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ABSTRACT 

 

 

Temperature is a critical component of paleoenvironmental reconstructions, yet it is 

notoriously difficult to measure in terrestrial archives. Presented here is an investigation of the 

sources and distributions of archaeal and bacterial glycerol dialkyl glycerol tetraethers (GDGTs) 

and cyanobacterial heterocyst glycolipids (HGs) in Lake Malawi. The study aims to evaluate the 

potential for these lipids to function as paleotemperature proxies in tropical lacustrine 

environments. GDGTs and HGs were extracted from settling particulate matter (SPM) collected 

at bi-monthly intervals from 2011 – 2013. Sediment traps used to collect SPM were moored in 

both the north and south basins of Lake Malawi in order to evaluate spatial trends, in addition to 

temporal trends, in lipid production and export across the lake. 

Distributions of isoprenoid GDGTs indicate that Thaumarchaeota are the dominant 

GDGT-producing archaea in the surface waters of Lake Malawi. However, TEX86-based 

temperatures do not track lake surface temperatures at either the northern or southern sediment 

trap locations. TEX86 in the north basin instead reflects surface water temperatures at the time of 

maximum Thaumarchaeota activity, while TEX86 in the south basin records patterns in seasonal 

upwelling that possibly drive shifts in the membrane composition of Thaumarchaeota or in the 

dominant planktonic archaeal community. Branched GDGTs are likely produced by distinct 
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groups of bacteria within the water column, complicating the interpretation of temperatures 

reconstructed from their distributions. The inability of available branched GDGT calibrations to 

produce reasonable temperatures underscores the need for comprehensive studies of 

autochthonous branched GDGT production in lakes. Bulk sedimentation is the primary driver of 

branched and isoprenoid GDGT export in the metalimnion. 

HGs are present throughout the time-series, but maximum fluxes occur in December. 

HGs in SPM are sourced from actively living cyanobacteria populations, indicating rapid export 

of the lipids through the water column. Temperatures reconstructed with published HG-based 

indices do not match the seasonal variability in surface temperatures, however the fractional 

abundances of HG diols with C26 and C28 side chains do appear related to lake temperatures in 

this system. The production of C28 HG keto-ols may also be associated with heterocyst 

differentiation.  
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1.  INTRODUCTION 

1.1 CONSTRUCTING TERRESTRIAL PALEOTEMPERATURE RECORDS 

Current strategies for mitigating anthropogenic climate change focus heavily on limiting 

warming caused by greenhouse gas emissions to a global average of 1.5°C. Temperature is 

simple to measure with modern instrumentation, thus such a benchmark provides a tangible goal 

for world leaders. Though the concept of a 1.5°C increase in global average temperature is easy 

to digest and to communicate, the effects of anthropogenic climate change will be inherently 

local, and the extent of regional responses to an increase in global temperatures of this magnitude 

is still poorly understood (Blöschl, 2006; Blöschl et al., 2007; Verdon-Kidd and Kiem, 2010). 

Under the RCP 4.5 scenario, which involves an increase in radiative forcing due to greenhouse 

gas concentrations that is equivalent to a 2.4°C temperature anomaly (Clarke et al., 2007; Rogelj 

et al., 2012; Smith and Wigley 2006; Wise et al. 2009), global climate models (GCM) project 

widespread expansions of drought in South America, Central America, much of North America, 

and Europe, while some regions, including Siberia, Northern Canada/Alaska, India, Indonesia, 

and East Africa, may potentially become wetter (Dai, 2012). The heterogeneity of GCM 

predictions underscores the need for a deeper understanding of regional climate change. These 

models are limited in their inability to resolve climatic details, such as the timing and duration of 

seasonal precipitation or shifts in vegetation community composition, that are critical to natural 

resource management (Oscar Kisaka et al. ,2015; Yang et al., 2015).  

Paleoclimate records reconstruct ecological changes a region has actually experienced 

under variable climatic regimes, thus providing a valuable perspective for understanding 

potential future changes. Shifts in precipitation/evaporation and vegetation can be measured 

using biological and chemical indicators such as pollen assemblages, calcium carbonate oxygen 

isotopic composition, or leaf wax carbon isotopic composition. Contemporaneous temperature 
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reconstructions provide context for these shifts that will enable us to more accurately anticipate 

how modern systems will respond to anthropogenic warming. Moreover, the comparison of local 

paleotemperature records extracted from terrestrial archives and global paleotemperature records 

generated from marine archives can create a picture of the spatial variability of continental 

temperature change relative to global averages. Both of these tasks have been difficult to 

execute, however, due to the limited number of terrestrial paleotemperature records, especially in 

tropical regions. Lake sediments are ideal archives for terrestrial paleoclimate reconstructions 

due to their geographic distribution, ability to integrate watershed-scale signals, high sediment 

accumulation rates that allow for high-resolution analyses, and potential for long-term temporal 

extent. The lack of quantitative paleotemperature proxies that are applicable to lacustrine 

environments, however, is limiting the development of these archives for paleoclimate analysis.  

The organic geochemical community is striving to fill this knowledge gap by evaluating 

the ability of various microbial lipids to serve as paleotemperature proxies in lake sediment 

archives (e.g.  D’Andrea and Huang, 2005; Blaga et al., 2009; Tierney et al., 2010; Rampen et 

al., 2014; Bauersachs et al., 2015). Microorganisms adapt quickly to changes in their growth 

habitat to optimize the biochemical composition of their membranes -- which operate as barriers 

to limit solute and gas entry into the cell -- to ambient environmental conditions. Membrane 

lipids are relatively recalcitrant and survive degradation in the water column and in surface 

sediments following cell death, allowing for their accumulation in sediments, in which they can 

be preserved for millions of years (Brassell 1992). Lipids associated with specific groups of 

organisms are called biomarkers. Biomarkers are ideal for paleoclimate studies as variability in 

the environmental relationship due to differing sources over time can be discounted. By 

analyzing changes in the structures or composition of biomarkers preserved in lake sediment 

archives, it is then possible to produce a record of the biotic response to environmental factors. 

Investigating the production of biomarkers in modern environments where climate variables are 

known enables us to determine the validity of the biomarker-based proxy for recording 

environmental change, in addition to providing insights into potential nuances of the proxy, such 

as seasonal biases, that aids in interpretation of the record. Three classes of membrane lipids that 

have shown particular promise in recording lake surface water temperatures are isoprenoid 

glycerol dialkyl glycerol tetraethers (isoGDGTs), branched glycerol dialkyl glycerol tetraethers 

(brGDGTs), and heterocyst glycolipids (HGs), and will be discussed in detail below. 
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1.2 GDGT-MEMBRANE LIPIDS & GDGT-BASED PROXIES 

1.2.1 IsoGDGTs: Sources and structural diversity 

To fully understand the genesis of isoGDGT-based proxies, it is critical to examine how 

knowledge of their archaeal source has developed over time. The first organisms identified 

within the Archaea domain (previously Archaebacteria) were restricted to extremophilic groups 

of methanogens (e.g. Balch et al., 1979; Fox et al., 1980; Fox et al., 1977) halophiles (Magrum et 

al., 1978), thermoacidophiles (e.g. Smith et al., 1973), and sulfate-reducing symbionts (e.g. 

(Langworthy et al., 1974). The domain was organized into two phylum-level subgroups – 

Crenarchaeota, to which the hyperthermophiles belonged, and Euryarchaeota, which 

encompasses the remaining groups (Woese et al., 1990). Later examinations of environmental 

16s rRNA material revealed that archaea are actually widespread in the pelagic ocean (DeLong, 

1992; Fuhrman et al., 1993; Karner et al., 2000), and even in terrestrial environments such as 

lakes and soils (e.g. Hershberger et al., 1996; Keough et al., 2003). Comparative 16s rRNA 

analyses placed the mesophilic archaea formed phylogenetic clusters into two groups, the first 

closely related to Crenarchaeota, deemed Group I, aka mesophilic Crenarchaeota,  (Könneke et 

al., 2005), and the second was related to Euryarchaeota, Group II (DeLong 1992; López-García 

et al., 2004). While Group II archaea represent a distinct branch within the Euryarchaeota 

lineage, Brochier-Armanet et al. (2008) importantly established that Group I archaea branched 

from their hyperthermophilic Crenarchaeota ancestors much deeper in the evolutionary tree, and 

thus suggested the group’s reclassification into the unique phylum Thaumarchaeota. A key trait 

that is common amongst Thaumarchaeota is their ability to oxidize ammonia to nitrite, and, in 

fact, Thaumarchaeota are the only archaea capable of aerobic nitrification in archaea (Könneke et 

al., 2005). For water-dwelling Thaumarchaeota, this may explain their preferred depth of habitat 

near the oxic-anoxic boundary, which has been observed in both marine (Ingalls et al., 2006; 

Karner et al., 2001; Massana et al, 1997; Wuchter et al., 2004) and lacustrine water columns 

(Llirós et al., 2010; Schouten et al., 2012; Sinninghe Damsté et al., 2009; Woltering et al., 2012).  

Analyses of archaeal lipids have added to our functional understanding of the biology and 

ecology of the domain. Carbon isotopic values of some Archaean rocks suggests that Archaea 
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have inhabited Earth since at least 2.7 Ga (Hayes, 1994). Lipid concentrations and distributions 

can serve as taxonomic indicators when genetic material is not analyzed or not available, such as 

in samples from deep geologic time (Buckles et al., 2013; Gibson et al., 2013; Pitcher et al., 

2009; De Rosa et al., 1986; Schouten et al., 2000). Moreover, as the membrane serves as the 

cell’s buffer and protection from its surroundings, the molecular structure of membrane lipids 

can also provide excellent insights into the source organisms’ environment. The unique structural 

characteristics of archaeal lipids enabled them to inhabit the extreme environments of early 

Earth. Bipolar, membrane-spanning structures with di- and tetraether glycerol bonds are more 

stable than the acyl ester lipids characteristic from bacteria (De Rosa et al., 1986; P. F. Smith et 

al., 1973; Woese et al., 1978). Furthermore, archaeal lipids consist of isoprenoid chains rather 

than fatty acids; the methyl branches of isoprene units can be cyclized into cyclopentane rings 

for added membrane stability for organisms that occupy high temperature or high salinity 

environments (Mathai et al., 2001; De Rosa et al., 1980). These traits are the same that allow 

modern archaea to thrive in harsh settings such as hot springs, salt flats, and hydrothermal vents. 

Despite inhabiting less extreme environments, mesophilic archaea produce membrane lipids that 

are very similar to their ancestors. Some notable differences include that mesophilic archaeal 

lipids do not have quite as many rings and have additional kinks, such as larger cyclohexane 

rings, that allow for a more fluid membrane that is more suitable to normal environments 

(Schouten et al., 1998; Sinninghe Damsté et al., 2002). 

Some of the most common lipids in both extremophilic and mesophilic archaea are 

GDGTs.  Like other archaeal lipids, archaeal GDGTs are constructed from isoprene units and are 

thus called isoprenoid GDGTs (isoGDGTs, Figure 1.1). Isoprene is constructed into two C40 

biphytanyl chains that are bound by four glycerol ether linkages (Schouten et al., 1998). 

Cyclization of methyl branches along the biphytanyl chain can form up to eight cyclopentane 

moieties (Hopmans et al., 2000), 0 to 4 cyclopentane rings most common within the mesophilic 

archaea. GDGT-0, also known as caldarchaeol, has no cyclization. Crenarchaeol is a GDGT 

exclusively produced by Thaumarchaeota. Crenarchaeol has four cyclopentane rings and one 

cyclohexyl ring, while its regioisomer has an identical structure but a parallel configuration 

(Sinninghe Damsté et al., 2002).  
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Figure 1.1: Molecular structures of isoGDGT membrane lipids, after Hopmans et al. (2000). 

Cren’ is the regio isomer of crenarchaeol. 

1.2.2 The TEX86 Proxy  

The relationship between isoGDGT cyclization and temperature was first observed in 

thermophilic archaea (De Rosa et al., 1980). Schouten et al. (2002) sought to determine if 

Thaumarchaeota adjust the structures of their membrane lipids in response to growth temperature 

in a similar manner as their thermophilic ancestors despite inhabiting mesophilic environments. 

In their analysis of isoGDGTs preserved in marine surface sediments, the authors did in fact find 

a significant correlation between isoGDGT cyclization and sea surface temperatures. In 

particular, the authors found the best fit with sea surface temperature was based on the relative 

abundances of GDGTs with 1 – 3 rings and the regio-isomer of crenarchaeol, which they 

quantified in the TEX86 ratio (TetraEther indeX of tetraethers with 86 carbon atoms, ). 
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Incubation experiments conducted by Wuchter et al. (2004) and Schouten et al. (2007) confirmed 

the direct relationship between growth temperature and GDGT cyclization in Thaumarchaeota. 

TEX86-paleotemperature reconstructions from marine sediments have since become widespread 

due to the fairly consistent relationship between the proxy and sea surface temperature 

throughout the oceans (Kim et al. 2010b; Schouten et al., 2013 and references therin).  

Application of the proxy in lake sediment archives, however, has been unreliable. Powers 

et al. (2004) first explored the possibility and found that the isoGDGTs needed for calculation of 

TEX86 were in sufficient abundance in the four large lakes they sampled. Attempts to expand 

upon this by Blaga et al. (2009) and Powers et al. (2005, 2010) ultimately revealed the 

limitations in applying the proxy to sedimentary lacustrine archives. These studies sampled both 

large and small lakes, and found that in the small lakes TEX86 values were significantly 

influenced by soil-derived isoGDGTs, thus the lake surface temperature relationship did not 

hold. The proxy has been successfully applied in very large lakes, however, including Lake 

Malawi (Johnson et al., 2016; Powers et al., 2005; Woltering et al., 2011) and several others 

located in East Africa, such as Lake Tanganyika (Tierney et al., 2008), Lake Challa (Sinninghe 

Damsté et al., 2012), Lake Turkana (Morrissey et al., 2017), Lake Albert (Berke et al., 2014), 

and Lake Victoria (Berke et al., 2012). 

1.2.3 BrGDGTs: Potential sources and structural diversity 

BrGDGTs were first identified in terrestrial samples alongside isoGDGTs (e.g. Hopmans 

et al., 2004; Schouten et al., 2000). While the archaeal source of the latter was clear, the mix of 

archaeal and bacterial traits in brGDGTs made their origins unclear. BrGDGTs are similar to 

isoGDGTs in that both have membrane-spanning carbon chains with tetraether linkages to their 

glycerol backbones, and because the core lipids can cyclize into up to two cyclopentane moieties 

(Schouten et al., 2000; Weijers et al., 2006a) (Figure 1.2). The two groups of lipids differ, 

however, in that brGDGTs are made of non-isoprenoidal alkyl chains with only 4-6 methyl 

branches, hence the nomenclature branched GDGTs (Hopmans et al., 2004; Schouten et al., 

2000; Weijers et al., 2006) (Figure 1.2). Though a few strains of thermophilic and sulfate-

reducing bacteria have been reported to produce mono- and diether membrane lipids (Huber et 

al., 1996; Huber et al., 1992; Langworthy et al., 1983; Pancost et al., 2001), and one thermophilic 
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bacteria, Thermotoga maritime, has been identified as a producer of membrane spanning lipids 

(Carballeira et al., 1997), the combination of these features was believed to be unique to archaea 

until the landmark study by Weijers et al. (2006). By establishing that brGDGTs have a 1,2-di-O-

alkyl-sn-glycerol stereoconfiguration rather than the 2,3-di-O-alykl-sn-glycerol 

stereoconfiguration characteristic of archaeal lipids, Weijers et al. (2006) confirmed earlier 

suggestions by Schouten et al. (2000) and Sinninghe Damsté et al. (2000) that brGDGTs are 

produced by bacteria despite having the aforementioned archaeal traits. The difference in 

stereochemistry of membrane lipids between Bacteria and Archaea is one of the primary 

biochemical factors that distinguish the two domains (Kates, 1977), therefore it is highly unlikely 

that a lipid with such a stereoconfiguration could be sourced from Archaea (Weijers et al., 2006).  

Initial surveys of brGDGTs in terrestrial environments found that the lipids are 

ubiquitous in soils and peat, though they were in especially high abundances in the catotelm of 

peat bogs, leading to the suggestion that the bacterial sources of the lipids are likely widespread 

anaerobes (Weijers et al., 2006a; Weijers et al., 2006b). A metagenomic analysis in a northern 

peat bog targeted this hypothesis and found that Acidobacteria 16s rRNA abundances co-varied 

with brGDGT concentrations, with both increasing with depth (Weijers et al., 2009). 

Acidobacteria is a highly diverse phylum, with 26 identified subgroups (Barns et al., 2007), 

many of which include anaerobic or microaerophilic strains (Kielak et al., 2016 and references 

therein), and is one of the most abundant in soils worldwide (Janssen, 2006). The ubiquity of 

Acidobacteria thus provides a likely explanation for the presence of brGDGTs in globally 

distributed soils (De Jonge et al., 2014; Peterse et al., 2012; Weijers et al., 2007). Moreover, 

abundances of Acidobacteria 16s rRNA material has a significant negative correlation with soil 

pH (Jones et al., 2009; Lauber et al., 2009), a relationship identical to that found between pH and 

soil-derived brGDGTs (Peterse et al., 2010; Weijers et al., 2007). Alternatively, Mueller-

Niggemann et al. (2016) suggested that brGDGT producers could also be denitrifiers after 

observing a correlation between brGDGT abundance and nirK gene abundances in a rice-paddy 

soil. A few strains of Acidobacteria have been shown to possess similar genes that encode for the 

enzymes necessary to perform nitrate/nitrite reduction (Männistö et al., 2012; Ward et al., 2009), 

however this ability is generally rare within the phylum (Kielak et al., 2016). Overall, ample 

circumstantial evidence that Acidobacteria are a primary source of brGDGTs in soils has been 

put forth. The first concrete evidence to support this theory came in 2011 when Sinninghe 
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Damsté et al. (2014) isolated GDGT Ia (Figure 1.2) from two strains of subdivision 1 

Acidobacteria. Although a variety of brGDGT-precursor molecules (e.g. iso-diabolic acid) have 

also been identified in some strains of Acidobacteria (Sinninghe Damsté et al., 2011, 2014), 

culture studies have yet to detect the full suite of brGDGTs found in environmental samples (i.e. 

I – III, Figure 1.2) in living organisms.  

 As research on brGDGTs expanded, it became clear that these lipids are abundant across 

terrestrial environments, including rivers (e.g. Tierney & Russell, 2009; De Jonge et al., 2014a; 

Ajioka et al., 2014; De Jonge et al., 2015a; De Jonge et al., 2015b; Kim et al., 2015), lakes (e.g. 

Blaga et al., 2010, 2009; Pearson et al., 2011; Sun et al., 2011; Tierney et al., 2012; Schoon et al., 

2013; Foster et al., 2016) , hot springs (Peterse et al., 2009a; Schouten et al., 2007b), and coastal 

and open marine settings (Bendle et al., 2010; Huguet et al., 2008; Kim et al., 2010a; Lincoln et 

al., 2013; Sanchi et al., 2014). Initially the brGDGTs in these aquatic environments were 

believed to be delivered through soil erosion (Hopmans et al., 2004). However, in 2009 two 

studies were published that compared the distributions of brGDGTs in lakes to those in the 

watershed soils (Sinninghe Damsté et al., 2009; Tierney and Russell, 2009). Both found that the 

fractional abundances of soil-brGDGTs were significantly different from those in the lake, likely 

indicating that there are both allochthonous and autochthonous sources of the lipids to lake 

sediments (Sinninghe Damsté et al., 2009; Tierney and Russell, 2009). A pattern has since 

emerged in low temperature aquatic environments where GDGT II and III are more abundant 

compared to in soils, where GDGT I is generally the dominant compound (Ajioka et al. 2014; 

Buckles et al. 2014; Naeher et al. 2014; Peterse et al., 2015; Sun et al. 2011; Tierney et al. 2010). 

A recent advance in the instrumental analysis of brGDGTs has further illuminated the 

differences in brGDGT structural diversity between soils and aquatic environments. De Jonge et 

al. (2013) enhanced the chromatography of brGDGTs by using multiple columns with a different 

stationary phase to enable the separation of closely related isomers that co-eluted in older 

versions of the method (Liu et al., 2012). These isomers vary in the positioning of the additional 

methyl branches, where 6-methyl isomers have a branch located at the C6 or C6’ location instead 

of the originally described C5 and C5’ positions, which are the so-called 5-methyl structures 

(Figure 1.2). Subsequent studies have shown that brGDGTs in aquatic environments have a high 

degree of isomerization (Ding et al., 2016; De Jonge et al., 2015a; De Jonge et al. 2015b; Weber 

et al., 2015). An isomer of IIIa that has so far been exclusively found in aquatic environments 
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contains methyl branches at both the C5 and C6’ position (Ding et al., 2016; Weber et al., 2015), 

As there is no apparent environmental advantage of positioning methyl groups at a C5 vs. C6 

position, this may be a taxonomic indicator and a potential biomarker for autochthonous 

brGDGTs in lakes. 

 

 

Figure 1.2: Molecular structures of brGDGT membrane lipids, after De Jonge et al. (2014) and 

Weber et al. (2015). 
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1.2.4 BrGDGT-based proxies 

Weijers et al. (2007) defined the first two indices used to describe the distributions of 

brGDGTs in environmental samples: MBT (Methylation of Branched Tetraethers), which 

describes the relative abundance of tetramethylated structures in the total brGDGT pool, and 

CBT (Cyclization of Branched Tetraethers), which describes the proportion of cyclized 

structures to non-cyclized structures. Using a dataset of 134 globally distributed soils, the authors 

demonstrated that the CBT was influenced by soil pH, while MBT showed a strong, significant 

relationship with both mean annual temperature (MAT) and soil pH. Combined as the MBT/CBT 

proxy, the indices have been used to reconstruct MAT. Even in its refined form as the 

MBT’/CBT, which was calculated from an expanded dataset of 278 soils (Peterse et al., 2012), 

the proxy has met only variable success (e.g. Contreras et al. 2016; Schreuder et al., 2016; 

Fawcett et al. 2011). This is particularly true for its attempted application in paleolimnological 

studies. Due to the dual sources of brGDGTs to lake sediments, soil-based MBT/CBT 

calibrations consistently underestimate lake surface temperatures (LST) (Blaga et al., 2010; Sun 

et al., 2011; Tierney et al., 2010; Tierney & Russell, 2009). Regional calibrations of the proxy 

generated using lake surface sediments have yet to disentangle in situ vs. soil-derived sources, 

complicating interpretations of the sedimentary records where lake levels have varied drastically. 

Greater insight into the sources of brGDGTs in environmental samples has come 

following the discovery of the 5- and 6-methyl brGDGT isomers. De Jonge et al. (2014) 

performed a re-analysis of the soils used in the global MBT/CBT and MBT’/CBT calibrations by 

Weijers et al. (2007) and Peterse et al. (2012), respectively, showed that the abundances of 5-

methyl isomers is strongly controlled by temperature whereas that of 6-methyl isomers is related 

to soil pH. Calculating MAT using only 5-methyl fractional abundances then substantially 

improved the RMSE of soil-based calibrations (De Jonge et al. 2014). These results have been 

confirmed in other soil-based studies (Dang et al. 2016; Yang et al. 2015), but has not yet been 

applied to lacustrine surface sediment datasets. As such, how the isomerization of brGDGTs 

produced by aquatic organisms relates to environmental conditions is still not well-understood 

for lacustrine environments.  
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1.3 HGS & HG-BASED PROXIES 

1.3.1 Nitrogen-fixing cyanobacteria and the heterocyst 

Diazotrophic cyanobacteria have adapted to thrive in nitrogen-depleted environments 

because of their ability to fix atmospheric N2. The nitrogenase enzyme mediates the process of 

microbial nitrogen fixation into ammonia, which is a biologically available form. Exposure to 

oxygen permanently inhibits the reductive power of nitrogenase, however, posing a biological 

challenge for phototrophic cyanobacteria (Fay & Cox, 1967). Two groups of filamentous 

cyanobacteria – Nostocales and Stigonematales – isolate nitrogenase from the toxic byproducts 

of photosynthesis by forming specialized heterocyst cells designated exclusively for nitrogen 

fixation (Wolk, 1973). The heterocysts have a thick wall made of an inner laminated glycolipid 

layer and an outer homogenous polysaccharide layer (Gambacorta et al., 1998; Nichols & Wood, 

1968; Winkenbach et al., 1972). Heterocyst glycolipids (HGs) contain a sugar head group 

glycosidically bound to an alkyl side chain. The alkyl chain varies in length, from 26 to 32 

carbons (i.e. C26 – C32), and in the number and type of functional groups, with possible 

combinations of 1 – 3 hydroxyl groups and 0 – 1 ketone groups (Figure 1.3; Soriente et al., 1992; 

Bauersachs et al., 2009a). HGs have only been detected in these cyanobacterial heterocysts and 

are therefore excellent biomarkers for heterocystous cyanobacteria. Distributions of specific HGs 

provide additional chemotaxonomic information. Marine endosymbiotic diazotrophs produce 

HGs with a C5 head group (Bale et al., 2015) while HGs from freshwater heterocystous 

cyanobacteria have a C6 sugar head (Bauersachs et al., 2009). Culture studies have further 

demonstrated that the degree of hydroxylation (i.e. diol vs. triol) and the number of carbon atoms 

in the alkyl side chain correspond to family level classifications of heterocystous cyanobacteria 

(Bauersachs et al. 2009b, 2011).  
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Figure 1.3: Molecular structures of HGs analyzed in Lake Malawi SPM samples. Roman 

numerals used to indicate HG structures follow Bauersachs et al. (2015). 

1.3.2 HGs and temperature 

The heterocyst wall serves a dual role as a gas diffusion barrier – to protect the sensitive 

nitrogenase enzyme from excess O2 in addition to regulating the inflow of N2 so that sufficient 

levels are available for conversion to NH3. It is hypothesized that cyanobacteria adjust the 

composition of the glycolipid layer to maintain the optimum ratio of incoming O2:N2 in response 

to changing environmental conditions (Kangatharalingam et al., 1992; Staal et al., 2003; Walsby, 

1985). Early examinations of heterocystous cyanobacteria cultures suggested that elevated 

ambient oxygen concentrations instigated a thickening of the glycolipid envelope to enhance the 

physical limitation of gas diffusion into the cell (Kangatharalingam et al., 1992). As gas 

diffusion rates increase with warming temperatures, under this reasoning, heterocyst walls 
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should thicken in response. Staal et al. (2003) was the first to put forth a contrary hypothesis 

after taking both the passive regulation of oxygen by the heterocyst wall and the active 

scavenging of oxygen through respiration into account. According to his calculations, 

heterocystous cyanobacteria would actually increase the permeability of the glycolipid envelope 

under warming conditions to permit maximal flows of N2 into the cell while enhanced 

respiratory rates account for the excess O2 flowing in. The first empirical evidence for this theory 

came from Bauersachs et al. (2009), who found that Anabaena and Nostoc strains grown in 

warmer incubation temperatures produced less hydroxyketone HGs; such an adaption would 

create a thinner and more permeable membrane (Bauersachs et al., 2009; Bauersachs et al., 

2014). Analyses of HGs isolated from water column filtrates in lakes further demonstrated that 

the relative proportions of ketone-bearing and non-ketone-bearing HGs were related to in situ 

temperatures (Bauersachs et al., 2014; Wörmer et al., 2012). Bauersachs et al. (2014) quantified 

the relative proportions of ketone-bearing and non-ketone-bearing HGs as the HDIn (Heterocyst 

Diol Index of n carbon atoms, where n is 26 or 28) and HTIn (Heterocyst Triol Index of n carbon 

atoms, where n is 28, 30, or 32). A subsequent study by (Bauersachs et al., 2015) found that the 

HDI26, and to a lesser extent the HDI28, of HGs from water column filtrates from a temperate 

lake tracked seasonal changes in LST. Along with these findings, the ubiquity of HGs in 

freshwater environments and the persistence of these lipids in the geologic record (Bauersachs et 

al., 2010) make HG-based proxies potentially well suited for widespread continental 

paleotemperature reconstructions. 

1.4 STUDY SITE: LAKE MALAWI 

1.4.1 Climatology, physiology, and limnology 

Lake Malawi is the southernmost of the East African rift lakes, spanning from 9.5°S to 

14.5°S, and is situated at ~500 m ASL (Figure 1.4).  The lake is 560 km long by 75 km wide 

with a maximum depth of ~700 m (Eccles, 1974). There is a single-basin with the depocenter 

located along the western shore, just north of Nkhata Bay (Figure 1.4). The meromictic lake is 
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permanently anoxic below ~250m due to basin morphology that inhibits complete overturning 

and gradients in temperature and dissolved species that sustain stratification (Vollmer et al., 

1999; Wüest et al., 1996). Catchment relief also varies by latitude; fault-block mountains 

reaching over 2000 m border the northern end of the lake while lakeshore plains surround the 

southern end (Figure 1.4). Spatial variations in topography and rainfall generate higher terrestrial 

runoff into the north basin of the lake (Kingdon et al., 1999). The Shire River at the southern tip 

of Lake Malawi is the only outflow. Overall, riverine inputs and outputs are small given the large 

surface area of the lake, thus lake level is primarily dictated by changes in precipitation and 

evaporation (Bootsma & Hecky, 2003). 

  The climatology of the region is driven by the seasonal migration of the Intertropical 

Convergence Zone (ITCZ). While there is slightly more seasonal variability in solar radiation at 

Lake Malawi compared to the other equatorial African Lakes, the seasons are primarily defined 

by changes in precipitation and wind patterns (Nicholson & Yin, 1996). Located at the southern 

reach of the ITCZ, there is one dry season and one wet season each year (Eccles, 1974). The 

rainy season lasts from December to March and is more intense at the northern end of the lake. 

Weak northerly winds are prevalent at this time that allow for heating of surface waters and the 

development of shallow stratification, with thermocline depths reaching ~40 m to 60 m by 

February (Guildford et al., 2007). As the ITCZ moves northward during the onset of austral 

winter, southeasterly trade winds move in. The winter winds are much stronger than summer 

winds and prevail throughout the dry season, which lasts from April until August. The 

combination of the wind stress and cooler surface water temperatures promote mixing of the 

epilimnion down to ~100 m water depth (Eccles, 1974; Hamblin et al., 2003; Vollmer et al., 

2005), though the mixed layer has been reported to extend as deep as 230 m (Patterson & 

Kachinjika, 1995). Upwelling is common at the southern end of the lake at this time and the 

seasonal mixing can even drive complete overturning in the shallow southern arms (Eccles, 

1974). The lake is permanently anoxic below ~250 m, but the interaction between internal waves 

that propagate at mid-depths carrying nutrient-rich metalimnetic waters and cooled, sinking 

epilimnetic water masses can lead to localized entrainment and upwelling in central and northern 

regions. Conditions remain dry for the remainder of the year, September – November, but 

slackened winds and warming temperatures promote the beginning of summer stratification 

(Eccles, 1974; Guildford et al., 2007). 
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Figure 1.4: Digital elevation model (DEM) of the catchment of Lake Malawi and bathymetric 

map of the basin adapted from Scholz (Syracuse University, http://malawi.icdp-online.org). Red 

dots indicate drilling locations of the International Continental Drilling Project – Lake Malawi 

Drilling Project. Yellow stars indicate the location of sediment traps in this study. 
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1.4.2 Phytoplankton microbial diversity 

The phytoplankton community of Lake Malawi is similar to that of other large tropical 

lakes that experience seasonal stratification (cf. Hecky and Kling 1987). Diatoms (e.g. 

Aulacoseira, Nitzschia, Stephanodiscus, Cyclostephanos; (Bootsma, 1993; Hecky, Kling, 

Johnson, Bootsma, & Wilkinson, 1999; Patterson & Kachinjika, 1995), cyanobacteria (e.g. 

Anabaena, Microcystis, Synechococcus, Planktolyngbya; Hecky et al. 1999), green algae (e.g. 

Botryococcus, Closterium, Staurastrum, Mougeotia/Oedogonium; Northern Rhodesian Joint 

Fisheries Research Organization, 1958-1961;  Hecky and Kling 1987; Bootsma 1993; Hecky et 

al. 1999) and dinoflagellates (Peridinium; Hecky et al. 1999) are the most populous taxa, but 

their relative abundances are strongly influenced by seasonal changes in climate and lake water 

chemistry (Bootsma 1993; Patterson and Kachinjika 1995). Deep mixing, elevated nutrient 

levels, and high turbidity characteristic of the dry season favor diatom assemblages, consistent 

with observations of peak diatom abundance in Lake Malawi from June – September (Bootsma 

1993 Hecky and Kling 1987). Peak cyanobacterial blooms typically follow the winter diatom 

bloom, with maximum cyanobacterial biomass typically detected in November – December (e.g. 

Northern Rhodesian Fisheries reports 1958-1961; Bootsma 1993; Hecky et al. 1999; Patterson 

and Kachinjika 1995). This is likely due to high irradiance, low wind stress, and low nutrient 

concentrations that develop during the dry stratified season and are favorable for cyanobacterial 

growth (Bootsma, 1993). Chlorophytes are generally the dominant taxa for the duration of the 

wet season (Bootsma, 1993), though blooms of the heterocystous cyanobacteria Anabaena have 

been observed in March – April and may be linked to phosphorus enrichment from riverine 

inputs during the rainy season (Hecky et al. 1999). This is just one example of how 

phytoplankton biodiversity is shifting in Lake Malawi in response to environmental factors such 

as warming temperatures (Verburg et al., 2003; Vollmer et al. 2005) and land-use change in the 

catchment that has led to significant increases (up to 50%) in sediment and nutrient loadings 

(Hecky et al., 2003) that will likely continue to alter the phytoplankton populations in the lake. 



 17 

1.5 SCOPE OF THIS THESIS 

The aim of this thesis is to investigate the production of the three classes of lipids 

discussed above – isoGDGTs, brGDGTs, and HGs – in the modern water column of Lake 

Malawi, Africa in order to determine their suitability as terrestrial paleotemperature proxies in a 

tropical environment. The lipids were extracted from settling particulate matter (SPM), as this 

material is likely most representative of the lipids reaching the sediment floor. SPM was 

collected in the lake at bi-monthly intervals over a three year time series. This study is the first to 

characterize the annual variability of brGDGT distributions in a lacustrine environment since the 

development of the method for the separate quantification of 5- and 6-methyl brGDGT isomers. 

This is also the first study to evaluate the production of HGs in a natural environment over a 

continuous multi-year period, in addition to being the first to analyze the HG content of SPM.  

Through the comparison of lipid distributions with environmental properties, this research 

provides insights into the sources of these paleotemperature-relevant lipids to SPM and the 

environmental and ecological factors that may dictate their structure. 
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2.   MATERIALS AND METHODS 

2.1 SEDIMENT TRAP SAMPLING 

Sediment traps (PARFLUX Mark 78H-21, McLane Research Laboratories Ltd., East 

Falmouth, MA, USA) were installed in the north basin (NB) (10°25.018 S, 34°20.630 E; NST) 

and south basin (SB) (13°28.150 S, 34°43.718 E; SST-D) of Lake Malawi in January 2011 

(Figure 2.1). The northern sediment trap (NST) was moored at 170m below lake surface and 

deployed until January 2013. The deep south sediment trap (SST-D) was moored at 125m below 

lake surface and deployed until January 2013. In January 2013, both traps were installed at the 

south basin location, moored at 50m (SST-S) and 115m (SST-D) below lake surface, and 

deployed until January 2014 (Figure 2.1). Thermistors (Brancker Research TR-1050) were 

placed along the mooring lines to record hourly changes in water column temperature over the 

course of the study. NST thermistors were located at 7m, 20m, 40m, 60m, 80m, 100m, 200m, 

300m, and 395m water depths. SST thermistors were located at 7m, 20m, 40m, 60m, 80m, 

100m, and 165m water depths from January 2011 to January 2013 and at 7m, 20m, 40m, 60m, 

80m, 100m, and 170m water depths from January 2013 to January 2014.  The traps were 

outfitted with 21 pre-labeled 500 mL polyethylene collection cups filled with de-ionized water. 

Each cup collected a 17-day interval of SPM. The naming scheme for samples uses the 

abbreviated sediment trap acronym and year followed by the sample number in that year. For 

example, sample 1 collected from the north sediment trap in 2011 is NST11-1. The traps were 

emptied and re-deployed annually in January with the Malawi Department of Fisheries, Monkey 

Bay Research/Fishing Vessel, R/V Ndunduma. Recovered samples were refrigerated during 

transport to the Large Lakes Observatory (LLO) at the University of Minnesota Duluth (UMD). 

Samples were stored at the LLO at 4°C until analysis. 
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Figure 2.1: Simplified schematic of the mooring set-ups used for the sediment trap sampling. 

From January 2011 – January 2013 one sediment trap was in each the NB and SB while from 

January 2013 – January 2014 both traps were positioned along the same mooring in the SB. 

Sediment floor is at 507 m in the NB and 180 m in the SB. Location of the oxic/suboxic and 

suboxic/anoxic boundaries are approximate. Figures are not to scale. 
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2.2 LIPID ANALYSES 

2.2.1 Sediment processing and extraction 

SPM samples with enough available material were split into 10 fractions with a WSD-10 

sediment splitter (McLane Research Laboratories Ltd., East Falmouth, MA, USA) at UMD for 

various proxy analyses. The amount of material collected in SST12-2, SST12-5, SST12-12 – 

SST12-21, SST13-S-9, and SST13-D-14 – SST13-D-21 was extremely low, therefore these 

samples were not split and instead used exclusively for bulk measurements. Due to a trap 

malfunction, no material was collected from SST11-13 – SST11-21. All sediment fractions for 

lipid analyses were freeze-dried (FreeZone Freeze Dryer, LABCONCO, Kansas City, MO, USA) 

and homogenized with a mortar and pestle at UMD prior to extraction. The dry weight of 

fractions designated for lipid analyses ranged from 0.12 g - 7.87 g. Fractions from NST11-1 – 

NST11-21 and SST11-1 – SST11-12 were extracted at UMD in 2012. Fractions from NST12-1 – 

NST12-21, SST12-1 – SST12-12, SST13-S-1 – SST13-S-21, and SST13-D-1 – SST13-D-13 

were shipped to the University of Pittsburgh in 2014 and extracted there in February/March 

2016.  

All samples were extracted using a modified Bligh-Dyer procedure according to Sturt et 

al. (2004) to ensure maximum preservation of lipids during extraction. Sediment was 

ultrasonicated for 10 minutes in a mixture of dichloromethane (DCM), methanol (MeOH), and 

phosphate buffer, pH 7.4 (PB) at a ratio of 2:1:0.8 (v:v:v). The supernatant was transferred to a 

solvent-rinsed centrifuge tube and this step was repeated twice for a total of three extractions, 

sonicating for each of the subsequent extractions. The combined supernatant was adjusted to a 

new ratio of DCM/MeOH/PB at 1:1:0.9 (v:v:v:) with additional DCM and PB, then centrifuged 

to achieve phase separation. The lipid-containing organic phase was pipetted off and the 

remaining aqueous phase was washed twice with DCM. The combined organic phase constitutes 

the Bligh-Dyer Extract (BDE). Excess solvent was evaporated under a gentle stream of N2 to 

near-dryness and transferred to pre-weighed 4 mL vials. It was then dried completely with N2 

and weighed. The dry BDE was re-dissolved in DCM/MeOH (1:1, v:v) and split volumetrically 

into two aliquots - one for GDGT analysis and one for HG analysis. For samples collected in 
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2011, a portion of the GDGT aliquot was also reserved for the analysis of isoGDGT intact polar 

lipids (IPL). BDE aliquots reserved for HG and IPL analyses were dried under N2 and stored 

frozen (-20°C) until analysis.  

2.2.2 GDGT purification 

BDE aliquots for core lipid (CL) GDGT analysis were further purified using alumina 

column chromatography. Columns were constructed from 5.25” Pasteur pipets plugged with 

extracted cotton wool and filled with activated aluminum oxide (Al2O3). The BDE was dissolved 

in a small amount of hexane/DCM (9:1, v:v) and loaded onto a saturated column. Compounds 

were separated based on polarity and collected in pre-weighed 4 mL vials. The apolar fraction 

eluted with hexane/DCM (9:1, v:v). The polar fractions eluted second with DCM/MeOH (1:1, 

v:v). Fractions were dried under N2 gas and weighed. A known amount of C46 internal standard 

(Appendix A; Huguet et al. 2006) was added to the polar fractions and dried under N2.  

2.2.3 Filtration 

Filtration of samples prior to high-pressure liquid chromatography (HPLC) analysis is 

necessary to remove clay, flocculants, and other fine particles that can interfere with the 

chromatography. The spiked polar fractions for GDGT analysis were dissolved in 

chromatography-grade hexane/isopropanol (IPA) (99:1, v:v) and filtered over 0.45 μm PTFE 

filters (Whatman, Maidstone, UK) and dried under N2. The BDE fractions for HG and IPL 

analyses were dissolved in a mixture of hexane/IPA/H2O (72:27:1, v:v) and filtered over 0.45 μm 

regenerated cellulose syringe filters (Grace Alltech, Deerfield, IL, USA) and dried under N2. 



 22 

2.3 HPLC/MS ANALYSIS 

2.3.1 IPL GDGT HPLC/ESI-MS
2
 Analysis  

The IPL analyses were performed at the Royal Netherlands Institute for Sea Research 

(NIOZ) in 2013. Analysis of crenarchaeol-based IPLs was conducted with HPLC/Electrospray 

Ionizaton (ESI)-MS
2
. An Agilent 1100 series LC coupled to a Thermo TSQ Quantum Ultra EM 

triple quadrupole mass spectrometer with an Ion Max source and ESI probe was operated in 

selected reaction monitoring mode according Schouten et al. (2008) and Pitcher et al. (2011b), as 

modified from Sturt et al. (2004). Chromatographic separation of IPLs was achieved using an 

Inertsil diol column (250 x 2.1 mm, 5 μm; Alltech Inc., Deerfield, IL) maintained at 30°C and an 

elution gradient of mobile phases A: hexane/IPA/formic acid/14.8 NH3(aq) (79:20:0.12:0.04, 

v/v/v/v), and B: IPA/H2O/formic acid/14.8 NH3(aq) (88:10:0.12:0.04, v/v/v/v). A flow rate of 0.2 

mL min
-1

 was held throughout the analysis, which used a linear gradient of 100% A to 35% 

A/65% B in 45 minutes, maintained for 20 minutes, followed by a return to 100% A that is 

maintained for 20 minutes to requilibrate the column. SRM transitions used for the detection of 

crenarchaeol-hexose (MH), crenarchaeol-dihexose (DH), and crenarchaeol-hexose-

phosphohexose (HPH) were based on the IPLs extracted from Ca. Nitrososphaera gargensis 

biomass as described by Pitcher et al. (2011b). No direct crenarchaeol IPL standard was 

available for quantification so results are listed as peak area units. 

2.3.2 CL GDGT HPLC/APCI-MS Analysis 

All filtered polar fractions were re-dissolved in hexane/IPA (99:1, v:v) to a concentration 

of 2mg/mL prior to analysis. Analysis of CL GDGTs via high performance liquid 

chromatography/positive ion atmospheric pressure chemical ionization mass spectrometry 

(HPLC/APCI-MS) was conducted at NIOZ in 2013 and 2017. 

Samples NST11-1 – NST11-21 and SST11-D-1 – SST11-D-12 were analyzed in 2013 

according to Hopmans et al. (2000) and Schouten et al. (2007). HPLC/APCI-MS was performed 

on an Agilent 1100 HPLC connected to an MSD SL mass detector. Separation was achieved 
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using a Prevail Cyano column (2.1 x 150mm, 3 μm; Alltech, Deerfield, IL, USA) maintained at 

30°C and the following elution program: isocratic elution with 99% A/1% B for 5 minutes, then 

a linear gradient to 98.2% A/1.8% B in 45 minutes, followed by a 10-minute back-flush with 

90% A/10% B. Total run time was 60 minutes. Eluent A is hexane and eluent B is IPA. Flow rate 

was 0.2 mL min
-1

. Injection volumes were 5 μL. GDGTs were detected in single ion monitoring 

(SIM) mode, targeting [M + H]+ ions of m/z 1302, 1300, 1298, 1296, 1292, 1050, 1036, 1022, 

and 744. Note that only the major, non-cyclized brGDGTs were screened for in this assay. 

The remaining samples were analyzed in March 2017 according to Hopmans et al. 

(2016). This method utilizes improved chromatography that allows for the separation of brGDGT 

isomers. Analysis was performed on an Agilent 1260 UHPLC coupled to a 6130 quadrupole 

MSD operated in positive ion mode. Two UHPLC silica columns (BEH HILIC columns, 2.1 x 

150mm, 1.7 μm; Waters) connected in series and maintained at 30°C were used to achieve the 

enhanced chromatography. Injection volumes were 5 μL. Elution protocol was as follows: 

isocratic elution with 82% A/18% B for 25 minutes, a linear gradient to 65% A/35% B in 25 

minutes, a second linear gradient to 100% B in 30 minutes, and last equilibration at 90% A/10% 

B for 20 minutes. Total run time is 100 minutes. Flow rate was 0.2 mL min
-1

. Solvents A and B 

are the same as above. Detection of GDGTs was performed in SIM mode. Targeting [M + H]+ 

ions of m/z 1302, 1300, 1298, 1296, 1292, 1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 

1018, and 744 allowed for the detection of the full suite of brGDGTs and all major isoGDGTs.  

Integrated peak areas for each GDGT were compared to the peak area of the internal 

standard (m/z 744) in individual samples to calculate lipid abundance. The relative response 

factor (RRF) of crenarchaeol and the C46 internal standard was determined in advance and 

corrected for after analysis (Huguet et al., 2006). 

2.3.3 HG HPLC/MS Analysis 

Filtered BDE for HG analysis was re-dissolved in hexane/IPA/H2O (72:27:1, v:v) to a 

concentration of 5-10 mg/mL prior to analysis. Analysis of HGs via HPLC/ESI-MS
2
 was also 

conducted at NIOZ. Samples NST11-1 – NST11-21 and SST11-D-1 – SST11-D-12 were 

analyzed in 2012 while the remaining samples were analyzed in March 2017. The 
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instrumentation for all HG analyses was the same except for the type of column used due to a 

manufacturer discontinuation.  

HG analysis was performed on an Agilent 1100 series LC coupled to a Thermo TSQ 

Quantum ultra EM triple quadrupole mass spectrometer with an Ion Max Source and ESI probe 

operated in positive ion mode. The methodology followed Bauersachs et al. (2010) and Bale et 

al. (2015). Samples analyzed in 2012 were separated over a LiChrospher Diol column (250 mm 

x 2.1 mm, 5 μm; Alltech, Deerfield, IL, USA). Samples analyzed in 2017 were separated over an 

YMC-pack Diol-120-NP column (250 x 2.1 mm, 5 um; YMC Separation Technology, YMC 

Europe GmbH). Chromatography and abundance of HGs is not impacted by the change of 

column (Hopmans, personal communication). Column temperatures were maintained at 30°C. 

Injection volumes were 10uL. Elution of HGs was achieved at a flow rate of 0.2 mL min
-1

 with 

the following protocol: linear gradient from 90% A/10% B to 70% A/30% B in 10 minutes, 

isocratic elution at 70% A/30% B for 20 minutes, a second linear gradient to 35% A/65% B in 15 

minutes, isocratic elution at 35% A/65% B for an additional 15 minutes, finally returning to 90% 

A/10% B in 1 minute, maintaining this mixture for 20 minutes to re-equilibrate the column. 

Eluent A was hexane/IPA/formic acid/14.8 M NH3(aq) (79:20:0.12:0.04, v/v/v/v) and eluent B 

was IPA/H2O/formic acid/14.8 M NH3(aq) (88:10:0.12:0.04, v/v/v/v). Total run-time was 81 

minutes. Detection of HGs was performed in selective reaction monitoring (SRM) mode 

targeting [M + H]+ ions of m/z 577.5, 577.5, 605.4, 603.5, 621.6, and 619.6.  

The abundances of individual HGs were quantified via integration. No internal standard 

for HGs was available at the time of analysis, thus mass concentrations could not be calculated 

and results are reported using peak areas. As several years passed in-between the analysis of the 

2011 and the 2012-2013 samples, peak areas for the latter group were ~2 orders of magnitude 

greater. Select samples from 2011 were re-run along with the 2012-2013 set and showed 

comparable distributions to the first analyses, however also showed a two order of magnitude 

increase in peak area. This is likely due to changes in the MS detection and do not reflect any 

actual change in concentration of HGs in the samples (cf Huguet et al., 2006), though the lack of 

measurement of an HG standard prevents the determination of changes the RRF of an MS for 

HGs over time. 
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2.4 STATISTICAL ANALYSES 

 Correlation coefficients (r) were calculated with least squares regressions of linear curve 

fits. Significance values (p) were calculated with a one-way analysis of variance (ANOVA) test 

(Zar, 1999). Statistical analyses were performed in Kaleidagraph (version 4.5.2, Synergy 

Software 2014). 

2.5 CALCULATION OF LIPID RATIOS AND PROXIES 

In the following equations, integers refer to the isoGDGT containing that number of 

cyclopentane moieties (Figure 1.1) and roman numerals refer to brGDGTs (Figure 1.2). Accents 

are used to denote the isomer of a structure. 

 TEX86 was calculated according to Schouten et al. (2007):  

TEX86 =  
[2] + [3] + [Crenarchaeol′]

[1] + [2] + [3] + [Crenarchaeol′]
  

TEX86-based water temperatures were calculated using the calibration from Powers et al. 

(2010). This lake-specific calibration was generated from a set of 20 globally distributed lake 

surface sediments that included three samples from tropical east African lakes: 
 

LST =  −10.4 + 50.8 × TEX86   R
2
 = 0.68, RMSE = 5.6°C 

BIT index values were calculated using the equation from Hopmans et al. (2004), as 

modified by De Jonge et al. (2014a): 
 

BIT =   
[Ia] + [IIa] + [IIa′] + [IIIa] + [IIIa′]

[Crenarchaeol] + [Ia] + [IIa] + [IIa′] + [IIIa] + [IIIa′]
 

Two brGDGT-temperature calibrations specific to the East African lakes are presently 

available (Loomis et al., 2012; Tierney et al., 2010). Both are based on direct regressions of the 

fractional abundances of certain brGDGTs against LST. Since the calibrations are based on the 

fractional abundances of individual compounds within the total brGDGT pool, they can only be 
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applied to samples in which the full suite of brGDGT structures was analyzed for, as otherwise 

the fractional abundances are inaccurate. Both the Loomis et al. (2012) and Tierney et al. (2010) 

calibrations were generated prior to the widespread analysis of 5- and 6-methyl isomers, thus 

they have been revised to reflect the inclusion of both isomers that would have co-eluted under 

the old method. The Tierney et al. (2010) calibration, based on a set of 41 African lakes, is as 

follows: 
 

MAAT = 50.47 − 74.18 × [IIIa + IIIa′] −  31.60 ×  [IIa + IIa′] −  34.69 × [Ia] 

R
2
 = 0.94, RMSE = 2.2°C  

 

The Loomis et al. (2012) study expanded the Tierney et al. (2010) dataset to 111 lakes. 

This enabled the authors to refine the East African lakes calibration, resulting in the following 

equation that now includes some of the minor brGDGTs in the equation: 

 

MAAT = 22.77 − 33.58 × [IIIa + IIIa′] −  12.88 ×  [IIa + IIa′] −  418.53 ×

 [IIc + IIc′] +  86.43 × [Ib]    R
2
 = 0.94, RMSE = 2.1°C 

 

A lacustrine-specific calibration has yet to be produced since the establishment of the 

separate quantification of 5- and 6-methyl brGDGT isomers. De Jonge et al. (2014a) did conduct 

a reanalysis of the dataset from Peterse et al. (2012) of 222 globally distributed soils, from which 

the following calibration was calculated: 
 

MATmr  = 7.17 + 17.1 × [Ia] +  25.9 × [Ib] +  34.4 × [Ic] −  28.6 × [IIa] 

R
2
 = 0.68, RMSE = 4.6 °C 

 

The isomerization ratio (IR) describes the relative proportion of the 6-methyl and 5-

methyl isomers detected with the improved brGDGT chromatographic method (Hopmans et al., 

2016) and was calculated according to De Jonge et al. (2014a): 

 

IRx =
Xy′

Xy + Xy′
  

 

where X = I, II, or III, and y = a, b, or c 
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Similarly, HG-based indices describe the relative abundance of HG diols to HG keto-ols 

(Heterocyst Diol Index, HDI) and HG triols to HG keto-diols (Heterocyst Triol Index, HTI). 

These indices were calculated according to Bauersachs et al. (2015): 

 

 HDI26 =
HG26diol

HG26diol + HG26keto − ol
 

HDI28 =
HG28diol

HG28diol + HG28keto − ol
 

HTI28 =
HG28triol

HG28triol + HG28keto − diol
 

Temperatures reconstructed from these HG indices are also calculated according to 

Bauersachs et al. (2015): 

 

LST =  (HDI26 − 0.4381)/0.0224    R
2
 = 0.93, RMSE = 0.97 °C 

LST =  (HDI28 − 0.0401)/0.0405    R
2
 = 0.70, RMSE = 1.62 °C  

LST =  (HTI28 − 0.2292)/0.0288    R
2
 = 0.78, RMSE = 1.69 °C  
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3.  RESULTS 

3.1 BULK GEOCHEMICAL DATA 

3.1.1 Thermistor temperatures 

The NB and SB exhibit clear seasonal changes in lake surface temperatures to depths of 

~20m (Figure 3.1). In both basins, the 7 m and 20 m thermistors record the coolest temperatures 

in August and maximum temperatures in January – February. Temperatures at 20 m water depth 

generally track those at 7 m, though there are a few instances where the amplitude of temperature 

change is greater at the deeper site. Surface water temperatures in the NB are more stable than 

those in the SB; SB surface water trends are frequently punctuated by abrupt cooling events in 

the austral spring, summer, and autumn months (Figure 3.1).  

The strong seasonal changes in temperature are not apparent below 20 m water depth. 

Rather, high frequency, high-amplitude fluctuations in temperature are recorded at the 

intermediate depths in both basins (Figure 3.1). In the NB, thermistors at 40 m and 60 m water 

depth recorded fluctuations of up to 4.3 °C and 3.8 °C in a single month, respectively. A similar 

pattern is observed at the 40 m thermistor in the SB, with recorded temperatures at this depth 

varying by up to 4.6 °C in a single month. These oscillations in temperature occur primarily 

during the stratified summer season, though it is difficult to confirm with the current dataset due 

to the incomplete logs from several thermistors. The dramatic temperature swings are likely the 

result of internal circulation dynamics rather than warming/cooling associated with seasonal 

radiative forcing which takes months to develop. One possible explanation is the presence of an 

internal seiche that continuously moves the thermocline across the fixed thermistors as the wave 

oscillates (Bootsma 1993).  
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Figure 3.1: Temperature recorded by thermistors placed along NST and SST mooring lines. 

Periods of instrument malfunctions are represented by gaps in the record. 

 

Temperature variability is significantly reduced at 80 m and 100 m in the NB and at 60 m 

and 80 m in the SB, though patterns at these depths appear linked to the intermediate waters in 

both basins (Figure 3.1). Temperatures stabilize at depths >100m, below which there is virtually 

no change in recorded temperatures for the periods where thermistor data is available.  

Temperatures in the monimolimnion were only recorded at one depth, 300 m, in the NB. 

The average temperature at this depth across the three year study period was 22.98 °C +/- 0.02. 

This is the warmest recorded temperature at this depth in Lake Malawi, suggesting the ongoing 

deep water-warming trend in the lake is continuing (Vollmer et al., 2005). 
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Measured temperatures from 2011 – 2013 can be summarized into three modes of 

variability: 1) Surface waters, 0 m – 20 m, exhibit a distinct seasonal pattern driven by solar 

radiation; 2) Internal circulation dynamics drive temperature variability at depths <100 m – >20 

m in the NB, and <80 m – >20 m in the SB; 3) Water temperatures remain consistent throughout 

the year at depths >100 m in the NB and >80 m in the SB. These observed patterns are in 

agreement with past reports of water column temperature in Lake Malawi (Vollmer et al., 2005). 

Monthly average temperature profiles were generated using the thermistor measurements. 

Water column profiles are based on 2013 temperatures, as this was the most complete year of 

data (Figure 3.2). The thermocline is weakest in July – August, coinciding with the period of 

strong winds and mixing. The thermocline is most pronounced in March, following the warm 

temperatures and weak winds characteristic of austral summer in the region. The depth of the 

thermocline varies annually as well, consistent with previous studies (Guildford et al. 2007; 

Hamblin et al., 1999; 2003).  

 

Figure 3.2: Annual variability in the strength and position of the thermocline in Lake Malawi’s 

north and south basins. Profiles were created with the sediment trap thermistor data. 
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3.1.2 Bulk mass accumulation rates 

 Bulk sedimentation at the NST ranged from 0.07 - 3.35 g/m
2
/day (Appendix G). The 

maximum flux occurred in November in both 2011 and 2012. Secondary peaks were additionally 

present in May – July each year (Figure 3.3). SST-D malfunctioned at the end of 2011, resulting 

in no material collected from September 2011 – January 2012. Sedimentation was extremely low 

during this same period in 2012 and 2013, so it is likely that not much sediment was missed. 

Bulk sedimentation at SST-D ranged from 0.02 - 3.12 g/m
2
/day. Sedimentation in the SB had 

two maxima each year, with one in late austral summer (~March-April) and the other in early 

austral winter (~June-July) (Figure 3.3a). Patterns of sedimentation were similar between SST-D 

and SST-S in 2013. SST-S mass accumulation rates ranged from 0.07 – 2.74 g/m
2
/day. Though 

there were also two periods of elevated sedimentation rates at SST-S, one in mid-March and the 

other in late-July, the duration of the latter peak was half of the concurrent maxima at SST-D 

(Figure 3.3a). The consistent presence of two peaks in sedimentation in the sediment traps from 

this study differs from the result of a previous sediment trap study conducted nearby in the SB. 

In the study by Bootsma and Hecky (1999), the authors noted only a single period of elevated 

mass accumulation rates occurring from December – May in their shallow traps (100 m and 140 

m).   

3.1.3 Organic Carbon and Nitrogen 

SPM total organic carbon (TOC) content was higher overall in the southern traps 

compared to NST, and SST-S had the greatest percentage of TOC of all three traps. Average TOC 

content was 3.3% ± 1.0, 4.4% ± 0.8, and 6.1% ± 3.2 in the NST, SST-D, and SST-S, respectively 

(Figure 3.3e; Appendix B). The high standard deviation in SST-S is due to six measurements that 

were outside the linearity of standards (SST13-S-1, S-10, S-18, S-19, S-20, and S-21). The flux 

of TOC in the NST was greatest from November – January. Flux of TOC in SST-S and SST-D 

was greatest in the beginning of the year, with peaks in March – April and July for both the deep 

and shallow traps, likely due to the low overall sedimentation during the dry, stratified season at 

this site. 
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Average total organic nitrogen (TON) was 0.4% ± 0.1, 0.6% ± 0.3, and 0.9 ± 0.6 in the 

NST, SST-D, and SST-S, respectively (Figure 3.3c; Appendix B). Low levels of TON in SST13-

D-3, D-21 and SST13-S-2, S-4, S-5, S-7 resulted in values that were outside the linearity of 

standards. The flux of TON generally co-varied with TOC throughout the time series, though 

with a couple of exceptions. At the NST, from October – December 2012, the flux of TOC is at a 

maximum while the flux of TON does not increase as significantly. This event is accompanied by 

a two-fold increase in Corg/Norg from average values (Figure 3.3d). A similar event occurs in 

December 2013 at SST-D.  

 Overall, Corg:Norg values do not vary significantly, but any deviations that do occur are 

driven by changes in %TON. Average SPM Corg:Norg from this study are lower than published 

values for Lake Malawi surface sediments, SPM, and POM, though within the range of error 

(Table 3.1). 

 

Table 3.1: Average Corg:Norg values of various types of smaterial collected in Lake Malawi. 

Reference Location/Year Sample Type Depth (m) Corg:Norg 

This study NST (2011/2012) SPM 170 8.5 ± 1.8 

 SST-D (2011 – 2013) SPM 115 – 125 8.0 ± 2.3 

 SST-S (2013) SPM 50 7.5 ± 1.1 

Pilskaln, 2004 North Basin (1987 – 1990) SPM 450 10.8 ± 1.5 
 Central Basin (1991/1992) SPM 390 9.8 ± 0.3 

Bootsma & Hecky, 1999 Central Basin (1997/1998) SPM 100 10.2 ± 1.3 

 South Basin (1997/1998) SPM 100 10.9 ± 1.2 

Guildford et al., 2007 South Basin (1997 – 2000) POM 0 – 40 9.3 ± 1.6 

Castañeda et al., 2009 North Basin (1998) sediment 403 12.0 

 

3.1.4 Bulk C and N isotopes 

 The carbon isotopic composition of TOC is relatively stable throughout the time series, 

though this trend is punctuated by a few dramatic events (Figure 3.3g). NST-δ
13

CTOC ranged 

from –26.5 ‰ to –18.2 ‰ (Appendix B). NST-δ
13

CTOC mirrors patterns in Corg/Norg. The most 

positive values occur during a period of low overall TOC concentrations but very high Corg/Norg. 

SST-D-δ
13

CTOC ranged from –26.0‰ to –1.5‰. The relationship between δ
13

CTOC and Corg/Norg 

in SST-D is the opposite of that in NST, with the most positive isotopic values occurring during 

periods of low Corg/Norg. The very positive values recorded at SST-D at the end of 2013 were 
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outside the range of the standards (SST13-D-14, D-15, D-16, D-17, D-18, D-19, D-20, D-21). 

Interestingly, this event is not recorded in the SST-S-δ
13

CTOC record, which shows little 

variability throughout 2013 ranging between –24.8‰ to –21.4‰. The discrepancy is due to the 

difficulty of making isotopic measurements on the small sample size of sediments from SST-D-

13, and trends in SST-S are likely reflective of actual changes in the lake.  

The isotopic composition of TON is similarly unique in the NB and SB of Lake Malawi 

(Figure 3.3h). NST-δ
15

NTON ranges from –5.2 ‰ to 5.1 ‰ (Appendix B). There appears to be an 

annual cycle in the NB from more positive values at the beginning of the year towards more 

negative values by the start of austral summer. SST-D-δ
15

NTON ranges from –6.7‰ to 12.9‰. At 

this trap, there is a long-term trend towards more positive values that persists throughout the 

time-series rather than a regular cycle (Figure 3.3h). SST-S-δ
15

NTON is relatively positive, 

ranging from 1.0‰ to 9.3‰. The δ
15

NTON for SST13-S-10 was outside the range of the 

standards. There is no clear trend in SST-S-δ
15

NTON in 2013, though values do seem to roughly 

co-vary with SST-D-δ
15

NTON (Figure 3.3h). 
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Figure 3.3: Accumulation rates of bulk sediment (a), total organic carbon (TOC) (b), and total 

organic nitrogen (TON) (c). Weight ratios of organic carbon and nitrogen (C/N) are shown in 

panel (d). Percent concentrations of bulk organic carbon (e) and bulk organic nitrogen (f), and 

the isotopic composition of TOC (g) and TON (h) are featured on the right of the figure. 
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3.2 GDGTS 

3.2.1 Crenarchaeol IPLs 

MH-, DH-, and HPH-crenarchaeol were detected in all SPM samples. Average total IPL 

fluxes were slightly higher in NST at 3.8e+6 area/m
2
/day ± 2.4e+6, than in SST-D, 3.6e+6 

area/m
2
/day ± 1.4e+6 (Figure 3.4; Appendix G). However, the average flux of the most labile 

IPL, HPH-crenarchaeol, was actually higher in SST-D at 3.5e+5 area/m
2
/day ± 4.3e+5 compared 

to the NST, in which it was 1.3e+5 area/m
2
/day ± 1.7e+5. In SST-D, MH-crenarchaeol was the 

most abundant. MH-crenarchaeol also dominated the NST for the majority of the year, except 

during the period of maximum IPL flux in which DH-crenarchaeol fluxes were greatest. 

Maximum fluxes of total IPLs in both basins matched periods of maximum fluxes of CL 

isoGDGTs (Figure 3.4).  

  

Figure 3.4: Fluxes of total crenarchaeol IPLs and of the individual MH-, DH-, HPH-

crenarchaeol IPLs (colored lines) compared to the summed fluxes of CL isoGDGTs (black 

squares) in the NB and SB of Lake Malawi in 2011. 
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3.2.2 IsoGDGTs and TEX86 

The full suite of isoGDGTs scanned for were detected in every sample except for SST13-

S-7. Fractional abundances are calculated as flux-weighted averages (Appendix C). Crenarchaeol 

was the dominant isoGDGT overall with fractional abundances ranging from 57% to 79%. The 

crenarchaeol regio-isomer was a much less significant portion of the total isoGDGT pool, with 

fractional abundances of 3—6% at NST, 2—3% at SST-D, and 0—2% at SST-S.  The fractional 

abundances of the other minor isoGDGTs varied based on trap depth, with distinct patterns 

present in SST-S that differed from those in NST and SST-D. GDGT-2 was the second most 

abundant isoGDGT in NST and SST-D, making up 5—9% of total isoGDGTs from these sites. 

At SST-S, GDGT-0 was the second most abundant isoGDGT overall, with fractional abundances 

of 3—25%. Conversely, GDGT-0 was the third most abundant compound at NST and SST-D, 

contributing 3—24% of total isoGDGTs. Importantly, however, only 2 out of 76 samples 

(NST12-2 and SST13-D-6) actually had fractional abundances of GDGT-0 > 8%. GDGT-1 was 

the third most abundant isoGDGT in SST-S, with fractional abundances of 4—9%. GDGT-1 and 

GDGT-3 were the least abundant compounds in NST and SST-D, with fractional abundances of 

4—8% and 5—7%, respectively. GDGT-2 and GDGT-3 were the least abundant compounds in 

SST-S, each making up only 5—6% of the total isoGDGT pool. At all sites, particularly low 

fractional abundances of crenarchaeol are attributed to increases in abundances of GDGT-0.  

The average flux of total isoGDGTs for the three-year study period is higher in the NB 

than in the SB, though exceptionally high fluxes of isoGDGTs to SST-D do occur in 2011 

(Figure 3.5; Appendix G). Total isoGDGT flux ranges from 0.05 to 97.27 μg/m
2
/day in the NST, 

with maximum fluxes at this site at the start of the rainy season in November in both 2011 and 

2012. IsoGDGT fluxes in SST-D range from 0.07 to 116.44 μg/m
2
/day, with the average flux 

value decreasing each year. There are two primary peaks in isoGDGT flux at SST-D: March and 

June/July. SST-D SPM collected in August – December, when available, was not analyzed for its 

GDGT content due to the low total mass of these samples. IsoGDGT fluxes generally co-vary 

with bulk sediment flux, so it is likely that fluxes were relatively insignificant at this time 

regardless. Fluxes of isoGDGTs were lowest at SST-S overall, ranging from 0.45 to 11.34 

μg/m
2
/day. 
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TEX86 showed little variability in the NST, ranging between 0.75 and 0.80 (Figure 3.6; 

Appendix D). There is a small increase in average NST-TEX86 values from 0.76 ± 0.008 in 2011 

to 0.79 ± 0.007 in 2012. TEX86 values in SST-D range from 0.66 to 0.75. Despite the slightly 

higher variability compared to NST, average annual TEX86 is consistent at the site at 0.72 ± 

0.012, 0.73 ± 0.015, and 0.72 ± 0.026 in 2011, 2012, and 2013, respectively (Figure 3.6; 

Appendix D). TEX86 showed the greatest variability at SST-S where values ranged from 0.60 to 

0.76 (Figure 3.6; Appendix D).  

 

Figure 3.5: Fluxes of CL branched (colored open circles) and isoprenoid (colored closed circles) 

GDGTs in Lake Malawi SPM compared to bulk sediment fluxes (closed grey circles). 
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3.2.3 BIT 

One of the primary consequences of using different instruments and methods for GDGT 

analyses (see section 4.3.1) is that BIT values are higher in those run with the Hopmans et al. 

(2016) method compared to those run with the Schouten et al. (2007a) method (Figure 3.6; 

Appendix D). Hopmans et al. (2016) demonstrated that the use of 2 UHPLC silica columns in 

their method produces higher BIT values compared to those produced with the cyano column 

described in the Schouten et al. (2007a) method. Previous studies have found that MS 

instrumentation could strongly influence BIT values, though the direction of change associated 

with this factor can be positive or negative (Schouten et al., 2009; Schouten et al., 2013). Due to 

these factors, it is difficult to compare BIT values between methods. Nonetheless, BIT was 

similar between the northern and southern traps in each set, and was generally lowest during the 

austral winter and higher during the rainy season. As all BIT values are ≤ 0.4 (range 0.12 to 

0.40), TEX86 is likely not significantly influenced by allochthonous isoGDGTs at any point in the 

record (Weijers, et al. 2006).  

 

 

Figure 3.6: TEX86 and BIT indices calculated from GDGT distributions in Lake Malawi SPM. 
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3.2.4 BrGDGTs 

Differences in GDGT analytical methods additionally led to discrepancies in brGDGT 

abundances and distributions between sets of samples. Concentrations of total brGDGTs are 

higher for samples run with the Hopmans et al. (2016) method. Cyclized brGDGTs composed 

7.4—19.3% of the total brGDGT pool in NST12 samples and 9.9—24.7% of the brGDGT pool 

in SST12-D – SST13-D samples (Appendix E). Not accounting for these compounds in samples 

run with the Schouten et al. (2007a) method thus led to an underestimation of total brGDGT 

abundance. When only major brGDGTs were analyzed, IIa was the dominant compound (45—

50%), followed by Ia (39—46%), and minor abundances of IIIa (8—12%) (Appendix E). When 

all 15 brGDGTs were analyzed, Ia and IIa (as combined 5-methyl and 6-methyl isomers) were in 

roughly equal abundance. Fractional abundances of cyclized brGDGTs were greater in the SST-

D and SST-S than in the NST. BrGDGTs with two cyclopentane moieties were the least 

abundant overall.  

6-methyl isomers comprised a substantial portion of the brGDGT pool (Figure 3.8). The 

C6 isomer was especially dominant for non-cyclized brGDGTs, representing over three-quarters 

of all IIa and IIIa structures in all but one sample, SST13-S-21, where IIIa and IIIa’ were in equal 

abundance. Variability in the IR of cyclized brGDGTs is greater than that of the non-cyclized 

compounds. While there are no consistent trends in the IR of cyclized brGDGTs, annual 

variability in the isomerization of non-cyclized brGDGTs is both spatially and temporally 

consistent (Figure 3.9). The average IR of cyclized brGDGTs was also lower than that of the 

non-cyclized compounds.  

Changes in the flux of brGDGTs in Lake Malawi SPM are in virtual lock step with 

isoGDGT fluxes, exhibiting significant positive correlations for both samples analyzed according 

to Schouten et al. (2007) (R
2
=0.97; p<0.001) and samples analyzed using the methodology of 

Hopmans et al. (2016) (R
2
=0.97; p<0.001) (Figure 3.7). Total brGDGT fluxes are highest in the 

NST overall, ranging from 0.02 to 20.95 μg/m
2
/day. In the SB, brGDGT flux is greater in SST-D, 

ranging from 0.03 to 13.23 μg/m
2
/day, while brGDGT fluxes in SST-S ranged from 0.08 to 4.62 

μg/m
2
/day (Appendix G). 
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Figure 3.7: Correlations between isoGDGT and brGDGT fluxes from SPM samples collected 

from 2011-2013. Black circles represent samples run using the LCCN method and grey circles 

represent circles run using the LCSi method. 

______________________________________________________________________________ 

 

Figure 3.8: Average IR (De Jonge et al., 2014a) of all brGDGTs collected in each sediment trap 

from 2012 to 2013. IR could not be calculated from samples collected in 2011, as the appropriate 

method was not used for the complete separation of isomers. A higher ratio indicates a greater 

proportion of 6-methyls structures, while a value of 0.5 would mean 6-methyls and 5-methyls are 

in equal abundance. 
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Figure 3.9: Annual trends in IR of brGDGTs collected between January 2012 – January 2014 in 

Lake Malawi. IR of samples from 2011 could not be calculated as they were analyzed with a 

method that does not separate the 5- and 6-methyl isomers. 

3.3 HGS 

3.3.1 HG distributions and abundances 

Distributions of HGs in SPM are remarkably coherent across Lake Malawi where trends 

in the fractional abundances of the six HGs measured are highly similar in NST, SST-D, and 

SST-S. HG26 diols and HG28 diols are the most abundant (Figure 3.10) – together these two 

compounds comprise 70% to 99% of all HGs measured (Appendix H). There is only one sample 

where the sum of the two is < 79%, and the sample (NST11-10) had extremely low 

concentrations of HGs overall. The HG28 keto-ol is the next most abundant, contributing 1% to 

30% of the HG pool. The HG28 triol, HG26 keto-ol, and HG28 keto-diol are minor components 
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throughout the time series, representing ≤ 2.6% each, though they were not present in every 

sample. Fractional abundances of HG28 diol are highest during austral summer and lowest during 

austral winter when the relative proportion of HG26 diols increase (Figure 3.10). The fractional 

abundance of HG28 keto-ols shows a distinct increase in December – January each year (Figure 

3.10). 

 

 

Figure 3.10: Fractional abundances of HGs in Lake Malawi SPM. Shapes correspond to 

sediment traps (circles = NST, triangles = SST-D, diamonds = SST-S), and colors correspond to 

pairs of HGs. Solid colors are diols or triols and open circles are the keto-ol or keto-diol 

counterpart. Grey lines separate between 2011/2012 and 2012/2013. 

 

 Similar to GDGTs, there is a difference in the HG data that is attributed to the length of 

time between analyses; peak areas of SPM samples run in 2012 are considerably lower compared 

to those run in 2017 ( 

Figure 3.11). Select samples were re-run to determine if peak areas were influenced by 

unrelated variability in the sensitivity of the MS detector. HG peak areas from these duplicate 

samples were three orders of magnitude greater, which is on par with the other samples run in 

2017 ( 

 Response Factor 
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Table 3.2). Relative increases in peak areas for individual HG structures within a single 

sample were consistent, however there was considerable variability between samples. Therefore, 

the emphasis for evaluating the results of these analyses is placed on the relative changes in peak 

areas between samples rather than their absolute magnitudes. 

 

Table 3.2: Relative response of HGs of NST11 samples run in 2017 and 2012 

 

Sample m/z 577 m/z 575 m/z 605 m/z 603 m/z 621 

NST11-1 277.7 312.3 237.0 238.0 262.7 

NST11-9 636.2 532.8 624.8 568.2 594.8 

NST11-15 481.3 488.4 450.3 445.7 563.5 

SST11-D-2 788.7 708.3 710.0 732.5 0.0 

SST11-D-11 476.3 410.4 436.6 444.8 0.0 

Average 532.0 490.4 491.7 485.8 284.2 

 Response Factor 

Sample m/z 577 m/z 575 m/z 605 m/z 603 m/z 621 

NST11-1 277.7 312.3 237.0 238.0 262.7 

NST11-9 636.2 532.8 624.8 568.2 594.8 

NST11-15 481.3 488.4 450.3 445.7 563.5 

SST11-D-2 788.7 708.3 710.0 732.5 0.0 

SST11-D-11 476.3 410.4 436.6 444.8 0.0 

Average 532.0 490.4 491.7 485.8 284.2 
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Figure 3.11: Fluxes of HGs in Lake Malawi SPM based on units of area m
2-1

 d
-1

. The 

differences in the magnitude of fluxes between samples run in 2013 (left of dashed black line) 

and those run in 2017 (right of dashed black line) is an artifact of variability in MS functionality. 

 

 The maximum flux of HGs in the NST occurs at the end of each year and is higher in 

2012 than 2011 based on the relative increase in HG flux compared to the average for that year ( 

Figure 3.11). HG flux in SST-S also shows a single peak at the end of the year ( 

Figure 3.11). The magnitude of this peak is almost 8 times the average flux of HGs in SST-S. 

The SST-D trap failed to collect any complete year of samples so it is difficult to determine any 

certain annual trends. The available data show a minor peak in flux at the end of the stratified 

season/start of the windy season in 2011 and 2013, though this peak is absent in 2012. There is a 

maximum flux occurring at the transition between 2012 and 2013, but the lack of data from the 

end of 2012 makes it impossible to determine the duration of this peak.  

3.3.2 HG-based indices 

With the HDI26, HDI28, and HTI28, a value of 1.0 indicates the lack of any 

ketonehydroxyls. The HDI26 index exhibits minimal variability in all three traps, with values 

ranging from 0.98 to 1.00, exemplifying the extremely low production of HG26 keto-ols 

compared to HG26 diols (Figure 3.12). The HDI28 exhibits semi-regular variability, remaining 
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stable at ~1 for most of the year ending with a distinct dip in values near the end of the year that 

spans ~September until the end of January of the following year. Aside from this regular pattern, 

HDI28 in the NST shows an irregular decrease in April 2011 and an anomalously low value of 

0.51 in July 2011 (Figure 3.12). The latter value is observed in a sample that had very low HG 

concentrations so may be biased. The HDI28 values of all SPM samples other than this 

anomalous point range from 0.78 to 0.96. Due to the nature of the HTI28 calculation as a ratio, if 

the HG28 triol was not present it could not be calculated (Appendix H). For the available data, 

values range from 0.44 to 1.00. The majority of values are 1.00, indicating a complete 

dominance of the HG28 triol compared to the HG28 keto-diol, though there are a few significant 

declines in the NST and SST-S records that occur around the same time as declines in HDI28 in 

the same samples (Figure 3.12). In the future the samples could be run at higher concentrations 

in order to get more accurate measurements of the HG28 triol and HG28 keto-diol. 
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Figure 3.12: Variations in HDI26, HDI28, and HTI28 calculated from distributions of SPM HGs. 

Red circles = NST, dark blue circles = SST-D, and turquoise circles 
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4.  DISCUSSION 

4.1 MASS ACCUMULATION RATES AND SOURCES OF SPM IN THE 

METALIMNION 

Surface cores previously collected from Lake Malawi exhibit seasonally deposited light-

dark varves that represent the two primary modes of sedimentation at the lake floor (Owen & 

Crossley, 1989; Pilskaln & Johnson, 1991). The light laminae are completely dominated by 

diatom frustules, as they are deposited during austral winter when strong southerly winds drive 

the upwelling of nutrient-rich metalimnetic waters that sustain maximum diatom productivity 

(Johnson et al., 2001; Pilskaln & Johnson, 1991). The dark laminae reflect a mix of 

diatomaceous ooze, clay, fine organic matter, and terrestrial material, which includes plant 

fragments, mica flakes, and silt (Pilskaln & Johnson, 1991). Dark layers are deposited during 

austral summer when ephemeral rivers and streams carry terrestrial material into the lake and 

export of autochthonous material decreases due to reduced primary productivity under the 

stratified conditions that form when wind stress slackens during this season (Eccles, 1974; 

Pilskaln & Johnson, 1991; Pilskaln, 2004). Notably, surface cores in the SB only contain 

laminated sequences when the oxic-anoxic interface was above the basin’s sediment surface 

during periods of high lake levels or low mixing strength (Pilskaln & Johnson, 1991; Brown et 

al., 2000).  

This seasonal pattern of sedimentation in Lake Malawi was corroborated by an analysis 

of SPM collected in the hypolimnion from 1987 - 1992 by Pilskaln (2004). The study observed 

sedimentation in the NB and CB and found an annual peak in mass accumulation rates at both 

sites that was driven by fluxes of biogenic silica (BSi) generated during the dry/windy season. 

The exact timing of this peak within the dry/windy season (e.g. beginning of, end of), however, 
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did deviate between years, likely due to interannual variability in the environmental conditions of 

the epilimnion that stimulate diatom blooms (Pilskaln, 2004). Sedimentation during the 

remainder of the year was minimal, though what material was collected appeared terrestrial in 

origin (Pilskaln, 2004). A later sediment trap study detailed in Bootsma and Hecky (1999) and 

Bootsma et al. (2003) revealed the nuances of sedimentation in Lake Malawi. This later trap 

study describes seasonal (3-4 month) trends in SPM export in the upper mixed layer of the lake, 

rather than the hypolimnion, from 1997 – 1999. While the authors did also observe a primary 

peak in mass accumulation rates that occurred in the dry/windy season – between May – 

September in the NB and between September – December/January in the CB and SB –  the SPM 

collected in the Bootsma and Hecky (1999) study differs from that of the Pilskaln (2004) study in 

both the composition and amount of sediment collected. The shallower Bootsma and Hecky 

(1999) study consistently recorded higher mass accumulation rates than those of the Pilskaln 

study, particularly in the traps positioned in the metalimnion at 140 m and 180 m depth (Bootsma 

and Hecky, 1999; Pilskaln, 2004). In addition, SPM collected in the Bootsma and Hecky (1999) 

study had greater overall percentages of lithogenic material, though the dry/windy season peaks 

in total mass flux still contained large percentages of BSi (Bootsma and Hecky, 1999; Bootsma 

et al., 2003), compared to that of the Pilskaln (2004) study. Interestingly, at the 100 m water 

depth SB site of Bootsma et al. (2003), secondary fluxes of BSi were recorded during May – 

September that, in some years, reached similar magnitudes as the primary BSi flux in September 

– January. 

Trends in bulk sedimentation in Lake Malawi over the last two decades can be inferred 

by comparing the results presented here to the previous two sediment trap studies in the lake, 

described above. In contrast to the single seasonal peak in sedimentation observed in the 

previous studies, SST-D, SST-S and NST record two peaks in total mass flux each year. At NST, 

elevated sedimentation rates occur at the beginning of the cool/dry season and at the start of the 

warm/wet season, though the former is more pronounced in 2011 than in 2012. As only two 

years of data are available from this trap, it is unclear if the pattern in sedimentation in 2011 is 

anomalous or characteristic in the modern-day basin. In SST-D and SST-S, the timing of the two 

peaks in total mass flux is closer, with one at the end of the warm/wet season and the second at 

the beginning of the dry/windy season. The presence of two annual peaks in sedimentation in the 

SB appears to be a consistent pattern based on the three years of data collected here. The possible 
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origins of the secondary peaks in total mass flux will be discussed below after first exploring 

changes in the magnitude of mass flux in Lake Malawi. 

The maximum peak in seasonally averaged (time frames for seasons were based on the 

definitions in Bootsma and Hecky, 1999) total mass flux at SST-D (115 – 125 m) was 1097 mg 

m
-2

 d
-1

, which is greater than the maximum fluxes recorded at both 100 m and 140 m in the SB in 

1997/1998 (Bootsma and Hecky, 1999). Seasonal averages of bulk sedimentation reach up to 

1432 mg m
-2

 d
-1

 at NST (170 m). This is more than twice as large as the maximum peak 

measured at 180 m water depth in the CB in 1997/1998, which was 601 mg m
-2

 d
-1

 (Bootsma and 

Hecky, 1999). The highest mass accumulation rate at 350 m water depth in the NB in the 

Pilskaln (2004) study was only 484 mg m
-2

 d
-1

, substantially lower than the average NST values 

from this study.  

Bootsma and Hecky (1999) found that increases in sedimentation rates observed in both 

the water column and sediments of the SB were primarily due to higher accumulations of BSi, 

though a quarter of the increase was attributed to an additional rise in minerogenic material. The 

authors hypothesized that these changes are due to population growth concentrated in the SB that 

is fueling rapid land use change around this end of the lake. Deforestation and agricultural 

development in the basin has caused reduced vegetation cover in southern Malawi; resultant 

increases in erosion of watershed soils has contributed high sediment loads to the SB catchment 

rivers that are, in turn, delivering more lithogenic material to the lake than in previous decades 

(Bootsma, 1993; Cohen et al., 1997; Hudak and Wessman, 2000). Concomitant increases in 

bioavailable phosphorous concentrations in the Bootsma and Hecky (1999) samples are likely 

derived from riverine inputs of the phosphorous-laden fertilizers used in the catchment (Hecky et 

al., 2003). Increased loadings of such nutrients would promote and sustain elevated levels of 

diatom productivity that substantiates the observed increase in BSi fluxes (Bootsma and Hecky, 

1999; Guildford et al., 2007). Low minerogenic fluxes accumulating in nearshore deposits in the 

NB led Bootsma and Hecky (1999) to claim that sedimentation in the basin decreased during the 

twentieth century. As cultivation of the northern end of the catchment is not as extensive as in the 

southern end, changes in the fluxes of terrestrial material to the NB are dictated by the intensity 

of precipitation during the wet season rather than anthropogenic effects (Milliman and Syvitski, 

1992; Bootsma and Hecky, 1999). Low precipitation in the region from 1970 – 1994, relative to 

the 1896 – 1994 average (Calder et al., 1995), corroborates the findings of Bootsma and Hecky 
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(1999). In this study, however, total mass fluxes to NST are greater than those to SST-D in both 

2011 and 2012, contradicting the notion that sedimentation is higher in the SB of Lake Malawi, 

and could indicate a change in sediment delivery and cycling in the lake since the turn of the 

century.  

Detailed compositional analyses of SPM from this study are available for the samples 

collected in 2011. Average BSi fluxes to SST-D in 2011 are comparable to those of Bootsma and 

Hecky (1999) (Zakaria and Hecky, unpublished data), suggesting that rates of diatom 

productivity in the basin have not increased substantially between 1997 and 2011. Furthermore, 

only the June – August peak in total mass flux in SST-D is associated with a peak in BSi flux 

(Zakaria and Hecky, unpublished data). The increases in total mass fluxes in the basin can 

instead be attributed to a 57% increase in the average lithogenic flux at this location (Zakaria and 

Hecky, unpublished data). If the increase in the flux of lithogenic material in the SB represents a 

continuation of the trend in increased contributions of topsoil erosion via terrestrial runoff, there 

should be a chemical signal of terrestrial material in the SPM. The low Corg:Norg values of SPM 

collected in SST-D (Appendix B) implies that the organic matter (OM) has a primarily aquatic 

source. The consistency of the Corg:Norg signal throughout the time series further suggests that 

terrestrial OM inputs are not significant at any point during the year, including the rainy season 

(Figure 3.3d). Both periods of high total mass fluxes in NST in 2011 were dominated by 

lithogenic material, but, as in SST-D, only the second peak in total mass flux contained elevated 

fluxes of BSi (Zakaria and Hecky, unpublished data). The peak in total mass flux that occurs 

earlier in the year, at the end of the warm/wet season, is almost entirely composed of lithogenic 

material (Zakaria and Hecky, unpublished data), with increases in POC and PON flux at this 

time that are only half the size of those that are associated with the peak in sedimentation that 

takes place at the end of the dry, windy season (Figure 3.3b,c). 

Examination of the timing of the peaks in bulk sedimentation in the NB and SB provides 

insights into the source of the lithogenic material that is driving high modern sedimentation rates. 

Bootsma et al. (2003) noted that at sites from their 1997 – 1999 sediment trap study where two 

traps were positioned along the same mooring, the deeper traps received higher relative fluxes of 

lithogenic material. The source of the additional lithogenic material at depth was believed to be 

resuspended slope material that laterally advected from non-depositional shallow environments 

to deeper waters. While complete compositional analyses are not available for SST-S or SST-D 
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samples collected in 2013, the only year from this study where a comparison of fluxes with depth 

can be made, the total mass fluxes during this period are higher in SST-D, suggesting a similar 

pattern of lateral transport in the basin. Furthermore, it is possible that this resuspended material 

was transported to the NB in 2011 during a period of strong internal circulation in the lake. This 

would provide a satisfactory explanation for the peak in lithogenic flux in May 2011 at the site 

that is not matched by elevated organic fluxes or changes in OM isotopic composition that would 

be expected with increases in primary productivity or terrestrial runoff. Oscillating temperatures 

in the warm/wet season recorded by the intermediate-depth thermistors are likely artifacts of 

internal seiche waves that rock the thermocline across the NST and SST moorings (Figure 3.1). 

Seiche activity has been demonstrated to intensify under stratified conditions in lakes as 

turbulence associated with high wind stress can reduce the degree of horizontal propagation of 

internal waves (Bootsma, 1993; Simpson et al., 2015). Amplification of internal waves varies 

interannually, therefore it is possible that favorable conditions for their formation were lacking in 

2012 and thus there is no significant lithogenic flux in the NB that year, though it is difficult to 

say for certain due to the lack of complete thermistor data. Upwelling is typically stronger in the 

SB year round, and can even take place during the stratified season (Hamblin et al., 2003). This 

could explain the regular peak in mass flux in the SB at the end of the warm/wet season though 

unfavorable conditions for diatom productivity may be why there is no matched increase in BSi 

flux.  

4.2 SOURCES OF GDGTS IN SPM 

4.2.1 Seasonality of GDGT production 

Fluxes of brGDGT and isoGDGT CLs in SPM generally follow trends in bulk 

sedimentation rates (Figure 3.5). Fluxes of TOC in SPM exhibit a significant positive correlation 

to bulk sedimentation in NST, SST-D, and SST-S (Figure 4.1). Coincident fluxes of CL GDGTs 

and Corg have been observed in other large (e.g. Woltering et al. 2012) and small lakes (e.g. 

Sinninghe Damsté et al. 2009), as well as in the marine water column (e.g. Wuchter et al. 2006; 
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Yamamoto et al. 2012). In these studies, the covariance of CL GDGT and TOC fluxes was 

interpreted as meaning that the export of GDGTs in the water column was due to particle 

entrainment, packaging of lipids into fecal pellets, and/or adsorption of lipids to clay 

grains/larger organic molecules. Consequently, elevated fluxes of CLs in Lake Malawi SPM do 

not necessarily reflect periods of active Thaumarchaeotal growth but are more likely related to 

large-scale sedimentation processes occurring in the lake.  

 

 

Figure 4.1: Correlation of total mass flux and TOC flux of all SPM samples, p<0.001 

 

The strength of the correlation between CL and TOC fluxes does vary between the NB 

and SB, however, suggesting that additional factors drive the export of GDGTs in the water 

column of Lake Malawi (Figure 4.2). The correlation between isoGDGT flux and TOC flux is 

strongest in the NST with an R
2
 of 0.71 and p<0.001 (Figure 4.2c,f). The much weaker 

correlation, R
2
=0.28, between isoGDGT flux and TOC flux in SST-D is likely due to the 

diminished fluxes of isoGDGTs to the trap in 2013 despite relatively high bulk sedimentation, 

though the relationship is still significant, p<0.001 (Figure 3.5). This could possibly be due to 

low production of isoGDGTs in the South Basin in 2013 such that the size of the CL pool was 

smaller, resulting in less export of the lipids when sedimentation occurred. Similarly, the 
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correlation between isoGDGT flux and TOC flux in SST-S is stronger than that of SST-D with 

an R
2
 of 0.4, but the relationship is not significant p>0.001. This might be due to lower 

abundances of isoGDGTs in the shallow trap overall as isoGDGTs are predominantly produced 

in deeper waters (Woltering, 2011), which will be discussed in further detail in the section 

below, or due to conflicting inputs of isoGDGTs from various planktonic archaea (Turich et al., 

2007; Buckles et al., 2014; Villanueva et al., 2014).  

The correlations between brGDGT flux and TOC flux decrease in both NST and SST-D 

when the full suite of brGDGTs was analyzed compared to samples for which only the non-

cyclized structures were monitored, and the correlation for SST-D becomes insignificant, p>0.05 

(Figure 4.2). The relative abundance of cyclized brGDGTs, particularly those with two 

cyclopentane moieties, correlate with depth of the water column in other African Lakes (Buckles 

et al., 2014; Loomis et al., 2014). The chemical structure of GDGTs is well preserved during 

export through the water column (Kim et al., 2009), even in the case of ingestion and packaging 

of the lipids into fecal pellets by zooplankton (Wuchter et al., 2006), so it is unlikely that changes 

in the distributions of GDGTs with depth are the result of diagenetic processes. The correlation 

between cyclized brGDGTs and water depth more likely indicates that deeper-dwelling 

brGDGT-producing bacteria preferentially synthesize brGDGTs with cyclopentane moieties. 

Thus, it is possible that the inclusion of these compounds in analyses reduces the correlation 

between brGDGT flux and TOC flux if their abundance in SPM is driven by different 

environmental controls. The decrease in correlation is most dramatic in SST-D due to an 

unusually high flux of brGDGTs at this site in April 2012. In a three-year analysis of CL and IPL 

brGDGTs in the water column of a smaller African lake, Lake Challa, Buckles et al. (2014) also 

observed an irregular pattern of brGDGT fluxes that contained only a single prominent peak 

during the time series. Given that the SB of Lake Malawi is shallower than the NB, conditions 

affecting bacteria in the SB may be more comparable to those in Lake Challa. As such, the 

dominant brGDGT producing community in the SB may be outcompeted by other microbial 

groups for much of the duration of the time series and only flourish when certain conditions are 

met. In Lake Challa, the primary flux in brGDGTs occurred during a year of especially low 

precipitation. Precipitation around Lake Malawi in 2012 was near average values for 1991 – 

2015, so it remains unclear what could have prompted the rise in brGDGT flux at this time.  
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Figure 4.2: Correlations among TOC fluxes and fluxes of crenarchaeol IPLs (a, b), CL GDGTs 

(c – h), and HGs (i – k) in NST, SST-D, and SST-S. Grey circles in panels f – k represent 

samples that were run using different methods that samples with black dots, which may have 

altered the distributions of the lipid class. 

 

The relative lability of IPLs to CLs makes them more reliable tracers of active GDGT 

production; the presence of intact polar head groups in SPM is an indicator of active or recently 

living cells because generally the phospholipid head groups are degraded quickly after cell death 

(White et al. 1979; Harvey et al., 1986; Pitcher et al., 2009b). The fluxes of HPH-, DH-, and 

MH-crenarchaeol in both the NST and SST-D show very weak correlations with TOC flux, R
2
 of 

0.02 and 0.17 for NST and SST-D respectively, that are highly insignificant p>0.1 (Figure 

4.2a,b), illustrating that trends in IPL export are largely independent of bulk sedimentation 

processes. Examining the abundances of crenarchaeol IPLs collected should therefore provide a 

better picture of when Thaumarchaeota are living in Lake Malawi.  
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In other lacustrine systems, the period of maximum Thaumarchaeotal activity follows 

the primary phytoplankton bloom (e.g. Sinninghe Damsté et al. 2009) due to the abundance of 

NH4
+
 released from the mineralization of planktonic biomass that stimulates growth of nitrifying 

Thaumarchaeotal communities living near the oxic-anoxic interface. BSi and TOC fluxes are 

closely related to the period of the primary phytoplankton bloom, and both reach maximums in 

the NB in 2011 in November. This timing is consistent with previous studies of biomass and 

photosynthetic rates in Lake Malawi, which also determined that peak phytoplankton activity, 

dominated by diatoms, takes place during/at the end of the dry/windy season (Bootsma & Hecky, 

1999; Guilford et al. 2007). Maximum fluxes of HPH-, DH-, and MH-crenarchaeol in NST also 

occur in November (Figure 3.4), thus it appears the Thaumarchaeotal community of Lake 

Malawi responds to the same ecological conditions as in other systems. A study by Guildford and 

Taylor (1999) demonstrated that lake-wide NH4
+
 concentrations are highest at this time as well, 

which lends further support to the source of isoGDGTs in Lake Malawi are nitrifying archaea. 

The flux of isoGDGT CLs in NST at this time is twice as large as the peak that occurs earlier in 

the year, so it is possible that GDGTs in SPM reflect a mix of fresh and old material. The 

residence time of GDGTs in the water column of Lake Malawi has not been previously 

determined, though it likely depends on a combination of factors, including the composition of 

bulk sediment in the epilimnion, the strength of the seasonal diatom bloom, and the strength of 

mixing of the epilimnion and metalimnion. Interannual variability in these factors would 

determine the relative amounts of material exported to deeper waters and, consequently, the 

amount of the CL pool that remains in suspension. Only half of the annual trend in crenarchaeol 

IPL fluxes is resolved at SST-D, thus the timing of primary crenarchaeol production remains 

uncertain. Nonetheless, at this location BSi, TOC, and crenarchaeol IPL fluxes peak in June, so if 

the relationship observed between these fluxes in the NB holds for the SB, then this may 

represent the actual period of Thaumarchaeota activity in the basin.  

As brGDGT IPLs were not analyzed in this study, it difficult to determine with certainty 

when brGDGTs are produced in the lake with the current dataset. It is still possible to speculate 

based on what is known about the ecology of aquatic brGDGT producers, though information on 

this subject is extremely limited. Weber et al. (2015) suggested that aquatic-brGDGT producers 

living in the alpine Lake Hinterburg in Switzerland are methanotrophs due to the extremely 

depleted δ
13

C composition of brGDGT alkyl chains (-43‰ to -46‰). However, a recent study by 
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Colcord et al. (2017) found that the brGDGTs in Greenland lake sediments have δ
13

C 

compositions of ~ -27‰ to -32‰, which are not nearly as depleted as the lipids from Lake 

Hinterburg. Colcord et al. (2017) suggest that the source organisms of these brGDGTs use 

distinct pools of carbon under varying seasonal conditions due to the difference in carbon 

isotopic composition of IIIa and IIa, the latter of which would be preferentially produced in the 

winter. To date, there are no compound specific isotope measurements of GDGTs from tropical 

lakes so it is unclear how aquatic brGDGTs living in these environments behave relative to those 

living in the polar and alpine regions examined in the aforementioned studies. A study of 

brGDGT IPLs in a different east African lake, Lake Challa, has demonstrated that in situ 

production of brGDGTs in that water column was highest in the anoxic portion of the water 

column (Buckles et al., 2014). In Lake Malawi, CL brGDGTs are in higher abundance in the 

anoxic water column (Figure 3.5; Woltering, 2011), so it is possible that brGDGT producers in 

Lake Malawi also live below the chemocline. As such, the aquatic brGDGT-producing 

community is likely more active during the warm, wet stratified season rather than the dry, cool 

season when convective mixing expands the oxygenated portion of the water column.  

Slight increases in the BIT index during the warm/wet season in all basins lend support 

to this idea (Figure 3.6). It is also possible that the increase in BIT during the warm/set season is 

due to influxes of terrestrial brGDGTs to the lake. As there is no available data on brGDGT 

distributions of Lake Malawi catchment soils, it is difficult to say with certainty if the increase in 

BIT during the rainy season is due to enhanced input of soil-derived brGDGTs or enhanced 

production of in situ brGDGTs. But if the rise in BIT index were related to surface runoff, 

brGDGT distributions in SPM should contain terrestrial signals such as an increase in the relative 

proportion of brGDGT I and decreases in the isomerization ratio, as these distributions are 

typical of terrestrial brGDGTs in mesoclimatic regions (De Jonge, Hopmans, et al., 2014; 

Günther et al., 2014; Peterse et al., 2012; Tierney et al., 2012; Xiao et al., 2015). Neither trend 

occurs in Lake Malawi SPM. Furthermore, all of the major rivers flowing into Lake Malawi are 

situated along the western shore. As the sediment traps were moored at center-east locations 

within the NB and SB, they should be at distances great enough such that the influence of river-

borne sediment is minimal (Halfman & Scholz, 1993; McCullough et al., 2007; Ellis et al., 

2015). The Ruhuhu River is an exception as it flows into the lake from the northeastern shore, 

but it is still further south than the location of the NST, and too far from the SB to have any 
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significant influence on the southern traps SST-D and SST-S. Based on these lines of evidence, it 

can be concluded that brGDGTs in Lake Malawi are most likely produced during the warm, wet 

season. 

4.2.2 Sources of isoGDGTs in settling particulate matter 

Many groups of archaea produce isoGDGTs, however the TEX86 proxy is exclusively 

based on those produced by Thaumarchaeota. In order to appropriately apply the proxy, it must 

first be demonstrated that contributions of GDGTs to the total CL pool from other sources are 

minimal. We have several lines of evidence to suggest that non-Thaumarchaeotal lipids do not 

significantly impact the Lake Malawi SPM samples.  

First, the presence of Thaumarchaeota in Lake Malawi is indirectly apparent due to the 

presence of the Thaumarchaeota biomarker, crenarchaeol (Sinninghe Damsté et al., 2002), in 

SPM in both the CL and IPL form. The only organisms observed to produce crenarchaeol in 

culture studies thus far belong to Thaumarchaeota or Group I.1a Crenarchaeota, the latter of 

which is mostly of importance in contributing crenarchaeol in soil environments (Pitcher et al., 

2010; Schouten et al., 2008; Sinninghe Damsté et al., 2002; Wuchter et al., 2004, 2006). As 

discussed above, the timing of peaks in crenarchaeol IPL abundance coincides with periods of 

elevated NH4
+
 in the lake. This lends support to the idea that the producers of crenarchaeol in the 

lake are nitrifying organisms, which, thus far, Thaumarchaeota are the only archaea identified 

with this capacity (de La Torre et al., 2008; Könneke et al., 2005; Pester et al., 2011; Stahl & de 

la Torre, 2012). Crenarchaeol is overwhelmingly the most abundant isoGDGT in all SPM 

samples (Appendix C), further suggesting a dominance of Thaumarchaeota throughout the time 

series. This is not absolutely conclusive, however, as CL isoGDGTs may have a long residence 

time in the water column such that distributions are not necessarily reflective of the active 

populations (Ingalls et al., 2006; Turich et al., 2007; Lengger et al., 2014).  

Analyzing the distributions of the other isoGDGTs will additionally help to disentangle 

the source of these lipids, as there are consistent trends in distributions associated with different 

groups of archaea. Methanogenic Euryarchaeota are associated with a dominance of GDGT-0 

(Turich et al., 2007), thus the ratio of GDGT-0/crenarchaeol is indicative of the relative 
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abundance of methanogens to Thaumarchaeota (Zhang et al., 2016). Values < 2 indicate that 

samples are likely not significantly impacted by methanogen-derived GDGTs, a standard that has 

been broadly adopted when interpreting TEX86-based paleotemperature records, including in 

Lake Malawi (Johnson et al., 2016). Though there are a few samples where the GDGT-

0/crenarchaeol ratio increases slightly, all SPM samples fall well under the benchmark value, and 

the ratio remains mostly unchanging throughout the three-year period (Figure 4.3)  

 

Figure 4.3: Variability in the Methane Index, GDGT-0/Crenarchaeol, and GDGT-2/GDGT-2 + 

GDGT-3 isoGDGT-based indices in Lake Malawi that are used to determine archaeal sources of 

isoGDGTs in environmental samples. 

 

Methanotrophic Euryarchaeota can produce GDGT-1, GDGT-2, and GDGT-3, but not 

crenarchaeol (Blumenberg et al. 2004; Pancost et al., 2001). Zhang et al. (2011) thus proposed 

the Methane Index (MI) to examine the relative proportions of GDGTs with 1 – 3 rings to 

crenarchaeol and its regio-isomer to detect past changes in abundances of methane oxidizing 

archaea in marine environments. MI values of < 0.3 reflect “normal marine” environments, while 
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values above this indicate greater contribution of GDGTs from methanotrophic Euryarchaeota, 

and which is possibly related to the presence of methane-hydrates at the sediment floor. All Lake 

Malawi SPM values from this study fall well within the normal marine range, with the highest 

value reaching 0.26 (Figure 4.3). As Thaumarchaeota still do produce GDGT 1 – 3, and tend to 

produce the more cyclized structures in warmer environments, it is expected that the MI values 

of GDGTs in tropical environments would be on the upper end of this range (Zhang et al., 2011). 

Moreover, the extremely strong correlation between GDGT-0 + crenarchaeol and crenarchaeol 

fluxes throughout the time-series (Figure 4.4) indicates a single source for crenarchaeol and the 

other isoGDGTs to the sediment traps (Woltering et al., 2012).   

 

Figure 4.4: Correlation between crenarchaeol and crenarchaeol+GDGT-0 fluxes. Fluxes are in 

μg/m
2
/day and normalized to TOC, p<0.001 

 

Lastly, a study by Villanueva et al. (2014) examined parallel changes in GDGT 

distributions and archaeal populations with depth in the Arabian Sea. The authors found that 

Thaumarchaeota living in shallow and deep waters belong to distinct phylogenetic groups based 

on differences in the gene that encodes for GDGT precursor molecules. The deeper-dwelling 

group was observed to produce higher proportions of GDGT-2 relative to GDGT-3, with ratios 

of GDGT-2/GDGT-3 reaching ~6 for CLs and ~12 for IPLs at the depth of their maximum 
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abundance (Villanueva et al., 2014). GDGT-2/GDGT-3 of CLs in globally distributed surface 

sediments (Kim et al., 2010b) can reach up to ~7, indicating that this deep-dwelling 

Thaumarchaeotal community can impact sedimentary distributions of isoGDGTs (Villanueva et 

al., 2014). The lower values for CLs are likely because the CL pools at depth in the water column 

and in sediments reflect mixtures of in situ-derived isoGDGTs and GDGTs exported from the 

oxic waters above. The link between isoGDGTs and Thaumarchaeota phylogeny by Villanueva et 

al. (2014) confirms the hypotheses of earlier studies of isoGDGTs in the marine column 

(Hernández-Sánchez et al., 2014; Villanueva et al., 2014; Wuchter et al., 2005) and lacustrine 

water column (Sinninghe Damsté et al., 2009) that attributed similar changes in the GDGT-

2/GDGT-3 ratio with depth as reflective of changing archaeal communities. The ratio of GDGT-

2/GDGT-3 in Lake Malawi SPM has a much narrower range that what is observed in these 

marine environments, with values measured between 0.8 – 1.6. The stability of the ratio in 

throughout the time-series further suggests that inputs of isoGDGT lipids to the traps from any 

deeper dwelling community to the traps are minimal.  

A recent analysis of archaeal populations inhabiting the water column of Lake Malawi 

conducted by Woltering (2011) confirms much of what is hypothesized above. As the sediment 

traps of this study were moored in both the metalimnion and epilimnion, it is important to turn to 

the Woltering (2011) study in order to comprehensively evaluate isoGDGT production 

throughout the upper layers of the water column. Woltering (2011) analyzed archaeal genetic 

material and GDGT distributions in particulate organic matter (POM) along vertical profiles that 

extended to 300 m in the NB and CB, and to 150 m in the SB, during Malawi’s warm/wet 

season. The study noted maximum abundances of HPH-crenarchaeol, the most labile form of 

intact polar crenarchaeol (Lengger et al., 2014b), at ~50 m water depth in the NB and CB, and 

~30 m water depth in the SB, which are coincident with peaks in 16s rRNA counts of archaeal 

genetic material detected with a general archaeal primer (Woltering, 2011) and amoA gene 

abundances (Muñoz Ucros, 2014). Taken together, this information strongly supports the 

presence of a Thaumarchaeotal community living at the oxic-suboxic boundary, consistent with 

numerous other studies of Thaumarchaeota in stratified systems (e.g. Sinninghe Damsté et al., 

2009; Zhang et al., 2011; Schouten et al., 2012; Schouten et al., 2013). In the NB, a primer 

intended to detect 16s rRNA material specific to Marine Crenarchaeota Group 1 (MCG1), 

identified a second archaeal community at 200 m. However, concentrations of HPH-crenarchaeol 
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at this depth are an order of magnitude lower than the peak at 50 m in the basin and there is 0.2 

increase in the GDGT-2/GDGT-2 + GDGT-3 ratio between the two locations, implying that this 

deeper archaeal community may not actually belong to Thaumarchaeota. Indeed, since the time 

of the Woltering (2011) study, the MCG1 primer has been revealed as ineffective at appropriately 

specifically capturing Thaumarchaeotal populations (Buckles et al., 2013) but may instead be a 

more general archaeal primer.  

 Though the POM data from Woltering (2011) is only a snapshot of annual isoGDGT 

production in the water column, the greater magnitude of the HPH-crenarchaeol peak at 50 m 

relative to the one at 200 m implies that this deeper dwelling archaeal group does not contribute 

a significant portion of crenarchaeol to the CL pool. Abundances of all CL isoGDGTs are also 

greater at 50 m compared to 200 m water depth, with concentrations that are twice as great 

(Woltering, 2011). The GDGT-2/GDGT-2+GDGT-3 ratio of CL isoGDGTs collected in the 

sediment traps of this study exhibit average values of 0.55 in the NST and 0.52 in SST-D 

(Appendix D). These values are more similar to the measurements by Woltering (2011) of POM 

samples collected near the depth of maximum Thaumarchaeota abundance, where at 50 m in the 

NB the index was 0.54 ± 0.04, and at 30 m in the SB the index was 0.55 ± 0.03. The deep-

dwelling archaeal population was only detected in the NB where the GDGT-2/GDGT-2+GDGT-

3 index had a value of 0.74 at 200 m water depth (Woltering, 2011). The low standard deviation 

of the index in NST SPM provides additional evidence that contributions of isoGDGTs from the 

deeper-dwelling archaeal population in Lake Malawi are insignificant. 

4.2.3 Sources of brGDGTs in settling particulate matter 

BrGDGTs in Lake Malawi SPM may be derived from soil runoff, an in situ source, or 

some combination of both. As discussed above, soil-derived GDGTs are likely minimal in the 

SPM samples from this study due to the location of the traps within the lake and the lack of 

evidence for significant terrestrial OM inputs. If brGDGTs in Lake Malawi SPM are primarily 

derived from soil runoff, their fluxes are expected to be highest during the rainy season, as 

observed in Lake Challa (Buckles et al., 2014; Sinninghe Damsté et al., 2009). However, similar 

to isoGDGTs, brGDGT fluxes correlate more strongly to TOC fluxes, which are driven by 
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internal processes in Lake Malawi (Figure 3.3f,g,h). Many studies of brGDGTs in lacustrine 

environments have documented in situ production of the lipids in the water column, potentially 

contributed by multiple distinct bacterial communities living in both oxic and anoxic waters 

(Blaga et al., 2011; Buckles et al., 2014; Colcord et al., 2015; Liu et al., 2014; Tierney et al., 

2012; Weber et al., 2015). In Lake Malawi, CL brGDGT concentrations in POM increase 

significantly below the thermocline, showing maximum abundances at 100 m in both the NB and 

CB and at 50 m in the SB (Woltering, 2011), depths at which suboxic conditions are present in 

the lake. Fluxes of brGDGTs to the traps on the same mooring in the SB in 2013 were greater in 

the deeper trap at 115 m than in the shallow trap at 50 m, however this could be due to higher 

export of brGDGTs that are produced around the depth of the 50 m trap to the deeper site. 

Moreover, concentrations of brGDGTs at 150 m in the SB were still significant (75% as great as 

concentrations at 50 m), so there may be an additional source of brGDGTs in the deeper waters 

of the basin. The location of maximum brGDGT production in suboxic waters may point to 

source organisms that are microaerophilic or a facultive anaerobes/aerobes. 

 The distributions of brGDGTs in Lake Malawi SPM are similar to those from other 

aquatic environments (e.g. Huguet et al., 2015; Loomis et al. 2014b; Naeher et al., 2014; Tierney 

et al., 2012). Moreover, the high abundance of 6-methyl isomers relative to 5-methyl isomers 

(Figure 3.8) appears to be diagnostic of aquatically-produced brGDGTs (De Jonge et al., 2014; 

Ding et al., 2016; Sinninghe Damsté, 2016; Weber et al., 2015). In the study by Weber et al. 

(2015) that examined brGDGT distributions in the seasonally stratified alpine Lake Hinterburg, 

the authors found additional isomers of brGDGT IIIa with a methyl group at each the C5 (C5’) 

and C6 (C6’) positions rather than all previously identified brGDGTs that have additional methyl 

branches at either exclusively the C5/C5’ or C6/C6’. This 5/6-methly isomer was not present in 

the surrounding soils, and was thus deemed a biomarker for aquatically produced brGDGTs 

(Weber et al., 2015). Notably we do not find any of these 5/6-methyl isomers in Lake Malawi 

SPM, though it may have been present below the detection limit as overall concentrations of 

brGDGTs were quite low.  

Weber et al. (2015) additionally found the compound specific δ
13

C of brGDGTs from 

Lake Hinterburg had extremely 
13

C-depleted values, suggesting the producers of brGDGTs in 

that system were methanotrophs. As isoGDGT distributions indicate low abundances of 

methanotrophic archaea, it is likely that methanotrophic bacteria are in similarly low abundances 
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in Lake Malawi, which would explain why the 5/6-methyl isomer is not detected in our samples. 

Colcord et al. (2015) did not find this structure in their Greenland lake sediments and suggested 

it may be because methanotrophy is not a dominant process in the Greenland lakes studied. The 

only other study to detect 5/6-methyl isomers was Ding et al. (2016), who analyzed surface 

sediments from a set of 37 alkaline lakes. The authors did not detail dominant microbial nutrient 

cycling processes in the lake so it is unclear how the abundance of the compounds in their 

samples relates to the ecology of organisms in the studied lakes. Therefore determining the lack 

of information regarding the bacterial communities living at depth in Lake Malawi makes it 

difficult to draw any conclusions about a (lack of a) methanotrophic source of brGDGTs based 

on the absence of 5/6 methyl compounds. Still, a significant presence of denitrifying bacteria 

living near the chemocline in Lake Malawi has been identified (Hecky et al., 1996) based on 

estimates of nitrogen fluxes. The abundance of brGDGTs in the suboxic waters of the lake where 

bacterially-mediated denitrification is occurring could possibly lend support to the Mueller-

Niggemann et al. (2016) hypothesis that brGDGT-producers are denitrifiers.  

4.3 APPRAISAL OF GDGT-BASED TEMPERATURE PROXIES 

4.3.1 Effect of analytical methodology on GDGT abundances and distributions 

Different analytical instrumentation and methodology were used for the measurement of 

GDGTs from SPM collected in 2011 versus SPM samples collected from 2012 – 2013, thus it is 

necessary to consider the extent to which these differences may have impacted the results 

presented here. A round-robin study of GDGT measurements in 35 labs found that the 

intralaboratory repeatability of TEX86 measurements made using the HPLC method described by 

Schouten et al. (2007) (LCCN) fall within <1°C, while interlaboratory reproducibility ranges from 

1°C to 3°C, proving that the robustness of the TEX86 proxy is comparable to other geochemical 

paleothermometers, such as Mg/Ca of foraminifera shells or Uk
37’ 

(Schouten et al., 2013). Some 

of the variability in the round-robin study was derived from differences in mass spectrometry 

employed, however there was no significant difference in measurements made using quadrupole 
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MS (p > 0.5) (Schouten et al., 2013). As both sets of Lake Malawi SPM samples were analyzed 

with a single quadrupole MS, variability due to instrumentation likely did not influence the 

dataset. The round-robin study additionally analyzed the repeatability and reproducibility of BIT 

measurements in the same samples, and found a higher degree of interlaboratory variability 

within samples of intermediate BIT composition (0.2 < x < 0.8) (Schouten et al., 2013).  The 

scatter in BIT measurements between labs was attributed to differences in the response of MS 

systems to the lower molecular weight brGDGTs relative to isoGDGTs, which was previously 

described by Escala et al. (2009) and Schouten et al. (2009). In brief, the relative mass difference 

between brGDGT structures is much greater than that between isoGDGT structures, thus 

detection of the former is more sensitive to MS settings (e.g. mass calibration, tuning). As a 

standard mixture of crenarchaeol to the C46 internal standard was measured alongside both sets 

of samples here, changes in MS response for isoGDGTs were easily accounted for. Schouten et 

al. (2013) proposed the use of a standard mixture of isoGDGTs/brGDGTs based on molar ratios 

to correct for such MS biases (this had substantially improved reproducibility of BIT 

measurements). However, as the use of such a standard was not employed in this study it is 

impossible to ascertain differences in brGDGT detection between the two methods used.  

Furthermore, it is possible that the analysis of samples using a cyano column/HPLC 

method (LCCN) versus a two silica column/UHPLC method (LCSi) may have also biased the 

detection of certain groups of GDGTs in one set over the other. Hopmans et al. (2016) found that 

the elution of GDGTs using the LCSi method resulted in lower TEX86 values due to the 

separation of previously co-eluting isoGDGT isomers leading to decreased peak heights overall. 

Interestingly, we see no change in average TEX86 measurements in SST-D samples and actually a 

slight increase in average TEX86 from NST (Figure 3.6), suggesting that, at least, the relative 

distributions of isoGDGTs are not affected by the stationary phase used for separation. BIT 

values of Lake Malawi SPM analyzed using the LCCN method are similar to published values 

from surface sediments that were analyzed with the same method (Powers et al., 2011), however 

both are lower than values for SPM analyzed using LCSi. The LCSi method has been reported by 

Hopmans et al. (2016) to produce higher BIT values compared to samples run with LCCN, 

however the authors did not provide an explanation for this beyond that the variability in BIT 

measurements between chromatographic methods fell within the range of interlaboratory 

reproducibility (Schouten et al., 2013).  
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The bias of BIT towards greater values in our SPM samples could be due to several 

factors. First, only a limited set of brGDGTs was monitored in SPM samples from 2011. 

Cyclized brGDGTs make up 5—30% of the total brGDGT pool in SPM samples from 2012—

2013, therefore their exclusion would result in lower total brGDGT abundances. The BIT index 

is only based on the major brGDGT structures however, so inclusion or exclusion of cyclized 

brGDGTs would not affect this index. Interestingly, though average flux of brGDGTs in the NST 

is higher in 2012 samples as expected, the flux of brGDGTs in SST-D is similar between the 

three years despite the exclusion of cyclized compounds from detection in the 2011 samples. 

Higher BIT values could also result from lower detected abundances of isoGDGTs/crenarchaeol 

with the LCSi method. Concentrations of crenarchaeol were tied to an internal standard and 

differences in MS detection of the internal standard and crenarchaeol were accounted for, so it is 

unlikely that isoGDGT abundances would be significantly skewed in this way. As changes in the 

relative detection efficiency of C46 and brGDGTs was not accounted for, applying the same 

correction factor for Crenarchaeol/C46 to brGDGT peaks could have led to an overestimation of 

brGDGTs in the 2012—2013 samples. This could explain why declines in fluxes of isoGDGTs in 

both the NB and SB in 2012 and 2013 are not matched by declines in brGDGT (Figure 3.5). 

While these constraints prohibit drawing comparisons of BIT values between 2011 and 2012-

2013 samples, observing trends within sets analyzed under the same method is reasonable. 

4.3.2 Temperatures reconstructed with TEX86 

TEX86 is remarkably consistent throughout the time-series in the NB (Figure 3.6), 

resulting in inferred temperatures that fail to capture seasonal variability in LST (Figure 4.5). 

The flux-weighted average TEX86 at this location is 0.77, which corresponds to a temperature of 

28.9°C using the Powers et al. (2010) calibration. This value most closely matches the warmest 

temperature recorded at 7 m water depth in the basin, which was recorded during the austral 

summer. IsoGDGT distributions in Lake Malawi SPM that reflect summer temperatures are 

consistent with peaks in IPL crenarchaeol production early in the warm/wet season. If this is the 

singular period of isoGDGT production in the NB, then it makes sense that the CL pool 

consistently reflects summer temperatures regardless of the timing of export of CLs out of the 
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epilimnetic pool. That these TEX86-inferred temperatures also match surface water 

measurements despite evidence that the dominant Thaumarchaeota live at ~50 m depth in the 

basin, agrees with some studies of isoGDGTs in SPM (Sinninghe Damsté et al., 2009; Wuchter et 

al., 2005, 2006). The RMSE of the Powers et al. (2010) TEX86 calibration is 5.6°C, so it is 

possible that the calibration simply produces a warm bias as the <3°C temperature difference 

between waters at 7 m and 50 m is well within the range of error for the calibration. Though this 

is true, it seems especially contradictory in Lake Malawi where TEX86-inferred temperatures 

calculated from GDGTs in POM collected during the warm, wet season in January 2010 match 

the measured temperatures at the depth where Thaumarchaeota are proposed to live in the water 

column (50 m depth) (Woltering, 2011).  

 

 

Figure 4.5: TEX86 reconstructed temperatures from CL GDGTs in Lake Malawi SPM (black 

lines) compared to thermistor temperatures. 
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In contrast to the pattern observed in the NB, TEX86-reconstructed temperatures in POM 

from the SB are lower than in situ temperatures at the depth of maximum Thaumarchaeotal 

activity (Woltering, 2011), but in agreement with SPM-based temperatures from SST-D. Though 

TEX86-reconstructed temperatures in SST-D and SST-S are more variable, they still do not 

capture measured trends in LST. Instead, TEX86-based temperatures in the basin record 

intermediate values at the beginning of the warm/wet season that increase to warmer values at 

the transition to the cool/dry season. As there is no complete year of trap records from the deeper 

site from this location, changes in isoGDGT distributions at depth during the transition out of the 

cool/dry season into the warm/wet season is uncertain. TEX86 in SST-S at this time returns to the 

cooler values recorded at the beginning of the year. Maximum temperatures recorded by CL 

distributions are coincident with the period of elevated IPL crenarchaeol fluxes and the two 

peaks in total isoGDGT CL flux, all taking place during the dry/windy season. Apparent maxima 

in temperatures at this time are due to increases in the relative abundance in crenarchaeol at the 

expense of GDGT-1 (Figure 4.6); abundances of GDGT-1/crenarchaeol are significantly 

correlated in samples that are likely not influenced by contributions from Euryarchaeota (Figure 

4.6b). In the marine water column, isoGDGT distributions are sometimes correlated with nutrient 

concentrations, in particular nitrate (Wuchter et al., 2005; Turich et al., 2007), such that residual 

temperatures between lipid-based values and measurements are significantly higher during 

periods of nutrient upwelling. Turich et al. (2007) proposed that the upwelling of nitrate 

stimulates growth of mesopelagic Thaumarchaeota populations, and that distributions of 

isoGDGTs produced during this time may actually reflect a biophysical response rather than a 

temperature signal. The increases in fractional abundance of crenarchaeol and the higher 

temperatures recorded by isoGDGTs in Lake Malawi SPM during the dry/windy season may 

then be an artifact of Thaumarchaeota ecology. Thaumarchaeota in the NB of Lake Malawi 

might not exhibit this behavior due to weaker upwelling in the basin. In other lakes where 

upwelling is not a significant process, TEX86 based temperatures also show little annual 

variability (Sinninghe Damsté et al., 2009; Blaga et al., 2011). In a study of isoGDGTs in the 

dimictic Lake Superior, Woltering et al. (2012) specifically collected SPM at a location in the 

lake where upwelling is not significant, and again found that TEX86-temperatures do not record 

any seasonal variability. Therefore, it appears that even if upwelling can be a significant overall 

process in large lakes, local limnological processes ultimately drive Thaumarchaoteal ecology. 
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Figure 4.6: Fractional abundances of isoGDGTs used for the calculation of TEX86 in SST-D and 

SST-S (above). Correlations between fractional abundances of crenarchaeol and GDGT-1 are 

shown for NST (red circles), SST-D (dark blue circles), and SST-S (turquoise circles) are shown 

in panels A and B. Correlations in panel A include three outliers, circled, where high 

concentrations of GDGT-0 bias fractional abundances of the other isoGDGTs. Correlations with 

these points excluded are in panel B. Correlations between crenarchaeol and GDGT-1 fractional 

abundance are not significant for SST-D and SST-S with the outliers included (p>0.1), but are 

significant for NST with and without the outlier (p<0.001) and for SST-D and SST- when the 

outlier is excluded (p<0.001). 
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SPM TEX86 temperatures are warmer than those calculated from GDGTs in sediments. 

In their 1.3 million year record of TEX86-temperatures from the CB of Lake Malawi calculated 

with the Powers et al. (2010) calibration, Johnson et al. (2016) measured TEX86 temperatures of 

18°C to 28°C, with a surface sediment (1 cm) temperature of ~25°C. The surface sediment 

collected from Lake Malawi in the Powers et al. (2010) study was from the NB and had a TEX86 

value of 0.73, equating to temperature of ~27°C. Warmer temperatures in the NB compared to 

the CB, and in the NST compared to the SST, could be due to the more equatorial location of the 

NB where average surface water temperatures are higher than those in the SB.  

4.3.3 Are brGDGT distributions driven by temperature? 

Beyond the BIT index, discussion of brGDGTs in Lake Malawi SPM will be focused on 

the 2012 – 2013 SPM samples as these were analyzed for the full suite of brGDGTs. By 

resolving both the 5-methyl and 6-methyl isomers, unique patterns arise in brGDGT abundances 

that elucidate trends in brGDGT production and sources that are not apparent from the major 

brGDGT distributions alone. However, at present there are no calibrations relating brGDGT 

distributions and temperature that have been produced from lacustrine-specific samples (i.e. with 

no input from soils). BrGDGT producers inhabiting soils and those in lakes have already been 

shown to have unique manners of adapting membrane lipid compositions in response to 

changing environmental conditions, thus the isomerization of brGDGTs by aquatic brGDGT 

producers needs to be explored further. Therefore, it is not surprising that neither brGDGT 

calibration produced prior to the separation of 5- and 6-methyl isomers nor the soil-based 

calibration developed after the analytical improvement fail to reasonably relate brGDGTs in 

Lake Malawi SPM to water temperatures at any depth.  

De Jonge et al. (2014) re-analyzed the global dataset of soils utilized for the 

development of the MBT/CBT and MBT’/CBT calibrations for their brGDGT composition to 

reflect abundances of both 5- and 6-methyl brGDGT isomers. The authors found only the 

abundances of 5-methyl structures to be significantly correlated with temperature, and thus 

defined the MATmr calibration based on the relative abundance of the 5-methyl tetramethylated 

brGDGTs and the 5-methyl non-cyclized pentamethylated brGDGT. Applying this calibration to 
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brGDGTs in Lake Malawi SPM results in a drastic underestimation of LST by ~10°C, consistent 

with previous studies that attempted to apply soil-based brGDGT calibrations to lacustrine 

brGDGTs (e.g. Tierney et al., 2010) (Figure 4.7).  

Two brGDGT calibrations, by Loomis et al. (2012) and Tierney et al. (2010), have been 

developed specifically for East African lakes. To determine if these calibrations produce realistic 

temperatures, values were calculated first as originally calibrated, with the abundances of 5- and 

6-methyl isomers combined, and then calculated again with the exclusion of the 6-methyl 

isomers. When brGDGT-based temperatures are calculated using the 5- and 6-methyl isomers 

together, both calibrations produce apparent temperatures that are significantly lower than 

measured values (Figure 4.7). The Tierney et al. (2010) calibration uses only the fractional 

abundances of non-cyclized brGDGTs, thus increases in IIc, IIc’, and Ib at the expense of IIa’ 

during the cool/dry season results in an increase in temperatures that is not apparent when 

reconstructing temperatures with the Loomis et al. (2012) calibration, which includes IIc and Ib 

in the calculation (Figure 4.8). Excluding the 6-methyl isomers from these calibrations changes 

the trends and magnitudes of reconstructed temperatures (Figure 4.7). The Tierney et al. (2010) 

calibration now drastically overestimates LST, while the Loomis et al. (2012) calibration with 6-

methyl brGDGTs only results in the most accurate temperatures of any lacustrine or soil-based 

calibration applied here. As the Loomis et al. (2012) calibration includes only the penta- and 

hexa-methylated structures, and utilizes IIc, all of which have been demonstrated to be of 

significance in aquatic systems, this could explain why it performs the best of any brGDGT 

calibration. Still, the Loomis et al. (2012) calibration also does not resolve annual trends in LST. 

Moreover, it performs especially poorly in the SST-S, which may be a result of the low overall 

brGDGT concentrations and thus an unreliability of measurements of minor components such as 

IIc utilized in the calibration. 

An interesting feature of brGDGT distributions is that the relative abundance of cyclized 

structures in SST-D and SST-S increases during the cool, dry upwelling season (Figure 4.7). It is 

possible that there is a deeper-dwelling brGDGT community that become apparent in the traps 

during the dry season due to resuspension of their lipids (Loomis et al., 2014) and may have been 

missed by Woltering (2011) who did not analyze cyclized brGDGTs. Distributions in lakes can 

also be affected by nutrient concentrations, so upwelling during the dry season in the SB may be 

driving a single bacterial community to alter their lipids (Loomis et al., 2014).   
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Figure 4.7: Temperatures reconstructed from brGDGTs using the lacustrine based calibrations 

from Loomis et al. (2012) and Tierney et al. (2010) and the soil-based calibration from De Jonge 

et al. (2014). Open symbols reflect temperatures calculated with the inclusion of both 5- and 6-

methyl isomers while closed symbols are temperatures calculated exclusively from 5-methyl 

structures. Reconstructed temperatures are compared to thermistor measurements from 7 m (blue 

line) and 100 m in the NB (pink line) and 7 m and 80 m the SB (magenta line). Temperatures are 

only calculated for 2012 and 2013 when the full suite of brGDGTs were analyzed. 
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Figure 4.8: Fractional abundances of brGDGTs in SPM collected between January 2012 

to December 2013 in the SB of Lake Malawi. All samples were run using the LCCN method. 

 

4.4 HGS AS ENVIRONMENTAL INDICATORS IN LAKE MALAWI 

4.4.1 Temporal and spatial variability in HG production 

Fluxes of HGs in NST and SST-S exhibit regular maxima in December of each year from 

2011–2013 (Figure 3.11). Unlike diatom blooms that are generally spatially heterogeneous, the 

timing of cyanobacterial blooms across Lake Malawi has been shown to be coherent (Bootsma, 

1993). Therefore, though HG fluxes are not resolved in SST-D in the latter half of each year due 

to the lack of sediment collection, it is likely that the maximum HG flux at this site also occurs 

around December. Elevated fluxes of HGs in SST-D at the beginning of 2013 may be a 

continuation of a maximum from the end of 2012, as indicated by the peak in HG flux at this 

time in NST, providing support for this interpretation (Figure 3.11). The low correlation between 
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HG flux and TOC flux (Figure 4.2) indicates that export of HGs is largely independent of bulk 

sedimentary processes. The chlorphyll-A maximum in the SB sits around 35 m (Woltering, 

2011), therefore the position of SST-S at 50 m is makes it the sediment trap best suited to collect 

freshly produced phytoplankton material, and is unlikely to be influenced by lipids in 

resuspended sediments due to its distance from the sediment-water interface compared to SST-D. 

As expected, fluxes of HGs in SST-S do exhibit the lowest correlation with TOC flux (Figure 

4.2). The correlations between HG fluxes and TOC fluxes in SST-D and NST are slightly higher 

than in SST-S, but are still weak (R
2
 ≤ 0.25). Regardless, all correlations between TOC flux and 

HG flux are insignificant (p>0.01). Magnitudes and trends of HG fluxes in SST-D and SST-S in 

2013 are very similar (R
2
=0.69, p<0.001; Figure 4.9), indicating that export of HGs out of the 

epilimnion is rapid. As such, trends in HG distributions in the traps positioned at depth can be 

fairly interpreted as representative of actively living cyanobacterial populations.  

 

Figure 4.9: Correlation between fluxes of HGs to SST-S and SST-D in 2013. 

HGs were detected in all samples, consistent with the presence of active cyanobacteria 

populations in Lake Malawi throughout the year, as determined by floristic analyses of 

phytoplankton that utilized cell-counting techniques (Bootsma, 1993). The timing of principal 

HG fluxes in December is also consistent with these floristic analyses, in which maximum 

cyanobacterial biomass was identified in November – December (Bootsma, 1993; Hecky et al., 

1999; Patterson and Kachinjika, 1995). Conditions in the lake at this time are most favorable for 

cyanobacterial blooms for two reasons. First, the depletion of nutrients in the epilimnion by 
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diatoms during the dry/windy season create low-nutrient, specifically low-nitrogen conditions, in 

which nitrogen-fixing cyanobacteria thrive (Hecky and Kling, 1987). Secondly, the slackening of 

winds and reduced upwelling during this season leads to diminished turbidity in the epilimnion 

that supplies cyanobacteria with the high irradiance these organisms prefer (Staal et al., 2003; 

Stal, 1995). Bootsma (1993) suggested that the timing of cyanobacterial blooms in Lake Malawi 

is most strongly driven by the reduction in wind stress. As variations in windspeed across the 

lake are relatively instantaneous, this would explain the synchronicity of cyanobacteria blooms 

in the NB and SB as recorded by HG fluxes. This is in contrast to the spatial heterogeneity of the 

cooling of surface waters that drives entrainment and upwelling that ultimately dictates the 

timing of diatom blooms (Bootsma, 1993).  

4.4.2 Distributions of HGs and temperature 

Culture studies have demonstrated that cyanobacteria produce higher proportions of HG 

diols relative to the keto-ol homologues under warmer growth conditions (Bauersachs et al. 

2009b, 2014). For cyanobacteria grown at 27°C, HDI26 values have ranged between 0.93 – 0.95 

(Bauersachs et al. 2009b, 2014). In a study of HG distributions in natural freshwater 

environments, HDI26 ranged between 0.96 – 0.99 at locations with surface water temperatures 

≥25°C, though the correlation between HDI26 and MAT at these sites diverged from the trend 

observed in temperate environments (Wörmer et al., 2012). Importantly, the linear relationship 

between HDI26 and MAT was only robust for the temperate environments where MAT was ≤ 

25°C and ≥ 15°C (Wörmer et al., 2012). Summer surface water temperatures in Lake Malawi are 

generally ~28 – 29°C (Figure 4.11), so heterocystous cyanobacteria in the lake may possess a 

nonlinear adaption of the production of HG26-diols and HG26-keto-ols relative to temperate 

organisms, which could explain why HDI26 in SPM frequently reaches its maximum value of 

1.0. 

Likewise, the HDI26 of Lake Malawi SPM shows virtually no variability over the three-

year study period due to a complete dominance of HG26-diols relative to HG26-keto-ols (Figure 

4.11; Appendix H). It is curious that HDI26 does not vary with seasonal temperatures despite the 

observation that fluxes of HGs generally correspond to actively growing heterocystous 
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cyanobacteria. This further suggests that heterocystous cyanobacteria in Lake Malawi do not 

alter the structure of their HG26 lipids in response to seasonal variations in temperature in the 

same manner as temperate organisms, as this finding is in contrast to a study of HGs in POM 

from the temperate Lake Schreventeich where HDI26 was the most highly correlated HG-based 

index to seasonal variability in LST (Bauersachs et al., 2015).  

Variability in HDI28 also does not follow seasonal patterns in LST, despite exhibiting a 

fairly strong relationship with LST in temperate lacustrine POM (Bauersachs et al., 2015) and in 

culture studies (Bauersachs et al., 2014). The most prominent feature of the HDI28 record in Lake 

Malawi is the semi-regular decrease in values that occurs around the periods of elevated HG flux 

(Figure 3.12). The cause for this pattern will be discussed in further detail in section 4.4.3 below. 

Whether the pattern in HTI28 is more similar to HDI26 or HDI28 is difficult to resolve due 

to the low abundances of HG28-triols and HG28-keto-ols overall. Abundances of the HG28-keto-ol 

may have been additionally underestimated as the structural isomers of this compound which 

were not integrated may have represented a significant portion of its abundance (Bauersachs et 

al., 2014).  

Patterns in HG distributions, as recorded by the HDI26, HDI28, and HTI28, in SST-D and 

SST-S are well correlated (R
2
 of 0.58, 0.53, and 0.82, respectively; Figure 4.10) and significant 

(p<0.001). This pattern provides additional evidence that HGs at depth in the water column are 

exclusively sourced from cyanobacteria inhabiting the surface waters, and that export of the HGs 

through the water column is rapid. 

 

Figure 4.10: Correlations between HDI26, HDI28, and HTI28 measured in SST-D and SST-S 

SPM. Many points are overlapping in the panel for HTI28 due to low abundances of the HG28 

keto-diol that lead to a frequent value of 1.0 in SPM from both traps. 
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water temperatures, it is no surprise that reconstructed temperatures based on these indices do 

not match measured temperatures in Lake Malawi (Figure 4.11). Furthermore, the only LST 

calibrations presently available for these indices are based on HG distributions in the temperate 

Lake Schreventeich (Bauersachs et al., 2015), and thus consistently underestimate LST in the 

tropical Lake Malawi. Conducting a surface sediment calibration of the indices in a suite of 

African lakes, similar to those produced by Loomis et al. (2014) and Tierney et al. (2010) for 

brGDGTs, could provide an equation that results in more reasonable temperature estimates. Still, 

even with such a calibration, the indices would still fail to resolve patterns in LST over time as 

they appear to be driven by physiological and ecological factors rather than growth temperature. 

Therefore it is not recommended that these indices be used for temperature reconstructions in 

East African lakes. 

 

Figure 4.11: Reconstructed temperatures using the HDI26 and HDI28 compared to thermistor 

temperatures measured at 7 m and 100 m in the NB and 7 m and 80 m in the SB. Grey symbols 

are temperatures reconstructed from HGs in SST-S. 

The strains of freshwater heterocystous cyanobacteria used for the culture experiments by 

Bauersachs et al. (2014) and from which the temperature-index relationship was partially 

10

15

20

25

30 7m

100m

North Basin

10

15

20

25

30

J
a

n

M
a
r

M
a
y

J
u
l

S
e

p

N
o
v

J
a

n

M
a
r

M
a
y

J
u
l

A
u

g

O
c
t

D
e
c

M
a
r

M
a
y

J
u
l

S
e

p

N
o
v

J
a

n

7m

80m

South Basin

HDI26

HDI28



 77 

developed were all temperate organisms; Anabaena CCY9613 had been isolated from a 

microbial mat in the German Wadden Sea, while Nostoc CCY9926 (Gomont, 1892) is 

commonly found in Northern Europe. Detailed information on the type locations of strains used 

in the Bauersachs et al. (2009b) study could not be found. Bauersachs et al. (2013) conducted 

culture studies of the heterocystous cyanobacteria M. laminosus, isolated from an Icelandic hot 

spring, to determine if thermophilic heterocystous cyanobacteria exhibit the same temperature 

relationship as temperate organisms. The authors found that M. laminosus did not, in fact, 

produce more HG keto-ols when grown under cooler temperatures in a controlled environment 

(Bauersachs et al., 2013). It is possible that heterocystous cyanobacteria inhabiting warm 

environments, such as hot springs or tropical lakes, generally do not alter the composition of 

their heterocyst glycolipid layer in response to the same environmental parameters as temperate 

organisms (Wörmer et al., 2012; Bauersachs et al., 2013).  

 The elongation of membrane lipids in response to growth temperature is a demonstrated 

physiological mechanism of microorganisms. Longer chain lengths stabilize the membrane, thus 

are observed in warmer growth conditions (Archer & Mer, 1955; Sandercock & Russell, 1980). 

Bauersachs et al. (2009b, 2013) noted an increase in longer HGs in their initial study of 

Anabaena and Nostoc species (2009b) and in their growth chamber experiments of the 

thermophilic M. laminosus (2013). In Lake Malawi, the relative abundance of HG28-diols in 

SPM is indeed greatest during periods of the warmest surface water temperatures, while HG26-

diol abundances are at their lowest (Figure 4.12). This relationship persists for the majority of the 

time-series, with the exception of the end of the 2011 warm/wet season when HG26-diols and 

HG28-diols are in roughly equal abundance from January until July. It is possible that the 

aforementioned strong internal seiche wave activity present at this time could be disturbing 

normal behavior of the cyanobacterial community. Internal waves that propagate along the 

thermocline promote mixing at the boundary of the epilimnion and metalimnion in addition to 

driving resuspension of slope material when the waves break. These processes would increase 

the turbidity and nutrient concentrations of the surface waters that could be driving the 

heterocystous cyanobacteria to behave as if they were living in winter conditions and thus 

produce more HG26 diols than is typical at this time. 
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Figure 4.12: Fractional abundances of HG26 and HG28 diols compared to measured lake water 

temperatures are 7 m depth in the NB (black line) and SB (grey line). 

 

4.4.3 HG production and heterocystous cyanobacteria physiology 

Differentiation of vegetative cells into heterocysts is triggered by combined nitrogen 

limitation, as this limitation makes the expenditure of energy for heterocyst formation and 

subsequent nitrogen fixation metabolically favorable for the organism (Kulasooriya et al., 1972; 

Fleming and Haselkorn, 1973; Adams and Duggan, 1999; Flores and Herrero, 2010). Therefore, 

fluxes of HGs are likely driven by both the size of heterocystous cyanobacteria populations and 

the frequency of heterocyst cells along individual heterocystous cyanobacterial filaments, though 

in Lake Malawi these two parameters are highly correlated (R
2
=0.99; Gondwe et al., 2008). One 

of the primary functions of the heterocyst is to provide a microoxic environment to protect the 
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nitrogenase enzyme from deactivation by free O2 (Fay and Cox, 1967; Gallon, 1981; Gallon et 

al., 1993; Kangatharalingam et al., 1992; Walsby, 1985). Differences in the glycolipid 

composition of protoheterocysts and mature heterocysts have been observed in some culture 

studies (Abreu-Grobois et al., 1977; Krepski and Walton, 1983), though these were conducted 

prior to the development of extraction and analytical techniques that allow for the rapid analysis 

of HGs and are consequently only based on results from a few organisms. Krepski and Walton 

(1983) specifically found that C28 and C26 HGs produced during the most active phase of HG 

biosynthesis contained more hydroxyl and hydroxyl-fatty acid groups on the alkane side chains. 

The addition of these functional groups along the HG chain would decrease the permeability of 

the glycolipid layer (Bauersachs et al., 2014), which may be needed in order to rapidly deplete 

O2 concentrations inside the heterocyst as it develops.  

The association of HDI28 variability with HG fluxes in Lake Malawi gives the appearance 

that the index is related to heterocystous cyanobacteria proliferation (Figure 4.13). Declines in 

HDI28 in SPM consistently occur ~1 month prior to the primary HG flux in the basins (Figure 

4.13). The relationship is exceptionally clear for the major peak in HG flux at SST-S, in addition 

to the major and minor peaks in HG flux recorded in NST. While there is a slight depression in 

HDI28 in SST-D that occurs before the minor peaks in HG flux in May 2011 and July 2013 at 

this site, these declines are very small compared to those associated with the period of maximum 

HG fluxes in the other traps. There is a larger decline in HG28 in SST-D during the 2011 

dry/windy season that is of similar magnitude to depressions in the index in NST and SST-S, but 

it is unclear if this is related to a period of HG production due to the absence of sediment 

collected over the remainder of the year. Lower HDI28 values indicate an increase in the relative 

abundance of HG28-keto-ols to HG28-diols, thus it is possible that cyanobacteria in Lake Malawi 

produce more of these compounds during heterocyst differentiation. More information is needed 

on the effect of ketone functional groups on the permeability of the glycolipid to confirm if their 

purpose is to produce a more limiting gas diffusion barrier. Additionally, it is unclear why 

heterocystous cyanobacteria in Lake Malawi appear to contain this physiological response for 

C28 HGs but not C26 HGs. 
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Figure 4.13: HDI28 (solid lines) compared to relative HG flux (circles). For both parameters 

red=NST, dark blue=SST-D, and light blue=SST-S. Relative HG flux was calculated separately 

for samples run in 2013 and those run in 2017 to account for differences in MS sensitivity. 
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5.  CONCLUSIONS 

This study reveals several complications that need to be considered when interpreting 

sedimentary isoGDGT, brGDGT, or HG distributions in Lake Malawi sediments. The sources of 

all three classes of lipids in SPM are predominantly autochthonous, but vary in regards to the 

timing and depth of production within the water column. The export of isoprenoid and branched 

GDGTs is primarily associated with bulk sedimentation processes. Thus the relative retention 

time of the CL GDGT pool is possibly subjected to changes in zooplankton activity and/or 

turbidity in the water column. The export of HGs is largely independent of bulk sedimentation 

processes and the distributions of HGs in deeper traps closely match those in the surface water. 

Thus the fluxes of HGs in SPM reflect real-time changes in heterocystous cyanobacteria 

populations. 

IsoGDGTs are produced below the thermocline; Thaumarchaeotal sources of these lipids 

live near the anoxic-oxic boundary while Euryarchaeotal sources reside in the hypolimnion. 

Concentrations of crenarchaeol IPLs are highest at the depths at which Thaumarchaeota live, 

confirming that they are the dominant producers of this biomarker in Lake Malawi. IPLs of 

isoGDGTs 0—3 were not analyzed, therefore the relative production of the minor lipids by the 

deeper-dwelling Euryarchaeota compared to that by Thaumarchaeota is unknown. Seasonal 

upwelling of nutrients at the beginning of the dry/windy season appears to impact 

Thaumarchaeota in the SB, driving shifts in the relative abundances of crenarchaeol and GDGT-

1 that bias TEX86 temperatures towards warmer values. TEX86 remains fairly constant in the NB 

throughout the annual cycle, resulting in reconstructed temperatures that reflect LST at the time 

of maximum Thaumarchaeotal activity.  

Results of the brGDGT analyses corroborate the findings of the growing body of 

literature that has examined the distributions of 5-methyl and 6-methyl isomers in aquatic 

environments. The 6-methyl isomers of brGDGTs with no or one cyclopentane moiety are 
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especially abundant in SPM. BrGDGTs with two cyclopentane moieties were in low abundance 

overall, but, when present, had a slightly greater proportion of 5-methyl isomers. The fractional 

abundances of brGDGTs in SPM may also record an upwelling signal in the SB. The relative 

abundances of the cyclized brGDGTs Ib, IIb, IIb’, IIIb, Ic, and IIc increase during the dry, windy 

season at the expense of IIa’ and IIIa’. This distribution pattern may be indicative of a yet-

unknown brGDGT-producing bacterial community that lives deep below the thermocline in the 

lacustrine water column. The primary period of brGDGT production in surface waters appears to 

be during the warm/wet season when stratification is strong. Variability in brGDGT distribution 

reflects changes in lake water circulation. As such, neither temperatures reconstructed from 

brGDGT distributions using the East African lake-based calibrations nor the novel soil-based 

MATmr resolve seasonal variability in water temperature at any depth. This finding underscores 

the need for a better understanding of the ecology of brGDGT producers inhabiting lacustrine 

environments and the relationship of their membrane lipids with temperature, or other 

environmental parameters. There is evidence that the bacterial sources of brGDGTs in Lake 

Malawi’s water column are anaerobic organisms, though this is only speculative and more robust 

analyses need to be conducted to confirm this hypothesis.  

HGs are present in all SPM samples, but maximum fluxes occur during the primary 

cyanobacterial bloom. This confirms the use of these lipids as reliable tracers of heterocystous 

cyanobacteria activity in lakes. The relative abundance of HG28-keto-ols increases just before the 

onset of heterocystous cyanobacteria blooms and may be a physiological response of 

cyanobacteria to provide extra protection of the heterocyst cell during differentiation. Though 

HDI26, HDI28, and HTI28 have been demonstrated to correlate with temperature in temperate 

lakes, they do not reflect seasonal changes in LST in Lake Malawi. This is mostly due to the 

dominance of HG diols and triols over HG keto-ols and keto-diols throughout the year. Instead, 

the relative abundance of HG26-diols/HG28-diols tracks LST at 7m remarkably well and may be a 

more robust temperature index in tropical lakes.  
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APPENDIX A 

Chemical structure of the C46 internal standard used in GDGT analyses. Patwardhan and 

Thompson (1999) were the first to synthesize the compound. Huguet et al. (2006) first described 

the use of the compound as an internal standard for quantification of GDGT lipids. C46 is an ideal 

standard for GDGT analyses as the compound is not naturally abundant but behaves like GDGTs 

during analysis due to the structural similarities.  
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APPENDIX B 

Table A.6.1: Concentration and isotopic composition of organic carbon and nitrogen in SPM. 

 
Sample ID Sample Date 

Corg 
 (%) 

Norg 
 (%) 

C/N 
 (wt.) 

δ13Corg 

(‰) 

δ15Norg  

 (‰) 

North Sediment Trap (170m) 
 

  
   NST11-1 1/15/11 – 1/31/11 3.56 0.52 6.90 -24.83 2.34 

NST11-2 2/1/11 – 2/17/11 3.48 0.42 8.35 -24.56 5.09 

NST11-3 2/18/11 – 3/7/11 3.72 0.52 7.14 -24.90 2.15 
NST11-4 3/7/11 – 3/24/11 3.02 0.33 9.02 -24.99 4.69 

NST11-5 3/25/11 – 4/10/11 2.70 0.35 7.80 -24.73 2.55 
NST11-6 4/11/11 – 4/27/11 2.64 0.37 7.12 -24.26 0.66 

NST11-7 4/28/11 – 5/14/11 2.49 0.32 7.86 -24.11 0.43 
NST11-8 5/15/11 – 6/1/11 2.52 0.31 8.10 -24.13 0.42 

NST11-9 6/2/11 – 6/18/11 2.67 0.26 10.27 -24.35 0.23 
NST11-10 6/19/11 – 7/5/11 2.60 0.34 7.52 -24.18 3.33 

NST11-11 7/6/11 – 7/22/11 2.73 0.38 7.12 -24.33 1.80 
NST11-12 7/21/11 – 8/8/11 3.03 0.38 8.03 -24.68 1.83 

NST11-13 8/9/11 – 8/25/11 2.96 0.37 8.08 -24.73 1.52 
NST11-14 8/26/11 – 9/12/11 3.20 0.38 8.37 -25.38 2.31 

NST11-15 9/13/11 – 9/29/11 4.05 0.58 7.02 -26.51 2.05 
NST11-16 9/30/11 – 10/16/11 3.83 0.53 7.28 -26.08 0.02 

NST11-17 10/17/11 – 11/2/11 3.78 0.50 7.63 -25.73 -1.30 
NST11-18 11/3/11 – 11/19/11 4.28 0.62 6.86 -26.14 0.73 

NST11-19 11/20/11 – 12/7/11 4.24 0.57 7.37 -25.83 -1.83 
NST11-20 12/8/11 – 12/24/11 4.53 0.57 7.92 -26.12 -1.60 

NST11-21 12/25/11 – 1/10/12 4.53 0.58 7.82 -26.15 -5.23 
NST12-1 1/11/12 – 1/30/12 4.95 0.53 9.41 -25.52 0.10 

NST12-2 1/31/12 – 2/16/12 5.38 0.64 8.37 -25.17 1.11 
NST12-3 2/17/12 – 3/4/12 4.66 0.58 8.03 -25.53 2.26 

NST12-4 3/5/12 – 3/21/12 4.87 0.59 8.23 -25.71 4.80 
NST12-5 3/22/12 – 4/6/12 3.39 0.40 8.57 -25.42 1.02 

NST12-6 4/7/12 – 4/23/12 3.04 0.35 8.64 -24.81 2.50 
NST12-7 4/24/12 – 5/10/12 2.83 0.36 7.78 -24.64 3.21 



 107 

       

 
Sample ID Sample Date 

Corg 
(%) 

Norg 
(%) 

C/N 
(wt.) 

δ13Corg 

(‰) 

δ15Norg  

(‰) 

NST12-8 5/11/12 – 5/27/12 2.82 0.35 8.16 -24.90 3.27 
NST12-9 5/28/12 – 6/12/12 2.94 0.34 8.55 -24.63 2.21 
NST12-10 6/13/12 – 6/29/12 2.91 0.35 8.35 -24.69 3.25 
NST12-11 6/30/12 – 7/16/12 3.01 0.35 8.50 -24.97 1.53 
NST12-12 7/17/12 – 8/2/12 3.52 0.41 8.67 -25.44 1.25 
NST12-13 8/3/12 – 8/18/12 3.56 0.41 8.59 -23.60 -0.06 
NST12-14 8/19/12 – 9/4/12 4.42 0.51 8.65 -25.07 1.32 
NST12-15 9/5/12 – 9/21/12 4.23 0.52 8.09 -24.79 0.04 
NST12-16 9/22/12 – 10/8/12 1.31 0.17 7.56 -24.52 -2.58 
NST12-17 10/9/12 – 10/24/12 0.86 0.09 9.71 -26.12 -1.54 
NST12-18 10/25/12 – 11/10/12 2.30 0.19 11.97 -20.75 0.62 
NST12-19 11/11/12 – 11/27/12 1.53 0.08 18.21 -18.21 0.18 
NST12-20 11/28/12 – 12/14/12 4.48 0.48 9.35 -25.28 -0.31 
NST12-21 12/15/12 – 12/30/12 1.42 0.15 9.76 -20.50 -3.41 
       
South Sediment Trap (125m) 

 
     

SST11-D-1 1/15/11 – 1/31/11 6.36 0.66 9.65 -23.70 -5.03 
SST11-D-2 2/1/11 – 2/17/11 5.06 0.54 9.43 -23.26 -6.74 

SST11-D-3 2/18/11 – 3/7/11 4.71 0.51 9.27 -23.00 -4.86 
SST11-D-4 3/7/11 – 3/24/11 4.49 0.56 7.96 -22.72 1.13 

SST11-D-5 3/25/11 – 4/10/11 4.83 0.44 10.94 -22.85 0.89 
SST11-D-6 4/11/11 – 4/27/11 4.69 0.54 8.71 -22.59 -4.14 

SST11-D-7 4/28/11 – 5/14/11 4.68 0.54 8.65 -22.95 -5.48 
SST11-D-8 5/15/11 – 6/1/11 4.91 0.63 7.76 -22.91 -2.75 

SST11-D-9 6/2/11 – 6/18/11 5.03 0.66 7.66 -22.58 -1.39 
SST11-D-10 6/19/11 – 7/5/11 5.31 0.64 8.30 -22.80 -0.95 

SST11-D-11 7/6/11 – 7/22/11 5.19 0.61 8.56 -23.12 -4.99 
SST11-D-12 7/21/11 – 8/8/11 5.06 0.68 7.48 -23.29 -2.18 

SST12-D-1 1/13/12 – 1/28/12 4.92 0.50 9.81 -24.06 1.58 
SST12-D-2 1/29/12 – 2/15/12 5.14 0.53 9.69 -23.96 2.92 
SST12-D-3 2/16/12 – 3/2/12 4.65 0.51 9.08 -23.44 3.00 
SST12-D-4 3/3/12 – 3/19/12 4.76 0.48 9.91 -23.57 0.74 
SST12-D-5 3/20/12 – 4/5/12 4.51 0.47 9.60 -23.72 0.14 
SST12-D-6 4/6/12 – 4/22/12 3.73 0.38 9.85 -23.16 1.49 
SST12-D-7 4/23/12 – 5/8/12 4.32 0.44 9.77 -23.29 0.88 
SST12-D-8 5/9/12 – 5/25/12 4.36 0.48 9.17 -23.29 1.37 
SST12-D-9 5/26/12 – 6/11/12 4.52 0.54 8.42 -23.26 2.06 
SST12-D-10 6/12/12 – 6/28/12 4.85 0.59 8.24 -23.75 3.80 
SST12-D-11 6/29/12 – 7/15/12 4.76 0.51 9.34 -23.67 1.13 
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Sample ID Sample Date 

Corg 
(%) 

Norg 
(%) 

C/N 
(wt.) 

δ13Corg 

(‰) 

δ15Norg  

(‰) 

SST12-D-12 7/16/12 – 8/1/12 4.18 0.49 8.62 -23.58 2.49 
SST12-D-13 8/2/12 - 8/18/12 4.25 0.47 9.02 -23.71 2.15 
SST12-D-14 8/19/12 - 9/3/12 3.92 0.46 8.49 -23.48 3.06 
SST12-D-15 9/4/12 - 9/20/12 3.06 0.81 3.76 -13.36 4.48 
SST12-D-16 9/21/12 - 10/7/12 3.38 0.51 6.65 -26.03 3.78 
SST12-D-17 10/8/12 - 10/24/12 4.57 0.59 7.72 -25.57 2.37 
SST12-D-18 
SST12-D-19 
SST12-D-20 
SST12-D-21 

10/25/12 - 11/10/12 
11/11/12 - 11/27/12 
11/28/12 - 12/14/12 
12/15/12 - 12/31/12 

4.98 
3.83 
3.34 
2.60 

0.63 
0.49 
0.45 
0.35 

7.88 
7.80 
7.40 
7.40 

-24.18 
-24.42 
-23.70 
-23.14 

3.19 
2.69 
3.28 
4.42 

     

South Sediment Trap (110m)     
SST13-D-1 1/14/13 – 1/29/13 5.51 0.58 9.44 -24.74 2.33 
SST13-D-2 1/30/13 – 2/15/13 3.22 0.40 8.06 -21.99 3.59  
SST13-D-3 2/16/13 – 3/4/13 3.04 0.34 9.00 -22.12 2.31 
SST13-D-4 3/5/13 – 3/21/13 2.96 0.38 7.90 -22.65 2.72  
SST13-D-5 3/22/13 – 4/6/13 3.13 0.39 8.01 -22.71 3.24 
SST13-D-6 4/7/13 – 4/23/13 5.48 0.80 6.85 -22.11 7.77 
SST13-D-7 4/24/13 – 5/10/13 3.70 0.47 7.87 -23.36 2.78 
SST13-D-8 5/11/13 – 5/27/13 4.26 0.51 8.39 -23.17 2.22 
SST13-D-9 5/28/13 – 6/12/13 4.27 0.54 7.98 -23.39 2.71 
SST13-D-10 6/13/13 – 6/29/13 6.05 0.93 6.48 -23.10 12.88 
SST13-D-11 6/30/13 – 7/16/13 4.66 0.64 7.29 -23.58 4.55 
SST13-D-12 7/17/13 – 8/2/13 4.86 0.64 7.63 -23.62 9.17 
SST13-D-13 8/3/13 – 8/18/13 5.02 0.62 8.12 -23.72 4.19 
SST13-D-14 8/19/13 – 9/4/13 5.27 1.79 2.94 n.a 3.81 
SST13-D-15 9/5/13 – 9/21/13 4.87 1.00 4.88 n.a 3.52 
SST13-D-16 9/22/13 –10/8/13 3.97 1.12 3.56 n.a 4.34 
SST13-D-17 10/9/13 – 10/24/13 3.29 1.40 2.35 n.a 6.65 
SST13-D-18 10/25/13 – 11/10/13 2.86 0.57 5.03 n.a 4.74 
SST13-D-19 11/11/13 – 11/27/13 4.18 0.97 4.30 n.a 4.29 
SST13-D-20 11/28/13 – 12/14/13 4.31 0.56 7.76 n.a 8.77 
SST13-D-21 12/15/13 – 12/30/13 4.81 0.27 17.98 n.a 5.21 
 
South Sediment Trap (50m) 

 
   

 

SST13-S-1 1/14/13 – 1/29/13 8.81 1.29 6.86 -22.97 6.10 
SST13-S-2 1/30/13 – 2/15/13 2.91 0.31 9.49 -21.36 1.83 
SST13-S-3 2/16/13 – 3/4/13 2.97 0.40 7.34 -22.00 4.92 
SST13-S-4 3/5/13 – 3/21/13 2.78 0.31 8.86 -22.39 1.21  
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Sample ID Sample Date 

Corg 
(%) 

Norg 
(%) 

C/N 
(wt.) 

δ13Corg 

(‰) 

δ15Norg  

(‰) 

SST13-S-5 3/22/13 – 4/6/13 2.92 0.32 9.18 -22.47 0.99 
SST13-S-6 4/7/13 – 4/23/13 3.02 0.35 8.60 -22.75 2.09   
SST13-S-7 4/24/13 – 5/10/13 3.31 0.37 8.91 -24.55 2.55 
SST13-S-8 5/11/13 – 5/27/13 4.57 0.50 9.14 -24.28 4.76 
SST13-S-10 6/13/13 – 6/29/13 8.67 1.32 6.55 -22.46 9.30 
SST13-S-11 6/30/13 – 7/16/13 5.24 0.68 7.68 -23.67 6.14 
SST13-S-12 7/17/13 – 8/2/13 4.81 0.67 7.20 -23.41 8.70 
SST13-S-13 8/3/13 – 8/18/13 5.67 0.77 7.33 -23.68 5.46 
SST13-S-14 8/19/13 – 9/4/13 6.89 1.03 6.72 -23.93 4.92 
SST13-S-15 9/5/13 – 9/21/13 5.45 0.91 5.97 -22.42 4.33 
SST13-S-16 9/22/13 –10/8/13 5.38 0.80 6.69 -23.49 2.73 
SST13-S-17 10/9/13 – 10/24/13 6.60 1.00 6.61 -23.19 2.14 
SST13-S-18 10/25/13 – 11/10/13 7.03 1.02 6.90 -23.86 5.24 
SST13-S-19 11/11/13 – 11/27/13 8.92 1.10 8.11 -24.75 1.34 
SST13-S-20 11/28/13 – 12/14/13 12.62 1.92 6.59 -23.28 5.18 
SST13-S-21 12/15/13 – 12/30/13 14.27 2.38 5.99 -23.09 4.84 

 

n.a. = not analyzed 
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APPENDIX C 

Table A.6.2: Relative abundances (% of total) of isoGDGTs in Lake Malawi SPM. 

Sample ID 
GDGT 0  

(%) 
GDGT 1  

(%) 
GDGT 2  

(%) 
GDGT 3 

(%) 
Cren.  
(%) 

Cren.’ 
(%) 

North Sediment Trap (170m) 
NST11-1 6.3 8.9 6.1 67.3 3.5 8.0 
NST11-2 6.3 8.9 6.2 67.6 3.8 7.2 
NST11-3 6.0 8.8 6.2 69.3 3.7 5.9 
NST11-4 6.2 9.0 6.3 69.1 3.7 5.7 
NST11-5 5.8 9.0 6.4 69.5 4.1 5.2 
NST11-6 5.8 8.6 6.3 70.5 4.0 4.9 
NST11-7 5.6 8.2 6.3 71.1 4.0 4.8 
NST11-8 5.7 8.1 6.3 71.0 4.1 4.8 
NST11-9 5.8 8.3 6.3 70.8 4.0 4.9 
NST11-10 5.8 8.3 6.3 70.3 3.9 5.3 
NST11-11 5.7 8.2 6.3 70.5 4.0 5.4 
NST11-12 5.7 8.2 6.3 70.8 4.0 5.2 
NST11-13 5.6 8.0 6.2 70.6 4.3 5.2 
NST11-14 5.4 8.1 6.0 70.8 4.4 5.4 
NST11-15 5.3 8.4 5.5 70.2 4.6 6.0 
NST11-16 5.4 8.5 5.8 70.0 4.4 5.9 
NST11-17 5.5 8.7 5.8 69.9 4.3 5.9 
NST11-18 5.5 8.8 5.6 69.7 4.4 6.0 
NST11-19 5.9 8.4 5.9 69.7 4.3 5.9 
NST11-20 5.7 8.6 5.7 69.8 4.3 5.9 
NST11-21 6.0 8.5 5.8 69.5 4.2 6.0 
NST12-1 4.5 6.1 5.5 74.4 5.2 4.5 
NST12-2 3.8 4.9 4.7 63.6 4.0 19.0 
NST12-3 4.7 5.7 5.6 71.2 5.3 7.4 
NST12-4 4.5 6.0 5.7 74.9 4.7 4.2 
NST12-5 4.6 5.9 5.7 75.0 4.7 4.0 
NST12-6 4.8 5.8 5.9 74.9 4.4 4.2 
NST12-7 4.5 5.8 5.7 76.0 4.5 3.6 
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Sample ID 
GDGT 0  

(%) 
GDGT 1  

(%) 
GDGT 2  

(%) 
GDGT 3 

(%) 
Cren.  
(%) 

Cren.’ 
(%) 

NST12-8 4.4 5.9 5.6 75.8 4.5 3.7 
NST12-9 4.5 5.6 5.7 75.8 4.4 3.9 
NST12-10 4.4 5.5 5.4 76.3 4.8 3.6 
NST12-11 4.3 5.4 5.4 76.7 4.7 3.5 
NST12-12 4.1 5.4 5.4 76.6 5.1 3.5 
NST12-13 4.1 5.5 5.5 76.0 5.3 3.6 
NST12-14 4.1 5.2 5.4 76.3 5.2 3.8 
NST12-15 4.1 5.3 5.2 76.2 5.4 3.8 
NST12-16 4.4 5.9 5.1 74.5 5.5 4.6 
NST12-17 4.3 5.5 5.1 75.3 5.4 4.4 
NST12-18 4.5 6.0 5.2 74.3 5.4 4.6 
NST12-19 4.6 6.6 5.1 73.8 5.0 4.8 
NST12-20 4.6 6.8 5.2 73.7 5.0 4.7 
NST12-21 4.6 6.5 5.2 74.0 4.9 4.8 

       
South Sediment Trap (125m) 
SST11-D-1 7.7 8.4 6.8 67.3 2.5 7.2 
SST11-D-2 7.7 9.1 7.3 67.4 2.7 5.7 
SST11-D-3 7.6 8.9 7.2 68.4 2.8 5.1 
SST11-D-4 7.1 8.8 7.1 69.6 2.8 4.7 
SST11-D-5 7.3 9.1 7.3 68.5 2.7 5.0 
SST11-D-6 7.2 9.1 7.3 68.5 2.8 5.2 
SST11-D-7 6.9 9.0 7.2 69.2 2.9 4.8 
SST11-D-8 6.9 8.7 7.1 69.3 2.9 5.1 
SST11-D-9 7.0 8.8 7.0 68.9 2.9 5.4 
SST11-D-10 6.8 8.7 6.8 69.3 2.8 5.6 
SST11-D-11 6.5 8.8 6.7 69.6 3.0 5.4 
SST11-D-12 6.5 8.8 6.6 69.6 3.1 5.4 
SST12-D-1 6.4 6.3 6.1 73.7 2.6 4.9 
SST12-D-3 6.2 6.3 6.3 74.4 2.7 4.1 
SST12-D-4 6.2 6.6 6.5 73.9 2.7 4.2 
SST12-D-6 5.8 6.8 6.8 73.9 3.0 3.8 
SST12-D-7 5.5 6.5 6.2 74.9 2.9 4.0 
SST12-D-8 5.1 6.2 6.0 75.6 3.1 4.0 
SST12-D-9 6.0 6.6 6.3 72.8 3.0 5.3 
SST12-D-10 5.8 6.5 6.0 73.8 3.0 4.8 
SST12-D-11 5.6 6.2 5.8 74.9 2.9 4.5 
SST12-D-12 5.3 6.5 5.3 75.1 3.1 4.8 

       
       



 112 

Sample ID 
GDGT 0  

(%) 
GDGT 1  

(%) 
GDGT 2  

(%) 
GDGT 3 

(%) 
Cren.  
(%) 

Cren.’ 
(%) 

South Sediment Trap (110m) 
SST13-D-1 6.4 6.5 6.2 73.8 2.3 4.9 
SST13-D-2 6.2 6.1 6.1 74.5 2.6 4.5 
SST13-D-3 5.6 5.7 6.1 76.3 2.5 3.8 
SST13-D-4 5.3 6.1 6.3 76.2 2.6 3.5 
SST13-D-5 5.3 6.1 6.4 76.1 2.7 3.5 
SST13-D-6 4.3 5.1 5.3 59.0 2.3 24.0 
SST13-D-7 5.6 6.6 6.7 74.3 2.8 4.0 
SST13-D-8 5.8 6.4 6.2 74.3 2.7 4.5 
SST13-D-9 5.8 6.4 6.0 74.4 2.8 4.4 
SST13-D-10 5.6 6.4 6.1 74.0 2.8 5.1 
SST13-D-11 6.0 6.1 5.9 73.6 2.9 5.5 
SST13-D-12 6.8 6.1 5.6 72.2 2.7 6.6 
SST13-D-13 6.9 5.7 5.4 72.7 2.4 6.9 

       
South Sediment Trap (50m) 
SST13-S-1 4.7 4.9 5.9 79.0 2.0 3.4 
SST13-S-2 4.7 5.0 6.0 78.9 2.2 3.2 
SST13-S-3 4.5 5.1 6.3 77.8 2.5 3.8 
SST13-S-4 6.2 5.6 6.4 69.2 0.0 12.6 
SST13-S-5 6.1 5.3 6.0 75.4 2.2 5.0 
SST13-S-6 6.6 5.7 6.0 70.7 2.2 8.9 
SST13-S-7 6.9 5.4 5.8 73.0 2.0 6.9 
SST13-S-8 6.9 5.2 5.8 74.1 2.2 5.9 
SST13-S-10 7.8 5.2 5.8 71.9 1.9 7.4 
SST13-S-11 7.9 5.3 5.8 72.0 1.9 7.0 
SST13-S-12 8.4 5.3 5.7 70.8 2.3 7.6 
SST13-S-13 8.3 5.3 6.2 71.0 2.0 7.2 
SST13-S-14 8.6 5.4 6.0 70.2 2.0 7.8 
SST13-S-15 8.7 5.4 6.0 71.2 2.1 6.6 
SST13-S-16 9.0 5.5 6.1 70.7 1.8 6.9 
SST13-S-17 9.1 5.8 6.2 70.6 1.9 6.4 
SST13-S-18 8.9 6.0 6.4 70.6 1.7 6.3 
SST13-S-19 6.9 9.0 5.5 6.1 70.7 1.8 
SST13-S-20 6.4 9.1 5.8 6.2 70.6 1.9 
SST13-S-21 6.3 8.9 6.0 6.4 70.6 1.7 
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APPENDIX D 

Table A.6.3: IsoGDGT-based indices and TEX86 reconstructed temperatures. 

 

Sample ID 2/2+3 TEX86
 LSTa BIT GDGT-0 

/cren.b MIc 

North Sediment Trap (170m) 
NST11-1 0.59 0.75 27.2 0.19 0.12 0.23 
NST11-2 0.59 0.75 27.5 0.18 0.11 0.23 
NST11-3 0.59 0.76 27.8 0.16 0.09 0.22 
NST11-4 0.59 0.75 27.7 0.15 0.08 0.23 
NST11-5 0.58 0.77 28.5 0.15 0.07 0.22 
NST11-6 0.58 0.77 28.3 0.15 0.07 0.22 
NST11-7 0.56 0.77 28.4 0.15 0.07 0.21 
NST11-8 0.56 0.76 28.2 0.15 0.07 0.21 
NST11-9 0.57 0.76 28.1 0.15 0.07 0.21 
NST11-10 0.57 0.76 28.0 0.15 0.08 0.22 
NST11-11 0.57 0.77 28.3 0.15 0.08 0.21 
NST11-12 0.57 0.77 28.2 0.15 0.07 0.21 
NST11-13 0.56 0.77 28.4 0.15 0.07 0.21 
NST11-14 0.58 0.78 28.8 0.14 0.08 0.21 
NST11-15 0.61 0.78 29.0 0.15 0.09 0.20 
NST11-16 0.59 0.77 28.8 0.15 0.08 0.21 
NST11-17 0.60 0.77 28.6 0.15 0.08 0.21 
NST11-18 0.61 0.77 28.6 0.16 0.09 0.21 
NST11-19 0.59 0.76 28.0 0.16 0.08 0.21 
NST11-20 0.60 0.76 28.2 0.17 0.08 0.21 
NST11-21 0.59 0.76 27.8 0.17 0.09 0.22 
NST12-1 0.53 0.79 29.6 0.21 0.06 0.17 
NST12-2 0.51 0.78 29.1 0.21 0.30 0.17 
NST12-3 0.51 0.78 29.2 0.24 0.10 0.17 
NST12-4 0.51 0.78 29.3 0.23 0.06 0.17 
NST12-5 0.51 0.78 29.2 0.21 0.05 0.17 
NST12-6 0.49 0.77 28.6 0.15 0.06 0.17 
NST12-7 0.51 0.78 28.9 0.16 0.05 0.17 
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Sample ID 2/2+3 TEX86 LSTa BIT 
GDGT-0 
/cren.b 

MIc 

NST12-8 0.52 0.78 29.2 0.19 0.05 0.17 
NST12-9 0.49 0.78 28.9 0.16 0.05 0.16 
NST12-10 0.51 0.78 29.2 0.18 0.05 0.16 
NST12-11 0.50 0.78 29.2 0.19 0.05 0.16 
NST12-12 0.50 0.80 29.9 0.18 0.05 0.15 
NST12-13 0.50 0.80 30.1 0.17 0.05 0.16 
NST12-14 0.49 0.80 29.9 0.15 0.05 0.15 
NST12-15 0.50 0.79 29.8 0.20 0.05 0.15 
NST12-16 0.53 0.79 29.6 0.16 0.06 0.16 
NST12-17 0.52 0.79 29.4 0.20 0.06 0.16 
NST12-18 0.54 0.79 29.4 0.19 0.06 0.16 
NST12-19 0.56 0.78 29.3 0.22 0.07 0.17 
NST12-20 0.57 0.79 29.5 0.21 0.06 0.17 
NST12-21 0.56 0.78 29.2 0.26 0.07 0.17 

       
South Sediment Trap (125m) 
SST11-D-1 0.55 0.70 24.4 0.23 0.11 0.25 
SST11-D-2 0.55 0.71 25.3 0.20 0.08 0.26 
SST11-D-3 0.55 0.71 25.3 0.18 0.08 0.25 
SST11-D-4 0.55 0.72 26.0 0.16 0.07 0.24 
SST11-D-5 0.56 0.72 25.9 0.15 0.07 0.25 
SST11-D-6 0.56 0.73 26.1 0.14 0.08 0.25 
SST11-D-7 0.56 0.73 26.5 0.14 0.07 0.24 
SST11-D-8 0.55 0.73 26.3 0.15 0.07 0.24 
SST11-D-9 0.56 0.73 26.1 0.13 0.08 0.24 
SST11-D-10 0.56 0.73 26.2 0.13 0.08 0.24 
SST11-D-11 0.57 0.74 26.8 0.12 0.08 0.23 
SST11-D-12 0.57 0.74 26.8 0.12 0.08 0.23 
SST12-D-1 0.51 0.70 24.7 0.14 0.07 0.20 
SST12-D-3 0.50 0.71 25.3 0.17 0.05 0.20 
SST12-D-4 0.50 0.72 25.6 0.23 0.06 0.20 
SST12-D-6 0.50 0.74 26.8 0.17 0.05 0.20 
SST12-D-7 0.51 0.74 26.8 0.22 0.05 0.19 
SST12-D-8 0.51 0.75 27.4 0.20 0.05 0.18 
SST12-D-9 0.51 0.73 26.0 0.15 0.07 0.20 
SST12-D-10 0.52 0.73 26.2 0.17 0.07 0.19 
SST12-D-11 0.52 0.73 26.2 0.18 0.06 0.18 
SST12-D-12 0.55 0.74 26.8 0.19 0.06 0.18 
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Sample ID 2/2+3 TEX86 LSTa BIT 
GDGT-0 
/cren.b 

MIc 

South Sediment Trap (110m) 
SST13-D-1 0.51 0.70 24.6 0.17 0.07 0.20 
SST13-D-2 0.50 0.70 24.9 0.18 0.06 0.19 
SST13-D-3 0.48 0.72 25.6 0.16 0.05 0.18 
SST13-D-4 0.49 0.74 26.8 0.14 0.05 0.18 
SST13-D-5 0.49 0.74 27.0 0.13 0.05 0.18 
SST13-D-6 0.49 0.75 27.2 0.15 0.41 0.19 
SST13-D-7 0.50 0.74 26.9 0.15 0.05 0.20 
SST13-D-8 0.51 0.72 26.0 0.17 0.06 0.19 
SST13-D-9 0.51 0.72 26.0 0.20 0.06 0.19 
SST13-D-10 0.51 0.73 26.3 0.16 0.07 0.19 
SST13-D-11 0.51 0.71 25.2 0.18 0.07 0.19 
SST13-D-12 0.52 0.68 23.5 0.18 0.09 0.20 
SST13-D-13 0.52 0.66 22.5 0.18 0.10 0.19 

       
South Sediment Trap (50m) 
SST13-S-1 0.49 0.63 21.0 0.22 0.44 0.22 
SST13-S-2 0.48 0.66 22.6 0.18 0.09 0.20 
SST13-S-3 0.47 0.67 23.0 0.22 0.06 0.18 
SST13-S-4 0.45 0.73 26.3 0.11 0.04 0.16 
SST13-S-5 0.45 0.74 26.6 0.11 0.04 0.16 
SST13-S-6 0.45 0.76 27.7 0.10 0.05 0.17 
SST13-S-7 0.47 0.66 22.2 0.13 0.18 0.21 
SST13-S-8 0.47 0.69 23.9 0.10 0.07 0.18 
SST13-S-10 0.49 0.68 23.4 0.20 0.13 0.20 
SST13-S-11 0.48 0.66 22.3 0.17 0.09 0.20 
SST13-S-12 0.47 0.66 22.2 0.17 0.08 0.19 
SST13-S-13 0.48 0.62 20.4 0.14 0.10 0.20 
SST13-S-14 0.48 0.62 20.4 0.12 0.10 0.20 
SST13-S-15 0.48 0.61 19.8 0.16 0.11 0.21 
SST13-S-16 0.46 0.62 20.2 0.14 0.10 0.21 
SST13-S-17 0.48 0.61 19.5 0.14 0.11 0.22 
SST13-S-18 0.47 0.61 19.6 0.14 0.09 0.22 
SST13-S-19 0.48 0.60 19.0 0.14 0.10 0.22 
SST13-S-20 0.48 0.61 19.4 0.18 0.09 0.23 
SST13-S-21 0.48 0.61 19.8 0.23 0.09 0.23 

a
LST calculated according to Powers et al. (2010). 

b
GDGT-0/crenarchaeol with values >2 are indicative of high contributions of GDGT-0 by 

methanogenic archaea. 
c
MI calculated according to Zhang et al. (2011). Values > 0.3 are indicative of substantial 

contributions of GDGT-1 -2 and -3 by methanotrophic Euryarchaeota. 
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APPENDIX E 

Table A.6.4: Relative abundances (% of total) of brGDGTs in Lake Malawi SPM. 
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APPENDIX F 

Table A.6.5: Reconstructed temperatures using various brGDGT-based calibrations. 

 
Sample ID 

MAATa (°C) 
(5me + 6me) 

MAATa (°C) 
(5me only) 

MAATb (°C) 
(5me + 6me) 

MAATb (°C) 
(5me only) 

MATmr
c  (°C) 

(5me only) 

North Sediment Trap (170m) 

  NST12-1 16.1 32.5 17.2 24.2 12.7 

NST12-2 15.8 32.7 17.0 24.2 13.2 

NST12-3 16.6 33.3 18.4 25.5 14.2 

NST12-4 15.8 33.6 17.4 25.0 14.4 

NST12-5 16.1 34.2 17.4 25.0 14.1 

NST12-6 15.9 34.9 17.1 25.2 13.6 

NST12-7 16.2 35.1 15.5 24.3 13.8 
NST12-8 16.9 33.6 16.8 24.6 14.8 
NST12-9 16.5 33.7 18.1 25.4 14.7 
NST12-10 17.0 33.7 16.4 24.1 14.6 
NST12-11 17.2 33.7 17.0 24.0 14.4 
NST12-12 17.7 33.9 16.2 23.9 14.4 
NST12-13 18.1 33.9 16.2 23.9 14.4 
NST12-14 18.1 33.7 16.1 23.7 14.4 
NST12-15 18.4 33.4 17.3 23.6 14.1 
NST12-16 18.7 33.9 15.6 23.3 13.2 
NST12-17 18.7 34.1 16.0 23.7 13.3 
NST12-18 18.4 34.4 15.6 23.6 12.9 
NST12-19 20.2 35.7 15.8 23.6 12.1 
NST12-20 18.3 35.0 15.4 23.8 12.6 
NST12-21 18.3 34.5 15.6 23.8 12.6 

   

South Sediment Trap (125m) 

 

 

SST12-D-1 16.2 35.7 17.8 26.0 14.4 
SST12-D-3 16.9 36.3 15.3 25.0 14.1 
SST12-D-4 17.4 36.4 15.3 25.0 14.2 
SST12-D-6 18.4 36.4 15.3 24.6 14.3 
SST12-D-7 19.8 35.2 16.5 24.9 15.0 
SST12-D-8 20.3 33.6 17.2 24.4 15.6 
SST12-D-9 21.8 34.9 17.0 24.8 15.6 
SST12-D-10 21.9 35.4 16.4 24.6 15.3 
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Sample ID 

MAATa (°C) 
(5me + 6me) 

MAATa (°C) 
(5me only) 

MAATb (°C) 
(5me + 6me) 

MAATb (°C) 
(5me only) 

MATmr
c  (°C) 

(5me only) 

SST12-D-11 21.7 35.2 16.2 24.6 15.3 
SST12-D-12 23.0 33.9 17.4 25.1 14.9 
      
South Sediment Trap (110m)     
SST13-D-1 17.0 36.6 15.4 24.6 14.3 
SST13-D-2 16.7 36.3 15.2 24.5 14.2 
SST13-D-3 16.8 36.6 14.8 24.4 14.0 
SST13-D-4 17.1 36.3 14.9 24.3 14.1 
SST13-D-6 17.2 36.8 14.0 23.6 14.2 
SST13-D-7 18.6 35.8 16.0 23.3 14.5 
SST13-D-8 19.8 36.0 14.7 22.8 15.1 
SST13-D-9 21.6 36.1 14.5 22.6 15.4 
SST13-D-10 21.3 36.0 13.9 22.3 15.4 
SST13-D-11 22.3 36.3 13.5 22.1 15.1 
SST13-D-12 22.6 36.0 14.1 22.1 15.3 
SST13-D-13 22.9 35.8 14.6 22.7 15.2 
      
South Sediment Trap (50m)     
SST13-S-1 13.6 36.4 15.3 25.1 13.5 
SST13-S-2 14.6 35.6 17.3 26.3 14.2 
SST13-S-3 15.1 36.5 15.5 25.5 13.6 
SST13-S-4 15.3 36.4 15.6 25.7 13.9 
SST13-S-5 15.7 35.2 17.8 26.1 14.4 
SST13-S-6 17.0 34.6 19.5 27.0 15.1 
SST13-S-7 17.0 29.3 17.7 22.8 17.6 
SST13-S-8 21.0 35.0 23.3 29.2 16.8 
SST13-S-10 22.1 35.6 17.6 26.3 16.0 
SST13-S-11 23.4 36.1 18.3 27.5 15.5 
SST13-S-12 24.8 37.5 18.7 29.0 15.7 
SST13-S-13 23.4 35.6 17.8 26.8 15.3 
SST13-S-14 23.5 36.6 18.0 27.5 15.4 
SST13-S-15 21.2 35.6 16.9 25.6 14.5 
SST13-S-16 17.8 36.2 16.1 25.4 14.7 
SST13-S-18 17.2 36.6 15.4 25.2 14.5 
SST13-S-19 16.4 37.7 15.5 26.2 13.7 
SST13-S-20 15.4 38.1 16.4 26.1 13.8 
SST13-S-21 15.1 38.8 14.5 26.2 13.8 

a MAAT calculated according to Tierney et al., 2010. 
b MAAT calculated according to Loomis et al., 2012. 
c MAT calculated according to De Jonge et al., 2014. 
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APPENDIX G  

Table A.6.6: Total mass fluxes, crenarchaeol IPL fluxes, isoprenoid and branched GDGT fluxes, 

and HG fluxes. Lipid fluxes are normalized to TOC. 

Sample ID Collection Range 
Bulk 
Flux 

g/m2/d 

Cren. IPL 
Flux 

area/m2/d 

Total 
isoGDGT 

Flux 
μg/m2/d 

Major 
brGDGT 

Flux 
μg/m2/d 

Total 
brGDGT 

Flux 
μg/m2/d 

Total HG 
Flux 

area/m2/d 

North Sediment Trap (170m) 
    

 

NST11-1 1/15/11 – 1/31/11 0.37 2.5E+06 19.5 3.1 n.a. 5.9E+07 

NST11-2 2/1/11 – 2/17/11 0.22 1.9E+06 12.1 1.8 n.a. 9.5E+06 

NST11-3 2/18/11 – 3/7/11 0.45 1.8E+06 17.1 2.3 n.a. 1.3E+07 

NST11-4 3/7/11 – 3/24/11 0.16 2.3E+06 6.9 0.8 n.a. 6.3E+06 

NST11-5 3/25/11 – 4/10/11 0.51 3.1E+06 29.4 3.6 n.a. 8.6E+06 

NST11-6 4/11/11 – 4/27/11 2.36 1.8E+06 26.1 3.3 n.a. 1.3E+07 

NST11-7 4/28/11 – 5/14/11 2.65 2.0E+06 38.5 4.7 n.a. 1.5E+07 

NST11-8 5/15/11 – 6/1/11 1.47 3.3E+06 47.6 6.1 n.a. 9.9E+07 

NST11-9 6/2/11 – 6/18/11 0.75 3.5E+06 26.3 3.3 n.a. 1.1E+08 

NST11-10 6/19/11 – 7/5/11 0.30 3.1E+06 12.2 1.5 n.a. 1.4E+07 

NST11-11 7/6/11 – 7/22/11 0.59 3.5E+06 26.3 3.3 n.a. 5.2E+07 

NST11-12 7/21/11 – 8/8/11 0.17 3.8E+06 8.1 1.0 n.a. 4.7E+07 

NST11-13 8/9/11 – 8/25/11 0.37 3.5E+06 22.0 2.8 n.a. 4.9E+07 

NST11-14 8/26/11 – 9/12/11 0.27 4.2E+06 12.7 1.5 n.a. 5.7E+07 

NST11-15 9/13/11 – 9/29/11 0.84 6.0E+06 46.0 5.6 n.a. 8.3E+07 

NST11-16 9/30/11 – 10/16/11 0.75 1.7E+06 13.9 1.7 n.a. 2.4E+07 

NST11-17 10/17/11 – 11/2/11 0.60 4.5E+06 24.6 3.0 n.a. 1.1E+07 

NST11-18 11/3/11 – 11/19/11 2.75 7.7E+06 97.3 12.4 n.a. 1.1E+08 

NST11-19 11/20/11 – 12/7/11 1.50 1.2E+07 48.5 6.7 n.a. 1.9E+08 

NST11-20 12/8/11 – 12/24/11 1.37 3.6E+06 53.9 7.7 n.a. 1.2E+08 

NST11-21 12/25/11 – 1/10/12 0.52 3.4E+06 30.6 4.2 n.a. 8.9E+07 

NST12-1 1/11/12 – 1/30/12 0.07 n.a. 3.8 1.4 1.5 6.3E+10 

NST12-2 1/31/12 – 2/16/12 0.07 n.a. 0.7 0.2 0.2 8.0E+10 

NST12-3 2/17/12 – 3/4/12 0.08 n.a. 0.0 0.0 0.0 1.1E+11 

NST12-4 3/5/12 – 3/21/12 0.27 n.a. 2.4 1.0 1.1 1.1E+11 

NST12-5 3/22/12 – 4/6/12 0.16 n.a. 8.5 3.3 3.6 7.6E+10 

NST12-6 4/7/12 – 4/23/12 0.10 n.a. 3.9 1.0 1.1 2.8E+10 
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Sample ID Collection Range 
Bulk 
Flux 

g/m
2
/d 

Cren. IPL 
Flux 

area/m
2
/d 

Total 
isoGDGT 

Flux 
μg/m2/d 

Major 
brGDGT 

Flux 
μg/m2/d 

Total 
brGDGT 

Flux 
μg/m2/d 

Total HG 
Flux 

area/m
2
/d 

NST12-7 4/24/12 – 5/10/12 1.10 n.a. 8.4 2.5 2.7 1.6E+11 
NST12-8 5/11/12 – 5/27/12 0.25 n.a. 4.1 1.3 1.5 5.4E+10 
NST12-9 5/28/12 – 6/12/12 0.17 n.a. 10.2 2.7 3.0 5.7E+10 
NST12-10 6/13/12 – 6/29/12 0.48 n.a. 7.3 2.4 2.6 9.3E+10 
NST12-11 6/30/12 – 7/16/12 1.15 n.a. 20.8 7.2 8.0 7.3E+10 
NST12-12 7/17/12 – 8/2/12 0.83 n.a. 14.7 4.5 5.1 8.0E+10 
NST12-13 8/3/12 – 8/18/12 0.72 n.a. 42.3 12.0 13.6 6.0E+10 
NST12-14 8/19/12 – 9/4/12 0.32 n.a. 6.7 1.6 1.8 3.7E+10 
NST12-15 9/5/12 – 9/21/12 0.63 n.a. 7.4 2.5 2.8 4.1E+10 
NST12-16 9/22/12 – 10/8/12 1.08 n.a. 24.6 6.3 7.3 3.1E+10 
NST12-17 10/9/12 – 10/24/12 1.95 n.a. 27.8 9.5 11.2 4.1E+10 
NST12-18 10/25/12 – 11/10/12 3.35 n.a. 56.3 18.0 20.9 1.3E+11 
NST12-19 11/11/12 – 11/27/12 1.28 n.a. n.a. n.a. n.a. n.a. 
NST12-20 11/28/12 – 12/14/12 1.57 n.a. 29.6 11.1 13.0 9.0E+11 
NST12-21 12/15/12 – 12/30/12 0.17 n.a. 2.0 1.0 1.1 4.2E+11 

       

South Sediment Trap (125m) 
    

 

SST11-D-1 1/15/11 – 1/31/11 0.16 1.1E+06 9.7 3.0 n.a. 4.7E+07 

SST11-D-2 2/1/11 – 2/17/11 0.24 2.0E+06 17.8 5.7 n.a. 2.8E+07 

SST11-D-3 2/18/11 – 3/7/11 0.53 2.4E+06 38.4 14.9 n.a. 2.2E+07 

SST11-D-4 3/7/11 – 3/24/11 2.21 4.6E+06 116.4 3.0 n.a. 1.2E+07 

SST11-D-5 3/25/11 – 4/10/11 0.35 4.1E+06 24.7 2.6 n.a. 7.7E+07 

SST11-D-6 4/11/11 – 4/27/11 0.32 4.0E+06 23.6 2.4 n.a. 6.7E+07 

SST11-D-7 4/28/11 – 5/14/11 0.32 5.2E+06 21.7 6.1 n.a. 6.6E+07 

SST11-D-8 5/15/11 – 6/1/11 0.89 3.2E+06 52.0 9.5 n.a. 1.8E+07 

SST11-D-9 6/2/11 – 6/18/11 2.18 5.8E+06 90.0 3.0 n.a. 9.9E+06 

SST11-D-10 6/19/11 – 7/5/11 0.91 4.7E+06 52.8 5.4 n.a. 1.3E+07 

SST11-D-11 7/6/11 – 7/22/11 0.46 3.0E+06 27.7 2.7 n.a. 2.0E+07 

SST11-D-12 7/21/11 – 8/8/11 1.04 3.1E+06 49.1 4.8 n.a. 2.6E+07 

SST12-D-1 1/13/12 – 1/28/12 0.14 n.a. 1.7 0.5 0.5 1.5E+11 

SST12-D-2 1/29/12 – 2/15/12 n.a. n.a. n.a. n.a. n.a. n.a. 
SST12-D-3 2/16/12 – 3/2/12 0.40 n.a. 7.1 2.4 2.7 7.3E+10 
SST12-D-4 3/3/12 – 3/19/12 0.86 n.a. 0.9 0.5 0.5 1.0E+11 
SST12-D-5 3/20/12 – 4/5/12 n.a. n.a. n.a. n.a. n.a. n.a. 
SST12-D-6 4/6/12 – 4/22/12 1.43 n.a. 70.2 22.8 26.7 1.0E+11 
SST12-D-7 4/23/12 – 5/8/12 0.38 n.a. 5.8 2.3 2.8 1.0E+11 
SST12-D-8 5/9/12 – 5/25/12 0.16 n.a. 1.8 0.6 0.7 4.8E+10 
SST12-D-9 5/26/12 – 6/11/12 0.32 n.a. 10.0 2.4 3.0 6.1E+10 
SST12-D-10 6/12/12 – 6/28/12 0.87 n.a. 15.0 4.1 5.3 6.6E+10 
SST12-D-11 6/29/12 – 7/15/12 0.89 n.a. 10.0 3.0 3.8 6.3E+10 
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Sample ID Collection Range 
Bulk 
Flux 

g/m
2
/d 

Cren. IPL 
Flux 

area/m
2
/d 

Total 
isoGDGT 

Flux 
μg/m2/d 

Major 
brGDGT 

Flux 
μg/m2/d 

Total 
brGDGT 

Flux 
μg/m2/d 

Total HG 
Flux 

area/m
2
/d 

SST12-D-12 7/16/12 – 8/1/12 0.19 n.a. 0.7 0.2 0.3 3.1E+10 
SST12-D-13 8/2/12 - 8/18/12 0.01 n.a. n.a. n.a. n.a. n.a. 
SST12-D-14 8/19/12 - 9/3/12 0.01 n.a. n.a. n.a. n.a. n.a. 
SST12-D-15 9/4/12 - 9/20/12 0.01 n.a. n.a. n.a. n.a. n.a. 
SST12-D-16 9/21/12 - 10/7/12 0.01 n.a. n.a. n.a. n.a. n.a. 
SST12-D-17 10/8/12 - 10/24/12 0.01 n.a. n.a. n.a. n.a. n.a. 
SST12-D-18 10/25/12 - 11/10/12 0.02 n.a. n.a. n.a. n.a. n.a. 
SST12-D-19 11/11/12 - 11/27/12 0.03 n.a. n.a. n.a. n.a. n.a. 
SST12-D-20 11/28/12 - 12/14/12 0.01 n.a. n.a. n.a. n.a. n.a. 
SST12-D-21 12/15/12 - 12/31/12 0.01 n.a. n.a. n.a. n.a. n.a. 

      

South Sediment Trap (110m) 
    

 

SST13-D-1 1/14/13 – 1/29/13 0.36 n.a. 6.8 2.3 2.6 1.1E+12 
SST13-D-2 1/30/13 – 2/15/13 1.66 n.a. 12.0 4.5 5.0 4.2E+11 
SST13-D-3 2/16/13 – 3/4/13 1.49 n.a. 11.4 3.7 4.2 2.9E+11 
SST13-D-4 3/5/13 – 3/21/13 3.12 n.a. 20.1 5.6 6.3 2.3E+11 
SST13-D-5 3/22/13 – 4/6/13 1.19 n.a. 11.6 3.0 3.4 2.1E+11 
SST13-D-6 4/7/13 – 4/23/13 0.16 n.a. 4.5 0.9 1.1 6.7E+10 
SST13-D-7 4/24/13 – 5/10/13 0.74 n.a. 8.6 2.3 2.7 1.3E+11 
SST13-D-8 5/11/13 – 5/27/13 1.04 n.a. 11.6 3.4 4.4 2.2E+11 
SST13-D-9 5/28/13 – 6/12/13 1.31 n.a. 5.1 1.8 2.3 2.3E+11 
SST13-D-10 6/13/13 – 6/29/13 1.05 n.a. 10.9 3.0 3.9 4.4E+11 
SST13-D-11 6/30/13 – 7/16/13 1.25 n.a. 9.8 2.9 3.8 3.9E+11 
SST13-D-12 7/17/13 – 8/2/13 0.92 n.a. 9.3 2.6 3.4 3.4E+11 
SST13-D-13 8/3/13 – 8/18/13 0.32 n.a. 3.7 1.0 1.4 2.2E+11 
SST13-D-14 8/19/13 – 9/4/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-15 9/5/13 – 9/21/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-16 9/22/13 –10/8/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-17 10/9/13 – 10/24/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-18 10/25/13 – 11/10/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-19 11/11/13 – 11/27/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-20 11/28/13 – 12/14/13 0.01 n.a. n.a. n.a. n.a. n.a. 
SST13-D-21 12/15/13 – 12/30/13 0.01 n.a. n.a. n.a. n.a. n.a. 

        

South Sediment Trap (50m)      

SST13-S-1 1/14/13 – 1/29/13 0.20 n.a. 1.8 0.7 0.7 3.4E+11 
SST13-S-2 1/30/13 – 2/15/13 0.31 n.a. 2.1 0.7 0.8 2.5E+11 
SST13-S-3 2/16/13 – 3/4/13 2.74 n.a. 3.6 1.7 1.9 1.7E+11 
SST13-S-4 3/5/13 – 3/21/13 1.42 n.a. 10.6 2.3 2.5 1.8E+11 
SST13-S-5 3/22/13 – 4/6/13 0.64 n.a. 4.2 0.9 0.9 1.3E+11 
SST13-S-6 4/7/13 – 4/23/13 0.38 n.a. 3.7 0.6 0.7 1.0E+11 
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Sample ID Collection Range 
Bulk 
Flux 

g/m
2
/d 

Cren. IPL 
Flux 

area/m
2
/d 

Total 
isoGDGT 

Flux 
μg/m2/d 

Major 
brGDGT 

Flux 
μg/m2/d 

Total 
brGDGT 

Flux 
μg/m2/d 

Total HG 
Flux 

area/m
2
/d 

SST13-S-7 4/24/13 – 5/10/13 0.07 n.a. 0.4 0.1 0.1 4.5E+10 
SST13-S-8 5/11/13 – 5/27/13 0.07 n.a. 1.6 0.3 0.3 4.0E+10 
SST13-S-10 6/13/13 – 6/29/13 0.28 n.a. 3.1 1.0 1.3 1.5E+11 
SST13-S-11 6/30/13 – 7/16/13 0.42 n.a. 4.0 1.1 1.4 2.3E+11 
SST13-S-12 7/17/13 – 8/2/13 1.71 n.a. 11.4 3.3 4.6 1.8E+11 
SST13-S-13 8/3/13 – 8/18/13 0.24 n.a. 5.5 1.1 1.5 8.6E+10 
SST13-S-14 8/19/13 – 9/4/13 0.12 n.a. 2.7 0.5 0.7 5.4E+10 
SST13-S-15 9/5/13 – 9/21/13 0.09 n.a. 1.5 0.4 0.5 2.8E+10 
SST13-S-16 9/22/13 –10/8/13 0.07 n.a. 1.5 0.4 0.4 5.9E+10 
SST13-S-17 10/9/13 – 10/24/13 0.17 n.a. 2.8 0.7 0.8 1.0E+11 
SST13-S-18 10/25/13 – 11/10/13 0.24 n.a. 7.6 2.2 2.4 1.1E+12 
SST13-S-19 11/11/13 – 11/27/13 0.10 n.a. 3.0 0.9 1.0 3.6E+12 
SST13-S-20 11/28/13 – 12/14/13 0.34 n.a. 7.8 3.2 3.6 1.5E+12 
SST13-S-21 12/15/13 – 12/30/13 0.27 n.a. 3.3 1.5 1.7 4.5E+11 
 

n.a. = Not Analyzed 
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APPENDIX H 

Table A.6.7: Fractional abundances (% of total) of HGs, and HDI26, HDI28, and HTI28 values 

and temperatures. 
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