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ABSTRACT

Dynamic risk prediction is a powerful tool to estimate the future risk of study subjects

with data involves time-dependent information, including repeatedly measured covariates,

intermediate events, and time-varying covariate effects. The quantity of interest for dynamic

risk prediction is the probability of failure at the prediction horizon time conditional on the

status at the prediction baseline (aka landmark time). For a clinical study, a series of

horizon and landmark time points are usually planned in the design stage. This conditional

probability can be estimated from a standard Cox proportional hazards model (for data

without competing risks) or a Fine and Gray subdistributional hazards model (for data

with competing risks) by appropriately setting up a landmark dataset. In this dissertation,

I propose test statistics for testing the equal conditional probability between two patient

groups according to their response to treatment at the prediction baseline under the scenarios

of data with and without competing risks, respectively. The dissertation provides three

different methods for estimating the variance of risk difference. In designing a randomized

clinical trial for comparing risk difference between the two study arms, I derived formulas

for power, the number of events, and the total sample size required with respect to the

aforementioned hypothesis tests. Simulations were conducted to evaluate the impact of each

design parameter on the power and sample size calculations.
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Public health significance: This study aims to introduce new risk prediction methods

that can incorporate time-dependent information and update risk estimation during the

course of study follow-up, also provide researchers with references on the power and sample

size requirements at the planning phase of studies involving dynamic risk prediction.
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1.0 INTRODUCTION

Models for risk prediction are useful tools for disease prognosis, treatment assignment and

treatment. The probability of failure, defined as an individual’s absolute risk of experiencing

an event of interest at a given time point, is often used by clinical researchers because it is

quantifiable, accessible, and easy to interpret.

Risk prediction can be classified as either static or dynamic. For static prediction, the

prediction baseline (aka analysis time 0) is usually the study baseline, and the predictors

contain only the current or historical values with respect to the prediction baseline. The

quantity of interest for static prediction is simply the absolute risk at the prediction horizon

time, that is, the marginal probability of failure at the prediction horizon time. Methods

to estimate this probability are well established; among which Kaplan-Meier nonparametric

estimation method and Cox proportional hazards regression model are most commonly used.

For dynamic risk prediction, each prediction baseline is chosen at a future time point

relative to the study baseline before inspecting the data and often with clinical interests (e.g.,

initiation of chemotherapy, one year after surgery). The quantity of interest is the risk at the

prediction horizon time conditional on the status at the prediction baseline. Note that values

of predictors may change over time. Time-dependent information includes time-dependent

covariates (e.g., repeatedly measured covariates and intermediate events) and time-varying

covariate effect. For example, a risk prediction model for cancer metastasis among breast

cancer patients with ER positive and node negative who underwent surgery is expected to

incorporate time-fixed covariates (e.g., age, gender, primary tumor size, and surgery type),

time-dependent covariates (e.g., white blood cell counts), and intermediate event status if

applicable (e.g., presence of local-regional recurrence and time to local-regional recurrence).
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Existing methods for handling time-dependent information include Cox model with time-

dependent covariates [1, 2], multi-state modeling [3], joint modeling [4] among others. Es-

timation of conditional probability of failure involving time-dependent information often

requires several steps and/or additional assumptions on the survival and covariate processes,

which could render the above-mentioned methods computationally intensive. Furthermore,

when intermediate event is involved, immortal-time bias could be introduced. One classic

case is to use the response to chemotherapy as an intermediate event in cancer survival,

where those who responded to the treatment prior to the survey had a ”survival advantage”

over those who did not respond to the chemotherapy.[5]

Landmarking technique, proposed by van Houwelingen in 2007, bypasses the aforemen-

tioned issues and achieves dynamic risk prediction in one step. The method provides a valid

approximation of the conditional probability of failure at the prediction horizon time and is

robust to possible violation of the proportional hazards (PH) assumption. [6, 7, 8] Follow-

ing the works of van Houwelingen, several researchers have extended landmark methods for

dynamic prediction in various settings. [9, 10, 11, 12]

In order to estimate and test the risk differences between treatment groups, statisticians

need to provide methods to estimate the sample size and the power at the study design

stage. Power and sample size calculation procedure is constructed based on the hypothesis

to be tested and the corresponding test statistic. After the null and alternative hypotheses

are determined and an appropriate test statistic is developed with its exact or asymptotic

distributions under both the null and alternative hypotheses identified, power and sample

size can be calculated using the pre-specified type I error rate, desired power level, and other

design parameters. The general procedures for power and sample size calculations in clinical

studies have been illustrated by many researchers yet currently there is little systematic work

done on this subject in the context of dynamic risk prediction. In this study, we developed

formulas to estimate the sample size and the power for comparing conditional probabilities

of failure between two treatment groups in dynamic risk prediction.

In Chapter 2, we introduce methods for dynamic risk prediction under both single event

and competing risks settings. In Chapter 3 we present our proposed test statistic for de-

termining risk difference and the power function for the proposed test; and illustrate the

2



procedure of sample size calculation. In Chapter 4 we present simulation results assessing

the factors that influence power and sample size using the proposed test. We conclude the

work with discussions and the future work plan in Chapter 5.
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2.0 DYNAMIC RISK PREDICTION USING LANDMARKING

2.1 LANDMARK COX MODEL

Let TL and C be the main (long term) event and censoring time, respectively; with TS as

the intermediate (short term) event time. We define the intermediate event status δSi =

I(Ts ≤ ts) and main event status δLi = I(TL ≤ tl) where I(A) is the indicator function that

takes value of 1 when the condition A is true and 0 otherwise. Let Zi represent the vector

of covariates, for subject i we observe the independently and identically distributed data

{XLi = TLi ∧ Ci, δLi = I(TLi < Ci), XSi = TSi ∧ (TLi ∧ Ci),Zi}, i = 1, ..., n.

We assume that Ci is independent of TSi, TLi and Zi. Probability of failure for the main

event at time t is defined as:

F (t;Z) = Pr(TL ≤ t|Z).

For data containing no competing risks, the Cox proportional hazard model takes the

form

λ(tl|Z) = λ0(tl) exp(βTZ)

with

F (t;Z) = 1− exp{
∫ t

0

λ0(u) exp(βTZ) du}.

The covariate effects, β, are estimated via maximizing a partial log-likelihood function,

then we have:

F̂ (t;Z) = 1− exp{− exp(β̂TZ)Λ̂0(t)},

where Λ̂0(t) is the Breslow-type estimator.
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As stated in the introduction, the quantity of interest in dynamic risk prediction is the

probability of failure from the main event conditional on that the individual has not failed

from the main event by landmark time, tLM , with information accumulated up until tLM ,

ZLM , resulting in the conditional probability of failure at thor:

F{thor|ZLM , tLM} = P{TL ≤ thor|TL > tLM ,ZLM}

=
P (TL ≤ thor)− P (TL ≤ tLM)

P (TL > tLM)

=
F{thor;ZLM} − F{tLM ;ZLM}

1− F{tLM ;ZLM}
.

(2.1)

Instead of estimating each component in equation (2.1) separately, van Houwelingen

introduced the Landmark Cox model that can be used to estimate the conditional probability

in one step. The hazard function has the form [6]:

λ{t|ZLM , tLM} = λ0(t|tLM) exp{βTLMZLM}, tLM ≤ t ≤ thor, (2.2)

where λ0(t|tLM) is the unspecified, non-negative conditional baseline hazard function.

By landmarking we are selecting subjects that are still at risk for the main event at

landmark time tLM and enforcing administrative censoring at prediction horizon thor. As a

result, the modified risk set (landmark data set) will differ with choices of tLM and thor, as

well as the information that could be used in parameter estimation. The notations βLM and

ZLM indicate that the coefficient estimates and covariate vector are specific to the choice of

prediction landmark time. β̂LM can be obtained by maximizing the partial log-likelihood

pls(βLM) =
∑

ti≥tLM

δLi[β
T
LMZi;LM − log{

∑
tj≥ti

exp(βTLMZj;LM)}].

The baseline hazard at time ti can be estimated by a Breslow-type estimator:

λ̂0(ti|tLM) =
1∑

ti≤tj exp(β̂TLMZj;LM)
.

The conditional probability of failure can be obtained as:

F̂{thor|ZLM , tLM} = 1− exp[exp(−β̂TLMZLM{Λ̂0(thor)− Λ̂0(tLM−)}], (2.3)
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where Λ̂0(tLM−) and Λ̂0(thor) are cumulative baseline hazards with

Λ̂0(tLM−) =
∑

ti≤t,δli=1

λ̂0(ti|tLM),

Λ̂0(thor) =
∑

ti≤t,δli=1

λ̂0(ti|thor).

Previous work by Struther and Kalbfleisch [13] and Xu and O’Quigley [14] showed that

when the true covariate effect is time-varying such that λ(t|Z) = λ0(t) exp(β(t)TZ), the

limiting value of the maximum partial likelihood estimator from a Cox proportional hazards

models converges to a weighted average of the underlying time-varying covariate effect. And

it has been shown that the landmark Cox model preserves such a property [6], β̂LM is a

consistent estimator of β∗, which is the solution to:

∫ ∞
0

{s
(1)(β(t), t)

s(0)(β(t), t)
− s(1)(β, t)

s(0)(β, t)
}s(0)(β(t), t)λ0(t) dt = 0. (2.4)

Define

S(r)(β, t) = n−1
n∑
i=1

Yi(t)Z
r
i exp(βTZi)

with Yi(t) as the at-risk indicator from counting process, and

s(r)(β, t) = ES(r)(β, t),

thus
S(1)(β(t), t)

S(0)(β(t), t)
= E[Z|T = t]. (2.5)

∂

∂β
(
s(1)(β, t)

s(0)(β, t)
)|β=β(t) = var(Z|T = t) (2.6)

Combine (2.5) and (2.6) we have:

S(1)(β(t), t)

S(0)(β(t), t)
− s(1)(β, t)

s(0)(β, t)
≈ {β − β(t)}var(Z|T = t) (2.7)
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In the presence of random censoring:

s(0)(β(t), t)λ0(t) = E[Y (t) exp(β(t)T )Zλ0(t)]

= E[Y (t)λ(t|Z)]

= E[Y (t)]E[λ(t|Z)|T ≥ t]

= S(t)C(t)λ(t),

(2.8)

where λ(t|Z) is the marginal hazard, S(t) is the marginal survival function and C(t) is the

survival function of non-informative censoring time.

Using (2.7) and (2.8), equation (2.4) can be approximated by:

∫ ∞
0

var(Z|T = t)(β − β(t))S(t)C(t)λ(t) dt = 0. (2.9)

With additional administrative censoring at thor, the original β∗ becomes β∗hor and

β̂pl
p−→ β∗hor ≈

∫ thor
0

S(t)C(t)h(t)var(Z|T = t)β(t) dt∫ thor
0

S(t)C(t)h(t)var(Z|T = t) dt
. (2.10)

If the marginal survival function S(t) does not get too small, the covariate effect is not

too large and does not vary too much overtime,in the absence of heavy censoring, we can

further write:

β∗hor ≈
∫ thor
0

λ0(t)β(t) dt∫ thor
0

λ0(t) dt
. (2.11)

Similarly, the limiting value of the baseline hazard can be approximated by:

λ∗0(t) ≈ λ0(t) expE[Z|T = t](β(t)− β∗hor), (2.12)

and it follows that

Λ0(t)
p−→ Λ∗0(t) ≈ exp(β(t)− β∗hor)

∫ thor

0

λ∗0(t). (2.13)

Dynamic risk prediction with the landmark Cox model takes fewer steps and can fit a

more sparse model as compared to multi-state models or joint modeling. Landmark Cox

model can be fitted using standard statistical software such as coxph() in R once the land-

mark data set is correctly created. The conditional probability of failure being estimated
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is often clinically meaningful. It has also been shown that landmark Cox model provides a

valid approximation of the conditional probability of failure F{thor|ZLM , tLM}, even in the

presence of time-dependent covariates or time-varying covariate effects; given that β(t) does

not vary dramatically overtime, is not too big and the follow-up time is not too long.

2.2 LANDMARK PROPORTIONAL SUB-DISTRIBUTION HAZARDS

MODEL

In the presence of competing risk events, the cause-specific cumulative incidence function

(CIF) is an appropriate measurement of one’s absolute probability of failure from a certain

type of event without any dependency assumptions among competing events. The propor-

tional sub-distribution hazards (PSH) models proposed by Fine and Gray (1999) [15] is a

popular tool for estimating cause-specific CIFs; which is easy to implement with the ability

to incorporate multi-dimensional covariates and provide readily interpretable results.

Let T and C be the event and censoring times, respectively; with ε ∈ {1, ..., k} as the

event types and Z representing the vector of covariates. We assume that Ci is independent

of Ti and Z. For each subject we observe the independently and identically distributed data

{Xi = Ti ∧ Ci,∆i = I(Ti < Ci),∆iεi,Zi}, i = 1, ..., n. Without loss of generality we will

refer to the event of interest as type 1 event with corresponding CIF defined as:

F1(t;Z) = Pr(T ≤ t, ε = 1|Z).

The Fine-Gray PSH model takes the form

λ1(t|Z) = λ10(t) exp(βTZ)

The sub-distribution hazard λ1(t) is the hazard for an improper failure time T ∗, defined

as T × I(ε = 1) + {1 − I(ε = 1)}, possessing a cumulative distribution function F1(t) for

t ≤ ∞ and a point mass at t =∞ with an unspecified, non-negative baseline hazard λ10(t) =

−dlog{1−F1(t;Z = 0)}/dt and modified risk set R(Ti) = {j : (Tj ≥ Ti)∪ (Tj < Ti∩ εi 6= 1}.
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The PSH model for failure from type 1 event can be viewed as a Cox PH model over the

support of T ∗.

The cause-specific CIF can be calculated as:

F1(t;Z) = 1− exp{
∫ t

0

λ10(u) exp(βTZ) du}.

When random right censoring is present, the covariate effects β are estimated via maxi-

mizing an inverse probability of censoring weighted (IPCW) partial log-likelihood function:

U(β) =
n∑
i=1

∫ ∞
0

{Zi −
∑

j ωj(t)Yj(t)Zj exp(βTZj)∑
j ωj(t)Yj(t) exp(βTZj)

}ωj(t) dNi(t).

In terms of the counting process Ni(t) = I(Ti ≤ t, ε1 = 1), Yi(t) = I(Ti ≥ t) + I(Ti <

t, ε1 6= 1) and ωi(t) = I(Ci ≥ Ti) ∩ Ĝ(t)/Ĝ(Xi ∧ t) and Ĝ(t) is the Kaplan-Meier estimator

of the censoring survival distribution G(t) = Pr(C ≥ t).

It follows that the baseline cumulative sub-distribution hazards Λ10(t) =
∫ t
0
λ10(u) du

can be obtained using a weighed version of the Breslow estimator:

Λ̂10(t) =
1

n

n∑
i=1

∫ t

0

1
1
n

∑
j ωj(u)Yj(u) exp(β̂TZj)

ωi(u) dNi(u).

Combing β̂ and Λ̂10(t), we have the predicted cause-specific CIF as

F̂1(t; z) = 1− exp{− exp(β̂Tz)Λ̂10(t)}.

In clinical practice it is often desirable to make use of time-dependent information, in-

cluding repeatedly measured covariates, potentially time-varying covariate effects and inter-

mediate event status; yet such time-dependent information may result in the violation of

the PSH assumption and bias the CIF estimates. For instance, the effect of a treatment

regimen could be diminishing over time or altered by some intermediate clinical event, such

as local-regional recurrence or post-surgery complications in cancer patients.

A realistic prognostic model is one that can be used at the beginning of the study and is

equally relevant and updatable during follow-up as time-dependent information accumulates;

and is robust against non-proportional sub-distributions.
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To achieve dynamic risk prediction, the landmarking technique can also be adapted to

the competing risks scenario where the primary interest becomes the dynamic prediction of

the conditional cause-specific cumulative incidence function, which quantifies subject level

probability of survival beyond the pre-defined prediction horizon (thor) given that the subject

is still at risk for the event of interest at a specified time point during follow-up (prediction

landmark time, tLM):

F1{thor|ZLM , tLM} =
F1{thor;ZLM} − F1{tLM ;ZLM}

1−
∑k

j=1 Fj{tLM ;ZLM}

= Pr(tLM < t ≤ thor, ε = 1|ZLM)/Pr(T > tLM |ZLM)

= 1− Pr{(T > thor) ∪ (tLM < T ≤ thor ∩ ε 6= 1)|Z}/Pr(T > tLM |ZLM)

= 1− exp[−{Λ1(thor|ZLM , tLM)− Λ1(tLM − |ZLM , tLM)}]

= 1− exp{−
∫ thor

tLM

λ1(t|ZLM , tLM) dt}

The Landmark PSH model proposed by Liu et al. (2016) [12] extended the Fine-Gray

PSH model to the landmark setting, which directly predicts the conditional CIFs in one

step, bypassing the need to include time-varying covariate effects under non-proportional

sub-distribution hazards. The model can be regarded as fitting the Fine-Gray PSH model

to the landmark data set framed by (tLM , thor], which includes subjects who have not failed

from any type of events by tLM and ignoring all events after thor.

The landmark PSH model takes the form:

λ1(t|ZLM , tLM) = λ10(t|tLM) exp{βTLMZLM}, tLM ≤ t ≤ thor.

Thus the conditional CIF can be calculated from

F̂1(thor|ZLM , tLM) = 1− exp{−
∫ thor

tLM

λ̂1(t|ZLM , tLM) dt}
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Assuming random right censoring, following the arguments by Struther and Kalbfleisch

[13] and Xu and O’Quigley [14], when the underlying covariate effects are time-varying,

similar to the approximation of β∗ shown by van Houweiligen[6], which was elaborated in

the previous chapter. We have:

β∗hor ≈
∫ thor
0

λ10(t)β(t) dt∫ thor
0

λ10(t) dt

as a weighted average of time-varying covariate effects β(t) over time, provided that the

cumulative incidence function F1(t) does not get too large; the censoring rate is not too high

prior to thor; and the covariate effect is not too large and does not vary drastically over time.
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3.0 POWER AND SAMPLE SIZE CALCULATIONS

In the previous chapter we have presented estimation procedures for dynamic risk estimation.

Power analysis and sample size determination are crucial so that researchers will be able to

address some scientific questions with adequate evidence and confidence. Procedures of

power and sample size determination are based on two important components: the null and

alternative hypotheses and the corresponding test statistic. Survival studies focus on either

risk estimation for one or more groups at some fixed time point(s) or the modeling of a

complete survival curve and dynamic risk prediction falls in the first category.

When type I error, effect size and certain design effects specified, power level and sample

size can be calculated from the other. Yet in survival analysis the study design effects can

be complex and inconsistent over time thus simplifying assumptions are often needed. In

dynamic risk prediction, the application of landmark technique would further complicate

the situation as landmarking essentially subset the original data in a non-random manner.

Dynamic prediction technique has been proofed to give valid approximation of the risk at

prediction horizon times; when there are two comparison groups, such as randomized clinical

trial (RCT), dynamic risk prediction technique can be used to quantify the risk for each group

and compare the risks via hypothesis testing. In this chapter, we shall: (1) specify the null

and alternative hypotheses in studies using dynamic risk prediction; (2) give the form of the

test statistic; (3) derive the asymptotic distribution for the test statistic under both null and

alternative hypotheses and (4) provide explicit form of the power function.
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3.1 HYPOTHESIS TEST OF RISK DIFFERENCE

In a two-arm random clinical trial (RCT), researchers often aim to test for treatment effect

in terms of risk difference and prediction baseline is chosen at some time point after the

study baseline. For example, compare 3-year overall survival (OS) between breast cancer

patients undergoing two different maintenance regimens, given that these patients were still

alive 1 year after treatment initiation. In other words, the difference between two conditional

probabilities of failure is being tested with tLM = 1 and thor = 4. Assuming no competing

risks, for this type of research questions, the hypotheses being tested can be expressed as:

H0 : F (thor|Z1
LM , tLM)− F (thor|Z2

LM , tLM) = 0

H1 : F (thor|Z1
LM , tLM)− F (thor|Z2

LM , tLM) = δ1 6= 0

The hypotheses are specific to the choice of prediction window (tLM , thor]. We use different

vectors of covariates evaluated at tLM , Z1
LM and Z2

LM to represent two comparison groups.

These risk profiles can include treatment group indicator, applicable intermediate event

status and other relevant covariates.

Under certain scenarios, it is also desirable to compare risk within the same treatment

group. such as between subjects who responded to the treatment and those who did not; or

subjects with early response to the treatment against those with late response. In a study

with treatment and control groups, besides main event time t one could also observe the time

of response or the time of some complications or adverse event. Use t1 and t2 to represent

early and late intermediate event times such that 0 < t1 < t2 < tLM < thor. The following

comparison schemes list examples of meaningful comparisons between two risk profiles:
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Table 1: Examples of comparing two risk profiles in the presence of beneficial intermediate event

14



Table 2: Examples of comparing two risk profiles in the presence of adverse intermediate event
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For competing risk data, the above hypotheses need to be rewritten in terms of the

difference between two conditional cause-specific cumulative incidence functions. Modifying

the above example, if researchers are interested in comparing 3-year progression-free survival

(PFS) between breast cancer patients undergoing two different maintaining regimens, given

that these patients were still recurrence-free one year after treatment initiation. With the

event of interest marked as type 1, the hypotheses being tested are:

H0 : F1(thor|Z1
LM , tLM)− F1(thor|Z2

LM , tLM) = 0

H1 : F1(thor|Z1
LM , tLM)− F1(thor|Z2

LM , tLM) = δ1 6= 0

Following from Chapter 2, the estimated risk difference

δ̂ = F̂{thor|Z1
LM , tLM} − F̂{thor|Z2

LM , tLM}

or

δ̂ = F̂1{thor|Z1
LM , tLM} − F̂1{thor|Z2

LM , tLM}.

The consistency of F̂ (thor|ZLM , tLM) for the conditional probability of failure from land-

mark Cox model and the consistency of F1(thor|ZLM , tLM) for the conditional cause-specific

cumulative incidence function from the landmark PSH model has been discussed in Chapter

2. As the two treatment groups are independent, applying Slutsky’s theorem, δ̂ serves as a

consistent estimator of the true risk difference δ.

The Wald-type test statistic for testing risk difference is:

d0 =
δ̂

σ̂(δ̂)
, (3.1)

where σ̂(δ̂) is the standard error estimate of δ̂.

Under H0 : δ = 0,
δ̂

σ(δ)

d−→ N(0, 1), we reject the null hypothesis when d0 ≤ zα/2 or

d0 ≥ z1−α/2 where z is the critical value from the standard normal distribution with type

I error rate α. In addition, a point-wise 100(1 − α)% confidence interval (CI) for δ can be

constructed as δ̂ ± z1−α/2σ̂(δ̂). It should be noted that the proposed hypothesis test for risk

difference can only be appropriately interpreted under given choices of prediction landmark

and horizon times. The lengths of prediction windows for 2 comparison groups needed to be

identical for the two conditional probabilities of failure to be comparable.
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3.2 POWER CALCULATIONS

The power function for the above test, which is the probability of H0 being rejected when

the true risk difference is δ1, takes the form:

π(δ1) = 1− Pr{zα/2 ≤
δ̂

σ(δ1)
≤ z1−α/2|δ1}

= 1− P{zα/2 −
δ1

σ(δ1)
≤ δ̂ − δ1

σ(δ1)
≤ t1−α/2 −

δ1
σ(δ1)

|δ1}

= 1− Φ{z1−α/2 −
δ1

σ(δ1)
}+ Φ{zα/2 −

δ1
σ(δ1)

}.

(3.2)

where Φ is the cumulative distribution function of the standard normal distribution.

3.3 VARIANCE ESTIMATION OF RISK DIFFERENCE

The dynamic risk prediction procedures facilitate the estimation of δ̂ yet in the same time

complexes its standard error estimation. The variance estimation needs to take into account

three sources of variation: β̂, Λ̂0(thor) and Λ̂0(tLM−).

3.3.1 Empirical standard error

The empirical distribution of the failure times can be used as an alternative to non-parametric

estimators of survival function or cumulative incidence function. When simulating survival

data, by taking a large number (ne) of realizations, the empirical survival functions as well

as the empirical standard error estimate for the risk difference can be obtained. Especially in

the cases where time-dependent covariates and (or) time-varying covariate effects are present

and there are no closed forms for F (thor|ZLM , tLM) and σ(δ), the empirical distribution can

serve as a reliable approximation of the true risk difference and its standard error.
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Recall the conditional probability of failure F{thor|ZLM , tLM} defined in equation (2.1):

Fn{thor|ZLM , tLM} = Pn{TL ≤ thor|TL > tLM ,ZLM}

=
Pn(TL ≤ thor)− Pn(TL ≤ tLM)

Pn(TL > tLM)

=
Fn{thor;ZLM} − Fn{tLM ;ZLM}

1− Fn{tLM ;ZLM}
.

thus

En[F{thor|ZLM , tLM}] =
1

ne

ne∑
i=1

Fi;n{thor|ZLM , tLM},

and

varn[F{thor|ZLM , tLM}] =
1

ne

ne∑
i=1

(Fi;n{thor|ZLM , tLM} − En[F{thor|ZLM , tLM}])2

In the presence of competing risk events, the empirical conditional cause-specific cumu-

lative incidence function is:

Fn;1{thor|ZLM , tLM , ε = 1)} = Pn{T ≤ thor|T > tLM ,ZLM , ε = 1}

=
Fn{thor;ZLM , ε = 1} − Fn{tLM ;ZLM , ε = 1}

1−
∑k

i Fn{tLM ;ZLM}
.

3.3.2 Bootstrap resampling method

Given the complexity of the variance estimation one can resort to the bootstrap resampling

method (Efron, 1979)[16]. Start by drawing a bootstrap sample T ∗1 , ...T
∗
N from the original

data set with 100% sampling rate, compute δ̂∗N . Repeat the previous step B times, yielding

estimators δ̂∗N,1, ..., δ̂
∗
N,B. The bootstrap standard error can be computed as:

σ̂(δ̂)B =

√√√√ 1

B

B∑
i=1

(δ̂∗N,i − δ)2

The bootstrap 100(1− α)% confidence interval for δ̂ can be constructed accordingly.
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3.3.3 Perturbation resampling method

Perturbation resampling [17, 18, 19] is another popular method in survival analysis to over-

come the complexity in variance estimation and approximate the distribution of survival

estimators. Let {V (b)
j : j = 1, ..., N∗, b = 1, ..., B} be N∗ × B independent random samples

from a strictly positive distribution with mean and variance equal to one where N∗ is the

sample size of the landmark data set. Let pl∗s(βLM) be the perturbed version of the partial

log-likelihood pls(βLM) for the Landmark Cox model from Chapter 2.1 with:

pl∗s{β
(b)
LM} =

∑
ti≥tLM

∆LiV
(b)
j [β

(b)T
LM Zi;LM − log{

∑
tj≥ti

V
(b)
j exp(β

(b)T
LM Zj;LM)}]

Solve for β̂
T (b)
LM and it follows that:

Λ̂
(b)
0 (t) =

∑
ti≤t,δli=1

λ̂
(b)
0 (ti|tLM) =

∑
ti≤t,δli=1

1∑
ti≤tj V

(b)
j exp(β̂

T (b)
LM Zj;LM)

;

F̂ (b){thor|ZLM , tLM} = 1− exp[exp(−β̂(b)
LMZLM{Λ̂(b)

0 (thor)− Λ̂
(b)
0 (tLM−)}].

B replicates of F̂ (b){thor|ZLM , tLM} can be used to obtain δ̂(b). To construct CIs, one

can either use the empirical quantile of the perturbed sample or a normal approximation.

The validity of the perturbation resampling procedure can be established following the ar-

guments in Cai et al. [20] and Zhao et al. [21] since the distribution of
√
N∗{δ̂ − δ} can be

approximated by the distribution of
√
N∗{δ̂(b) − δ̂}

3.3.4 Functional delta method

Another candidate method to derive σ̂(δ̂) is via the functional delta method using the robust

standard errors of the cumulative hazards using the arguments by Nicolaie et al. [11]. Let

Σ̂(β̂) be the robust variance estimator of β̂ from the landmark Cox model. For simplicity, let

tLM = s, thor = s+w. We start by obtaining the asymptotic variance of Λ̂{s+w|Z(s), s)} =

exp(−β̂T (s)Z(s){Λ̂0(s+ w)− Λ̂0(tLM−)}, which can be estimated by:
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∑
s≤ti≤s+w,δli=1

[
exp{β̂(s)TZi(s)}∑

tk:s≤ti≤tk<s+w exp{β̂(s)TZk(s)}
]2 + q̂(s+ w|Z(s), s)T Σ̂(β̂)q̂(s+ w|Z(s), s),

and q̂ given by

q̂(s+ w|Z(s), s) =
∑

s≤ti≤s+w,δli=1

(ω(Zi(s))− ω̄i)
exp(−β̂(s)TZ(s)∑

tk:s≤ti≤tk<s+w exp{β̂(s)TZk(s)}
,

ω(Zi(s)) =
∂(β̂(s)TZi(s))

∂β
,

and ω̄i as the weighted average of ω(Zi(s)):

ω̄i =

∑
tk:s≤ti≤tk<s+w ω(Zi(s)) exp{β̂(s)TZk(s)}∑

tk:s≤ti≤tk<s+w exp{β̂(s)TZk(s)}
.

The estimate of Λ̂{s+w|Z(s), s)} and its variance using function delta method will yield

the targeted standard deviation (SD) of the conditional probability of failure within each

treatment group. In the two groups comparison setting, we assume the covariance between

different treatment groups is zero and end up with σ̂(δ̂) =
√

SD1

n1
+ SD2

n2
. This variance

estimation procedure borrows the idea of Aalen-Johanssen estimator from the multi-state

modeling and can be implemented in the mstate package in R.[22][23]
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3.4 SAMPLE SIZE DETERMINATION

Sample size calculation in survival analysis have been a extensively studied topic, among

which one of the most widely used one is the Schoenfeld formula derived based on the Cox

proportional hazards model [24]. In his review on sample size calculations in survival studies,

Collett [25] mentioned that most existing methods focus on the two-sample comparison prob-

lem and depend on proportional hazards assumption; some with more restricted assumption

on the actual distribution of the event times. Many researches have been conducted either

to generalize to more than two-sample scenarios or relax the PH assumption.

The sample size calculation for dynamic risk prediction is based on the landmark Cox

model and landmark sub-distribution proportional hazards model. These models give valid

approximation of conditional probability of failure for the main event at prediction horizon;

the corresponding sample size determination procedure can still be used when PH or PSH

assumption is violated. The sample size calculation follows the same procedure as that for

power analysis; and are similar for single event and competing risks setting. The major

difference lies in the set-up of probability of main event.

The proposed hypothesis test for risk difference can only be appropriately interpreted

with given choices of prediction landmark and horizon times. The prediction windows for 2

comparison groups needed to be identical for the two conditional probabilities of failure or

CIFs to be comparable.

The type I error rate α and desired power 1 − β in the power function are only relevant

within the prediction window w : (tLM , thor]. The interest in inference lies in the comparison

of risk difference at the prediction horizon time instead of at all time points or for the entire

survival curves.

Besides censoring, the data would be manually subset via landmarking, namely not all the

subjects (events) will be made use of in risk prediction. As Simon [26] pointed out, it is the

number of events rather than the number of subjects that is most important in sample size

determination for survival analysis. To derive the number of events/subjects needed when

planning such studies, one strategy is to calculate the number of events/subjects needed in
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the prediction window to reach the desired power level for the hypothesis testing and restore

the subjects/events not included in dynamic risk prediction due to landmarking.

In this chapter we use Ni to represent the sample size for group i for the entire study and 

Ei as the corresponding number of events; Ni
∗ and Ei∗ to differentiate the parameters for the 

landmark data set.

Using the Wald-type test statistic in Chapter 3.1.1, let

π(δ) = 1− Φ{z1−α/2 −
δ

σ(δ)
}+ Φ{zα/2 −

δ

σ(δ)
} = 1− β,

assuming allocation ratio N∗1/N
∗
2 = r∗, solve for N∗i .

The sample sizes needed in prediction window for each group are :

N∗1 = r∗N∗2 , N
∗
2 = (1 + 1/r∗){

(z1−α/2 + z1−β)SDδ

δ
}2, (3.3)

where SDδ is the standard deviation of the true risk difference δ.

The number of events in the prediction window will be:

E∗ =
∑
i=1,2

E∗i =
∑
i=1,2

N∗i Fi(thor|tLM) = r∗N∗2F1(thor|tLM) +N∗2F2(thor|tLM), (3.4)

Fi(thor|tLM) corresponds to the conditional probability of failure estimated from the land-

mark Cox model or the conditional cause-specific cumulative incidence function estimated

from the landmark PSH model for risk profile i.

Generalize to the entire study:

E =
∑
i=1,2

E∗i
Pi(tLM < Ti ≤ thor)/Fi

, (3.5)

where Fi(t) = Pr{Ei(t)} = 1 − Si(t), i = 1, 2 is the probability of failure for each group

in the entire study and Pi(tLM < Ti ≤ thor) = Fi(thor|tLM){1 − Fi(tLM)}, i = 1, 2 is the

unconditional probability of failure for each group within the prediction window, which is

the same as the numerator of equation (2.1). The denominator Pi(tLM < Ti ≤ thor)/Fi

stands for the proportion of events that fall into the prediction window.

Thus the required number of subjects in the entire study for each group is:

Ni =
Ei

Pr(Ei)
=
Ei
Fi
,=

E∗i
Pi(tLM < Ti ≤ thor)

, (3.6)
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The allocation ratio in the landmark data set, r∗, should not be set up a priori. Even

with fixed choices of prediction landmark and horizon times, r∗ could only be observed

after applying landmarking and could be affected by numerous factors. It is not practical

or obtainable to enforce a certain allocation ratio for the landmark data set. On the other

hand, subject allocation for the entire study is a crucial study design parameter that requires

compliance.

Following from above steps:

N1/N2 =
E∗1P2(tLM < Ti ≤ thor)

E∗2P1(tLM < Ti ≤ thor)

=
r∗N∗2 (thor|tLM)P2(tLM < Ti ≤ thor)

N∗2 (thor|tLM)P1(tLM < Ti ≤ thor)

=
r∗F1(thor|tLM)P2(tLM < Ti ≤ thor)

F2(thor|tLM)P1(tLM < Ti ≤ thor)
,

Let N1/N2 = r, solve for r∗:

r∗ =
rF2(thor|tLM)P1(tLM < Ti ≤ thor)

F1(thor|tLM)P2(tLM < Ti ≤ thor)

Plug in the value of r∗ to calculate N∗i , E∗i , Ei and Ni using equations 4.1− 4.4.

The value of r∗ does not only depend on the choice of r but also on the specifications of

the probabilities of failure within the prediction window and over the entire time course of

the study; which is the reason that some prior knowledge of the pattern of event occurrence

is considerably helpful in study planning. For instance, if the main event of interest is some

acute disease one would expect a plunge in survival curve during early phase of the study;

whereas when studying chronic conditions researchers would expect the events to be more

scattered over a longer time span and censoring could also increase as study time elapses.

Although the sample size determination process takes more steps as compared to the

regular survival analysis setting, it would result in useful and non-duplicated sample size and

number of events information both within the prediction window and over the entire time

course of the study. Researchers will be able to examine the sample size calculation result

at each step and make relevant and timely correction and adjustment as find justifiable.
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3.5 DESIGN PARAMETERS

Design parameters in dynamic risk prediction include:

1. Research question: two-sided or one-sided alternative hypothesis; specifications of tLM

and thor;

2. Type I error rate α;

3. Desired power for the test 1− β;

4. True risk difference δ:

a. For data containing single event: conditional probabilities of failure within the pre-

diction window Fi(thor|tLM),

b. For data containing competing event(s): conditional cause-specific cumulative inci-

dence functions within the prediction window Fi(thor|tLM , ε = 1);

5. Standard deviation of the risk difference SDδ;

6. Probabilities of failure in the entire study:

a. For data containing single event: probabilities of event Fi(t),

b. For data containing competing event(s): cause-specific cumulative incidence func-

tions Fi(t|ε = 1);

7. Subject allocation ratio r;

To set up the above study design parameters, especially items 4, 5, and 6, one needs to

specify meaningful expected measurements of the conditional and overall risks using knowl-

edge about the survival pattern of the trial population, frequently some results from earlier

investigations.
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4.0 SIMULATION STUDIES

4.1 SIMULATION SET-UP

In the first part of simulation studies, we evaluated the performance of landmark Cox model

in estimating the conditional probabilities of failure and risk difference using mean squared

error (MSE) and examined the effect of sample size, prediction landmark time and effect

size on power and coverage probability of the proposed test under two different settings. We

also evaluated the empirical type I error rate of the proposed test under the null hypothesis

where there was no risk difference.

In the first non-PH setting, the main event times T were generated from a two-parameter

Weibull distribution,

h(t|Z) = λκtκ−1 exp(β1X + β2X ln t),

where (λ, κ) = (0.12, 1.2). The treatment effect was set to be diminishing over time with a

small positive value for β2 and the effect size values were adjusted with varying β1’s.

In the second non-PH setting with intermediate event status as a time-dependent covari-

ate, intermediate (short term) event times Ts were generated from an Exponential distribu-

tion

h(ts|Z) = κ1ts
κ1 exp(β1X),

and the main (long term) event times Tl were generated from a two parameter Weibull

distribution

h(tl|Z, ts) = λ2κ2tl
κ2−1 exp(β2X + β3(ts)δS),

where δS = I(Ts ≤ ts), and (κ1, λ2, κ2) = (0.8, 0.1, 1.5). (β1, β2, β3) could assume different

values.
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In both setting we let the total sample size N vary from 100 to 1,000 with an increment

of 100. The treatment indicator was generated from a binomial distribution with equal

allocation X ∼ BIN(N, 0.5). Censoring times were generated from an independent uniform

distribution resulting in about 20% censoring. After the original data were generated, we

created the landmark data sets with different choices of tLM and thor.

Figure 1 shows how intermediate event status was incorporated in the risk prediction

as a time-dependent covariate. Take response to chemotherapy as the intermediate event

and cancer recurrence as the main event and assuming earlier response as beneficial. The

treatment group was set up to have earlier response times and high overall response rate as

compared to the control group. When we chose an early prediction landmark time (the blue

line on the left), only early responders would be picked up to have the intermediate event;

while as we postponed the prediction landmark time to the blue line on the right, more and

more responders would be identified, including the late responders such that the values of

the intermediate event indicator would vary over different tLM ’s. Incorporating intermediate

event status that varies with different prediction landmark times we could make use of both

the intermediate event status and also the time to intermediate event information.

In the second part of the simulation studies the same were repeated the first non-PH

setting and generated data under non-PSH setting by further including competing risk events.

For simplicity, only two failure types were considered with Type 1 failure as the main event of

interest and Type 2 failure as the competing event. The Type 2 event times were generated

from an Exponential distribution with Pr(ε1 = 2|Zi) = 1− Pr(εi = 1|Zi) = 1− p. For data

containing competing risk events, besides sample size, effect size and prediction landmark

times, we also allowed the probability of experiencing the competing events, 1− p, to vary.

Each setting was repeated for a total of 1,000 data sets and 500 resampling samples were

used to estimate σ̂(δ̂).

In the third part of simulation studies we focused on the sample size calculations with

different combinations of study design parameters.
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Figure 1: Intermediate event status as a time-dependent covariate
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4.2 SIMULATION RESULTS

4.2.1 Power analysis under landmark Cox model

In both settings, the landmark Cox model gave reliable estimates of conditional probabilities

of failure and risk differences. The MSE and all types of standard error estimates decreased

as total sample size increased. When the sample size was held constant, the higher the effect

size (true risk difference) the lower the MSE and standard error estimates, but only to a

limited extent.

Total sample size and effect size are the two factors that demonstrated major impacts on

the power and coverage probability (CP) of the proposed test. The power of the Wald-type

test showed a trend of steady increase when sample size increased. The coverage probability

was more stable against changes in sample size and effect size as compared to power; but

could be somewhat off the nominal level (95%) either with small sample size and/or effect

size and eventually stabilized and maintained the targeted Type I error rate for the test

(Tables 3-4, Figure 2).

In the first setting with time-varying treatment effect, we also evaluated the influence

of random right censoring on power and CP (Table 3). Although the pre-set censoring rate

was 20% in the complete data set, the actual decrease in the number of events observed

was not as large since landmarking was applied regardless of censoring. The non-informative

censoring would slightly inflate the MSE and standard error estimates and lower the coverage

probability and power by a small extent. The simulated data set was not heavily censored.

We expect the impact of censoring to be more prominent as the censoring rate increases.

The choice of prediction landmark time is another component in risk prediction that often

varies in practice. There were little changes in CP under different tLM ’s. We noticed that

the coverage probability was unstable for later landmark times especially when paired with a

small-to-moderate sample size. Yet the test could achieve and maintain the nominal level as

sample size increased (Figure 3, top panel). As we postponed the prediction landmark time

from 0.25 to 2 with other factors unchanged, the power of the proposed test showed a clear

trend of decrease. There is a trade-off between event observations and the sample size in
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choosing the landmark time, i.e., the later the landmark time we set, the more information

would be available for risk prediction, but the smaller the sample size would become due

to truncation of subjects (events) Note that a satisfactory power level (0.80 or higher) for

the test requires a sufficient sample size. Examples of sample size requirement under later

prediction landmark times are shown in Figure 3. (Figure 3, bottom panel).

In the second setting with intermediate event as a time-dependent covariate, we com-

pared the performance of the test using different sample and effect sizes under random right

censoring. Even with the effect size doubled, not much change was observed in the total

number of events, which could be because that the number of events decreased in the treat-

ment group or increased in the control group. We also found that the power of the test is

higher with larger effect sizes and it reaches a high and stable level faster than that with

smaller effect sizes. No trend was observed for coverage probability under large or small

effect sizes. When the sample size was 600 or larger, the coverage probability stabilized

around the pre-set nominal level (Table 4).

With both tLM and thor fixed, the actual value of the time-dependent covariate had

a small impact on the performance of the proposed test statistic, and the performance of

the test fluctuated slightly more than that in the first non-PH setting; this coincides with

the aforementioned robustness of landmark Cox model against time-dependent covariate

or time-varying covariate effect. When the sample size was large enough, the power and

coverage probability did not vary much regardless of different effect sizes, choices of prediction

landmark times, prediction window width or presence of random right censoring.
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Table 3: Power and coverage probability under single event, non-PH setting (tLM =

0.25, thor = 5, δ ∼ 0.14)

Censoring N MSE n(event) Bootstrap resampling Empirical Perturbation resampling

Ave.σ̂(δ̂) CP Power Ave.σ̂(δ̂) CP Power Ave.σ̂(δ̂) CP Power

0% 100 0.006 48 0.100 0.960 0.429 0.100 0.974 0.356 0.092 0.757 0.503

200 0.005 95 0.070 0.954 0.683 0.071 0.939 0.644 0.067 0.902 0.644

300 0.004 142 0.056 0.944 0.811 0.058 0.952 0.816 0.055 0.945 0.841

400 0.003 190 0.049 0.947 0.901 0.050 0.957 0.886 0.048 0.947 0.893

500 0.002 237 0.044 0.947 0.971 0.044 0.959 0.966 0.043 0.952 0.968

600 0.002 285 0.040 0.946 0.973 0.041 0.951 0.971 0.039 0.948 0.974

700 0.001 332 0.037 0.957 0.994 0.038 0.950 0.994 0.036 0.950 0.994

800 0.001 386 0.034 0.953 0.997 0.035 0.959 0.998 0.034 0.962 0.997

900 0.001 427 0.032 0.950 0.996 0.033 0.961 0.997 0.032 0.949 0.997

1000 0.001 474 0.030 0.948 0.999 0.031 0.954 0.999 0.031 0.946 0.999

20% 100 0.011 43 0.100 0.868 0.439 0.100 0.959 0.405 0.097 0.864 0.453

200 0.005 87 0.072 0.934 0.656 0.070 0.937 0.605 0.070 0.928 0.668

300 0.003 130 0.059 0.955 0.817 0.058 0.954 0.824 0.058 0.952 0.821

400 0.003 173 0.051 0.953 0.912 0.050 0.951 0.919 0.050 0.954 0.914

500 0.002 217 0.045 0.943 0.947 0.045 0.939 0.953 0.045 0.944 0.949

600 0.002 260 0.041 0.954 0.974 0.041 0.951 0.976 0.041 0.952 0.976

700 0.002 303 0.038 0.943 0.991 0.037 0.947 0.992 0.038 0.946 0.990

800 0.001 346 0.036 0.953 0.993 0.035 0.955 0.993 0.036 0.951 0.993

900 0.001 389 0.034 0.953 0.998 0.033 0.951 0.998 0.034 0.949 0.998

1000 0.001 432 0.032 0.955 0.999 0.032 0.953 0.999 0.032 0.956 0.999

MSE: Mean Squared Error; CP: Coverage Probability.
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Table 4: Power and coverage probability under single event, non-PH setting with time-

dependent covariate (tLM = 0.25, thor = 5, varying δ)

δ N MSE n(event) Bootstrap resampling Empirical Perturbation resampling

Ave.σ̂(δ̂) CP Power Ave.σ̂(δ̂) CP Power Ave.σ̂(δ̂) CP Power

0.00 100 0.011 44 0.103 0.952 0.047 0.100 0.940 0.056 0.099 0.936 0.067

200 0.006 94 0.073 0.942 0.050 0.071 0.945 0.050 0.074 0.952 0.050

300 0.003 142 0.060 0.955 0.053 0.056 0.945 0.053 0.060 0.948 0.053

400 0.003 190 0.052 0.954 0.048 0.050 0.949 0.048 0.051 0.954 0.048

500 0.002 237 0.047 0.941 0.053 0.045 0.940 0.053 0.046 0.942 0.053

600 0.002 284 0.042 0.933 0.065 0.041 0.934 0.065 0.042 0.933 0.065

700 0.002 331 0.040 0.947 0.063 0.038 0.941 0.063 0.040 0.948 0.063

800 0.001 378 0.037 0.955 0.044 0.035 0.945 0.044 0.037 0.950 0.044

900 0.001 426 0.035 0.953 0.047 0.034 0.947 0.047 0.034 0.949 0.047

1000 0.001 473 0.033 0.949 0.051 0.032 0.949 0.051 0.033 0.946 0.051

0.12 100 0.011 41 0.106 0.935 0.336 0.103 0.947 0.341 0.080 0.849 0.475

200 0.006 84 0.075 0.947 0.495 0.073 0.947 0.554 0.059 0.871 0.655

300 0.004 125 0.061 0.946 0.662 0.058 0.956 0.737 0.049 0.865 0.772

400 0.003 171 0.053 0.944 0.765 0.051 0.947 0.793 0.042 0.889 0.832

500 0.002 208 0.047 0.930 0.862 0.045 0.954 0.860 0.038 0.893 0.901

600 0.002 251 0.043 0.947 0.897 0.042 0.949 0.907 0.035 0.891 0.937

700 0.002 292 0.040 0.948 0.922 0.039 0.942 0.942 0.032 0.882 0.968

800 0.001 333 0.037 0.957 0.960 0.035 0.939 0.962 0.030 0.881 0.979

900 0.001 376 0.035 0.948 0.978 0.034 0.946 0.987 0.029 0.882 0.987

1000 0.001 417 0.033 0.947 0.984 0.032 0.948 0.986 0.027 0.893 0.993

0.24 100 0.011 43 0.105 0.940 0.729 0.100 0.949 0.752 0.075 0.845 0.870

200 0.005 85 0.073 0.955 0.942 0.070 0.939 0.958 0.055 0.839 0.973

300 0.004 128 0.060 0.944 0.986 0.058 0.950 0.996 0.046 0.852 0.997

400 0.003 171 0.052 0.955 0.990 0.050 0.941 0.997 0.040 0.855 0.998

500 0.002 213 0.046 0.955 0.999 0.044 0.937 0.999 0.036 0.843 0.999

600 0.002 256 0.042 0.946 0.999 0.040 0.927 0.999 0.033 0.863 0.999

700 0.002 299 0.039 0.950 0.999 0.038 0.948 0.999 0.030 0.866 0.999

800 0.001 341 0.037 0.945 0.999 0.035 0.942 0.999 0.028 0.877 0.999

900 0.001 383 0.035 0.948 0.999 0.033 0.944 0.999 0.027 0.852 0.999

1000 0.001 426 0.033 0.948 0.999 0.031 0.945 0.999 0.025 0.879 0.999
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Figure 2: Single Event: Coverage probability and power under different effect sizes
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Figure 3: Single Event: Coverage probability and power under different prediction landmark

times
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4.2.2 Power analysis under landmark PSH model

The landmark PSH model showed satisfying prediction performance for conditional cause-

specific cumulative incidence functions and corresponding risk difference under different sam-

ple sizes and effect sizes; as well as varying prediction landmark times and probabilities of

the competing event and was robust to the violation the PSH assumption. Similar to the

single event setting, MSE and all types of standard error estimates decreased as the total

sample size or the underlying effect size increased.

The power of the Wald-type test showed a monotonic increasing trend with the increase

in sample size or effect size. However, when the effect size we wished to detect was small

(Table 6, left), a sample size of 500 per arm would not be large enough to guarantee a

high probability of statistically significant test results. The coverage probability but could

be somewhat off the nominal level (95%) with small sample size and/or effect size, then

temporarily decreased under moderate sample sizes and eventually stabilized and maintained

the targeted Type I error rate. (Table 6)

Table 7 included the results for varying prediction landmark times with prediction win-

dow width fixed at 3. Likewise, changes in prediction landmark time did not result in major

changes in the coverage probability. It was possible for the proposed test to be a little bit

conservative under small sample sizes (N = 100, 200). The power of the proposed test showed

a trend of decrease with the postponing of landmark time; but the amount of decrease was

not as much as compared to the single event scenario.

In the competing risks setting, there are three reasons for the smaller number of main

events being observed: presence of competing event(s), random right censoring and addi-

tional left truncation and administrative censoring by landmarking. As the last two factors

impacted both treatment and control groups, we took another step to evaluate the influence

of the competing event’s probability on power and CP (Table 8). With higher probability

of experiencing the competing events, the modified risk set for the main event got inflated,

which could in a way introducing diminishing treatment effect. Higher proportion of the

competing event(s) would slightly inflate the standard error estimates and lower the power,

yet the MSE and coverage probability remained relatively stable.
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When the sample size was large enough, the power and coverage probability became

stabilized regardless of different effect sizes, choices of prediction landmark times, prediction

window width or presence of random right censoring or higher probability of competing

event(s).
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Table 5: Power and coverage probability under competing risks non-PSH setting (tLM =

1, thor = 4, varying δ)

δ N MSE n(event) Bootstrap resampling Empirical Perturbation resampling

Ave.σ̂(δ̂) CP Power Ave.σ̂(δ̂) CP Power Ave.σ̂(δ̂) CP Power

0.07 100 0.012 26 0.108 0.945 0.201 0.112 0.952 0.179 0.102 0.922 0.228

200 0.006 52 0.077 0.935 0.258 0.079 0.946 0.240 0.074 0.927 0.277

300 0.004 77 0.063 0.936 0.322 0.065 0.947 0.314 0.061 0.928 0.340

400 0.003 104 0.054 0.947 0.371 0.056 0.948 0.372 0.054 0.941 0.382

500 0.003 130 0.049 0.943 0.428 0.050 0.952 0.427 0.048 0.939 0.436

600 0.002 155 0.044 0.942 0.504 0.049 0.945 0.515 0.044 0.934 0.507

700 0.002 182 0.041 0.956 0.578 0.041 0.947 0.554 0.041 0.938 0.577

800 0.002 208 0.038 0.948 0.618 0.039 0.947 0.568 0.038 0.951 0.631

900 0.001 234 0.036 0.947 0.628 0.037 0.941 0.625 0.036 0.949 0.630

1000 0.001 259 0.034 0.949 0.694 0.035 0.946 0.680 0.034 0.943 0.701

0.12 100 0.012 25 0.106 0.942 0.327 0.110 0.942 0.334 0.100 0.920 0.362

200 0.006 49 0.075 0.942 0.515 0.076 0.941 0.504 0.073 0.933 0.535

300 0.004 73 0.062 0.938 0.654 0.062 0.936 0.648 0.060 0.935 0.656

400 0.003 97 0.053 0.937 0.766 0.054 0.950 0.764 0.053 0.938 0.771

500 0.002 121 0.048 0.946 0.861 0.049 0.946 0.828 0.047 0.941 0.871

600 0.002 146 0.044 0.955 0.906 0.044 0.943 0.847 0.043 0.955 0.907

700 0.002 170 0.040 0.940 0.924 0.040 0.948 0.927 0.040 0.936 0.923

800 0.002 194 0.038 0.935 0.960 0.038 0.958 0.947 0.037 0.932 0.957

900 0.001 219 0.036 0.936 0.962 0.036 0.952 0.953 0.036 0.936 0.971

1000 0.001 243 0.034 0.941 0.987 0.034 0.952 0.950 0.034 0.945 0.986

0.17 100 0.012 22 0.105 0.921 0.499 0.107 0.946 0.430 0.099 0.920 0.499

200 0.006 45 0.074 0.945 0.735 0.076 0.949 0.707 0.072 0.940 0.745

300 0.004 68 0.061 0.950 0.874 0.061 0.956 0.858 0.060 0.933 0.872

400 0.003 91 0.053 0.946 0.943 0.053 0.946 0.927 0.052 0.934 0.923

500 0.002 114 0.047 0.945 0.972 0.047 0.945 0.977 0.046 0.938 0.978

600 0.002 137 0.043 0.941 0.987 0.043 0.940 0.983 0.042 0.934 0.990

700 0.002 160 0.040 0.940 0.995 0.040 0.942 0.995 0.039 0.935 0.995

800 0.002 182 0.037 0.947 0.997 0.038 0.948 0.998 0.037 0.943 0.997

900 0.001 206 0.035 0.952 0.999 0.035 0.950 0.999 0.035 0.944 0.999

1000 0.001 229 0.033 0.949 0.999 0.033 0.947 0.999 0.033 0.949 0.999
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Table 6: Power and coverage probability under competing risks non-PSH setting (tLM = 1, thor = 4, varying δ)

N δ = 0 δ = 0.07 δ = 0.12 δ = 0.17

MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power

100 0.013 23 0.120 0.959 0.044 0.013 26 0.112 0.952 0.179 0.013 24 0.110 0.942 0.334 0.012 22 0.107 0.946 0.430

200 0.006 47 0.084 0.963 0.043 0.006 52 0.079 0.946 0.240 0.006 49 0.076 0.941 0.504 0.006 45 0.076 0.949 0.707

300 0.004 71 0.067 0.961 0.036 0.004 78 0.065 0.947 0.314 0.004 73 0.062 0.936 0.648 0.004 68 0.061 0.956 0.858

400 0.003 94 0.061 0.967 0.037 0.003 104 0.056 0.948 0.372 0.003 97 0.054 0.950 0.764 0.003 91 0.053 0.946 0.927

500 0.003 117 0.053 0.957 0.050 0.002 130 0.050 0.952 0.427 0.002 122 0.049 0.946 0.828 0.002 114 0.047 0.945 0.977

600 0.002 141 0.050 0.951 0.057 0.002 156 0.049 0.945 0.515 0.002 146 0.044 0.943 0.874 0.002 137 0.043 0.940 0.983

700 0.002 166 0.045 0.954 0.050 0.002 181 0.041 0.947 0.554 0.002 170 0.040 0.948 0.927 0.002 160 0.040 0.942 0.995

800 0.002 189 0.042 0.963 0.038 0.002 207 0.039 0.947 0.568 0.002 195 0.038 0.958 0.947 0.002 182 0.038 0.948 0.998

900 0.002 212 0.041 0.955 0.053 0.002 233 0.037 0.941 0.625 0.001 219 0.036 0.952 0.953 0.001 206 0.035 0.950 0.999

1000 0.001 235 0.037 0.956 0.044 0.001 259 0.035 0.946 0.680 0.001 244 0.034 0.952 0.950 0.001 229 0.033 0.947 0.999
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Table 7: Power and coverage probability under competing risks non-PSH setting (varying δ & tLM , thor = tLM + 3)

δ N tLM = 1 tLM = 1.25 tLM = 1.5 tLM = 1.75 tLM = 2

MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power

0.00 100 0.013 23 0.120 0.959 0.044 0.015 23 0.126 0.956 0.057 0.016 22 0.136 0.966 0.046 0.016 21 0.143 0.976 0.043 0.018 20 0.150 0.976 0.038

200 0.006 47 0.084 0.963 0.043 0.007 46 0.080 0.957 0.054 0.009 45 0.096 0.961 0.050 0.009 43 0.097 0.967 0.050 0.009 41 0.110 0.965 0.048

300 0.004 71 0.067 0.961 0.036 0.005 69 0.072 0.956 0.051 0.006 67 0.079 0.957 0.058 0.006 64 0.084 0.963 0.057 0.006 61 0.085 0.965 0.050

400 0.003 94 0.061 0.967 0.037 0.004 93 0.063 0.957 0.050 0.004 89 0.065 0.961 0.040 0.004 86 0.068 0.967 0.038 0.005 82 0.075 0.977 0.046

500 0.003 117 0.053 0.957 0.050 0.003 115 0.056 0.957 0.048 0.004 111 0.059 0.952 0.059 0.003 107 0.062 0.967 0.045 0.004 103 0.067 0.974 0.047

600 0.002 141 0.050 0.951 0.057 0.002 138 0.052 0.964 0.043 0.003 134 0.055 0.966 0.044 0.003 129 0.059 0.963 0.048 0.003 123 0.060 0.964 0.048

700 0.002 166 0.045 0.954 0.050 0.002 161 0.049 0.960 0.055 0.002 156 0.049 0.955 0.049 0.002 150 0.054 0.967 0.035 0.003 144 0.056 0.965 0.047

800 0.002 189 0.042 0.963 0.038 0.002 184 0.044 0.953 0.053 0.002 178 0.048 0.961 0.053 0.002 171 0.049 0.957 0.053 0.002 165 0.053 0.965 0.046

900 0.002 212 0.041 0.955 0.053 0.002 207 0.041 0.955 0.050 0.002 201 0.045 0.960 0.044 0.002 192 0.048 0.966 0.051 0.002 184 0.051 0.969 0.043

1000 0.001 235 0.037 0.956 0.044 0.002 231 0.040 0.955 0.047 0.002 223 0.042 0.958 0.049 0.002 214 0.045 0.967 0.047 0.002 204 0.047 0.963 0.444

0.07 100 0.013 26 0.112 0.952 0.179 0.013 22 0.121 0.960 0.140 0.015 22 0.128 0.964 0.135 0.017 21 0.134 0.958 0.132 0.018 20 0.142 0.974 0.120

200 0.006 52 0.079 0.946 0.240 0.007 44 0.084 0.948 0.236 0.008 43 0.089 0.953 0.196 0.008 42 0.095 0.967 0.179 0.009 41 0.097 0.961 0.146

300 0.004 78 0.065 0.947 0.314 0.005 67 0.069 0.945 0.297 0.005 65 0.073 0.948 0.259 0.006 63 0.077 0.947 0.207 0.006 61 0.081 0.952 0.209

400 0.003 104 0.056 0.948 0.372 0.004 88 0.059 0.944 0.340 0.004 87 0.062 0.953 0.299 0.004 84 0.066 0.965 0.271 0.004 82 0.070 0.968 0.212

500 0.002 130 0.050 0.952 0.427 0.003 110 0.054 0.956 0.364 0.003 108 0.056 0.954 0.342 0.003 105 0.060 0.952 0.280 0.004 101 0.062 0.952 0.267

600 0.002 156 0.049 0.945 0.515 0.002 133 0.050 0.959 0.436 0.003 130 0.051 0.955 0.391 0.003 126 0.054 0.956 0.349 0.003 122 0.056 0.954 0.310

700 0.002 181 0.041 0.947 0.554 0.002 153 0.045 0.950 0.495 0.002 152 0.047 0.951 0.438 0.002 147 0.050 0.964 0.407 0.003 142 0.053 0.960 0.349

800 0.002 207 0.039 0.947 0.568 0.002 176 0.043 0.953 0.520 0.002 173 0.045 0.962 0.453 0.002 169 0.047 0.959 0.420 0.002 163 0.050 0.959 0.380

900 0.002 233 0.037 0.941 0.625 0.002 198 0.040 0.946 0.576 0.002 195 0.042 0.958 0.509 0.002 190 0.044 0.960 0.451 0.002 183 0.047 0.961 0.415

1000 0.001 259 0.035 0.946 0.680 0.001 222 0.038 0.955 0.618 0.002 217 0.040 0.951 0.595 0.002 210 0.042 0.959 0.496 0.002 204 0.044 0.964 0.448

0.12 100 0.013 24 0.110 0.942 0.334 0.013 21 0.116 0.953 0.297 0.014 20 0.123 0.953 0.265 0.016 20 0.129 0.951 0.263 0.016 19 0.135 0.963 0.218

200 0.006 49 0.076 0.941 0.504 0.007 41 0.082 0.958 0.437 0.008 41 0.086 0.944 0.422 0.008 40 0.090 0.953 0.419 0.008 39 0.096 0.962 0.365

300 0.004 73 0.062 0.936 0.648 0.005 61 0.066 0.947 0.596 0.005 61 0.070 0.958 0.546 0.005 60 0.073 0.950 0.547 0.006 58 0.078 0.969 0.509

400 0.003 97 0.054 0.950 0.764 0.003 83 0.058 0.950 0.684 0.004 82 0.060 0.946 0.682 0.004 80 0.063 0.964 0.672 0.004 77 0.067 0.958 0.607

500 0.002 122 0.049 0.946 0.828 0.003 103 0.051 0.943 0.801 0.003 102 0.054 0.954 0.785 0.003 99 0.057 0.960 0.710 0.004 91 0.060 0.956 0.695

600 0.002 146 0.044 0.943 0.874 0.002 123 0.048 0.951 0.843 0.002 122 0.049 0.957 0.816 0.003 119 0.053 0.966 0.791 0.003 116 0.055 0.951 0.751

700 0.002 170 0.040 0.948 0.927 0.002 145 0.043 0.945 0.895 0.002 142 0.046 0.945 0.862 0.002 140 0.049 0.961 0.862 0.002 135 0.051 0.952 0.824

800 0.002 195 0.038 0.958 0.947 0.002 165 0.040 0.945 0.927 0.002 162 0.043 0.940 0.902 0.002 160 0.045 0.954 0.892 0.002 154 0.048 0.958 0.856

900 0.001 219 0.036 0.952 0.953 0.002 186 0.039 0.944 0.940 0.002 184 0.041 0.944 0.945 0.002 179 0.042 0.955 0.921 0.002 173 0.045 0.947 0.896

1000 0.001 244 0.034 0.952 0.950 0.002 207 0.036 0.946 0.968 0.002 204 0.038 0.958 0.953 0.002 198 0.040 0.947 0.933 0.002 193 0.042 0.945 0.924

0.17 100 0.011 22 0.107 0.946 0.430 0.013 23 0.110 0.955 0.452 0.014 22 0.115 0.948 0.431 0.014 23 0.122 0.970 0.363 0.016 21 0.128 0.953 0.367

200 0.006 45 0.076 0.949 0.707 0.006 45 0.078 0.956 0.708 0.007 44 0.082 0.949 0.668 0.007 44 0.084 0.950 0.627 0.008 42 0.090 0.945 0.590

300 0.004 68 0.061 0.956 0.858 0.004 68 0.064 0.950 0.845 0.004 67 0.067 0.955 0.810 0.005 66 0.070 0.951 0.768 0.006 63 0.072 0.953 0.717

400 0.003 91 0.053 0.946 0.927 0.003 91 0.056 0.949 0.922 0.003 89 0.057 0.949 0.903 0.004 87 0.059 0.949 0.893 0.004 85 0.063 0.951 0.845

500 0.002 114 0.047 0.945 0.977 0.002 113 0.050 0.949 0.961 0.003 112 0.052 0.951 0.946 0.003 110 0.054 0.952 0.925 0.003 106 0.057 0.954 0.912

600 0.002 137 0.043 0.940 0.983 0.002 136 0.045 0.947 0.985 0.002 134 0.047 0.945 0.980 0.002 131 0.049 0.955 0.978 0.003 127 0.051 0.955 0.956

700 0.002 160 0.040 0.942 0.995 0.002 159 0.041 0.947 0.990 0.002 157 0.043 0.945 0.993 0.002 153 0.046 0.953 0.981 0.002 149 0.048 0.948 0.974

800 0.002 182 0.038 0.948 0.998 0.002 186 0.039 0.941 0.993 0.002 178 0.041 0.960 0.995 0.002 175 0.042 0.948 0.992 0.002 170 0.045 0.952 0.987

900 0.001 206 0.035 0.950 0.999 0.001 204 0.036 0.951 0.997 0.002 201 0.038 0.946 0.998 0.002 196 0.040 0.943 0.992 0.002 191 0.042 0.949 0.984

1000 0.001 229 0.033 0.947 0.999 0.001 227 0.035 0.951 0.999 0.001 223 0.037 0.959 0.999 0.002 219 0.038 0.947 0.999 0.002 213 0.040 0.963 0.998
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Table 8: Power and coverage probability under competing risks non-PSH setting (δ ∼ 0.17, tLM = 1, thor = 4, varying Pr(ε = 2))

N Pr(ε = 2) = 0.2 Pr(ε = 2) = 0.25 Pr(ε = 2) = 0.3 Pr(ε = 2) = 0.35 Pr(ε = 2) = 0.4

MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power MSE n(event) Ave.σ̂(δ̂) CP Power

100 0.012 26 0.104 0.946 0.487 0.010 25 0.105 0.967 0.564 0.011 22 0.107 0.946 0.430 0.011 21 0.107 0.947 0.443 0.012 20 0.109 0.949 0.411

200 0.006 52 0.074 0.946 0.759 0.006 49 0.073 0.947 0.725 0.006 45 0.076 0.949 0.707 0.007 43 0.074 0.936 0.701 0.006 39 0.075 0.945 0.664

300 0.004 78 0.059 0.943 0.888 0.004 73 0.060 0.950 0.878 0.004 68 0.061 0.956 0.858 0.004 63 0.060 0.948 0.861 0.004 58 0.061 0.931 0.803

400 0.003 104 0.051 0.926 0.947 0.003 98 0.052 0.944 0.941 0.003 91 0.053 0.946 0.927 0.003 85 0.053 0.947 0.927 0.003 79 0.053 0.945 0.905

500 0.002 130 0.046 0.952 0.983 0.002 122 0.047 0.944 0.976 0.002 114 0.047 0.945 0.977 0.002 106 0.047 0.945 0.968 0.002 97 0.048 0.949 0.957

600 0.002 157 0.043 0.938 0.987 0.002 147 0.042 0.961 0.994 0.002 137 0.043 0.940 0.983 0.002 127 0.043 0.935 0.986 0.002 118 0.043 0.942 0.979

700 0.002 183 0.039 0.950 0.998 0.002 172 0.039 0.955 0.999 0.002 160 0.040 0.942 0.995 0.002 149 0.040 0.941 0.992 0.002 137 0.040 0.945 0.989

800 0.001 208 0.037 0.949 0.999 0.002 195 0.036 0.945 0.999 0.002 182 0.038 0.948 0.998 0.002 170 0.038 0.943 0.995 0.002 156 0.038 0.945 0.990

900 0.001 234 0.035 0.956 0.999 0.001 220 0.034 0.945 0.999 0.001 206 0.035 0.950 0.999 0.001 191 0.035 0.941 0.995 0.001 176 0.036 0.947 0.998

1000 0.001 261 0.033 0.948 0.999 0.001 244 0.033 0.945 0.999 0.001 229 0.033 0.947 0.999 0.001 211 0.033 0.947 0.997 0.001 195 0.034 0.945 0.999
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4.2.3 Comparison of variance estimation techniques

The standard error estimates obtained using empirical distribution can be a reference, es-

pecially in cases where there is no closed form expression of the standard error. Although

the bootstrap method does not alter the estimation procedure, it could underestimate the

variance when large sample sizes are used, as pointed out by Minnier et al.[27]. Therefore,

we used perturbation resampling to generate perturbed covariates, risk difference estimates,

and their weighted average and variance instead of using the ones from the original model.

As expected, performing the proposed test using an empirical standard error (ESE) gave

the most stable coverage probability; but the test could be somewhat conservative with small

N . The bootstrap resampling standard error (BSE) is very close to the ESE, although it

could be slightly higher when smaller sample sizes are used.

By using the perturbation resampling standard error (PSE) we can get the smallest

standard error estimates, the narrowest confidence interval for the estimated risk difference

and lower coverage probability, although having an inflated chance to detect a statistically

significant result. As shown in the right panel of Table 3, under small sample sizes, the

narrowest CI had the lowest coverage probability yet the highest power for the test. As the

MSE decreased, the coverage probability began to improve and the difference between PSE

and ESE/BSE became smaller. When a time-dependent covariate was incorporated in the

landmark Cox model (Table 4), the difference between PSE and BSE/ESE became more

pronounced and the corresponding PSE coverage probability was far from the nominal level

despite having a large sample size or a large effect size.

Perturbation resampling method showed its advantage in the competing risks setting as

the risk estimation procedure was more complex and is a weighted one by itself. However,

in the single event of interest setting, incorporating additional perturbed weight did not

improve the precision of the risk estimation but produced narrower point-wise confidence

interval estimates as compared to the bootstrap and empirical methods; thus amplifying the

affect of point estimate on the coverage probability. On the other hand, smaller standard

error estimates, which could well be underestimated even under small sample sizes, resulted

in the highest power among all scenarios for the risk difference test (Table 5).
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ESE and PSE tended to produce a tighter band of standard error estimates as compared

with BSE. As for the computation time, it took longer time to compute BSE or PSE than

did ESE, especially with large sample sizes.

The validity of functional delta method replies upon correct specification of the model

covariates as it was derived in the context of landmark cause-specific hazards model[11]. As

when the structural part of the risk prediction models changes, the dimension and the values

of the variance/covariance matrix for the coefficient estimates could be quite different. One

key feature of dynamic prediction technique discussed so far is that it guarantees valid risk

estimates at the prediction horizon in the place of the unbiasedness of β̂.

4.2.4 Sample size and study design

For sample size determination, the later the proposed prediction landmark time, the larger

the sample size needed to reach the desired power level, as stated earlier later prediction

landmark time would lower the power of the proposed test. Under the same desired power

level and prediction landmark time, a smaller sample would be needed if the true risk dif-

ference one wished to detect was larger. When the desired power level increased from 0.8

(Figure 4, left) to 0.9 (Figure 4, right), the sample size needed would be uniformly higher

for all prediction landmark time and effect size combinations.

Besides power level, effect size and prediction landmark time, we need to make some

assumptions on the underlying distribution of the main event time. For example, when

the majority of the events happen in early stage of the study, the influence of postponing

the prediction landmark could become more obvious as more events will be discarded via

landmarking.

In the competing risks setting, additional assumptions regarding the distribution(s) of

competing events will be needed, or at least some knowledge on the probability of observing

the competing event(s) in the place of the main event. Previous work has shown that

when sub-distribution hazards for both the main and competing events are related to the

treatment, the sample size needed when using cause-specific cumulative incidence function

as the measure of effect size will be larger; yet it is the more realistic case. [28]
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In practice, there would be limited choices of prediction landmark time, effect size and

desired power so appropriate assumptions and specifications on other design parameters, such

as the standard deviation of the risk difference and overall pattern of events and probability

of failure should not be ignored in planning a study with sufficient power that is also cost-

efficient.
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Figure 4: Effects of prediction landmark time, power and effect size on sample size
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5.0 DISCUSSION

Landmark Cox and Proportional Sub-Distribution Hazards models provide direct ways to

dynamically estimate the conditional probability of failure and conditional cause-specific

cumulative incidence function when time-dependent covariates and/or time-varying covari-

ate effects are present. The risk difference produced by taking the difference between the

conditional probabilities of failure of conditional CIFs, is a ready-to-use measurement for

quantifying treatment effect widely accepted by the clinical researchers. Note that even if

correct estimation of the regression coefficients is not the ultimate goal, correct specification

of the model is still crucial in predicting probability of failure at the prediction horizon time,

especially when time-dependent covariates are involved.

In this dissertation we developed a test statistic for detecting risk difference between two

treatment groups in dynamic prediction under both single event and competing risks settings.

We then derived a closed form of power function for the test and the corresponding procedure

for sample size calculation given desired power, effect size and other study design parameters.

The performances of landmark Cox model, landmark proportional sub-distribution hazards

model, and the proposed test of risk difference were evaluated using simulation studies with

various settings. We also compared the statistical power and coverage probability with

different sample sizes, effect sizes as well as prediction landmark time points.

The power of the proposed test was more subject to the influence of sample size and effect

size, generally showing a monotone increasing trend with the increase in either of the two.

The choices of prediction landmark and prediction horizon times; or the choices of standard

error estimation technique was not as obvious since theses changes actually affect the power

of the test via the differences in effect sizes. Choice of prediction landmark time points along

with the width of the prediction window play an important role in dynamic risk prediction,
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which affects power of the test for risk differences. Therefore, although information may

increase by including a large set of landmark time points, effective sample size decreases due

to landmarking. This trade-off will be explicitly reflected in the power of the test. Still, later

landmark times can also be used as long as it answers a scientifically reasonable research

question; turning down the idea of later landmark times because of the reduced power as

compared to earlier landmark times concerns one single aspect of the problem.

Similar to the scenario with varying landmark times, the effect of effect size on coverage

probability is not uniform, especially in small to moderate sample size, which comes from the

fact that the estimated 100(1−α)% confidence interval for δ̂ was wider with larger standard

error estimate and could result in a more conservative test.

Coverage probability is driven by two factors, the precision of the risk estimation (rep-

resented by the magnitude of MSE) and the estimated standard error of the risk difference.

With smaller sample size, the biases in risk difference estimation is more pronounced. The

decrease in MSE becomes visibly slower as the sample size reaches the moderate stage and

higher (N = 600 or more). The influence of underlying effect size on standard error estima-

tion is not as large as that of the sample size. There are heuristically three ”stages” with

respect to how coverage probability behaves with increasing sample size. Under small sample

size (N = 100− 300), larger standard error estimates masks part of the effect of the bias in

risk estimation; even if the point estimation might not be satisfactory, the 95% point-wise

confidence interval could still possess a nominal level coverage probability with its width.

When it comes to moderate sample size, there is often fluctuations in coverage depending on

the speeds that the biases in risk estimation and standard error estimates decrease, whichever

could be slightly slower could be the cause of fluctuation and deviation from the nominal

level. Within this stage, the coverage probabilities could be rendered lower than those for

the smaller sample sizes and even demonstrate a trend of slight decrease. Finally with larger

sample size that leads to both smaller standard errors and estimation biases, the coverage

probability starts to increase and stabilize around nominal level. There also exists certain

possibility that the test would be conservative with large sample sizes.
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The effect of sample size on power and coverage probability of the test is indeed that

of the number of events of main interest. Factors that could alter the number of main

events observed, including total sample size, censoring rate, probabilities of failure from

competing events, as well as choices of prediction landmark and horizon times, should not

be considered in isolation. Factors that could contribute to higher power of the test for risk

difference include: larger total sample size, higher main event rate, less censoring, larger

effect size, wider prediction window.

When performing the test, we recommend that the two risk profiles being compared

assume the same prediction window width as the differences in the widths of the prediction

window would cause to the conditional risk to differ thus make it impossible to isolate the

treatment effect from the prediction window effect. On the other hand, this test can be

extended to compare risk profiles within the same treatment group. For example, among

breast cancer patients that underwent the same chemotherapy regimen we can test for the risk

difference of early responders against late responders; or responders against non-responders

by correctly specifying Z1
LM and Z2

LM .

Assumptions made when planning the study can sometimes be too optimistic regarding

subject recruitment and or pessimistic with respect the survival of subjects. In clinical trials

we may experience the latter more often than the former; the selected cohort may be more

”healthier” then expected thus we were not able to observe as many events as assumed in

the trial design stage, especially with limited time of follow-up and more realistic impact of

censoring. Prior knowledge of the attributes of the event of interest, appropriate choices of

prediction landmark and horizon times as well as certain assumptions on event and censoring

times are needed to make the sample size calculations for dynamic risk prediction reliable

yet less complicated.

Also, accrual pattern and follow-up scheme are very important in study planning. The

incorporations of accrual and follow-up times can be realized by linking them to the dis-

tribution of censoring times. There are various possible accrual patterns such as uniform,

increasing or decreasing and can be modeled using certain distribution with examples in

Maki [29] and Wang et al.[30]. The length of accrual period has been shown to affect the

sample size, but only by a single digit even with possible violation of PH assumption. [31]

46



The test we developed thus far is a two-sided one. Some future works include extending

the method to a one-sided test to accommodate scenarios such as superiority trials and in-

corporating the effect of accrual into the sample size determination and study planning for

dynamic risk prediction. Also, it would be desirable to relax the non-informative censoring

to a conditional independent censoring one as in practice the absolute independent censoring

assumption is often violated and difficult to verify; also this would help generalize our work

to observational studies.
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