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An attributed graph is a powerful tool for modeling a variety of information networks. It is

not only able to represent relationships between objects easily, but it also allows every vertex

and edge to have its attributes. Hence, a lot of data, such as the web, sensor networks, bi-

ological networks, economic graphs, and social networks, are modeled as attributed graphs.

Due to the popularity of attributed graphs, the study of attributed graphs has caught at-

tentions of researchers. For example, there are studies of attributed graph OLAP, query

engine, clustering, summary, constrained pattern matching query, and graph visualization,

etc. However, to the best of our knowledge, the studies of topological and attribute relation-

ships between vertices on attributed graphs have not drawn much attentions of researchers.

Given the high expressive power and popularity of attributed graph, in this thesis, we define

and study the processing of three new attributed graph queries, which would help users to

understand the topological and attribute relationships between entities in attributed graphs.

For example, a reachability query on a social network can tell whether two persons can be

connected given certain attribute constraints; a reachability query on a biological network

can tell whether a compound can be transformed to another compound under given chem-

ical reaction conditions; a How-to-Reach query can tell why the answers of the above two

reachability query are negative; a visualizable path summary query can offer an overall pic-

ture of topological and attribute relationship between any two vertices in attributed graphs.

Except for the proposed query types in this thesis, we believe that there is still penalty of

meaningful attributed graph query types that have not been proposed and studied by the

database and data mining community since an attributed graph is a very rich source of infor-
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mation. Through this thesis, we hope to draw people’s attentions on attributed graph query

processing so that more hidden information contained in attributed graphs can be queried

and discovered.
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1.0 INTRODUCTION

1.1 MOTIVATION

Graph is a popular data structure that can efficiently represent relationships between objects.

For example, in social networks, a user is represented by a vertex and social relationship such

as friendship between two users is represented by an edge. However, unlike a tuple in a rela-

tional table which has attributes, a vertex or an edge does not contain information about the

object or relationship that they are representing. Fortunately, the emergence of attributed

graph [1] remedies this drawback. In an attributed graph, every vertex and edge are associ-

ated with a multi-dimensional attribute. The existence of attribute on every vertex and edge

makes the graph capable of efficiently representing the relationship between objects as well

as containing information of objects and relationships. That makes the expressive power of

attributed graph to be very attractive for modeling a variety of information networks [2, 1],

such as the web, sensor networks, biological networks, economic graphs, and social networks.

Due to the popularity of attributed graphs, the study of attributed graphs has caught

attentions of researchers. For example, there are studies of attributed graph OLAP [1],

attributed graph query engine [2], attributed graph clustering [3, 4], attributed graph sum-

mary [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] , constrained pattern matching query on attributed

graph [15, 16], and graph visualization [17, 18]. However, to the best of our knowledge, the

studies of topological and attribute relationships between vertices on attributed graphs have

not drawn much attentions of researchers.

Answers of attributed graph path queries offer insight for understanding relationships

between vertices since attributed graphs are rich in topological and attribute relationship

information. For example, a social network can tell whether two persons can be connected
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given certain attribute constraints; a biological network can tell whether a compound can

be transformed to another compound under given chemical reaction conditions; an economic

graph can tell whether an employee can be connected to an employee in rival company given

certain constraint in employment history. Furthermore, by understanding the structure and

attribute information between 2 entities on the attributed graph, it is also possible to tell

why there is no such connection. Given that the relationships between entities on attributed

graphs can be so meaningful, we believe that the studies of attributed graph path query

would be an important piece in attributed graph research and building of attributed graph

database systems.

1.2 MAIN CONTRIBUTIONS

In this thesis, we defined and proposed algorithms for answering three types of new at-

tributed graph queries - attributed graph reachability query, the How-to-Reach query, and

the visualizable path summary query, which offer insights for users to understand topological

and attribute relationships between vertices.

C1: Efficient Reachability Processing on Attributed Graph [19] The first contribu-

tion of this thesis is an approach for effectively processing reachability query on attributed

graphs.

• We introduced and defined the reachability query on attributed graph problem. Based

on this definition, we developed our approach in a 2-level storage framework, which stores

graph topology in primary storage (i.e. faster and smaller capacity, e.g. DRAM, PCM,

local storage in distributed system) and attributes in the secondary storage (i.e. slower

but larger capacity, e.g. magnetic disk, SSD, remote storage in distributed system).

• We proposed a new constraint verification approach which takes the advantage of a

’perfect’ hash function [20, 21] for compressing a multi-dimensional attribute into a

unique hash value. Such a compressed hash value always only requires a constant pri-

mary storage space (no matter of attribute dimension and domain size) and is suffi-

cient to represent a multi-dimensional attribute such that prevalent graph traversal al-
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gorithms (BFS,DFS,A∗ with Landmark [22]) is not required to access a distinct multi-

dimensional attribute from the secondary storage more than once and ultimately, the

primary storage space and expected number of secondary storage access can be theoret-

ically bounded. Furthermore, the new approach allows constant CPU time and number

of secondary storage access index maintenance, which would not impose a heavy burden

on the overall performance of our approach for dynamic attributed graphs. This new

constraint verification approach (hash index) can be used not only for our problem, but

it can also be used by any graph traversal approach that involves attribute constraint

verification.

• We proved theorems that can ensure the correctness of our new approach and we analyze

the expected number of secondary storage access. We conclude that the expected number

of secondary storage access for point attribute constraint query(Definition 15) is O(A)

and for set attribute constraint query (Definition 16) is O(Adiff ×A), where A is the size

of a multi-dimensional attribute and Adiff is the number of different multi-dimensional

attributes visited during graph traversal.

• We developed a heuristic search technique that takes into account graph structure as

well as attribute distribution during graph traversal so as to reduce Adiff . The idea of

the heuristic search is to offer a direct passage that goes across graph regions that are

likely to satisfy attribute constraints from source to destination. Also, the correctness of

the heuristic search is theoretically proven. We emphasize that prevalent graph traversal

techniques (e.g. BFS,DFS,A∗ with Landmark [22]) can all be used for our heuristic

search techniques. Furthermore, the techniques that we proposed can be used for both

directed and undirected graphs.

• We proposed two optimization techniques for further improving the efficiency of our new

constraint verification approach. The first one is the batch attribute retrieval strategy

which wisely retrieves verification material in batches. As a result, the batch attribute

retrieval strategy can guarantee another worst case number of secondary storage access.

The other one is a guidance for attribute selection strategy when extra primary storage

is available for storing more hash values so that valuable primary storage space can be

better utilized.
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C2: How-to-Reach Query on Attributed Graph [23] The second contribution of this

thesis is an approach for efficiently finding high quality sub-optimal for answering How-to-

Reach query on attributed graphs.

• We introduced and defined a new How-to-Reach query which can be implemented in

attributed graph database systems for improving databases’ usability. Since there may

exist many attribute constraints that would allow source and destination to be connected,

we further proposed a metric that would reflect the importance of attribute values for

computing answer quality.

• We proposed a simple trick that 1)does not require heavy modification of existing im-

plementations in graph database systems and 2)is proven to be able to allow existing

shortest path algorithms to return optimal answers for How-to-Reach queries.

• Although after applying our trick, Dijkstra’s algorithm can return optimal answer for

How-to-Reach queries, we observed that 1)the computation time of Dijkstra’s algorithm

is unacceptable for inpatient users (i.e. ≈50sec) and 2)the hop distance of the optimal s−t

path tends to be meaningless (i.e. ≈1500 hops). Hence, to use such query in big graphs,

we proposed the station index, which is a time and space efficient non-traversal based

index that returns high-quality approximate answers with reasonable hop distances.

C3: Visualizable Path Summary on Attributed Graph [24] The third contribution of

this thesis is an approach for effectively computing visualizable path summary on attributed

graphs.

• We introduced and defined the visualizable path summary query on attributed graph

problem. We defined attributed path summary to be groups of vertices that contain

users’ intuition as well as satisfy some path properties. The users’ intuition is expressed

as hints for computing the path summary. Users can offer whatever attribute values that

they consider as the hint. These summaries offer insight to users about the attribute

values and connection between the given source and destination vertices.

• We proposed an efficient and effective approach for finding attributed path summary.

Our proposed approach consist of three phrases. The first phrase efficiently finds all key

vertices that have attribute values belonging to the hint offered by the user. Then, based

4



on those key vertices, a novel stitching algorithm is proposed to connect the source, the

destination, and key vertices together to form a relatively small key vertex graph. After

that, high-quality candidate paths between the source and the destination are found on

that small key vertex graph efficiently. Finally, candidate paths are inflated to vertex

groups by greedily including adjacent vertices.

1.3 RESEARCH STATEMENT

By defining basic attributed graph queries and developing techniques for efficiently and effec-

tively answering basic attributed graph queries, meaningful applications that are related to

topological and attribute relationship between vertices on attributed graph can be developed

and answered effectively and efficiently.

1.4 THESIS ORGANIZATION

The rest of this thesis is organized as follow: Chapter 2 introduces background and definitions

for this thesis. Chapter 3 offers a literature review of all prior works that are related to this

thesis. Chapter 4 presents all the details of our approach for efficiently answering attributed

graph reachability queries. Chapter 5 presents all the details of our approach for efficiently

and effectively answering attributed graph How-to-Reach queries. Chapter 6 presents all the

details of our approach for effectively computing visualizable path summary for attributed

graphs. Finally, Chapter 7 concludes this thesis.
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2.0 BACKGROUND AND DEFINITIONS

In this chapter, we first define necessary notations and definitions used throughout the

remainder of this thesis. After that, we introduce the primary-secondary hybrid storage

framework utilized in this thesis.

2.1 DEFINITION OF ATTRIBUTED GRAPH AND ATTRIBUTE

CONSTRAINT

Definition 1. [Attributed Graph] An attributed graph [1] G, is an undirected graph de-

noted as G = (V,E,Av, Ae), where V is a set of vertices, E ⊆ V × V is a set of edges,

and Av = (Av1, Av2, ..., Avdv) is a set of dv vertex-specific attributes, i.e. ∀v ∈ V , there

is a multidimensional tuple Av(v) denoted as Av(v) = (Av1(v), Av2(v), ..., Avdv(v)), and

Ae = (Ae1, Ae2, ..., Aede) is a set of de edge-specific attributes, i.e. ∀e ∈ E, there is a multi-

dimensional tuple Ae(e) denoted as Ae(e) = (Ae1(e), Ae2(e), ..., Aede(e)).

Figure 2.1 is an example of attributed graph. It has a topology (V,E) and two attribute

tables to store vertex attributes (Av, dv = 3) and edge attributes (Ae, de = 2). A super-graph,

which will be introduced in Chapter 4.5.1, is also shown in Figure 2.1.

Definition 2. [Vertex Attribute Value] Avi(v) is the value of the ith attribute of vertex

v and is in the domain Dvi of attribute Avi.

Avi(v) ∈ Dvi where Dvi is the domain of Avi
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Definition 3. [Edge Attribute Value] Aei(e) is the value of the ith attribute of edge e

and is in the domain Dei of attribute Aei.

Aei(e) ∈ Dei where Dei is the domain of Aei

For example, Av country(v2)=CA,Ae type((s, v2))=friend.

Definition 4. [Vertex Attribute Value Set] Svi is a set of attribute value of Avi.

Svi ⊆ Dvi

Definition 5. [Edge Attribute Value Set] Sei is a set of attribute value of Aei.

Sei ⊆ Dei

For example, in Figure 2.1, Dv country = {CA, CB, CC , CD} and Sv country can be any

possible subset of Dv country e.g. Sv country = {CA, CB}.

Definition 6. [Vertex Attribute Constraint] Cv is a set of vertex attribute value set Svi.

Cv = {Sv1, Sv2, ..., Svdv}

Definition 7. [Edge Attribute Constraint] Ce is a set of edge attribute value set Sei.

Ce = {Se1, Se2, ..., Sede}

For example, a vertex attribute constraint can be Cv = {{CA}, {Eng., IT, F in.}, {R1}}.
Definition 8. [Vertex Attribute Constraint Satisfy] Vertices in path p Av(p) satisfies
vertex attribute constraint Cv if and only if for all vertex v in p exclude s and t, every
attribute Avi(v) of v belongs to Svi, where Svi ∈ Cv.

Av(p) sat. Cv iff ∀v ∈ p \ {s, t},∀i = 1...dv, Avi(v) ∈ Svi,

where Svi ∈ Cv

Definition 9. [Edge Attribute Constraint Satisfy] Edges in path p Ae(p) satisfies edge
attribute constraint Ce if and only if for all edge e in path p, every attribute Aei(e) of e
belongs to Sei, where Sei ∈ Ce.

Ae(p) sat. Ce iff ∀e ∈ p,∀i = 1...de, Aei(e) ∈ Sei,

where Sei ∈ Ce

For example, in Figure 2.1, vertex s, v2, v3, v4, v5, v12, t satisfy the vertex attribute con-

straint Cv = {{CA}, {Eng., IT, F in.}, {R1}}.
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2.2 PRIMARY-SECONDARY HYBRID STORAGE FRAMEWORK

A pure in-memory solution does not scale well for graph query with attribute constraints.

That is because attributed graphs consist of topology as well as attributes for every vertex

and edge. For a large graph with 1 billion vertices, 3 billion edges, and 10 attributes for each

vertex and edge, the size of all attributes is around 223 gigabytes (4 bytes per integer), which

usually does not fit in primary storage (e.g. memory). Hence, it is unrealistic to assume that

both topology and attributes of a big attributed graph can be always fit in primary storage.

In this thesis, a primary-secondary hybrid framework [2] is adopted for efficient attributed

graph query processing. Figure 2.2 is the framework. In this framework, the entire graph

topology is stored in the primary storage (e.g. memory or local storage) while vertex and

edge attributes are stored in the secondary storage (e.g. disk or remote storage). This

framework can also be viewed as a two-level storage hierarchy. The first level has faster

read/write speed but smaller storage capacity; the second level has slower read/write speed

but larger storage capacity.

2.3 QUERY PROCESSING SYSTEM FRAMEWORK

Figure 2.3 shows a potential query processing system framework that includes our contri-

butions (red components) in this thesis. The system contains traversal based index and

non-traversal based index for answering attributed graph queries. Both indexing approach

consist of the query handler component and the index component. The query handler com-

ponent controls how the query is answered and how the index is used; the index component

offers services and information for the query handler component to compute the query an-

swer. For traversal based indexing approach, there is the hash index component. This

component offers indexing information for reducing number of secondary sotrage access of

attributed graph traversal.
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3.0 LITERATURE REVIEW

In this Chapter, we talk about existing literature and techniques that are related to this

thesis.

3.1 ATTRIBUTED GRAPH RESEARCH

3.1.1 Attributed Graph Query Engine

Sakr et al. [2] proposed a query engine that can support a combination of different types

of queries over large attributed graphs. Their contributions include proposing an SPARQL-

like language, called G − SPARQL, for querying attributed graphs, presenting an efficient

hybrid memory/disk representation of large attributed graphs, and describing an execution

mechanism for their proposed query language so as to optimize the query performance.

3.1.2 Attributed Graph OLAP

Wang et al. [1] proposed a new graph OLAP system, Pagrol, to provide efficient decision

making query support for large attributed graphs. Their contributions include proposing a

new conceptual graph cube model, Hyper Graph Cube, to support decision making queries

and proposing various Map-reduce optimization techniques to efficiently compute graph cube.
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3.1.3 Attributed Graph Pattern Matching

Tong et al. [16] proposed a framework and a method for efficiently finding best-effort sub-

graphs in an attributed graph with single attribute on each vertex. Roy et al. [15] indexing

technique and query processing algorithm for efficiently processing graph pattern matching

queries on weighted attribute graphs.

3.1.4 Attributed Graph Summarization

Graph summarization has been extensively studied [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], and

various ways of summarizing graphs have been proposed. Grouping-based summarization

methods [5, 6, 6, 7, 8] takes into account both graph structure and attribute distributions

for aggregating vertices into supernode and superedges; compression-based summarization

methods [9, 10, 11] exploit the MDL principle to guide the grouping of vertices or the

discovery of frequent sub-graphs to form a graph summary; influence-based summarization

methods [12] leverage both graph structure and vertex attribute value similarities in the prob-

lem formualtion so as to summarize the influence process in a network; pattern-mining-based

summarization methods [13, 14] identify frequent graph structural patterns for aggreagate

into supernodes so as to reduce the size of the input graph and as a result, improving query

efficiency. These techniques focus on computing summary for the whole graph. On the other

hand, our techniques focus on computing visualizable path summary between two vertices

that users are interested in.

3.1.5 Attributed Graph Clustering

Zhou et al [25] proposed SACluster, which is an attributed graph clustering algorithm based

on both graph structural and attribute similarities through a unified distance measure. Zhou

et al [25] proposed first to partition a large graph associated with attributes into k clusters

so that each cluster contains a densely connected subgraph with homogeneous attribute val-

ues. Then, an effective method is used to automatically learn the degree of contributions

of structural similarity and attribute similarity. Zhou et al [26] further improve the effi-
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ciency and scalability of SACluster [25] by proposing an efficient algorithm IncCluster to

incrementally update the random walk distances given the edge weight increments.

One fundamental difference between summarization and clustering is that former finds

coherent sets of vertices with similar connectivity patterns to the rest of the graphs, while

clustering aims at discovering coherent densely-connected groups of vertices [27]. Similar to

graph summary, graph clustering only computes a summary of the whole graph while our

techniques focus on a summary of paths between two vertices.

3.2 GRAPH QUERY PROCESSING RESEARCH

3.2.1 Reachability Query

Generally, an index is constructed offline so as to speed up online reachability query pro-

cessing. An index is usually a set of labels, which contains reachability information for each

vertex. Reachability query can be answered either by Label-Only approach or Label+Graph

approach [28]. Label-only approach [29, 30, 31, 32, 33] answers reachability query by using

the label of the source and the destination vertex. On the other hand, Label+Graph ap-

proach [34, 35, 36, 37, 38] access the graph when solely using label of source and destination

vertex is not sufficient to answer the reachability query.

The reachability query has been extensively studied in graph, yielding a large number of

algorithms [29, 30, 31, 32, 33, 34, 35, 36, 37, 38], with different query time, index size, and

index construction time. The two extreme approaches are computing full transitive closure

(TC) with O(1) query time and O(|V |2) index space and using DFS/BFS with O(|V |+ |E|)

query time and O(1) index size. For all existing reachability query indexes, the query time

and index size are in between the query time and index size of the two extreme approaches

while the time complexity for index construction depends on the complexity of the index.

A survey that summarizes reachability query indexing can be found in [39]. A table that

summarizes the three main costs (query time, index size, and index construction time) for

the existing works can be found in Table 1 in [28].
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The reachability query with attribute constraints cannot be answered using traditional

reachability query index. Existing works on graph reachability typically construct indexes

which can be used to answer the Yes/No question of reachability, but they do not maintain

any path information or how the source and destination vertex is connected. Although

auxiliary path information can be added, it is unclear what and how information should be

added and maintained since attribute constraints are given during query time.

3.2.2 Reachability Query with Constraint

Zou et al. [3] and Jin et al. [4] studied the edge label constraint reachability (LCR) query.

In their problem settings, every edge in the directed acyclic graph is associated with a single

label, and the two vertices are reachable if there exists a path that satisfies the given edge

label constraint between the two vertices. Different from traditional reachability queries,

LCR query needs to consider the edge labels along the path. In [3], Zou et al. transform

an edge-label directed graph into an augmented direct acyclic graph and propose to use

a partition-based framework which computes local path-label transitive closure for each

partition. In [4], Jin et al. use a spanning tree and some local transitive closures to support

LCR queries.

LCR query is equivalent to reachability query with attribute constraints when there is

only one attribute on every edge which implies that LCR query is a special case of reachability

query with attribute constraint. Hence, solution for LCR query cannot be directly used for

efficiently processing reachability query with attribute constraint. Although it is possible

to map a multi-dimensional attribute to a label, a very larger domain is needed for such

mapping. Even though we assume that a multi-dimensional attribute can be mapped to a

label, approaches in [3, 4] still cannot be directly applied for our problem setting as: 1) in

the problem setting of [6,7], there is only one attribute on edge (no vertex attribute), 2) their

approaches assume everything is in memory, and 3) the time and space complexity are too

high for disk-based index construction.

In [40], Fan et al. defined a reachability query with regular expressions constraint on a

graph with vertex attribute and single edge label. The definition is different from reachability
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with attribute constraint since 1) the definition only constraints attribute of the source and

destination vertex, 2) there is only a label for every edge and 3) the edge label constraint is

not an or-condition (e.g. fa≤2fn in [40] Fig.1).

3.2.3 Shortest Path Query

Table 3.1: Summary of Shortest Path Index Issue

Approach Issue

Label-based [41, 42] cannot precompute 2-hop cover

Tree Decomposition-based [43, 44] cannot precompute shortest paths

Search-based [45, 46] huge space consumption on attr. graphs

3.2.3.1 Labeling-based Exact Methods Distance-aware 2-hop cover indexing

approaches [41, 42] rely on finding a set of vertices C(u) for each vertex u such that for every

pair of vertices, there exists at least 1 vertex w ∈ C(u)∩C(v) on a shortest path between u

and v. However, for our problem, we do not know such w in advance as the penalty/cost is

related to a query parameter - attribute constraint.

3.2.3.2 Tree Decomposition-based Exact Methods Tree decomposition-based meth-

ods [43, 44] require to pre-compute all pair shortest path distance within every tree nodes.

Since C0 is given during query time, we cannot pre-compute such shortest path distances.

Pre-computing all possible paths within a tree node is possible, but it is very impractical.

3.2.3.3 Search-based Exact/Approximate Methods Landmark [45, 46] is a popu-

lar technique that has been widely adopted for computing lower and upper bound distance

between vertices so as to perform pruning and speed up graph traversal. In landmark-based

methods, a set of vertices is chosen as landmarks, and single-source shortest paths are com-

puted from each landmark. Landmark technique can also be used as an approximate method,

which returns the distance estimations between sources and destinations. Without knowing

attribute constraints, multiple paths has to be pre-computed. However, computing multiple
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paths distances between every landmark to all vertices is not a space efficient approach when

attribute information has to be computed and stored. In evaluation section, we compared

the approximate landmark-based method with our approach.

3.3 WHY-NOT QUERY PROCESSING RESEARCH

’Why-Not’ has been widely studied since it was first proposed by Chapman et al [47] in

2009. Existing ’Why-Noy’ approaches can be rougly classified into three categories: (a)

manipulation identification [48, 47], (b) database modification [49, 50, 51, 52], and (c) query

refinement [53, 54, 55, 56]. To the best of our knowledge, we are the first to address why-not

questions on attribute constrained reachability queries.

3.4 GRAPH DATA MANAGEMENT SYSTEM RESEARCH

3.4.1 Semi-structured Data Managment System

Semi-structured data management systems, such as [2, 57], offer query languages such

as SPARQL to query RDF data, and XML query languages to query XML documents.

SPARQL-based systems mainly target on graph pattern matching query [58]. Furthermore,

converting an attributed graph to RDF makes the number of triples to be a few times larger

than the number of vertices and/or edge [59]. XML querying techniques [57] is mainly used

for managing tree-structured data instead of graphs.

3.4.2 Graph Management System

Centralized graph platforms, such as Grace [60] and GraphChi [61], and distributed graph

platforms, such as Pregel [62], Giraph [63], Trinity [64] and PowerGraph [65], mainly focus

on query optimization and system design which is different from the focus of this thesis -

optimization of algorithm complexity and efficiency.
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3.5 ADVANCED GRAPH TRAVERSAL TECHNIQUE

3.5.1 BFS/DFS

BFS and DFS are two well-known graph search techniques. Both of them start from a

source vertex and visit other vertices during graph traversal. However, BFS and DFS do not

consider any attribute information and the location of destination vertex. On the contrary,

our proposed heuristic search is a guided search that takes into account both factors.

3.5.2 A* Search and Landmark Technique

A* algorithm [66] is a well know best-first heuristic search algorithm that has been widely

used for different applications and several extensions have been proposed to improve its

performance [67]. A* algorithm involves an estimation of the cost of the cheapest path from

the current vertex to the destination during graph traversal. For an attributed graph, it

is non-trivial to accurately estimate such cost since there are a lot of possible paths from

the current vertex to the destination. Although the offline construction of landmark in [22]

can be used for estimating such cost, landmark technique does not consider online attribute

constraints. Online attribute constraints can make any path from the current vertex to the

destination vertex change or disappear. As a result, estimated cost from current vertex to

destination vertex is highly affected by online attribute constraints.

3.6 GRAPH VISUALIZATION TECHNIQUE

The size of the graph to view is a key issue in graph visualization [17]. To deal with this,

researchers proposed a lot of techniques in graph drawing [17], such as H-tree layout, radial

view, balloon view, tree-map, spanning tree, cone tree, hyperbolic view, as well as methods

for reducing visual complexity [18], such as clustering, sampling, filtering, partitioning. We

argue that simply applying those graph drawing technique cannot handle big attributed

graphs with million of vertices and edges as these methods are too general. For existing
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visual complexity reduction methods, how to effectively applying them to our problem needs

further investigation.
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4.0 FAST REACHABILITY COMPUTATION

In this Chapter, we study the problem of efficient processing of reachability query on at-

tributed graphs [19].

4.1 MOTIVATION APPLICATION

Attributed graph is widely used for modeling a variety of information networks [2, 1], such as

the web, sensor networks, biological networks, economic graphs, and social networks. Given

the high popularity of attributed graph, the efficient processing of attributed graph query

becomes an important issue for different attributed graph applications. Unfortunately, the

study of efficient query processing on attributed graphs did not catch much attention. To

the best of our knowledge, there is only two literature studying attributed graph pattern

matching query [15, 16]. To contribute to the study of efficient processing of attributed

graph query, in this chapter, we study one of the most fundamental graph query type - the

reachability query with attribute constraint.

In many real applications, both topological structures in addition to attributes of vertices

and edges are important [2].

Social Network: In a social network, each person is represented as a vertex, and two

persons are linked by an edge if they are related. Vertex attributes can be the profile of a

person; Edge attributes can be details of relationships between two persons. A reachability

query on social networks discovers whether person A relates to person B under given path

attribute constraints. For example, for investigation purpose, a police officer can ask whether

there is a path from person A to a leader in a terrorist group such that all persons and
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relationships on the path satisfy the vertex attribute constraint:{country=country A and

religious view=religion X} and edge attribute constraint:{year=2010}.

Economic Graph: In an economic graph [68](e.g. LinkedIn), each user or company

can be represented by a vertex and two related users or companies are connected by an edge.

Vertex attributes can be job profile of a person; edge attributes can be details of relationships

between two users or companies. A recruitment agent can ask whether applicant A relates

to a board member in the company such that all users on the path working in company A

({employer=company A}) and are connected since 2012 ({year=2012}). During commercial

crime investigation, a detective can ask whether user A relates to company B such that all

users on the path worked in company B ({previous employer=company B}).

Metabolic Network: In metabolic networks, each vertex is a compound, and an edge

between two compounds indicates that one compound can be transformed into another one

through a certain chemical reaction. Vertex attributes can be profile of the compound; edge

attributes can be details of a chemical reaction between two compounds. A reachability query

on metabolic networks discovers whether compound A can be transformed to compound B

under given path attribute constraints. For example, a scientist can ask whether compound

A can be transformed to compound B such that all compounds and chemical reactions on

the path satisfy the vertex attribute constraint:{state=solid or liquid} and edge attribute

constraint:{cost-to-trigger-reaction≤100}.

Other than the above applications, reachability query with attribute constraint can also

be applied to other attributed graphs such as chemical reaction networks, gene regulatory

networks, protein-protein interaction networks, signal transition networks, communication

networks, attributed road networks, etc.
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4.2 CHALLENGES AND TECHNICAL CONTRIBUTIONS

4.2.1 Chellenges

The inclusion of attribute constraints in reachability query makes the index design more

complicated than ordinary reachability query. That is mainly because of the following rea-

sons:

Indexing an attributed graph involves not only indexing the graph topology but also

attributes of vertices and edges. Hence, we need an index that takes into account both

graph topology and attributes.

Unlike ordinary reachability query, we do not know the graph structure that satisfies at-

tribute constraints in advance as attribute constraints are given at query time. It is possible

that any subgraph can satisfy the given attribute constraints. Furthermore, Jin et al. [4]

mentioned that since traditional reachability query index does not include attribute infor-

mation, it cannot be easily extended to answer reachability query with edge label constraint,

which is a special case of our problem.

A pure in-memory solution does not scale well for reachability query with attribute

constraints on large attributed graphs. That is because, for a large graph (e.g. Facebook

social network, Linkedin economic graph, Twitter social network) with 1 billion vertices, 3

billion edges, and five attributes for each vertex and edge, the size of all attributes is around

150 gigabytes (assume using eight characters to represent an attribute), which usually does

not fit in memory.

4.2.2 Technical Contributions

Our first contribution is to introduce and define the reachability query on attributed graph

problem. We observe that it is unrealistic to assume that both graph topology and attributes

can be fit in memory for large attributed graphs. Therefore, we adopted the approach in [2]

which store graph topology in the memory and attributes in the disk. Based on this approach,

we propose a memory-disk hybrid approach for efficiently answering reachability query on

attributed graphs. The techniques that we proposed can be used for both directed and
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undirected graphs. In this chapter, we will present these techniques using undirected graphs

as an example.

Our second contribution is to propose a hashing scheme for reducing and bounding

expected I/O. We proved a theorem that can ensure the correctness of our hashing scheme

and we analyzed the expected number of I/O. We conclude that the expected I/O for point

attribute constraint query(Definition 15) is O(A
B

) and for set attribute constraint query

(Definition 16) is O(Adiff × A
B

), where B is the size of a disk block, A is the size of a multi-

dimensional attribute, and Adiff is the number of different multi-dimensional attributes

visited during graph traversal. Besides, this hashing scheme is not limited to reachability

query. It can be adopted by any query that requires attributed graph traversal.

Since the number of I/O is related to Adiff , our third contribution is to propose a heuristic

search technique so as to reduce Adiff . The idea of the heuristic search is to traverse regions

that are likely to pass through and close to the destination.

Finally, we conduct extensive experiments on both real and synthetic datasets. We found

that the hashing scheme and heuristic search technique effectively reduce the number of I/O

as well as in-memory computation time.

4.3 PROBLEM DEFINITION

In this section, we will present the preliminary definitions and the problem statement. Ta-

ble 4.1 shows frequently used symbols in this chapter.

Definition 10. [Attributed Graph] An attributed graph [1] G, is an undirected graph

denoted as G = (V,E,Av, Ae), where V is a set of vertices, E ⊆ V ×V is a set of edges, and

Av = {A(v)} is a set of dv vertex-specific attributes, i.e. ∀v ∈ V , there is a multidimensional

tuple A(v) denoted as A(v) = (A1(v), A2(v), ..., Adv(v)), and Ae = {A(e)} is a set of de

edge-specific attributes, i.e. ∀e ∈ E, there is a multidimensional tuple A(e) denoted as

A(e) = (A1(e), A2(e), ..., Ade(e)).

Figure 4.1 is an example of an attributed graph.
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Table 4.1: Summary of Frequently Used Symbols

Symbol Meaning

G = (V,E,Av, Ae) an Attributed Graph

V a Set of Vertex

E a Set of Edge

Av a Set of A(v)

Ae a Set of A(e)

dv Dimension of Vertex Attribute

de Dimension of Edge Attribute

v a Vertex

e(u,v) an Edge with vertex u, v

A Size of A(v)

B Sec. Storage Device Block Size

A(v) All Attributes of v

A(e) All Attributes of e

Ai(v) ith Attribute of v

Ai(e) ith Attribute of e

Di Domain of Ai(v)

Si a subset of Di

Cv Vertex Attribute Constraint

Gh G with Attribute Hash Value
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v2
v3

v5v4

v10

v13

v12

v6

v14

v7 v8 v9
v11

v16 v17

v15

s

t
     V1         V6

          V3
    V2

    V5
   V4

Social Network Super-graph

vID Country Job Religion hash

s CA Eng. R1 39

v2 CA IT R1 48

v3 CA IT R1 48

v4 CA IT R1 48

v5 CA IT R1 48

v6 CD Fin. R3 120

... ... ... ... ...

v12 CA Fin. R1 57

v13 CB IT R2 78

v14 CC Eng. R2 72

t CA IT R1 48

Edge Type Since hash

(s, v2) friend 2010 30

(s, v3) relative 2010 33

(s, v4) relative 2011 42

(s, v5) relative 2009 24

(s, v6) friend 2016 84

(v3, v13) relative 2015 78

... ... ... ...

(v13, v14) friend 2010 30

(v5, v12) friend 2010 30

(v14, t) relative 2009 24

(v12, t) relative 2010 33

Figure 4.1: Attributed Graph and Super-graph

In this chapter, we assume that both vertex and edge attribute domains are discrete.

Hereinafter, we only use vertex attributes for illustration purpose.

Definition 11. [Vertex Attribute Value] Ai(v) is the value of the ith attribute of vertex

v and is in the domain Di of attribute i.

Ai(v) ∈ Di, where Di is the domain of attribute i
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Definition 12. [Vertex Attribute Constraint] Cv is a set of vertex attribute value set

Si.

Cv = {S1, S2, ..., Sdv}, where Si ⊆ Di

Definition 13. [Vertex Attribute Constraint Satisfy] A path p satisfies vertex attribute
constraint Cv if and only if for all vertices v in p excluding s and t, every attribute Ai(v) of
v belongs to Si, where Si ∈ Cv.

p sat. Cv iff ∀v ∈ p \ {s, t}, ∀i = 1...dv, Ai(v) ∈ Si,

where Si ∈ Cv

Definition 14. [Reachability on Attributed Graph] Given an attributed graph G, a

source vertex s, a destination vertex t, vertex constraint Cv, we say that s can reach t

(s  t) under vertex constraint Cv if and only if there exists a path p from s to t where p

satisfies Cv.

s t iff ∃p s.t. p sat. Cv

Problem Statement [Attributed Grrph Reachability Query] Given an attributed

graph G, a source vertex s, a destination vertex t, vertex constraint Cv, and edge constraint

Ce, reachability query on attributed graph verifies whether s can reach t under vertex and

edge constraint Cv, Ce.

4.4 A NEW APPROACH FOR CONSTRAINT VERIFICATION

Obviously, DFS/BFS can be used to traverse the attributed graph and retrieve the corre-

sponding attribute when encountering a vertex. By doing that the worst case secondary

storage access bound is O(|V |+ |E|). In this section, we will introduce a new approach that

exploits hash values to bound the expected number of secondary storage access for point and

set attribute constraint query processing using merely graph traversal.

Definition 15. [Point Attribute Constraint] Cp
v is a vertex attribute constraint such

that the size of all Si is 1.
Cp
v = {S1, S2, ..., Sdv}

where ∀i = 1...dv,∀j = 1...de, s.t. |Si| = 1
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Definition 16. [Set Attribute Constraint] Cr
v is a vertex attribute constraint such that

there exists Si with size bigger than 1.

Cr
v = {S1, S2, ..., Sdv}

where ∃i ∈ 1...dv, s.t. |Si| > 1

The basic idea of this new approach is to compress every multi-dimensional attribute

to a hash value and store the hash values in primary storage for answering queries. During

query time, attribute constraints are verified against hash values. If certain conditions are

satisfied, we can verify the satisfiability of attributes by just comparing their hash values

(without retrieving attributes from disk). We start the presentation with index construction.

4.4.1 Index Construction

Suppose the hash value of every attribute is computed offline and stored in primary storage.

During query time, if we have to check the satisfiability of an attribute, we compare its hash

value with the hash value of the point constraint. However, even though the two hash values

are the same, we cannot conclude that the attribute satisfies the point attribute constraint

as hash collision may happen. To make the hash value comparison to be valid, we have to

ensure certain conditions are satisfied. Theorem 1 states those conditions.

Theorem 1. [Hash Value Condition] Attributes A(v) of vertex v satisfies a point vertex

constraint Cp
v if all three conditions below are true.

A(v) sat. Cp
v if con.1 ∧ con.2 ∧ con.3 = true

1. Hash value hash(A(v)) equals to hash value hash(Cp
v ). (i.e. hash(A(v)) = hash(Cp

v ))

2. There exists an attribute in the attributed graph G the same as Cp
v . (i.e. ∃A(vi) ∈ G s.t.

A(vi) = Cp
v )

3. There does not exist vertices vi, vj ∈ G with different attributes A(vi), A(vj) have hash

value hash(A(vi)) = hash(A(vj)). (i.e. @vi, vj ∈ G, s.t. hash(A(vi)) = hash(A(vj)) ∧

A(vi) 6= A(vj))

26



Proof. We prove this theorem by contradiction. Assume if con.1 ∧ con.2 ∧ con.3 = true,

A(v) not sat. cv. As A(v) not sat. Cp
v , we know that A(v) 6= Cp

v . Given that A(v) 6= Cp
v , it is

possible that hash(A(v)) 6= hash(Cp
v ) or hash(A(v)) = hash(Cp

v ) (If A(v) = Cp
v , it is certain

that hash(A(v)) = hash(Cp
v ) as hash function is deterministic.). If hash(A(v)) 6= hash(Cp

v ),

it contradicts with condition 1 (♣). If hash(A(v)) = hash(Cp
v ), there exists 2 different vertex

attributes can be mapped to the same hash value. Suppose A(v′) = Cp
v , hash(A(v′)) =

hash(A(v)) = hash(Cp
v ), and A(v′) 6= A(v). A(v′) can be in G or not in G. If A(v′) is in

G, (as A(v) is in G,) both A(v) and A(v′) are in G, hash(A(v)) = hash(A(v′)) = hash(Cp
v ),

and A(v) 6= A(v′) contradict with condition 3 (♠). If A(v′) is not in G, condition 2 (F) is

violated. Because of (♣), (♠), and (F), the proof is complete.

The index construction algorithm (Algorithm 1) is designed based on Theorem 1.

Algorithm 1 Index Construction

1: procedure ConHashIndex(Gh, iF ile)

2: for all v ∈ Gh do

3: h← GetAttrHash(v,Gh)

4: a← IOAttr(v,Gh)

5: if hashAddr[h] = φ then

6: addr ← IOInfow(iF ile, a, 1)

7: hashAddr[h] = addr

8: else

9: addr ← IOInfow(iF ile,′ ,′+a, 1) . append to addr in iF ile and will

update count of that hash value

10: hashAddr[h] = addr

11: end if

12: end for

13: end procedure

Figure 4.2 is an example of the index based on the attributed graph in Figure 4.1. The

number of different attributes that have the same hash value is in the Count column. For

example, the count of 48 is 1 as only CA, IT,R1 has hash value equal to 48.

27



v Attr. Hash Attr. Count

39 CA, Eng., R1 1

48 CA, IT,R1 1

57 CA, F in., R1 1

72 CC , Eng., R2 1

78 CB, IT,R2 1

120 CD, F in., R3 1

e Attr. Hash Attr. Count

24 relative, 2009 1

30 friend, 2010 1

33 relative, 2010 1

42 relative, 2011 1

78 relative, 2015 1

84 friend, 2016 1

Figure 4.2: Index Structure

4.4.2 Query Algorithm

Given the index structure (in Section 4.4.1), which is stored in iF ile, any prevalent graph

traversal algorithm (e.g. BFS,DFS,A∗ with Landmark [22]) can adopt our new approach

for verifying satisfiability of attributes before traversing to adjacent edges and vertices. More

details for constraint verification (Algorithm 2) will be presented below.

4.4.2.1 Point Attribute Constraint Verification Algorithm 2 is the pseudo code.

Algorithm 2 first gets the hash value h of a vertex v from Gh (line 2) and compute the hash

value hc of the point attribute constraint Cv (line 4). Then, it compares h with hc (line 5). If

h 6= hc, false is returned (line 6). After that, it looks up the satisfiability of v from satTable

(line 7), which is a global variable in primary storage. If sat is not empty, sat is returned

(line 24). Otherwise, entry (attr, count) of h is retrieved from iF ile (line 9). If count = 1,

attr is compared with Cv and true/false is inserted into satTable and returned (line 11-16);

otherwise, attribute of v has to be retrieved from attribute file and compared with Cv (line

18-22).

4.4.2.2 Set Attribute Constraint Verification Algorithm 2 can also be used for set

attribute constraint verification. The only difference is that line 4-6 is ignored, which result

in secondary storage access (line 9) is needed for every hash value that is not in satTable.

28



Algorithm 2 Check Constraint

1: procedure CheckConstraint(v, Cv, Gh)

2: h← GetAttrHash(v,Gh) . pri. storage operation

3: if isPointConstraint(C) then

4: hc ← ConmputeHash(Cv)

5: if h 6= hc then . check condition 1

6: return false

7: end if

8: end if

9: sat← satTable[h] . return φ if not exist

10: if sat = φ then

11: (attr, count)← IOInfor(iF ile, hashAddr[h])

12: if count = 1 then

13: if CheckAttr(attr, Cv) = true then

14: satTable.insert(h, true)

15: return true
16: else if CheckAttr(attr, Cv) = false then
17: satTable.insert(h, false)
18: return false
19: end if
20: else
21: attr ← IOAttr(v,Gh) . get Attr. of v from disk
22: if CheckAttr(attr, Cv) = true then
23: return true
24: else
25: return false
26: end if
27: end if
28: else
29: return sat
30: end if
31: end procedure
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The effect of that to the number of secondary storage access is analyzed in below.

4.4.3 Bounding Expected Number of Secondary Storage Access

In this section, we will first analyze the expected number of secondary storage access for

point attribute constraint query. Then, based on that result, we will devise the expected

number of secondary storage access for set attribute constraint query.

4.4.3.1 Point Attribute Constraint Query

Lemma 1. [Probability of no Collision] The probability of no collision for a hash value

is (D−1
D

)n, where D is the hash domain size and n is the number of data point.

Proof. This is a well-known result for uniform hash function.

For example, when a 64-bit integer is used as the hash domain D and there are 10 billion

data points, (D−1D )n ≈ 0.99999999994579.

Theorem 2. [Secondary Storage Access Bound for Point Attr. Query] The expected

number of secondary storage access for a point attribute constraint query when worst case

happens is approximately O(A), where A is size of A(v).

Proof. The verification of condition 1 is supported by Algorithm 2 line 5. Line 5 is an

in-memory operation, so it does not cost any I/O.
The verification of condition 2 and 3 is supported by in Algorithm 2 line 9-24. Based

on the pseudo code, if sat 6= φ, no I/O is incurred; if sat = φ, 1 + A×count
B

I/O is needed

to retrieve an entry (1 I/O for count and A×count
B

I/O for attribute(s)) from iF ile (line 9).
After that, if count = 1, sat of h in satTable is set to either true or false and it will never
be φ again; if count > 1, A

B
I/O is used to get attr (line 18) and sat will always be φ until

every vertex is visited in the worst case. Therefore, we can devise the expected number of
I/O by:

E(IO)=Prob(count=1)× IOcount=1 + Prob(count>1)× IOcount>1

IOcount=1 = 1 +
A× count

B
= 1 +

A

B

IOcount>1 = |V | × (1 +
A× count

B
+

A

B
)
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Based on Lemma 1, Prob(count = 1) = (D−1D )n ≈ 1;Prob(count > 1) = 1 − (D−1D )n ≈ 0,

when 64-bit integer is used as D and there are 10 billion data points.

E(IO) ≈ IOcount=1 = 1 +
A

B

We can conclude that the expected number of I/O when worst case happens is approxi-

mately O(A
B

).

4.4.3.2 Set Attribute Constraint Query

Theorem 3. [Secondary Storage Access Bound for Set Attr. Query] The expected

number of secondary storage access for a set attribute constraint query when worst case

happens is approximately O(Adiff ×A), where Adiff is the number of different A(v) visited,

and A is size of A(v).

Proof. Since this is a set attribute constraint query, line 4-6 in Algorithm 2 is ignored.
Therefore, during the BFS, for each Av that has never appeared before (first-time attribute),
1 + A

B
I/O is needed to retrieve an entry from iF ile. For every first time attribute, based

on the pseudo code, if sat 6= φ, no I/O is incurred; if sat = φ, 1 + A×count
B

I/O is needed

to retrieve an entry (1 I/O for count and A×count
B

I/O for attribute(s)) from iF ile (line 8).
After that if count = 1, sat of h in satTable is set to either true or false and it will never
be φ again; if count > 1, A

B
I/O is used to get attr (line 18) and sat will always be φ until

every vertex is visited in the worst case. Therefore, we can devise the expected number of
I/O by:

E(IO)=Adiff×
[
Prob(count=1)×IOcount=1+Prob(count>1)×IOcount>1

]
IOcount=1 = 1 +

A× count

B
= 1 +

A

B

IOcount>1 = |V | × (1 +
A× count

B
+

A

B
)

Based on Lemma 1, Prob(count = 1) = (D−1
D

)n ≈ 1;Prob(count > 1) = 1− (D−1
D

)n ≈ 0,

when 64-bit integer is used as D and there are 10 billion data points.

E(IO) ≈ Adiff × IOcount=1 = Adiff ×
[
1 +

A

B

]

We can conclude that the expected number of I/O when worst case happen is approxi-

mately O(Adiff × A
B

).
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4.4.4 Discussion

4.4.4.1 Hash Function The proposed new approach requires a hash function with very

few collisions so as to perform well. Murmur hash [20] and Spooky hash [21] are two non-

cryptographic hash functions that can be used. We examined these two hash functions by

using 1 billion 20-dimension attributes, and we discovered that both hash functions do not

have any hash value collision.

4.4.4.2 Index Maintenance The update of index structure can be done using O(1)

CPU time and number of secondary storage access when there is an attribute update. Sup-

pose attributes of v2 (in Figure 4.1) is updated from {Ca, IT,R1} to {Ca, Eng., R1}. First,

the entry of hash value 48 is looked up in Table 4.2. Since there is more than one vertex with

attribute {Ca, IT, R1}, the entry of hash value 48 is not deleted from Table 4.2. The number

of vertices with attribute {Ca, IT,R1} can be computed during index construction. Then, en-

try of hash value 39 is looked up in Table 4.2. Since the entry has attribute {Ca, Eng., R1},

the count is not changed. The number of vertices with attribute {Ca, Eng., R1} is incre-

mented by 1.

4.5 HEURISTIC SEARCH TECHNIQUE

In the above section, the expected number of secondary storage access for set attribute

constraint query is O(Adiff × A
B

). In order to reduce the number of secondary storage access,

we propose a heuristic search technique to reduce Adiff .

The intuition of this technique is to offer a direct passage that goes across graph regions

that are likely to satisfy attribute constraints from s to t so that t can be reached faster.

For example, in Figure 4.3, G is partitioned into 6 regions (V1, V2, ..., V6) and suppose s and

t are in V1 and V6. If there are a lot of paths that satisfy attribute constraint from s to t,

we do not want to:

• visit regions (e.g. V2) that are far away from V6 (case 1),
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Figure 4.3: Choice of Path from s to t

• choose a long path to reach t such as a path that passes through V1 → V4 → V3 → V5 →

V6 (case 2);

instead, we want to find a short path from s to t (e.g. case 3 V1 → V6). Our proposed

heuristic search technique is designed based on this observation. More details are presented

below.

4.5.1 Index Construction for Heuristic Search

We partition the graph into clusters and build a structure called - super-graph.

Definition 17. [Super-graph] Gs is an undirected graph with super-vertex and super-edge,

and for every super-vertex and super-edge, there is a synopsis that represents the distribution

of attributes in the super-vertex or super-edge.

Definition 18. [Super-vertex] Vi is a vertex in Gs such that for every vertex v in G, v

belongs to only one Vi in Gs.

∀v ∈ G, v ∈ Vi ∧ v /∈ Vj if i 6= j, where Vi, Vj ∈ Gs

Definition 19. [Super-edge] Ei is an edge in Gs such that if there exists an edge e(u,v)
between vertex u, v in G and u, v belong to two different super-vertices Vi, Vj in Gs, e(u,v)
belongs to E(Vi,Vj) in Gs.

∀e(u,v)∈G, if u∈ Vi ∧ v∈ Vj , e(u,v)∈ E(Vi,Vj), where E(Vi,Vj)∈Gs
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For example, in Figure 1, the social network is partitioned into 6 clusters/super-vertices.

Dotted rectangles are super-vertices. There is a super-edge between V1 and V2 as there is an

edge from s to v6.

When building the super-graph, any clustering algorithm that fits dataset property can

be used. For each vertex Vi and edge E(Vi,Vj) in Gs, we build synopsis, which represents the

distribution of attributes in the super-vertex or super-edge. A simple synopsis can be a set

of sample attributes drawn from vertices in the super-vertex.

4.5.2 Efficient Query Algorithm

Algorithm 3 is the pseudo code for the query algorithm. Given s, t, Cv, Gh, and Gs (line

1), the query algorithm answers the attribute constraint reachability query. A queue q is

maintained in the algorithm (line 2). In the beginning, s is put into the queue q (line

3). When the graph traversal starts, the first element v is pop from q (line 5). Then, the

algorithm finds a super-graph shortest path SPs from super-vertex SN [v.first] that contains

v to super-vertex SN [t] that contains t (line 9). A guided BFSg is performed starting at

vertex v (line 10). If a vertex vout that is not in SPs is visited, the vertex is put into q

and adjacent vertices of vout are not visited in this guided BFSg. During graph traversal,

synopsis in super-vertex and super-edge are updated. If t is not found in BFSg, after BFSg,

another element is pop from q and the same steps as above are performed until q is empty

(line 4). Figure 4.4 is an example.

4.5.2.1 Super-graph Shortest Path Given Gs and synopsis of every super-vertex and

super-edge in Gs, the query algorithm tries to find a shortest path in Gs from super-vertex

SN [s] or SN [h] that contains s or any h to super-vertex SN [t] that contains t based on

the sum of estimated pass-through probability SPcost, which can be estimated by using the

attribute constraints and the synopsis.

4.5.2.2 Guided Search Basically, any graph traversal algorithm can be adopted (e.g.

A∗, BFS, DFS). For simplicity, we use BFS as an example. Guided BFSg is a modified
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Algorithm 3 Efficient Query Algorithm

1: procedure ReachabilityQuery(s, t, Cv, Gh, Gs)

2: Queue q

3: q.put(pair(s, φ)) . No need to check constraint of s

4: while q.empty() = false do

5: v = q.pop()

6: if visited[v.first] = true then

7: continue . Other BFSg may set visited to true

8: end if

9: visited[v.first]← true

10: SPs ← SGraphSP (SN [v.first], v.second, SN [t], G.Gs, Cv)

11: (R, q)← BFSg(v.first, t, Gh, Cv, SPs, q)

12: if R = true then

13: return yes

14: end if

15: end while

16: return no

17: end procedure
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Figure 4.4: Example for Efficient Query Algorithm

version of typical BFS. Algorithm 4 is the pseudo code. The difference between guided

BFSg and typical BFS is that:

• vertex constraint is verified and synopsis is updated,

• vertices that are not in SPs are not traversed (line 10) and are put into a queue qG offered

by the caller of the guided BFS (line 16), and

• Es
(SN [cur],SN [v′]), which is a super-edge that can be ignored in SGraphSP () when SN [v′]

is used as source, is put into qG together with v′.
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Algorithm 4 Guided BFS

1: procedure BFSg(cur, t, Gh, Cv, SPs, qG)

2: Queue q

3: q.put(cur)

4: while q.empty() = false do

5: v = q.pop()

6: if v = t then

7: return (true, qG)

8: end if

9: if visited[v] = true then

10: continue

11: end if

12: if SN [v] ∈ SPs then

13: visited[v]← true

14: for all v′ ∈ v.adjList do

15: if CheckConstraintBFSg(v′, Gh, Cv) = true then

16: q.put(v′)

17: end if

18: end for

19: else . ignore E(SN [cur],SN [v′]) in SGraphSP ()

20: qG.put(pair(v, E(SN [cur],SN [v′])))

21: end if

22: end while

23: return (false, qG)

24: end procedure

4.5.2.3 Synopsis Update Whenever a vertex is visited, we know the attribute of that

vertex. Hence, the estimated pass-through probability of a super-vertex can be updated.
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4.5.3 Proof of Correctness

We prove the correctness in this section.

Definition 20. An attribute constraint reachability algorithm is correct if, in the worst case,

all reachable vertices can be reached.

Definition 21. [Super-vertex Strongly Connected Component sSCC] is a strongly

connected component such that:

1. all vertices in sSCC are within the same super-vertex and

2. there exists a path between any vertex in sSCC completely in the super-vertex.

Theorem 4. [Correctness] Algorithm 3 can answer reachability query with attribute con-

straints correctly.

Proof. Without loss of generality, we assume that all reachable vertices are condensed into

sSCCs.

We prove the correctness by first defining the loop invariants and then prove the loop

invariant is true for all iterations.

Loop Invariant: 1. At iteration i, DFSg visits all sSCC on SPs and puts all unvisited

sSCC that are adjacent to sSCC on SPs into q. 2. All sSCC in q will be visited before

iteration i+ |q|+ 1, where |q| is the current size of q.

Initialization: Prior to the first iteration, no sSCC is visited.

Maintenance: Assume the invariant is true at iteration n. At iteration n + 1, the

invariant is also true. That is because:

1. DFSg visits all sSCC on SPs and puts all unvisited sSCC that are adjacent to sSCC

on SPs into q,

2. all sSCC will be popped from q before iteration i+ |q|+ 1, and

3. whenever an sSCC is popped from q, the sSCC must be in SPs and will be visited.

Termination: When the algorithm terminates, q is empty, and all reachable sSCC are

visited. That is because:

1. if q is not empty, iteration would continue and
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2. if there are unvisited sSCCs that are adjacent to visited sSCCs, unvisited sSCCs would

be put into q by DFSg.

4.6 OPTIMIZATION: BATCH ATTRIBUTE RETRIEVAL TECHNIQUE

We observed that a disk block for a block-based device is usually big enough to store many

attributes. For example, a 4096-byte disk block can store attributes of 102 10-attribute

vertices (4 bytes per attribute). Therefore, storing attribute values of only a 10-attribute

vertex in a 4096-byte disk block and retrieving it using an I/O is very inefficient.

Motivated by this, in this section, we will present a batch attribute retrieval technique to

achieve such optimization. Then, we will analyze the worst case I/O complexity for BFS

algorithm with this technique. Finally, a summary of time and space complexity is provided.

In this section, we assume that a block-based device is used (i.e. we can only retrieve a fix

size block from the device for every I/O.).

4.6.1 Index Construction

We propose to pack attributes and their hash value counts of adjacent vertices and edges

into a disk block. For example, in Figure 4.1, vertex/edge ids, attributes, and hash value

counts of s, v2, v3, v4, v5, v6, e(v2,s), e(v3,s), e(v4,s), e(v5,s), e(v6,s), are stored in a 4096-byte disk

block (assume 4 bytes per attribute dimension and 10 attribute dimensions).

Algorithm 5 is the pseudo code for index construction. For every vertex v, the algorithm

first checks whether its contents have been stored (line 4-5). If not, the contents of v is

packed into block b (line 6) and isStored[v] is set to true (line 7). Then, for every adjacent

vertex vi of v, if content of v′ is not stored, it is put into b (line 9-10); if content of e(v,v′)

is not stored, it is put into b also (line 11-12) and isStored[e(v,v′)] is set to true (line 13).

After that, b is written to disk (line 14) and addr of it is stored in AttrAddr[v] (line 15).

For every adjacent vertex v′ of v, if they were not stored before, disk address of contents of
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Figure 4.5: Batch Attribute Retrieval

v′ (AttrAddr[v′]) is set to addr (line 16-19).

Finally, for every edge e, if it was not stored before (line 22) i.e. dotted line edges,

content of it is put into b, isStored[e] is set to true, b is written to disk, and the address

addr is put into AttrAddr[e].

Figure 4.5 shows the effect of Algorithm 5. In Figure 4.5, contents of v1 and its adjacent

edges and vertices are put into a disk block. The same happens for v11 and v18. For v7, since

contents of its adjacent vertex (i.e. v6) were stored in other disk block before, only contents

of v7 and e(v7,v6) are stored in the same disk block. The same happens for v8 and v13. Finally,

for e(v4,v6), e(v4,v10), e(v6,v10), e(v5,v10), e(v5,v12), e(v12,v16), and e(v16,v17), since contents of both of

their left and right vertices were stored in other disk blocks, contents of each of them are

stored in a different disk block. In total, 13 disk blocks are used to store contents of all

vertices and edges.
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Algorithm 5 Index Construction for Batch Attribute Retrieval

1: procedure ConBatchAttrIndex(Gh, bF ile)
2: for all v ∈ Gh do
3: block b; address addr
4: if isStored[v] = true then
5: continue
6: end if
7: b← PackAttrnCount(b, v,Gh)
8: isStored[v]← true
9: for all v′ ∈ v.adjList do

10: if isStored[v′] 6= true then
11: b← PackAttrnCount(b, v′, Gh)
12: end if
13: if isStored[e(v,v′)] 6= true then
14: b← PackAttrnCount(b, e(v,v′), Gh)
15: isStored[e(v,v′)]← true
16: end if
17: end for
18: addr ← IOInfow(b, bF ile)
19: AttrAddr[v]← addr
20: for all v′ ∈ v.adjList do
21: if isStored[v′] 6= true then
22: AttrAddr[v′]← addr
23: isStored[v′]← true
24: end if
25: end for
26: end for
27: for all e ∈ Gh do
28: b.clear()
29: if isStored[e] 6= true then
30: b← PackAttrnCount(b, e,Gh)
31: isStored[e]← true
32: addr ← IOInfow(b, bF ile)
33: AttrAddr[e]← addr
34: end if
35: end for

36: end procedure
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4.6.2 Query Algorithm

Given AttrAddr (line 1), BFS can be used to answer set attribute constraint reachability

queries. Algorithm 6 is used to replace Algorithm 2 in Section 4.4. The differences between

Algorithm 6 and Algorithm 2 is that if an attribute is not verified (line 4), based on the

address in AttrAddr, a block is retrieved from disks (line 6), and all attributes contained in

that block are verified (line 6) and corresponding entries in satTable are updated (line 9,12).

Hence, 1 I/O can be used to verify multiple vertex and/or edge attributes that can be fit in

the same disk block.

Algorithm 6 Check Constraint using Batch Attribute Retrieval

1: procedure CheckConstraintB(v, Cv, Gh, AttrAddr) . same for e

2: h← GetAttrHash(v,Gh) . in-memory operation

3: sat← satTable[h] . return φ if not exist

4: if sat = φ then

5: block b← IOInfor(bF ile, AttrAddr[v])

6: for all (v, attr, count) ∈ b do

7: if count = 1 then

8: if CheckAttr(attr, Cv) = true then

9: satTable.insert(h, true)

10: return true
11: else if CheckAttr(attr, Cv) = false then
12: satTable.insert(h, false)
13: return false
14: end if
15: else
16: attr ← IOAttr(v,Gh) . get Attr. of v from disk
17: if CheckAttr(attr, Cv) = true then
18: return true
19: else
20: return false
21: end if
22: end if
23: end for
24: else
25: return sat
26: end if
27: end procedure
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4.6.3 Bounding I/O

(analyze the worst case and expected I/O bound using block size, attribute size, attribute

domain size)

Theorem 5. [Worst Case I/O Bound for Set Attr. Query] The worst case I/O

complexity is O(
∑|V |

i=1

⌈
r(2di+1)

B

⌉
+

⌈
r
B

⌉
|V |), where r is the size of vertex id, attribute and

count.

Proof. In the worst case, the whole graph has to be traversed. At the same time, every hash

value is not the same and has to be verified. Therefore, the worst case I/O is the number

of disk block used to store the vertex/edge ids, attributes, and counts of all hash values i.e.

the number of I/O used by Algorithm 5.

In Algorithm 5 (line 2 to 19), in the worst case, every vertex vi puts vertex/edge ids,

attributes, and hash value counts (size is r) of itself and all adjacent vertices and edges into⌈
r(2di+1)

B

⌉
disk block(s), where di is the degree of vi. Hence, the worst case number of I/O

is the sum of I/O for every vertex, which is
∑|V |

i=1

⌈
r(2di+1)

B

⌉
.

In Algorithm 5 (line 20 to 26), if edge id, attributes, and hash value count of an edge

is not stored before (in line 2 to 19), they are put into

⌈
r
B

⌉
|V | disk blocks. Although the

for-loop (line 20) has size |E|, the number of I/O (line 25) is always smaller than or equal

to |V |. That is because edge id, attributes, and hash value count of an edge is not stored

only when vertex ids, attributes, and hash value count of both vertices of the edge is stored.

Therefore, the number of such edges is smaller than or equal to |V |.

Since the two for-loop (line 2 to 19 and line 20 to 26) is in parallel, the number of I/O

of Algorithm 5 is the sum of
∑|V |

i=1

⌈
r(2di+1)

B

⌉
and

⌈
r
B

⌉
|V |, which is O(

∑|V |
i=1

⌈
r(2di+1)

B

⌉
+⌈

r
B

⌉
|V |).

Comparing to BFS with O(

⌈
r
B

⌉
|V | +

⌈
r
B

⌉
|E|) I/O, batch attribute retrieval is better

in term of worst case complexity when:

|V |∑
i=1

⌈
r(2di + 1)

B

⌉
+

⌈
r

B

⌉
|V | <

⌈
r

B

⌉
|V |+

⌈
r

B

⌉
|E|
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|V |∑
i=1

⌈
r(2di + 1)

B

⌉
<

|E|∑
i=1

⌈
r

B

⌉
Table 4.2 is a summary of index construction and query CPU time and space worst case

complexity. For index construction, the CPU time complexity is O(|V |dmax + |E|) as the

nested for-loop (Algorithm 5, line 2 to 19) executes |V |dmax times and the single for-loop

(line 20 to 26) executes |E| times; the space complexity is O(|G|) as the whole graph is only

stored once. For set attribute constraint query, the CPU time complexity is O(

⌈
B
r

⌉
|V |+ |E|)

as in the worst case, every vertex and edge has to be visited and when visiting a vertex,

for every block retrieved from disk, O(

⌈
B
r

⌉
) steps are needed to parse the contents (ids,

attribute, and hash value count); the space complexity is O(|G|) as only the graph topology,

hash value, isStored, and AttrAddr, which have the same size as the graph topology, are

needed to be in memory.

Table 4.2: Worst Case Time and Space Complexity

Operation CPU Time Disk Space

Index Construction (offline) O(|V |dmax + |E|) O(|G|)

Operation CPU Time Memory Space

Set Attr. Constraint Query O(

⌈
B
r

⌉
|V |+ |E|) O(|G|)

4.7 OPTIMIZATION: BETTER UTILIZATION OF PRIMARY STORAGE

Distribution of attribute constraints in queries is usually not uniform. Some attribute con-

straints appear more often while some seldom appear. A similar situation happens for query

execution time. Queries with some attribute constraints take longer time too execute while

queries with some other attribute constraints finish quickly. Therefore, we can see that some

attribute constraints are actually more important than some others, in term of efficiency.

In order to speed up execution time of more important attribute constraints, we propose

a workload-aware hash value approach to fully utilize all available memory. The idea of
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this approach is to compute extra hash values using a subset of attributes and put those

hash values into memory. The corresponding index structure of those hash values is also

constructed and stored in the disk. We assume that a set of historical query workloads W

that contains query attribute constraints and a total number of I/O are given.

Definition 22. [Historical Query Workloads] W is a set of tuples, which consists of a

subset of A(v) and number of I/O, and we assume that the number of I/O is measured when

A(v) is used for computing hash values and an index.

4.7.1 Use of Extra Hash Values

When only a subset of A(v) is involved in an attribute constraint query, hash values and

an index that are constructed based on only the subset of A(v) can be used to answer the

query. For example, if an attribute constraint query only involves Country and Job, hash

values hex and an index inex that are constructed based on Country and Job can be used

to answer the query. Similar to the index in Figure 4.2, inex would have also 3 columns -

hex, attributes, and count. However, hex is computed using only Country and Job; attribute

column only consists of Country and Job; and the count is based on hex. inex is still stored

in the disk, and all hex are stored in memory.

Given the same attributed graph, Adiff is smaller when fewer attributes are taken into

account. For example, Adiff of an attributed graph with attributes Country, Job, Religion

is bigger than Adiff of the same attributed graph with attributes Country, Job. Therefore, if

the attribute constraint query only involves Country and Job, the I/O complexity is better

when hash values and index are computed based on less number of attributes. Hence, if

more hash values and indexes using different subsets of A(v) are computed, appropriate

hash values and indexes can be used for answer queries so that better I/O cost can be

achieved. Since memory budget for storing extra hash values is limited, in the next section,

we will present strategies for choosing the subset of A(v) for computing extra hash values.
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4.7.2 Attribute Selection Strategy

In this section, we will present 2 strategies for choosing subsets of A(v) for computing extra

hash values. We also proposed another strategy (strategy 3) for consideration. Let m be the

number of the set of hash values that can store in memory. In a set of hash values, all hash

values are computed using the same subset of A(v) and the size of the set is |V |. Since we

have to guarantee that any query has to be answered, we must have hash values that are

computed using A(v). Hence, we can only have (m−1) extra sets of hash values in memory.

The 2 strategies are proposed based on Lemma 2.

Lemma 2. Hash values and index constructed using S can achieve best number of I/O for

attribute constraint queries that involve S as attribute constraints when hashing scheme is

used (Section 4.4), where S is a subset of A(v).

Proof. Hash values and index constructed using proper subset of S cannot be used for an-

swering attribute constraint queries with S as attribute constraints-(♣). Attributed graph

with attributes which are a proper superset of S has larger Adiff than attributed graph with

S as attributes-(♠). Because of (♣) and (♠), Lemma 2 is true.

4.7.2.1 Strategy1: Most Frequent The first strategy is to pick subsets of A(v) that

are top-(m−1) most frequently exist in historical query workload. Figure 4.6 is an example.

Suppose m is 4 and there are 3 attributes (A1, A2, A3) for every vertex. In Figure 4.6, the

number of queries in W that have attribute constraint A1, A2, A3, A1A2, A1A3, A2A3, and

A1A2A3 are 10, 20, 4, 5, 9, 2, and 0 respectively. Since A1A2A3 must be picked, we can only

pick three more subsets of attributes. The three most frequently exist subsets of attributes,

which are A1, A2, and A1A3, are picked.

Theorem 6 is the theoretical guarantee of strategy 1.

Theorem 6. Strategy 1 guarantees that most of the historical workloads can achieve the best

I/O cost, given m as memory budget.

Proof. Strategy 1 picks top-(m−1) most frequent attribute constraints in W -(♦). Lemma 2

ensures that using hash values and indexes computed by those m − 1 subset of A(v) for
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answering queries can achieve best number of I/O for attribute constraint queries that involve

those m − 1 subset of A(v) as attribute constraints-(♥). Because of (♦) and (♥), we can

conclude that this theorem is true.

4.7.2.2 Strategy 2: Maximum I/O The second strategy is to pick subsets of A(v)

that are top-(m − 1) maximum number of I/O in historical query workloads. Figure 4.6 is

an example. Suppose m is 4 and there are 3 attributes (A1, A2, A3) for every vertex. In

Figure 4.6, the maximum number of I/O of queries in W that have attribute constraint

A1, A2, A3, A1A2, A1A3, A2A3, and A1A2A3 are 300, 200, 400, 100, 300, 100, and 0 respec-

tively. Since A1A2A3 must be picked, we can only pick three more subsets of attributes.

The three maximum number of I/O subsets of attributes, which are A1, A3, and A1A3, are

picked.

Theorem 7 is the theoretical guarantee of strategy 2.

Theorem 7. Strategy 2 picks the subsets of A(v) that can minimize the maximum number

of I/Os of all queries in W (IOi
max), given m as memory budget constraint.

IOmax = min{IO1
max, IO

2
max, ..., IO

Cd
m−1

max }

where IOi
max = max{IOi

1, ..., IO
i
|W ||Combi,m},

Combi is a subset of A(v) with m− 1 elements.
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Proof. Without lose of generality, we assume that there are k different subsets of A(v) in W

and their I/O cost are IO1, ..., IOk. We further assume that IO1 ≥ IO2 ≥ ... ≥ IOk.

Let max1 be the maximum number of I/O when the subsets of A(x) picked by strategy 2

are used. Strategy 2 picks the first m− 1 subsets and based on Lemma 2, queries in W with

any of those m−1 subsets as attribute constraints can achieve best I/O cost (IO′1, .., IO
′
m−1).

Therefore, max1 can be defined as:

max1 = max(IO′1, ..., IO
′
m−1, IOm)

Assume that strategy 3 picks the same subsets of A(v) as strategy 2, except that it

replaces a subset of A(v) (subset y) picked by strategy 2 with a subset of A(v) (subset x)

that is not picked by strategy 2. Let max2 be the maximum number of I/O when the subsets

of A(x) picked by strategy 3 are used. Strategy 3 picks the first m − 1 subsets and subset

x, except subset xy and based on Lemma 2, queries in W with any of those m − 1 subsets

as attribute constraints can achieve best I/O cost (IO′1, ..., IO
′
x−1, IOx, IO

′
x+1, ..., IO

′
m−1).

Therefore, max2 can be defined as:

max2 = max(IO′1, ..., IO
′
x−1, IOx, IO

′
x+1, ..., IO

′
m−1, IOm)

We can divided the proof into below cases:

1. max1 > IOm,

a. if max1 = IO′x, then max2 = IOx ≥ max1 = IO′x. That is because IOx ≥ IO′x ≥

IO′1, ..., IO
′
m−1 > IOm.

b. if max1 > IO′x, and if max2 = IOx, then max2 > max1. That is because IOx >

IO′1, ..., IO
′
x−1, IO

′
x+1, ..., IO

′
m−1 and IOx ≥ IO′x.

c. if max1 > IO′x, and if max2 > IOx, then max2 = max1. That is because max2 >

IOx implies that both max2 and max1 are ∈ {IO′1, ..., IO′x−1, IO′x+1, ..., IO
′
m−1}.

2. max1 = IOm,

a. max2 = IOm, then max1 = max2.

b. max2 > IOm, then max2 > max1. That is because max1 = IOm.
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Therefore, max1 is always less than or equal to max2. Since IOx can be any subset, we

pick IOx to be IO′x ≥ IO′m, ..., IO
′
x−1, IO

′
x+1, .., IO

′
k. Then, for strategy 3, no matter how

many subsets are replaced, the above analysis is still true. Hence, we can conclude that this

theorem is true.

4.7.2.3 Strategy 3: Lowest Entropy First The third strategy is to pick subsets of

A(v) that have the lowest attribute value entropy. Since the attribute value entropy is low,

the number of different hash values (i.e., Vdiff ) is also small. Hence, the extra hash values

would be very beneficial to queries that only consider attributes which are subset of A(v).

4.8 EXPERIMENTAL RESULT

In this section, we will first describe the experiment settings and present graph information

for our experiments. Then, we will look into the performance of our techniques for both

application queries and exhaustive parameter tuning.

4.8.1 Experiment Setup and Dataset

All experiments were performed using C++ implementations under a Linux machine with

an Intel 4GHz CPU (4-core), 16 GB of memory, and 1 TB solid state drive with 512k block

size. We used Murmur hash [20] as our hash function.

For all experiments, we build super-graphs with 50 super-vertex for fb− bfs1 and 1000

super-vertex for all other datasets by using a naive clustering approach. The naive clustering

approach first picks 50 or 1000 random vertices and performs BFS with the 50 or 1000 vertices

as the sources to form 50 or 1000 clusters. For real applications, other clustering techniques

(e.g. [69]). We draw 1000 uniform samples from each super-vertex as the synopsis.

4.8.1.1 Baselines We study the efficiency of our new approach and heuristic search

technique by applying them on a prevalent graph traversal algorithm. Due to the issues
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of A∗ mentioned in Section 3.5.2 and the popularity of BFS, we used BFS as our graph

traversal algorithm in our experiments. We compare ordinary BFS, BFS with only our new

constraint verification approach (Hash + BFS), BFS with our new constraint verification

approach and heuristic search (Hash+BFSHeur.), and another baseline solution (LCRsingle).

LCRsingle is a modification of the approach in [3]. LCRsingle uses 0.5k blocks to build

an index ILCR for every dimension of the multi-dimensional attribute using the solution

in [3] and stores all indexes in disk. During query time, LCRsingle uses ILCR to compute

reachability query for attribute dimensions that are involved in the attribute constraint

dimension-by-dimension until there is one attribute dimension cannot return a yes or all

involved attribute dimensions return yes. LCRsingle may offer incorrect answers.

4.8.1.2 Datasets Table 4.4 is a summary of our graph dataset. In order to control the

number of attributes and attribute domain sizes, we generate attributes (Table 4.3) based on

vertex and edge attribute in Facebook graph-API [70]. For graphs with 30 vertex attributes,

we just repeat the 10 vertex attributes for 3 times.
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Table 4.3: Attributes

Vertex Attribute Domain Size,Distribution (µ,σ)

AgeGroup 10, gau(5,2.5)

Education 5, gau(3,1.25)

Gender 2, uni.

HomeCountry 100, gau(50.25)

Interested in 3, uni.

Languages 50, gau(25,12.5)

Relationship status 2, uni.

Religion 20, gau(10,5)

Work 50, uni.

Political 10, gau(5,2.5)

Edge Attribute Domain Size,Distribution

isFamily 2, uni.

isFriend 2, uni.

isFriendRequest 2, uni.

isSubscribers 2, uni.

isSubscribedto 2, uni.
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Table 4.4: Dataset Information

Real Graph Num of Vertex Num of Edge

dblp [71] 0.31m 1.05m

fb-bfs1 [72] 1.18m 29.78m

twitter-0.25 [73] 52.58m 490.8m

Synthetic Graph Num of Vertex Num of Edge

Small-World [71] 200m 1b

100m 500m

50m 250m

10m 50m

Table 4.5: Parameter Setting

Parameter Value

Num V Attr 10,30

Num E Attr 5

Num V Constraint 1, 5,10,15,20

Num E Constraint 1,2,3,4, 5

Num of Super-vertex 15,50,1000

Num of Sample per Super-vertex 100

4.8.2 Performance for Application Queries

Table 4.8 and 4.7 shows the performance of our techniques for 5 different application queries
defined in Table 4.6 for different application scenarios. We can see that when the attribute
constraint is very specific (e.g. Q4 and Q5), the performance of Hash + BFSHeur. and
Hash + BFS in the smaller graph (fb − bfs1) are basically the same. However, for other
queries, Hash+BFSHeur. can always outperform other approaches.
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Table 4.6: Application Queries

Query Application

Q1. Select paths where all vertices decides whether

along the path have HOMECOUNTRY= target person T is

’in N/S America’ and SRC=’T’ and DEST=’L’ related to terrorist L.

Q2. Select paths where all vertices decides whether

along the path have AGE≤ 60 and target person T is

(LANGUAGE=’English’, ’Chinese’ or ’German’ ) related to hacker H.

and SRC=’T’ and DEST=’H’

Q3. Select paths where all vertices decides whether

along the path have WORK=’All Engineering Related’ job candidate T is

and all edges along the path have (isFamily=’true’, related to manager M

isFriend=’true’ or isFriendRequest=’true’ ) in rival company.

and SRC=’T’ and DEST=’M’

Q4. Select paths where all vertices decides whether

along the path have POLITICAL6=’democratic’ target person T is

and HOMECOUNTRY=’United States’ related to party leader P.

and SRC=’T’ and DEST=’P’

Q5. Select paths where all vertices decides whether

along the path have (HOMECOUNTRY= target person T is

’United State’ or ’Canada’ ) related to a suspect S.

and all edges along the path have isFamily=’true’

and SRC=’T’ and DEST=’S’

Table 4.7: Results for Specific Queries (twitter − 0.25)

Q. Hash+BFSHeur. Hash+BFS BFS LCRsingle

1 3.57sec 14.46sec 35.91sec 30.22sec

2 6.83sec 25.90sec 84.74sec 84.30sec

3 4.05sec 16.63sec 58.16sec 39.19sec

4 0.46sec 0.71sec 1.18sec 1.13sec

5 1.42sec 2.69sec 6.09sec 5.11sec
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Table 4.8: Results for Specific Queries (fb− bfs1)

Q. Hash+BFSHeur. Hash+BFS BFS LCRsingle

1 0.52sec 0.56sec 14.84sec 15.02sec

2 0.42sec 0.47sec 12.26sec 11.79sec

3 1.01sec 1.20sec 22.26sec 20.56sec

4 0.01sec 0.01sec 0.01sec 0.01sec

5 0.01sec 0.01sec 0.07sec 0.07sec

4.8.3 Performance on Real Graphs

In this section, we will present the experimental results of 2 real graphs - fb-bfs1 and

twitter − 0.25 with analysis.

4.8.3.1 Experiment Design In this experiment, we try to vary the number of vertex

and edge attribute constraints so as to observe the change of overall running time and number

of SSD I/O of our techniques. Parameter settings are summarized in Table 4.5 and bold

words are the default setting.

The number of vertex and edge attribute constraint in this experiment are defined as

dv∑
i=1

(|Dv
i | − |Sv

i |) and
de∑
i=1

(|De
i | − |Se

i |) (4.1)

(Dv
i , D

e
i , S

v
i , and Se

i are the same as Di, Si in Definition 11,12). The default number of at-

tributes is ten as usually attribute constraints do not involve more than ten attributes. Hence,

we do not need to compute hash values using more than ten attributes. However, which 10

attributes to pick is query workload dependent, and we will leave that for future studies. We

observe the behavior of different solutions by fixing the number of vertex and edge attribute

to 10 and 30 with domain sizes and distributions as describe in Section 6.5.1 and varying

the number of vertex or edge constraints (Figure 4.11, 4.13, Figure 4.15 and 4.17). We also

repeat the experiment by doubling the domain sizes and mean and s.d. of distributions

(Figure 4.12, 4.14, Figure 4.16 and 4.18).
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4.8.3.2 Result Results for varying number of vertex/edge constraints using default set-

ting are shown in Figure 4.7(a), 4.9(a), Figure 4.11(a), 4.13(a), Figure 4.15(a) and 4.17(a).

The general trend of the average running time and the number of I/O when increasing the

number of attribute constraint is decreasing for all settings. That is because in general,

the larger the number of attribute constraints, the faster the graph traversal stop. For all

settings, Hash + BFSHeur. always has a smaller average running time and number of I/O

than Hash+BFS,LCRsingle, and BFS, which is the contribution of our new constraint ver-

ification approach and efficiency heuristic search technique. The only exception is the dblp

dataset. Since the dblp dataset is a relatively small graph, the performance differece between

Hash + BFSHeur. and Hash + BFS is not significant. The performance of LCRsingle is

close to BFS since local transitive closures cannot vastly reduce execution time. Damaged

by the extremely inefficient transitive closure construction time ( O(|V |3) [3]) and storage

space of LCRsingle, blocks for computing local transitive closure cannot be large (especially

for high degree undirected graphs), which leads to relatively small hopping from vertex to

vertex during graph traversal and as a result, a lot of disk-based graph traversals are needed.

In addition, for an undirected graph with non-small attribute domain size, the transitive

closure is rather bulky, which leads to costly disk retrieval of transitive closures for border

vertices.

     The increase of domain size and number of vertex attributes (Figure 4.7(b), 4.8, 4.9(b), 4.10,

Figure 4.11(b), 4.12, 4.13(b), 4.14, Figure 4.15(b), 4.16, 4.17(b), and 4.18) do not contribute

much to the increase in execution time of all approaches. Firstly, BFS is not really affected

by the increase in number of attributes and domain size as it always does vertex-by-vertex and

edge-by-edge constraint verification; similar situation happens to LCRsingle as LCRsingle only

accesses index of attributes involved in attribute constraints. Secondly, for Hash+BFSHeur.

and Hash+BFS, we can only see a slightly shift up of their curves. That is due to the fact

that the number of edges is a lot larger than number of vertices, which makes the time for

edge constraint verification occupies a certain portion of the total running time.
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Figure 4.7: [dblp]-Vary # of V Const. with Org. Dom.

4.8.4 Performance on Synthetic Graphs

In this experiment, we used default setting and attributes in Table 4.5 and Table 4.3 for

Small − World graphs with different sizes. In Figure 4.19, we can see that in general,

average running time and number of I/O increase with graph size and Hash + BFS and

Hash+BFSHeur. can successfully reduce the average running time and number of I/O.

4.8.5 Performance of Optimization Techniques

4.8.5.1 Batch Attribute Retrieval In this experiment, we evaluate the performance of

the batch attribute retrieval technique using our default setting. Table 4.9 shows the changes

of the average number of IO of three different approaches - Hash+BFSHeur, Hash+BFS,

56



 0.0001

 0.001

 0.01

 1  1.5  2  2.5  3  3.5  4  4.5  5

Q
u
e
ry

 T
im

e
 (

s
e
c
)

Num Vertex Constraint

Hash+BFSHeur.
Hash+BFS

BFS
LCRsingle

 0.001

 0.01

 0.1

 1

 10

 1  1.5  2  2.5  3  3.5  4  4.5  5

IO
C

o
u
n
t 
(k

)

Num Vertex Constraint

Hash+BFSHeur.
Hash+BFS

BFS
LCRsingle

(a)Num V Attr.=10

 0.0001

 0.001

 0.01

 1  1.5  2  2.5  3  3.5  4  4.5  5

Q
u
e
ry

 T
im

e
 (

s
e
c
)

Num Vertex Constraint

Hash+BFSHeur.
Hash+BFS

BFS
LCRsingle

 0.001

 0.01

 0.1

 1

 10

 1  1.5  2  2.5  3  3.5  4  4.5  5

IO
C

o
u
n
t 
(k

)

Num Vertex Constraint

Hash+BFSHeur.
Hash+BFS

BFS
LCRsingle

(b)Num V Attr.=30

Figure 4.8: [dblp]-Vary # of V Const. with Double Dom.

and BFS. In Table 4.9, the value on the left of → is the number of IO before using batch

retrieval while the value on the right of → is the number of IO after using batch retrieval.

We can see that batch attribute can effectively reduce ethe number of IO.

Table 4.9: Batch Retrieval Comparison

Graph Hash+BFSHeur Hash+BFS BFS

dblp [71] 2.71→0.61 2.71→0.61 3.07→0.7

fb-bfs1 [72] 619k→79k 690k→87k 14579k→ 228k

twitter-0.25 [73] 9544k→865k 24658k→2274k 1068412k→ 11684k
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Figure 4.9: [dblp]-Vary # of E Const. with Org. Dom.

4.8.5.2 Use of Extra Hash Values In this experiment, we compare the performance

of extra values for answering queries using our default setting. We first build 30-attribute

hash value index. Then, we build a 10-attribute hash value index as an extra set of hash

value. We compare the query efficiency of using both indexes to answer queries that are

generated under our default setting. In Table 4.10, we can see that the execution time is

improved by the extra set of hash values.
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Figure 4.10: [dblp]-Vary # of E Const. with Double Dom.

Table 4.10: Effect of Extra Hash Values

Hash+BFSHeur Hash+BFS

Graph With Extra Hash Without Extra Hash With Extra Hash Without Extra Hash

dblp [71] 0.000702sec 0.000885sec 0.000629sec 0.000867sec

fb-bfs1 [72] 0.955sec 1.54sec 1.41sec 2.07sec

twitter-0.25 [73] 3.09sec 3.99sec 21.35sec 23.89sec
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Figure 4.11: [fb-bfs1]-Vary # of V Const. with Org. Dom.
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Figure 4.12: [fb-bfs1]-Vary # of V Const. with Double Dom.
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Figure 4.13: [fb-bfs1]-Vary # of E Const. with Org. Dom.
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Figure 4.14: [fb-bfs1]-Vary # of E Const. with Double Dom.
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Figure 4.15: [twitter-0.25]-Vary # of V Const. with Org. Dom.
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Figure 4.16: [twitter-0.25]-Vary # of V Const. with Double Dom.
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Figure 4.17: [twitter-0.25]-Vary # of E Const. with Org. Dom.
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Figure 4.18: [twitter-0.25]-Vary # of E Const. with Double Dom.
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Figure 4.19: [SmallWorld]-Vary Graph Size
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5.0 EFFECTIVE AND EFFICIENT HOW-TO-REACH ANSWER

In this Chapter, we study the problem of effective and efficient processing of How-to-Reach

query on attributed graphs [23].

5.1 MOTIVATION APPLICATION

A reachability query with attribute constraints [19, 3, 4, 40] checks whether there is a con-

straint satisfied path from source to destination in an attributed graph. For this type of

query, a user not only offer source and destination as input, he/she has to offer attribute

constraints also. When a ’No’ is returned by the query, the user can be surprised as the

’No’ may be counterintuitive to the user. Hence, the user may want to know why: ’Am I

setting the attribute constraint too restrictive?’, ’Am I missing out some attributes?’,’How

can I reach the destination from the source?’.

How-to-Reach Scenario

For example, a police officer may ask the social network database system whether there is a

path from suspect S to a terrorist leader L such that all people on the path have the country

attribute to be not USA and religion attribute to be A, B, or C. The social network database

returns a ’No’ to the police officer. The officer wonders why there is no such path between

suspect A and terrorist leader L since the officer believes that suspect S and terrorist leader

L must have some relationships or connections. Hence, the officer submits a How-to-Reach

query to the social network database for a reason. The system discovers that there is such

a path from S to L if the attribute constraints are set to any country to be not in USA and

religion to be A, B, C, or D. After analyzing the answer of the How-to-Reach query, the officer
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realizes that he/she forgot to consider religion D and indeed, adding religion D to attribute

constraint can also imply the close relationship of suspect S and terrorist leader L. In this

scenario, the How-to-Reach query cleared the question of the officer and helped him/her to

fully utilize the social network for crime investigation. Without the How-to-Reach query,

the intuition that there is a relationship between S and L may have already been given up

by the officer.

How-to-Reach query is a kind of Why-Not query [47], which has been studied in many

domains [48, 47, 49, 50, 51, 52, 53, 54, 55, 56] etc. However, to the best of our knowledge,

we are the first to address Why-Not query on attributed graphs.

5.2 CHALLENGES AND TECHNICAL CONTRIBUTIONS

5.2.1 Challenges

The major challenges of computing answers for How-to-Reach queries lie in three folds.

Given a source and destination, there are an exponential number of attribute constraint

combinations that would result in a ’Yes.’ Hence, trial and error is not a practical approach.

Finding the shortest path is a potential solution. However, the online computation of shortest

path is costly. Furthermore, as the quality of a path is related to the initial attribute

constraints, negative cost and cycle may happen during shortest path graph traversal, which

makes efficient shortest path algorithm (e.g. Dijkstra’s algorithm) to be inapplicable. A

simple yet effective way for avoiding negative cost and cycle would be the first task for an

efficient index construction and query processing.

Since attribute constraint is a query parameter, cost/penalty of a path can only be

computed during query time. That makes all shortest path indexes that require knowledge

of shortest paths between vertices cannot be directly adopted. Without knowing the attribute

constraint, it is unclear which paths to precompute since any path can be the best or worst

one.

Since attribute constraint is a query parameter, an index for how-to-reach query involves
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storing of attributes on paths between vertices. Unlike directly storing topological distance,

storing attributes on paths consumes a lot of storage space as attribute between vertices

accumulates along the paths. That makes directly applying existing traversal based shortest

path indexes (e.g. landmark technique) space inefficient.

5.2.2 Technical Contributions

Our first contribution is to introduce and define a new How-to-Reach query which can be

implemented in attributed graph database systems for improving databases’ usability. Since

there may exist many attribute constraints that would allow source and destination to be

connected, we further propose a metric that would reflect the importance of attribute values

for computing answer quality.

Our second contribution is to make a traditional shortest path algorithm (i.e. Dijk-

stra’s algorithm) which is commonly implemented in graph/attributed graph database sys-

tems [74, 75, 76] to be able to find optimal answers for How-to-Reach queries. We first

studied the issues of directly applying Dijkstra’s algorithm for How-to-Reach query. We

discovered the problem of possible decreasing of cost and returning of sub-optimal answers.

Then, we propose a simple trick that 1)does not require heavy modification of existing imple-

mentations in graph database systems and 2)is proven to be able to allow existing shortest

path algorithms to return optimal answers.

Although after applying our trick, Dijkstra’s algorithm can return optimal answer, we

observed that 1)the computation time of Dijkstra’s algorithm is unacceptance for inpatient

users (i.e. ≈50sec) and 2)the hop distance of the optimal s− t path tends to be meaningless

(i.e. ≈1500 hops). Hence, our third contribution is to propose the station index, which is

a time and space efficient non-traversal based index that returns high-quality approximate

answers with reasonable hop distances.

Based on our experimental study(Figure 5.7, 5.8, and 5.9), we discover that by picking

≈5% of all vertices in graphs with degree ≈ 30 as stations, all sources and destinations

can be almost adjacent to a station. Given this observation, the station index chooses to

only focus on precomputing paths between stations using the Dijkstra’s algorithm with our
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trick. During query time, one of the paths between stations that are adjacent to source

and destination are chosen as the answer. Furthermore, in order to make the answer more

meaningful, we propose a simple hop reduction function that can harness the hop distance

of answers while still maintaining high answer quality.

Finally, we evaluate our new techniques using both real and synthetic graphs with dif-

ferent parameter settings. We found that our new techniques can effectively reduce total

computation time with a small trade-off in answer quality.

5.3 PROBLEM DEFINITION

Based on definitions in [19], we propose the definition of How-to-Reach query and How-to-

Reach query answer quality(penalty) in this section. In this chapter, we assume that the

higher the penalty is, the poorer the answer quality is.

Problem Statement [How-to-Reach Query qhw(C0, s, t, G)] Given attribute constraints

C0, s, and t, How-to-Reach Query return C ′ such that the answer of qr(C
′, s, t, G) is ’Yes’,

where the answer of qr(C0, s, t, G) is ’No’.

5.3.1 Answer Quality

Definition 23. [Dropped Constraint Value Cdrop(C
′, C0)]

Cdrop(C
′, C0) = {S0

1/S
′

1, S
0
2/S

′

2, ..., S
0
dv/S

′

dv}

where S0
i ∈ C0 and S

′

i ∈ C ′

Intuitively, Cdrop(C
′, C0) contains the set of attribute values that are in C0 but not in C ′.

Definition 24. [Penalty of an Attribute Constraint Value Pa]

Pa(G) =
|Va|
|V |
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where Va = {v|a ∈ Di ∧ Ai(v) = a ∧ v ∈ V }

and G = (V,E,Av)

That is Va is a set of vertices that have attribute value a in attribute i and Pa(G) is the

percentage of vertices in G that have attribute value a in attribute i. We argue that the

penalty of attribute value should depend on how the attribute value affects the number of

vertices that satisfy attribute constraints. For example, we knows that dropping a gender

attribute value ’male’ would make half of the vertices in a social network fail to satisfy

attribute constraints while dropping a hobby ’baseball’ may not have such a big effect.

Definition 25. [Dropped Constraint Value Penalty ∆Cdrop(C
′, C0, G)]

∆Cdrop(C
′, C0, G) =

|Cdrop(C
′,C0)|∑

i=1

[ |S0
i /S
′
i |∑

j=1

Pj(G)

]

Intuitively, the inner summation sums up the drop constraint penalty for 1 attribute

dimension and the outer summation sums up drop constraint penalty of all attribute dimen-

sions.

Definition 26. [New Constraint Value Cnew(C ′, C0)]

Cnew(C ′, C0) = {S ′1/S0
1 , S

′

2/S
0
2 , ..., S

′

dv/S
0
dv}

where S0
i ∈ C0 and S

′

i ∈ C ′

Intuitively, Cnew(C ′, C0) contains the set of attribute values that are in C ′ but not in C0.

Definition 27. [New Constraint Value Penalty ∆Cnew(C ′, C0, G)]

∆Cnew(C ′, C0, G) =

|Cnew(C′,C0)|∑
i=1

[ |S′i/S0
i |∑

j=1

Pj(G)

]
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New constraint penalty is defined similar to dropped constraint penalty, except that

Cnew(C ′, C0) is used.

Definition 28. [Penalty P (C ′, C0, G)]

P (C ′, C0, G) = ∆Cdrop(C
′, C0, G) + ∆Cnew(C ′, C0, G)

Finally, penalty is defined to be the sum of dropped constraint penalty and new constraint

penalty. This penalty value reflects how different is the answer of How-to-Reach query C ′

from original attribute constraints C0.

5.4 FINDING OPTIMAL ANSWER

In this section, we will show an example of directly adopting shortest path algorithm for

finding a path from s to t. Then, we will introduce how to transform the graph so that

Dijkstra’s algorithm can be adopted for finding the optimal answer. A trick is also mentioned

for easy implementation in any existing attributed graph database systems.

5.4.1 Problem Of Applying Shortest Path Algorithm Directly

Suppose we directly adopt a shortest path algorithm (e.g. Dijkstra’s algorithm) by propagat-

ing the attributes and defining the distance to be the penalty (Definition 28). Algorithm 7

is a typical implementation of Dijkstra’s algorithm, except that constraint paths are main-

tained during graph traversal (line 12), and the distance is defined as the penalty (line 13).

Unfortunately, this approach would have two major issues.

Definition 29. [Constraint Path cp(vi, vj)] is the union of vertex attribute values on a

path from vi to vj.

cp(vi, vj) =

|p|−1⋃
k=2

vk, where p = {vi, ..., vj}

73



Algorithm 7 How-to-Reach Algorithm

1: procedure Dijkstra(C0, s, t, G)

2: PrioirtyQueue q . priority based on penalty Pcur

3: q.put((s, {}, 0)) . (vertex,const. path,penalty)

4: while q.empty() = false do

5: (cur, cpcur, Pcur)← q.pop()

6: if cur = t then

7: return cpcur

8: end if

9: if visited[cur] = true then

10: continue

11: end if

12: visited[cur]← true

13: for all v ∈ G[cur].adjList do

14: cpv ← cpcur ∪G[v].attr

15: Pv ← P (cpv, C0)

16: q.put(v, cpv, Pv)

17: end for

18: end while

19: end procedure

Suppose there is only 1 attribute - country and C0 = {USA, JAP}. In Figure 5.1 and 5.2,

vertex attributes are shown figure (a) and penalty of visiting a vertex is shown in figure (b).

5.4.1.1 Possible Decreasing Penalty Figure 5.1 shows an example of a possible de-

crease in the penalty during graph traversal. By using Dijkstra’s algorithm, in Figure 5.1(b),

the shortest path is s→ USA→ SG→ SG→ t with Penalty = 7. However, the real short-

est path is s → JAP → USA → UK → t with Penalty = 1 since going through this path

would visit the USA vertex which reduces the penalty by 20 i.e. ∆Cdrop({JAP}, C0, G) =

20 → ∆Cdrop({USA, JAP}, C0, G) = 0. Unfortunately, Dijkstra’s algorithm assumes that

negative penalty does not exist. As a result, it cannot find the shortest path. Even though
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s t

USA SG SG

JAP USA UK

(a)Original Attr. Graph

s t

+2 +5 +0

+20 -20 +1

(b)Ans:{USA, SG}, Penalty=7

Figure 5.1: Possible Decreasing Penalty

Bellman-Ford algorithm can be used for a graph with negative penalties, it has O(|V ||E|)

time complexity, which makes it to be prohibitive for large graphs.

5.4.1.2 Sub-optimal Answer Quality Figure 5.2 shows an example of using shortest

path algorithm (with penalty as distance) for finding a path from s to t. In this exam-

ple, the negative penalty does not exist. Since ∆Cdrop({USA}, C0, G) = 2 is a lot smaller

than ∆Cdrop({JAP}, C0, G) = 20, the shortest path algorithm would choose the upper path.

Notice that the penalty of {USA, SG} is not 12 as the penalty of ∆Cnew({SG}, C0, G)

should not be counted twice. Although {USA, SG} is found using the shortest path algo-

rithm, the answer found is not optimal in term of penalty. The optimal answer should be

{USA, JAP,UK} with penalty=1 as ∆Cdrop({USA, JAP,UK}, C0, G)+

∆Cnew({USA, JAP,UK}, C0, G)=0+1.

Definition 30. [Optimal Answer Copt] is an attribute constraint such that P (Copt, C0, G)

is minimum among all possible constraints C where the answer of qr(C, s, t, G) is ’Yes’.

{∀C ∈ CS, P (Copt, C0, G) ≤ P (C,C0, G)} ∧ {Copt ∈ CS}

where CS = {C|qr(C, s, t, G) =′ Y es′}
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s t

USA SG SG

JAP UK UK

(a)Original Attr. Graph

s t

+2 +5 +0

+20 +1 +0

(b)Ans:{USA, SG}, Penalty=7

Figure 5.2: Sub-optimal Answer Quality

5.4.2 Attributed Graph Transformation

Given the sub-optimality and decreasing penalty issues mentioned in the previous section,

in this section, We propose to transform the attributed graph G to the constraint union

attributed graph G′.

Definition 31. [Constraint Union Attributed Graph G′] is an attributed graph with

attributes equal to the union of attributes in G and C0.

G′ = (V,E,Av ∪ C0)

For example, all country vertex attributes in Figure 5.4(a) are union with C0 = {USA, JAP}

and become the vertex attributes in Figure 5.3(a).

Lemma 3 states that given G′, when penalty (Definition 28) is used as distance, non-

decreasing of penalty can be achieved during graph traversal.

Lemma 3. [Non-decreasing of Penalty] In Dijkstra(s, t, C0, G
′) (Algorithm 7), Pv(line

13) must be always greater than or equal to Pcur(line 5).

Proof. We have to consider 2 cases for this proof.

• Case 1 cur = s: Since cur=s, we know that Pcur = 0 and cpcur = {}. ∆Cdrop(cpv, C0, G
′) =

0 as cpv are superset of C0. ∆Cnew({}, C0, G
′) ≤ ∆Cnew(cpv, C0, G

′) as cpv = {}∪ v.attr.

Therefore, Pcur = P (cpcur, C0, G
′) ≤ P (cpv, C0, G

′) = Pv.
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s t
USA,JAP USA,JAP,UK USA,JAP,UK

USA,JAP USA,JAP,SG USA,JAP,SG

(a)Const. Union Attr. Graph

s t

+0 +5 +0

+0 +1 +0

(b)Ans:{USA, JAP,UK}, Penalty=1

Figure 5.3: Optimal Answer Quality

• Case 2 cur 6= s: ∆Cdrop(cpcur, C0, G
′) = ∆Cdrop(cpv, C0, G

′) = 0 as cpcur and cpv are

superset of C0. ∆Cnew(cpcur, C0, G
′) ≤ ∆Cnew(cpv, C0, G

′) as cpv = cpcur ∪ v.attr. There-

fore, Pcur = P (cpcur, C0, G
′) ≤ P (cpv, C0, G

′) = Pv.

5.4.2.1 Easy Implementation The construction of constraint union attributed graph

can actually be avoided. The trick is to make the initial constraint path to be C0, instead

of empty. Obviously, this can be easily implemented in Dijkstra’s algorithm of any existing

attributed graph database systems.

5.4.3 Proof of Optimal Answer Quality

In this section, we will prove that even though the Dijkstra’s algorithm is performed on G′,

the answer is still optimal with respect to G.

Lemma 4. [Dropped Constraint Penalty is Zero] Answer C ′ returned by Dijkstra(s, t, C0, G
′)

(Algorithm 7) has ∆Cdrop(C
′, C0, G) = 0.

Proof. As C ′ is always a superset of C0, ∆Cdrop(C
′, C0, G

′) = ∆Cdrop(C
′, C0, G) = 0.
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Lemma 5. [New Constraint Penalty is Minimum] Answer C ′ returned by

Dijkstra(s, t, C0, G
′) (Algorithm 7) has the minimum ∆Cnew(C ′, C0, G) among all constraints

C that have qr(C, s, t, G) = Y es.

Proof. ∆Cdrop(cpcur, C0, G
′) is always zero as G′ = (V,E,Av ∪ C0). Hence, at anytime dur-

ing the graph traversal, P (cpcur, C0) = ∆Cnew(cpcur, C0)-(♣). Lemma 3 states that penalty is

non-decreasing inDijkstra(s, t, C0, G
′). Since penalty is non-decreasing, Dijkstra(s, t, C0, G

′)

can find C ′ with minimum P (C ′, C0, G
′)-(♠). Based on (♣) and (♠), we know that

Dijkstra(s, t, C0, G
′) can find C ′ such ∆Cnew(C ′, C0, G

′) is minimum among all constraints

C that have qr(C, s, t, G
′) = Y es-(F).

Now, we switch from G′ to G. We use proof by contradiction. Assumption: Suppose

there exists C ′′ such that ∆Cnew(C ′′, C0, G) < ∆Cnew(C ′, C0, G) and qr(C
′′, s, t, G) = Y es.

Step 1: Let Gnew = (V,E,Av/C0). Since ∆Cnew(C ′′, C0, G) and ∆Cnew(C ′, C0, G) are

only contributed by attribute values in Av/C0, ∆Cnew(C ′′, C0, Gnew) = ∆Cnew(C ′′, C0, G) <

∆Cnew(C ′, C0, G) = ∆Cnew(C ′, C0, Gnew) -(♥).

Step 2: Let G′new = (V,E, (Av ∪ C0)/C0). Since Av/C0 equals to Av ∪ C0/C0, Gnew =

G′new-(♦).

Step 3: By (♥) and (♦), we know that ∆Cnew(C ′′, C0, G
′
new) < ∆Cnew(C ′, C0, G

′
new)-(�)

Step 4: Since ∆Cnew(C ′′, C0, G
′) and ∆Cnew(C ′, C0, G

′) are only contributed by attribute

values in (Av∪C0)/C0, ∆Cnew(C ′′, C0, G
′) = ∆Cnew(C ′′, C0, G

′
new) and ∆Cnew(C ′, C0, G

′
new) =

∆Cnew(C ′, C0, G
′) -(

⊙
).

Conclusion: Based on (�) and (
⊙

), we get ∆Cnew(C ′′, C0, G
′) < ∆Cnew(C ′, C0, G

′).

This result contradicts with (F) (there shoud not exist such C ′′.). Therfore, we know that

∆Cnew(C ′, C0, G) is also minimum among all constraints C that have qr(C, s, t, G) = Y es.

Theorem 8. [Answer Quality is Optimal] Answer C ′ returned by Dijkstra(s, t, C0, G
′)

(Algorithm 7) has optimal quality i.e. C ′ = Copt.

Proof. As ∆Cdrop(C
′, C0, G) is 0 (by Lemma 4) and ∆Cnew(C ′, C0, G) is minimum (by Lemma 5),

P (C ′, C0, G) must equal to P (Copt, C0, G).
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5.5 STATION INDEX FOR SUBOPTIMAL ANSWER

We observe that the optimal constraint path found using the method in the previous section

would probably be the union of attributes on a very long s − t paths. For example, in

Figure 5.5(e) and (f), we can see that the average length of s− t path found is around 1000-

1400 hops. Although the answer quality of such a long path is high, it is meaningless to users.

Furthermore, since the propagation of constraint path involves frequent copy of constraint

paths and computation of penalties (Algorithm 7 line 12 and line 13), the execution time can

be very slow (Figure 5.5 (a) and (b)). Hence, in this section, we propose indexing techniques

(Section 5.5.1) that can reduce execution time and a hop reduction function (Section 5.5.2.1)

for reducing the length of s− t path while maintaining high answer quality.

5.5.1 Station Index Construction

The idea of station index is to first pick a set of vertices as stations. Then, multiple constraint

paths are pre-computed between stations for serving sources and destinations that are very

close to the stations. Figure 5.4 illustrates the idea. In Figure 5.4, 9 vertices are picked

as stations (st1, .., st9). Constraint paths are precomputed between every pair of stations.

Given source s and destination t, constraint path is found by concatenating paths from s

to st1, st1 to st9, and st9 to t. If s is very close to st1 and t is very close to st9, then

basically, no graph traversal is needed. Furthermore, if s and t are adjacent to st1 and st9

and the quality of the precomputed constraint paths between st1 and st9 are very high, the

sub-optimal constraint path s→ st1 → st9 → t would have very high quality. Based on this

intuition, we design our station index.

5.5.1.1 Index Construction Algorithm Algorithm 8 is the pseudo code for station

index construction. Firstly, a set of vertices is picked as stations (line 2). The algorithm

performs a graph traversals for every station (lines 5-19). For each station, it assumes C0 is

empty and finds |AttrSub| of optimal constraint paths from that station to all other stations

(lines 6-19), where AttrSub is a set that contains subsets of attributes that a graph traversal
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    st9

     st1         st6

          st3

    st2     st5   st4

s

t

        st7

    
   st8           
 

Inter-St Constraint Path

Figure 5.4: Station Index: s,t are served by nearby stations.

focuses on. For example, if AttrSub contains {{A1A2}, {A5}}, the penalty computation of

the first graph traversal (line 18) only considers attribute 1 and 2; the penalty computation

of the second graph traversal (line 18) only considers attribute 5.
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Algorithm 8 Station Index Construction

1: procedure StationIndexConstruction(m,G)

2: Stations← ChooseStations(m,G)

3: StationBP [m][m][|AttrSub|] . for storing multiple BP between stations

4: /*Compute mulitple inter-station*/

5: for all st ∈ Stations do

6: for all A′() ∈ AttrSub do . AttrSub is a subset of attr. dimension

7: PrioirtyQueue q . priority based on penalty Pcur

8: q.put((st, A′({}), 0)) . (vertex,BP,penalty)

9: while q.empty() = false do

10: (cur, cpcur, Pcur)← q.pop()

11: if visited[cur] = true then

12: continue

13: end if

14: visited[cur]← true

15: if isStation(cur) then

16: StationBP [st][cur].add(cur.cp)

17: end if

18: for all v ∈ G[cur].adjList do

19: cpv ← cpcur ∪ A′(G[v].attr)

20: Pv ← P (A′(cpv), A
′({}))

21: q.put(v, cpv, Pv)

22: end for

23: end while

24: end for

25: end for

26: return (StationBP, Stations)

27: end procedure

5.5.1.2 Station Picking Strategy We propose to pick vertices in local cover as stations.

81



Definition 32. [Local Cover] LC is a subset of vertices in |V | such that for any vertex v

in |V |, there exists a vertex v′ in LC, v is adjacent to v′.

LC ⊂ V s.t.∀v ∈ V, ∃v′ ∈ LC s.t. v adj. v′

Notice that local cover is different from vertex cover and edge cover. Based on our

experimental study (Figure 5.7, 5.8, and 5.9), we discover that for our social network datasets,

the size of local cover would only be around 5% of the total number of vertices. We believe

that for other social networks with higher degree, the size of local cover would be even smaller

than 5% of the total number of vertices. Since there are many possible LC is a graph, we

propose a simple heuristic for computing LC. The intuition of the heuristic is to greedily

find stations that can serve more adjacent vertices so as to reduce the size of LC. We will

leave more complicated strategy for future study.

Algorithm 9 is the pseudo code. Firstly, degrees of all vertices are computed (line 3).

Then, all vertices are inserted into a priority queue with the degree as the priority (lines

4-5). Then, the vertex v with the highest number of adjacent vertices that is not covered is

pop from q (line 7). v is chosen as a station (line 8). As adjacent vertices v′ of v is covered

by v, all v′ are deleted from q (lines 9-10) and priorirty of adjacent vertices v′′ of v′ in q need

to be updated (lines 12-13).
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Algorithm 9 Station Picking Strategy

1: procedure ChooseStations(m,G)

2: Stations[m] . to store m stations

3: Degv ← ComputeV Deg(G)

4: PriorityQueue q

5: Insert(q,G.V,Degv) . priority on deg.

6: for all i = 1..m do

7: v ← q.pop()

8: Stations[i]← v

9: for all v′ ∈ Adj(v) do

10: Delete(q, v′) . v′ is covered

11: for all v′′ ∈ Adj(v′) do

12: UpdatePriority(q, v′′) . update pri. of v”

13: end for

14: end for

15: end for

16: return Stations

17: end procedure

Assume that attribute values and query workload are uniformly distributed, we believe

that the performance of station index would decrease with the number of station. Also, the

performance of station index is sensitive to the station picking strategy. That is because

for other strategies (e.g., random station), they cannot maintain the property of local cover.

The breaking of the local cover property makes some sources and destinations in the query

workload being far away from a station. As a result, the answer quality of those queries is

very poor.

5.5.1.3 AttrSub Picking Strategy We propose to pick subsets of attributes intoAttrSub

based on historical query workload. We suggest picking top-k most frequent subsets of at-

tributes in a given workload, where k depends on available storage space.
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5.5.1.4 Space Consumption Analysis The space consumption of station index can

be derived by:
(1 +m)×m

2
× s1 × |AttrSub|

where m is the number of stations, s1 is the average size of a inter-station constraint path.

For comparison, the space consumption of landmark index can be derived by:

|V | ×m× s2 × |AttrSub|

where m is the number of landmarks and s2 is the average bound path size to a landmark.

In general, s2 is close to s1.
For example, we assume that s1 = s2 = 30B,|AttrSub| = 30 and |V | = 10m. The space

consumption of 2 indexing techniques are shown in Table 5.1. We can see that given the
same amount of storage capacity, a lot more stations can be computed than landmarks.

Table 5.1: Space Consumption

Technique Num of LM/Station (m) Storage Space

Station Index 5000 ≈10.5 GB

Landmark Index 5000 ≈31.2 TB

Station Index 50000 ≈1.0 TB

Landmark Index 50000 ≈40.8 TB

5.5.1.5 Time Complexity Analysis Time complexity of algorithm 8 can be derived

by:

m× |AttrSub| ×Dijkstrafull

where Dijkstrafull is the complexity of a shortest path algorithm on the whole graph. For

station index construction, parallel computation in different machines can be used for speed-

ing up station index construction after all stations are chosen as every full graph traversal

is independent.
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5.5.2 Efficient How-to-Reach Query Processing

5.5.2.1 Hop Reduction Since we observe that the hop distance of optimal answer is a

large number, we want to harness the hop distance so as to make the result more meaningful.

This can be done by redefining the priority function as below:

priority = max(hop− ExpectedHop, 0) + penalty × hop

Here, hop is the hop distance from s and expected hop is a user input parameter. The

intuition of this function is to a)offer credits to paths that are less than ExpectedHop from s

and b)penalize more on paths that are far away from s. This function is also used for station

index construction. The expected hop can be decided based on historical query workload.

5.5.2.2 Query Algorithm During query time, s and t looks for the closest stations sts

and stt. Since there must be a station adjacent to s and t if all vertices in LC are chosen as

stations. The closest stations of s and t are actually very close to them. After finding stv

and stt, precomputed constraint paths between them are retrieved from primary/secondary

storage. If AttrSub contains attributes in C0, only the constraint path that is computed

based on the attribute in C0 is retrieved; otherwise, all constraint paths computed using

attributes that overlap with attributes in C0 are retrieved, and the best one is adopted. The

final constraint path is the union of constraint path s to sts, best constraint path between

sts and stt, and constraint path stt to t.

5.6 EXPERIMENTAL RESULT

5.6.1 Experiment Setup and Dataset

All experiments were performed using C++ implementations under a Linux machine with

an Intel 4GHz CPU (4-core), 64 GB of memory, and 1 TB solid state drive with 512k block

size.
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Table 5.2 is a summary of our graph dataset. In order to control the number of attributes

and attribute domain sizes, we generate attributes (Table 5.3) based on vertex attributes in

Facebook graph-API [70].

Table 5.2: Dataset Information

Real Graph Num of Vertex Num of Edge

fb-bfs1 [72] 1.18m 29.78m

soc-pokec [71] 1.63m 30.6m

Synthetic Graph Num of Vertex Num of Edge

Small-World [71] 1m 50m

2m 100m

5m 250m

10m 500m

Erdos-Renyi [71] 1m 50m

2m 100m

5m 250m

10m 500m
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Table 5.3: Attributes

Vertex Attribute Domain Size,Distribution (µ,σ)

AgeGroup 10, gau(5,2.5)

Education 5, gau(3,1.25)

Gender 2, uni.

HomeCountry 100, gau(50.25)

Interested in 3, uni.

Languages 50, gau(25,12.5)

Relationship status 2, uni.

Religion 20, gau(10,5)

Work 50, uni.

Political 10, gau(5,2.5)

Table 5.4: Parameter Setting

Parameter Value

Num V Attr 10

Num V Constraint 10, 20,30,40,50

Number of Stations 5000

Number of BP per Station 20

Synthetic Graph Size(|V |+ |E|) 1m+50m, 2m+100m,5m+250m

We compare 5 different approach:

1. SP finds constraint paths using Dijkstra’s algorithm.

2. Penopt finds optimal quality constraint paths using approach in Section 5.4.

3. PenHop finds constraint paths using approach in Section 5.4 with hop reduction.

4. StationHop finds constraint paths using station index and hop reduction.

5. LM finds constraint paths using landmark index. LM precomputes constraint paths from

every landmark to every vertex. During query time, constraint paths can be computed
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by cp(s, LMi) ∪ cp(LMi, t). Thes best quality constraint path among all cp(s, LMi) ∪

cp(LMi, t), i = 1...|LM | is returned as the answer.

Expected pros and cons of each approach is shown in Table 5.5.

Table 5.5: Expected Pros and Cons of Baselines

Solution Ans. Quality Query Time Num. of Hop

SP Low Fast Shortest

Penopt Optimal Slow Very long

PenHop High Slow Reasonable

StationHop High Fast Reasonable

LM Low Fast Reasonable

5.6.1.1 Experiment 1 - Comparison of Different Approaches In this experiment,

we try to vary the number of vertex attribute constraints and graph size (Section 5.6.2 and

Section 5.6.3) so as to observe the change of overall running time, answer quality, and hop

distance of our techniques and baselines. Parameter settings are summarized in Table 5.4.

We do not vary the number of stations since it is obvious that the more station we have, the

better the answer quality. We also do not vary the number of attributes since we assume

that there would not be very specific queries that would involve more than ten attributes

in attribute constraints. The number of vertex attribute constraint in this experiment are

defined as:
dv∑
i=1

(|Dv
i | − |Sv

i |) (5.1)

(Dv
i and Sv

i , are the same as Di, Si in Definition 11,12).

The station index is constructed based on historical query workload. The historical

query workload contains 1,000 queries. The involved attributes and the expected hop of

these queries are generated based on two Gaussian distributions - gau(3, 2) and 10. The

attribute constraint values are uniformly generated. The top 20 most frequent attribute

combinations are used for constructing station index (i.e. |AttrSub| = 20 for station index).

The landmark index uses 50 landmarks for constructing index (roughly the same index
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storage size as station index). The 20 most frequent attribute combinations are used for

computing constraint paths for every landmark to every vertex (i.e. |AttrSub| = 20 for

landmark index). For both station index and landmark index, every constraint path is quality

optimal with respect to the combinations of attributes used for computing the paths when

C0 of the attribute combination is empty. The same experiment design is used for real and

synthetic graph experiments. All results are averages of 1000 queries. The involved attributes

and the expected hop of these queries are generated based on two Gaussian distributions -

gau(3, 2) and gau(10, 3). The attribute constraint values are again uniformly generated.

5.6.1.2 Experiment 2 - Hop Distance to Nearest Station/Landmark Analysis

After evaluating the performances of different approaches, we study average hop distance

from sources and destinations to their nearest stations (Section 5.6.4) of fb − bfs1 and

soc − pokec. We generate 5000 queries and vary the number of stations and landmarks to

see how the hop distances change. We also estimate the storage space of station index and

landmark index when |AttrSub| = 20 and s1 = s2 = 30 based on formula in Section 5.5.1.4.

5.6.2 Performance on Real Graphs

In this section, we will present the experimental results of 2 real graphs - fb-bfs1 and

soc − pokec with analysis. Results for varying number of vertex/edge constraints using

default setting are shown in Figure 5.5. The general trend of average running time does

not vary too much when increasing the number of attribute constraint. That is because in

general, execution time of SP ,StationPen, and LM does not really depend on number of

attribute constraints; for Penopt and PenHop, the increase in number of attribute constraint

affects priority of vertices in priority queue, but it is averaged out by large number of queries.

5.6.2.1 Query Time Figure 5.5(a) and (b) show the query time of different approaches.

We can see that the execution times of Penopt and PenHop are the largest. That is mainly

due to 3 reasons: 1)a large part of the graph is traversed so as to find a high-quality path,

2)the propagation of constraint path require copy of constraint path from parent vertex to
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child vertex, and 3)the computation of constraint path penalty is done for every traversed

vertex. As the (hop distance) shortest path is very short on a social network, SP can be

completed relatively fast. StationPen and LM are basically non-traversal based approach,

so their execution time is relatively small.

5.6.2.2 Penalty Figure 5.5(c) and (d) show the penalty of different approaches. The

penalty of SP and LM are the two largest since SP only consider hop distance and LM

replies on landmarks that are far away from source and destination. Obviously, Penopt should

have the smallest penalty since it is proven to have optimal answer quality. Surprisingly,

PenHop also has penalty close to Penopt. This shows that actually, there exist multiple paths

with similar penalties from a source to a destination and different hop distances. StationPen

also return answers with penalties close to optimal even though we just used 5000 stations

due to space limit. The success of StationPen approach is contributed by those high-quality

precomputed paths between stations and the fact that those stations are indeed very close

to sources and destinations.

5.6.2.3 Hop Distance Figure 5.5(e) and (f) show the hop distance of paths found by

different approaches. Obviously, SP would have the shortest hop distance. The hop distance

of Penopt is amazingly large since Penopt would look for optimal paths without caring about

hop distance. The hop distance of PenHop is controlled by the hop reduction function.

Since the precomputed paths of StationHop are computed based on PenHop, hop distance

of StationHop would be similar to PenHop.

5.6.3 Performance on Synthetic Graphs

In this experiment, we used setting in Table 5.4 with number of vertex constraint 20 and

attributes in Table 6.2 for Small −World graphs with different sizes. In Figure 5.6(a), we

can see that in general, query time of Penopt and PenHop increase with graph size. However,

query time of StationPen and LM do not really increase since they are non-traversal based

approaches. The penalties of all approaches increase with data size. However, the increase is
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Figure 5.6: Vary Graph Size

not significant as SmallWorld is a social network which contains a lot of short paths between

vertices with similar attributes. That matches with the slight increase of hop distances in

Figure 5.6(c).

5.6.4 Hop Distance From Nearest Station/Landmark

Figure 5.7, 5.8, and 5.9(a) show the average hop distance from source to the nearest sta-

tion/landmark plus the hop distance from destination to the nearest station/landmark. We

can see that the average hop distance can easily go to around 2 when the number of stations

or landmarks is around 5% of the total number of vertices. For example, when there are 50k
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Figure 5.7: [Real Graphs] Hop Dist to Nearest St/LM and Est. Space

stations/landmarks, the average distance is very close to 2 for the SmallWorld graph with 1

million vertices (St/LM − 1mV 50mE in Figure5.8(a)). That means almost every vertex is

adjacent to a station/landmark. If we assume the same number of stations and landmarks

are used, StationHop and LM would result in very similar performance. However, from

Figure 5.7, 5.8, and 5.9(b), we can see that the space consumption of landmark is actually

very large and would grow very fast.
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6.0 VISUALIZABLE PATH SUMMARY COMPUTATION

In this Chapter, we study the problem of effective computation of visualizable path sum-

mary [24].

6.1 MOTIVATION APPLICATION

Attributed graph is widely used for modeling a variety of information networks [2, 1], such as

the web, sensor networks, biological networks, economic graphs, and social networks. When

a new dataset is modeled as an attributed graph or users are not familiar with the data,

users may not know what can be retrieved from the attributed graph. Sometimes, users

may have some intuition about the query, but how to exactly formulate queries (e.g. what

attribute constraints to use) is still unclear to users.

In this chapter, we propose the idea of visualizable attributed path summary. In general,

an attributed path summary is a grouping of vertices such that vertices in each group contain

a path from source to destination and the entropy of attributed values within a group is low

and biased toward the intuition (i.e. attribute values) given by users. In addition, we argue

that a visualizable attributed path summary can be easily visualized and understood by

users.

Social Network: For example, a police officer has a social network, but he/she is not

familiar with the attribute values and graph structure of the social network. The agent

wants to investigate the relationship between Duncan and a terrorist leader using the social

network as the officer believes that social network would contain a lot of useful insight for

investigation. The agent just got an intuition that people between Duncan and the terrorist
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leader may live in the country C1 and believe in religion R1,R2. The attributed path summary

query computes a summary of paths from Duncan to the terrorist leader that are close to the

offered attribute values (i.e. C1,R1 or R2). The path summary offers insight for the agent

to formulate different path queries for investigation.

Metabolic Network: In metabolic networks, each vertex is a compound, and an edge

between two compounds indicates that one compound can be transformed into another one

through a certain chemical reaction. Vertex attributes can be features of the compound; edge

attributes can be details of a chemical reaction between two compounds. A reachability query

on metabolic networks discovers whether compound A can be transformed to compound

B under given path attribute constraints. A biologist wants to study how to transform

compound A to compound B. The biologist only knows that cost-to-trigger-reaction has to

be around $10. The attributed path summary computes a summary of paths from compound

A to compound B that are close to the offered attribute value (e.g. cost-to-trigger-reaction≈

$10). The path summary offer insight for the biologist to formulate path queries for the

study.

6.2 CHALLENGES AND TECHNICAL CONTRIBUTIONS

6.2.1 Challenges

Nowadays, a big graph with a few million vertices is common, and that results in an expo-

nential number of paths between any two vertices. A large number of possible paths between

2 vertices makes computing path summary a challenging task.

Among a huge number of possible paths between 2 vertices, which type of path the

user prefers is unknown since even the user is not familiar with the graph, and he/she may

not know what he/she can get from the graph. Therefore, our task is to compute a path

summary for the user.

Computing an effective summary for a user is non-trivial as no user would prefer to read

a lot of text to understand the summary. Hence, an effective path summary is a summary
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that can be easily visualized by users. Visualizing a large portion of the graph is not feasible

as that would overwhelm the user. On the contrary, if the summary is too concise, the user

may not get the information he/she wants.

6.2.2 Technical Contributions

Our first contribution is to introduce and define the attribute path summary query on at-

tributed graph problem. We define attributed path summary to be groups of vertices that

contain users’ intuition as well as satisfy some path properties. The users’ intuition is ex-

pressed as hints for computing the path summary. Users can offer whatever attribute values

that they consider as the hint. These summaries offer insight to users about the attribute

values and connection between the given source and destination vertices.

Our second contribution is to propose an efficient and effective approach for finding

attributed path summary. Our proposed approach consist of three phrases. The first phrase

efficiently finds all key vertices that have attribute values belonging to the hint offered by the

user. Including key vertices ensures the summary would represent paths with attribute values

that are close to the intuition of users. Then, based on those key vertices, a novel stitching

algorithm is proposed to connect the source, the destination, and key vertices together

to form a relatively small key vertex graph. The stitching algorithm finds paths with a

small variation in attribute values between key vertices so that users can easily understand

the attribute distribution between key vertices. After that, high-quality candidate paths

between the source and the destination are found on that small key vertex graph efficiently.

Finally, candidate paths are inflated to vertex groups by greedily including adjacent vertices.

Including adjacent vertices would offer more attribute values choices for users to formulate

their queries.

6.3 PROBLEM DEFINITION

Definition 33. [Attributed Graph] An attributed graph [1] G, is an undirected graph
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.. ... ...

Figure 6.1: Path Summary (P1-blue, P2-orange)

denoted as G = (V,E,Av), where V is a set of vertices, E ⊆ V × V is a set of edges, and

Av = {A(v)} is a set of dv vertex-specific attributes, i.e. ∀v ∈ V , there is a multidimensional

tuple A(v) denoted as A(v) = (A1(v), A2(v), ..., Adv(v)).

Definition 34. [Attribute Hint H] is a set of distinct attribute values.

H = {H1, H2, .., Hdv}

Definition 35. [Contain Function φ(Pi, H)]

φ(Pi, H) =

|Pi|∑
j=1

contain(vj, H)

[right =]contain(vj, H) =

1, ∀k = 1..dv if ∃Ak(vj) ∈ Hk

0, otherwise

For example in Figure 6.1, given thatH = {{USA, SG, JAP}, ∅},P1 = {v1, v3, v13, v14, v18},

and P2 = {v1, v5, v12, v18}, φ(P1, H) = 1+1+1+0+1 = 4 and φ(P2, H) = 1+1+1+1 = 4.

Definition 36. [Attributed Path Summary PSum(G, s, t, l, H)] For an attributed graph

G, PSum(G, s, t, l, H) is a set of vertices {P1, P2, ..., Pk} such that:

1. ∀ v ∈ Pi are connected,
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2. ∃ v, v′ ∈ Pi, v is adjacent to s and v′ is adjacent to t,

3. ∀Pi, Pj ∈ G, i 6= j, Pi ∩ Pj = ∅,

4. ∀Pi, φ(Pi, H) ≥ l,

5. ∀v ∈ Pi, dist(s, v) + dist(v, t) ≤ l, and

6. @P ∈ G ∧ P /∈ PSum(G, s, t, l, H) satisfing condition 1 to 5.

where φ(Pi, H) is the quality of the summary and dist(v, v′) is the shortest distance from v

to v′.

Continuing the above example, in Figure 6.1, given that l = 4, there are two paths

P1, P2 in the attributed path summary. They are P1 = {v1, v3, v13, v14, v18} and P2 =

{v1, v5, v12, v18}. For example, all vertices in P1 are connected, ∃ v3 and v14 adjacent

to s and t, P1

⋂
P2 = ∅, φ(P1, H) = φ(P2, H) = 4 = l, and for all vi ∈ P1, P2, and

dist(s, vi) + dist(vi, t) ≤ 4.

Problem Statement [Attributed Graph Path Summary Query qp] Given an at-

tributed graph G = (V,E,Av), source s, destination t, attribute hint H, and lower bound of

number of vertices in every Pi that contains at least one attribute value in attribute hint l,

qp return an attributed path summary PSum(G, s, t, l, H).

6.3.1 Quality of Path Summary

The quality of path summary is defined as the entropy in [25] and is reformulated in defini-

tion 37.

Definition 37. [Path Summary Quality]

entropy(Pj) =
dv∑
i=1

entropy(ai, Pj)

where

entropy(ai, Vj) = −
ni∑
n=1

pijnlog2pijn

and k is the number of Pi in PSum, pijn is the percentage of vertices in Pj which have value

an on attribute ai.

For example, entropy(Country, P1) = −(3
5
log2

3
5

+ 1
5
log2

1
5

+ 1
5
log2

1
5
).
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6.4 PATH SUMMARY VISUALIZATION ALGORITHM

In this section, we introduce our path stitching approach for computing attributed path

summary effectively based on attribute hint.

6.4.1 Algorithm Design

Our heuristic approach has the following steps and design principles.

1. Firstly, we want to find all vertices - key vertices, that are related to the given attribute

hint. The search of key vertices ensures that all vertices that match any attribute value

in the hint and fulfill the distance requirement (Condition 5, Definition 36) are used for

computing a path summary.

2. Given those key vertices, we perform a concurrency graph traversal that systematically

stitches key vertices, the source, and the destination. Using stitched key vertices, we find

candidate paths that go from the source to the destination via key vertices based on the

entropy of attribute values on the path. Key vertices are vertices that users care and want

to see in the visualized path summary. The stitching algorithm can effectively connect

key vertices so that attribute values on the path between key vertices are consistent.

That offers a clear view for users to understand the attribute distribution between key

vertices.

3. Finally, given the candidate paths, we perform a candidate path inflation for comput-

ing the path summary. Candidate path inflation includes vertices close to vertices in

candidate paths into the candidate paths. That allows users to understand attribute

distributions around key vertices. When users are considering what attribute constraint

to use for their attribute graph queries, they can consider attribute values on candidate

paths as well as attribute values close to the candidate path as an alternative.

Algorithm details are presented in below sections with conceptual examples.
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6.4.2 Finding Key Vertices

We first introduce the concept of key vertex (Definition 38). Then, we present two steps

that exploit existing approach to efficiently find all key vertices.

Definition 38. [Key Vertex vk] is a vertex that has at least one attribute value belonging

to an attribute value in the attribute hint H.

∀i = 1..dv∀j = 1..dv ∃Ai(v
k) ∈ Hj

where Hj ∈ H

The first step is to retrieve all key vertices. Traditional indexes that support range query

(e.g. B+ tree) can be used to index each attribute. Given H, for each non-empty Sj ∈ H,

we query the corresponding index for a set of vertices that have attribute values in Sj. Then,

we do a union of all these vertices and get the key vertex set Vk. After that, all vertices v

that does not satisfy dist(s, v) + dist(v, t) ≤ l are filtered out.

For example, in Figure 6.1, if the hint contains only Country = USA, all vertices with

attribute value Country = USA (e.g. v1, v3, v5, v18) are retrieved from the precomputed

index (e.g. B+ tree).

6.4.3 Finding Candidate Path

After all key vertices are found, the second step is to find candidate paths that satisfy

constraints in Definition 36.

6.4.3.1 Stitching Algorithm Since key vertices are essential (so as to satisfy condition

4 in Definition 36) for paths in path summary, we do not want to find candidate paths that

do not contain any key vertex. The idea of the stitching algorithm is to connect s − t and

key vertices so as to form candidate paths. During the graph traversal, entropy and hop

distance values are taken into account.

Algorithm 10 is the pseudo code of the stitching algorithm. The stitching algorithm first

puts s, t, and all key vertices (lines 7-13) into the priority queue. Each node in the priority
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queue contains the current vertex, a key vertex, parent of current vertex, the distance from

a key vertex to the current vertex, and the entropy of path from a key vertex to the current

vertex, where the entropy value is used to determine the priority.

Then, the graph is traversed starting from each of the key vertices. When the algorithm

reaches a visited node cur.v (line 16), if key vertex of current node’s parent (key1) is not

equal to the key vertex of curent node (key2) (line 19), the path from key1 to key2 is

recovered and put into PathMap (line 21), edges between vertice key1 and key2 are added

in to KeyV ertexG (lines 22-23), and the algorithm continue (line 22); when the algorithm

reaches a non-visited node (line 25), parent and key vertex of current node is saved (line2

26-27) and current node becomes visited (line 28).

After that, adjacent neighbors of cur.v that satisfy the upper bound distance constraint

(line 30) are put into the priority queue (line 33), where the entropy of the path from the key

vertex to cur.v as well as the distance are taken into account. Finally, the graph traversal

continues until the priority queue becomes empty.

A conceptual example will be presented below.

6.4.3.2 Candidate Path Search After executing the stitching algorithm, KeyV ertexG

and Path are found. The path search algorithm is used to find paths from s to t via

key vertices in the key vertex graph - KeyV ertexG. The actual path are recovered using

path after s − t in KeyV ertexG are found. Both entropy and distance from s are taken

into account in the priority queue. We set priority as entropy + current distance/l if

current distance < l; otherwise, we set priority as entropy + current distance, in order to

pennalize path in KeyV ertexG that are longer than l.

Algorithm 11 is the pseudo code of the path search algorithm. Algorithm 11 finds shortest

path from s to t on KeyV ertexG based on entropy value (line 5). After a path p is found, p

is removed from KeyV ertexG (line 7). The algorithm continues until no more path can be

found.

6.4.3.3 Conceptual Example Figure 6.2 illustrates the concept of stitching algorithm

and candidate path search. Suppose v5 and v15 are key vertices retrieved from the index and
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Algorithm 10 Stitching Algorithm

1: procedure Stitching(G,Vk, s, t, l)
2: Array < bool > visited
3: Array < int > parents
4: Array < Array < int >> KeyV ertexG
5: Array < int > keys
6: priorityqueue < node > qu . lower entropy first
7: node src(s, s, s, 0, 0) . (vert., keyV ert, parent, dist, entropy)
8: qu.push(src)
9: node dest(t, t, t, 0, 0)

10: qu.push(dest)
11: for all vk ∈ Vk do
12: node n(vk, vk, vk, 0, 0)
13: qu.push(n)
14: end for
15: while !qu.empty() do
16: cur ← q.pop()
17: if visited[cur.v] == true then
18: key1← keys[parents[cur.v]]
19: key2← cur.keyV ert
20: if key1 == key2 then . it is just a cycle but not meeting of 2 traversals from diff

KeyVertex
21: continue
22: end if
23: PathMap← ComputePathBetween(key1, key2)
24: KeyV ertexG[key1].push(key2)
25: KeyV ertexG[key2].push(key1)
26: continue
27: else visited[cur.v] == false
28: parents[cur.v]← cur.parent
29: keys[cur.v]← cur.keyV ert
30: visited[cur.v]← true
31: end if
32: for all v ∈ G[cur.v].adj do int v = topology[cur.v][i];
33: if dists[v] + distt[v] > l then
34: continue
35: end if
36: en← CompEntropy(cur.keyV ert, cur.v) + (cur.dist + 1)/l
37: node n(v, cur.keyV ert, cur.v, cur.dist + 1, en)
38: qu.push(n)
39: end for
40: end while
41: return (KeyV ertexG, Path)

42: end procedure

103



v2

v3

v4

v10

v13

v12
v5

v6

v14

v16
v17

v1

v18

v1

v18

v5

v16

Figure 6.2: Stitching Algorithm (left) and Candidate Path (right)

v1 and v18 are s and t respectively. v5 expands to v1, and edges from v1 to v5 and v5 to v1

are put into KeyV ertexG. v5 also expands to v12. v15 expands to v17 and v12. When v15

expands to v12, v12 was occupied by v5 already. Hence, we can put edges v15 to v5 and v5

to v15 into KeyV ertexG. After that, v15 expands to v18 , and edges from v15 to v18 and v18

to v15 are put into KeyV ertexG. Given the KeyV ertexG, candidate paths from s to t are

found based on entropy values, and those candidate paths will be used for path inflation in

the next phrase.

6.4.4 Candidate Path Inflation

After all candidate paths, CandPath are found, the candidate paths are used to form path

summary. We developed the path inflation algorithm which greedily includes vertices into

path vertex groups.

Algorithm 12 is the pseudo code of the path inflation algorithm. Firstly, all vertices in

the CandPath are put into a priority queue which uses entropy as the priority (lines 4-8).

Then, the vertex cur in the candidate path with the lowest entropy are popped from the

priority queue (line 10). If cur was not visited before, cur is included in the path group

PathSummary[cur.PathID] (line 14). After that, all adjacent vertices of cur that satisfy

dists[v] + distt[v] > l or (cur.dist + 1) ∗ 3 > dists[t] (line 19) are pushed into the priority
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Algorithm 11 Path Search Algorithm

1: procedure PathSearch(KeyV ertexG, s, t, l, α)

2: boolean PathFound← true

3: Array < Path > CandPath

4: while PathFound == true do

5: p← FindShortestPath(KeyV ertexG, s, t, l, α)

6: if p! = ∅ then

7: RemovePath(p,KeyV ertexG)

8: CandPath.push back(p)

9: else

10: PathFound← false

11: end if

12: end while

13: return CandPath

14: end procedure

queue with entropy(cur.P ∪v) as cost. (cur.dist+1)∗3 > dists[t] is included so as to prevent

vertices that are too far away from vertices in CandPath are included in the path summary.

The algorithm terminates when the priority queue becomes empty.

Figure 6.3 illustrates the concept of candidate path inflation. Given that v1 → v5 →

v12 → v16 → v17 → v18 is the candidate path. The path inflation algorithm first puts all

vertices (i.e. v5, v12, V16, v17) in the candidate path into the priority queue with entropy of the

candidate path as priority. Firstly, vertices that are adjacent to v5, v12, V16, v17 are included

into the candidate path. Then, other vertices that are adjacent to vertices (e.g. v4, v6) in the

candidate path are gradually included in the candidate path until the distance constraint.

Finally, we will get a subgraph shown in Figure 6.3 (right).
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Algorithm 12 Path Inflation Algorithm

1: procedure PathInflation(G,CandPath, s, t, l)

2: priorityqueue < node > qu

3: Array < bool > visited

4: for all p ∈ CandPath do

5: for all v ∈ p do

6: entropy ← ComputeEntropy(p)

7: node n(v, i, v, 0, l, entropy)

8: qu.push(n)

9: end for

10: end for

11: while !qu.empty() do

12: cur ← qu.pop()

13: if visited[cur.v] == true then

14: continue

15: end if

16: visited[cur.v]← true

17: PathSummary[cur.pathID].push(cur.v) . assign v into that path group

18: for all v ∈ G[cur.v].adj do

19: if dists[v] + distt[v] > l or (cur.dist+ 1) ∗ 3 > dists[t] then

20: continue

21: end if

22: en = ComputeEntropy(PathSummary[cur.pathID], v)

23: node n(v, cur.pathID, cur.dist+ 1, cur.l, cur.keyV ertex, en)

24: qu.push(n)

25: end for

26: end while

27: return PathSummary . return Path Summary

28: end procedure
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Figure 6.3: a Candidate Path (left) and a Vertex Group Pi (right)

6.5 CASE STUDY AND EVALUATION

All experiments were performed under 64-bit Linux Ubuntu 14.04 on a machine with an

Intel 4GHz CPU (4-core), 16 gigabytes of memory, and 1 terabyte solid state drive with

512k block size. All our implementations are in C++ without parallelism.

We first introduce the graph dataset and attributes that we used for the experiments.

Then, we present the result of our case studies. Finally, we look at the change of change

of path summary quality (i.e. change of entropy) along with the change in the expected

number of key vertex l and the number of hints H.

Table 6.1: Dataset and Parameter

Real Graph Num of Vertex Num of Edge

fb-bfs1 [72] 1.18m 29.78m

Parameter Default Vary

Exp. Num of Key Vert. 6 3,6,9,12

Num of Hint 3 1,3,6,12
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6.5.1 Datasets

We used a real social network dataset fb-bfs1 [72], which has 1.63m vertices and 15.14m

edges, for our experiments. To control the number of attributes and attribute domain sizes,

we generate attributes (Table 6.2) based on vertex attributes in facebook graph-API [70].

Table 6.2: Attributes

Vertex Attribute Domain Size,Distribution (µ,σ)

AgeGroup 10, gau(5,2.5)

Education 5, gau(3,1.25)

Gender 2, uni.

HomeCountry 100, gau(50.25)

Interested in 3, uni.

Languages 50, gau(25,12.5)

Relationship Status 2, uni.

Religion 20, gau(10,5)

Work 50, uni.

Political 10, gau(5,2.5)

6.5.2 Case Study

Figure 6.4 and 6.5 are four case studies using the fb− bfs1 [72] graph. Each of the figures

contains a visualization of one of the paths in the path summary. At the top of each figure,

we can see the key vertices (man icon) from source to destination. Below each key vertex is

the attribute value of the key vertex that matches attribute value in the hint. Attribute value

summaries of the path between every two key vertices are shown above the edges between

every two key vertices. The pie chats below the path are the summaries of attribute value

found by the inflation algorithm. This attribute value summary summarizes the attribute

value near to the key vertices. The average execution time of computing a path summary in

our case studies is around 200s

Case 1: For the first case study in Figure 6.4(a), we set the expected number of key

vertex l = 6, the number of hint H = 3, and the hint contains attribute Country = AUS,
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Religion = M , and Work = Service. We can see there are 6 key vertices (including

source and destination), which match our expected number of key vertices. Furthermore,

the summaries of attribute values on the path between every two key vertices are concise.

That gives users a clear idea of attribute values between key vertices. From the pie charts, we

can see that other (green) occupies a large portion of the pie. That tells users that attribute

values close to the path are inconsistent and probably having large attribute value domain.

Case 2: For the first case study in Figure 6.4(b), we set the expected number of key vertex

l = 6, the number of hint H = 3, and the hint contains attribute Education = Primary,

Interested In = Men, and Politic = B. We can see there are 6 key vertices (including

source and destination), which matches our expected number of key vertices. Furthermore,

the summaries of attribute values on the path between every two key vertices are concise.

That gives users a clear idea of attribute values between key vertices. From the pie charts,

we can see that the top-2 attribute values (blue and red) in each attribute occupies a large

portion of the pie. That tells users that attribute values close to the path are consistent and

that helps users to efficiently construct their queries.

After we study path summary with 6 key vertices and 3 hints, we try to look at cases

with less key vertices and hints.

Case 3: For the first case study in Figure 6.5(a), we set the expected number of key vertex

l = 3, the number of hint H = 1, and the hint contains attribute Age = 20 − 30. We can

see there are 3 key vertices (including source and destination), which matches our expected

number of key vertices. Furthermore, the summaries of attribute values on the path between

every two key vertices are also concise. From the pie charts, we can see that the top-1

attribute values (blue) in each attribute occupies a large portion of the pie. On the contrary,

the ”other” attribute value (green) only occupies a small portion. That tells users that

attribute values close to the path are very consistent.

Case 4: For the first case study in Figure 6.5(b), we set the expected number of key vertex

l = 3, the number of hint H = 1, and the hint contains attribute Education = Master. We

found similar result as in Figure 6.5(a).
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Country:USA,SG,JAP

Religion: A,B,C

Work: Fin,Eng.

Country:UK,SG,JAP

Religion: A,B,D

Work: Fin,Edu

Country:CHINA,FR,GER
Religion: A,D,E
Work: Fin,Edu,IT

Country:CHINA,FR,GER

Religion: A,D,E
Work: Fin,Edu,IT Country:CHINA,SG

Religion: A,B
Work: FIN,Eng,IT

Hint: Country: AUS, Religion: M, Work: Serv

Country: AUS

Country: AUS Religion: M

Work: Serv

(a) Case 1

Edu.:Pri.,M
as.

Int. In
: M

Politic
: C,F

Edu.:Sec.

Int. In: M

Politic: F,C

Edu.:Sec.
Int. In: M
Politic: C,D

Edu.:Sec.Int. In: M,WPolitic: B,D Edu:Sec.,PhD.
Int. In: WPolitic: B, F,I

Hint: Edu.: Pri., Int. In: M, Politic: B

Int. In: M

Edu.: Pri. Int. In: M

Int. In: M

(b) Case 2

Figure 6.4: Path Summary (Expected Num of Key Vertex=6, Num of Hint=3)

6.5.3 Query Formulation Using Path Summary

In order to connect source and destination via vertices that satisfy attribute hint, we suggest

users take into account major attribute values and alternative attribute values when they

are formulating queries.

Major Attribute Values: Major attribute values are attribute values that appear on the
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Age: 50-60, 20-30

Hint: Age: 20-30

Age: 10-20, 20-30

Age: 20-30

(a) Case 3

Edu.: Pri., Mas.

Hint: Edu.: Mas.

Edu.: Pri., Mas.

Edu.: Mas.

(b) Case 4

Figure 6.5: Path Summary (Expected Num of Key Vertex=3, Num of Hint=1)

path between key vertices. For example, in Figure 6.4(b), ”Edu.:Sec.,PhD., Int. In: W,

Politic: B,F,I” are major attribute values between destination and the last key vertex.

By putting these attribute values into the query, key vertices can be connected. However,

based on users preferences, they may not always want to include these major attribute values.

Continue with the example in Figure 6.4(b), users may not want to include ”Edu.:Sec.,PhD”

into the query. If that is the case, users can consider the alternative attribute values.

Alternative Attribute Values: Alternative attribute values are attribute values displayed

in the pie charts. They are the distribution of attribute values near to paths between

key vertices. Continue with the example in Figure 6.4(b), if users do not prefer to have

”Edu.:Sec.,Ph.D.” in the query, they may consider to replace it by ”Edu.: Uni”. Based on

the ”Education” pie chart, there are 33.3% of vertices has attribute value ”Edu.: Uni” near

to the paths between key vertices. Therefore, conceptually, choosing ”Edu.: Uni” is similar

to rerouting the path between the destination and the last key vertex.

In Figure 6.4(a), a clear indication of attribute distribution can be seen. However, this

does not always happen. When the attribute distribution is chaotic, that indicates that it is

not ”easy” to find a constraint satisfy path. Hence, we argue that a chaotic attribute value

distribution can also be a useful indication for users.
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Figure 6.6: [fb-bfs1] Entropy

6.5.4 Change of Entropy

The default expected number of key vertex and number of hint are 6 and 3 respectively. We

randomly generate 200 pairs of source and destination and measure the average entropy and

execution time.

Figure 6.6(a) shows the change of entropy along with l. We can see that for both

CandPath and PathSummary, the entropy does not really increase with l. Although it

seems that a longer path would contain more vertices and is more likely to contain different

attribute values, this intuition is not supported by Figure 6.6(a). Since large l offers more

opportunity for the algorithm to search for s − t paths with similar attribute values, the

increase in path length does not directly imply an increase in entropy.

Figure 6.6(b) shows the change of entropy along with H. We can see that for both

CandPath and PathSummary, the entropy increases with H. That is contributed by the

fact that more attribute hints mean more attribute are involved, which makes the consistency

of attribute values lower.
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7.0 CONCLUSION

7.1 SUMMARY OF CONTRIBUTIONS

Attributed Graph is a popular data structure that, not only contains information of entities

but also can efficiently represent relationships between them. Hence, by asking attributed

graph queries, users can obtain meaningful information about topological and attribute

relationship between entities in attributed graphs.

We first introduced and defined the reachability query on attributed graph problem.

Based on this definition, we developed our approach in a 2-level storage framework. We

proposed a new constraint verification approach which takes the advantage of a ’perfect’ hash

function [20, 21] for compressing a multi-dimensional attribute into a unique hash value so

as to bound the expected number of secondary storage access. In order to further reduce the

computation cost, we developed a heuristic search technique that takes into account graph

structure as well as attribute distribution during graph traversal.

Then, we introduced and defined the How-to-Reach query, which answers why there is

no attribute constraint satisfied path between entities in attributed graphs. We proposed a

simple trick that 1)does not require heavy modification of existing implementations in graph

database systems and 2)is proven to be able to allow existing shortest path algorithms to

return optimal answers for How-to-Reach queries. Deal to the drawback of optimal answers

(i.e. high computation cost and the extremely long hop distance), we proposed the station

index, which is a time and space efficient non-traversal based index that returns high-quality

sub-optimal answers with reasonable hop distances.

Finally, we introduced and defined the visualizable path summary query, which sum-

marizes topological and attributes relationship between vertices based on users’ intuition
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on attribute values. We proposed a three-phrase approach, which finds, stitches, and in-

flates key vertex paths based on users’ intuition on attribute values. The computed path

summaries are a path-like set of vertices that can be visualized to users.

7.2 INTENTION

We intended to draw people’s attentions on attributed graph query processing research. We

believe that there is still penalty of meaningful attributed graph query types that have not

been proposed and studied by the database and data mining community since attributed

graph is a very rich source of information. These new analytical query types will help users

in understanding more about hidden information contained in attributed graphs and offer

support for decision making.

7.3 FUTURE WORK

7.3.1 Motivation

Attributed graph query tells the relationship between entities in attributed graphs. For

example, attributed graph reachability query [19] answers whether there exists an attribute

constraint satisfied path from the source to the destination; How-to-Reach query [23] offers

answers for why there does not exist an attribute constraint satisfied path from the source

to the destination. In both query types, we assumed that the topology and attribute values

are truely reflecting the relationship information modeled by the attributed graph. For

example, we assume that the Facebook social network contains everything about our personal

information and social relationship, and by directly querying the Facebook social network, we

can always find the relationship between 2 persons. We argue that indeed, this assumption

may not always be true.

Attributed graph query may not be able to capture everything since some attribute or
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topological information may not be provided, or are maliciously falsified or evolved.

• Missing Information: People has a lot of friends. However, some of Peter’s friends

are not his friend on the social network, and that is a common phenomenon. If we can

imply the friendship between persons on the social network, we may be able to discover

relationships between more people.

• Malicious Falsification: A terrorist is an active user in a social network. However,

to hide himself/herself, the terrorist deliberately deleted some of his/her connections or

modified values of some attributes in his/her profile. In fact, by recovering the deleted

connections and modified attribute values, investigators may be able to identify the

relationship between a target person and the terrorist leader.

• Outdated View and Legacy Query: From time to time, both topology, attribute

value, and attribute schema of attribute graph may evolve so as to reflect the change in

the real world as well as cater the needs of modeling new information. Hence, old views

and legacy queries may not be able to fulfill the intended information needs since they

were constructed based on an outdated understanding of the attributed graph.

7.3.2 Potential Direction

To improve answer quality of the attributed graph queryies (e.g. reachability query [19]

and the How-to-Reach query [23]), we are seeking to build techniques that can effectively

imply missing information, detect malicious falsifications, and synchronize historical queries

in attributed graphs. We propose to add the ’Attributed Graph Profiler’, ’Attributed Graph

Query Modifier’, and ’Attributed Graph Query Synchronizer’ to our query processing system

framework in Figure 2.3.

Attributed Graph Profiler: Conceptually, the attributed graph profiler is a component

that implies missing information and detect malicious falsifications in attributed graphs. We

are investigating the potential of building part of the core of this component by extending

relaxed functional dependency mining techniques [77, 78] so that missing and falsified at-

tribute values can be recovered and detected. Relaxed functional dependency mining looks

for approximate relationships between attribute values. For example, we may be able to find
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that country attribute is related to dietary habit attribute. Therefore, if someone modified

the value of his/her dietary habit attribute, we may discover that person by looking at the

value of his/her country attribute. Similarly, the other part of the core of this component is

techniques that can discover hidden relationships in the topology. For example, if 2 persons

have a lot of common friends, go to the same school, and are at the same age, probably, they

know each other even though there is no edge between them on the social network. We need

an effective approach to imply such relationship based on topological structure and attribute

values.

Attributed Graph Query Modifier: The attributed graph query modifier refines user

queries based on information offered by the attributed graph profiler so that the damage of

missing information and malicious falsifications can be alleviated and ultimately, the answer

quality can be improved. In order to refine the query, we need an effective way to exploit

the information offered by the attributed graph profiler. For example, we need a metric

to determine whether a certain attribute dependency should be taken into account when a

vertex is visited during the graph traversal since the attribute dependency may not be valid

for every vertex.

Attributed Graph Query Synchronizer: The attributed graph synchronizer updates old

views and legacy queries so that the intended information needs can still be fulfilled in the

evolved attributed graph. Although there exists query synchronization techniques [79] which

could solve this problem in traditional databases, how to model the intended information

needs and how to apply those techniques on attributed graph are still unclear.

116



8.0 BIBLIOGRAPHY

[1] Z. Wang, Q. Fan, H. Wang, K. Tan, D. Agrawal, and A. El Abbadi, “Pagrol: Parallel

graph olap over large-scale attributed graphs,” in IEEE 30th International Conference

on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pp. 496–

507, 2014.

[2] S. Sakr, S. Elnikety, and Y. He, “G-SPARQL: a hybrid engine for querying large at-

tributed graphs,” in 21st ACM International Conference on Information and Knowledge

Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pp. 335–344,

2012.

[3] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang, “Computing label-constraint reach-

ability in graph databases,” in Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,

2010, pp. 123–134, 2010.

[4] L. Zou, K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao, “Efficient processing of label-

constraint reachability queries in large graphs,” Inf. Syst., vol. 40, pp. 47–66, 2014.

[5] S. Raghavan and H. Garcia-Molina, “Representing web graphs,” in Proceedings of the

19th International Conference on Data Engineering, March 5-8, 2003, Bangalore, India,

pp. 405–416, 2003.

[6] M. Shoaran, A. Thomo, and J. H. Weber-Jahnke, “Zero-knowledge private graph sum-

marization,” in Proceedings of the 2013 IEEE International Conference on Big Data,

6-9 October 2013, Santa Clara, CA, USA, pp. 597–605, 2013.

117



[7] N. Zhang, Y. Tian, and J. M. Patel, “Discovery-driven graph summarization,” in Pro-

ceedings of the 26th International Conference on Data Engineering, ICDE 2010, March

1-6, 2010, Long Beach, California, USA, pp. 880–891, 2010.

[8] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph summariza-

tion,” in SIGMOD, pp. 567–580, 2008.

[9] Y. Wu, Z. Zhong, W. Xiong, and N. Jing, “Graph summarization for attributed graphs,”

in 2014 International Conference on Information Science, Electronics and Electrical

Engineering, vol. 1, pp. 503–507, April 2014.

[10] D. J. Cook and L. B. Holder, “Substructure discovery using minimum description length

and background knowledge,” J. Artif. Intell. Res. (JAIR), vol. 1, pp. 231–255, 1994.

[11] K. Khan, W. Nawaz, and Y. Lee, “Set-based approximate approach for lossless graph

summarization,” Computing, vol. 97, no. 12, pp. 1185–1207, 2015.

[12] L. Shi, H. Tong, J. Tang, and C. Lin, “VEGAS: visual influence graph summarization

on citation networks,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 12, pp. 3417–3431,

2015.

[13] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and J. Han, “Mining

graph patterns efficiently via randomized summaries,” PVLDB, vol. 2, no. 1, pp. 742–

753, 2009.
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