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1.0  INTRODUCTION 

The aim of this study was to develop a regression model to predict performance of a 

simulated 2 kilometer race.  Several factors have been reported to predict rowing performance 

including body composition, fat free mass, oxygen uptake and maximum power (watts). 

(3,4,9,37) However, no research has collectively utilized these and other variables in an effort to 

predict 2km performance. 

Predictors of performance aid coaches, strength coaches, and trainers in prescribing 

exercise programs for athletes and clients.  To date, most of the prediction models have been 

developed using cyclists, runners and tri-athletes.  Little research has been conducted on rowing 

performance and it is difficult to extrapolate findings from cycle or treadmill performance to 

rowing performance.  (13,23)  A few studies have shown that maximal oxygen uptake and 

maximum oxygen uptake steady state can be used to predict 2km rowing performance in both 

male and female rowers, of various competitive experience and relative to their age and 

competitive experience. (13,23,45)  A higher maximal oxygen uptake is associated with faster 

times during a 2km race in rowers of varying competitive experience. (13,23)  Because of the 

duration of the time trial and the fact that most competitive rowers can maintain an intensity 

equal to 96% of maximal oxygen uptake for the entire race, maximal oxygen uptake may be a 

strong predictor of race performance. (40)  In addition, the higher the power output (watts) an 

individual can sustain in a steady state, the better the performance in a 2km race. (27)  An 

experienced rower will have greater maximum steady state and a lower oxygen uptake at a 
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specific workload than an inexperienced rower.  In contrast, a comparatively inexperienced 

rower will have higher oxygen uptake levels at submaximal exercise intensities. (51) 

Several different predictor variables were examined during pilot testing for the present 

investigation.  These variables were used in an attempt to predict a 2km time trial and ultimately, 

5 variables proved to have a high predictive value, power/stroke ratio at the second ventilatory 

breakpoint (r2 = .868, p<0.01),  oxygen uptake at the second ventilatory breakpoint (r2 = .842, 

p<0.05), body fat percentage (r2 = .929, p<0.005), fat free mass (r2 = .681, p<0.05) and 

mechanical energy cost per stroke (power/stroke ratio) (r2 = .854, p<0.01).  Some additional 

variables that were considered in the present investigation are maximal oxygen uptake, maximal 

power output and physiological and mechanical energy cost per stroke (power/stroke ratio).  

Both mechanical and physiological energy cost per stroke are calculated values represented by 

power output (watts)/strokes per minute and VO2/strokes per minute, respectively. These will be 

the variables that will be examined in the proposed investigation as potential predictors of 

performance.  Previous research reports moderate to strong negative correlations between 2km 

rowing performance and peak power output, oxygen uptake, fat free mass and body fat 

percentage (6,10,14,23,24,30).   

The ventilatory breakpoint, another potential predictor of performance, occurs as a result 

of an increased hydrogen ion concentration in blood and muscle.  Hydrogen ions build up during 

exercise primarily as a result of a lack of available oxygen.  These hydrogen ions and the 

resulting decrease in pH are powerful stimulators of ventilation.  (41)  The ventilatory breakpoint 

characterized by the point at which there is a non-linear rise in ventilation with an increase in 

exercise intensity signifies the transition from a predominantly aerobic metabolic state to a 
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condition where the contribution of anaerobic metabolism increases significantly.  Because the 

2km race typically requires maximal effort, the aerobic energy system will likely not be able to 

satisfy the energy demands leading to an increased reliance on glycolysis.  (13,14,38)  This 

reliance on glycolysis will increase lactic acid, hydrogen ions, non-metabolic CO2 and 

ventilation. (41)  The ventilatory breakpoint is a non-invasive correlate of the anaerobic 

threshold that has previously been validated through research. (1,41) 

1.1 RATIONALE 

The purpose of the present study was to develop a combined gender regression model to 

predict performance on a rowing ergometer during a simulated 2 kilometer race.   2km is a 

standard length of a race in competitive rowing.  The distance is typically covered in 6-10 

minutes depending on the performance level of the athlete. (5,10)    Identifying variables that can 

be used to predict performance may lead to better training programs to optimize performance. 

1.2 RESEARCH OBJECTIVE 

Objective 1:  Develop an equation to predict performance during a simulated 2km race 

for male and female competitive rowers 
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2.0  REVIEW OF LITERATURE 

2.1 PREVIOUS PREDICTION MODEL ANALYSIS 

Identifying predictors of performance can aid in the development of conditioning 

programs for a given athletic population.  Some of the previously established predictors of 

rowing performance are maximal oxygen uptake, maximum heart rate, anaerobic threshold, 

movement efficiency, lean body mass, and peak power development. (5,28,30)  Jensen (1996) 

determined peak rowing power output was significantly correlated to 2km rowing time (r=-0.52; 

P< 0.05)    

2.1.1 Anaerobic Threshold 

Beneke (1995) identified an individual anaerobic threshold (IAT) during rowing that was 

also a predictor of 2km racing performance (r=0.79, p<0.01).  The IAT is the highest workload 

in which lactate elimination and accumulation are in balance resulting in no increase in lactate 

(ie. a lactate steady state).  Beneke also states that the IAT corresponds to the second lactate 

breakpoint identified by Rankinen(1995) and corresponds to a blood lactate concentration of 6.0 

mmol/l.    (4) A blood lactate concentration of 4.0 mmol/l (AT4), sometimes referred to as Onset 
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of Blood Lactate Accumulation (OBLA), has also been used as a predictor of 2km rowing 

performance. (5,43) 

The anaerobic threshold should signify the increase in hydrogen ion concentration in the 

blood resulting from anaerobic metabolism.  The 2km rowing test lasts about 6-10 minutes based 

on the experience and fitness level of the athlete. (24,35,36)  Experienced rowers typically finish 

2km in about 6-8 minutes while inexperienced rowers can take upwards to 10 minutes. (48)  In 

the present investigation subjects completed the 2km time trial in 447±47.34 seconds.  Since the 

race is comparatively short and intense, and 30% of the energy metabolism for 2km rowing is 

derived from anaerobic pathways an anaerobic marker as a predictor of performance was shown 

to be valuable.  (28,30,42).   

The concentration of lactic acid and lactate in the blood is influenced by the production 

and removal.  Lactic acid is the metabolic by-product of anaerobic metabolism.  Lactic acid 

quickly dissociates a hydrogen molecule and the resulting product is lactate. Training can 

decrease lactate production at submaximal intensities resulting in an increase in the lactate 

threshold (41).  During competition, the higher the intensity the rower can maintain without a 

significant increase in lactate the better the performance.  Training can alter lactate dynamics via 

two mechanisms.  Buffering capability can be enhanced leading to a decreased accumulation of 

lactic acid and the removal of lactate via the Cori Cycle can be facilitated.  The Cori Cycle is the 

process by which lactate is shuttled to the liver to be converted back to glucose which is then 

returned to the blood stream or stored in the liver. (41)  Lactate is also used by skeletal muscle 

and the heart and other systems as a substrate and training may also enhance the potential to 

convert lactate into glucose. (1,41)   
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The anaerobic threshold signifies an increase in anaerobic metabolism by-products, lactic 

acid, carbon dioxide, sulphuric acid, phosphoric acid, keytone bodies and carbonic acid.  (8,41)  

This breakpoint typically occurs at about 78% of maximal oxygen uptake in trained individuals. 

(8,43)  For this study, the anerobic threshold will be included as a potential predictor of 2km 

rowing performance.  This breakpoint, will be identified as the point at which Ve/VO2 increases 

without a concomitant increase in Ve/VCO2.   

  

2.1.2 Maximal Oxygen Uptake 

Other strong predictors of 2km rowing performance cited in many research studies are 

maximal oxygen uptake (r=0.9, p<0.001), fat free mass (r=-0.91, p<0.001), and body mass (r=-

0.85, p<0.001). (2,23,34,42).  According to one research study, during a 2km race, collegiate 

rowers exercised at about 96% of their maximal oxygen uptake and at about 98% of their 

maximal heart rate.  (40). However, additional factors may influence rowing performance.  For 

example, elite rowers typically have a high anaerobic threshold and efficient 

mechanics(power/stroke ratio).  Ingham et al.(2002), reported a correlation between 2km rowing 

performance and the anaerobic threshold of (r=0.87, P=0.001). Efficient mechanics decrease 

oxygen demand at submaximal workloads when compared to someone with less efficient 

mechanics. (1,41)  This higher tolerance to work will allow a rower to achieve a higher workload 

before reaching the anaerobic threshold.  Maximal oxygen uptake reveals more about potential 

and less about production.  Therefore, the anaerobic threshold or maximal steady state may be a 

more accurate predictor of rowing performance than maximal oxygen uptake.  
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2.1.3 Movement Efficiency 

One aspect of rowing that can impact all areas of performance is efficiency of movement.  

Poor movement economy causes higher energy requirements for a given workload.  A rower 

with flawed mechanics will expend more energy per stroke than an efficient rower. (27,28)  

Fatigue patterns of the muscles involved in  rowing also contribute to movement efficiency 

which ultimately affects performance. (33,48)  In this investigation, movement efficiency will be 

referred to the amount of power created per stroke (power/stroke ratio). 

 Muscle fatigue during exercise may be caused by multiple factors.  Favero et al 

(1999) cites calcium delivery as having a profound effect on skeletal muscle fatigue.  A decrease 

in calcium delivery impairs actin and myosin crossbridge formation.  Disruption of the 

sarcoplasmic reticulum decreases the amount of calcium that is released from the lateral sac thus 

affecting the coupling of actin and myosin.  The disruption of calcium release may originate with 

the decrease of potassium outside of the muscle cell membrane and a decrease in sodium inside 

the cell membrane.  Potassium decrease causes a decreased action potential. (15,20)  This action 

potential reduces the stimulation of the transverse tubule thus limiting the calcium release from 

the lateral sac.  Calcium triggers the binding of myosin heads to the actin filament. (41) 

Once cross-bridges are formed, actin and myosin filaments slide past one another thus 

causing the muscle to shorten.  Once the myosin heads have completed a single stroke, ATP 

binds to the myosin head causing it to detach from the actin filament.  Once the energy is 

released and a phosphate bond is broken, the myosin head re-attaches to the actin filament 

causing another power stroke.  If calcium is not released from the lateral sac of the sarcoplasmic 

reticulum the muscle cannot contract. (1,41) 
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Adenosine Tri-Phosphate (ATP) must be present to break the bond between actin and 

myosin to allow the myosin heads to re-attach to another actin filament to continue the 

shortening.  If ATP is not present the heads cannot re-attach and thisleads to cessation of 

contraction. 

Favero et al (1999) identifies two types of fatigue patterns, high frequency fatigue (HFF) 

and low frequency fatigue (LFF).  High frequency fatigue is a rapid loss of force but once muscle 

activation slows or stops, recovery is rapid.  Low frequency fatigue is a loss of force and 

recovery can take several days.  Favero et al (1999) speculates that the low frequency fatigue 

occurs as a result of metabolic acidosis, low mitochondrial density or from sarcoplasmic 

reticulum disruption.  High frequency fatigue may occur as a result of a decrease in neurological 

drive to the muscle (20)   

Metabolic fatigue typically occurs as a result of a build-up of lactic acid.  Lactic acid 

accumulation, as a result of an increase in anaerobic metabolism leads to an increase in hydrogen 

ion concentration and a decrease in pH.  A decrease in pH inhibits enzyme activity resulting in 

the reduced ability to generate ATP. (1,41) 

Mitochondrial fatigue occurs as a result of the inability of the Krebs cycle to produce 

reduced NADH and FADH2 for transport to the electron transport chain.  NADH and FADH are 

reduced hydrogen carriers.  The electron transport chain is the final step in oxidative 

phosphorylation.  Oxidative phosphorylation is the aerobic production of ATP.  If the intensity of 

exercise is too high sufficient oxygen will not be present at the final step to accept the hydrogen 

ions.  The build-up of hydrogen ions results in the production of lactic acid and eventually 

muscle fatigue. (41) 
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So et al (2007) identifies mechanical deficiencies resulting from physiological 

mechanisms of fatigue. (48)  Mechanical or movement deficiencies affect the ability of an athlete 

to perform sport skills. (26)  So et al (2007) identified a phenomenon called biodynamic 

compensation.  Biodynamic compensation is a sharing of the workload between muscles 

involved in a particular sport skill.  In rowing there is a lot of sharing of load as many muscles 

throughout the body are activated.  When rowing begins, dominant muscles, such as the 

trapezius, latissimus dorsi, and biceps brachii (primary arm flexor) are activated.  As those 

muscles begin to fatigue, secondary muscles such as the brachialis and rhomboids, become more 

active and alleviate the stress on the muscles that were engaged early in the activity.  As the 

secondary muscles begin to fatigue there is once again a shift of exertional load to other less 

fatigued muscles.  This switching on and off of muscle activation allows certain muscles to rest 

while others perform work.  The sharing of workload allows for increases in power output, 

torque, velocity of movement and oxygen uptake (48).This mechanism explains why trained 

rowers can sustain high levels of exertion for extended periods of time.  Perkins et al (2003) 

showed rowers exercise at 96% of maximal oxygen uptake and 98% of their maximum heart rate 

during a 2 kilometer time trial. (40)  Experienced rowers exhibit signs of biodynamic 

compensation due to great familiarity with the distance and equipment as well as optimal 

movement efficiency as a result of training and greater experience rowing.  Biodynamic 

compensation should allow a rower to maintain a needed level of performance to complete a 

2km race.  Elite rowers exhibit not only the ability to produce high maximal workloads but also 

the ability to sustain those workloads due impart, to biodynamic compensation.  
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An alternate factor to consider is how biomechanical alignment affects various systems of 

the body.  Rowers can produce higher maximal values (VO2, power output, etc) with efficient 

biomechanical movements by increasing the tolerance towards that workload. (46,48)  Inefficient 

mechanics will increase the oxygen demand at a submaximal level. This lowers the percentage of 

maximal oxygen uptake a rower can utilize for training and competition and thereby increases 

reliance on anaerobic pathways. (1,41) 

2.1.4 Ventilatory Response 

Ventilation increases during exercise primarily as a result of an increase in hydrogen ions 

and carbon dioxide as exercise intensity increases.  There is a linear relation between PO and Ve 

during sub-maximal exercise.  However, as intensity is progressively increased above the 

ventilatory threshold the ventilatory response becomes curvilinear.  Increases in intensity result 

in an overcompensation of Ve after which Ve will stabilize.  Ventilation will also be affected by 

body temperature, pH and the ability of the lactate shuttle to input lactic acid into the Cori Cycle 

in the liver.  The Cori Cycle converts lactic acid into glucose to be either re-circulated in the 

blood or transported back to the muscles for storage. (1,38,40) 

2.2 GRADED ROWING PROTOCOLS 

Seven different rowing protocols were examined during pilot work, (Table 1).  The tests 

ranged in aggressiveness and type of information being recorded such as 500m split times 
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instead of power output.  Some testing protocols involved discontinuous maximal testing 

procedures and therefore did not fit the objectives of this study.  A 2 km race requires a 

continuous effort for the duration of the race.  Ideally, testing protocols should mimic the race 

format in order to improve the reliability of prediction. 

Guevel et al (2006) used 50 watt increases every stage to volitional exhaustion.  Between 

each stage there is a 30 second break to enable blood samples to be obtained. (23)  The concern 

with such an aggressive protocol is that subjects may terminate the test before reaching a true 

maximal oxygen uptake level.  This would ultimately affect the accuracy of the prediction 

models. 

Womack et al (1996) developed a protocol using 5 second decreases in the rowers 500m 

split time for every stage change.  In order to decrease a 500m split time, rowers needed to row 

faster or pull with more force.  Beneke et al (1995) utilized a protocol with 35 watt increases per 

stage to volitional exhaustion.  Mahler et al (1991) and Rosiello et al (1987) utilized km/hr 

measurements with a 3 km/hr increases per stage until volitional exhaustion was achieved.  

Reichman et al (1997) and Celik et al (2005) utilized the same incremental increases in intensity 

but with different starting power outputs and stage lengths.  Refer to Table 1 for all testing 

protocols examined. 

   

Table 1. Graded Rowing Protocols 

Protocol 1st stage 2nd stage 3rd stage Stage (minutes) 

Guevel2006 150 watts 200 watts 250 watts 3  
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Womack 1996 2:30 (500 m) 2:25 (500 m) 2:20 (500 m) 3  

Beneke 1995 215 watts 250 watts 285 watts 3 

Mahler 1991 22 km/hr 25 km/hr 28 km/hr 1  

Rosiello 1987 26 km/hr 29 km/hr 32 km/hr 1  

Reichman 1997 25 watts 50 watts 75 watts 2 

Celik 2005 75 watts 100 watts 125 watts 1  

Proposed* 75 watts 100 watts 125 watts 2  

*Power output will be increased 25 watts/stage until test termination 

 

Guevel (2006) and Beneke (1995) et al designed protocols for maximal exertion with 

little consideration for submaximal variables due to such intense starting power outputs. (5,23)  

Womack (1996), Mahler (1991) and Rosiello (1987) et al utilized primarily a speed sensitive 

testing protocol. (32,45,48)  Power output can be increased by either speed increases or force 

applied to the ergometer with higher exertion on the pull.  The protocol utilized by Reichman et 

al (1997) was built for examination of submaximal variables because of lower starting power 

outputs however; due to the short duration of the exercise stages, (1 minute), a true steady state 

may not have been reached.  When the intensity of the stage is increased the body initially 

overcompensates by increasing the heart rate while oxygen consumption lags behind resulting in 

an oxygen deficit.  Once the body reaches steady state, oxygen consumption and heart rate 

remain constant. (1)   The proposed protocol for the current investigation utilizes the strengths of 

Table 1 continued 



13 

 

the Reichman and Celik studies.  Celik (2005) utilized the same power outputs as the proposed 

protocol but the stage duration was too short to achieve steady state. 

2.3 INSTRUMENTATION RELIABILITY 

In a study completed by MacFarlane et al. (1997) it was determined the Concept II air 

braked ergometer calculates and displays accurate information relating to power output, 500m 

split times and distance.  MacFarlane et al. (1997) utilized modified force plate technology to 

examine force and velocities at the handle and at the feet.  (30) 

Examining the velocity at the handle involved using an infrared emitter-receiver that 

senses the movement of the eight vanes on the flywheel.  Force at the handle was determined by 

using a force transducer attached directly to the handle from the chain.  To assure only the force 

was analyzed; a three-pole Bessel low-pass filter with a cut-off at 34 Hz was used.  This low pass 

filter screens the data to only allow the force production to make it through without manipulation 

due to other noise sources.  Forces at the feet were examined by placing 2 force plates (1 on each 

foot pad) on the ergometer.  Because the force plates are closer to the air chamber, a lower pass 

filter of 10 Hz was used.  After proper calibration procedures were used for all of the equipment 

using standard weighted mechanisms, the results of the study showed high reliability(r=0.96) in 

the data displayed (power output, 500m split times and distance) on the Concept II rower when 

compared to actual measures from the force transducers and force plates. (26)  In addition, 

Schabort et al. (1999) showed that the Concept II Rower exhibited a very high test-retest 

reliability (r2=0.96).(47) 
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3.0  METHODS 

3.1 SUBJECTS 

All subjects were recruited from the University of Pittsburgh Crew Club, 3 Rivers 

Rowing Association and Row Fit.  Attempts were made to recruit an equal sample of male and 

female participants for this investigation.  A power analysis, using GPower, revealed a need for a 

combined male and female cohort of 29 rowers. 

Jensen et al. (1996), established that rowers of differing experience levels and 

recreational exercisers that have familiarity with a rowing ergometer will fit within the same 

prediction models but maximal oxygen uptake and maximal power output will be greater in the 

experienced population. (30,47) 

Inclusion/Exclusion Criteria: 

Subjects were screened to determine eligibility utilizing a questionnaire (appendix B) and 

a PAR-Q (appendix C).  Subjects were qualified to participate in the study if they exercise at 

least 150 minutes per week, were not sick within the last 2 weeks, and were free of any medical 

contradictions to exercise.  Rowers should be expected to minimally row at 20 strokes per 

minute. 
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Subjects were asked to wear comfortable appropriate workout attire.  Subjects were not 

permitted to use specialized gear (eg: gloves, belts, etc) during testing.   

3.2 EXPERIMENTAL DESIGN 

This study employed a descriptive experimental group design.  Descriptive studies 

provide relevant information directed at a problem but don’t provide control groups. Subjects 

were randomly counterbalanced for testing sequence in order to account for training adaptations. 

3.3 EXPERIMENTAL VARIABLES 

Oxygen uptake (ml/kg/min), power output (watts), heart rate (bpm), VCO2, RER, Ve, RPE, and 

strokes per minute were obtained during the last 30 seconds of each stage of a graded exercise 

test as well as the 2km time trial. Physiological energy cost per stroke was calculated using the 

following equation for each time period:  mean VO2/strokes per minute.  Mechanical energy cost 

per stroke was calculated using the following equation for each time period:  mean power output 

(watts)/strokes per minute.  Power output was relativized to body weight and lean mass, where 

power output was expressed as watts/BW or watts/lean mass.  Prior to the graded exercise test, 

height, weight and body composition were collected on each subject.   
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3.4 INSTRUMENTATION 

A Concept II rowing ergometer was used for all tests (Morrisville, VT).  A 

ParvoMedicsTrueMax 2400 Metabolic Measurement System (Salt Lake City, UT).open circuit 

spirometer was used for gas analysis (Sandy, UT).  Polar heart rate monitors was used to 

measure heart rate (Lake Success, NY).   

 The reliability and validity of the Concept II Rowing Ergometer was examined by 

MacFarlane et al (1997).  The instrumentation and output variables (strokes per minute, watts, 

500m splits and distance have test-retest correlation coefficients of 0.9 (p<0.05) or higher 

indicating that the Concept II Ergometer is a reliable instrument to use for exercise testing. (31) 

3.5 PILOT TESTING 

Pilot testing was conducted to examine various rowing protocols and to determine proper 

set-up of the metabolic cart and rowing ergometer.  Prior to testing, subjects were briefed about 

the protocols.  Three male and three female subjects participated in pilot testing.  Since there are 

a variety of graded testing protocols, pilot testing was conducted to determine the best protocol 

to administer in order to assure steady state for at least 3 workloads.  Six of the seven protocols 

considered were discontinuous in nature however, since blood sampling is not part of the 

proposed experimental paradigm, a continuous protocol to volitional fatigue was considered 

more appropriate.  The subjects that participated in the pilot work were all experienced 
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exercisers and all had prior experience with a rowing ergometer.  The subject descriptive data 

and results of the pilot work are shown in Table 2. 

3.5.1 Pilot Testing Results 

After administering maximal exercise tests using each of the 7 protocols it was 

determined that a modified Celik protocol will be used in the present investigation. (Table 3)  

This is a continuous progressively incremented protocol involving 2 minute stages. It was 

determined that a 2 minute stage is sufficient to achieve steady state at submaximal workloads.  

The use of 2 minute stages is consistent with the Reichman et al. (1997) study. 

Starting an incremental test too aggressively may result in premature fatigue and not 

allow subjects to achieve maximal oxygen uptakes or heart rates.  In addition, the 150 watt 

starting power output used by Guevel et al. resulted in many  pilot subjects reaching the 

ventilatory breakpoint during the first stage.  In contrast, Riechman et al (1997)used an initial 

power output of 25 watts, and that may have contributed to premature subject fatigue.  For the 

purposes of the present investigation, it is essential to have subjects reach steady state in several 

stages.  The testing protocol that was used in the proposed investigation is presented in the Table 

1. 

In reference to Table 2, the percent body fat was assessed using a Tanita Bioelectrical 

Impedence Analyzer and an average of athletic and normal settings was used.  The ventilatory 

breakpoint was determined by graphing Ve/VO2 against Ve/VCO2.The ventilatory breakpoint 

was determined by the point where Ve/VO2 rises without a concomitant rise in Ve/VCO2.  Once 
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the ventilatory breakpoint was determined, the corresponding oxygen uptake level, power output 

and associated power/stroke ratio was determined. 

 

Table 2. Pilot Testing Subject Demographics 

 N Mean ± SD Male ± SD Female ± SD 

Age (yrs) 6 26.83 ± 4.75 24.33 ± 1.15 29.33 ± 6.03 

Percent Body Fat 6 23.83 ± 7.06 17.4 ± 4.81 29.77 ± 5.17 

Height (cm) 6 169.67 ± 13.6 182 ± 2 157.33 ± 1.53 

Weight (kg) 6 78 ± 13.65 89.57 ± 5.58 66.43 ± 5.75  

2k Time (s) 6 553 ± 105.42 474.33 ± 53.8 631 ± 79.51 

Oxygen Uptake at VPt 

(L/min) 

6 2.29 ± 0.658 2.72 ± 0.61 1.87 ± 0.41 

Power Output at VPt 

(watts) 

6 183.33 ± 64.55 233.33 ± 52.04 133.33 ± 14.43 

Power/Stroke Ratio at 

VPt 

6 6.74 ± 3.1 9.16 ± 2.37 4.31 ± 0.91 

Maximal Oxygen 

Uptake (L/min) 

6 3.48 ± 1.08 4.24 ± 0.64 2.59 ± 0.29 
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3.6 TESTING PROCEDURES 

3.6.1 Graded Exercise Testing 

Prior to testing, subjects were encouraged to not engage in strenuous exercise for at least 

24 hours.  Subjects were asked to eat a small meal at least 3 hours prior to testing. 

All subjects were briefed concerning the testing procedure (Appendix A).   A 

questionnaire specific to the proposed study (appendix B) was used to determine if there are any 

pre-test behaviors that may affect the outcome of the study (recent physical activity behaviors, 

dietary concerns, etc).  A PAR-Q (appendix C) was used to determine if a medical contradiction 

to participation may exist.  A written informed consent approved by the University of Pittsburgh 

Institutional Review Board (appendix D) was collected from each subject.  Next, subject body 

weight and body composition were determined using BIA (Tanita model TBF-410GS).  An 

average of the standard and athletic setting values was used as the body composition value.  Prior 

to exercise testing, subjects were oriented and anchored to the Borg RPE scale.  Subjects were 

fitted with a polar heart rate telemetry strap (Model: FS2c)to track heart rate during the test.  The 

wrist receiver for the polar heart rate monitor (Model: FS2c) was placed near the metabolic cart 

so the test administrator could record heart rate throughout the continuous test.  Subjects were 

instructed to set the ergometer foot straps to their desired position.  The metabolic cart, which 

was calibrated according to the manufacturer’s recommendations prior to each test was placed 

next to the ergometer in a position that will not impede the rower’s movements. Subjects were 

then fitted with the facemask. The ergometer monitor provides information on watts, exercise 

time as well as a performance work rates relative to drag factors.  The display on Concept 2 
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Rowers recommends a low drag factor, between 2-5 be used to more accurately replicate a race 

environment. The drag was pre-set at 5 for consistency throughout all subjects. Subjects were 

asked to warm-up at a self-selected pace and power output for 5 minutes. They were instructed to 

set the pace and power at a level that would not cause fatigue.  Subjects were given a 1 minute 

warning prior to the start of the first stage and then again at 15 seconds.  Subjects started the 

graded exercise test immediately following the warm-up period with no break in between. 

During the graded exercise test heart rate, RER, VCO2, Ve, strokes per minute (from ergometer 

display), power output (watts) and oxygen uptake were collected continuously throughout the 

test and RPE was collected during the last 30 seconds of each stage.  Subjects were asked to 

point to a number on the RPE scale corresponding to their perceived level of exertion as it relates 

to their overall body. At the beginning of the first stage, subjects were instructed to increase 

power output to the desired watts.  Each stage lasted 2 minutes and subjects were informed when 

1 minute and again when 15 seconds remain in the stage. At that time subjects were reminded of 

the next power output level.  In accordance with the protocol, subjects were asked to keep a 

stroke rate of 20-34/spm and instructed to use the ergometer display to self-regulate the cadence. 

To ensure compliance, stroke rate and power output were monitored by the test administrator.  

Subjects continued this protocol until volitional exhaustion, strokes per minute drop below 20 for 

10 consecutive seconds, or the subject requested to stop testing. The criteria for determining 

maximal oxygen uptake were a respiratory exchange ratio of greater than 1.15, heart rate within 

10 bpm of age predicted values and/or a plateau of oxygen uptake with an increase in workload. 

(41).  At the completion of the test the respiratory mask was removed from the subject and 
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he/she was encouraged to row at a self selected pace and power output to cool-down for up to 5 

minutes. The complete proposed graded rowing protocol is presented in Table 3.   

 

Table 3 Graded Rowing Protocol 

Stage 1 2 3 4 5 6 7 8 9 10 

Time (min) 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 

Power (watts) 75 100 125 150 175 200 225 250 275 300 

 

3.6.2 Time Trial Testing 

After a minimum of a 48-96 hr rest period following the graded exercise test, subjects 

returned to the lab to undergo a 2km time trial. Subjects were instructed to complete this trial at 

race pace to achieve the best possible time.  During the period between tests, subjects were asked 

to not engage in strenuous exercise. 

Subjects were once again be given a brief overview of the experimental procedures.  The 

aerobic metabolic system was calibrated and subjects were fitted with a polar heart rate monitor 

and facemask.  Subjects completed a 5 minute warm up at a self selected pace and power output.  

After the warm up, there was a 30 second break to allow the ergometer flywheel to stop 

completely.  For the 2km time trial, subjects started the ergometer from a stop as to simulate a 

real water situation which also occurs from a dead stop.  Subjects began the test after the 30 

second break and instructed to complete the 2km time trial as if it was a race. Every effort was 

taken to replicate race conditions on the water such as not having a coach or teammates cheering 
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or providing feedback.  Rowers employed a competition method where they started off at a sprint 

and gradually lowered the intensity to a sustainable pace.  With approximately 200m remaining 

in the 2km time trial, the rowers once again sprinted to finish the race.  Physiological and 

mechanical values (oxygen uptake, heart rate, RER, VCO2, ventilation, power, strokes per 

minute) were obtained every 15 seconds during the test until the subject has completed the 2km 

distance.  RPE corresponding to the overall body was collected once per minute and at the 

completion of the test. The time required to complete the 2km trial was recorded in seconds. 

Upon completion of the 2km time trial, subjects then had the facemask removed and were 

given sufficient cool-down time in which they rowed at a self selected pace and power output. 

3.7 DATA ANALYSIS 

Data were entered into the Statistical Package for the Social Sciences (SPSS) v. 23.  

Means and standard deviations were calculated for all subject descriptive characteristics and 

experimental variables.  Pearson correlations were performed between the experimental variables 

and 2 km time.  A combined gender model with a total of 12 subjects was used to generate the 

mixed gender prediction model. An attempt was made to have an equal distribution of males and 

females in the 2 groups.  Subjects were randomly counterbalanced, to testing sequence (GXT or 

Time Trial first) to eliminate the impact of testing order on the dependent variables. 

A stepwise regression utilizing oxygen uptake at the ventilatory breakpoint, power/stroke 

ratio at the ventilatory breakpoint (determined using the second non-linear rise in ventilation), 

power output at the ventilatory breakpoint, percent body fat, fat free mass, maximal oxygen 
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uptake, and maximal power/stroke ratio were used to create the prediction model.  The 

ventilatory breakpoint was determined by graphing Ve/VO2 against Ve/VCO2 and determined by 

the point where Ve/VO2 increased without a concomitant rise in Ve/VCO2.  A dependent T-test 

was used to determine if there is a significant difference between predicted performance and 

actual performance time.  Pearson correlations were conducted on the predicted performance and 

actual performance times.  The level of significance was set at α ≤0.05. 
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4.0 RESULTS 

4.1 SUBJECT DEMOGRAPHICS 

The aim of this study was to develop a regression model to predict rowing time of a simulated 2 

kilometer race.  Subjects (n=12) 8 male and 4 female completed 2 exercise trials separated by at 

least 48 hours.  Subjects were recruited from the University Pittsburgh Crew Team as well as 

Three Rivers Rowing Association, local health clubs and training facilities. A stepwise linear 

regression analysis was used to examine the relation between performance variables and 2km 

rowing time.  Statistical significance was set a priori at the p≤0.05 level.  Subject demographics 

are presented in Table 4. 

 

Table 4. Subject Demographics (N=12) 

Variable Mean±SD 

Height (cm) 187.38±12.60 

Weight (kg) 79.14±12.85 

Age (yrs) 23.91±4.99 

Body Fat (%) 13.77±6.51 

Rowing Experience (yrs) 3.17±2.79 
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Maximum Heart Rate (GXT) (beats/min) 185.92±8.13 

Heart Rate at Vpt (beats/min) 160.75±11.41 

Maximum RPE (GXT) 18.08±1.62 

RPE at Vpt 11.08±3.0 

4.2 PERFORMANCE DATA 

Subject performance data are presented in Table 5.  Power/stroke ratio (watts/stroke per minute) 

is an index of rowing efficiency and was determined by dividing power (watts) by strokes per 

minute.  This variable was assessed during the GXT.  The ventilatory breakpoint (Vpt) was 

determined by graphing VE as a function of VO2 (VE/VO2) and the point at which VE/VO2 

increased without a concomitant rise in VE/VCO2 was determined to be the ventilatory 

breakpoint. In order to develop the 2km prediction model, stepwise linear analyses were 

conducted.  Because of high correlations, only one variable was represented in the various 

models.  The individual predictor variables, correlations, and associated prediction equations are 

shown in Table 6.  The stepwise linear regression analysis revealed a strong negative relation 

between 2km rowing time and maximal power/stroke ratio (r= -0.96), power/stroke ratio at the 

Vpt (r= -0.90), maximal oxygen uptake (r= -0.84) and oxygen uptake at the Vpt (r= -0.82).   

 

 

 

Table 4 continued 
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Table 5. Subject Performance Data (N=12) 

Performance Variable Mean±SD 

Maximal Oxygen Uptake (l/min) 4.42±1.28 

Maximal Oxygen Uptake (ml/kg/min) 55.48±10.32 

Maximum Power/stroke GXT (watts/stroke per min) 9.64±2.40 

Power/stroke 2km (watts/stroke per min) 9.59±2.79 

Average Power 2km (watts) 271.98±84.07 

Average 2km time (sec) 447.00±47.34 

Predicted 2km time (sec) from Maximum Power/stroke  447.00±45.27 

Oxygen Uptake at Vpt (l/min) 3.38±1.14 

Oxygen Uptake at Vpt (ml/kg/min) 42.17±9.05 

Vpt  (% VO2 max) 75.27±8.27 
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Table 6. Regression Models 

Variable Correlation (r)  Coefficient of 

Determination (r2) 

Formula Standard Error 

of the Estimate 

Maximum 

Power/Stroke 

(watts/stroke) 

-0.96* 0.92 Time (sec) =  

-18.790x + 

628.183 

0.74 sec 

Power/Stroke at 

Vpt (watts/stroke) 

-0.90* 0.81 Time (sec) =  

-14.714x + 

562.909 

 

1.34 sec 

Maximal Oxygen 

Uptake (L/min) 

-0.84* 0.71 Time (sec) = 

 -30.948x 

+583.712 

0.73 sec 

Oxygen Uptake 

(Vpt) (L/min) 

-0.82* 0.67 Time (sec) =  

-34.026x + 

562.208 

0.68 sec 

 

*p 0.001 

Vpt = ventilatory breakpoint 
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5.0 DISCUSSION 

5.1  RESEARCH FINDINGS 

The primary purpose of this study was to develop a combined gender model to predict simulated 

2km rowing time.  This study was conducted by administering 2 counterbalanced trials separated 

by at least 48 hours.  One protocol was a simulated 2km race performed at competition pace.  In 

competitive rowing this distance is usually covered in 6-10 minutes.  (5,10) The second protocol 

was a maximal graded exercise test.  A stepwise linear regression analysis was conducted to 

generate the prediction models.  This study identified the following 4 variables as having a high 

predictive value: maximum power/stroke ratio (r= -0.956, p<0.001), power/stroke ratio at the 

ventilatory threshold (r = -0.896, p<0.001), maximal oxygen uptake  (r = -0.838, p<0.001), and 

oxygen uptake at the ventilatory threshold (r = -0.818, p<0.001). Because the pearson correlation 

coefficients were so high (0.82-0.96), only 1 variable was entered into each prediction equation.  

Individual equations were created for each predictor variable, see Table 6.  



29 

 

5.2  MAXIMUM POWER/STROKE RATIO 

Although this variable (power/stroke ratio) was created in the present study, the potential 

importance of this variable on rowing performance was supported by So et. al (2007) and this 

ratio may be related to mechanical efficiency.  So et. al (2007), realized mechanical efficiency 

can positively affect rowing performance.  In that study, a phenomenon termed biodynamic 

compensation was discussed as a reason to consider the impact of mechanical efficiency on 

rowing performance.  (41,48)  Biodynamic compensation was described as a phenomena that 

occurs in elite athletes, especially rowers where there is a sharing of workload between muscles.  

So et. al (2007) identified this phenomena by using EMG analysis which revealed a “switching 

on and off” of muscles from being a primary to a secondary contributor.  This was achieved by 

an alternating of neural drive to muscles.  This allowed motor units to recover while maintaining 

high levels of rowing performance, which translated into faster times. (48)    

Jensen et. al (1996) and Firat et al (2014), identified peak power (r = -0.52; p<0.05) and 

(r= -0.756, p<0.05), respectively, to be a significant predictor of 2km rowing performance 

(21,30)  In a study completed by Costill et al (1979), it was found that a main contributor to the 

development of maximum power output in the legs was strength.   Power is a function of both 

strength and speed and the increase of either variable improves power.  Collectively, these 

findings suggest that strength is an important contributor to rowing performance (1,12,41)  

Reichman et al (2002), determined that 75.7% of the variability in the 2km rowing time was 

attributed to maximum power development and maximum power was significantly (r= -0.847, 

p<0.001) correlated to 2km time. (42)  Firat et al. also determined 1 RM Leg Press was a 

significant predictor of 2km time (r = -0.755). The scientific literature is consistent across studies 
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from other exercise modalities on the importance of leg strength to performance.  Storen et. al 

(2008), for example, found the inclusion of strength training with aerobic training in runners not 

only improved running economy by 5% but also improved time to exhaustion by 21.3%. (49)  

The inclusion of resistance training for rowing athletes can improve power development and 

movement efficiency that will contribute to improved performance. (2,34,49) 

Maximum Power/Stroke Ratio was examined presently as a means to assess mechanical 

efficiency during the 2km time trial.  Maximum Power/Stroke Ratio was calculated by dividing 

the Power (watts) by the Stroke rate (Strokes per minute) during the last stage of the graded 

exercise test.  So et al., found rowers with more experience and better training practices achieved 

higher power and faster times (48).  Performance in other exercise modalities has also been 

shown to be influenced by factors related to mechanical efficiency.  For example, running 

economy has been shown to be highly predictive (r = -0.812, p<0.05 and r = -0.91, P<0.001) of 

16k and 20k running time trial performance, respectively. (25,34) From a study completed by 

Storen et al. (2008), strength training in runners was shown to improve running economy.  

Mclaughlin et. al (2010), examined the relation between velocity at VO2max (vVO2max) which 

is a prediction of running velocity at VO2max and 16km running performance.  The vVO2max 

was shown to be strongly correlated (r = -0.972, p<0.05) with 16km run performance while 

VO2max alone was less strongly related (r = -0.902, p<0.05) to performance. (34)  More efficient 

economy of movement decreases the energy cost of that mode of movement leading to an 

improvement in performance.  (1,35)  In rowing athletes, this improved efficiency and lower 

energy cost is due to improved strength development in the legs and hips as well as biodynamic 

compensation. (12,21,48) 
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5.3  MAXIMAL OXYGEN UPTAKE 

Maximal oxygen uptake is a measure of oxygen utilization during maximal exercise and 

has been used as a fundamental test to determine, categorize and predict athletic performance in 

a variety of sports. (28)  In a study completed by Ingham et al. (2002), maximal oxygen uptake 

was determined to be significantly correlated with 2km rowing time (r = -0.88, p<0.001) and this 

finding is consistent with the current study (r = -0.84, p<0.001).  Maximal oxygen uptake 

impacts the rate of aerobic oxygen production during exercise.  Numerous studies have shown 

the higher the VO2max the better the aerobic performance.  This is especially true in a group of 

athletes with a wide range of maximal oxygen uptakes.  However, VO2max does not ultimately set 

the upper limit of performance in endurance activities.  Other factors found to be strongly 

correlated to rowing performance according to Ingham et. al (2002) were maximum power (r =-

0.95, p<0.001) and oxygen uptake at the anaerobic threshold (r =-0.87, p<0.001).  Ingham et al., 

also determined that 98% of the variability in 2km rowing performance was attributed to the 

combination of power output at VO2max, oxygen uptake at the anaerobic threshold, maximum 

power output, and power output at the anaerobic threshold.  (28)  Maximal oxygen uptake is, in 

part, a function of the delivery of oxygen to working muscles that can be a result of increases in 

cardiac output. (2).  The amount of oxygen delivered to exercising muscle has a significant 

impact on maximal oxygen uptake but the ability to deliver oxygen is not the only component.  

Acute increases in oxygen uptake occur as a result of not just increased cardiac output but also 

improved gas exchange in the lungs and a greater a-VO2 difference. (2,35)  Basset et al. (1999), 

identified pulmonary diffusion, cardiac output and oxygen carrying capability of the blood as 

central limiting factors of VO2max.  Cardiac output was determined to be about 70-85% of the 
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limitation of VO2 max. (2) Muscle characteristics such as fiber type and mitochondrial density are 

identified as peripheral limiting factors. (2) 

When compared to rowing, running appears to have similar predictors of performance.  It 

was determined by McLaughlin et. al (2008) that high vVO2max values were dependent on 

either high VO2max and/or very economical running styles. (34)  VO2max and running 

economy, defined as oxygen cost associated with running at submaximal intensities, explains 

more of the variability in running performance than the inclusion of VO2 at the lactate threshold. 

(34,49)  According to Basset et. al (2000), high VO2max is a prerequisite for success in middle to 

long distance runners.   

Storen determined the running economy, vVO2max, and increased time to exhaustion 

improved without concurrent increases in VO2max.  In this study, a resistance training program 

was implemented in conjunction with endurance training and it was determined improvement in 

strength led to improved vVO2max and delayed exhaustion.  With increased running speed at 

specific submaximal VO2 values an improvement in economy and an increase in performance 

was observed. (49)   

Unlike the current study that found a significant correlation between maximal oxygen 

uptake (L/min) and 2km time (seconds) (r= -0.84, p<0.001), Reichman et al. (2002) did not find 

a strong relationship (r=  -0.502).  Reichman et al. (2002), used 12 female rowers between the 

ages of 19-29 years old.  The current investigation utilized 8 male and 4 female subjects between 

the ages of 18-35 years old.  However, both studies tested rowers at about the same time of year, 

the weeks surrounding the indoor competitive season.  Had testing been done at different times 
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of the competitive year, results could have been affected due to different training and practice 

regimens.   

5.4  POWER/STROKE RATIO AT THE VENTILATORY BREAKPOINT 

Power/stroke ratio at the ventilatory threshold was shown presently to be another highly 

predictive variable with regard to rowing performance.  Ingham et al. determined power output at 

the lactate threshold (r = -0.88, p<0.001) was strongly predictive of 2km rowing performance. 

(28)  The current study showed power/stroke ratio at the ventilatory breakpoint (r = -0.896, 

p<0.001) to be strongly predictive of 2km rowing performance.  Power/stroke ratio is simply the 

power (watts) shown as a function of strokes per minute. The ventilatory breakpoint is frequenly 

used as a surrogate measure of the anaerobic/lactate threshold. (39)  The lactate threshold has 

been widely shown to influence aerobic performance. (5) Rowers can produce high submaximal 

values (VO2, power output, etc) with efficient biomechanical movements compared to 

inexperienced rowers by increasing the tolerance to higher workloads. (46,48) Inefficient 

mechanics increase the oxygen demand at submaximal levels and lowers the percentage of 

maximal oxygen uptake a rower can utilize for training and competition.  This lowers the 

anaerobic threshold and causes early fatigue (1,41)  

Another predictor variable is the running velocity at lactate threshold.  The LT velocity 

had a high correlation (r2 = 0.79, p<0.01) to 5km running performance. (49)  Like Reichman et 

al. (2002), Storen et al. (2008), determined an increase in strength would improve economy of 

movement and it was determined that running economy along with increased time to exhaustion 
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increases endurance performance without any increases in VO2max.  Economy is a primary 

factor in both rowing and running performance. (2,34,44,49)  Running velocity at the lactate 

threshold was highly predictive of 16km performance (r = -0.907, p<0.05). (34)  

The concentration of lactic acid/lactate in the blood is influenced by production and 

removal.  Lactic acid is the metabolic by-product of anaerobic metabolism.  Lactic acid quickly 

dissociates a hydrogen molecule and the resulting product is lactate.  Ventilation increases during 

exercise primarily as a result of an increase in hydrogen ions and carbon dioxide as exercise 

intensity increases.  (1,32,34)  During competition, the higher the intensity the rower can 

maintain without a significant increase in lactate the better the performance. Lactate is also used 

by skeletal muscle and the heart and other systems as a substrate and training may also enhance 

the potential to convert lactate into glucose. (1,35,38)   

5.5  OXYGEN UPTAKE AT THE VENTILATORY BREAKPOINT 

Oxygen uptake at various indicies of the lactate threshold has been shown to be a 

predictor of performance across exercise modalities.  Beneke (1995) identified the individual 

anaerobic threshold (IAT), defined as the workload corresponding to the maximal lactate steady 

state that an individual can achieve, was a predictor of 2km rowing racing performance (r=0.79, 

p<0.01).  This was consistent with an investigation conducted by Ingham et. al. (2002) in which 

a correlation between 2km rowing performance and the oxygen uptake at the anaerobic threshold 

(r=0.87, P=0.001) was reported.  The current study found a similar association between oxygen 

uptake at the ventilatory threshold and 2km rowing performance (r= -0.818, p<0.001).  Previous 
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work determined that approximately 70% of the energy metabolism for 2km rowing is derived 

from aerobic pathways.  (24,25,36)  McLaughlin et al. (2010) determined runners also do not run 

at 100% of their VO2max during races and instead the runner that is able to compete at a higher 

percentage of their respective VO2max will out perform others. (34)  In a study completed by 

Evans et al. (1995), there was a strong relationship between VO2 at the lactate threshold and 

running performance (r = -0.87, p<0.05). (18)  Impellizzeri et al. (2005) found a strong 

determinant (r = -0.63, p<0.05) of cycling performance was oxygen uptake at the respiratory 

compensation threshold (RCT).  RCT is defined as the intensity associated with the second slope 

rise in VCO2.  The RCT is consistent with the IAT identified by Beneke et al. (1995) and further 

supported by Rankinen et al. (1995) and corresponds to the second lactate breakpoint, also called 

the anaerobic threshold.  (5,29,43)  The running and cycling data from their investigation are 

consistent with the rowing data from the current investigation as VO2 at the ventilatory 

breakpoint was found to be strongly associated (r = -0.818, p<0.001) with 2km rowing 

performance. 

The ventilatory threshold is a measure of physiological functioning that can determine 

how much of a person’s aerobic capacity is usable.  Trained individuals typically have a 

ventilatory threshold of 70-80% of their maximal oxygen uptake.  (1,38)  As with studies from 

other modalities, oxygen uptake at the ventilatory breakpoint was shown in the present 

investigation to highly correlate with performance.  Being able to maintain high oxygen uptake 

without exceeding the ventilatory threshold/lactate threshold allows the athlete to balance 

aerobic and anaerobic ATP usage and generation thereby increasing performance. (2,49) 
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5.6 IMPLICATIONS FOR PRACTICE 

The current study found four significant predictors of rowing performance: maximum 

power/stroke ratio (r= -0.956, p<0.001), power/stroke ratio at the ventilatory threshold (r= -

0.896, p<0.001), maximal oxygen uptake (r= -0.838, p<0.001), and oxygen uptake at the 

ventilatory threshold (r= -0.818, p<0.001).   

Several studies identified power as a significant contributor to 2km rowing performance. 

(12,21,29,44) The current study identified power/stroke ratio as a significant contributor to 

rowing performance.  The average strokes per minute between the graded exercise test and the 

2km time trial were, 27.58±2.87 and 28.25±2.26 respectively.  This suggests power output may 

play a bigger role in rowing performance.   Rowing training should include resistance exercise 

since it is associated with improved movement efficiency and with inefficient movement there is 

a higher oxygen cost/usage per unit of work. (2,34,49) 

The current study also identified maximal oxygen uptake as a significant predictor (r = -

0.838, p<0.001) of 2km rowing performance.  This finding along with strong support from 

previous studies, show maximal oxygen uptake is a main factor in endurance performance.  

Increases in maximal oxygen uptake are the result of endurance training and an improved oxygen 

delivery to working muscles by way of an increase in cardiac output not a-vO2 difference. (2)  

Improved oxygen delivery allows for a lower heart rate at a given workload and may contribute 

to the amount of power an exerciser may produce.  Many studies have shown increases in 

performance following a plateau in VO2max.  The explanation for this observation is an increase 

in ventilatory/lactate threshold.   
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Oxygen uptake at the ventilatory breakpoint (r = -0.818, p<0.001), was shown to be 

another strong predictor of 2km rowing performance.  Like maximal oxygen uptake, oxygen 

uptake at the ventilatory breakpoint also is affected by both delivery and uptake of oxygen by 

skeletal muscles.  (2)  It has been determined that the oxygen uptake at the anaerobic threshold is 

determined by the body’s ability to generate high rates of ATP regeneration through oxidative 

pathways.  This ATP generation through oxidative pathways determines the percent of maximal 

VO2 that can be maintained. (2)  In addition, other studies have determined that economy of 

movement can have a positive impact on affect the anaerobic threshold by decreasing oxygen 

cost secondary to improvements in the efficiency of movement. (34,49)  This collectively 

suggests rowing training should also focus on increasing the ventilatory breakpoint.   

Improvements in the ventilatory breakpoint may come about by improved buffering of lactic 

acid.  This can occur as a result of an improved efficiency of the cori cycle to convert lactate into 

glucose via gluconeogenesis. (1,36)  Another way lactate accumulation can be controlled is 

through the myocardium’s ability to utilize lactate as a fuel source. (35)  The myocardium can 

use phosphocreatine, glucose, free fatty acids and lactate as primary fuel sources.  (35)  

Coaches and rowers have access to rowing ergometers with appropriate displays of data.  

Maximum power/stroke ratio would be the easiest formula for coaches to track athlete progress 

since they would only need the rowing ergometer.  The other prediction equations generated 

presently would require access to a metabolic cart.   
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5.7 RECOMMENDATIONS FOR FURTHER RESEARCH 

Further investigation into predictors of rowing performance is warranted and tests such as 

500m sprint, rowing ergometer wingate or a 6 pull test for maximum power may also have high 

predictive value.  A 6 pull test is an anaerobic power test that involves a rower attempting to 

generate maximum power within 6 strokes.  A 500m sprint uses anaerobic pathways as the 

primary energy source.  Further investigations should determine if 500m sprint time, peak power 

and/or average power/stroke ratio in a 500m sprint could be used to predict performance in a 

2km time trial.  The rowing ergometer wingate involves a 30 second sprint and provides 

information on anaerobic power and anaerobic capacity.  Previous work determined that 

approximately 30% of the energy metabolism for 2km rowing is derived from anaerobic 

pathways.  (28,30,42)   Some additional directions for further study could be to generate gender 

specific prediction equations, design a training program based upon the current results and 

determine the effectiveness of this training program, and validate the current study prediction 

models. In addition models to predict 2km performance during an actual race could be 

developed.  This approach would have greater ecological validity than the present study, 

however, when conducting field-based rowing research, water currents and environmental 

variables such as wind, weather, temperature, humidity and barometric changes could be 

problematic.   
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5.8  LIMITATIONS 

Testing was conducted in a controlled environment and the present results therefore may 

not translate to water performance.   

All rowing ergometers have a drag adjuster but it is unknown if that drag setting 

accurately replicates water currents.  This limitation would reduce the ability to generalize the 

results of this study to water performance. 

A small number of subjects were used therefore gender specific equations could not be 

generated. 

Measures of strength, anaerobic power and anthropometrics were not obtained. 

5.9  CONCLUSIONS 

This study identified 4 separate predictors of 2km rowing performance:      1) Maximal 

power/stroke ratio during a graded exercise test, 2) power/stroke ratio at the ventilatory 

breakpoint, 3) maximal oxygen uptake, and 4) oxygen uptake at the ventilatory breakpoint.  

Maximum power/stroke ratio was the single strongest predictor (r= -0.96, p<0.001).  The 2km 

rowing test lasts about 6-10 minutes based on the experience and fitness level of the athlete. 

(24,35,36)  Experienced rowers typically finish 2km in about 6-8 minutes while inexperienced 

rowers can take upwards to 10 minutes. (48)  In the present investigation subjects completed the 

2km time trial in 447±47.34 seconds which equates to 7 minutes and 27 seconds.  Since the race 

is comparatively short and intense, and 30% of the energy metabolism for 2km rowing is derived 
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from anaerobic pathways an anaerobic marker as a predictor of performance was shown to be 

valuable.  (28,30,42).  Since 30% of the energy metabolism for 2km rowing is derived from 

anaerobic pathways, that means there is a 70% contribution from aerobic pathways.  For this 

reason, both anaerobic and aerobic measures should be considered when developing conditioning 

programs. 
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APPENDIX A 

TESTING FORMS 

Rowing Maximal Graded Exercise Test Assessment Form          ID#_______ 

 

Participant Code:________         Age:______         Weight (kg):_____           

Height (cm):_____ 

Years Experience:________ Body Fat %:________ Resting HR:________          Resting 

BP:________ 

Calculated Ventilatory Breakpoint:________________ 

Maximal Power achieved:_______________            

 Maximal Oxygen Uptake (l/min):_______________ 

Maximal HR:_______________      

Avg Stroke rate:_______________      

Maximal RPE achieved:_______________ 

 

Stage 1:  75 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:________   RPE:__________ 

Stage 2:  100 watts – 2 minutes 
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VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 3:  125 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______    RPE:__________ 

Stage 4:  150 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 5:  175 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 6:  200 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 7:  225 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 8:  250 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 9:  275 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

Stage 10:  300 watts – 2 minutes 

VO2 (l/min):_________HR:______Stroke rate:_______     RPE:__________ 

 

 

 

2km Rowing Time Trial       ID#_______ 
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Participant Code:________         Age:______         Weight (kg):_____         Height 

(cm):_____     BF%_________   Years Experience:________      Avg: # of races per 

year:________       

Resting HR:________         Resting BP:________2k time:_______________ 

Minute Readings 

1:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

2:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

3:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

4:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

5:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

6:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

7:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

8:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

9:  VO2 (l/min)_______________  HR:__________  RPE:__________   
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Stroke rate:__________  Avg Power:__________ 

10:  VO2 (l/min)_______________  HR:__________  RPE:__________   

Stroke rate:__________  Avg Power:__________ 

 

Maximal VO2 (l/min)_______________     Maximal HR__________      

Maximal RPE__________   
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APPENDIX B 

A.1 INTAKE QUESTIONNAIRE       ID#_______ 

Name: _______________________________________________________ 

DOB:_______________Height:_____________  Weight_______________ 

When was your last use of a rowing ergometer?_______________________ 

How many minutes per week do you spend on a rowing ergometer?_________________ 

Do you have any low back injuries/considerations?____________________ 

If so, explain:__________________________________________________ 

Do you have any bone or joint disorders than may impact your ability to perform these 

tests?______________ 

If so, explain:__________________________________________________ 

Do you have any medical conditions such as low/high blood pressure or low/high blood 

sugar?___________________________________________ 

Have you ever sustained an injury while rowing either on water or on an 

ergometer?_______ 

If so, explain:__________________________________________________ 
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APPENDIX C 

 

ID # _____ 

University of Pittsburgh 

Center for Exercise and Health-Fitness Research 

Physical Activity Readiness Questionnaire (PAR-Q) 

Now I am going to ask you a few questions to determine if you are eligible to complete 

the stationary cycle exercise … 

Has your doctor ever said that you have a heart condition and that you should only 

do physical activity recommended by a doctor? 

No ___    Yes ___   If yes, specify: _____________________________ 

Do you feel pain in your chest when you do physical activity? 

No ___    Yes ___   If yes, specify: _____________________________ 

In the past month, have you had chest pain when you were not doing physical 

activity? 

No ___    Yes ___   If yes, specify: _____________________________ 

 

Do you lose your balance because of dizziness or do you ever lose consciousness? 

No ___    Yes ___   If yes, specify: _____________________________ 
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Do you have a bone or joint problem that could be made worse by a change in your 

physical activity? 

No ___    Yes ___   If yes, specify: _____________________________ 

Is your doctor currently prescribing drugs (for example, water pills) for a blood 

pressure or heart condition? 

No ___    Yes ___   If yes, specify: _____________________________ 

Do you know of any other reason why you should not do physical activity? 

No ___    Yes ___   If yes, specify: _____________________________ 
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INFORMED CONSENT 
 
TITLE:  PREDICTORS OF PERFORMANCE DURING A 2 KILOMETER ROWING 

ERGOMETER TIME TRIAL 
 
 
PRINCIPAL INVESTIGATOR:  Jason Metz, M.S. 
     Doctoral Student 
     149 Trees Hall 
     Pittsburgh, PA 15261 
     (570) 854-2242 
     Email: jmetz_cscs@yahoo.com 
     Department of Health and Physical Activity 
     School of Education 

 
CO-INVESTIGATOR:  Fredric L. Goss, Ph.D.  

Associate Professor, Academic Program Coordinator 
113 Trees Hall 
Pittsburgh, PA 15261 
Phone: (412) 648-8259  Fax: (412) 648-7092  
Email: goss@pitt.edu  
Department of Health and Physical Activity  
School of Education  
 

SOURCE OF SUPPORT:  None  
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Why is this research being done?  
 
Affect is defined as the emotion or mood that is experienced during exercise.  An 

individual may feel that exercise is pleasant or unpleasant, and these feelings may change during 
exercise.  Affect has been compared during different self-selected exercise intensities (that are 
the subjects choice) and imposed exercise intensities (chosen by the investigators).  However, it 
is unknown whether there is an independent effect of exercise intensity.  Therefore, the purpose 
of this investigation is to examine the independent effect of self-selected versus imposed exercise 
intensity on affect, specifically during cycle exercise. 

 
Who is being asked to take part in this research study?  
 
Twenty-two male and female adults (at least 18yrs old) will be recruited as subjects in 

this research.  The research study will last approximately 5 to 8 days.  You are being invited to 
take part in this research study because you are healthy and undertake at least 150 minutes of 
recreational aerobic activity per week.  To minimize risks associated with maximal aerobic 
exercise testing, you will be asked to complete the Medical History Form and a Physical Activity 
Readiness Questionnaire (PAR-Q) that contains questions about your current health status.  If 
you have an orthopedic (muscle or bone), cardiovascular (heart), and/or metabolic disease (i.e. 
coronary artery disease/heart disease), prior myocardial infarction (heart attack), peripheral 
vascular disease (blockages in legs), chronic obstructive pulmonary disease (lung disease), and 
diabetes mellitus (high/low blood sugar) and/or if you are knowingly pregnant or you are a 
current smoker, you will not be eligible to participate in this research study.  

 
What procedures will be performed for research purposes?  
 
If you decide to take part in this research study, you will be required to complete 2 

separate visits, 2-3 days apart.  Each visit will involve a rowing ergometer exercise test. The first 
visit will be a Graded Exercise Test (GXT).  The second visit will involve rowing for 2 
kilometers at self-selected intensity. 

If an abnormal response occurs during exercise, such as chest pain, the test will be 
immediately stopped and you will be given proper medical attention.  Emergency equipment will 
be available on site for all testing procedures and research staff  are certified in CPR and First 
Aid by the American Red Cross.  If you have an abnormal response to the cycle test, you will be 
told of the findings and will be encouraged to contact your primary care physician.  

 

All procedures will take place in the Center for Exercise and Health-Fitness Research 
(CEHFR) located in Trees Hall at the University of Pittsburgh.  All testing sessions will be 
administered by trained staff members from the CEHFR. 

 
 

 



50 

 

 
Pre-Exercise Procedures: 

 
1. Before starting the study protocol, you will complete the Medical History Form, a 

Physical Activity Readiness Questionnaire (PAR-Q) and an Intake Questionnaire.  All 
forms will take less than ten minutes to complete.  

 
2. Prior to each exercise trial, a heart rate monitor will be positioned around your chest and 

secured in place with an elastic strap.  Immediately prior to exercise, a rubber 
mouthpiece, connected to a headset, will be placed in your mouth to determine the 
amount of oxygen that you use during exercise.  A rubber padded clip will be attached to 
your nose to insure that all the air that you breathe goes in and out through your mouth.  
Some individuals become anxious when fitted with the nose clip and mouthpiece.  If this 
occurs to you, please inform the individual performing the test and the test will be 
stopped.  Your heart rate and the amount of oxygen that your body uses will be measured 
during cycle exercise.  
 

3. Prior to the exercise trials, you will receive standard instructions on how each test is to be 
completed. 

 
Trial 1: Fitness Assessment and Baseline GXT on a Rowing Ergometer 

 
4. Your body height and weight will be measured using a standard physicians’ scale.  
 
5. Body composition will be assessed using a Tanita bioelectrical impedance analyzer 

(BIA).  The BIA is a non-invasive pain-free procedure for measuring your body fat and 
muscle that transmits a low-grade electrical impulse through the body.  You will remove 
your shoes and socks and stand on the Tanita scale for approximately 10 seconds to 
obtain body fat assessment.  During the body composition measurement there may be a 
potential for the hair on your arms and legs to stand up.  

 
6. Based on the information you provide on the Medical History Form and PAR-Q, if you 

do not have any conditions that would limit your ability to exercise, you will complete 
the first testing session in order to determine your fitness level.  You will perform the 
GXT on a rowing ergometer while maintaining a stroke per minute rate of 20-34 strokes 
per minute.  The exercise protocol will begin at a low resistance and the resistance will 
increase every2 minutes.  You will be encouraged to continue until fatigued.  However, 
you may stop the test at any time for any reason. 
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Trial 2:  2 kilometer Time Trial 

 
7. 2 to 3 days after you have completed the baseline GXT, you will return to the laboratory 

to perform the self-selected exercise intensity trial on a stationary cycle.   
 

8. Following a 5-minute warm-up, the exercise trial will consist of 2 kilometers of 
continuous rowing exercise at an intensity that you choose.  At any point during the test, 
you can choose a different stroke rate or power output based on your ability to perform. 

 
 
 

What are the possible risks, side effects, and discomforts of this research study?  
 
Risks of the Graded Exercise Test  
 
Abnormal responses, such as excessive rises in blood pressure, mental confusion, 

shortness of breath, chest pain, heart attack, and death, to maximal aerobic exercise tests in 
young healthy adults are rare, occurring in less than 1% of people (less than 1 out of 100 people 
tested). However, some common risks, occurring in 1% to 25% of people (1 to 25 out of 100 
people tested), of maximal exercise testing include: heavy breathing, dizziness, muscle fatigue, 
headache, and overall fatigue. 

 
Risks of the Study Monitors  

 
Risk associated with study monitors (e.g. heart rate monitor and mouthpiece) include skin 

redness, irritation, and chafing.  
 

What are possible benefits from taking part in this study?  
 

 You will likely receive no direct benefit from taking part in this research study. However, 
you will receive information regarding your aerobic fitness level, percent body fat, and the 
importance of promoting your cardiovascular health.  

 
If I agree to take part in this research study, will I be told of any new risks that may be 

found during the course of the study?  
 
You will be promptly notified if, during the conduct of this research study, any new 

information develops which may cause you to change your mind about continuing to participate.  
 
Will my insurance provider or I be charged for the costs of any procedures performed 

as part of this research study?  
 



52 

 

Neither you, nor your insurance provider, will be charged for the costs of any procedures 
performed for the purpose of this research study.  

 
Will I be paid if I take part in this research study?  
 
There will not be covered compensation for this study due to the short time commitment. 
 
Who will pay if I am injured as a result of taking part in this study?  
 
University of Pittsburgh researchers and their associates who provide services at UPMC 

recognize the importance of your voluntary participation in their research studies. These 
individuals and their staff will make reasonable efforts to minimize, control, and treat any 
injuries that may arise as a result of this research. If you believe that you are injured as a result of 
the research procedures being performed, please contact immediately the Principal Investigator 
or one of the Co-Investigators listed on the first page of this form.  

 
Emergency medical treatment for injuries solely and directly related to your participation 

in this research study will be provided to you by the hospitals of the UMPC.  
 
It is possible that the UPMC may bill your insurance provider for the costs of this 

emergency treatment, but none of these costs will be charged directly to you. If your research-
related injury requires medical care beyond this emergency treatment, you will be responsible for 
the cost of this follow-up unless otherwise specifically stated below. There is no plan for 
monetary compensation. You do not, however, waive any legal rights by signing this form.  

 
Who will know about my participation in this research study?  
 
Any information about you obtained from this research will be kept as confidential 

(private) as possible. All records related to your involvement in this research study will be stored 
in a locked file cabinet. Your identity on these records will be indicated by a case number rather 
than by your name, and the information linking these case numbers with your identity will be 
kept separate from the research records. You will not be identified by name in any publication of 
the research results unless you sign a separate consent form giving your permission (release).  
 

Will this research study involve the use or disclosure of my identifiable medical 
information?  

 
This research study will not involve the use or disclosure of any identifiable medical 

information.  
 

Who will have access to identifiable information related to my participation in this 
research study?  
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In addition to the investigators listed on the first page of this authorization (consent) form 
and their research staff, the following individuals will or may have access to identifiable 
information related to your participation in this research study:  

 
• Authorized representatives of the University of Pittsburgh Research Conduct and 

Compliance Office may review your identifiable research information for the purpose of 
monitoring the appropriate conduct of this research study.  

 
• In unusual cases, the investigators may be required to release identifiable information 

related to your participation in this research study in response to an order from a court of 
law. If the investigators learn that you or someone with whom you are involved is in 
serious danger or potential harm, they will need to inform, as required by Pennsylvania 
law, the appropriate agencies.  

 
• Authorized people sponsoring this research study, because they need to make sure that the 

information collected is correct, accurate, and complete, and to determine the results of 
this research study.  

 
For how long will the investigators be permitted to use and disclose identifiable 

information related to my participation in this research study?  
 
The investigators may continue to use and disclose, for the purposes described above, 

identifiable information related to your participation in this research study for a minimum of six 
years after final reporting or publication of a project. 
 

Is my participation in this research study voluntary?  
 
Your participation in this research study, to include the use and disclosure of your 

identifiable information for the purposes described above, is completely voluntary. (Note, 
however, that if you do not provide your consent for the use and disclosure of your identifiable 
information for the purposes described above, you will not be allowed, in general, to participate 
in this research study.) Whether or not you provide your consent for participation in this research 
study will have no affect on your current or future relationship with the University of Pittsburgh. 
Whether or not you provide your consent for participation in this research study will have no 
effect on your current or future medical care at a UPMC hospital or affiliated health care 
provider or your current or future relationship with a health care insurance provider.  If you are a 
student, the decision to participate or not participate in this study will have no influence on class 
standing or grades. 

 
May I withdraw, at a future date, my consent for participation in this research study?  
 
You may withdraw, at any time, your consent for participation in this research study, to 

include the use and disclosure of your identifiable information for the purposes described above. 
Any identifiable research information recorded for, or resulting from, your participation in this 
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research study prior to the date that you formally withdrew your consent may continue to be used 
and disclosed by the investigators for the purposes described above.  

 
To formally withdraw your consent for participation in this research study you should 

provide a written and dated notice of this decision to the principal investigator of this research 
study at the address listed on the first page of this form.  

 
Your decision to withdraw your consent for participation in this research study will have 

no effect on your current of future relationship with the University of Pittsburgh. Your decision 
to withdraw your consent for participation in this research study will have no effect on your 
current of future medical care at a UPMC hospital or affiliated health care provider or your 
current or your future relationship with a health care insurance provider.  

 
If I agree to take part in this research study, can I be removed from the study without 

my consent?  
 
It is possible that you may be removed from the research study by the researchers to 

protect your safety or if you are unable or unwilling to complete the research protocol.  
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VOLUNTARY CONSENT  
 

All of the above has been explained to me and all of my questions have been answered. I 
understand that any future questions I have about this research study during the course of this 
study, and that such future questions will be answered by the investigators listed on the first page 
of this consent document at the telephone numbers given. Any questions I have about my rights 
as a research subject will be answered by the Human Subject Protection Advocate of the IRB 
Office, University of Pittsburgh (1-866-212-2668). By signing this form, I agree to participate in 
this research study.  

 
 
____________________  
Participant’s Name (Print)  
 
 
____________________     ____________________  
Participant’s Signature      Date  
 
------------------------------------------------------------------------------------------------------------ 

 
CERTIFICATION OF INFORMED CONSENT  

 
I certify that I have explained the nature and purpose of this research study to the above-

named individual, and I have discussed the potential benefits, and possible risks associated with 
participation. Any questions the individual has about this study have been answered, and we will 
always be available to address future questions as they arise. I further certify that no research 
component of this protocol was begun until after this consent form was signed. 

 
 
____________________     ____________________  
Printed Name of Person Obtaining Consent   Role in Research Study  
 
 
____________________     ____________________  
Signature of Person Obtaining Consent   Date 
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APPENDIX E 

 

Borg Scale of Perceived Exertion 
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