 8,242 117,496

7 69 383

8 0 0

108

Results Table 5.1 presents the number of vertices that are active in each superstep for the

execution of BFS/SSSP with one randomly selected source vertex. As shown, only a subset of

the vertices were active in each superstep, and the execution exhibited highly skewed active

vertex distribution across supersteps. The top-3 supersteps with largest fraction of active

vertices covered around 96% of vertices of the graph. This was expected for small-world

and scale-free graphs. Small-world graphs are known to have low diameter. Consequently,

the execution of BFS/SSSP on such graphs usually ends in a few supersteps, causing a

large number of vertices to be visited per superstep. On the other hand, the scale-free

property allows the number of vertices active in each superstep to be expended and shrink

exponentially. As a result, a majority of vertices were visited in very few supersteps. These

supersteps were also the top-3 most time-consuming supersteps.

We observed similar results for the execution of BFS/SSSP on the partitionings computed

by Metis, LDG, and reLDG. This was because (1) the execution of BFS/SSSP on the

partitionings all started from the same randomly selected source vertex; and (2) the way

the graph was distributed across partitions only affected the amount of data communication

performed by BFS/SSSP (but not the algorithm characteristics).

Take-away To achieve superior performance, we should offer differentiated partitioning for

vertices that are active in the peak supersteps. That is, we should focus more on reducing the

edgecut of vertices that are active in the peak supersteps and balancing the load of the peak

supersteps.

5.1.2 Active Vertex Distribution Across Partitions (Fig. 5.1 & 5.2)

Configuration This experiment examined the corresponding active vertex and active high-

degree vertex distribution across partitions for the execution of BFS/SSSP on the partition-

ings. We treated the top 1% vertices as the high-degree ones. For brevity, we only showed

the results of BFS in Figures 5.1 and 5.2 for the most time-consuming superstep (Step 4 of

Table 5.1).

Results As can be seen, the execution of BFS on the partitionings computed by Metis,

LDG, and reLDG all exhibited highly skewed active vertex and active high-degree vertex

109

0

10000

20000

30000

40000

50000

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 9683

(a) Metis

0

10000

20000

30000

40000

50000

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 4327

(b) LDG

0

10000

20000

30000

40000

50000

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 5847

(c) reLDG

Figure 5.1: BFS active vertex distribution across partitions for the most time-consuming

superstep (Step 4 of Table 5.1) on com-orkut dataset with one randomly selected source

vertex. The distribution was measured, when the graph was partitioned across six 20-core

machines with one partition per core.

0

200

400

600

800

1000

1200

1400

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 245

(a) Metis

0

200

400

600

800

1000

1200

1400

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 209

(b) LDG

0

200

400

600

800

1000

1200

1400

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 224

(c) reLDG

Figure 5.2: BFS active high-degree vertex distribution across partitions for the most time-

consuming superstep (Step 4 of Table 5.1) on com-orkut dataset with one randomly selected

source vertex. The distribution was measured, when the graph was partitioned across six

20-core machines with one partition per core.

distribution across partitions, especially the distribution of high degree vertices (around half

of the partitions have nearly zero active high-degree vertices). This may lead to potential

significant load imbalance and thus resource underutilization as well as contention on both

the network interface and memory subsystems. Another interesting result was that the

decomposition computed by Metis had the largest skewness followed reLDG next to it.

This was somehow expected considering the fact that Metis tends to produce partitionings

of the highest quality, while LDG performed the worst among the three. Put simply, Metis

110

and reLDG were better than LDG in grouping tightly connected vertices together, leading

to higher chance of load imbalance. This also explains the reason why simple partitioning

techniques (e.g., hashing partitioning) may sometimes perform better than those well-studied

ones.

Take-away We should consider the characteristics of both the target workload and the graph

structure while partitioning.

5.1.3 Workload Predictability (Fig. 5.3 & 5.4)

Given the above observations, one may wonder if we could incorporate such characteristics

into the partitioning process, such that both the algorithmic and structural skewness are

minimized. Towards this, we kept track of vertices that were active in each superstep for ten

distinct executions of BFS/SSSP on the Orkut dataset. Each such execution was performed

with one randomly selected source vertex on the dataset, when it was partitioned into 60

partitions. Then, we examined the repeatability of the execution traces. Considering the

highly skewed active vertex distribution across supersteps, we only considered the top-3 most

time-consuming supersteps for repeatability computation. We defined the repeatability of

execution trace tr1 with respect to tr2 as:

repeat(tr1, tr2) =

∑3
i=1

maxj=1,2,3 |str1(i) ∩ str2(j)|∑3
i=1 |str1(i)|

(5.1)

where str1(i) denotes the set of vertices that are active in the ith most time-consuming

superstep of trace tr1. The execution trace repeatability indicates the degree of overlap

among the traces. It should be noted that this was a conservative estimation, because str1(i)

may overlap with multiple supersteps of execution trace tr2. Yet, we only considered the

superstep that overlaps str1(i) the most.

Figure 5.3 shows the repeatability of tr1 with respect to different traces collected for the

execution of BFS and SSSP, and Figure 5.4 plots the distribution of the trace repeatability

across all the trace pairs. As shown, the runtime characteristics of both BFS and SSSP

on the Orkut dataset were actually quite predictable. On average, around 60% of vertices

are always active in the same supersteps for two distinct executions of BFS/SSSP with one

111

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

tr2
tr3

tr4
tr5

tr6
tr7

tr8
tr9

tr10

R
e
p
e
a
t
a
b
i
l
i
t
y

(a) BFS Execution Trace Repeatability

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

tr2
tr3

tr4
tr5

tr6
tr7

tr8
tr9

tr10

R
e
p
e
a
t
a
b
i
l
i
t
y

(b) SSSP Execution Trace Repeatability

Figure 5.3: Repeatability of BFS and SSSP execution trace: tr1 with respect to different

traces on the Orkut dataset.

0
10
20
30
40
50
60
70
80
90

 0 10 20 30 40 50 60 70 80 90

R
e
p
e
a
ta

b
il
it

y
(%

)

Data Points

Average: 64.21%

Standard Deviation: 10.64%

(a) BFS Repeatability Distribution

0
10
20
30
40
50
60
70
80
90

 0 10 20 30 40 50 60 70 80 90

R
e
p
e
a
ta

b
il
it

y
(%

)

Data Points

Average: 63.28%

Standard Deviation: 11.69%

(b) SSSP Repeatability Distribution

Figure 5.4: Distribution of BFS and SSSP execution trace repeatability across all trace pairs.

randomly selected source vertex. The relatively high repeatability can be explained by the

wave access pattern of the traversal-style graph workloads. That is, once the superstep active

vertex set of two distinct executions of the workload intersects, the number of vertices active

in the same time period (superstep) will become larger and larger (up to a certain point),

especially if we hit a high-degree vertex. This is because all the neighbors of the vertices in

the current common active vertex set will become active in the next superstep. Note that

we observed similar results for the execution of BFS/SSSP on partitionings computed by

Metis, LDG, and reLDG.

Take-away The execution trace of the traversal-style graph workloads on many small-world

112

and scale-free graphs can be used as a representative of the runtime characteristics of the

target workloads. This provides us an opportunity to leverage the runtime characteristics of

the target workload into the partitioning process (using the execution trace).

5.2 MULTI-LABEL GRAPH PARTITIONING

In this section, we first introduce the Multi-Label Graph Partitioning (MLGP) problem as

well as a streaming-based implementation of such a graph partitioner that could be used to

do Skew-Resistant Graph Partitioning.

5.2.1 Problem Statement

Let G = (V,E, L) be a graph with labels on vertices, where V is the set of vertices, E is the

set of edges, and L = {L1, L2, ...Lm} is the set of labels associated with vertices in V . Each

vertex is associated with a binary label vector, indicating if the corresponding label exists

on the vertex. MLGP aims to minimize the communication cost among the partitions under

the constraint (1) that each partition is balanced; (2) and that vertices of each partition

follow a user-defined distribution in terms of their labels. The quality of the partitioning

(communication cost) is defined as:

comm(G,MLGP) =
∑

e=(u,v)∈E and
u∈Pi and v∈Pj and i 6=j

w(e) (5.2)

where w(e) is the edge weight, indicating the amount of data communication between the

vertex pair.

Constraint 1 can be formally defined as:∑
v∈Pi

w(v) ≤ C(Pi) for i ∈ [1, k] (5.3)

where k corresponds to the number of partitions we want, w(v) is the vertex weight (indicat-

ing the computational requirements of the vertex), and C(Pi) denotes the partition capacity.

113

As for Constraint 2 (the vertex distribution of each partition), we are particularly interested

in distributing vertices of the same labels evenly across partitions, which can be formulated

as: ∑
vl∈Pi

w(vl) ≤ C l(Pi) for i ∈ [1, k] (5.4)

where vl denotes vertices that have label Ll, whereas w(vl) and C l(Pi), respectively, cor-

responds to the vertex weight and the partition capacity of Pi for l-labelled vertices. In

other words, we want each partition to eventually have a similar vertex distribution to the

original graph in terms of their labels. In case of vertices of the graph do not have any labels,

Constraint 1 is self-included in Eq. 5.4. Sometimes, we may only want to apply Constraint

2 to a subset of |V | while guaranteeing the rest of vertices do not violate Constraint 1.

5.2.2 Streaming-Based Implementation

5.2.2.1 Graph Partitioning Model MLGP follows the same graph partitioning model

proposed by [8, 10]. In this model, vertices arrive at the partitioner in certain order along with

their adjacency lists. Upon the arrival of each vertex, the partitioner decides the placement

of the vertex to one of the k partitions based on the placements of vertices previously arrived.

The placement of the vertex never changes once it is assigned to a partition. [8] presents

a variety of heuristics for the placement of vertices, among which the linear deterministic

greedy (LDG) performs the best. LDG tries to assign a vertex, v, to a partition, Pi, that

maximizes:

(1− w(Pi)

C(Pi)
)

∑
e=(u,v)∈E and u∈Pi

w(e) (5.5)

Intuitively, LDG aims to place the vertex to the partition having the largest number of its

neighbors but penalizes the partition based on its current load.

5.2.2.2 Streaming Heuristic For the streaming-based implementation of MLGP, we

change the vertex assignment rule to maximize the following objective for each vertex v:

l factor(Pi) ∗
∑

e=(u,v)∈E and u∈Pi

w(e) (5.6)

114

where l factor(Pi) is used to penalize the partitions based on their vertex label distribution.

We formally defined it as:

l factor(Pi) =


min
∀l∈[1,m]

{1− λ(Pi, l)} if ∃l, λ(Pi, l) > 1∑m

l=1
lv[l](1− λ(Pi, l)) otherwise

(5.7)

where lv is the binary label vector associated with each vertex and λ(Pi, l) = wl(Pi)
Cl(Pi)

, with

wl(Pi) denoting the aggregated weights of l-labelled vertices that have been assigned to Pi.

Thus, λ(Pi, l) represents the degree of skewness for partition Pi in terms of l-labelled vertices.

In other words, if λ(Pi, l) is smaller than 1, we could put more l-labelled vertices to Pi. The

smaller the value is, the more we could put and vice verse. Since we need to consider the

for all the labels of the vertex, we choose to sum them together. On the other hand, λ(Pi, l)

greater than 1 means that Pi is overloaded in terms of l-labelled vertices and that we should

avoid putting any l-labelled vertices to Pi. Since each vertex may have multiple labels and

the placement of a vertex to a partition may not always satisfy the balance constraint for

all its labels, we choose to penalize the label overloaded the most.

5.2.2.3 Restreaming Model MLGP loads vertices of the graph in blocks and streams

each in-memory block multiple passes instead of streaming the entire graph multiple passes

as the current restreaming graph partitioners do. In this way, we can enjoy the benefits

of restreaming partitioning model but avoiding loading the graph from disk multiple times.

The default value of the number of restreaming passes is two in our implementation. By

default, we treat 219 vertices that are stored contiguously in the file system as a block.

5.3 SKEW-RESISTANT GRAPH PARTITIONING

In this section, we first introduce Sargon, an application of MLGP to prevent the algo-

rithmic and structural skewness of traversal-style graph workloads. Then, we outline a few

other possible use cases that MLGP can be applied to.

115

5.3.1 MLGP: Traversal-Style Graph Workloads

5.3.1.1 Avoiding Algorithmic Skewness To guarantee that the load of the traversal-

style graph workloads is evenly distributed in every superstep, Sargon models it as a MLGP

problem, in which Sargon only needs to divide the entire execution time into finite time

periods, and associates each vertex with a label vector. The label vector indicates the time

periods in which the vertex is active. Given the relatively high predictability of the runtime

characteristics of BFS and SSSP on the datasets of interest (Section 5.1), Sargon uses

the supersteps as the natural time periods and obtains the label vector from the execution

trace. With the augmented label information, MLGP will automatically split vertices active

in the same superstep evenly across partitions while keeping the communication among the

partitions as small as possible, thus eliminating algorithmic skewness.

In fact, Sargon only applies MLGP to vertices of the peak supersteps, while ordinary

graph partitioning heuristic (LDG) to rest of the vertices. This is because if the number

of vertices active in a superstep is large, the computation time will probably dominate

over the superstep execution time. Even if the target workload is communication-intensive,

the concentration of a large amount of active vertices into a few partitions may lead to

serious contention on the network interfaces or memory subsystems, making balanced load

distribution very critical. On the other hand, if the number active vertices in a superstep

is small, the communication cost will become the dominant factor of the superstep, making

reducing the communication cost more important. By default, Sargon only applies MLGP

to supersteps whose active vertex set has more than 1% of the vertices of the graph.

5.3.1.2 Avoiding Structural Skewness Considering the relatively small number of

high-degree vertices and vast disparity in the vertex weights the graph may have, Sargon

avoids structural skewness by simply assuming that all high-degree vertices are active in a

single additional superstep. By doing this, MLGP will attempt to distribute high-degree

vertices evenly across partitions. At the same time, the labels that high-degree vertices

originally have can serve as a way to penalize partitions that have a large number of vertices

that are active at the same time with the high-degree ones. This also means that high-degree

116

vertices originally active in the same superstep will have a smaller chance to be put together.

5.3.2 MLGP: Multiphase Graph Workloads

In addition to the traversal-style graph workloads, some workloads may further organize each

of their supersteps into multiple phases, and each phase processes a different part of the graph

based on the result of the previous phase (synchronization is often required between phases).

Thus, these workloads may still belong to always-active-style graph workloads, except that

vertices may be active in different phases of the supersteps. Clearly, a static partitioning

of the graph using existing graph partitioners will not work well, since they provide no

guarantee on how the vertices of each phase are distributed across partitions.

As a result, users often have to repartition the graph at the beginning of each phase to

ensure an even load distribution. However, the repartitioning has non-negligible overhead.

In addition to the time taken to compute the new partitioning, repartitioning also requires

migrating vertices (and its associated application state) from one partition to another, re-

building the graph structure after migration, as well as an update of the vertex locations.

What is even worse is that repartitioning has to be performed in every superstep.

Instead, if the phases during which the vertices are active are predictable, we can assign

each vertex a label vector indicating the phases that it is active in, and partition the graph

using MLGP. In this way, we can postpone/eliminate the need of repartitioning and yet

guarantee that the partitioning holds well over time. We can even replace the binary label

vector with a weight vector, indicating the computation requirement of the vertex in each

phase to further balance the load.

5.3.3 MLGP: Graph Database Partitioning

Although the focus of this work is offline batch processing, it would also be interesting to see

what types of interactive queries on graph databases have similar type of predictable runtime

characteristics (as the one demonstrated in Section 5.1). Offline batch processing usually

involves the computation on vertices of the entire graph, whereas online query processing

often only involves the computation on a subset of the vertices. Workload characterization of

117

interactive queries is more challenging, because interactive queries usually have parametrized

constraints on vertex or edge attributes.

Nevertheless, some workloads may naturally exhibit repeatable runtime characteristics

but in different forms. For example, vertices of the graph may have different degree of

hotness/popularity, in which we would like each partition of the graph to have a mix of

hot and cold data for even load distribution. Also, vertices of the graph may have seasonal

access patterns or vertices of the same geo-location usually have a tendency to be active

in the same time period (in the diurnal form). In these cases, we would like vertices that

are accessed in the same season or of the same geo-location to be evenly distributed across

partitions. By doing this, each partition will have a better chance of holding well over time

without constantly be overloaded. All these can be achieved by partitioning the graph using

the idea of MLGP.

5.4 EVALUATION

In this section, we first evaluate the effectiveness of Sargon in terms of the skewness and

partitioning quality (Section 5.4.2), and then validate the effectiveness of Sargon using

two representative traversal-style graph workloads: Breadth-First Search and Single-Source

Shortest Path (Section 5.4.3), and finally conclude our evaluation with a scalability study

(Section 5.4.4). Both BFS and SSSP were implemented using MPI [58] based on the idea

presented in [59, 60]. The specific MPI implementation we used in the experiment was

OpenMPI 1.8.6 [46].

5.4.1 Setup

Baselines We compared Sargon to three different graph partitioners: (a) Metis, a well-

known multilevel graph partitioner [32]; (b) LDG, a state-of-the-art streaming graph parti-

tioner [8]; and (c) reLDG, a state-of-the-art restreaming graph partitioner [9]. For reLDG,

we set the number of restreaming passes to 2.

118

Datasets Table 4.7 describes the datasets used. All the datasets were undirected, except

the Twitter dataset but was treated as undirected. Note that the datasets were all scale-

free and small-world graphs. During the experiments, the graphs were partitioned with the

vertex weights (i.e., computational requirement) set to their vertex degree and edge weights

(i.e., amount of data communicated) set to 1. Vertex degree is a good approximation of the

computational requirement of each vertex for the execution of BFS and SSSP, while an edge

weight of 1 is a close estimation of their communication patterns. By default, the graphs

were partitioned across cores of a given set of machines with one partition per core. For the

partitioning, we allowed up to 2% imbalance among the partitions.

Evaluation Platform The experiments were performed on a 32-node university cluster [65].

The cluster had a flat network topology, where all the compute nodes were connected to a

single switch via FDR Infiniband. Table 4.8 depicts the compute node configuration of the

cluster.

5.4.2 Microbenchmarks

5.4.2.1 Effectiveness in terms of Skewness

Configuration This experiment assessed the effectiveness of Sargon on com-orkut dataset

using one of the BFS execution traces that we collected in Section 5.1. In addition to

the labels indicating the supersteps that each vertex was active in, we also appended an

additional label to each high-degree vertex as illustrated in Section 5.3.1 to avoid structural

skewness. We then examined the distribution of the active vertices across partitions for an

execution of BFS on the partitioning computed by Sargon with one randomly selected

source vertex.

Results (Figure 5.5) Figure 5.5 plots the active vertex and active high-degree vertex

distribution for the most time consuming superstep. By comparing it to Figures 5.1 and 5.2,

we can conclude that Sargon balanced the distribution of both active vertex and active

high-degree vertex much better than Metis, LDG, and reLDG, especially the distribution

of high-degree vertices. Specifically, Sargon reduced the standard deviation of the active

vertex and active high-degree vertex distribution by up to 62% and 80%, respectively.

119

0

10000

20000

30000

40000

50000

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 3619

(a) Active Vertex Distribution on Sargon Parti-
tionings

0

200

400

600

800

1000

1200

1400

 0 20 40 60 80 100 120

#
 o

f
A

c
ti

v
e
 V

e
rt

ic
e
s

Partitions

Standard Deviation: 49

(b) Active High-Degree Vertex Distribution on
Sargon Partitionings

Figure 5.5: Active (high-degree) vertex distribution across partitions for the most time-

consuming superstep of a BFS execution on com-orkut dataset with one randomly selected

source vertex. The distribution was measured when the dataset was partitioned across six

20-core machines with one partition per core.

5.4.2.2 Effectiveness in terms of Partitioning Quality

Configuration Another aspect of interest was the quality (Eq. 5.2) of the resulting par-

titionings output by Sargon and the partitioning overhead. Thus, we partitioned some

datasets of Table 4.7 across six 20-core machines and examined the percentage of the edges

that were cut (Figure 5.6a) as well as the overhead of partitioning (Figure 5.6b). Note that

the overhead reported included the cost of loading and partitioning the graph as well as the

cost of sending vertices to the assigned partitions. The execution trace collection overhead

was not included in Sargon’s partitioning overhead, since we assumed that the execution

traces were available beforehand and we only need to collect the trace of each target workload

once for each specific graph dataset.

Results (Figure 5.6) As expected, Metis performed the best in terms of partitioning

quality but the worst in terms of partitioning overhead. This was because Metis requires

more information about the graph for partitioning, whereas LDG, reLDG, and Sargon are

streaming graph partitioners. The reason why Sargon sit in between LDG and reLDG in

120

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

YouTube

as−skitter

com−lj

com−orkut

friendster

twitter

E
d
g
e
−
C
u
t
(
%
)

METIS
LDG
reLDG
SARGON

(a) Partitioning Quality

 1

 4

 16

 64

 256

 1,024

 4,096

YouTube

as−skitter

com−lj

com−orkut

friendster

twitter

T
i
m
e
(
s
) METIS

LDG
reLDG
SARGON

(b) Partitioning Overhead

Figure 5.6: The quality of the partitionings computed by different partitioners over a variety

of graphs, as well as the corresponding partitioning overhead (in log scale). The datasets

presented were partitioned across six 20-core machines with one partition per core.

terms of both the quality and the overhead was that Sargon only requires loading the graph

from disk once (lowering the partitioning overhead in comparison to reLDG) but streams

each vertex block in memory twice (lowering the edgecut when compared with LDG). In fact,

Sargon was expected to have higher edgecut, since it focuses more on avoiding algorithmic

and structural skewness. Regardless, most of the decompositions computed by Sargon still

had lower edgecut than that of LDG. Note that Metis failed to partition the Friendster

and Twitter dataset.

5.4.3 Real-World Workloads (BFS & SSSP)

Configuration This experiment evaluated the effectiveness of Sargon using BFS and

SSSP on the com-orkut dataset, when it was partitioned across three 20-core compute nodes

(one partition per core). Note that Sargon partitioned the graph along with a trace of a

single BFS/SSSP execution on the graph with one randomly selected source vertex. Given

the long execution time of BFS and SSSP on the dataset we grouped multiple messages sent

by a single MPI rank (process) to the same destination into a single one.

Results (Table 5.2) Table 5.2 presents the BFS and SSSP execution time on the dataset

with 100 randomly selected source vertices and different message grouping sizes. As shown,

even though the partitionings computed by Sargon had higher edgecut than that of Metis

121

Table 5.2: BFS and SSSP execution time in seconds on com-orkut dataset with varying

message grouping size

Workloads BFS SSSP

Message Grouping Size 64 128 256 64 128 256

Metis 1459 260 73.24 30,784 6,152 727

LDG 2027 396 116 37,418 5,293 870

reLDG 1114 317 83.26 27,099 2,921 677

Sargon 857 238 63.28 21,643 2,426 431

and reLDG (Section 5.4.2), Sargon consistently outperformed LDG and reLDG thanks

to its capability of avoiding algorithmic and structural skewness. In comparison to Metis,

LDG, and reLDG, Sargon speeded up the execution of BFS and SSSP by up to 2.36 and

2.53 times, respectively.

We also noticed both Metis and reLDG performed better than LDG in most cases.

This was probably because Metis and reLDG produced decompositions of lower edgecut

than LDG. What we did not expect was that Metis was outperformed by reLDG in many

cases even though its decompositions had lower edgecut. We attributed this to the fact

that the decompositions computed by Metis had highly skewed active (high-degree) vertex

distribution across partitions (Section 5.1.1).

Interestingly, for the BFS execution, reLDG outperformed Metis only if the message

grouping size was small enough (when the message grouping size equaled 64). This was be-

cause the smaller the message grouping size was the more the messages were communicated,

which in turn put more contention on the network interface and memory subsystems and

therefore exacerbated the performance impact of skewness. This was further confirmed by

the observation that the smaller the message grouping size was, the longer the execution of

BFS/SSSP took.

The reason why reLDG was always better than Metis for the execution of SSSP in

the experiment was because the execution of SSSP required more data communication than

that of BFS. Consequently, in spite of the increasing message grouping size, there would

122

still be a large number of message exchanges, calling for skew-resistant graph partitioners to

avoid both the network and memory contention. This also indicates that Sargon is more

suitable for workloads with a large number of small message exchanges and larger graphs.

The latter was attributed to the fact that as the size of the graph increased, the amount of

data communication would also increase regardless of the message grouping size.

5.4.4 Scalability Study

5.4.4.1 Scalability in terms of Graph Size

Configuration This experiment investigated the scalability of Sargon as the size of the

graph increased. Towards this, we first generated six additional datasets by sampling the

edge set of the Friendster and Twitter dataset. Then, we examined the BFS execution

time on the datasets when they were partitioned across three 20-core machines (with 10

randomly selected source vertices and message grouping size of 512). Note that Metis

failed to partition the datasets.

Table 5.3: BFS execution time in seconds with 10 randomly selected source vertices on

varying sized graphs

Dataset Friendster Twitter

of Edges (Billion) 0.9 1.8 2.7 3.6 0.98 1.96 2.94 3.92

LDG 34.01 158 623 1,239 45.65 460 1,092 2,219

reLDG 34.24 132 480 1,171 54.91 403 1,217 2,499

Sargon 26.96 137 392 933 38.53 275 924 1,982

Results (Table 5.3) Table 5.3 shows the corresponding BFS execution time on varying

sized graphs. As can be seen, Sargon outperformed LDG and reLDG in almost all the

cases. In comparison to LDG and reLDG, Sargon speeded up the execution of BFS by

up to 1.67 and 1.46 times, respectively. The speedup remained quite stable regardless of the

increasing graph size.

Interestingly, we noticed that reLDG was outperformed by LDG in many cases, es-

pecially on the execution of BFS on the Twitter dataset, even though the decompositions

computed by reLDG had lower edgecut. This was probably because reLDG tended to

123

produce decompositions of higher skewness than those of LDG (Section 5.1.1). The fact

that the Twitter dataset had higher average vertex degree and higher variation in its ver-

tex degree distribution than that of Friendster dataset further aggravated the performance

impact of the skewness.

5.4.4.2 Scalability in terms of # of Partitions

Configuration This experiment inspected the effectiveness of Sargon as the number of

partitions increased. Towards this, we first partitioned the original Friendster and Twitter

datasets across three up to ten 20-core machines (one partition per core) and then examined

the BFS execution time on the partitionings (with 10 randomly selected source vertices and

message grouping size of 512).

Table 5.4: BFS execution time in seconds with 10 randomly selected source vertices on

varying number of partitions

Datasets Friendster Twitter

of Partitions LDG reLDG Sargon LDG reLDG Sargon

60 1,239 1,171 933 2,219 2,499 1,982

80 444 318 285 973 771 706

100 148 189 126 264 258 230

120 103 103 71.48 133 172 127

140 85.27 127 69.36 150 147 117

160 58.39 59.32 57.72 70.64 83.30 91.27

180 48.53 54.24 40.00 50.75 54.69 48.84

200 40.35 32.95 34.21 56.48 61.24 44.21

Results (Table 5.4) Table 5.4 shows the corresponding results as the number of partitions

increased. As shown, Sargon performed better than LDG and reLDG in almost all

the cases in spite of the increasing number of partitions. When compared with LDG and

reLDG, Sargon speeded up the execution of BFS by up to 1.55 and 1.49 times, respectively.

Consistent with our previous observations, reLDG was better than LDG in many cases.

However, it did got beat by LDG in some cases, further highlighting the importance of

skew-awareness. The reason why the improvement achieved by Sargon gradually become

124

smaller was because as the number of partitions increased the impact of skewness was also

mitigated due to the reduced work per core (partition). However, the improvement was still

non-negligible, since it reduced the execution time of all the computing elements (60 up to

200 cores) by this much.

5.5 CHAPTER SUMMARY

In this chapter, we introduced the multi-label graph partitioning problem and an application

of such idea to avoid the skewness of traversal-style graph workloads by being aware of the

characteristics of the target workload and the structure of the graph. We also demonstrated

the effectiveness and scalability of our proposed solution, Sargon, on many real-world

graphs of varying sizes (up to 3.9 billion edges) and varying number of partitions.

125

6.0 CONCLUSIONS AND FUTURE WORK

6.1 MAIN CONTRIBUTIONS

This thesis considered the well-known graph partitioning problem. We claim that the com-

putation performed on the partitionings computed by existing graph partitioning algorithms

does not efficiently utilize modern HPC infrastructures. This impedes the efficiency of com-

puting infrastructure as well as the scalability of the target workload. We advocate for

architecture- and workload-aware graph partitioning to enable efficient distributed graph

computation.

We first investigated the performance impact of modern HPC infrastructures on dis-

tributed graph workloads. As a result of this study, we identified two important factors one

should consider when partitioning the graphs: (1) the non-uniform network communication

costs of the underlying computing infrastructures; and (2) the contention for the shared

hardware resources on the memory subsystems of modern HPC clusters. We also provided

a holistic view on: (a) why we have to be aware of the characteristics of modern HPC in-

frastructures for distributed graph workloads; and (b) to what extent these characteristics

may impact the performance of distributed graph workloads.

To avoid such negative performance impact, we proposed an architecture- and workload-

aware graph partitioning algorithm, Argo, for efficient distributed graph computation

on static graphs. Argo follows the same streaming model proposed by other graph parti-

tioners. In this model, vertices arrive at the partitioner in a certain order along with their

adjacency lists. The partitioner decides the placement of each arrived vertex to one of the

partitions permanently based on the placements of the vertices previously arrived. The key

novelty of Argo lies in making the vertex placement aware of (a) the non-uniform network

126

communication costs of the underlying computing infrastructures; and (b) the contentious-

ness of the memory subsystems of modern HPC clusters. We also make Argo aware of the

runtime characteristics of the target workload by encoding such information into the vertex

and edge weights of the graph.

We then presented four new graph repartitioning algorithms: Aragon, Paragon,

Planar, and Planar+ for efficient distributed graph computation on dynamic graphs.

They all attempt to adapt the current partitioning to the changes in the graph by migrating

vertices among the partitions. The migration is only allowed if the gain of moving the vertex

from its current partition to an alternative partition is positive. The gain of migrating a

vertex is defined as the reduction in the communication cost incurred by the vertex during

the computation. One of the key contributions of this thesis is that we make the vertex gain

computation process aware of both the communication heterogeneity and the contentiousness

of the underlying computing infrastructures.

Out of the four new algorithms, Aragon is a centralized solution with the assumption

that the graphs are small enough to be held in the memory of a single machine, whereas

Paragon is a parallel version of Aragon designed for median-sized graphs. Planar and

Planar+ overcome the drawbacks of Paragon by scaling it to even larger graphs and

by increasing the degree of parallelism of the repartitioning algorithm. Planar+ further

reduces the overhead of Planar, by introducing an efficient way of modeling the commu-

nication heterogeneity and contentiousness. This, in turn, enables an optimized vertex gain

computation. Making the partitioning algorithms scale efficiently against large graphs is

another key contribution of the thesis.

Tables 6.1 and 6.2 provide a brief summary for the four proposed architecture- and

workload-aware graph repartitioners. Table 6.1 summarizes our proposed repartitioners in

terms of (a) the expected size of the graphs that each algorithm can handle; (b) the opti-

mization objective; (c) the maximum and average hopcut/edgecut reduced by each algorithm

when compared with the initial partitioning on the YouTube, as-skitter, com-lj, and com-

orkut datasets; and (d) the maximum and average percentage of vertices migrated. Table 6.2

summarizes the repartitioners in terms of (a) the largest graph evaluated; (b) the largest

number of partitions evaluated; and (c) the maximum speedup achieved against LDG for

127

the execution of PageRank (20 Iterations) on the partitionings of the Friendster dataset as

well as the actual CPU time saved. The CPU time saved is defined as:

CPUTimeSaving = (JETSaving − repartT ime) ∗ n (6.1)

Here, JETSaving, repartT ime, and n denote the reduction in the workload execution time,

the time taken by the repartitioners to compute the partitioning, and the number of com-

puting elements (cores) used, respectively.

Table 6.1: A summary of the Proposed Graph Repartitioners: Part1

Algorithms
Desired

Graph Size

Optimization

Objectives

Hopcut Reduced

(Figure 4.36a)

Edgecut Reduced

(Figure 4.36b)

Vertex Mig. Ratio

(Figure 4.37)

Edgecut

or

Hopcut

Mig. Cost Max Avg. Max Avg. Max Avg.

Aragon Small

Hopcut
X

30.0% 18.5% 17.0% 10.2% 23.0% 17.7%

Paragon Median-Sized 30.2% 17.8% 16.2% 9.5% 21.6% 16.4%

Planar Large 42.0% 25.3% 33.0% 19.1% 48.6% 40.1%

Planar+ Large 42.4% 25.8% 34.4% 17.8% 31.0% 24.6%

uniPlanar+ Large Edgecut 39.6% 21.8% 36.8% 18.7% 28.6% 24.2%

Table 6.2: A summary of the Proposed Graph Repartitioners: Part2

Algorithms

Largest Graph

Evaluated
Largest # of Partitions

Evaluated

Evaluation of PageRank

on Friendster with 120 Partitions

(Figure 4.40a)

|V | |E| Max Speedup CPU Time Saved

Aragon 3M 234M 40 NA NA

Paragon

124M 3.6B 240

2.09 25h

Planar
3.2

27h

Planar+ 43h

uniPlanar+ 1.23 10h

128

Finally, we looked at the problem of skew-resistant graph partitioning for graph

workloads with predictable runtime characteristics. Towards this, we studied the runtime

characteristics of two representative traversal-style graph workloads: BFS and SSSP. Based

on the study, we proposed the idea of multi-label graph partitioning (MLGP) and an appli-

cation of this idea is to do skew-resistant graph partitioning.

6.2 MAIN IMPACT

The main impact of this thesis is that we identified an important aspect that has been

ignored by the current graph processing community, that is, the performance impact of the

underlying HPC infrastructures, especially the contentiousness of the memory subsystems,

on distributed graph computation. In fact, this is also a blind spot for general distributed

computation, where people often assume that the network is the bottleneck.

In particular, we made an in-depth analysis about the factors that one should consider

while (re)partitioning the graph for distributed graph computing, namely, the non-uniform

network communication costs (Section 2.2.1) and the contention on the memory subsystems

(Section 2.2.2). We also experimentally demonstrated (1) that the network may not always

be the bottleneck in modern HPC clusters (Section 2.2.3); and (2) that the contention

on the memory subsystems can impact the performance of distributed graph computation

significantly (Section 2.2.3). Based on our analysis and our observations, we showed that even

with simple managed graph (re)partitioning we can achieve significantly better performance

(Chapters 3 & 4). All these observations will enable the graph processing community to

rethink the design of graph (re)partitioning algorithms and even the design of distributed

graph computing frameworks.

129

6.3 DISCUSSION AND FUTURE WORK

Note that we did not claim that we have solved the problem of architecture- and workload-

aware graph partitioning. Instead, the most important contribution of this thesis is a demon-

stration of the importance of architecture-awareness (heterogeneity and contentiousness) for

distributed graph computation on modern HPC clusters as well as a set of possible solu-

tions. In the rest of this section, we will discuss the limitations of our proposed solutions.

Addressing these limitations is left as future work.

Time Complexity Comparison Ideally, we would like to include a formal comparison

of the time complexity for different graph (re)partitioners. However, for distributed graph

(re)partitioners, the (re)partitioning overhead may rely more on the amount of communi-

cation required by the (re)partitioning algorithm. As a result, the time complexity may

not always be a good indicator to look at. The fact that many graph (re)partitioners sim-

ply do not have such complexity analysis in their published papers further increases the

difficulty of comparison. Additionally, the memory usage of the graph (re)partitioners is an-

other important factor one should consider while choosing the (re)partitioners. Many graph

(re)partitioners simply do not work with large graphs either because it takes too much time

to compute a partitioning or it consumes too much memory. To a certain point, we have

made an indirect comparison of this in Table 2.1. The lightweight property we talked about

covers all the three dimensions: time complexity, space complexity, and data communication.

Heterogeneity-Awareness Modeling Clearly, all our proposed architecture-aware graph

(re)partitoiners require a fairly accurate measurement of the relative network communication

costs among the computing elements. Although Planar+ has provided an efficient way to

measure the costs, its effectiveness was only evaluated on a relatively small cluster with a

simple network topology in our experimental study. For larger clusters with complicated

network topologies, the solution may not work well. In addition to this, the variability of

the relative network communication costs may increase, as the size of the cluster and the

complexity of the network topology increase. Nevertheless, both Paragon and Planar+

allow customized solutions for relative network communication cost measurement.

130

Contention-Awareness Modeling Another limitation of our proposed solutions is that

we require users to do some profiling of the target workload on the computing infrastructures

to determine the ideal λ value, the degree of contentiousness. The parameter λ depends on

many factors, such as the characteristics of the graph dataset that the workload is operating

on, the characteristics of the graph algorithm, as well as the characteristics of the underlying

computing infrastructures. As a result, the profiling may become an extra burden for the

users. In addition to this, the set of computing elements used for profiling may be different

from the set of computing elements used for actual computation in many cases, and users

may not have control over this. Thus, one of the things people could look at is to automate

this profiling process (using some machine learning techniques for example).

Workload-Awareness Modeling Currently, we encode the characteristics of the target

workload into weights/sizes of the vertices and edges for (re)partitioning. Each vertex/edge of

the graph can only be assigned with a single weight/size. However, vertices of the graph may

have different computation and communication requirements in different time periods of the

computation. Thus, a single weight/size could not always accurately reflect the requirements.

This could also be a part of the future work people could explore. In fact, the modeling of

the computation and communication requirements of the workload is also not an easy task,

especially for scientific simulations.

Additionally, we use the knowledge of the execution traces for skew-resistant graph par-

titioning. However, the solution we adopted in Sargon is somewhat simplistic. A more

complete solution (e.g., a machine learning model to predict the characteristics) is required

to increase the potential benefit/generality of Sargon.

Number of Partitions In the current implementation of our proposed solutions, especially

Paragon, Planar, and Planar+, we assume that the number of partitions remains the

same as int the initial partitioning. However, users may sometimes want to repartition the

graph into a different number of partitions. To the best of our knowledge, a large body

of existing graph repartitioners, including ours, do not support this. This could also be an

interesting problem to look at. Along these lines, it would also be interesting to examine the

problem of how to determine the optimal number of partitions for a given workload and a

131

given graph dataset.

In addition to this, all the experimental studies of our proposed solutions were designed

and performed with the assumption of one partition per core in mind. Sometimes, it may

make sense to do over decomposition, that is, assigning more than one partitions to a core.

Theoretically, all our proposed solutions can also work in the over decomposition case. How-

ever, it has not been thoroughly evaluated.

Vertex-Cut Based Graph Partitioning The focus of this thesis is the edgecut-based

graph partitioning problem, where vertices of the graph are distributed across partitions by

cutting edges if needed. However, it would also be interesting to investigate the architecture-

and workload-aware vertex-cut based graph partitioning problem, where edges of the graph

are assigned to partitions by cutting vertices if needed.

132

7.0 BIBLIOGRAPHY

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-

jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the 2010

ACM SIGMOD International Conference on Management of Data, pp. 135–146, 2010.

[2] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Hellerstein,

“Graphlab: A new framework for parallel machine learning,” arXiv:1408.2041, 2014.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph: Distributed

Graph-Parallel Computation on Natural Graphs.,” in Proceedings of the 10th USENIX

conference on Operating Systems Design and Implementation, pp. 17–30, 2012.

[4] K. Schloegel, G. Karypis, and V. Kumar, Graph partitioning for high performance sci-

entific simulations. Army High Performance Computing Research Center, 2000.

[5] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,” in Proceedings of

the 1995 International Conference on Parallel Processing, pp. 113–122, 1995.

[6] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel computing,”

Parallel Computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[7] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of Computing Sys-

tems, vol. 39, no. 6, pp. 929–939, 2006.

[8] I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed graphs,”

in Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pp. 1222–1230, 2012.

133

[9] J. Nishimura and J. Ugander, “Restreaming graph partitioning: simple versatile algo-

rithms for advanced balancing,” in Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 1106–1114, 2013.

[10] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel: Streaming

graph partitioning for massive scale graphs,” in Proceedings of the 7th ACM Interna-

tional Conference on Web Search and Data Mining, pp. 333–342, 2014.

[11] I. Moulitsas and G. Karypis, “Architecture aware partitioning algorithms,” in Interna-

tional Conference on Algorithms and Architectures for Parallel Processing, pp. 42–53,

2008.

[12] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li, “Improving large graph process-

ing on partitioned graphs in the cloud,” in Proceedings of the Third ACM Symposium

on Cloud Computing, p. 3, 2012.

[13] N. Xu, B. Cui, L.-n. Chen, Z. Huang, and Y. Shao, “Heterogeneous Environment Aware

Streaming Graph Partitioning,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 27, no. 6, pp. 1560–1572, 2015.

[14] J. Xue, Z. Yang, S. Hou, and Y. Dai, “When computing meets heterogeneous clus-

ter: Workload assignment in graph computation,” in Big Data (Big Data), 2015 IEEE

International Conference on, pp. 154–163, 2015.

[15] Mellanox, “InfiniBand and Mellanox usage on the November 2016 TOP500 list.” http:

//www.mellanox.com/solutions/hpc/top500.php, 2016.

[16] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The End of Slow

Networks: It’s Time for a Redesign,” Proceedings of the VLDB Endowment, vol. 9, no. 7,

pp. 528–539, 2016.

[17] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The impact of mem-

ory subsystem resource sharing on datacenter applications,” in Computer Architecture

(ISCA), 2011 38th Annual International Symposium on, pp. 283–294, 2011.

134

http://www.mellanox.com/solutions/hpc/top500.php
http://www.mellanox.com/solutions/hpc/top500.php

[18] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up: Increasing uti-

lization in modern warehouse scale computers via sensible co-locations,” in Proceedings

of the 44th annual IEEE/ACM International Symposium on Microarchitecture, pp. 248–

259, 2011.

[19] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen, K. Taylor,

and R. Biswas, “Performance impact of resource contention in multicore systems,” in

Parallel and Distributed Processing (IPDPS), 2010 IEEE International Symposium on,

pp. 1–12, 2010.

[20] A. Zheng, A. Labrinidis, P. K. Chrysanthis, and J. Lange, “Argo: Architecture-Aware

Graph Partitioning,” in Big Data (Big Data), 2016 IEEE International Conference on,

pp. 284–293, 2016.

[21] A. Zheng, A. Labrinidis, and P. K. Chrysanthis, “Architecture-Aware Graph Reparti-

tioning for Data-Intensive Scientific Computing,” in Big Data (Big Data), 2014 IEEE

International Conference on, pp. 78–85, 2014.

[22] A. Zheng, A. Labrinidis, P. Pisciuneri, P. K. Chrysanthis, and P. Givi, “Paragon: Par-

allel Architecture-Aware Graph Partitioning Refinement Algorithm,” in 19th Interna-

tional Conference on Extending Database Technology, pp. 365–376, 2016.

[23] A. Zheng, A. Labrinidis, and P. K. Chrysanthis, “Planar: Parallel Lightweight

Architecture-Aware Adaptive Graph Repartitioning,” in Data Engineering (ICDE),

2016 IEEE 32nd International Conference on, pp. 121–132, 2016.

[24] A. Zheng, P. Pisciuneri, A. Labrinidis, P. K. Chrysanthis, J. Lange, and P. Givi, “Pla-

nar+: Parallel Lightweight Architecture-Aware Graph Repartitioning,” Under Submis-

sion, 2017.

[25] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One tril-

lion edges: Graph processing at facebook-scale,” Proceedings of the VLDB Endowment,

vol. 8, no. 12, pp. 1804–1815, 2015.

135

[26] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis, “Mizan:

a system for dynamic load balancing in large-scale graph processing,” in Proceedings of

the 8th ACM European Conference on Computer Systems, pp. 169–182, 2013.

[27] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From think like

a vertex to think like a graph,” Proceedings of the VLDB Endowment, vol. 7, no. 3,

pp. 193–204, 2013.

[28] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi, C. Raghaven-

dra, and V. Prasanna, “Goffish: A sub-graph centric framework for large-scale graph

analytics,” in European Conference on Parallel Processing, pp. 451–462, 2014.

[29] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework for distributed

computation on real-world graphs,” Proceedings of the VLDB Endowment, vol. 7, no. 14,

pp. 1981–1992, 2014.

[30] M. Sarwat, S. Elnikety, Y. He, and G. Kliot, “Horton: Online query execution engine for

large distributed graphs,” in Data Engineering (ICDE), 2012 IEEE 28th International

Conference on, pp. 1289–1292, 2012.

[31] D. Yan, J. Cheng, T. Ozsu, F. Yang, Y. Lu, J. C. Lui, Q. Zhang, and W. Ng, “A

general-purpose query-centric framework for querying big graphs [innovative systems

and applications],” Proceedings of the VLDB Endowment, vol. 9, no. 7, pp. 564–575,

2016.

[32] G. Karypis et al., “METIS: Serial Graph Partitioning and Fill-reducing Matrix Order-

ing.” http://glaros.dtc.umn.edu/gkhome/metis/metis/overview, 1995.

[33] K. Schloegel et al., “Parmetis: Parallel graph partitioning and sparse matrix ordering

library.” http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview, 2000.

[34] F. Pellegrini et al. http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch/,

2016.

136

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch/

[35] B. Hendrickson and R. Leland, “Chaco: Algorithms and Software for Partitioning

Meshes.” http://www.sandia.gov/~bahendr/chaco.html, 1995.

[36] U. Catalyurek et al., “Parallel Partitioning, Load Balancing and Data-Management

Services.” http://www.cs.sandia.gov/zoltan/, 2013.

[37] L. M. Erwan, L. Yizhong, and T. Gilles, “(Re) partitioning for stream-enabled compu-

tation,” arXiv:1310.8211, 2013.

[38] D. Margo and M. Seltzer, “A Scalable Distributed Graph Partitioner,” Proceedings of

the VLDB Endowment, vol. 8, no. 12, pp. 1478–1489, 2015.

[39] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “xdgp: A dynamic graph

processing system with adaptive partitioning,” arXiv preprint arXiv:1309.1049, 2013.

[40] Z. Shang and J. X. Yu, “Catch the wind: Graph workload balancing on cloud,” in Data

Engineering (ICDE), 2013 IEEE 29th International Conference on, pp. 553–564, 2013.

[41] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: Dynamic partitioning for

distributed social network graph databases,” in 18th International Conference on Ex-

tending Database Technology, pp. 25–36, 2015.

[42] N. Xu, L. Chen, and B. Cui, “LogGP: a log-based dynamic graph partitioning method,”

Proceedings of the VLDB Endowment, vol. 7, no. 14, pp. 1917–1928, 2014.

[43] C. Xie, L. Yan, W.-J. Li, and Z. Zhang, “Distributed Power-law Graph Computing:

Theoretical and Empirical Analysis,” in Advances in Neural Information Processing

Systems 27, pp. 1673–1681, 2014.

[44] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni, “HDRF: Stream-Based

Partitioning for Power-Law Graphs,” in Proceedings of the 24th ACM International on

Conference on Information and Knowledge Management, pp. 243–252, 2015.

[45] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel, “GrapH: Heterogeneity-Aware Graph

137

http://www.sandia.gov/~bahendr/chaco.html
http://www.cs.sandia.gov/zoltan/

Computation with Adaptive Partitioning,” in Distributed Computing Systems (ICDCS),

2016 IEEE 36th International Conference on, pp. 118–128, 2016.

[46] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sa-

hay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., “OpenMPI: A High Performance

Message Passing Library.” http://www.open-mpi.org/, 2004.

[47] J. Liu et al., “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE.” http:

//mvapich.cse.ohio-state.edu/, 2004.

[48] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “Limic: Support for high-performance mpi

intra-node communication on linux cluster,” in Parallel Processing, 2005. ICPP 2005.

International Conference on, pp. 184–191, 2005.

[49] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud, “Cache-efficient,

intranode, large-message MPI communication with MPICH2-Nemesis,” in Parallel Pro-

cessing, 2009. ICPP’09. International Conference on, pp. 462–469, 2009.

[50] Gordon, “SDSC Gordon cluster.” https://portal.xsede.org/sdsc-gordon, 2016.

[51] HPE, “RDMA protocol: improving network performance.” http://h21007.www2.hpe.

com/portal/download/files/unprot/c00589475.pdf, 2016.

[52] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in parallel graph

processing,” Parallel Processing Letters, vol. 17, no. 01, pp. 5–20, 2007.

[53] Orkut, “Orkut Community Archive.” https://orkut.google.com/en.html, 2014.

[54] A. Mislove, Online Social Networks: Measurement, Analysis, and Applications to Dis-

tributed Information Systems. PhD thesis, Rice University, 2009.

[55] H. McCraw et al., “Performance Application Programming Interface.” http://icl.cs.

utk.edu/papi/, 2012.

138

http://www.open-mpi.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
https://portal.xsede.org/sdsc-gordon
http://h21007.www2.hpe.com/portal/download/files/unprot/c00589475.pdf
http://h21007.www2.hpe.com/portal/download/files/unprot/c00589475.pdf
https://orkut.google.com/en.html
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

[56] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “RDMA read based rendezvous protocol

for MPI over InfiniBand: design alternatives and benefits,” in Proceedings of the eleventh

ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 32–

39, 2006.

[57] Intel, “Intel Data Direct I/O Technology.” http://www.intel.com/content/www/us/

en/io/data-direct-i-o-technology.html, 2012.

[58] Wikipedia, “Message Passing Interface (MPI).” https://en.wikipedia.org/wiki/

Message_Passing_Interface, 2017.

[59] A. Buluç and K. Madduri, “Parallel Breadth-First Search on Distributed Memory Sys-

tems,” in Proceedings of 2011 International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, p. 65, 2011.

[60] Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed graph computing sys-

tems: An experimental evaluation,” Proceedings of the VLDB Endowment, vol. 8, no. 3,

pp. 281–292, 2014.

[61] J. Leskovec and A. Krevl, “Stanford Large Network Dataset Collection.” http://snap.

stanford.edu/data, 2014.

[62] J. Kunegis, “Konect: the koblenz network collection.” http://konect.uni-koblenz.

de/networks/, 2013.

[63] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the internet

topology,” in ACM SIGCOMM computer communication review, vol. 29, pp. 251–262,

1999.

[64] E. Papalexakis, B. Hooi, K. Pelechrinis, and C. Faloutsos, “Power-Hop: A Pervasive

Observation for Real Complex Networks,” PloS one, vol. 11, no. 3, p. e0151027, 2016.

[65] SAM, “The HPC Cluster at the University of Pittsburgh.” http://core.sam.pitt.

edu/MPIcluster, 2016.

139

http://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
http://core.sam.pitt.edu/MPIcluster
http://core.sam.pitt.edu/MPIcluster

[66] O. S. U. NOWLAB, “osu latency Benchmark.” http://mvapich.cse.ohio-state.

edu/benchmarks/, 2016.

[67] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network

partitions,” in Design Automation, 1982. 19th Conference on, pp. 175–181, 1982.

[68] C. Schulz, Scalable parallel refinement of graph partitions. PhD thesis, Karlsruhe Insti-

tute of Technology, May 2009.

[69] E. Jeannot, E. Meneses, G. Mercier, F. Tessier, G. Zheng, et al., “Communication and

Topology-aware Load Balancing in Charm++ with TreeMatch,” in Cluster Computing

(CLUSTER), 2013 IEEE International Conference on, pp. 1–8, 2013.

[70] S. Micali and V. V. Vazirani, “An O(v|v|c|E|) algorithm for finding maximum matching

in general graphs,” in Foundations of Computer Science, 1980., 21st Annual Symposium

on, pp. 17–27, 1980.

[71] P. Pisciuneri, S. L. Yilmaz, P. Strakey, and P. Givi, “An Irregularly Portioned FDF

Simulator,” SIAM Journal on Scientific Computing, vol. 35, no. 4, pp. C438–C452,

2013.

[72] Sandia, “Sandia National Laboratories TNF Workshop Website, Piloted Jet Flames.”

http://www.sandia.gov/TNF/pilotedjet.html, 2016.

[73] Kraken, “Kraken Cray XT5.” http://www.nics.tennessee.edu/

computing-resources/kraken, 2014.

[74] C. Walshaw, “Chris Walshaw Collection.” http://staffweb.cms.gre.ac.uk/~wc06/

partition/, 2000.

[75] D. A. Bader et al., “10th DIMACS Challenge.” http://www.cc.gatech.edu/

dimacs10/, 2012.

[76] C. Demetrescu et al., “9th DIMACS Challenge.” http://www.dis.uniroma1.it/

challenge9, 2006.

140

http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.sandia.gov/TNF/pilotedjet.html
http://www.nics.tennessee.edu/computing-resources/kraken
http://www.nics.tennessee.edu/computing-resources/kraken
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://www.cc.gatech.edu/dimacs10/
http://www.cc.gatech.edu/dimacs10/
http://www.dis.uniroma1.it/challenge9
http://www.dis.uniroma1.it/challenge9

[77] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp, and R. Thakur, “High performance

MPI-2 one-sided communication over InfiniBand,” in Cluster Computing and the Grid,

2004. IEEE International Symposium on, pp. 531–538, 2004.

[78] Open MPI Team, “Portable Hardware Locality (hwloc).” http://www.open-mpi.org/

projects/hwloc/, 2016.

141

http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/projects/hwloc/

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. State-of-the-art Graph (Re)Partitioners
	2.2. Intra-node shared resource contention
	2.3. Workload execution time in seconds on com-orkut dataset
	2.4. Workload LLC misses in millions on com-orkut dataset
	3.1. Datasets used in our experiments
	3.2. Cluster compute node configuration
	3.3. Workload execution time in seconds on com-orkut dataset with varying message grouping size
	3.4. Workload LLC misses in millions on com-orkut dataset with varying message grouping size
	3.5. Workload execution time in seconds as the graph size increased
	3.6. Workload execution time in seconds as the # of partitions increased
	4.1. Relative network communication costs
	4.2. Original combustion simulation dataset
	4.3. Synthetic datasets
	4.4. Four flavors of Aragon
	4.5. Cache access latencies
	4.6. Degree of imbalance
	4.7. Datasets used in our experiments
	4.8. Cluster compute node configuration
	4.9. BFS job execution time (s)
	4.10. SSSP job execution time (s)
	4.11. Relative network communication costs
	4.12. BFS job execution time (s)
	4.13. SSSP job execution time (s)
	4.14. Skewness of the resulting decompositions
	4.15. PageRank communication volume breakdown in GB
	5.1. Active vertex distribution across supersteps of BFS & SSSP execution with one randomly selected source vertex
	5.2. BFS and SSSP execution time in seconds on com-orkut dataset with varying message grouping size
	5.3. BFS execution time in seconds with 10 randomly selected source vertices on varying sized graphs
	5.4. BFS execution time in seconds with 10 randomly selected source vertices on varying number of partitions
	6.1. A summary of the Proposed Graph Repartitioners: Part1
	6.2. A summary of the Proposed Graph Repartitioners: Part2

	LIST OF FIGURES
	2.1. Example architectures of modern compute nodes
	2.2. Theoretic bandwidth for different generations of InfiniBand and memory technologies galakatos2016end.
	2.3. Memory transactions of inter- and intra-node data communication
	3.1. Breakdown communication volume for the execution of BFS, SSSP, and PageRank on com-orkut partitionings.
	3.2. Partitioning time on Twitter dataset
	3.3. Argo partitioning time as a percentage of CPU time saving
	4.1. Old Decomposition
	4.2. Better Decomposition
	4.3. Best Decomposition
	4.4. Topology Tree
	4.5. Varying num. of partitions (RR)
	4.6. Varying num. of partitions (SMP)
	4.7. Num. of computation steps
	4.8. Different sized 3D-torus
	4.9. Normalized communication and migration volume distribution in terms of the number of hops each byte travels.
	4.10. Refinement time and normalized communication costs of the com-lj decompositions after being refined with varying degree of refinement parallelism on two 20-core compute nodes.
	4.11. Y-axis corresponds to the communication costs of the com-lj decompositions after being refined with varying number of shuffle refinement times on two 20-core compute nodes when they were normalized to that of the decompositions refined by Aragon; X-axis denotes the corresponding refinement time; the labels on each data point were the number of refinement times.
	4.12. Communication cost of the initial decompositions computed by HP, DG, LDG, and Metis across cores of two 20-core compute nodes for a variety of graphs.
	4.13. Paragon's sensitivity to varying initial decompositions in terms of the communication cost for a variety of graphs, which were initially partitioned by HP, DG, LDG, and Metis across cores of two 20-core compute nodes.
	4.14. Overhead of the refinement on varying decompositions that were initially partitioned by HP, DG, LDG, and Metis across cores of two 20-core compute nodes.
	4.15. The breakdown of the accumulated communication volume across all supersteps for BFS on PittMPICluster.
	4.16. The breakdown of the accumulated communication volume across all supersteps for BFS on Gordon.
	4.17. BFS JET with Graph Dynamism
	4.18. BFS JET vs Graph Size
	4.19. Refinement Time vs Graph Size
	4.20. Old Decomposition
	4.21. Better Decomposition
	4.22. Best Decomposition
	4.23. Planar parameter selection
	4.24. Planar parameter selection
	4.25. Planar parameter selection
	4.26. Planar parameter selection
	4.27. Communication costs of the initial decompositions partitioned by HP, DG, LDG, and Metis into 40 partitions.
	4.28. Communication cost of the resulting decompositions and improvement achieved after running Planar over varying initial decompositions generated by HP, DG, LDG, and Metis across two 20-core machines.
	4.29. Overhead of the adaptation on varying initial decompositions computed by HP, DG, LDG, and Metis into 40 partitions.
	4.30. Planar converge time in terms of supersteps
	4.31. Planar convergence study on the wave dataset
	4.32. Planar convergence study on the com-lj dataset
	4.33. The communication volume breakdown of SSSP on both clusters.
	4.34. BFS Job Execution Time (JET)
	4.35. Repartitioning Time
	4.36. Percentage of hopcut and edgecut reduced by the repartitioners over the decompositions initially generated by LDG.
	4.37. Percentage of vertices migrated the repartitioners
	4.38. Percentage of hopcut reduced after running the repartitioners over the decompositions with varying number of partitions.
	4.39. Repartition time of the repartitioners over the decompositions with varying number of partitions.
	4.40. PageRank execution time on Friendster and Twitter datasets with varying message grouping sizes.
	5.1. BFS active vertex distribution across partitions for the most time-consuming superstep (Step 4 of Table 5.1) on com-orkut dataset with one randomly selected source vertex. The distribution was measured, when the graph was partitioned across six 20-core machines with one partition per core.
	5.2. BFS active high-degree vertex distribution across partitions for the most time-consuming superstep (Step 4 of Table 5.1) on com-orkut dataset with one randomly selected source vertex. The distribution was measured, when the graph was partitioned across six 20-core machines with one partition per core.
	5.3. Repeatability of BFS and SSSP execution trace: tr1 with respect to different traces on the Orkut dataset.
	5.4. Distribution of BFS and SSSP execution trace repeatability across all trace pairs.
	5.5. Active (high-degree) vertex distribution across partitions for the most time-consuming superstep of a BFS execution on com-orkut dataset with one randomly selected source vertex. The distribution was measured when the dataset was partitioned across six 20-core machines with one partition per core.
	5.6. The quality of the partitionings computed by different partitioners over a variety of graphs, as well as the corresponding partitioning overhead (in log scale). The datasets presented were partitioned across six 20-core machines with one partition per core.

	LIST OF ALGORITHMS
	1. TopoFM
	2. Paragon
	3. Planar Overview
	4. Phase-1a: Vertex Migration
	5. Phase-1b: Quota Allocation
	6. Phase-1b: Vertex Migration
	7. Planar+ Full Repartitioning
	8. Phase-1a: Migration Destination Selection
	9. Planar: Vertex Gain Computation
	10. Planar+: Vertex Gain Computation

	LIST OF EQUATIONS
	3.1. Equation (3.1)
	3.2. Equation (3.2)
	3.3. Equation (3.3)
	3.4. Equation (3.4)
	3.5. Equation (3.5)
	3.6. Equation (3.6)
	3.7. Equation (3.7)
	4.1. Equation (4.1)
	4.2. Equation (4.2)
	4.3. Equation (4.3)
	4.4. Equation (4.4)
	4.5. Equation (4.5)
	4.6. Equation (4.6)
	4.7. Equation (4.7)
	4.8. Equation (4.8)
	4.9. Equation (4.9)
	4.10. Equation (4.10)
	4.11. Equation (4.11)
	4.12. Equation (4.12)
	4.13. Equation (4.13)
	4.14. Equation (4.14)
	4.15. Equation (4.15)
	4.16. Equation (4.16)
	4.17. Equation (4.17)
	4.18. Equation (4.18)
	4.19. Equation (4.19)
	4.20. Equation (4.20)
	4.21. Equation (4.21)
	4.22. Equation (4.22)
	4.23. Equation (4.23)
	4.24. Equation (4.24)
	4.25. Equation (4.25)
	4.26. Equation (4.26)
	5.1. Equation (5.1)
	5.2. Equation (5.2)
	5.3. Equation (5.3)
	5.4. Equation (5.4)
	5.5. Equation (5.5)
	5.6. Equation (5.6)
	5.7. Equation (5.7)
	6.1. Equation (6.1)

	PREFACE
	1.0 INTRODUCTION
	1.1 Research Overview
	1.1.1 Thesis Statement
	1.1.2 Target Computing Infrastructure
	1.1.3 Assumptions
	1.1.4 Main Contributions
	1.1.5 Main Impact

	1.2 Outline

	2.0 BACKGROUND AND MOTIVATION
	2.1 Literature Review
	2.1.1 Distributed Graph Computation
	2.1.2 Graph Partitioning and Repartitioning

	2.2 Importance of Architecture-Awareness
	2.2.1 Network Characteristics of Modern HPC Infrastructures
	2.2.2 Resource Contention on HPC Memory Subsystems
	2.2.3 Understanding the Performance Impact of Heterogeneity and Contentiousness

	3.0 ARCHITECTURE-AWARE STATIC GRAPH PARTITIONING
	3.1 Problem Statement
	3.2 ARGO: Architecture-Aware Graph Partitioning
	3.2.1 Algorithm Design and Implementation
	3.2.1.1 Graph Partitioning Model
	3.2.1.2 Incorporating Heterogeneity Awareness
	3.2.1.3 Incorporating Contention Awareness

	3.2.2 Evaluation
	3.2.2.1 Setup
	3.2.2.2 Effectiveness of Being Architecture-Aware
	3.2.2.3 Scalability in terms of Graph Size
	3.2.2.4 Scalability in terms of Number of Partitions

	3.3 Chapter Summary

	4.0 ARCHITECTURE-AWARE DYNAMIC GRAPH PARTITIONING
	4.1 Problem Statement
	4.2 ARAGON: Architecture-Aware Graph Repartitioning
	4.2.1 Algorithm Design and Implementation
	4.2.1.1 Inter-Node Graph Repartitioning
	4.2.1.2 Intra-Node Graph Repartitioning

	4.2.2 Evaluation
	4.2.2.1 Setup
	4.2.2.2 Varying Number of Partitions
	4.2.2.3 Varying Number of Computation Steps
	4.2.2.4 Varying Sized 3D-Torus
	4.2.2.5 Communication and Migration Volume Breakdown
	4.2.2.6 Degree of Imbalance
	4.2.2.7 Repartition Time

	4.2.3 Section Summary

	4.3 PARAGON: Parallel Architecture-Aware Graph Repartitioning
	4.3.1 Algorithm Design and Implementation
	4.3.1.1 Partition Grouping
	4.3.1.2 Shuffle Refinement
	4.3.1.3 Group Server Selection
	4.3.1.4 Reducing Communication Volume
	4.3.1.5 Master Node Selection
	4.3.1.6 Incorporating Contention-Awareness

	4.3.2 Evaluation
	4.3.2.1 Setup
	4.3.2.2 MicroBenchmarks
	4.3.2.3 Real-World Applications (BFS & SSSP)
	4.3.2.4 Billion-Edge Graph Scaling

	4.3.3 Section Summary

	4.4 PLANAR and PLANAR+: Parallel Lightweight Architecture-Aware Graph Repartitioning
	4.4.1 PLANAR: Algorithm Design and Implementation
	4.4.1.1 Phase-1a: Minimizing Communication Cost
	4.4.1.2 Phase-1b: Ensuring Balanced Partitions
	4.4.1.3 Phase-2: Physical Vertex Migration
	4.4.1.4 Phase-3: Convergence
	4.4.1.5 Incorporating Contention-Awareness

	4.4.2 PLANAR: Evaluation
	4.4.2.1 Setup
	4.4.2.2 Parameter Selection
	4.4.2.3 Microbenchmarks
	4.4.2.4 Real-World Applications (BFS & SSSP)
	4.4.2.5 Billion-Edge Graph Scaling

	4.4.3 PLANAR+: Optimized PLANAR
	4.4.3.1 Eliminating Per Adaptation Superstep Physical Vertex Migration
	4.4.3.2 Optimizing Network Communication Cost Measurement
	4.4.3.3 Optimizing Vertex Gain Computation

	4.4.4 PLANAR+: Evaluation
	4.4.4.1 Setup
	4.4.4.2 Partitioning Quality
	4.4.4.3 Scalability Study
	4.4.4.4 Real-World Workload (PageRank)

	4.4.5 Section Summary

	5.0 SKEW-RESISTANT GRAPH PARTITIONING
	5.1 Traversal-Style Graph Workload Characterization
	5.1.1 Active Vertex Distribution Across Supersteps (Table 5.1)
	5.1.2 Active Vertex Distribution Across Partitions (Fig. 5.1 & 5.2)
	5.1.3 Workload Predictability (Fig. 5.3 & 5.4)

	5.2 Multi-Label Graph Partitioning
	5.2.1 Problem Statement
	5.2.2 Streaming-Based Implementation
	5.2.2.1 Graph Partitioning Model
	5.2.2.2 Streaming Heuristic
	5.2.2.3 Restreaming Model

	5.3 Skew-Resistant Graph Partitioning
	5.3.1 MLGP: Traversal-Style Graph Workloads
	5.3.1.1 Avoiding Algorithmic Skewness
	5.3.1.2 Avoiding Structural Skewness

	5.3.2 MLGP: Multiphase Graph Workloads
	5.3.3 MLGP: Graph Database Partitioning

	5.4 Evaluation
	5.4.1 Setup
	5.4.2 Microbenchmarks
	5.4.2.1 Effectiveness in terms of Skewness
	5.4.2.2 Effectiveness in terms of Partitioning Quality

	5.4.3 Real-World Workloads (BFS & SSSP)
	5.4.4 Scalability Study
	5.4.4.1 Scalability in terms of Graph Size
	5.4.4.2 Scalability in terms of # of Partitions

	5.5 Chapter Summary

	6.0 CONCLUSIONS AND FUTURE WORK
	6.1 Main Contributions
	6.2 Main Impact
	6.3 Discussion and Future Work

	7.0 BIBLIOGRAPHY

