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THE p MESON SPECTRUM AND K7 SCATTERING WITH PARTIAL
WAVE MIXING IN LATTICE QCD

Andrew D. Hanlon, PhD

University of Pittsburgh, 2017

The finite-volume QCD spectrum in the I = 1, .S = 0, parity-odd, G-parity-even channels for
zero total momentum is studied using lattice QCD, and the K-matrix for K7 scattering is
investigated to determine the mass and decay width of the K*(892) from first principles. The
recently developed stochastic LapH method has proven to be a valuable tool in lattice QCD
calculations when all-to-all quark propagators are needed, as is the case for isoscalar mesons
and two-hadron operators. This method is especially important for large volumes where
other methods do not scale well. These calculations were done with 412 gauge configurations
using clover-improved Wilson fermions on a large anisotropic 323 x 256 lattice with a pion
mass near 240 MeV. The stationary states determined to be single-particle dominated are
compared with the experimental resonances and are found to be in reasonable agreement.

Additionally, the initial development of tetraquark operators is described.
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1.0 INTRODUCTION

From the large number of hadrons discovered throughout the 1950s and into the 1960s, a
more fundamental understanding of these particles was needed. The first breakthrough in
understanding these hadrons came with the quark model, proposed independently by Gell-
Mann [1] and Zweig [2], that classified the lightest hadrons into SUp(3) flavor multiplets.
This organization led to the successful prediction for the 2~ baryon. Over the next decade,
proposals of an extra SU(3) degree of freedom for the quarks were made [3, 4]. Finally,
in 1973, this extra SU(3) symmetry was proposed as the gauge symmetry underlying the
strong interactions, and Quantum Chromodynamics (QCD) was born [5].

Since then, QCD has reproduced many experimental results at high energies using per-
turbative methods, which were made possible because QCD is asymptotically free [6, 7].
Furthermore, applications of chiral perturbation theory for describing certain low energy
hadron interactions have also been successful. From these successes, there is little doubt sur-
rounding the question of QCD being the correct theory for the strong interaction. However,
difficulties arise for QCD calculations in the medium energy range where the gauge coupling
as(p) is too large for perturbative QCD and excited hadrons begin to form.

The spectrum of QCD in this regime is rich and much of it is still poorly understood.
For instance, the Roper resonance lies below the lightest negative-parity nucleon, which
is in contradiction to predictions from a simple quark model [8]. The dire state of our
understanding of the nucleon spectrum can be seen in Figure 1.1. Furthermore, controversy
still surrounds the nature of the A(1405): it is the lightest excited spin-1/2 baryon despite
containing a strange quark and possessing odd parity [9]. It was suggested long ago that
the A(1405) may in fact be a NK molecular state [10, 11]. A recent lattice study also lends

support to the molecular nature of this resonance [12], but there is more work to be done
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Figure 1.1: The nucleon spectrum. A comparison is made between the experimentally

observed nucleon spectrum and the spectrum from a quark model [8]. Figure taken from

Ref. [9].

before this classification can be fully established. In the bosonic sector, mesons containing wu,
d, and s quarks can be qualitatively described by constituent quark models, except for the
light scalar mesons (i.e. JFY = 0F) [13]. This discrepancy is shown in Figure 1.2, which
shows a proposed resolution to this problem by using a qqqq (i.e. a tetraquark) model for
these states. Additionally, the discovery of the so-called XYZ mesons [14, 15] also exposes
a lack in the understanding of the QCD spectrum.

It is clear that a need for a theoretical understanding of the QCD spectrum from first
principles is crucial towards advancing our knowledge of the physics surrounding the strong

interaction. Lattice QCD [16] is a non-perturbative method that can help address some of
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A comparison of the mass orderings from a ¢g nonet vs. a ¢ggq nonet. (c¢) The experimental

spectrum of the light scalar mesons [9]. Figure taken from Ref. [13].

the issues raised above. Only recently has lattice QCD been able to extract the excited state
spectrum within reasonable error. Considerable progress has been made in lattice QCD due
to modern techniques and the continual increase of computational resources. This work
makes extensive use of the recently developed stochastic LapH method [17] for estimating
quark lines (i.e. Wick contractions) and variational methods [18, 19, 20] for extracting
stationary-state energies from a large temporal correlation matrix. This has allowed us to
extract a significant portion of the excited-state spectrum in finite volume. These calculations
should help to elucidate many of these puzzles in spectroscopy, like deciphering the true
nature of the controversial resonances, and offer insights into the physics of hadron formation
and confinement.

Furthermore, the inclusion of tetraquark operators could shed light on Jaffe’s inverted
spectrum and the XYZ mesons. Once these operators are used, we can observe how the
spectrum is affected. If new stationary states appear, then this would present strong evidence

for tetraquarks and the results could help drive experimental searches. If the spectrum seems



undisturbed by the presence of our tetraquark operators, then this would be evidence that
there may not be any low-lying tetraquarks.

Of course, the full picture requires an understanding of how the finite-volume spec-
trum can be related to our infinite world. This was addressed by Martin Liischer in the
1980s [21, 22], where the finite-volume effects of stable single particle states and scattering
states were determined. From this work and in later works by Liischer in Refs. [23, 24],
it was realized that the finite-volume corrections contained information on infinite-volume
scattering processes. This was very significant because the Maiani-Testa no-go theorem [25]
established that scattering information from Euclidean correlation functions was not possi-
ble. However, by working in a finite volume we get around this limitation.

In this work, we extracted the single- and two-particle finite-volume spectrum for the
I =1, 8 =0, parity-odd, G-parity-even channels at zero total momentum on a 323 x 256
lattice with m, ~ 240 MeV. To date, these results represent the most comprehensive survey
of the finite-volume spectrum for these channels. The use of the stochastic LapH method
has made this possible for such a large lattice and small pion mass. The single-hadron
dominated states extracted from each channel are compared to those of an earlier study
by the Hadron Spectrum Collaboration (HSC) [26], which used a much smaller 243 x 128
lattice with a much heavier pion mass 391 MeV and which neglected to use two-hadron
operators. Comparison with experiment is reasonably good, but some discrepancies are
seen. We found a single-hadron dominated state corresponding to either the p3(1690) or
the p3(1990), which suggests that one of these resonances may not be a quark-antiquark
excitation and instead is something more exotic. We also found a single-hadron dominated
state with no corresponding experimental resonance. This state can most likely be designated
as a spin-2 resonance. Its energy was found to be E ~ 3.66 myx = 1.814(59) GeV. A
similar state was also extracted from the HSC. We also could not reproduce all of the
experimentally excited p resonances below ~ 2GeV, which means at least one of these
excited resonances likely cannot be described as a quark-antiquark excitation. We also used
the recently developed strategies in Ref. [27] for including multiple partial waves and/or
decay channels in a K7 scattering analysis based on the formalism introduced by Liischer.

As a first effort toward the extraction of the K*(892) resonance parameters, we included



Il =0,1=1, and [ = 2 partial waves in our analysis while remaining below the inelastic
threshold.

The organization of this work is as follows: Chap. 2 introduces the basics of lattice QCD
and sets up the groundwork for our calculations. Chap. 3 introduces our approach to effi-
ciently constructing large sets of operators with the correct transformation properties so that
we excite as much of the low-lying spectrum as possible. The estimation of temporal cor-
relation functions from these operators using the stochastic LapH method [17] is described
in Chap. 4. The extension of these methods to tetraquarks is then made in Chap. 5. In
Chap. 6, the extraction of the finite-volume spectrum from a large temporal correlation
matrix is described. Then, Chap. 7 establishes the Liischer quantization condition and de-
scribes recently developed methods for the efficient application of the quantization condition.
Finally, Chap. 8 shows results obtained for: 1) the isovector, nonstrange, odd parity, even

G-parity bosonic spectra in finite-volume are shown; and 2) the resonance parameters of the

K*(892).



2.0 LATTICE QCD

Lattice QCD, first introduced by Ken Wilson in 1974 [16], offers a non-perturbative approach
to QCD by introducing a spacetime lattice which serves to regulate the theory. The fields
that comprise this theory, originally having an uncountably infinite number of degrees of
freedom, now have finitely many degrees of freedom. This allows correlation functions to be

evaluated by a well-defined path integral (i.e. an integral of finite dimension).

2.1 CONTINUUM QCD

QCD is a non-abelian gauge theory with an SU.(3) gauge symmetry group that details the
strong interaction between quarks and gluons. The quarks are represented by massive Dirac
spinors

v, ), (2.1)

that transform under the fundamental (3) and antifundamental (3) representations of SU.(3)
indicated by the color indices a = 1,2,3, where o = 1,2, 3,4 is the Dirac index, and f =
1,2,..., Ny is the flavor index. Flavor symmetry SUp(Ny) is broken in nature for Ny > 2,
but the reduced isospin symmetry SU;(2) between the up and down quarks is nearly exact
and for simplicity is treated as exact in our simulations.

By demanding the Lagrangian be invariant under local gauge transformations, we must

introduce a massless vector boson transforming in the adjoint (8) representation of SUs;(3)

Al (z), a=12 -8, (2.2)

“w



which are the components of a vector A, in the fundamental representation of the su.(3)
Lie algebra. The basis vectors that span su.(3) are the generators of the Lie group SU.(3)
satisfying

[T,, Ty] = if*T.,, a,bc=1,2,...,8, (2.3a)

LT = 5o, (2.3b)

where fo¢ are the structure constants for the Lie algebra. Conventionally, the Gell-Mann
matrices (denoted by \,) are used for the fundamental representation of su.(3), which can
be shown to satisfy all the necessary properties with T, = %Aa Then, we expand A, (x) in

this basis as
Aa

Au(z) = Ay () 5

(2.4)

From these fields, we construct a locally SU.(3) gauge invariant Lagrangian in the

fermionic sector as

Ny
Lp= E :wl(loc) (Z/Ygﬁ(Du)ab - m(f)éaﬁéab> 1/’1(;?3)7 (2.5)
f=1

where D, is the gauge-covariant derivative defined as
D, =0, +igA,. (2.6)

This Lagrangian reveals the interaction between quarks and gluons, but it is missing a kinetic
term for the gluons. This term can be constructed from the gluon field strength tensor via
the commutator of the covariant derivative

Go() = ~G0 )

_2 v ha

—E[DH, D,
g (2.7)

1 a a aoc c
= SMa(0u AL — 0, AL — gf AL

= 0, A, — 0, A, +iglA,, A).



The definition of the gluon field strength tensor in terms of the commutator of the covariant
derivative makes it easy to show gauge covariance from the fact that D, is defined to be

gauge covariant. Thus, under a local SU.(3) gauge transformation

G () = ——[2x) D, (2), 2x) D, (1)

g
= Q(z) — é[Du, D)0 (x) (2.8)
= Q(aj)GWQT(x)a

where (x) is an element of SU.(3). Thus, we can form a gauge invariant object by taking

the trace of G,,. Following the generalization from electrodynamics, the gauge Lagrangian
is

£616) = — TG, G|

= 5 TGy, e

:-hﬁGWﬂﬁﬂ] (2.9)

2“”

~ L G””< o)

2‘“’

=- 4GZVG“”

Putting everything together the QCD Lagrangian is then given by!

N
Z S (4D — mD 65600 —ZGZVG“” (2.10)
f=

where 7, are the usual gamma matrices.

'In general, the QCD Lagrangian can also include a C'P violating term Ton QGZVGgUG“”””. However,

experiment has shown that 6 is consistent with zero, and thus we do not include this term.



2.1.1 Euclidean Spacetime

In lattice QCD calculations, it is necessary to work in a Euclidean spacetime, referred to as
the imaginary time formalism, rather than the more commonly used Minkowski spacetime.
The reason for this is due to the exponential weighting factor that appears in a path integral.
In Minkowski spacetime this weighting factor is "™, where Sy, is the action in Minkowski
spacetime, which is complex and thus unfit to be used for importance sampling in our
Monte Carlo calculations. However, in Euclidean spacetime this weighting factor becomes
e~ where S is the action in Euclidean spacetime, which is real and positive and thus can
be used for our numerical calculations.

We define the following relationships between coordinates and derivatives in Minkowski

spacetime and Euclidean spacetime:

ot =z, =02, = ixl’, szmj:xng—x;”, (2.11a)
O =0, = —idy, = —ioy!, O =0;=—-0 =0. (2.11b)

From the definition of the covariant derivative in Eq. (2.6), the gluon fields must be similarly
defined
A=Ay = —iAl, = =AY, A=A = -4, =AY (2.12)

From this follows the relationship between the Minkowski and Euclidean gluon field strength

tensors

Gl = —G% = iGy = iG™, GY =G =Gy =GY. (2.13)
Finally, we define the Euclidean ~ matrices as follows,
(Vs =20, A= 5 = N2, (2.14)

with the following relationship to the Minkowski v matrices,

V== =%" n=~"=-ivii=im", wB=7"=% (2.15)

Three common representations for the Dirac y-matrices in Euclidean spacetime are the

Dirac-Pauli representation, the Weyl chiral representation, and the DeGrand-Rossi chiral



representation. Unless stated otherwise, we will use the Dirac-Pauli representation given by

0 —iop I 0 0 I
Tk = ) Y4 = ) V5 = ’ (216)
10y, 0 0 —1 I 0

where the Pauli spin matrices are given by
g1 = y 09 = y 03 = . (217)

In the Dirac-Pauli representation, the v matrices also have the following properties:

H=—m, M=% T=-7 Y= (2.18)

From the definitions above, we Wick rotate the Minkowski action to determine the action

in Euclidean spacetime. Using Eq. (2.10) and suppressing flavor, spin, and color indices, we

find
iSy = / dz, / d3xM (iv3 DY + i DY — m)p — 4Gﬁ{GW]

— 2/(_ng54) /d x[¢(zv4(zD4) + (i) Dy —m)y — ZG“”GW] (2.19)

- / d'z [E(%Du +m)y + %lG/wGW]

~ -8

It turns out that in order to simultaneously obey both invariance under Euclidean trans-
formations and equivalence of the two-point function in Euclidean space with the two-point
function in Minkowski space analytically continued to imaginary time, an identification of
i = y* or i) = ¢ cannot be made. Thus, in Euclidean space, the fields 1) and ¥ will be
treated independently. This will not cause any serious issues, especially since we integrate
over the quark fields immediately.

In lattice QCD, it convenient to rescale the gauge field as follows:
1
A, (x) = ;Aﬂ(:ﬁ). (2.20)

10



Then the final form of the QCD action in Euclidean spacetime is

Sl 9.6 = [ d's {%Eﬁf (oD +mP0usbo)U4f) + GG (221)
=7
where now
D, =8, +iA,, (2.222)
G = —i[Dy, D) = 0u Ay — A, +i[ A, A (2.22h)

Notice that the coupling strength g has been taken out of the definition for G, and instead

is shown explicitly in the gauge action.

2.2 DISCRETIZATION OF THE QCD ACTION

A convenient way to represent the lattice and the points it contains is
A= {n = (nl,nQ,ng,n4)|n1,n2,n3 = 0, 1, .. .,NS — 1;714 = O, 1, .. .,Nt — 1}, (223)

where N, is the number of lattice sites in each spatial direction, N; is the number of lattice
sites in the temporal direction. For the time being, we assume the lattice spacing is a in
all directions, but later on we will find it useful to use a different spacing in the temporal
direction.

The introduction of a finite spacing a acts as a momentum cutoff which restricts the

momenta to the first Brillouin zone

Py € (—m/a,m/al. (2.24)

The introduction of a finite volume with periodic boundary conditions restricts the momen-

tum further to be discrete

2
Tn, (2.25)

p:L

where L is the spatial size of the lattice, and m is a vector of integers.

11



The actual position of any given lattice point is x = an. Thus, to define the QCD action

on our lattice, we begin with the following replacements

T —n, (2.26a)

/d4a: —a*) . (2.26b)

neA

But the requirement of SU(3) gauge invariance introduces some difficulties in the discretiza-

tion of the action, and simply applying Eq. (2.26) will not lead to a gauge invariant action.

2.2.1 Fermionic action

As we saw above, in gauge field theory, it is local gauge invariance that forces the introduction
of the gauge fields. Thus, if we start from a discretized free fermionic action S%, then the
appropriate introduction of the gauge fields emerges from requiring local invariance under
local SU,(3) transformations.? In the continuum, the free fermionic action is (ignoring the

quark field indices)

Sp.7) = [ dtaa) (0, + m)i(a), (227)
which on the lattice becomes,
4 . .
916,71 = 0t ()| S M ] (2as)
nen p=1

Next, we introduce local SU.(3) gauge transformations on the lattice,
Y(n) = ¢'(n) = Qn)y(n), (2.29a)
b(n) = ¥ (n) = Y(n)Qf (n). (2.29D)

Then, applying these transformations to Eq. (2.28) gives

4

[Z%mn)a(n + )en + 1) — QT ()QAn — (n — )

SO, B = a* S B(n) Fmi(n)).

neA

2a
(2.30)

2Without local gauge invariance, significant difficulties arise, including the possible loss of renormaliz-
ability.

12



The second term is gauge invariant, because Qf(n)Q(n) = 1, but the term involving the
discretized derivative is not. To circumvent the issue, we introduce a new field U,(n), the

so-called link variables, that transforms under SU.(3) as
U.(n) — Q(n) U, (n)QF(n + f1). (2.31)

As the name suggests, these objects are not associated with any given site on the lattice but
instead with the “link” between n and n + 1. Additionally, these link variables obey the

following relationship

U_u(n) = Ul(n— p). (2.32)

This shows that the Hermitian conjugate reverses the direction of a link variable while
retaining the original lattice sites that the link was defined between. Under an SU(3)

transformation these oppositely directed link variables transform as

U_(n) = Uf(n — )
> [9(n — ) Uy — 4) ()]

(2.33)
— Q(n) Ul (n — )21 (0 — 1)
— Q(n) U, ()2 (n — o).
Inserting these link variables into the fermionic action in the following way
4 U(n+p) — U_py(n)y(n — 1)
Spl, ¥, Ul =a*) " d(n [Zw 50 + map(n) (2.34)

neA

makes the fermionic action gauge invariant. This can be seen explicitly:

= () (X (WD) U(n) (2 (0 + )+ )b+ o) (2:35)

and similarly for the term ¥(n) U_,(n)(n — ).
The next step is to make sure the fermionic action reduces to the continuum action in
the limit as the lattice spacing goes to zero. For this to be possible, the link variables need

to have some dependence on the gluon field A,(x). Thankfully, there exists an object in

13



the continuum that depends on the gluon field and has all the same properties of the link

variables discussed above. This object, known as a gauge transporter, has the form

U(z,y) = Pexp (@ 5 Als) - ds) (2.36)

where P is the path-ordering operator and C,, is a path connecting the points x and y. By
choosing = = an, y = a(n + 1), and C,, as the straight-line path connecting = and y, the
gauge transporter corresponds to the link variable U,(n). Thus, we find the dependence of
the link variables on the gluon field to be

U,(n) = exp (iaA,(n)), (2.37)

where the integral in Eq. (2.36) has been approximated by assuming A, (s) ~ A, (z) along
the path C,,, which is good to O(a), allowing us to drop the path ordering. In light of
Eq. (2.37), we refer to the link variables as the gauge-link variables.

For small a, the gauge-link variables become
U.(n) = 1 +iaA,(n) + O(a®). (2.38)

Finally, let us take the limit as a — 0 of Eq. (2.34)

4 N
lim Sp[v, ¥, U] = lim a* >~ 9(n [Z { (nt ) = n = 1)

a—0 2a
neA

. iaA,(n)Y(n+ 1) + iaA,(n — f)(n — ﬂ)] + map(n) + O(a)

2a

—lim a* Y 9(n) {% (au n iAu(n))@z)(n) +m(n) + (’)(a)]

a0 L
_ / @'z [§(@) (3 Dy + m) () + O(a)]

(2.39)

which shows that the continuum action is reproduced in the limit @ — 0 and that the

discretization error is of O(a). To summarize, so far we have found an action for fermions on

the lattice that is gauge invariant and reduces to the continuum action as the lattice spacing

goes to zero.

14



2.2.2 The Fermion Doubling Problem
The Dirac operator on the lattice M is defined by
Srl, v, U] = o M[U]4. (2.40)

Comparing Egs. (2.40) and (2.34) implies the Dirac operator has the following form

4
Maapp(nlm) = a* Z('Vu)aﬁ

p=1

Upav (1) Ontpim — U—ppan(n) dn—pym
2a

+ a4mf 6a55ab5nm, (2.41)

where my is the mass of a quark with flavor f. We find the free lattice quark propagator by
inverting M after setting U,(n) = 1 for all n and p. Then, the Dirac matrix in momentum
space is given by \
M°(p) = a* Zm%ﬁp’l) +a'my, (2.42)
p=1
where p, = i - p. Inverting M gives the free lattice quark propagator
—ia )", Yusin(a p,) + a*my

NO0(p)t = 2.43
a (p) Z# sinQ(a p#) + GQm? 9 ( )

which is easily verified by computing M 0(p)M°(p)~L. As expected, Eq. (2.43) has a physical
pole at p> = —m?, but there exists 15 extra poles at the edges of the Brillouin zone referred
to as fermion doublers.

Wilson proposed adding an extra term to the Dirac matrix that removes the doublers
while still retaining the correct continuum limit.®> The fermions corresponding to this new

action are referred to as Wilson fermions, and the new Dirac matrix is given by

4
U,(n)0nspm — U_y(n)0n_pm
MW(TL|m) — a4 § 7# H( ) +4, o M( ) Hy +a4M5n,m
p=1

(2.44)

= ot 30 s + U)o = 2

2a? ’

where the last term is the Wilson term. This term is the discretized version of _%3uau with

proper insertions of the gauge links to maintain local gauge invariance.

3Operators added to the action that vanish in the continuum limit are irrelevant operators. The freedom
to add any irrelevant operators we choose will be exploited beyond simply solving the Fermion Doubling
problem.
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Using Wilson’s version of the Dirac operator, we now have a discretized action that
reduces to the continuum QCD action in the a — 0 limit, is gauge invariant, and has one
physical pole. There is, however, one drawback: we have lost the usual chiral symmetry
for massless fermions due to the introduction of the Wilson term. This can be understood
by interpreting the Wilson term as a mass term which contributes to the total mass of the
fermions, because even in the limit m; — 0 there still exists a non-zero “mass” which breaks
the chiral symmetry.

It may be bothersome that Wilson’s Dirac operator does not obey the usual chiral sym-
metry, and thus many attempts have been made to try and find a solution to the doubling
problem without breaking chiral symmetry. But, all other solutions to this problem require
some kind of sacrifice. A no-go theorem was proved in 1981 that says a lattice regularization
does not exist for local fermions with chiral symmetry such that the action has the correct
continuum limit and is free of fermion doublers [28]. Different types of fermions have been
proposed in light of this no-go theorem. However, in what follows we will only consider

Wilson fermions.

2.2.3 The Wilson Gauge Action

The next step in constructing an action on the lattice is to determine the kinetic term for the
gluons. It has become evident from the previous sections that on the lattice we consider the
gauge links as the fundamental objects that our quarks interact with rather than the gluon
fields themselves. Therefore, we want our gluon action to be dependent on the gauge links
only. In addition, we need to use the gauge links in such a way that the gauge action is gauge
invariant. In order to allow the cancellation of a significant number of gauge transformation
matrices, we should consider using link variables that share their end site with another link
variable’s starting site (i.e. the link variables should be “attached” to one another).

Consider a product of k£ “attached” link variables that connect the lattice sites n and m

L(njm) = Uy () Uy, (n + fig) .- Uy, (m — i), (2.45)

16



Then, using the transformation properties of the gauge-link variables, under a gauge trans-

formation this product of links transforms as
L(n|m) — Q(n)L(n|m)Q (m). (2.46)

Many of the gauge transformation matrices have been canceled, and only two remain. Since
the trace of any product of matrices is invariant under cyclic permutations, then the trace
of L(n|n) is a gauge invariant object. Products of gauge-link variables that start and end on
the same lattice site, like L(n|n) will be referred to as closed loops or Wilson loops.

The plaquette is the smallest non-trivial closed loop defined as follows

Uw(n) = U,n)U,(n+ @) U_p(n+ o+ 2)U_,(n + D) .47

= Uu(n) Uy (n+ ) Ul(n + 2) Ul (n).

Wilson used the collection of all plaquettes to form a gauge action [16]

SeU] = gz Y Re Tr [1 - Uw(n)], (2.48)

neA u<v

where 3 = 2N,/g?> = 6/g*. Clearly, this action is gauge invariant since the gauge links are
only introduced via the trace of plaquettes. We now take the continuum limit to determine

the leading order discretization errors in the gauge action [29]:

1
lim U, (z) = 1+ ia*G,, — —a4GIZW + O(a®). (2.49)

a—0 2

and substituting this into Eq. (2.48) reproduces the correct action in the continuum limit

with discretization errors of O(a?).
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2.2.4 Improved Actions

The required volume that our calculations take place in is determined by the correlation
length of the system, which is given by the inverse of the mass of the lightest state in our
system. The correlation length of our system must be smaller than the size of the box we
work in. In order to increase computational efficiency, we could tune the quark masses to
increase the mass of the pion such that the correlation length is small enough. Or, we could
increase the coarseness of our lattice (i.e. increase a). Both of these methods are usually
employed. But, a coarser lattice will induce greater discretization errors. Thus, we make use
of so-called improved actions, which decrease the lattice artifacts.

However, the use of a coarse lattice poses two problems in the temporal direction. First,
temporal correlation functions, used for energy extraction (see Sec. 2.4), generally have
signal-to-noise ratios that decrease as the time separation increases. Therefore, a large a;
gives less viable data points before the time separation in which noise takes over is reached.
Second, in order to maintain a positive definite transfer matrix, which in turn guarantees a
Hermitian Hamiltonian, we cannot fully exploit improvement in the temporal direction (e.g.
we cannot use any Wilson loops with lengths greater than one in the temporal direction) [30,
31]. To circumvent these issues, we make use of an anisotropic lattice [32, 33| with as > ay,
where the anisotropy is defined as £ = as/a;. Now we focus on improvement in the spatial
directions.

The main strategy used to remove the lower order lattice artifacts from our action is
to employ the Symanzik Improvement program [34]. The idea is to add higher dimensional
operators to our action with coefficients chosen so to cancel the lowest order lattice artifacts.
Adding additional operators that vanish in the continuum limit can always be done, because
we only require that the continuum QCD action be reproduced as a — 0. This allows for
a large class of actions that lead to the same physics. Thus, Symanzik improvement comes
down to choosing an action within this large class of equivalent actions that has the most
desirable properties.

Further improvement of the lattice artifacts can be made by dealing with divergent

tadpole contributions that arise within lattice perturbation theory. Tadpole improvement
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can be implemented with a rescaling of the gauge links by tadpole improvement factors [35],

i.e. U— U/u, where
1 1/4
- <§ Re Tt UW> . (2.50)

Note that since u is both a parameter in the action and an observable, we have to adjust u
until the parameter in the action agrees with the measured observable.

The Wilson gauge action is expected to have O(a?,a?) lattice artifacts present. The
gauge action we use is based on the Symanzik-improved Liischer-Weisz action [36, 37] with

tadpole-improved coefficients used in Refs. [32, 33, 38, 39]

SE[U) = 369{2(62219%@)—1; )+Z(§ )~ ) |

x,i#]
(2.51)

where Qu = ReTr(1 — W), P is a plaquette, and R, is a 2 x 1 planar Wilson loop (with
the p direction being of length 2 and the v direction of length 1). The parameters us and u,
are the spatial and temporal tadpole coefficients, and ~, is the bare gauge anisotropy. This
action has leading discretization errors of O(a?, a?, g%a?), and has a positive definite transfer
matrix, because no length-two gauge links in time are used.

The unimproved fermion action was shown to have discretization errors of O(as, a¢). To

improve these errors, we use the anisotropic clover improved quark action [40]

S5.[v, 0, U] Zw (utmo—i—Wt—l——ZW

L1/, > ”
—5la\ = st ss’Fss
2{2(W+§ angat t Wungf D o)

s<s’

(2.52)

where the u, and u; are the spatial and temporal tadpole factors in the fermion action, mg
is the dimensionless bare quark mass, v is the bare fermion anisotropy, £ is the desired

renormalized anisotropy, 0., = £[v,, V], 13 w = 31m U, and

2

W, =a,W, =a,V, — C;—“%AM, (2.53a)
Vuf6) = oo (U)o + ) = Ul = mhfto =), (2.53b)
8u1(0) = o |Gl ot ) + Ul = S e = -20@)]. - (25%)



This action now has leading discretization errors of O(a?, g?a?,a?). Although it is possible
to further improve the fermion action, most improvements will involve extra quark fields,
and we want it to remain quadratic in the fermion fields.

The use of these actions shows scaling violations on the order of 1% for a ~ 0.1 fm [38],

which means a continuum extrapolation is generally not necessary when using these improved

lattices.

2.2.5 Tuning the Lattice and Setting the Scale

The remaining bare parameters in the action, the bare quark masses, the bare anisotropies,
and the inverse coupling [ are determined by setting desired physical results (i.e. a set of
renormalization conditions).

The bare gauge anisotropy 7y, and bare fermion anisotropy v are determined by adjusting
their values until the desired renormalized anisotropy is measured. In this work a renormal-
ized anisotropy of £ ~ 3.5 was determined. More specifically, the bare gauge anisotropy was
set by requiring Ry(z,y) = Rg(z,&t), where Rgo(x,y) and Ry(z,t) are ratios of Wilson
loops defined by

WSS<x7 y)

= —-—— 2. 4
Rss(x7y> Wss(l'—{—l’y)’ ( 5 a)
st(x7t>
Ry (z,t :—”, 2.54b
) = (2.54)

and W, (z,,x,) is the expectation value of the trace of a product of gauge links forming a
closed two-dimensional loop with length z, in the /i direction and length z, in the & direction.

The bare fermion anisotropy was set by requiring the mesons satisfy the dispersion relation

a;p’
a?E*(p) = alm? + o (2.55)
From these requirements, the bare anisotropies were found to be
v, = 4.3, v =3.4. (2.56)
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The bare quark masses, m; and mg, were tuned by setting the ratios

2 2
9(mi mw)’ lg = 9m§7 (2.57)

SO =

2
4mg,

to be as close to their experimentally measured values as possible. These ratios were chosen,
because they are proportional to m, and m; in chiral perturbation theory to first order,
where m, is the mass of the pion, mg is the mass of the kaon, and mgq is the mass of
the omega baryon. The mass of the pion determines the largest correlation length in our
system. Requiring that the correlation length always remain smaller than our lattice length
L, m, is made as small such that m, L is at least larger than one, but the general rule of
thumb in lattice QCD is to keep m, 2 4 or 5. Fortunately, the mass of the kaon can remain
physical without causing any issues. On our lattices we set the bare strange quark mass to
be aymgs = —0.0743. We have lattices with m, ~ 390 MeV from setting the bare light quark
mass to be a;m; = —0.0840 and with m, ~ 240 MeV from setting the bare light quark mass
to be a;m; = —0.0860.

In order to determine the value for a;, we must choose some physical value. This proce-

dure is known as setting the scale. There are different ways of setting the scale, but the one

we choose is to use the mass of the kaon. That is, we determine a, from

(2.58)

where a;m g is determined from our lattice calculation, and my ,pys is set to the experimen-
tally observed value for the kaon mass.* We found a; ~ 0.034 fm, which gives a, ~ 0.12fm
from our anisotropy. However, from the renormalization group equations, the inverse cou-
pling 8 is a function of the lattice spacing. Thus, we attained this value for a;, by setting

B =15

4More specifically, we use the average of the experimentally observed masses for the KT and the K©,
which gives mg = 495.6 MeV [9].
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2.3 MONTE CARLO INTEGRATION

One criteria for choosing the lattice action improvement is to maintain a fermionic action
that was quadratic in the quark fields. This is desirable so that the integration over the

quark fields can be performed exactly. Thus, our lattice action is of the form
Sl, v, Ul = oMU + Se[U], (2.59)

where M[U] is the so-called Dirac matrix, and S¢[U] is the improved gauge action. Then,

Euclidean correlation functions are evaluated via a path-integral

Oy =5 [ Pl AD(ION. B, UjewH101v-5e1 (2.60

where O is a generic operator, which can be replaced by any operator or product of operators
one wishes, the subscript 7" is to remind us that we are working with a finite temporal extent

of length T',° and the partition function Zr is given by
Zr = [ Dlu,GiDIU)e Sl (2.61)
The integration over the quark fields can now be performed immediately via Wick’s theorem

o _ J PLUIF(M ' [U]) det M[U]e%el")
Ol = [ D[U]det M[U]e~5clV] 7

where F' is a function of inverse elements of the Dirac matrix determined from the Wick

(2.62)

contractions involved.

However, the integration over the gauge-link variables cannot be done exactly. We need
some method to accurately approximate this integral. Numerical quadrature is a commonly
used technique for approximating integrals numerically, but this method becomes increas-
ingly impractical as the dimension of the integral increases. There is an integral for each
degree of freedom of the gauge links, which will generally be very large except for extremely

small lattices. This so called curse of dimensionality can be overcome using Monte Carlo

>The distinction between a vacuum expectation value (0] O[0) and (O),, because these only become
equal in the limit T — oco. However, in much of this work it is assumed that T is large enough such that
(O); = (0] O10). A discussion on the validity of this assumption and how violations of this assumption are
dealt with can be found in Sec. 6.1.
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integration: these methods suffer no serious issues when applied to integrals of very high
dimension.

The main result of Monte Carlo integration is an estimate for a highly-multidimensional
integral of the form

Iy Z/D[U]p(U)f(U), (2.63)

where U, meant to be highly suggestive of the gauge links, is a collection of variables (e.g.
one for each spacetime point), p(U) is a probability density, and f(U) is an arbitrary function
of the integration variables U. If one could randomly sample the variables U according to
the probability density p(U) to produce an ensemble { Uy, Us,..., Uy, } consisting of N¢
configurations, then by the law of large numbers an estimate for I; can be given as

N¢

I~ Nic > F(U). (2.64)

k=1

The error in this estimate is given by the central limit theorem

(2.65)

where V(f(U)) is the variance of f(U) with respect to the probability density p(U).
The integrals over the gauge-link variables that we want to estimate can be put in the

form of Eq. (2.63) by setting

B det M[Ul]e=%¢!V]
[ D[U')det M[U'|e~SclU")!

p(U) (2.66)

Therefore, we need to determine a method for generating the ensemble of gauge-link con-
figurations. In principal we could generate gauge configurations according to a uniform
probability distribution. However, this is very inefficient, because of the large number of
gauge configurations that lead to exponentially suppressed contributions to the integral. Us-
ing a non-uniform probability density in order to pick out the configurations that are most
important is known as importance sampling.

We instead use a Markov chain. The idea of a Markov chain is to stochastically generate

a sequence of gauge configurations

Ut — U™t - gvt? (2.67)
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where U™ refers to the n-th gauge configuration of the gauge-link variables, and n can range
over all possible gauge configurations. A Markov chain requires a transition probability
T(U™U™) to go from the configuration U™ to U™. Then, if this transition probability

satisfies detailed balance
Tur|\ump(u™) =T Uv")p(U"),  Vn,m (2.68)

then it can be shown that the transition probability generates configurations closer to the
desired distribution at each update in the chain. Thus, if one waits until the Markov chain has
reached equilibrium (or thermalized), then from that point on the configurations generated
will be distributed according to p(U).

A very popular algorithm for producing a Markov chain is the Metropolis algorithm [41],
which uses an accept-reject step after each proposed new configuration. Generally, this
method proceeds by proposing local changes to the gauge configuration, because otherwise
the probability of acceptance becomes too low. But, due to the non-local nature of the
fermion determinant (i.e. the determinant of the Dirac matrix), an algorithm that performs
global updates to the gauge configuration at each step is preferred. Furthermore, the direct
computation of the fermion determinant is prohibitively expensive and is instead calculated

using the method of pseudofermions in which the fermion determinant is written as
det M[ U] = / DI D[gle—M Ve, (2.69)

where ¢ is a non-Grassmann field with the indices of a fermion.

2.3.1 The Hybrid Monte Carlo Algorithm

In order to satisfy the extra care that the fermion determinant requires, we use the Hybrid
Monte Carlo (HMC) method [42], which uses global updates with a reasonable Metropo-
lis acceptance rate. The method introduces a set of momenta 7,(z) that are canonically

conjugate to the gauge links U,(x), which results in the fictitious Hamiltonian

H = 3 m(a)'m(x) + S[U] (2.70)
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One then allows the gauge links to update according to Hamilton’s equations of motion via
molecular dynamics. This produces gauge configurations distributed as desired, because the
canonically conjugate momenta only produces an irrelevant prefactor in the classical partition
function [29]. Of course, in order to guarantee ergodicity, the conjugate momenta need to
be changed periodically, and this is achieved by updating the momenta from a Gaussian
distribution after each update [43]. One issue, however, is that numerical integrators will
introduce errors based on the time step size used when integrating Hamilton’s equations.

This issue is solved by introducing the acceptance probability
P, = min(1, e~°) (2.71)

after each update, where 0 H is the change in the Hamiltonian after the new configuration
is proposed.

We still need to deal with the estimation of the fermion determinant using Eq. (2.69).
The inverse of the Dirac matrix appears in the integrand, and it must be positive definite
Hermitian in order to guarantee convergence of the integral over the pseudofermion fields.
But, this is not the case, and instead, so long as the fermion determinant is real and positive,
then we can rewrite the determinant as det M = \/m . This is useful when con-
sidering two degenerate quarks, because each will produce an identical fermion determinant

det M, and we have
det M det M@ = (det M)
= det MTM) (2.72)
/D (61| D[gle= M6,

This time we have [MTM]~! in the exponential, and this is guaranteed to be Hermitian
and positive definite. The introduction of these pseudofermion fields extends our fictitious

Hamiltonian to be
Zwu )+ SelU] + o (MTU1M[U]) g, (2.73)

and the pseudofermion fields need to be refreshed just as the conjugate momenta are. This
can easily be achieved by producing a vector x distributed according to a Gaussian with a

variance of % and then calculating ¢ = MTy.

25



2.3.2 The Rational Hybrid Monte Carlo Algorithm

The HMC method assumes an even number of degenerate quarks. When adding the strange
quark (or any other quark), we need to adjust our method. We follow the Rational Hybrid
Monte Carlo (RHMC) method [44], which extends (HMC) to single quarks. As before,

because M is not Hermitian and positive definite in general, we write

det M = det(MTM)'/?

(2.74)
— [ Digplgle e
The extension of the HMC method is in dealing with the (MTM)~'/2 term, for which a

low-order rational approximation can be made

(MTM)™V2 = V2(MT M)

_ 2.75
:OCQI+ZOék[MTM+5k:| 1, ( )

k
where the coefficients ay and [, specify the particular rational approximation. To refresh
the pseudofermion fields, a vector y is again distributed according to a Gaussian with a

variance of 1, and then ¢ = (MTM)"*y is calculated. Apart from this added feature, the

29

RHMC algorithm proceeds in the same way as the HMC algorithm.

2.4 ENERGIES FROM TEMPORAL CORRELATION MATRICES

In our lattice calculations, we focus on two-point temporal correlation functions (correlators)
of the form

C(t) = (0| TO(t + t0)O(ty) |0), (2.76)

where it has been assumed that temporal wrap around effects are negligible (i.e. t << T,
where T is the temporal length of the box), and O(t) and O(t) are creation and annihi-

lation operators, respectively. The usefulness of these correlation functions is best seen by
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performing a spectral decomposition (i.e. insert a complete set of energy eigenstates)®
C(t) = Z (0] O(t + to) [n) (n| O(to) 0)

—Z (0] "+ O0)eH ) |n) (n] H0D(0)e 1 o)

(2.77)
_ ZeEo t+to) O| O( ) \n> t+to)eEnto (n\ O( ) \O) e~ Foto

—Z (01O(0) [n) {n] O(0) [0) e~

where AE, = E,, — Ey. We assume that the energies have been appropriately shifted such
that Ey = 0. Thus, from this point on, we write E, in place of AF,. From the spectral
representation of C(t), we can see that this temporal correlator contains all of the information
about the energy spectrum we are after and one could, in principal, perform a fit to this
function to obtain the spectrum. One could easily extract the lowest energy state created
by our operator by performing a fit to a single- or two-exponential function assuming that
the minimum time used in the fit is after most of the terms in the spectral decomposition
have fallen away to zero. To assist in determining the time in which this has occurred, we

introduce the effective energy given by

Eeff(f) = — L1 (%),

X (2.78)

where At is some time step, usually taken to be 1, 2, or 3.7 If Ej is the lowest energy that
appears in the spectral decomposition of Eq. (2.77), then we have

lim B (t) = F,. (2.79)

t—o0

If we determine the effective energy for a particular correlator, then we will see a plateau in
this function that occurs at Ey. Observing the time at which an effective energy plateaus
gives us a measure of the excited state contamination in that operator. Since the signal-

to-noise ratio generally decreases as the time separation in the correlator is made large, it

6Since we are working in finite volume with periodic boundary conditions, the allowed momentum is
discrete. This in turn enforces discrete energy eigenstates. Thus, we insert a complete set of states with a
summation, not an integral.

"There is a slight abuse in notation here by using At = 1, where we really mean At = la;. However, this
is very common, and we will continue to use it throughout this work.
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is important to build operators that have effective energies which plateau for as small of a
time separation as possible. The methods for constructing such operators involve smearing
the quark fields. These methods will be further discussed in Sec. 3.2.

The operators used in Eq. (2.76) in general create states that have some overlap with
all energy eigenstates in a given channel.® Thus, to extract N energies from one of these
correlation functions, you would need to perform a fit to a function involving a sum of at
least N decaying exponentials, which quickly becomes impractical. Additionally, a fit to a
particular correlator may miss an energy level if the overlap of that energy eigenstate with
the state created by the operator used in the correlator is very small. For these reasons,
an alternative approach is desired. This approach works by building a correlator matrix of

temporal correlators of the form

Cij(t) = (0| TO;(t + t9)O,(t0) |0) , (2.80)

where {O;(t)} and {O;(t)} are sets of creation and annihilation operators, respectively, that
all transform in the exact same way. First of all, one could very reliably extract the ground
state energy in any particular channel by employing a variational approach where the states
created by the set of operators considered are used as the variational basis.

Thus, the linear combination of operators that creates a state with the largest overlap on
the ground state is determined. Additionally, this linear combination is just the eigenvector
associated with the largest eigenvalue of a generalized eigenvalue problem [18, 19, 20], and in
principle one could extract up to N energies from an N x N correlator matrix. The details

of this method will be presented in Chap. 6.

2.4.1 Hermiticity

When constructing the correlator matrices, it is important to make sure they are Hermitian.
This is not required, but it makes the subsequent analysis of these matrices much simpler.

The Hermiticity of the correlator matrix will be determined by the operators used, and in

8A channel refers to a set of quantum numbers that a set of states have in common (e.g. isospin,
strangeness, momentum, etc.)
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what follows we discuss what must be done to maintain Hermiticity. We start by considering

the correlator matrices in Minkowski space
Cij(t) = (0] 0,(1)0}(0) |0)
_ iHt 7). —iHt T
- Z (0] 7 0;(0)e™ """ |n) (n] ©;(0) |0) (2.81)

_Z (0] ©;(0) [n) (n| ©;(0) |n)*e —iEnt
So long as the operators O;(t) behave in the expected way under time reversal
TOM)T = Oi(—t), (2.82)

where T’ is the time reversal operator, then showing Hermiticity is simple

Cij (1) = (0] 0;(1)0}(0) |0)

= (0| TO;(t)TTOI(0)T |0)
0] O;(~)0}(0) |0)

0 e~™0;(0)e01(0) |0)

> (01 0:(0) |n) (0] O;(0) [n)" e

/\/\/\/\

(2.83)

(Z (010;(0) [n) (n] OL(0) |n) 6‘“3“)
Ciit),

where we have used the anti-unitary property of T (i.e. TTT = 1), and we assumed the
vacuum was invariant under time reversal (i.e. T'|0) = |0)).

From the requirement that the analytic continuation to imaginary time of a correlator
matrix in Minkowski space match the correlator matrix in Euclidean space, we see that the
operators in Euclidean space should be formed from the analytic continuation to imaginary
time of the operators in Minkowski space. That is, O; is the analytic continuation of OZ(M) to

imaginary time, where the superscript M stands for Minkowski space; and O; is the analytic
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continuation of (9§M)T to imaginary time. As an example, consider a baryon annihilation

operator in Minkowski space given by

B(M) (t) - 5abc¢aa(x)¢bﬂ(x)¢0’v<x)’ (284)

where the flavor indices have been suppressed. Then, the corresponding creation operator is

given by
BM(t) = eqetpl, (2) 5 ()], (x)

- Eabcac»y’ (@’Ygu,@b,@/ (l‘)/yg’ﬂaaa’ (I)'Yg/aa

(2.85)

where we used ¢ = ¥y, (which is true in Minkowski space). Then, during the Wick rotation
to imaginary time, the following replacements are made: ¢ — ¥, 1 — 1, and 7° — 4.
Hence, to make sure our operators in Euclidean space lead to Hermitian correlator matrices,
our ¢ fields must have an associated 4 with them. For convenience, we will use the x field

in place of ¢, which is defined as
X = Y. (2.86)

It can be shown that for other operator types (e.g. mesons), using the x field in place of ¥

will also ensure Hermiticity.
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3.0 CONSTRUCTION OF HADRONIC OPERATORS

There are a number of issues to take into consideration when constructing the operators to
be used in our temporal correlation matrices. First, it was emphasized in Sec. 2.4 that the
operators we use should couple minimally to the higher lying states (i.e. the states they create
should have small overlaps with the high-lying energy eigenstates). This can be achieved
by smearing the quark fields and gauge links. Second, we expect the hadron resonances
to be large objects, and thus we must use spatially-extended operators in order to capture
the orbital and radial structure of hadrons. Next, we must be sure our operators transform
appropriately according to the irreducible representations (irreps) of the symmetry groups
that characterize the stationary states we are after. Finally, it is important to use a method
for operator construction that can produce large sets of linearly independent operators for
each symmetry channel in order to produce temporal correlation matrices large enough to
extract a significant portion of the excited-state spectrum.

The methods we use, which address all of these concerns, are described in Refs. [45,
46]. In this chapter, the details of this method are discussed. An outline of the general
transformation properties for operators under the irreps of a symmetry group is presented
in Sec. 3.1. All of our hadron operators are composed of gauge-covariantly-displaced LapH-
smeared quark fields, deemed the basic building blocks. Our process for constructing these
building blocks and their properties are described in Sec. 3.2. An initial set of linearly
independent elemental operators that transform reducibly under the symmetry group of the
lattice is then identified for each hadron type (i.e. baryon, meson, etc.), flavor structure,
and displacement type that we wish to study. Our procedure for obtaining these elemental
operators is explained in Sec. 3.3. We then describe the properties of the symmetry group

of the lattice in Sec. 3.4. Due to the reduced symmetry of a cube, our operators cannot
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be made to transform under the usual angular momentum irreps and are instead built to
transform under the irreps of the lattice symmetry group. The method for projecting our
set of elemental operators onto the irreps of this group is discussed in Sec. 3.5. Finally, in
order to reliably determine the energy of a particular state, all the energy eigenstates below
that state must first be extracted. But, a significant number of two-hadron states exist
below many of the hadron resonances we are interested in, and therefore the inclusion of
two-hadron operators is essential for our calculations. The construction of these two-hadron

operators is described in Sec. 3.6.

3.1 SYMMETRY CHANNEL TRANSFORMATIONS

The particular irreps that a stationary state belongs to determines the quantum numbers
or properties of that state. Hadronic states can be identified by: their momentum p, their
total spin J, their spin projected onto some axis, their parity P, and their flavor structure
(e.g. isospin I, isospin projection I3, strangeness S, etc.).! Additionally, states that are
neutral under all charges can be identified by their C-parity. But, this means C-parity is
only a good quantum number for a limited number of particles.? For our purposes, we use

a generalization of C-parity, known as G-parity. The G-parity operator is defined by

Ug = Ce ™™, (3.1)

where C is the charge conjugation operator, and 7, is the operator corresponding to the
second component of isospin. G-parity is only a good quantum number for bosonic states
within an isospin multiplet that has zero average electric charge. Thus, when applicable,

we further identify hadronic states with G-parity. Furthermore, the use of G-parity makes

'In this work, we only include up, down, and strange quarks.

2 Also, since we impose exact isospin symmetry in our simulations, we do not make a distinction between
particles within the same isospin multiplet. And, in the case of the pions, which form an isotriplet, C-parity
is a good quantum number for the neutral pion but not the other pions. Therefore, the use of C-parity is
awkward and not useful in situations like these.
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C-parity even less useful, because whenever C-parity is a good quantum number, it is simply
related to G-parity by
ne = ne(=1)7, (3.2)

where n¢ is the C-parity of the state, ng is the G-parity of the state, and [ is the isospin of
the state.

In order to create states with particular quantum numbers, we demand our hadronic
operators transform under the irreps corresponding to those quantum numbers. For each
symmetry group, we denote our operators by O (¢) and 5?”(15) for the annihilation and
creation operators, respectively, where A is the particular irrep of the symmetry group in
question, A is the row of that irrep, F' denotes the quantum numbers for all other symmetry
groups, and i labels the set of operators in the AAF symmetry channel. For a given symmetry

group element R, our operators transform as

Ur O (1)U, =Y O () (R)", (3.3a)
%
Ur 0, (Ul = 3" 0" ()r' (), (3.3b)
w

where Up is the quantum operator for the symmetry transformation R, and FL/}\)(R) is the
A matrix representation for R. To see that these equations are correct, we use the required

transformation properties for the states in the particular irrep:

Ur|ANF) =Y |AuF) (AuF| Ug |ANF)

! (3.4)
= > |AuF) T (R),

: —=A .
along with the fact that O, " creates states that transform in the same way as |[ANF) when

acting on the vacuum. That is

UrO (1) 10) = URO ULUR |0)
—ANF
= UrO; " U 0) (3.5)

—A\F
=0, [y TV (R),
12
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assuming the vacuum is invariant under the action of the symmetry transformation. This
result can be used to deduce Eq. (3.3b). Similarly, using the transformation properties for
(ANF:

(ANF|UL, = (ANF| UL |ApF) (ApF)|

I

=Y (AuF|Ug |ANF)* (ApF | (3.6)

m

=" (AuF|ITN (R),

I

along with the fact that (0] OMF(¢) has the same transformation properties as (ANF:

(0| O (1)U, = (0| URUROM U,
= (0| UROM UL, (3.7)
—-j{j O[O DL, ()",

which can be used to deduce Eq. (3.3a).
The importance of using operators that transform under the irreps of the symmetry

groups of our system can also be seen from correlation functions using these operators:

—N'NF 1 — ANF
OITOMF ()0 "7 (0)[0) = — > (0] TOMF (1)D; " (0) |0)
95 Reg
Z—ZMHMWWW%d”U@@
96 Reg (3.8)
* _A/ /F
= 0 Z > V(R TUN(R) (0] TOME (1) (0) [0)
95 ReG !
1 _A/)\/F

= dan b — (0| TOM (H)O; 7 (0)[0)
da /

where G is the symmetry group, gg is the number of group elements in G, the invariance of

the vacuum was invoked, and the so-called great orthogonality theorem was used:

1
- ZFM *F/\, (R) = d_dAA,éMldw/, (3.9)
9g Reg A
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Thus, we see from Eq. (3.8) that temporal correlators between operators in different irreps
and /or irrep rows vanish, which provides a natural way to divide our calculations into differ-
ent symmetry sectors/channels. This result also allows us to label our correlators with the
irrep and irrep row:

“~AANF

CM = (0| TOMF ()0, (0) |0) . (3.10)

Now we can arrive at another useful result for our correlators by using the orthogonality of

the correlators found in Eq. (3.8) and once again invoking invariance of the vacuum:

CIT = (0| TOMF (1) (0) [0)

“AANF

= (0] TUROW HULURO; ™ (0)U}; |0)

—ZF N (R) (0] TOMF (10" (0) |0)
(3.11)

- Z FM /A(R)5uu’ C@{}uF@)

_ Z |F(A) C’;}“F(t).

This equation gives us a relationship between the correlators with different irrep rows for
each element in the symmetry group. In many cases, this equation can be used to show that

the correlators are independent of the irrep row.

3.2 THE BASIC BUILDING BLOCKS

The construction of our operators starts with identifying appropriate building blocks to be
used in all hadronic operators. Hadrons are composed of quarks, and therefore quark fields
are the main components of these operators. It is at this level where smearing of the gauge
links and quark fields is performed. Keep in mind that our choices are generally based on
a few criteria: reducing excited state contamination, efficiency, preservation of symmetries,
etc. Additionally, since we are interested in hadrons which are extended composite objects,

we also consider covariant displacements at this point.
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3.2.1 Gauge-Link Smearing

Gauge-link smearing is important for a number of reasons. For example, it reduces high
energy contamination (to a significant degree for gluonic states), and dramatically decreases
statistical errors in the calculation of correlators involving extended hadron operators (see
Figure 3.1). Smearing a gauge link U,(z) usually involves a weighted sum of its neighboring

gauge links or staples:

Cul@) = 3 puv (@) Ul + ) Ul + ) + U = 9) Uplw = ) Ul — o+ 1)) (3.12)
v#EW

where x is the lattice site, and {1 and 7 are directional vectors having the length of the lattice
spacing. One popular method involves updating every spatial link variable in the following
way? [47]

Uz) = Uy(z) + Cu(x), Pik = Py Pau = pua =0, (p € R). (3.13)

However, this smearing procedure requires we project the spatial link back into SU(3), and
this results in a loss of differentiability which can make the application of Monte Carlo
techniques to these links difficult or even impossible.

Instead, we follow the procedure in Ref. [48], which presents an analytic method for
smearing gauge-link variables. The advantage here is we do not need to project back to
SU(3) after the smearing process, and thus we retain differentiability. In addition, this
algorithm can be applied to any Lie group, and thus we generalize what follows to SU(N).
We use Eq. (3.12) to define an SU(NN) matrix to apply to the link variable. We start by

defining the following

Qu(x) = %(QL(:):) ~0,()) - ﬁ T (Q)(x) — () (3.14a)
Q(x) =Cy(x) UJ(:L‘) (no summation over pu). (3.14b)

3We use the convention that Latin indices refer to just the spatial directions (i.e. j = 1,2,3), and Greek
indices refer to both the spatial and temporal directions (i.e. u=0,1,2,3).
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The key thing to realize is since ), (x) is a Hermitian, traceless NV x N matrix then it must
belong in su(N). Therefore, /@) must be an SU(N) matrix. Then, we define an iterative

mapping as follows

n 7 (n) T n
UM (z) = e @ Uin)(z), (3.15)

Closure guarantees that U,EHH) remains in SU(N). The smearing process is performed n,,

times, and we designate the resulting link variables as AU/'H (x), i.e.

U= UY 5@ 5.0 ghe) =

Il
=

(3.16)

We choose the same staple weights used in Eq. (3.13), which smears the spatial links while
leaving the temporal links untouched. By restricting ourselves to smearing only the spatial

links, we ensure the transfer matrix remains positive definite [38].

3.2.2 LapH Smearing of the Quark Fields

Now, we move on to the smearing of the quark fields. The goal of this process is to reduce the
excited state contamination in our correlation functions. We want our smeared quark fields
to behave identically under symmetry transformations as our original quark fields. With this
in mind, the natural choice is to make use of the covariant Laplacian &, which is defined in

the following way

3
A= 3T @)0,5, + U206, 5, — 200,0°) (3.17)

Jj=1

Notice that the covariant Laplacian is defined to use the smeared gauge links, and that the

operator has no dependence on Dirac spin indices. It is a simple matter to show that the
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covariant Laplacian is indeed gauge covariant: using the gauge transformations for the gauge

links shown in Eqs. (2.31) and (2.33) we find

Re(V) = 3 [ Ty@)Q1 w + )"0, + () Uy @)1 = 3)) 6,5, = 26, (A} (@)
=2 [ (@) () 8,5, + () Uy ()2 (1)) "8, 5, — 2%(@(@9*@))“”]

= (@) 3 [ U@)0,5, + UH@)0, 5, — 260,021 (y)

Jj=1

= Q" (2) AL (V)2 (y).
(3.18)

We must now determine how we should use this operator to appropriately smear our quark

fields. A popular method is to smear the fields in the following way [49]

B = (8 + 1-B0y) " 0(0), (3.108)
5(@) = D) (0 + 7-Be) (3.19b)

where o5 and n, are parameters used to finely tune the smearing of our quark fields. By
making use of the covariant Laplacian, it can easily be seen that the quark fields retain their
original gauge transformation properties, which is a necessary condition for our smearing
scheme. The effect of this smearing procedure on the effective energy is shown in Figure 3.1,
where it is clear that quark smearing dramatically reduces the excited state contamination
in our operators. It is possible to express the smearing operators defined in Eq. (3.19) by a
sum over the eigenvalues and eigenvectors of the covariant Laplacian. This alternative way
of viewing the quark smearing may lead to other smearing schemes, or at least to a better

understanding of the smearing process. Consider the smearing operator used in Eq. (3.19)

2z )"
Kab(‘ra y) - (5x,y + RA:EZ) . (320)
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Figure 3.1: The effective energy M (t) (defined in Eq. (2.78)) for unsmeared (black circles)
and smeared (red triangles) operators. The three columns correspond to operators displaced
in different ways. The quark field smearing is done using Eq. (3.19), and the gauge-link
smearing is done using Eq. (3.16). The top row only smears the quark fields. The middle
row only smears the gauge links. The bottom row smears the quark fields, and the gauge

links. Figure taken from Ref. [43].
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Now, we would like to write K, (x,y) in terms of the eigenvectors and eigenvalues of the

covariant Laplacian. It is straightforward to show the covariant Laplacian is Hermitian

Alb(xvy) =A a(y,x)

S *

I
E

2 )" 0,0 U5 ()'0, 50 — 2000

y+i.x

<.
Il
-

Il
NE

-Nab Trab ab
_Uj (y)T(;z—j,y + Ufj(y)T(s — 204,40 }

a+3.y

<.
Il
—

(3.21)

]

[ T7ab > Trab > ab
Ty + 700,50+ U = Dy — 20006

<.
Il
—

T7ab

I
E

U)o - 2@,&“”}

1

<.
Il

R

ab($7y)'

From this result, we know all the eigenvalues are real and the eigenvectors can be chosen
such that they are orthonormal. It can also be shown that the eigenvalues of —A are all
non-negative. Therefore, we denote the eigenvalues of —A by A*) with the understanding

that A1) > A*) > 0. and the eigenvectors of —A by v*). Then, we have

ST A = AW ®), (3.22)
J

where the color and spatial indices of A have been condensed into a single Latin index.

Finally, we can write the smearing operator as an eigendecomposition

o " k) [\
Kaalo) = 0rips 3 (1= 700) o)l (3.23)
k g

From this expression, it is easy to see that the larger eigenmodes of —A are suppressed since

lim Kup(2,y) = 0y u, Z e*iag)‘(k)vék) (x)vl(,k) (y). (3.24)

Ng—>00 3
It is now clear why smearing of the quark fields reduces the excited state contamination.

Also, this hints at a simpler strategy: ignore the exponentially suppressed eigenmodes in the

sum over k. This is precisely the strategy put forth by Peardon and his collaborators, and
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is referred to as Laplacian Heaviside (LapH) smearing [50, 17]. An important advantage of

this smearing method for estimating temporal correlators will be discussed in Chap. 4.
In this scheme, the smearing matrix is defined as
Su(z.y) = O(o? +4)

(3.25)
— V3002 + A5V,

where Ay is a diagonal matrix diagonalized by Vx (i.e. A = VAAZVET). Then, it can

be seen that Sy (z,y) only includes the eigenmodes that satisfy A*) < ¢2. The simplest
representation of this operator is by a sum over the eigenmodes of —A. Proceeding as

before, the smearing operator can be written as

NU
Sab(,) % bapgs ¥ v (@) (), (3.26)
k=1

where N, depends on the value chosen for o,. This representation for § is only approxi-
mately correct since we do not expect N, to remain constant for every gauge configuration.
Additionally, since A is block-diagonal in time, then each eigenvector v*) has non-zero ele-
ments for only one time slice. This means we should also expect some variation in N, across
different times. However, explicit calculations show that these variations in N, are small and
that holding N,, constant has a negligible effect on the final results [50]. The numerical value
of 0% was chosen by calculating the effective energy of three nucleon operators for different
values of o2 until the effective energy on a very early time slice was minimized for the three
operators (see Figure 2 of Ref. [17]). The value chosen is o2 & 0.33.

If we take V; to be the matrix whose columns are composed of the eigenvectors of the

N, lowest eigenmodes of —A for each time slice, then we find*
S=V.Vhel, (3.27)

where I¢ is the identity matrix in the Dirac spin subspace; so we can see that the smearing
matrix does not act on the spin indices. Notice that V; is a N3N;N, x N, N; matrix, where

N, is the number of spatial sites in each direction, N; is the number of temporal sites, and

4Notice we have dropped the approximation sign for S. This is because we actually use the form in
Eq. (3.27) for our simulations, and we assume any errors in this approximation are negligible.
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N, = 3 is the number of colors. We take the N,N;N, vectors that comprise V, @ I{ to form
the so-called LapH subspace, where Ny = 4 is the number of Dirac spin indices. In Chap. 4,
it will be shown that a drastic reduction in computational effort is achieved by working

within the much smaller LapH subspace.

3.2.3 Gauge-Covariant Displacements

An important step in the construction of our operators is to include spatially extended
hadron operators. Many hadrons have complicated orbital and radial structure, and we
design our operators to capture this extended spatial structure. We consider displacements
in multiple directions in order to capture the orbital structure and displacements by different
distances in order to capture the radial structure [45]. In order to retain gauge invariance, the
displacements are constructed using gauge-link variables to connect the starting point of the
quark and the point the quark is displaced to. Thus, the p-link gauge-covariant displacement
operator in the jth direction is given by [46, 43, 45]

~ ~ ~ ~

DY (z,a) = Us(x)Uj(x + ) ... U@ + (p = 1)1)6, i (3.28)
where j = +1,+2, +3. If we allow 5 = 0, then
DOz, 2") = 640, (3.29)

which corresponds to no displacement.
Therefore, our basic building blocks used for the construction of all hadron operators are

gauge-covariantly-displaced LapH-smeared quark fields defined by

o~ ~(A) .
oy =DV gl = U, DY, (3.30)

qa]

where A is the quark flavor, a is the color index, and « is the Dirac spin index.® Occasionally
we suppress the spatial displacement indices for the basic building blocks, and we sometimes

write u = ¢%, d = ¢%, s = ¢° (and similarly for the barred quarks).

"Recall that the 74 is a part of the definition of ﬁg‘aj in order to ensure the correlator matrices are
Hermitian.
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3.2.4 Charge Conjugation and G-Parity

In order to determine how our operators transform under G-parity, we first determine how
G-parity acts on the basic building blocks shown in Eq. (3.30). Since G-parity involves the
charge conjugation operators C, we start by examining the transformation properties of the
basic building blocks under charge conjugation. The charge conjugation operator changes
quarks into antiquarks and vice versa. One can derive the exact transformation properties
under charge conjugation by taking the complex conjugate of the Dirac equation, which
must be satisfied by both the quark fields and the charge conjugated quark fields, but with
opposite charges. This leads to

CA,(2)CT = —A,(z)", (3.31)
which implies
CU,L(2)C" = U,(z)", (3.32)

by making using the definition of the gauge links in Eq. (2.37). The quark fields must

transform as
Ca(2)CT = Vy(@)Ch,.  Ciyla)Ch = —C jus(a), (3.33)

where the charge conjugation matrix C' satisfies
ct=cCc1, ct =—c, Cy.Cl = -, (3.34)

and is commonly chosen to be

C= Y472, (335)

in the Dirac-Pauli representation. We then have the following transformation properties

under charge conjugation for our basic building blocks:

qu?aj(x)CT = ﬁfgj (x)('74CT)ﬁa7 (3.36a)
Ci; (2)C" = —(77 C)aplis; (%), (3.36h)
where 7,C F= V4Y2Ya = —72 and %{C = Y442 = Y2 in our representation of the gamma

matrices.
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Next, we need to apply the isospin rotations that are a part of the G-parity operator.
Since isospin only acts on the flavor indices, we can ignore all other indices for these oper-
ations. To determine how these isospin operators act on the flavor indices, we need to use
the Wigner D-matrix in the I = 1/2 representation along with transformation properties

for operators transforming irreducibly under isospin shown in Eqs. (3.39) and (3.40). This

results in
e—lﬂ'TQEBlﬂ'TQ — d7 e—Zﬂ'TzueZ’TI'TQ — d,
efergdeMrTz — —ﬂ’ eflﬂ'Tzde’LTrTz = —u, (337)
6—Z7I'T2§el7l'T2 — 57 e—’LTI'TQS€ZTI'7'2 — S,

which finally gives the transformation of our building blocks under G-parity:

UGﬂaajUé’ = _Fgﬁdaﬁj’ UGUGO&jUg = _aaﬁjrga’
UGEijg = Pgﬂuagj, UgdaajUg = ﬂagjrga, (338)
UGgaajUg = —Fggsam, Ugsijg = _gaﬁjrga'

3.3 ELEMENTAL OPERATORS

Once the basic building blocks have been designed, the next step is to construct sets of
gauge-invariant elemental operators from these building blocks. Each set is identified by
the hadron type (e.g. baryon, meson, etc.), flavor structure, and displacement type. In
general, the operators in these sets are not linearly independent, and we remove these linear
dependencies within the set. Each set then defines a basis of operators that transform
reducibly under the symmetry group of the lattice. Then, in Sec. 3.5, we show how to find
the appropriate linear combinations of these basis operators that transform irreducibly under

the lattice symmetry group.

3.3.1 Flavor Structure

In our calculations, we only consider the u, d, and s quarks, and thus we could base the

flavor structure for our elemental operators on the SU(3) flavor multiplets. However, this
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is not necessary since SU(3) flavor symmetry is broken, which allows for the possibility of
significant mixing between the different SU(3) flavor irreps (so long as these mixings conserve
flavor). This would be somewhat inconvenient, because we would need to include operators
that transform in all the irreps that mix in our correlation matrices in order to make sure we
find all the stationary states for a given symmetry channel. In our simulations, we work in
the approximation that m, = mg which gives us exact SU(2) flavor symmetry (also known
as isotopic spin or isospin symmetry). Therefore, if we base the flavor structure of our
elemental operators on the SU(2) flavor irreps, then no mixing occurs between between the
different SU(2) flavor multiplets, which simplifies matters from a computational standpoint.
Therefore, we demand our elemental annihilation operators to have flavor structure such

that under an isospin rotation R, they transform as

Ug, O35 (U}, = 055 (t)Dg}S(RT)*, (3.39)

where I is the isospin, I3 is the third component of isospin, S is the strangeness, and DY) (R,)
are the Wigner D-matrices. The corresponding elemental creation operators then transform

as

UR 61135

-

—=II,S
(WU}, =0 (1) DY), (R-). (3.40)

Additionally, since we have exact SU(2) flavor symmetry, this means our spectrum is inde-
pendent of I3, and the operators we construct are chosen to have maximal I3 (i.e. I3 = I).
However, when constructing multi-hadron operators, it is necessary to include all possible
values of I3 for the individual operators in order to exhaust the possible set of multi-hadron
operators with a given isospin. But, we still only construct multi-hadron operators with
total I3 that is maximal.

Before we discuss our specific procedure for identifying elemental operators obeying the
above transformations, it is useful to list further properties of these elemental operators
using the generators 7y, 7, and 73 of isospin symmetry, which satisty [r;, 7;] = i€;,7¢. Any

annihilation operator Og) transforms appropriately under the isospin irrep I if it obeys the
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following;:

[r3, O] = — 1,0, (3.41a)
74,051 = =V = B)(I + L+ 1O}, (3.41b)
7,0 = -/ + L)1 - I+ 1)0) (3.41c)

where 7. = 71 +475. These relations also imply the following

1 1
(73, 73, O ) o 5 [ [, O ) + 5l (7, O] = 1T+ 1O, (3.42)

We then use these relations to construct our elemental annihilation operators. During this
process it is also necessary to use the commutation relations between the isospin operators

and the quark fields. For the barred quark fields, these are

1 - 1=

[7-37E] - Eaa [7—37d] = 5 ) [7—375] = 07
[y, u] =0, [rd=1u  [r.,5=0, (3.43)

[7_,7] = d, [7_,d] =0, [7_,5] =0,

and for the unbarred quark fields, these are
1

[Tg,U] = _§u7 [7—37d] = §d7 [T37S] = 07
[r_u]=0, [r_,d=—u  [r_,s]=0, (3.44)

[T+, u] = —d, [74,d] =0, [T+, 8] = 0.

By writing down every possible flavor combination for a given isospin channel, we then find
elemental operators that transform under each isospin irrep by applying the relations above.

Specific examples are discussed for baryons and mesons in Secs. 3.3.2 and 3.3.3, respectively.

46



© @ @ l. T q°

singly- doubly- doubly- triply- triply-

single-site displaced displaced-I displaced-L displaced-T displaced-O

Figure 3.2: The displaced baryon operators we consider. The solid circles depict the quark
fields. The line segments show the gauge links making up the displacements. The hollow
circle indicates the location of the Levi-Civita tensor from which the quarks are displaced.

The displacements are all of the same length. Figure taken from Ref. [43].

3.3.2 Baryons

Constructing baryon operators that are gauge-invariant is easily done with the use of the
Levi-Civita symbol £,5.. Our baryon elemental annihilation operators are flavor combinations
of ¢

(I)gﬁB'yC;;jk’ (p7 t) - Z e_ip.wgabcq(ﬁxi(w? t)Ql%j (wv t)quk: (ZB, t)? (345)
x

that transform according to the isospin irreps. The corresponding elemental creation oper-

ators are flavor combinations of

—ABC iD- — — —
(I)ozﬁ'y;z‘jk(pv t) = Z e’? mgabCng(w’ t)qg@’j(wv t)qfai(mv t)' (346)
x

We construct elemental operators for each displacement type shown in Figure 3.2, and for
simplicity, each displacement is of length 2as. Our choices for these elemental operators
are shown in Table 3.1. Some of these elemental operators may be linearly dependent, and
therefore we make use of a MAPLE package capable of manipulating Grassmann fields in
order to detect these linear dependencies and give us a final set of linearly independent
elemental operators.

Our final set of baryon operators are linear combinations of these elemental operators

such that they transform appropriately under the lattice symmetry group (see Secs. 3.4 and

6Flavor combinations means linear combinations that differ only in the flavor indices. These are needed
when a particular isospin cannot be constructed with a single term.
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Table 3.1: The chosen set of elemental baryon annihilation operators. Table taken from

Ref. [45].

Baryon I =1 S Annihilation
operators
AT 2 0 By ijk
= ! -1 Cosigh
N B 0 Qs — Pabnsish
= % —2 z%“/; ijk
A® 0 -1 (I’g%sfy; ijk (I)i%?; ijk
Q- 0 -3 @Zsﬁsv; ik
3.5):
Bi(t) = by, @45 (p, 1), (3.47)

where [ is a compound index that specifies all the quantum numbers for this operator as
well as an identifier for the different operators within the same symmetry channel. The

corresponding baryon creation operators are then

Bi(t) = B0 (p, ), (3.48)
Notice that we only need to determine these linear combinations for the annihilation op-
erators or the creation operators, because the coefficients are simply related by complex
conjugation.

One last interesting point to discuss about our baryon operators is that the creation (an-
nihilation) operators create (annihilate) a particle state with a given parity P and annihilate
(create) an anti-particle with same parity P. This means that in our temporal correlators
using baryon operators, we are creating a baryon with a given parity that propagates forward
in time while also creating an antibaryon with the same parity propagating backwards in

time. But, since fermions and their corresponding anti-fermion have opposite parity, then the
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backwards propagating antibaryon from our correlator is not the antibaryon of the baryon
propagating forward in time. Instead the antibaryon propagating backward in time is the
antiparticle of the parity partner of the baryon propagating forward in time [45]. Further-
more, the masses of these two states propagating in different temporal directions differ due
to chiral symmetry breaking. We can take advantage of this fact by relating correlators
with a given parity for ¢ > 0 to correlators with opposite parity for ¢ < 0 to increase statis-
tics. This works by first constructing the odd-parity baryon operators from the even-parity
baryon operators by utilizing charge conjugation in order to ensure the correlators for these

two operators are related by
Cii(t) = Ci5(Ny — )7, (u = odd, g = even), (3.49)

where N, is the temporal extent of the lattice. Then, once the correlators for both the even
and odd parity baryons have been calculated, we can average over them in the following way
—=9/u 1 u U *
() = 5 (c ) + v = 1) (3.50)
to increase statistics. Note that this procedure can only be applied to baryons at rest,

because baryons with non-zero momentum no longer have well-defined parity (since the

parity operator flips the momentum).

3.3.3 Mesons

Constructing meson operators that are gauge-invariant can be done by contracting the color
indices of the two basic building blocks composing a meson. Hence, every meson elemental

annihilation operator is a flavor combination of *
@égz’jk(% t) = Z @_Z‘p'(m%(dﬁdﬁ)wabag‘m(fca t)%%jk(w’ t), (3.51)

that transforms according to the isospin irreps, where d,, and dg are the spatial displacements

of the g and ¢ fields from @, respectively. Notice the quark operator has two displacement

"For isoscalar mesons with the quantum numbers of the vacuum, it is necessary to subtract off the large
vacuum expectation values of the operators. Unless stated otherwise, it will always be assumed that this has
been done.
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Figure 3.3: The displaced meson operators we consider. The solid circle depicts the quark
field, and the hollow circle depicts the antiquark field. The line segments show the gauge
links making up the displacements. The displacements are all of the same length. Figure

taken from Ref. [43].

indices, because we consider displacements in which the antiquark field is displaced twice.
The spatial displacement vectors in the phase factor are necessary for the meson operators
to transform appropriately under G-parity. The corresponding elemental creation operator
is

—AB

ip-(2+L(dy _
(I)aﬁ;ijk(p7 t) = Zelp( +2(d +dﬂ))5abq%jk(m’t)qg‘oci(w7t)' (352)

T

The different displacement types we consider are shown in Figure 3.3, and for simplicity,
we only consider displacement lengths of 3as. Our choices for these elemental operators are
shown in Table 3.2. However, when we perform the group theoretical projections to the
elemental operators (see Sec. 3.5) we include the G-parity projections at that time as well.

Therefore, we actually use the following elemental operators

Tog = B + (3.53a)
bop = B, (3.53D)
oy = ‘I)Z%, (3.53¢)
Kop = 338, (3.53d)
E') = UgKosUL = 0%, (3.53e)

As before with the baryons, we expect some of the elemental operators to be linearly de-
pendent, and we make use of the Grassmann field package in MAPLE to remove these linear

dependencies.
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Table 3.2: The chosen set of elemental meson annihilation operators. Ug is the quantum

operator corresponding to a G-parity transformation. Table taken from Ref. [46].

Hadron I =13 S G Annihilation operators
fo 0 0 1 i @b+ U (P + @05 U
SS SSs T
W,w, 0 0 —1 g%+<1>a —Ug (P4 +0dd) UL,
b, p 1 0 1 q)dﬁ + UG<I>dBUT
at, Tt 1 0 -1 @i“ U, @dﬁUG
Kt K+ : 1 o
-0 —x0 s
K K % -1 (Piﬁ

Our final set of meson operators are linear combinations of these elemental operators
such that they transform appropriately under the lattice symmetry group (see Secs. 3.4 and
3.5)

!
M(t) = @48 (p. 1), (3.54)

where [ is a compound index that specifies all quantum numbers for this operator, as well as
an identifier for the different operators within the same symmetry channel. The correspond-
ing meson creation operators are

N+=AB
Mi(t) = D,

(p,1). (3.55)
Again, as before with the baryons, we need only determine the coefficients for the annihilation
operators or the creation operators, because the coefficients for each are related by complex
conjugation.

In contrast to the baryons, the backward-propagating mesons have the same energy as

the forward-propagating mesons, because bosons have the same parity as their corresponding
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antiboson. This then allows for an increase in statistics if we can design our meson operators
such that
Ci;(t) = Cy(Ny — 1), (3.56)

which can easily be satisfied if our meson operators satisfy

M;(t) = nM;(N; —t),  with |p|* =1. (3.57)

This was only done for the lightest particles in which temporal wrap-around effects are
most significant. This helps in those cases, because a correlator that is symmetric under
time reversal can be fit using fewer parameters leading to increased precision in the energy

extraction.

3.4 THE LATTICE SYMMETRY GROUP

A commonly used approach for designing operators in lattice QCD has been to use con-
tinuum operators that transform according to the quantum numbers specified above, and
then to discretize these operators. This strategy has several shortcomings: the efficient con-
struction of spin states larger than the first few J values soon becomes unwieldy; the use of
extended hadron operators with the correct transformation properties also quickly becomes
burdensome; and, perhaps most importantly, due to the reduced rotational symmetry of
the hypercubic box, the discretized operators mix different values of J. Therefore, building
operators based on the irreps of SU(2) is ineffective and unnecessary. Instead, our approach
is to construct operators that transform under the irreps of the lattice symmetry group,
which is a crystallographic space group known as the simple cubic space group and denoted
by O} in Schonflies notation. This group contains: the proper rotations of a cube, which
form the octahedral group O; a spatial inversion element denoted by I, which can be used
to construct the point group Oy, using a direct product (i.e. O, = O ® {E, I}, where E is
the identity element); and the set of allowed translations T'(b) on a simple cubic lattice with

periodic boundary conditions by a vector b, which forms an abelian group. Thus, the lattice
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symmetry group O; is the semi-direct product of T'(b) and Oy, and our operators are made
to transform appropriately under irreps of this symmetry group on each timeslice.®

The first step in constructing operators with the appropriate transformation properties
under O} is to obtain the irreps of the group of allowed translations 7'(b). Since T'(b) is an
abelian group, all of its irreps are one-dimensional, and we can label these irreps by the total
momentum p. Next, we use the method of induced representations [51, 52, 53, 54|, which
is a method used to form the representations of a group from a representation of one of its
subgroups, to find the representations of O, that we demand our operators transform under.
The methods for doing this in the general case of transformations with the Poincaré group,
known as Wigner’s classification [55], have been well known for some time. The idea behind
this method is that the irreducible representations of the Poincaré group can be induced from
the irreps of the subgroup that leave a chosen reference momentum p,.s invariant, known as
the little group of p.

The simplest case concerns constructing operators that are used to create states at rest
(i.e. p =0). The representation of the group of allowed translations is trivial in this case.
Hence, we need only make sure our operators are translationally invariant and transform
according to the irreps of Oy (which is the little group in this case).

Things become more involved when dealing with states that have non-zero total momen-

tum. First, consider how translations affect these types of states:

10)[p) = [ ¢2 7(0)jo) (@] p)
= /d3:1; |z + b) eP®
_ / B ) 7 @D
—cwt [ @z ers
—c vt [dala) (@]p)

=e P’ |p).

(3.58)

8The hadron operators we construct act on single time slices, which is why we are interested in the
symmetries of the three-dimensional cubic lattice, rather than the full hypercubic lattice.
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Therefore, if an operator O is to create a state with momentum p by acting on the vacuum,
then
e~ PO |0) = T(b)O” |0)
= T(b)O"T(b)'T(b) |0) (3.59)
= T(b)O"T(b)' |0)
which implies that under translations, these momentum creation operators should transform

as

T(b)O T (b) = e PPO". (3.60)

Similarly, one can show that the momentum annihilation operators should transform as
T(b)OPT(b)" = ePPOP. (3.61)

Next, we need to determine how these operators transform under rotations in the octa-
hedral point group O,. But, we need to be cautious, because different rotations can bring
an initial momentum into the same final momentum, and momentum states are only unique
up to the phase introduced by rotations in the little group of the momentum of that state.
Therefore, we need to choose a convention for defining our phases in a consistent manner.
This is one of the reasons for introducing the reference momentum in Wigner’s method. Let
us consider a state |p, o), where o refers to all indices that are affected by a rotation (e.g.
spin projection). We then pick a reference momentum p,.r, and a reference rotation R? s
(for each p) that uniquely transforms p,.s into p. Then, we choose our phases to be fixed
by

|p,o) = Uge, |Pres, o) - (3.62)

Using this convention, we can determine how these states transform under a rotation R € O,

(i.e. including both proper and improper rotations):

UR |p7 U) = URURfEf |p7"ef7 U)

; (3.63)
= URZ’}URZ?URURfef |pref, O'> .
We then define the Wigner rotation R, as
RY, = (R5)'RRY,, (3.64)
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which is an element of the little group of p,.r. Note, that RY, explicitly depends on the

rotation R chosen, and thus the set of all Wigner rotations forms the full little group of p,y:

W(pres) = {(Rref) 'RR" . :Re oh}, (3.65)

where p is any momentum that can be brought to p,.; by a transformation in Oy,. Finally,
this allows us to determine the effect of an arbitrary transformation in O, on any momentum
state by using the representations of the little group. The representations of the little group

can be determined as follows

UR€V ‘pTefa Z |pref7 prefa o ‘ URP ‘prefa >
(3.66)
= Z Pres, o) Dovo (RY).-
Thus, continuing with Eq. (3.63):
UR ’pa U> = Ung} UR€V ‘prefa 0->
— ! P
= Up > [Pres. o) Toro (B) (3.67)

=" |Rp, o) Lo (RE,).

This allows us to determine how our non-zero momentum creation operators must transform
under the group Oy:
—~AX —=A
UrO, U}, = Z O, TN (RE,), (3.68)

where A is an irrep of the little group of p,.s, and X is the irrep row. Let us combine this
with the group of translations to determine how these operators transform under the full
space group O;:

UtryOp Ulpyy = Z O, TN (RE, )e P, (3.69)

Similarly, for the annihilation operators we must have

Utry ONU L, ZOA“P (RP,)*eiRpt, (3.70)
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Note that these transformation properties for the creation and annihilation operators are
completely general. That is, they even apply for zero momentum operators, where the
Wigner rotations reduce to normal rotations (i.e. R}, — R) and the exponential factors
become unity.

There is one added complication to discuss when considering the group O;, as compared
to the Poincaré group: no single reference momentum can be brought to all allowed momenta
from transformations within Oy. Hence, we define a reference momentum for each momentum

9 Our choices for these reference momenta are shown in Table 3.3.

direction we consider.
We only consider three types of momenta: on-axis directions £z, +y, £+2; planar-diagonal
directions 4+ 4+ g, &2 &+ 2, £y + 2; and cubic-diagonal directions £z + ¢ &+ 2. We expect
these to be sufficient for the energy ranges we are interested in. One last point to be made
is that we can simplify this process by first making momentum operators having momentum

in the direction of the reference momentum p,.y only, and then apply the reference rotations

RP. s to these operators to obtain momentum operators for all momentum directions.

3.4.1 The Octahedral Group O

We start by discussing the group of proper rotations that leave a cube invariant, known as
the octahedral group O. This group has 24 elements. The proper rotations in this group are
denoted by C,,;, which produces to a rotation through an angle 27 /n about the axis O;. The
axes O; are shown in Figure 3.4. This group has five conjugacy classes, shown in Table 3.4.
This implies there must exist five inequivalent irreps with dimensions 1, 1, 2, 3, and 3 (using
the fact that the sum of the squares of the dimensions of the irreps equals the order of the
group). The five irreps are named Ay, Ay, E, Ty, and T5.1°

When we discuss projecting our operators onto the irreps of the little group in Sec. 3.5,
we need to obtain explicit matrices for these representations. The set {Cy,, Cy.} is a gener-

ating set for O, and therefore we only need the representation matrices for these two group

91t does not matter if the lengths of p,.; and p differ as long as they can be made parallel by a rotation
in Oy. The reason this does not matter, is because the little group is the same regardless of the difference
in lengths of these two vectors.

10We adopt the Mulliken convention [56, 57] for naming the irreps: The one-dimensional irreps are named
A (B) if they are symmetric (antisymmetric) with respect to rotations about the principal axis; the two-
dimensional irreps are named F; and the three-dimensional irreps are named T'.
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Table 3.3: Our choices for the reference momentum directions and the reference rotations

for each momentum direction that we use. Table taken from Ref. [46].

Pref direction

p direction

ref
(0,0,1) (0,0,-1) Coe
(1,0, 0) Clyy
(-1, 0, 0) Ch
(0,—1, 0) Cliz
(0,1, 0) Cit
(0,1,1) (0,—1,—1) Coe
0, 1,-1) Crt
(0,-1,1) Cla
(1,0, 1) Ct
(—1,0,—1) Cop = Cp Oy
(1,0,—-1) Cya = Oy, Ol
(—=1,0, 1) Cy.
(1, 1,0) Cyy
(_17_170) Coq = 02z04y
(1,-1,0) Cye = Cy,) O,
(-1, 1,0) Ch
(1,1, 1) (1, 1,-1) Clyy
(1,-1, 1) o
(1,-1,-1) Coe
(-1, 1, 1) Cy.
(-1,1,-1) Cy,
(-1,-1, 1) Ca,
(—1,—1,-1) Oy = Cy.Cyy,
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Figure 3.4: The axes denoting the group elements of the octahedral group O. Figure taken
from Ref. [46].

elements. Our choice for these matrices is shown in Table 3.5. A very obvious question
one might ask is, how do the states transforming in these representations correspond to the
physical states we are interested in that transform under SO(3)? Since O is a subgroup
of SO(3), this question can be addressed by using the subduced representations of SO(3)
restricted to O, which are given by Fio = {F(‘])(R); R e O}. Our goal is to determine the

irreps of O contained in FfO, which is in general reducible. The number of times n{. that the

Table 3.4: The conjugacy classes for the octahedral group O.

¢ ={E}

Cy = {Csa, C33, Csy, Cs5, Cs . Cag, Ot Ol
Cs = {Coe, Coy, Ca. }

Cs = {Cup, Oy, Co, Ot O 1, O

Cs = {Ca4, Cop, Ca¢, Cog, Coe, Cor }
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Table 3.5: The choice of matrices used for the representations of O.

A r™(Cy,) ' (Cy)
A 1] 1]
A -1] -1]
1 3 -1 0
E . V3
V3 -1 0 1
0 0 1 0 -1 0
T 0 10 1 0 0
-1 0 0 0 0 1
0 0 -1 0 1 0
T 0 —1 0 -1 0 0
1 0 0 0 0 —1
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irrep I' of O appears in Ffo is given by

nph = — Z X¢0 X (G, (3.71)

where Xio is the character vector for the J irrep of SO(3) subduced to O, x' is the character
vector for irrep I' of O, go is the order of the group, the sum is over the classes C, of the group,
and NV, is the number of elements in class p. The results are shown in Table 3.6. Notice that
only integer values of J appear in this table. This is because we only considered the single-
valued irreps of O and SO(3). We could find the double-valued (spinor) representations of
these two groups as well, but the orthogonality theorems used to derive Eq. (3.71) and the
projection formulas to be used in Sec. 3.5 are only valid for the single-valued irreps. However,
we can instead use the single-valued irreps in the double covers of O and SO(3), which are
known as the double octahedral group OP and SU(2), respectively. The single-valued irreps
of O also occur as single-valued irreps for OF, and the double-valued irreps of O appear as
extra single-valued irreps for OP. The double octahedral group can be formed by adding a
new group generator E to O, which performs a rotation by 27, and has the property that
E° = E. This new group generator doubles the number of group elements of O: for each
element R € O, there exists a new element R = ER € OP. That is OP = {R ER:Rc O}

This new group consists of eight conjugacy classes shown in Table 3.7. Therefore, there
must exist three new single-valued irreps in OP that correspond to the double-valued irreps
of O, and they must have dimensions 2, 2, and 4. These new irreps are named G, G5, and
H. Note that if you choose an irrep such that I'(E) = I'(E) and I'(R) = I'(R), then this
representation corresponds to one of the single-valued irreps from O. To obtain the new
irreps, you must choose I'(E) = —I'(E) and I'(R) = —I'(R). Our choice for these matrices
is shown in Table 3.8. We can now use Eq. (3.71) to find the number of times n{ that the
irrep I' of O appears in '}, by replacing O with O” and SO(3) with SU(2). The results

are shown in Table 3.9.

60



Table 3.6: The number of times n{. that the irrep T' of O occurs in I'y,.

J | ny, onh, ng ong ng
0 1 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 1
3 0 1 0 1 1
4 1 0 1 1 1
5 0 0 1 2 1
6 1 1 1 1 2
7 0 1 1 2 2
8 1 0 2 2 2
9 1 1 1 3 2
10 1 1 2 2 3
11 0 1 2 3 3
12 2 1 2 3 3

Table 3.7: The conjugacy classes for the double octahedral group OP.

¢, ={E}

Cy = {Csa, C33, Cs,, C5, Csy, Ciy, Ot O3

C3 - {sz, C2y7 C22762x762y762z}

Ci = {Cuo. Cuy, Cu, C CL O

CS = {CQaa C(2177 Can CZda 0267 02f762a762b76267 €2da 62@762/‘}
Co={E}

Cr = {@,a,ﬁgﬁ,537,635,5;;,6;;,5;3,6;;}

Cs = {Cir.Cay, Tz, T, T, Ol |
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Table 3.8: The choice of matrices used for the double-valued representations of O.

A TN (Cyy) T™M(Cly)
o . 1 —1 . 1—2 0
1 1 a
V2 V20 14
Gy 1 1 -1 a1 1—1 0
N 10 141

1 —V3 V3 -1 —1—i 0 0 0
V3 -1 -1 /3 0 1—4i 0 0
V3 o1 -1 1+i 0
1 V3 V3 1 0 0 0 —1+44]

=
&
I
R
Sl
o
o

w

3.4.2 The Point Group Oy

By including the spatial inversion operator as a new group generator in O, denoted by I,
this produces the point group Oy, which is simply a direct product O, = O ® {E, I;}. This
doubles the number of conjugacy classes: the first five classes are identical to those shown
in Table 3.4, and the extra five consist of the first five but with each group element in the
classes multiplied by I,. The irreps of O, are similarly named to those of O but with the
addition of the subscripts g (for the even-parity irreps) and u (for the odd-parity irreps).!!
That is, we now have the irreps Ay, Ay, Ey, Thg, Tog, Aru, Aou, By, T1y, and Ty,. The
choices for the explicit matrix representations shown in Table 3.5 do not depend on this new
subscript. But, the matrix representation for I, is the identity matrix for the even-parity
irreps and negative one times the identity matrix for the odd-parity irreps.

As before, if we want to use the double-valued irreps of O, we must instead use the

' These subscripts are abbreviations for the German words gerade and ungerade, which mean even and
odd, respectively.
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Table 3.9: The number of times n{. that the irrep ' of O occurs in '}, .
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double point group OF. The effect of including spatial inversions into O to produce OF
is exactly analogous to the effect of including spatial inversions into O to produce Oy: the
number of elements in O has doubled as compared to OP; the first eight conjugacy classes
of OP are identical to those shown in Table 3.7, and the extra eight consist of the first eight
but with each group element in the classes multiplied by I,; the double-valued irreps of Oy,
are denoted by G4, Gag, Hy, Gy, Gay, and H,; and the choices for the explicit matrix
representations shown in Table 3.8 do not depend on the parity of the irrep, but the matrix
representation for I, is the identity matrix for even-parity irreps and negative one times the

identity matrix for the odd-parity irreps.

3.4.3 The Little Groups

When dealing with non-zero momentum operators, we need the irreps of the little groups
corresponding to the reference momentum p,.s. Recall that that we only consider three types
of momenta: on-axis directions 4+, +y, £+2; planar-diagonal directions £z + ¢, +2 + 2,
4y + Z; and cubic-diagonal directions £z 4+ ¢ + 2. This greatly simplifies matters, and
leads to three little groups that we must consider: C}, for on-axis momenta, Cy, for planar-
diagonal momenta, and Cj, for cubic-diagonal momenta. The conjugacy classes and explicit

representation matrices used can be found in Ref. [46].

3.4.3.1 The Subductions onto the Little Group Irreps When we are dealing with
operators that create states with non-zero momentum it is not always easy to determine the
type of particle that might correspond to any particular little group irrep. Whereas, when
dealing with particles at rest that transform under the Oy, irreps, particle identification is
relatively straightforward by considering the other quantum numbers of that particle along
with Tables 3.6 and 3.9. We can make the identification of these moving particles easier
by considering the number of times that each little group irrep occurs in the subduced
representations of Oy restricted to the particular little group in question. The results of

these subductions are shown in Table 3.10.
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Table 3.10: The subductions | of the irreps of O onto the irreps of the little groups Cy,,
C3,, and Cy,. Table taken from Ref. [46].

A (Op) 1 Cyy 1 Cs, 1 Co

Ay A A Ay

Aty Ao Ay Ao

Ay, By Ay By

Asy, By Ay By

E, Ao B E A & By
E, Ay & By E A & By
Ty, Ay & FE Ay & E Ay @ B & By
Ty, ATDFE AT FE AL @ B, @ By
Ty, B, & E A B E A @ Ay @ B
Tou Bi@oFE Ay @ F AL @ Ay @ By
Grg/u G, G G
Gag/u G G G

Hy), GiaG, FRoRhaod 26
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3.4.4 Transformation of the Building Blocks

In order to determine the effect of an O} transformation on our operators, we need to know
how these transformations effect the basic building blocks, which the operators are made of.

From the definition of the gauge links in Eq. (2.37), it is not difficult to show

Uiy Un(2) Ul 4y = Unu(Ra + b, 1), (3.72)

Unlike the Lorentz group, since O is compact we can find a finite-dimensional unitary irrep

of O that the quark fields transform under:

S(R) = es@mlbmw], (3.73)

where wy = —2mej/n and wyr = wpg = 0. Of course, we only need S(Cyy), S(C4,), and

S(I;) to generate all other representation matrices in Op,. These are given by

S(O4y) = %(1 + '71’73)7 8(042) = %(1 + 7271)7 S(Is) = Y. (374)

Then using these representation matrices, the basic building blocks transform irreducibly

under the lattice symmetry group O} as

Utrs) Qs (®)U gy = S(R) 5005, (R + ), (3.75a)
U(R,b)qfaj(w)UgRb) = q;?,BRj(Rm + b)S(R)sa- (3.75D)
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3.5 GROUP-THEORETICAL PROJECTIONS ONTO SYMMETRY
CHANNELS

We now discuss the methods used for obtaining a set of linearly independent operators that
transform according to a particular symmetry channel. An essential part of this process
involves projecting a set of operators, which initially transform reducibly under the little
group, to a set of operators that transform irreducibly under the little group. The formula
for performing these projections is given by

d
OMF () :ggAD > FAM YUROE (1)U}, (3.76)
RegP

where GP is the double group of the little group G,*? d, is the dimension of the A representa-
tion, ggo is the order (number of elements) of GP. The P subscript on O (¢) just specifies
that this is the projection of OF (¢) onto the A irrep. This subscript is used, because the set of
projected operators from Eq. (3.76) is not our final set of operators: many of these projected
operators vanish or are linearly dependent and we choose appropriate linear combinations
of these projected operators as our final set of operators. When relevant, projections onto a

particular G-parity can also be done. Also, note that the index p on Fg\ﬁ)

can be arbitrarily
chosen. However, we make the choice y = A, because only then does the projection have
the property of idempotency (i.e. P2 = P). This can be seen by applying the projection
formula to a projected operator:

d ,
Z T (R)UROBY (H)U] _Z A Z IS (RO T (I (R)”

RegD RGQD
— Z Sy A%ogﬁ’F(t) (3.77)
A/
- #AOA)\F( )7

where we invoked the great orthogonality theorem given in Eq. (3.9). From the above result,

we see that if u = A, then idempotency is achieved; otherwise, applying the projection twice

121f we are interested only in the single-valued irreps of the little group G (i.e. when creating bosonic
operators), then we can use either the little group G or the double little group G in the projection formula.
However, when we are interested in the double-valued irreps of the little group G, we must use the double
little group G, because I'™ (R) is not well-defined since it is a one-to-two mapping. Because of this, we
always use the double little group G, because it is always be valid.

67



causes the operator to vanish. It is a nice check to see that the projected operators obey
the transformation properties we seek. Consider the transformation of one of the projected

operators by the group element G € G-

Us O (UL = . Z I (R)UGUROY (t)URUL
gg RegP
d
- _AD T (G GR)UgrOF (UL,
9g GRegP
d
== > TH(GGRUarOf (DU,
96" G regp
d
AD > UG R)UROT (1)U, (3.78)
gg RegP
Z > D@ O (R)URO] (U
A RegP

= ZFM/ NBEN ()
- Z OA/\/ )\’A(G)*7

which shows that these projected operators do in fact transform according to the irreps of
the double little group.

However, we do not want to apply this projection equation (3.76) for each irrep row within
a given irrep. The reason is that the projection equation does not give a consistent phase and
normalization convention for each row of a given irrep. There is also the additional possibility
that the same irrep occurs more than once within our initial reducible set of operators, and
in this case applying the projection equation for each row does not give consistent relative
weights between these multiple occurrences of the same irrep. In both of these cases, it may
happen that the projected operators do not in fact transform under the little group as in
Eq. (3.68), as they must. To circumvent these issues, we only apply Eq. (3.76) to a single

irrep row, say A = 1, then the other irrep rows can be obtained by

OMF (1) = Z ' RO (U (3.79)

RegD
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This result can be proven as follows:

dA Z 1_‘(A) A)\F U’[ Z dA Z F AVF(t)FI(j[}\)(R)*

RegD RegD

_ Z 5W@AvF (3.80)

= 0" (1),

In the case of our choices for the representation matrices in each irrep of the little group, it

can be shown explicitly that Eq. (3.11) implies
ANF AuF
Ci () = CH (1) (3.81)

for all A and . We can use this fact to increase statistics by averaging our final correlators
over each irrep row.

We now discuss the detailed steps for applying the above ideas. The first step involves
determining the original set of basis operators that transform reducibly. These basis op-
erators are just the linearly independent elemental operators discussed in Sec. 3.3. Let us
define these operators by OF (t), where F specifies the particular basis of linearly indepen-
dent elemental operators we are considering, and i specifies a particular basis operator within
that basis ranging from 1 to Mp. Then, we must find the explicit reducible representation
matrices for this basis. That is, we must find a matrix W for each group element R in the

little group such that
Mp

UrOf (U}, =Y OF (HW;i(R), (3.82)

but recall that we need only find W for the group generators. Then, in principle, we simply
need to find the linear combinations of the original basis operators that block diagonalizes

the W matrices. We utilize the projection formulate to obtain the projection operator

dn A
Pz/J\)\F 9gp Z [F&A)(R)Wji(Rﬂ)\:l; (3.83)
RegP

and apply it to each of our basis operators OF, which produces a set of projected operators
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Many of the projected operators may vanish or be linearly dependent. The number of
linearly independent operators that can be produced from the set of projected operators is
the rank r of the projection matrix. We must use the Gram-Schmidt procedure to produce
the simplest linearly independent operators from the projected operators to arrive at our

final set of operators:

OM (1) Z MOL(t) (3.85)

where 1 = 1,...,r with » < Mp, and A = 1. Finally, the coefficients for the other rows can

be found from

AuF Z ANF dA Z F RYWi;(R)]rer. (3.86)

RegD

3.6 TWO-HADRON OPERATORS

Since many of the hadron resonances we wish to study lie above the two-particle thresholds,
we must extract every two-particle state below any particular resonance of interest in order to
get a reliable estimate for the energy of that resonance. The reason for this is that most of the
stationary states above the two-particle threshold have some mixing between single- and two-
particle states (i.e. these stationary states are linear combinations of single- and two-particle
states), and therefore any stationary state containing a single-particle state can be created
with our single-hadron operators. However, many of these mixed states may be dominated
by the two-particle state and thus should not be compared with the resonances we wish to
study, but until we include two-hadron operators we cannot make this determination. Thus
the use of two-hadron operators is crucial for a reliable interpretation of the finite-volume
spectrum. Our construction of two-hadron operators is similar to the procedures described
above, but the main difference is that instead of using the elemental operators as our basis

we use the following two-hadron operators as our basis operators

Olalﬁaleaolblgbsb' (387)

PoApApip?
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where a and b designate the separate hadrons, and ¢ denotes all identifying information about
the individual hadrons that is not explicitly labeled (e.g. displacement type). These two-
hadron operators are constructed from single-hadron operators obtained via the methods
described above. Of course, these operators do not transform irreducibly under isospin or
the lattice symmetry group. Thus, our first step is to find the correct linear combinations
of these basis operators that transform irreducibly under isospin by utilizing the relations in
Egs. (3.41) and (3.42). Then we perform the usual group-theoretical projections as described
in Sec. 3.5 to obtain a final set of two-hadron operators that transform irreducibly under the
little group of p = p,+py. This process is made much simpler due to already knowing exactly

how the individual hadron operators transform under the symmetry groups we consider.

3.6.1 Comparison with Local Two-Hadron Operators

The inclusion of two-hadron operators constructed in the way we have described above leads
to the need for all-to-all quark propagators (i.e. quark propagators from all spatial sites on
the lattice to all other spatial sites on the lattice), which is significantly more computationally
challenging than just using point-to-all quark propagators (i.e. quark propagators from a
single site on the lattice to all other sites on the lattice). The reason for this will be discussed
further in Chap. 4. But, this motivates the desire to construct two-hadron operators that
could make use of point-to-all quark propagators. Such operators are possible. Two examples

of such w7 operators in the I = 2, Af and I =1, T}, channels were obtained in [46]:

(rm) Mo (t) =Y 7 (@, )7t (. 1), (3.8%a)
(7T7T)T1+u (t) = Z (74 (2, ) Ay (, 1) — 7°(@, ) A (2, 1)), (3.88b)

where the pion fields are single site operators, the superscripts indicate the electric charges
(which specifies I3), and Agm(x,t) = w(x + l%,t) — m(x — /%,t). These operators are re-
ferred to as local operators, because the individual pion operators do not have well-defined
momentum and thus correspond to some composite object with some overall momentum.

The fact that these operators only involve one spatial sum is what makes them amenable
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Figure 3.5: These plots of effective energies show how local 77 operators do not quickly
plateau as compared to two-hadron operators in which the individual hadrons have well-
defined momentum. Therefore these local operators must couple strongly to the unwanted

high-lying states. Figure taken from Ref. [46].

to using point-to-all propagators. The individual operators in the two-hadron operators we
first described above starting from Eq. (3.87) each have well-defined momentum and their
own spatial sums, which makes the point-to-all method impossible to use in this situation.
However, recall that we place great importance on removing excited-state contamination
from our operators, and in the comparison of the effective masses for these different two-
hadron operator constructions we clearly see in Figure 3.5 that the local operators must be
coupling®® to the higher lying states since they have not even begun to plateau for the time
separations we consider. In contrast, the operators we have built from Eq. (3.87) perform
significantly better in that they plateau very quickly which indicates that these operators
couple very weakly to the unwanted high-lying states. One might wonder if this reduction
in excited-state contamination outweighs the increase in computational cost associated with
needing all-to-all quark propagators. There are two points to be said in regard to this: 1)
all-to-all quark propagators are necessary for calculations involving single-meson isoscalars,

and therefore all-to-all quark propagators cannot be avoided entirely, and 2) we will see in

13The term coupling is a simplification of a more correct statement. Essentially, what is meant when an
operator 'couples’ strongly to an eigenstate is that the states created by that operator have large overlap
with the eigenstate in question.
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Chap. 4 that the recently developed Stochastic LapH method has shown to be a very efficient

technique for calculating all needed quark propagators.
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4.0 THE ESTIMATION OF TEMPORAL CORRELATORS USING
STOCHASTIC LAPH

As was discussed in Sec. 2.4, extraction of the finite-volume spectrum can be performed using
two-point temporal correlation functions. In order to calculate these correlators, we use a
path-integral representation with the discretized action of choice, where the integrations are
performed over the quark fields and gauge-link variables. The introduction of the spacetime
lattice was necessary to make the path integrals of finite dimension, and thus amenable to

numerical evaluation. The actions we use are of the form

Sy, ¥, U] = o M[UJ + Sa(U], (4.1)

where M is referred to as the Dirac matrix and Sg[U] is the gauge action. Because the
action is quadratic in the quark fields, the integration over the quark fields can be done
immediately (see Sec. 2.3). This integration results in a determinant of the Dirac matrix and
products of elements of the inverse of M. The inverse M ~! is known as the quark propagator.
During the generation of gauge configurations via the RHMC algorithm [44] (see Sec. 2.3.2),
or other similar algorithms, the determinant of the Dirac matrix was included as part of
the probability distribution that the generated gauge links were sampled from. Since this
procedure for including the determinant has already been discussed in Sec. 2.3, we focus
on the evaluation of the inverse elements of the Dirac matrix. Once these inverse elements
have been determined for each gauge configuration the correlators are estimated as simple
summations over the gauge configurations.

Performing these needed inversions can be very computationally expensive. Thus, much
care should be taken in devising a strategy for efficiently determining the quark propagators.

Many calculations can be designed to avoid the direct inversion of the Dirac matrix by
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solving the linear system of equations Mz = y for a computationally practical number of

source vectors y. Consider a single-hadron operator at rest (i.e. p = 0), which has the form

Olp=0.1)= -3 pla.1) (42)

where p(a,t) is some relevant interpolating field such that the quark fields are all localized

about x at time ¢. Using this operator in a two-point temporal correlator, we have

C(t) = (0]O(p = 0,1 +10)O(p = 0, 1) [0)

1 1 B
T2 Z N, Z (O] p(z,t +to)p(y, o) |0) -
zy

to

(4.3)

This correlator, in the above form, suggests that we require the evaluation of the quark
propagator from all spatial sites ¢ at time ¢ = 0 to all spatial sites « at time ¢, which
means that we must find nearly all elements of the inverse of the Dirac matrix, with the
only exceptions depending on the source ¢y and sink ¢ times considered in our correlation
functions. Normally this would be a formidable task and impractical for most lattice sizes.
Specifically, the dimension of the Dirac matrix is N2N;NyN,, where N, is the number of
spatial sites in each spatial direction, IV; is the number of temporal sites, Ny is the number
of Dirac spin indices (usually 4), and N. is the number of color indices (usually 3). Thus,
with the largest lattice used in this work (i.e. N; = 32 and N; = 256), this means the
Dirac matrix is /&~ 100, 000, 000 x 100, 000, 000, which is far too large to be feasibly inverted.
But, we can exploit translation invariance to remove one of the spatial summations. The

correlator can then be written as

C(1) = - 3 (0], )2(0,0)[0). (1.4

T

where we have assumed only one source time ¢y = 0. We now only need the quark propagator
from the origin at time ¢ty = 0 to all spatial sites & at time ¢. This drastically reduces the

number of inversions that are required. These are referred to as point-to-all propagators.

INote that the quark propagators also have color and spin indices, and we need to evaluate the Dirac
matrix inverse elements for all these indices in addition to the spatial and temporal indices. Generally, we
use a single compound index on the Dirac matrix to denote all the indices.
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Unfortunately, calculations involving isoscalar mesons require more inversions than de-
termined from point-to-all propagators, because these operators involve contractions on the
same time slice (also known as internal loops or disconnected diagrams). Although we can
still exploit translation invariance to fix the source operator at the origin, the sink operator
must still be summed over all lattice sites. Thus, we need to evaluate the quark propagator
from all spatial sites at the sink time to the same spatial site at the sink time for all desired
sink times. In other words, we need the diagonal elements of the inverse of the Dirac matrix.

In Sec. 3.6 the necessity of two-hadron operators was emphasized along with the need
for these operators to be constructed from single-hadron operators that individually have
definite momentum. Thus, a typical two-hadron operator with total momentum zero is of

the form

O1(p,1)Os(—p, 1) = % D i, )pa(y, t)e P EY). (4.5)

w’y

With two-hadron operators of this form, it is impossible to use translation invariance to
remove all the summations over the spatial sites on the source time slice for a temporal
correlator. To circumvent this restriction, we could instead use localized multi-particle oper-
ators, which create particles that individually do not have definite momentum. A localized

two-hadron operator at rest would have the form
1
(010)(p =0,1) = v 2 p1(x, t)pa(,1). (4.6)

When these localized two-hadron operators are used in a temporal correlator the summation
over all spatial sites on the source time slice can be removed via translation invariance.
However, calculations have shown that these localized operators have significant excited
state contamination as compared to two-hadron operators constructed from single-hadron
operators of definite momentum and are thus undesirable (see Sec. 3.6.1).

Therefore, we are stuck with the need to calculate the quark propagator from all spatial
sites on the source time slice to all spatial sites on the sink time slice, which we refer to as
slice-to-slice quark propagators. Additionally, as with isoscalar mesons, the need for sink-to-
sink and source-to-source quark propagators will arise for many two-hadron operators that

involve disconnected diagrams as shown in Figure 4.1. Due to the significant computational
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Figure 4.1: Two examples of the type of contractions needed for evaluating correlators of
multi-hadron operators. These diagrams require slice-to-slice and sink-to-sink quark lines.

Figure taken from Ref. [17].

efforts required for calculating inverse elements of such a large, albeit sparse, matrix, it has
become essential to use more efficient methods. In this chapter we discuss the estimation of
quark lines using diluted noise vectors in the LapH subspace. This is known as the stochastic
LapH method [17], which is just the method we need to efficiently and accurately determine
all the necessary quark lines.

We begin the description of the stochastic LapH method by discussing the so-called LapH
subspace in Sec. 4.1, which is constructed from the lowest eigenmodes of the covariant Lapla-
cian on each time slice; working in this subspace drastically reduces the number of inverse
matrix elements that must be computed. Next, we show how to stochastically estimate the
inverse of large matrices using Monte Carlo methods in Sec. 4.2; Then, in Sec. 4.2.1 it is
shown how a reduction in variance can be achieved through the dilution of the noise vectors
introduced by stochastic methods. Sec. 4.3 shows how to stochastically estimate quark lines
with diluted noise vectors within the LapH subspace, followed by how estimates of quark
sinks/sources are used to calculate temporal correlators in Sec. 4.4. Finally, Sec. 4.5 involves

a brief discussion on the different dilution schemes we consider.
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4.1 DISTILLATION AND THE LAPH SUBSPACE

The Dirac matrix is far too large to invert exactly for all but very small lattices. However,
recall that we are interested in the low-lying spectrum and the reduction of the couplings
of the higher lying modes to our operators was achieved by using smeared quark fields.
The usefulness of LapH smearing to the evaluation of quark propagators was introduced
in Ref. [50]. In that paper, the smearing operators considered—the so-called distillation
operators—were constructed to have a rank N < M, where M = N.N32, to be block-
diagonal in time, and not act on the Dirac spin indices. These are projection operators
from a vector space of dimension M to a vector space of dimension N. Therefore, if we
choose to smear our quark fields with one of these distillation operators, then we need only
evaluate quark propagators within the smaller vector space of dimension N as opposed to
the full lattice vector space. It is important that the distillation operator is chosen such
that as many symmetries of the quark fields remain intact. The LapH smearing matrix is
an ideal candidate for such an operator, because it has the same symmetry properties of the
covariant Laplacian (e.g. transforms as a scalar, is gauge covariant, invariant under parity
and charge conjugation, etc.). The subspace that the quark fields are projected into by
the LapH smearing operator—the so-called LapH subspace—is spanned by the N, lowest
eigenvectors of the covariant Laplacian on each time slice and copied for each Dirac spin
index. These eigenvectors form the columns of the matrix V, ® I¢ (¢f. Eq. (3.27)).

Hence, when we include LapH smeared quark fields in our hadron operators, the Dirac

matrix inverses are replaced with?
SM™'S = Vy(VIM'V,)V], (4.7)

using the definition of S in Eq. (3.27). Thus, we need only determine the elements of the
matrix VJM~V,, which is much smaller than M~!. Now that we have a much smaller

matrix to evaluate, we can consider the possibility of obtaining this matrix exactly.

2There is a slight abuse in notation here, because V! has N2N;N, columns and M~! has N3N;N.N,
rows, and thus these matrices cannot be multiplied as shown. This could be made more rigorous by
replacing V, with V, ® I{, but this notation quickly becomes cumbersome. Instead, it is to be under-
stood that the spin indices remain on M ~! and are untouched by V,. That is, with the indices explicit,
(VIM~=Y(a,l,t;8,b,x,t0) = VI(l,t;a, 2", )M~ (a,a,2',t'; 3,b,x,t), where [ is the LapH eigenvector in-
dex, and all repeated indices are summed over. Therefore, VSTM ~1V, is a N, N:Ng x N,N; Ny matrix.
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The methods used for inverting a large matrix usually involve solving a collection of
linear systems. If one wants to solve for the inverse exactly, then the number of linear
systems that must be solved is equal to the dimension of the matrix. Therefore to solve
for VIM~1V] exactly would require N,N;N, linear systems to be solved (inverted) on each
gauge configuration and for each quark mass. Clearly, the feasibility of this method relies
on the size of N,, which can be shown to grow in proportion to the spatial volume of the
lattice [17]. For instance, on our 243 x 128 and 323 x 256 lattices we found N, = 112
and N, = 264 levels below the 2 cutoff (¢f. Sec. 3.2.2). Thus, the 32% x 256 requires over
270,000 inversions per quark mass per gauge configuration, which is far beyond the available
computing resources. Therefore, on all but a few small lattices, we need to seek alternative

methods.

4.2 STOCHASTIC ESTIMATE OF MATRIX INVERSES

The Dirac matrix M is a large, but sparse, N x N matrix, where N = N3N;N.N; (N, =
number of spatial sites in each direction, N; = number of temporal sites, N, = number of
colors, Ny = number of Dirac spin indices). For some of the larger lattices we use, where
N ~ 100 million, finding, and even storing, the inverse of M exactly is impractical. Instead,
we can perform a stochastic estimate of the inverse of M by introducing random noise vectors
1 and solving the linear system M X = 7 for each noise vector generated. By choosing noise

vectors such that their expected values are given by E(n;) = 0 and E(n;1;) = d;, then

E(Xm}) = E( > Mi?nw}‘)
k
= My'E(nn;)
k

- Z Mz‘zldkj
k

_ -1
= M.
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Therefore, by generating Nz random noise vectors, we can give an estimate of Mif by

Ngr *
- 1}:(@«» V(Xin;) N

where V' stands for the variance. For large Ng, this estimate follows from the law of large
numbers, and the error follows from the central limit theorem.

Notice that this approximation only becomes exact in the limit Np — oo, yet it would
only take N solutions to this linear system, using point sources, to find the inverse of M
exactly. Thus, we would like a modification of this stochastic method that becomes exact as
the number of solution vectors X calculated approaches N. Such a modification does exist
and requires the generation of only one noise vector.

After generating a noise vector 7, introduce the set of N noise vectors {n[s}} such that

every component is equal to zero except the s-th component, which is equal to 7. That is

n= Z nt, where nj[-s} =1;0js (no sum over j). (4.10)

This is an example of diluting a noise vector. Having only one non-zero component for each
diluted noise vector is known as full dilution. Dilution will be discussed further in the next
section.

Next, define the solution vectors X such that
MXE = pldl, (4.11)

which can then be solved, yielding

X[S] Z kln][:
Z k 77k5ks (4-12)



Then, we find
N

Z X Z <

4.13
_ Z 77877] 5]3 ( )
s=1

M nin; (no sum over j).

If we use random noise such that the variance of n;n; is given by
Vi(min;) =1—6ij, (4.14)

then 7,77 is unity with zero variance, and Eq. (4.13) shows that Migl can be determined
exactly with the generation of only one noise vector and the calculation of N solution vec-
tors.® If it were feasible to calculate N solution vectors, then we would have no need for
stochastic estimates and could determine the inverse exactly. All we have done is motivate

a modification of our stochastic method that will reduce the error in our estimates.

4.2.1 Variance Reduction through Noise Dilution

We saw in the previous section that introducing a set of diluted noise vectors with only
one non-zero component (known as full dilution) allowed for the exact computation of the
inverse of M using stochastic estimation methods. This suggests that we may reduce the
error in our estimate by introducing a set of diluted noise vectors with anywhere between
one and N components chosen to be zero. We start by formalizing this procedure of noise
dilution [58, 59] in order to investigate many different possible dilution schemes.

Let us introduce a set of N x N projection matrices P with the following properties
Pl pll — gebpla, Z Pl =1, plat — plal (4.15)
Next, define the diluted noise vectors as

[a] [a]* * pla] _ plalx_«
nk = P ny =Nl = P,

(4.16)

3Unless otherwise stated, we will always assume that we’ve chosen noise vectors such that Eq. (4.14)
holds.
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where it can be seen that n =), n'9, as desired. Then, the solution vectors X! are defined
in the usual way

My X" =), (4.17)

Using these definitions we find,

<2Xa] [a]*> _ ZE(XZ-[G]UJ[-&]*)
= Mzkl ZE la] ‘a]*
= Mk Z E(Pgmw m) Py
= M ZPkZ]’E (M )P[“]
= M, Z P8y Pl (4.18)
= Mk Z b kZ]’P /i?]]
- Mz‘? Z P;E;]
- Mﬁcl@cj
- Mi;17

which allows us to estimate the Dirac inverse by generating N noise vectors as follows

V(3 X[l
r)[a (r)[a]* a1 g
M NR § :E X! \/ N . (4.19)

If we choose the set of projection matrices P4 such that each has only one non-zero element

along the diagonal, then we recover the result in Eq. (4.13) by using only one noise vector,
which again is referred to as full dilution. But, as was stated above, using full dilution is
computationally infeasible on large lattices.

Even if we do not use full dilution, it can be seen that there is an improvement in the
variance. One way to see this is by comparing Eqs. (4.8) and (4.18), which shows that

diluting the noise vectors involves the following replacement in the determination of M !,

ZMzk E(mr;) — ZMzk ZE (). (4.20)
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Many of the components of the diluted noise vectors are exactly zero, thus V(n,[ca]n[-a]*) is

zero when either 77,[:] or 1

ja is exactly zero. This will never happen for V(nkn}‘), which obeys

Eq. (4.14), since neither 7 nor n; will ever be exactly zero.

4.3 STOCHASTIC ESTIMATE OF QUARK LINES IN THE LAPH
SUBSPACE

Our basic building blocks are gauge-covariantly displaced LapH-smeared quark fields. Addi-
tionally, the barred quark fields are defined with a 74 in order to ensure a Hermitian temporal
correlator matrix. Therefore, we are not after the quark propagators directly, which are the

inverse matrix elements of the Dirac matrix. Instead, we seek to calculate quark lines defined

by

Q = DYSQISp®I, (4.21)

where D is a displacement operator of type i, and the ~4 from the barred quark field has
been absorbed into €2 = ;M. Because our quark fields are LapH smeared, we are able
to exploit this by inserting noise vectors only in the LapH subspace, which should produce
less error in our final results, as can be seen from Figure 4.2. This is achieved by inserting
the noise and dilution projectors in between the rightmost V, and V| that are used in the
definition of §. The noise vectors are denoted by p,* to distinguish them from the noise
vectors used in the full lattice space. As usual, we assume the components are random Z
noise such that E(p) = 0 and E(pp') = I, and we assume the projection matrices also live
only in the LapH subspace.

Now, we move on to how we actually estimate these quark lines stochastically using

noise generated within the LapH subspace. Starting from Eq. (4.21), we can insert the noise

4Keep in mind that the compound index for these noise vectors in the LapH subspace have spin, time,
and Laplacian eigenmode number.

We have now transitioned to a vector notation, rather than including indices on the noise vectors.
Therefore, pp is in fact an outer product.
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Figure 4.2: The error from the calculation of a correlator C'(t = 5) of a TDT nucleon
operator on a 16® x 128 lattice. The error is shown as a ratio over o,, which is the error
from calculating the correlator exactly; This error arises solely from the gauge configurations,
hence the gauge noise (i.e. gn). Np is the number of inversions that were calculated. We
see a significant reduction in the error when considering LapH noise vectors. Figure taken

from Ref. [17].

vectors as follows,
Q = DWSOtspWwi
— D(j)SQ—lvsVSTD(k)T

- Z DWSQ 1y, plel pltyt pt
, (4.22)
= Z DYISQ MV, Pl E(pph) Pty Dbt

= Z E(DYWSQ 1V, Plal p(DWy, plal p)T).

Notice that the quark line has factorized quite nicely. This suggests we should define the
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displaced-smeared-diluted quark-source and quark-sink vectors as

Ql()g)kEAd](w’ﬂU) — (D(k)%P[Ad]p(r)>bﬁ(m7t|U)’ (4.23a)

Pl (@, tU) = (DVSQTIV, P (@, 1j0), (4.23b)
respectively. We use A, to denote the dilution index (where we had used a previously) to
avoid confusion with the color indices, r labels the noise vector, and U represents a particular

gauge configuration. Then, we can obtain an estimate for the quark line with

Ng
]_ I T *
QAP (x, t; o, to) ~ N oas SN o (@, )0 (o, 1), (4.24)

r=1 Ay

where A, B are the flavors for the source and sink fields; and the color, spin, displacement
type, and gauge configuration dependence have all been compounded into a single latin
index.

As has been emphasized earlier, we need these quark line estimates for same time (sink-
to-sink and source-to-source) quark propagation on essentially every time slice (these are
also referred to as relative quark lines), and this effectively requires some sort of temporal
dilution scheme for these quark lines. On the other hand, there are many cases where we
need quark line estimates from a source time t; to a sink time ¢, and we can get away
with only considering the quark line starting on a manageable set of source times (these are
referred to as slice-to-slice or fixed quark lines), which allows us to exploit full time dilution.
However, since mesons are made of a quark and an antiquark, then for the contraction shown
on the left in Figure 4.3, one quark line begins on the meson source time and ends on the
meson sink time, whereas the other quark line begins on the meson sink time and ends on

the meson source time.® But, we want to be able to use only a handful of source times for

6 A word of caution: the hadron source/sink times are to be differentiated from the quark line source/sink
times. Every quark line begins at a source time and ends at a sink time. And every correlator contains a
hadron operator at a source time and a hadron operator at a sink time. The source time for a quark line can
be the sink time for a hadron operator (as is the case for one of the quark lines in the contractions shown
on the left in Figure 4.3). Or, the quark source/sink time could be the same time (as is the case for the
contractions shown on the right in Figure 4.3). When a qualifier for the souce/sink time is not given, it is
assumed to be referring to the hadron operator source/sink time.
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the quark lines, and to avoid this issue, we can reverse the quark line starting on the meson

sink time. This can be done, because an equivalent estimate for the quark line is given by

Ngr
1 r —\7r *
QAP (o, to; @, 1) ~ N 0as SN a M g, t) @A (e, 1) (4.25)
r=1 Ad

where we have used vs-Hermiticity of the Dirac matrix (i.e. MT = v5M~s5), and we define

0= —"5740; P = V57Yap- (4.26)

4.4 TEMPORAL CORRELATORS

In this section we describe how we use the quark sinks/sources described in Sec. 4.3 to eval-
uate correlation functions involving meson operators. Generalizations to other correlation
functions are straightforward (see Ref. [17] for details on baryon correlation functions). At
this point it may seem that our task at hand is straightforward in the sense that once we
have estimated the needed quark lines, then the final correlator is just a summation of sim-
ple products of these quark lines. However, products of stochastically estimated values can
introduce a bias. For example, if a random variable has an expected value of zero, then a
Monte Carlo estimate for this quantity will give a value close to zero. If we then use the
product of this variable with itself, we will necessarily obtain a positive quantity, and this
clearly introduces a bias towards positive values for this product. Hence, we do not use
estimates of the quark lines directly, but instead we express our correlators in terms of the
quark sinks and quark sources before taking the sums over the dilution indices and noise

vectors.
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4.4.1 Meson Temporal Correlators

First, recall from Sec. 3.3.3 that our meson annihilation and creation operators are of the

form

Mi(t) = @8 (p.t), (4.27a)
M(t) = < ®.5 (p.1), (4.27b)

respectively, where the elemental meson annihilation and creation operators are of the form

@ﬁg(p, £) = Z efip'(z+%(da+d6))§abqfa(:B,t)ql%(w’t), (4.28a)
€T
Eff(p,t) _ Z ez’p-(m+%(da+d6))5abq§5(w7t)qfa(m7 t), (4.28b)

T

respectively. Then, a meson-to-meson correlation function is given by (following Ref. [17])

Cult — t0) = 3 3 () Tyt

to

= (My(t)M;(to))

1) —AB
= el (@B (1)D55 () 129
=C BCE?B* Z e —ip-(z+3 (da“l’d@)) ip-(j+%(dd+d5))

X (G (1) 025 (2, )75 (T, 1) g (T 10))

where time translation invariance was used in the 2nd line. Next, we perform the path

integral over the quark fields to obtain

Chi(t —to) = cggc%* P (@t 3 (datdy)) ip (243 (da-+dj))
zT (4.30)
X (= QiiaaDusiap + Qoo Qaas)y
where we have suppressed the explicit space, time, and gauge configuration labels from the
quark lines, and (), refers to an average over all gauge configurations. Note that the two

terms being summed in Eq. (4.30) come from the two possible Wick contractions. This is

expressed diagrammatically in Figure 4.3. We then proceed to write the correlator in terms
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Figure 4.3: A diagrammatic representation of the quark sinks/sources required in the meson

sinks/sources for a meson-to-meson correlation function. Figure taken from Ref. [17].

of the quark sinks/sources, but in order to simplify the expressions we introduce a meson

function defined by

Mg i) = ) S emipatbldatdn) (Ol (g 17522 (g ) (4.31)

«
x

where the superscript (i) on ¢ and ¢ refers to the particular noise vector being used,” A;
refers to the dilution indices, and the dependence on the gauge configuration is once again
suppressed.

Then, finally, we can write the temporal correlator as

Cult —to) = <_5AA5BBM1[A1A2](S51, ©2; t)ME'AIAZ}(@, 02;t0)”

(4.32)
‘HSAB(SABMl[AIAI] (01, ¢1; t)ME*AQAQ} (¢2, 025t0) )U,ps

where <>U , denotes a summation over all gauge configurations and noise vectors, and a
summation over all dilution indices. There are two things to take from this final result: 1)
the correlator for each gauge configuration, noise vector, and set of dilution indices factorizes
into two functions, one of which is defined on the source time ¢y, and the other defined on the
sink time ¢; and 2) the correlator can be represented diagrammatically as seen in Figure 4.3,
where each box corresponds to a particular meson function. The meson functions at the
source time ty are referred to as meson sources, and the meson functions at the sink time

t are referred to as meson sinks. The major advantage of this factorization, is that we can

"The quark sink and source connected by a quark line must be using the same noise vector, and different
quark lines must use different noise vectors in order to avoid any introduction of a bias
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Figure 4.4: A diagrammatic representation of the quark sinks/sources required in the meson

sinks/sources for a two-meson to two-meson correlation function. Figure taken from Ref. [17].

easily construct a large set of meson sources/sinks, and then tie them together as needed to

form the final correlator.

4.4.2 Multi-Hadron Correlators

Based on the diagrammatic representation of our correlation functions, generalizations to
correlators involving multi-hadron operators are quite simple. We need only determine the
appropriate diagrams for these more complicated correlators, and then the expressions can
be written down immediately. For the case of a two-meson to two-meson correlator, the

diagrammatic representation of the correlator is shown in Figure 4.4.
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4.5 DILUTION SCHEMES

We end this chapter with a discussion on the different dilution schemes we considered. The
dilution projectors live in the LapH subspace, and therefore their index will be treated as
a compound index A = (Ar, As, Ap), where A is dilution index in time, Ay is the dilution
index in spin, and Ay is the dilution index in LapH eigenvector mode. Hence, our dilution

projectors can be written as
A Ar] plAs] plA
Piaterr = Pt Pl P (4.33)

The dilution schemes we consider are [17]:

Pi[jA] = i, A=0, (no dilution) (4.34a)
P = 6,564, A=0,...,N—1, (full dilution) (4.34b)
P = 5384155, A=0,...,0—1,  (block-J) (4.34c)
P =600 imoas, A=0,...,J—1,  (interlace-J) (4.34d)

where N is the size of the space being considered (i.e. N = N, for time dilution, N = Ny =4
for spin dilution, and N = N, for LapH eigenvector dilution). The particular dilution
schemes chosen for this work are specified in Ref. [17] where explicit comparisons are made

between the different schemes on a 16% and 20° lattice.
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5.0 TETRAQUARK OPERATORS

In this chapter we present an extension of the methods discussed so far to the construction
of tetraquark operators. We find that every tetraquark operator can be written in terms
of linear combinations of two separate meson-like operators. These differ slightly from the
two-meson operators we constructed in Chap. 3, because the separate gauge invariant parts
of these tetraquark operators are not constructed to transform irreducibly under any par-
ticular symmetry operation. It is only the entire tetraquark operator that must transform
irreducibly. We then present the two linearly independent tetraquark operators based on the

meson-meson-like operators from which all other tetraquark operators are constructed.

5.1 COLOR STRUCTURE

The color structure for a tetraquark operator is dictated by gauge invariance. Since quarks
and antiquarks transform in the 3 and 3 representations of SU,(3), we consider the different

ways of combining four of these representations:

3333=1501501501506060303d 3, (5.1a)
30303®3=2401501546D606H3D3® 3, (5.1b)
3323®3=27T210010680808G8¢ 14 1. (5.1c)

From these decompositions, we see that the only gauge invariant four quark hadron must be
made of two quarks and two antiquarks. We also see that there exists two independent ways

to construct a gauge invariant object. Let p, ¢, r, and s denote color vectors that transform

91



in the 3-dimensional representation (3 vectors). Then, pf, ¢f, rf, and 7' transform in the
3-dimensional representation (3 vectors). That is, under a local gauge transformation, these

color vectors transform as

Pa(z) = Qo (2)par (), (5.2a)

D) = (R (2)par ()" = Pl (@), (), (5.2b)

where Q(z) is an SU(3) matrix. A color singlet can easily be constructed from contracting

a color vector in the 3-dimensional irrep with a color vector in the 3-dimensional irrep:

Pi(2)ga(®) = Pl (), (2)Qaar () gar ()
= D (2) bt () (53)

= Po(7)qa(T),

where we have used the unitarity of Q(x). This contraction forms the basis for a meson

operator. From this result it easy to see that the following linearly independent combinations

Ts = (8acObd + daadve) Pl (z)qp (2)re(x)s4(2), (5.4a)

T = (0acOba — aadee) P (z)qp (x)re(x)s4(T), (5.4Db)

are gauge invariant. Thus we have found the two independent gauge invariant combinations
expected from the decomposition in Eq. (5.1c). Note that Ts and T4 are simply linear
combinations of products of meson-like operators. However, these differ slightly from the
two-meson operators described in Chap. 3, because the individual gauge-invariant pieces in
Eq. (5.4) are not required to transform irreducibly under any symmetry operation other than
gauge symmetry. The final tetraquark operators are, of course, made to transform irreducibly
under all appropriate symmetry groups. Regardless, we still expect these operators to have

some overlap onto the two-meson states created by our two-meson operators.
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(a) (b) (c)

7

(d) (e)

Figure 5.1: The possible tetraquark operators with displacements that we consider. The
triangles denote a Levi-Civita coupling, and the squares denote the appropriate Clebsch-

Gordan coupling.

5.1.1 More Complicated Color Structure

Here we investigate the possibility of more complicated color structure emerging from the
inclusion of gauge links. A quark field has the same structure and transformation properties
regardless of its displacement. Thus, the operator shown in Figure 5.1(a) does not give us a
new object. But, gauge links can be included in more complicated ways other than simply
displacing single quarks, as can be seen in (b), (c), (d), and (e) of Figure 5.1. It is not
immediately clear if the different color structures shown in Figure 5.1 can be related in any
way. Thus, our goal now is to find any relationships among these different operators.

We begin by considering a diquark-diquark model for the tetraquarks.! The possible

diquarks can be determined by performing the direct products between pairs of 3 and 3

'In the literature, the phrase diquark is generally reserved for two quarks which form an object that
transforms in the 3 representation. Here, we generally refer to any pair of quarks/antiquarks that transforms
in some irreducible representation of SU,(3) as a diquark.
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vectors

33=603, (5.5a)
3®3=603, (5.5b)
33=8aq1. (5.5¢)

Hence, we can construct diquarks transforming in the 8, 6, 6, 3, or 3 dimensional represen-
tations (the 1 representation corresponds to a meson and thus has already been considered
above). These diquarks can be written in terms of our basic building blocks (i.e. covariantly-

displaced LapH-smeared quark fields) in the following way

A9 (z) = —d¥ (@) = ¢ (2)gP () C (3a; 3b[3a), (5.6a)
4O () = —d%) (z) = ¢(x)al ()C(3a; 3b]6a), (5.6b)
d®) (z) = G (x)qP (2)C (3a; 3b80), (5.6¢)

where the C’s are the Clebsch-Gordan coefficients shown in Table 5.1, which were determined
from the algorithm described in Ref. [60].

Next, we need to see which diquarks can be combined to form a gauge-invariant object.
This can again be determined from the direct product decompositions. The only combina-

tions that produce color singlets are

33=8d1, (5.7a)
606=27T08d1, (5.7b)
8R8=27T010010H8®8® 1. (5.7¢)

These operators are shown in (b), (c), and (d) of Figure 5.1, respectively.
Now we consider the tetraquark operator formed from diquarks in the 3 and 3 repre-

sentations, where one of the diquarks is displaced by a gauge link in the 3 representation

() dY(z + ). (5.8)



Table 5.1: The SU(3) Clebsch-Gordan coefficients used for constructing different color struc-

tures for tetraquarks. All omitted coefficients are zero. These were computed using the

algorithm from Ref. [60].

C(3a; 3b|3)

C'(3a; 3b|6c)

Q

C(3a; 3b|8a)

N = W =W N

=N =W NNy W

W W NN

1/v2
_1/\/5
~1/v2

1/v/2

1/v/2
_1/\/5

W NN =W N

w

N W N

W NN W =

S O Ot Ot s e W N

1

1

1
1/v2
1/v2
1/V2
1/v/2
1/v2
1/v2

95

N = DN

W N W N W =W = NN =

w NN =

=W N == NN =N

_=Nn W NN W =W

w N

—_ =

co 0o 00 N = O O Ot Ot = ke W W NN

1/vV2
1/v2
~1/v2
1/v2
1/v2
_1/\/5
1/v/2
1/vV2
1/
1/v2
1/v2
1/v2
_1/\/5
1/v2
~1/v/6
~1/v/6
2/3




This operator is as simple as possible without any loss of generality, because the individual
quark displacements do not affect the color structure, and we need only consider displacing
one of the diquarks (displacing two of the diquarks can always be written in terms of a
displacement of just one of the diquarks). For simplicity in what follows, we remove the

spatial dependence. Then, we can write this operator as

N . _ 7 _
d(a) U(igﬁ) dg’) = 79gP C(3a; 36|3oz)U§2 qrqll C(3d';3V|38)
=350 C(3a;3b30)UepUsar C(3¢;3d[3a)C (3¢ 3d|36) qql C(3d';3V'[35)

1
= _qaC’qu Ucc’Udd’ q;‘/qg (5a05bd - 5b05ad)(5a’c’6b’d’ - 5b’c’5a’d’)

4
1 1
= §qacUaa'QfI @ Uy — 5@3&;&:@5 @ Uy,
(5.9)
where in the second line we used the identity
U3, = U = UswUpy C(3a;3b|30)C(3d; 3V'[3¢), (5.10)
and in the third line we used the identity
_ — 1
C’(3a'; 3b/|30/)C(30; 3d|306/) = 5(5a’céb’d - 5b’céa’d>‘ (511)

Thus, we see that this tetraquark operator is a linear combination of meson-meson-like
operators. Notice that Eq. (5.10) relates the gauge links in the 3 representation U ®) to the
original gauge links U, which are in the 3 representation. This is an important identity that
is generalized to other representations.

Next, we consider the tetraquark formed from diquarks in the 6 and 6 representations,

where one of the diquarks is displaced by a gauge link in the 6 representation

4y () U (@) d¥(z + ). (5.12)
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Again, this operator has no loss of generality, and we suppress the spatial dependence. Then,

similarly as before, we find

p— 6 O
d) U d =q5q0 C(3a:3060)U) qbafl C(3d';3)65)
=357 C(3a;3b|60)UepUar C(3c;3d|6a)C (3¢;3d|68) gt C(3d';3V'(63)

1
= _qacqu Ueer Ugar Qf/qz? (0acObd + ObeOad) (O Ovrar + Oprerarar)

4
1_ _ 1_ _
= §qaCUaa/q:14’ QbDUbb’qg + §anUab’q5 QbD Uba’Qﬁ?
(5.13)
where in the second line we used the identity
6
UL) = Upw Uy C(3a;3b]60)C(3d’; 3V63), (5.14)
and in the third line we used the identity
1
C(Ba'; 35/’60/)0(30; 3d‘60/) = 5(5(1/0(517/(1 + 5b’c(5a/d)- (515)

Again, we see that this tetraquark operator is a linear combination of a meson-meson-like

operator.
Lastly, we consider the tetraquark formed from diquarks in the 8-dimensional repre-
sentations, where one of the diquarks is displaced by a gauge link in the 8 representation

8)

42 () UP) () d¥ (z + ). (5.16)

Once more, this operator suffers no loss of generality, and we suppress the spatial dependence.
Then, we find

=(8) 8 8 _ 5 8) _ =
d, US) dY) = ¢CqP C(3a; 3b|8)US) qhall C(3d';3V85)

«

= ¢qP C(3a;3b|8a)U, Usar C(3c;3d|8a)C (3¢ 3d'|86) gl C(3d'; 3V|8p)

. _ 1 1
—= ng[? Ucc’ Udd’ qf,qbsj (5ac5bd - g(sab(scd) (5c’a’6d’b’ —_— §5C/d/5a/b/>

_ _ 1_ _ 1 p o
= ToUsats @ Uty — 505 UreUbats Tot — 5420 GoUscUavay
1_ _
+ §q(?qg UCT/CUCC/ Qf’qc?’a
(5.17)
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Figure 5.2: The diagrammatic representation of the equivalence between tetraquarks made

of displaced diquarks and meson-meson-like operators.

where in the second line we used the identity

US) = Usy Uy (x) C(3a;30|80)C(3a’; 36 |89), (5.18)

«,

and in the third line we used the identity
_ — 1
C(?)CL/; 3b/80/>0(30; 3d|80/) = 6a’c6b’d — géa’b’écd- (519)

Thus, we see, as with the other tetraquarks constructed from diquarks, that this tetraquark
operator is a linear combination of a meson-meson-like operator. These results are summa-
rized diagrammatically in Figure 5.2.

The last operator we consider is shown in (e) of Figure 5.1. We again use Eq. (5.10) to
show that this operator can also be written as a linear combination of the meson-meson-like
operators. Without loss of generality, we may ignore the quark displacements, because these
do not affect the color structure. Also, take notice of the Levi-Civita tensors indicated by
the triangles. Thus, we consider the operator shown in Figure 5.3, which is given by

Eabc€a’c! f'EdefEAY ¢! Qa(x)Qd@ + % + V)qa’ ('T + V)qd/(x + lu) (5 20)

X Uy (2) Uy (0)U—pseer (2 + o+ ) Uiy pr (T + e+ v).
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Figure 5.3: The tetraquark ‘box’ operator without individually displaced quarks.

For simplification, we introduce the following notation: ¢, = q.(z), pl = G (v + V), sa =
qd(x +u+ V), 7”2/ = (_]d/(l’ + ,u) and Uy = Uu;bb/(ZE), ch’ = Ul/;ccl(x)’ Vee/ = U_#;ee/(l’ +u+ l/),
and Wyp = U_,.sp(x + p + v), then this tetraquark operator can be written as

EabeCare frEdefEdy e’ QaSdPu Ty Upty Xee Ve Wipr. (5.21)

Next, we use the following

Upy = %5bij€b/i’j’U£/U;j/7 Wipr = %fffklfff/k'l'W/:kaﬁu (5.22)
to rewrite this operator in the following form
1
 EabeCbij EdeEy 1 EdefEfhLE frR 1 Eae QaSdPaTa Usin Uy Xewr Ve Wi Wi (5.23)
Finally, rewriting the Levi-Civita symbols in terms of Kronecker deltas gives
3(5@5@ — 0cj0ai) (OcrirOarjr — OerjrOarir ) (Oarner — Oardek ) (Oarks Oerr — Gartr Ot )

X Qusapr s UssUs X oo Ve Wi Wi
= (rTUT ) (p'WTs)Te(XWIVUT) — (rTUTq) o' WIVUT XV Ts)
— (PTUTXWIVU Q) (p'WTs) + (rTUTXWTs)(p'WTVUTg).

Thus, we see this tetraquark operator can be decomposed into linear combinations of the

meson-meson-like operators and a purely gluonic loop. This decomposition is shown dia-

grammatically in Figure 5.4.
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Figure 5.4: Expression of a tetraquark operator with four Levi-Civita couplings in terms of

gauge-invariant pieces that are quark-antiquark pairs and a pure gluon loop.

5.1.2 Elemental Operators

Because every tetraquark operator we considered could be written in terms of meson-meson-
like operators, we chose to use only tetraquark operators constructed from two displaced
quarks and two displaced antiquarks based on the structure in Eq. (5.4). The displacement
types we consider are shown in Figure 5.5. These are single-site operators (SS), doubly-
displaced operators in an I configuration (DDIa and DDIb), and quadruply-displaced oper-
ators configured in a cross (QDXa and QDXDb). The letters ‘a’ and ‘b’ in the displacement
type label indicates different orderings for displacing the quarks and antiquarks. As with the
operators discussed in Chap. 3, our tetraquark operators are constructed from covariantly-
displaced LapH-smeared quark fields (see Sec. 3.2). Thus, we use tetraquark annihilation

operators that are linear combinations of the following elemental operator

s ) = D7 P Bion & a2, ) (0, 0TS (. Dy (1), (5.24)

x

and the corresponding creation operators are linear combinations of the “barred” elemental

operator

—ABCD(+ inx _ _
Dy s ‘() = D PP (Garbea & Gaabue)Tis (T, £)q5, (2, )G (. ) g, (a0, 1). (5.25)

x

Notice that unlike our meson elemental operators in Egs. (3.51) and (3.52), these operators

do not have the spatial displacements in the phases, even though it was stated previously
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S 4 B:: @:8
SS DDIa DDIb

T T

QDXa QDXb

Figure 5.5: The tetraquark displacements we consider.

that the meson operators needed these altered phases in order to transform appropriately
under G-parity. However, in the case of mesons, these phases were only necessary, because
the antiquark field in the meson was displaced twice as opposed to the quark field which was
only displaced once. This different treatment of the fields in the meson operators was the
true reason for the altered phases. In our tetraquark operators we do not consider different
treatments of the quark fields, and therefore the displacement vectors do not need to be
included in the phases. Finally, our tetraquark annihilation and creation operators are of

the form

+ l ABCD(x
T () = s (1), (5.26a)

(£) _ (Dx —ABCD(%)

Tl (t) - Caﬁ’yéq)aﬁ'yﬁ (t) (526b)

5.2 COMPUTATIONAL DETAILS

The same software used for calculating projection coefficients of the baryon and meson

operators, written in MAPLE, was extended to include the calculation of the coefficients for
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the operator types shown in Figure 5.5. The software used for operator construction, known
as CHROMA LAPH, was modified to include tetraquark operators constructed from these
coefficients. The extra valence quark in these operators posed a noticeable increase in the
computational effort, and we parallelized the computation of the tetraquark sources and
sinks for each dilution index. When this was done, an appreciable decrease in computational

time was observed and began to approach times on the order of the baryon calculations.
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6.0 ENERGIES FROM TEMPORAL CORRELATORS

In Chap. 4, it was shown how we stochastically estimate temporal correlation functions,
and in this chapter we discuss how these correlation functions can be used to extract the
finite-volume spectrum. This chapter opens with an overview on the thermal effects due to
our finite temporal extent in Sec. 6.1. Then, the analysis of our temporal correlator matrices
is presented in Sec. 6.2, which shows how the lowest N energies can be determined from an
N x N correlator matrix. Finally, we briefly discuss the fit functions we consider for finding

best fit curves for our correlators in Sec. 6.3.

6.1 EUCLIDEAN SPACE AND THERMAL EFFECTS

Our calculations are necessarily performed in Euclidean space and with finite temporal ex-
tent. Therefore, with the introduction of anti-periodic boundary conditions in time for the
quark fields, our path integrals are equivalent to quantum statistical mechanical expectation

values with a temperature given by the inverse temporal extent of our lattice. That is!

Ci;(t) = (0;(1)0;(0) >T

= (" 0;(0)e " 0,(0)).. (6.1)

= Ly [ 10 0(0)e 1 B(0)],
Zr

where (), can be interpreted as a quantum statistical mechanical expectation value in a sys-

1

7 or as a correlation function in Euclidean space with finite temporal

tem with temperature

!The temporal extent is denoted by 7', not to be confused with the temperature.
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extent T" which has a path integral representation. The partition function is defined as

Zpr=Tre TH

= ; <n’ e |n> (6.2)
= Z e TEn,

Then, performing the trace in Eq. (6.1) we find

1
Cy(t) = 7

= = 3 (| T010,(0) ) (] e 0;(0) )

— 1 -

)

S (] OL0) ) (0] O,(0) ) Tt 63)
Zn e—TEn

= 2 (010:(0) [n) {n| O;(0) [0) e~

T—o0

=Y (0le ™ 0i(0)e " |n) {n O;(0) |0)

> (m|e”TIHO(0)e ™ 0;(0) Im)

m

e” =08 (m] 0;(0) [n) e~ (n] O;(0) [m)

= (01 Gi(t)0;(0) [0},
where H |n) = E, |n), and we assume the energies have been shifted such that E, = 0.
Therefore, as expected, as the temporal extent is made large, the Euclidean correlation
function approaches the vacuum expectation value.

Generally, the thermal effects for the lattices we consider are small. But, for the light-
est mesons, ignoring these thermal effects is not always valid. Fortunately, the backward
propagating modes from meson correlators have the same energy as the forward propagating
modes, and thus operators corresponding to the lightest mesons were constructed to be sym-
metric under time reversal (see Sec. 3.3.3). Then, in these cases, we can use a fit function
that is also symmetric under time reversal to take the thermal effects into consideration.
Additionally, adding a constant to our fit function can also help. The specific fit functions
we consider are discussed in Sec. 6.3. We have been able to observe thermal effects on our
243 x 128 lattice, but the spectrum was seen to be independent of the fit forms used on the

323 x 256 lattice where the temperature is approximately 22.6 MeV.
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6.2 TEMPORAL CORRELATOR MATRIX

The temporal correlation matrix contains information on the complete spectrum we are
after, but extraction of the finite-volume energy from this matrix directly is impractical
and inefficient. Instead, we use the variational methods described in Ref. [20] to extract
energies and overlaps of the states created by our operators and the energy eigenstates. In
what follows, we assume that the temporal extent of the lattice is large enough such that
the temporal wrap-around effects can be ignored and the temporal correlator matrix is well
approximated by

Cij(t) = (0] Oi(t +0)O;(t0) [0) - (6.4)

As a first step, we attempt to remove any normalization differences among our operators
by rescaling the correlator matrix. This must be done in such a way as to not affect the
stationary-state energies. This can be achieved by rescaling O; in the same way as O,. Our

choice for rescaling is
Ci;(1)
(Cis(Tn)Cj5(Tn))

where 7y is chosen to be a very early time, when the errors are small (generally a value of

Cij(t) (6.5)

1/27

7y = 3 is chosen).?

Performing a spectral decomposition of this correlator matrix gives (cf. Sec. 2.4)

Cyi(t) = Y {01 O:(0) [n) (n] O;(0) |0) =", (6.6)

n

We purposefully designed our operators such that the resulting correlator matrices were

Hermitian (see Sec. 2.4.1), which implies
(0] 04(0) [n)" = (n| 0:(0) |0). (6.7)
Then, defining the overlap factors

Z" = (0] O; |n) (6.8)

2We do not continue to carry along the rescaling factors. It is always assumed the operators have been
replaced by their rescaled versions.
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representing the overlap between the states created by our operators and the energy eigen-

values, we can finally write
Cij(t) =Yz z" e Ent. (6.9)

The normalizations of the energy eigenvectors are set by the spectral decomposition but the

phase is not. This can be seen from the invariance of Eq. (6.9) under
(n) (n) Jign
Z;7 = Z; e (6.10)

Thus, we can only determine the magnitude |Z J(n)| of the overlap factors. Given the unlikely
occurrences of accidental degeneracies, we assume only non-degenerate energies and that

they are ordered (i.e. E,11 > E,).

6.2.1 The Generalized Eigenvalue Problem

Sec. 2.4 presented a brief discussion on how a variational approach can be used to extract
the ground state energy in a particular channel, and that this approach was equivalent to
finding the largest eigenvalue in a generalized eigenvalue problem (GEVP). In what follows,
we will present this GEVP and show how its solution can determine many energy eigenstates
and not just the ground state. Additionally, these methods allow extraction of the overlap

factors defined in Eq. (6.8). First, a theorem from Ref. [19] motivates much of what follows:

Theorem. For every t > 0, let A, (t) be the eigenvalue of an N x N correlation matrix

C'(t) ordered such that A\g > Ay > -+ > Ay_1, then

lim A, () = cpe P [1+0(e7 )], ¢, >0, A, = mjﬁn |E — Emnl. (6.11)

t—o00

This theorem shows that diagonalizing the correlator matrix allows us to extract the N
lowest lying energy levels. However, in practice, this is not feasible because the corrections
are

O(e™4), (6.12)

which require very large values of ¢ to become small. Thus, to reliably extract the spectrum,

we must take ¢t out large enough, but since the error on our correlators generally increases
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with time this is not a viable option. The authors of Ref. [19] suggest an alternative approach,

which they show to give smaller corrections, and instead solve the GEVP
C(t)vn(t, 10) = M\u(t, 70)C(T0)vn(t, 7o), n=1--,N—-1, t > T, (6.13)

where N is the dimension of C(t), and 7 is referred to as the metric time. They motivate

this suggestion by considering the truncated correlator matrix

N-1
CD) =N 2z Bt (6.14)
n=0
which gives eigenvalues that are exactly
NO(t, 1) = e Bnliz0) (6.15)

when used in the GEVP of Eq. (6.13). Of course, it is not clear whether the contributions
from states with F,, > Fx can simply be ignored.

To better understand these corrections and how to suppress them, a perturbative ex-
pansion of the temporal correlations is considered in Ref. [20]. Their findings are that if

To > t/2, then the leading order corrections to A (t,79) are
O (e~ (En=En)t) (6.16)

which is a significant improvement from Eq. (6.12) for all but the highest lying states. This
result demonstrates the advantage of solving the GEVP over simply diagonalizing C(t).
Additionally, we see that keeping N and 7y large is more important than having large t in
order to reduce the systematic errors in the extraction of energies. Also, since the leading
order corrections become larger as n — N — 1, it is important to make N much larger than
the number of stationary states you wish to reliably extract. We have found that choosing
N ~ %n, where n is the desired number of energies, is a good rule of thumb.

The GEVP can be formed as an eigenvalue problem in the following way

C(t)vn(t, 70) = An(t, 70)C(10)vn(t, T0)
= 0_1/2(TO)C(t)C_1/2(70)01/2(70)Un(t, T0) = \u(t, 7'0)01/2(7'0)’Un(t,7'0) (6.17)

= C™2(7)C()C 2 (o)up (t, 70) = An(t, 70)0), (£, 70),
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where v/ (t,79) = CY2(19)vn(t, 7). Therefore, solving the GEVP is equivalent to diagonal-
izing
G(t) = C7(r)C(t)C P (m), (6.18)
which is the route we choose. To determine C*'/2(7y), we first find the eigenvalues and
eigenvectors of C'(1p). We put the eigenvectors of C(7p) into the columns of the Uy (which is
unitary since C'(7p) is Hermitian) and form a diagonal matrix Ay from the eigenvalues such
that
C(’Tg) = U()Ao(j(;r (619)
Then,

CH2(19) = UpASVU. (6.20)

After diagonalizing G(t), the eigenvalues obey [20]
Ao(t) = |Z] PeEnt) t — 00, (6.21)
and the overlap factors are approximated by
Z ~ Cjp(10) 2 Vi (8) Z0, (6.22)

where V(¢) is the unitary matrix that contains the eigenvectors of G(t) in its columns. In
the expression for the overlap factors, the term Z/ can be taken to be the square root of the

asymptotic amplitude of A, (t).

6.2.2 The Correlator Matrix Pivot

In addition to being Hermitian, it has been assumed that C(t) is positive definite. This guar-
antees that C(79)*'/2 are both Hermitian and positive definite, which further guarantees that
G(t) = C7Y2%(1)C(t)C~Y%(1) is Hermitian and positive definite. The need for these prop-
erties can be seen from our assumption that the eigenvalues of G(t) are well approximated
by a decaying exponential with a positive coefficient.

In principal, one expects C(t) to be positive definite, because it is a Hermitian correla-
tion matrix in imaginary time. However, in practice, statistical noise and operators that are

not sufficiently linearly independent can produce eigenvalues that are statistically zero or
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even slightly negative, which can make C'(¢) become ill-conditioned. To avoid this issue, we
initially use some kind of “pruning” procedure to remove operators that are causing the cor-
relator matrix to become ill-conditioned (a more detailed discussion on this is deferred until
Sec. 8.2). But, there is always a possibility that our “pruning” procedures cannot produce
a well-conditioned correlator matrix for any number of reasons (e.g. if a well-conditioned
matrix can only be achieved by the removal of operators deemed important). In this case, we
can still proceed by using a method based on the singular value decomposition [61]. We refer
to this method, and similar methods (see Sec. 6.2.2.1), as a correlator matrix pivot, and we
use this method regardless of whether the correlator matrix is ill-conditioned to begin with.
In the end, the matrix produces a diagonal matrix that is well-conditioned with eigenvalues
that tend to \,(t) oc e~ Ent,

The method works by first projecting C'(9) onto the space spanned by the eigenvectors
associated with eigenvalues that are greater than some small cutoff and using this matrix to
form G(t). Then, we do the exact same thing to G(7p). The condition number of a matrix

is defined as

)\max
em = |3, (6.23)

Amin
where A\, and A, are the maximum and minimum eigenvalues of the matrix, respectively.
A matrix is said to be ill-conditioned if the condition number is too high and well-conditioned
if it is low enough. Generally, in this work, we accept a condition number as high as
~ 100. We see that there are two ways of improving the condition number: 1) remove the
eigenvectors associated with the largest eigenvalues or 2) remove the eigenvectors associated
with the smallest eigenvalues. Since we expect the eigenvalues to asymptotically obey A, (t) o
e~ Pt we must retain the largest eigenvalues, because these correspond to the lowest energies.
It is the smaller eigenvalues that decay according to the largest energies in our system, which
we do not care as much about.

For our procedure to begin, we must start by choosing some threshold that will corre-

spond to our smallest allowed eigenvalue. This can of course be expressed as

)\maz
)\thres = Fenm 0 (624)

109



cn
max

cn

max to

where is the maximum accepted condition number. Generally, we choose 1/
be on the order of the statistical error found in the matrix we are working with. Next, we
from a N x Ny matrix Py that contains the Ny < N eigenvectors of C(7j) associated with

eigenvalues larger than A\;,.,. We then define C (t) as

C(t) = PIC(t) Py, (6.25)
and then use this to form G(t):
G(t) = C712 () C(t) O~ (mp). (6.26)

Next, we form the Ny x N, matrices V(7p) containing the N, < N, eigenvectors of G(1p)
associated with the eigenvalues larger than \y,.,, where 7p is referred to as the diagonalization

time that is chosen such that 79 < 7p < 27.* Finally, we have an N, x N, diagonal matrix

D(t) = Vi(mp) GV (mp), (6.27)

Ent  There is no guarantee that D(t)

which has diagonal elements that tend to A, (t) o e~
remains diagonal for t > 7p, and we must inspect the off-diagonal elements to ensure that it

does. If it does not remain diagonal, we must adjust our parameters 79 and 7p until it does.

6.2.2.1 Alternative Pivot Methods The approach just described above used a single
time slice 7p for constructing the matrices V (p) used for diagonalizing G(t), and is referred
to as the single pivot method. This rotation is done on a per configuration basis (i.e. we
rotated the correlator matrix on each gauge configuration). Alternatively, there are two other
approaches one could consider: 1) the principal ares method in which a pivot procedure is
performed for every time ¢ and on each jackknife or bootstrap resampling; and 2) the rolling
piwot method in which a pivot procedure is performed for every time ¢ but performing this
pivot on each gauge configuration only. Both of these methods require the use of eigenvector
pinning, and they can be very cumbersome. The single pivot method is clearly much simpler
and so long as B(t) is shown to remain diagonal, then the results should not differ from
these alternative approaches. Therefore, in this work, we have only considered the single

pivot method.

3This requirement is based on the findings in Ref. [20] in which they found when 79 > t/2 the leading
order corrections to the eigenvalues are given by Eq. (6.16).
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6.3 FITTING TO TEMPORAL CORRELATORS

Once we have obtained the matrix E(t), we need to perform fits to the diagonal elements
in order to extract the spectrum. In this section, we discuss the different fit functions we
use. For a discussion on our fitting procedure see Appendix B. The simplest fit function we

consider, referred to as the time-forward single exponential is,
C(t) = Ae Pt (6.28)

It is possible that thermal effects could be significant (especially for the lowest energy states),
and in order to observe the effects of backward propagating mesons, we fit to the time-

symmetric single exponential:
o(t) = A[e’Et + e BT (6.29)

where T is the temporal extent of our lattice. For baryons, the backward propagating modes
do not have the same mass as the forward propagating modes (see Sec. 3.3.2), and the
time-symmetric fit function is not valid. However, we do not expect thermal effects to be
significant for baryons, because they generally have much higher energies.

The above fit functions have assumed that the effects from the leading order corrections
to the diagonal elements from excited state contamination are negligible. However, this is
only true for very large times, and in order to perform fits starting with smaller times, we

use a time-forward two exponential fit:
O(t) = Ae "t [1 n Be‘Azt], (6.30)

where we use A? to ensure the decay constant in the second exponential remains positive.
The hope is that the second term in this fit will mock up the effects of the leading order
corrections. This fit can also be made to be time symmetric as well. Additionally, it is always
possible to add a constant to any of these fit functions. A constant term can be helpful for
mocking up the thermal effects, but it is usually only seen to be non-zero for lattices with

small temporal extent.
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Another fit form that can help mock up the excited state contamination is the time-

forward geometric series
A e—Et

T 1_ Be-A%

C(t) (6.31)

which is equivalent to an infinite sum of decaying exponentials, and since the effects of excited
state contamination will be an infinite sum of decaying exponentials then this fit form may
work very well in certain cases. As before, we can also use a time-symmetric version of this

fit function.
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7.0 THE LUSCHER QUANTIZATION CONDITION

The goal of spectroscopy calculations in lattice QCD is to study the many hadron resonances
that experiments have observed. But, so far, all we have done is extract the finite-volume
stationary-state energies of QCD. Hadron resonances are not stationary states, and it has not
been made clear yet how the finite-volume physics we extract relates to the physical world.
In order to better understand these questions, Martin Liischer sought to study the volume
dependence of the spectrum. He started by studying the single-particle stable states and
found that the difference between the finite-volume and infinite-volume masses decreased
to zero exponentially with the size of the lattice [21], and given a lattice size L sufficiently
larger than the range of the interactions, the errors due to the finite volume may safely be
ignored. This amounts to requiring L be larger than the correlation length of the system,
and since the correlation length of the system is given by the inverse of the lightest mass in
the spectrum, then we should at least require m,L > 1. In what follows, we always assume
that L is large enough such that the exponentially suppressed finite-volume corrections are
negligible. Therefore, the finite-volume stationary states that are found to have significant
overlap only with single-hadron operators should be expected to have energies that compare
well with infinite-volume resonances. The possible exceptions to this are for broad resonances
or resonances near a threshold. We can only expect agreement to occur within the decay
width of the resonance, and thus if the resonance width is large, then we would not expect the
finite-volume energy to agree well with the infinite-volume resonance mass. Near a threshold,
we expect the energies near that resonance to have significant mixing with two-hadron states
such that the finite-volume energy is shifted away from that of the resonance.

However, stationary states are stable and cannot decay, and the extraction of the single-

hadron dominated energies in finite-volume gives us no information about the decay width
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of the hadronic resonances we seek to study. Liischer continued to study the volume depen-
dence of the spectrum for scattering states and determined that the finite-volume corrections
for two-particle states fell off much slower as a power series expansion in L~!,' and that the
coefficients in this expansion were related to the elastic scattering amplitudes in infinite-
volume for the two stable particles in question [22]. There also exists exponentially decaying
dependence on the size of lattice due to interactions “around the world” (i.e. due to polar-
ization effects), which are really no different from the single particle case, and therefore we
still require that L is large enough to safely ignore these exponential corrections. It is the
corrections involving the inverse lattice size that are due to the direct interactions among
the scattering particles. This is because the probability for the particles to directly interact
is expected to be of the order 1/L~3. These ideas were then expanded upon in Refs. [23, 24],
which formally introduced the relationship between the infinite-volume elastic scattering am-
plitude and the finite-volume spectrum at rest for a single-decay channel of spinless identical
particles. Thus, one could only reliably use energies below the inelastic threshold.

This relationship was then generalized to non-zero total momentum [62, 63, 64]. The
main advantage of this generalization is the extra energies that can be extracted from chan-
nels with non-zero momentum in order to determine the scattering amplitude at more en-
ergies below the inelastic threshold, and generally the resonance can be determined with
smaller volumes when using channels with non-zero total momentum. Finally, these results
were then generalized further to consider multiple decay channels involving non-identical
and non-zero spin particles [65, 66, 67, 68, 69, 70]. The energies we use can now go up to the
three-particle threshold or the lowest two-particle threshold not considered (whichever comes
first), but now in principal all two-body decay channels can be included and our energy limit
is the three-particle threshold (or whichever n-particle threshold opens first, where n > 2).
Additionally, generalizations that include three-particle scattering have been studied [71],

but we do not consider these here.

'Tt is interesting to note, that in principal one could assign stationary states as single- or multi-hadron-
dominated by observing this state’s dependence on the volume.
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7.1 THE QUANTIZATION CONDITION

The relationship between the infinite-volume S-matrix and the finite-volume energies with

total momentum P is given by?
det[1 + F®P)(S —1)] = 0, (7.1)

where FP) is a known function of the finite-volume energies (see Eq. (7.5)). Before this
function is formally introduced, a brief discussion, followed by conventions and important
quantities are summarized. This equation allows one to extract a condition for the S-
matrix at each energy extracted from a correlation matrix, keeping in mind the threshold
limitations mentioned above. However, when considering multiple decay channels and/or
multiple partial waves, the S-matrix cannot be determined exactly from the quantization
condition, because this only gives us one condition on the S-matrix which has multiple
independent elements. Hence, some kind of parameterization related to the S-matrix is
required. We choose a K-matrix parameterization (see Sec. 7.2).

For a given energy E extracted in the “lab” frame with total momentum P we perform

a boost to the center-of-momentum frame by calculating
E..,=VE?— P2 (7.2)

which requires obtaining the lattice anisotropy £ = as/a;. Due to the periodic boundary
conditions imposed in our lattice calculations, the total momentum in the lab frame is
discrete and restricted to the values P = %’Td, where d is a vector of integers and L3 is
the volume of our lattice. Let the different open two-particle channels be designated by an
integer a, and the spins and masses of these scattered particles in a given channel be denoted
by s;, and m;,, respectively, where j = 1,2. Then, we introduce the following quantities
that are useful for defining F(F):

2 _ D@
“ (2m)2

U S, =

2 .2
14 (e —m3,) mQ‘l)]d, (7.3a)

9 1

1
qcm,a - ZECQm - é(m%a + mga) + (73b>

2This relationship is commonly referred to as the 'Quantization Condition’.
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It is interesting to note that g7, , comes from the solution of

Ecm,a = \/qzm,a + m%a + \/qzm,a + m%a‘ (74)

Thus, qu@ mocks up the energy shift due to the interactions.

Next, we choose a JLS basis to write the quantization condition in. Each basis state is
represented by |JmjLSa), where J is the total angular momentum of the two particles, m
is the projection of the total angular momentum onto the z-axis, L is the orbital angular
momentum in the center-of-momentum frame,® S is the total spin of the two scattering
particles,* and a designates all other necessary labels: the particle species, the intrinsic spins,
parities, isospins, isospin projections, G-parities (if applicable) of the scattering particles, etc.

Finally, we are ready to write the explicit expressions for FF) in this basis:

1
(J'mJ/L'S'a'| F(P) |JmJLSCL> = 5a/a6515§ 6J’J6m],mJ5L/L
| (7.5)
+ (J'my|L'my Smg) (LmySmg|Jms) WP ],

L/le;LmL

where (jimijamsa|JM) are Clebsch-Gordan coefficients. The W (P4 matrix is given by

L'+L

Zlm Sm v, U ) (QL/ + 1)(2l + ]')
—iWin = > Z Tyl \/ L+ T (L0, 10|L0) (I/'mys, Im|Lmy) |
I=|L'—L| m=—I

(7.6)
where v = ?, and Zj,,, are the Rummukainen-Gottlieb-Liischer (RGL) shifted zeta func-
tions [23, 62]. Our method of computing these functions is described in Ref. [27].

One other important fact to mention is the extra symmetry under the exchange of iden-
tical particles. All of the above results are independent of whether the scattering particles
are distinguishable or not. However, since identical bosons (fermions) are required to be
(anti-)symmetric under particle exchange, this leads to the requirement that L+ S+ I — 213

is even, where [ is the total isospin, and [} = I5 is the isospin of the identical particles.

3Not to be confused with the length L of the lattice.
4Not to be confused with the S-matrix.
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Figure 7.1: A diagrammatic representation of C*(P) in terms of the Bethe-Salpeter kernel
1K connected by fully dressed propagators, and the interpolating operator o. The dashed

rectangle specifies the finite-volume loop momentum sum.

7.1.1 Deriving The Quantization Condition

In this section, an overview of the derivation for the quantization condition is given. We
mainly follow the derivation presented in Ref. [63]. First, we introduce a two-body interpo-

lating operator o(x), which couples to all open two-body channels and define

CL(P) = /L diz P9 (0] o(2)0 (0)]0) (77)

where L is the size of the box we are working in and P = (E, P) is the total four-momentum
of the system. The quantity C'*°(P) has branch cuts beginning at each two-particle threshold,
but since momentum is discrete due to the periodic boundary conditions in finite volume
C(P) replaces these branch cuts with a series of poles that correspond to the finite-volume
spectrum.” To make Cp(P) more useful, we write it in terms of the Bethe-Salpeter kernel

1K, which is depicted diagrammatically in Figure 7.1

CulP) =7 D / i%aa<q>35<q>al<q>

qudq/O L. Nyt
LGZ 27‘( 277' B ( )ZKab(Q7Q)Bb (q )Ub(q)+,

(7.8)
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Figure 7.2: The finite-volume loop momentum sum (specified by the dashed rectangle)
expressed as the infinite-volume loop momentum integral plus a finite-volume correction

F.

where a, b label the two-particle channel, and o,(q) is the Fourier transform of o(z) which
couple to the two-particle channel a. The only requirement on o,(q) is that it be a regular
function of q. The momenta being summed over are the allowed momenta from the periodic
boundary conditions ¢ = (27/L)n. Let the two hadrons within channel a be of type a; and

as, then
B (q) = Calza (@) Aa1 (9)][2as (P — ) Ag, (P = q)], (7.9)

where (, is a symmetry factor, and z,(q)4, is the fully-dressed propagator for a hadron of

type a, i.e.

24(0)Au(q) = /d%eiq'm {(¢a(z)91(0)), (no summation over a), (7.10a)

1
A = ——. 7.10b
@)= (7.100)
The field ¢, is an interpolating field for a hadron of type a, which has been chosen such that
z, = 1 if the particle is on shell. The most important feature of Eq. (7.8) is that the Bethe-
Salpeter kernel i K, and the residues z, have exponentially decaying finite-volume corrections

that we assume are negligible [21, 22]. Hence, these quantities are replaced by their infinite-

volume versions. However, the loop momentum summations cannot be replaced by loop

5The poles in C*(P) only correspond to the energies of stationary states that couple to the operator
o(x), and not necessarily the entire finite-volume spectrum.
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momentum integrals in infinite volume, and the finite-volume corrections follow a power-law
dependence in the volume for these momentum sums. Thus, we write BY = B® 4+ F, where
F contains the finite volume corrections to BY. This is depicted in Figure 7.2.

Writing CL(P) in terms of F and evaluating Cy,(P) = CH(P) — C*(P) gives the

expression
Co(P) = AF Y (iMF)"A', (7.11)
n=0
where
A=0) (BiK)", A=) (iKB)s', (7.12)
n=0 n=0

and 1M is the infinite-volume scattering amplitude defined by
iM=iK» (BiK)". (7.13)
n=0

This is all shown diagrammatically in Figure 7.3.

Next, we simplify the expression for Cy,,(P)

Coup(P) = AJ—"i(z’M]—“)”A’

n=0

— AF( = iMF)A (7-14)

—A(F ' —iM) A,

where we used the geometric series identity in the second line. Now, recall that the poles of
CL(P) correspond to the finite-volume spectrum. These poles are still contained in Ci,(P),
and they can be used to find the infinite-volume scattering amplitude as a function of the
energies in finite volume. We simply find the value of M that makes Cj,;, singular for
each energy in the finite-volume spectrum. Encountering a pole in Cy,,(P) is equivalent to

encountering a zero eigenvalue of F~* —iM.® Therefore, this condition can be expressed as

det[F~' —iM] =0. (7.15)

6The factors A and A’ are not involved, because they do not contain any singularities and have no
finite-volume corrections [63].
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CufP) = +
+ e@ . @@ + ..

Figure 7.3: The diagrammatic representation of Cyu(P) = CL(P) — C*®(P) in terms of
A, A’ iM, and the F insertions.

This expression is equivalent to the one shown in Eq. (7.1), where

1672 E,,
pp) = 10T e (7.16)

Qem

and ¢em = \/q2,,

Next, to find an expression for F(P) involves isolating the finite-volume corrections in

the generic form of the loop momentum summation depicted in Figure 7.1:

! dko F(ko, k)
I — E;/_ (7.17)

21 (k2 —m? +ie)((P — k)2 — m3 + ie)’
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The details of isolating the finite-volume corrections are shown in Ref. [63]. This is achieved
by ignoring finite-volume corrections that decay exponentially with the volume by replacing

summations with integrals via

3k
I ch = / )3gc(k:) +O(e™™b), (gc(p) analytic and spatially contained),

(7.18)
which can be derived from the Poisson summation formula, and where m is some mass scale
(typically the pion). Hence, whenever a momentum summation over a spatially contained
analytic function is encountered, we can replace this with a momentum integration, which is
exact up to exponential corrections that are assumed to be negligible. For example, consider

the following momentum sum
1 9(p*)
_32 2 _ ,2)’ (7.19)
L? £ (p® — a?)

where g(p?) is analytic. We can rewrite this as

= Z + 5 Z g(p = ), (7.20)

where the summand in the second term no longer contains a singularity and can be replaced
by a momentum integration. Thus, the finite volume contributions in Eq. (7.19) have been
isolated in the first term of Eq. (7.20). This approach will be applied to the summation in
Eq. (7.17) to put it in the form

I=1"°4T1, (7.21)

Then, it is /¥'V that can be written in terms of F.

7.2 THE K-MATRIX

Many calculations for the p resonance used a 1 x 1 S-matrix [72, 73, 74]. However, the
reduced symmetry of the lattice allows mixing of total angular momentum, which can be
seen from the definition of FP). Using a 1 x 1 S-matrix ignores this mixing. In the case

of the p resonance, this was justified by the belief that no resonance existed with a mass
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near that of the p with the same quantum numbers except different spin. One desirable
feature of such a simple S-matrix is that its value can be determined exactly for a given
energy using the quantization condition, and thus a model-independent parameterization of
the S-matrix in terms of a scattering phase shift can be made. Of course, in the end we are
interested not in the phase shift but the resonance mass and width, and thus some sort of
parameterization cannot be avoided. In most cases, we want to consider a larger S-matrix
that includes multiple partial waves and all open coupled channels in the system. But, as

we will see, it is much simpler to parameterize the K-matrix [75, 76, 77, 78, 79, 80].

7.2.1 The S-matrix

Before introducing the K-matrix, we present some important properties for the S-matrix.

In the JLS basis, the S-matrix is written
(J'myL'S'd| S |TmyLSa) = 816m my55 s psa( E), (7.22)

where s(/) is unitary from conservation of probability, and rotational invariance has been
assumed. Rotational invariance leads to the conservation of J and my, and ensures s/ is

independent of m ;. Further assuming invariance under parity gives
J . ’
S s B) =0 if bbb mb (~1)FHE = 1, (7.23)

where 1! gives the intrinsic parity of particle ¢ in channel a, and assuming time reversal

invariance gives
(J) _
SL’S’a’;LSa(E) = SLSa;L'S"a’ (7.24)

which just tells us that s) is symmetric.
For a single elastic channel involving spinless particles, the S-matrix is typically param-

eterized by

J) L) _ 2i0.(B)

st) = 4 : (7.25)

where 07, (E) is the scattering phase shift for the L-th partial wave. The scattering phase shifts

can be parameterized in terms of a Breit-Wigner to determine the resonance information.
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If we now include another channel of spinless particles, then s%) requires three parameters

after using time reversal invariance and unitarity. The conventional parameterization is

“ 1 201" i/1—1? i3 +oi0)
$D) —

= , (7.26)

. L L . (L
i mez(ag ) nemg )

where (51@) is the L-th partial wave for channel j, and n € [0, 1] is the inelasticity. To reiterate,
the inclusion of multiple waves and /or multiple channels does not allow all the parameters in
the S-matrix to be determined exactly from the quantization condition, because it is only one
condition involving multiple parameters. Additionally, the parameters used to parameterize
the S-matrix (i.e. the phase shifts, the inelasticity, etc.) are not of significant interest to
us. What we seek are the resonance masses and widths. Furthermore, as more and more
channels are added, parameterizing a unitary matrix can become tedious.

For these reasons, we seek an approach that offers a simple parameterization in terms of

quantities of interest. The K-matrix has the properties we seek:
K=0T'+i)™ (7.27)
where T is the transition operator defined by
S=1+1T, (7.28)

and it has been assumed that detT" # 0. The K-matrix is Hermitian, which can be shown
to follow from the unitarity of the S-matrix. A Hermitian matrix is generally much simpler
to parameterize than a unitary matrix and parameterizing K guarantees unitarity for S.
Additionally, the K-matrix is symmetric from time reversal invariance. This follows from the
fact that S is symmetric from time reversal invariance, and therefore 7" must be symmetric.

Then, since T is symmetric, K must be symmetric from Eq. (7.27). Thus, K is a real

If there are no interactions than 7' = 0, and thus detT = 0, but in the interacting theory detT is
expected to be nonzero.
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symmetric matrix. Through some algebraic manipulations, one can solve for 7" in terms of

K, and then substitute this into Eq. (7.28) to obtain S in terms of K. First,

T=TK 'K
=TT ' +4i)K (7.29)
=2K +1TK.
Then, rearranging we have
T(1—iK) = 2K, (7.30)
which can easily be solved for T
T=2K(1—iK)™" (7.31)

Finally, substituting this into Eq. (7.28), we have
S=1+4:T
=1+2%K(1—iK)™*

(7.32)
- [(1 —iK) 4+ 2iK | (1 - iK)™
=(1+4+4iK)(1 —iK)™

Additionally, starting with 7" = KK ~'T, and following similar steps, it can be shown that

S=(1-iK)'(1+iK). (7.33)
Similar to the S-matrix, from rotational invariance the K-matrix is written as
(J'mpL'S'd| K |JmyLSa) = 81058 my K s b 150 (E)s (7.34)
and from invariance under parity
K}/L)S"a’;LSa(E) - O lf nﬁ/nfa/r/g;/n;;(_l)l/—‘rll - _1 <735)
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7.2.2 Parameterizing the K-matrix

In the case of a single elastic channel of spinless particles K is diagonal and given by
KY) = KW = tand,. (7.36)

The pole in K" at §; = 7/2 is indicative of a resonance. And, for short-ranged interactions
the phase shift can be expressed in terms of the effective range expansion

1
G KT = g ot b = — -+ el + O(dl), (7.37)

where ay, is known as the scattering length, and r; is known as the effective range. For

convenience and due to the way K~ appears in Eq. (7.37), we define K by

1 ~ 1
-L'—3751 —L—3

KL_’ls’a’;LSa<Ecm) = Uy QKZ’S’a’;LSa(Ecm)u@ (738)

The benefit of using K Y E,ny) is that it is expected to behave smoothly with energy E,,,.

Then, through rotational invariance we have
(J'mypL'S'd| K |JmyLSa) = 61156m my K a1 sa(E). (7.39)

From the expectation that K~!is a smooth function of E..,., one clear parameterization

is through an expansion in powers of E,,,

K Z VEE, (7.40)

where o and § are compound indices for L, S, and a; and the cg;k)

are a set of real symmetric
matrices. The more physically relevant and intuitive parameterization one could consider
involves a sum of poles with the possibility of a background term parameterized by a sum

of powers in E,,, [79]

(Jp)
Ja
b = 3 e S ma

where g&‘]p ) are real couplings and d&‘]ﬁk) are a set of real symmetric matrices. This pa-

rameterization is more interesting, because when extracting information about a particular
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((lJp)

resonance, the mj, correspond to resonance masses and the g are couplings for the res-

onance to a particular channel which can be reparameterized in terms of a partial decay
width. Thus, we see that not only is the K-matrix amenable to simple parameterizations
with arbitrary numbers of partial waves and open channels, but can be simply written in

terms of the physically relevant quantities.

7.3 THE BOX MATRIX
We now would like to rewrite the quantization condition in terms of K:

0=det [1+F®)(S—1)]
= det [1 +iFP)T] (7.42)

=det [1 +2iFP K1 —iK)™],

where we used the definition of the 7" matrix in the first line, and Eq. (7.31) in the second
line. Next, because (1 —iK) is invertible, this implies that det(1 —¢K) # 0, which allows us

to write
0 =det [1+2iFPIK(1 —iK)™"] det(1l —iK) (7.43)
7.43
=det [1 —iK + 2iFP K],
where we have used the identity det(AB) = det(A) det(B). Thus, the quantization condition

can be written as
det [1 — BPIK] =0, (7.44)
where

BEF) = —2iF®) 4, (7.45)

We have now written the quantization condition in terms of the K-matrix, but we would
like it in terms of K. From the definition of K in terms of K in Eq. (7.38), we find the

quantization condition to be

det[l — BPIK] =0, (7.46)
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where B) is known as the boz matriz [27] and can be written as
(J'mpL'S'a'| BP) |Jm LSa) = uX T (J'my L'S'd | BE) | Jm;LSa)
=yl (I'mp L Sd| (—QiF(P) + 1) |JmyLSa)

L/+L+1W < /mJ’|L/mL’75mS> <LmL7smS|JmJ> .

(7.47)

Msa aés’su mL’ Lmy,

Generally, we parameterize K1 instead of K itself. Hence, a more convenient form of the
quantization condition is

det[K ' — BP)] = 0. (7.48)

7.4 BLOCK DIAGONALIZATION

The JLS basis in which the quantization condition has been derived is not suitable for our
purposes. First, the energies we calculate are in the basis of the lattice symmetry group.
Furthermore, the matrix inside the determinant condition is of infinite dimension, and thus
evaluating this determinant is very difficult. Instead, we block diagonalize B) and K using
the irreps of the little group, which allows us to work within the separate blocks. However,
each of these blocks is still of infinite dimension, and we impose a maximum orbital angular

momentum L,,,, in order to truncate each block. The basis we work with is given by

|AARJLSa) =) ¢ | JmyLSa), (7.49)

mJ
where A is the little group irrep, A is the irrep row, n is an integer that identifies the
occurrence of the A irrep in the JLS basis, and = (—1)%. Further details on how the

Jn,A)\n

coefficients c;/ are determined can be found in Ref. [27]. In this basis, the box matrix

can be written as
(NN J'L'S'd'| B [AAnJLSa) = Spadxadsisdua B pEos,.. (7.50)

Note that Ag is used in the box matrix, instead of A. This arises because the box matrix is
independent of the intrinsic parities of the scattering particles, whereas we choose the irrep
A to involve the intrinsic parities. If 7 nl =1, then Ag = A. But, if nf_nt, = —1, then in
general Ag # A. The relationship between Ag and A in this case is shown in Table 7.1.
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Table 7.1: The relationship between the irrep of the B-matrix to the irrep of the lattice
symmetry group. If nf'nl = 1, then Ap = A. Otherwise, the relationship is shown here.

LG stands for the “little group”. Table taken from Ref. [27].

d LG | Ap relationship to A when nf nl’ = —1

0,0,0) | Oy | Subscript g <> u

0,0,n) | Cy | A1 <> Ag; By <> By; E,G1, G5 unchanged
0 ) | Cay | Ay <> Ag; By <> By; G unchanged
n,n,n) | Cs, | Ay <> Ag; Fy > Fy; E, G unchanged

7.5 FITTING STRATEGIES

We now describe two different fitting strategies to determine best fits for the parameter-
ization of the K-matrix. The methods differ in the choice of the residuals to be used in
a x? minimization (see Appendix B for a review of fitting with a y* minimization and an
introduction to the notation we use). There is an advantage to making sure the model you
fit to does not depend on the data (observables). If your model does depend on the obser-
vations, then you must calculate the covariance between the residuals which depend on your
model parameters. Hence, as the fit proceeds and the fit parameters are adjusted, these
covariances need to be updated, and the covariance matrix needs to be inverted. This can
be computationally demanding, and we seek models that do not depend on the observables,
because then one only needs the covariance between the observables which does not change

as the fit proceeds.

7.5.1 The Spectrum Method

In this method, as the fit proceeds, each time the parameters of K or K1 are adjusted, we

scan the determinant in the quantization condition to find all of its zeros. This provides us
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E(mod)

cm,i

with a set of energies in the center-of-momentum frame predicted from the model
Then, the choice of residuals is straightforward

ry = B _ plmod) (7.51)

cmyi cm,i

Naively, it would seem that the model has completely separated from the observations, and

E(obs)

cm,yt

we are free to compute the covariances among the once. But, this has completely
ignored the fact that the evaluation of the determinant necessarily involves calculating the
RGL-shifted zeta functions which depend on the size of our lattice L, the anisotropy of our
lattice £ = ag/a;, and the masses of the decay products in each channel m,, ma,. These
are themselves observed quantities, and thus the model predictions do in fact depend on
our observations, which means we must recompute the covariance between the residuals
every time the fit parameters are updated. A clever way around this issue was proposed

in Ref. [27], which suggests introducing L(med) ¢(mod), mggmd), and mg;wd

) as fit parameters
themselves. Of course, the minimization should give model predictions for these added
parameters that are nearly identical to the observed values, but the advantage is that we
have completely separated the observables from the model predictions, and we are justified
in calculating the covariance matrix once at the beginning of the fit between all the observed
quantities. However, the major shortcoming of this procedure is the need for calculating the
determinant and scanning it for zeros, which is a significant computational effort. Despite

these complications, the method has been used (ignoring the extra residuals and improperly

calculating the covariances) in Refs. [81, 82, 83, 84].

7.5.2 The Determinant Residual Method

This method introduced in Ref. [27], is based on using the determinant condition itself as a
part of the residuals. In this paper, it is suggested to not use the determinant condition itself
as a residual, because the determinant can become very large for certain matrices. Instead,

they propose using the function

Oy, A) = det(A)

~ det [(/ﬂ + AAT>1/2)} ’ (7.52)
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where 1 # 0 is a scalar. This function is zero whenever det(A) is zero, and thus it reproduces
the quantization condition. The added advantage of this function, is that it is bounded
between —1 and 1 when the determinant is real, and therefore this is a better behaved

function to use as a residual. Thus, for the quantization condition, the residual used is

ro= 0, KB - BOESY)), (7.53)

cm,t cm,i

but any of the different forms appearing inside the determinant of the quantization condition

could be used in place of K _I(E(EZfi)) — BWP >(E§,?fj?) In this case, the model is dependent
on the observables, and we must recalculate the covariance matrix as the parameters are
adjusted. However, this method has the advantage that the box matrix is only calculated
once for each observed energy, whereas the previous method required the box matrix to
be recalculated every time the parameters were adjusted. Since computing the box matrix

requires evaluating the complicated RGL-shifted zeta functions, this is a significant benefit

of determinant residual method. This is the method we exclusively use in this work.
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8.0 RESULTS

We now present results on a large 322 x 256 lattice with m, ~ 240 MeV. First, the finite-
volume spectrum is extracted up to ~ 2 GeV from large correlator matrices using the single
pivot method (see Sec. 6.2.2) for all bosonic isovector non-strange channels at rest with odd
parity and even G-parity (i.e. Af,, A3, EF, 1) and Ty, with I =1, S =0, and P = 0).
Then, the resonance properties of the K*(892) are extracted using the determinant residual

method (see Sec. 7.5.2) with a 3 x 3 K-matrix, which is based on the formalism introduced

by Liischer.

8.1 COMPUTATIONAL DETAILS

The gauge configurations used in this work were generated using the CHROMA software
system for lattice QCD [85] provided by the USQCD collaboration, which used the RHMC
algorithm [44] (see Sec. 2.3.2). These calculations were mainly performed on the Jaguar
system at Oak Ridge National Laboratory sponsored by the Department of Energy (DOE)
and on the Kraken system at the University of Tennessee sponsored by the National Science
Foundation (NSF). This required approximately 200 million core-hours.

Software utilizing the CHROMA software system, known as CHROMA LAPH, was written
in C++ for calculating the quark sinks/sources (see Sec. 4.3) and then using these to form
hadron sinks/sources (see Sec. 4.4). The calculation of the quark sinks involves performing
many inversions, which are very computationally expensive. These inversions were done
using the biconjugate gradient method and total around 100 million core-hours (run mainly

on the Kraken system). This software is heavily parallelized by making use of the Open MPI

131



and OpenMP libraries.

The last step in the calculation of a temporal correlation function involves summing
products of the hadron sinks and sources. The needed products in this summand and their
coefficients are determined by the Wick contractions for each correlator. Then, this result
is summed over each dilution index and each noise vector to obtain the correlator for each
gauge configuration. Serial software to perform this last part of the calculation, known as
LAsT LAPH, was written in C++. These calculations require significant /0O, and we have
made use of Stampede at the Texas Advanced Computing Center (TACC) made available
through the Extreme Science and Engineering Discovery Environment (XSEDE) [86]. This
system was chosen because of its use of large lustre partitions, which are very beneficial for
our I/O intensive calculations.

Finally, software for analyzing the temporal correlators, known as SIGMOND, was also
written in C++. All of our software is XML driven, which means that any particular
calculation is done by passing an XML file as input that specifies the tasks to be performed
and any necessary input parameters. There is usually significant variation in the XML files
that are used, and to help with this process, we have developed scripts in RUBY and PYTHON

to generate the needed XML.

8.2 OPERATOR SELECTION

Considering the vast number of independent operators that can be constructed, we must
consider some way of “pruning” these sets of operators down to a reasonable size. First,
operators associated with very large correlator errors were removed. Next, operators whose
effective energy appeared to plateau well above ~ 2 GeV were also discarded. Finally, the
left over operators were used to form a correlator matrix and operators were removed until
the condition number of the normalized correlator matrix at some early time separation was
smaller than ~ 100.

This procedure works well for obtaining a small set of single-hadron operators, but the

shear number of independent two-hadron operators that can be formed from a given set
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of single-hadron operators is far too large to be feasible to work with. To prune the two-
hadron operators, as well as to ensure we do not miss any single- or two-hadron dominated
stationary states below ~ 2GeV, we attempted to choose one or two operators for each
stationary state that couple to that state very strongly. To assist in this goal, a list of
“expected” energy levels was created for each channel. These levels were determined by
assuming no interactions between the individual hadrons. Thus, these energies are not the
true interacting energies but should give a rough guide to the states we expect to appear
in each channel. The hadrons used in these expected levels were taken directly from the
Particle Data Group (PDG) [9]. For each expected level, the set of operators expected to
couple strongly to that level is chosen. Then, from this smaller set of operators, we pick the

one or two operators which result in the smallest errors in our temporal correlators.

83 THEI=1,S=0,P=-1,G =+1 BOSONIC SPECTRA

For each channel, the operators chosen are first based on the non-interacting energies. For
each non-interacting energy below ~ 2 GeV one or two operators are chosen based on the
expectation of those operators to overlap strongly onto the corresponding interacting energy.
Additionally, in order to ensure all levels are extracted, an additional set of operators is added
to the correlator matrix. The operators used to form the correlator matrix in each channel
are shown in Appendix C.

The energies extracted from our fits to a diagonalized correlator are in units of the
temporal lattice spacing (i.e. we extract the dimensionless quantity m = a;m). Hence, in
order to compare our results with experiment, we either need to divide this result by a, or by
some reference energy fit for which the energy in physical units is known. It is simpler and
more robust to divide by a reference energy. In what follows, the kaon is used as our reference
energy to set the scale, and therefore comparison to experiment will be made with energies
as ratios over the kaon mass. The kaon is chosen, because the parameters of the lattice
action were specifically tuned such that the kaon mass was near its experimentally measured

mass. The fit used is shown in Figure 8.1. The extracted energy in units of the temporal
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Figure 8.1: A time symmetric geometric series exponential fit with range (8,38) to the
temporal correlator using a kaon single-site operator with P = (0,0,0) and transforming in
the irrep Ay,. This fit will be used as the reference energy for all other fits. The fit was done

using jackknife resampling.

lattice spacing is a;my = 0.08345(15). Using the average of the experimentally measured
masses for the K+ and the K° from the PDG [9], which is approximately 495.644(11) MeV,
we can convert our results to physical units.

One major goal of these finite-volume spectrum extractions is the identification of hadronic
resonances. This identification can be done by measuring the overlap factors (6.8) to deter-
mine which stationary states appear to be single-hadron dominated. We start by replacing
our single-hadron operators with variationally improved single-hadron operators. These are
found by first rotating the correlator matrix with only single-hadron operators, and then
using the linear combinations of these operators that diagonalized the correlator matrix as
our variationally improved single-hadron operators. Using these improved operators helps
to remove mixing between the states created by our single-hadron operators. Then, we de-

termine the overlap factors for each variationally-improved single-hadron operator. For each
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improved operator, we take the stationary state with the largest overlap and classify this
state as single-hadron dominated. We still expect there to be some mixing in the vicinity of
this energy, and therefore any stationary states with overlaps larger than 75% of the largest
overlap for that operator we classify as ‘significant mixing’.

So long as the energy of the single-hadron dominated states are not too near a threshold
(where energies are distorted due to avoided level crossings), and the associated resonance is
narrow (we can only expect agreement to occur within the size of the decay width), then the
finite-volume energy found will have only exponentially decaying corrections to the energy
of the corresponding particle in infinite volume.

For each channel we consider, we use jackknife resampling to obtain errors for our fitted
energies, and we normalize our correlator matrices using the correlator matrix at a time
separation 7y = 3. As discussed above, the operators are based on the expected levels in
Appendix C. We make sure to use ~ %n operators, where n is the number of levels we wish
to extract (usually we set n to be approximately the number of levels shown in the expected
levels tables). The use of %n is based on the results discussed in Sec. 6.2.1.

In each section that follows, the fit results for each level are displayed in a table. The
effective energies for each level are also shown, with the fit curve for each level overlaid on the
plots. The overlap factors are also shown for each operator. And, finally, a so-called staircase
plot of energies is displayed, and the stationary states deemed ‘single-hadron dominated” and
‘significant mixing’ are labeled. If we expect any hadronic resonances to appear in the channel
in question, a comparison between the stationary states deemed ‘single-hadron dominated’
and the experimentally observed resonances are made. Additionally, these sections begin
with an analysis similar to that described above but using a correlator matrix containing

only single-hadron operators.

8.3.1 Af,

From the table of expected levels for the A}, channel shown in Table C1 we see that we
expect 25 single- and two-hadron levels to appear below the 2 GeV cutoff. We decided on

38 operators that transformed irreducibly under the appropriate symmetry groups for this
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channel. Three of these operators were single-hadron operators. Although, experiment tells
us that we should not expect to see any resonances in this channel, 3 single-hadron operators
were included in order to make sure all states were extracted. However, the noise and quick
decay of these operators required a metric time 75 = 3, and a diagonalize time 7p = 6 in
order to avoid the errors at small times introduced from the single-hadron operators. The
reason that these operators quickly decay is likely due to the fact that if there are any single-
hadron states in this channel, then they are probably much higher than the 2 GeV cutoff.
The condition number of the C'(7) and G(7p) was 3.18 and 4.45, respectively, which caused
us no issues. The lowest 33 levels are shown in Table 8.1. The effective energies for these
levels are shown in Figures 8.3 and 8.5 with the fit curves overlaid on the plots. The overlap
factors are shown in Figures 8.4 and 8.6, and the spectrum is shown on a staircase plot in

Figure 8.2.

Table 8.1: The lowest 33 levels extracted from a 38 x 38 correlator matrix in the A, channel.

Level Model tmin  tmas arEyit Etit/Erey  X?/dof
0 Forward2Exp 3 26 0.211(13) 2.53(16) 1.38
1 Forward2Exp 3 26 0.2346(46)  2.812(56)  1.11
2 ForwardGeomSeriesExp 3 26 0.2504(13)  3.001(17) 1.38
3 Forward2Exp 3 24 0.2633(51)  3.155(61) 1.44
4 Forward2Exp 4 25 0.266(11) 3.18(13) 1.27
5 Forward2Exp 5 2 0.2691(52)  3.224(63) 1.3
6 Forward2Exp 3 26 0.275(13) 3.30(15) 0.81
7 Forward2Exp 3 26 0.2829(18) 3.390(22) 0.89
8 Forward2Exp 3 24 0.2918(70)  3.497(85)  1.44
9 Forward2Exp 3 22 0.3026(58)  3.626(71)  1.26
10 ForwardGeomSeriesExp 3 26 0.3041(10)  3.645(14) 1.0
11 Forward2Exp 3 26 0.3070(39)  3.679(47)  0.95
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Table 8.1: (continued)

Level Model tmin  tmax a;Eyit Etit/Erey  X?/dof
12 Forward2Exp 3 23 0.3097(70)  3.711(84) 0.92
13 Forward2Exp 3 22 0.314(16) 3.76(19) 1.16
14 Forward2Exp 3 24 0.325(11) 3.89(13) 0.97
15 ForwardGeomSeriesExp 3 26 0.3274(20)  3.924(25) 0.7
16 Forward2Exp 3 24 0.328(15) 3.93(18) 1.4
17 Forward2Exp 3 21 0.332(11) 3.97(13) 1.7
18 Forward2Exp 3 21 0.339(18) 4.07(22) 0.96
19 Forward2Exp 3 19 0.343(23) 4.12(27) 0.77
20 Forward2Exp 3 25 0.345(12)  4.13(15)  1.12
21 Forward2Exp 3 24 0347(11)  4.15(14)  1.14
22 Forward2Exp 3 26 0.348(18) 4.17(22) 1.03
23 Forward2Exp 3 17 0.349(32) 4.18(38) 0.79
24 ForwardExp 6 18 0.356(15) 4.26(18) 0.5
25 Forward2Exp 3 23 0.363(12)  4.35(14)  1.38
2% ForwardExp 7 18 0.371(23)  4.45(27)  1.66
27 ForwardExp 6 18 0.378(11)  4.54(13)  1.69
28 Forward2Exp 3 24 0.396(22)  4.74(27) 081
29 Forward2Exp 3 14 0.406(21) 4.86(25) 1.34
30 Forward2Exp 3 21 0.410(17) 4.91(21) 1.04
31 Forward2Exp 3 21 04325(92)  5.18(11)  1.28
32 ForwardExp 6 22 0.4326(98)  5.18(12) 1.2
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141



8.3.2 Af,

From the expected levels table for the A, channel shown in Table C3, we see that we expect
14 single- and two-hadron levels, including the p3(1690), to appear below the 2 GeV cutoff.
We decided on 26 operators that transformed irreducibly under the appropriate symmetry
groups for this channel, 3 of which were single hadron operators. The metric time and
diagonalization time were chosen to be 7y = 4 and 7p = 8, respectively. The condition
number of the C'(7) and G(7p) was 3.36 and 4.81, respectively, which means our correlator

matrix is reasonably well-conditioned.

8.3.2.1 Single Hadron Operators In this channel, we expect the p3(1690) and p3(1990)
resonances to appear. Therefore, we start with an analysis of just the single-hadron opera-
tors. The 3 levels extracted from the correlator matrix consisting of 3 single-hadron operators

are shown in Table 8.2.

Table 8.2: The levels extracted from a 3 x 3 correlator matrix consisting of single-hadron

operators in the Aj, channel.

Level Model tmin  tmax arEfit Etit/Erey  X?/dof
0 Forward2Exp 3 21 0.296(22) 3.55(27) 0.79
1 ForwardExp 5} 17 0.478(17) 5.73(20) 0.5
2 ForwardExp 5 15 0.56498)  6.8(1.2) 131

8.3.2.2 All operators, Single Hadron Improved Operators The lowest 18 levels
are shown in Table 8.3. The effective energies for these levels are shown in Figure 8.12 with
the fit curves overlaid on the plots. The overlap factors are shown in Figure 8.13, and the
spectrum is shown on a staircase plot in Figure 8.10. There is a clear discrepancy between
the extracted levels and experiment as can be seen in Figure 8.11 (notice the significant

decrease in error in the lowest single-hadron dominated state after including two-hadron
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operators). This suggests that either the p3(1690) or the p3(1990) may not be a quark-

antiquark excitation.

Table 8.3: The lowest 18 levels extracted from a 26 x 26 correlator matrix in the AJ, channel.

The bolded level is single-hadron dominated.

Level Model tmin  tmas aE it Eti/Erey  X?/dof
0 Forward2Exp 3 2 0.2234(35)  2.677(43)  1.32
1 Forward2Exp 4 2% 0.2675(18)  3.205(22)  1.29
2 Forward2Exp 3 26 0.2682(33)  3.214(40)  1.12
3 ForwardGeomSeriesExp 4 26 0.27971(93)  3.352(12) 1.42
4 Forward2Exp 3 21 0.296(12)  3.55(15)  1.55
5 Forward2Exp 3 26 0.3039(74)  3.642(88) 1.17
6 Forward2Exp 3 26 0.3085(22) 3.697(27) 0.63
7 Forward2Exp 3 22 0.315(12)  3.77(14)  0.92
8 Forward2Exp 3 26 0.324(28)  3.88(34) 1.7
9 Forward2Exp 3 24 0.332(14) 3.98(17) 1.01
10 Forward2Exp 3 23 0.3333(89) 3.99(11) 0.87
1 Forward2Exp 3 22 0.338(12)  4.05(14)  0.76
12 Forward2Exp 3 24 0.3427(99) 4.11(12) 1.32
13 Forward2Exp 3 21 0.346(18) 4.15(21) 1.02
14 Forward2Exp 3 24 0.355(17)  4.26(20) 131
15 Forward2Exp 3 25 0.3559(62)  4.265(74)  1.27
16 Forward2Exp 3 24 0.380(19) 4.55(23) 1.25
17 Forward2Exp 3 18 0.394(34) 4.73(41) 1.12

143



N
-------- (W7 (Wn(2)
7 — 7 (0) 7 (0) 7 (3) 7 (3)
6
1| §
44

Level

Figure 8.7: The staircase plot for the levels extracted in the AJ, channel using only single-

hadron operators.
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Figure 8.13: The overlap factors for operators considered in the A3, channel.
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8.3.3 EIf

From the table of expected levels for the E;' channel shown in Table C5 we see that we
expect 28 single- and two-hadron levels to appear below the 2 GeV cutoff. We decided
on 46 operators that transformed irreducibly under the appropriate symmetry groups for
this channel. Two of these operators were single-hadron operators. Although, experiment
tells us that we should not expect to see any resonances in this channel, 2 single-hadron
operators were included in order to make sure all states were extracted. The metric time
and diagonalization time were chosen to be 7p = 4 and 7p = 8, respectively. The condition
number of the C(7y) and G(7p) was 3.56 and 3.45, respectively, which caused us no issues.
The lowest 36 levels are shown in Tables 8.4. The effective energies for these levels are shown
in Figures 8.15 and 8.17 with the fit curves overlaid on the plots. The overlap factors are
shown in Figures 8.16 and 8.18, and the spectrum is shown on a staircase plot in Figure 8.14.
Although we did not expect any resonances in this channel, the overlap factors identify level
12 as being single-hadron dominated. This may be an indication of the existence of a spin-2

resonance in this channel.

Table 8.4: The lowest 36 levels extracted from a 46 x 46 correlator matrix in the £ channel.

The bolded level is single-hadron dominated.

Level Model tmin  tmas arE it Etit/Erey  X?/dof

0 Sym2Exp 3 24 0.2409(77)  2.887(92)  1.13
1 Forward2Exp 3 25 0.259(11) 3.10(13) 1.5

2 Forward2Exp 3 25 0.2697(32)  3.232(39)  1.03
3 Forward2Exp 3 24 0.2766(66) 3.315(79) 1.0
4 Forward2Exp 3 2% 0.2805(67)  3.362(81)  1.38
5 Forward GeomSeriesExp 3 26 0.28104(90)  3.368(13) 1.52
6 ForwardGeomSeriesExp 3 26 0.2817(15)  3.376(19) 1.41
7 Forward2Exp 3 2%  0.2885(41)  3.458(50) 147
8 Forward2Exp 3 24 0.295(11) 3.53(13) 0.89
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Table 8.4: (continued)

Level Model tmin  tmax a;Eyit Etit/Erey  X?/dof
9 Forward2Exp 322 0.2959(90)  3.55(11)  1.53
10 Forward2Exp 4 22 0.303(20)  3.63(24) 271
11 Forward2Exp 3 24  0.306(10) 3.66(12) 1.22
12 Forward2Exp 3 26 0.3065(39)  3.672(47) 0.98
13 Forward2Exp 3 24 0.3099(99) 3.71(12) 1.47
14 Forward2Exp 3 25 0.3117(68)  3.735(82) 1.48
15 Forward2Exp 3 26 0.3170(28)  3.799(34)  1.73
16 Forward2Exp 3 24 0.3172(53)  3.801(65)  0.93
17 Forward2Exp 322 0.3214(72)  3.852(87)  2.37
18 Forward2Exp 3 26 0.3223(63) 3.862(76)  0.91
19 Forward2Exp 3 25 0.3277(58)  3.927(70) 0.62
20 Forward2Exp 3 24 0.330(14) 3.95(17) 0.95
21 Forward2Exp 3 24 0.333(18) 3.99(21) 1.22
22 Forward2Exp 3 20 0.334(12) 4.00(14) 0.76
23 Forward2Exp 3 25 0.3339(56)  4.002(68) 1.5
24 Forward2Exp 3 24 0.335(13)  4.02(16)  1.04
25 Forward2Exp 3 25 0.3358(19)  4.024(24)  1.27
26 Forward2Exp 3 24 0.3363(71)  4.030(86) 0.49
27 Forward2Exp 3 22 0.3388(82) 4.059(99) 0.99
28 Forward2Exp 3 22 0.3408(72) 4.084(86) 1.01
29 Forward2Exp 3 19 0.349(28)  4.18(33)  1.26
30 Forward2Exp 3 21 0.3499(86)  4.19(10)  0.86
31 Forward2Exp 3 26 0.352(21)  4.21(25) 121
32 ForwardExp 8 18 0.356(16) 4.26(20) 0.8
33 Forward2Exp 3 22 0.359(13) 4.30(16) 1.03
34 ForwardExp 8 20 0.361(13) 4.33(16) 1.0
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Table 8.4: (continued)

Level Model tmin  tmax arErit Etit/Erey  X?/dof
35 ForwardExp 7 21 0.372(12) 4.46(14) 1.82
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Figure 8.14: The staircase plot, which shows the lowest 36 levels extracted in the E;f channel.
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Figure 8.15: The effective energies for the lowest 30 levels in the E channel with the fits

overlaid on the plots.
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Figure 8.16: The overlap factors for first 30 operators considered in the E; channel.
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Figure 8.17: The effective energies for levels 30 — 35 levels in the E;F channel with the fits

overlaid on the plots.
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Figure 8.18: The overlap factors for last 16 operators considered in the £ channel.
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8.3.4 T

From the expected levels table for the T}! channel shown in Table C7 we see that we expect
43 single- and two-hadron levels, including the p(770), p(1450), p(1570), p3(1690), p(1700),
to appear below the 2 GeV cutoff. We decided on 73 operators that transformed irreducibly
under the appropriate symmetry groups for this channel, 9 of which were single hadron
operators. The metric time and diagonalization time were chosen to be 79 = 5 and 7p = 8§,
respectively. The condition number of the C'(79) and G(7p) was 15.36 and 6.58, respectively,
which means our correlator matrix is reasonable well-conditioned. These condition numbers

occurred after one level was dropped via the procedure described in Sec. 6.2.2.

8.3.4.1 Single Hadron Operators In this channel, we expect multiple resonances to
appear. Therefore, we start with an analysis of just the single-hadron operators. The 9
levels extracted from the correlator matrix consisting of 9 single-hadron operators are shown

in Table 8.5.

Table 8.5: The levels extracted from a 9 x 9 correlator matrix consisting of single-hadron

operators in the T}, channel.

Level Model tmin  tmas aE iy Etit/Erey  X?/dof
0 SymGeomSeriesExp 3 26 0.1335(16)  1.600(20)  1.06
| Forward2Exp 3 24 0.262(16)  3.14(19)  1.25
2 Forward2Exp 3 26 0.2961(78)  3.548(94) 1.19
3 Forward2Exp 3 18 0.338(37)  4.05(45)  0.73
4 Forward2Exp 3 21 0.364(18)  4.36(22)  0.74
5 ForwardExp 6 23 0.473(35) 5.67(42) 1.19
6 ForwardExp 5 12 0.495(30) 5.94(35) 0.74
7 ForwardExp 5 11 0.565(34) 6.77(40) 0.71
8 ForwardExp 5 9 0566(81)  6.78(97)  3.06
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Figure 8.19: The staircase plot for the levels extracted in the T}’ channel using only single-

hadron operators.
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Figure 8.21: A comparison between the experimental resonances expected to appear in the

Ty channel and the levels extracted by only considering the 9 single-hadron operators.

8.3.4.2 All operators, Single Hadron Improved Operators The lowest 64 levels
are shown in Table 8.6. The effective energies for these levels are shown in Figures 8.24
8.26 and 8.28, with the fit curves overlaid on the plots. The overlap factors are shown in
Figures 8.25, 8.27, and 8.29. The spectrum is shown on a staircase plot in Figure 8.22.
Once again, as can be seen in Figure 8.23, we see a clear discrepancy between the states
deemed to be single-hadron dominated and the expected experimental references (notice the
significant decrease in error in the lowest single-hadron dominated state after including two-
hadron operators). The experimental spectrum has at least one extra state that may not be

a quark-antiquark excitation.
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Table 8.6: The lowest 64 levels extracted from a 73 x 73 correlator matrix consisting of

single-hadron operators in the 7} channel. The levels in bold are single-hadron dominated.

Level Model twin  tmar  @Bp  Ega/Erep  X*/dof
0 SymGeomSeriesExp 4 26 0.1295(13) 1.551(16) 1.37
1 Sym2Exp 5 26 0.1559(70)  1.868(84)  1.39
2 Sym2Exp 3 22 0.198(11) 2.38(13) 1.12
3 Forward2Exp 3 26 0.2026(61) 2.427(73) 2.04
4 Forward2Exp 3 26 0.206(16) 2.47(19) 243
5 Forward2Exp 3 2 0.2249(24)  2.695(29)  1.43
6 Forward2Exp 3 26 0.2546(52) 3.051(62) 195
7 Forward2Exp 3 25 0.259063) 3.103(76)  1.56
8 Forward2Exp 3 25 0.2617(77)  3.136(92) 1.86
9 Forward2Exp 3 24 0.2663(62)  3.191(74)  1.49
10 Forward2Exp 32 0.2664(25) 3.192(30)  1.39
1 Forward2Exp 4 25 0.2741(43)  3.285(53)  1.72
12 Forward2Exp 3 26 0.2763(57)  3.311(69) 1.17
13 Forward2Exp 3 24 0.276(13) 3.31(15) 1.56
14 Forward2Exp 3 25 0.277(13) 3.32(15) 1.84
15 Forward2Exp 3 25 0.2777(56)  3.328(67) 1.33
16 Forward2Exp 3 26 0.2834(59) 3.396(70) 1.48
17 Forward2Exp 3 24 0.2854(69) 3.421(84) 1.31
18 Forward2Exp 3 24 0.289(11) 3.47(13) 1.29
19 Forward2Exp 3 26 0.2905(80)  3.481(96) 1.75
20 Forward2Exp 3 2 0.2018(14)  3.497(17)  2.37
21 Forward2Exp 4 25 0.2946(65)  3.530(78)  1.16
22 Forward2Exp 3 25 0.2963(55)  3.550(66)  1.39
23 Forward2Exp 3 25 0.2972(36)  3.562(43)  1.76
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Table 8.6: (continued)

Level Model tmin  tmax a;Eyit Etit/Erey  X?/dof
24 Forward2Exp 4 25 0.297(23) 3.56(28) 1.81
25 Forward2Exp 323 03020(87)  3.62(10)  1.43
26 Forward2Exp 3 22 0.3033(52) 3.635(62) 1.67
27 Forward2Exp 3 21 0.304(13) 3.64(15) 1.62
28 Forward2Exp 3 23 0.304(21) 3.64(26) 1.21
29 Forward2Exp 425 0.3054(73)  3.660(88)  2.13
30 Forward2Exp 3 22 0.3062(100)  3.67(12) 1.6
31 Forward2Exp 3 22 0.308(18)  3.60(22)  1.64
32 Forward2Exp 3 21 0.313(20)  3.75(24)  1.98
33 Forward2Exp 3 24 0.3149(99)  3.77(12)  0.96
34 Forward2Exp 3 25 0.3162(34)  3.789(41) 1.03
35 Forward2Exp 3 23 0.3173(79) 3.802(95) 0.93
36 Forward2Exp 6 21 0.318(32) 3.81(39) 1.76
37 Forward2Exp 3 24 0.3184(75)  3.816(90)  0.96
38 Forward2Exp 3 24 0.3207(60) 3.843(73)  1.41
39 Forward2Exp 3 20 0.3242(59) 3.885(71)  L.72
40 Forward2Exp 3 22 0.324(19) 3.89(22)  1.01
41 Forward2Exp 3 24 0.325(13) 3.90(16) 1.81
42 Forward2Exp 3 26 0.326(11) 3.91(14) 1.58
43 Forward2Exp 3 24 0.3288(91) 3.94(11) 0.99
44 Forward2Exp 3 25 0.3288(71)  3.940(86)  1.66
45 Forward2Exp 320 0.320023)  3.95(27) 1.8
46 Forward2Exp 322 0.3302(94)  3.96(11) 0.6
A7 Forward2Exp 3 26 0.331(12)  3.97(14)  1.36
48 Forward2Exp 3 24 0.3328(63)  3.988(75)  2.28
49 Forward2Exp 3 26 0.333(19) 4.00(22) 1.85
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Table 8.6: (continued)

Level Model tmin  tmax a;Eyit Etit/Erey  X?/dof
50 Forward2Exp 3 20 0.333(23) 4.00(28) 1.98
51 Forward2Exp 3 24 0.334(15) 4.00(18) 0.79
52 Forward2Exp 3 25 0.3374(88)  4.04(11)  0.93
53 Forward2Exp 3 23 0.3427(94) 4.11(11) 0.89
o4 Forward2Exp 3 24 0.3436(85) 4.12(10) 0.86
55 Forward2Exp 3 24 0.351(61) 4.20(73) 1.11
56 Forward2Exp 3 20 0.352(12)  4.22(14) 131
57 Forward2Exp 3 21 0.353(21) 4.23(25) 1.01
58 Forward2Exp 320 0.3530(83)  4.220(99)  0.88
59 Forward2Exp 323 0.356(63)  4.27(76)  0.76
60 Forward2Exp 3 24 0.361(34) 4.32(41) 2.55
61 Forward2Exp 3 26 0.363(21) 4.35(26) 1.75
62 Forward2Exp 724 0.3650(79)  4.374(96) 1.9
63 Forward2Exp 3 21  0.377(15) 4.52(18) 0.85
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Figure 8.22: The staircase plot, which shows the lowest 64 levels extracted in the T}, channel.
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Figure 8.26: The effective energies for next lowest 30 levels in the T} channel with the fits

overlaid on the plots.
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Figure 8.27: The overlap factors for the next 30 operators considered in the 7}/ channel.
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overlaid on the plots.
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Figure 8.29: The overlap factors for the last 12 operator considered in the T} channel.
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8.3.5 T

From the expected levels table for the T, channel shown in Table C9 we see that we expect
34 single- and two-hadron levels, including the p3(1690), to appear below the 2 GeV cutoff.
We decided on 57 operators that transformed irreducibly under the appropriate symmetry
groups for this channel, 4 of which were single hadron operators. The metric time and
diagonalization time were chosen to be 7y = 5 and 7p = 8, respectively. The condition
number of the C'(7y) and G(7p) was 10.74 and 4.82, respectively, which means our correlator

matrix is reasonably well-conditioned.

8.3.5.1 Single Hadron Operators In this channel, we expect the p3(1690) and p3(1990)
resonances to appear. Therefore, we start with an analysis of just the single-hadron opera-
tors. The 4 levels extracted from the correlator matrix consisting of 4 single-hadron operators

are shown in Table 8.7.

Table 8.7: The levels extracted from a 4 x 4 correlator matrix consisting of single-hadron

operators in the T, channel.

Level Model tmin  tmax arEyit Etit/Erey  X*/dof
0 Sym2Exp 3 26 0.301(24)  3.61(28) 2.0
1 Sym2Exp 3 21 0.341(20) 4.09(24) 1.2
2 Forward2Exp 3 13 0.34(12) 41(14) 027
3 Forward2Exp 3 17 0.47(12) 5.6(14) 1.38

8.3.5.2 All operators, Single Hadron Improved Operators The lowest 47 levels
are shown in Table 8.8. The effective energies for these levels are shown in Figures 8.35 and
8.37, with the fit curves overlaid on the plots. The overlap factors are shown in Figures 8.36
and 8.38. The spectrum is shown on a staircase plot in Figure 8.33. There appears to be

clear agreement between the experimental resonances expected to appear in this channel and
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Level

Figure 8.30: The staircase plot for the levels extracted in the 75 channel using only the

single-hadron operators.
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Figure 8.31: The overlap factors for the 4 single-hadron operators considered in the T

channel.

the lattice stationary states deemed single-hadron dominated (see Figure 8.34). However,
since we did not see agreement in the A5, channel, and we saw an unexpected state in the E."
channel spectrum that could also appear here, it makes more sense to identify one of these
single-hadron dominated states as the degenerate partner to the single-hadron dominated

state found in the E; channel.
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Figure 8.32: A comparison between the experimental resonances expected to appear in the

T,f channel and the levels extracted by only considering the 4 single-hadron operators.

Table 8.8: The lowest 47 levels extracted from a 57 x 57 correlator matrix in the T3, channel.

The levels in bold are single-hadron dominated.

Level Model i tmaz a By Efit/Erey  X*/dof
0 Sym2Exp 4 26 0.1848(32)  2.214(38)  1.95
1 Sym2Exp 3 25  0.2420(62)  2.900(74)  1.85
2 Sym2Exp 4 26 0.2430(20)  2.912(25)  1.74
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Table 8.8: (continued)

Level Model tmin  tmas a;Eyit Etit/Erey  X?/dof
3 SymGeomSeriesExp 3 26 0.2500(14)  2.995(17) 1.56
4 Sym2Exp 3 25 0.2629(92)  3.15(11)  2.52
5 Sym2Exp 3 25 0277(22)  3.32(27)  1.35
6 Sym2Exp 3 25 0.280(11)  3.36(13)  1.29
7 SymGeomSeriesExp 3 26 0.2811(62)  3.368(74)  1.76
8 Sym2Exp 3 24 0.2865(54)  3.433(65)  1.95
9 SymGeomSeriesExp 3 26 0.2865(36)  3.434(44)  1.18
10 Sym2Exp 3 23 0.295(14)  3.54(17)  1.83
11 Sym2Exp 3 26 0.2965(40)  3.553(48)  1.95
12 Sym2Exp 3 26 0.299(12)  3.59(14) 147
13 Sym2Exp 3 26 0.301(10)  3.61(12)  1.74
14 Sym2Exp 3 26 0.3057(74) 3.664(90) 1.38
15 Sym2Exp 3 24  0.3059(65) 3.665(79) 1.47
16 Sym2Exp 3 22 0.3066(87)  3.67(10)  0.77
17 Sym2Exp 3 25  0.307(11)  3.68(13)  1.57
18 Sym2Exp 3 26 0.3075(61)  3.685(73)  1.52
19 Sym2Exp 3 26 0.3000(48)  3.703(58) 1.4
20 Forward2Exp 3 24 0.312(10) 3.74(13) 0.97
21 Sym2Exp 3 24 0.3132(87)  3.75(10)  2.51
22 Forward2Exp 3 2 0.3145(54)  3.760(65)  1.24
23 Sym2Exp 3 25 0.3152(30)  3.777(37)  1.96
24 Sym2Exp 3 26 0.3166(93)  3.79(11)  1.32

25 Sym2Exp 3 25 0.3174(61) 3.804(74) 1.35
26 Forward2Exp 3 25 0.319(14)  3.82(17)  1.37
27 Forward2Exp 3 23 0.3208(67)  3.844(81) 0.93
28 Sym2Exp 3 23 0.3212(69) 3.849(83)  1.04
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Table 8.8: (continued)

Level Model tmin  tmax a;Eyit Etit/Erey  X?/dof
29 Forward2Exp 3 25 0.3213(71)  3.850(85)  1.38
30 Forward2Exp 3 25 0.325(22) 3.89(26) 0.77
31 Forward2Exp 3 24 0.3251(80)  3.896(96)  0.81
32 Forward2Exp 3 22 0.3284(67)  3.935(81) 0.79
33 Forward2Exp 3 22 0.328(15) 3.94(18) 0.85
34 Forward2Exp 3 22 0.3343(84)  4.01(10) 1.1
35 Forward2Exp 4 26 0.3361(21)  4.028(26)  1.07
36 Forward2Exp 3 19 0.338(12) 4.05(15) 1.27
37 Forward2Exp 3 25 0.3379(54)  4.049(65)  0.56
38 Forward2Exp 3 25 0.339(20)  4.06(24)  1.48
39 Forward2Exp 3 23 0.3397(68)  4.071(82) 1.01
40 Forward2Exp 3 26 0.3403(21) 4.078(26) 1.63
41 Forward2Exp 3 25 0.3443(61)  4.126(74)  0.82
42 Forward2Exp 3 19 0.344(15)  4.13(18)  0.92
43 Forward2Exp 3 20 0.345(16)  4.13(19) 2.1
44 Forward2Exp 3 21 0.353(13)  4.23(16)  1.45
45 Forward2Exp 3 18 0.374(43)  4.49(52)  0.93
46 Forward2Exp 3 26 0.384(15) 4.60(18) 1.46
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Figure 8.33: The staircase plot, which shows the lowest 47 levels extracted in the T, channel.
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Figure 8.34: A comparison between the experimental resonances expected to appear in the

T, channel and the levels that were determined to be single-hadron dominated.
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Figure 8.36: The overlap factors for the first 30 operators considered in the T, channel.
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Figure 8.37: The effective energies for next lowest 17 levels in the T,/ channel with the fits

overlaid on the plots.
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8.3.6 Finite-volume Spectrum Conclusions

In a series of papers [87, 88, 26|, the Hadron Spectrum Collaboration (HSC) presented
their results for the isoscalar and isovector spectrum on a much smaller 243 x 128 lattice
with a much heavier pion ~ 391 MeV, and no two-hadron operators were included in the
analysis. Their final results were collected into a single figure from Ref. [26], which is shown
in Figure 8.39. For comparison to our results shown above, we focus on the isovectors (in
blue) with JF¢ = 17~,37~, which shows 4 levels below 2.0 GeV and 2 levels between 2 GeV
and 2.5 GeV. This then does compare well with the single-hadron resonances we extracted in
the T} channel (see Figure 8.23), which is the only channel that will contain both J =1, 3.
Additionally, we might expect to see spin-4 states in the T} channel, and the 4™~ isovector
meson in Figure 8.39 agrees with the highest state shown in T;}. Furthermore, the results
in Figure 8.39 show 27~ isovector meson that can explain the unexpected single-hadron
state found in the E; channel. This state also lends support for our suggestion that one of
the single-hadron dominated states in the T, channel spectrum was in fact the degenerate

partner to the single-hadron dominated state found in the E;" channel.
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Figure 8.39: The isoscalar and isovector meson spectrum results from the Hadron Spectrum
Collaboration on a 243 x 128 lattice with m, ~ 391 MeV. Continuum spin identification has

been used to label the states by JX¢. Figure take from Ref. [26].
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8.4 THE K*(392) RESONANCE

The approach used in the previous section to identify resonances from the finite-volume
spectrum was based on the use of the overlap factors. This identification is somewhat qual-
itative and is not expected to reproduce resonance energies with a high accuracy, especially
when near a decay threshold or if the resonance has a large width. In order to reliably
extract properties of hadron resonances, we must resort to other methods. The most widely
used and successful approach is based on the Liischer formalism introduced in Chap. 7. In
that chapter, we described a newly developed approach to extracting resonance information
from the Liischer quantization condition, which includes multiple partial waves and/or decay
channels. We use that method here for the inclusion of the [ = 0, [ = 1, and the | = 2 partial
waves.

The K*(892) represents an interesting test case for the inclusion of multiple partial waves
because there is no symmetry preventing the mixing of the s- and p-wave when P # 0, and
the s-wave is expected to be non-negligible [81], which may be due to the k resonance. This
partial wave mixing can be avoided if one only uses irreps of the little group that do not mix
with [ = 0 as was done in Ref. [89]. But, we will not restrict ourselves in that way here. The
relevant channels are listed in Table 8.9. Notice that this table includes the A;, irrep which
would not contain the K*(892), but we include this channel to pick up the s-wave since we
are considering multiple partial waves in our analysis.

We do not consider coupled channels here, and therefore we can only consider energies
below the inelastic threshold given by ﬁl—r =2+ ;”l—f ~ 4.12. All energies extracted below this
cutoff are shown in Table 8.10. Notice that the phase shift is sometimes shown in one or both
of the last two columns. These values are calculated by assuming no partial wave mixing,
where the phase shift can be determined exactly from the quantization condition. That is,
in the case of a single channel and only considering one partial wave, the K-matrix is then

a 1 x 1 matrix and the quantization condition in Eq. (7.46) is easily solved by K~! = B(P),
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Table 8.9: The list of irreps of the little group we will consider for K scattering. The last

column shows the lowest partial waves that each irrep includes.

d? A [

0 Ay 0,4, ...
Ty L, 3,

1 Ay 0,1,2, ...
E 1,2,3, ...

2 Ay 0,1,2, ...
By 1,23, ...
By 1,23, ...

3 Ay 0,1,2, ...
E 1,23, ...

4 Ay 0,1,2, ...

which gives
Qo COL0 = g2 K

Therefore, in this case, the phase shift can be determined exactly from calculating B,
We started with a simple fit focusing on the dominant p-wave and ignoring the mixing

with the other partial waves. In this first fit we also ignore the irreps that mix with the s-wave.

We expect the K*(892) to be well described by the relativistic Breit-Wigner parameterization

of the T-matrix
- EcmF(Ecm)

T = .
E2 —m%. +iE., T (Een)

(8.2)

We could then write this in terms of K ! and use the result as our parameterization of the

K-matrix. However, the width is strongly dependent on the unphysically large pion mass due
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Table 8.10: The extracted energies relevant for the channels used in our analysis.

d? A +# Eemn/mx aAE;, (Gem /M) cOt 0o (Qem /My )? cot 8y
0 A, 0 3.091(11) -0.00134(37) 3.8(1.1)
0 Tw 0 3.776(25) -0.02151(83) 0.057(56)
1 A0 3.214(12) -0.00165(35) 2.02(42) 1.33(24)
| 3.533(16) 20.00224(41) 0.50(19) 1.63(38)
2 3.832(23) 0.00875(69) -0.460(63) 11.651(82)
1 E 0 3.836(22) -0.02367(63) - 0.050(45)
2 A0 3.303(13) -0.00236(38) 1.16(19) 1.26(20)
| 3.667(22) -0.00466(66) 0.56(19) -0.23(13)
2 3.777(18) -0.00083(48) 4.3(1.6) 1.44(45)
3 3.919(20) 0.00099(54) ~4.4(1.6) J11.8(5.6)
> B0 3.818(21) 20.02757(59) -0.109(33)
> B, 0 3.676(17) -0.00434(45) 2.20(29)
| 3.998(19) 0.00688(48) -3.67(19)
3 A0 3.404(14) -0.00193(48) 1.32(31) 1.82(45)
| 3.768(33) -0.0067(10) 0.68(24) -0.64(16)
2 3.871(23) -0.00335(57) 1.98(34) 0.09(15)
3 E 0 3.755(26) -0.00716(75) 1.22(22)
1 4.045(20) 0.00244(43) -5.4(1.8)
4 A0 3.184(15) -0.00040(42) 2.4(1.4) 1.12(55)
| 3.473(19) -0.00240(64) 0.50(27) 1.48(48)
2 3.737(62) 0.0057(19) L0.71(34) 11.81(52)

to a decrease in the phase space available for the decay. We instead choose to parameterize

the decay width in terms of the K*(892) — K coupling g, which has been shown to have
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little dependence on the pion mass [90]. The coupling is defined by

3
Qem
P(Ecm) = 672 92' (83)

Next, substituting the decay width into the Breit-Wigner parameterization gives

67 E,.,,
2

qu cotd; = (m% - Efm), (8.4)

where we used the definition of the scattering phase shift S; = e?®. Then, we write cot &;

in terms of K !

~ 6w L3E,,
K= W—“(miﬁ - E2)
(2m)g (8.5)
_ 6m(m,L)*Eep (mi. EZ, '
o @2)Pmag® \m2 om2 )
Finally, defining ko = 27, we have
~ 67 FE, m2. E?
Ki'= T - 8.6
' kS’mwfﬂ(m% m%)’ (&)
which is the fit form we use to parameterize the p-wave. The result of this fit is
TR _3814(19),  ¢=5.52(19),  x%/dof = 0.96. (8.7)
My

A plot of this fit is shown in Figure 8.40. In this fit, and all subsequent fits, we used
1000 bootstrap resamplings and the Q function defined in Eq. (7.52) with x4 = 30. For
some fits we also used the determinant condition itself as a residual with nearly identical
results to those using the 2 function. But, it becomes especially important to use the
2 function as more partial waves are included. Converting to physical units gives a mass
my- = 893.0(2.8) MeV, which agrees very well with the experimental value. We also note the
K*(892) — K coupling is in agreement with the experimental value of glerr) = 5.720(60).
These results suggest the d-wave contribution is in fact negligible. The results from Ref. [89]
were found using the same irreps. Their value of g = 5.7(1.6) has a mean value much closer

to the experimental value, but their error is an order of magnitude larger than our error.
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To show the importance of including multiple partial waves, we next performed a fit using
only the s-wave. Because we expect a broad s-wave resonance, the effective range expansion

was used for our model in this case

(8.8)

~ 1 Maro [ Eom \ 2

Ko’ =  komaao + k:oo < My ) )
The result of this fit is shown in Figure 8.41, and has a x?/dof = 4.92. As expected, the
s-wave phase shift is poorly determined due to higher partial wave mixing.

Next, we included all irreps and allowed mixing between the s-, p-, and d-wave. Since
we do not expect the d-wave contributions to be large, we parameterized this partial wave
by

1

K7t = 8.9
2 kgmgag’ ( )

which should result in as =~ 0 if the d-wave is negligible. The result of this fit is

m =

= 3.785(15), g =>5.50(18),  mgag=—0.36(26),  ma.ro = —0.12(15),
ez

m2ay = —0.0092(48), x?/dof = 1.36,
(8.10)

which shows that the d-wave contribution is very small. In light of this, we also performed
a fit with all irreps and only included the s- and p-wave. The result of this fit is

TN f¢*

= 3.775(11), g = 5.48(18), mrag = —0.34(20),
Mx (8.11)
maro = —0.13(14), x?/dof = 1.48.

Only one previous calculation has included multiple partial waves in the extraction of the
K*(892) resonance parameters [81]. But, they used a small 243 x 128 lattice, a much heavier
pion around 390 MeV, and assumed the [ = 2 partial wave was negligible without explicitly
showing that this was the case. Although the stochastic LapH method was introduced for
qualitative studies of the QCD excitation spectrum, these results show that the method has

sufficient precision for application of the Liischer method to study scattering phase shifts.
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phase shift. Each data point corresponds to an extracted energy, and the legend denotes
the irrep and momentum for that energy. This fit assumed no partial wave mixing and only
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Figure 8.41: 3;—’: cot dy plotted as a function of Eﬁ;", where §y is the K7 s-wave scattering
phase shift. Each data point corresponds to an extracted energy, and the legend denotes the
irrep and momentum for that energy. This fit assumed no partial wave mixing and resulted

in x?/dof = 4.92, which indicates this assumption is not valid.
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9.0 CONCLUSIONS AND OUTLOOKS

The finite-volume single- and two-particle spectra were extracted in five symmetry channels
which contain the p(770) and its excitations. Qualitative identifications of the single-hadron
dominated states were used in a comparison with the expected resonances in each channel.
There we found a single-hadron dominated state that could be identified with either the
p3(1690) or the p3(1990) suggesting one of these states may not be a quark-antiquark exci-
tation. We also found a single-hadron dominated state with an energy £ = 1.814(59) GeV
that is best described as a spin-2 resonance. This is in agreement with results from a smaller
lattice and heavier pion [26]. Further, the resonances expected to appear in the 7} channel
were not all reproduced, which suggests at least one of these states is not a quark-antiquark
excitation.

To identify resonances in a rigorous manner, we rely on the formalism introduced by
Liischer which relates finite-volume energies to infinite-volume scattering amplitudes. Recent
developments in the inclusion of multiple partial waves and/or decay channels introduced in
Ref. [27] were used for extracting the resonance parameters of the K*(892) including [ = 0,
Il =1, and [ = 2 partial waves.

Finally, tetraquark operators were described, and we were able to show that every
tetraquark operator we considered could be expressed as linear combinations of meson-
meson-like operators. These meson-meson-like operators differ from our two-meson oper-
ators described in Chap. 3 in that each individual gauge-invariant object does not transform
irreducibly under the usual symmetry groups and only the structure as a whole is made to
transform appropriately. Although local operators like these were considered in Sec. 3.6.1
and discarded due to significant excited-state contamination, it may occur that the effective

energy does in fact plateau much quicker for some of these tetraquark operators, which would
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be a significant finding.
These methods have laid the ground work for future extensions aiming to clear up con-
troversy surrounding the A(1405), the Roper resonance, Jaffe’s inverted spectrum [13], and

the XYZ mesons.
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APPENDIX A

RESAMPLING

Here we summarize the methods used for error calculation of so-called non-simple observables
via resampling. A simple observable is one that can be defined on a single configuration
(i.e. the observable must coincide with the integrand of a single path integral). Simple
observables can therefore be estimated with errors using the Monte Carlo method. Examples
of simple observables are the real or imaginary part of a temporal correlator for one time
separation, and the real or imaginary part of the vacuum expectation value of a single
operator. Consider a set of simple observables {d;}, where dz(c) is the value of the observable

d; on the configuration Ug, then the sample mean and covariance are given by

(d;) = NL > dEC), (A.1a)
covld ) = g (0 )y — gy = BOLZ ML)

where N is the number of configurations, and it is assumed that autocorrelations can be
ignored.!
A non-simple observable is any observable that is not simple. And, therefore, the methods

for estimating these quantities from the Monte Carlo method in Eq. (A.1) cannot be used.

!Sometimes the covariance is defined with a factor of Nic instead of ﬁ, but using the latter removes
the bias from the estimate for the sample mean. The difference is usually not noticeable, though. You may
wonder why this factor is there at all. The more commonly seen equation for the variance is: cov(d;,d;) =
((d; — (d;))(d; — (d;))). This quantity is the variance of d; itself, but what we really want is the variance in
our estimate of d;. That is, we want the variance for our estimate of d;, not the variance of d; itself. This
is the difference between the population mean/covariance and the sample mean/covariance.
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Examples of non-simple quantities are energies and the lattice anisotropy. Of course, a
value for these quantities can still be determined, because these non-simple observables
are obtained from other simple observables. For example, the effective energy (2.78) at
a particular time is determined from the estimate of the correlator at two different time
separations. In this case, one could use simple propagation of uncertainty to determine the
error. But, it is not as clear how one could estimate the error of parameters from a fit.
And, in the case of highly non-linear functions of the observables, simple propagation of
uncertainty will introduce a bias in the error estimate.

Instead, the approach we advocate is to use statistical resampling schemes. Each scheme
involves determining a set of resamplings for some observable, where each resampling contains
an estimate for that observable. In order to determine the value of a non-simple observable
on a particular resampling, we must first determine the values of the simple observables
used in calculating the non-simple observable on that particular resampling. Then, we can
compute the non-simple observable on each resampling of the simple observables. This
allows the covariance to be determined for non-simple observables from their values on each
resampling. For a discussion on how resampling is used to determine the error in best-fit
parameters for a y? minimization, see App. B. The two resampling schemes we consider are

the jackknife and the bootstrap.

A.1 JACKKNIFE

The jackknife resamplings for a simple observable are determined by removing one config-
uration for each resampling. That is, the estimate on the J-th resampling for a simple

observable is given by

No—1
1 1
(i), = N1 Z ) = No 1 Z 41— dcy). (A.2)
¢ C£J ¢ Cc=0



From this definition, it can be shown that (d;) = (d;)"" and cov(d, d;) = covl!)(d;, dy),

where?

<di>(J) _ NLC i (), (A.3a)
COV(J)<dz‘,dj) - N(]j\f; 1 ) (<di>J - <di>(J))(<dj>J - <dj>(J))7 (A‘3b)
J=0

which can be determined using only the values of an observable on each resampling, and

hence for both simple and non-simple observables.

A.2 BOOTSTRAP

Each bootstrap resampling for a simple observable is determined from the values of that
observable on Ng randomly chosen configurations where each configuration can be selected
multiple times. The number Np of bootstrap resamplings used can be set to anything, but
of course, if too few are chosen then we would not expect a very good estimate for the
covariance. So, this number should be set high enough such that any further bootstrap
resamplings added do not effect the results significantly. Let O be the a-th randomly
selected configuration for the B-th bootstrap resampling. Then, the estimate for the simple

observable on the B-th resampling is

R (P
Ay, = — S d%). Ad
s = 3 2 (A1)

2Note that the (J) in the superscript of these quantities does not refer to a particular jackknife resampling
but is just a reminder that the jackknife scheme is being used.
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Once the value of an observable, simple or non-simple, on each bootstrap resampling has

been determined, an estimate for the mean and covariance is given by?

(dz>(B) _ NLB :;0 (di) (A.ba)
covP(d;.d;) = NBl_ i 3 (g — @) (d5) = () (A.5D)
b=0

3Note that, unlike with jackknife resampling, these estimates for the mean and covariance using the boot-
strap resampling do not in general exactly equal (d;) and cov(d;, d;), respectively, for non-simple observables.
But, we do expect the values to be close.
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APPENDIX B

FITTING

Here we present the general framework for performing a y? minimization in order to deter-
mine estimates for best-fit parameters. Let the set of observables that you wish to describe
by some model be arranged into a vector R, and let the set of best-fit parameters be ar-
ranged into a vector a. Then, let the model function be denoted by a vector M (e, R). As a
concrete example, suppose we want to fit a temporal correlator C(t) to the function Ae=¥t,

where A and F are the fit parameters, with a fit range of ¢ = (3,20). Then, we would have:

C(3) ape 3
C(4) ape A
R = , M = , a= (B.1)
: E
C(20) e 20

In this example, the model function M does not depend on the observables R, but this will
not always be the case. Below, we will see a great simplification that is achieved when the
model does not depend on the observables.

Additionally, let us define the vector of residuals by
r(R,a)= R— M(a, R). (B.2)

Then, the best fit parameters in a can be determined by minimizing the correlated y? given
by
V2= Z (ri) o (), (B.3)

/L'hj
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where 0;; = cov(r;,7;). The need for a correlated x? is due to the data in general not being
statistically independent. This is because the observables are determined from the same
ensemble of configurations. However, we do assume that autocorrelations are negligible.
If the model does not depend on the observables, then one can show that cov(r;,r;) =
cov(R;, R;). This greatly simplifies the minimization, because then the covariance matrix
need only be calculated once before the minimization begins. If instead the model does
depend on the observables, then every time one of the fit parameters in a is changed, o1
must be recalculated and this can be computationally costly.

We will use a resampling scheme for our y? minimizations (see App. A), and there are
two cases to consider: 1) the observables are simple and 2) the observables are non-simple.
If the observables are simple, then we can obtain best-fit estimates by using the standard
Monte Carlo formulas (A.1) for x* and performing the minimization. Then, to obtain error
estimates on the fit parameters, we perform a y? minimization for each resampling. This is
still done by exploiting the same Monte Carlo formulas, but the summations are now only
over the configurations included in the particular resampling being considered. Once the
fit parameters have been determined for each resampling, the covariances for these param-
eters can be obtained using the covariance formulas specific to the resampling scheme (i.e.
Eq. (A.3b) for jackknife resampling and Eq. (A.5b) for bootstrap resampling). For many
cases, it may turn out that calculating the covariance matrix using the Monte Carlo formu-
las for each resampling has little effect on the final results. If this is the case, then one can
“freeze” the covariance matrix by using the original set of configurations for each resampling.
Of course, it will still be important to use the means obtained on each resampling.

Now, if the observables are non-simple, we can no longer use the Monte Carlo formu-
las. It will be assumed that these non-simple observables have been determined on each
resampling, and the covariance matrix used in the y? minimization of each resampling will
be given by covariance formulas specific to that resampling scheme. Then, once a best fit
value has been determined on each resampling, we can again use the formulas specific to
that resampling scheme to obtain the means and covariances for each fit parameter. It is
sometimes possible to use the procedure described for simple observables on non-simple ob-

servables if the observables are available on each configuration. For example, this can be
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done for vacuum-subtracted temporal correlators, which are non-simple observables.
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APPENDIX C

OPERATOR CHOICES

The operators we use are detailed in the tables below. For each type of operator (e.g. single
site (SS), singly-displaced (SD), etc.) the numerical suffix is simply a convenient identifier.
The definitions of these operators have been stored in files that our program reads. They

are not given here but are available upon request.
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c1 A%

Table C1: The operator choices for the A7, channel corresponding to each level of free particle
states up to 2.00 my. The multiplicity n is indicated in the second column. The operators
in bold were chosen to be included in the correlator matrix. The operators colored red or
blue were not included because they were considered too noisy or too linearly dependent on

another operator, respectively. Other operators were found to be unnecessary.

E/my n  Particle content Available Operator(s)
1.299 1 7(0) ao[980](0) 7(0) Ay, SS0 — =(0) Ay, SSO
1.330 1 7(1) w(1) w(1) Ay §S1 — n(1) A7 SS1
1.361 1 7(0) w(1) n(1) N/A
1.514 1 7(2) w2) w(2) Ay SS0 — n(2) A7 SS2
1.527 1 7(1) ae[980](1) w(1) Ay §S1— w(1) A SSO
1.567 1 w(1) ¢[1020](1) w(1) Ay §S1 — ¢(1) A] SS1
1.572 1 p(1) n(1) w(1) Af §S§1 — n(1) A SS1
w(1) A §S1 — ¢(1) Af SS1
1.642 1 K(1) K*[892](1) K(1) A, SS1 — K(1) A; §S2
1.673 1 7(3) w3d) w(3) A; SS1 — n(3) Ay SD7
1.701 1 7(2) ao[980](2) w(2) A; SS0 — w(2) A7 SSO
1.718 1 p(2) n(2) w(2) A §82 — n(2) A SS0
w(2) A 8§82 — ¢(2) Af SS0
1.739 1 7(2) ¢[1020](2) w(2) A; SS0 — ¢(2) A] S§S2
1.787 1 K(2) K*[892](2) K(2) A, SS0 — K(2) A; SS3
1.811 1 7(0) 7(0) 7(0) ag[980](0) N/A
1.814 1 7w(4) w4) w(4) Ay SS1 — n(4) A7 SS1
1.826 1 7(0) ag[1450](0) m(0) Ay, TDO1 — =(0) Ay, SD2
1.850 1 7(3) ao[980](3) w(3) Ay S0 — w(3) A SSO
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Table C1: (continued)

E/my n  Particle content Available Operator(s)
1.852 1 p(3) n(3) w(3) A 8§82 — n(3) AF 8S0
w(3) AT §S§2 — ¢(3) AT SS0
1.874 1 7(1) a[1320)(1) n(1) Ay SS1 — =(1) A] LSD3
1.887 1 7(3) $[1020](3) n(3) Ay SS1 — $(3) A] SD7
1.911 1 w(1) m[1400)(1) w(1) Ay SS0 — w(1) A} SSO
1.917 1 p(2) p(2) m(2) By SS2 — w(2) Bf SS1
1.919 1 K(3) K*[892](3) K(3) A, SS0 — K(3) A, SS3
1.944 2 7w(5) w(b) N/A
1.971 1 p(1) /(1) w(1) A §S1 — n(1) A SS0
w(1) AT 8§81 — ¢(1) AT SSo0
1.977 1 p(4) n4) w(4) A §S1 — n(4) AF SS1
w(4) AT SS1 — ¢(4) AT SS1
1.984 1 7(4) ao[980](4) w(4) Ay SS1 — w(4) A] SSO
1.985 1 w(1) w[1420](1) n(1) Ay SS1 — n(1) AT SS0

Table C2: Additional available A, operators. The operators in bold were chosen to be in-

cluded in the correlator matrix. The operators colored red or blue were not included because

they were considered too noisy or too linearly dependent on another operator, respectively.

Other operators were found to be unnecessary.

Available Operators

m(0) A, TDO400
7 (0) A, TDOO
w(0) A}, TDO5
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Table C2: (continued)

Available Operators

7(0) Af, TDO3

7(0) A, SDO

7(0) Af, TDUO
0) Af, TDU1

™

™

0) A;, SS0 — x(0) A, SD2

m(0) Ay, TDO1 — 7(0) A, SSO
m(l) Ay SSO — =(1) A7 LSD3

(1

)

)
A; SS1 — =(1) Ay TSD1
Ay TSD2 — =(1) A7 SS0
2) B SS1 — w(2) Bf SS2

(0)
(0)
(0)
(0)
(0)
(1)
(1)
(1)
(2)
(2)
(2)
(1)
(1)
(2)

m(2) Ay SS1 — w(2) Ay TSD1
7(2) A; §50 — 7(2) AT LSDT
(1) Ay SS0 — n(1) A] SSO
m(1) Af SS2 — n(1) A SSO
m(2) Ay SS1 — n(2) Ay SS1
7(2) AT S50 — 5(2) AF TSD2

m(3) A; SS0 — n(3) AT SS2

m(1) A} $52 — ¢(1) Af SS0
7(1) Ay SS0 — ¢(1) A7 SSO
7(1) Ay SS1 — ¢(1) Ay SSO

w(2) A, SS1

n(3) A5y SSO

m(4) Ay SS1
w(4) Af S§S1

»(2) A7 SS1
#(3) Ay SS2
$(4) A7 SS1
$(4) AT SS1

K(1) Ay SSO — K(1) A; SSO
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Table C2: (continued)

Available Operators

K(2) A, SS1 — K(2) A, TSD6
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c2 Af

Table C3: The operator choices for the A5, channel corresponding to each level of free particle
states up to 2.00 my. The multiplicity n is indicated in the second column. The operators
in bold were chosen to be included in the correlator matrix. The operators colored red or

blue were not included because they were considered too noisy or too linearly dependent on

another operator, respectively. Other operators were found to be unnecessary.

E/my n  Particle content Available Operator(s)

1.296 1 7(3) n(3) w(3) A; SS0 — w(3) A; SSO

1.514 1 7(2) w(2) w(2) A; SS1 — n(2) B; SS2

1.592 1 K(3) K(3) K(3) SS0 A, — K(3) Ay, SS0

1.617 1 7w(1) n(1) n(2) N/A

1.718 1 p(2)n(2) m(2) B 8582 — n(2) AF SS0
w(2) B SS§2 — ¢(2) Af 8S0

1.739 1 7(2) ¢[1020](2) w(2) A; SS1 — ¢(2) B, SS2

1.761 1 7(6) (6) w(6) A, SSO0 — w(6) A; SSO

1.787 1 K(2) K*[892](2) K(2) A, SS0 — K(2) B, SS3

1.789 L p(1) p(1) w(1) ET SS1 — w(1) ET SS1

1.799 1 ps[1690] w(0) A, DDL3

1.808 1 7(0) 7(0) 7(3) 7(3) N/A

1.874 1 7w(1) ax[1320](1) w(1) A; SS1 — =(1) By TSD2

1.887 1 7w(2) h[1170)(2) w(2) A; SS0 — n(2) B, SS2
w(2) A; SS0 — ¢(2) B, SS2

1.917 1 p(2) p2) w(2) A §§2 — «(2) B §S1

1.944 2 7(5) w(b) N/A

1.947 1 7(2) a1[1260](2) w(2) A; SS0 — =(2) B; SSO

1.988 1 K(6) K(6) K(6) A, SS0 — K(6) Ay, SSO0
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Table C4: Additional available A3, operators. The operators in bold were chosen to be in-
cluded in the correlator matrix. The operators colored red or blue were not included because
they were considered too noisy or too linearly dependent on another operator, respectively.

Other operators were found to be unnecessary.

Available Operators

w(0) A, DDL300
w(0) A, TDO303
7(0) Af, TDO4
7(0) A}, DDL301
7(0) Af, TDO302
7(0) A3, TDO300
7(0) A, TDO2
7(0) A3, TDO3
7(0) A, DDL2
(0) Af, DDL5
7(0) Af, TDO301
7(0) A, DDLO
(1)
(1)
(2)

™

w(1) Et SS2 — «(1) ET SS2
7(1) A; S50 — (1) By TSD3
7(2) B SS1 — =(2) A7 552
w(2) Ay SSO0 — w(2) By LSD7
w(3) Ay SS1 — 7w(3) A, SS1
w(2) A, SS0 — n(2) B, SSO
w(2) Ay SS1 — n(2) By SS1
7(2) By SS1 — n(2) Ay SS1
7(3) Ay SS0 — n(3) A; SD1
w(2) A; SS0 — ¢(2) B SSO

w(2) B SS1 — ¢(2) AT SS1

202



Table C4: (continued)

Available Operators

7(2) A; SS1 — ¢(2) By SS1
7(3) A; SS0 — ¢(3) A; SD1

K(2) Ay SS1 — K(2) By SS2
K(3) A, SS1 — K(3) A, SS1
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C.3 Ef

Table C5: The operator choices for the E; channel corresponding to each level of free particle
states up to 2.00 my. The multiplicity n is indicated in the second column. The operators
in bold were chosen to be included in the correlator matrix. The operators colored red or
blue were not included because they were considered too noisy or too linearly dependent on

another operator, respectively. Other operators were found to be unnecessary.

E/my n  Particle content Available Operator(s)
1.330 1 7(1) w(1) w(1) A; SS0 — n(1) A] SS1
1.361 1 x(0) (1) n(1) N/A
1.514 2 7w(2) w?2) w(2) Ay SS1 — n(2) A} SS2
w(2) Ay SS1 — n(2) By SS2
1.527 1 w(1) a[980](1) w(1) A; SS1 — =(1) A] SSO
1.567 1 w(1) $[1020](1) w(1) Ay SS0 — ¢(1) A] SS1
1.572 1 p(1) n(1) w(1) AF §S1 — n(1) AS SSO
w(1) A 8§81 — ¢(1) AF SSo0
1.642 1 K(1) K*[892)(1) K(1) A, SS1 — K(1) A, SS2
1.660 1 7(0) ay[1320](0) m(0) Ay, SSO — 7(0) E; TDU4
1.673 1 7(3) w(3) n(3) A; SS1 — n(3) E- SS1
1.701 1 7(2) ao[980](2) w(2) Ay SS0 — w(2) A} SSO
1.718 2 p(2)n(2) w(2) AT 8§82 — n(2) AT SSO
w(2) AT 8§52 — ¢(2) AT SSo0
w(2) B 8582 — n(2) AF SS0
w(2) B SS§2 — ¢(2) Af 8S0
1.739 2 7(2) $[1020](2) w(2) Ay SS1 — ¢(2) A; SS2
w(2) Ay SS1 — ¢(2) B, SS2
1.761 1 (6) 7(6) n(6) Ay SS0 — w(6) A; SSO
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Table C5: (continued)

E/my n  Particle content Available Operator(s)
1.787 2 K(2) K*[892](2) K(2) A, SS0 — K(2) A, SS3
K(2) A, SS0 — K(2) B, SS3
1.789 1 p(1) p(1) x(1) E* §S1 — =(1) ET SS1
1.814 1 7(4) w4) n(4) A; SS1 — n(4) A] SS1
1.841 1 7(0) 7(0) m(1) w(1) N/A
1.852 1 p(3) n(3) w(3) Et 8§81 — n(3) Al SS0
w(3) ET SS1 — ¢(3) A SS0
1.874 2 w(1) az[1320](1) n(1) A7 SS0 — =(1) A7 SSO
w(l) A, SS1 — =(1) B] TSD2
1.887 1 7(3) ¢[1020](3) w(3) A; SS1 — ¢(3) E- SS1
1.887 1 7w(2) h[1170)(2) w(2) A; SS0 — n(2) B, SS2
n(2) A; SS0 — ¢(2) B; SS2
1.911 1 (1) m[1400](1) w(1) A; SS1 — =(1) A] LSD3
1.917 2 p(2) p(2) w(2) A §§2 — =(2) B §S1
7(2) B} SS1 — =(2) BS S§S1
1.919 1 K(3) K*[892](3) K(3) A, SS0 — K(3) E SS1
1.944 4 7(5) w(5) N/A
1.947 1 7(2) a[1260](2) w(2) A; SS0 — =(2) B, SSO
1.971 1 p(1) 7'(1) w(1) Af §S1 — n(1) A SS1
w(1) AF §S1 — ¢(1) AT SS1
1.977 1 p(4) n(4) w(4) AT §S1 — n(4) AT SS1
w(4) AT §S1 — ¢(4) AT SS1
1.984 1 w(4) ao[980](4) n(4) Ay SS1 — w(4) AT SS0
1.985 1 (1) w[1420](1) n(1) A; SS1 — n(1) A] SS1
1.988 1 K(6) K(6) K(6) A, SSO — K(6) A, SSO
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Table C6: Additional available E operators. The operators in bold were chosen to be in-
cluded in the correlator matrix. The operators colored red or blue were not included because
they were considered too noisy or too linearly dependent on another operator, respectively.

Other operators were found to be unnecessary.

Available Operators
w(0) E}f SDO
7(0) B DDL5
7(0) EfX TDUO
7(0) Ef DDL4
w(0) E}f TDO5
7(0) B DDL3

)
)
)
)
1) Ay SS1 — =(1) Ay LSDO
1) Ay SS1 — =(1) Ay TSD1
2) Ay SS0 — w(2) By LSD7
2) Ay SSO — =w(2) A7 LSD7
1) A; SS1 — n(1) A7 SSO
) (2)
) (2)
) (3)

(3)

2) Ay SSO0 — n(2) A7 SS2
2) A; SS0 — n(2) By SSO
3) Ay SSO — n(3) E~ 51
w(3) Ay SSO0 — n(3) E~ SS2
w(l) A, SS1 — ¢(1) A] SS1
m(1) A SS0 — ¢(1) Ay SSO
(1) Ay SS1 — ¢(1) A; SSO
w(2) Ay SS0 — ¢(2) A] SS2
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Table C6: (continued)

Available Operators

7(2) Ay SSO — ¢(2) By SSO
w(3) A; SS0 — ¢(3) E- SS1
m(3) Ay SS1 — ¢(3) E~ S52
w(4) A7 SS1 — ¢(4) AT SS1

K(1) Ay SS0 — K(1) A, SSO
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Table C7: The operator choices for the T} channel corresponding to each level of free particle
states up to 2.00 my. The multiplicity n is indicated in the second column. The operators
in bold were chosen to be included in the correlator matrix. The operators colored red or

blue were not included because they were considered too noisy or too linearly dependent on

another operator, respectively. Other operators were found to be unnecessary.

E/my n  Particle content Available Operator(s)

0.826 1 p x(0) T;/, TDO3

0.857 1 7(1) (1) w(1) A; SS1 — =(1) A; SS1

1.099 1 7w(2) 7(2) w(2) Ay SS0 — w(2) A; SSO

1.260 1 K(1) K(1) K(1) A, SS1 — K(1) A, SS1

1.296 1 7(3) n(3) w(3) A, SS0 — w(3) A; SSO

1.330 1 7w(1) w(l) w(1) A; LSD1 — n(1) E- SS1

1.337 1 m(0) m(0) p(0) N/A

1.368 1 m(0) m(0) m(1) =(1) N/A

1.436 1 K(2) K(2) K(2) A, SS0 — K(2) A, SS0

1.467 1 w(4) 7(4) n(4) A; SS1 — =w(4) A; SS1

1.502 1 7(0) hy[1170)(0) 7(0) Ay, SS0 — n(0) T;, SD1

1.514 2 7(2) w(2) n(2) A; SS0 — n(2) B SS1
n(2) A; SS0 — n(2) B; SS2

1.560 1 p[1450] w(0) Ty SS1

1.566 1 7(0) a1]1260](0) 7(0) A, SSO — =(0) Ty, SSO

1.567 1 w(1) ¢[1020](1) n(1) Ay SS1 — ¢(1) E- SS1

1.572 1 p(1) n(1) w(1) ET §S1 — n(1) A SS1

1.592 1 K(3) K(3) K(3) A, SS0 — K(3) A, SS0

1.621 2 w(5) n(5) n(5) Ay SS0 — =(5) Ay SSO
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Table C7: (continued)

E/my Particle content Available Operator(s)
w(5) Ay SS0 — =(5) Ay SS0 [CG1]
1.642 K(1) K*[892)(1) K(1) A, SS1 — K(1) E SS52
1.672 p[1570] w(0) Ty SS0
1.673 7(3) w(3) w(3) A; SS0 — n(3) E- SS1
1.718 p(2) 7(2) w(2) B SS1 — n(2) AT SS0
w(2) B 82 — n(2) AT SS0
1.721 7(1) hy[1170](1) w(1) Ay SS1 — n(1) A; LSD3
w(l) Ay SS1 — n(1) E- SS2
w(1) A; SS1 — ¢(1) E- §S2
1.734 K(4) K(4) K(4) A, SS1 — K(4) A, SS1
1.739 m(2) $[1020](2) w(2) Ay SS0 — ¢(2) By SS1
n(2) A; SS0 — ¢(2) B; SS2
1.761 7(6) 7(6) w(6) Ay SS0 — w(6) Ay SSO
w(6) Ay SS0 — w(6) Ay SS0 [CG1]
1.783 m(1) a1[1260](1) n(1) Ay SS1 — =(1) A7 5SSO0
w(l) A; SS1 — =(1) E- SSO
1.787 K(2) K*[892](2) K(2) A, SS0 — K(2) B; SS51
K(2) A, SS0 — K(2) B, SS3
1.789 p(1) p(1) w(1) AF §S1 — =(1) Af SS1
w(1) A §S1 — «(1) ET SS1
w(1) ET SS1 — =«(1) ET SS1
1.799 p3[1690] x(0) T;7 DDL13
1.814 m(4) w(4) w(4) A; SS1 — n(4) E- SS1
1.832 p[1700] 7(0) T;%, DDL2
1.852 p(3) 7(3) w(3) Et 8§81 —n(3) A SS0
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Table C7: (continued)

E/my Particle content Available Operator(s)
w(3) Et 8§81 — ¢(3) AS SS0
1.855 7(1) [1300)(1) m(1) Ay TSD2 — =(1) A; TSD1
1.865 K(5) K(5) N/A
1.874 7(1) ay[1320)(1) w(1) Ay SS1 — =(1) E- TSD1
1.877 a0[980](0) w(0) n(0) A7, SS0 — n(0) Ty, SSO
1.880 p(0) £5[980](0) N/A
1.883 K(0) K,[1270](0) K(0) Ay, SSO — K(0) Ty, SSO
1.887 7(3) $[1020](3) w(3) Ay SS0 — ¢(3) E- SS1
1.887 7(2) hi[1170](2) w(2) Ay SS0 — n(2) A; SSO
w(2) Ay SS0 — ¢(2) A; SSO
m(2) Ay SS0 — n(2) By SS2
n(2) A; SS0 — $(2) B] S§2
w(2) Ay SS0 — n(2) By SSO
w(2) Ay SS0 — ¢(2) By SSO
1.893 b1[1235](0) 7(0) m(0) 71, SS0 — n(0) Af, SSO
1.911 7(1) m[1400](1) m(1) Ay SS1 — =(1) E- LSD1
1.917 p(2) p(2) w(2) AT §82 — =(2) A §S2
w(2) A §82 — =n(2) B} §S1
w(2) A 8§82 — w(2) B SS2
m(2) B SS1 — =(2) Bf SS1
7(2) By SS2 — w(2) B S§52
1.919 K(3) K*[892](3) K(3) A, SS0 — K(3) E SS1
1.944 7(5) w(b) N/A
1.947 7(2) a[1260)(2) w(2) Ay SS1 — =(2) A; SSO
w(2) A; SS0 — w(2) By SSO
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Table C7: (continued)

E/my Particle content Available Operator(s)

n(2) Ay SS0 — =(2) B; SS0O
1.971 p(1) 7'(1) N/A
1.977 p(4) n(4) N/A
1.985 (1) w[1420](1) m(1) Ay SS1 — n(1) E- SS0
1.988 K (6) K(6) N/A

Table C8: Additional available T} operators. The operators in bold were chosen to be in-

cluded in the correlator matrix. The operators colored red or blue were not included because

they were considered too noisy or too linearly dependent on another operator, respectively.

Other operators were found to be unnecessary.

Available Operators
7(0) Ty, TDO15
7(0) Ty}, DDL3
7(0) T;t, DDLS8
x(0) Ty), DDL4
7(0) Ty}, DDL1
7(0) T;: TDO300
7(0) Ty, TDO303
w(0) Tt TDO400
7(0) Ty, DDL300
7x(0) T;t, DDL301
7(0) Ty}, TDO302
7(0) Ty, TDO22
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Table C8: (continued)

Available Operators

7(0) Tt DDL12
TDO7
0) T}t TDO301
DDLO

(1) Ay SS1 — w(1) Ay TSDO
w(2) A; SS1 — «w(2) A; SS1
w(4) Ay SS1 — w(4) A, TSDO
7(8) Ay SSO0 — w(8) Ay SSO

m(0) Ay, SS0 — n(0) Ty, SSO
7(3) Ay SSO0 — n(3) E- SD6

n(1) A; SS1 — ¢(1) E~ SS0
n(4) Ay SS1 — $(4) E- SS1

K(1) A, SS0 — K(1) E SS3
K(2) A, SS1 — K(2) A, SSO
K(3) A, SS1 — K(3) Ay §S0
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Table C9: The operator choices for the T} channel corresponding to each level of free particle
states up to 2.00 my. The multiplicity n is indicated in the second column. The operators
in bold were chosen to be included in the correlator matrix. The operators colored red or

blue were not included because they were considered too noisy or too linearly dependent on

another operator, respectively. Other operators were found to be unnecessary.

213

E/my n  Particle content Available Operator(s)
1.099 1 7(2) 7(2) n(2) Ay SS0 — =w(2) A; SSO
1.330 1 7(1) w(1) w(1) A; SS1 — n(1) E- SS1
1.436 1 K(2) K(2) K(2) A, SS0 — K(2) A, SS0
1.514 2 w(2) w(2) w(2) A; SS0 — n(2) A7 SS2
m(2) A; SS1 — n(2) By SS1
1.565 1 7(0) 7(2) n(2) N/A
1.567 1 w(1) $[1020](1) w(1) A; SS1 — ¢(1) E- §S2
1.572 1 p(1) n(1) w(1) Et 8§81 — n(1) A SS0
w(1) Et §S1 — ¢(1) A SS1
1.610 1 7(0) 7(0) m(2) 7(2) N/A
1.621 2 7(5) 7(5) 7(5) Ay S50 — 7(5) Ay 550
w(5) Ay SS0 — =(5) Ay SS0 [CG1]
1.642 1 K(1) K*[892](1) K(1) A, SS1 — K(1) E §52
1.660 1 7(0) ay[1320](0) m(0) Ay, SS0— 7(0) Ty, TDO24
1.673 1 7(3) w(3) n(3) A; SS0 — n(3) E- SS1
1.701 1 7(2) ao[980](2) w(2) Ay SS0 — w(2) A] SSO
1.718 2 p(2) n(2) w(2) A 8§82 — n(2) Af SS0
w(2) AT 8§82 — ¢(2) AT SSo0
w(2) B SS1 — n(2) AF SS0




Table C9: (continued)

E/my Particle content Available Operator(s)
w(2) B SS1 — ¢(2) Af 8S0
1.721 7(1) hy[1170])(1) w(1) A; SS0 — n(1) E- SS1
w(1) A; SS1 — ¢(1) E- SS1
1.739 m(2) ¢[1020](2) n(2) Ay SS0 — $(2) AT SS2
n(2) A7 SS1 — ¢(2) By SS1
1.761 7(6) 7(6) w(6) Ay SS0 — 7w(6) A, SSO
1.783 7(1) a1[1260](1) w(1) A; SS1 — =(1) E- SS0
1.787 K(2) K*[892](2) K(2) A, SS0 — K(2) A, SS3
K(2) A, SS0 — K(2) B; SS1
1.789 p(1) p(1) w(1) A §S1 — «w(1) ET SS1
w(1) Et §S1 — n(1) Et S§S1
1.799 p3[1690] w(0) Ty, SD2
1.814 7(4) w(4) n(4) Ay SS1— n(4) E- §S1
1.850 7(3) ao[980](3) w(3) A, SS0 — w(3) A7 SSO
1.852 p(3) n(3) 7(3) E* SS1 —n(3) A7 SSO
m(3) E* SS1 — ¢(3) AT SS0
1.865 K(5) K(5) K(5) A, SS0 — K(5) A, SSO
K(5) A, SS0 — K(5) A, SS0 [CG1]
1.874 7(1) ax[1320](1) m(1) Ay SS1 — =(1) E- LSD1
1.887 7(3) ¢[1020](3) m(3) Ay SS0 — ¢(3) B~ SS1
1.887 7(2) hi[1170])(2) m(2) Ay SSO0 — n(2) Ay SSO
m(2) Ay SS0 — $(2) Ay SSO
w(2) Ay §S0 — n(2) By SS1
n(2) Ay SS0 — ¢(2) B] SS1
1.911 7(1) m[1400](1) m(1) Ay SS1— =(1) E- TSD1
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Table C9: (continued)

E/my n  Particle content Available Operator(s)

1.917 5 p(2)p(2) w(2) AT 8§82 — =(2) A 552
w(2) Af §§2 — =(2) Bf SS2
m(2) B SS1 — =(2) Bf SS1
m(2) By SS1 — w(2) B SS2
m(2) By SS2 — 7(2) By SS2

1.919 1 K(3) K*[892](3) K(3) A, SS0 — K(3) E SS1

1.944 4 7(5) w(5) N/A

1.947 3 w(2) a1[1260)(2) w(2) A; SS0 — w(2) A; LSD1
w(2) A; SS0 — w(2) By SSO

1.971 1 p(1) (1) m(1) Bt SS1 — n(1) A SS1
w(1) Et 8§81 — ¢(1) A SS0

1.977 p(4) n(4) w(4) Et §S1 — n(4) A SS1
w(4) ET SS1 — ¢(4) A SS1

1.985 m(1) w[1420](1) w(1) A; SS1 — n(1) E- SS2

1.988 1 K(6) K(6) K(6) A, SS0 — K(6) A, SSO0

Table C10: Additional available T, operators. The operators in bold were chosen to be in-
cluded in the correlator matrix. The operators colored red or blue were not included because
they were considered too noisy or too linearly dependent on another operator, respectively.

Other operators were found to be unnecessary.

Available Operators
w(0) T, SD1
7(0) T;% DDL300
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Table C10: (continued)

Available Operators

7(0) Ty, DDL301
7(0) Ty, TDUT

7(0) Ty, TDO303

0) Ty, TDU5

0) Ty, TDO302

0) Ty, TDO300

0) Ty, SDO

0) Ty TDO400

0) Ty, TDO5

™

3

5

3

3

3

3

3

0) T3, DDLO
0) T3, TDO301
0) T3, TDOT

3

=

7(0) Ay, TDO1 — (0) T;, TDO24
m(1) ET SS1 — =(1) A7 SS1
7(1) Ay SS1 — =(2) By TSD1
7(2) Bf SS1 — =(2) By SS2
m(2) Ay SS1 — w(2) A; SS1
r(2) A; SS0 — w(2) A LSD7
m(2) Ay SS0 — w(2) Ay SS1
m(2) By SS2 — w(2) A] SS2

(2)

(

(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0) Ty, TDOA4
(0)
(0)
(0)
(0)
(1)
(1)
(2)

m(2) Ay SSO — m(2) By LSDA4
7(2) Bf SS2 — =w(1) B SS2

w(1) ET §S1 — n(1) A SS1
w(l) A, SS1 — n(1) E- TSD3
m(1) BT S52 — n(1) Ay SS1
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Table C10: (continued)

Available Operators

7(2) Ay SS1 — n(2) A7 82
m(2) Ay SSO — n(2) By S52
m(2) Ay SS0 — n(2) Ay SSO
m(3) Ay SS1 — n(3) A} SS2
w(3) A, SS0 — n(3) A7 SS2
w(3) AT §§2 — n(3) AF SSO
m(3) Ay SS0 — n(3) B~ S52

w(1) Ay SS1 — ¢(1) E- TSD3
m(1) Ay SS0 — ¢(1) E- SS1

m(1) B* S52 — ¢(1) A S51

m(2) Ay SS1 — ¢(2) A7 S52

m(2) Ay, SSO0 — ¢(2) By S52

w(3) A} 882 — ¢(3) AT SSo0
7(3) Ay SS0 — ¢(3) E- S52

w(3) Ay SS0 — ¢(3) Ay SS2
w(3) Ay SS1 — ¢(3) A] SS2
w(4) Ay SS1 — ¢(4) E- SS1

K(2) Ay SS1 — K(2) Ay SS1
K(3) A, SS0 — K(3) A; SS3
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