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Mixture IRT models have been shown to improve the identification of latent group structure and 

facilitate the estimation of model parameters when covariates are incorporated or the Bayesian 

estimation method is employed. However, the efficiency of mixture IRT models in DIF analysis 

has not been systematically studied due to the challenges of identifying DIF with a relatively 

complex model. The present dissertation aims to explore the effect of covariate and estimation 

method on the detection of latent DIF under the mixture IRT framework. A Monte Carlo simulation 

study was performed by manipulating the magnitude of DIF, type of DIF, proportion of DIF items, 

group impact, and relationship between the covariate and the latent group membership. The 

generated response data were analyzed using the mixture 2PL IRT model by manipulating the 

inclusion of covariate and the estimation method. The estimation results were evaluated in terms 

of the recovery of the latent group structure, recovery of the model parameters, and detection of 

DIF. The goal is to provide insights and suggestions on the use of mixture IRT models in the 

analysis of DIF.  
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1.0  INTRODUCTION 

The assessment of the presence of differential item functioning (DIF) is a key component for test 

development and validation. An item is said to exhibit DIF when the item functions differently in 

a focal group in comparison with a reference group after controlling for differences in levels of 

performance on a latent trait (e.g., ability) of interest (Holland & Wainer, 1993; Scheuneman, 

1979). In psychometric practice, measurement experts usually investigate differential item 

functioning (DIF) for demographic groups to help ensure that tests are fair. The presence of DIF 

is considered a serious threat to test validity because it implies that one group has an unfair 

advantage on an item in comparison with another group. Therefore, it often leads to the inequity 

of comparing conditions, invalid comparison of group differences, and unfairness of selection 

(Meredith, 1993; Millsap & Kwok, 2004). 

Since DIF may result in serious consequences, it has generated extensive research from 

different perspectives and many researchers focused on the methods of DIF identification. The 

traditional view is that DIF is detected based on examinees’ group membership that can be easily 

observed such as gender and ethnicity. However, it is known that group membership is not always 

defined in terms of evident/observable attributes. Examinees can form as a homogeneous group 

based on certain unobservable features. Recently, a surge of research has emerged to investigate 

DIF across latent (unknown) groups as opposed to manifest groups, and to this end mixture IRT 

modeling has gained attention as a promising tool. The current simulation study was built upon 
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this work, and this study will contribute to the literature regarding the detection of latent DIF based 

on mixture IRT models. 

1.1 STATEMENT OF PROBLEM 

The arguments for the inappropriateness of using the conventional approach to study DIF were 

brought up by several studies on the analysis of DIF using mixture IRT models (Cohen & Bolt, 

2005; De Ayala, Kim, Stapleton, & Dayton, 2002). The main issue is that examinees for whom 

items functioned differently cannot be accurately characterized by their manifest grouping variable, 

despite that the groups are defined in terms of such a grouping variable. Furthermore, an item set 

that does not exhibit DIF with respect to the manifest group variable does not guarantee zero DIF 

within this item set. This is because the detection of DIF based on manifest dimensions fails to 

account for secondary dimensions, also known as nuisance dimensions (Bolt & Stout, 1996; 

Oshima & Miller, 1992; Roussos & Stout, 1996). Thus, the consideration for latent DIF is 

important given that the manifest group membership may not be reliable or provide a valid 

indication of examinees’ true group membership.  

 Mixture IRT models have been widely used to assess DIF, which allows for a comparison 

of item parameters across latent groups. This idea is similar to multigroup IRT models, except that 

the groups are recovered as a part of model estimation rather than specified a priori. Empirical and 

simulation evidence support the use of mixture IRT models in DIF detection (Cho, Suh, & Lee, 

2015; Cohen & Bolt, 2005; De Ayala et al., 2002; Maij-de Meij, Kelderman, & van der Flier, 2010; 

Samuelsen, 2005). Based on Smit, Kelderman, and van der Flier’s discussions on the positive 

effect of collateral information on item parameter estimation and latent class membership 
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assignment (1999, 2000), researchers have begun to investigate the methodological impact of 

covariates on IRT mixture modeling (Chen & Jiao, 2014; Choi, Alexeev, & Cohen, 2014; Dai, 

2009; Li, Jiao, & Macready, 2015; Tay, Newman, & Vermunt, 2011). Theoretically, covariates 

can be involved as predictors at each latent class level or as predictors of the latent class 

membership. Most of these studies suggest that the inclusion of covariates has the potential to 

improve latent class identification and facilitate the interpretation of differences across latent 

groups.  

Simulation studies that used latent DIF detection based on mixture IRT models identified 

a set of conditions that may affect the behavior of mixture IRT models in detecting DIF.  These 

simulation conditions include sample size, test length, number of latent classes, the overlap 

between covariates and latent classes, mean difference in ability between latent groups (impact), 

percentage of DIF items, and magnitude/effect size of DIF.  

Unfortunately, none of these studies provided a thorough discussion on the IRT mixture 

modeling of latent DIF. Several unresolved issues include: 1) More complex mixture IRT models 

were infrequently studied. The mixture Rasch model, as the simplest mixture IRT model, was 

adopted in most of these studies. 2) Non-uniform DIF across latent groups was not addressed. In 

the case of non-uniform DIF, members of one group are favored up to a level on the ability scale 

and from that point on the relationship is reversed. Although non-uniform DIF is not as common 

as uniform DIF in practice, it still occurs in testing programs. 3) Effect of estimation methods on 

latent DIF detection was not considered. Finch and French (2012) compared the effects of MLE 

and MCMC on the classification accuracy and parameter estimation of the mixture 1PL and 2PL 

IRT models. It was found that MCMC estimation produced better recovery of the latent group 

membership and more accurate parameter estimates for smaller samples and fewer items. In 
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contract, MLE provided more accurate parameter estimates for larger samples and more items. A 

direct comparison of the two procedures is needed to provide insights into the optimal estimation 

conditions in latent DIF detection. 

1.2 PURPOSE OF THE STUDY 

The main purpose of this dissertation was to conduct a simulation study to address the performance 

of mixture IRT models in assessing DIF across latent groups by highlighting the role of estimation 

methods in detecting two different types of DIF. Mixture 2PL IRT models were used to analyze 

the generated datasets, which offered the flexibility of analyzing latent DIF in terms of item 

difficulty and item discrimination. As a dominant estimation procedure in previous simulation 

work, the Bayesian MCMC has demonstrated satisfactory item parameter estimation and 

classification accuracy. On the other hand, DeMars and Lau (2011) found that the recovery of class 

membership was poor across all the simulation conditions using FIML estimation. The time-

consuming issue of the MCMC estimation was non-trivial for mixture IRT models. The difficulty 

of convergence to solutions for individual parameters was also of concern (Li, Cohen, Kim, & 

Cho, 2009). Compared to MCMC estimation, MLE is generally more time efficient but could still 

have other problems such as the local maxima issue. In that case, longer computation time is 

needed due to the maximum number of iterations needed (Finch & French, 2012). Therefore, it is 

not clear which estimation gives an optimal condition in latent DIF detection without a direct 

comparison of the two methods. The main purpose of the present study was to address the 

differences of MLE and MCMC estimation in the mixture IRT modeling of latent DIF.  



 5 

Seven factors were manipulated in the present study which were DIF size, the percentage 

of DIF items, DIF type, group impact, the association of the covariate with the latent group 

membership, analyzing model, and estimation method. The first five factors were the between-

replication factors, and the last two were the within-replication factors. All the factors were 

dichotomous to decrease the complexity of the design. Specifically, this study aims to answer the 

following research questions: 1) How do the simulation factors (DIF size, the percentage of DIF 

items, DIF type, group impact, the association of the covariate with the latent group membership, 

model, and estimation method) affect the performance of the mixture 2PL model in latent DIF 

detection? 2) How is the mixture modeling of latent DIF affected by the estimation method 

employed (MLE v.s. Bayesian estimation)? 3) How well are the latent DIF items detected under 

disadvantaged conditions (i.e., small number of DIF items, small DIF size, and weak association 

between the covariate and the latent group membership)? 

1.3 OVERVIEW OF CHAPTERS 

In Chapter 2, the theoretic frameworks of the mixture IRT model and mixture IRT model with 

covariate are described, followed by an introduction to the estimation methods used in the mixture 

IRT literature. The most frequently used algorithms for each estimation method are summarized. 

The estimation difficulties associated with each estimation procedure is discussed along with a 

summary of the solutions to these challenges. The last part of this chapter summarizes previous 

research on latent DIF detection with a focus on the findings from simulation studies.  

Chapter 3 presents the design of this simulation study. The selection of each of the 

stimulation factors is justified using relevant simulation work.  The measures of outcomes are 
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described, followed by a discussion about the solutions to the label switching issue. Each of the 

simulation steps are described. The validation of simulation parameters is also described, and the 

validation results are presented in Appendix A. 

The results of the simulation study are presented in Chapter 4, which includes the 

description of the analytical plan, the discussion of the convergence and label switching issue, as 

well as a summary of the results for each of the outcome measures.  

Chapter 5 summarizes the findings, and discusses the potential limitations and future 

directions for the use of mixture IRT models in latent DIF analysis. 
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2.0  LITERATURE REVIEW 

Mixture IRT models with covariates (Mixture IRT-C) proposed in this study are used for the 

detection of DIF by employing two different estimation methods. This chapter begins with a 

discussion of mixture IRT models, from the simplest to the full parameter format. The next section 

explains mixture IRT-C models with an emphasis on the benefits for parameter estimation and 

latent class assignment based on theoretical and empirical evidence. Model parameter estimation 

for mixture IRT models have been explored by using both MLE and MCMC procedures. The third 

section compares the two techniques by summarizing studies using each estimation method within 

the mixture IRT framework. The following two sections identifies the major difficulties involved 

in latent modeling. The detection of latent DIF based on mixture IRT-C models are evaluated. The 

last section describes the manifestation of DIF between latent groups and reviews both the 

empirical and simulation studies on latent DIF analysis using mixture IRT models.  

2.1 MIXTURE IRT MODELS 

Item response theory (IRT) models contain a family of models that describe the probability of the 

response behavior of an examinee given his/her personal characteristics (i.e., mathematical ability) 

and the item difficulty. Two essential assumptions that IRT models require are unidimensionality 

and local independence (Hambleton & Swaminathan, 1985; Lord, 1980; Lord & Novick, 1968; 

Reckase, 1979). Specifically, the latent construct measured in a test presents in one-dimensional 

space only, and individuals’ response to test items are independent of one another such that the 
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probability of answering an item correctly only depends on the latent trait. In the situation where 

individuals’ cognitive strategies are different, the conventional IRT assumptions would be violated 

by introducing secondary dimension(s), known as population heterogeneity. Mixture IRT models 

are developed to take qualitative individual differences into account without losing necessary 

assumptions of the basic models (Rost, 1990).   

Theoretically speaking, mixture IRT models are considered as the integration of finite 

mixture models and conventional IRT models. The early work can be traced back to the late 1980s 

when research mainly focused on integrating Rasch models and latent class analysis (LCA) 

(Clogg, 1988; Formann, 1985, 1989). The basic idea is that Rasch models describe the response 

behavior within a latent class, and different parameter values are allowed to be estimated for 

different latent classes of examinees in a population (Mislevy & Verhelst, 1990; Rost, 1990; von 

Davier & Rost, 2006). In particular, mixture IRT models identify latent memberships and establish 

item response functions within each class simultaneously (De Ayala & Santiago, 2016). An 

examinee population is considered to be composed of a fixed number of latent groups (Cohen, 

Wollack, Bolt, & Mroch, 2002). Homogeneity is assumed within each latent group such that 

examinees of the same latent group share unique characteristics and model parameters can differ 

across latent groups. The assumption of a single qualitatively homogeneous distribution of IRT 

models is relaxed, and the assumption of same response probability is also relaxed (Cho, 2013).  

 Mixture IRT models take the weighted sum of the probability of the correct response 

across the latent groups, which can be represented as: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖� = ∑ 𝜋𝜋𝑔𝑔𝐺𝐺
𝑔𝑔=1 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖, 𝑔𝑔�,                                              (1) 
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where 𝜋𝜋𝑔𝑔 is the proportion of examinees belonging to the latent group g and is constrained such 

that ∑ 𝜋𝜋𝑔𝑔𝐺𝐺
𝑔𝑔=1 = 1;  𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖, 𝑔𝑔� is the probability of person i correctly responding to item j 

given his/her latent group membership g and ability level 𝜃𝜃𝑖𝑖. 

 The simplest mixture IRT model is the mixture Rasch model (MRM), which was 

extensively used in the literature. The early work that contributed to the development of MRM 

were conducted by Kelderman and Macready (1990), Mislevy and Verhelst (1990), and Rost 

(1990). In these studies, MRM was derived based on the same idea of combining a latent trait with 

a latent categorical variable. Parameters to be estimated in this model are Rasch difficulty and 

class-specific ability parameters: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖� = ∑ 𝜋𝜋𝑔𝑔𝐺𝐺
𝑔𝑔=1

exp (𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗)
1+ exp (𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗)

,                                                   (2)                              

where 𝜃𝜃𝑖𝑖𝑖𝑖 is the ability level of person i within the latent group g; 𝑏𝑏𝑗𝑗𝑗𝑗 is the difficulty of item j for 

the latent group g. It is noted that in the literature the subscript of the latent group membership g 

is often omitted for 𝜃𝜃𝑖𝑖𝑖𝑖  because individuals have only one ability parameter given their latent 

group membership.  

 By adding one more parameter into the model, the mixture 2-parameter logistic (2PL) IRT 

model relax the discrimination assumption and can be viewed as an extension of MRM. For each 

of the latent groups a 2PL model is assumed to hold while the item difficulty and discrimination 

parameters are allowed to be different. Existing research investigated the accuracy of identifying 

the correct number of latent classes by comparing across different mixture IRT models (Li, Cohen, 

Kim, & Cho, 2009; Sen, Cohen, & Kim, 2014). The recovery of latent membership was found to 

be the best for the mixture 2PL model regardless of the test length. Particularly, as a more complex 

model the mixture 2PL model tended to yield fewer spurious latent class solutions due to latent 
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nonnormality. The probability of a correct response in mixture 2PL model takes the same form as 

the MRM and can be represented as: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖� = ∑ 𝜋𝜋𝑔𝑔𝐺𝐺
𝑔𝑔=1

exp [𝑎𝑎𝑗𝑗𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗�]
1+ exp [𝑎𝑎𝑗𝑗𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗�]

,                                                   (3)     

where 𝑎𝑎𝑗𝑗𝑗𝑗 is the discrimination of item j for the latent group g.  

Similarly, the mixture 3-parameter logistic (3PL) IRT model assumes that the 3PL model 

holds for each of the latent groups with the item difficulty, discrimination, and guessing parameters 

permitted to be different across the latent groups. The mixture 3PL model was applied only in a 

few studies (Cohen & Bolt, 2005; Li et al, 2009; Sen, Cohen, & Kim, 2014). The probability of a 

correct response in mixture 3PL model is represented as: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖� = ∑ 𝜋𝜋𝑔𝑔𝐺𝐺
𝑔𝑔=1 [𝑐𝑐𝑗𝑗𝑗𝑗 + �1 − 𝑐𝑐𝑗𝑗𝑗𝑗�

exp�𝑎𝑎𝑗𝑗𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗��

1+exp�𝑎𝑎𝑗𝑗𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗��
],              (4)     

where 𝑐𝑐𝑗𝑗𝑗𝑗 is the lower asymptote parameter of item j for the latent group g.  

An important feature of mixture IRT models is that the heterogeneity of response data 

among the latent classes and within each latent class can be well represented. The class 

membership is considered to reflect the qualitative differences of the response patterns across 

latent groups, while the ability is considered to reflect the quantitative differences among 

individuals within a latent group. Mixture models provide more flexibility but they are criticized 

for some limitations. For example, the number of parameters estimated increases rapidly as the 

number of latent classes increase. This is because both the ability and membership parameters for 

each examinee as well as the item parameters for each class need to be estimated (Choi, 2010). 

This would make the model difficult to interpret when more than two latent classes are identified. 

In that case, a large sample size is needed to cope with the increased number of parameters to be 

estimated (Li, Cohen, Bottge, & Templin, 2015). In addition, mixture IRT models by themselves 
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do not explain the latent categorizing of examinees. Therefore, collateral/additional information is 

recommended to be included to improve the understanding of how and what causes the latent 

groups to be different (Smit et al., 1999).  

2.2 MIXTURE IRT MODELS WITH COVARIATES 

As was stated above, one of the most challenging tasks of using mixture IRT models is to determine 

what causes the heterogeneity of the population, which is also a question researchers often ask 

when using latent class modeling. It has been widely shown that collateral information such as 

background characteristics may confound the estimation of the modeled variables. The inclusion 

of these potentially effective covariates may help alleviate the difficulties of identifying latent class 

and improve the estimating of model parameters. Evidence about the benefits of covariate 

inclusion were found in both the mixture modeling and conventional IRT literature. This evidence 

is discussed in this section, followed by a description of the methods of including covariates. 

2.2.1 Covariate Effect in Mixture Models 

In general, there are two ways that covariates are included in a latent variable mixture model. They 

can be associated with the underlying class variable or the measured outcome variable. Several 

early studies modeled and analyzed the relationship between covariates and latent class 

membership. For example, Dayton and Macready (1988) developed a concomitant-variable latent 

class model where covariates were used to predict the class membership. Van der Heijden, 

Dessens, and Bockenholt (1996) further discussed the concomitant-variable latent class model 
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where continuous explanatory variables were added and maximum likelihood estimates of the 

parameters through the EM algorithm were derived.  

Recent studies discussed the effect of including covariates into LCA and growth mixture 

modeling. To examine the covariate effect on parameter coverage and class membership 

assignment, Lubke and Muthén (2007) conducted a simulation study where the class separation, 

measured by the multivariate Mahalanobis distance, and the effect size of a single continuous 

covariate were manipulated. It was found that parameter coverage was acceptable even for the 

smallest class separation, and the class assignment seemed to be improved when increasing the 

class separation or covariate effect size. In other words, the inclusion of covariates into the LCA 

model contributed to the reduction of classification error rates. As an extension of these findings, 

Wurpts and Geiser (2014) examined the ways that covariates influence the performance of LCA. 

Five factors were manipulated in this simulation study including the sample size, number of latent 

classes, number and quality of latent class indicators, as well as the effect size of a continuous 

covariate on latent class membership. It was found that the large covariate effect size improved 

the prediction of latent class membership. More interestingly, the large covariate effect size 

somehow compensated for the small number and the low quality of class indicators. These studies 

were consistent with previous research in that adding covariates is beneficial to LCA estimation 

process and the additional information provided by covariates could offset some suboptimal model 

conditions. 

Covariate effect was also addressed within the growth mixture modeling (GMM) 

framework. Muthén (2004) found that covariates improved model specification and class 

membership assignment when used as a predictor of trajectory class membership in GMM. In 

particular, class membership assignment was found to be influenced by the association between 
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the covariate and the trajectories as well as the distribution of the covariate. For example, Huang, 

Brecht, Hara, and Hser (2010) examined the agreement on the latent trajectory class membership 

classification between the unconditional GMM model (the model without the covariate) and the 

conditional GMM models (the models with the covariates such as the early heroin use). When the 

distribution of the covariate was highly unbalanced, meaning a majority of subjects were in one 

group (i.e., 81.5% of the subjects were the non-early-heroin users and 18.5% were the early-heroin 

users), the inclusion of the covariate did not change subjects’ trajectory group membership 

substantively. This was because it contributed little extra information to the classification of 

subjects into different trajectory groups (i.e., only a small number of subjects were affected by the 

inclusion of early heroin use). In contrast, subjects’ class membership changed substantively when 

the covariate had relatively low correlation with the latent trajectory membership and had a 

balanced distribution. GMM with correctly specified covariates outperformed the model without 

covariates in recovering the correct number of classes in terms of various model fit indices. 

However, the misspecification of covariates led to the deviation of GMM from correct number of 

classes (Li & Hser, 2011). In addition, the inclusion of covariates was recommended to improve 

class membership assignment when the study sample size and the class separation were small (Hu, 

Leite, & Gao, 2017). This was consistent with previous findings in that the inclusion of covariates 

compensated for the inadequacy of GMM. 

2.2.2 Covariate Effect in IRT Models 

Covariate effect in the IRT framework generally follows the same pattern as the one discovered in 

mixture models in that the precision of item parameter estimation is improved by including 

auxiliary information about examinees (i.e., age, education, demographic information, etc.). 
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Specifically, collateral information about examinees contributes to reducing the standard errors in 

the estimation of item parameters and the mean squared errors in the estimation of individual 

proficiencies/abilities (Mislevy, 1987; Mislevy & Sheehan, 1989). There was also evidence 

showing that the inclusion of a collateral variable that was highly related to the ability parameter 

contributed substantially to the reduction of the mean squared error in ability prediction but was 

less useful in improving the estimation of item parameters (Adams, Wilson, & Wu, 1997). In order 

to produce consistent item parameters, the collateral information used in item parameter estimation 

needed to be used in item selection as well (Mislevy & Sheehan, 1989). 

In the literature, IRT models with covariate (IRT-C) was mainly used to assess DIF. In a 

simulation study by Tay, Vermunt, and Wang (2013) a single covariate was included into the 2PL 

IRT model, which was compared with two other procedures in identifying DIF including the 

Mantel-Haenszel and the multiple indicators multiple cause procedures. The authors examined the 

power and Type I error rates for DIF detection, the performance of the IRT-C model in ascertaining 

different types of DIF (uniform and nonuniform), as well as the deviance of the focal group latent 

mean from the simulated value. It was found that the IRT-C model performed the best with the 

highest power and well-controlled Type I error rate at .05 when there was a moderate number of 

DIF items in the test. In this condition, the IRT-C model produced accurate estimates of the focal 

latent mean in that the root mean squared error (RMSE) was as low as 0.10 across all the simulated 

conditions. A follow-up study by Tay, Huang, and Vermunt (2016) examined the power of 

detecting DIF and the recovery of latent means when multiple covariates were included in the 3PL 

IRT model. This study basically verified the previous finding that the model parameters 

(particularly the item discrimination and item difficulty parameters) and the latent means were 

accurately estimated with a substantial sample size of 20, 000 regardless of the DIF effect.  
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2.2.3  Inclusion of Covariates in Mixture IRT Models 

Most covariates considered in the mixture IRT models are manifest variable, which are typically 

used as the predictors of latent class membership 𝜋𝜋𝑔𝑔 through a logistic regression function or the 

predictors of individual latent trait 𝜃𝜃𝑖𝑖𝑖𝑖 through a linear regression function (Dai, 2013; Li et al., 

2015; Tay et al., 2011): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜋𝜋𝑔𝑔� = 𝛽𝛽0𝑔𝑔 + 𝛽𝛽1𝑔𝑔𝑐𝑐𝑖𝑖,                                                                          (5) 

or equivalently, 

𝜋𝜋𝑔𝑔 = exp (𝛽𝛽0𝑔𝑔+𝛽𝛽1𝑔𝑔𝑐𝑐𝑖𝑖)
∑ exp (𝛽𝛽0𝑔𝑔+𝛽𝛽1𝑔𝑔𝑐𝑐𝑖𝑖)𝐺𝐺
𝑔𝑔=1

,                                                                              (6) 

and, 

𝜃𝜃𝑖𝑖𝑖𝑖 = 𝛼𝛼0𝑔𝑔 + 𝛼𝛼1𝑔𝑔𝑐𝑐𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖,                                                                              (7) 

where 𝑐𝑐𝑖𝑖 denotes the covariate for examinee i; 𝛽𝛽0𝑔𝑔 and 𝛽𝛽1𝑔𝑔 are the regression coefficients in the 

logistic regression; G denotes the number of latent classes (i.e., for two latent classes G = 2);  𝛼𝛼0𝑔𝑔 

and 𝛼𝛼1𝑔𝑔 are the intercept and slope of the latent regression model for the latent group g; 𝑒𝑒𝑖𝑖𝑖𝑖 is the 

error term of the linear function with a distribution of N(0, 𝜎𝜎𝑒𝑒𝑔𝑔2 ).  

The graphical representation of the relationship among latent group, ability, and covariate 

was proposed by Tay et al (2011). As shown in Figure 2.1, g is the latent class, θ is the latent trait, 

𝑦𝑦𝑗𝑗 is the observed indicator, and c is the vector of observed characteristics of examinees. Path 1 

and 2 represent the prediction of the latent class membership and the latent trait by the covariate 

respectively. Path 3 and 4 represent the dependence of examinees’ responses on their latent group 

membership and observed characteristics, which correspond to the latent DIF and observed DIF 

respectively. Path 5 denotes the dependence of examinees’ latent trait on their latent class 
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membership, which is usually defined by the mean difference of abilities between the latent 

groups.  

 

Figure 2.1. Graphic Representation of Mixture IRT Model with Covariate 

Samuelsen (2005) summarized three types of variables that may be of interest and 

informative as covariates in educational research: 1) non-traditional manifest grouping variables 

such as native speakers versus non-native speakers, urban versus non-urban students, etc.; 2) 

continuous predictors such as the number of math classes a student has taken and the number of 

years an English language learner has been in the United States; 3) interactions between traditional 

and non-traditional manifest grouping variables such as the interaction between race or gender and 

geographical location.  

The inclusion of covariates are expected to achieve the same goal in mixture IRT models 

as they are in LCA and conventional IRT models. Several studies have discussed the performance 

of mixture IRT-C models and generally verified the positive role of covariates in the recovery of 

underlying structures and parameter estimation within that structure. Specifically, the percentage 

of correct classification was higher for the model with covariates correctly specified, which also 

produced the smallest SE and RMSE in item parameter recovery. Smit, Kelderman, and van der 

Flier (1999, 2000) evaluated the usefulness of incorporating covariates into mixture Rasch models. 

In their studies, the strength of the association between the covariates and the latent class variable 
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was manipulated. It was found that the mean difference between the simulated parameters and the 

estimated parameters, known as the deviance, became smaller as the external variables became 

more associated with the latent class membership. The standard deviation of the deviance reduced 

as more collateral information was included in the model. The percentage of correct assignment 

of subjects also became higher as the association between the latent class and the covariate became 

stronger, especially for relatively large sample sizes. 

Samuelsen (2005) judged the appropriateness of detecting DIF using a manifest group 

approach when the manifest group membership did not completely overlap with the latent group 

membership. In this study, different background variables were incorporated into a mixture Rasch 

model as the indicators of the latent class membership for the manifest groups. Better item 

parameter recovery was found when the covariate was strongly associated with the latent class, 

especially when the sample size was small. Other studies also demonstrated that the inclusion of 

covariates improved the recovery of item difficulty and group membership and facilitated the 

discovery of underlying structures when sample sizes or the difference between latent classes were 

small (Cho, Cohen, & Kim, 2006; Cho, Cohen, Kim, & Bottge, 2010; Li, Cohen, & Bottge, 2007).  

Most recently, Li, Jiao, and Macready (2015) studied different approaches of incorporating 

covariates into mixture IRT models. Dichotomous variables were used as the predictors of the 

probability of an examinee belonging to a latent class, while continuous variables entered the 

model as the predictors of latent ability. It was found that the item parameter recovery was 

generally better for the mixture Rasch model with covariates, especially for the model with the 

continuous covariate only. In addition, the mixture Rasch model with continuous covariate resulted 

in smaller standard errors of the person parameter estimates and the best person parameter 

recovery, which had negligible difference from the true model.  The model with both the 
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dichotomous and continuous covariates led to the most accurate latent class assignment. The model 

with one dichotomous covariate performed slightly better than the model with one continuous 

covariate. Lastly, the study suggeste the deviance information criterion (DIC) to be the most 

effective model fit index, which selected the mixture Rasch model with correctly specified 

covariate, whereas other fit indices such as Bayesian information criterion (BIC), consistent 

Akaike’s information criterion (CAIC), or sample-size adjusted BIC (SABIC) favored the 

parsimonious rule and preferred the model without covariates. 

2.3 ESTIMATION OF MIXTURE IRT MODELS 

Maximum likelihood and Bayesian analysis with Markov Chain Monte Carlo (MCMC) sampling 

are the most frequently used estimation methods for mixture IRT models. A review of the literature 

found that different types of maximum likelihood were involved, including conditional maximum 

likelihood (CML) (Rost, 1990, 1991), joint maximum likelihood (JML) (Willse, 2010), and 

marginal maximum likelihood (MML) (Mislevy & Wilson, 1996; Von Davier & Yamamoto, 

2004). As an alternative technique, the MCMC estimation involves an iteration process based on 

the model’s parameter space, which was employed in many studies on mixture modeling. The 

derivation of likelihood functions are not required in MCMC estimation, whereas the specification 

of parameter prior distributions is an essential part of the MCMC algorithm. In this section the 

algorithms/schemes of the maximum likelihood and Bayesian estimation are described with a 

focus on the MCMC estimation, followed by a discussion on their applications in the mixture IRT 

research. 
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2.3.1 Maximum Likelihood Estimation 

All three maximum likelihood methods have been used in IRT parameter estimation, and they 

differentiated in terms of the likelihood being maximized. Compared to JML, MML and CML are 

more commonly used for mixture IRT models (Mislevy & Wilson, 1996; Rost, 1990, 1991; Rost 

& von Davier, 1995; von Davier & Rost, 1995; von Davier & Yamamoto, 2004). The JML 

procedure treats both the item and the ability as unknown but fixed model parameters. It finds the 

model parameters by jointly maximizing the following likelihood across all the examinees and all 

the items, where 𝜙𝜙 and 𝜃𝜃 are the item and ability parameters respectively: 

𝐿𝐿(𝜙𝜙, 𝜃𝜃|𝑋𝑋) = Π𝐿𝐿(𝜃𝜃|𝑥𝑥, 𝜙𝜙).                                                                              (8) 

Unlike JML, MML assumes that item parameters are fixed but examinees’ abilities are randomly 

sampled from some larger distribution. It integrates over the distribution of the ability parameter 

in the likelihood equation. MML finds the item parameters by maximizing the following likelihood 

without reference to the ability parameter, where Pr{𝑥𝑥|𝜙𝜙}  is the marginal/unconditional 

probability of observing the item response vector and 𝑔𝑔(𝜃𝜃) is a continuous ability distribution 

(Johnson, 2007):  

𝐿𝐿(𝜙𝜙|𝑋𝑋) = ∏Pr{𝑥𝑥|𝜙𝜙} = ∫ 𝐿𝐿(𝜃𝜃|𝑥𝑥, 𝜙𝜙)𝑔𝑔(𝜃𝜃)𝑑𝑑𝑑𝑑Θ .                                             (9) 

Rather than making an assumption about the distribution of the latent variable, another solution to 

ensure consistent item parameter estimation is to introduce the sum of the correct responses/raw 

score for each examinee as a sufficient statistic for an individual’s ability. The item parameters 

can be estimated through the conditional distribution of the responses given the scores, and 

therefore, the probability of the responses no longer depends on the value of 𝜃𝜃. CML finds the 
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item parameters by maximizing the following conditional likelihood, where T is the vector of the 

observed raw scores (Eggen, 2000; Johnson, 2007): 

𝐿𝐿(𝜙𝜙|𝑋𝑋, 𝑇𝑇) = ∏Pr{𝑥𝑥|𝑡𝑡, 𝜙𝜙}.                                                                             (10) 

2.3.1.1 Expectation–Maximization (EM) Algorithm 

Given the observed response pattern X, the latent attribute 𝜃𝜃, and a vector of unknow 

parameters 𝜙𝜙, along with a likelihood function, the expectation–maximization (EM) algorithm was 

wildly used in mixture IRT literature. There are minor algorithm differences in the estimation of 

class-specific model parameters, depending on the implementation of maximum likelihood (JML, 

MML, or CML). In general, the EM algorithm is an iterative procedure including two steps in each 

iteration. In the expectation step or the E-step, the task is to calculate the expected value of the 

log-likelihood of the parameter given the observed response pattern. In the maximization step or 

the M-step, the task is to choose the parameters that maximize the expected log-likelihood obtained 

from the E-step. This process continues for the E- and M-steps until the resulting maxima for the 

parameters change very little compared to the ones from the previous M-step. 

Using the mixture Rasch model as an example, Rost (1990, 1991) summarized the use of 

EM algorithm in mixture IRT models. First, the E-step calculates the expected frequencies of the 

response pattern for each latent class by weighting the observed response frequencies with the 

probability of the response belonging to that class, also known as the within-class frequencies 

(Willse, 2010): 

𝑛𝑛�(𝑥𝑥|𝑐𝑐) = 𝑛𝑛(𝑥𝑥) 𝜋𝜋𝑐𝑐𝑃𝑃�𝑥𝑥�𝑐𝑐, 𝜃𝜃𝑐𝑐, 𝑏𝑏�
𝑃𝑃(𝑥𝑥) = 𝑛𝑛(𝑥𝑥) 𝜋𝜋𝑐𝑐𝑃𝑃�𝑥𝑥�𝑐𝑐, 𝜃𝜃𝑐𝑐, 𝑏𝑏�

∑ 𝜋𝜋𝑐𝑐𝑃𝑃�𝑥𝑥�𝑐𝑐, 𝜃𝜃𝑐𝑐, 𝑏𝑏�𝐶𝐶
𝑐𝑐=1

,                         (11)                        

where x is the response vector, c denotes the latent class, 𝜋𝜋𝑐𝑐 is the probability of the latent class c, 

𝜃𝜃𝑐𝑐 is the ability for the latent class, and b is the item parameter. 𝑃𝑃(𝑥𝑥|𝑐𝑐, 𝜃𝜃𝑐𝑐, 𝑏𝑏) is the probability of 
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examinees’ responses to test items given their latent class membership, abilities corresponding to 

that latent class, and the item difficulty. 𝑃𝑃(𝑥𝑥) is the probability of the response vector across the 

latent class membership.  

Second, based on the within-class frequencies from the E-step, the M-step estimates the 

item and ability parameters for each latent class by maximizing the log-likelihood function of the 

observations in that class. Item parameters are computed by setting the first partial derivatives of 

this function to be zero. The probability of the latent class membership is simply calculated by the 

following equation, where N is the sample size: 

𝜋𝜋�𝑐𝑐 = ∑ 𝑛𝑛�(𝑥𝑥|𝑐𝑐)𝑥𝑥
𝑁𝑁

.                                                                                            (12) 

2.3.1.2 Use of MLE in Mixture IRT Models 

In addition to the theoretical discussion of the use of MLE in mixture IRT models (Mislevy & 

Wilson, 1996; Rost, 1990, 1991; Willse, 2010), a number of empirical studies employed the EM 

algorithm within the mixture IRT framework, and most of these studies were on DIF analysis 

(Aryadoust, 2015; Chen & Jiao, 2014; Cho, 2013; DeMars & Lau, 2011; Kelderman & Macready, 

1990; Maij-de Meij, Kelderman, & van der Flier, 2010; Tay, Newman, & Vermunt, 2011; Van 

Nijlen & Janssen, 2008). A few others were on the usefulness of collateral information 

incorporated in mixture IRT models (Smit, Kelderman, & van der Flier, 1999, 2000) and the 

comparability of the profiles across latent groups (Aryadoust & Zhang, 2016; Paek & Cho, 2015).  

The first study that explained DIF based on mixture IRT models was done by Kelderman 

and Macready (1990), where a loglinear format of the Rasch model, termed loglinear latent class 

model, was used to detect the presence of both the manifest and latent DIF. MLE with the iterative 

proportional fitting (IPT) algorithm was used in this study to estimate model parameters. A 
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practical problem discovered in this study was that a large number of iterations might be needed 

to reach a solution, especially when a complex model was used or the initial values of the 

interactive process were not reasonable. Adopting this general framework, Smit, Kelderman, and 

van der Flier (1999, 2000) conducted two simulation studies to examine the impact of collateral 

information on item parameter estimation in mixture Rasch model and Birnbaum's two-parameter 

model. The E-M algorithm was used in both of the studies with the E-step computing the expected 

frequencies given the observed data and current parameter estimates and the M-step maximizing 

the log-likelihood.  

In a more recent study mixture IRT models with covariates were used to identify overall 

DIF (Tay et al., 2011). The authors recommended the use of multiple random start values to avoid 

the multiple local maxima issue for the log likelihood and the increasing of quadrature points to 

improve the estimation accuracy. In addition, full information maximum likelihood (FIML) was 

used in some studies with missing data (Chen & Jiao, 2014).  

Lastly, through imposing the item difficulty equality constraint and ability distribution 

constraint using different programs (WINMIRA v.s. Mplus), Paek and Cho (2015) found that the 

CMLE employed in WINMIRA did not produce noticeable estimation differences compared to 

the MMLE employed in Mplus. However, the choice of estimation algorithm depends on the 

program limitation. 

2.3.2 Bayesian Estimation with MCM 

The use of Bayesian statistics has been controversial. Two most common criticisms against 

Bayesian approach are: 1) Imposing a probability distribution over a parameter is unreasonable 

because parameters are fixed. 2) Including a prior into the model may introduce subjective 
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judgement and thus bias the results (Gill, 2014; Lynch, 2007). Since the mid-1990s, there has been 

an explosion in advances in Bayesian statistics due to pragmatic reasons. Many research questions 

in social and behavioral science readily lend themselves to a Bayesian approach. More importantly, 

the availability of Bayesian computational packages increases the ease of using sampling methods 

to estimate model parameters. 

Within the frequentist framework, a parameter of interest is assumed to be fixed, meaning 

there is only one true population parameter. The Bayesian paradigm offers a very different 

perspective of hypothesis testing in that all unknown parameters are uncertain and viewed as 

random variables. Therefore, Bayesian statistics typically involves the use of probability 

distributions rather than point probabilities (Lynch, 2007; Schoot, Kaplan, Denissen, Asendorpf, 

Neyer, & Aken, 2014). Three ingredients of Bayesian statistics include prior distribution for the 

parameter, information provided by the data, and posterior inference. The relationship of these 

three components are represented through the Bayes’ theorem: 

𝑓𝑓(𝜃𝜃|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃)𝑓𝑓(𝜃𝜃)
𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

,                                                                       (13) 

where 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜃𝜃) is the sampling distribution and is proportional to the likelihood function, 𝑓𝑓(𝜃𝜃) 

is the prior distribution for the parameter, and 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is a scalar. As shown in equation (13), the 

posterior distribution for the parameter 𝜃𝜃  depends on the prior probability distribution for 𝜃𝜃 

weighted by the probability of the data given different values of 𝜃𝜃.   

The estimation of parameters using Bayesian approach is challenging because it derives a 

posterior distribution rather than a point estimate for the parameter (Fox, 2010; Lynch, 2007). 

Unlike the classical likelihood-based approach, the Bayesian method uses sampling methods to 

generate samples from the posterior distribution and then uses these samples to approximate the 

integrals of interest to help summarize the posterior distribution.  
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In general, the development of MCMC sampling methods and the growth in computing 

capacities have made Bayesian statistics more feasible and increased the popularity of Bayesian 

estimation (Brooks, 1998; Fox, 2010; Lynch, 2007). TheMCMC methods were popularized by a 

paper by Gelfand & Smith (1990), which discussed a class of algorithms for sampling a probability 

distribution based on constructing a Markov chain. Each step in the chain constructs an empirical 

distribution, and the chain converges through a certain number of steps to an equilibrium 

distribution which is the posterior distribution. Specifically, “Markov chain” refers to the process 

of sampling a new value for the parameter 𝜃𝜃 given its immediate predecessor 𝜃𝜃−1, and “Monte 

Carlo” refers to the random simulation process. Monte Carlo integration is used to approximate an 

expectation by using the Markov chain samples: 

∫ 𝑔𝑔(𝜃𝜃)𝑝𝑝(𝜃𝜃)𝑑𝑑𝑑𝑑 ≅ 1
𝑛𝑛
∑ 𝑔𝑔(𝜃𝜃′)𝑛𝑛
𝑡𝑡=1𝑆𝑆 .                                                              (14) 

The features of MCMC samplings include: 1) It facilitates sampling from complex 

distributions and handles multivariate densities; 2) It moves throughout the entire space of a 

posterior distribution. In particular, the Bayesian MCMC approach is favored by its flexibility. 

Unlike frequentist procedures relying on normality assumptions and asymptotic arguments, 

MCMC techniques can handle complex data, such as data with multilevel correlation structures or 

data on different measurement scales for different test items, by fitting a broader variety of models. 

In addition, Bayesian inference via MCMC is unbiased which has no requirement for the minimum 

sample size. The implementation of Bayesian methods was shown to be sensitive to some 

conditions. For example, prior distributions are required to be specified for unknown parameters, 

and thus the choice of prior often affects the final inference (Lambert, Sutton, Burton, Abrams, & 

Jones, 2005; Turner, Omar, & Thompson, 2001). Therefore, it was suggested to compare the 

marginal prior with the posterior distributions or compare the posterior results over a small number 
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of prior variations (Müller, 2012). The other critical issue in the use of MCMC methods is to 

address the convergence problem by applying appropriate diagnostic tools. It was suggested to 

combine a number of strategies to reach reliable diagnosis of convergence, such as applying 

diagnostic procedures to a small number of parallel chains, monitoring autocorrelations and 

crosscorrelations, as well as modifying parameterizations or sampling algorithms appropriately 

(Brooks & Gelman, 1998; Cowles & Carlin, 1996). In addition, both the within-chains movement 

(i.e., check the trace plots or time series summaries) and the between-chains movement (i.e., check 

the impact of starting points on different chains) should be studied to monitor convergence 

(Gelman & Shirley, 2011). Diagnostic criteria to evaluate chain convergence include time-series 

plots, autocorrelation plots, density plots, and Gelman-Rubin statistic R (Brooks & Roberts, 1998; 

Cowles & Carlin, 1996). MCMC sampling can be conducted using different algorithms, and the 

ones most broadly used in simulation studies are the Metropolis-Hastings algorithm and Gibbs 

sampling. In addition, the Gibbs sampler can be used with certain component conditional 

distributions sampled through the Metropolis-Hastings algorithm, known as the Metropolis-

Hastings within Gibbs sampling. 

2.3.2.1 Metropolis-Hastings (M-H) Algorithm  

The M-H algorithm is the most popular algorithm for MCMC sampling (Chib & Greenberg, 1995; 

Lynch, 2007; Patz & Junker, 1999b; Roberts & Smith, 1994). The iterative process is summarized 

as the following steps where i indexes the iteration count:  

1) Choose a starting point 𝜃𝜃𝑖𝑖=0 = 𝑆𝑆 for which 𝑓𝑓(𝜃𝜃|𝑦𝑦) > 0); 

2) Draw a candidate parameter 𝜃𝜃∗ from a proposal/jumping distribution 𝛼𝛼(. ), which can 

be symmetric or asymmetric, 𝜃𝜃∗~𝛼𝛼(𝜃𝜃∗|𝜃𝜃𝑖𝑖); 
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3) Compute the acceptance ratio 𝑟𝑟(𝜃𝜃∗, 𝜃𝜃𝑖𝑖−1) = 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑓𝑓(𝜃𝜃∗|𝑦𝑦)𝛼𝛼(𝜃𝜃𝑖𝑖−1|𝜃𝜃∗)
𝑓𝑓(𝜃𝜃𝑖𝑖−1|𝑦𝑦)𝛼𝛼(𝜃𝜃∗|𝜃𝜃𝑖𝑖−1)

, 1�; 

4) Sample u from a uniform distribution U (0, 1); 

5) If r > u, then 𝜃𝜃𝑖𝑖 = 𝜃𝜃∗, otherwise, 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖−1; 

6) Set i = i + 1 and return to step 2 until enough draws are obtained. Otherwise, stop. 

The M-H algorithm is simple. It uses a proposal distribution to sample a candidate value 

of the parameter given its current value, therefore, it requires a careful design of the proposal 

distribution. A poorly chosen proposal distribution would lead to low acceptance rate or slowly 

moving Markov chain and low efficiency of the Monte Carlo sampling. 

2.3.2.2 Gibbs Sampler 

Gibbs sampler is a special case of the M-H MCMC sampler using the ordered sub-updates (Alber, 

1992; Albert & Chib, 1993; Fox, 2010; Lynch, 2007; Patz & Junker, 1999b). The proposal 

distributions match the posterior conditional distributions, and thus all the proposals are accepted, 

meaning that the acceptance ratio always equals to one. The iterative process is summarized as the 

following steps, where i indexes the iteration count and the parameter 𝜃𝜃𝑖𝑖 may be multidimensional 

or univariate partitioned into p subvector components: 

1) Assign starting values to the parameter vector, 𝜃𝜃𝑖𝑖=0 = 𝑆𝑆; 

2) Sample (𝜃𝜃2𝑖𝑖+1|𝜃𝜃1𝑖𝑖+1,  𝜃𝜃3𝑖𝑖 … 𝜃𝜃𝑝𝑝𝑖𝑖 ) … (𝜃𝜃𝑝𝑝𝑖𝑖+1|𝜃𝜃1𝑖𝑖+1,  𝜃𝜃2𝑖𝑖+1 … 𝜃𝜃𝑝𝑝−1𝑖𝑖+1 ) and use the joint 

distribution of 𝜃𝜃 as a simulated value or an updated value from the posterior of 𝜃𝜃; 

3) Return to step 2 until obtaining a simulated sample; 

4) Converge to the joint posterior as the equilibrium distribution. 

The major feature of the Gibbs sampler is to reduce a multidimensional parameter into 

blocks and sample each block given the most recent values of other blocks. This allows a complex 
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high-dimensional problem to be simplified and solved in low-dimension. However, the Gibbs 

sampling has several limitations. For example, the conditional distribution for each random 

variable in the model may not be derived from the posterior joint density function. It could also be 

that the conditional distribution has an unknown form, making it impossible to draw samples from 

it. In certain cases it takes a long time for the Gibbs sampler to move through all the regions of the 

density. As a result, Gibbs sampling could be inefficient and display slow “mixing”.  

2.3.2.3 Metropolis-Hastings within Gibbs (MHwG) Sampling  

The M-H algorithm can be used within the Gibbs sampler, and the idea is to retain sequential 

sampling while sampling the conditional distribution via M-H steps (Merkle, 2005; Patz & Junker, 

1999a). The iterative process is outlined as follows: 

1) Choose starting values, 𝜃𝜃𝑖𝑖=0 = 𝑆𝑆; 

2) Draw a candidate parameter 𝜃𝜃1∗  from a proposal distribution 𝛼𝛼(𝜃𝜃1|𝜃𝜃1𝑖𝑖−1); 

3) Accept 𝜃𝜃1∗ with the acceptance probability 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑓𝑓(𝜃𝜃1∗|𝜃𝜃2𝑖𝑖−1,𝜃𝜃3𝑖𝑖−1… 𝜃𝜃𝑝𝑝𝑖𝑖−1)𝛼𝛼(𝜃𝜃1𝑖𝑖−1|𝜃𝜃1∗)
𝑓𝑓(𝜃𝜃1𝑖𝑖−1|𝜃𝜃2𝑖𝑖−1,𝜃𝜃3𝑖𝑖−1… 𝜃𝜃𝑝𝑝𝑖𝑖−1)𝛼𝛼(𝜃𝜃1∗|𝜃𝜃1𝑖𝑖−1)

, 1�; 

4) Sample a value 𝜃𝜃1𝑖𝑖 = 𝜃𝜃1∗. If 𝜃𝜃1∗ is not accepted, set 𝜃𝜃1𝑖𝑖 = 𝜃𝜃1𝑖𝑖−1; 

5) Repeat steps 2-4 for the rest of the parameters 𝜃𝜃2, 𝜃𝜃3, …, 𝜃𝜃𝑝𝑝. 

As a hybrid algorithm, the MHwG sampling lessens the difficulty of specifying high-

dimensional candidate distributions in the M-H algorithm as well as the difficulty of obtaining the 

posterior distribution for each parameter in the Gibbs algorithm. 

2.3.2.4 Use of MCMC Estimation in Mixture IRT Models 

The application of MCMC estimation in psychometric models was popularized by the work 

of Patz and Junker (1999a, 1999b), where the use of MCMC based on M-H sampling was 
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demonstrated in 2PL IRT models. A review of the literature found that the MCMC estimation has 

been used in IRT-based models such as polytomous-ordered data (Patz & Junker, 1999a), rater 

effects and missingness (Patz & Junker, 1999a), nominal data (Wollack, Bolt, Cohen, & Lee, 

2002), testlets (Bradlow, Wainer, & Wang, 1999), multilevel IRT models (Fox & Glas, 2001), and 

mastery classification (Janssen, Tuerlinckx, Meulders, & De Boeck, 2000).    

Like IRT models, LCA assumes both the latent and the observed variables to be discrete. 

The use of MCMC in LCA is advantageous for estimating all the parameters simultaneously while 

accounting for the uncertainty. The examples of MCMC estimation in mixture modeling include 

model comparison and diagnosis (Garrett & Zeger, 2000), model selection (Carlin & Chib, 1995), 

jump diffusion sampling (Phillips & Smith, 1996), Gibbs sampler (Escobar & West, 1995), 

inequality and equality constrainted LC models (Hoijtink, 1998), as well as multilevel LC models 

(Vermunt, 2008). Moreover, MCMC has been shown to be useful in estimating models with 

covariates (Chung, Flaherty, & Schafer, 2006). 

The MCMC methods have been used to deal with empirical data using mixture Rasch 

models, mixture Rasch models with a covariate, and mixture 3PL models as a way of estimating 

latent class membership, item and ability parameters, as well as mixing proportions. These studies 

addressed issues related to DIF item detection, guessing behavior, and test speediness.  

The general idea of using MCMC for estimating mixture IRT models is to sample the class 

membership parameter for each examinee i along his/her continuous latent ability 𝜃𝜃𝑖𝑖 at each stage 

of the Markov chain, and then sample the parameters that characterize each distribution in the 

mixture within each latent class based on the sampled class parameters (Bolt, Cohen, & Wollack, 

2001, 2002). The procedure of MCMC estimation for a mixture Rasch model is summarized 

below, where the subscripts h, g, i denotes examinee, latent class, and item respectively: 
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Step 1: Sample the class membership g (g = 1, 2, …, G) for each examinee h; 

Step 2: Sample the latent ability 𝜃𝜃𝑔𝑔ℎ for each examinee h within class g; 

Step 3: Sample the Rasch difficulty parameter 𝑏𝑏𝑖𝑖𝑖𝑖 of item i for class g; 

Step 4: Sample the mixing proportions π𝑔𝑔 = (π1, π2, … , π𝐺𝐺) such that ∑ π𝑔𝑔 = 1𝐺𝐺
𝑔𝑔=1 ; 

Step 5: Sample the ability means µ𝑔𝑔 and precisions σ𝑔𝑔 for each class g. 

Prior distributions need to be specified to estimate the posterior distribution of each 

parameter. Consider the two-class solution as an example (g = 2), below are the commonly used 

prior distributions in mixture Rasch modeling, while σ𝑔𝑔 is recommended to be fixed at 1 for both 

groups or assigned a Gamma prior: 

𝑔𝑔ℎ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜋𝜋1, 𝜋𝜋2), ℎ = 1,2, … ,𝑁𝑁; 

𝜃𝜃𝑔𝑔ℎ~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝜇𝜇𝑔𝑔, 1�, ℎ = 1,2, … ,𝑁𝑁, 𝑔𝑔 = 1,2; 

𝑏𝑏𝑖𝑖𝑖𝑖~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1), 𝑖𝑖 = 1,2, … , 𝐼𝐼, 𝑔𝑔 = 1,2; 

π𝑔𝑔 = (𝜋𝜋1, 𝜋𝜋2)~𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(0.5, 0.5), 𝑔𝑔 = 1,2; 

𝜇𝜇𝑔𝑔~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1), 𝑔𝑔 = 1,2; 

σ𝑔𝑔~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(1,1), 𝑔𝑔 = 1,2; 

The early work focused on examining the effect of test speededness on item parameter 

estimates and scale stability by using mixture Rasch models with MCMC estimation (Bolt, Cohen, 

& Wollack, 2002; Cohen, Wollack, Bolt, & Mroch, 2002; Wollack, Cohen, & Wells, 2003). In 

these studies, MCMC was used to handle ordinal constraints on the model parameter 𝑏𝑏𝑖𝑖𝑖𝑖 in the 

mixture Rasch model such that the item difficulty estimates were constrained to be higher on one 

class than the other class, 𝑏𝑏𝑖𝑖1 > 𝑏𝑏𝑖𝑖2 . To ensure adequate convergence, prior distributions for 

different model parameters were specified. Given the computational speed of the MCMC 

estimation, a two-stage approach was used to expedite the MCMC algorithm through fixing item 
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parameter values at their estimates from the previous run and then the MCMC algorithm on the 

new data was re-run.  

Along this line, in a study about test-taking behavior, the mixture Rasch IRT model with 

MCMC estimation was used to fit test data by incorporating item response time parameter (Meyer, 

2010). In order to estimate this additional parameter, the means of item response time, vague 

conjugate priors were used and order constraints were imposed such that the solution behavior 

class had larger item response time means than the rapid-guessing class. The item response time 

and model parameters were estimated using MLE and JMLE respectively to justify the efficacy of 

MCMC. The correlation matrix of item difficulty values for each class and estimation method was 

also examined. 

 In Cohen and Bolt’s study on DIF (2005), MCMC with Gibbs sampling was used to 

estimate the class membership of examinees using a mixture 3PL model while fixing the item 

parameter estimates obtained from a multigroup MULTILOG procedure. Three parameters were 

estimated including 𝜃𝜃𝑔𝑔ℎ, π𝑔𝑔, and 𝜇𝜇𝑔𝑔. This study demonstrated that the two latent groups did not 

match the gender makeup of the sample. In other words, the latent classification did not agree with 

the manifest variable classification, and the mean difference between the two latent classes was 

larger. The findings led to later research investigating the cause of DIF based on mixture IRT 

models.  

Rather than classifying persons into different latent groups, Frederickx, Tuerlinckx, De 

Boeck, and Magis (2010) employed a normal mixture distribution to model item random effect 

with two components representing DIF item class versus non-DIF item class. Based on theoretical 

considerations and practical constraints, the MCMC algorithm was used with both vague prior 

(i.e., uniform, inverse gamma, and truncated normal for the standard deviation parameters) and 
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informative priors (i.e., N(0,1) for the mean parameters). In addition, a convergence measure 𝑅𝑅� 

was calculated to represent the convergence quality of the Markov chains, which is approximately 

the square root of the ratio of the between-chain variance to the within-chain variance.    

Dai (2013) and Li, Jiao, & Macready (2015) investigated the performance of the mixture 

Rasch model with covariates under MCMC estimation Gibbs sampler. Considering the stability of 

MCMC estimation, Dai (2013) recommended to monitor the critical steps of the MCMC algorithm 

to identify non-converged MCMC chains, even though this did not guarantee good estimation of 

the parameters due to potential label switch issues. Two chains with different start values were 

considered to be merged properly only if they merged into the same stable region and provided 

reasonable values for the parameter estimates. This was checked by looking at the history graph. 

Li, Cohen, Kim, and Cho (2009) compared model selection methods in dichotomous mixture IRT 

models. The proposed indices were specifically for a Bayesian solution, including the pseudo-

Bayes factor (PsBF), the deviance information criterion (DIC), the posterior predictive model 

checks (PPMC), and the MCMC estimation version of AIC and BIC. Convergence diagnostic was 

also performed to determine how many iterations were burn-in or could be used to estimate the 

posterior distributions. The convergence issue was also addressed by examining the covariate 

effects on mixture Rasch models within the Bayesian framework (Li, Jiao, & Macready, 2015). It 

was stated that the within-chain label switching coupled with the non-systematic fluctuations in 

different chains and the complexity of model may cause poor mixing or non-convergence.  

2.3.3 Estimation Efficacy of Mixture IRT Models 

Maximum likelihood and Bayesian analysis with MCMC sampling are the most frequently 

used estimation methods in mixture IRT modeling. There were studies supporting the 
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appropriateness of the MCMC algorithm in generating reasonable class classification accuracy and 

item parameter recovery. However, a review of mixture IRT models used in practice suggested 

that relatively little research was conducted to directly compare between the estimation procedures 

within the mixture IRT framework (Cho, Suh, & Lee, 2015). The evidence for the estimation 

efficacy of mixture IRT models mainly comes form the simulation studies on the performance of 

the MCMC estimation and its efficiency compared to MLE.  

In a preliminary study, Bolt, Cohen, and Wollack (2001) investigated individual 

differences in the selection of response categories for multiple-choice questions by fitting a 

mixture nominal response model via MCMC estimation. Datasets were generated for 12 five-

category items under the two-class condition. The accuracy of parameter estimates was measured 

by the Root Mean Square Error (RMSE), and the classification accuracy was measured by the 

proportion of examinees correctly classified into the class where they were simulated, termed as 

hit rate or percentage of correct identification. By using the MCMC adaptive rejection sampling 

(ARS) that applies to log-concave conditional distributions, two item category parameters were 

well recovered across all the simulation conditions, whereas other model parameters were affected 

by the manipulated factors as expected. Specifically, the smaller between-class difference led to 

poorer classification accuracy and poorer parameter recovery within each class. The mixing 

proportions of the classes also had an effect on classification accuracy. This study provided initial 

support for the use of MCMC estimation in mixture IRT models.  

In a simulation study identifying the optimal model selection indices using the Gibbs 

sampler (Li et al., 2009), the recovery analysis used the same accuracy measures of classification 

and parameter estimates as above. The latent group membership was well recovered (i.e., all 

greater than 80%), while the percentage of correct classification was reduced as the model became 
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more complex (i.e., lowest percentage for the 3PL model). However, the recovery of group 

membership improved as the number of items increased regardless of model complexity. The 

recovery of the item parameters was reasonable as well. It was found that the recovery of the item 

discrimination and difficulty parameters was especially worse as the number of latent groups 

increased, whereas the recovery of the guessing parameter did not depend on the number of 

simulated latent groups, test length, or sample size.  

The use of the MCMC algorithm was expanded to the mixture multilevel IRT models to 

explain the DIF by detecting and comparing the characteristics of the latent groups (Cho & Cohen, 

2010). Two latent classes were generated at both the student and the school level, and data was 

fitted using the 1PL model. The study showed that the recovery of the group membership was 

good at both the student and school level. The item difficulty parameter was also well recovered, 

which was indicated by RMSE and bias. This study added evidence to the efficiency of MCMC 

estimation in modeling mixture multilevel item response data. 

More recently, several studies that compared the MCMC approach with MLE further 

claimed the superiority of MCMC technique in certain conditions (Finch & French, 2012, Cho, 

Cohen, & Kim, 2013). MCMC has been proved to be useful for complex mixture IRT models 

without a requirement for the integration of the likelihood function, which could be difficult to be 

achieved in MLE when many parameters were involved (Junker, 1999). 

Finch and French (2012) compared the performance of the marginal MLE and MCMC 

estimation in classification accuracy and parameter estimation bias based on mixture 1PL and 2PL 

IRT models for dichotomous item response data. Several conditions were manipulated including 

the number of latent classes (2, 3, 4), the number of items, total sample size, and group size/ratio. 

Overall, the MCMC method led to a higher classification accuracy rate (uniformly greater than 
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90%) across all the levels of the manipulated factors, and the method of estimation interacted 

significantly with each of these factors. For example, the gap in classification accuracy between 

the two methods narrowed as more items were included, and the performance of the MCMC 

estimation deteriorated as the group size became unequal. In addition, the MCMC method 

produced smaller bias in the estimation of the discrimination parameter regardless of the number 

of items and was not affected by group size. Moreover, the coverage rates for MCMC estimates 

were much higher (near 1.0) than those for the MLE estimates. It was concluded that the MCMC 

estimation provided better recovery of the group membership across conditions and more accurate 

parameter estimates when the sample size and the number of items were small. Instead, when more 

items were included, the MLE method produced smaller confidence intervals and thus more 

accurate parameter estimates.  

Cho et al (2013) examined the impact of priors on the probabilities of mixtures, label 

switching, model selection, and metric anchoring by using the mixture Rasch model. The 

simulation analysis revealed good recovery of class membership under two-class conditions 

regardless of priors, whereas the recovery of item parameters depended on such factors as the 

number of latent classes simulated, test length, and sample size. The focus of this study was not 

on comparing estimation algorithms, however, as a part of the study the MCMC algorithm, 

implemented in WinBUGS, was compared with the CMLE based on three different computer 

programs (WINMIRA, LatentGOLD, and Mplus) using an empirical dataset from an 18-item math 

test. To measure the agreement between the MCMC and MLE item difficulty estimates, 

correlations for all pairs of estimates obtained from all four computer packages were computed, 

which were higher than 0.99. Likewise, the Kappa coefficients were computed as a way of 

describing the agreement in group membership identification, which also suggested good 
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agreement except for a few pairs. Finally, the covariate effects, measured by the slope coefficient 

estimates, were found similar across the computer packages.   

2.4 ISSUES IN ESTIMATION FOR MIXTURE IRT MODELS 

As a combination of the finite mixture model and the IRT model, mixture IRT models are subject 

to some common model identification issues, and the major two were referred to as the scale 

indeterminacy or metric identification and label switching (Baker & Kim, 2004; Jasra, Holmes, & 

Stephens, 2005). Previous studies addressed the solutions for each issue within the mixture IRT 

framework (i.e., Choi, 2014; Dai, 2013; Paek & Cho, 2015), which are discussed below.  

2.4.1 Metric Identification 

Since mixture IRT models categorize examinees into different latent classes and allow ability and 

item parameters to be different, a main goal of using mixture IRT models is to compare item 

profiles across latent groups and characterize examinees from different latent groups. To ensure 

comparability, a common scale/metric needs to be established across latent groups before making 

any comparison.  

This metric identification issue derives from the IRT portion of the mixture IRT models. 

Scale indeterminacy, also known as metric indeterminacy or metric identification issue has been 

known as a property of IRT, which refers to the arbitrariness in the choice of the origin and scale 

of the metric. The same distance between the person and item locations (i.e., Δ = 1) leads to the 

same probability of correct response. As a result, multiple ability and item parameters lead to the 
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same response probability and the metric is not absolute or unique (De Ayala, 2013). To estimate 

person and item parameters the metric needs to be fixed or anchored to a certain origin.  

Similar to the strategies used with IRT models, researchers recommended three methods 

to place person and item parameters on a common scale across different latent groups. The first 

method is known as concurrent calibration, where a set of anchor/class invariant items are used to 

anchor the metric across latent classes (Von Davier & Yamamoto, 2004). The item parameters of 

anchor items are fixed to the same values in order to establish identifiability and comparison across 

all latent groups. For example, in an empirical study on DIF analysis based on a mixture 3PL 

model with a covariate, researchers identified the items that functioned the same across latent 

groups using the likelihood ratio test, and then constrained their discrimination, difficulty, and 

guessing parameters to be equal to anchor the metrics of latent groups such that the item parameter 

estimates were comparable across groups (Choi, Alexeev, & Cohen, 2004). The challenge of this 

method is to identify appropriate anchor items. 

The second method, known as the equality constraint, is to arbitrarily select a latent class 

as the reference group and fix its ability distribution as N(0, 1), and then the estimation of the 

model parameters for other groups can be located relative to the scale of the reference group (Cho, 

Cohen, & Kim, 2014). This person centering method is straightforward, however, some 

researchers argued that imposing constraint on ability distribution alone does not guarantee a 

common scale between latent groups when the ability distributions of the latent groups are not 

identical or item profiles are different (Paek & Cho, 2015). 

The third method, known as the item centering method, was proposed by Rost (1990) based 

on the mixture Rasch model, which is to constrain the sum of the item difficulty ∑𝑏𝑏𝑗𝑗𝑗𝑗 to be zero 

for each latent group. For example, in a study evaluating the performance of the mixture Rasch 
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model under the MCMC estimation, Dai (2009) assigned the items with large DIF effect sizes 

across the latent groups, and then gave opposite signs to the items with relatively small DIF effect 

sizes. By this way the sum of item difficulties ∑𝑏𝑏𝑗𝑗𝑗𝑗 was set to zero for each latent group.  

Choi (2014) compared these three methods (item anchoring, person centering, and item 

centering) in establishing a common metric between latent groups by using three different mixture 

IRT models (mixture Rasch, mixture 2PL, and mixture 3PL). Factors that were manipulated 

included sample size (600 v.s. 2,400), test length (20 v.s. 40), and the number of latent groups (1-

, 2-, and 3-group). The recovery results showed that the constraint type had no significant effect 

on the recovery of item difficulties as was indicated by RMSE. It did not affect the identification 

of the latent group membership either. In addition, the mixture 2PL model had the best recovery 

of the latent group membership compared to the mixture Rasch or the mixture 3PL model, which 

also had relatively small bias values for the item discrimination estimates. Lastly, the correlations 

between item difficulty and item discrimination were moderately high to high for all three 

constraints. It was suggested by the author that any of these constraints would be useful for the 

estimation of the mixture Rasch or mixture 2PL model, whereas for the mixture 3PL model the 

item anchoring constraint would be recommended. 

2.4.2 Label Switching 

Label switching is a well-known estimation issue in mixture modeling, which is typically 

unavoidable and is usually a concern in the Bayesian estimation of mixture IRT models. It 

describes the invariance of the likelihood under relabeling of the mixture components (Redner, 

1984; Stephens, 2000), that is, the likelihood is the same for all the permutations of the component-

specific parameters.  
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Two types of label switching is identified in the literature: the within-chain label switching 

and the between-chain label switching (Cho, Cohen, & Kim, 2006, 2010, 2013; Cho, Suh, & Lee, 

2015; Dai, 2013; Finch & French, 2012; Li et al., 2008). The within-chain label switching occurs 

across iterations or repeated sampling from the posterior distribution within a single MCMC chain. 

When it occurs, the labels of the latent classes switch at each iteration within a single analysis and 

thus the interpretation of the meanings of the latent classes would be distorted (i.e.,    non-unique 

labeling of a latent class). This type of label switching typically leads to 𝑘𝑘! symmetric modes of 

the parameter posterior distribution for a mixture model with k components/subspaces. In this case, 

the MCMC sampler would visit one of the 𝑘𝑘! modes only and fail to thoroughly travel through the 

distribution surface, resulting in poor or unreliable parameter estimation (Frühwirth-Schnatter, 

2006; Jasra, Holmes, & Stephens, 2005; Marin, Mengersen, & Robert, 2005). The within-chain 

label switching can be detected by observing if multiple modes are present in the posterior 

distribution of the parameter.  

The between-chain label switching occurs across different chains or the replications of a 

simulation process. When this occurs, the labels of the latent classes change from one replication 

to another (i.e., the high ability group in on run becomes a low ability group in the next run). This 

type of label switching is found with both the Bayesian estimation and MLE. However, it has not 

received as much attention for frequentist mixture models as for Bayesian mixture models. The 

between-chain label switching may cause confusion when using empirical dataset, but can be 

easily detected and relabeled by comparing the parameter estimates of each replication with the 

generating parameters when using simulated data. While for empirical data, the between-chain 

label switching can be detected by comparing the estimates between two runs and between the 

latent groups. One of the runs can be set as a reference, and then other runs can be compared with 
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the reference run to see if the parameter estimates are consistent or if relabeling is needed (Cho et 

al., 2015). 

Several solutions were proposed to solve the label switching issue. The first solution is 

straightforward and was recommended by Dai (2013) for mixture Rasch models with covariates. 

The history plots of mixing proportions can be examined to determine what type of label switching 

occurs. The between-chain label switching can be simply relabeled, while the within-chain label 

switching can be excluded from the analysis.  

The second solution is to impose parameter constraint such as 𝜋𝜋1 < 𝜋𝜋2 < ⋯ < 𝜋𝜋𝑘𝑘 and µ1 <

µ2 < ⋯ < µ𝑘𝑘. However, this strategy was considered inefficient in that one can find permutations 

𝜌𝜌1 <  𝜌𝜌2 < ⋯ < 𝜌𝜌𝑁𝑁  such that the parameter constraint is satisfied by the permuted sample 

𝜌𝜌1�𝜃𝜃(1)�…𝜌𝜌𝑁𝑁�𝜃𝜃(𝑁𝑁)�  (Dellaportas & Stephens, 1996; Diebolt & Robert, 1994; Richardson & 

Green, 1997; Stephens, 1997).  

The third solution is known as the relabeling algorithm, which basically is the k-means 

type clustering of MCMC samples (Celeux, 1998; Celeux, Hurn, & Robert, 2000; Stephens, 1997, 

2000). The basic idea is to minimize the posterior expectation of some loss function, and the points 

closest to the current cluster means at each iteration of the 𝑘𝑘! permutations are selected. According 

to Stephens (2000), one way of measuring loss is the Kullback-Leibler divergence of the 

classification probabilities 𝑝𝑝(𝜃𝜃) from the true distribution on clustering. 

The fourth solution is to use random permutation samplers (RPS), which was proposed by 

Frühwirth-Schnatter (2001). One of the 𝑘𝑘!  permutation label order 𝜌𝜌(1) …  𝜌𝜌(𝑘𝑘)  is drawn to 

substitute the current MCMC sample’s component order 𝜃𝜃(1) …  𝜃𝜃(𝑘𝑘). The substituted component 

order would be 𝜃𝜃𝜌𝜌(1) … 𝜃𝜃𝜌𝜌(𝑘𝑘). This ensures the sampler visits all 𝑘𝑘! symmetric modes. 
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The fifth solution is to apply the ascending algorithm (ALG) based on the posterior model 

labeling, which was proposed by Yao and Lindsay (2009). Each MCMC sample is used as the 

starting point for an ascending algorithm, and the label is assigned based on the mode where the 

algorithm converges. All other permuted maximal modes would have clear labels referring to the 

maximal modes. This algorithm has the computational advantage that it does not require the 

comparisons to 𝑘𝑘! permutations when assigning a label except for minor labels. 

All the above solutions are targeting at the labeling switching issue in Bayesian mixture 

models. The last solution, known as the complete likelihood based labeling (COMPLH), was 

proposed by Yao (2015) to deal with the label switching problem for frequentist mixture models. 

The label is found through maximizing the complete likelihood of the observed and latent variables 

with respect to the permutation 𝐿𝐿(𝜃𝜃�𝜌𝜌|𝑥𝑥, 𝑧𝑧). This complete likelihood 𝐿𝐿(𝜃𝜃�𝜌𝜌|𝑥𝑥, 𝑧𝑧) is not invariant to 

the permutation of component labels because the latent variable brings in information for labeling 

and helps break the permutation symmetry of the mixture likelihood.  

2.5 LATENT DIF ANALYSIS USING MIXTURE IRT MODELS 

The concept of measurement invariance (MI) was introduced by Mellenburgh (1989), and 

was defined as the parameters of a model independent of group membership (Meredith, 1993). A 

fundamental principle of measurement is that a scale is measuring the same trait across two or 

more subpopulations of a sample. The violation of this property implies that individuals with 

identical latent traits but from different groups score differently on a test item. When measurement 

non-invariance occurs, it is difficult to tell whether the test score differences can be attributed to 

the construct being measured or the differential functioning of the test items across groups. MI can 
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be tested by examining the equity of item response functions based on IRT models (Thissen, 

Steinberg, & Gerrard, 1986), that is, to determine if the conditional probability of observing a 

response pattern is invariant across groups given the ability parameter 𝜃𝜃. The violation of MI is 

commonly referred to as DIF in the IRT literature (Drasgow, 1984; Maurer, Raju, & Collins, 1998; 

Meade & Lautenschlager, 2004; Raju et al, 2002; Reise et al, 1993). 

 Traditionally, DIF is defined in terms of manifest variables such as gender, culture, 

ethnicity, age, etc. In recent years researches started investigating DIF across latent groups, which 

was argued to be a better way of discovering the true sources of the group differences. This section 

focuses on the description of latent DIF and how it is identified within the mixture IRT framework. 

2.5.1 DIF and Latent DIF 

DIF is broadly defined as the psychometric difference between the item functions of two examinee 

groups (Dorans & Holland, 1993). Items are considered to provide equivalent measurement if the 

item parameters remain invariant across two populations (Raju et al, 2002; Reise et al, 1993): 

𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖′,                                                                                                      (15) 

𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑖𝑖′,                                                                                                      (16) 

where the prime denotes the second population. Two types of DIF defined in the literature are 

uniform and nonuniform DIF. Uniform DIF refers to no interaction between the ability level and 

the group membership. In this case the item response functions (IRFs) are parallel with one group 

consistently favored or disadvantaged to the other group. The non-uniform DIF occurs where there 

is an interaction between the ability level and the group membership. In this case the IRFs cross at 

a certain ability 𝜃𝜃 point, suggesting that the differences between two groups differ in magnitude 
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and direction across the ability scale (Mellenbergh, 1989; Swaminathan & Rogers, 1990). Each 

type of DIF can be represented graphically as follows: 

 

Figure 2.2. Examples of Uniform and Nonuniform DIF (Mellenbergh, 1989) 

 The cause of uniform DIF is the shift of the b parameter, while the cause of nonuniform 

DIF is the shift of the a parameter and possibly the b parameter. The two types of nonuniform DIF 

are further distinguished. The one with IRFs crossing within the range of ability level (typically 

from -3 to +3) is analogous to a disordinal interaction in ANOVA, and is termed nondirectional 

DIF. In contrast, the one with nonparallel IRFs but crossing outside the range of ability level is 

analogous to an ordinal interaction, and is termed unidirectional DIF (Li & Stout, 1996; 

Narayanon, & Swaminathan, 1996; Swaminathan & Rogers, 1990). 

Classifying examinees into groups (i.e., male group v.s. female group) is based on manifest 

grouping variable (i.e., gender) and is determined prior to the DIF analysis. However, in the 

situation where items function the same way for an unknown homogenous group, DIF may still 

exist due to certain unobserved features of examinees such as unmeasured educational background, 

personality traits, attitudes, etc. As opposed to manifest DIF, this type of DIF is defined across 

unknown groups. Several early studies showed that the latent class membership did not necessarily 

overlap with the manifest class membership, and items functioning differentially against one 

manifest group (i.e., female group) may not against all the members in that group (i.e., all the 
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females). Furthermore, examinees’ ability differences based on manifest groups were not 

consistent with the ones based on latent groups (Cohen & Bolt, 2005; De Ayala et al., 2002). 

Researchers argued that understanding latent DIF contributes better to the explaining of the cause 

of examinees’ response differences on DIF items because it taps the nuisance dimensions that 

account for the mechanism that gives rise to DIF (Cohen & Bolt, 2005; De Ayala et al., 2002).  

2.5.2 Analysis of Latent DIF  

Benefitting from the capability of its mixture modeling portion in uncovering latent homogeneous 

groups, the detection of DIF using mixture IRT models has received increased attention. Based on 

an empirical dataset, Cho et al (2015) identified the common procedure of detecting DIF with 

mixture IRT models: 1) Select the best fitted model referring to model fit indices such as Bayesian 

information criterion (BIC) and determine the number of latent classes; 2) Identify the latent group 

membership for each person in terms of the selected measurement model; 3) Conduct DIF analysis 

to identify items that characterize examinees differentially across the latent groups (Cho et al., 

2015). It is noted that latent DIF can be detected using the same methods developed for manifest 

DIF including the non-parametric and parametric procedures.  

When covariates are incorporated into the models, extra steps may be added to the above 

procedure depending on the way covariates are associated with the latent class membership. Three 

approaches that describe the way covariates are incorporated are known as the one-step, two-step, 

and three-step approach. The one-step approach establishes the relationship between the covariates 

and the latent class membership through a one-step process, that is, to integrate the covariates into 

mixture IRT models directly (Dai, 2009; Li et al., 2015). By using the one-step approach, the 

adding or removing of a covariate would result in both the prediction and measurement models to 
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be re-estimated and the latent classes to be re-defined (Vermunt, 2010). The two-step approach 

estimates item parameters and examinees’ latent class membership without covariates in the first 

step, and then establishes the connection between the latent class membership and the evident 

variables of interest in the second step to explain the sources of latent DIF (Cohen & Bolt, 2005; 

De Ayala et al., 2002; Samuelsen, 2005; Van Nijlen & Janssen, 2008). The three-step approach 

was proposed by Vermunt (2010), which corrects for the uncertainty in the identification of latent 

class membership. The latent class model is estimated in the first step using the entire sample data. 

In the second step, the most likely class variable is created based on the latent class posterior 

distribution obtained from the first step. In the third step, this most likely class variable is used to 

estimate the model. The present study adopted the one-step approach because the goal is to 

examine the covariate effect on the classification of latent groups and the estimation of model 

parameters simultaneously. 

A review of the literature found that several simulations studies on latent DIF provided 

evidence for the effectiveness of mixture IRT models (primarily the mixture Rasch model) and 

discovered the factors/conditions that may influence the detection of latent DIF. Samuelsen’s work 

(2005) was one of the early studies that investigated the application of mixture Rasch models on 

DIF detection. In this study, data was simulated on a 20-item test. The manipulated factors were 

sample size (500 v.s. 2000), manifest proportions (50/50, 80/20), the overlap between the manifest 

groups and the latent classes (100%, 90%, 80%, 70%, 60%), number of DIF items (2, 6, 10), effect 

size of DIF (0.4, 0.8, 1.2), and the ability distributions within the latent classes (N(0, 1), N(-1, 1)). 

MCMC estimation was used and the constraint of ∑𝑏𝑏𝑗𝑗𝑗𝑗 = 0 was applied to each latent class to 

solve the model identification issue. The background variables were selected as categorical and 

continuous covariates. It was found that increasing sample size increased the precision of DIF 
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detection, especially when a categorical covariate was highly overlapped with the latent classes. 

Also, the high overlap reduced the standard errors of estimation, and the large sample size reduced 

the bias of the mean ability differences between the latent groups. Based on this work, Lu and Jiao 

(2009) found that the differences in mean ability between latent groups, large DIF, large number 

of DIF items, and equally split latent groups contributed to accurate identification of DIF items. In 

addition, the accuracy of class assignment was approximately 70% for the conditions where DIF 

items were most accurately identified.  

Dai (2009) studied the role of covariates in mixture Rasch models by manipulating the 

manifest proportions (50/50, 30/70), latent proportions (15/85, 30/70, 50/50), number of items with 

large DIF effect sizes (6, 12), ability distributions within each latent class (N(0, 1) v.s. N(0, 1), N(0, 

1) v.s. N(1, 1)), and the association between the covariate and the latent classes indicated by odds 

ratio (1, 10, 50). Data were simulated on a 30-item test, and only one dichotomous covariate was 

used. The sample size was fixed to 1000. Similar to Samuelsen’s study (2005), the number of latent 

groups was fixed to two. Bayesian MCMC estimation was used with 11 replications in each cell 

and the constraint of ∑𝑏𝑏𝑗𝑗𝑗𝑗 = 0  was applied to each latent class. It was found that most the 

simulation cells could identify more than 50% of the DIF items with large effect sizes. The higher 

percentage of items with large DIF effect sizes led to better identification of the underlying DIF 

and better recovery of the latent structure. The focus of this study was on the role of the covariate. 

It was found that the latent class membership was better recovered when the manifest-latent 

relationship was moderate or strong.   

Studies that explored the effectiveness of the mixture IRT models in revealing DIF between 

unobserved groups further highlighted the influence of sample size, correlation of manifest and 
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latent variables, equality of the latent group size, number of DIF items, as well as group impact 

(DeMars & Lau, 2011; Maij-de Meij, Kelderman, & van der Flier, 2010).  
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3.0  METHODOLOGY 

The main purpose of this study was to examine how well the mixture IRT model with covariate 

performed in identifying latent DIF. This chapter describes the study design, estimation methods, 

outcome measures, and solutions to the label switching problem. In addition, the simulation 

process and the validation of the simulation conditions are discussed to provide a protocol for 

future research. 

3.1 DESIGN OF THE SIMULATION STUDY 

This section describes the factors that were manipulated and kept constant in the current study. 

Given the complex nature of the models employed, several conditions were kept constant to make 

the simulation manageable. These constant factors are summarized in Table 3.1 below. 

   Table 3.1. Factors Kept Constant in Simulation 

Constant Factors Values 

Test length 40 

Number of latent classes 2 

Sample size 2,000 

Manifest proportion 50/50 

Latent mixing proportion 70/30 

Number of covariate 1 
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The number of test items was fixed to 40, which was more than the number of items used 

in previous studies (Dai, 2009; Samuelsen, 2005; Smit et al., 1999). This test length was selected 

to mimic the scenario of a typical large-scale state assessment. For example, a total of 43 multiple-

choice questions were used in the 2016 Texas Assessment of Academic Readiness for Mathematics 

for students in 3rd grade. The 2016 New York State Common Core test for Mathematics included 

44 multiple-choice questions for students in younger grades. Therefore, a test of 40 multiple-choice 

items reasonably resembles real practice in state assessment. 

The number of latent classes was fixed to two, which was consistent with most of the 

previous studies. As was suggested by Li et al (2009), the recovery of item discrimination and 

difficulty parameters primarily depend on the number of latent groups simulated. When the 

number of latent groups increased, the recovery of these two parameters became worse regardless 

of the mixture IRT models fitted (1PL, 2PL, or 3PL). Therefore, a constraint of two latent groups 

ensures reasonable recovery of item parameters. 

A total sample size for each replication was kept at 2,000. Some researchers used a 

relatively small sample size of 1,000 (Dai, 1999), some used a large sample size of 3,000 for each 

latent group which added up to 6,000 in total (DeMars, 2011), and some treated it as a manipulated 

factor taking the values of 1,000, 5,000, and 25,000 (Maij-de Meij et al., 2010). It was noted that 

a relatively small sample size was sufficient to ensure accurate estimation of model parameters 

when the mixture Rasch model was fitted. In a simulation study comparing the model selection 

indices based on three mixture dichotomous IRT models (1PL, 2PL, 3PL), sample size was 

manipulated to be 600 or 1,200 (Li et al., 2009). It was suggested that even for the 2PL or 3PL 

model that required the estimation for more parameters, the sample size of 1,200 still ensured 

satisfactory accuracy of item parameter estimates and recovery of the latent group membership 
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(i.e., > 90% for the 2PL and 3PL models for a test of 30 items). In addition, the recovery of the 

latent group membership was not affected as the sample size increased. Furthermore, the focus of 

the current study is the role of a covariate in latent DIF detection and the impact of estimation 

methods on mixture IRT modeling. Therefore, keeping the sample size constant helps reduce the 

complexity of the study design. 

The composition of the covariate was fixed to 50%: 50% to mimic the primary distribution 

of manifest groups in population such as gender and school location (i.e., urban v.s. non-urban). 

In contrast, the latent mix proportion was fixed to 70%: 30%, which was consistent with the 

findings from empirical studies. It was found that in testing practice examinees were rarely equally 

distributed among different latent groups. The 70/30 proportion was designed to represent the 

uneven distribution of the latent groups. Specifically, the 70% group represented the reference 

latent group, and the 30% group represented the focal latent group. 

Lastly, one dichotomous covariate was included because the primary interest of this study 

is to examine the role of the joint relationship between the covariate and the latent group 

membership in the mixture IRT modeling of DIF. Therefore, more than one covariate was not 

considered. 

Seven factors were manipulated including five between-replication factors and two within-

replication factors. To better inform psychometric practice, the levels of each manipulated factor 

were chosen to resemble the real-world situation as much as possible, which is also consistent with 

the simulation conditions used in previous studies. These factors and their corresponding levels 

are summarized in Table 3.2 below.  
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Table 3.2. Factors Manipulated and Corresponding Levels in Simulation 

Manipulated Factors Values 

Proportion of items with DIF 15%, 30% 

DIF type Uniform, Non-uniform 

DIF size/magnitude (∆𝑎𝑎 or ∆𝑏𝑏) 0.5, 1 

Group impact N(0, 1), N(0, 1); N(1, 1), N(0, 1) 

Strength of the relation between 𝐷𝐷𝑗𝑗 and 𝜋𝜋𝑗𝑗𝑗𝑗 (OR) 2, 8 

Analyzing model No covariate, Covariate 

Estimation method MLE, Bayesian 

 

In the real testing scenario, the number of DIF items was typically less than 30% (Güler & 

Penfield, 2009; Narayanan & Swaminathan, 1994; Puhan, Moses, Yu, & Dorans, 2009). Previous 

studies found that the number of items exhibiting DIF was between 15% to 30% (Hambleton, R. 

K., & Rogers, 1989; Raju, Bode, & Larsen, 1989). When a large number of DIF items existed, the 

test would probably measure two distinct constructs in the two groups (DeMars, 2011). Therefore, 

the use of 15% and 30% DIF items resembles previous DIF research. Two proportions of DIF 

items were considered in the present study, which corresponded to 6 and 12 items.  

Two types of DIF were included in this study. The uniform condition meant that all the 

DIF items were uniform DIF items, which was consistent with previous simulation studies and the 

focus of DIF research. DIF research is related to fairness in testing. A focus on uniform DIF 

answers how test difficulty differentiates between groups and which group is unintendedly 

disadvantaged. Nonuniform DIF implies an interaction between the ability level and the group 

membership. Practically, uniform DIF occurs more often than non-uniform DIF in standardized 
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tests (Narayanon & Swaminathan, 1996), but non-uniform DIF items are still identified 

(Hambleton & Rogers, 1989). Therefore, the other condition specified all the items to be non-

uniform DIF items. When non-uniform DIF is present, item discrimination differs between the two 

latent groups, while item difficulties are constraint to be equal. The situation where all the DIF 

items are non-uniform was impractical, however, the effect of shifting item difficulties on DIF 

detection accuracy can be isolated and the capability of the mixture 2PL model in picking up non-

uniform DIF items can be better assessed (Stark, Chernyshenko, & Drasgow, 2006).   

The size of DIF indicates the magnitude of the differences in item difficulty or item 

discrimination between groups. Previous studies manipulated the size of uniform DIF, which was 

represented by the absolute value of the difference in difficulties between two latent groups, ∆𝑏𝑏 =

|𝑏𝑏𝑗𝑗1 − 𝑏𝑏𝑗𝑗2|. In present study, the difference between the reference latent group and the focal latent 

group was used as the magnitude of DIF. According to Zwick and Ercikan (1989), ∆𝑏𝑏 less than 

0.5 can be considered as negligible DIF, between 0.5 to 1 can be considered as moderate DIF, and 

greater than 1 can be considered as large DIF. The selected uniform sizes are consistent with 

previous studies (Dai, 2009; Penfield, 2001). Likewise, two levels of item discrimination 

difference were selected as a manipulation of the non-uniform DIF size. Previous study suggested 

∆𝑎𝑎 between 0.22 to 0.63 to be low non-uniform DIF and ∆𝑎𝑎 between 0.78 to 1.54 to be high non-

uniform DIF (Narayanon & Swaminathan, 1996). Therefore, the low and high magnitudes of non-

uniform DIF also correspond to ∆𝑎𝑎 = 0.5 and ∆𝑎𝑎 = 1. 

Consistent with previous studies (Dai, 2009; DeMars, 2011; Li et al., 2009; Li et al., 2015), 

two impact levels were selected by manipulating the differences in group abilities. For the no 

impact condition, both the latent groups have their abilities following the standard normal 
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distribution N(0, 1). For the impact condition, the focal group had the ability following N(1, 1), 

while the reference group following N(0, 1).  

Logit parameterization can be used to estimate the association between the observed 

variable and latent trait (Eid & Langeheine, 1999). Based on the logistic regression model, the 

odds ratio can be used to describe the relationship between a covariate and latent class membership. 

When the odds ratio equals one, it implies no effect of the covariate on latent membership. In the 

current study, low and high odds ratio values were specified to manipulate the relationship between 

the covariates and latent group membership. Referring to table 3.3, the odds ratio can be 

represented using the number of examinees in each cell. For example, the odds ratio of 2 is 

equivalent to 772 examinees classified into the reference latent group and the manifest group 1, 

628 examinees into the reference latent group and the manifest group 2, 228 into the focal latent 

group and the manifest group 2, and 372 examinees into the focal latent group and the manifest 

group 2. These numbers of examinees in each cell are used in data generation to represent the 

relationship between the covariate and the latent variable.  

Table 3.3. Representation of the Relationship between Covariate and Latent Groups 

 Manifest Group 

 Group 1 Group 2 

Latent Group OR = 2 OR = 8 Total (N) OR = 2 OR = 8 Total (N) 

Reference Group 772 628 1400 892 508 1400 

Focal Group 228 372 600 108 492 600 

Total (N) 1000 1000 2000 1000 1000 2000 
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The last two factors manipulated were the model and estimation method used. Models with 

and without a covariate were used to estimate each replication dataset, and the MLE and Bayesian 

estimation were also used to estimate each replication dataset. These two factors can be considered 

as the within-replication factors. Since the latent groups were generated by considering the 

relationship with the covariate, the mixture 2PL model with the covariate is considered as the 

correctly specified estimating model, and the model without the covariate is considered as the mis-

specified estimating model. 

 In summary, the levels of each factor were selected to be consistent with previous studies 

and testing practice. Factors that were kept invariant included test length, number of latent groups, 

sample size, the distribution of the covariate, latent mixing proportion, and the number of 

covariates. Seven factors were varied including proportion of DIF items, DIF type, DIF size, group 

impact, and the relationship between the covariate and latent group membership, the data analyzing 

model, and the estimation method. Altogether, there were 2 × 2 × 2 × 2 × 2 × 2 × 2= 128 conditions. 

50 replications were run for each of these conditions, and the total replications were 128 × 50 = 

6,400. 

3.2 PARAMETER ESTIMATION 

Another main purpose of the current study is to investigate the effect of estimation method on the 

performance of mixture 2PL model on DIF detection. MLE and Bayesian estimation were used to 

estimate the models separately. Consistent with the literature (Finch & French, 2012), MML was 

selected and implemented in Mplus. Since MLE may mistakenly converge on the local maxima 

and lead to suboptimal parameter estimates, multiple random starting values were used by setting 
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“STARTS = 100 10” in Mplus (Cho et al., 2015). This meant that 100 random sets of starting 

values were used in the initial stage and 10 random values were used in the final stage of 

optimization. The use of more starting values improves the probability of obtaining optimal fit but 

increases the maximum number of iterations. 

Bayesian estimates based on the mixture 2PL model were obtained using the Gibbs sampler 

in Mplus. In order to estimate the model parameters the following informative prior distributions 

were used (Dai et al., 2009; Li et al., 2009): 

𝑎𝑎𝑗𝑗𝑗𝑗 ~ Normal (0, 1) and 𝑎𝑎𝑗𝑗𝑗𝑗 > 0, j = 1, …, k 

𝑏𝑏𝑗𝑗𝑗𝑗 ~ Normal (0, 1), j = 1, …, k 

𝜃𝜃𝑖𝑖𝑖𝑖 ~ Normal (0, 1), i = 1, …, n 

𝛽𝛽1 ~ Normal (0, 1), 

where 𝑎𝑎𝑗𝑗𝑗𝑗 is the item discrimination for latent group g; 𝑏𝑏𝑗𝑗𝑗𝑗 is the item difficulty for latent group g; 

𝜃𝜃𝑖𝑖𝑖𝑖 is the person ability for latent group g; 𝛽𝛽1 is the slope of the simple logistic regression and 

represents the loading of the latent variable on the covariate; k denotes the number of items; n 

denotes the number of examinees in each latent group g; g denotes latent groups and is set to 2 in 

the current study. 

The MCMC estimates of the parameters were sampled from the posterior distribution after 

each iteration. To obtain the estimates of the parameters the means of the sampling iterations were 

calculated after discarding the burnt-in iterations. 
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3.3 EVALUATION OF OUTCOMES 

The performance of the mixture 2PL IRT model on latent DIF detection was evaluated in terms of 

three types of outcome measures: 1) Accuracy of latent membership classification; 2) Estimation 

error at the scale level; 3) Latent DIF detection.  

3.3.1 Recovery Analysis 

The purpose of the recovery analysis is to determine how well the generating parameters are 

recovered based on the simulated data. Consistent with prior studies, the recovery of the latent 

class membership and the recovery of the simulated parameters were examined as a measure of 

the model effectiveness.  

The recovery of the latent group structure was measured by the proportion of examinees 

assigned to the correct/simulated latent groups. This was conducted by comparing the estimated 

latent group membership with the simulated group membership.  

The recovery of the simulated parameters was measured at the scale level, which was 

different from a direct measure of the magnitude differences between the parameter estimates and 

the generating parameters. Based on the parameter estimates and the generating parameters, the 

expected scores corresponding to each specific ability location were computed respectively. The 

general equation can be represented as: 

  𝐸𝐸�𝑦𝑦𝑗𝑗�𝜃𝜃� = ∑ 𝑘𝑘𝑝𝑝𝑗𝑗𝑗𝑗(𝜃𝜃)𝑘𝑘𝑗𝑗
𝑘𝑘=1 ,                                                                         (17) 

where 𝐸𝐸�𝑦𝑦𝑗𝑗�𝜃𝜃� is the expected score for item j; k represents the scoring level for item j; 𝑝𝑝𝑗𝑗𝑗𝑗 is the 

probability of responding to item j at the scoring level k. Since items are dichotomously scored, k 

equals 2, and equation (19) is simplified to: 
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   𝐸𝐸�𝑦𝑦𝑗𝑗�𝜃𝜃� = 𝑝𝑝(𝑦𝑦𝑗𝑗 = 1|𝜃𝜃),                                                                           (18) 

where p is the probability of an examinee answering the item correctly given his/her ability level 

𝜃𝜃. Since the model parameters were estimated in Mplus, the IRT parameterization was considered 

to transfer the Mplus output parameters into the item discrimination and difficulty parameters. By 

setting the factor mean to 0 (α = 0) and the factor variance to 1 (ψ = 1), the item discrimination 

and difficulty parameters were represented as:  

   𝑎𝑎𝑗𝑗𝑗𝑗 = 𝜆𝜆𝑗𝑗𝑗𝑗,                                                                                                 (19) 

   𝑏𝑏𝑗𝑗𝑗𝑗 =
𝜏𝜏𝑗𝑗𝑗𝑗
𝜆𝜆𝑗𝑗𝑗𝑗

,                                                                                                  (20) 

where 𝑎𝑎𝑗𝑗𝑗𝑗 is the discrimination parameter for item j in group g, 𝑏𝑏𝑗𝑗𝑗𝑗 is the difficulty parameter for 

item j in group g, 𝜆𝜆𝑗𝑗𝑗𝑗 is the factor loading of item j in group g, and 𝜏𝜏𝑗𝑗𝑗𝑗 is the threshold of item j in 

group g. 𝜆𝜆𝑗𝑗𝑗𝑗 and 𝜏𝜏𝑗𝑗𝑗𝑗 are read from the Mplus outputs. Therefore, the computational equation for 

the expected scores was represented as: 

𝐸𝐸�𝑦𝑦𝑗𝑗�𝜃𝜃� =
exp [𝜆𝜆𝑗𝑗𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖−

𝜏𝜏𝑗𝑗𝑗𝑗
𝜆𝜆𝑗𝑗𝑗𝑗

�]

1+ exp [𝜆𝜆𝑗𝑗𝑗𝑗�𝜃𝜃𝑖𝑖𝑖𝑖−
𝜏𝜏𝑗𝑗𝑗𝑗
𝜆𝜆𝑗𝑗𝑗𝑗

�]
,                                                                 (21)                                         

The expected scores were then summed across all the items to a total expected score 𝑦𝑦𝑡𝑡, 

which was used to quantify the differences between the generating parameters and their estimated 

values based on one of the most frequently used statistic – root mean squared error (RMSE): 

  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = �∑ (𝑦𝑦𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑦𝑦𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
,                              (22) 

where n denotes the number of subjects. RMSE can be considered as a measure of the absolute 

accuracy in parameter estimation. It was calculated for each replication of each condition, and then 

computed by taking the average value across the converged replications in each cell. Furthermore, 

RMSE can be computed across the simulation cells as a measure of the overall accuracy of the 
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parameter estimation. Evaluating the accuracy of the parameter estimation at scale level through 

expected scores had two benefits. First, it overcomes the metric identification issues as was 

discussed in section 2.4. The calculation of the expected scores involves both the item and the 

ability parameters, which helps put these parameters on the same scale. Second, since the DIF 

magnitude is often assessed using the differences in the expected item scores between groups, 

accurate parameter estimation in terms of the expected scores ensures the appropriateness of 

further analysis of DIF at the scale level (i.e., DIF amplification or cancellation).  

3.3.2 Latent DIF Detection 

The main purpose of this measure is to examine how well DIF items can be identified using the 

mixture 2PL IRT model. Based on the idea of signal detection theory, four indices can be used to 

quantify the ability of the model in discerning among information-bearing patterns including: 1) 

number and percentage of DIF items that are identified as displaying DIF, known as power; 2) 

number and percentage of non-DIF items that are not identified as displaying DIF, known as 

correct non-DIF decision; 3) number and percentage of DIF items that are not identified as 

displaying DIF, known as type II error or false negative; 4) number and percentage of non-DIF 

items that are identified as displaying DIF, also known as type I error or false positive (Maij-de 

Meij, et al., 2010) (see Table 3.4). Last, the cell of “Power” and “Correct Non-DIF Decision” can 

be combined and indexed as “Correct Decision”. Given that false positive and false negative are 

considered relative to power and correct non-DIF decision, it is redundant to report all four indices. 

Thus, power, correct non-DIF decision, and correct decision are selected as the measures of latent 

DIF detection in the present study.  
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Table 3.4. Indices for DIF Detection 

                   Item 

  DIF Non-DIF 

Identification 
DIF Power False Positive 

Non-DIF False Negative Correct Non-DIF Decision 

 

3.4 SOLUTIONS TO LABEL SWITCHING 

As was discussed in section 2.4, different types of strategies have been used to deal with IRT 

model identification issues. The person centering method was selected in the present study to deal 

with this issue. To be specific, the 70% group was selected as the reference latent group and the 

30% group as the focal latent group. For the no impact condition, the ability distribution of both 

the reference and the focal groups were fixed to N(0, 1). For the impact condition, the ability of 

the focal group was fixed to N(0, 1), and the ability of the reference group was unconstraint. In 

this case, the first item, which was a non-DIF item, was used as an anchor item in Mplus by default.  

Two types of label switching are often unavoidable during the Bayesian MCMC estimation, 

which are distinguished as the within-chain versus the between-chain label switching. The within-

chain label switching is a more serious problem because the labels of the latent classes switch 

within a single analysis and thus distorts the interpretation of latent classes. The between-chain 

label switching means that the MCMC chain has converged to one peak in the posterior, while 

another chain has converged to another peak. This is commonly observed and would cause 

confusions in interpretation because the order of latent classes switches across chains. 
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 By using Mplus for estimation, both the within-chain and between-chain label switching 

need to be addressed (Asparouhov & Muthén, 2008). To evaluate the within-chain label switching 

the posterior densities of the latent group membership parameters were monitored. If multiple 

modes are present in a Markov chain, it implies that the within-chain label switching occurs. In 

that case, the model is considered not a good fit to the data. The solution is to exclude these chains 

from the simulation replications, and calculate the percentage of the replications that contains these 

chains to see if they are a small number of the total simulation replications (Cho et al., 2013; Dai, 

2009; Li et al., 2009; Li, 2015).  

To handle the between-chain label switching, two strategies were adopted. First, the 

starting values were specified for the model parameters to help reduce the occurrence of this type 

of label switching. Second, class sizes were monitored throughout the analysis and model 

parameter estimates obtained from each replication were compared with the generating parameters 

for each latent group. The percentage of the replications that contained these chains was also 

evaluated to determine if they were a small number of the total simulation replications. 

3.5 SIMULATION PROCESS 

The first part of the simulation was to generate item parameters in terms of their specified 

distributions, and then generate item responses and obtain the expected scores for each examinee. 

Two sets of generated parameters are presented in Appendix Table A.3 and Table A.4, which 

provided an example of the manipulation of DIF size, number of DIF items, and DIF type. The 

DIF items are shown at the bottom of the Table A.3 and Table A.4. The second part was to fit the 

simulated response data using the mixture 2PL IRT model with and without the dichotomous 
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covariate by implementing two estimation methods. The last part was the analysis of DIF in terms 

of the assigned latent group membership.  

To be specific, the model parameters and response data generation process included the 

following steps: 

1) The a and b parameters were generated for each latent group with the sample size of 

1400 for the reference group and 600 for the focal group. The a parameter followed the 

distribution of lognormal (0, 0.5), and the b parameter followed the distribution of 

uniform (-2, 2); 

2) 6 or 12 items were assigned to be the DIF items, corresponding to the DIF item 

proportions of 15% and 30%. For the uniform DIF condition, the a parameter was kept 

the same for both latent groups. The b parameter of the DIF items for the focal latent 

group 𝑔𝑔2  was calculated as  𝑏𝑏2 =  𝑏𝑏1 + Δ𝑏𝑏 , where 𝑏𝑏1  was the b parameter for the 

reference group, and Δ𝑏𝑏 = 0.5 or 1. The values of the b parameter for the rest of the 

items were kept the same between the two latent groups, 𝑏𝑏2 = 𝑏𝑏1. Similarly, for the 

non-uniform DIF condition, the b parameter was kept the same for both latent groups. 

The a parameter of the DIF items for the focal latent group 𝑔𝑔2 was calculated as  𝑎𝑎2 = 

𝑎𝑎1 − Δ𝑎𝑎, where 𝑎𝑎1 was the a parameter for the reference group, and Δ𝑎𝑎 = 0.5 or 1. 

The values of the a parameter for the rest of the items were kept the same between the 

two latent groups: 𝑎𝑎2 = 𝑎𝑎1. 

3) For the “no impact” condition, the ability distributions of both latent groups (𝑔𝑔1 and 

𝑔𝑔2 ) were the same: 𝜃𝜃1~𝑁𝑁(0, 1)  and 𝜃𝜃2~𝑁𝑁(0, 1) . For the “impact” condition, the 

ability distributions were: 𝜃𝜃1~𝑁𝑁(1, 1) for the reference group and 𝜃𝜃2~𝑁𝑁(0, 1) for the 

focal group.  
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4) Simple logistic regression was used to model the relationship between the covariate 

and the latent group membership: logit(𝜋𝜋) = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷. The covariate was included in 

the generation of response data, and the generation of the relationship between the 

covariate and the latent variable was completed by specifying the number of examinees 

in each cell of Table 3.3. 

5) The probability of a correct response to each test item was calculated based on the 2PL 

IRT model using the generated a and b parameters, and the item responses were 

generated given the values of these probabilities. 

6) Referring to Equation (23), the expected score of each item for each examinee was 

computed. The expected scores were then summed across test items.  

The second part of the simulation was to estimate the data generating model. The mixture 

2PL IRT model was used to estimate the item and ability parameters. The estimated expected 

scores were computed based on the estimated parameters. As was discussed in section 2.5.2, the 

one-step approach was adopted because the focus of this study is on the covariate effect on 

parameter estimation and classification rather than the mechanism/cause of DIF. The covariate 

was directly integrated into the mixture model, contributing to the estimation of latent class 

membership and model parameters (Smit et al., 1999; Dai, 2009; Li et al., 2015). Ability estimates 

were obtained by requesting “SAVE=FSCORES” in the SAVEDATA command in Mplus. The 

estimated item parameters were the factor loading λ and threshold τ. The IRT parameterization 

was used to transfer factor loadings and thresholds into the IRT a and b parameters using Equation 

(21) and (22) (Asparouhov & Muthén, 2016). The estimation method was specified through 

“ESTIMATOR = MLR” and “ESTIMATOR = BYES” in Mplus, respectively. 



 62 

The last part of the simulation was to evaluate the recovery of the latent structure and model 

parameters as well as the detection of DIF referring to the outcome measures. The DIF detection 

was performed given the estimated latent class membership. This procedure was performed in R 

with the difLogistic function from the difR package. 

3.6 VALIDATION OF SIMULATION PARAMETERS 

To ensure that item parameters were appropriately generated, a validation procedure for one of the 

simulation conditions was conducted to evaluate the recovery of the simulation parameters. The 

simulation condition selected was when the DIF size was .5, the proportion of DIF items was 15%, 

the DIF items were uniform, the odds ratio was 2, there was no group impact, no covariate was 

included, and the MLE was used. Given the generated group membership, the 2PL IRT model was 

set up in Mplus to estimate the item parameters for each of the latent groups separately. In this 

analysis, the item parameters for the non-DIF items were constrained to be equal between the two 

groups, while the items parameters for the DIF items remained unconstrained. These parameter 

estimates were compared with the simulation parameters for each group, and their differences were 

quantified using RMSE as a measure of parameter simulating errors. The parameter validation 

results for each latent group were summarized in Appendix Table A.1. For the reference latent 

group, the RMSE was .085 for the discrimination parameter and was .106 for the difficulty 

parameter. For the focal latent group, the RMSE was .107 for the discrimination parameter and 

was .064 for the difficulty parameter.  



 63 

3.7 COMPUTER PROGRAMS 

Three computer programs were used in the current study. Model parameters and response data 

were generated in SAS 9.4. Parameter estimation based on the mixture 2PL model was performed 

in Mplus 7.4. Two estimation methods including MML and Bayesian estimation were fitted by 

specifying estimator = MLR and estimator = Bayes respectively (Muthén, 2010). The analysis of 

DIF was conducted in R by using the difLogistic function in the difR package, which is a popular 

method of detecting both the uniform and nonuniform DIF for dichotomously scored items. The 

sample codes for response data generated in SAS are presented in Appendix B. The sample codes 

for model estimation in Mplus with MLE and Bayesian estimation are presented in Appendix C 

and Appendix D. 
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4.0  RESULTS 

The primary purposes of the present study is to compare the detection of uniform and non-uniform 

DIF between the mixture 2PL model without a covariate and the model with a covariate. The 

secondary purpose is to examine how the detection of latent DIF is affected by the parameter 

estimation method employed. As was described in Chapter 3, seven factors were manipulated, 

including the strength of the relationship between the covariate and the latent group membership, 

the type of DIF, the proportion of items with DIF, the magnitude of DIF, the group impact, the 

model specification, and the estimation method. The performance of the mixture 2PL model on 

latent DIF detection is evaluated in terms of three categories of outcome measures, including the 

accuracy of latent membership classification, the model parameter recovery at the scale level, and 

the detection of DIF. The results of these outcome measures are summarized below.  

4.1 ANALYTICAL PLAN 

The model diagnostic was conducted to evaluate the convergence and the label switching issues. 

A single simulation condition was selected for this purpose, which was used to evaluate the 

occurrence of label switching in other simulation conditions. The non-converged replications were 

excluded from the final estimation of the model parameters. The model diagnostic is described in 

section 4.2. 

 The manipulated factors can be categorized into the within-replication factors and the 

between-replication factors. Two within-replication factors were the analyzing model and the 



 65 

estimation method. Within each replication each generated data set was analyzed using the mixture 

2PL model with and without the covariate, and each model was estimated using MLE and Bayes 

estimator respectively. Five between-replication factors included the type of DIF, the proportion 

of items with DIF, the group impact, the strength of the relationship between the covariate and the 

latent group membership, and the magnitude of DIF. The abbreviations and coding of each factor 

are listed in Table 4.1: 

Table 4.1. Variable Abbreviations and Coding 

Manipulated factors Abbreviations Coded as “0” Coded as “1” 

Within-replication factors:    

Model specification Model NoCov Cov 

Estimation Methods Estimation MLE Bayesian 

Between-replication factors:    

Type of DIF DIFtype Uniform Non-uniform 

Proportion of DIF items DIFnum 15% 30% 

DIF magnitude DIF 0.5 1 

Group impact Impact N(0, 1), N(0, 1) N(1, 1), N(0, 1) 

Magnitude of odds ratio OR 2 8 

   

 Given the mixed factorial design of the present study, the mixed analysis of variance 

(mixed ANOVA) was used to analyze data in SPSS 24.0. This analysis was repeated for each of 

the outcome measures. The assumptions of the mixed ANOVA include the normality of the 

dependent variables, homogeneity of the covariance matrices, sphericity, and outliers. Since the 

grouping variables have only two levels, the Mauchly's test of sphericity was not performed. The 
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rest of the assumptions were examined through Shapiro-Wilk test of normality, Box's M test of 

homogeneity of covariance matrices, Levene’s test for homogeneity of variances, and the SPSS 

Explore procedure.  

The focus of the analysis was the two-way and three-way interaction effects among the 

within-replication and the between-replication factors. Given the complexity of interpretation and 

negligible effect sizes, the four-way or more-way interactions were not considered. The significant 

three-way interaction effects were followed by simple two-way interaction analyses to examine 

the two-way interaction effects at each level of the third factor. Post hoc analysis was not needed 

because the manipulated factors only have two levels. The effect sizes were judged in terms of the 

partial eta squared statistic:  

𝜂𝜂2=
𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
,                                                                                   (23) 

The suggested norms for the  partial eta squared are: small = .01, medium = .06, large = .14 (Cohen, 

1988). In the consideration of empirical significance, the significant effects were reported only 

when the partial 𝜂𝜂2 ≥ .06. 

4.2 EVALUATION OF CONVERGENCE AND LABEL SWITCHING 

The convergence issue was examined for the MLE and Bayesian estimation respectively. It was 

found that for the MLE no convergence issues were observed in any replications. For the Bayesian 

estimation, a total of 20,000 iterations were specified in Mplus. Half of the iterations were 

discarded by default in Mplus as burn-in, and 10,000 post burn-in values were used to obtain the 

final parameter estimates (5,000 iterations in each chain). Thinning of the posterior draws was set 
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to 50 (Finch & French, 2012), which means every 50th iteration was recorded for estimation 

process. The use of the “thin” option was to reduce the computer storage. Each simulation 

replication took about 15 minutes to run in Mplus. 

Given the large number of simulation conditions, only one conditions was selected to make 

an evaluation of the label switching issues in Bayesian estimation. This condition was chosen by 

setting the proportion of DIF items = 15%, DIF type = uniform, DIF size = .5, OR = 2, and group 

impact = N(0, 1) & N(0, 1). The combination of these factor levels formed a condition that was 

most likely to suffer from label issues. The posterior density plots of the group membership and 

the Mplus trace plots were inspected, and the parameter estimates were compared with the 

simulation parameters. 

In the cased of two chain converged, the results included the within-chain label switching, 

collapsed chains, poor mixing chains, and recovered chains. In the case of two chain not converged, 

the results included both the within- and between- chain label switching, collapsed chains, poor 

mixed chains, and recovered chains. In addition to the label switching chains and recovered chains, 

the collapsed chains occurred when the two chains exhibited convergence to a stationary 

distribution and produced a solution with essentially one latent class. In this case, the proportion 

of examinees classified into one group was almost 100% and was close to 0% for the other group. 

The occurrence of the collapsed chains implied that information was insufficient to separate 

examinees into two latent classes. The poor mixing chains occurred when the two chains fluctuated 

non-systematically within a wide range of possible values for the parameter. 

The percentages of the occurrence of each type of results were summarized in Appendix 

Table A.5. As shown, approximately 73% of the chains recovered the latent structure appropriately 

when averaged across the convergent and non-convergent MCMC chains. The occurrence of the 
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within-chain label switching was as low as 1.027%. The assigning of starting values to model 

parameters was to help reduce the occurrence of between-chain label switching, which led to 

approximately 11% of the chains not converged. Approximately 14% of the chains were collapsed 

into a single class solution, while the percentage of poor mixing chains was as low as 

approximately 2%.  

Given the total number of replications was as large as 6400, the replications that contained 

non-convergent chains were excluded from the analysis, which was 19% of the 50 replications in 

this condition. In terms of previous research, the relabeling of the groups to match with the 

simulating group membership did not solve the between-chain label switching issue. In Dai’s study 

(2009), only 21% of the between-chain label switching runs out of 720 replications were resolved 

by adding additional group membership information. In addition, the condition selected for the 

model diagnostic represented the situation where the label switching issue was most likely to occur. 

It is expected that for other simulation conditions the occurrence of the between-chain label 

switching would be less. The final analysis of all the simulation conditions found that the number 

of replications used for parameter estimation ranged from 41 to 48 with 45 replications were kept 

for most of the conditions. 

4.3 RECOVERY OF LATENT GROUP MEMBERSHIP 

The recovery of the latent group membership was evaluated through the accuracy of latent group 

classification. It was defined as the proportion of examinees correctly assigned to the simulated 

latent groups. The descriptive statistics of the latent group classification accuracy are presented in 

Table 4.2. As shown, the classification rates were moderately high, ranging approximately from 
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.600 to .800. The latent group assignment was more accurate when the covariate was included or 

when the Bayes estimator was used. The accuracy of classification tended to be higher when the 

covariate was more related to the latent group membership. In addition, the recovery of the latent 

structure was better when there was a separation between the two latent groups or when the DIF 

magnitude was larger. It was also noted that the recovery of the latent group membership was 

better for the uniform DIF items compared to the non-uniform DIF items. The average 

classification accuracy for each of the simulation conditions is presented in Table A.6 in Appendix 

A. 

Table 4.2. Descriptive Statistics of Latent Group Classification Accuracy by Factors 

Manipulated factors Levels M SD 

Within-replication factors:    

Model specification NoCov .673 .142 

 Cov .719 .133 

Estimation Methods MLE .682 .149 

 Bayesian .725 .123 

Between-replication factors:    

Type of DIF Uniform .713 .141 

 Non-uniform .678 .136 

Proportion of DIF items 15% .656 .132 

 30% .736 .135 

DIF magnitude 0.5 .610 .128 

 1 .782 .088 

Group impact N(0, 1), N(0, 1) .673 .139 
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 N(1, 1), N(0, 1) .729 .136 

Magnitude of odds ratio 2 .685 .137 

 8 .708 .141 

 

It has been shown that ANOVA is robust to moderate violation of normality (Glass, 

Peckham, & Sanders, 1972). Therefore, transformations were not performed to correct for the 

violation of normality. The other assumptions were met, and potential outliers were excluded from 

the analyses. Table 4.3 summarizes the mixed ANOVA results. 

Table 4.3. Main and Interaction Effects of Factors on Classification Accuracy 

Source F value p value Partial 𝜼𝜼𝟐𝟐 

Within-replication factors:    

Model 203.717 <.001 .322 

Model × OR 67.826 <.001 .137 

Model × DIFtype 31.957 <.001 .069 

Model × OR × DIFtype 42.427 <.001 .101 

Model × DIFtype × DIFnum 36.282 <.001 .079 

Model × DIFtype × Impact 34.223 <.001 .072 

Estimation 55.706 <.001 .115 

Estimation × DIFtype 30.402 <.001 .066 

Estimation × DIFtype × Impact 38.164 <.001 .087 

Between-replication factors:    

OR 35.812 <.001 .077 

DIFtype 90.893 <.001 .175 
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The two-way interactions of the model and the relationship between the covariate and the 

latent variable, the model and the DIF type, as well as the estimation method and the DIF type 

were all dependent on another factor. To be specific, the interaction of the model and the 

relationship between the covariate and the latent group membership was shown to be dependent 

on the DIF type. The simple two-way interaction analysis showed that this interaction was 

significant for both the uniform and the non-uniform DIF items with larger effect size for the 

uniform DIF items, F = 49.228, p < .001, partial 𝜂𝜂2 = .141, F = 13.142, p < .001, partial 𝜂𝜂2 = .028. 

In other words, for both types of DIF items the improvement of the classification accuracy by 

including the covariate into the model was significantly larger when this covariate was more 

related to the latent group membership.  

The interaction of the model and the DIF type depended on the number of the DIF items, 

which had larger effect size when more DIF items were included, F = 18.322, p < .001, partial 𝜂𝜂2 

= .059, F = 37.657, p < .001, partial 𝜂𝜂2  = .109. This indicated that the improvement of the 

classification accuracy by including the covariate into the model was significantly better for the 

uniform DIF items particularly when there were more DIF items. The interaction of the model and 

the DIF type also depended on the difference in group abilities, F = 15.078 p < .001, partial 𝜂𝜂2 = 

.046, F = 22.485, p < .001, partial 𝜂𝜂2 = .078. Regardless of the group impact, the improvement of 

DIFnum 412.509 <.001 .491 

DIF 1914.330 <.001 .817 

Impact 140.103 <.001 .247 

DIRnum × DIF 87.053 <.001 .169 

DIFnum × DIFtype × DIF 60.128 <.001 .103 
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the classification accuracy by including the covariate was significantly better for the uniform DIF 

items. 

The interaction of the estimation method and the DIF type depended on the difference in 

group abilities. The simple two-way interaction analysis indicated that this interaction was 

significant for both the no impact and the impact groups, F = 12.789, p < .001, 𝜂𝜂2 = .053, F = 

7.360, p = .007, 𝜂𝜂2 = .031.  Regardless of the group impact, the improvement of the classification 

accuracy by using the Bayes estimator was significantly better for the uniform DIF. The graphic 

representations of the three-way interactions among the within- and the between-replication factors 

are shown in Figure 4.1.  
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Figure 4.1. 3-Way Interactions of within-Replication Factors: Classification Accuracy 

 

 

 
The results of the effects for the between-replication factors showed that the interaction of 

the DIF type and the proportion of DIF items depended on the DIF magnitude. The simple two-

way interaction analysis indicated that this interaction was significant for both levels of the DIF 

magnitudes, F = 25.390, p < .001, 𝜂𝜂2 = .024, F = 64.324, p < .001, 𝜂𝜂2 = .063. This implied that the 

improvement of the classification accuracy by using more DIF items depended on the nature of 

the DIF items. This three-way interaction is presented in Figure 4.2. 

 
Figure 4.2. 3-Way Interactions of between-Replication Factors: Classification Accuracy 

 
 



 74 

4.4 RECOVERY OF MODEL PARAMETERS 

The joint recovery of the model parameters was evaluated in terms of RMSE. It was calculated by 

quantifying the differences between the expected scores based on the estimated parameters and the 

expected scores based on the simulation parameters. The descriptive statistics of RMSE averaged 

across the simulation cells are presented in Table 4.4. As shown, the values of RMSE ranged from 

.250 to .290. Averaging across the simulation conditions, the recovery of the model parameters 

was better (lower RMSE value) when the parameters were estimated using the 2PL model with 

the covariate and the Bayes estimator. The absolute errors in parameter estimation were relatively 

small when the DIF size was large or more DIF items were included in the test. Likewise, the 

recovery of the model parameters tended to be better for the uniform DIF items or when the two 

groups differentiated in their abilities. The average RMSE values for each of the simulation 

conditions are presented in Table A.7 in Appendix A.  

Table 4.4. Descriptive Statistics of RMSE by Factors 

  RMSE 

Manipulated factors Levels M SD 

Within-replication factors:    

Model specification NoCov .282 .107 

    Cov .263 .038 

Estimation Methods MLE .288 .105 

 Bayesian .252 .009 

Between-replication factors:    

Type of DIF Uniform .271 .068 
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 Non-uniform .275 .092 

Proportion of DIF items 15% .281 .106 

 30% .265 .043 

DIF magnitude 0.5 .277 .068 

 1 .269 .093 

Group impact N(0, 1), N(0, 1) .282 .059 

 N(1, 1), N(0, 1) .263 .098 

Magnitude of odds ratio 2 .273 .078 

 8 .272 .085 

 

Table 4.5 summarizes the significant main and interaction effects for the manipulation 

factors on RMSE. As shown, large effect sizes were achieved for most of the interactions. Simple 

analyses were performed as the follow-up to the significant three-way interactions. For both of the 

uniform and non-uniform DIF items, the reduction in the errors of the parameter estimation by 

including a covariate into the model significantly depended on the relationship between this 

covariate and the latent group membership, F = 8.731, p = .003, 𝜂𝜂2 = .027, F = 6.196, p = .014, 𝜂𝜂2 

= .025. This pattern was also observed for both levels of the DIF item proportions, F = 5.887, p = 

.016, 𝜂𝜂2 = .018, F = 5.147, p = .015, 𝜂𝜂2 = .012. The interactions between the model and the DIF 

size were also significant for both the no impact and the impact groups, F = 6.242, p = .013, 𝜂𝜂2 = 

.019, F = 59.538, p < .001, 𝜂𝜂2 = .200. The interactions between the model and the DIF type were 

significant regardless of the number of DIF items, F = 20.834, p < .001, 𝜂𝜂2 = .081, F = 17.234, p 

< .001, 𝜂𝜂2 = .064.  
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The reduction of the errors in parameter estimation by using the Bayes estimator was 

significantly more pronounced for the uniform DIF items compared to the non-uniform DIF items, 

which was found regardless of the covariate-membership association, F = 19.978, p < .001, 𝜂𝜂2 = 

.077, F = 9.589, p = .002, 𝜂𝜂2 = .039, or the group impact, F = 7.388, p = .007, 𝜂𝜂2 = .030, F = 

60.695, p < .001, 𝜂𝜂2  = .203. The interaction of the estimation method and the DIF size was 

significant for the impact group only, F = 71.301, p < .001, 𝜂𝜂2 = .231. 

Referring to RMSE, the interaction of the two within-replication factors was found to be 

significant relative to the DIF size and the group impact. The reduction in estimating errors when 

including the covariate was more pronounced when using the MLE, which was observed for both 

of the uniform and the non-uniform DIF items, F = 146.901, p < .001, 𝜂𝜂2 = .381, F = 8.152, p = 

.005, 𝜂𝜂2 = .033, and for both of the no impact and the impact groups, F = 20.636, p < .001, 𝜂𝜂2 = 

.081, F = 42.911, p < .001, 𝜂𝜂2 = .152. The graphic representations of the three-way interactions 

among the within- and the between-replication factors are shown in Figure 4.3.  

Table 4.5. Main and Interaction Effects of Factors on RMSE 

Source F value p value Partial 𝜼𝜼𝟐𝟐 

Within-replication factors:    

Model 77.650 <.001 .148 

Model × OR 30.874 <.001 .064 

Model × DIFtype 81.387 <.001 .157 

Model × DIFnum 70.101 <.001 .125 

Model × DIF 57.173 <.001 .113 

Model × Impact 50.212 <.001 .101 

Model × OR × DIFtype 27.194 <.001 .061 
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Model × OR × DIFnum 31.357 <.001 .065 

Model × DIF × Impact 68.425 <.001 .132 

Model × DIFtype × DIFnum 57.223 <.001 .118 

Model × Impact × OR 70.895 <.001 .137 

Estimation 85.157 <.001 .163 

Estimation × DIFtype 107.560 <.001 .194 

Estimation × DIFnum 215.284 <.001 .325 

Estimation × DIF 63.477 <.001 .124 

Estimation × Impact 77.771 <.001 .148 

Estimation × DIFtype × OR  29.832 <.001 .065 

Estimation × DIFtype × Impact 128.579 <.001 .223 

Estimation × DIF × Impact 72.535 <.001 .139 

Model × Estimation × DIFtype 135.543 <.001 .232 

Model × Estimation × Impact 102.000 <.001 .185 

Between-replication factors:    

DIFnum 35.489 <.001 .073 

DIF 152.368 <.001 .254 

Impact 153.312 <.001 .255 

DIFtype × Impact 40.738 <.001 .083 

DIFnum × Impact 48.537 <.001 .098 

DIFnum × DIFtype × DIF 99.555 <.001 .182 
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Figure 4.3. 3-Way Interactions of within-Replication Factors: RMSE 

 
The three-way interactions of the between-replication factors are presented in Figure 4.4. 

The interactions between the covariate-membership relationship and the DIF size were significant 

for both the no impact and the impact groups. The interactions of DIF size and the proportion of 

DIF items were significant regardless of the DIF type or group impact. 

 

 
Figure 4.4. 3-Way Interactions of between-Replication Factors: RMSE 

 
 

4.5 DETECTION OF LATENT DIF 

The primary interest of the present study is to evaluate how well DIF items can be identified based 

on the latent grouping estimated by the mixture 2PL IRT model. Three indices are reported as a 

measure of the model’s efficiency in DIF detection: power, correct non-DIF decision (non-DIF 
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CD), and correct decision (CD) rates. The descriptive statistics of these three indices for each 

within- and between-replication factor averaged across simulation conditions are presented in 

Table 4.6. These descriptive statistics provides the overall effect of each factor. As shown, all three 

indices showed the same direction of the group differences for each of the factors. Overall, the 

larger power, higher correct non-DIF decision, and higher correct decision rates were found for 

the conditions of mixture 2PL model with the covariate, Bayesian estimation, uniform DIF items, 

large number of DIF items, and large DIF size. In addition, the separation of the latent groups and 

the association between the covariate and the group membership tended to affect the detection of 

DIF. The analyses of interaction effects below disclosed how the effect of each factor was 

manifested relative to other factors.  

The descriptive statistics of the power, correct non-DIF decision, and correct decision rates 

averaged across replications for each of the simulation conditions are presented in Table A.8, Table 

A.9, and Table A.10 in Appendix A. These descriptive statistics provides the interaction effects. 

Table 4.6. Descriptive Statistics of DIF Detection Indices by Factors 

      Power Non-DIF CD      CD 

Manipulated factors Levels M SD M SD M SD 

Within-replication factors:        

Model specification NoCov .645 .087 .857 .077 .089 .064 

 Cov .782 .062 .868 .074 .074 .061 

Estimation Methods MLE .681 .095 .840 .071 .827 .055 

 Bayesian .804 .103 .856 .035 .857 .049 

Between-replication factors:        

Type of DIF Uniform .723 .093 .867 .031 .857 .065 
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 Non-uniform .683 .130 .855 .087 .842 .068 

Proportion of DIF items 15% .693 .090 .851 .109 .840 .049 

 30% .709 .111 .869 .112 .856 .077 

DIF magnitude 0.5 .684 .127 .848 .108 .833 .078 

 1 .761 .096 .851 .105 .839 .069 

Group impact N(0, 1), N(0, 1) .687 .120 .837 .094 .828  .101 

 N(1, 1), N(0, 1) .749 .106 .869 .102 .858 .066 

Magnitude of odds ratio 2 .677 .118 .831 .127 .827 .068 

 8 .725 .108 .874 .078 .861 .059 

 

A good number of significant interaction effects were found to be consistent among the 

three indices of the DIF detection. The mixed ANOVA results for each of the three indices are 

summarized in Table 4.7, Table 4.8, and Table 4.9.  

4.5.1 Power 

Table 4.7 shows the significant main and interaction effects with the partial 𝜂𝜂2 larger than .60. The 

within-replication factor “model” had significant interactions with three between-replication 

factors including the relationship between the covariate and the latent group membership, the DIF 

type, and the proportion of DIF items. These two-way interactions depended on the third factor. 

To be specific, the interaction of the model and the covariate-membership relationship was 

significant when the DIF items were uniform or when there was a small number of DIF items, F = 

17.132, p < .001, partial 𝜂𝜂2 = .072, F = 25.145, p < .001, partial 𝜂𝜂2 = .102. The interaction of the 

model and DIF size was significant regardless of the group differences with larger effect size when 
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the group difference existed, F = 15.243, p < .001, partial 𝜂𝜂2 = .046, F = 17.921, p < .001, partial 

𝜂𝜂2 = .078. 

The interaction of the estimation method and the DIF type was significant only when the 

covariate was weakly related to the latent group membership, F = 28.267, p < .001, partial 𝜂𝜂2 = 

.121. Similar as above, the interaction of the estimation method and the DIF type was significant 

regardless of the group differences with larger effect size when the group difference existed, F = 

16.147, p < .001, partial 𝜂𝜂2 = .064, F = 18.352, p < .001, partial 𝜂𝜂2 = .083. No interaction was 

found between the two within-replication factors. The visual representations of these three-way 

interactions are shown in Figure 4.5. 

     Table 4.7. Main and Interaction Effects of Factors on Power 

Source F value p value Partial 𝜼𝜼𝟐𝟐 

Within-replication factors:    

Model 81.292 <.001 .173 

Model × OR 57.779 <.001 .128 

Model × DIFtype 35.777 <.001 .074 

Model × DIFnum 36.953 <.001 .075 

Model × OR × DIFtype  26.257 <.001 .061 

Model × OR × DIFnum 41.068 <.001 .092 

Model × DIF × Impact 29.452 <.001 .066 

Estimation 63.747 <.001 .164 

Estimation × DIFtype 56.586 <.001 .126 

Estimation × DIFtype × OR 46.951 <.001 .106 

Estimation × DIFtype × Impact 40.298 <.001 .089 
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Between-replication factors:    

DIFtype 53.746 <.001 .123 

DIFnum 29.314 <.001 .068 

DIF 43.823 <.001 .097 

DIFnum × DIFtype 58.328 <.001 .137 

DIFnum × DIFtype × DIF 42.101 <.001 .094 
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Figure 4.5. 3-Way Interactions of within-Replication Factors: Power 

 
 

The results for the between-replication factors showed that the interactions of the DIF 

number and the DIF type were dependent on the DIF magnitude with larger effect size when the 

DIF magnitude was small, F = 73.025, p < .001, 𝜂𝜂2 = .113, F = 32.315, p < .001, 𝜂𝜂2 = .055. This  

three-way interaction is presented in Figure 4.6.  

 

 
Figure 4.6. 3-Way Interactions of between-Replication Factors: Power 
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4.5.2 Correct Non-DIF Decision 

The results of the interaction effects for correct non-DIF decision were generally consistent with 

the results for power. The interactions of the within-replication factor “model” with the covariate-

membership relationship, DIF type, and DIF size were dependent on the third factor. Specifically, 

the interactions of the model and the relationship between the covariate and the latent variable 

were significant regardless of the DIF type with larger effect size for the non-DIF items, F = 

18.342, p < .001, partial 𝜂𝜂2 = .069, F = 27.242, p < .001, partial 𝜂𝜂2 = .104. The interactions of the 

model and the DIF type were significant regardless of the number of DIF items included in the test 

with larger effect size when there were less DIF items, F = 19.038, p < .001, partial 𝜂𝜂2 = .093, F = 

15.432, p < .001, partial 𝜂𝜂2 = .055. The interactions of the model and the DIF size were significant 

regardless of the group impact with larger effect for the impact group, F = 13.638, p < .001, partial 

𝜂𝜂2 = .045, F = 19.373, p < .001, partial 𝜂𝜂2 = .070.  

The interactions of the estimation method and the DIF type were significant regardless how 

strong the covariate was associated with the latent variable with larger effect size when the 

covariate-membership relationship was weak, F = 29.721, p < .001, partial 𝜂𝜂2 = .118, F = 11.712, 

p < .001, partial 𝜂𝜂2 = .034. The interactions of the estimation method and the DIF type were also 

dependent on the group impact with larger effect size for the impact group, F = 12.346, p < .001, 

partial 𝜂𝜂2 = .042, F = 27.632, p < .001, partial 𝜂𝜂2 = .114. The interaction of the estimation method 

and the group impact was significant only when a small number of DIF existed, F = 40.235, p < 

.001, partial 𝜂𝜂2 = .136. Again, no interactions were found between the within-replication factors. 

The visual representations of these three-way interactions are shown in Figure 4.7. 
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Table 4.8. Main and Interaction Effects of Factors on Correct Non-DIF Decision 

 
 

Source F value p value Partial 𝜼𝜼𝟐𝟐 

Within-replication factors:    

Model 79.133 <.001 .168 

Model × OR 44.394 <.001 .103 

Model × DIFtype 36.234 <.001 .073 

Model × DIF 29.382 <.001 .066 

Model × OR × DIFtype 41.532 <.001 .092 

Model × DIFtype × DIFnum 37.439 <.001 .081 

Model × DIF × Impact 27.394 <.001 .063 

Estimation 83.493 <.001 .182 

Estimation × DIFtype × OR 50.193 <.001 .113 

Estimation × DIFtype × Impact 40.563 <.001 .090 

Estimation × Impact × DIFnum 43.295 <.001 .102 

Between-replication factors:    

OR 62.152 <.001 .122  

DIFtype 31.752 <.001 .068 

Impact 28.233 <.001 .066 

Impact × DIFtype 53.832 <.001 .118  

DIF × DIFtype × Impact  35.596 <.001 .073 

DIFnum × DIFtype × DIF 42.483 <.001 .094 
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Figure 4.7. 3-Way Interactions of within-Replication Factors: Correct Non-DIF Decision 

 
 

In line with the results for power, the interactions of the DIF number and the DIF type were 

dependent on the DIF magnitude with larger effect size when the DIF magnitude was small, F = 

71.422, p < .001, 𝜂𝜂2 = .110, F = 40.287, p < .001, 𝜂𝜂2 = .069. In addition, the interactions of the 

DIF type and the DIF size were significant regardless of the group impact with larger effect size 

for the impact group, F = 29.224, p < .001, partial 𝜂𝜂2 = .034, F = 56.473, p < .001, partial 𝜂𝜂2 = 

.086. These interactions are presented in Figure 4.8.  

 
 

 
Figure 4.8. 3-Way Interactions of between-Replication Factors: Correct Non-DIF Decision 
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4.5.3 Correct Decision 

The measures of power and correct non-DIF decision were combined into a single index known 

as the “correct decision”, which was used as a measure of the overall DIF detection efficiency. 

Table 4.9 summarizes the mixed ANOVA results of the manipulated factors on the correct decision.  

In line with the results for power and correct non-DIF decision, the interactions of the 

model and the association between the covariate and the latent group membership were significant 

for both the uniform and the non-uniform DIF items with larger effect size for the uniform DIF 

items, F = 20.125, p < .001, partial 𝜂𝜂2  = .094, F = 16.225, p < .001, partial 𝜂𝜂2  = .038. The 

interaction of the model and the DIF type was found to be significant only when a small number 

of DIF items existed, F = 19.783, p < .001, partial 𝜂𝜂2 = .082. Likewise, the interaction of the model 

and the DIF size was significant only for the group impact condition, F = 28.325, p < .001, partial 

𝜂𝜂2 = .114. 

The interaction of the estimation method and the DIF type was found to be significant only 

when the covariate was weakly related to the latent group membership, F = 22.584, p < .001, partial 

𝜂𝜂2 = .090. The interaction of the estimation method and the DIF type was significant only when 

the group difference existed, F = 29.049, p < .001, partial 𝜂𝜂2 = .115. Lastly, the interactions of the 

estimation method and the group impact were significant regardless of the number of DIF items, 

F = 17.245, p < .001, partial 𝜂𝜂2  = .067, F = 12.831, p < .001, partial 𝜂𝜂2  = .044. The visual 

representations of these three-way interactions involving the within-replication factors are shown 

in Figure 4.9. 
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      Table 4.9. Main and Interaction Effects of Factors on Correct Decision 

Source F value p value Partial 𝜼𝜼𝟐𝟐 

Within-replication factors:    

Model 42.342 <.001 .106 

Model × OR 59.231 <.001 .145 

Model × DIFtype 53.546 <.001 .128 

Model × OR × DIFtype 39.421 <.001 .084 

Model × DIFtype × DIFnum 35.765 <.001 .071 

Model × DIF × Impact 45.582 <.001 .109 

Estimation 60.325 <.001 .156 

Estimation × DIFtype 44.203 <.001 .105 

Estimation × Impact 38.127 <.001 .080 

Estimation × DIFtype × OR 37.432 <.001 .074 

Estimation × DIFtype × Impact 40.231 <.001 .086 

Estimation × Impact × DIFnum 28.563 <.001 .065 

Between-replication factors:    

OR 45.394 <.001 .104 

DIFnum 29.573 <.001 .068 

Impact 40.124 <.001 .088 

DIFnum × DIF 46.432 <.001 .092 

DIF × DIFtype 24.322 <.001 .062 

DIF × DIFtype × Impact  38.439 <.001 .084 

DIFnum × DIFtype × DIF 34.637 <.001 .077 
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Figure 4.9. 3-Way Interactions of within-Replication Factors: Correct Decision 

 
 

In line with the three-way interactions of between-replication factors for correct non-DIF 

decision, the interactions of the DIF number and the DIF type were dependent on the DIF 

magnitude with larger effect size when the DIF magnitude was small, F = 62.392, p < .001, 𝜂𝜂2 = 

.098, F = 35.932, p < .001, 𝜂𝜂2 = .044. The interactions of the DIF type and the DIF size were 

significant regardless of the group impact with larger effect size when the group difference existed, 

F = 32.932, p < .001, partial 𝜂𝜂2 = .036, F = 59.296, p < .001, partial 𝜂𝜂2 = .093. These interactions 

are presented in Figure 4.10.  
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Figure 10. 3-Way Interactions of between-Replication Factors: Correct Decision 

 
 



 95 

5.0  DISCUSSION  

The focus of the present study is on the performance of mixture IRT models in latent DIF detection 

given the manipulation of relevant factors. The secondary purpose is to evaluate the recovery of 

the latent class structure and model parameters. This chapter summarizes the findings of the 

present study and discusses these findings by comparing among different outcome measures. 

Lastly, the limitations of the present study and the future directions are discussed. 

5.1 DISCUSSION OF RESULTS 

In this simulation study, the DIF size, the DIF magnitude, the proportion of DIF items, the group 

impact, the relationship between the covariate and the latent group membership, the inclusion of 

the covariate, and the estimation method were manipulated. Three research questions were 

proposed in the present study: 1) How do the simulation factors affect the performance of the 

mixture 2PL model in latent DIF detection? 2) How is the mixture modeling of latent DIF affected 

by the estimation method employed (MLE v.s. Bayesian estimation)? 3) How well are the latent 

DIF items detected under disadvantaged conditions.  

The joint effects of the manipulated factors were focused on in the analysis. Overall, it was 

found that: 1) The relationship between the covariate and the latent group membership, the DIF 

type, and the proportion of DIF items played an important role in increasing the power of DIF 

detection and reducing the errors of model estimation. In addition, the group differences 

contributed to the DIF detection probably because it provided the information about group 
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separation. 2) The Bayesian estimation in the detection of DIF with the 2PL model performed 

generally better than the MLE when the DIF items were uniform. Like the covariate effect, the 

group differences and the relationship between the covariate and the latent group membership 

affected the beneficial effect of the Bayesian estimation on DIF detection. 3) The use of the 

Bayesian estimation facilitated the detection of DIF in the situation where a fewer number of DIF 

items existed or the relationship between the covariate and the latent group membership was 

relatively weak. The Bayesian estimation also helped reduce the errors in the estimation of the 

model parameters with the mixture 2PL model. These results were discussed relative to each of 

the outcome measures below.  

5.1.1 Recovery of Latent Structure 

The analysis of the correct classification was performed as a standard procedure in the mixture 

IRT simulation literature. In the present study it was found that the highest classification accuracy 

was achieved when the DIF magnitude was large, sufficient DIF items were included, and the two 

groups differentiated in their abilities. Furthermore, consistent with the literature, it was found that 

the mixture 2PL model with the covariate and Bayesian estimation recovered the latent structure 

significantly better than the model without a covariate or using MLE. Interestingly, the latent group 

classification was significantly better when DIF items were uniform compared to the non-uniform 

DIF items. Consistent with previous studies, the average correct classification was moderate with 

the values ranging from .650 to .750. A previous simulation study found that the average correct 

classification was as high as above .900 (Li, 2014). This was probably due to two reasons. First, a 

higher DIF magnitude (i.e., Δb = 1.5) and higher covariate-membership association (i.e., OR = 10) 
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were used. Second, a mixture Rasch model was used in that study. It is known that the classification 

accuracy is reduced as more complex models are used (Finch & French, 2012).  

Previous literature (Smit et al., 1999, 2000) suggested that the latent class assignment 

substantially benefited from the incorporation of dichotomous covariates that were moderately or 

strongly associated with the latent class variable. This result was also found in the present study. 

Moreover, this pattern was demonstrated to be held regardless whether the DIF items were uniform 

or non-uniform. It was found that the uniform DIF items benefitted more from adding the covariate 

into the model regardless of how large the DIF size was or whether there was separation between 

the two latent groups.  

In addition, group impact was found to be an important factor that determined the patterns 

of the covariate effect. For example, when there were fewer DIF items or smaller DIF magnitude, 

the covariate effect was found only when the group ability differences existed. This was probably 

because that the separation of the groups compensated for the information that was needed for 

latent class assignment.  

Previous research suggested that the estimation methods play a role in mixture IRT 

modeling, and generally the MCMC algorithm produces more reasonable class classification 

accuracy. In line with the previous findings, the results of the present study showed the benefit of 

Bayesian estimation in class assignment when DIF size was small for both uniform and non-

uniform DIF items. The benefit of Bayesian estimation was also displayed when there was no 

ability difference between the groups, however, it was only observed for uniform DIF items. More 

interestingly, there was an interaction between the estimation method and the covariate in that the 

covariate effect depended on the estimation method used. When less group information was 

available, the benefit of incorporating the covariate was larger when Bayesian estimation was used. 
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In contrast, when group differences appeared, the benefit of incorporating the covarite was smaller 

for Bayesian estimation. Even though the Bayesian estimation is notoriously known for a very 

lengthy period of time to complete a single analysis, it may facilitate the covariate effect in latent 

classification particularly under disadvantaged conditions when less group information is available 

in class assignment. 

On the other hand, it was noted that the classification accuracy when using the mixture 2PL 

model depended largely on the relationship between the covariate and the latent variable. However, 

it was less dependent on the DIF size. Furthermore, the effect of the estimation method on the 

recovery of latent structure depended on the DIF size. However, it was less dependent on the 

number of DIF items, DIF size, or the relationship between the covariate and the latent variable. 

5.1.2 Recovery of Model Parameters 

RMSE has been used as a standard metric to evaluate model errors. It takes the square root of the 

average squared errors and thus penalizes variance as it gives the errors with larger absolute values 

more weight than the errors with smaller absolute values. It was used as a measure of the absolute 

errors in the recovery of the model parameters.  

In line with the results for classification accuracy, the benefit of adding the covariate into 

the model was larger for uniform DIF items. This indicated that the correct latent class assignment 

improved with a reduction in parameter estimation errors, and this pattern was more pronounced 

for uniform DIF items. Furthermore, it suggests that covariate information may function 

differentially in model estimation and the benefits of the complex mixture IRT model may depend 

on the DIF type. 
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In general, the recovery of the model parameters benefited from the Bayesian estimation 

regardless of the nature of DIF. The reduction of errors when using the Bayesian estimation was 

more pronounced when the ability differences existed between the two latent groups. Regarding 

the benefits of using Bayesian estimation given disadvantaged conditions, it was found: 1) The 

reduction of errors when using the Bayesian estimation was larger when the relationship between 

the covariate and the latent variable or the DIF magnitude was small. 2) The reduction of error 

when using the Bayesian estimation was larger when the DIF size was small. 3) The reduction of 

errors when using the Bayesian estimation was larger for uniform DIF items compared to non-

uniform DIF items particularly when the relationship between the covariate and the latent variable 

was small. These findings suggest that the use of MLE should probably be avoided when the 

association between the covariate and the latent group is unclear or the item DIF magnitude is 

small. This is because using MLE may bias the estimation of the mixture 2PL model and result in 

unsatisfactory latent class assignment. 

5.1.3 Latent DIF Detection 

Early studies showed that the latent class membership did not necessarily overlap with the manifest 

class membership, which brought up the necessity of studying latent DIF. In the analysis of latent 

DIF in the present study, an item was identified to be an DIF item only when it was identified to 

be significant by the logistic regression procedure and had non-negligible effect size. Three indices 

were then used to measure the appropriateness of the latent DIF detection. Power and correct non-

DIF decision were equivalent to Type I and Type II error. When combined, power and correct non-

DIF decision formed an overall measure of the DIF detection, termed correct decision in the 

present study. 
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In general, for most of the simulation conditions the power ranged from .700 to .850, and 

the correct non-DIF decision and the correct decision ranged from .850 to .900 and from .800 to 

.900, respectively. The power and correct decisions were moderately high to high. Increasing the 

number of replications may improve the detection of DIF using the mixture 2PL models. Using a 

set of unbiased anchor items may also increase the power of DIF detection (Lopez Rivas, Stark, & 

Chernyshenko, 2009; Wang, 2004).  

In terms of the ANOVA results, the power of DIF detection was shown to rely on the DIF 

type, the proportion of DIF items, and the relationship between the covariate and the latent 

variable. Likewise, the correct decisions were also shown to rely on these factors. The benefit of 

adding the covariate into the model and using the Bayesian estimation had less dependence on the 

DIF magnitude or group impact.  

Consistent interaction effects were found among the three indices of DIF detection 

regarding the covariate effect: 1) The covariate effect on the improving of DIF detection was better 

when the covariate was strongly correlated with the latent variable. 2) The covariate effect on 

improving the power of DIF detection was more significant for uniform DIF items, especially 

when the relationship between the covariate and the latent variable was weak. 3) The covariate 

effect on improving DIF detection was larger when the DIF magnitude was large, especially when 

the group differences existed.  

The benefit of Bayesian estimation was also observed consistently among the three indices. 

Higher power and more correct decisions were achieved when the uniform DIF items were 

detected with the Bayesian estimation. This was more pronounced when the covariate was weakly 

related to the latent group membership and when the group differences existed. In addition, the 

facilitation of DIF detection for the impact group by using the Bayesian estimation depended on 
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the number of DIF items. When a fewer number of DIF items were include, the detection of DIF 

was better for the impact group. 

The above findings were generally consistent with the literature about the DIF detection 

with respect to the manifest group in the context of large-scale assessments. Svetina and Rutkowski 

(2014) found that the number of groups seemed to have no effect on the power or Type I error 

rates, whereas the magnitude of DIF, proportion of DIF items, and the nature/type of DIF affected 

the performance of DIF detection. It was found in the present study that the power was generally 

higher when the DIF magnitude was large or a large percentage of DIF items were included, which 

was expected. It was also found that the uniform DIF items were better distinguished compared to 

the non-uniform DIF items. 

Lastly, the detection of DIF was better for the uniform DIF items when a large number of 

DIF items were included, and this was more pronounced when the DIF magnitude was small. 

Furthermore, the detection of DIF was better for the uniform DIF items when the DIF magnitude 

was large, and this was more pronounced for the impact group. These results suggest that the 

detection of DIF items relies on the separation of the latent groups and how much information 

about DIF is available for making the judgement. More interestingly, the type of DIF plays a role 

in DIF detection with mixture 2PL models. 

5.2 LIMITATIONS AND FUTURE RESEARCH 

The limitations of the present study included: 1) A relatively small number of replications were 

conducted due to the consideration of time required for model estimation under the Bayesian 

framework. 2) Anchor items were not included in the study design. 3) Some factors of interest 
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were kept constant to reduce the complexity of the study design such as the proportion of covariate. 

It was fixed to 50/50, which was not a complete representation of the primary distributions of 

manifest groups in the population. 4) The detection of DIF was conducted after the latent group 

memberships were determined. The disadvantage was that the accuracy of DIF detection depended 

on the accuracy of latent group assignment. Alternatively, the analysis of DIF could be performed 

simultaneously with the model estimation in Mplus. Given that the MLE and the Bayesian 

estimation were compared, the post-hoc procedure was adopted to avoid the analysis of DIF using 

different estimation methods. 

 The study of DIF using mixture IRT models has been receiving more attention in recent 

years. Given some unavoidable issues in Bayesian estimation such as the label switching issue, the 

analysis of DIF with mixture IRT models was criticized and has not reached consistent 

conclusions. The present study shed the light on the future research regarding this topic. Given the 

dependence of DIF detection on DIF type discovered in the present study, researchers may 

consider examining the mechanisms that cause the differences in the detection of DIF between 

uniform and non-uniform DIF items. Future research could also consider incorporating more 

covariates into the model and vary the proportion of the manifest group membership to better 

understand the covariate effect on DIF detection.  

 To sum up, despite the limitations, the findings of the present study enriched the literature 

by expanding the understanding of the role of complex mixture IRT model in the detection of DIF. 

It provided the evidence regarding the benefits of the covariate and the Bayesian estimation in the 

identification of latent DIF. With an ever-increasing use of complicated models in psychometric 

practice, it is recommended to develop a good understanding of the nature of the test items and 

test takers before determining a relatively optimal analyzing model and estimation algorithm. 
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APPENDIX A 

TABLES 

Table A.1. Parameter Validation for Reference Latent Group 

Item 
Latent Group 1 

𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)𝟐𝟐 𝒃𝒃𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒃𝒃𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (𝒃𝒃𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕𝒆𝒆𝒆𝒆 − 𝒃𝒃𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)𝟐𝟐 

1 0.840 0.825 0.000 0.915 0.878 0.001 
2 1.163 1.129 0.001 -1.774 -1.771 0.000 
3 1.429 1.504 0.006 -0.515 -0.571 0.003 
4 0.520 0.426 0.009 1.401 1.740 0.115 
5 0.713 0.764 0.003 1.083 0.982 0.010 
6 1.140 1.143 0.000 0.864 0.916 0.003 
7 0.825 0.807 0.000 1.546 1.445 0.010 
8 0.788 0.806 0.000 -0.279 -0.376 0.009 
9 1.167 1.205 0.001 1.556 1.620 0.004 
10 1.336 1.450 0.013 -0.367 -0.328 0.002 
11 0.446 0.468 0.000 0.899 0.791 0.012 
12 0.670 0.615 0.003 -0.008 -0.031 0.001 
13 0.994 1.009 0.000 -0.761 -0.784 0.001 
14 0.688 0.707 0.000 1.123 1.106 0.000 
15 1.357 1.436 0.006 -1.326 -1.327 0.000 
16 0.662 0.559 0.011 0.269 0.463 0.038 
17 0.459 0.425 0.001 0.565 0.287 0.077 
18 1.787 1.849 0.004 0.251 0.188 0.004 
19 2.031 2.076 0.002 -0.349 -0.432 0.007 
20 1.737 1.751 0.000 -0.217 -0.197 0.000 
21 1.579 1.532 0.002 -0.586 -0.589 0.000 
22 0.541 0.612 0.005 -0.874 -0.693 0.033 
23 1.974 1.881 0.009 -1.750 -1.864 0.013 
24 0.659 0.631 0.001 -0.522 -0.549 0.001 
25 0.794 0.744 0.003 0.142 -0.022 0.027 
26 1.180 1.249 0.005 0.488 0.408 0.006 
27 1.638 1.729 0.008 -1.044 -1.009 0.001 
28 1.077 1.107 0.001 -0.832 -0.859 0.001 
29 1.059 0.952 0.012 -1.570 -1.804 0.055 
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30 1.365 1.240 0.016 -0.949 -0.964 0.000 
31 1.045 1.059 0.000 -0.510 -0.528 0.000 
32 2.784 2.397 0.150 0.475 0.419 0.003 
33 0.645 0.592 0.003 0.816 0.854 0.001 
34 1.291 1.264 0.001 1.202 1.236 0.001 
35 0.928 0.924 0.000 -0.674 -0.681 0.000 
36 0.968 1.020 0.003 -1.223 -1.199 0.001 
37 1.050 1.079 0.001 -0.299 -0.345 0.002 
38 0.839 0.784 0.003 0.207 0.211 0.000 
39 1.163 1.210 0.002 0.580 0.638 0.003 
40 1.242 1.172 0.005 1.025 1.042 0.000 
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Table A.2. Parameter Validation for Focal Latent Group 

Item 
Latent Group 1 

𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒂𝒂𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)𝟐𝟐 𝒃𝒃𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒃𝒃𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 (𝒃𝒃𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒃𝒃𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)𝟐𝟐 

1 0.840 0.949 0.012 0.915 0.972 0.003 
2 1.163 1.117 0.002 -1.774 -1.680 0.009 
3 1.429 1.558 0.017 -0.515 -0.437 0.006 
4 0.520 0.447 0.005 1.401 1.569 0.028 
5 0.713 0.752 0.002 1.083 1.137 0.003 
6 1.140 1.076 0.004 0.864 0.908 0.002 
7 0.825 0.704 0.015 1.546 1.923 0.142 
8 0.788 0.847 0.003 -0.279 -0.257 0.000 
9 1.167 1.186 0.000 1.556 1.461 0.009 
10 1.336 1.416 0.006 -0.367 -0.311 0.003 
11 0.446 0.382 0.004 0.899 1.385 0.236 
12 0.670 0.696 0.001 -0.008 -0.245 0.056 
13 0.994 1.145 0.023 -0.761 -0.621 0.020 
14 0.688 0.596 0.008 1.123 1.243 0.014 
15 1.357 1.573 0.047 -1.326 -1.082 0.060 
16 0.662 0.751 0.008 0.269 0.220 0.002 
17 0.459 0.392 0.004 0.565 0.566 0.000 
18 1.787 1.761 0.001 0.251 0.336 0.007 
19 2.031 2.193 0.026 -0.349 -0.308 0.002 
20 1.737 1.695 0.002 -0.217 -0.140 0.006 
21 1.579 1.649 0.005 -0.586 -0.451 0.018 
22 0.541 0.565 0.001 -0.874 -0.837 0.001 
23 1.974 2.183 0.044 -1.750 -1.568 0.033 
24 0.659 0.701 0.002 -0.522 -0.340 0.033 
25 0.794 0.948 0.024 0.142 0.125 0.000 
26 1.180 1.074 0.011 0.488 0.499 0.000 
27 1.638 1.432 0.042 -1.044 -1.044 0.000 
28 1.077 0.926 0.023 -0.832 -0.971 0.019 
29 1.059 0.989 0.005 -1.570 -1.512 0.003 
30 1.365 1.630 0.070 -0.949 -0.858 0.008 
31 1.045 1.069 0.001 -0.510 -0.312 0.039 
32 2.784 2.835 0.003 0.475 0.477 0.000 
33 0.645 0.544 0.010 0.816 1.073 0.066 
34 1.291 1.340 0.002 1.202 1.196 0.000 
35 0.928 0.972 0.002 -0.174 -0.224 0.002 
36 0.968 1.101 0.018 -0.723 -0.735 0.000 
37 1.050 1.100 0.002 0.201 0.258 0.003 
38 0.839 0.897 0.003 0.707 0.649 0.003 
39 1.163 1.120 0.002 1.080 1.125 0.002 
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40 1.242 1.237 0.000 1.525 1.413 0.012 
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Table A.3. Example of the Generated Model Parameters for Uniform DIF  

Item 

Δb = 0.5, DIFnum = 6 Δb = 0.5, DIFnum = 12 
Reference Latent 

Group 
Focal Latent 

Group 
Reference Latent 

Group 
Focal Latent 

Group 
a b        a b a b a b 

1 0.840 0.915 0.840 0.915 0.840 0.915 0.840 0.915 
2 1.163 -1.774 1.163 -1.774 1.163 -1.774 1.163 -1.774 
3 1.429 -0.515 1.429 -0.515 1.429 -0.515 1.429 -0.515 
4 0.520 1.401 0.520 1.401 0.520 1.401 0.520 1.401 
5 0.713 1.083 0.713 1.083 0.713 1.083 0.713 1.083 
6 1.140 0.864 1.140 0.864 1.140 0.864 1.140 0.864 
7 0.825 1.546 0.825 1.546 0.825 1.546 0.825 1.546 
8 0.788 -0.279 0.788 -0.279 0.788 -0.279 0.788 -0.279 
9 1.167 1.556 1.167 1.556 1.167 1.556 1.167 1.556 
10 1.336 -0.367 1.336 -0.367 1.336 -0.367 1.336 -0.367 
11 0.446 0.899 0.446 0.899 0.446 0.899 0.446 0.899 
12 0.670 -0.008 0.670 -0.008 0.670 -0.008 0.670 -0.008 
13 0.994 -0.761 0.994 -0.761 0.994 -0.761 0.994 -0.761 
14 0.688 1.123 0.688 1.123 0.688 1.123 0.688 1.123 
15 1.357 -1.326 1.357 -1.326 1.357 -1.326 1.357 -1.326 
16 0.662 0.269 0.662 0.269 0.662 0.269 0.662 0.269 
17 0.459 0.565 0.459 0.565 0.459 0.565 0.459 0.565 
18 1.787 0.251 1.787 0.251 1.787 0.251 1.787 0.251 
19 2.031 -0.349 2.031 -0.349 2.031 -0.349 2.031 -0.349 
20 1.737 -0.217 1.737 -0.217 1.737 -0.217 1.737 -0.217 
21 1.579 -0.586 1.579 -0.586 1.579 -0.586 1.579 -0.586 
22 0.541 -0.874 0.541 -0.874 0.541 -0.874 0.541 -0.874 
23 1.974 -1.750 1.974 -1.750 1.974 -1.750 1.974 -1.750 
24 0.659 -0.522 0.659 -0.522 0.659 -0.522 0.659 -0.522 
25 0.794 0.142 0.794 0.142 0.794 0.142 0.794 0.142 
26 1.180 0.488 1.180 0.488 1.180 0.488 1.180 0.488 
27 1.638 -1.044 1.638 -1.044 1.638 -1.044 1.638 -1.044 
28 1.077 -0.832 1.077 -0.832 1.077 -0.832 1.077 -0.832 
29 1.059 -1.570 1.059 -1.570 1.059 -1.570 1.059 -1.070 
30 1.365 -0.949 1.365 -0.949 1.365 -0.949 1.365 -0.449 
31 1.045 -0.510 1.045 -0.510 1.045 -0.510 1.045 -0.010 
32 2.784 0.475 2.784 0.475 2.784 0.475 2.784 0.975 
33 0.645 0.816 0.645 0.816 0.645 0.816 0.645 1.316 
34 1.291 1.202 1.291 1.202 1.291 1.202 1.291 1.702 
35 0.928 -0.674 0.928 -0.174 0.928 -0.674 0.928 -0.174 
36 0.968 -1.223 0.968 -0.723 0.968 -1.223 0.968 -0.723 
37 1.050 -0.299 1.050 0.201 1.050 -0.299 1.050 0.201 
38 0.839 0.207 0.839 0.707 0.839 0.207 0.839 0.707 
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39 1.163 0.580 1.163 1.080 1.163 0.580 1.163 1.080 
40 1.242 1.025 1.242 1.525 1.242 1.025 1.242 1.525 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 109 

Table A.4. Example of the Generated Model Parameters for Non-uniform DIF  

Item 

Δa = 1, DIFnum = 6 Δa = 1, DIFnum = 12 
Reference Latent 

Group 
Focal Latent 

Group 
Reference Latent 

Group 
Focal Latent 

Group 
a b        a b a b a b 

1 0.840 0.915 0.840 0.915 0.840 0.915 0.840 0.915 
2 1.163 -1.774 1.163 -1.774 1.163 -1.774 1.163 -1.774 
3 0.520 1.401 0.520 1.401 0.520 1.401 0.520 1.401 
4 0.713 1.083 0.713 1.083 0.713 1.083 0.713 1.083 
5 1.140 0.864 1.140 0.864 1.140 0.864 1.140 0.864 
6 0.825 1.546 0.825 1.546 0.825 1.546 0.825 1.546 
7 0.788 -0.279 0.788 -0.279 0.788 -0.279 0.788 -0.279 
8 1.167 1.556 1.167 1.556 1.167 1.556 1.167 1.556 
9 0.446 0.899 0.446 0.899 0.446 0.899 0.446 0.899 
10 0.670 -0.008 0.670 -0.008 0.670 -0.008 0.670 -0.008 
11 0.994 -0.761 0.994 -0.761 0.994 -0.761 0.994 -0.761 
12 0.688 1.123 0.688 1.123 0.688 1.123 0.688 1.123 
13 0.662 0.269 0.662 0.269 0.662 0.269 0.662 0.269 
14 0.459 0.565 0.459 0.565 0.459 0.565 0.459 0.565 
15 0.541 -0.874 0.541 -0.874 0.541 -0.874 0.541 -0.874 
16 0.659 -0.522 0.659 -0.522 0.659 -0.522 0.659 -0.522 
17 0.794 0.142 0.794 0.142 0.794 0.142 0.794 0.142 
18 1.180 0.488 1.180 0.488 1.180 0.488 1.180 0.488 
19 1.077 -0.832 1.077 -0.832 1.077 -0.832 1.077 -0.832 
20 1.059 -1.570 1.059 -1.570 1.059 -1.570 1.059 -1.570 
21 1.045 -0.510 1.045 -0.510 1.045 -0.510 1.045 -0.510 
22 0.645 0.816 0.645 0.816 0.645 0.816 0.645 0.816 
23 0.928 -0.674 0.928 -0.674 0.928 -0.674 0.928 -0.674 
24 0.968 -1.223 0.968 -1.223 0.968 -1.223 0.968 -1.223 
25 1.050 -0.299 1.050 -0.299 1.050 -0.299 1.050 -0.299 
26 0.839 0.207 0.839 0.207 0.839 0.207 0.839 0.207 
27 1.163 0.580 1.163 0.580 1.163 0.580 1.163 0.580 
28 1.242 1.025 1.242 1.025 1.242 1.025 1.242 1.025 
29 1.291 1.202 1.291 1.202 1.291 1.202 0.291 1.202 
30 1.336 -0.367 1.336 -0.367 1.336 -0.367 0.336 -0.367 
31 1.357 -1.326 1.357 -1.326 1.357 -1.326 0.357 -1.326 
32 1.365 -0.949 1.365 -0.949 1.365 -0.949 0.365 -0.949 
33 1.429 -0.515 1.429 -0.515 1.429 -0.515 0.429 -0.515 
34 2.784 0.475 2.784 0.475 2.784 0.475 1.784 0.475 
35 1.579 -0.586 0.579 -0.586 1.579 -0.586 0.579 -0.586 
36 1.638 -1.044 0.638 -1.044 1.638 -1.044 0.638 -1.044 
37 1.737 -0.217 0.737 -0.217 1.737 -0.217 0.737 -0.217 
38 1.787 0.251 0.787 0.251 1.787 0.251 0.787 0.251 
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39 1.974 -1.750 0.974 -1.750 1.974 -1.750 0.974 -1.750 
40 2.031 -0.349 1.031 -0.349 2.031 -0.349 1.031 -0.349 
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 Table A.5. Convergence Results for Bayesian Estimation 

Results Results Type Percent 
Within-
chain label 
switching 

Between-
chain label 
switching 

Collapsed Recovered Poor 
mixing 

Two chains converged 

Within-chain label switching 0.642% 0.642%     
Collapsed 9.151%   9.151%   
Recovered 69.543%    69.543%  

Poor mixing 1.277%     1.277% 

Two chains non-
converged 

Within-chain label switching 0.385% 0.385%     
Between-chain label switching 10.623%  10.623%    

Collapsed 5.169%   5.169%   
Recovered 2.969%    2.969%  

Poor mixing 0.241%     0.241% 
Total  100% 1.027% 10.623% 14.320% 72.512% 1.518% 
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Table A.6. Average Latent Group Classification Accuracy of Each Simulation Condition 

     NoCov Cov 

OR DIFtype DIFnum DIF Impact 
MLE Bayesian MLE Bayesian 

M SD M SD M SD M SD 
2 Uniform 15% 0.5 No 0.569 0.137 0.607 0.119 0.573 0.105 0.619 0.130 
    Yes 0.530 0.115 0.603 0.148 0.614 0.130 0.691 0.049 
   1 No 0.736 0.026 0.731 0.051 0.738 0.046 0.746 0.021 
    Yes 0.734 0.042 0.776 0.024 0.780 0.023 0.807 0.016 
  30% 0.5 No 0.629 0.072 0.575 0.138 0.621 0.106 0.640 0.094 
    Yes 0.583 0.125 0.666 0.115 0.640 0.113 0.712 0.040 
   1 No 0.826 0.010 0.815 0.009 0.827 0.011 0.824 0.012 
    Yes 0.863 0.019 0.871 0.013 0.874 0.013 0.876 0.014 
 Non-uniform 15% 0.5 No 0.523 0.146 0.587 0.132 0.536 0.141 0.599 0.089 
    Yes 0.518 0.152 0.616 0.126 0.528 0.142 0.677 0.031 
   1 No 0.652 0.075 0.630 0.090 0.648 0.085 0.683 0.041 
    Yes 0.715 0.010 0.709 0.007 0.727 0.014 0.710 0.009 
  30% 0.5 No 0.599 0.110 0.668 0.051 0.564 0.128 0.667 0.051 
    Yes 0.648 0.092 0.668 0.017 0.671 0.014 0.665 0.037 
   1 No 0.808 0.014 0.799 0.017 0.812 0.011 0.807 0.019 
    Yes 0.836 0.011 0.843 0.010 0.843 0.010 0.847 0.010 

8 Uniform 15% 0.5 No 0.593 0.121 0.543 0.155 0.645 0.115 0.626 0.115 
    Yes 0.480 0.120 0.668 0.087 0.763 0.027 0.770 0.020 
   1 No 0.742 0.017 0.731 0.024 0.794 0.019 0.807 0.011 
    Yes 0.701 0.070 0.775 0.028 0.850 0.009 0.855 0.008 
  30% 0.5 No 0.586 0.136 0.598 0.130 0.715 0.066 0.705 0.050 
    Yes 0.601 0.133 0.640 0.144 0.785 0.034 0.795 0.036 
   1 No 0.817 0.019 0.825 0.013 0.861 0.009 0.862 0.007 
    Yes 0.840 0.035 0.866 0.011 0.900 0.008 0.896 0.006 
 Non-uniform 15% 0.5 No 0.531 0.124 0.587 0.109 0.523 0.137 0.629 0.082 
    Yes 0.519 0.140 0.680 0.019 0.701 0.042 0.720 0.018 
   1 No 0.620 0.100 0.645 0.104 0.702 0.086 0.730 0.015 
    Yes 0.711 0.007 0.711 0.008 0.769 0.026 0.772 0.033 
  30% 0.5 No 0.619 0.100 0.583 0.134 0.597 0.141 0.645 0.094 
    Yes 0.615 0.129 0.665 0.026 0.635 0.128 0.665 0.029 
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   1 No 0.805 0.010 0.805 0.016 0.840 0.007 0.836 0.011 
    Yes 0.834 0.013 0.839 0.008 0.868 0.009 0.873 0.007 
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Table A.7. Average RMSE of Each Simulation Condition 

     NoCov Cov 

OR DIFtype DIFnum DIF Impact 
MLE Bayesian MLE Bayesian 

M SD M SD M SD M SD 
2 Uniform 15% 0.5 No 0.256 0.003 0.248 0.003 0.258 0.003 0.249 0.005 
    Yes 0.331 0.027 0.269 0.015 0.284 0.017 0.249 0.004 
   1 No 0.271 0.013 0.249 0.004 0.263 0.006 0.248 0.004 
    Yes 0.303 0.023 0.255 0.014 0.265 0.010 0.243 0.005 
  30% 0.5 No 0.265 0.008 0.248 0.004 0.261 0.007 0.248 0.004 
    Yes 0.332 0.031 0.268 0.016 0.296 0.026 0.253 0.008 
   1 No 0.256 0.005 0.246 0.003 0.258 0.005 0.247 0.003 
    Yes 0.249 0.003 0.240 0.005 0.248 0.003 0.240 0.006 
 Non-uniform 15% 0.5 No 0.260 0.004 0.250 0.003 0.260 0.004 0.251 0.003 
    Yes 0.313 0.011 0.275 0.014 0.314 0.020 0.264 0.011 
   1 No 0.264 0.003 0.257 0.003 0.264 0.003 0.255 0.003 
    Yes 0.257 0.003 0.249 0.002 0.257 0.003 0.249 0.003 
  30% 0.5 No 0.263 0.004 0.253 0.003 0.265 0.005 0.254 0.003 
    Yes 0.267 0.008 0.253 0.004 0.265 0.008 0.253 0.004 
   1 No 0.267 0.001 0.261 0.003 0.267 0.001 0.261 0.003 
    Yes 0.261 0.002 0.256 0.005 0.262 0.002 0.257 0.001 

8 Uniform 15% 0.5 No 0.260 0.003 0.249 0.004 0.256 0.003 0.248 0.003 
    Yes 0.341 0.029 0.265 0.011 0.254 0.004 0.245 0.002 
   1 No 0.270 0.010 0.249 0.004 0.255 0.002 0.247 0.004 
    Yes 0.314 0.031 0.254 0.009 0.250 0.002 0.240 0.004 
  30% 0.5 No 0.260 0.007 0.249 0.003 0.256 0.005 0.249 0.002 
    Yes 0.324 0.034 0.265 0.015 0.251 0.002 0.242 0.006 
   1 No 0.260 0.008 0.248 0.004 0.257 0.003 0.249 0.004 
    Yes 0.260 0.010 0.241 0.003 0.249 0.002 0.241 0.005 
 Non-uniform 15% 0.5 No 0.263 0.006 0.254 0.004 0.265 0.006 0.253 0.005 
    Yes 0.335 0.019 0.263 0.010 0.262 0.011 0.245 0.007 
   1 No 0.265 0.002 0.256 0.004 0.263 0.003 0.254 0.003 
    Yes 0.255 0.002 0.247 0.003 0.256 0.003 0.247 0.003 
  30% 0.5 No 0.265 0.004 0.254 0.003 0.262 0.003 0.254 0.003 
    Yes 0.267 0.006 0.252 0.005 0.271 0.009 0.253 0.005 
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   1 No 0.266 0.002 0.259 0.003 0.264 0.002 0.259 0.004 
    Yes 0.266 0.002 0.256 0.005 0.263 0.002 0.255 0.003 
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Table A.8. Average Power of Each Simulation Condition 

     NoCov Cov 

OR DIFtype DIFnum DIF Impact 
MLE Bayesian MLE Bayesian 

M SD M SD M SD M SD 
2 Uniform 15% 0.5 No 0.632 0.062 0.666 0.122 0.720 0.117 0.734 0.057 
    Yes 0.649 0.058 0.677 0.088 0.723 0.119 0.735 0.084 
   1 No 0.635 0.071 0.702 0.088 0.759 0.102 0.762 0.059 
    Yes 0.647 0.088 0.694 0.081 0.797 0.069 0.806 0.101 
  30% 0.5 No 0.664 0.093 0.699 0.081 0.727 0.097 0.742 0.117 
    Yes 0.678 0.098 0.740 0.115 0.756 0.097 0.804 0.083 
   1 No 0.672 0.097 0.731 0.097 0.788 0.083 0.833 0.061 
    Yes 0.695 0.081 0.782 0.106 0.829 0.045 0.898 0.055 
 Non-uniform 15% 0.5 No 0.646 0.055 0.708 0.081 0.653 0.093 0.769 0.119 
    Yes 0.653 0.077 0.699 0.116 0.653 0.123 0.778 0.105 
   1 No 0.643 0.090 0.700 0.098 0.760 0.138 0.800 0.086 
    Yes 0.665 0.098 0.735 0.150 0.803 0.041 0.859 0.048 
  30% 0.5 No 0.677 0.043 0.745 0.118 0.825 0.091 0.870 0.116 
    Yes 0.710 0.081 0.792 0.053 0.841 0.088 0.893 0.055 
   1 No 0.688 0.055 0.772 0.072 0.856 0.098 0.910 0.104 
    Yes 0.714 0.048 0.828 0.071 0.734 0.136 0.943 0.081 

8 Uniform 15% 0.5 No 0.642 0.090 0.664 0.098 0.748 0.095 0.797 0.120 
    Yes 0.643 0.111 0.671 0.093 0.757 0.079 0.811 0.062 
   1 No 0.665 0.093 0.680 0.071 0.778 0.055 0.811 0.045 
    Yes 0.678 0.119 0.698 0.081 0.806 0.117 0.864 0.069 
  30% 0.5 No 0.689 0.047 0.713 0.097 0.826 0.054 0.900 0.044 
    Yes 0.738 0.111 0.759 0.055 0.847 0.055 0.912 0.033 
   1 No 0.742 0.037 0.810 0.092 0.857 0.048 0.920 0.027 
    Yes 0.790 0.093 0.831 0.119 0.881 0.111 0.964 0.048 
 Non-uniform 15% 0.5 No 0.645 0.105 0.687 0.081 0.790 0.105 0.818 0.079 
    Yes 0.663 0.056 0.716 0.070 0.803 0.081 0.825 0.105 
   1 No 0.671 0.039 0.721 0.055 0.792 0.055 0.889 0.076 
    Yes 0.685 0.028 0.739 0.044 0.818 0.071 0.911 0.117 
  30% 0.5 No 0.707 0.071 0.757 0.080 0.841 0.044 0.926 0.099 
    Yes 0.768 0.121 0.866 0.075 0.907 0.055 0.935 0.070 



 116 

   1 No 0.813 0.024 0.855 0.046 0.896 0.069 0.955 0.058 
    Yes 0.834 0.046 0.921 0.037 0.935 0.056 0.972 0.034 
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Table A.9. Average Correct Non-DIF Decision of Each Simulation Condition 

     NoCov Cov 

OR DIFtype DIFnum DIF Impact 
MLE Bayesian MLE Bayesian 

M SD M SD M SD M SD 
2 Uniform 15% 0.5 No 0.828 0.028 0.849 0.037 0.854 0.033 0.890 0.034 
    Yes 0.840 0.037 0.855 0.042 0.866 0.026 0.896 0.027 
   1 No 0.830 0.032 0.848 0.020 0.857 0.023 0.894 0.024 
    Yes 0.852 0.028 0.864 0.024 0.872 0.033 0.902 0.034 
  30% 0.5 No 0.854 0.033 0.869 0.024 0.870 0.031 0.896 0.032 
    Yes 0.864 0.023 0.880 0.024 0.882 0.025 0.904 0.026 
   1 No 0.856 0.033 0.874 0.023 0.877 0.029 0.900 0.030 
    Yes 0.868 0.035 0.882 0.020 0.882 0.033 0.906 0.034 
 Non-uniform 15% 0.5 No 0.820 0.028 0.835 0.029 0.840 0.040 0.882 0.041 
    Yes 0.832 0.038 0.850 0.024 0.868 0.035 0.729 0.036 
   1 No 0.826 0.021 0.842 0.027 0.848 0.024 0.892 0.025 
    Yes 0.842 0.024 0.856 0.024 0.864 0.036 0.899 0.037 
  30% 0.5 No 0.850 0.040 0.868 0.031 0.866 0.037 0.890 0.038 
    Yes 0.859 0.019 0.874 0.040 0.876 0.019 0.900 0.020 
   1 No 0.854 0.026 0.870 0.027 0.872 0.025 0.900 0.026 
    Yes 0.862 0.026 0.876 0.027 0.880 0.026 0.903 0.027 

8 Uniform 15% 0.5 No 0.846 0.025 0.868 0.030 0.872 0.025 0.896 0.026 
    Yes 0.855 0.038 0.873 0.031 0.876 0.021 0.906 0.022 
   1 No 0.848 0.038 0.872 0.033 0.876 0.026 0.900 0.027 
    Yes 0.865 0.040 0.880 0.024 0.884 0.025 0.906 0.026 
  30% 0.5 No 0.868 0.028 0.874 0.028 0.878 0.024 0.900 0.025 
    Yes 0.872 0.030 0.882 0.033 0.884 0.019 0.908 0.020 
   1 No 0.862 0.025 0.876 0.033 0.880 0.023 0.905 0.028 
    Yes 0.870 0.029 0.884 0.034 0.886 0.029 0.910 0.030 
 Non-uniform 15% 0.5 No 0.834 0.027 0.858 0.024 0.866 0.021 0.890 0.022 
    Yes 0.846 0.027 0.862 0.020 0.873 0.026 0.900 0.027 
   1 No 0.838 0.019 0.866 0.020 0.868 0.027 0.898 0.025 
    Yes 0.852 0.020 0.869 0.027 0.872 0.027 0.902 0.028 
  30% 0.5 No 0.858 0.019 0.872 0.020 0.875 0.020 0.898 0.027 
    Yes 0.866 0.021 0.879 0.020 0.880 0.019 0.905 0.020 
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   1 No 0.854 0.023 0.873 0.024 0.878 0.021 0.900 0.021 
    Yes 0.860 0.017 0.881 0.022 0.884 0.101 0.906 0.020 
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Table A.10. Average Correct Decision of Each Simulation Condition 

     NoCov Cov 

OR DIFtype DIFnum DIF Impact 
MLE Bayesian MLE Bayesian 

M SD M SD M SD M SD 
2 Uniform 15% 0.5 No 0.799 0.029 0.822 0.037 0.834 0.031 0.867 0.033 
    Yes 0.811 0.035 0.828 0.034 0.845 0.033 0.872 0.032 
   1 No 0.801 0.024 0.826 0.026 0.842 0.034 0.874 0.029 
    Yes 0.821 0.034 0.839 0.034 0.861 0.033 0.888 0.030 
  30% 0.5 No 0.826 0.040 0.844 0.027 0.849 0.029 0.873 0.030 
    Yes 0.836 0.025 0.859 0.021 0.863 0.029 0.889 0.020 
   1 No 0.828 0.031 0.853 0.032 0.864 0.027 0.890 0.022 
    Yes 0.842 0.040 0.867 0.022 0.874 0.038 0.905 0.032 
 Non-uniform 15% 0.5 No 0.794 0.023 0.816 0.033 0.812 0.039 0.865 0.027 
    Yes 0.805 0.035 0.830 0.028 0.836 0.034 0.736 0.042 
   1 No 0.799 0.025 0.823 0.024 0.835 0.034 0.878 0.029 
    Yes 0.815 0.028 0.838 0.020 0.855 0.054 0.893 0.029 
  30% 0.5 No 0.824 0.039 0.850 0.028 0.860 0.036 0.887 0.030 
    Yes 0.837 0.025 0.862 0.033 0.871 0.028 0.899 0.040 
   1 No 0.829 0.030 0.855 0.027 0.870 0.043 0.902 0.052 
    Yes 0.840 0.029 0.869 0.043 0.858 0.036 0.909 0.053 

8 Uniform 15% 0.5 No 0.815 0.028 0.837 0.033 0.853 0.025 0.881 0.032 
    Yes 0.823 0.038 0.843 0.026 0.858 0.034 0.892 0.031 
   1 No 0.821 0.027 0.843 0.044 0.861 0.033 0.887 0.027 
    Yes 0.837 0.035 0.853 0.024 0.872 0.027 0.900 0.046 
  30% 0.5 No 0.841 0.030 0.850 0.029 0.870 0.021 0.900 0.028 
    Yes 0.852 0.025 0.864 0.032 0.878 0.024 0.909 0.039 
   1 No 0.844 0.028 0.866 0.038 0.877 0.030 0.907 0.036 
    Yes 0.858 0.033 0.876 0.038 0.885 0.031 0.918 0.037 
 Non-uniform 15% 0.5 No 0.806 0.025 0.832 0.029 0.855 0.030 0.879 0.037 
    Yes 0.819 0.026 0.838 0.022 0.863 0.037 0.889 0.042 
   1 No 0.813 0.025 0.841 0.027 0.857 0.034 0.897 0.034 
    Yes 0.827 0.027 0.846 0.026 0.864 0.035 0.903 0.049 
  30% 0.5 No 0.835 0.028 0.852 0.027 0.870 0.027 0.902 0.034 
    Yes 0.851 0.027 0.877 0.027 0.884 0.036 0.910 0.020 
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   1 No 0.848 0.035 0.870 0.029 0.881 0.032 0.908 0.035 
    Yes 0.856 0.033 0.887 0.039 0.892 0.043 0.916 0.037 
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APPENDIX B 

RESPONSE DATA GENERATION IN SAS 

/* F1: OR */ 
%let Lx=372; 
%let Hx=492; 
 
**set macro loop; 
%macro datasim; 
/*read in 2PL a and b parameters */ 
 
proc iml; 
 
x={0.83962 1.16344 1.42861 0.51953 0.71311 1.14013 0.82456 0.78848 1.16716 
1.33606 0.44606 0.67009 0.99443 0.68752 1.35674 0.66216 0.45865 1.78664 
2.03085 1.73668 1.57925 0.54061 1.97391 0.65948 0.79420 1.18033 1.63773 
1.07664 1.05928 1.36463 1.04468 2.78423 0.64483 1.29112 0.92831 0.96820 
1.05021 0.83922 1.16335 1.24204 0.91476 -1.77352 -0.51495 1.40075 1.08319 
0.86375 1.54594 -0.27873 1.55580 -0.36707 0.89879 -0.00758 -0.76079 1.12282 -
1.32595 0.26900 0.56473 0.25081 -0.34929 -0.21656 -0.58608 -0.87356 -1.75013  
-0.52190 0.14161 0.48799 -1.04382 -0.83242 -1.56983 -0.94872 -0.51035 0.47500 
0.81623 1.20175 -0.67405 -1.22326 -0.29884 0.20706 0.57961 1.02461}; 
create item_para1 from x[colname={"a1" "a2" "a3" "a4" "a5" "a6" "a7" "a8" 
"a9" "a10" "a11" "a12" "a13" "a14" "a15" "a16" "a17" "a18" "a19" "a20" "a21" 
"a22" "a23" "a24" "a25" "a26" "a27" "a28" "a29" "a30" "a31" "a32" "a33" "a34" 
"a35" "a36" "a37" "a38" "a39" "a40" "b1" "b2" "b3" "b4" "b5" "b6" "b7" "b8" 
"b9" "b10" "b11" "b12" "b13" "b14" "b15" "b16" "b17" "b18" "b19" "b20" "b21" 
"b22" "b23" "b24" "b25" "b26" "b27" "b28" "b29" "b30" "b31" "b32" "b33" "b34" 
"b35" "b36" "b37" "b38" "b39" "b40"}]; 
append from x; 
close item_para1; 
 
y={0.83962 1.16344 1.42861 0.51953 0.71311 1.14013 0.82456 0.78848 1.16716 
1.33606 0.44606 0.67009 0.99443 0.68752 1.35674 0.66216 0.45865 1.78664 
2.03085 1.73668 1.57925 0.54061 1.97391 0.65948 0.79420 1.18033 1.63773 
1.07664 1.05928 1.36463 1.04468 2.78423 0.64483 1.29112 0.92831 0.96820 
1.05021 0.83922 1.16335 1.24204 0.91476 -1.77352 -0.51495 1.40075 1.08319 
0.86375 1.54594 -0.27873 1.55580 -0.36707 0.89879 -0.00758 -0.76079 1.12282 -
1.32595 0.26900 0.56473 0.25081 -0.34929 -0.21656 -0.58608 -0.87356 -1.75013  
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-0.52190 0.14161 0.48799 -1.04382 -0.83242 -1.56983 -0.94872 -0.51035 0.47500 
0.81623 1.20175 -0.17405 -0.72326 0.20116 0.70706 1.07961 1.52461}; 
create item_para2 from y[colname={"a1" "a2" "a3" "a4" "a5" "a6" "a7" "a8" 
"a9" "a10" "a11" "a12" "a13" "a14" "a15" "a16" "a17" "a18" "a19" "a20" "a21" 
"a22" "a23" "a24" "a25" "a26" "a27" "a28" "a29" "a30" "a31" "a32" "a33" "a34" 
"a35" "a36" "a37" "a38" "a39" "a40" "b1" "b2" "b3" "b4" "b5" "b6" "b7" "b8" 
"b9" "b10" "b11" "b12" "b13" "b14" "b15" "b16" "b17" "b18" "b19" "b20" "b21" 
"b22" "b23" "b24" "b25" "b26" "b27" "b28" "b29" "b30" "b31" "b32" "b33" "b34" 
"b35" "b36" "b37" "b38" "b39" "b40"}]; 
append from y; 
close item_para2; quit; 
 
%do ii=1 %to 2; 
%put "Starting Loop &ii"; 
%do f1=1 %to 2; 
 %if &f1=1 %then %let x=&Lx; 
 %if &f1=2 %then %let x=&Hx; 
 
%let OR=%eval(&f1); 
%let seed=%eval(10000*&f1+1000*&ii); 
 
/* generate response data */ 
 
data respU1LC1; 
set item_para1; 
 
array resp(*) resp1-resp40; 
array a(*) a1-a40; 
array b(*) b1-b40; 
array p(*) p1-p40;  
array u(*) u1-u40;  
array z(*) z1-z40; 
 
     call STREAMINIT(&seed);                                               
       do j = 1 to 1400;  
          theta = rannor(0); *theta for ref group; 
    do i = 1 to 40; 
               z(i) = 1.702*a(i)*(theta-b(i)); *d=1.702; 
      p(i) = exp(z(i))/(1+exp(z(i))); 
      u(i) = RAND("Uniform"); 
         if u(i)<=p(i) then resp(i)=1; else resp(i)=0;    
            end;  
   ExpScore_sim=sum(of p(*)); 
   output; 
       end; 
run; 
 
data respU1LC2; 
set item_para2; 
 
array resp(*) resp1-resp40; 
array a(*) a1-a40; 
array b(*) b1-b40; 
array p(*) p1-p40; 
array u(*) u1-u40; 
array z(*) z1-z40; 
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     call STREAMINIT(&seed);                                               
       do j = 1 to 600;  
          theta = rannor(0); *theta for focal group; 
    do i = 1 to 40; 
               z(i) = 1.702*a(i)*(theta-b(i)); *d=1.702; 
      p(i) = exp(z(i))/(1+exp(z(i))); 
      u(i) = RAND("Uniform"); 
         if u(i)<=p(i) then resp(i)=1; else resp(i)=0;    
            end;  
   ExpScore_sim=sum(of p(*)); 
   output; 
       end; 
run; 
 
/* merge to a single dataset */ 
data respU1LC1_new; 
set respU1LC1 (keep=resp1-resp40 theta ExpScore_sim);LC=0; run; 
 
data respU1LC2_new; 
set respU1LC2 (keep=resp1-resp40 theta ExpScore_sim);LC=1; run; 
 
data respU1; 
merge respU1LC1_new respU1LC2_new; 
by LC; 
id=_n_; 
random=ranuni(27407349); 
run; 
 
proc sort data=respU1; 
by LC random; 
run; 
 
/* assign manifest membership */ 
data respU1_cov; 
set respU1; 
id_ran=_n_; 
if id_ran le 400+&x then do; 
 cov=0; end; 
if 400+&x < id_ran <= 1400 then do; 
 cov=1; end; 
if 1400 < id_ran <= 2000-&x then do; 
 cov=0; end; 
if id_ran > 2000-&x then do; 
    cov=1; end; 
drop random id_ran; 
run; 
proc sort data=respU1_cov; 
by id; 
run; 
 
data _null_; 
set respU1_cov; 
file "&dir\resp.dat" DLM=','; /* data for Mplus */ 
put resp1-resp40 theta LC id cov; 
run; 
 
x 'mplus F:\code\mle_Cov.inp mplus F:\code\mle_Cov.out'; 
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 data class; /*read in LC membership*/ 
 infile "&dir\class.dat"; 
 input y1-y40 COV F C_F CPROB1 CPROB2 C; 
 id=_n_; 
 if c=1 then LC_est=0; 
 if c=2 then LC_est=1; 
 OR=&OR; 
 rep=&ii; 
 run; 
 
%include 'F:\code\dif.sas';run; /*compute DIF*/ 
 
data para; /*read in para*/ 
infile "&dir\para.dat"; 
input LC1Lamda1-LC1Lamda40 LC2Lamda1-LC2Lamda40 LC1tau1-LC1tau40 LC2tau1-
LC2tau40 C1Inter C1Cov DIFb1-DIFb40 DIFa1-DIFa40 LC1LamdaSE1-LC1LamdaSE40 
LC2LamdaSE1-LC2LamdaSE40 LC1tauSE1-LC1tauSE40 LC2tauSE1-LC2tauSE40 C1InterSE 
C1CovSE DIFbSE1-DIFbSE40 DIFaSE1-DIFaSE40 H0 H0Scaling NumOfPara AIC BIC ABIC 
Entropy CondNum; 
OR=&OR; 
rep=&ii; 
diftype=0;difnum=0;difeffect=0;impact=0;cov=1;est=0; 
run; 
 
%include 'F:\code\RMSE.sas';run; /*compute RMSE and Acc*/ 
 
  
data final; 
merge para RMSE power2 CR2; 
ccnum=powernum+crnum; 
type1=1-CR; type2=1-power; cc=ccnum/40; 
run; 
 
proc append base=Cov data=final; 
run; 
 
 %put "Ending Loop &ii"; 
 %end; 
%end; 
%mend; 
 
data; options noxwait;  
%datasim;run; 
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APPENDIX C 

MLE IN MPLUS 

TITLE: Mixture 2PL without cov for no impact groups 
DATA: FILE IS resp.dat; 
VARIABLE: NAMES ARE y1-y40 theta LC id cov; 
USEVARIABLES ARE y1-y40; 
CATEGORICAL = y1-y40; 
CLASSES = c(2); 
ANALYSIS: TYPE = MIXTURE; 
STARTS = 0; 
ESTIMATOR = MLR; 
ALGORITHM=INTEGRATION; 
MODEL:  
%OVERALL% 
f by y1-y40; 
f@1; 
%c#1% !For Latent Group 1 
f BY  
y1*0.83962 (a11) 
y2*1.16344 (a12) 
y3*1.42861 (a13) 
y4*0.51953 (a14) 
y5*0.71311 (a15) 
y6*1.14013 (a16) 
y7*0.82456 (a17) 
y8*0.78848 (a18) 
y9*1.16716 (a19) 
y10*1.33606 (a110) 
y11*0.44606 (a111) 
y12*0.67009 (a112) 
y13*0.99443 (a113) 
y14*0.68752 (a114) 
y15*1.35674 (a115) 
y16*0.66216 (a116) 
y17*0.45865 (a117) 
y18*1.78664 (a118) 
y19*2.03085 (a119) 
y20*1.73668 (a120) 
y21*1.57925 (a121) 
y22*0.54061 (a122) 
y23*1.97391 (a123) 
y24*0.65948 (a124) 
y25*0.7942 (a125) 
y26*1.18033 (a126) 
y27*1.63773 (a127) 
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y28*1.07664 (a128) 
y29*1.05928 (a129) 
y30*1.36463 (a130) 
y31*1.04468 (a131) 
y32*2.78423 (a132) 
y33*0.64483 (a133) 
y34*1.29112 (a134) 
y35*0.92831 (a135) 
y36*0.9682 (a136) 
y37*1.05021 (a137) 
y38*0.83922 (a138) 
y39*1.16335 (a139) 
y40*1.24204 (a140); 
 
[y1$1*0.76805] (b11); 
[y2$1*-2.06338] (b12); 
[y3$1*-0.73567] (b13); 
[y4$1*0.72773] (b14); 
[y5$1*0.77243] (b15); 
[y6$1*0.98478] (b16); 
[y7$1*1.27472] (b17); 
[y8$1*-0.21978] (b18); 
[y9$1*1.81587] (b19); 
[y10$1*-0.49043] (b110); 
[y11$1*0.40092] (b111); 
[y12$1*-0.00508] (b112); 
[y13$1*-0.75655] (b113); 
[y14$1*0.77197] (b114); 
[y15$1*-1.79896] (b115); 
[y16$1*0.17812] (b116); 
[y17$1*0.25901] (b117); 
[y18$1*0.4481] (b118); 
[y19$1*-0.70936] (b119); 
[y20$1*-0.37609] (b120); 
[y21$1*-0.92557] (b121); 
[y22$1*-0.47226] (b122); 
[y23$1*-3.4546] (b123); 
[y24$1*-0.34418] (b124); 
[y25$1*0.11247] (b125); 
[y26$1*0.57599] (b126); 
[y27$1*-1.7095] (b127); 
[y28$1*-0.89621] (b128); 
[y29$1*-1.66289] (b129); 
[y30$1*-1.29466] (b130); 
[y31$1*-0.53315] (b131); 
[y32$1*1.32251] (b132); 
[y33$1*0.52633] (b133); 
[y34$1*1.55161] (b134); 
[y35$1*-0.62573] (b135); 
[y36$1*-1.18436] (b136); 
[y37$1*-0.31385] (b137); 
[y38$1*0.17377] (b138); 
[y39$1*0.67429] (b139); 
[y40$1*1.27261] (b140); 
[f@0]; ! fix factor mean to zero  
 
%c#2% !For Latent Group 2 
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f BY  
y1*0.83962 (a21) 
y2*1.16344 (a22) 
y3*1.42861 (a23) 
y4*0.51953 (a24) 
y5*0.71311 (a25) 
y6*1.14013 (a26) 
y7*0.82456 (a27) 
y8*0.78848 (a28) 
y9*1.16716 (a29) 
y10*1.33606 (a210) 
y11*0.44606 (a211) 
y12*0.67009 (a212) 
y13*0.99443 (a213) 
y14*0.68752 (a214) 
y15*1.35674 (a215) 
y16*0.66216 (a216) 
y17*0.45865 (a217) 
y18*1.78664 (a218) 
y19*2.03085 (a219) 
y20*1.73668 (a220) 
y21*1.57925 (a221) 
y22*0.54061 (a222) 
y23*1.97391 (a223) 
y24*0.65948 (a224) 
y25*0.7942 (a225) 
y26*1.18033 (a226) 
y27*1.63773 (a227) 
y28*1.07664 (a228) 
y29*1.05928 (a229) 
y30*1.36463 (a230) 
y31*1.04468 (a231) 
y32*2.78423 (a232) 
y33*0.64483 (a233) 
y34*1.29112 (a234) 
y35*0.92831 (a235) 
y36*0.9682 (a236) 
y37*1.05021 (a237) 
y38*0.83922 (a238) 
y39*1.16335 (a239) 
y40*1.24204 (a240); 
 
[y1$1*0.76805] (b21); 
[y2$1*-2.06338] (b22); 
[y3$1*-0.73567] (b23); 
[y4$1*0.72773] (b24); 
[y5$1*0.77243] (b25); 
[y6$1*0.98478] (b26); 
[y7$1*1.27472] (b27); 
[y8$1*-0.21978] (b28); 
[y9$1*1.81587] (b29); 
[y10$1*-0.49043] (b210); 
[y11$1*0.40092] (b211); 
[y12$1*-0.00508] (b212); 
[y13$1*-0.75655] (b213); 
[y14$1*0.77197] (b214); 
[y15$1*-1.79896] (b215); 
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[y16$1*0.17812] (b216); 
[y17$1*0.25901] (b217); 
[y18$1*0.4481] (b218); 
[y19$1*-0.70936] (b219); 
[y20$1*-0.37609] (b220); 
[y21$1*-0.92557] (b221); 
[y22$1*-0.47226] (b222); 
[y23$1*-3.4546] (b223); 
[y24$1*-0.34418] (b224); 
[y25$1*0.11247] (b225); 
[y26$1*0.57599] (b226); 
[y27$1*-1.7095] (b227); 
[y28$1*-0.89621] (b228); 
[y29$1*-1.66289] (b229); 
[y30$1*-1.29466] (b230); 
[y31$1*-0.53315] (b231); 
[y32$1*1.32251] (b232); 
[y33$1*0.52633] (b233); 
[y34$1*1.55161] (b234); 
[y35$1*-0.16158] (b235); 
[y36$1*-0.70026] (b236); 
[y37$1*0.21126] (b237); 
[y38$1*0.59338] (b238); 
[y39$1*1.25597] (b239); 
[y40$1*1.89363] (b240); 
[f@0]; ! fix factor mean to zero  
 
OUTPUT: tech1 tech8 tech10; 
SAVEDATA: FILE IS class.dat; RESULTS ARE para.dat; 
SAVE=CPROBABILITIES fscores; 
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APPENDIX D 

BAYESIAN ESTIMATION IN MPLUS 

   TITLE: Mixture 2PL without cov for non-impact groups 
  DATA: FILE IS resp.dat; 
  VARIABLE: NAMES ARE y1-y40 theta LC id cov; 
  USEVARIABLES ARE y1-y40; 
  CATEGORICAL = y1-y40; 
  CLASSES = c(2); 
  ANALYSIS: TYPE = MIXTURE; 
  ESTIMATOR = BAYES; 
  CHAINS=2; 
  STARTS=0; ! do ML from assigned starts 
  STVALUES=ML; ! start ML; ! start Bayes from the best ML solution 
  POINT=MODE; 
  BITERATIONS = 20000; 
  BCONVERGENCE=.05 
  THIN=50; 
  PROCESSOR = 2; 
  MODEL: 
  %OVERALL% 
  f by y1-y40; 
  f@1; 
  %c#1% !For Latent Group 1 
  f BY 
  y1*0.83962 (a1) 
  y2*1.16344 (a2) 
  y3*1.42861 (a3) 
  y4*0.51953 (a4) 
  y5*0.71311 (a5) 
  y6*1.14013 (a6) 
  y7*0.82456 (a7) 
  y8*0.78848 (a8) 
  y9*1.16716 (a9) 
  y10*1.33606 (a10) 
  y11*0.44606 (a11) 
  y12*0.67009 (a12) 
  y13*0.99443 (a13) 
  y14*0.68752 (a14) 
  y15*1.35674 (a15) 
  y16*0.66216 (a16) 
  y17*0.45865 (a17) 
  y18*1.78664 (a18) 
  y19*2.03085 (a19) 
  y20*1.73668 (a20) 
  y21*1.57925 (a21) 
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  y22*0.54061 (a22) 
  y23*1.97391 (a23) 
  y24*0.65948 (a24) 
  y25*0.7942 (a25) 
  y26*1.18033 (a26) 
  y27*1.63773 (a27) 
  y28*1.07664 (a28) 
  y29*1.05928 (a29) 
  y30*1.36463 (a30) 
  y31*1.04468 (a31) 
  y32*2.78423 (a32) 
  y33*0.64483 (a33) 
  y34*1.29112 (a34) 
  y35*0.92831 (a35) 
  y36*0.9682 (a36) 
  y37*1.05021 (a37) 
  y38*0.83922 (a38) 
  y39*1.16335 (a39) 
  y40*1.24204 (a40); 
 
  [y1$1*0.76805] (b1); 
  [y2$1*-2.06338] (b2); 
  [y3$1*-0.73567] (b3); 
  [y4$1*0.72773] (b4); 
  [y5$1*0.77243] (b5); 
  [y6$1*0.98478] (b6); 
  [y7$1*1.27472] (b7); 
  [y8$1*-0.21978] (b8); 
  [y9$1*1.81587] (b9); 
  [y10$1*-0.49043] (b10); 
  [y11$1*0.40092] (b11); 
  [y12$1*-0.00508] (b12); 
  [y13$1*-0.75655] (b13); 
  [y14$1*0.77197] (b14); 
  [y15$1*-1.79896] (b15); 
  [y16$1*0.17812] (b16); 
  [y17$1*0.25901] (b17); 
  [y18$1*0.4481] (b18); 
  [y19$1*-0.70936] (b19); 
  [y20$1*-0.37609] (b20); 
  [y21$1*-0.92557] (b21); 
  [y22$1*-0.47226] (b22); 
  [y23$1*-3.4546] (b23); 
  [y24$1*-0.34418] (b24); 
  [y25$1*0.11247] (b25); 
  [y26$1*0.57599] (b26); 
  [y27$1*-1.7095] (b27); 
  [y28$1*-0.89621] (b28); 
  [y29$1*-1.66289] (b29); 
  [y30$1*-1.29466] (b30); 
  [y31$1*-0.53315] (b31); 
  [y32$1*1.32251] (b32); 
  [y33$1*0.52633] (b33); 
  [y34$1*1.55161] (b34); 
  [y35$1*-0.62573] (b35); 
  [y36$1*-1.18436] (b36); 
  [y37$1*-0.31385] (b37); 
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  [y38$1*0.17377] (b38); 
  [y39$1*0.67429] (b39); 
  [y40$1*1.27261] (b40); 
  [f@0]; ! fix factor mean to zero 
 
  %c#2% !For Latent Group 2 
  f BY 
  y1*0.83962 (c1) 
  y2*1.16344 (c2) 
  y3*1.42861 (c3) 
  y4*0.51953 (c4) 
  y5*0.71311 (c5) 
  y6*1.14013 (c6) 
  y7*0.82456 (c7) 
  y8*0.78848 (c8) 
  y9*1.16716 (c9) 
  y10*1.33606 (c10) 
  y11*0.44606 (c11) 
  y12*0.67009 (c12) 
  y13*0.99443 (c13) 
  y14*0.68752 (c14) 
  y15*1.35674 (c15) 
  y16*0.66216 (c16) 
  y17*0.45865 (c17) 
  y18*1.78664 (c18) 
  y19*2.03085 (c19) 
  y20*1.73668 (c20) 
  y21*1.57925 (c21) 
  y22*0.54061 (c22) 
  y23*1.97391 (c23) 
  y24*0.65948 (c24) 
  y25*0.7942 (c25) 
  y26*1.18033 (c26) 
  y27*1.63773 (c27) 
  y28*1.07664 (c28) 
  y29*1.05928 (c29) 
  y30*1.36463 (c30) 
  y31*1.04468 (c31) 
  y32*2.78423 (c32) 
  y33*0.64483 (c33) 
  y34*1.29112 (c34) 
  y35*0.92831 (c35) 
  y36*0.9682 (c36) 
  y37*1.05021 (c37) 
  y38*0.83922 (c38) 
  y39*1.16335 (c39) 
  y40*1.24204 (c40); 
 
  [y1$1*0.76805] (d1); 
  [y2$1*-2.06338] (d2); 
  [y3$1*-0.73567] (d3); 
  [y4$1*0.72773] (d4); 
  [y5$1*0.77243] (d5); 
  [y6$1*0.98478] (d6); 
  [y7$1*1.27472] (d7); 
  [y8$1*-0.21978] (d8); 
  [y9$1*1.81587] (d9); 
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  [y10$1*-0.49043] (d10); 
  [y11$1*0.40092] (d11); 
  [y12$1*-0.00508] (d12); 
  [y13$1*-0.75655] (d13); 
  [y14$1*0.77197] (d14); 
  [y15$1*-1.79896] (d15); 
  [y16$1*0.17812] (d16); 
  [y17$1*0.25901] (d17); 
  [y18$1*0.4481] (d18); 
  [y19$1*-0.70936] (d19); 
  [y20$1*-0.37609] (d20); 
  [y21$1*-0.92557] (d21); 
  [y22$1*-0.47226] (d22); 
  [y23$1*-3.4546] (d23); 
  [y24$1*-0.34418] (d24); 
  [y25$1*0.11247] (d25); 
  [y26$1*0.57599] (d26); 
  [y27$1*-1.7095] (d27); 
  [y28$1*-0.89621] (d28); 
  [y29$1*-1.66289] (d29); 
  [y30$1*-1.29466] (d30); 
  [y31$1*-0.53315] (d31); 
  [y32$1*1.32251] (d32); 
  [y33$1*0.52633] (d33); 
  [y34$1*1.55161] (d34); 
  [y35$1*-0.16158] (d35); 
  [y36$1*-0.70026] (d36); 
  [y37$1*0.21126] (d37); 
  [y38$1*0.59338] (d38); 
  [y39$1*1.25597] (d39); 
  [y40$1*1.89363] (d40); 
  [f@0]; ! fix factor mean to zero 
  MODEL PRIORS: 
  a1-a40 ~ N(0,1); 
  b1-b40 ~ N(0,1); 
  c1-c40 ~ N(0,1); 
  d1-d40 ~ N(0,1); 
  OUTPUT: tech8; 
  PLOT: TYPE=PLOT2; 
  SAVEDATA: FILE IS class_bayes.dat; BPARAMETERS=para_bayes.dat; 
  SAVE=fscores(100); 
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