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The demand for ultrasensitive, inexpensive and wearable biosensors is always strong due to the 

increasing healthcare related concerns. In this work, field-effect-transistor (FET) biosensors 

based on two-dimensional (2-D) polyaniline (PANI) nanostructures were developed on both 

nonflexible (SiO2) and flexible substrates (polyethylene terephthalate and polyimide). The 

biosensor devices were fabricated through a facile and inexpensive method that combines top-

down and bottom-up processes. A low-temperature bilayer process was developed that vastly 

improved the yield of flexible devices. The chemically synthesized PANI nanostructures showed 

excellent p-type semiconductor properties as well as good compatibility with flexible designs. 

With the 2-D PANI nanostructure being as thin as 80 nm and its extremely large surface-area-to-

volume (SA/V) ratio due to the intrinsic properties of PANI chemical synthesis, the developed 

biosensors exhibited outstanding sensing performance in detecting B-type natriuretic peptide 

(BNP) biomarkers. Excellent reproducibility, and high specificity with the limit of detection as 

low as 100 pg/mL were achieved for both designs. PANI nanostructure under bending condition 

was also investigated and showed controllable conductance changes being less than 20% with 

good restorability which may open up the possibility for wearable applications. 

In addition, a facile and template-free method is demonstrated to synthesize a new two-

dimensional thin film structure: PANI film/nanotubes hybrid. The hybrid is a 100 nm thick PANI 

film embedded with PANI nanotubes. This well controlled method requires no surfactant or 

TWO-DIMENSIONAL POLYANILINE NANOSTRUCTURES FOR THE 
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organic acid as well as relatively low concentration of reagents. Synthesis condition studies 

reveal that aniline oligomers with certain structures are responsible for guiding the growth of the 

nanotubes. Electrical characterization also indicates that the hybrid nanostructure possesses 

similar FET characteristics to bare PANI film. With its 20% increased SA/V ratio contributed by 

surface embedded nanotubes and the excellent p-type semiconducting characteristic, PANI 

film/nanotubes hybrid shows clear superiority compared with bare PANI film. Such advantages 

guarantee the hybrid a promising future towards the development of ultra-high sensitivity and 

low cost biosensors. 
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1.0  INTRODUCTION 

Flexible electronics, also known as flexible circuits, describes circuits that are able to bend or 

stretch without losing their functions. This feature can enable significant versatility in designs 

and applications as well as offer advantages such as low cost and large area compatibility. From 

the last decade, extensive efforts from both industries and research institutions have been done to 

design and create new flexible and bendable devices. With the advances in thin-film materials 

being complemented with the development of new integration processes, the combination of 

flexible substrates with wafer-scale processes has been achieved. Thus, flexible electronics has 

recently become a rapidly emerging field that attracts researchers from both science and industry. 

In the past few years, flexible thin film transistors (TFTs) and circuits have been widely 

reported.1-5 Numerous efforts have also been made in fields such as flexible displays6-8 and 

photovoltaic.9  

Addressing basic questions such as early diagnoses and novel therapies has always been 

of great significance in current healthcare research. Flexibility in electrical materials is also 

highly desired in medical and bioengineering, not only for its low cost and excellent bio-

compatibility, but also because of the fact that living organisms are naturally malleable and 

flexible. Therefore, flexible designs in health care such as biosensors are preferred to achieve 

integration into human body or being worn without causing any discomfort. Recently, electronics 

integrated into human bodies have been reported to continuously monitor physiological indexes 
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such as skin temperature, blood pressure and heart rate.10-13 However, flexible immunoassay 

based biosensor designed is seldom reported. With such motivation in mind, this thesis focuses 

on the development and optimization of flexible immunoassay based biosensors. 

In this chapter, different types of biosensors that are categorized by their sensing 

mechanisms, and the recent progress in flexible sensors are reviewed firstly. Physical and 

chemical properties of several possible flexible substrates candidates are then introduced. Last 

but not least, the reviews of the synthesis methods and nanostructures of polyaniline (PANI) are 

presented. 

1.1 BIOSENSORS 

1.1.1 Biosensor and its Categories 

Biosensors are analytical devices that are able to perform specific quantitative or semi-

quantitative analysis based on a biological recognition element and a transduction element. 

Therefore, a typical biosensor consists of two main components: a bioreceptor and a transducer. 

The function of a bioreceptor is to recognize and immobilize certain target while a transducer 

converts this binding event into measurable signal. According to this working principle, many of 

the performance characteristics of a biosensor such as sensitivity, detection limit and signal 

stability are directly determined by the transduction efficiency provided by the transducer. 

Therefore, biosensors are generally categorized by types of transducers. Three most 

representative types are introduced in this section. 

Optical Transducer 
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The principle of optical detection is to measure the changes of a certain optical property 

when light wave interacts with nanomaterials. The sensing performance is highly dependent on 

the optical phenomena being utilized and the optical property being measured. Surface plasmon 

resonance (SPR) is so far one of the most successful optical detection methods. When light 

illuminates on thin metal film, at certain condition, the collective oscillation of surface electrons, 

which is named as surface plasmon waves (SPW), can be excited.14 SPR detection monitors 

resonant angle or wavelength shift when surface property is altered due to the target bindings. 

Limits of detection at about 25 ng/mL and a dynamic range of 2 logs were achieved with the 

most recent method.15 However, SPR usually has poor resolution and specificity because of bulk 

solution interference and lacks of sensitivity when monitoring targets with low molecule weight. 

An improvement for SPR was brought up and developed during recent years which takes 

advantage of a unique SPW that only exists when light interacts with a metal nanoparticle. This 

confined plasmon oscillation is known as localized surface plasmon resonance (LSPR). LSPR 

sensors based on this principle are sensitive to the surface environment of metal nanoparticles 

when their local refractive index changes.16 With the electrical field around the nanoparticle 

surface being enhanced by LSPR, local refractive index changes caused by biomarker molecule 

recognition can trigger changes in the extinction spectra of the incident light. So far, many LSPR 

nanosensors were demonstrated and a multi-arrayed LSPR biochip with detection limits of 100 

pg/mL have been reported.17 

Surface-enhanced Raman scattering (SERS) is another optical detection method that can 

achieve single molecule detection due to large Raman scattering enhancement factors (~1010) 

generated by metal or core-shell nanoparticles. Works by Nie et al. have demonstrated SERS in 

field of nanotechnology.18 Utilizations of SERS for vivo cancer detection were also reported.19, 20 
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A major obstacle of optical transducer based biosensors is system miniaturization since 

they generally require sophisticated instruments and large volume to create space for necessary 

light paths. Also, no position changing or device deformation is tolerable while conducting tests. 

These shortcomings limit their applications in flexible and wearable biosensor designs. 

Mechanical Transducer 

The principle of mechanical detection is based on the ultrasensitive detection of 

extremely small mechanical forces existed on the molecular scale. The mass resolution of 

mechanical devices tremendously increases as the sizes of mechanical sensors decrease to the 

nanoscale since mass resolution is proportional to the total mass of the device. This feature 

grants nanomechanical sensors the ability of measuring molecular scale transport and affinity as 

well as forces, displacements and mass changes. So far, both detections of biomolecules in 

vacuum21 and in fluid22 have been demonstrated. 

The most commonly used device design in mechanical nanosensors is the microcantilever. 

The displacement can be measured by using two responses generated by the cantilever when the 

analyte molecules bind with the immobilized receptors on the surface of a cantilever. First, the 

targets/receptors association or dissociation creates shifts of the cantilever resonance frequency. 

Second, surface stress by target molecules binding also physically bends the cantilever. The 

quantitative measurements of resonance frequency shifts and bending can be achieved with the 

help of established techniques such as optical beam deflection, piezoelectricity and 

capacitance.23 Biomarker molecule detection in fluid has been reported with suspended 

cantilever resonators, because particles can be weighed in real time as they flow through the 

channel.22 However, detection in fluid, which is an ideal condition for biomolecular, is still a 
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major challenge for mechanical nanosensors. The sensitivity and specificity of the mechanical 

sensors are greatly reduced due to the viscous damping in fluid. 

Mechanical nanosensors so far are still limited for clinical applications and flexible 

design. The sensing components are extremely delicate, thus cannot survive from any 

deformation when fabricated on flexible substrates. And the sensitivity and selectivity of 

nanomechanical sensors are highly dependent on the uniformity of cantilevers as well as surface 

functionalization efficiency. In addition, high cost instruments are required for efficient 

mechanical sensing. 

Electrical Transducer 

Detection using electrical transducer is a rapidly emerging field due to the development 

of simple and low-cost fabrication techniques. Electrical nanosensors such as field-effect 

transistors (FETs) based nanosensors can achieve simple and real-time measurements as well as 

portability. FET-based electrochemical nanosensors measure the change in conductance or 

resistance yielded when the target molecule binds to the receptor with the utilization of 

nanowires, nanoribbons, and nanotubes.24, 25 

Silicon nanowires are commonly utilized for FET nanosensors because of their high 

sensitivity and excellent semiconductor properties. Lieber et al. demonstrated the first use of Si 

nanowires for direct, real-time and sensitive detection in aqueous solution in 2001.26 This proof-

of-concept Si nanowire FET sensor has performed the detection of protein concentrations as low 

as 10 pM.27, 28 Zheng et al. developed a Si nanowire FET based multiplexed electrochemical 

biosensor.28 The nanowire arrays of about 200 individual sensors are functionalized to detect 

multiple protein biomarkers in undiluted serum. When the binding evens take place, the 

conductance change of one specific nanowire is detected. Both arrays of p-type and n-type Si 
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nanowires were employed to distinguish protein binding signals from noise and reduce false-

positive signals. This was the first demonstrated high sensitive Si nanowire arrays based 

electrical nanosensors. 

Carbon nanomaterials such as carbon nanotubes (CNTs) have also been utilized for FET 

nanosensors.24 High sensitivity (~pM) has been reported using CNTs for DNA detection.29 Cai et 

al. developed a CNTs array with a molecular imprinted polymer (polyphenol) coating on the 

CNT tips to detect proteins.30 Specifically, the target protein was first trapped in the polyphenol 

and then removed, leaving an imprint of the protein on the CNT surface and change the local 

electrical property. Then this change in permittivity and resistivity in response to protein capture 

can be measured using electrochemical impedance spectroscopy (EIS). The sensitivity was found 

to be the highest when target protein was trapped at the CNT tips than other scenarios due to the 

fast electron transfer along the CNT tip. This method can achieve high specificity due to this 

confined area, and it can be applied for detecting different conformations of proteins.  

A significant limitation of electrochemical biosensors is the incapable of detecting 

molecules in high salt concentration solutions such as body fluid.22, 28 High salt concentration 

buffers can screen out charges that contribute to signal change, thus affect the sensitivity of 

biosensors. For instance, a typical nanowire FET requires a salt concentration less than 1 mM to 

prevent signal screening. One approach to circumvent this signal screening is to lower the salt 

concentration upstream of the nanosensors. Stern et al. developed a microfluidic purification 

system and demonstrated its feasibility with the detection of two cancer antigens from a whole 

blood sample with the response time less than 20 minutes.31 The decisive component in this 

device is the purification chip that captures biomarkers from blood and release them back to 

purified buffer. The detection is then carried out without interference from high salt 
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concentration. Though progresses have been made, the signal screening still remains a big 

challenge in electrical biosensor design. 

1.1.2 FET Biosensor Working Principle 

In past decades, varies of electrical-transducer based biosensing architectures have been 

demonstrated such as amperometric, potentiometric, and field-effect transistor (FET) biosensors. 

Among them, FET biosensor has become the most intriguing one since it was initially reported in 

1970s32, 33 due to its ability of offering rapid and sensitive detection of the binding events 

between the target biological molecules and the receptors on biosensor surface.26 A typical FET 

configuration contains three components: a drain, a source and a gate. A semiconductor channel 

is connecting drain and source, in which current can flow and be tuned by the voltage applied on 

gate. For a traditional metal-oxide-semiconductor field-effect transistor (MOSFET) with an n-

channel (p-type semiconductor), the turning on condition is that a large enough positive voltage 

is applied on the gate which causes electrons to accumulate on the channel surface and form an 

induced n-type region. This layer is also known as inversion layer. Oppositely, a negative 

voltage is required to turn on a p-channel (n-type semiconductor) transistor.  

Typical FET biosensors usually work in form of ion-selective field-effect transistor 

(ISFET). A major difference is that ISFET has an ion-selective electrode, an electrolyte solution 

and a reference electrode.34 The working principle of FET biosensor can be explained by the 

gating effects (figure 1). For some of the ISFET designs, unlike traditional MOSFET, the 

semiconductor channel (sensing component) in a FET biosensor works in “accumulation” region, 

and the “gate voltage” that affects the channel’s conductivity is replaced by the surface charges 

carried by the target molecules. More specifically, when a p-type sensing component such as 
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polyaniline (PANI) film is in contact with analyte that contains target molecules, the pre-

functionalized bioreceptors on top of PANI surface such as antibodies, enzymes or DNAs can 

bind with specific target molecules. By presetting the pH of the analyte accordingly to the 

isoelectric point (PI value) of the target molecules, the bound target molecules can be negatively 

charged which induces the accumulation of holes on PANI surface. Thus the conductivity of 

PANI increases which leads to an increase in drain-source current output. Because of the high 

transduction efficiency of FET and short time for molecule binding, FET biosensor exhibits high 

sensitivity, low detection limit and fast response.  

 

Figure 1. Illustration of the gating effect of FET biosensor. 

 

There are many factors that affect the sensing performance of an FET biosensor. One of 

the most significant factors is Debye screening35 on a certain length scale, termed as Debye 

length (λD). Debye length characterizes the distance within which charges introduced by the 

captured molecules on the surface of PANI layer can contribute to the current change while those 

charges beyond the Debye length will be screened out. For aqueous solutions, λD is expressed by 

the equation: 
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ε0 and εr are the dielectric constant of vacuum and the relative permittivity; kB and T are 

the Boltzmann’s constant and the temperature in Kelvin; and ρi and Zi are the density and the 

valence of the i-th ionic species. The equation can be further simplified when at room 

temperature (25ºC):  

 

 

Figure 2. Illustration of PANI FET biosensor working in different ion strength environments. The Debye length 

corresponding to PBS 1X, PBS 0.1X and PBS 0.01X are 0.7 nm, 2.3 nm and 7.3 nm. 

 

Is here represents the ionic strength of the solution. Thus, it is evident that biosensor 

devices working in lower ionic strength environment should have longer Debye length, which 

has lower detection limit as illustrated in figure 2. This optimal protocol was demonstrated by 

Stern et al..35 
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Another approach to optimize FET biosensor sensing performance is by tuning the 

potential on the reference electrode. According to Gao et al.,36 optimal sensitivity for nanowire 

FET biosensor can be obtained by making the nanowire to work in subthreshold regime. Though 

the general current signals detected are getting weaker due to the subthreshold depletion, the 

ratio of current signal change over current (ΔI/I) is greatly enhanced. Therefore, the sensitivity 

and resolution are significantly improved. This phenomenon can be explained by the Debye 

length of semiconductor which is also known as Thomas-Fermi screening length: 

 

Where ε is the dielectric constant, KB is the Boltzmann's constant, T is the temperature, q 

is the elementary charge, and Nd is the density of dopants. Thomas-Fermi screening length 

characterizes the penetration depth of the electrical field that is generated by the surface charges. 

And the higher portion of semiconductor that is affected by the surface charges, the higher 

sensitivity it can achieve. When a device is working under subthreshold regime, a smaller Nd 

gives a relatively larger λd, thus enhances the sensitivity. 

1.1.3 Recent Progress in Flexible Sensors 

Flexible designs always require devices to be tolerable for physical deformations such as rolling, 

folding or stretching. More advanced designs for wearable applications also need devices to be 

as small as possible in terms of both size and weight. Sensors based on mechanical transducers 

can be small and light, since device sensitivity is inverse proportional to its size. However, the 

mechanical nanosensors are vulnerable to even a tiny shape change. Optical sensors usually 
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require sophisticated instruments and large volume to create enough space for light paths thus are 

difficult to be miniaturized. Therefore, up to now, most flexible or wearable sensors are designed 

based on electrical transducers. 

In 2006, Kudo et al. developed a flexible and wearable glucose sensor based on 

functional polymer.37 Hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) 

copolymerized with dodecyl methacrylate (DMA) was utilized as the sensing material and 

hydrophobic polydimethyl siloxane (PDMS) was used as substrate. The device was able to detect 

glucose level over a range of 0.06-2.00 mmol/L and it was also capable to work when released 

after being expanded to 120% longer than the normal length which shows great flexibility and 

stretch ability. In the subsequent work, the flexible glucose sensor was used to detect rabbit tear 

glucose by direct attaching the device on the rabbit eye.38 The device was sufficiently stable and 

sensitive as well as harmless to the subject. 

Park and co-workers demonstrated an ultrasensitive flexible FET olfactory system in the 

year of 2012.39 The electrodes were fabricated on polyethylene terephthalate (PET) substrate and 

both oxygen (p-type) and ammonia (n-type) plasma treated bilayer graphene were used as the 

semiconductor sensing components. Minimum detection limit of 0.04 fM for amyl butyrate (AB) 

was achieved with the signal-to-noise ratio of 4.2. The bending and relaxing test showed that the 

device can maintain the same detection limit after 100 bending/relaxing cycles due to its great 

flexibility. 

Advanced wearable sensor designs require highly integration and flexibility from the 

whole system including sensing and data acquisition components. In 2014, Xu et al. developed a 

soft microfluidic assembly of sensors, circuits and radios for wirelessly physiological 

monitoring.40 The system can be mounted on skin without causing any discomfort. Components 
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such as sensors, amps, ICs and radios were sealed in elastomeric superstrate and substrate. 

Microfluidic was then injected into the device, creating free-floating interconnects that can 

support bending, twisting, and stretching. The whole system was able to expand 100% in two 

dimensions. Electrocardiography (ECG), electroencephalogram (EEG) and electromyography 

(EMG) tests were demonstrated and the wirelessly acquired results were verified by wired 

commercial devices. 

1.2 FLEXIBLE SUBSTRATES 

In flexible sensor designs, flexible substrates play an essential role in creating basic device 

mechanical properties such as flexibility and elasticity. Once the substrate is chosen, further 

device fabrication processes should be optimized to be compatible with the physical and 

chemical properties of the substrate. In this section, general requirements for flexible substrate 

selection are explained and several commonly utilized substrates such as polyethylene 

terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI) and polydimethylsiloxane 

(PDMS) are introduced. 

1.2.1 General Requirements for Flexible Substrates 

Numerous materials are naturally flexible when they are below certain thickness. Nevertheless, 

not all of them are suitable for flexible electronics applications. Several requirements need to be 

fulfilled with respect to their applications. Such rules include meeting the basic requirements of 

mechanical, chemical, thermal, electrical and optical properties: 
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Mechanical properties – Young’s modulus of the substrate film needs to be low to create 

necessary flexibility and elasticity. A hard but not brittle surface is also desired in order to 

support the device under impact. 

Chemical properties – The substrate should be inert against fabrication process chemicals 

and no contaminants should be release from it. Commonly used chemicals are organic solvents 

such as acetone and isopropyl alcohol (IPA), and alkaline solutions such as developer (mainly 

TMAH). It is also ideal for substrates to be good barriers against gas permeation. 

Thermal properties – For a polymer substrate, the glass transition temperature is one of 

the most important factors that decides its application scope. The working temperature and the 

maximum fabrication-process temperature of a substrate need to be compatible with its glass 

transition temperature. Low coefficient of thermal expansion (CTE) is also highly desirable. 

Substrate with high CTE will easily expand during heat processes, thus cause thermal mismatch 

between substrate and device films. It may be of advantage to substrates to be high thermal 

conductive. 

Electrical properties – In most flexible designs especially for electrical sensor 

applications, the substrates are acting as the insulating layers. Therefore, the materials should 

possess large volume and surface resistivity. Most polymers meet this requirement. For 

conductive substrates like metal foil, they may serve as a node or electromagnetic shield. 

Optical properties – Optical clear and colorless are imperative for flexible designs in 

applications such as transmissive displays, bottom emission OLED displays and photovoltaic 

solar cells. 

Furthermore, surface roughness is a factor that is worth paying attention to. Larger 

surface roughness may benefit the adhesion between substrate and the patterns on top. However, 
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too much roughness can affect the devices’ electrical function. Therefore, proper surface 

roughness is desired. Substrates, whose surface roughness can be physically or chemically 

modified, show better applicability due to the versatility in designs. 

1.2.2 PET & PEN 

Polyethylene Terephthalate (PET) and Polyethylene naphthalate (PEN) are commonly used 

thermoplastic polymer resins from polyester family. PET was first patented in 1941,41 and has 

been used for making bottles since 1973. PEN was developed afterwards and was intended to be 

the replacement of PET. Some of the physical properties of PET and PEN are listed in the table. 

1 below. 
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Table 1. Physical and chemical properties of PET (Melinex) and PEN (Teonex). 

 

According to table 1, PET and PEN have very similar physical properties. The high 

transmission in visible spectrum makes them good candidates for photovoltaics,42, 43 OLED 

displays44 and flexible transparent electrodes.45 Excellent electric insulating property also makes 

them ideal as substrates for flexible thin film transistor (TFT).46 Compared with PET, PEN has 

much higher glass transition temperature (Tg) which allows it to survive in higher process 

temperature. The two condensed aromatic rings of PEN also endow PEN with large tensile 

strength as well as better chemical and hydrolytic resistance. Some of the significant limitations 

of PET and PEN generated from their thermo properties include limited process temperature 
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capability, lack of dimensional stability, and observable differences in the linear TCE between 

the substrate and patterns on top.47 A low adhesion with metal also brings additional difficulty in 

device fabrications. However, despite of these limitations, PET and PEN are still considered as 

good candidates in both researches and applications due to their low cost in comparison with 

more thermo stable substrates like thin metal films. In 2004, Nomura et al. fabricated a 

transparent flexible thin-film transistor in room temperature on PET substrate that exhibits 

excellent FET behavior.46 Biosensors fabricated on top of PET have also been reported: Zhang et 

al. demonstrated an ultrasensitive and low-cost graphene sensor based on layer-by-layer nano 

self-assembly;48 Park et al. reported an ultrasensitive flexible graphene based FET bioelectronic 

nose.39 

1.2.3 PI 

Polyimide (PI) is a polymer of imide monomer. According to the chemical composition of their 

main chain, PIs can be subdivided into several categories such as aliphatic, aromatic and semi-

aromatic. Among them, aromatic polyimides became the most commonly used ones due to their 

thermo stability since aromatic polyimides were first produced in 190849 and have been in mass 

production since 1955. A classic commercialized polyimide is named Kapton, which was 

developed by DuPont in the late 1960s, and has been utilized in flexible printed circuits, displays 

and even the outside layer of space suits. Some of the properties of Kapton PI are listed below in 

table 2. 
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Table 2. Physical and chemical properties of PI (Kapton). 

 

Notably, the key features of Kapton polyimide are the very high glass transition 

temperature and the ability to sustain stable across a wide range of temperatures from -269 to 

+400 ºC. This feature makes PI capable of being used in some fabrication processes such as low 

temperature chemical vapor deposition (LTCVD) where other organic flexible films cannot 

survive. Additional large resistivity and excellent flexibility makes it the ideal substrate for thin-

film-transistor. Kapton PI typically shows yellow color due to the absorption of blue light, which 

limits its applications. To improve this, colorless transparent PI was developed and applied in 

solar cell applications.50 
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Another superiority of PIs over other polymer films is that they can be easily synthesized 

in lab and staying on a wafer during the entire fabrication processes. This feature enables the 

using of CMOS-compatible fabrication processes on PI films as well as brings versatility in PI 

film designs in terms of film thickness, surface roughness and other physical properties. The 

synthesis of Kapton PI involves a “ring closure” process in which poly(amic acid), the 

intermediate, is cured in high temperature. Intermediates for other types of PIs are also 

commercialized. 

1.2.4 PDMS 

Polydimethylsiloxane (PDMS) is from a group that is often referred to as silicones. The repeated 

unit monomer is composed of one oxygen and silicon atom and two methyls. Since microfluidics 

was first emerged in 1980s, PDMS has become one of the most frequently used materials in 

microfluidics designs. Same as other polymer flexible substrates, PDMS also has excellent 

properties such as optical transparency, biocompatibility, gas permeability and electrical 

insulation.51 However, unique from polymers like PET or PI, the most amazing characteristic 

PDMS has is its unusual rheological property. This property grants cured PDMS with 

mechanically elasticity, which makes it superior in stretchable and wearable electronics 

applications.52, 53 

Similar with PI, PDMS can also been synthesized easily in lab. The most commonly used 

approach is to mix PDMS base monomer together with PDMS curing agent at the weight ratio of 

10:1. The mixture behaves like a viscous liquid which is able to cover the whole surface and 

mold to any shape if given with enough time. After curing, PDMS becomes elastic solid. This 

curing method can be utilized to design PDMS with a variety of structures for microfluidics use. 
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More excitingly, it also allows devices to be built inside the cured or uncured PDMS instead of 

just on top of it since the curing temperature is only 80 ºC. In 2014, Xu et al. developed a soft 

microfluidic assembly of sensors, circuits and radios for wirelessly physiological monitoring. 

The injected PDMS can provide sufficient flexibility, stretchability as well as protection to the 

sensing components.40 The disadvantage of the cured PDMS is that it lacks of tensile strength 

when the film is thin. 

1.2.5 Other Flexible Substrates 

Glass plates, due to its high optical transmittance and similar behaviors as SiO2 wafer, are 

commonly used as the substrates for transparent electrodes such as ITO or the control samples 

for fabrication optimization. Flexibility can be obtained with glass plates when its thickness is 

reduced to several hundred microns.54 Much thinner glass foils (30 μm) can be achieved by the 

overflow downdraw method, which retains all the advantages of glass plates such as optical 

transmittance of >90% in the visible region, temperature tolerance of up to 600 ºC, high 

dimensional stability, low coefficient of thermal expansion (CTE), impermeability against 

oxygen and water, electrical insulation and smooth surface.47 However, thin flexible glasses are 

usually fragile. 

Another commonly used inorganic substrate is metal foil such as stainless steel. With the 

thickness below 125 μm, it possesses good flexibility as well as excellent properties such as 

temperature tolerance as high as 1000 ºC while remaining dimensional stable, perfect permeation 

barrier against oxygen and moisture, good resistance to corrosion and process chemicals and 

ability to provide electromagnetic shielding. With the help of these features, stainless steel has 

long been utilized in flexible solar cells designs.55, 56 However, though stainless steel substrates 
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are more durable than plastic and glass foils, its lacking of electrical resistivity makes it 

impossible to be a good insulating substrate in flexible electronic applications. 

1.3 CONDUCTIVE POLYMER AND POLYANILINE 

Polyaniline (PANI) is one outstanding member of conductive polymer family that has acquired 

numerous attentions from researchers because of its remarkable semiconducting properties. 

Further excellent chemistry property allows simple biomolecule immobilization which makes 

PANI an ideal candidate for biosensor applications. The combination of PANI and FET has been 

reported for cardiac biomarkers detection.57 Furthermore, PANI is also one of a few conductive 

polymers that are capable of forming numerous of nanostructures. In this section, introductions 

of conductive polymer, PANI as well as chemical synthesis and nanostructures of PANI are 

provided. 

1.3.1 Conductive Polymer 

Conductive polymers (CPs) or intrinsically conducting polymers (ICPs) are organic polymers 

that conduct electricity.58 Since doped polyacetylene was first discovered to have large 

conductivity in 1977,59 new exciting applications for ICPs in fields including analytical 

chemistry and biosensing devices have been opened up. Some widely studied examples of ICPs 

are polyacetylene (PA), polypyrrole (PPy), polythiophene (PT) and polyaniline (PANI). The 

reason for ICPs to exhibit exceptional conductivity is that they have single and double bonds 

alternatively (π-conjugated system) along the molecule chain, which is also responsible for 
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properties such as low energy optical transitions, low ionization potential and high electron 

affinity.60 From the biochemical perspective, ICPs are known to be compatible with biological 

molecules as well as suitable for biomolecule entrapment, and their flexible chemical structures 

also grant ICPs the potential to acquire desired electrical properties via modification. In addition, 

ICPs are capable of efficiently transferring electrons produced by biochemical reactions. 

Therefore, with these features, ICPs have been extensively utilized in biochemical sensors in the 

form of transducers. Some related works are introduced as follows. 

Ekanayake and co-workers developed PPy nanotube arrays enzymatic biosensor for 

detection of glucose.61 PPy was electro polymerized on a platinum plated nano-porous alumina 

substrate. This structure was believed to both enhance the adsorption of the enzyme-glucose 

oxidase and increase surface area for the reaction sensing. A sensitivity of 7.4 mA cm−2 M−1 for 

glucose detection was observed. In 2012, Lee et al. demonstrated the detection of cardiac 

biomarkers with single PANI nanowire.57 The PANI nanowire was fabricated in a nanochannel 

between two metal electrodes by electrochemical deposition. Microfluidic channel was 

integrated to miniaturize the system and enhance the sensing performance. Four different cardiac 

biomarkers (Myo, cTnI, CK-MB and BNP) were detected with the lowest detection limit at 50 

fg/mL. 

1.3.2 Polyaniline (PANI) 

PANI is an ICP of semi-flexible polymer family, which is known as a mixed oxidation state 

polymer with both reduced benzoid units and oxidized quinoid units.62 Since it was discovered 

with high electrical conductivity in the early 1980s, PANI has recaptured the attentions of 

scientific community and researchers are continuously exploring its applications in fields like 
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biosensors due to a number of useful features such as 1) low cost, 2) direct and easy deposition 

on the sensor electrode, 3) control of thickness, 4) redox conductivity and polyelectrolyte 

characteristics, 5) high surface area, 6) chemical specificities, 7) long term environmental 

stability and 8) tunable properties.63  

 

Figure 3. (a) Molecule structure of PANI. (b) Hoping mechanism in PANI. 

 

The molecule structure of PANI is shown in figure 3a, which illustrates three distinct 

PANI oxidation states.62 The three oxidation states are determined by the value of x, and 1-x 

indicates PANI’s average oxidation state. When 1-x=0, PANI exits as the fully reduced form 

known as leucoemeraldine (LE), whereas when 1-x=1, PANI stays in its fully oxidized form 
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known as pernigraniline (PE). The most useful form of PANI, however, exits when 1-x=0.5, 

which is called half oxidized emeraldine base (EB). EB exhibits great semiconductor property 

owing to its alternative structure of two benzoid units and one quinoid unit, and it is the most 

stable form in room temperature. Moreover, EB has the potential to be the most conductive form 

through protonic acid doping.64  

PANI is a p-type semiconductor due to the delocalized π–bonds available in this system, 

thus the majority carriers are holes.65 When EB PANI is doped with a protonic acid, a polaron 

structure is formed through the formation of a series of intermediate products that are shown in 

figure 3b. The hopping mechanism that is responsible for PANI’s electrical conduction can take 

place in this polaron structure and this hopping may happen in both intra-chain and inter-chain.66 

To be specific, a cation radical of one nitrogen acts as a hole which acts as charge carriers. This 

hole starts to move when the electron from the adjacent nitrogen (neutral) jumps to this hole and 

turns it to electrically neutral. However, the electron hopping is not possible in bipolaron 

structure since two holes are adjacently located. 

1.3.3 Synthesis of PANI 

Electrochemical oxidation of monomer and chemical synthesis are two mostly used methods to 

synthesize PANI film.67 Other methods such as photochemically-initiated polymerization and 

enzyme-catalyzed polymerization have also been demonstrated.68 Essentially, at the initial stage 

of the polymerization, low molecular weight oligomers are formed from aniline monomers under 

acid environment. These low molecular weight oligomers are further oxidized to form 

polyaniline chain molecules at the potential that is lower than that at which the monomers are 

oxidized.67 



 24 

A three electrode assembly including a counter electrode, a reference electrode and a 

working electrode is required for conducting electrochemical polymerization. The aniline 

monomers are oxidized by cycling between a potential window, and the synthesized polymer is 

directly deposited onto the working electrode which may be anything that is conductive such as 

gold or transparent indium tin oxide (ITO). During polymerization, either 1) a constant voltage 

(potentiostatic), 2) a variable current and voltage (potentiodynamic) or 3) a constant current 

(galvanostatic) is employed to the aniline monomer solution.68 A sufficient low pH environment 

is also necessary to protonate the aniline monomer in order to avoid undesired products.69 

Though electrochemical polymerization can precisely control the thickness and growing rate of 

the deposited film, the requirement of a conductive substrate greatly narrows down its 

applications. 

Chemical polymerization, on the other hand, can deposit PANI films on insulating 

surfaces as well as conductive surfaces without the help of any template. Chemicals that exhibit 

oxidation potentials such as (NH4)2S2O8 (E0 = 1.94 V), FeCl3 (E0 = 0.77 V) and H2O2 (E0 = 1.78 

V) are commonly utilized for oxidizing monomers instead of using electrical instruments.70 The 

chemical polymerization rate is very sensitive to the solution temperature. Therefore, ice bath is 

sometimes needed in order to gain better control of PANI film thickness and growing rate since 

the reaction is much slower in lower temperature. Similar with electrochemical polymerization, 

low pH condition (pH < 3) is also required for chemical polymerization to obtain desired 

products.71 
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1.3.4 PANI Nanostructures 

Recently, nanostructured materials have been a rapidly growing field of research due to the 

realization that well-studied materials can exhibit new and sometimes surprising properties at the 

nanoscale.72, 73 The high surface-area-to-volume (S/V) ratio, which is the fundamental 

characteristic of nanomaterials, enables a number of unique physical and chemical properties 

such as high molecular adsorption, large surface tension force, enhanced chemical and biological 

activities, and large catalytic effects.74 Interestingly, PANI is one of the few polymers that have 

the ability to adopt numerous different nanoscale shapes. Because of this, synthesis and 

characterizations of different PANI nanostructures have been continuously studied in recent 

years. 

The most commonly observed PANI nanostructure morphology is the nanofiber. It was 

first observed by Huang and co-workers in 1986, when they electrochemically grew emeraldine 

PANI film on an indium tin oxide glass.75 Later studies showed that the dopant used during 

oxidation directly affects the entangled dendritic degree of PANI nanofibers and the diameter of 

the nanofibers can be controlled by changing the sweep rate during polymerization.76, 77 

Nanofibers fabricated via chemical oxidation were also demonstrated with the help of surfactants 

such as cetyltrimethylammonium bromide (CTAB) or hexadecyltrimethylammonium 

(C16TMA).78-80 The use of surfactants makes it possible to generate nanostructures without 

using traditional “hard-templates”, and it can be used for other conducting polymers.78 

Another intriguing nanostructure that appeals to researchers is the hollow sphere due to 

its potential usefulness in applications such as drug delivery and encapsulation.81 In 2006, 

MacDiarmid et al. obtained nano/micro self-assembled hollow spheres using a “falling pH 

method”. Aniline, ammonium peroxydisulfate (APS) and hydrochloric acid were mixed with 
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molar ratio 1:1:1 and started at pH = 4.2. As the process went on, APS degraded into sulfuric 

acid which resulted in the falling of pH value. The diameter of the hollow spheres obtained by 

this method is in microscale while the walls of the hollow spheres are on the order of tens of 

nanometers. As for nanosize spheres, chemical polymerization of aniline in the presence of 

sufficiently high concentration of a steric stabilizer, poly(N-vinylpyrrolidone) (PVP) were 

recently studied.82, 83 

Nanotubes of many different materials have been utilized in various applications.84 Old 

PANI nanotube synthesis methods usually require hard templates such as porous alumina.85 In 

recent years, efforts on synthesis PANI nanotubes with soft templates or no template have been 

made. For example, functional dopants such as propionic acid and lactic acid were reported to be 

utilized as soft template to generate polyaniline nanotubes.86 In 2008, Stejskal et al. proposed a 

hypothesis that explains the mechanism of the forming of PANI nanotube. Due to the 

hydrophobicity, the phenazine-like moieties formed from ortho-coupled aniline in high pH 

environment are believed to aggregate into a template-like structure which generates nanotube 

afterwards.87 

Beyond these commonly observed nanostructures, other complex structures such as 

flower-like88 and brain-like89 structures have also been reported. However, the detailed 

mechanisms behind most of the reactions still remain unclear, and more works need to be done 

to utilize these nanostructures in practical applications. 

 



 27 

2.0  BIOMOLECULES IMMOBILIZATION 

Immobilization of biomolecules such as antibodies, enzymes and DNAs on the functioning 

materials, also called surface functionalization or modification, plays a decisive role in most 

biosensor designs. Different methods of the immobilization not only directly affect the sensing 

performances including sensitivity and limit of detection, but also have a great impact on the 

reproducibility and reusability. Based upon the mechanisms, immobilization techniques can be 

briefly categorized as physical methods and chemical methods. In this chapter, physical 

immobilization methods such as physical absorption and entrapment, and chemical methods that 

include covalent attachment are introduced, and methods for the immobilizations of 

biomolecules including antibodies, aptamers, enzymes and peptide nucleic acids on PANI 

surface are reviewed for our biosensor project as well as possible future biosensor designs. 

2.1 IMMOBILIATION METHODS 

2.1.1 Physical Absorption 

Physical absorption is one of the most straightforward methods for the immobilization of 

biomolecules, especially for enzymes. The absorptions are usually established through weak and 

non-specific interactions such as van der Waals, hydrophobic surface and hydrogen bonds.90-92 
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Though such weak forces make the biosensors liable to condition changes such as temperature, 

pH and ionic strength,92-94 it benefits the reusability of the supporting materials since the 

immobilized biomolecules can be reversibly removed under gentle conditions. In addition, better 

biomolecular activity can be retained using this method due to the chemical free process. There 

are two approaches to achieve physical absorptions: one is to soak the supporting materials into a 

solution that contains functioning biomolecules and incubate for enough time; another is to wait 

for the solution to dry on the supporting materials and rinse with buffer to remove the 

biomolecules that are not absorbed. 

2.1.2 Entrapment 

Different from physical absorption, entrapment is an irreversible method to immobilize 

biomolecules, where the biomolecules are physically restricted within a confined networks such 

as inside fibers, material with lattice structures or polymer membranes.95-97 Based on this 

working principle, the immobilizations are done during the synthesis of the supporting materials. 

The most significant advantages of entrapment are that it can minimize biomolecules leaching 

and improve mechanical stability.98 However, it usually requires specific materials such as 

polyacrylamide gels or alginate to create matrixes. 

2.1.3 Covalent Attachment 

Covalent attachment is a method that utilizes chemical reactions to form covalent bonds between 

biomolecules and the supporting materials. The bonds are strong and irreversible, which make 

covalent bonding one of the most widely used immobilization methods. Depending on what 
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supporting materials and biomolecules are being used, the biomolecules can be immobilized 

directly on the supporting materials with the help of certain crosslink chemicals, or via cross-

linkers. The most commonly used crosslink chemical is 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC). With the presence of EDC, peptide bonds (-CO-NH-) can be formed 

through a dehydration condensation reaction from carboxyl groups (-COOH) and amines (-NH2). 

N-Hydroxysuccinimde (NHS) is usually used together with EDC to speed up the process. When 

the supporting material and the biomolecule do not “match”, cross-linkers with two terminals 

that can covalently bind with either of them can be applied. For example, glutaraldehyde (GLu) 

molecule has two aldehyde groups (-CHO) at the end of each terminal, which makes it a good 

cross-linker to connect supporting materials and biomolecules that both have amines. 

2.2 IMMOBILIZATION ON PANI 

2.2.1 Immobilization of Antibodies and Enzymes on PANI 

For a conducting polymer substrate, chemical immobilization post polymerization and 

entrapment during chemical synthesis are two most widely used approaches. Though entrapment 

method has relatively wider applicability, better protection of bound biomolecules and less cost, 

the sever condition of polymer synthesis and inaccessibility of target biomolecules dramatically 

lower it’s feasibility. On the other hand, not only does covalent attachment have great binding 

and less running problems, but also PANI has been widely known as an excellent material for 

biomolecule covalent immobilization. Both the secondary amine linkages in the PANI chains 

and primary amines at the end of the molecules are supposed to react with carboxyl groups and 
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aldehyde groups which can be commonly found in proteins (antibodies, enzymes) as well as 

linker molecules. 

 

Figure 4. Reaction mechanism of using EDC and NHS to covalently bind an antibody on PANI film. 

 

To implement covalent binding antibodies or enzymes onto N-terminus substrate 

(contains amine groups) such as PANI, two methods have been reported and widely employed. 

One is to use EDC and NHS as intermediates to link carboxyl groups on protein molecules with 

the primary amines at the end of PANI molecules. The reaction mechanism is illustrated in figure 

4. Briefly, the carboxyl group first reacts with EDC/NHS to form a semi-stable amine-reactive 

NHS ester. Then it reacts with primary amines to form a stable amide. The major advantage of 

this method is its water solubility. The chemical and electrical properties of PANI can mostly be 

preserved during immobilization. In addition, this method can also be utilized for immobilization 

of proteins or other biomolecules with primary amines on substrates with carboxyl groups. 

Another method is to use GLu as a cross-linker to connect both amines on the N-terminus 

of protein molecule and the substrate. The aldehyde groups on the linker react with primary or 
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secondary amines to form imine or enamine bonds, respectively. Figure 5 shows the reaction 

mechanism. 

 

Figure 5. Reaction mechanism of using Glu as cross-linker to covalently bind an antibody on PANI film. 

 

2.2.2 Immobilization of PNAs and Aptamers on PANI 

Peptide nucleic acids (PNAs) are artificially synthesized polymers that are similar to DNA, 

which can be used as DNA or RNA probes. Aptamers are oligonucleotide or peptide molecules 

that are capable of binding specific molecules. Chemical methods are also the better choices here 

for the immobilization of PNAs and aptamers on PANI. Different from proteins, PNAs and 

aptamers do not have the carboxyl groups. Nevertheless, the primary amines at the end of PNAs 

and aptamers can be connected with the amines on PANI in the presence of cross-linkers. Figure 

6 illustrates a method of using Glu as the cross-linker for PNA immobilization, which is similar 

to figure 5. To be specific, substrate with PANI film is kept in 1% glutaraldehyde for 4h at 

25 °C.99 The aldehyde groups in GLu will react with primary amines and secondary amines to 
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form imine and enamine bonds, respectively. After Glu treated, PANI film is washed, added with 

PNA and incubated for about 12 h.99 The N-terminus of PNA will also bind with aldehyde in Glu 

molecules. This method can also be used for aptamers. 

 

Figure 6. Reaction mechanism of using Glu as cross-linker to covalently bind a PNA on PANI film. 

 

Another interesting PNA immobilization approach developed by Hyun Gyu Park et al. is 

more complicated, since it involves more chemical reactions.100 However, the linker that 

connects PANI and PNA has fluorescence, which makes it easier to identify whether the 

immobilization is successful or not. The reaction is shown in figure 7. PANI substrate is first 

incubated in dimethylformamide (DMF) solution of [(4-ethynylphenylcarbamoyl)-methoxy]-

acetic acid (4EPA) for 12 h at 37 °C100 together with coupling agents O-benzotriazolyl-

N,N,N’,N’-tetramethyluronium hexafluorephosphate (HBTU) and N,N-diisopropylethylamine 

(DIEA).101,102 After that (3-azido-2-oxo-2H-chromen-7-yloxy)-acetic acid (AZCO)-linked PNA 

is added to finish the immobilization. 
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Figure 7. Reaction mechanism of cross-link a PNA on PANI film with fluorescent unit. 

 

2.2.3 Prevent Nonspecific Absorption 

Physical absorption not only is a specific method for biomolecule immobilization, but also 

happens every time during chemical immobilization and biosensor testing. Charged nonspecific 

target molecules that are absorbed on PANI’s surface can cause false detection signals. To 

prevent this, a commonly used method is to drop high concentration of blocking agents such as 

bovine serum albumin (BSA) on the functioning materials (PANI) after immobilization. BSAs 

will absorb on the surface and cover the free-sites where no immobilized biomolecules exit. This 

“thin film” of BSA will prevent nonspecific targets from attaching to the surface. 
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3.0  DEVELOPMENT OF 2-D PANI BIOSENSORS ON SILICON OXIDE 

SUBSTRATE 

3.1 INTRODUCTION 

The rapid growth of biosensors is being continuously driven by the increasing health-related 

concerns. Medical biosensors for blood monitoring and real-time point-of-care testing are highly 

demanded. Ongoing researches have been focusing on improving existing models in terms of 

accuracy, sensitivity, reduced size, and increased portability. To achieve this, efforts are directed 

towards combining nanotechnology, material science, and miniaturization of devices in 

biosensors field. 

Nanostructure materials, with at least one dimension in nano scale, have enabled 

numerous unique physical and chemical properties such as high molecular adsorption, enhanced 

chemical and biological activities, and large catalytic effects.74 Based on the dimensions, 

nanostructures can be roughly categorized into zero-dimensional (0-D nanoparticle), one-

dimensional (1-D nanowire) and two-dimensional (2-D nanolayer) structures. One common 

feature for nanostructure materials is that they all possess much larger surface-area-to-volume 

(SA/V) ratio compared with bulk materials, which drives the development of nanotechnology. 

Such a property is also highly desired in bioelectronics, resulting in the fast growing interests in 

sensor related researches. Polyaniline (PANI) nanostructures have been extensively utilized in 

http://www.strategyr.com/Biosensors_in_Medical_Diagnostics_Market_Report.asp
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developing of low cost and reliable biochemical sensors due to their controllable electrical and 

chemical properties, thermal and electrochemical stability, and suitable nature for biomolecules 

functionalization.60 Among all forms of PANI nanostructures, the 1-D PANI nanowire has 

proved its superiority in terms of sensitivity and limit of detection.103,104 The excellent sensing 

performance is believed to be attributed to its extremely large SA/V ratio and good FET behavior. 

However, the fabrication complexity of 1-D structures strongly impedes the realization of highly 

uniform and reliable PANI nanowires, resulting in low yield and high fabrication costs. To 

circumvent this, one alternative is to scale up the 1-D nanowire to 2-D nanostructure with only 

thickness that is in nano scale. This change is favorable mainly for two reasons. First, from 

fabrication perspective, it is much easier to create thin film structures with nano scale thickness 

than defining nano sizes on length or width dimension. This feature can endow the 2-D 

nanostructure with much better controllability, higher uniformity, and volume production105-107 

due to the much simpler and lower cost processes. Moreover, though this change loses one nano 

scale dimension which often suggests the dropping of the total SA/V ratio, 2-D nanostructures 

can still exhibit comparable SA/V ratio to 1-D nanowire structure. This can be achieved by 

reducing the film thickness or increasing the surface roughness. 

In this chapter, microfluidics integrated biosensors based on 2-D PANI layers were 

developed. B-type natriuretic peptide (BNP), an important cardiac marker, was used as the target 

for characterizing the sensing performance of the 2-D PANI layer biosensors. The common BNP 

concentration in a healthy person is ~100 pg/mL, and may increase to over 2 ng/mL in patients 

with severe heart failure.108 BNP biomarker tests were first conducted under constant Debye 

length environment to obtain the sensitivity and specificity of the PANI layer biosensors over 

detection of BNP. Debye length investigation was then carried out with constant BNP target 
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concentration under different Debye length environment to verify the impact of Debye screening 

on FET sensing performance. Sensing performances of PANI layers at different oxidation states 

were also compared for optimization purpose. 

3.2 EXPERIMENTAL 

In this section, fabrication processes to develop 2-D PANI layer biosensors including PANI 

layers patterning, PANI synthesis, surface functionalization and microfluidics integration are 

thoroughly explained. 

3.2.1 Chemicals 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-Hydroxysuccinimde (NHS), aniline 

monomer, bovine serum albumin (BSA), perchloric acid (70%), ammonium persulfate 

((NH4)2S2O8) were purchased from Sigma Aldrich. Fluorescent-dye-labeled aptamer (5’-

GGGGCACGTTTATCCGTCCCTCCTAGTGGCGTGCCCC-3’) was synthesized by Integrated 

DNA Technologies. Mouse anti- B-type natriuretic peptide (BNP) monoclonal antibodies were 

purchased from Abcam. Phosphate buffer solution (PBS, pH 7.4) was used to prepare the BSA, 

EDC, NHS, and BNP solutions with different concentrations. 
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3.2.2 Development of 2-D PANI Layers 

The fabrication of the devices started with a typical electrodes patterning processes including 

lithography, e-beam evaporator deposition and lift-off as illustrated in figure 8. The micron size 

PANI layers were then defined and patterned by applying a bilayer lithography/lift-off process 

on top of the wafer with electrodes. The patterns were aligned using Qunitel mask aligner Q4000. 

Benefits of using bilayer structure here are that it can significantly increase the PANI lift-off 

uniformity as well as prevent undesirable current signals. 

 

Figure 8. Illustration of the fabrication processes to develop PANI FETs. 
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PANI chain molecules are typically formed by the oxidation of aniline monomer. This 

reaction requires three elements: aniline, acid to protonate aniline and an oxidation potential. 

Based on this mechanism, electrochemical oxidation of monomers and chemical synthesis are 

the two most commonly used approaches to polymerize PANI films.67 Electrochemical 

polymerization utilizes a working electrode to offer the required oxidation potential which makes 

the PANI film directly deposited on top of it. Though this method can precisely control the 

thickness and growing rate of the deposited film, the requirement of a conductive substrate 

greatly narrows its applications. Chemical synthesis, on the other hand, can polymerize PANI 

film on any solid surface. In addition, the nucleation of PANI molecules taking place both in the 

bulk solution and on the substrate results in a much rougher surface morphology,109 which 

potentially increases its sensitivity. Therefore, chemical synthesis was utilized in this work to 

deposit high sensing performance PANI film. 

 

Figure 9. The chemical reactions of PANI synthesis. 
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After bilayer process was done, a dilute chemical polymerization method110,111 was 

utilized to deposit a uniform PANI thin film on electrode patterned wafer surface. In a typical 

procedure, the prefabricated wafer was immersed in 180 mL of 0.35 mol/L aqueous HClO4 

solution. 0.91 mL of aniline monomer was then added into the HClO4 solution, and the whole 

solution was kept stirring at 400 rpm for 30 min in ice bath to form a uniform mixture. In a 

different beaker, 0.6845g of oxidant (NH4)2S2O8 (APS) (the molar ratio of aniline to APS is 3 to 

1) was dissolved in 20 mL of aqueous HClO4 solution and cooled to ~0-5 °C in a freezer. The 

polymerization was initiated by combining the two solutions. The mixture was kept stirring in 

ice bath during the whole reaction to accomplish the formation of PANI thin film. The detailed 

reactions are shown in figure 9. After the polymerization, the wafer was taken out from the 

solution and rinsed with DI water to remove adhering PANI precipitate. The dark green or blue 

color (depends on polymerization time) shown on the wafer indicates that a thin layer of PANI 

film was successfully coated on its surface. Then the PANI coated wafer was dried and 

immersed in acetone for 5 min to lift-off the photoresist layer together with undesired PANI film. 

The finished wafer was covered with both LOR and PANI with no electrode exposed to air. 

After rinsing it with deionized water 3 times, the samples with PANI patterns were cut from the 

wafer and stored for future use. 
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Figure 10. Estimation of PANI film thickness and oxidation state over synthesis time. 

 

The thickness and oxidation state (indicates conductivity) of PANI film over 

polymerization time were investigated and shown in figure 10. The introduction period of the 

reaction took around 15 minutes, during which most of the aniline monomers got protonated in 

the low pH environment. Oxidative polymerization started to speed up after introduction period 

when the solution turned from clean colorless to dark black. This color change is due to PANI 

nucleation took place in the bulk solution. Thickness of PANI films were measured by atomic 

force microscope (AFM). The results showed that after 1.5 hours of polymerization, the film 

thickness remained constant around 80 nm, which indicates the end of polymerization. The 

oxidation state can be roughly acquired by observing the color of PANI films. At half an hour 

time, the film showed blue, which corresponds to a relatively high oxidation state. The 

conductivity is as low as insulators. One hour after the reaction was initiated, the film displayed 
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green color which corresponds to the most useful acid-doped emeraldine salt (ES) form. 

However, given more oxidation time (over 4 hours), the PANI films change back to dark blue-

violet (per)nigraniline form. A comparison of 2-D PANI films with different oxidation states is 

shown in figure 11. The green emeraldine salt form exhibits much larger conductivity than blue-

violet (per)nigraniline form. 

 

Figure 11. Microscope images of PANI film synthesized under the same conditions with different synthesis time: 

1.5 hours (top), over 4 hours (bottom). 
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3.2.3 Surface Functionalization of PANI 

In this project, EDC and NHS were used to functionalize PANI with monoclonal antibodies 

(mAbs). 2μL of PBS solution contains 100μg/mL of B-type natriuretic peptide (BNP) antibody 

was first added into a micro tube. 49μL of both PBS solutions with 0.1M EDC and NHS were 

added into the same micro tube. The solution was then shaken for 15 seconds to form a uniform 

mixture, and added onto PANI layers at room temperature. After 4 hours, the functionalized 

PANI layers were then thoroughly rinsed with DI water to remove physically adsorbed 

antibodies. To prevent possible nonspecific adsorption of other biomolecules to the PANI layers, 

PBS solution contains 200 μg/mL bovine serum albumin (BSA) was then dropped onto PANI 

layers for 30 minutes to block the free sites on their surfaces. 

3.2.4 Integration of Microfluidic Channels 

Recently, microfluidics has been an increasing attraction to researches due to its ability of 

integrating advanced biosensors into lab-on-a-chip systems.112 The lab-on-chip systems with 

microfluidics have several advantages including low consumption of costly reagents, minimal 

handling of hazardous materials, short reaction time required for analysis, multiple sample 

detection in parallel, portability, and versatility in design.113 Microfluidics designs for whole 

blood separation in clinical applications were also demonstrated using different techniques and 

platforms.114-117 

A PDMS microfluidics device with a micron-thick channel (1 cm × 1 mm × 100 μm) 

connecting inlet and outlet was fabricated through a replica molding process. Silicon elastomer 

base and curing reagent were mixed in a 10:1 ratio, stirred for 10 minutes and degased for 30 
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minutes. After all the bubbles were gone, the mixture was poured in a box with prefabricated 

mask (to create channels, inlets and outlets) located on the bottom. The box was then put in oven 

and cured at 85 ºC for 3 hours. The single microfluidic device was cut off and stuck onto the 

device with the channel right on top of the PANI layers as shown in figure 12a. Microtubes were 

used as both inlet and outlet. The finished device with microfluidic is shown in figure 12b. 

 

Figure 12. (a) Illustration of microfluidic design and microfluidic integration. (b) Image of a biosensor device with 

microfluidic integrated 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Surface Morphology Study of 2-D PANI Layers 

 

Figure 13. (a) SEM image of PANI surface. (b) High magnification AFM image of PANI surface. 

 

The surface morphology of 2-D PANI nanostructures was studied by scanning electron 

microscope (SEM) (Quanta 600 FE-SEM) and atomic force microscopy (AFM) (PSIA XE-100 

& Solver Next AFM). From the SEM image shown in figure 13a, a rough surface with 

nanogranular structures can be observed. This observation was confirmed by the topography 

investigation using the AFM in non-contact mode. A 0.5μm by 0.5μm image with Z scale (color 

range) from 0 nm (dark) to 55nm (bright) was shown in figure 13b. The nanogranular structures 

have an average diameter of 100 nm and height difference around 30 nm. Two factors have been 

proposed to be responsible for the formation of these structures.109 First, the secondary 

nucleation centers occurred and started growing on the surface of preformed PANI film. Second, 
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the PANI molecules nucleated in the bulk solution precipitated and incorporated with PANI 

nucleated on the surface. The average size of the nanogranular structures was also demonstrated 

to increase with reaction temperature.118 This result indicates that the surface morphology of 

PANI can be easily controlled by tuning the temperature. Same high magnification AFM images 

were taken at two other random spots, and the results revealed that the surface area of PANI film 

was increased averagely by 46% compared with flat surface due to this unique morphology. 

With the film thickness below 100 nm, extremely large SA/V ratio was achieved, which is 

believed to contribute to its excellent sensing performance. 

3.3.2 PANI FET Measurement 

 

Figure 14. FET measurement of PANI film. Vd was fixed at different value from 0 to 0.4V while sweeping Vg from 

1.0V to -2.5V. 
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Field-effective transistor measurements of 2-D PANI layers were conducted by using the probe 

station (Signatone s-1160). Figure 14 shows the drain current (Id) versus gate voltage (Vg) 

characteristics, while keeping Vd fixed from 0 to 0.4V. Id stays low when Vg is from 0.5V to -

1.0V no matter what Vd is applied, which indicates the depletion region of the PANI film. After 

Vg passes below -1.2V, Id begins to rise shapely. Since PANI is well-known p-type 

semiconductor material, this negative Vg induced regime should correspond to the carrier 

accumulation due to the increase of hole concentration on the PANI surface. The significance of 

this figure is that it can help us determine the working condition for our PANI biosensors. 

According to Gao et al.,36 optimal sensitivity can be achieved when the FET sensing component 

is working in subthreshold regime. Therefore, from figure 14, we can infer that the best working 

condition for our PANI FET biosensor is when Vg is around -1.0V. Though the magnitude of 

drain current change upon targets binding is much smaller than the device that is working in 

accumulation regime, the current increase over current (ΔId/Id), which represents the sensitivity 

of the biosensor, is vastly enhanced. 

3.3.3 Fluorescence Test of Functionalized PANI 

Alexa FluorTM 488 Conjugate aptamers with excitation wavelength peak at 495 nm and 

emission wavelength peak at 519 nm were functionalized on the surface of PANI in the presence 

of EDC and NHS. Figure 15 shows the result of the fluorescent test. Clear green light was 

observed on the PANI film area which verifies the successful functionalization of the aptamers. 

Thus confirms the viability of our surface functionalization method. 
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Figure 15. Fluorescent test of functionalized PANI. 

3.3.4 BNP Biomarker Detections 

 

Figure 16. Testing system including a potentiostat, syringe pump, test circuit, multiple inlets and a power supply. 
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The testing system shown in figure 16 contains a testing circuit with a memory socket for device 

connection, a syringe pump, and a potentiostat (CHI 1000C). The microfluidic integrated device 

can be inserted into a memory socket without using any wire-bonding steps. The memory socket 

is connected to the testing circuit. During the test, different sample solutions can be selectively 

pumped into the microfluidic channel from the multiple inlets by the syringe pump. The current 

signals flowing through 2-D PANI films can then be obtained by the potentiostat using linear 

sweeping method that sweeps the drain-source voltage from 0V to 0.25V (sweeping rate: 0.1V/s, 

sample interval: 0.005V) at fixed gate voltage condition. In particular, -1.0V gate voltage was 

chosen according to the FET measurement. 

The tests were started with pumping in PBS 0.01X solution by using a syringe pump. 

When the microfluidic channel was filled with PBS solution, the pump was stopped and Id-Vd 

measurement was read three times by sweeping Vd from 0V to 0.25V. After stable current signal 

was obtained, PBS 0.01X solution samples that contain high concentrations of nonspecific 

targets such as IgG and BSA, and different concentrations of BNP targets (ranging from 100 

pg/mL to 1000 pg/mL) were pumped into the microfluidic channel successively. Linear sweep 

Id-Vd measurements were performed each time when the microfluidic channel was filled with 

new sample solution. As shown in figure 17, nonspecific biomarkers IgG and BSA show similar 

current outputs to the PBS background signal despite their high concentrations. On the contrary, 

samples with different BNP biomarker concentrations show clear current increase with the 

increasing of concentration. These current changes can be explained by the gating effect from 

charged target molecules. BNP molecules, with an isoelectric point (pI) of 5.4119 are negatively 

charged in the neutral (pH=7.20) solution. When BNP molecules are bound on the surface, 

negative charges start gating the p-type PANI film, causing the accumulation of carriers, thus 
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increasing the conductivity. These results not only indicate that the 2-D PANI layer biosensor is 

able to specifically recognize BNP biomarker, but also show its excellent sensitivity. 

 

Figure 17. Sensing results with nonspecific targets (IgG and BSA) and different concentration of BNP biomarkers. 

3.3.5 Debye Length Investigation 

Debye length, as introduced in chapter 1, is well-known as one of the most significant factors 

that affect FET biosensor’s performance. To investigate this, two biomarker tests were carried 

out. The BNP biomarker samples in these two tests were made out of different concentrations of 

PBS solutions (0.1X and 0.01X), which correspond to different Debye length environments. As 

we can see from the sensing results shown in figure 18, biosensor that was tested with solutions 

based on 0.01X PBS shows more distinguishable current increases over the increases of target 

concentration. This difference is consistent with the theory, and it is mainly because of some of 
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the antibody-antigen complexes formed on PANI surface being screened out due to the relatively 

small Debye length (2.3 nm) in 0.1X PBS environment compared with it (7.3 nm) in 0.01X PBS. 

 

Figure 18. BNP biomarker detections performed under different buffer concentration (Debye Length). 

3.3.6 Sensing Performances Using PANI in Different Oxidation States  

The chemically synthesized PANI films have different oxidation states due to different synthesis 

time. For optimization purpose, PANI layers that are in emeraldine form and near 

(per)nigraniline form (not fully oxidized) were tested with BNP biomarkers. The emeraldine 

form PANI layers was synthesized for 1.5 hours, while the near (per)nigraniline form was 

synthesized for over 4 hours. The tests were conducted with only PBS and BNP (200 pg/mL and 

500 pg/mL). Figure 19 shows the comparison of both microscope images of the PANI layers and 

their sensing results. The green emeraldine form PANI shows 2 orders of magnitude larger 

current with less noise. The current differences are also easier to identify. Such superiorities are 

believed to be attributed by both the natural high conductivity of emeraldine form and the fact 

that emeraldine form is better for antibodies immobilization. 
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Figure 19. BNP biomarker detections performed with PANI films in different oxidation states. 

3.4 CONCLUSIONS 

We have established a facile way to develop 2-D PANI layer biosensors on SiO2 substrates that 

combines both top-down and bottom-up processes. The chemically synthesized 2-D PANI 

nanostructures exhibit extremely large surface roughness which is attributed by the well-

controlled low temperature synthesis condition. Such structures assure the biosensors to have 

outstanding sensitivity. With the help of microfluidics channels, a detection limit as low as 100 

pg/mL was achieved for detecting BNP biomarkers. Biomarker tests conducted in different ionic 

strength environment verified that larger Debye length can, in some degree, enhance the sensing 

performance. In addition, sensing performances of PANI layers at different oxidation states were 

also compared and evaluated. The half oxidized emeraldine form showed better sensing 

performance due to its higher conductivity and better chance for antibodies immobilization. 

Based on this biosensor design, two major improvements were investigated in this 

dissertation: one is to use flexible substrates such as PET and PI to replace current nonflexible 
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SiO2 substrate; the other is to develop 2-D PANI film/nanotubes hybrid nanostructures as the 

substitutes for 2-D PANI layers (bare films). The details will be explained in the following two 

chapters. 
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4.0  DEVELOPMENT OF 2-D PANI BIOSENSORS ON FLEXIBLE SUBSTRATES 

4.1 INTRODUCTION 

Nowadays, electronic devices tend to get smaller and more highly integrated due to the ceaseless 

development of micro and nano fabrication techniques. With the device thickness down to the 

micron scale, flexible design becomes an excellent alternative for devices to maintain basic 

mechanical stability as well as offering versatility in designs and large area compatibility. As a 

result, the rapid development of flexible electronics in recent years has inspired and fueled 

numerous applications in fields such as radio-frequency identification (RFIDs) tagging,120 

flexible displays,121,122 and flexible solar cells.123,124 Such “evolution” is also highly desired in 

healthcare applications. This emerging trend has driven the growing of point of care (POC) 

biosensor market, resulting in plenty of low cost and portable flexible biosensor designs.48,125 

More importantly, flexibility and stretchability are necessary features for designing wearable and 

implantable devices for the fact that living organisms are naturally curvilinear, soft, and flexible. 

The realization of 2-D PANI nanostructures as biosensors has been successfully 

demonstrated in the second chapter of this thesis. It is noteworthy that another advantage of 

using 2-D PANI nanostructure over 1-D nanowire is its better compatibility with flexible designs 

associated with its thin film nature. Flexible substrates, as an essential part in flexible designs, 

provide the basic mechanical strength and flexibility for the devices. The device developing 
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procedures are also highly dependent on the physical and chemical properties of the flexible 

substrates. Commonly used flexible substrates such as polyimide (PI), polyethylene terephthalate 

(PET), and cured polydimethylsiloxane (PDMS) are suitable for FET based electrical biosensor 

designs due to their excellent electrical resistivity, mechanical flexibility and sufficient chemical 

stability. In particular, their good resistance to acid makes them compatible with constructing 2-

D PANI nanostructures using chemical synthesis. In light of this, in this chapter, the 

development of 2-D PANI nanostructure based flexible field-effect-transistor (FET) biosensors 

are presented. Thermally imidized PI films were chosen as the flexible substrate because of its 

high glass transition temperature (Tg) and easy-to-handle feature compared to other flexible 

substrates. PET films were also used due to their easy-to-get feature. The 2-D PANI 

nanostructures were prepared through a combination of conventional CMOS (Complementary 

Metal–Oxide–Semiconductor) compatible microfabrication techniques with a well-controlled 

chemical synthesis method.126,127 The PANI nanostructure features small size, high 

reproducibility, large surface roughness, and good compatibility with flexible design. B-type 

natriuretic peptide (BNP), an important cardiac marker was used to determine the sensing 

performance such as limit of detection and specificity of the devices. 

4.2 EXPERIMENTAL 

In this section, fabrication processes of PI and PET based PANI layer biosensor devices 

including PI film synthesis, electrodes and PANI layers patterning, surface functionalization and 

microfluidics integration are described. Issues such as, PET/metal adhesion, PI film thickness, 

lift-off and chemical polymerization are reviewed and optimized. 
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4.2.1 Chemicals 

Polyethylene terephthalate (PET) film (100μm thickness), silicon elastomer base and curing 

reagent were purchased from Fisher scientific. Polyamic acid, adhesion, 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC), N-Hydroxysuccinimde (NHS), aniline monomer, 

bovine serum albumin (BSA), perchloric acid (70%), ammonium persulfate ((NH4)2S2O8) were 

purchased from Sigma Aldrich. Fluorescent-dye-labeled aptamer (5’-

GGGGCACGTTTATCCGTCCCTCCTAGTGGCGTGCCCC-3’) was synthesized by Integrated 

DNA Technologies. Mouse anti- B-type natriuretic peptide (BNP) monoclonal antibodies were 

purchased from Abcam. Phosphate buffer solution (PBS, pH 7.4) was used to prepare the BSA, 

EDC, NHS, and BNP solutions with different concentrations. 

4.2.2 Optimization of Electrodes Patterning on PET Substrates 

The electrodes were patterned onto PET substrates through a standard lithography/lift-off 

process. To be specific, a PET film was cut (smaller than 4 inch wafer) and fixed onto a four-

inch holder wafer. SC1827 photoresist was first employed to accomplish the lithography process. 

During soft bake, the PET films tend to bend due to their lack of dimensional stability during 

heating, which dramatically reduces the effect of soft bake. To overcome this, a sandwich-like 

heating process was applied by putting the PET film in between two four-inch wafers while 

heating on a hot plate. This method can both assure the heating uniformity as well as keep the 

PET film flat for future procedures such as lithography alignment. After lithography was done, e-

beam evaporator was used to deposit metal on top of the substrate and acetone lift-off was 

utilized to form the final structure of the electrodes. 



 56 

The major challenge of electrodes patterning is the low adhesion between PET and metal. 

Though many flexible devices on PET substrates have been demonstrated, devices with small 

feature-size (several microns) electrodes patterning on PET are seldom reported. This particular 

challenge is mostly expected in lift-off process since a lift-off result is highly dependent on the 

adhesion between metal and substrates. To investigate this, gold only (Au), gold with titanium as 

adhesion layer (Au/Ti), and gold with chromium as adhesion layer (Au/Cr) were tried separately. 

The reason for using gold as the electrode material is that gold is known for its great conductivity, 

stability and biocompatibility. Figure 20 shows the comparison of three different results of 2 

hours lift-off followed by 5 seconds of ultrasonic cleaning. It is obvious that Au/Cr/PET 

possesses much higher adhesion than the other two. However, high magnification microscope 

image reveals that the uniformity of Au/Cr/PET lift-off was still poor. The gap distance, which 

are supposed to be 10 microns, showed a large variation with very bad repeatability. 
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Figure 20. Electrodes patterned on PET substrate. (a) Au/PET (b) Au/Ti/PET (c) Au/Cr/PET. 

 

To further improve the lift-off uniformity and reproducibility, a bilayer lithography 

process was introduced to replace the single layer standard lithography. Figure 21a explains how 

bilayer lift-off works. LOR-5B, a resist that is not dissolvable in acetone but dissolvable in 

developer, was utilized to create the undercut structures together with the photoresist S1805. The 

difficulty here is to precisely control the size of the undercut which highly depends on the LOR 
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soft-bake temperature and developing time. Typical soft-bake temperature for LOR-5B is over 

170 ºC, which is too high for PET to survive, while low temperature baked LOR dissolves much 

faster in developer compared with that baked in high temperature. After many attempts, a set of 

highly repeatable parameters for low temperature (115 ºC) bilayer lithography process was 

established. With the help of the undercut structures, the lift-off of wafer-size Au/Cr/PET was 

able to be completed within one hour without any help of ultrasonic cleaning. An optical 

microscope image of the highly uniform lift-off result is shown in figure 21b. This method was 

then verified to be useful for other flexible substrates. 

 

Figure 21. Optimization of electrodes patterning with bilayer structure. (a) Illustration of the bilayer process. (b) 

Microscope image of bilayer developed electrodes on PET substrate. 
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4.2.3 Patterning of 2-D PANI Layers 

The same method to pattern micro-size 2-D PANI layers for nonflexible devices was utilized 

here for flexible ones. First, a low temperature bilayer (LOR-5B and S1805) lithography process 

was performed to define the patterns of PANI layers. The samples were then immersed in 180 

mL of 0.35 mol/L aqueous HClO4 solution. 0.91 mL of aniline monomer was added into the 

HClO4 solution, and the whole solution was kept stirring at 400 rpm for 30 min in an ice bath to 

form a uniform mixture. In a different beaker, 0.6845g of oxidant (NH4)2S2O8 (APS) was 

dissolved in 20 mL of aqueous HClO4 solution and cooled to ~0-5 °C in a freezer. The 

polymerization was initiated by combining the two solutions. The synthesis time used is 1.5 

hours and the PANI film with thickness around 80 nm can be obtained. The samples was then 

taken out from the reaction beaker, washed with DI water three times and immersed in acetone 

for 10 min to lift-off the undesired PANI film. 

4.2.4 Preparation and Optimization of PI Substrates 

Unlike PET, PI films were prepared through a high temperature imidization process.128-130 The 

reason for not using prefabricated PI films is that thermal imidized PI will stay on top of a wafer 

during the whole process which makes device fabrication processes such as alignment much 

easier compared with PET. Three wafers (marked as 1, 2, 3) with 500nm thick of SiO2 were 

cleaned and tried for PI synthesis to investigate the adhesion of poly(amic acid) with different 

surfaces. Adhesion layer (glycidyl methacrylate) was first coated on the front side of wafer 1. 

Poly(amic acid) were then spin coated onto both the front side of wafer 1 & 2, and the back side 

of wafer 3 at 800 rpm. The results showed that clean SiO2 behaves like a “hydrophobic” surface 
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to poly(amic acid) which is not suitable for PI synthesis, while poly(amic acid) was able to cover 

uniformly on wafer 1 and 3 due to the adhesion layer on wafer 1 and the rough Si surface of 

wafer 3. Wafer 1 & 3 were then put into an oven for thermal imidization. The molecular 

structure of poly(amic acid) and the imidization mechanism are shown in figure 22. Decisive 

factors for achieving successful (close to 100%) imidization include a nitrogen environment and 

a well-controlled temperature. Oxygen can break the long chains of the PI and make the film 

brittle. To prevent that, the oven was kept flowing with nitrogen in to keep a relatively low-

oxygen environment. The utilized thermal cycles contained several steps: the poly(amic acid) 

mixtures were first heated up to 100 ºC with a ramp of 5 ºC/min and held for one hour; then the 

temperature increased from 100 ºC to 200 ºC and held again for one hour; finally, the mixtures 

were heated from 200 ºC to 300 ºC, held for another hour and slowly cooled to room temperature 

from 300 ºC. After curing, thin yellow films were observed on wafer 1 and 3, which indicated 

that PI films were successfully synthesized. The following steps including electrode patterning 

and PANI polymerization were the same as PET substrates. 

 

Figure 22. Molecular structure of poly(amic acid) and the imidization mechanism. 
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One crucial step is to debond PI films from wafers without damaging them and keep 

reusing the wafers. Some debonding methods such as applying buffer layer have already been 

demonstrated.131 In this experiment, wafer 1 showed great bonding with PI film during 

fabrication processes, however, the additional adhesion layer made it difficult to strip PI film off 

without damaging it. On the other hand, PI on wafer 3 can be easily stripped off after 

polymerization without any complex debonding method. Figure 23 shows the PI film on wafer 3 

before (figure 23a) and after (figure 23b) debonding. 

 

Figure 23. (a) Single layer PI flexible devices before debonding. (b) Single layer PI flexible devices after debonding. 

 

Though electrodes were successfully patterned on PI film, the extremely thin (<10 

microns) PI film made it much difficult to be applied in biosensor use. Thickness optimization 

was then carried out to improve PI film’s basic mechanical property. The thickness of PI mostly 

depends on the viscosity of poly(amic acid) and cannot be significantly increased by changing 

the spinning rate. Therefore, a three-layer PI synthesis was employed. Specifically, two wafers 

(marked as A, B) were used as PI holders. Instead of applying adhesion layer, the front side of 
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wafer A was first etched by using reactive-ion etching (RIE) (pressure at 15 mTorr; RF power at 

200 watts; CHF3 flow at 23 sccm; O2 flow at 2 sccm; etching time: 1 min) to create a relatively 

rough SiO2 surface. The first layer of poly(amic acid) was spin coated on the front side of wafer 

A and the back side of wafer B at 500 rpm. Thermal curing was introduced afterwards. Different 

from single-layer PI process, the curing temperature was set up to slowly decrease to room 

temperature after being held at 200 ºC for 1 hour. Then the second layer of poly(amic acid) was 

spin coated and cured in the same way on top of the first layer. The reason for not using 300 ºC 

is to increase the bonding between the first and second layer since they were not fully imidized. 

After the third layer was spin coated on, the same thermal curing process as for single-layer PI 

was conducted to fully imidize all three layers into one thick film. The three-layer PI appeared 

dark brown and possess excellent mechanical property. The result also showed that wafer A 

(plasma etched SiO2) exhibited better adhesion compared with wafer B (rough Si). An image of 

the three-layer PI film on wafer A is shown in figure 24. 

 

Figure 24. Three-layer PI flexible devices with sufficient mechanical strength after deboding. 
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4.2.5 Surface Functionalization of PANI 

The same functionalization method using EDC and NHS was applied here for flexible devices. 

2μL of PBS solution containing 100μg/mL of B-type natriuretic peptide (BNP) antibody was 

first added into a micro tube. 49μL of both PBS solutions with 0.1M EDC and NHS were added 

into the same micro tube. The solution was then shaken for 15 seconds to form a uniform 

mixture, and added onto PANI at room temperature. After 4 hours, the functionalized PANI 

nanostructures were then thoroughly rinsed with DI water to remove physically adsorbed 

antibodies. Finally, 200 μg/mL bovine serum albumin (BSA) was dropped onto PANI 

nanostructures for 30 minutes to block the free sites in order to prevent possible nonspecific 

adsorption of other biomolecules. 

4.2.6 Integration of Microfluidic Channels 

A PDMS microfluidic device with a microns-thick channel (1cm × 1mm × 100μm) was 

fabricated using the same method described in 2.3.3. In order to make the microfluidic device 

sufficiently flexible, the thickness of the mixture of silicon elastomer base and curing reagent 

was controlled less than 3 mm. The single microfluidic device was adhered to the flexible device 

with the channel right on top of the PANI films by using glue as illustrated in figure 25a. Each 

device has an array of 6 individual and identical 2-D PANI nanostructures which can be fully 

covered by the microfluidic channel. The images of microfluidic integrated flexible devices are 

shown in figure 25b & c. Microfluidics tubing was used as inlet and outlet. The devices exhibit 

sufficient flexibility due to the good flexibility of PDMS. 
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Figure 25. Integration of a microfluidic to the device. (a) The microfluidic channel is located right on top of a 2-D 

PANI nanostructure array. (b) A microfluidic integrated PET biosensor. (c) A microfluidic integrated PI biosensor. 

The device shows good flexibility due to the flexible nature of PET, PI and PDMS. 

4.3 RESULTS AND DISCUSSION 

In this section, experimental results such as surface morphology study of PANI, electrical 

characterization of bending device, and BNP biomarker detections were presented. Due to the 

relatively lower yield of PET devices caused by their significant thermal expansion, PI based 

flexible devices were used in reproducibility tests. 
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4.3.1 Surface Morphology Study of 2-D PANI Layers on Flexible Substrates 

 

Figure 26. Different dimensions of 2-D PANI films on PET substrate. 

 

Five different dimensions of 2-D PANI films were patterned and the microscope images of those 

structures on PET substrate are shown in figure 26. The rectangular PANI films cover across the 

drain and source electrodes while the non-PANI-covered area is all shrouded by LOR-5B, an 

insulating lift-off resistor. The LOR layer here not only works as an improvement in PANI lift-

off procedure which was mentioned before, but also acts as an insulating layer that can prevent 

ion solution directly connecting drain and source electrode. The ratio shown in figure 26 
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indicates the length-to-width ratio of the part that does not contact with electrodes. It is 

noticeable that the 10:1 2-D PANI film shifts a lot from its correct position (red box). When 

baked over 100 ºC, the PET film, due to its low heat resistance and relatively high thermal 

expansion coefficient, will shrink which can cause the device patterns to shift (misalignment). 

The farther the pattern is away from the center of the mask, the larger the shift is. PI, on the other 

hand, does not have such problem due to its good thermal stability. 

 

Figure 27. PANI surface characterizations. (a) An SEM image of the 2-D PANI nanostructure surface. The PANI 

surface was formed by nanogranular structures. (b) AFM result that shows the detail surface morphology of the 2-D 

PANI nanostructure. The average diameter of the nanogranular structures is around 100nm which dramatically 

increases the surface area by over 50% compared with flat surface 

 

The morphology of PANI film on flexible substrate was also study by both SEM and 

AFM measurement. Figure 27a shows the SEM result of PANI film surface morphology. It can 

be clearly observed that the surface is extremely rough with nano mountain-like structures. 

Further analysis on higher magnification AFM result (figure 27b) shows that the surface area of 

the film is averagely increased by 52% compared with smooth surface due to the roughness. This 
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result is higher than the average PANI surface area increase measured on SiO2 wafer surface 

(46%). We believed that the naturally rougher surface of PET and PI is responsible for this 

improvement. According to our AFM results shown in figure 28a, clean PET substrate shows 

much rougher surface than silicon oxide. This feature will further increase the surface roughness 

of PANI synthesized on top of PET, thus increase the surface binding sites (shown in figure 28b). 

In addition, higher surface roughness also dramatically increase the volume of Debye sphere 

surrounded the PANI layer even under same Debye length environment (same solution ion 

strength). The Debye sphere is twisted in 3-dimention because of the extremely rough surface, 

and may overlap in trenches that are small enough (shown in figure 28b). This may result in 

much less antibody-antigen binding being screened out. Hence, the sensitivity is again further 

improved. 

 

Figure 28. (a) 3D view of AFM results of clean PET and silicon oxide surface. (b) Illustration on how surface 

roughness increases the sensitivity of the PANI FET biosensor. 
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4.3.2 Electrical Characteristics of Bendable 2-D PANI Layers 

 

Figure 29. Device resistance measurements under bending conditions. (a) Illustration of the bending test sequence: 

first, the device was fixed at the edge of a step and measured under no bending condition; then the device was bent 

and measured with the bending radius around 5cm and 1cm, respectively; finally the device was released from 

bending. (b) Vd-Id responses corresponding to four bending condition. Vg was fixed at 0V, and Id was obtained by 

sweeping Vd from 0V to 0.4V. The current changes were small and proportional to the bending degree. This result 

proves the good compatibility of 2-D PANI nanostructure with flexible designs 
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One key feature for flexible devices is that they can work under deformation conditions such as 

bending or stretching without large signal variations. Since the performance of the 2-D PANI 

nanostructure biosensor highly relies on the conductivity of the PANI nanostructure, FET 

measurements were conducted when the PANI was under different bending conditions. To 

achieve this, a PI based biosensor device was attached on a thin copper film which can be bent to 

desired shape. The bottom part of the device that contains electrodes was fixed on the edge of a 

box to create enough space for device bending. The 2-D PANI nanostructure was covered with 

PBS 0.01X buffer solution during the test. As illustrated in figure 29a, the FET behavior was 

first recorded under no bending condition. Subsequently, the device was bent with different 

bending radius and the FET behaviors were measured respectively. Finally, the device was 

released from bending. Figure 29b shows the Vd-Id behaviors (Vg was fixed at 0V) measured 

with probe station (Signatone s-1160) under four different conditions correspondingly to those in 

figure 29a. Notably, when the device was first bent with a bending radius around 5cm (red line), 

the drain current slightly increased compared with unbent condition (green line). As the bending 

radius further decreased to 1cm, lager drain current was observed (black line) which indicates 

that the conductivity of PANI nanostructure increases with the increase of surface tension 

created by the bending. Finally, when the device was released from the bending (blue line), the 

current returned to almost the same as original. 

The mechanism behind this conductivity change can be briefly explained by the changing 

of molecular structures during bending. The bending shown in figure 29a creates tensile force on 

the PANI film, which makes the originally completely nonaligned molecule chains more aligned 

and elongated.132 Thus, the conductivity along the tensile direction can be enhanced.133 We have 
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tested the device with bending radius up to 1cm due to the limitation of PDMS microfluidic 

bendability on the flexible substrate and obtained that the conductance of the 2-D PANI 

nanostructure varies up to 20% of the original conductance. However, this 20% variation may 

meet the requirement for flexible biosensor application, and further investigation of the 

conductance changes upon bending should be done for fully utilizing the device flexibility. More 

significantly, though the conductivity of the PANI film changes with bending, the current 

variation is highly dependent on the degree of bending which makes it easily controllable and 

predictable. Based on these results, we can conclude that the 2-D PANI nanostructures show 

excellent compatibility with flexible designs. 

4.3.3 Fluorescence Tests of Functionalized PANI 

It is always imperative to assure the successful surface functionalization before testing. However, 

it is difficult to observe fluorescence directly from PANI film on PET or PI substrates due to 

their strong autofluorescence property.134 Therefore, fluorescent tests of PANI film synthesized 

on silicon wafer were used to verify the feasibility of the PANI functionalization method. Alexa 

FluorTM 488 Conjugate aptamers (excitation at 495 nm and emission at 519 nm) were 

functionalized on PANI surface using the same method introduced before. Two filters (Filter 1: 

excitation spectrum from 450 nm to 500 nm, emission spectrum from 500 nm to 550nm; Filter 2: 

excitation spectrum from 540 nm to 560 nm, emission spectrum from 580 nm to 650nm) were 

used to examine the fluorescent results. Figure 30 shows three images taken using the same 

exposure time. As shown in figure 30a, clear green light which corresponds to 519 nm can be 

observed on the functionalized area using Filter 1, while no light was observed with the same 

area using Filter 2 (figure 30b). This result rules out the possibility that the light is from back 
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reflection. By further comparing with unfunctionalized area in figure 30c, we can confirm that 

the green light is the fluorescent emission from functionalized aptamers, which indicates the 

feasibility of the surface functionalization method. 

 

Figure 30. Fluorescent images taken by optical microscope under same exposure conditions. (a) Functionalized area 

using the correct filter, clear green light corresponding to the fluorescent wavelength was observed. (b) 

Functionalized area using the control filter, no notable fluorescent light observed (c) Unfunctionalized area using the 

correct filter, no notable fluorescent light observed 

4.3.4 BNP Biomarker Detections 

The proof-of-concept tests of flexible 2-D PANI nanostructure sensor were conducted using PI 

based sensor to detect BNP biomarkers. BNP biomarkers with concentrations ranging from 
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100pg/mL to 1ng/mL were used, and the specificity of the device was demonstrated with high 

concentration nonspecific targets (BSA, IgG). All biomarker solutions were prepared with 

phosphate buffered saline (PBS) 0.01X buffer solution to assure a same Debye length 

condition.35 The test was initiated with the collection of background current response by 

pumping PBS 0.01X solution into the microfluidic channel via a syringe pump. Id-Vd 

measurement was read three times using the linear sweeping method described previously. After 

a stable current signal was obtained, sample solutions containing BSA and IgG were pumped in 

and tested using the same condition. As shown in figure 31a, the current responses of PBS, BSA, 

and IgG are indistinguishable despite the high concentrations of the nonspecific targets. After 

that, samples containing different concentrations of BNP biomarkers were transferred into the 

device successively. Clear increases of the drain current read can be observed in figure 31a and 

the current increases corresponded to the increase of BNP concentrations from 100pg/mL to 

1000pg/mL. These results are consistent with our previously reported results from the silicon 

wafer based biosensors,135 which not only indicates that the 2-D PANI nanostructure biosensor is 

capable of specifically recognizing BNP biomarker, but also shows its potential ability of 

quantifying the different BNP concentrations. 
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Figure 31. Device biomarker sensing results using PI (a) and PET (b). Biomarker and specificity test result of a 2-D 

PANI nanostructure on detection different concentration level of BNP among nonspecific targets (BSA and IgG). 

PBS buffer solutions that contained high concentration of BSA and IgG showed similar current responses as the 

PBS background sample. The drain current increased distinctly as sample solutions contained different 

concentrations of BNP were pumped in. The current changes were consistent with different BNP concentrations. 



 74 

The detection using PET biosensor device was also performed and showed in figure 31b. 

The result currents and current changes are all at the same level as PI devices, which are similar 

compared with nonflexible devices as well. This result is expected since the sensing performance 

is mostly determined by the chemically synthesized PANI and its surface functionalization. 

 

Figure 32. BNP biomarker statistic test results of 15 2-D PANI nanostructure biosensor devices. All devices showed 

current increase over the increase of BNP concentration. Useful information such as sensitivity can be extracted 

from these figures. 
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To investigate the reproducibility of the flexible design, 15 devices were tested one by 

one under the same condition with PBS 0.01X and BNP biomarkers with concentration ranging 

from 100pg/mL to 1000pg/mL. All the device performances are shown in figure 32a. The 

vertical axis represents the drain current response change with respect to the background current 

measured with PBS (ΔI/I), and the horizontal axis represents different concentrations of BNP 

biomarkers. All 15 devices showed increase of drain current responses over increasing BNP 

concentrations which proves the reliability of the devices. Notably, higher concentration shows 

larger current signal variation. Such result is more distinct in the statistical analysis shown in 

figure 32b, where higher target concentration detections possess larger deviations. This result 

likely suggests that multi detections with one device would cause some of the antibodies to lose 

their activities. More importantly, the sensitivity of the biosensors can be extracted from these 

figures because of the nearly linear response. 

In summary of the sensing results, we found that 2-D based PANI structure possessed 

excellent and comparable sensitivity with respect to the reported 1-D PANI structure. Similar to 

1-D nanowire, the excellent sensing performance of 2-D PANI nanostructure is attributed to its 

extremely large SA/V ratio. There are two key features of the unique morphology on 2-D PANI 

nanostructure we believe that contribute to the boost of the sensing performance. First, the large 

surface area increased by the nanogranular structures provides more surface binding sites for 

BNP antibodies. According to the antigen-antibody interaction, under equilibrium condition, the 

concentration of antigen-antibody complex is proportional to the concentration of both antigen 

and antibody. Therefore, for a fixed antigen (target biomarker) condition, a higher concentration 

of antibody will increase the concentration of complex on surface, which leads to more charges 

gating the 2-D PANI nanostructure. Second, higher surface roughness also dramatically 
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increased the volume of the Debye sphere even under the same Debye length environment (same 

solution ion strength). Debye sphere describes the volume surrounding the PANI nanostructure 

outside which the surface bound charges will be screened out and cannot gate the PANI film.35 

Since the Debye length in PBS 0.01X at room temperature is ~7.61nm, which is much smaller 

compared to the roughness on PANI surface, this uneven surface also twisted and increased the 

volume of Debye sphere. Compared with a flat surface, the average distance between bound 

charges and PANI surface is reduced, i.e., more charges are included in the Debye sphere, thus 

leading to more charges gating the PANI nanostructure. 

4.4 CONCLUSIONS 

In this work, we presented a novel approach that combines top-down (microfabrication) and 

bottom-up (chemistry) techniques to enable the low cost and facile fabrication of two-

dimensional PANI nanostructures onto flexible substrates with high throughput and uniformity. 

The chemical synthesis and following lift-off process facilitated the mass production of PANI 

nanostructures on large areas, while at the same time offering them with excellent electrical 

properties, high uniformity, and unique surface morphology. 2-D PANI nanostructure based 

flexible biosensors were then developed and their outstanding sensing performance was 

demonstrated by the detection of BNP biomarkers. The sensor devices exhibited high specificity 

and rapid responses to the target with a very low detection level of 100pg/mL. Electrical 

measurements under bending conditions showed both controllable conductance changes within 

20% and good restorability which also confirmed that the 2-D PANI nanostructures have good 

compatibility with flexible designs. With more future works focusing on improving the 
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sensitivity and reliability, the demonstrated devices show great potential for wearable 

applications. 
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5.0  DEVELOPMENT OF PANI FILM/NANOTUBES HYBRID NANOSTRUCTURES 

5.1 INTRODUCTION 

Nanostructured materials have consistently been a popular field of research due to the fact that 

their high surface-area-to-volume (SA/V) ratio can enable plenty of unique physical and 

chemical properties including high molecular adsorption, large surface tension force, enhanced 

chemical and biological activities, and large catalytic effects.74 Polyaniline (PANI), as one of the 

most studied conductive polymers, is also one of the few polymers that has the capability to 

adopt numerous different nanoscale shapes. In the past two decades, synthesis and 

characterizations of different PANI nanostructures such as nanofibers,136 nanotubes,137,138 

nanospheres,139 and other fascinating nanostructures140 have been continuously reported. Among 

them, PANI nanotubes are undoubtedly favored by many researchers because of their unique 

one-dimensional structure, chemical study merits, and excellent electrical properties which may 

eventually nourish practical application fields such as sensors and field-effect transistors 

(FETs).141 

Chemically synthesis of PANI nanotubes is usually achieved by oxidizing aniline in 

acidic environment. In 1994, Parthasarathy and Martin, for the first time, demonstrated the 

synthesis of PANI microtubes by using a porous polycarbonate template membrane to guide the 

growth.142 These sorts of “hard template” methods were later improved and replaced by the so 
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called “soft template” methods, in which structure directors such as surfactants143 or organic 

acid144 are introduced. Though the soft template methods do not require a post-synthesis template 

removal process, it is rather difficult to control the morphology and tubular diameter.145 In 2006, 

Trchová and co-workers demonstrated that PANI nanotubes can be synthesized in water with 

nothing but aniline and ammonium peroxydisulfate (APS).146 This method limited the number of 

reagents to two, thus creating a much more simplified chemical reaction model for chemical 

mechanism study. In this simplified template-free method (STFM), aniline was oxidized and 

oligomeric products were formed in the first stage of the reaction when the pH is larger than 4. 

As time went on, the concentration of H2SO4, the byproduct from the oxidation, increased which 

brought the pH down below 4. Consequently, the reaction mechanism changed as aniline started 

to be protonated to anilinium cation, and large molecular weight PANI began to form. It is 

thought that the nucleated sites on oligomer crystallites were formed with the stack of the 

phenazine units. Created PANI chains then began to extend from them and continued to form 

nanotubular structures due to the hydrongen bonding and ionic interactions.138 

Despite of the study of the PANI nanotube synthesis is mature, the reported nanotubes 

were mostly nucleated and grew in the bulk solution for mechanism learning purpose, while 

direct synthesizing nanotubes on substrates were seldom studied.146 This situation vastly limits 

the possibility of utilizing PANI nanotubes for device applications given the fact that directly 

manipulating nanotubes is rather difficult and always requires resource consuming technology 

such as electron beam lithography. Hence, it is of great interest to develop a facile and low cost 

way in order to make use of the excellent electrical and chemical properties of PANI nanotubes. 

Interestingly, it is noteworthy that during the late stage of the PANI nanotube synthesis (low pH 

media), PANI film was always forming on the surface where no “template” existed. This matter 
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of fact provides the possibility to create nanostructures that contain both PANI film and 

nanotubes. In light of this, herein, we present a facile and template-free method to synthesize a 

new thin film nanostructure: PANI film/nanotubes hybrid, which is a “pizza” like structure that 

consists of nanoscale thickness PANI film and PANI nanotubes. This method is a variant from 

the STFM, in which a typical single reaction is replaced with two separate ones. Less 

concentration of reagents are needed in this method compared with STFM and no surfactant or 

organic acid is required. The hybrid possesses unique surface morphology as well as excellent 

electrical characteristics. In this work, characterizations were first conducted to assure the 

successful forming of the nanotubular structures. Different synthesis conditions and a variety of 

substrates were then attempted for optimization purpose. Finally, a proof-of-concept FET device 

based upon PANI film/nanotubes hybrid was developed and characterized to demonstrate its 

potential capability in sensor applications. 

5.2 EXPERIMENTAL 

5.2.1 Chemical and Substrates Preparation 

Aniline monomer, perchloric acid (70%), ammonium persulfate (APS) ((NH4)2S2O8) were 

purchased from Sigma Aldrich. Polyethylene terephthalate (PET) with thickness of 100 μm was 

purchased from Goodfellow. Gold substrates were fabricated by depositing 3 nm of Ti followed 

by 80 nm of Au on a SiO2/Si wafer using an e-beam evaporator. 
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5.2.2 Synthesis Method 

 

Figure 33. Illustration of the two-step synthesis process. Step A reaction has a starting pH of 7, while the pH in Step 

B reaction starts below 1. 

 

PANI film/nanotubes hybrid was synthesized through a process of two separate reactions as 

illustrated in figure 33. Staring pH, as an essential parameter that distinguishes the two reactions, 

was set as 7 and below 1 for the first (Step A) and second (Step B) reactions, respectively. In the 

Step A reaction, 0.911 mL of aniline was added into a main beaker with 180 mL DI water and 

stirred for 30 min to form a uniform mixture in ice bath. Samples which are acting as the 

substrates for PANI film/nanotubes to grow on were cleaned with acetone followed by IPA and 

three times of DI water. The substrates were then mounted onto a clean wafer, fixed with scotch 
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tapes and immersed in the main beaker. In another beaker, 0.6845g APS was dissolved in 20 mL 

DI water and put in a freezer to cool down to 0~5 ℃. The reaction was initiated by adding the 

APS solution into the main beaker and the temperature was kept at 0~5 ℃ under stirring 

condition (200 rpm). The mixed solution gradually turned brown soon after the initiation. In 

order to observe the formation of the PANI nanotubes and investigate how the reaction time in 

Step A affects the synthesis of PANI nanotubes, different reaction time ranging from 10 min to 4 

hours was conducted. When the reaction was done, all samples were taken out, rinsed with DI 

water three times and dried with nitrogen. 

To continue the synthesis, a dilute method110,111 was used which has been demonstrated 

and commonly used for uniform PANI film synthesis. The preparation of the Step B reaction was 

similar to the first one. The only difference is that 6 mL of perchloric acid was added into 180 

mL of DI water together with aniline monomer to create low pH environment. The reaction was 

also conducted in ice bath with stirring. Under low pH environment, the mixture solution turned 

deep dark blue soon after the reaction was initiated which suggests the formation of long chain of 

PANI. After 4 hours, samples were rinsed with DI water, dried with nitrogen, and ready for 

characterizations. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Characterization of PANI Nanotubes 

Samples produced through one hour of Step A reaction and four hours of Step B reaction were 

characterized using both scanning electron microscope (SEM) (Quanta 600 FE-SEM) and 
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transmission electron microscope (TEM) (JEOL JEM-2000EX TEM) were utilized. Gold was 

used as the substrate for synthesizing in order to achieve better images with SEM due to its 

excellent conductivity. 

 

Figure 34. SEM and TEM images of aniline oligomers and PANI nanotubes grown on gold substrate. (a) SEM 

image of flake-like aniline oligomers formed in Step A. (b) SEM image of PANI nanotubes with a diameter of 300 

nm formed after Step B. (c) TEM image of stripped-off PANI nanotube with inner diameter of 200 nm. 

 

Figure 34 shows the characterization results after each reaction. After 1 hour of Step A 

reaction (figure 34a), flake-like oligomers were first formed on the gold substrate. The grown 
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oligomers are non-conducting, which was confirmed by the obvious surface charging during 

SEM. After another 4 hours of Step B reaction (figure 34b), clear high-density of cylinder-

shaped nanostructures with an average diameter of 300 nm can be found on the substrate. The 

grown structures show extremely high surface roughness which is attributed to the nanogranular 

PANI structure formed in the late Step B reaction. In addition, hollow structures can also be 

observed on the end of some cylinder nanostructures. Further TEM image (figure 34c) verified 

the hollow structure with an inner diameter of 200 nm which indicates their nanotubular nature. 

This result confirms the successful forming of PANI nanotubes. Notably, Step B itself has been 

well-known and repeatedly demonstrated135,147 for large molecular weight PANI film synthesis. 

However, nanotubes were obtained after Step B instead of bare film with the existence of the 

oligomers formed in nonacidic media. This also proves that the oligomers formed in Step A 

reaction act as templates for guiding the growth of PANI nanotubes. 

PANI nanotube formed in organic acid (acetic acid) was also conducted as a comparison. 

The synthesis condition is the same as Step B reaction, and the HClO4 was replaced by the same 

concentration of acetic acid. The result SEM images of nanotubes synthesized in acetic acid are 

shown in figure 35a & b, and figure 35c & d show the nanotubes synthesized using our two steps 

method in perchloric acid. Two obvious differences can be found. First, strong acid formed 

nanotubes have extremely rough surface on the tubes, while in organic acid, nanotubes are much 

smoother. This feature makes strong acid formed nanotubes much useful in applications. 

Secondly, the size of nanotubes is more uniform in strong acid than in organic acid. 
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Figure 35. SEM images of PANI nanotubes synthesized in acetic acid (a & b) and perchloric acid (c & d). 
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5.3.2 Investigation of Synthesis Time in Step A 

 

Figure 36. Optical images of synthesis condition optimization results. (a) 10 min in Step A. Small flake-like 

oligomers were formed. (b) 30 min in Step A. The density and size of oligomers were getting larger. Some 

oligomers started to evolve into clusters. (c) 1 hour in Step A. The density and size of oligomers kept increasing and 

reached to maximum. (d) 4 hours in Step A. All oligomers existed in the form of clusters. (e) 10 min in Step A and 4 
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hours in Step B. No nanotubes sighted. (f) 30 min in Step A and 4 hours in Step B. Some nanotube was found. (g) 1 

hour in Step A and 4 hours in Step B. High density of nanotubes were observed (h) 4 hours in Step A and 4 hours in 

Step B. No nanotube was found. 

 

It is essential to study the condition of PANI nanotube synthesis in order to gain better 

understanding of the chemical reactions as well as to optimize the synthesis process. In a typical 

STFM reaction, one key factor for triggering the growth of PANI nanotubes is the drop of pH 

due to the byproduct H2SO4 generated throughout the reaction. The reaction can thus transit 

naturally from “template forming stage” to “PANI synthesis stage” as the time goes on. However, 

our method deliberately separates those two stages which requires optimizing the synthesis time 

in Step A reaction while maintaining the same Step B reaction time. To investigate this, a set of 

experiments were conducted with different synthesis times in Step A reaction (10 min, 30 min, 1 

hour, 4 hours) followed by the same synthesis time in Step B reaction (4 hours). Gold was used 

as the substrate and images were taken with an optical microscope for all samples after each 

reaction. As shown in figure 36a-d, aniline oligomers were formed on the gold surface during 

Step A. With the increased reaction time, both the density and the average size of the oligomers 

became larger and larger due to the increased oligomer affinity (from figure 36a to c). In addition, 

some of the oligomers evolved from a two-dimensional flake-like structure into a three-

dimensional cluster. However, the oligomers were all turned into the cluster structures after 4 

hours of Step A process as shown in figure 36d. The obvious decrease in oligomer density 

compared with figure 36c may suggest that a long time in Step A reaction could alter the surface 

affinity to the oligomer from hydrophilicity to hydrophobicity which eventually caused some of 

them to detach from the substrate. No change can be observed when the reaction time further 

increased which is different from a typical STFM. This is because of the utilization of the diluted 
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concentration of both aniline and APS which cannot produce sufficient of H2SO4 to trigger the 

PANI synthesis. Figure 36e-h shows the results of the four samples after completing another 4 

hours of Step B. In figure 36e, no nanotube can be sighted on the sample with 10 min of Step A 

and 4 hours of Step B reactions. Nanotubes began to form when 30 min of Step A was employed 

(figure 36e), and the largest density of nanotubes was achieved after Step B reaction when 1 hour 

of Step A was used (figure 36f). It is clear that the nanotubes generated from the oligomers and 

extended out in every direction. This result agrees with the growing model developed with the 

STFM.138 Surprisingly, however, no nanotube was observed on the sample with 4 hours in Step 

A (figure 36h). Detailed SEM images of this sample after each reaction were shown in figure 37. 

Instead of guiding the growth of PANI nanotubes, the oligomers lost their functions as soft 

templates, and were covered uniformly by large molecular weight PANI formed in Step B 

reaction. One possible hypothesis is that the three-dimensional clusters of oligomers formed in 

nonacidic media for a decent amount of time cannot act as templates for PANI nanotubes to 

grow on. Therefore, based on these results, we can conclude that the forming of the oligomer 

templates requires optimal time in Step A reaction, which, in our case, is around 1 hour. 
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Figure 37. SEM images of the sample with 4 hours of Step A before and after Step B. (a) Oligomer clusters before 

Step B. (b) PANI film covered oligomer clusters after Step B. 

5.3.3 Importance of Protonated Aniline 

In the previous part, a reaction time of 1 hour was found to be optimal for Step A reaction before 

switching to low pH Step B reaction. However, pH can be tuned easily by simply adding acid in 

Step A reaction. Therefore, the Step B reaction seems to be redundant if the pH dropping is the 
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only reason that causes the forming of PANI. To investigate this, another set of experiment was 

conducted. Instead of two reactions, only Step A was used this time, and 6 mL was added 

directly into the Step A reaction after 1 hour (oligomers that could template the growth of PANI 

nanotubes were formed). After another 4 hours, the reaction was stopped and the sample was 

cleaned and dried. Figure 38 shows the SEM image of this sample. It is obvious that no 

nanotubes can be found. The most possible explanation for this result is that the aniline 

concentration was extremely low after 1 hour of Step A, which results in little aniline being 

protonated by the acid. This result not only confirms that the protonated aniline is the key for 

reaction mechanism transition in STFM, but also indicates the significance of the Step B reaction 

in forming the nanotubes. 

 

Figure 38. SEM image of the sample after 4 hours of Step A reaction with pH tuned after 1 hour. 
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5.3.4 Synthesis of the PANI Film/Nanotubes Hybrid Nanostructures on Substrates 

 

Figure 39. Optical images of PANI film/nanotubes hybrid on different of substrates. (a) PET after Step A, most 

oligomers grew vertically to the surface. (b) SiO2 after Step A, half of oligomers were vertical while the other half 

were parallel to the surface. (c) HF-dipped SiO2 after Step A, all oligomers were parallel to the surface. (d) PET 

after Step A and Step B, nanotubes were found. (e) SiO2 after Step A and Step B, less density of nanotubes were 

found compared with it on PET. (f) HF-dipped after Step A and Step B, no nanotube was found. 

 

With the aim of developing PANI film/nanotubes hybrid structure for FET device applications, 

commonly used substrates must be tested. However, it is noteworthy that different surface water 
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affinities may strongly affect the nucleation that occurs on the interface, thus determining the 

formation of the nanotubes. Therefore, in this work, three commonly used substrates with 

different water affinities were used. They are PET (hydrophobic), SiO2 (hydrophilic) and HF-

dipped SiO2 (extremely hydrophilic due to the hydroxyl groups.148 

A combination of one hour Step A and four hours Step B reactions were used for hybrid 

synthesis. In order to have accurate optical images, transparent PET film was fixed on the 

holding wafer with the edges sealed so that no reaction would occur on the backside of the film, 

while the other two substrates were prepared as described in the synthesis method part. All three 

substrates were characterized by optical microscopy after each reaction. Figure 39a-c shows the 

substrates after only Step A reaction. Flake-like oligomers were observed on all three samples. 

The densities of the oligomers were similar which were much lower compared with it on gold 

substrate, and almost no three-dimensional oligomer was found. However, the oligomers 

appeared differently according to the substrates: on PET, all of the oligomers were “standing” 

vertically to the surface; on SiO2, half of the oligomers were parallel to the surface with one side 

facing up; on HF-dipped SiO2, all oligomers were parallel to the surface. Figure 39d-f shows the 

three substrates after Step B reaction in addition to Step A. We observed needle-like nanotubes 

on both PET and SiO2 substrates that clearly came from the oligomers. On the contrary, no 

nanotube was observed on HF-dipped SiO2 substrate. Instead, a thin PANI film grew directly on 

top of the oligomers which generated a distinct color difference between figure 39c and figure 

39f. Similar PANI film covered oligomers can also be seen in figure 39e. These results likely 

suggest that the parallel-to-the-surface-grown oligomers that are attributed to the more 

hydrophilic substrate surface cannot act as templates for guiding the PANI nanotubes, while the 

vertically formed ones can. More future chemical studies need to be done to confirm this 
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hypothesis. Notably, the relatively low density of oligomers on PET and SiO2 substrates created 

larger space for PANI film to grow on compared with gold substrate, which can also be seen 

between figure 39d and figure 39e as color difference. This indicates the successful formation of 

the PANI film/nanotubes hybrid. 

5.3.5 PANI Film/Nanotubes Hybrid FET 

In order to further verify the structure as well as the functionality of the PANI film/nanotubes 

hybrid, an FET device based upon the hybrid was developed on SiO2 substrate using the 

combination of one hour Step A and four hours Step B reactions. Detailed description of device 

fabrication processes can be found in Chapter 2. An ordinary PANI film based FET device was 

also made and the film was synthesized together with the hybrid in Step B reaction. Figure 40a, b 

shows the optical microscope images of both hybrid (figure 40a) and bare film (figure 40b) FETs. 

Clearly, despite being covered uniformly with nanotubes, the hybrid presents the same color as 

the film, which not only confirms the existence of PANI film in the hybrid structure, but also 

suggests that they have similar thickness and oxidation state. Further surface topological results 

measured by atomic force microscope (AFM) (Solver Next AFM) on both FETs are shown in 

figure 40c-e. The nanotubes that grew along the surface have an average diameter around 300 ~ 

400 nm. Due to some overlapping, the highest point detected is 627 nm from the film surface. 

This value is within the nanometer scale, which implies that the hybrid as a whole is still 

technically a two-dimensional thin film structure. In addition, high magnification topological 

results of the film area on hybrid (figure 40e) and bare film (figure 40d) reveal that they have the 

same nanogranular surface. Therefore, we confirmed that, structure-wise, the hybrid in this study 

is a two-dimensional thin film structure that consists of ordinary PANI film and PANI nanotubes. 
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Figure 40. Optical and AFM images of PANI film/nanotubes hybrid FET and bare film FET. (a) Hybrid FET. (b) 

Bare film FET. (c) Surface topography of the hybrid. (d) High magnification of bare film surface measured by AFM. 

(e) High magnification of the dark area in (c). 

5.3.6 Quantitatively Evaluating SA/V Ratio of the Hybrid Nanostructure 

Surface-to-volume (SA/V) ratio is one of the most useful characteristics that can 

determine the functionality of micro or nano structures. With a fixed volume, the higher the 

SA/V is, the larger surface area a structure can offer. A larger surface area allows more sites for 

chemical or biological reactions. In this work, the proposed PANI film/nanotubes hybrid 
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structure is believed to possess larger surface area and a higher SA/V ratio than PANI bare film. 

The detailed calculation is provided below. 

 

Figure 41. (a) TEM picture of a PANI nanotube. (b) Simplified structure of nanotubes and thin film. (c) Cross 

section view of the hybrid structure. 

 

To calculate how much the surface area and SA/V ratio are increased, a simplified 

mathematic model needs to be created given with several presumptions: first, assume the 

nanotubes are uniformly constructed and are the same size, and that the distribution of the 

nanotubes on the hybrid structure is homogeneous; second, ignore the overlapping of the 

nanotubes and the surface roughness of PANI on both film and nanotubes; third, ignore the side 
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face area when calculating the total surface area. Figure 41a shows a TEM image of a nanotube. 

The inner and outer radiuses of the tube were measured around 140 nm and 200 nm, respectively. 

Figure 41b illustrates the ideal structures of both nanotube and bare film. r1 and r2 represent the 

outer and inner radiuses of the nanotube and l is the average length of the nanotubes; a and b 

represent the length and width of the film, with t as the thickness of the film, which is measured 

as 100 nm. With these information, we can roughly calculate the SA/V of a nanotube and a piece 

of film: 

Nanotube:  

Film:   

The results show that the SA/V ratio of a nanotube is approximately twice the SA/V ratio 

of a thin film. It is noteworthy that the real SA/V ratios of nanotubes and film should be much 

higher than these simplified calculation values. This is due to the natural rough surface of PANI. 

This rough surface was ignored since it contributes similarly to the SA/V ratios for both bare 

film and nanotubes. 

The next step of the calculation is to estimate the density of the nanotubes on PANI film 

surfaces. By analyzing the AFM result from figure 40c, it was observed that the surface area is 

increased by 25.4% (25.4 μm2) compared with a same size (10 μm × 10 μm) bare film. However, 

the surface area measured by AFM is not accurate enough due to the undercut area created by the 

nanotubes. Instead, the black line on the cross section view of the hybrid structure (figure 41c) is 

the actual surface measured by AFM. Therefore, we can estimate the actual increase of the 

surface area caused by nanotubes and the amount of the nanotubes within a 10 μm × 10 μm size 
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window. Assume n is the total numbers of the nanotubes and the average length of these 

nanotubes is l. We have: 

 

 

nl here represents the amount (total length) the nanotubes. The actual surface area 

increase is then: 

 

Thus, the surface area increase from bare film to hybrid structure is about 50.7%. The 

total volume of the hybrid structure in figure 40c is: 

 

The S/A ratio of the hybrid structure is: 

 

Therefore, the SA/V ratio increase from bare film to hybrid structure is about 20%. 
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5.3.7 FET Characterizations 

 

Figure 42. FET characterization of the hybrid FET (a) and bare film FET (b). The Id-Vg characteristic was obtained 

by sweeping Vg from 0 to -4 V while keeping Vd staying at different potential level from 0 to 0.4 V. 

 

Electrical characterization of both FETs was performed using a typical electrolyte-gate 

configuration.149,150 As shown in figure 40a, b, the rectangular patterns have a size of 50 μm by 
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100 μm with a thickness around 100 nm. They are located across the drain and source electrodes 

with a 10 μm gap in between, while the gate electrode is located near the source. Phosphate-

buffered saline (PBS) solution (0.1X) was dropped onto the FETs and the drain current (Id) 

versus gate voltage (Vg) characteristics as the function of different drain voltages (Vd) were 

obtained by a probe station (Signatone s-1160) shown in figure 42. During the measurement, Vg 

was constantly decreased from 0 to -4 V while Vd was fixed at different values ranging from 0 to 

0.4 V. Notably, the two FETs have nearly identical characteristics: Ids increased upon decreasing 

of Vg due to PANI’s p-type nature; The threshold voltage was around -1.5 V after which Ids 

started to rise exponentially; as Vg became more negative than -3.5 V, Ids became linear. These 

results indicate that the hybrid behaves the same as PANI film formed in the same conditions in 

terms of surface charge transportation. 

One promising application for PANI film/nanotubes hybrid is in the development of FET 

biosensors. A desired design of an FET biosensor requires a semiconductor FET transducer with 

the ability of being chemically functionalized with bio-receptors such as antibodies and enzymes. 

When the bio-receptors catch the targets, the charged target molecules start to gate the transducer, 

thus causing measurable current changes. PANI, as a p-type semiconductor, is capable of being 

directly functionalized with the presence of crosslinkers such as glutaraldehyde.151 Well 

controlled two-dimensional (2-D) PANI layer has been successfully demonstrated in biosensor 

applications. The high sensitivity is attributed to PANI’s good p-type semiconducting property 

and high SA/V ratio. As an improvement, the hybrid structure developed in this work possesses 

approximately 50.7% increase of the surface area and 20% larger SA/V ratio given by the 

embedded nanotubes, which offers more surface sites for bio-receptors/targets complexes. 

Undoubtedly, with such superiority, PANI film/nanotubes hybrid can be the next generation 
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conductive polymer based two-dimensional thin film towards the design of facile and low cost 

point-of-care biosensors. 

5.4 CONCLUSIONS 

In conclusion, we developed a facile method for PANI film/nanotubes hybrid synthesis on 

substrate by splitting the STFM into two reactions: an oligomer templates synthesis reaction 

(Step A) and a PANI synthesis reaction (Step B). This template free method requires no organic 

participant other than aniline as well as less concentration of the reagents. The successful 

formation of the PANI nanotubes was confirmed by both SEM and TEM, and oligomers that 

formed in Step A were proved to serve as templates. The reaction time in Step A reaction was 

then optimized and PANI film/nanotubes hybrid was successfully synthesized on commonly 

used substrates such as SiO2 and PET. By analyzing the microscope images, a hypothesis was 

proposed: the fully evolved three-dimensional oligomer clusters generated in nonacidic media 

and parallel-grown flake-like oligomers due to the hydrophilic substrate cannot act as templates 

for PANI nanotubes to grow on, which requires further in-depth study. Finally, an FET device 

was developed based on PANI film/nanotubes hybrid. FET characterization and AFM scanning 

not only verified the structure of the hybrid, but also revealed that the hybrid exhibits excellent 

p-type semiconductor property similar to the ordinary PANI film while at the same time 

possesses 50.7% larger surface area. This superiority promises the hybrid a great potential in 

future sensor researches and makes it an ideal substitute of PANI film in thin film related 

applications. 
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6.0  SUMMARY 

In summary, the achievements of this work are presented as follow:  

1. Microfluidics integrated 2-D PANI layers based biosensors were developed on SiO2 

substrates. The chemical synthesis of PANI was optimized to achieve suitable 

conductivity and well-controlled rough surface. The developed biosensors have good 

specificity and a lowest detection limit of 100 pg/mL with a response time less than 1 min. 

2. Au electrodes and PANI layers were successfully patterned and optimized on PET 

substrates using a low temperature bilayer lift-off method combined with a sandwich-like 

baking process to overcome the PET’s low thermal stability. With the help of this method, 

complex microscale structures can be easily built on PET or other flexible substrate using 

conventional CMOS compatible microfabrication techniques. 

3. A facile method of high temperature imidizing polyamic acid in N2 environment was 

demonstrated to achieve polyimide film with desired thickness. The polyimide film not 

only features good mechanical strength and flexibility, but also shows the capability to 

stay on a wafer during device fabrication processes due to the plasma pre-treatment, 

which vastly lowers the fabrication difficulty and improves yields. A debonding process 

can be easily done in water, and the wafer can be reused. 

4. Microfluidics integrated 2-D PANI layers based biosensors were developed on PET and 

polyimide substrates. Both the PET and PI devices exhibit excellent sensitivity in the 
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detections of BNP biomarkers with a detection limit as low as 100 pg/mL. The 

conductivity changes of PANI layers upon stretching (substrate bending) was studied, 

which is not significant compared with the changes during detections. Device 

reproducibility was also investigated using 15 different devices. 

5. A facile method of using two steps of reactions to synthesize 2-D PANI film/nanotubes 

hybrid structures were developed. The hybrid structures features extremely large SA/V 

ratio due to the embedded nanotubes, and similar FET characteristics to PANI bare film, 

which make the hybrid structures ideal substitutes for PANI bare film in FET biosensor 

designs. 

6. The role of aniline oligomers as templates for guiding the growth of PANI nanotubes was 

studied. A hypothesis was proposed: the fully evolved three-dimensional oligomer 

clusters generated in nonacidic media and parallel-grown flake-like oligomers due to the 

hydrophilic substrate cannot act as templates for PANI nanotubes to grow on. Further in-

depth study is needed to gain fully understanding. 
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7.0  FUTURE WORK 

In this thesis, two major approaches to improve the functions of PANI based FET biosensors 

have been presented: one is to upgrade the substrate from conventional nonflexible SiO2 to 

flexible substrates such as PET and PI; the other is to develop PANI film/nanotubes hybrid 

nanostructures to replace PANI bare films. Though the flexible biosensors show excellent 

sensing performances, more future works still need to be done to realize the implantation of 

PANI hybrid nanostructures in biosensor designs. 

 

Figure 43. Preliminary design of microfluidic integrated PANI/QLED biosensor. 
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In addition to sensing materials and substrates, data acquiring is another part of the 

biosensor that we can improve. Current electrical transducers (bio-signals transduced into 

electrical signals) based biosensors usually require sophisticated instruments such as potentiostat 

or probstation to assure accuracy of the detections. This limits their applications in daily 

monitoring. One possible improvement is to apply current or voltage control LEDs to further 

transduce electrical signals into directly visible light emissions. Quantum dot LEDs (QLEDs), 

due to their low power consumption, low-cost manufacture, ultrathin and transparent features, 

can be an excellent candidate for this project. Figure 7.1 illustrates the preliminary design. 

During detection, the conductivity of PANI film will increase upon antibodies-antigens 

interactions. With proper designs, QLEDs can show on/off responses to abnormal/normal 

samples, which is much easier. 
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