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ABSTRACT

SUPPORTING DIFFERENTIATED CLASSES OF RESILIENCE IN

MULTILAYER NETWORKS

Abdulaziz Saleh A. Alashaikh, PhD

University of Pittsburgh, 2017

Services provided over telecommunications networks typically have different resilience re-

quirements and networks need to be able to support different levels of resilience in an effi-

cient manner. This dissertation investigates the problem of supporting differentiated classes

of resilience in multilayer networks, including the most stringent resilience class required by

critical services. We incorporate an innovative technique of embedding a subnetwork, termed

the spine, with comparatively higher availability values at the physical layer. The spine lays

a foundation for differentiation between multiple classes of flows that can be leveraged to

achieve both high resilience and differentiation. The aim of this research is mainly to ex-

plore, design, and evaluate the proposed spine concept model in multilayer networks. The

dissertation has four major parts. First, we explore the spine concept through numerical

analysis of simple topologies illustrating the potential benefits and the cost considerations

of the spine. We develop heuristics algorithms to find suitable spines for a network based

on the structural properties of the network topology. Second, an optimization problem is

formulated to determine the spine. The problem encompasses estimates of link availabil-

ity improvements, associated costs, and a total budget. Third, we propose a crosslayer

mapping and spine-aware routing design problem with protection given mainly at the lower

layer. The problem is designed to transfer lower layer differentiation capability to the upper

layer network and flows. We provide two joint routing-mapping optimization formulations

and evaluate their performance in a multilayer scenario. Fourth, the joint routing-mapping

iv



problem is redesigned with protection given in the upper network layer instead. This will

create two isolated logical networks; one mapped to the spine and the other is mapped freely

on the network. Flows are assigned a path or path-pair based on their class of resilience.

This approach can provide more routing options yielding different availability levels. The

joint routing-mapping design problems are formulated as Integer Linear Programming (ILP)

models. The goal is to achieve a wider range of availability values across layers and high

availability levels for mission-critical services without the need to use higher order protection

configurations. The proposed models are evaluated with extensive numerical results using

real network topologies.

Keywords: Differentiated Resilience, Availability, Multilayer Networks Design.
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1.0 INTRODUCTION

This chapter explains the motivation for the research topic studied in this dissertation, the

main objectives, and provides an overview of the document organization.

1.1 DIFFERENTIATED CLASSES OF SERVICE

Over the last decade, many services have migrated to be automated and delivered over

telecommunications networks as it becomes more convenient, e.g., e-commerce, e-government,

banking, tele-education, etc. In the near future, more services are expected to be carried

over telecommunications networks as well (e.g., smart grid). The migration of these ser-

vices has been facilitated by the synergy of IP and optical technology. The nature of the

Internet Protocol (IP), being flexible and adaptable to accommodate new applications (e.g.,

overlays), has been one of the appealing factors to new applications to be built on top of

the IP layer. In addition, the huge capacity offered by optical technology to transport high

speed IP traffic was the key to carry the growing demand and reduce transport cost. Also,

the advancement of control and traffic engineering technologies such as Multi-Protocol Label

Switching (MPLS) and Generalized-MPLS (GMPLS) has complemented the layered archi-

tecture to a great extent. Beyond these features, however, there might be some hurdles

related to service-specific requirements which are not supported by default.

Over time, the role telecommunication networks play in our lives has been increasing

significantly. Services provided over communication networks have become an indispensable

necessity and part of everyday activity for individuals, industries, businesses, and govern-

ments. Thus communication networks come to be an important and critical infrastructure
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for overall social welfare and economy [1]. This role necessitates networks to be continu-

ously available to use, reliable, and immune to disruption and failures. However, a perfectly

resilient network is unachievable.

One of the major threats to communication networks are unintentional failures. As

reported, unintentional random failures in communication networks are part of everyday ac-

tions in large carrier networks. Generally, failures in fiber-optics networks are more severe.

A single fiber cable/link bundles 160 wavelengths, each with capacity of 10, 40, or 100 Gbps.

Hence, a single fiber link failure leads to a tremendous amount of traffic loss. Thus, net-

works have to be supported by automated fault tolerance capabilities to maintain services

in the presence of failures. In recognition of this, a considerable amount of research effort

has focused on the concept of resilience in telecommunications networks. This has been en-

couraged by the significant role these networks play whereby network disruptions undermine

societies capabilities and may lead to societal harm. On the other hand, it is encouraged by

network operators who aim to maintain profitable operation in a cost efficient manner.

In general, modern telecommunications networks are accommodating various types of

services. These services typically have different requirements in terms of Quality of Resilience

(QoR) as well as Quality of Service (QoS), and security. QoR describes some parameters

related to how a service maintains connectivity such as service availability, recovery time,

percentage of recoverable traffic, etc [2]. These requirements are commonly specified in the

service-level agreement (SLA) between the customer and the network provider (the carrier).

Availability is a common metric of resilience [3]. It indicates how often a network or a service

is in an operating state. Network or service availability is substantially influenced by the

implemented recovery scheme. When a failure occurs, the recovery scheme defines how the

affected traffic is rerouted in the unaffected part of the network. Redundant resources along

the failure-free path must be available to use. The more redundancy added to the network,

the higher the availability can be achieved. However, minimizing this redundancy would

increase the likelihood to accommodate more traffic. Thus, on one hand, the providers seeks

to optimize the utilization of network resources. On the other hand, it is good for the provider

to satisfy customer requirements as agreed upon and avoid compensation for violations of the

SLA reliability terms. More frequent violations may not only cost the provider the agreed
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upon penalties, but it may affect market reputation.

Commonly, availability is expressed by the number of nines (e.g., 0.9 one nine, 0.999

three nines). It also can be translated into the expected downtime (DT) per a specified

period (e.g., 36.5 days/yr, 8 hrs/yr, respectively).

The traditional approach to improving availability in systems is to add parallel redun-

dancy [4], which in the context of typical optical backbone networks would imply implanting

additional links and possibly nodes to the network topology to support additional parallel

routes. However, adding links to nationwide or continent wide backbone networks simply to

improve availability is difficult to economically justify. Furthermore, only a small number of

users and services need very high levels of availability and these users/services produce only

a small fraction of the total network traffic.

Currently, the majority of customers are satisfied with moderate availability levels (i.e.,

around two 9’s). Other specialized services may require higher QoR levels. Among others,

critical service communications have more stringent requirements (i.e., four to six 9’s). This

can be necessary for national security or public safety purposes (e.g., emergency calls, net-

worked medical systems [5], smart grid[6]) or to prevent severe financial losses (e.g., banking,

expedite mail services) [7, 8]. These services require service availability in the range of four

to six 9’s, which might not be achieved using basic protection schemes e.g., 1+1 [9].

In general, the network has to be fully capable of providing differentiated services and

properly provisioning them in a cost efficient manner, and taking into account these re-

quirements may overburden the design process. The basic idea, instead of dealing with a

single service, a network provider may offer multiple classes of QoR, each with different

level of availability e.g., [Gold, Silver, Bronze]. Essentially, the current approach is to take

the physical network availability as a given and deploy redundancy and restoration tech-

niques at various layers to provide QoR classes with different fault recovery capabilities and

availabilities.

In literature, a considerable amount of research has studied service differentiation in

communications network design [10]. Most of these works focus on assigning different pro-

tection and restoration schemes to flows based on their QoR classes at a certain layer [11].

For example, the gold class traffic is assigned a dedicated backup path and silver class gets
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a shared backup path restoration, while the bronze class is not protected. A study from

Verbrugge et al. [12] estimates the availability of each class, averaged over all node-pairs

paths, for the 28 nodes/41 links European network (EPAN) to be: 0.99894 for gold, 0.99731

for silver, and 0.97746 for bronze class. Note that, other combinations of redundancy and

recovery configurations are also possible and may provide different availability values.

In general, there are some limitations of the existing approach. First, the range and

the spacing between availability classes for existing approaches are somewhat narrow. Both

need to be extended to cover a wider range of classes. This extension should also account for

overall cost of the design and avoid unneeded redundancy. Second, the recovery scheme of

the gold class is insufficient to support extremely high availability levels (e.g., five or six 9’s).

A higher configuration of dedicated protection (i.e., 2:1 or 3:1) is needed. Also, reserving

adequate sharable spare capacity to restore traffic from multiple simultaneous failures might

be an alternative option. Both approaches, however, lead to inefficient utilization of network

resources. The third limitation is related to the application of these approaches to layered

networks. With just few exceptions, most of the existing approaches suffer from the crosslayer

mapping issues discussed in the literature as without full knowledge of the physical layer and

the mappings between layers no hard guarantees on availability can be provided (i.e., due

to fault propagation) [13].

1.2 MOTIVATION

Although the problem of providing quality of resilience classes has been investigated, the

emergence of new services with different resilience requirements calls for a reconsideration

of the problem. A research effort is needed to consolidate existing approaches with other

techniques in order to satisfy stringent availability requirements and widen the range of

availability values in layered networks in an economical manner.

4



1.3 OBJECTIVE

The objective of this research is to study the impact of heterogenous link availability on

services end-to-end availability in multilayer networks, and develop models that take advan-

tage of this notion and provide different levels of availability to services of different classes

of resilience. Our focus is on multilayer wide-area transport networks.

1.4 ORGANIZATION

The remainder of this dissertation is organized as follows: Chapter 2 provides a brief back-

ground on multilayer networks and availability metrics followed by a review of the related

availability-based network design and crosslayer mapping literature in Chapter 3. Chapter 4

presents the thesis statement and the research contribution. Chapter 5 introduces our ap-

proach to the problem of how to provide high levels of availability in an efficient manner,

namely the spine concept. It also presents our proposed spine link selection design problem.

Chapter 6 extends the spine concept to layered networks. In this chapter, we propose our

joint routing-mapping design problem. Finally, Chapter 7 concludes this dissertation.
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2.0 BACKGROUND

This chapter provides a brief introduction to multilayer networks. It also introduces the con-

cept of survivable mapping, the Quality of Resilience (QoR) classes, and some preliminaries

on the availability metric and the nature of failures in communications networks.

2.1 MULTILAYER NETWORKS

Telecommunication networks are commonly perceived as multilayer networks, in which each

layer has different capabilities and performs different functionalities [14]. Among others,

IP-over-WDM networks have become the most prevailing architecture in todays carrier net-

works. In this dissertation, we consider a multilayer architecture with connection-oriented

layers such as the popular IP/MPLS-over-WDM architecture.

2.1.1 IP and WDM Technology

WDM technology makes use of optical fibers exceedingly effective. It exploits the capacity

of optical fibers more efficiently by allowing multiple optical channels, modulating different

wavelength carriers, to be combined (multiplexed) and carried on the same fiber simulta-

neously, in which a fiber becomes a multi-wavelength transmission medium. It successfully

provides the large bandwidth needed to satisfy the growing demand. As a consequence,

WDM-based networks have become the dominant technology for long-haul transport net-

works. The main elements in optical networks are optical line terminals (OLTs), optical

add/drop multiplexers (OADMs), optical crossconnects (OXCs), and optical line amplifiers
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(OLA). An OLT multiplexes/demultiplexes wavelengths into and from an optical signal. An

OADM is responsible for selectively dropping incoming traffic and adding outgoing traffic

from and to the optical signal. It switches traffic between metro and long-haul networks. It

adds traffic from a local metro network to a specific wavelength/s in the long-haul network

and drops traffic destined to the local network also from a specific wavelength/s. Also, it

enables long-haul traffic to bypass local traffic. A reconfigurable OADM (ROADM) can be

utilized to enable dynamic add and drop multiplexing to and from the long-haul network

(i.e., select the desired wavelength to add to and drop from). This allows flexible and in-

dependent planning of wavelengths in each network. OXC performs switching functionality

within long-haul networks [15]. Typically, a lightpath between a node pair occupies the

same wavelength in each fiber along its path. This is known as the wavelength continuity

constraint. Careful planning of the available wavelengths is essential to ensure efficient uti-

lization of wavelengths. Alternatively, the continuity constraint can be relaxed if the OXC is

equipped with a wavelength converter that switches the wavelength of a lightpath to another

free wavelength in the next fiber. This reduces the complexity of the routing problem and

improves network utilization.

Internet Protocol (IP) is the most widely used networking protocol and can be deployed

over a variety of networks (e.g., SDH, ATM, WDM). IP networks transport data in packets

between two node ends based on the destination address stored in a packet header. For

an incoming packet, an IP router checks the destination address in packets headers and

then forwards incoming packets onto outgoing links based on the corresponding next-hop

entries stored on its routing table. An IP network is a packet-switched network. It is a

connectionless protocol, offering a best-effort service with no guarantees for end-to-end QoS

and QoR. Typically, IP routing follows weighted shortest paths.

Today, Multiprotocol label switching (MPLS) technology is commonly used along with

IP networks to provide connection-orientation and a means to support QoS [16]. MPLS

provides a label-switched path (LSP) between nodes. Packets are given labels associated

with a LSP. An MPLS-enabled router, known as a label-switched router (LSR), maintains

a label-forwarding table. Upon receiving a packet, an LSR reads its label, and based on

the label entry in the forwarding table, the LSR replaces the label with the outgoing label
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and forwards the packet to the approriate outgoing link. A stream of MPLS packets can

be grouped into a forward equivalence class (FEC). It is also possible to use multiple FECs

between the same node-pair, and each FEC can follow a different LSP. Hence packets with

different service class (i.e., QoS or QoR) can be distinguished and routed differently. This

also gives a means to perform traffic engineering [15].

2.1.2 Crosslayer Mapping

An IP/MPLS-over-WDM network is composed of two layers; the bottom layer is the optical

network and the upper layer is the IP network. They are also known as the physical and

logical layers, respectively. Each layer has its own sets of nodes and links. In the optical

layer, optical fibers interconnect optical nodes, which can be equipped with optical cross-

connect (OXC) to perform switching functionalities. A connection between two end nodes

(i.e., a lightpath) may traverse one or more optical fibers and intermediate routers and may

occupy one or more channels (wavelengths) on each fiber. The IP topology is embedded

onto the optical network. Each IP node (router) is attached to an underlay optical node.

A logical link between two logical nodes is realized by a an underlay lightpath between the

corresponding node-pair.

The problem of finding an eligible lightpath to implement a logical link is called cross-

layer mapping a.k.a, crosslayer routing. The utmost design objective is to attain optimal

utilization of network resources including link capacities and switching capabilities [17, 18].

Inappropriate mapping may lead to create loops in which some physical links are used more

than once by the same logical link or path. This scenario leads to an inefficient use of re-

sources. An example of this case is shown in Figure 2.1, where an upper layer flow path (in

blue) is routed through two logical links that share a common physical link (in dashed red)

in the lower layer, and hence inefficient redundant resources are reserved on this link. This

problem is known as backhaul mapping. A completely free-loop mapping depends to a great

extent on the upper layer topology [13]. In addition to utilization efficiency, survivability is

a big concern in crosslayer mapping. A survivable mapping is the one that ensures logical

network connectivity after any single (or multiple) physical layer failure [19, 20]. Figure 2.2
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Figure 2.1: An example of backhaul mapping.
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Figure 2.2: An example of survivable mapping.
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shows an example of survivable and unsurvivable mapping with respect to logical links (1-8)

and (6-8).

2.2 QUALITY OF RESILIENCE (QOR)

Resilience is a general terminology that describes network ability to provide and maintain

an acceptable level of service in the face of various faults and challenges to normal opera-

tion. Resilience comprises survivability, fault tolerance, disruption tolerance, dependability,

performability, and security [21]. Notwithstanding the wide range of resilience attributes,

the concept of Quality of resilience (QoR), typically, has only been related to the service

availability and its relevant measures: MTTR, MTBF, and traffic loss ratio [2]. There is

a number of similar concepts in the literature incorporating both qualitative (e.g., type of

protection or restoration, covered failures, etc) and quantitative (e.g., availability, recovery

time, percent of restorable capacity, etc) survivability and resilience attributes. For example,

quality of service and protection (QoSP) focuses on the recovery scheme and its quality (e.g.,

recovery time, layer, etc.), then a single parameter is obtained to measure the QoSP. Another

example is Differentiated reliability (DiR) that focuses on the number of recoverable failures

with respect to each service. There is a great overlap between these concepts, but the main

difference is the point of view in which options are chosen and evaluated. In here, our focus

is on the availability metric and hence QoR.

2.2.1 Availability Model

Availability is one of the most common metrics related to resilience. Formally, the avail-

ability of a system (e.g., service/component/path), as defined in [22], is “the ability of a

system/service/component to perform its required function at any instant of time within a

given time interval”. The actual availability of a component can be computed based on

historical component failure data as the ratio of the aggregate up time to the total time the
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Figure 2.3: The Markov state model for availability.

component was in service,

A = uptime/(uptime+ downtime) (2.1)

Nevertheless, we need to estimate the availability level promised to be provided in the future.

For this, one can use the instantaneous availability, A(t), which is defined as “the probability

that a system is in an up state at a given instant of time t”. Further, we may be interested

in the availability in a long time range (defined over the service lifetime) or the steady-

state availability (a.k.a, asymptotic availability) which is defined as the probability that the

system is found in an operating state at any time in the long run future.

The most common model for availability is the Markov state model. In general, there

is a number of assumptions that are commonly considered here: (1) a component can be in

one of two states: either up or down status, (2) components fail independently (with the

exception of known SRLGs), (3) Failures arrival and departure are independent processes,

and each process has an exponential distribution with a constant mean. Thus failures in an

availability model can be considered as a Poisson process. To illustrate this, consider the

Markov model for a single component availability shown in Figure 2.3 [23]. It includes two

states: UP and DOWN . The system moves from UP to DOWN state with a transition

rate λ which is the failure rate, and transitions back to UP state with a repair time rate

µ. Let PUP and PDOWN be the probabilities that the system is in UP and DOWN state,

respectively. Then, by solving the equilibrium state probability of the UP state, we can

compute the system availability as:

A = lim
t→∞

A(t) =
µ

λ+ µ
=

MTTF

MTTF +MTTR
(2.2)
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where MTTR is the mean time to repair (= 1/µ) and MTTF is the mean time to failure

(= 1/λ). Given that MTTF = MTBF −MTTR, where MTBF is the mean time between

failures, we can rewrite (2.2) as

A =
MTBF −MTTR

MTBF
(2.3)

The term unavailability is the probabilistic counterpart of the availability:

U = 1− A (2.4)

Commonly, availability value is expressed in the number of nines (e.g., 0.9 one nine, 0.999

three nines). It also can be related to the expected downtime (DT ) per a specified period

(e.g, 36.5 days/yr, 8 hrs/yr), which is sometimes a more convenient measure.

DTmin/yr = U × 365days × 24hours × 60min (2.5)

To compute system steady state availability and unavailability of a system composed of

n components in series, simply we can use reliability block diagram (RBD) theory as,

Aseries =
n∏
i=1

Ai Useries = 1−
n∏
i=1

(1− Ui) ≈
n∑
i=1

Ui (2.6)

where Ai (Ui) is the availability (unavailability) of the ith component. For a system composed

of n components in parallel,

Uparallel =
n∏
i=1

Ui Aparallel = 1−
n∏
i=1

(1− Ai) (2.7)

Now consider a communication path between two nodes as the evaluated system, and

it comprises a number of links/nodes or hops as the components. Also assume that this

path is a working path (WP) and it is protected by a dedicated backup path (BP). Based on

these equations, we can state some general properties of availability measure in series-parallel

system:

• Path availability is inversely proportional to its length and the number of hops [24].

• Path availability of a system connected in series is strictly upper bounded by its lowest

component availability,
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• End-to-end path availability of a disjoint WP and BP pair connected in parallel is strictly

higher than the availability of the largest path availability.

Lastly, it is worth mentioning that availability and reliability are mistakenly considered

interchangeable, however it is important to distinguish them because they have different

meanings. Reliability is defined as “the probability that a component will maintain its func-

tion over a specified period of time τ”. More precisely, it is the probability that no failure

occurs in the period [0, τ ], i.e., R(τ) = Pr{no failure in [0, τ ]}. Mathematically, it can be

expressed in terms of the failure density function f(t) as in (2.8). So by definition, reliability

only considers how frequent failures come to the system and ignores the repair process. Also,

the expectation of f(t) gives also the mean time to failure (MTTF ), shown in (2.9).

R(τ) = 1−
τ∫

0

f(t)dt (2.8) MTTF = E[f(t)] =

∞∫
0

t · f(t)dt (2.9)

It is worth mentioning that assuming failure arrival times and repair times to be ex-

ponentially distributed simplifies the mathematical expression to a great extent as both

processes will have constant means. Otherwise, availability evaluation for complex networks

and its use in network design might be intractable. The exponential assumption is widely

accepted by the research society even though failure and repair processes were found in some

cases to follow different sup-exponential distributions (e.g., Weibull distribution [25, 26]).

The impact of having only the repair times non-exponentially distributed is negligible as

MTTR << MTTF , which is expected to be the case. However, we have no clear un-

derstanding of the impact of having different distributions of these processes on estimating

availability [25]. In addition, despite the wide use of this availability metric, it only provides

the expected aggregated downtime over a course of time. It does not indicate the number

of times an element will be in a failure state [3, 27], or how long it continues to work before

failure (i.e., continuity [28]). Furthermore, the accuracy of the evaluated service availability

depends on the time period upon which availability is calculated. The longer the period, the

more accurate the availability.
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2.2.2 Classes of QoR

The concept of offering differentiated levels of products or services, in which these levels

would have different costs, is a well recognized concept in the industry. The cost here de-

notes a two-sided matter; the price paid by the customer and the expenses incurred by the

provider. The pricing for each level of service should commensurate the expenses in order

to make offering such differentiated services profitable. Typically, a customer may choose

a level of service that suits its needs and be willing to compensate the provider (carrier)

for the specified quality provisioned. The differentiated cost is actually what provides the

legitimate basis for service discrimination from the legal perspective as well as the incentive

for the provider to offer such a service. There are many examples from industry that follow

this concept. For example, a telecommunications network that accommodates a wide range

of heterogenous services and applications, each comes with different requirements in terms

of capacity/bandwidth, minimum availability level, delay, etc, supports different levels of

quality of service (QoS) [29]. A more analogous example would be the support of reliability

classes in electrical power supply [30]. Here we consider service differentiation in commu-

nications networks where connections or flows between the same source-destination might

have different requirements in terms of availability, and thus were classified in different QoR

classes [31]. Typical availability requirements range from 99% to 99.9999%. The required

availability level by a service depends on the service tolerance to outages and how much the

customer is willing to pay for the connection. Typically, the required service availability,

along with other QoS parameters, is explicitly stipulated in the SLA between the customer

and the provider. It is up to both parties to negotiate this cost and associated penalties.

In addition, it includes the strategy for monitoring the compliance of the agreed upon pa-

rameters. Monitoring can be done through direct access to customer (e.g., web portal) or

through a trusted third party to resolve any possible dispute [32]. The SLA should incen-

tivize the provider to satisfy customer requirements as agreed upon and avoid compensation

for violations of the SLA terms. More frequent violations may not only cost the provider

the agreed upon penalties, but it may affect market reputation.
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2.2.3 Failures in Communication Networks

Outages in communication networks, as well as in other large-scale systems, are common.

These outages can be planned or unplanned. Planned outages can be scheduled in advanced

for carrying out routine maintenance. Typically, equipments are shut down and service is

provided over an alternate path or network, or completely interrupted for a predetermined

period of time. On the contrary, unplanned outages occur randomly and without any prior

knowledge of occurrence time and duration. They are commonly known as random failures.

A random failure can be caused by a network element defect, malfunctioning, sabotage, fire,

etc. Such a failure may disrupt communication services. Unfortunately, despite great efforts

from network operators to maintain operated and physically protected networks, failures are

inevitable and may lead to severe consequences.

All failures are not the same. They vary in the cause and the severity of the consequences.

Some failures are persistence e.g., a cable cut, a power supply failure, etc, and may need

physical repair/replacement. The severeness of such failures depend on the time needed

to repair (TTR). Other failures are soft, transient, and have minor impact, where a failed

element can be recovered within short period of time e.g., reboot a router or a line card [7].

In high speed transport networks, a failure in a network node may lead to huge loss of

traffic and undermine network connectivity. A failure may affect the node partially e.g., a

failed line card, or completely isolate the node causing all originated, destined, and transited

traffic to be dropped. Fortunately, node failures are not frequent. According to Bellcore

report (1991) [33], failure rates for optical transmitters and receivers are 10867 FIT and

4311 FIT, respectively, where FIT denotes number of failures in 109 hrs. This means that

an optical node is roughly susceptible to 0.133 failures/year. On the other hand, fiber optic

cables have relatively lesser capacity but experience more frequent failures occurrence than

optical or electronic nodes. A 1000 miles cable with a cut rate of 501142 FIT/1000 sheath-

miles is susceptible to 4.39 cuts/year. A network like Level-3 [34] with 57,000 of long-haul

cable miles is susceptible to a failure every 1.5 days. In addition, typical node equipment

MTTR is ∼2 hrs while the average for a cable cut is ∼12 hrs. Hence the aggregate loss due

to cable cuts would become more significant over time. To get more insight on what cable
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availability really weighs, Figure 2.4 provides estimates of equipments availability values

based on experts from industry, as reported by Verbrugge et al. [12]. Note that cables

availability shown in this figure is for 1 km. A 1000 km aerial cable availability goes down

to 0.96471. Thus cable availability depends heavily on its length as well as its type.

It is widely agreed that cable damage is the dominant and the most disturbing type of

failure in communication networks. NRCS annual report [35] shows that 43% of the total

outages (reported to FCC) over a 12 years period were due to failure of different types of

cables. The main reason that accounts for 57% of reported cable damage was cable dig-up

during construction work. In addition, Snow [36] shows that 28.6% of the reported failures in

telephone networks were caused by a cable cut excluding other cable failures causes. Other

reasons include defected cable connector or amplifiers, rodents, natural hazards, car accident,

or vandalism [34, 35, 37]. In addition, Snow found that cable cuts are more frequent in some

states of the US than others, which can be attributed to the differences in weather and

the frequency of construction work . Thus cable availability depends also on the terrain it

traverses in which it is likely to impact both the frequency of failure occurrence and the
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repair process. Crawford [38], in his study, found that the average MTTR for 160 cable cuts

reported was 14 hours but with a high variance in which some repair cases reached to 100

hrs. Snow [36] found that high population areas might have shorter average MTTR and this

was attributed to the proximity of repair parts and teams.

It is also important to distinguish between failures across layers. Optical network failures

are knowingly considered more severe than failures affecting the electronic layer as the optical

layer has larger capacity and processing capability. For example, a single logical link along

its underlay path would be mapped to one or more wavelengths on each fiber it traverses.

The traffic loss of a single logical link is much less capacity than a loss of a single fiber optic

cable with capacity in the order of terabits per second. Also a failed optical cable may cause

more than one logical link to fail simultaneously [39].

One of the major obstacles regarding research on this topic is the lack of publicly available

data due to proprietary concerns [5]. As a matter of fact, most of MTBF, MTTR, and

availability values used in the current literature are either two decades old (e.g., Crawford’s

reported 1993 data [38], Snow’s analyzed telephone networks reports collected between 1992-

1996, To and Neusy [33] reported metro ring networks failures data collected in 1991),

collected over small research or educational networks (e.g., UNINETT [26]), collected from

an IP layer network (e.g., a 2002 dataset [39]), estimated (e.g., [12]), or based on partially

reported incidents [36]. Thus, there are many limitations in these datasets.

2.2.4 Techniques to Improve Equipment Availability

As a first step to improve network and services availability values, one should work on im-

proving availability at the component level. Afterwards, the second step is about how to

provide the services using network resources and recovery mechanisms. Recall that over a

single path the overall service availability is upper bounded by the minimum component

availability along the service path. Hence network operator should work on improving com-

ponents with lower availabilities. This necessitates careful evaluation of network components

availability to allocate the maintenance budget in an effective way [40]. Component availabil-

ity can be improved simply by reducing the repair time (i.e., MTTR). This can be achieved
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through efficient management of work force, locating spare parts in nearby locations, training

to improve labor productivity in a timely manner [41, 42], and following best practices for

maintenance [8, 43, 44]. Snow [36] reported that there is a correlation between average labor

salary and failure durations indicating that a highly skilled maintenance team would require

shorter repair times. In addition, he found a strong correlation between the proximity of

maintenance centers and failures durations.

In addition, reducing the frequency of failures (i.e., MTBF) can effectively boost the

component availability. Techniques for this purpose include adding redundant components

in parallel (e.g., redundant power source, router interface cards, cooling fans, management

software), replacement with a new high availability equipment as, typically, different models

of the same component might have different fault characteristics, physical protection (e.g.,

bury cable, add caution labels on trench) [41, 42, 45]. Overall, the choice of suitable option,

to a great degree, is a cost dependent [8, 46, 47], yet there is evidence of a clear correlation

between the number of failures and the total investment in the network [36].

For fiber links, there can be multiple options for improving link availability. Fiber cables

can be laid in ducts, direct-buried underground, or mounted on overhead pole-lines. The

choice of the best strategy is highly dependent on the terrain (metropolitan, rural, forest,

etc), weather, proximity to highways, and the cost of installation. Link availability also may

be affected by other factors, such as the depth of the trench for the buried cable or the height

of the poles for aerial cables, isolation type: PVC or armored shielding, number of amplifiers

along the cable, physical protection added to the site, and warning markers [37, 48, 49].

2.3 SURVIVABLE NETWORKS

Network or service availability is substantially influenced by the implemented recovery scheme,

which is why availability is a measure of survivability. Formally, survivability can be defined

as “the system’s ability to continuously deliver services in compliance with the given require-

ments in the presence of failures and other undesired events” [50]. Practically, survivability

defines the recovery mechanisms used for protection and/or restoration of the network or
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Figure 2.5: Classification of recovery mechanisms [51].

the service when failures occur. Recovery mechanisms describe how the ongoing traffic will

be redirected/switched in failure scenarios.

2.3.1 Recovery Mechanisms

When a component along a working path (WP) fails, the affected traffic that uses this

component will be rerouted through a backup path (BP). The detailed recovery procedures

must consider some essential design criteria.

Figure 2.5 provides a broader classification of recovery mechanisms based on multiple

criteria. Each criterion provides options that should be integrated with options from other

criteria, e.g., a scheme for intra-domain routing can be designed with dedicated path protec-

tion at the physical layer. The first criterion is the domains involved in the communication.
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Domains are equivalent to autonomous systems. Each domain is owned and operated by

a different provider. Based on this, a recovery mechanism can be designed for connections

within a single domain (intra-domain) or multiple domains (inter-domain). The recovery

methods of both scenarios might seem the same, however the multi-domain design is con-

strained by the owners’ reluctance to share topology and routing information.

Second, recovery can be provided at a single layer or multiple layers as communications

networks have been regarded as multilayer networks. Consider for example, IP/MPLS-over-

WDM networks. Connections can be protected at the optical layer (WDM) with considerably

faster recovery but with coarser granularity at the wavelength channel level. On the other

hand, logical layer (IP/MPLS) offers finer traffic granularity at per-flow level but takes longer

recovery time. Generally, recovery mechanisms are used at multiple layers in which each

layer can protect itself and prevent failures to propagate to other layers. However, there are

some scenarios where single layer recovery is insufficient and coordinated multilayer recovery

strategies are needed [52].

Thirdly, based on the scope of the recovery, mechanisms can be classified into global

path, segment, and local node or link recovery. In path-based scheme, connections or traffic

affected by a failure are rerouted using alternate end-to-end paths, however, local recovery

schemes are designed to avoid a faulty link/node only. Segment-based schemes offer an in-

between solution where a section of the working path (a chain of links and nodes along the

WP called segment) is protected by a backup segment.

Recovery mechanisms can be further classified based on how backup path is set-up into

protection and restoration schemes, and these schemes can be used on path, segment, or

link basis. In protection techniques, backup resources are pre-computed and reserved in

advance. These resources can be dedicated or shared. Dedicated backup resources reserved

for a connection are only used by this connection; either continuously (1+1) or in case

of a failure affecting the working path (1:1). Shared backup resources (1:N) are shared

between a number of connections, N . If a connection occupies this shared resources due

to a failure on its working path, then all other sharing connections are blocked from using

this backup resource when needed and left unprotected. This scheme requires the sharing

connections to be part of different Shared-Risk-Link-Groups (SRLGs), i.e., SRLG-disjoint.
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In general, the total spare resources reserved in shared backup schemes are much less than

those used in dedicated backup protection. However, it requires more signaling overhead.

Even though shared-backup protection can achieve high resource efficiency compared to

dedicated protection, this comes at the cost of lowering connections availability. A trade-off

can be achieved using advanced sharing schemes like, (M :N) where working paths/links of

N connections are protected by M shared-backup resources, with M<N .

Typically, in protection recovery methods, reserved spare capacity is left unused during

normal operation which limits the network utilization. Unlike protection techniques, restora-

tion techniques require no pre-reserved spare resources. In case of failures, backup paths

(either end-to-end path or link-based) are computed on-the-fly and resources are reserved,

if they are available. Off course, higher utilization level can be achieved using restoration

method but this comes at the risk of not finding alternate paths and hence leaving con-

nections unsurvivable to failures. Also, restoration requires longer recovery time for path

computation and control signaling. In addition, protection schemes are suitable only for

connection-oriented technologies such as WDM at the optical layer or MPLS at the logical

layer. They are not applicable to pure IP layer where the option of setting-up a predefined

end-to-end path or path pair is typically not enabled for wide area networks due to secu-

rity concerns [53]. Here, restoration recovery is attempted at the IP layer when a failure is

detected [7, 51].

2.3.2 Survivable Network Design (SND)

The problem of routing and assigning recovery options to services in communication net-

works is known as the survivable network design (SND) problem which has been extensively

studied in literature. A wide range of proposals offering different approaches to the problem,

and availability-constrained design can be considered as a subproblem of the general SND

problem [10, 54]. SND aims to design the network with automated fault tolerance capabil-

ity with respect to some design objectives. Typical design objectives involved in the SND

problem can be summarized as follows:

Capacity objectives
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Capacity Efficiency : the goal is to optimize the utilization of network resources.

Guaranteed Capacity : the design should guarantee that every connection (flow) gets

its required capacity (bandwidth).

Acceptance/Blocking rate : increase the chance of accepting new requests.

Resource Overbuild : (a.k.a, , Redundancy) defined as the ratio of protection capac-

ity to working capacity. The goal is to minimize the resource

overbuild i.e., minimize the spare capacity used for protection.

Load Balancing : avoid creating congested links or nodes.

Recovery objectives

Differentiation : network ability to support multiple QoR classes.

Availability : the design should provide some guarantees over the end-to-end path avail-

ability provided to services.

Restorability : increase the possibility of recovering disrupted traffic in a timely manner.

Recovery Time : some services are very sensitive to recovery time. In mesh networks,

it ranges from 50ms to several seconds. This basically depends on the

recovery mechanism and on which layer the service is provided.

Complexity and Scalability

The design should perform in a timely manner and scale properly for large networks and

large number of connections. Complexity is measured by algorithm execution time and

the volume of signaling overhead.

2.3.3 Differentiated Classes of Survivability

Table 2.1 shows an example of multiple survivability classes and the corresponding technical

and economic factors for each class [55]. The classes are ordered from highest to lowest

priority. Although our focus here is on availability-based design, it is important to address

the trade-offs between the different objectives.

Simply, differentiation can be achieved by managing to have different recovery classes,

each is configured with a different survivability scheme. For example, the highest class, on

the first row in the table, can be given (N +1) dedicated protection with N backup paths.
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Table 2.1: An example of recovery classes in [55].

recovery
survivability
scheme

scalability cost
recovery
time

spare
capacity

comments

guaranteed

Dedicated protection
(N+1), N≥2

very com-
plex

extremely
expensive

fastest ultra high no preemptive traffic
use spare capacity

Dedicated protection
(1+1)

complex
very
expensive

fast very high

Dedicated protection
(1:1)

complex
very
expensive

fast high
preemptive traffic may
use spare capacity

Shared protection
(M:N)

medium
medium
expensive

medium
medium
high

Shared protection
(1:N)

medium
less ex-
pensive

medium medium

Pre-planned Restora-
tion

simple regular slow none
requires post-failure re-
source reservation and
signaling

not guar-
anteed

Restoration simple cheap slowest none post-failure re-routing

NA Unprotected
very sim-
ple

very
cheap

none NA

NA preemptable simplest cheapest NA NA
preempted if resources
are needed by other
classes

Hence traffic belongs to this class can survive up to N concurrent failures which means high

and guaranteed restorability level and fast recovery. However, this comes at the expense of

high resource usage for recovery (cost) that lowers the efficiency of resource utilization. A

lower class can be protected by (1:1) dedicated protection or shared protection with traffic

in this class can survive any single failure. This of course consumes less resources than the

first class, and in general shared protection is more capacity efficient, but slower. Yet, in all

protection schemes reserved backup resources are either left unused during normal operation

or used to carry duplicate traffic. To reduce the redundancy level, one can utilize the unused

resources to carry preemptible traffic, that is, the lowest class of traffic that can be dropped

if the resources are needed by other higher classes traffic. The survivability of this class is

actually worse than even unprotected class. These classes are shown at the last two rows in

the table. Intermediate classes can be offered with restoration recovery with no guarantees

and comparatively longer recovery time needed to find alternative routes. However, these

classes require no redundancy and can offer a moderate, and potentially high, degree of
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survivability that mainly depends on the utilization level of network resources. Overall, it is

clear that high survivability options cost more resources and reduce the network ability to

accommodate new incoming services.
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3.0 LITERATURE REVIEW

In this chapter, we survey the literature on supporting differentiated availability levels in

network design with a variety of design objectives.

3.1 ROUTING ALGORITHMS

This section introduces the core of the routing problem from a technical perspective. There

are three main approaches used in the literature to route connections or flows between the

end nodes: mathematical programming, alternate path, and weighted link routing. Each

approach handles explicit availability requirements differently. Here, we discuss these ap-

proaches highlighting how availability is handled.

3.1.1 Optimization Problem Approach

Using mathematical programming, we can find optimal paths for a set of connections. The

optimality here is with respect to some objective (e.g., minimum resources). Path availability

can also be included. Let us consider the following simple formulation for the problem of

routing a set of connections in an optical network, shown in eqs. (3.1) to (3.6) [56].

Given a network G = {V, L}, where V and L are the node and links sets, and given a

set of connections, C, that need to be routed on the network, the objective is route each

connection so that it meets or exceeds its target availability Atsd. The problem is formulated

as follows:
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Notation:

V is the set of nodes and L is the set of links.
mn a physical link between node m and n.
sd connection (e.g., a lightpath) between source-destination.
amn availability of link mn.
Atsd target availability for connection sd.
C set of connections to be routed (it can be flows/logical links).
Wmn capacity of link mn (i.e., number of wavelength channels).
Xsd
mn binary variable = 1, if connection sd uses link mn for its WP .

Y sd
mn binary variable =1, if connection sd uses link mn for its BP .

Objective function:

minimize
Xsd
mn,Y

sd
mn

∑
sd∈C

∑
mn∈L

Xsd
mn + Y sd

mn (3.1)

subject to
Flow conservation constraints :

∑
n|kn∈L

Xsd
kn −

∑
m|mk∈L

Xsd
mk =


0 if k 6= s, d
1 k = s
−1 k = d

∀k ∈ V, (s, d) ∈ C (3.2)

∑
n|kn∈L

Y sd
kn −

∑
m|mk∈L

Y sd
mk =


0 if k 6= s, d
1 k = s
−1 k = d

∀k ∈ V, (s, d) ∈ C (3.3)

Disjointness constraint:

Xsd
mn + Y sd

mn ≤ 1 ∀(s, d), (m,n) ∈ L (3.4)

Link capacity constraint ∑
(s,d)

(
Xsd
mn + Y sd

mn

)
≤Wmn ∀(m,n) ∈ L (3.5)

Availability constraint

1−
(

1−
∏

mn|Xsd
mn=1

amn X
sd
mn

)
×
(

1−
∏

mn|Y sdmn=1

amn Y
sd
mn

)
≥ Atsd ∀(s, d) (3.6)

This is a link-path routing problem that assigns each connection c an eligible (1+1)

dedicated path-pair between source and destination node-pair (sd) with the same required

capacity on both paths –one unit– and with a minimum availability level of Atsd. Routing

connections between a node-pair is realized by the flow conservation constraints (3.2) and

(3.3) for working and backup paths, respectively. Constraint (3.4) ensures no common

links between the path-pair. The main objective, (3.1), is to minimize the total working
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and backup capacity used for routing the connections with dedicated path protection (DPP)

constrained by a minimum availability target for each connection (3.6). While this problem is

designed to provide an optimal solution, it is known to be an NP-complete problem. Besides

that, it is clear that the availability constraints introduce non-linearity to the problem. This

is only for the simplest formulation for routing with DPP path-pair. Further considerations

of shared path protection (SPP) and/or hybrid method only increases the complexity of

the problem. As a result, several proposed algorithms try to either adopt iterative-based

heuristics to solve the availability-constrained routing problem or define general rules that

dictate network availability and indirectly solve the problem. In the latter form, availability

is used as an evaluation metric.

3.1.2 Alternate Path Method

The basic idea of this approach is to assign a path or path-pair to a connection chosen from a

set of predefined candidate paths. To generate this set, a modified version of classical routing

algorithms (e.g., Dijkstra, k-disjoint shortest paths) can be used. Thus, finding a suitable

path or path pair out of this set is achieved by enumerating through these paths. Then the

path or the pair that provides the highest availability, or meets the target availability, is

selected. However, it is also favorable to do this in a resource efficient manner.

For illustration, consider the algorithm introduced here as an example. The algorithm is

based on fixed-alternate routing [57], in which for each node-pair, a number of M candidate

paths (or link-disjoint path pairs) is precomputed. Candidate paths can be, for example,

any combination of the options [56]:

– Shortest Path (SP): the path/s with minimum hop count, or Weighted SP with mini-

mum total weight.

– Shortest Path-pair: path-pair with minimum hop count (min-min and/or min-sum),

or with minimum weight.

– The Most Reliable Path (MRP) (or disjoint path-pair): path with minimum cost,

MRP =
{
Path|min

∑
l∈pathCl

}
, where Cl = − log al is the link weight.

– Others: this can include the second SP or MRP, third, and so on.
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Note that the first two candidate path sets minimize the resource usage (cost) while

the third case maximizes the availability. Additional customized routes can be used as well

[58, 59]. The last set of paths may further introduce tradeoffs between the cost, availability,

and load balancing. Thereby, each connection should be assigned a path (or a path-pair)

that satisfies its availability target and uses minimum resources.

To ensure both objectives are maintained, Tornatore et al. [60] propose a scheme to assign

these paths to connections arriving dynamically to the network. Starting from the path with

the minimum resources SP, then try the MRP, a shortest path pair, a path-pair with one

shortest path SP and one MRP, and then a path-pair with two MRPs in this specific order

until the availability requirement is satisfied. The scheme also prioritizes backup paths that

can be potentially shared between multiple connections, if a connection availability target is

surpassed. First, one enumerates through all possible combinations of paths and identifies

a subset of paths and/or path-pairs that satisfy the connection availability requirements.

Then, enumerates through all paths in this subset and finds the path or path-pair that uses

the minimum resources. Repeat this for all connections.

A different way to assess the set of candidate paths is to assign a proper cost for each

path, such as costp = (1 − α)hp + αAp, where hp is the path length, and α is a parameter

between (0,1) [61, 62]. Know that, if we found a set of candidate paths and computed

their availability values in advance, it is possible to use an ILP to select optimal paths with

respect to some cost metric. This would change the NLP shown above to a path-path routing

problem and the non-linearity would be avoided [63].

3.1.3 Weighted Routing Approach

Instead of generating candidate paths, we can route each connection using a weighted shortest

path. By assigning a proper weight to each link, we can iteratively find suitable path or path-

pair for each connection. The link weight can be any combination of link availability (i.e.,

Cl = − log al), link capacity, residual capacity of the link, and/or number of times the link

is used. The routing can be applied twice or more; first to compute WP, then to compute a

partial or fully disjoint BP [64–66]. If the availability target of a connection is not met using
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a single path, then a dedicated path-pair is given, and typically it is required to be a fully

link-disjoint pair (using Cl∈WP = ∞). However, if the assigned DPP yields an end-to-end

availability greater than the targeted availability, a possible approach to reduce the amount of

the reserved resource is to reassign a partially-disjoint path pair or a shared path protection.

On the other hand, if the fully link-disjoint path-pair does not achieve the availability target

of the connection, an additional protection path may be granted. The sub-problem is known

as k-disjoint paths [67].

Another important issue in SPP is that in general the WPs of the sharing connections

should be SRLG-disjoint to avoid an unrecoverable scenario [62, 67–69]. For this, one can

use an SRLG identifier associated with each link. In addition, Miyamura et al. [70] propose

a scheme for path selection for traffic in GMPLS networks based on varying the disjointness

degree of links’ SRLGs. At this layer, physical network and cross-layer routing information

must be attainable. SRLGs in this scenario involves both links that are physically adjacent

(e.g., use the same conduit) and logical links mapped to the same underlaying link.

Know that, as mentioned earlier, path availability is inversely proportional to the path

length and the number of hops. This indicates that in single path routing, shortest path is

always the optimal path in terms of both availability and cost. However, this can be true for

availability only if all links availability values are identical (or have very small differences),

which is not always true. For example, Markopoulou et al. [39] show that failures at the IP

layer in only 2.5% of the links account for more than 50% of the IP layer link failures. In

addition, relying only on shortest path might lead to imbalance load distribution and link

congestion.

3.2 AVAILABILITY-AWARE NETWORK DESIGN

3.2.1 Alternating Recovery Mechanisms

The most common approach to resilience differentiation is by assigning different recovery

schemes to the different traffic classes in a fashion similar to Table 2.1, but with explicit
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Figure 3.1: Availability comparison of basic recovery options [51].

availability constraints on the routing problem. Figure 3.1 gives a qualitative comparison

between the basic recovery schemes availability. As we discussed in section 2.3.3, dedicated

backup protection (DPP) can be used to provide high levels of availability. However, this

comes at the cost of lowering network utilization and hence accommodating less connections.

Also DPPs with more than one BP are deployed for connections with extremely high avail-

ability targets. This would further worsen network utilization. In order to reduce the cost

of protection without violating the requirements, a number of options has been proposed for

this purpose.

3.2.1.1 Shared Protection A direct method to assign shared path protection is to start

from a feasible DPP-based routing that satisfies the requirements of all connections. Then,

for each link find the set of connections whose BPs use this link and belong to different

SLRGs (i.e., their WPs are link-disjoint). After that, for each group of connections in this

set, the DPP for these connections can be downgraded to shared protection. However, these
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connections should be downgraded carefully without violating the availability requirement

of any connection in the sharing group. Also, it is appropriate to start with the most utilized

link [56, 58].

Another way to assign shared resources to connections follows this process: first, calculate

a set of candidate path-pairs, compute their end-to-end availability, and remove path-pairs

that do not fulfill the requirement. Then, enumerate through all eligible pairs and for each

pair: 1) test if the links on the BP have enough (shareable) spare capacity, 2) availability

target is not violated, 3) all other connections’ WPs that will use the sharable spare capacity

are SRLG-disjoint. If more than one pair satisfies these conditions, pick the one with lowest

resources (i.e., minimum hop count path-pair) [61, 62, 71, 72].

Alternatively, M:N shared path protection scheme can offer a better trade-off between

availability and resources. In this scheme, M BPs are protecting N WPs belonging to N

different connections, with M<N . Thus, it can be used to increase connections availabilities

with an increase in backup resources. Yet, the cost and availability values are still lower than

DPP, which means that this scheme can expand the network differentiability by adjusting the

cost-availability tradeoff [73]. For the routing problem, we first need to generate k-disjoint

paths for each node pair. Then, follow the same procedures of assigning shared resources on

each link as shown above with each connection given shared resources on multiple backup

paths N . In general, the routing problem becomes more complex.

In the following some concepts related SPP are described briefly.

Link Shareability In the previous methods, it is important to note that the number of

the connections in the sharing group controls the overall connection availability. If a

connection, c, protected by SPP then its end-to-end availability is given by

Ac ≈ 1− (1− AWP )(1− ABPASc) (3.7)

where ASc =
∏

l∈Sc Al and Sc is the set of links whose failure, along with c, causes a

conflict on a link that is on the BP of connection c. Thus, we can adjust the sharing

degree, |Sc|, on each link to control connections availability. This also can be done for

each QoR class to support differentiation. For example, the gold class can be assigned

a smaller sharing degree on all links than the silver class, hence connections belonging
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to the former class can attain higher availability [66]. For the M :N scheme, connection

availability depends on both the number of sharing group M as well as the number of

protection paths N .

Priority Priority-aware routing can be an efficient and inexpensive way to achieve differen-

tiation. It is proposed to be used in resolving contention between connections competing

for shared resources. Probabilistic availability models and priority-based routing schemes

for 1:N and M :N can be found in [74, 75]. It has been shown that this approach could

slightly increase the differences in the availability levels between the sharing connections.

In addition, it can be extended to restore affected traffic based on their priorities, i.e.,

which connection to restore first.

Preemptable Traffic This concept introduces the class of preemptable traffic that may

be evacuated (dropped) from its not-affected primary path to serve other higher priority

connections whose WPs are down. In this case, we can further set availability levels

apart from each other at no extra cost [76, 11, 77].

3.2.1.2 Restoration Restoration schemes require no reserved capacity for recovery. When

a failure occurs, the network searches for eligible paths to reroute the affected traffic. The

rerouting decision is subject to whether enough resources are available or not. Successful

restoration, hence, depends merely on the utilization level of network resources. Restoration

schemes are the most common recovery option in large carrier networks [78, 79] due to their

low cost. However, successful recovery of disrupted connections is not guaranteed. If full

restoration is not possible, partial restoration can be given in which only a fraction of the

total demand capacity is restored.

Due to the nature of this scheme, accurate availability evaluation is difficult. There are

some analytical availability expressions for restoration that appear in the literature, e.g.,

[80]. Potentially, high availability levels (may exceed DPP) can be achieved because there is

a chance to cover more high-order failure scenarios. However the overall availability levels,

compared to other schemes, are not guaranteed and it depends in the utilization of network

resources.
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Figure 3.2: An example of self-protecting multipath routing.

3.2.1.3 Multipath Routing (MP) In an IP/MPLS network, it is possible to use two

or more WP s to connect two nodes, in which traffic is split through these disjoint paths.

Each path may be set up with dedicated spare capacity to provide protection in case one of

the other WP s is down. Figure 3.2 shows an example of a multipath routing. It shows that

the total spare capacity is reduced compared to the DPP, while the end-to-end availability

is improved. Huang et al. [81] provides analytical models for evaluating connection and

sub-connections availability. It shows that sub-connection availability may exceed DPP as

more failure scenarios are recoverable.

Alternatively, a number of N primary paths and M backup paths can be given to a

connection, with each WP carrying only a fraction of the connection traffic and each BP

protecting a fraction of the traffic [82]. A single failure will affect only a small proportion of

the total traffic, which can be easily restored using the M backup paths. By this diversity

on WP s and BPs, the connection can be, at least partially if not full, recoverable against

multiple simultaneous failures. Hence its availability can be improved with lower resource

than 1+1 DPP. In addition, when a fraction of the bandwidth of the demand can be routed

through another path, this reduces blocking rate caused by congested link/node and helps

balancing the load in the network (assuming divisible capacity in WDM or configuring at

MPLS). In general, by using this scheme, a high availability level is achieved while the

overall network resource overbuild and blocking rate can be reduced [81, 82]. For the routing

problem, many proposals use modified versions of the k-disjoint paths routing algorithm to

find the eligible multipaths. Alternatively, Ma et al. [83] propose an ILP formulation for

protection against dual-failures using the multipath mechanism.
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Figure 3.3: An example of a dual-failure scenario with p-cycle [84].

3.2.1.4 P-cycles Clouqueur and Grover [84] proposed P-cycles mainly to improve net-

work restoration recovery time. The idea of P-Cycles is to pre-define a cycle on the network

with sharable resources used only for protecting the connections between nodes that are on

the cycle path. Hence emulating the ring protection in a meshed network. If one arc is

down, protected traffic is routed through the counterpart arcs that complement the cycle

(see Figure 3.3 as an example). Clouqueur and Grover [84] define a tradeoff between capacity

efficiency and availability in p-cycles. On one hand, path availability is highly dependent

on the size of the p-cycle; the smaller the cycle the larger the availability, and to a lesser

degree on the number of the straddling links (i.e., the links that are not on-the-cycle but

their end-nodes are). On the other hand, limiting the size of the p-cycle reduces its capacity

efficiency. The authors showed that paths traversing straddling links achieve higher avail-

ability (18-25% lower unavailability) than those on-the-cycle. And the availability of paths

on straddling links depends on the size of the p-cycle. Accordingly, the higher class paths are

routed exclusively on straddling links with enough protection capacity on the cycle, where it

can be offered one or two on-cycle protection path. Paths of the lower class are routed either

on-the-cycle or off-the-cycle, a route that can minimize the total spare capacity. Protecting

both types of paths would definitely require more capacity on the p-cycle. Also a hybrid path

(path that crosses on-the-cycle and straddling links) can be used with moderate availability

[85]. Lastly, Sebbah and Jaumard [86] propose P-structures that extend the p-cycle concept
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to an unrestricted structure, however no availability evaluation is given.

3.2.2 A Time Perspective Recovery

For any connection, the computed availability is not the actual availability that the con-

nection yields at the end of its contracted period. Due to the probabilistic nature of the

availability model, actual availability can be more or less than the availability evaluated

prior to the service. Hence, there has been a research path that tries to exploit this marginal

benefit between the designed availability and the actual experienced/received availability as

the time proceeds. The aim of this approach is to reduce the redundancy (spare resources)

while at the same time take advantage of controlling the actual downtime in the network by

exploiting the knowledge of current network states, and hence differentiate connections at a

finer time scale and potentially improve network utilization.

The basic idea is to reprovision each connection with a redefined target availability.

Hence a new path or path-pair and an altered recovery scheme may be assigned to each

connection accordingly. Reprovisioning can be triggered by the event of new connection/s

arrival or departure [87–89], or triggered by the event of failure, exploiting the knowledge

of failure events and experienced connections downtimes to better redefine new availability

targets [88, 90, 61]. Alternatively, differentiation can also be achieved through a restoration

scheme that restores connections in the event of failure based on their accumulated and

maximum allowed downtimes [91, 92]. Furthermore, a hybrid scheme can be deployed to

increase higher classes satisfaction rate while using less spare capacity compared to protection

schemes [93, 94].

In general, the main drawback of this approach is the need to maintain the failure status

for all flows and give real time routing decisions, which might not be scalable when dealing

with large networks and thousands of demands [95].

3.2.3 Overall Network Availability

In this type of design, network availability is considered as the reference measure to resilience

rather than individual connection availabilities. This probabilistic measure facilitates the
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integration of a metric of interest into the design objective. The main idea is to define all

mutually exclusive network states and compute the probability of being in each state.

Vajanapoom et al. [96] propose a survivable network design that aims to minimize the

total network risk. The network risk is defined as the sum of the network state probability

times the expected damage of this state. Each network state represents a unique failure

scenario, and its probability is computed as the product of the unavailability of each failed

component and the availability of all up components in the network state. Lee et al. [97]

study the reliability of layered networks. The authors propose two algorithms to improve the

reliability in layered networks; lightpath rerouting and logical topology augmentation. The

two algorithms are based on the proposed reliability metric, cross-layer failure probability,

that captures the number of cross-layer cuts due to one or more physical links failures and the

probability of these failures. To improve the network reliability, the objective of the lightpath

rerouting problem is to find the best way to reroute a lightpath, so that the minimum cross-

layer cut is maximized and its probability is minimized. The logical topology augmentation

problem aims at improving the reliability by adding a new logical link in order to reduce the

number of minimum cross-layer cuts. Most recently, Zhang et al. [49] proposed an algorithm

to maximize overall network availability by shielding a minimum set of links (i.e., adding

physical protection to improve link availability). In general, all these approaches do not

support differentiated classes of resilience.

In the end, the current schemes try to trade cost for availability (or, in general, QoR) and

hence by controlling this tradeoff, differentiation can be achieved. In addition, there is a

complexity level associated with each scheme. This includes the time needed to provide a

routing solution and the scalability of the algorithm used as well as the signaling required

for setting-up, tearing down, and recovering the connections.
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3.3 AVAILABILITY IN MULTILAYER NETWORKS

3.3.1 Mapping Link Availability

It is worth mentioning that the path selection problem with availability constraints in a

multilayer network essentially starts from the physical layer, where the physical layer avail-

ability can be included in the crosslayer mapping (routing) problem. This problem is defined

as the problem of finding an appropriate path for a logical link in the underlaying physical

network. Each link in the logical layer is mapped (routed) to a multi-link path in the under-

lying physical network. Then, logical link availability is evaluated as the availability of the

corresponding physical path availability [98]. If protection is provided at the bottom layer,

the logical link is mapped to two or more physical paths, and its overall availability can be

treated as parallel configuration of multiple physical paths as in equation (2.7). Afterwards,

computation of flow availability, the upper layer follows the same procedures. This method,

however, accounts only for failures originating at the physical layer unless the availability of

the components in the logical layer (e.g., IP routers) are considered [79, 12]. An important

concern here is related to the accuracy of the availability evaluation. This is because the

mapping of the logical layer into physical layer might duplicate the usage of some links by

a certain flow (i.e., backhaul). This scenario leads to the inclusion of a link unavailability

more than once in the availability calculation and hence underestimating the end-to-end

availability [99].

Approaches for finding working and protection path are similar to those in a single

layer i.e., alternate path-based, or weighted routing [100, 101]. However, path selection

requires careful mapping of overlay links/paths to avoid cross-layer correlated failures, in

which multiple upper layer links/paths may fail simultaneously due to a single underlying

failure i.e., if diverse paths share a common underlying physical link [13]. Typically, logical

networks are denser and, hence, it is more likely that multiple logical links will use a common

single physical link (i.e., these links will be in the same SRLG). Then, when this link fails,

multiple upper layer links will fail simultaneously. Markopoulou et al. [39] show that, in the

Sprint IP backbone network, 11.4% of failures occur at IP layer are correlated events where
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multiple (at least 2 and at most 25 logical links) share the same physical link or router.

3.3.2 Types of crosslayer problems

Based on the entities who manage the layers, there are two types of routing problems.

One that can have all topological information for both layers (e.g., ISP owns the physical

infrastructure), and one with limited information about the network layers (e.g., a virtual

network operator and a physical network provider). And generally, there are two approaches

to provide redundancy in multilayer networks; 1) using traditional protection schemes at

the physical layer. This approach maintains better use of resources [98]. 2) augmenting the

logical network to enable recovery at the IP layer, and hence working on finer granularity

which might improve the restorability [102]. To ensure high survivability, Zhou et al. [19]

identify a set of spanning trees of the logical topology such that at least one of these trees

remains connected after any physical link failure.

Once adequate redundancy is placed, recovery can be triggered at both layers, as shown in

Figure 2.5, in a bottom-up, a top-down, or an integrated fashion. In the bottom-up approach,

when a failure occurs, recovery is triggered at the physical layer and if it is unsuccessful,

then upper-layer recovery is attempted. In the top-down approach, the optical layer recovery,

which is typically faster, is delayed until attempted upper layer protection fails in recovering

from the failure. The integrated approach chooses the best layer for recovery before any

attempt. The advantage of multilayer protection is that recovery at both layers enables

covering a wider set of failure scenarios that cannot be recovered using single layer protection.

However, it might result in an inefficient use of redundancy where most of the failure scenarios

will have duplicate protection plans and hence duplicated redundancy. In addition, crosslayer

coordination is required for controlling and managing the multilayer protection (e.g., to

prevent duplicate actions). This, however, is still an open issue in research especially for the

integrated scheme [52].
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3.3.3 The case of overlay networks

Overlay networks are a possible solution to provide high end-to-end availability services on

top of the IP layer. An overlay network is a logical set of nodes and links – typically, with its

own set of protocols – configured on top of the IP layer of an existing infrastructure belonging

to a single or multiple domains. Here, we consider the two types; Resilient Overlay Networks

(RON) and Service Overlay Networks (SON). RON was first proposed by D. Andersen et al.

[103]. Its basic idea is that overlay nodes actively probe each other to detect diverse paths

in the underlaying layer. Each node maintains its own routing table based on the collected

information. In the case of failure, the overlay network reroutes affected traffic through

alternative paths found active. This is expected to take less time than rerouting at the

native layer. The frequency and density of probing are required to be high in order to obtain

the best routes, however, this increases network traffic. A trade-off between the two factors

is addressed in [104]. The drawback of RON is that it does not take advantage of interlayer

coordination in design nor in operation. Hence no guarantees on availability can be given.

Unlike RON, SON typically reserves some capacity on the underlay network [105] and has a

predefined logical topology layout [106]. The mapping of each overlay link (path) to underlay

links is crucial in meeting both survivability and availability requirements. If availability

levels on the underlay network are guaranteed to a SON operator, service availability on the

upper layer can be computed accordingly. Hence, SON can be more advantageous to end

users seeking specific levels of availability [107].

Generally, overlay networks can achieve high service availability by exploiting the re-

dundancy in multiple layers measured by path diversity. An overlay network maintains its

connectivity by rerouting the affected traffic at an underlay layer (if, dedicated or shared

protection is given) or at the overlay layer. Thus it is capable of surviving a single failure

and, potentially, multiple failures, but no hard guarantees on availability are given.
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3.4 SUMMARY

Our research can be related to the existing literature in two problems, namely, the problem of

supporting multiple levels of resilience and the problem of designing a survivable multilayer

network. The main objective of this research is to combine these problems in order to

support QoR classes in multilayer networks which has not been studied well as an integrated

problem.

The problem of designing a survivable network supporting multiple levels of resilience is

well studied in single layer networks. Essentially, the current approach is to take the phys-

ical network availability as a given and deploy redundancy and restoration techniques at

various layers to provide QoR classes with different fault recovery capabilities and availabil-

ities. Further supplementary research focuses mainly on improving resource efficiency and

achieving high availability levels [108]. While these efforts have provided valuable solutions

to the problem, most of their approaches suffer from the crosslayer mapping issues discussed

in the literature as without full knowledge of the physical layer and the mappings between

layers no hard guarantees on availability can be provided (i.e., due to fault propagation). In

addition, highest levels of availability are achievable only through adding more redundant

paths (e.g., enough spare capacity to reroute highest priority traffic after a second failure)

which introduces scalability complexities. The closest approach to our proposal is Zhang

et al. [49], which appeared shortly after our paper [109]. The authors try to optimize net-

work availability by improving the availability of a subset of physical links via shielding. In

addition, Botton et al. [110] study a network design problem with a subset of edges that

for a given cost can be upgraded to be more reliable. They show that having a set of more

reliable edges as a substitute to having edge-disjoint path-pairs can improve overall resource

efficiency. These approaches, however, do not support resilience differentiation.

Also the crosslayer mapping part of the research is quite similar to the existing approaches

[17, 18]. However, the essence of our constrained mapping model depends on creating multi-

ple logical subnetworks with differentiated availability. Zhou et al. [19] had followed a similar

approach by creating two or more logical networks such that one of them survives a failure.

However, no availability classes are supported.
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4.0 RESEARCH OVERVIEW

4.1 OVERVIEW

The core idea of this research is derived from the reliability theory of parallel components

system: end-to-end availability of a parallel system is higher than the highest availability of

the components. So by creating a high availability working path, we can ensure a minimum

high level of the end-to-end availability. In [109], we design the spine to be a spanning tree

so connections between any two nodes can be given working paths with high availability.

Figure 4.1: An example of a spine.

The basic idea of the spine is to design the network with a highly available subnetwork

embedded in the physical network, as shown in Figure 4.1, where the bold links indicate

the high availability links. This is achieved by managing to have the components on this

subnetwork “the spine” with high availability, by reducing the MTTR and/or increasing the

MTBF for these components. Afterwards, connections requiring high availability are routed
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on-the-spine to achieve high availability working paths and protected, say, by a link disjoint

dedicated backup path. A lower class can can be routed on-the-spine with no protection or

off-the-spine with any protection configuration (e.g., DPP, SPP, M:N...etc). A best effort

class is routed off-the-spine with no protection. Therefore, the spine provides a basis for

differentiation between multiple QoR classes, and potentially can reduce the complexity of

controlling and managing multiple QoR classes.

4.2 THESIS STATEMENT

This research aims to answer the following design questions:

Question 1. Given an optical network with known links availabilities, options to improving

links availabilities, the associated cost of the improvements, and a total budget, how to design

the spine and select the best improvement option for each link in order to maximize the

availability of the highest class of flows and widen the availability range of the network?

Question 2. Given a layered network with a spine embedded at the physical layer, and

demands of different QoR classes, how to route logical demands and map logical links so that

the network can distinguish QoR classes and provide differentiated availability?

4.3 SCOPE AND ASSUMPTIONS

Throughout this research, we assume the following:

1. Links (or edges) in both physical and logical networks are undirected.

2. Availability computation considers only independent failures.

3. Flow availability is evaluated from the perspective of the physical network only. In

addition, communication nodes are considered perfect (i.e., anode = 1) (see section 2.2.3).

4. Link availability is improvable (see section 2.2.4).

5. If protection is given, survivability is with respect to single failures.
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6. Physical networks are real world networks. However, we assume logical networks are

given. We generate synthetic random degree-constrained logical networks to represent

the logical networks assuming that for each physical node there is an associated logical

node.

Notwithstanding their importance, there are some related issues left outside the scope of this

work:

1. The optimal design of the logical topology.

2. The accuracy of the availability model.

3. Reducing the computational complexity of the proposed algorithms.

4. The consideration of correlated failures in resilient network design (See [108]).

4.4 METHODOLOGY

To answer the aforementioned questions, we propose three design problems to study the

problem of supporting differentiated classes of resilience in multilayer networks. The design

problems are formulated as mathematical programming problems. The first design problem

tries to answer the first question and aims to find the optimal spine. The proposed formu-

lation is evaluated using real network topologies and the numerical results are evaluated in

terms of connections end-to-end availability and the cost of the spine.

The second and third design problems attempt to answer the second question. Two

models for routing logical demands and mapping logical links in multilayer networks are

introduced. Both models consider differential crosslayer mapping in order to support differ-

entiated classes of resilience. They differ in the layer where protection is given. Protection

can be given at the physical layer as the in the first model or at the logical layer as in the

second model.
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• In [111], the author of this dissertation extended the previous work and included new

analyses of related aspects, with advising and revision from the co-authors.
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writing with advising and revision from the co-authors.

• To the best of our knowledge, our proposal in [109, 111] was the first of kind that

attempted to exploit link availability heterogeneity to provide high availability to con-

nections. This is explained sections 5.1 to 5.3. In addition, we believe that this research
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complements the previous work. Specifically, we relax the homogenous link availability

assumption and utilize the spine concept in a multilayer scenario.

• We provide a different strategy to allocate budget dedicated to enhancing network re-

silience, which can result in potential saving and operational capability gains (e.g., ex-

tremely high availability level, differentiation). This is presented in Section 5.5.

• We provide multiple models for differentiated routing at upper layer by utilizing two or

more interleaved logical networks and availability-aware crosslayer mapping [112]. We

consider two protection configurations, namely; protection at lower layer (Section 6.3)

and protection at upper layer(Section 6.4).
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5.0 THE SPINE CONCEPT

Given the frequency and the severity measures of failures in communications networks, dis-

cussed in Section 2.2.3, we believe that high availability must begin at the physical layer

and work it’s way up the various layers. Here we explore an innovative technique termed

the spine to improve overall availability and lay a basis for differentiation [113, 109]. In this

chapter, we explain the core of our approach, the spine concept, and explore its feasibility.

We also show methods to find suitable spines in physical layer networks and introduce our

preliminary results.

5.1 DEFINITION

Our approach to provide high availability stems from the Brinbaum’s importance measure.

According to this measure, improving the link with the higher availability in parallel con-

figuration yields the best overall availability [4]. To illustrate this theorem, consider the

example in Figure 5.1. Assume we have a flow f routed over a WP and a BP and their

availability is AWP
f = 0.99 and ABPf = 0.90, respectively. Also assume we want to strengthen

one or both of the links by adding some availability units ∆a, with an option of (AWP
f +∆a),

(ABPf + ∆a), or (AWP
f + ∆a/2 and ABPf + ∆a/2) to add these units. The end-to-end avail-

ability of flow f is based on its AWP
f and ABPf , and it is calculated as a parallel configuration

following equation (2.6). Figure 5.1 plots the overall end-to-end availability of flow f for the

three options. It shows that improving AWP
f only achieves better overall availability than

any other option. From this, it is clear that having relatively highly available components

in parallel combination can achieve better overall availability than homogenous availability
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Figure 5.1: A plot shows that strengthen the strongest link in parallel configuration achieves

the best overall end-to-end availability.

components. Adopting this concept, a network provider can allocate investment towards

improving network reliability in an economic-efficient way.

Definition. the spine is a substructure with comparatively higher availability embedded into

the network at the physical layer to improve the overall network availability without substan-

tial modifications to the topology.

Our approach requires designing a network with heterogenous link availabilities such that

a substructure of the network has relatively larger availability values. The high availability

substructure portion of the network is termed the spine. The spine would connect those

nodes with traffic needing a high level of availability and provide a basis for differentiated
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classes of resilience. For example, the highest quality of resilience class traffic could be

routed on the spine or use the spine as a backup path. The nodes, link interfaces and links

on the network spine would have higher availability than the equipment that is not part

of the spine. This provides levels of availability differentiation at the physical level which

can be leveraged with restoration techniques, logical virtual network topology routing, cross

layer mapping and other methods to further differentiate resilience classes and provide an

extended range of availability guarantees. One can think of the spine approach as assuming

a restoration method (path restoration) or a set of restoration methods (i.e., no protection,

shared backup path, dedicated backup path etc.) is to be used, then determining how should

availabilities be assigned to the physical network components to best support the availability

requirements.

5.1.1 The Spine Model

Let G = (V , E) be the graph of the physical network topology, where V is the set of nodes

and E is the set of links. Also let Gs = (Vs, Es) be a subgraph of G denoting the spine, where

Vs ⊆ V and Es ⊆ E . The spine concept is to embed the spine Gs with higher availability links

and nodes on the physical network, such that av∈Vs ≥ av/∈Vs and ae∈Es ≥ ae/∈Es , where av and

ae are the node and link availabilities, respectively. Here, however, we only consider link

availabilities and assume the nodes are perfect (see section 4.3 and a remark in section 7.2).

The spine layout design aims at improving overall availability and ensuring high end-to-end

availability for all high availability communication services. In the general case, the spine

could take any subgraph form as dictated by nodes and links availability and cost. Here, we

assume that high availability communication service is needed between all |V| × (|V| − 1)/2

node pairs (i.e., full mesh). This means that the spine has to connect all nodes in G, with a

minimum number of links, and thus it takes the form of a spanning tree (ST ) of graph G.

5.1.2 Implementing Heterogenous Link Availabilities

The higher availability of the spine, in comparison to the non-spine part of the network, can

be accomplished using a variety of techniques, as described in Section 2.2.4. For example,
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on the spine more expensive equipment can be utilized that is arranged and configured to

provide high availability (e.g., hot standby line card, redundant fans, etc.) with redun-

dant equipment deployed locally in parallel as needed (e.g., hot standby fiber in physically

diverse duct, etc.). Also, the equipment along the spine can be situated to increase the

mean time to failure (MTTF) using a number of techniques such as longer back up power

supplies, better heating/cooling, stronger outside cabinets, underground cabling instead of

above ground, etc. In a similar vein, methods can be employed to reduce the mean time

to repair (MTTR) along the spine. For instance, one can follow best practices and training

procedures as determined by several government and trade organizations (e.g., FCC, NRSC,

NRIC, ATIS) and standards bodies (e.g., ITU) [43, 46]. The operator can pre-position or

relocate maintenance team centers, spare parts, equipments, software and test equipments

along the spine. Similarly, the network operations center (NOC) can more closely monitor

the spine portion of the network. Additionally, the operator can assign the most experienced

staff to the operations, administration and management (OAM) of the spine portion of the

network. Many of the methods above are employed in other critical infrastructures (e.g.,

the power grid) and industries and studies show that the average MTTR can be reduced by

5 - 25% resulting in a significant improvement in the availability. Of course exactly which

combination of techniques (hardware, equipment siting, workforce training, etc.) is adopted

to improve the reliability of the spine will depend on the cost versus benefit structure of

the network owner. Even using techniques to improve the MTTF and MTTR of links and

nodes that comprise the spine, we assume additional protection, either end-to-end, segment

or local [7] is needed to achieve the desired level of end-end availability for the most stringent

QoR class.

5.2 EXPLORING THE SPINE

We explore the spine concept and its potential advantages through a series of simple exam-

ples.
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Figure 5.2: Full mesh network (thicker red lines denote spine).

5.2.1 Exploiting the Heterogeneity of Link Availability

Consider a full-mesh four node network as shown in Figure 5.2. To improve the end-to-end

availability, we assume the network has the ability to employ disjoint working and backup

path protection for each source-destination pair if desired. Thus each of the 12 source-

destination pairs has a single hop direct working path (WP) and a disjoint two hop backup

path (BP). Let AS denote the average over all source-destination pairs of the end-to-end

availability of a flow between a source-destination pair.

First we study the homogeneous case, ae = a, for all e ∈ E . The average system

availability AS is simply the parallel combination of the one hop working path and a two

hop backup path which is given by:

AS(a) = 1− (1− a)(1− a2) = −a3 + a2 + a (5.1)

Now, lets consider the non-homogeneous edge availability case corresponding the spine

concept. We define a spanning tree as the spine consisting of edges 1, 5 and 4 as shown by

the thicker red lines in Figure 5.2. Further we assume the availability of edges on the spine

(a1, a4, a5) are equal with value aS and the availability of the edges off the spine (a2, a3, a6) are

equal with value aO. Six of the node s-d pairs have a single hop WP on the spine and a two

hop BP with one hop on the spine, so the corresponding availability is 1−(1−aS)(1−aSaO).

The other six node pairs have a WP with two hops on the spine and a single hop BP off the

spine, and the corresponding availability is 1− (1− a2
S)(1− aO). So, the average end-to-end

availability, as a function of aS and aO is: AS(aS, a0) = 1
12

(6(1− (1− aS)(1− aSaO)) + 6(1−
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Table 5.1: Effect of varying ε on AS and Downtime.

Case AS Downtime (hours/year)

a = .9, ε = 0 .981 166.44

a = .9, ε = 0.09 .99712 25.23756

a = .9 ε = 0.099 .999701 2.61749

(1− a2
S)(1− aO))). If we assume that aS = a+ ε and aO = a− ε, then AS can be shown to

be

AS(a, ε) = −a3 + (1− ε)a2 + (1 + ε)a+ aε2 + ε3 (5.2)

Note, that since aS = a + ε and aO = a − ε, then the average link availability and the

sum of the link availabilities network wide are the same for the spine based network and

the homogeneous case (i.e.,
∑
ai = 6a). We define δ as the difference in AS between

the spine and homogeneous scenarios, then δ = AS(a, ε) − AS(a), which can be shown to

be δ = ε3 + aε2 + aε(1 − a), and δ > 0 if ε > 0, a > 0. Hence using edges with different

availabilities results in larger average availability than using a homogeneous edge availability.

So the spine has the potential to improve the average end-to-end availability.

In Table 5.1, we show numerical results of the effects of varying ε on AS and the downtime

per year for the four node full mesh network. From the table one can clearly see that

embedding a spine with differential availability of the links has the potential to improve AS .

We also note that in the spine the different s-d node pairs do not always get the same level

of availability. For example, when ε = 0.09 the group of six s-d pairs with a single hop WP

on the spine have end-to-end availability of 0.998, while the second group of s-d pairs with a

two hop WP on the spine have end-to-end availability of 0.9962. Observe that both groups

have an end-to-end availability greater than the uniform end-to-end availability provided by

the ε = 0 homogeneous case. An important point is that the choice of the spanning tree

spine is not unique in maximizing AS as selecting edges 1, 2, and 6 results in the same AS .

However, the choice of the spine is not arbitrary as selecting edges 1, 5, and 6 for the spine

results in a lower AS .
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Figure 5.3: Average Downtime corresponding to AS versus a and ∆.

Now we consider a slightly different scenario: given a topology, what is the effect of

improving the availability of the components that make up the spine while leaving the rest

of the network untouched? Specifically, we assume that aS = a + ∆ and aO = a. Again

considering the four node network in Figure 5.2 with the spine consisting of edges 1, 5 and

4 as shown by the thicker red lines, then AS can be shown to be

AS(a,∆) =
1

2
[−2a3 + 2a2 + 2a− (4a2 − 3a− 1)∆− (2a− 1)∆2]. (5.3)

Figure 5.3 shows the average downtime in minutes per year for different a and ∆ combi-

nations. Each line corresponds to one ∆ value, starting from zero (top line) and ending with

0.09999 in 100 steps, while varying the value of a. Thus each line shows how the average

downtime decreases with increasing link availability a for a specific value of ∆. The inset

figure in the top right corner is a magnification of the far right of the original figure. From

Figure 5.3, a specific average downtime can be achieved either by improving a for all the

six edges or by improving only the three edges on the spine to aS = a + ∆. For example,
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assume that initially all edges have a = 0.92 which results in an average flow downtime

of about 6500 minutes/year. Say that we are targeting an average flow downtime of 2500

minutes/year. An option here is to improve a to a = 0.95 for all edges, or improve only the

three edges on the spine to aS = a + ∆ ' 0.964. Loosely speaking, in the first option the

downtime of each edge is reduced by ≈ 263 min/yr and a total of 6 × 263 = 1578 min/yr,

whereas in the second option a spine edge downtime is reduced by ≈ 385 min/yr and a total

of 3 × 385 = 1155 min/yr. Hence, from a system downtime point of view it can be more

effective to increase the availability of the spine components than to increase the availability

of all the components in the network to achieve a target average flow downtime. This point

will be further investigated in the subsequent sections.

5.2.2 Effect of Network Size

We expect the spine to be a more beneficial approach for large networks, where the longer

paths between node pairs decreases the end-to-end flow availability significantly. Consider

an extended version of the four node network of Figure 5.2, if we repeat the same structure

with the same spine layout, we can produce a chain-like network as shown in Figure 5.4a

with t stages (i.e., t repetitions). The overall average availability AS considering each WP

on the spine and the BP as the corresponding min-hop edge-disjoint path can be derived as:

AS =
6

n(n− 1)
[t(aS + aSaO − a2

SaO + a2
S + aO − a2

SaO) +
t∑

r=2

(t− r + 1)

[arS + arSa
r
O − a2r

S a
r
O + 2(ar+1

S + ar−1
S arO − a2r

S a
r
O)]]

(5.4)

where n is the number of nodes and t is the number of repetitions of the original network

structure (i.e., stages). As above we assume that aS = a+∆ and aO = a. In Figure 5.4b, we

show the average downtime (in min/yr) for different t stage networks with a fixed a = 0.99

and ∆. A set of values are generated by varying ∆ in steps of 0.001 over the range of 0 to

0.009. The top set of points in the figure shows the downtime for a homogenous case (with

∆ = 0). It can be seen that introducing differential link availability reduces the average

downtime even for the larger networks as shown by the lower set of points. Note that for a

specific ∆, the absolute change in average downtime is greater the larger the network.
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Figure 5.4: The effect of differential links availabilities on different sizes networks.

5.2.3 The Layout of The Spine

We note that the choice of a subgraph selected as the spine impacts the overall availability

AS . Consider the simple 5-node network shown in Figure 5.5 with two different spine layouts.

The spine in the leftmost network is a star whereas the spine in the rightmost network is

ring-like. As above, we assume that aS = a + ∆ and aO = a and one can show that for the

leftmost star-like spine network

AS(a,∆) =
1

5
[−a4 − 4a3 + 6a2 + 4a−∆4 + 4∆3 + (2a2 + 4a+ 2)∆2 − (4a2 − 4a)∆]. (5.5)
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Figure 5.5: An example of a 5 nodes network with two spine designs.

Similarly for the rightmost ring-like spine network it can be shown that

AS(a,∆) =
1

10
[a4 − 5a3 + 9a2 + 8a− (3a− 1)∆4 − (12a2 − 4a− 2)∆3

−(18a3 − 6a2 + a− 3)∆2 − (12a4 − 4a3 + 8a2 − 12a− 4)∆].

(5.6)

Figure 5.6 (a) and (b) show plots of the downtime per year for different a and ∆ for the star-

like and ring-like spines respectively. Each line in the downtime plots corresponds to one ∆

value, starting from zero (top line) and ending with 0.09999 in 100 steps, while varying the

value of a. The spine in Figure 5.6a has much lower downtimes than the one in Figure 5.6b

for a given a and ∆. Hence, the star-like spine is more efficient to reach a target downtime

level and would be preferred to the ring-like spine.

In general, the choice of the spine is not unique and its selection not only impacts the

average end-to-end availability AS , but also the variability of the availability among s − d

pairs and the range of availabilities that can be selected by routing. For a realistic network

topology, there will be many possible candidates to select the spine from and many factors

come in to play in selecting the spine. For example, the length of the spine diameter (dS)

and the value of ∆ are related. For any given flow, we may require the working path

availability AWP
f to be larger than the flow backup path availability ABPf . Thus AWP

f >

ABPf . Consequently, aS
hcWP

> aO
hcBP , where hcWP and hcBP are the hop count for working

and backup paths respectively. This relation should hold for all flows, and the worst case

can be found for the flow with longest WP and shortest BP. The longest WP is obviously
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(a) Star-like spine (b) Ring-like spine

Figure 5.6: Average Downtime corresponding to AS versus a and ∆ for the two 5 nodes

examples.

the diameter of the spine (diS), and the shortest can be one hop — this is a conservative

approximation. Hence, if aS
diS > aO, then diS 6

ln aO
ln aS

. This also constrains the minimum ∆

value that can be applied to a given spine with a specific diameter, where ∆ > (a1/diS − a)

must hold for the spine to meet the constraint. Hence, small values of ∆ are worthwhile only

for short diS . In the following section, we study how the properties of the network topology

can be used to select a good spine.

5.3 EXPLORING SPINE SELECTION

Here, we consider how to select a good spine using minimum cost spanning trees, where

the cost of using a link (or edge) was defined to take into account the edge betweenness

centrality and the edge degree. The objective was to define the spine so that it would most

likely include the edges that are important from the structural point of view of the network

topology. However a spine is only considered admissible if an edge-disjoint WP and BP path

can be calculated for each end-to-end s − d node pair. Before presenting how we generate
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and evaluate candidate spines, we detail our notation and provide some definitions.

5.3.1 Notation

Sets:

G network graph: G = (V , E).

V set of physical nodes in the graph.

E set of physical links in the graph (undirected edges).

ES set of links in the spine.

GS network subgraph defined by the spine, GS = (VS, ES).

F set of end-to-end flows

Indexes:

v node index.

e link (edge) index (e ∈ E).

f a bidirectional symmetric flow (f ∈ F).

i, j end nodes of a link (i, j ∈ V).

s, d end nodes of a flow (s, d ∈ V).

Paths:

WPf Working Path for flow f .

BPf Backup Path for flow f .

Availability:

ae availability of link e.

AWP
f Working Path availability for flow f :

AWP
f =

∏
l∈WP

al (5.7)

ABPf Backup Path Availability for flow f (similar to equation (5.7)).

Af availability of flow f . Assuming WPf and BPf are edge-disjoint, Af =

1− (1− AWP
f )(1− ABPf ).
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AWP
S average value of AWP

f when WP on the spine.

ABPS average value of ABPf when WP on the spine.

AS average value of Af when the WP on the spine.

Performance and Structural measures:

ebe The edge e betweenness centrality which is determined from:

ebe =
2

|V|(|V| − 1)

∑
s,d∈V

σ(s, d|e)
σ(s, d)

(5.8)

where σ(s, d) is the number of shortest paths between nodes s and d and

σ(s, d|e) is the number of those paths that use edge e.

ebS (ebG) The average value of ebe in GS (G), that is considering only the edges in ES
(E).

hS (hG) The average shortest paths in GS(G) (based on the hop-count only, link

distance is not considered).

ede is the degree of edge e, defined as the sum of the degree of the edge’s end

nodes.

edS (edG) The average of edl over all edges in GS(G).

diS (diG) The spine diameter, that is the length (hops) of the longest shortest path in

GS(G).

ce cost of using edge e.

HS The total number of hops (i.e., links) used by WPs and BPs of all flows in

F when the WPs have to be in the spine.

HG The total number of hops used by WPs and BPs of all flows in F when the

WPs do not have to be in the spine.

4H%

4H% =
HS −HG

HG
× 100 (5.9)
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5.3.2 Generating Candidate Spines

To generate candidate spines, we used Kruskal’s minimum spanning tree (MST) algorithm

with the cost of the edges cil defined as a weighted combination related to the edge be-

tweenness centrality and the edge degree. The costs of the edges cil, i ∈ {A,B,C,D} were

determined as follows:

• Case A: for a given α > 0, the larger the edge degree and the larger the edge betweenness

centrality, the smaller the cost of edge l:

cAe = (1− α)
(mine ede)

ede
+ α

(mine ebe)

ebe
(5.10)

• Case B: for a given α > 0, the larger the edge degree and the smaller the edge betweenness

centrality, the smaller the cost of edge l:

cBe = (1− α)
(mine ede)

ede
+ α

ebe
(maxe ebe)

(5.11)

• Case C: for a given α > 0, the smaller the edge degree and the larger the edge betweenness

centrality, the smaller the cost of edge l:

cCe = (1− α)
ede

(maxe ede)
+ α

(mine ebe)

ebe
(5.12)

• Case D: for a given α > 0, the smaller edge degree and the smaller edge betweenness

centrality, the smaller the cost of edge l:

cDe = (1− α)
ede

(maxe ede)
+ α

ebe
(maxe ebe)

(5.13)

In all cases (i.e., A - D) the weight α was varied from zero to one in increments of 0.1, and

Kruskal’s algorithm [114] was used for generating a MST for each value of α. If the resulting

MST was equal to one previously obtained, it was dropped. Also, if the obtained MST

(spine) did not allow for all WPs in the spine to be protected by an edge disjoint BP, the

MST was dropped. In this case, the set (X) of all the common edges between a WP and its

BP for all s-d pairs was collected. Then, sequentially, each combination (1 to |X| ) of the

common edges was temporarily removed from the graph and Kruskal’s algorithm was again

used, until either an admissible MST was obtained or the network became disconnected.
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Table 5.2: Test Network Topology Data.

Network |V| |E| |E|
|V| ebG edG hG diG HG

Polska 12 18 1.50 0.1187 6.3333 2.1364 4 356

NSF 14 19 1.36 0.1180 5.7895 2.2418 4 559

Spain 14 22 1.57 0.1034 6.8182 2.2747 5 526

Italia14 14 29 2.07 0.0644 10.3448 1.8681 3 425

EPAN 16 23 1.44 0.1149 6.0870 2.6417 6 806

Italia 32 69 2.16 0.0425 9.4493 2.9315 6 3378

We assume all links on the spine have the same availability ae = aS ∀l ∈ S and all links

off the spine have the same availability ae = aO ∀l ∈ E − ES. The WPs were routed entirely

on the spine while each BP, edge-disjoint with the corresponding WP, was calculated with

high edge cost on the spine (i.e., to avoid routing the BP on the spine). Specifically, prior

to determining each BP, the cost of the edges of the protected WP was defined equal to a

sufficiently large number, the cost of the rest of the edges in the spine was increased and the

remaining edges had their cost changed to one. This way the BP is maximally edge-disjoint

with the corresponding WP, while avoiding the edges in the spine (if possible). The common

edges were used to generate new candidate MSTs as described above. The set of candidate

spines were evaluated considering the metrics: AS , AWP
S , hS , diS , minf Af , HS and a′e ∀e ∈ E

the uniform edge availability required to achieve the same AS as the spine based solution.

5.3.3 Numerical Results

Here we present sample results for a set of network topologies often adopted in the literature,

Polska, NSF [115], Spain [116], Italia14 [117], EPAN16 [118], and Italia [119]. In Table 5.2,

data on the topologies of the test networks is given. In the results presented here, we use

aO = 0.99 and aS = 0.999 and a step size of 0.0001 in determining a′e. Boldface is used in the

table of numerical results to make the corresponding maximum (minimum) values in some
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Table 5.3: Numerical Results for Heuristics.

Network eq. for cie α AWP
S AS minf Af ebS edS hS diS HS a′e

Polska

(5.11) 0.1 0.99734 0.9999294 0.9997033 0.2424 5.2727 2.6667 5 391 0.9969

(5.12) 0.6 0.99660 0.9999480 0.9998543 0.3099 4.3636 3.4091 8 425 0.9973

(5.12) 0.8 0.99714 0.9999398 0.9997890 0.2603 4.9091 2.8636 6 395 0.9971

NSF

(5.10) 0.8 0.99685 0.9999382 0.9997986 0.2426 4.7692 3.1538 6 593 0.9973

(5.12) 0.8 0.99643 0.9999405 0.9997527 0.2747 4.6154 3.5714 7 634 0.9974

(5.11) 0.1 0.99662 0.9999347 0.9998518 0.2604 4.6154 3.3846 7 616 0.9973

(5.10) 0.8 0.99672 0.9999391 0.9997859 0.2527 4.6154 3.2857 7 603 0.9973

Spain

(5.11) 0.3 0.99717 0.9999063 0.999651 0.2181 5.6923 2.8352 6 608 0.9968

(5.12) 0.4 0.99611 0.9999226 0.999725 0.3001 4.3077 3.9011 9 626 0.9972

(5.11) 0.4 0.99642 0.9999066 0.999621 0.2756 4.6154 3.5824 9 649 0.9968

Italia14

(5.10) or (5.11) 0.0 0.99779 0.9999374 0.9997964 0.1699 9.0769 2.2088 3 456 0.9965

(5.10) or (5.12) 0.9 0.99764 0.9999446 0.9998503 0.1817 7.6923 2.3626 4 462 0.9972

(5.12) 0.8 0.99755 0.9999416 0.9998426 0.1885 7.0769 2.4505 4 473 0.9972

EPAN16

(5.10) 0.1 0.99670 0.9999149 0.9997116 0.2200 5.0667 3.3000 7 838 0.9973

(5.12) 0.5 0.99642 0.9999218 0.9997412 0.2389 4.6667 3.5833 8 890 0.9974

(5.11) 0.3 0.99642 0.9999157 0.9997116 0.2389 4.8000 3.5833 8 861 0.9973

Italia

(5.10) 0.1 0.99623 0.9998015 0.9992670 0.1217 6.9677 3.7742 8 4367 0.9960

(5.12) or (5.13) 0 0.99348 0.9998115 0.9993595 0.2110 4.5806 6.5423 15 4837 0.9961

(5.10) 0.5 0.99616 0.9998041 0.9992670 0.1241 6.9677 3.8468 8 4341 0.9960

columns more visible, depending on which was considered relevant for that column.

Table 5.3 shows numerical results for the six networks studied where the spines were

found using the cost functions above. First we consider the results for the Polska network.

In Table 5.3 the first row corresponds to the MSTs with largest AWP
S , and the second row

corresponds to the MST with the largest AS , using equations (5.11)-(5.12). The correspond-

ing spines are shown in Figures 5.7a and 5.7b, respectively. It can be seen that the largest

AS corresponds to a MST that presents a large diameter (twice the network diameter diG),

while the MST with the largest AWP
S has a diameter of only 5. Also note that the row with

maximum AWP
S has the smallest HS . In the third row we present a spine with metrics in

between the two above, the spine has a diameter of 6 and is shown in Figure 5.7c.

Considering the spines with the largest AS (second row in Table 5.3), it is worth noting

that the corresponding value of a′e (0.9973) is larger than the average value of the edges

availability (ae) considering the spine 0.9955. This confirms the results in Section 5.2. In the
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(b) The MST with the largest AS
diS = 8 – obtained using equa-
tion (5.12)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

(c) A compromise solution
diS = 6 – obtained using equa-
tion (5.12)

Figure 5.7: The MSTs obtained by heuristics for Polska network – red/thicker lines represent

the spine.

second row of Table 5.3 one can also find the largest obtained value for minf Af (considering

1+1 protection).

The NSF network results in Table 5.3 list in the fourth row the values corresponding

to the spine with largest AWP
S , in the fifth row the values corresponding to the spine with

largest AS , in the sixth row the values corresponding to the spine with the largest value for

minf Af and finally in the seventh row, a compromise in between solution. As in the case

of the Polska network a larger AS can be obtained at the cost of a larger spine diameter. In

this case the spine that results in the maximal value for minf Af does not coincide with the

spine with the largest AS, and it also has a lower AS than the corresponding value in the

fourth row (row of maximum AWP
S ). The compromise solution has AWP

S , AS and minf Af in

the interval defined by the corresponding values in rows four and five of Table 5.3.

The Spain network results in Table 5.3 list in the eighth row the values corresponding

to the spine with largest AWP
S with a diameter of 6, and in the ninth row the values cor-

responding to the spine with largest AS , but it has a longer diameter. The two spines are

followed by a compromise solution in the tenth row, the spine with second largest AWP
S . The

spine that results in the maximal value for minf Af happens to have a comparatively lower
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availability values than the three spines listed here.

For the Italia14 network, the spine with largest AWP
S has a diameter of 3, the same as in

the full graph. The spine with largest AS coincides with the spine with maximum minf Af .

The compromise solution spine has the second largest AS .

The results obtained for the EPAN16 network (shown in line fourteen to sixteen in

Table 5.3) are similar to those obtained for the Polska and NSF networks. The proposed

compromise solution has AS equal to 0.9999157, slightly larger than the corresponding value

in row thirteen of Table 5.3, while presenting the same minf Af .

In the case of the Italia network, the largest value for AWP
S was obtained considering

the costs given by equation (5.10) with α equal to 0.1, and is presented in row seventeen of

Table 5.3. A compromise solution can be found in the last line of the table. It achieves the

minf Af value shown in line eleven and has a larger AS than the corresponding value found in

that same row. The spine resulting in the largest AS (and minf Af ) was obtained twice (see

row eighteen), because when α is zero, the cost given by equations (5.12) and (5.13) is equal

to ede/maxe ede. It can also be observed that the required uniform edge availability (a′e), to

achieve the value of AS in Table 5.3, is 0.9961, while using a spine this can be achieved with

an average of 0.99404. Note that in the case of Italia network the minimal value obtained

for HS does not correspond to the spine with maximal AWP
S (as was the case of the previous

networks).

Overall, from the numerical results, it was observed that for each type of cost (5.10)-

(5.13) the MST with the largest average WP availability AWP
S often also corresponds to the

MST with the smallest average shortest path hS , the smallest HS , the smallest diameter

diS and smallest average edge betweenness centrality ebS , and with the largest average edge

degree edS . However the MST that corresponds to the largest AWP
S rarely coincides with the

MST with the largest value for AS . Nevertheless the MST that maximizes AS (for each type

of cost) tends to present, a small hS , diS , ebS (although these are usually larger than the

corresponding values for the MST that maximizes AWP
S ), and a large edS (although usually

smaller than the MST that maximizes AWP
S ). Also, the results from the tested networks

seem to indicate that maximizing AWP
S does not maximize minf Af .
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5.4 CONSIDERING ALL SPANNING TREES IN DETERMINING THE

SPINE

In this section, we study the metrics used to evaluate spine solutions over the space of all

spanning trees in order to see their behavior and gain insight into spine selection.

5.4.1 Generating All Spanning Trees

The number of spanning trees (ST) in a connected graph G can be quite large even for small

|V| and |E|. The exact number of STs in a graph can be related to the Laplacian spectrum

of the graph [120] as follows. Let A denote the |V|× |V| adjacency matrix of a graph, where

aij = 1 if and only if there is a link between node i and node j, otherwise aij = 0. The

degree matrix D is a |V| × |V| matrix with the node degree placed along the diagonal (i.e.,

dii = number of adjacent nodes of i) and zero every where else. The Laplacian matrix L of

a graph is defined as A − D and the eigenvalues λi, i = 1, 2, ...|V| of L form the Laplacian

spectrum. It has been shown in the algebraic graph theory literature [120] that the number

of spanning trees in a graph can be determined from the Laplacian spectrum by:

No. of Spanning Trees in G =
1

n

∏
i,i>1

λi (5.14)

Table 5.4 shows the number of spanning trees for the networks studied here. One can

clearly see, that for even modest size networks such as EPAN16, the number of spanning

trees is quite large.

In order to generate all STs, we use Prim’s algorithm to determine a ST implementing

a binary code of size (2|E|) with |E| digits each corresponding to a specific link on the graph,

with value 1 if the link is on the spine and 0 if not. Then, we run a counter from (2|V| − 1)

to (2|E| − 1) to enumerate all possible combinations of links on a spine. Each generated

combination of links that constructs a valid ST is saved to be further tested. A valid ST

is verified by checking that the sum of all columns on the adjacency matrix of the spine is

greater or equal to one and the number of links is |V|−1. Once all spanning trees are created,

for each ST we route the WPs for all s − d pairs on the spine while BPs are routed such
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Table 5.4: Number of spanning trees for sample networks.

G Network |V| |E| |E|
|V| No. of ST No. of valid spines

1 Polska 12 18 1.50 5161 1862

2 NSF 14 19 1.36 5862 1466

3 Spain 14 22 1.57 40436 22037

4 Italia14 14 29 2.07 1194812 not attempted

3 EPAN16 16 23 1.44 43720 7535

4 Italia 32 69 2.16 53.3E+14 not attempted

they avoid the spine if possible but constrained to be fully disjoint from the corresponding

flow’s WP. The ST that allows an edge-disjoint BP for each WP is considered a valid spine.

Table 5.4 shows, in the last column, the number of valid spines for the networks under study.

5.4.2 Numerical Results

We studied the Polska, NSF, Spain, and EPAN16 networks by generating all STs and routing

all s-d flows with disjoint protection. As in the previous sections all links on the spine have

the same availability aS and all links off the spine have the same availability aO. Here we

use aS = 0.999 and aO = 0.99. We evaluate the results using the same performance and

structural measures as in the previous section. Table 5.5 shows the results for the networks

considered. For each network in the table, the first row corresponds to the ST with the

largest AWP
S , the second row the ST corresponding to the largest AS and the subsequent

rows can be either the ST with largest minf Af or a compromise solution between the results

of the first two rows. In addition to the evaluation metrics considered in Table 5.3, we include

∆H%, the percentage of increase in path lengths required by the spine, HS , compared to

the full graph, HG, as given in Equation (5.9).

We find the observations from Section 5.3.3 regarding the coincidence between AS and

relatively to average, low ebS , hS , diS , and high edS to hold. Similarly, the correspondence of
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Table 5.5: Results considering all spanning trees.

Network AWP
S AS minf Af ebS edS hS diS HS 4H%

Polska

0.99734 0.9999322 0.9997554 0.2424 5.2727 2.6667 5 385 8.2

0.99660 0.9999480 0.9998543 0.3099 4.3636 3.4091 8 425 19.4

0.99732 0.9999440 0.9997967 0.2438 5.4545 2.6818 5 379 6.0

0.99654 0.9999442 0.9998809 0.3154 4.1818 3.4697 8 411 15.5

NSF

0.99687 0.9999390 0.9997642 0.2409 4.6154 3.1319 6 583 4.3

0.99665 0.9999424 0.9998518 0.2578 4.6154 3.3516 7 604 8.1

0.99637 0.9999415 0.9998736 0.2798 4.4615 3.6374 9 639 13.0

Spain

0.99721 0.9999233 0.9997212 0.2147 5.6923 2.7912 5 560 6.5

0.99709 0.9999429 0.9997938 0.2240 5.5385 2.9121 6 586 11.4

0.99652 0.9999320 0.9998469 0.2680 4.6154 3.4835 7 598 13.7

EPAN16

0.99670 0.9999149 0.9997116 0.2200 5.0667 3.3000 7 838 4.0

0.99649 0.9999254 0.9997724 0.2344 4.6667 3.5167 8 869 7.8

0.99552 0.9999163 0.9998128 0.2994 4.1333 4.4917 11 936 16.1

AWP
S on the spine with minimum diS and hS (shown in boldface in Table 5.5) and relatively

large edS . Figures 5.8-5.11 show, for each network, AWP
S , AS , and min-Af for all STs

examined with the results sorted from largest to smallest. On each plot the right side scale

is the corresponding unavailability. Also, we mapped (shown as dots) the STs obtained

from the heuristics on the plots. Note that the figures have fairly consistent behavior in

terms of the shapes of the curves across the four networks. For AWP
S there appears to be

a relatively small set (in comparison to the number of STs) of STs with the largest values,

whereas for AS there is a larger percentage of STs with reasonably high values. But these

values corresponds to different min-Af . In Polska network, the difference between the largest

and smallest min-Af values is 2.89e-4, compared to 6.35e-5 for AS , which indicates that AS

values range is narrower. It might be more appropriate to consider the minimum flow

availability(Af ) instead of AS , to ensure that each flow can be given a route with highest

possible end-to-end availability.

Comparing with the heuristics of Section 5.3.3, the largest value obtained from the heuris-

tics for AWP
S in the Polska network, shown in Table 5.3, coincides with the maximum found
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over all STs in Table 5.5 − there are multiple STs of the same AWP
S value. For the EPAN16

network, the heuristics in Section 5.3.3 calculated a spine with AWP
S equals to 0.99670 which

also coincides with the maximum found over all STs in Table 5.5. Regarding the case of the

NSF network, the maximum value obtained by the heuristics for AWP
S (0.99685) was also

close to the maximum 0.99687 in Table 5.5. Similarly, the spine found by heuristics for the

Spain network for AWP
S was 0.99717 compared to 0.99721 across all STs.

In terms of AS , for the Polska network the maximum value found from the heuristics

(0.9999480) is actually the maximum over all STs in Table 5.5. Similarly, the heuristic in

Section 5.3.3 managed to generate a spine for the NSF network, such that the resulting AS
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Figure 5.8: AWP
S , AS & min-Af calculated over all spanning trees for Polska Network.
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Figure 5.9: AWP
S , AS & min-Af calculated over all spanning trees for NSF Network.
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Figure 5.10: AWP
S , AS & min-Af calculated over all spanning trees for Spain Network.
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Figure 5.11: AWP
S , AS & min-Af calculated over all spanning trees for EPAN16 Network.

has the first 5 digits correct (according to Tables 5.3 and 5.5). In the case of the EPAN16

network, the first 5 digits match too. In the case of the Spain network, there is a 2e-5

difference in AS between the spine obtained from heuristics and all STs. Overall these

numerical results seem to indicate that the heuristics from Section 5.3.3 work reasonably

well in identifying a viable spine for a network topology.

Regarding path lengths, Table 5.5 (last two columns) shows the total number of links/hops

utilized by the network, HS , when the spine is considered. This is compared to the total

number hops used when the link-disjoint path pair is calculated using shortest path pair

(i.e., min-min). It is clear form the results that the spine incurs more resources. Despite

68



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.88

0.9

0.92

0.94

STs
arranged in ascending order with respect to  A

S
 of the  a

l
=0.9

 

 
0.9984

0.9986

0.9988

0.9990

 

 
0.999984

0.999986

0.999988

0.999990

0.999992

 A
S

 

 

 a
l
=0.9

 a
l
=0.99

 a
l
=0.999

(a) AS over all STs for different a values

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.75

0.8

0.85

0.9

STs
arranged in ascending order with respect to  A

f
 of the  a

l
=0.9

 

 

0.996

0.9965

0.997

0.9975

0.998

0.9985

 

 
0.99995

0.99996

0.99997

0.99998

0.99999

m
in

im
u

m
  
A

f

 

 

 a
l
=0.9

 a
l
=0.999

 a
l
=0.99

(b) Min-Af over all STs for different a values

Figure 5.12: The effect of varying a in Polska network.

this, the increase in path lengths 4H% can be as low as 6%, 4.3%, 6.5%, and 4.0% for

Polska, NSF, Spain, and EPAN16 networks, respectively. These low percentages correspond

to spines with short diameters whereas spines with longer diameters result in larger 4HS ’s.

For the spines with longer diameters, the increase in HS is mainly due to a large increase in

WPs length accompanied with a slight or no decrease in BPs length.

5.4.3 Sensitivity Analysis

Homogenous Scenario In our previous numerical analysis, we considered a = 0.99 and

∆ = 0.009 (i.e., aO = 0.99, aS = 0.999). Here we examine how the results would change

if we considered different values of a and ∆. Figure 5.12 (a) and (b) shows the availability

values (AS and minimum Af ) for all STs in the Polska network using 3 different values of

a = {0.9, 0.99, 0.999} with ∆ = 0. By visual inspection, we can see that the general pattern

for the ordered STs remain unchanged regardless of the metric AS or minimum Af . Only

slight changes in terms of the ranking of the individual STs from best to worst occur in

both measures. For varying ∆, Figure 5.13 shows the results for AS and minimum Af using

5 different ∆ values with a = 0.99. When ∆ changes, we see a consistent pattern for the

values. However, more variation is noticed. This means that the ranking of the STs (from
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Figure 5.13: The effect of varying ∆ in Polska network.
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Figure 5.14: Average Downtime corresponding to AS for all STs at different ∆ values.

best to worst) with respect to a specific measure would slightly change as ∆ changes and

an ST might exchange its rank with another ST within its close range. In addition, for

each value of ∆ there can be different best/worst STs. Figure 5.14 visualizes this behavior,

especially at large ∆ values. For example, in Figure 5.14a at ∆ = 6e−3 the upper three STs

(corresponds to worst AS) exchange their positions after the merging point as the variation
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of the values diminishes. This is also true for the NSF network as shown in Figure 5.14b.

Heterogenous Scenario So far, we considered different values for a and ∆ but we also

assume that all links on the spine have the same availability ae = a + ∆ ∀e ∈ ES and

all links off the spine have the same availability ae = a ∀l ∈ E − ES. However, typically,

links on a network would have different availabilities. In this part, we relax our assumption

of considering homogenous link availability. We consider a distance-based link availability

model found in [7]. The link availability is calculated as ae = ac× at where at is the product

of cable-ends equipments (i.e., OXC, ADM etc...), and ac is the fiber cable availability that

can be calculated from:

ac = 1− MTTR

MTBF
(5.15)

MTBFhrs =
CC × 365× 24

cable lengthkm
(5.16)

where MTBF and MTTR are the mean time between failures and mean time to repair in

hours, respectively. CC is the cable cut metric in km.

Recall that we want to find a spine with high availability measures, and these measures

vary on the different spines based on their graphical structure as we showed in the previous

section. Here, we involve heterogenous link availability which complicates the problem fur-

thermore. Now, we want to examine to what extent the added input changes the results.

To inspect this, we study the Polska and NSF networks, and we calculate distance-based

link availability by setting MTTR = 24, CC = 450, and at = 0.9995, and using the straight

line distance between end-nodes as the cable length. Then, for all STs we calculate AS and

min-Af with different ∆ values. We compare these results to the results obtained from a

homogenous spine case with a = 0.99 and ∆ = 9e−3. As an example, Figures 5.15 and 5.16

show a scatterplot for the AS and min-Af values of the STs for Polska and NSF networks.

The x-axis and y-axis depict a ST availability value in the heterogenous and homogenous

case, respectively. For both AS and min-Af , we can see some variation for STs values around

the linear correlation line which indicates an STs change in ranking.
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Figure 5.15: Scatterplot of Polska STs measures with homogenous versus heterogenous link

availability.
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Figure 5.16: Scatterplot of NSF STs measures with homogenous versus heterogenous link

availability.

5.4.4 Monetary Cost and Implementation Issues

The discussion and analysis thus far illustrates the potential of the spine concept in improving

AS and reducing the average downtime per year. In reality there are several factors that
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will determine the usefulness and practicality of the spine approach. The paramount factor

is the financial cost versus benefit tradeoff of the spine approach versus non-spine based

methods of improving the availability. Note, that the cost of the spine design is the cost of

improving the availability of only the spine components. On the other hand, the cost of the

non-spine design is the cost of improving all the components in the network to meet the same

average flow availability AS achieved by the spine design. Hence, the spine is a monetary

cost effective option if and only if the cost of the spine design is lower than the cost of the

improved non-spine design. This will depend on the financial cost structure of improving

the availability for the network under consideration and the desired levels of availability.

In the networking literature the cost of improving availability has not been widely dis-

cussed, the majority of papers focus on technical techniques to improve or quantify the

availability of components or systems. Financial cost is usually given in a qualitative fashion

(e.g., low, medium, high) or in a few cases as a numerical value for a specific technology

and application scenario [47]. Determining a precise generally applicable formula on cost of

availability is difficult as the cost is dependent on a number of technical and non-technical

issues and is typically scenario and organization dependent. In general one can note that

the availability of information and communications technology can be improved up to cer-

tain point then there are diminishing returns with increased cost and perfect availability is

not attainable (i.e., downtime = 0) [121]. A few attempts to provide mathematical models

relating cost and availability have appeared in the literature. Grover and Sack [46] pro-

posed to model the reduction of the mean-time-to-repair (MTTR) and the associated cost

in terms of % of budget for improving availability as having an inverse relationship of the

form Cost = (MTTRo/MTTR)1/α where MTTRo is the baseline mean-time-to-repair and

α is a parameter. Recently, Herker et al. [122] model the cost of increasing the mean-time-

between-failure (MTBF) as polynomial function of MTBF, namely Cost = MTBFα + K

where α is a parameter and K is a constant fixed cost. Note, that these two works each focus

on only one side of the techniques to improve availability. In practice, one typically adopts a

two-pronged approach to increase availability by investment in organization improvement to

reduce MTTR and technical improvements to directly or indirectly (e.g., backup electrical

power) increase MTBF [121]. Franke [123] takes a different viewpoint and relates the cost
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of improving availability to potential financial loss L due to downtime. The cost function

Netcost = 1–f(Ao, c))L+ c is proposed where Ao is the baseline availability, c is the cost of

investment in improving the availability as a percentage of L and f(Ao, c) is a nonlinear func-

tion relating the improvement in availability as a function of investment. Different forms of

f(Ao, c) are proposed such as f1(Ao, c) = 1–(1−Ao)e−αc and f2(Ao, c) = 1–(1−Ao)/(1−αc).

Another practical deployment issue is that in terms of equipment improvement one does

not get continuous changes in the availability but discrete changes in the MTBF by direct

component modifications (e.g., spare mirrored line card) or indirect modifications (e.g.,

backup power supply of 8 hours). However, adjustment of MTTR can occur in a more fine

grained fashion. To illustrate this with an example, consider the candidate spines in Table 5.3

in the second and the seventeenth rows which correspond to the Polska and Italia networks,

respectively. We compare the total cost of the spine and non-spine designs, where the total

cost of a design is the sum of the costs of improving each link. Assume that the availability

of all links on the network initially is 0.99, with MTTR = 24 hrs, which corresponds to

MTBF = 2400. If we were to increase the MTBF in one link (i.e., to reach aS or a′e), the

improvement is subject to the cost function Cost = MTBFα from [122]1, where the MTBF

value is for 1 km. For α, we use different values in the range from 1 to 2 with step size

of 0.1, and also we use the geographic distances for links in both networks to calculate the

MTBF. In addition, the links on the spine can be given MTTR values from 24 down to 6 hrs,

whereas MTTR for the off-spine links in the spine design and all the links in the non-spine

design remains unchanged. Figure 5.17 shows the results for the two networks and the two

design options. It is clear from the figure that the spine design can be more cost effective for

the right combination of both MTBF and MTTR even at large value of α. In practice one

will typically not be able to tune the availability in a continuous fashion as in the analysis

of previous sections, but there will be discrete options around which the availability can be

tuned somewhat as in Figure 5.17.

Lastly we observe that throughout this work we have focused on uncapacitated networks

(i.e., not considering links and nodes capacities nor the volume of traffic demands). Since the

1Note that the cost function here seems to be inaccurate. If one decouples MTBF into MTTF +MTTR,
link availability can be improved by reducing MTTR but the cost decreases. Thus it is more convenient to
have the cost function regarded as Cost = MTTFα.
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spine can lead to non-shortest path routes it may require more capacity in contrast to a non-

spine based design. However, as discussed in the introduction the spine is primarily proposed

to satisfy the requirements of high availability traffic and enable the use of QoR classes. Note

that only a small fraction of the total flows are expected in the highest availability class, thus

one would expect the potential capacity increases to be minimal. In the event the percentage

of high availability traffic increases significantly then the capacity of the spine may need to

be increased accordingly.

5.5 THE SPINE LINK SELECTION DESIGN PROBLEM

5.5.1 Problem Statement

In Section 5.3, we assumed all links on the spine have the same availability (aS) and the

same is for the links off the spine (aO). Our sensitivity analysis shows that modifying either

value, the improvement step of availability ∆, or considering heterogenous link availabilities

would result in a slight change in the ranking of the best spines with respect to the con-

sidered availability metrics. Unlike the previous structural-based approach, here we adopt

an optimization model approach that involves taking into consideration factors such as the

possibility to improve the links and the total budget allocated for improving network re-

silience. Precisely, the spine structure in addition to the previous requirements comes to be

dictated by initial links availability, levels to which links availability can be improved, and

the cost associated with these improvements. In general, the goal is to achieve high overall

availability for the supported connections of the highest class.

The problem can be restated as follows: Given an optical layer network GP = (VP , EP )

with a set of nodes V and a set of physical links E , and given a set of the supported end-to-

end connections (lightpaths) that need high availability (s, t) ∈ F , the spine design problem

is to find the set of physical links, E , that forms the spine GS = (VS, ES), where GS ⊂ G.

We assume a cost ckij associated with each link that is the cost of improving link (i, j) using

method k, and the spine formation is constrained by a total budget C.
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Figure 5.17: Comparison between total cost of the spine design and non-spine design.
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5.5.2 Notation

In addition to the notation given in Section 5.3, we define the following:

Indicies:

ij represent a physical link by its two end-nodes, i, j ∈ VP , (i, j) ∈ EP .

st represent a connection/flow between two end-nodes, s, t ∈ VP , (s, t) ∈ F .

Parameters:

δ a scaling factor ≥ 1.

k method of link improvement.

aij initial link availability.

akij availability of link ij after applying improvement option k, with a1
ij = aij.

âwp(âbp) flow WP (BP) availability target.

ckij cost of improving link (i, j) using method k.

C total cost (budget).

Variables:

xstij (ystij ) a binary variable denoting whether physical link (i, j) is used for routing the

WP (BP) of connection (s, t).

xij a binary variable indicating whether link (i, j) is selected on the spine (xij=1)

or not (xij=0).

rkij a binary variable indicating whether method k is used for link (i, j).

pstij (qstij ) a continuous variable denoting link (i, j) unavailability given that it is on

connection (s, t) working path (backup path).

5.5.3 Incremental Link Availability Model

Network operators continually collect and analyze failure logs so that accurate equipment

and link availability values are obtainable. In addition, an appropriate effort is expected

to be placed in improving equipment availability and properly managing maintenance and

repair duties in a way so that new improved availability figures are predictable.
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Hence consider that each link in a given network, e ∈ E , can be purposely strengthened

so that its MTBF is increased, for example by altering the cable implementation method

(e.g., burying an aerial cable) or adding physical protection or the MTTR is reduced by

intensive maintenance and repair efforts as discussed in Section 2.2.4. For each link, one

can collect possible options to improve its availability, and each option would result in a

different availability level and incurred cost. Specifically, if the link e spans node-pair ij and

has availability aij, using method k, the link availability can be improved to akij with cost

ckij, whereas using method k + 1 that costs ck+1
ij , availability is improved to ak+1

ij .

Due to the difficulty in getting exact availability values and the associated cost of im-

provement from network operators, as discussed in Section 2.2.3, we use synthetic availability

levels and improvement costs to conduct our study. Most of the assumptions made here can

be justified by taking into account the characteristics of various physical layer cable technol-

ogy and the maintenance/repair techniques adopted.

For a given network, each link is assigned an initial link availability value aij based on its

length, with longer links being less reliable. The link availability values are within (ǎ − â),

where â is the maximum link availability assigned to the shortest link and ǎ is the minimum

link availability assigned to the longest link. Then, for each link we assume “K” possible

availability values (akij, k = 1, 2, ...K) with (a1
ij = aij). For each value k, the corresponding

unavailability is reduced by ε %, so that ukij = uk−1
ij · (1− ε), where ukij = 1− akij. Reducing a

link unavailability is analogous to reducing its expected downtime. It can also be expressed

in terms of availability as akij = ak−1
ij (1− ε) + ε. Note that, in reality the different options k

might not have fixed downtime differences within nor across links. For example, it may turn

out that for a given link, the availability differences of two or three improvement options

are small. Here, we choose a fixed ε for illustration purpose. In practice, not all links will

likely have the same number of options as this depends on several factors (e.g., the terrain,

cable type, the associated cost, etc). However, we assume that this is the case here in order

to simplify the model. The cost associated with each improvement step k is calculated by a

given cost function, ckij = fc(a
k
ij.a

1
ij).

Figure 5.18 shows the Polska network topology and a sample of the availability options

for three different links with K = 7. Each table in the figure shows the availability levels of
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Figure 5.18: An example of the incremental link availability model for the Polska network.

a link and the corresponding cost. In the figure, k = 1 denotes the initial link availability.

The case of k = 2 is set to model transferring maintenance capabilities between links. Thus

the expected downtime of some links (i.e., off the spine) would increase and incur negative

cost which would give an extra allowance to the total budget C. Subsequently, other links

availability (i.e., on the spine) can be improved by the relocation of maintenance and repair

capabilities, and take advantage of transferring operational expenditure from degraded links.

Therefore, we set u2
ij = u1

ij · (1 + ε) and c2
ij = −c3

ij.

5.5.4 Optimization Model Formulations

The spine design problem aims at finding the best combination of links to form the spine

and the improvement options for all links in order to achieve better overall availability and

widen the range of availabilities. First, we need to route all lightpaths on the spine with

fully link-disjoint backup paths. This ensures that all high priority traffic supported by the

spine can be given a 1+1 dedicated protection. Note that, this also enables 1:N shared

protection, however this topic is left for future work. Second, we assume that the class

of critical services is required between all possible node-pairs i.e., a full mesh of demand

of one unit between each node pair. To consider a spine with full connectivity, the spine

structure can be a minimum spanning tree (MST) similar to the model in Section 5.3.

Thirdly, flow availability is constrained to be greater or equal to target values (âwp, âbp).

Instead of looking for the spine that maximizes the average availability, here we require that
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the minimum WP availability on the spine to be within an acceptable range of availability,

âwp. As showed earlier in Section 5.1, having a large availability on WP improves the end

to end availability more effectively. In addition, the design has to constrain the expected

increase in total resources for routing working and backup paths for all connections. Finally,

the objective C of the design problem aims at minimizing the total costs of embedding the

spine and improving flows availabilities. Given the notation above, the spine link selection

optimization problem can be formulated as follows:

Minimize C =
∑
ij

∑
k

rkij × ckij (5.17)

s.t.

WP and BP computation:

∑
hj∈EP

xsthj −
∑
ih∈EP

xstih =


1 if h = s

−1 if h = t

0 otherwise

,∀h ∈ VP , (s, t) ∈ F (5.18)

∑
hj∈EP

ysthj −
∑
ih∈EP

ystih =


1 if h = s

−1 if h = t

0 otherwise

,∀h ∈ VP , (s, t) ∈ F (5.19)

Loopless Routing:

xstij + xstji ≤ 1

ystij + ystji ≤ 1
,∀(i, j) ∈ EP , (s, t) ∈ F (5.20)

∑
j∈VP
ij∈EP

xstij +
∑
h∈VP
hi∈EP

xsthi ≤ 2 , ∀i ∈ VP , (s, t) ∈ F (5.21)

∑
j∈VP
ij∈EP

ystij +
∑
h∈VP
hi∈EP

ysthi ≤ 2 , ∀i ∈ VP , (s, t) ∈ F (5.22)

Disjointness constraints:

xstij + ystij ≤ 1 xstij + ystji ≤ 1 ,∀(i, j) ∈ EP , (s, t) ∈ F (5.23)
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Hop-count constraint:

HS =
∑
ij∈EP

∑
st∈F

(xstij + ystij ) ≤ δ ×HG (5.24)

MST formation:

xij ≥ xstij ,∀(s, t) ∈ F (5.25)∑
ij∈EP

xij ≤ |VP | − 1 (5.26)

Availability constraints:∑
k

rkij = 1 ,∀(i, j) ∈ EP (5.27)

rkij = rkji , ∀(i, j) ∈ EP (5.28)

pstij = xstij ×
∑
k

rkij (1− akij) ,∀(i, j) ∈ EP , (s, t) ∈ F (5.29)

qstij = ystij ×
∑
k

rkij (1− akij) ,∀(i, j) ∈ EP , (s, t) ∈ F (5.30)

Flow availability targets:

AWP
st = 1−

∑
ij∈EP

pstij ≥ âwp (5.31)

ABPst = 1−
∑
ij∈EP

qstij ≥ âbp (5.32)

Variables:

xstij , y
st
ij , xij, r

k
ij binary (5.33)

pstij , q
st
ij ∈ [0, 1] (5.34)

We consider a variation of the classical network flow problem. In the core of the formu-

lation is the flow conservation constraints. Constraint sets (5.18) and (5.19) find primary

and backup paths for all lightpaths, respectively. A flow conservation constraint pushes a

unit of flow along a path between the two end-nodes of a given lightpath. Constraint sets

(5.20)-(5.22) ensure loop free routing. Constraint set (5.23) ensures that for each lightpath
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the primary and backup paths are fully link-disjoint. The sum of these paths, however, is

constrained by (5.24) which sets a maximum limit HG for the hop count of the link-disjoint

path-pairs and δ is a scaling factor. Each link used by a primary path of any lightpath

is considered as an on-spine link. Constraint (5.25) enforces this by turning the spine link

selector variable for a link, xij, to 1 if the link is used in a primary path of at least one light-

path. Then, constraint (5.26) limits the number of the links selected for the spine to |VP |−1

which is the number of links for a MST. Next, for the availability constraints, constraint set

(5.27) ensures that only one improvement method is selected for each link. Constraint (5.28)

requires that a link has the same improvement method in both directions. Constraint sets

(5.29) and (5.30) are used to relate a flow WP and BP unavailability to the unavailability

of each link along the flow path. Variable pstij or qstij will have an unavailability value only if

flow (s, t) WP or BP is routed through link (i, j). These two sets of constraints, turn the

optimization problem into a integer nonlinear programming (INLP), because the product of

two variables i.e., xstij with rkij in (5.29) and ystij with rkij in (5.30). Note that, to compute a

single path availability for a given flow, one can multiply the availability of the links along

the path, but this results in a nonlinearity. Instead, we use the approximate version of the

unavailability formula for a system connected in series, (ust ≈
∑

ij u
st
ij). Hence, WP avail-

ability can be computed as (1 −
∑

ij pstij). BP availability is computed in the same way.

Constraints (5.31) and (5.32) require that a flow WP and BP are above target availability

values âwp and âbp, respectively. Lastly, constraint sets (5.33) and (5.34) declare binary and

continuous variables.

To remove the nonlinearity of the INLP, constraints set (5.29) can be replaced with con-

straint sets eqs. (5.35) to (5.37). The three constraints provide the same function as (5.29).

Similarly, constraints set (5.30) that computes BP unavailability can be replaced with the

set of eqs. (5.38) to (5.40).

Linearized availability constraints:

pstij ≤ xstij (5.35)
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pstij ≤
∑
k

rkij (1− akij) (5.36)

pstij ≥ xstij +
∑
k

rkij (1− akij)− 1 , ∀(i, j) ∈ EP , (s, t) ∈ F (5.37)

qstij ≤ ystij (5.38)

qstij ≤
∑
k

rkij (1− akij) (5.39)

qstij ≥ ystij +
∑
k

rkij (1− akij)− 1 ,∀(i, j) ∈ EP , (s, t) ∈ F (5.40)

Although nonlinearity constraints are avoided, the spine link selection design problem is

NP-complete since the optimization version of the problem of finding disjoint path-pair is

known to be NP-complete [124–126]. This means that it is difficult to solve the problem for

optimality. Instead, we can find a feasible solution within an optimality gap from a solution

bound. Typically, this bound is the solution of the relaxed version of the problem, in which

all integer variables are processed as continuous. There is a number of well known relaxation

and heuristics methods for solving integer programming problems and iteratively trying to

minimize the optimality gap. Thus one can expect solving the design problem efficiently

for moderate sized networks and the chance of proving optimality becomes strongly size

dependent.

Lastly before we move to our numerical analysis, we examine the quality of a homogenous

spine obtained from the optimization model and compare it to the spines obtained from

heuristics in Sections 5.3 and 5.4, respectively, along with the set of all possible spanning

trees. We consider the Polska network with K = 2, and two link availability values; a1
ij = 0.99

for off the spine and a2
ij = 0.999 for the on spine links. We solved the optimization problem

with a minimum WP availability goal âwp = 0.995 and the BP availability goal âbp of

constraint (5.32) is relaxed. Then we calculated the average AWP
S , AS , and min-Af for the

resulted spine and add them to the corresponding plots of Figure 5.8. Figure 5.19 shows the

results for the spine obtained by the ILP as green circles along each line. We can see that the

obtained spine has a considerably large score with respect to AWP
S and AS , and a reasonably

large min-Af . The result reconfirms that by ensuring a minimum flow WP availability on
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Figure 5.19: The optimal spine with a1
ij = 0.99 and a2

ij = 0.999 (in green) compared to

heuristic spines and all spanning trees of the Polska Network.

a spine, we can obtain a fairly good spine with high availability compared to all possible

spanning trees in a network.

5.5.5 Numerical Study

We consider the Polska, Spain, and Italia14 networks shown in Table 5.2 to evaluate our

model. The table shows the number of nodes and links, the density ratio, and the diameter

of each network. We set ǎ = 0.95, â = 0.995, ε = 0.50, K = 7, and δ in constraint (5.24) is

set to 110%, allowing for a maximum of 10% increase in total resources over the resources

required by shortest path-pairs, HG (i.e., HS ≤ 1.1HG).

5.5.5.1 Cost Functions As mentioned earlier, a precise formula for cost of availability

is unobtainable. Instead, many researcher rely on some mathematically known models (e.g.,

constant, linear, quadratic, exponential, etc) to relate cost to availability [127]. Typically,

more than one model is involved in a single study to account for the imprecision and offer

a range of prospects about the subject of the study. Here, we consider that the cost of

improving a link becomes larger as the availability gets higher [8], and this can take several

formats. For example, the larger the difference between the initial availability and improved

availability, the higher the cost, or improving an already high availability link costs more than
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improving a link with a moderate availability. A third format might feature different scales

for each range of availability values. To capture these formats, we consider the following cost

functions, fc’s, to compute the cost of improving the link availability per unit of length:

• The first cost function, fc1, is a polynomial in the availability improvement ∆akij =

akij − a1
ij.

fc1(akij, a
1
ij) =

(
akij − a1

ij

)α
, k > 2 (5.41)

where α is a scaling parameter. This function represents the first format.

• The second cost function, fc2, represents the second format and it is a polynomial in the

availability improvement ∆akij = akij − a1
ij but also weighted by the unavailability of the

link. Hence for equal ∆akij, it compounds the cost for the link with higher availability.

This formula is very similar to f2 in [123] but with different application of the exponent

α where it is applied as a divisor scaling parameter.

fc2(akij, a
1
ij) =

(akij − a1
ij

1− a1
ij

)α
, k > 2 (5.42)

• The third cost function, fc3, is derived from f1 in [123], shown in section 5.4.4, where

akij = 1− (1−a1
ij)e

−αckij , meaning that the impact of the cost on the improved availability

decreases exponentially.

fc3(akij, a
1
ij) = − ln

[1− akij
1− a1

ij

]
, k > 2 (5.43)

In addition, to include the length factor in the upgrading cost we let,

ckij = fc(a
k
ij, a

1
ij)× dij (5.44)

where dij is link (i, j) length. The exponent α in (5.41) and (5.42) was set to 2 to impose

quadratic growth of the cost. Figure 5.20 shows the link availability and the corresponding

cost using the three cost functions for the three links shown in Figure 5.18. Observe that

cost function fc1 has a smaller range of values than the other two cost functions and that the

shorter the link the less the cost to improve the availability. In addition, Figure 5.21 plots

the CDF of the cost values for all links in the Polska, Spain, and Italia14 networks. Note

that the cost values within each cost function are normalized and scaled between 1∼100.
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Figure 5.20: Improved link availability versus cost for three links from the Polska network

shown in Figure 5.18.
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Figure 5.21: CDF of the link improvement costs.

One can see that for fc1, 75% of the cost values are below 20 for the Polska network whereas

only 27% and 40% of these values are below 20 for fc2 and fc3, respectively. A comparable

behavior can be seen for the other network.
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5.5.5.2 Results We solved the spine design optimization problem for the test networks

using AMPL/Gurobi and present a sample of the results. Here, the availability goal for WP,

âwp in Equation (5.31), is set 0.99 and then increased in steps until the model becomes infea-

sible. At each each step, we solve the model for the three cost functions. We ignore âbp for

now. For the Polska network âwp = {0.99, 0.995, 0.996, 0.9964}, for the Spain network âwp =

{0.99, 0.996, 0.9964, 0.9967}, and for the Italia14 network âwp = {0.99, 0.995, 0.996, 0.997}.

Increasing the target value âwp increases the total cost of the design and may also result in

a different spine layout. Figures 5.22, 5.25 and 5.28 show the spine layouts which resulted

for the Polska, Spain, and Italia14 networks, respectively, as the target âwp increases. First,

the spine layout varies slightly as the target availability, âwp, or the cost function changes.

Though one can see that in each network there is a persistence substructure that appears in

almost all the spines, e.g., the star-like substructure rooted at node 3 in the Polska network.

In general, the spines tend to have a star-like layout as the diameters of these spines are

considered short as shown in Table 5.6. In addition, Table 5.6 shows that the spines tend to

present comparatively a small edge betweenness ebS and average shortest path hS and a large

edge degree edS. Only in a few cases does the corresponding measure match the minimum

(or maximum) value across all MSTs shown in Table 5.5. These results comply with the

findings in Section 5.3 with respect to the spine that maximizes AWP
S and indicate that the

spines tend to have a star-like rather than a ring-like layout. This behavior can also be traced

in Figures 5.24, 5.27 and 5.30 that plot node degrees in the full network and in the spines

e.g., for the Italia14 network, either node 7 or 11 maintained a high degree across scenarios

and at least 7 nodes are leafs. Overall, there is a similar pattern of the node degrees within

and across the different cost functions. Moreover, as the spine layout might be attributed to

the structural importance of the links and nodes, it is also shaped by the cost associated with

the links and their availability as well as the hop-count constraint. This justifies the small

variations in the structural properties between the spines obtained here and in Table 5.5.

Similar spines within and across cost functions are likely to have different availability and

link types. This is illustrated by Figures 5.23, 5.26 and 5.29 where downtime per year for

each link versus the link length and the link improvement method/type k selected for each

link is shown for the cases corresponding to Figures 5.22, 5.25 and 5.28. In the figures, each
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Table 5.6: Structural properties of the resulted spines.

(a) Polska.

cost
function

scenario ebS edS hS diS

Gg 0.12 6.33 2.14 4

fc1

GS , âwp1 0.26 4.91 2.89 6

GS , âwp2 0.26 4.91 2.89 6

GS , âwp3 0.26 4.91 2.89 6

GS , âwp4 0.24 5.45 2.68 5

fc2

GS , âwp1 0.26 4.91 2.89 6

GS , âwp2 0.26 4.91 2.89 6

GS , âwp3 0.26 4.91 2.89 6

GS , âwp4 0.24 5.45 2.68 5

fc3

GS , âwp1 0.26 4.91 2.82 5

GS , âwp2 0.26 4.91 2.82 5

GS , âwp3 0.26 4.91 2.89 6

GS , âwp4 0.24 5.45 2.68 5

(b) Spain.

cost
function

scenario ebS edS hS diS

Gg 0.1 6.82 2.27 5

fc1

GS , âwp1 0.26 4.46 3.38 7

GS , âwp2 0.26 4.46 3.38 7

GS , âwp3 0.26 4.46 3.38 7

GS , âwp4 0.24 4.62 3.11 6

fc2

GS , âwp1 0.25 4.62 3.21 7

GS , âwp2 0.26 4.46 3.38 7

GS , âwp3 0.26 4.46 3.38 7

GS , âwp4 0.24 4.62 3.11 6

fc3

GS , âwp1 0.25 4.62 3.21 7

GS , âwp2 0.26 4.46 3.38 7

GS , âwp3 0.26 4.46 3.38 7

GS , âwp4 0.24 4.62 3.11 6

(c) Italia14.

cost
function

scenario ebS edS hS diS

Gg 0.06 10.3 1.87 3

fc1

GS , âwp1 0.23 5.38 2.97 6

GS , âwp2 0.23 5.38 2.97 6

GS , âwp3 0.22 5.54 2.86 6

GS , âwp4 0.21 5.85 2.79 6

fc2

GS , âwp1 0.21 6.00 2.71 5

GS , âwp2 0.21 6.00 2.71 5

GS , âwp3 0.21 6.00 2.71 5

GS , âwp4 0.21 5.85 2.79 6

fc3

GS , âwp1 0.21 6.00 2.71 5

GS , âwp2 0.21 6.00 2.71 5

GS , âwp3 0.21 6.00 2.71 5

GS , âwp4 0.21 6.31 2.70 5

circle represents a link and the number inside the circle is the improvement method/type

k. The red circles represent links comprising the spine and the blue are the off spine links.

For example, the spines obtained for the Polska network with âwp4 for cost functions fc1 and

fc2 are identical in the layout, as shown in Figures 5.22d and 5.22h, but the corresponding

link improvement method k of the links are different as shown in Figures 5.23d and 5.23h.

However, the spine and the selected methods are identical for fc2 and fc3, whereas, they

were completely different for âwp1 as shown in Figures 5.22e and 5.22i. One also can see

that, within the same cost function scenarios, different methods k can be selected as the

âwp changes. For example, the first three spine obtained for the Polska network for cost

function fc1, shown in Figures 5.22a to 5.22c, have different link improvement assignments

as WP availability target âwp changes. This is shown in the downtime and availability as-

signment Figures 5.23a to 5.23c. Initially, shorter links (i.e., with higher availability and

lower improvement cost) are favored to be selected as a spine link, thus exploiting existing

heterogeneity. Then for some high availability target, expensive links may be selected due to

structural motives. That is to achieve âwp4 in the previous example, the spine layout changes

from the initial one in order to achieve this target. Structurally, we noticed that link (2,3)

(that is, the third longest link) is selected to be on the spine despite. Also Table 5.6 shows

that the obtained spine have better structural measures. The results for Spain and Italia14

networks exhibit similar observations. Notice that the off spine links are selected as type
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k = 2 which are less reliable, but provide additional budget resources to improve the spine

links from k = 1 to better quality links (i.e., k > 2).

Second, we compare the average expected flow downtime AS and average expected WP

downtime AWP
S for the different scenarios and cost functions. We also include the corre-

sponding downtime of an equivalent network with no spine (AG, A
WP
G ). In the no spine

network, all links are improved using the same method, k, and the total cost C is computed

accordingly. Figures 5.31 to 5.33 show the average expected WP and end-to-end flow down-

times for the three test networks considering the different cost functions and âwp’s. Also the

results are shown for two cases: one that forbids relaxing the MTTR for the off spine links

i.e., k = 1 (continuous line and one that permits such relaxation i.e., k = 2 (dot-dashed

line). From the figures we can make a number of observations. For the Polska and Spain

networks, there is significant improvement in the downtime values over the no spine model

for the case of cost function fc1, slight improvement for the case of fc2, and no improvement

fc3. However, the dense network, Italia14, achieves lower downtime in all cases across all

cost functions. These findings correlate the efficiency of the spine model to both the network

density and the distribution of the cost of improving links availability. Lastly, comparing

relaxable and non-relaxable MTTR cases shows a significant saving in cost when relaxing

the off spine links MTTR for a slight decrease in the average flow downtime AS .

Recall that the spine concept aims to create different levels of availability and also meet

the most stringent availability requirements. Figures 5.34 to 5.36 show the expected down-

time for each path type for the optimal spines obtained for each network. The downtime

results are represented for each scenario as a box plot. The upper and lower edges of each

box represent the third and first quartile of the values, respectively, the middle bar (in red)

represents the median, and the upper and lower bars represent the maximum and minimum

downtime values across all paths, respectively. Note that, even for the spine with the lowest

cost (i.e., âwp1 and relaxable MTTR), there are three different levels of availability classes

resulting from using only one protection scheme. The lower availability class can be given an

unprotected path equivalent to the backup path with large expected downtime. Then, the

middle class is routed on an unprotected path on the spine which achieves shorter expected

downtime compared to the lower class. The higher class is routed on the spine and protected
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Figure 5.22: Spines obtained for the Polska network using the three cost functions.
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0 100 200 300 400
10

0

10
1

10
2

10
3

2
2

2

22
2

2

6

7

7

7

5
7

77

5

7

7

(g) fc2, âwp3
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Figure 5.23: The corresponding link downtime/year and versus link length for the spines

obtained for the Polska network.
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Figure 5.24: Node Degree for the resulted Polska spines.
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Figure 5.25: Spines obtained for the Spain network using the three cost functions.
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100 200 300 400 500
10

0

10
1

10
2

10
3

2

22 22 2

2

22

77

7

77
7

7

7

7

7

6

6 7

(k) fc3, âwp3
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Figure 5.26: The corresponding link downtime/year and versus link length for the spines

obtained for the Spain network.
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Figure 5.27: Node Degree for the resulted Spain spines.
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 1

 2
 3

 4

 5
 6

 7

 8

 9

10

11
12

1314

(f) fc2, âwp2
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Figure 5.28: Spines obtained for the Italia14 network using the three cost functions.
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0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

2

2
2

2

2

2

2
2

2

2

22

2

2
2 2

7

77

7
7

7

6

7

77

7

7

7

(c) fc1, âwp3
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Figure 5.29: The corresponding link downtime/year and versus link length for the spines

obtained for the Italia14 network.
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Figure 5.30: Node Degree for the resulted italia14 spines.
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Figure 5.31: Average expected WP and end-to-end flow downtime/year versus cost for the

spines obtained for the Polska network.

by a link-disjoint backup path, and its expected downtime is minimal. Within each scenario,

the range of availability for the middle class is upper bounded by the target availability,

âwp, as shown by the maximum downtime bar. The variation within that range, however, is

attributed to the layout of the spine, and in general to the structure of the network, as some

connections typically have longer paths on the spine. We expect that a spine with very long

diameter to have a wider range of flows downtime. One also can see from the graph that the
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Figure 5.32: Average expected WP and end-to-end flow downtime/year versus cost for the

spines obtained for the Spain network.

target availability also controls the downtime of the higher class since the WP of this class

is routed on the spine, and its downtime decreases as the target availability increases. The

maximum flow downtime within this class is close to the median downtime value compared

to the minimum which means that the range of the flows downtime is moderately narrow

above the median. This is also can be attributed to the structure of the network but mainly

is due to the WP target availability as the end-to-end availability of a path-pair is lower
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Figure 5.33: Average expected WP and end-to-end flow downtime/year versus cost for the

spines obtained for the Italia14 network.

bounded by the availability of the highest path availability. For the lower class, the expected

downtime is independent from the WP target availability, and it maintains a similar range

of downtimes across the different scenarios. Lastly, the spacing between each level of avail-

ability is mainly determined by the range of link availabilities (initial and improved) and the

WP target availability.
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Figure 5.34: The range of paths expected downtime in the spines of the Polska network.
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Figure 5.35: The range of paths expected downtime in the spines of the Spain network.
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Figure 5.36: The range of paths expected downtime in the spines of the Italia14 network.

5.6 SUMMARY

In this chapter, we presented the spine concept of embedding a subgraph structure with

higher availability in a network together with protection mechanisms aiming to improve the

overall end-to-end availability. The spine based approach was shown to have the potential

to improve the network availability in a more efficient fashion compared to improving the

availability of all network components in a homogeneous fashion. We show that the effi-

ciency of the spine is highly influenced by the heterogeneity of link availability, the network

size, and the spine layout. We provide heuristic spine selection methods based on structural

properties of the network topology. The goal was to find a way to embed a spine to achieve

a maximum average end-to-end availability and the results appear promising compared to

optimal spine values determined by a brute force search. In addition, we provide an op-

timization based formulation for designing the spine taking into consideration that links
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availability are upgradeable for a given cost. The design problem aims at exploiting existing

heterogeneity in link availability and the upgradability of link availability to achieve a target

flow availability while minimizing the total cost. Our results demonstrate the spine model

efficiency in terms of average flow availability and potential advantage over the shortest path

model with no spine. This efficiency, however, depends primarily on network density and link

improvement cost distribution. Also the obtained spines have similar structural properties

to the spines obtained form the heuristics with slight variations as the cost of improving

link availability imposes an additional constraint in shaping the spine layout. In general the

spine is hoped to provide larger differences in the range of availability values to quality of

resilience classes resulting in less over engineering of the network to meet the most stringent

availability requirements.
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6.0 THE JOINT CROSSLAYER ROUTING-MAPPING DESIGN

PROBLEM

6.1 INTRODUCTION

As discussed earlier in Chapter 3 crosslayer mapping problem has been studied in literature,

specifically in the survivable mapping problem context [18, 19]. However, designs considering

explicit availability constraints are somewhat uncommon. There have been different strate-

gies to include these constraints. One approach is to minimize the overall crosslayer failure

probability by constrained mapping [128], which is equivalent to maximizing the availability

of logical links (the sum of the physical links availabilities) [98]. An alternate method is

to minimize the failure probability for crosslayer minimum-cuts by augmenting additional

logical links [97]. Availability constraints can also be involved in defining other metrics e.g.,

risk [96], which can be optimized. These proposals, however, are based on network overall

availability and do not differentiate between service classes.

In the previous Chapter 5, we implemented the spine concept and proposed to use the

spine for routing connections of the higher availability QoR classes. We showed how the spine

concept can be utilized to provide levels of availability differentiation at the physical level

using constrained and differentiated routing and protection techniques. In addition, the spine

can be leveraged with logical network topology routing, cross layer mapping, and protection

schemes to differentiate resilience classes and provide a range of availability guarantees. In

this chapter, we introduce a joint crosslayer routing-mapping design problem with the aim of

providing multiple levels of availability guarantees in multilayer networks using a predefined

spine embedded at the physical layer.
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class-1 upper

layer path

protected at

bottom layer

Figure 6.1: Protection at bottom layer.

class-1 upper

layer path-pair

mapped to

disjoint lower

layer paths

Figure 6.2: Protection at top layer.

6.2 PROTECTION CONFIGURATION

Consider a scenario where different QoR classes have traffic demand between each node pair

in the upper layer. Demands should first be routed on the logical layer using the available

logical links. Then, each logical link is mapped to a physical path with enough capacity

to serve all upper layer demands. The logical routing should isolate the traffic of different

classes in order to keep them distinguishable such that the physical network can treat them

in a differentiated manner. This would result in multiple logical subnetworks. Some classes

can be assigned protection backup paths, and protection can be given at lower or upper

layer, as shown in Figures 6.1 and 6.2 respectively.

Let us, for instance, consider two classes of traffic. If protection is given at the lower layer,

class-1 traffic can be routed through logical paths that are mapped to the spine and protected

by link-disjoint backup paths at the physical layer. The group of logical links dedicated for

establishing class-1 paths (i.e., a logical subnetwork) is called the logical spine. Another

logical network can be configured to carry another class (call it class-4), and each logical
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class-1 WP LSP

class-1 BP LSP

class-2 LSP

class-3 LSP

class-1 WP lightpath

class-1 BP lightpath

class-2 lightpath

class-3 lightpath

4 LSPs belong to 3 classes:
∗ class1 protected at top
layer,
∗ class-2 single unprotected
LSP mapped on-spine
∗ class-s single unprotected
LSP mapped off-spine

Figure 6.3: Illustration of 3 classes with different configurations with protection, if applicable,

given on top layer.

link is mapped, say, into a single path routed freely in the physical layer. Each additional

class would require a separate logical network. On the other hand, when protection is given

at the upper layer, class-1 traffic working paths can be routed through logical paths that

are mapped to the physical layer spine. The group of logical links used for establishing

class-1 working paths form the logical spine. When a failure occurs, traffic is rerouted

through backup logical paths that are link-disjoint from their associated working paths at

both layers. Likewise, the group of logical links used for establishing backup paths is a

separate logical subnetwork. That is to say, using two link-disjoint logical subnetworks, one

for working paths and the other for backup paths, class-1 traffic can be given 1:1 protection

at top layer. Furthermore, each logical subnetwork can be utilized to carry an additional

unprotected traffic class. Specifically, one class is carried over the logical spine and another

class is carried over the other logical subnetwork. Hence there is a chance to utilize logical

links more efficiently. Figure 6.3 shows an illustration of three logical flows routed on two

logical subnetworks in a differentiated manner.
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Table 6.1: Possible protection configurations for a multilayer network with a spine.

QoR
Class

Protection at Bottom Layer Protection at Top Layer

General
configu-

ration

A dedicated logical subnetwork is
required for each QoR class.

Only two logical subnetworks are created.
One is mapped onto the spine.

1

P 7−→ (BP : WP s)
single logical path mapped to

link-disjoint path-pair, either path is
routed on spine.

BP : WP s 7−→ P : P s

logical link-disjoint path-pair routed through
links mapped into an underlying disjoint

path-pair one of them is on the spine.

2

P 7−→ BP : WP
single logical path routed through logical

links mapped freely to link-disjoint
path-pair.

BP : WP 7−→ P : P
logical link-disjoint path-pair routed
through links mapped freely into an

underlying disjoint path-pair.

3

P 7−→ P s

single logical path routed through links
mapped into the spine.

WP 7−→ P s

single logical path routed through the links
that are mapped to the spine – the same

logical subnetwork used by class-1.

4

P 7−→ WP
single logical path routed through links

mapped freely.

WP 7−→ P
single logical path routed through the links
that are mapped freely – the same logical

subnetwork used by class-2.

To get more insight into the difference between providing protection at bottom and top

layers, Table 6.1 shows the possible configurations for both problems with four classes of

traffic. The first class can be given a single logical path mapped to a path-pair with one

path on the spine (i.e., protection at lower layer) or can be given two logical paths each

mapped to a single underlay path one of them is on the spine (i.e., protection at upper

layer). The second class follows the same logic of the first class except it ignores the on-spine

restriction. The third class uses a single unprotected on-spine path, whereas the forth class

is unprotected but ignores the on-spine restriction. Note that we only consider a dedicated

path protection. Further configurations that deploy sharing protection schemes can also be

integrated into the design.
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6.3 PROTECTION AT LOWER LAYER

In this section, we consider the case in which protection can be given to connections at the

lower layer only, as shown in Figure 6.1. We formulate this problem as a mathematical

programming problem. Basically, the strategy is to (1) route logical flows on the logical

network, (2) aggregate the required bandwidth units on each logical link, and then (3) map

each link to an end-to-end physical path in the underlaying layer with enough capacity. The

mapping is performed in a differentiated manner based on the protection approach (e.g.,

number of classes supported, type of protection technique used). This will be explained in

the subsequent sections. The network design is evaluated in terms of the upper layer logical

links and flows availability and the physical capacity efficiency at the lower layer. First, we

summarize our notation as follows.

6.3.1 Notation

Sets:

Gg a network graph of type g: Gg = (Vg, Eg)

g P for physical, L for logical, or S for spine.

Vg(Eg) set of network nodes/vertices (links/edges).

Dφ set of end-to-end demands of class-φ.

Indexes:

v node index.

e link (edge) index.

dmnφ an upper layer symmetric demand (dmnφ ∈ Dφ).

i, j end nodes of a physical link, (i, j) ∈ EP .

s, t end nodes of a logical link, (s, t) ∈ EL.

m,n end nodes of a flow/demand, m,n ∈ VL.

φ the class of traffic.

WP (BP) Working path (Backup path).

P s the superscript s indicates a path/link is routed/mapped on the spine.
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7−→ mapped to.

Capacity:

cij input parameter indicating the capacity of physical link (i, j).

wstφ internal variable that measures the capacity on logical link (s, t) due to flows

of class φ.

Wst input parameter indicating the maximum capacity of logical link (s, t).

Availability:

aij availability of link (i, j).

AWP
st Working Path availability for logical link (s, t):

AWP
st =

∏
ij∈WPst

aij (6.1)

ABPst Backup Path availability for logical link (s, t) (similar to equation (6.1)).

Ast availability of logical link (s, t). Assuming WPst and BPst are fully edge-disjoint:

Ast = 1− (1− AWP
st )(1− ABPst ). (6.2)

Amn availability of flow mn.

Amn =
∏

st|mn 7→st

Ast (6.3)

EDT Expected downtime in hours per year. Given availability A:

EDThrs/yr = 24× 365× (1− A) (6.4)

Variables:

Xst,φ
ij a continuous variable denoting the amount of resources provisioned on physical

link (i, j) for realizing the WP of the logical link (s, t) carrying demands of class-φ.

Y st,φ
ij a continuous variable capturing the amount of resources provisioned on physical

link (i, j) for realizing the BP of the logical link (s, t) carrying demands of class-φ.

Z
dmnφ
st a continuous variable denoting the amount of demand mn of class φ routed

through logical link (s, t).

ξst a binary selector variable which indicates whether a logical link (s, t) is selected

(ξst = 1) or not (ξst = 0) (used in the MILP in the second problem).
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6.3.2 Network Model

We consider a two layer network composed of the physical network on the bottom represented

as GP with the set of nodes and links (VP , EP ), and on top the logical network GL represented

by the set of logical nodes and links (VL, EL). We assume that each logical node is connected

to its corresponding physical node (i.e., VL = VP ). Logical links are realized as paths in

the physical network. The spine is defined as a subgraph of the physical network, GP , with

a subset of nodes and links (VS, ES) in which VS ⊆ VP and ES ⊂ EP . To support full

connectivity between all node pairs, we select the spine to be a minimum spanning tree

which is the least cost connected graph. Hence, |ES| is strictly equal to |VP | − 1. Demands

between pairs are given as a demand matrix, Dφ, where φ is the class identifier. Demands

are first routed on the logical layer using the available logical links. Then, each logical link

is mapped to a physical path with enough capacity to serve all upper layer demands.

Note that the logical routing should isolate the traffic of different classes in order to

keep them distinguishable such that the physical network can treat them in a differentiated

manner. This would result in multiple logical networks, one for each class. In this part, we

consider two classes: flows of class-1 (φ = 1) which require high availability levels while class-

4 (φ = 4) are of a lesser importance and have no strict availability requirements. Therefore,

the flows of class-1 are routed on logical links that are mapped to a fully disjoint working

and backup path-pair at the physical network, one of which is restricted to be on the spine,

as shown in Figure 6.1. In contrast, the flows of class-4 are routed freely on the network with

no protection. In the following section, we present two different formulations of the design

problem.

6.3.3 Formulation

In this section, we formulate the QoR multilayer design problem for two approaches to

isolating the flows of the different classes.

6.3.3.1 Problem I: LP for duplicated logical links In the first problem, we assume

that each logical link is duplicated and each class would have a set of logical links that it
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can utilize exclusively. We formulate this problem as a Linear Programming (LP) problem

given by (6.5)-(6.14).

minimize
Xst,φ
ij ,Y st,φij

∑
φ

∑
ij∈Ep

∑
st∈EL

(Xst,φ
ij + Y st,φ

ij ) (6.5)

s.t.

∑
kt∈EL

Z
dmnφ
kt −

∑
sk∈EL

Z
dmnφ
sk =


dmnφ if k = m

−dmnφ if k = n

0 otherwise

,∀k ∈ VL, dmnφ (6.6)

∑
ik∈ES

Xst,φ
ik −

∑
kj∈ES

Xst,φ
kj =


wstφ if k = s

−wstφ if k = t

0 otherwise

,∀k ∈ VS, φ = 1 (6.7)

∑
ik∈EP

Xst,φ
ik −

∑
kj∈EP

Xst,φ
kj =


wstφ if k = s

−wstφ if k = t

0 otherwise

,∀k ∈ VP , φ 6= 1 (6.8)

∑
ik∈EP

Y st,φ
ik −

∑
kj∈EP

Y st,φ
kj =


wstφ if k = s

−wstφ if k = t

0 otherwise

,∀k ∈ VP , φ = 1 (6.9)

Xst,φ
ij + Y st,φ

ij ≤ wstφ , ∀(i, j) ∈ EP , (s, t) ∈ EL, φ (6.10)

∑
st∈EL

∑
φ

(Xst,φ
ij + Y st,φ

ij ) ≤ cij , ∀(i, j) ∈ EP (6.11)

∑
mn

∑
φ

Z
dmnφ
st ≤ Wst ,∀(s, t) ∈ EL (6.12)
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∑
mn

Z
dmnφ
st = wstφ ,∀(s, t) ∈ EL, φ (6.13)

Xst,φ
ij ≥ 0 , Y st,φ

ij ≥ 0, Z
dmnφ
st ≥ 0 (6.14)

The objective of the model (6.5) is to minimize the total physical resources used by all

logical links of all classes when carrying all flows. The first sets of constraints (6.6)-(6.9)

are the classical network flow conservation in the node-link formulation, namely: constraint

(6.6) deals with routing the demands at the logical layer, constraint (6.7) maps the total

capacity required by a logical link carrying class-1 demands onto a physical path on the

spine, constraint (6.8) deals with mapping class-4 logical links with no restriction, and lastly

constraint (6.9) maps a class-1 logical link into a redundant backup path. Note that in the

duplicate problem, variables Z
dmnφ=1

st and Z
dmnφ=4

st used for routing demands of class-1 and class-4

are independent and each can utilize a similar set of logical links. Constraint (6.10) ensures

that a working-backup path-pair realizing a logical link is disjoint. Specifically, for each

logical link (s, t), it only allows one variable, either a working path (WP) or a backup path

(BP) variable, to provision the capacity of the logical link, wstφ . Constraints (6.11) and (6.12)

ensure that the aggregate capacity provisioned on physical and logical links, respectively, are

below their maximum limits. Constraint (6.13) determines the aggregate capacity of class

φ demand that is routed on a logical link. Lastly, constraint set (6.14) defines the non-

negativity requirements of the decision variables as described in the notation Section 6.3.1.

6.3.3.2 Problem Type II: MILP for partitioned logical network In contrast to

the first method, in this case, the logical networks of the different classes do not necessarily

need to be identical. Instead, the logical network is partitioned into two subnetworks, each

is capable of carrying all demands of a particular class. In the first method, where each

logical link in the network is duplicated for each class may not be efficient since the logical

links of each class will have different mapping considerations (e.g., on spine, protected, etc.)

and consequently they might have different routing preferences in the logical layer. Hence

splitting up the set of logical links into subsets based on class can be a more reasonable way

to achieve separation between different classes.
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By slightly modifying the previous LP, we can formulate this approach as a Mixed Integer

Linear Programming (MILP) problem. Specifically, we define a binary selector variable ξst,

and add the following constraints:

∑
mn

Z
dmn
φ

st −Mξst ≤ 0 ,∀(s, t) ∈ EL, φ = 1 (6.15)

∑
mn

Z
dmn
φ

st −M(1− ξst) ≤ 0 ,∀(s, t) ∈ EL, φ = 4 (6.16)

ξst ∈ (0, 1) is binary (s, t) ∈ EL (6.17)

where M is a large constant value. This ensures that when ξst is equal to 1 the logical link

can only be used by class-1 demands, otherwise it can only be used by class-4 demands.

6.3.4 Numerical Study

6.3.4.1 Scenarios We consider the Polska, NSF, Spain, EPAN, and Italia14 networks

for our numerical study. Table 6.2 shows the number of nodes and links in the physical layer

of these networks. For each physical network, we use three spines from the spines computed

Table 6.2: Test Networks.

GP Network |VP | |EP | |EP |
|VP |

diameter
Spine diameter

S1 S2 S3

1 Polska [Table 5.3] 12 18 1.50 4 8 5 6

2 NSF [Table 5.5] 14 19 1.36 4 7 6 9

3 Spain [Table 5.5] 14 22 1.57 5 6 5 7

4 Italia14 [Table 5.3] 14 29 2.07 3 4 3 4

5 EPAN [Table 5.5] 16 23 1.44 6 8 7 11
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Figure 6.4: The layout of the spines used for the test networks.
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in Table 5.3 for the Polska and Italia14 networks and in Table 5.5 for the NSF, Spain, and

EPAN networks. The layouts of these spines are shown in Figure 6.4. The first spine, GS1 , is

the spine that maximizes the average WP-BP path-pair availability AS, with the WP routed

on the spine and the BP is routed freely on the network and conditioned to be disjoint from

the WP. The second spine, GS2 , maximizes the average WP path availability on the spine

AWP
S . Since the spine with largest AWP

S rarely corresponds to the spine with largest AS,

the third spine, GS3 , was picked as a compromise solution having availability in between the

spines GS1 and GS2 as discussed in Section 5.3.3. For example, the physical Polska network,

which consists of 12 nodes and 18 links, is shown in the bottom layer of Figure 6.5 with red

links (in bold) representing a spine, black links represent links that are not part of the spine,

and the top part of each figure is a logical network. Note that the spines in Figures 6.5a,

6.5b, and 6.5c have a diameter of 8, 5 and 6, respectively. Hence, although the third spine

will result in a slight reduction on the average end-to-end availability AS with respect to the

first spine, its paths will require less resources than the paths in the first spine and its AWP
S

value is close to that of the second spine (see Table 5.3). In general the compromise spine

can be determined in a number of ways such as optimizing a weighted combination of AS

and AWP
S or maximizing the minimum flow availability (this is the case for NSF and EPAN,

see Table 5.5).

For the logical layer, we generate a number of k-regular random graphs with the same

set of physical nodes, VL = VP , using k =3, 4, 5, 6, and 7. These random graphs can be

completely random, as in Figure 6.5a, or random with a preselected set of links, as shown in

Figure 6.5b where links in bold blue are preselected to match the links on the spine.

For each spine, we ran 14 scenarios that are shown on the left side of Table 6.3 where

S1, S2 and S3 refer to the spines shown in Figure 6.4 for each network. These scenarios vary

in a number of criteria: node degree of the k-regular graph, whether the graph is completely

random or not, and the problem type, duplicate or partitioned logical network. Each scenario

is repeated 7 times and the results are averaged. Further, we consider a full mesh of upper

layer flows with a single unit bandwidth demand for each class (dmnφ = 1, ∀φ,mn).

We compare the averaged results in terms of resource use, logical link availability per

class, and end-to-end flow availability per class. Resource use is the amount of reserved
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(c) GS3 , partitioned logical network GL
with k = 4, resulted subnetwork-X in
bold (scenario# 7).

Figure 6.5: Polska network with different spines and logical networks.

physical capacity required to realize the logical links required bandwidth. This is given

by the objective function (6.5) in the optimization problem. We assume unlimited band-

width capacity at both the physical and logical layers, effectively relaxing constraints (6.11)

and (6.12). Then mapping and routing information are used to compute logical link avail-

ability Ast and logical flow availability Amn for each link and flow using equations (6.1)-

(6.3). After computing individual link and flow availabilities, we use the average values Āst

=
∑

st∈EL Ast/|EL| and Āmn =
∑

dmnφ ∈Dφ
Amn/|VL| × (|VL| − 1)/2 as metrics for comparison.

Additionally we compare the minimum link Amin
st = minst∈EL Ast and minimum flow avail-

abilities Amin
mn = mindmnφ ∈Dφ Amn which determine the maximum expected downtime in hours

per year as in equation (6.4).

6.3.4.2 Results We use AMPL/CPLEX and AMPL/Gurobi on NEOS server [129–131]

to solve our models. The results are with 0% integrality gap for the duplicate scenarios

and within a 1% integrality gap for the partitioned logical network scenarios. Instances

that require computing resources more than the NEOS server offers are solved using Gurobi

solver on a local computer. The main objective of our design is to minimize the total physical

resources used for realizing logical links carrying demands of both classes. Table 6.3 shows
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Table 6.3: Average resource use for the three spines in all scenarios.
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the resources used by each class for all scenarios. Examining the results, we can make a

number of observations as follows.

First, the resource use decreases as the logical network gets denser. For example, in all

networks, scenario 6 with the largest number of logical links yields the least resource use.

This is because by adding more logical links, we actually increase the probability of finding

a shorter logical route/physical mapping combination. Second, there is a slight decrease in

resources when spine links are preselected in the logical network. This is more apparent in

the results for class-1 and class-4 WPs. For example, there is a significant difference between

resource use in scenario 1 and 2 in all networks and for all the three spines. The difference

diminishes as the logical network gets denser. The spine, typically, does not follow the

shortest path as we cannot combine all shortest paths in a single spanning tree. Since class-1

logical links are restricted to be mapped to paths on the spine, it is likely that the spine

would incur more resources, however this depends on the spine’s design. In order to evaluate

the spines under study in terms of resource efficiency, we compare the resources used for

class-1 WPs to resources used by class-4 logical links. We expect the latter to be mapped to

the shortest physical path, but the end results of resource usage is also affected by the layout

of the logical layer. Class-1 WPs resources are rarely less than class-4 resources and only

occurs in the partitioned logical network scenarios. For example, for the Polska network the

percentages of the difference between the resources used by class-1 WPs on the spine and

class-4 range from 64% to -8% for S1, 33% to -2% for S2, and 37% to -16% for S3. A third

observation can be made comparing the resource utilization between the two problem types.

In order to compare the two types properly, we consider similar scenarios with comparable

number of logical links: specifically scenarios 1 and 2 with 36 logical links to scenarios 11 and

12, respectively. Similarly, 3 and 4 to 13 and 14. Take the Polska network as an example,

when the logical network is completely random (i.e., scenario 1 versus 11 & 3 versus 13),

the partitioned network problem scenarios require, on average, 9.2-20.7% less resources than

the problem with duplicate links. In contrast, the difference becomes negligible when some

links are preselected (i.e., scenario 2 versus 12 & 4 versus 14). Though, the latter case might

vary across networks e.g., for Spain and Italia14, scenario 12 requires more resources than

scenario 2.
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After solving the optimization problems, we use path and mapping information to cal-

culate the logical links and flows expected downtimes. We only consider links availability

(i.e., assuming nodes are perfect). As noted earlier we use ae=0.999 for links on the spine

(e ∈ ES) and ae=0.99 for links off the spine (e ∈ EP but e 6∈ ES). Table 6.4 shows the average

and maximum expected logical link downtime for each class and for each scenario and spine.

Similarly, Table 6.5 shows the average and maximum expected flow downtime for each class.

First, the same observation made about logical graph density and resource efficiency holds

true with respect to flow downtime values. Second, it is clear from both tables that class-1

links and flows achieve much smaller downtime values with averages less than an hour per

year compared to class-4 averages which are in orders of tens of hours per year. Also the

spine can improve network and services availability differentiation by widening the spread of

availability values between the two classes. Note, that this was achieved using only a single

backup path protection with no need to using higher configurations (e.g., 1+2, or 1+3).

Hence the approach easily enables QoR class differentiation.

To get more insight into the resource use and flow availability of the spine model, we

compare our results to a baseline model. The model assumes homogenous link availability

at the physical layer in which no spine is embedded and all links have the same availability

ae. In order to have an equivalent network with a comparable cost, ae is set to a weighted

average of the on-spine and off-spine availability, ae = 0.999|ES |+0.99|E−ES |
|E| . Logical links are not

constrained to be mapped to a spine, and this results in replacing Es in our LP formulation

by Ep, with everything else remaining the same. Class-1 logical links are mapped to WP-BP

path-pairs, i.e., 1+1 protection, class-4 links are mapped to single paths, and flows are routed

on logical links based on their classes. We solve this model for six of the aforementioned

scenarios, and compare them to the results of the spine model in Tables 6.3 and 6.5. First,

Table 6.6 shows the total resource use for the no-spine model and the percentage of increase

in these resources required by the spine model. The percentage of resource increase across

all networks ranges from 0.4% to 13.2%, with an average of 5.7% for Polska, 4.9% for NSF,

5.7% for Spain, 3.6% for Italia14, and 6.1% for EPAN, which are reasonable. Notice that the

preselected logical network scenarios always show better resource efficiency. Also the results

show that the second spine S2, in all networks, requires only a few extra resources more than
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Table 6.4: Average and maximum logical link expected downtime.
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Table 6.5: Average and maximum logical flows expected downtime.
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Table 6.6: A comparison of the resource use between the spine and the baseline model.

the baseline model. This confirms that the design of the spine as well as the logical network

layout are of high significance to the whole model. Second, in terms of availability levels

offered by the network, Table 6.7 shows the average and maximum expected downtimes for

both class-1 and class-4 logical flows in the no-spine model. By comparing these results to the

results of the spine model in Table 6.5, we observe that on average the expected downtimes

for class-1 of the no-spine model are 3 times larger than the corresponding results of the

spine model for the Polska, Spain and EPAN networks, 2 times for the NSF, and 4 times

for Italia14. Class-4 downtimes in Table 6.7 are fairly similar to the spine model (Table 6.5)

in all networks except Italia14 and Polska networks where it is on average 2 and 1.6 times,

123



Table 6.7: Average and maximum flow expected downtime for the baseline model.

respectively, the downtime of the spine model. The no-spine model, however, achieves lower

maximum flow downtimes with respect to class-4. In general, the results in Tables 6.6 and 6.7

show that the spine model stretches the upper bound of the availability of the 1+1 protection

to offer a higher availability level with a fairly small increase in resource use.

Note that the utility of the spine depends on the cost of designing the spine and the traffic

load. In particular, the percentage of class 1 traffic affects the amount of extra resources

needed, here the percentage is 50%, in reality we would expect it to be a much smaller

percentage (e.g., ≤ 5%). For this, we repeat some of the aforementioned scenarios and vary
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Table 6.8: Traffic ratio scenarios.

# scenario Traffic ratio Class-1 demand Class-4 demand
d1 50/50 1 1
d2 25/75 0.5 1.5
d3 20/80 0.3 1.7
d4 10/90 0.2 1.8
d5 05/95 0.1 1.9

the ratio of the traffic between the two classes. We consider four additional scenarios besides

the previous scenario (50/50). Table 6.8 shows the tested scenarios and the corresponding

class-1/class-4 traffic ratio and the unit of demand for each class. Note that the total sum of

all the scenarios is kept the same (full mesh, 2 units of demand). We compare the percentage

of increase in resources usage compared to the no spine case (i.e., the baseline model) for the

Polska network case. The results are shown in Figure 6.6. One can observe that in almost

all scenarios the spine model requires less additional resources compared to the no spine

model as the percentage of class-1 traffic decreases. This, however, comes at the expense of

increasing class expected downtimes, especially in the partitioned problem. Technically, as

class-4 traffic increases it becomes the dominant part of the objective function (6.5). Hence

the algorithm, in order to minimize the total resources, assigns shorter logical paths to class-

4 flows. To overcome this limitation, we can add weights to the objective function to control

the dominance of either class.

6.4 PROTECTION AT UPPER LAYER

The multilayer spine model introduced in Section 6.3 requires each class of traffic to maintain

a separate logical network. Hence the number of logical subnetworks is proportional to the

number of classes. This is not only because the mapping into or off the spine is projected

toward the physical layer, but also because the differentiation in protection occurs at the

physical layer. However, providing protection at the upper layer changes the proportional

relation between the number of logical subnetworks and classes.
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(b) Partitioned scenarios.

Figure 6.6: Percentage of increase in total resources compared to the baseline model for the

Polska network.
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Here, we consider a two layer network as in Figure 6.2, where GP , GL, GS, and Dφ are

given. Also we consider two classes of flows: flows of one class require high availability

levels while flows of the other class are of a lesser importance and have no strict availability

requirements i.e., class 1 and 4 in Table 6.1, respectively. Flows of the high availability

class are routed through a fully link-disjoint working and backup logical path-pair. One of

either paths is required to be routed through logical links that are mapped entirely to the

physical layer spine. The other logical path is mapped to an unrestricted underlay path that

is disjoint from the path on the spine. None of the physical paths are protected. Flows of

the lower availability class are routed freely on the network through a logical path mapped

to an unprotected physical path. Therefore, one can distinguish two logical networks based

on their mapping. Further, the two logical networks can be used to route additional classes,

i.e., class 2 and 3 in Table 6.1. Flows of Class-2 can be routed through a fully or partially

link-disjoint logical path-pair that are mapped freely on the network (i.e., on the same logical

network of class-4). Class-3 flows are routed on the same logical network of class-1 but with

no protection. Class-2 and class-3 flows are expected to have availability less than class-1

and higher than class-4 flows.

6.4.1 Notation

In addition to the notation described in Section 6.3.1, we define the following:

Availability:

aij availability of physical link (i, j).

Ast availability of logical link (s, t):

Ast =
∏

ij|st 7−→ij

aij (6.18)

AWP
mn (ABPmn) availability of flow mn working path (backup path).

AWP
mn =

∏
st|WPmn 7−→st

Ast (6.19)

127



Amn assuming WPmn and BPmn are fully edge-disjoint:

Amn = 1− (1− AWP
mn ) (1− ABPmn) (6.20)

EDT Expected downtime in hours per year. Given availability A:

EDThrs/yr = 24× 365× (1− A) (6.21)

Variables:

Zx
dmnφ
st (Zy

dmnφ
st ) a continuous variable denoting the amount of class φ demand mn’s WP

(BP) routed through logical link (s, t).

Xst
ij (Y st

ij ) a binary variable indicating whether logical link (s, t) on logical network

X (Y ) is mapped to physical link (i, j).

Bx
mn,φ
st
ij

(By
mn,φ
st
ij

) a continuous variable denoting the resources provisioned on physical link

(i, j) to serve class-φ demand mn’s WP (BP) that is routed through logical

link (s, t) on logical network X (Y ).

xst (yst) a binary variable indicates whether a logical link (s, t) is selected in logical

network X (Y ).

χmnij (ψmnij ) a binary variable indicates whether demand mn uses physical link (i, j)

as a part of its crosslayer WP (BP).

6.4.2 Problem Statement

Given a network, we create two logical subnetworks, named X and Y . Links of the logical

subnetwork X are mapped onto the physical spine to create a logical spine with high avail-

ability, whereas logical subnetwork Y links are mapped unrestricted on the network. This

can be done in one of two ways: duplicate logical links or a partitioned logical network. In

the first approach, we assume that each logical link is duplicated and a similar set of links

would be part of the logical subnetwork X and Y . Although both subnetworks have the

same set of links, similar links are likely to have different mapping and bandwidth. In the

second method, the logical network is partitioned into two subnetworks X and Y , and the

logical links are split into two non-overlapped sets.

128



It is expected that subnetwork X will have higher availability than Y as it will be mapped

entirely on the spine. Thus subnetwork X can be set up to carry the working path for flows

that require high availability (i.e., class-1) while subnetwork Y carries the backup paths of

these flows. It is required that the path-pair for each flow is fully link disjoint which means

the WP on X and the BP on Y share no common physical link. Note that the disjointness

requirement might lengthen these paths, so it is more appropriate to find shorter paths on

each network if disjointness is not required. Hence, after creating the logical subnetworks,

flows with lower availability requirements (i.e., class-3 & 4 in Table 6.1) can be routed on

X or Y by performing weighted routing.

Here we propose a Mixed Integer Linear Programming (MILP) that finds the logical

subnetworks X and Y and performs appropriate mapping to have differentiated logical routes

for upper layer flows. Further, we propose a Linear Programming (LP) formulation for

routing lower classes flows on these subnetworks.

6.4.3 Problem Formulation

6.4.3.1 Logical Subnetworks Design Problem Formulation We formulate the prob-

lem of determining subnetworks X and Y as a Mixed Integer Linear Programming (MILP)

problem given by (6.22)-(6.46). This formulation can be used for both the duplicate logical

links or the partitioned logical network problem with a minor addition for the latter. The

aim is to create two logical subnetworks mapped in a way such that they have different levels

of availability and support a fully link-disjoint path-pair between any two communication

nodes. The objective of the MILP problem (6.22) is to minimize the total resources reserved

in the physical links (i.e., provisioned capacity) for routing and mapping all upper layer

flows and links. This includes both working and backup resources. Most of the constraints

are shown here in pairs; one for X and the other for Y . The main difference is the mapping

scope i.e., the spine or the entire network.

minimize
Bx

mn,φ

st

ij
By

mn,φ

st

ij

∑
φ

∑
mn

∑
st∈EL

(
∑
ij∈ES

Bx
mn,φ
st
ij

+
∑
ij∈EP

By
mn,φ
st
ij

) (6.22)

s.t.
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∑
kt∈EL

Zx
dmnφ
kt −

∑
sk∈EL

Zx
dmnφ
sk =


dmnφ if k = m

−dmnφ if k = n

0 otherwise

∀k ∈ VL, dmnφ , φ = 1 (6.23)

∑
kt∈EL

Zy
dmnφ
kt −

∑
sk∈EL

Zy
dmnφ
sk =


dmnφ if k = m

−dmnφ if k = n

0 otherwise

∀k ∈ VL, dmnφ , φ = 1 (6.24)

∑
mn

Zx
dmnφ
st ≤Mxst

∑
mn

Zx
dmnφ
st ≥ xst ∀(s, t) ∈ EL, φ = 1 (6.25)

∑
mn

Zy
dmnφ
st ≤Myst

∑
mn

Zy
dmnφ
st ≥ yst ∀(s, t) ∈ EL, φ = 1 (6.26)

∑
kj∈ES

Xst
kj −

∑
ik∈ES

Xst
ik =


xst if k = s
−xst if k = t
0 otherwise

∀k ∈ VS (6.27)

∑
kj∈EP

Y st
kj −

∑
ik∈EP

Y st
ik =


yst if k = s
−yst if k = t
0 otherwise

∀k ∈ VP (6.28)

Xst
ij +Xst

ji ≤ 1 ∀(i, j) ∈ ES , (s, t) ∈ EL (6.29)

Y st
ij + Y st

ji ≤ 1 ∀(i, j) ∈ EP , (s, t) ∈ EL (6.30)

∑
ij∈ES

Xst
ij +

∑
hi∈ES

Xst
hi ≤ 2 ∀i ∈ VS , (s, t) ∈ EL (6.31)

∑
ij∈EP

Y st
ij +

∑
hi∈EP

Y st
hi ≤ 2 ∀i ∈ VP , (s, t) ∈ EL (6.32)

∑
kj∈ES

Bx
mn,φ
st
kj
−
∑
ik∈ES

Bx
mn,φ
st
ik

=


Zx

dmnφ
st if k = s

−Zx
dmnφ
st if k = t

0 otherwise

∀k ∈ VS , φ = 1 (6.33)

∑
kj∈EL

By
mn,φ
st
kj
−
∑
ik∈EL

By
mn,φ
st
ik

=


Zy

dmnφ
st if k = s

−Zy
dmnφ
st if k = t

0 otherwise

∀k ∈ VP , φ = 1 (6.34)
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Bx
mn,φ
st
ij
≤M Xst

ij ∀(i, j) ∈ ES , (s, t) ∈ EL, dmnφ (6.35)

By
mn,φ
st
ij
≤M Y st

ij ∀(i, j) ∈ EP , (s, t) ∈ EL, dmnφ (6.36)

∑
mn

Bx
mn,φ
st
ij
≥ Xst

ij ∀(i, j) ∈ ES , (s, t) ∈ EL (6.37)

∑
mn

By
mn,φ
st
ij
≥ Y st

ij ∀(i, j) ∈ EP , (s, t) ∈ EL (6.38)

∑
st∈EL

Bx
mn,φ
st
ij
≤M χmnij ∀dmnφ , (s, t) ∈ EL, (i, j) ∈ ES , φ = 1 (6.39)

∑
st∈EL

By
mn,φ
st
ij
≤M ψmnij ∀dmnφ , (s, t) ∈ EL, (i, j) ∈ EP , φ = 1 (6.40)

χmnij + ψmnij ≤ 1 ∀dmnφ , (i, j) ∈ ES (6.41)

∑
φ

∑
st∈EL

(Bx
mn,φ
st
ij

+By
mn,φ
st
ij

) ≤ cij ∀(i, j) ∈ EP (6.42)

∑
φ

∑
mn

(Zx
dmnφ
st + Zy

dmnφ
st ) ≤Wst ∀(s, t) ∈ EL (6.43)

xst + yst ≤ 1 ∀(s, t) ∈ EL (6.44)

Xst
ij , Y st

ij , xs,t, ys,t, χmnij , ψmnij binary (6.45)

Zx
dmnφ
st , Zy

dmnφ
st , Bx

mn,φ
st
ij
, By

mn,φ
st
ij

≥ 0 (6.46)

The formulation adapts multiple sets of flow conservation constraints shown by constraint

sets (6.23),(6.24),(6.27),(6.28),(6.33), and(6.34) to find eligible paths in both layers. First,

constraint sets (6.23) and (6.24) route logical demands (flows) of QoR class-1 (φ = 1)

through working paths and backup paths on the logical layer, respectively. Constraints

(6.25) and (6.26) translate the routing variables into binary variables and determine whether

a logical link is used. The next two sets perform the restricted crosslayer mapping for

logical links using binary variables Xst
ij and Y st

ij . A logical link is mapped only if it is used.

The mapping can be on-spine as in constraint set (6.27) or freely on the network as in

(6.28). Constraint sets (6.29)-(6.32) ensure the mapping is loop free i.e., forbid revisiting
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a link or a node in the physical path. The last flow conservation constraint sets (6.33)

and (6.34) perform the crosslayer routing and mapping for each flow. Constraints (6.35)

(6.36), (6.37) (6.38) relate the per-flow crosslayer routing/mapping variables Bx
mn,φ
st
ij

and

By
mn,φ
st
ij

to the binary logical link mapping variables Xst
ij and Y st

ij , respectively. In other

words, these constraints ensure the per-flow mapping is consistent with the link mapping,

such that, each logical link is mapped onto one path only. The big-M here is a constant set

to M =
∑

mn d
mn
φ=1. Then, constraint sets (6.39) and (6.40) transfer these per-flow variables

Bx
mn,φ
st
ij

and By
mn,φ
st
ij

into binary variables χmnij and ψmnij . It forces the binary variable to one

if flow mn is routed through any logical link (s, t) that is mapped to the physical link (i, j).

Further for each protected flow mn, constraint (6.41) ensures that logical links carrying

resources for a particular logical path-pair are mapped to diverse lower layer paths. The

big-M in these constraints is set to M = 10×
∑

mn d
mn
φ=1. Constraint sets (6.42) and (6.43)

are the capacity constraints of the physical and logical links, respectively. For the partitioned

logical network problem, constraint set (6.44) is added to separate the logical spine X from

the other logical subnetwork. Lastly, constraints (6.45) and (6.46) declare the variables.

6.4.3.2 Routing on Logical Subnetworks Problem Once we create the two logical

subnetworks, we can route logical demands for lower QoR classes (i.e., class 3 and 4 in

Table 6.1). From the obtained results, we use the binary mapping variables Xst
ij and Y st

ij to

compute weights w(xst) and w(yst) for logical links on subnetwork X and Y , respectively, as

follows:

w(xst) =
∑
ij∈ES

Xst
ij (6.47) w(yst) =

∑
ij∈EP

Y st
ij (6.48)

These weights represent the capacities needed in the lower layer for a logical link to carry

a single unit of flow. Now, let dmnφ ∈ Dφ be the upper layer demands of QoR class φ

between node pair mn. Similarly, Zx
dmnφ
st (Zy

dmnφ
st ) takes the same definition as in the previous

formulation. Then, we solve the LP problem below to find the minimum weight routes for

demands on each subnetwork:
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minimize
Zx

dmn
φ=3
st Zy

dmn
φ=4
st

∑
mn

∑
st∈EL

[
w(xst) · Zx

dmnφ=3

st + w(yst) · Zy
dmnφ=4

st

]
(6.49)

s.t.

∑
kt∈EL

xkt · Zx
dmnφ
kt −

∑
sk∈EL

xsk · Zx
dmnφ
sk =


dmnφ if k = m

−dmnφ if k = n

0 otherwise

∀k ∈ VL, dmnφ , φ = 3 (6.50)

∑
kt∈EL

ykt · Zy
dmnφ
kt −

∑
sk∈EL

ysk · Zy
dmnφ
sk =


dmnφ if k = m

−dmnφ if k = n

0 otherwise

∀k ∈ VL, dmnφ , φ = 4 (6.51)

Although for a class-1 demand it is ensured (by the MILP formulation) that the WP in

subnetwork-X is physically disjoint with the BP path in subnetwork-Y, the LP allows a path

(in subnetwork-X) for a class-3 demand to share physical links with a path (in subnetwork-Y)

for a class-4 demand.

6.4.4 Computational Complexity

The logical subnetwork design problem of subsection 6.4.3.1 is NP-complete since the problem

of finding crosslayer disjoint path-pairs in multilayer networks was shown to be NP-complete

[132, 133]. This suggests that solving the MILP in (6.22)–(6.46) for optimal solution is

only possible for small instances and might incur excessive time for large networks, or be

intractable. Also note that the partitioned logical network version of the proposed problem

becomes even more complex after adding constraint set (6.44) (i.e., an over-constrained prob-

lem [134]). Our numerical results confirm this, as we were able to solve the proposed MILP

for a number of networks using the Gurobi solver (with the built-in ILP relaxation methods).

The execution time was, roughly, on the order of tens to hundreds of seconds for the dupli-

cate logical network problem and tens of minutes to a few hours for the partitioned version

of the problem. The routing problem of subsection 6.4.3.2 is a linear programming problem

(LP) which can be solved in polynomial time bound fashion using interior point method or

the simplex method. Here the execution time was on the order of a few milliseconds.
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6.4.5 Numerical Study

6.4.5.1 Scenarios We consider the same set of scenarios used in Section 6.3.4.1. For

each network and spine, we ran 14 scenarios as shown on the left side of Table 6.9 where

S1, S2 and S3 refer to the spine number. These scenarios vary in a number of criteria: node

degree of the k-regular graph, whether the graph is completely random or not, and the

problem type, duplicate or partitioned logical network. Each scenario is repeated 7 times

and the results are averaged. Further, we consider a full mesh of upper layer traffic flows

with a single unit bandwidth demand for each traffic class (dmnφ = 1, ∀ φ, mn). An upper

layer flow can be routed through a single path on X (QoR class-3), a single path on Y (QoR

class-4), or a disjoint path-pair through X and Y (QoR class-1). A path-pair on Y only

(QoR class-2) is not included here.

We compare the averaged results (i.e., over the 7 repetitions) in terms of resource use,

logical link availability per subnetwork, and end-to-end flow availability per path type. Re-

source use is the amount of physical capacity required to realize the logical links aggregate

bandwidth. This is given by the objective function (6.22) in the optimization problem. We

assume unlimited bandwidth capacity at both the physical and logical layers, effectively

relaxing constraints (6.42) and (6.43). The mapping and routing information are used to

compute logical link availability ast and logical flow availability amn for each link and flow

using equations (6.18)-(6.20). This is computed for logical subnetworks X and Y and for

each path type. After computing individual link and flow availabilities, we use the average

values Āst =
∑

st∈EL Ast/|EL| and Āmn =
∑

mn∈D Amn/|VL| × (|VL| − 1)/2) as metrics for

comparison. Additionally we compare the minimum link availability Amin
st = minst∈EL Ast

and minimum flow availability Amin
mn = minmn∈D Amn which are used determine the expected

downtime in hours per year as in equation (6.4).

6.4.5.2 Results We use AMPL/Gurobi on NEOS server [129–131] to solve our models.

The results are with 0% integrality gap for the duplicate scenarios and within a 3% integrality

gap for the partitioned logical network scenarios, and throughout our analysis we compare

the results to the results obtained in Section 6.3, for the model which provides protection at
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the bottom layer utilizing the spine.

Resource Use for QoR class-1 Traffic: The main objective of our design is to minimize

the total physical resources used for realizing logical links of both subnetworks. Table 6.9

shows the resources used by path type for all scenarios considering only QoR class-1 flows

with demand dmnφ = 1, ∀mn, φ = 1. Note that table entries “n/a” means that the model is

infeasible. The reason for such a case is that the layout and density of the logical network is

insufficient to satisfy the disjointness constraint in the lower layer.

Examining the results for the Polska network, we can make a number of observations

as follows. First, resource use decreases as the logical network gets denser. For example,

scenario 6 with the largest number of logical links yields the smallest resource use. Second,

there is a 7.1, 17.1, and 16.8% decrease in resources for spine S1, S2 ,and S3 respectively, when

spine links are preselected in the logical network. A third observation can be made comparing

the resource utilization between the two problem types (i.e., duplicate versus partitioned).

In order to compare the two types properly, we consider similar scenarios with comparable

number of logical links: specifically scenarios 1 and 2 with 36 logical links to scenarios 11 and

12, respectively. Similarly, 3 and 4 to 13 and 14. When the logical network is completely

random (e.g., scenarios 1 & 3), 17.6–35.2% more resources are required for the problem

with duplicate links. In contrast, this percentage becomes at most 17% when some links

are preselected (e.g., scenarios 2 & 4). Fourth, the contribution of the working paths (paths

on X) to the total resources needed for the path-pair (QoR class-1) is less than the backup

paths (paths on Y ) contribution. For example, for the Polska network the contribution of

the WP to the total resources (averaged over the 14 scenarios) is 47.6, 43.5, 45.3% for S1,

S2, and S3 respectively, compared to 52.4, 56.5, 54.7% for the BP contribution. Fifth, S2

(i.e., the spine with maximum path availability on the spine) always requires lower resources.

Further, spines with shorter diameters (see Table 6.2) tend to require less resources, e.g.,

for the Polska network, in 12 of the 14 scenarios, S3 requires less resources than S1 and is

the second best regarding total resource usage. Moreover, the results for the other networks

(NSF, Spain, Italia14, EPAN) are consistent with the observations above.

Note that our observations are similar to the ones obtained in Section 6.3.4.2 with pro-

tection given at the lower layer. However, configuring protection at the upper layer yields a
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Table 6.9: QoR class-1 average resource use for the three spines in all scenarios.
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Table 6.10: Total resources used for QoR class-1 in the two protection configurations (Bottom

Layer results shown in Table 6.3.
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better resource utilization. Table 6.10 compares the total resources required for QoR class-1

in the two protection configurations. Take the Polska network as an example, we found that

providing a path-pair for each flow (QoR class-1) at the upper layer requires, on average,

19.4, 12.7, and 12.0% less resources than the case with path-pairs given at the physical layer

for S1, S2, and S3 respectively. However, we see no clear pattern across all cases of whether

the WP or the BP contributes more to these differences. One also can see in the table that

when the logical topology is preselected the difference in the total resources becomes larger.

In addition, the denser the physical network (e.g., Italia14), the lower the difference between

the two configurations.

Routing on Logical Subnetworks: For routing lower classes flows, we solve the LP given

by (6.47)-(6.51) for the 14 scenarios for spine S2. We compute the resources required by

single path on X (i.e., class-3) and single path on Y (i.e., class-4) with demand dmnφ = 1,

∀mn, φ = 3, 4. Table 6.11 shows the resources used by both QoR class-3 and class-4 traffic for

the five test networks. As mentioned earlier that these paths are not required to be disjoint,

and hence might show a lower sum than QoR class-1. In addition, Table 6.12 compares

the resources for single path on Y (class-4) obtained here for S2 to results obtained for

class-4 in Table 6.3. The negative sign indicates less resources are needed for the protection

configuration in the top layer, which only appears in the partitioned scenarios. One can

see that the resources needed for providing QoR class-4 is not determined by the protection

configuration and is very dependent on the logical topology and the problem type.

Availability: After solving the optimization problems, we use path and mapping infor-

mation to calculate the logical links and flows expected downtimes. We only consider link

availability (i.e., assuming nodes are perfect). As noted earlier we use ae=0.999 for links on

the spine (e ∈ ES) and ae=0.99 for links off the spine (e ∈ EP but e 6∈ ES). Table 6.13 shows

the average and maximum expected logical link downtime for each subnetwork, scenario,

spine, and network. First, the same observation as made about logical graph density and

randomness versus resource efficiency holds true with respect to downtime values. Second,

it is clear from Table 6.13 that subnetwork X, which is mapped to the spine, achieves much

smaller downtime values compared to subnetwork Y . Third, using these two subnetworks

and a single protection scheme, we were able to create three different QoR classes of avail-
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Table 6.11: Resource use for unconstrained routing on logical subnetworks X and Y for spine

S2. (* path-pair is not disjoint)
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Table 6.12: A comparison of the resource use for single unprotected paths for spine S2

between the two configurations.
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Table 6.13: Average and maximum logical link expected downtime.
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Table 6.14: Average and maximum logical flows expected downtime.
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ability as shown in Table 6.14. From Table 6.14 one can see for the Polska network and

across the scenarios, the average expected downtime per year for QoR class-1 ranges from

31 to 56 minutes for S1, 35 to 128 minutes for S2, and 34 to 129 minutes for S3. The average

downtime per year for QoR class-3 ranges from 30 to 36 hours for S1, 23 to 47 hours for S2,

and 25 to 52 hours for S3. Lastly for QoR class-4, the average downtime per year is more

than 6.1 days for S1, 8.3 days for S2, and 7.7 days for S3. Note that the lowest downtime

values, in the five networks, commonly coincide with scenarios 6 and 14. Also with just a

few exceptions, the preselected logical link network scenarios achieve much lower downtimes.

This shows the impact of the logical network topology on the design. Further, we compare

the downtime results with the ones obtained earlier in Section 6.3.4. Figures 6.7 to 6.11

show the average flows expected downtimes (in log-scale) for the two protection configura-

tions on the test networks. One can see the range of the three QoR classes (1, 3, 4) for the

configuration with protection at upper layer compared to the two QoR classes (1, 4) of the

second configuration.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Scenario

10
-1

10
0

10
1

10
2

10
3

A
v

er
ag

e 
ex

p
ec

te
d

 f
lo

w
 d

o
w

n
to

w
n

 

(h
rs

/y
r 

in
 l

o
g

 s
ca

le
) 

  
  

  
  

 

S1

S2

S3

∗

×

Protection at BottomProtection at Top

QoR class-1

path-pair

QoR class-4

single path

QoR class-3

single path

Figure 6.7: Downtime comparison between the two protection configurations on the Polska

network.
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Figure 6.8: Downtime comparison between the two protection configurations on the NSF

network.
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Figure 6.9: Downtime comparison between the two protection configurations on the Spain

network.
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Figure 6.10: Downtime comparison between the two protection configurations on the Italia14

network.
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Figure 6.11: Downtime comparison between the two protection configurations on the EPAN

network.
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The downtime of QoR class-1 and class-4 on the two configurations are roughly in the

same range for most scenarios with slightly longer downtime values for the case with pro-

tection at the upper layer. Also there is a noticeable impact of the scenario (i.e., logical

network topology and problem type) on the downtime values of QoR class-1 for this config-

uration, while the top layer configuration exhibits a tighter range of downtime values across

the different scenarios. The other networks exhibit a similar behavior and there is a great

similarity of the downtime values of different networks within each protection configuration.

A comparison with no spine: To get more insight into the resource use of the spine model,

we compare our results to a baseline model. The model assumes homogenous link availability

at the physical layer in which no spine is embedded and all links have the same availability

ae. In order to have a comparable cost network, ae is set to a weighted average of the on-

spine and off-spine availability, ae = 0.999|ES |+0.99|E−ES |
|E| . In this model, logical links are not

constrained to be mapped to a spine, and this would only replace ES in our MILP formulation

by EP . Everything else remains the same. Upper layer flows are routed onto a path-pair, a

WP and a BP that are disjoint in the lower layer. The group of all WPs and all BPs are

carried over two logical subnetworks and each link is mapped without restriction except the

diversity constraint for each path-pair. We solve this model for six of the aforementioned

scenarios, and compare them to the results of the spine model in Table 6.9. First, Table 6.15

shows the total resource use for the no-spine model and the percentage of increase in these

resources required by the spine model. The percentage of increase for the Polska network is

at most 17% for QoR class-1 traffic based on the spine. Also one can see that the second spine

S2 requires only few extra resources more than the baseline model for all the five networks.

This confirms that finding the right spine can improve the design resource efficiency and

have significant improvement in the downtime values. In practice, only a small fraction

(e.g., 6 5%) of the total traffic is expected to be QoR class-1, thus the potential capacity

increase of the spine would be minimal. Lastly, note that in comparison to the no spine

model results in Table 6.6, the spine model with protection given at lower layer performs

more efficiently than the model of upper layer protection in terms of both resources and

downtime values. Second, in terms of availability levels offered by the network, Table 6.16

shows the average and maximum expected downtimes for both class-1, class-3 and class-4
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Table 6.15: A comparison of the resource use between the spine and the baseline model.

logical flows in the no-spine model. By comparing these results to the results of the spine

model in Table 6.14, we observe that the expected downtimes for class-1 of the no-spine

model are on average about 3 times larger than the corresponding results of the spine model

for the Polska, Spain and EPAN networks, 2 times for the NSF, and 4 times for Italia14.

Class-3 downtimes in the no spine model are roughly 5 times larger than the spine model for

the Polska and Spain networks, 4 times larger in the NSF and EPAN networks, and 6.5 times

larger in the Italia14 network. Class-4 downtimes are lower with the baseline model than

with the spine model in all networks except Italia14. The no spine model, however, achieves

lower maximum flow downtimes with respect to class-4. The result of this comparison is

identical to the one obtained for Table 6.7 in Section 6.3.4.2.
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Table 6.16: The expected downtime of the baseline model (i.e., no spine model).

Table 6.17: Traffic ratio scenarios.

# scenario Traffic ratio Class-1 demand Class-3 demand Class-4 demand
d1 50/0/50 1 0 1
d2 25/0/75 0.5 0 1.5
d3 5 /0/95 0.1 0 1.9
d4 33/33/33 1 1 1
d5 17/42/42 0.5 1.25 1.25
d6 17/33/50 0.5 1 1.5
d7 17/50/33 0.5 1.5 1
d8 3/48/48 0.1 1.45 1.45
d9 3/17/80 0.1 0.5 2.4
d10 3/80/17 0.1 2.4 0.5

Finally, a conclusion similar to the model with protection given at lower layer can be

made here with respect to the model with protection given at upper layer. Tables 6.15

and 6.16 show that the spine model stretches the upper bound of the availability of the 1+1

protection to offer a higher availability level with a manageable increase in resource use.

Thus far, we consider a unit of demand for each class, meaning that the percentage of

the traffic of each class is 33% of the total demand. In reality, the majority of services (e.g.,

148



      d1

 50/0/50

      d2

 25/0/75

      d3

 5/0/95

      d4

 33/33/33

      d5

 17/42/42

      d6

 17/33/50

      d7

 17/50/33

      d8

 3/48/48

      d9

 3/17/80

      d10

 3/80/17

Traffic Ratio Scenario

0

5

10

15

20

25

30

35

40

45

%
 I
n
c
re

a
s
e
 i
n
 t
o
ta

l 
re

s
o
u
rc

e

Figure 6.12: Percentage of increase in total resources compared to the baseline model in the

Polska network and for different traffic ratio mix.

90% or more) do not require high availability levels. For this we consider varying the ratio of

traffic between the classes to examine its impact on the design resource efficiency. Note that

the above-mentioned design considers solving two problems separately (i.e., the MILP in

Section 6.4.3.1 and LP in Section 6.4.3.2). Thus it might not capture the impact of varying

the traffic ratios between classes and to account for that we add the following constraints

to the MILP in Section 6.4.3.1: Equations (6.23), (6.25), (6.33), (6.35) and (6.37) with

φ = 3, and Equations (6.24), (6.26), (6.34), (6.36) and (6.38) with φ = 4. These constraints

perform routing demands of class 3 and 4 on the logical layer, mapping them to the physical

layer, and ensure that the mapping of each link is unique across different classes. We solved

the optimization problem for scenario 4 and 6 in the Polska network considering additional

scenarios with different traffic ratio mixes. Figure 6.12 shows the tested scenarios and the

corresponding class traffic ratio and the demand for each class. We compare the resource

use of the spine model to the no spine case (i.e., the baseline model). Figure 6.12 shows
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the percentage of increase in resources usage required by the spine model for each scenario.

Note that the first three scenarios in Figure 6.12 consider only traffic of class 1 and 4, which

are comparable to the scenarios of Table 6.8 with protection given at the lower layer. Their

results are similar to the one observed in Figure 6.6 where the percentage of increase in total

resources of the spine model decreases as class-1 traffic decreases. In the other cases d4 to

d10, we observe that the resource efficiency of the spine model improves as the sum of class-1

and class-3 ratios decreases i.e., trace d4, d6, and d9 scenarios.

6.5 SUMMARY

In this chapter, we introduced an approach that incorporates the spine and enables providing

differentiated services over multilayer communications networks. The concept behind the

spine is to create heterogeneous availability subnetworks at the physical layer to lay a basis

for differentiation. Then, this differentiation capability is transferred to upper layers via

crosslayer mapping to provide multiple logical networks with diverse availability levels. Two

protection configurations were presented here. Our results showed that the spine model with

protection given at upper layers can be more efficient in terms of resource usage compared

to the spine model with protection given at the lower layer. Also based on creating two

logical subnetworks in both models, the model with protection given at the upper can reuse

each subnetwork to create an additional level of availability. However, the spine model with

protection given at lower layer achieves slightly lower flows downtimes. In addition, our

results show that both models can create a wider range of availability levels compared to

existing techniques. The spine, in some cases, results into a slight increase in resource use.

This however depends substantially on the layout of the logical layer, the spine used and the

percentage of highest class traffic as well as the protection configuration.
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7.0 CONCLUSIONS AND SUMMARY

This chapter summarizes the dissertation and discusses future work.

7.1 CONTRIBUTION

The objective of this dissertation was to study the problem of supporting differentiated

classes of resilience in multilayer networks. Throughout this dissertation, we studied how to

exploit heterogenous link availability on a physical network to efficiently improve end-to-end

availability, and therefore we explored the spine concept. Then we developed models that

deploy the spine in order to provide different levels of availability to services of different

classes of resilience in both single and multilayer networks. Here we summarize the content

of this dissertation.

In Chapter 2, we provided a brief preliminary background on multilayer network design

and how QoR classes are involved in such design. Subsequently, we surveyed the existing

literature on supporting differentiated QoR classes in network design with a variety of design

objectives in Chapter 3. The traditional way of achieving this differentiation considers al-

ternate paths and/or protection schemes without altering network availability. We proposed

to combine this approach with the spine concept in order to achieve higher availability val-

ues for the highest QoR class and create additional QoR classes using only basic protection

schemes. This was presented in Chapter 4 where we stated our design questions and our

methodology to address them.

In Chapter 5, we presented the spine concept of embedding a subgraph structure with

higher availability in a network together with protection mechanisms. In general the spine is
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hoped to provide larger differences in the range of availability values to quality of resilience

classes resulting in less over engineering of the network to meet the most stringent availability

requirements. Below we summarize our contributions and findings in this chapter.

1. Through a small network topology example, we explored the properties that impact

the spine performance. The spine based approach was shown to have the potential to

improve the network availability in a more efficient fashion compared to improving the

availability of all network components in a homogeneous fashion. We showed that the

efficiency of the spine is highly influenced by

a. The heterogeneity of link availability: the utility of the spine model is increased when

the difference between the availability of the links on the spine and off the spine is

significant. The more diverse the availability of the links, the better end-to-end

availability.

b. The network size: the spine model can be more gainful to large networks and dense

networks.

c. The spine layout: the spine model can be more gainful when the paths lengths on

the spine are bounded. A star-like spine would have better end-to-end availability

than a ring-like spine.

2. We provided heuristic spine selection methods based on structural properties of the

network topology. The goal was to find a way to embed a spine to achieve a maximum

average WP or end-to-end availability.

3. We compared the results of the heuristics to optimal spine values obtained by a brute

force search, and the results appeared promising.

4. The optimal spines with respect to maximum average WP availability and maximum

average end-to-end availability were found to have the following properties:

a. The optimal spine comes with relatively short diameters, small link betweenness and

average hop count, and large link degree. This confirms that the spine is closer to

star-like layout rather than ring.

b. The spine requires more bandwidth than a traditional shortest path-pairs approach.

The spine with the optimal properties above requires the least increase in resources.
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In most cases, the spine that maximizes average WP availability requires the mini-

mum additional resources.

5. We provided an optimization based formulation for designing the spine taking into con-

sideration that link availability is upgradeable at a given cost. The design problem

aimed at exploiting existing heterogeneity in link availability and the upgradability of

link availability to achieve a target flow availability value while minimizing the total cost.

We found the following:

a. The spine model exhibit superior efficiency in terms of average flow availability and

potential advantage over the shortest path model with no spine.

b. The efficiency of the spine depends primarily on the following:

• The availability metric considered in the design e.g., minimum flow WP avail-

ability and average flow availability.

• The density of the network: the denser the network, the more efficient the spine.

• The distribution of the cost of improving link availability:

• The possibility of relaxing the MTTR of the off spine links, as such a relaxation

can result in some saving in the total budget with only a slight impact on the

end-to-end availability.

c. The obtained spines have similar structural properties to the spines obtained from

the heuristics with slight variations as the cost of improving link availability enforces

an additional constraint in shaping the spine layout.

In Chapter 6, we presented our model that incorporates the spine and enables provid-

ing differentiated services over multilayer communications networks. The model considers

a spine-aware crosslayer mapping to transfer the physical layer differentiation capability of

the spine to the upper layer. Two protection configurations were presented, namely: pro-

tection at the lower layer and protection at the upper layer. Both configurations consider

creating multiple logical subnetworks that are mapped on and off the spine and with or

without protection so that logical paths of different QoR classes are distinguished. Further,

we presented four possible QoR class arrangements for each protection configuration. We

presented MILP formulations for each configuration considering creating two isolated logical

subnetworks. Our results showed the following:
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1. Both models can create a wider range of availability levels compared to basic protection

schemes 0:1 and 1+1.

2. In both models, the spine results in a slight increase in resource use. This increase can

be managed by optimizing the layout of the logical layer network, the choice of spine

layout, and integrating accurate traffic demand estimates for each class into the design

problem.

3. The spine model with protection given at upper layers can be more efficient in terms

of resource usage compared to the spine model with protection given at the lower layer.

Also based on creating only two logical subnetworks in both models, the former model

can reuse each subnetwork to create an additional level of availability while improving

the resource efficiency. In addition, comparing the resource efficiency of each spine model

to equivalent models with no spine showed that the both spine models are equivalent.

4. Both spine models achieve small average flow downtimes compared to the no spine model,

with slightly lower flows downtimes when protection is given at lower layer.

7.2 LIMITATIONS AND FUTURE RESEARCH

• Spine design targeting a minimum end-to-end flow availability:

In Section 5.5.1, we presented the spine link selection design problem. The problem was

formulated as an MILP optimization problem that minimizes the total cost for designing

the spine while meeting minimum availability targets for flows WP and BP separately.

Even though setting a high availability target for WP availability or setting both WP

and BP availability targets can result in a spine with efficiently large end-to-end flow

availability, this does not necessarily correspond to setting a target availability value

for the minimum (or average) end-to-end availability (i.e., minf Af , AS). Nevertheless,

modifying our optimization problem to ensure a target end-to-end flow availability would

give rise to inevitable nonlinearity – if implemented straightforwardly. Hence developing

a heuristics method to design the spine targeting a minimum end-to-end flow availability
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–as well as any other metric of interest– would be an extension that complements this

work.

• Steiner tree Spine:

The spine was designed to be a spanning tree to ensure high availability and availability

differentiation between all node pairs in the network. However, it is likely to have a

case where the spine is needed to support communications between only a subset of

nodes in the network (i.e., a subset of the full-mesh). In this case, we would have a

Steiner tree spine instead of a spanning tree, where the spine spans only the nodes that

are spine nodes and may include nodes that are other intermediate nodes that are not

part of the supported node pairs subset. We expect this problem to be harder but is

worth investigating. Actually one can consider that the spine problem presented in this

dissertation a special case of the Steiner tree spine problem.

• Node availabilities:

In addition to the previous point related to the design of the spine, we also assumed that

nodes are perfect since, as reported, they have better availability than links. However,

we would expect that if this was not the case or there was considerable heterogeneity

in nodes availabilities, node availability could have an impact on the spine design, and

more specifically, in the following scenarios: First, in the Steiner tree spine problem

in which intermediate nodes that are not part of the high availability communications

would have different availabilities and the selection of such a node impacts the supported

flows availabilities. Second, the consideration of the node-disjointness requirement for

a path-pair besides the link-disjointness requirement. Here we expect that considering

node availability would be a helpful basis for altering the disjointness requirement for

each flow, if applicable, and partially tuning its overall availability. In general, the

consideration of node availability is complementary to the whole design.

• Logical network design:

Typically, the problem of communications network design is decomposed into multiple

subproblems to reduce the complexity or to evaluate a specific aspect of the design

solely while neutralizing other variables. In the design of the multilayer spine model in

Chapter 6, we assumed that the spine and the logical network are given. Our analysis
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showed a great dependency of the spine efficiency on both the spine layout and the layout

of the logical network. One way to improve this work is to integrate the logical spine

design and/or the spine layout into the multilayer spine design of Chapter 6.

• Capacity and demand considerations:

Even though our models considered the volume of demands between node pairs, physical

and logical links capacities, and the aggregated bandwidth/capacity in each layer, we

actually used uniform units of demand for all flows and relaxed the capacity constraints

in our numerical study in order to evaluate the impact and the performance of the

spine solely, removing any potential bias enforced by other constraints. This approach

is not uncommon in communication network design research. However, it is important

to consider scenarios in which demand estimates and link capacities are included, and

study their impact on the whole design. Specifically, one can study the impact of different

traffic demands distribution on the optimal spine design, and to what extent an optimal

spine layout is robust against demand variations.

• Additional protection schemes:

In Chapter 5, we used a single protection scheme 1+1. One possible extension to our work

is to consider creating additional QoR classes by incorporating more complex protection

schemes (e.g., 1+N, multipath routing, link restoration. See section 3.2.1) at lower or

upper layer.

• Reduce complexity:

The proposed design problems in Chapters 5 and 6 are NP-complete. This means that

solving these optimization problems for large networks or for some instances might be

intractable. Thus an immediate extension for our research is to develop computationally

efficient heuristic algorithms for these problems with acceptable optimality level.

• Statistical accuracy:

In Chapter 6, we formulated spine model in multilayer networks with two protection

configurations. We studied a number of performance aspects for each configuration using

7 random networks (i.e., 7 repetitions) and the results of interest were averaged. Some

of these results were statistically weak. For example, in Table 6.9 the confidence interval

around the averaged resource values in some cases reaches up to ±10.8% with a 95%
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confidence level and up to ±30.2% with 95% confidence around the average downtime

values in Table 6.13. Hence our numerical studies can be solidified by considering extra

repetitions of the random logical networks when needed. Note that the findings build

on these results can be considered expressive as we noticed the same pattern of behavior

across different networks, but this might not always be the case.

• Application to Software Defined Networking (SDN):

Software Defined Networking (SDN) technologies are likely to play an important role

in future networks. SDN is based on a centralized control architecture that maintains

a global view of network status and performs network management functions. A single

controller or logically centralized group of controllers can be deployed to maintain these

functions. The centralized architecture, however, introduces a single point of failure, and

the availability of the control paths (i.e., connecting controllers to forwarding devices)

becomes crucial to the whole system. On this context, one can study how the SDN design

can benefit from the spine model. Specifically two problems are suggested; 1) how to

design the spine in order to maximize the availability of control paths from a single or

multiple controllers to all switches, 2) restate the controller placement problem taking

into consideration that a spine is already deployed in the network.

• Economics of the Spine In Section 5.5.5, we identified several scenarios where the

spine model is efficient in terms of the design cost and flow availability. The findings

demonstrate that the spine is a promising and feasible option for supporting differen-

tiated classes of resilience. Though, it is crucial to study the spine concept approach

economically from a wider perspective in a fashion similar to [135, 136]. A study that

complements our evaluation of the spine model might consider the following problem

inputs:

1. A customized spine cost model that estimates capital expenditures (CAPEX) and

operational expenditures (OPEX) invested to embed the spine in the network. The

CAPEX costs represent the cost of purchasing and installing new equipment (e.g.,

installations costs for improving MTBF of a cable), and the OPEX costs here are

mainly related to maintenance work. The model should also consider the distribution

of these costs over the planning interval of the investment.
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2. The expected volume of traffic that will use the spine (includes both unprotected

and protected traffic) over the investment interval.

3. The projected profit sought from investing in the spine (i.e., the desired Return on

investment, ROI)

Then, the pricing rate for each class of traffic can be assessed ensuring profitable invest-

ment from the service provider perspective. In addition, including an equivalent study

for an alternative approach (e.g., based on high order protection configuration or im-

proving all network availability) would also solidify the conclusion. From a marketing

perspective, a comparative analysis of the pricing rates of the spine and the alternative

approaches is also required to evaluate the spine approach economically.
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