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ABSTRACT 

Evidence suggests that Th1 cells and antibody are the primary mediators of chlamydial 

protection. However, the impact of Th1 polyfunctionality and T-cell independent antibody on 

host protection against Chlamydia has not been fully explored. Using an adoptive transfer 

approach in the mouse model of Chlamydia muridarum, we investigated the role of transgenic 

Chlamydia-specific CD4 T cells and naïve, polyclonal B cells in mediating bacterial clearance 

and conferring resistance to lethality, respectively. We hypothesized that Chlamydia-specific 

Th1 cells would provide enhanced protection against genital infection compared to a polyclonal 

repertoire, and that B-cells are required for preventing lethality associated with disseminated 

infection. We found that polyfunctional, transgenic Th1 cells produced the highest levels of IFN-

γ, afforded the greatest reduction in bacterial burden from the genital tract during primary 

infection, and provided equal protection during secondary infection, compared to the polyclonal 

T cell response. We also found that B cells and IFN-γ synergize to protect against disseminated 

infection in the absence of Th1 cells, despite mice developing a chronic genital tract infection. 

Collectively, these data suggest that polyfunctional, Chlamydia-specific Th1 cells mediate 

optimal chlamydial clearance from the genital tract, while the T-independent B-cell response is 
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primarily involved in limiting extragenital infection to distal organs. Adoptive transfer studies 

provide a powerful approach for elucidation of protective correlates of immunity against 

chlamydial infection that can guide development of rational public health vaccine strategies.   
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1.0  INTRODUCTION 

1.1 CHLAMYDIA AND THE BURDEN OF DISEASE 

Chlamydia trachomatis, a gram-negative obligate intracellular bacterium capable of infecting 

genital tract, ocular, and lung epithelium, is the most common bacterial sexually transmitted 

infection (STI) globally. Sexually transmitted genital infection and associated disease is caused 

by C. trachomatis serovars D-K. Other serovars cause distinct disease syndromes such as ocular 

trachoma (serovars A, B, Ba, and C) and lymphogranuloma venereum (serovars L1-L3). The 

replicative cycle of C. trachomatis is made up of two distinct phases. The elementary body (EB) 

form is responsible for attachment and penetration of the target cell, changing to the 

metabolically active reticulate body (RB) form, which replicates in a protective intracellular 

inclusion. After hundreds of progeny are generated, the RBs transform back to infectious EBs 

and are released from the host cell to be transmitted to neighboring host cells or to contacts. 

Replication within an intracellular inclusion aids the pathogen’s ability to avoid the host immune 

response and promotes chronic infection.  

C. trachomatis is transmitted sexually via vaginal, anal, or oral sex to cause genital, anal, 

or less commonly, oropharyngeal infection. Infection can also be spread perinatally from an 

untreated mother to her infant to cause neonatal conjunctivitis or pneumonia. Lower genital tract 

infection is often asymptomatic, but can manifest as urethritis in males and as urethritis or 

cervicitis in females. The most serious sequelae of infection result from ascension to the upper 
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genital tract in women to cause pelvic inflammatory disease (PID), an infection and 

inflammation of the uterus, fallopian tubes, ovaries and/or pelvic peritoneum. The inflammation 

and scarring of PID in the fallopian tubes can lead to long-term sequelae including tubal factor 

infertility, ectopic pregnancy, and chronic pelvic pain. Based on prospective studies, about 10-

15% of untreated chlamydia infections lead to clinically diagnosed PID, and about 10-15% of 

clinical PID cases lead to tubal factor infertility (1-3). Genital infection with C. trachomatis may 

also increase the risk of acquiring HIV infection by 2 to 3-fold (4, 5). 

Globally, an estimated 131 million new cases of chlamydial genital infection occur 

annually (6). Incidence rates are high across all world regions, but the infection 

disproportionately affects adolescents and young adults under 25 years of age (7). The global 

burden of chlamydia-associated PID, infertility, and ectopic pregnancy has not been well 

defined. However, about 68 million chlamydia infections are estimated to occur among women 

globally each year (6). Given what is known about the natural history of infection, the number of 

cases of infertility and other adverse outcomes is likely sizable. If all of these infections were left 

untreated, they could result in close to 1 million new cases of infertility annually. The Global 

Burden of Disease study (GBD) 2013 estimates that chlamydia results in 647,000 years lived 

with disability (YLDs) annually (8). The global economic burden of genital chlamydial infection 

has not been assessed, but annual healthcare costs in the United States are estimated at $517 

million (9).  

Diagnosis of chlamydia relies on nucleic acid amplification tests (NAATs) of specimens 

obtained by vaginal or cervical swabs in women or urine collection in men and women. A course 

of doxycycline or single-dose azithromycin offers effective curative treatment. Because the vast 

majority of chlamydial infections are asymptomatic but can still lead to adverse sequelae and 
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ongoing transmission, several high-income countries (HICs) have relied on screening programs 

to diagnose and treat chlamydia to prevent PID (10-14). In low- and middle-income countries 

(LMICs), lack of affordable, feasible laboratory tests means most genital chlamydia infections 

are not diagnosed. However, even in HIC settings with long-standing chlamydia screening 

recommendations, these programs have been costly and difficult to bring to scale (15, 16). In 

addition, although screening has likely reduced the incidence of PID, it has not resulted in clear 

reductions in chlamydia transmission (17, 18). One of the main reasons for ongoing transmission 

is that management of sexual partners of index cases is logistically difficult and repeat infection 

rates are high: approximately 10-20% in the months after treatment (19). It has been 

hypothesized that screening programs might increase the frequency of re-infection through 

reductions in population-wide protective immunity, or arrested immunity (20). Barrier methods 

of contraception, including condom use, are effective at preventing chlamydial transmission, 

however utilization rates are low (21). Shortcomings of current chlamydia control strategies 

highlight the need for an effective vaccine.  

1.2 BIOLOGICAL FEASIBILITY FOR VACCINE DEVELOPMENT 

Currently no licensed vaccine exists for Chlamydia trachomatis, but evidence from animal 

models and human studies suggests that a vaccine is feasible. Animal challenge studies, 

including mouse, guinea pig and non-human primate models, demonstrate that partial and 

sterilizing natural immunity can develop from a primary infection, however this protection is 

short-lived and not sufficient to provide long-term immunity (22). In animals, partial immunity 

can reduce bacterial burden and duration of secondary infection but does not necessarily prevent 
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upper genital tract pathology. In humans, epidemiologic studies reveal a decreased prevalence of 

infection and decreased bacterial load with increasing age despite continued exposure (23). In 

addition, infection concordance between sex partners decreases with increasing age of the 

partners, and bacterial loads are lower among individuals with a history of infection (24). 

Furthermore, in a prospective study of 200 women in the US, those whose chlamydial infections 

cleared spontaneously between testing and treatment were less likely to become re-infected on 

follow-up (25). The ability of natural infection to induce partial immunity is promising for 

vaccine development.   

The first C. trachomatis vaccines, evaluated in the 1960s, were live or formalin-fixed 

whole bacteria that focused on ocular infection causing trachoma, rather than genital infection 

(26-28). Multiple studies demonstrated some protection from active (inflammatory) trachoma in 

vaccinated individuals (29-31). However, these benefits were short-lived, often waning within 

one to two years (32). Non-human primate studies of these same vaccines showed effective but 

short-lived protection as in human trials when high doses of organisms were used. However, 

when low doses were used, more severe disease was observed upon challenge with heterologous 

serovars (33). Concern for exacerbated disease upon challenge of immunized hosts also arose 

because of the way data were initially interpreted from live trachoma vaccine studies among 

Gambian children (27). At the time, trachoma severity scores were reduced when conjunctival 

scarring was present, as scarring was considered a sign of healing, despite being the undesired 

sequelae of inflammation. The prevalence of scarring was lower two years post vaccination, 

suggesting the vaccine reduced longer-term disease sequelae, but the scoring system led to an 

erroneous conclusion that vaccinated children had enhanced inflammatory disease relative to 

unvaccinated children. Experts reinterpreting these trials in the context of current trachoma 
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grading systems and knowledge about disease pathogenesis concluded that concerns about 

vaccine-induced exacerbation of disease in Gambian children were unfounded (34-36). In 

addition, ocular inoculation of non-human primates with a live-attenuated trachoma serovar did 

not worsen disease upon challenge (37). 

Overall, the short-term protection observed in human trachoma vaccine trials implies that 

an effective vaccine for C. trachomatis is feasible. Initial concerns about an enhanced pathologic 

response pushed the field towards development of subunit vaccines to enhance safety. This goal 

remains because a subunit vaccine would contain only essential antigens for protection and not 

all the other molecules that make up the chlamydial microbe, reducing the chances of adverse 

reactions. Induction of complete immunity to infection is the ideal goal, and will require 

augmentation of protective immune mechanisms at the mucosal site. Recent data indicate 

mucosal delivery of a chlamydia vaccine may be required to induce resident memory T cells that 

act as sentinels to protect the mucosa (38). Advances in understanding the immunobiology of C. 

trachomatis infection over the past several decades have markedly increased the likelihood of 

developing a safe and effective vaccine. 

1.3 OBSTACLES TO VACCINE DEVELOPMENT 

Chlamydiales have adapted numerous mechanisms to infect the host cell, evade the host immune 

response, and replicate in a protective, intracellular inclusion. The infectious elementary body 

(EB) form contains cross-linked protein complexes that render the EB metabolically inactive and 

resistant to extracellular osmotic stress. The polymorphic, major out member protein (MOMP) is 

the most abundant component of the bacterium’s envelope. MOMP acts as a cytoadhesin and 
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binds to heparin sulfate proteoglycan receptors on the host cells to invade (39). Additional 

proteins on the chlamydial outer membrane complex have been shown to be important for 

cellular invasion. The outer membrane complex B (OmcB) functions as an adhesin with 

specificity for glycosaminoglycan receptors on host cells (40), and the bacterium has also been 

shown to utilize the cystic fibrosis transmembrane conductance regulator (CFTR) apical anion 

channel for internalization (41). Multiple studies have demonstrated that Chlamydia can utilize 

estrogen receptors, particularly the protein disulfide isomerase component, for entry into host 

cells (42-45). The EphrinA2 receptor has most recently been shown to be an adherence and 

invasion receptor for infection (46). It is evident that the bacterium has evolved numerous 

mechanisms to invade the host cell. Additional research is required to identify broadly 

neutralizing antibodies due to the polymorphic nature of chlamydial binding proteins.  

The biphasic developmental cycle of Chlamydia creates another obstacle to vaccine 

development. After host cell entry, the EB avoids the host lysosomal pathway, disulfide bonds 

are reduced and the bacterium enters a reticulate body (RB) form (47, 48). The RB is 

metabolically active and capable of generating its own stores of energy and essential compounds, 

but is also capable of hijacking host cell nutrients for growth and replication from the inside of a 

protective intracellular vacuole called an inclusion. During stress and in response to host 

cytokines, Chlamydia can enter a delayed growth state characterized by large aberrant bodies 

that may allow for chronic infections less susceptible to antimicrobial killing (49). The multiple 

mechanisms utilized by Chlamydia to escape the immune system have been well summarized 

(50). Thus, a vaccine inducing strong cellular immunity is essential to prevent chlamydial 

infection and disease. 
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1.4 CHLAMYDIA VACCINOLOGY 

Preclinical vaccine development utilizes well-established animal models for candidate testing. 

Mouse models offer convenient manipulation and research tools for analysis of the immune 

response, but differ from humans with respect to many facets of infection, disease, and adaptive 

immune responses. Chlamydia muridarum is a mouse-specific strain that shares extensive 

homology with C. trachomatis. However, C. muridarum induces a more acute infection with 

complete resolution compared to the often quiescent, chronic infection of C. trachomatis in 

humans. Further, mechanisms of IFN-γ mediated chlamydial clearance differ in mice and 

humans. The guinea pig model utilizing Chlamydia caviae elicits disease more similar to 

humans, but the relative lack of immunological reagents detracts from its use for vaccine studies 

(22). Female minipigs that have a reproductive cycle and genital tract similar to humans are 

being used for chlamydial vaccine studies but also suffer from reduced availability of reagents 

(51, 52). Non-human primate (NHP) models are often employed prior to human testing, but 

infection of the eye or genital tract in NHPs demonstrates a shorter, self-limiting infection 

compared to humans. Despite this limitation, NHP testing could play an important role in 

assessing cellular and humoral responses after infection or vaccination to identify correlates of 

protective immunity. Animal and human studies could provide insight into a protective 

transcriptional blood signature that might be translated to a biomarker of efficacy for use in 

human clinical trials (53).   
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1.4.1 Antigens 

Induction of sterilizing immunity against C. trachomatis by immunization will require protective 

antigens targeted to CD4 T cells. Novartis assessed 120 Chlamydia proteins for immunogenicity 

using two parallel high-throughput approaches, and identified 16 MHC class II-specific IFN-γ 

inducing antigens in mice, and five that induced both humoral and cellular responses. Their 

assessment in the mouse model identified seven novel antigens conferring partial protection to 

lung infection (54). A second large-scale antigen discovery approach utilized genome wide 

screening of human antibodies to over 80% of the expressed C. trachomatis proteome (55). Of 

the 99 infected women studied, only 27 proteins were recognized by at least half of the subjects. 

The ability of these antigens to induce T cell responses was not analyzed. Another proteomic 

approach to identify T cell epitopes utilized pulsing of dendritic cells with live Chlamydia to 

identify peptides loaded onto MHC class II molecules (56). Five proteins with MHC Class II 

epitopes elicited partial protection in the murine model of genital infection. Most recently, the 

use of ATLAS technology has allowed for the profiling of T cell responses in human subjects in 

response to C. trachomatis infection (57). ATLAS uses a proteomic library with E. coli 

expressing proteins of interest that are fed to APCs, which present the respective antigens to 

human T cells for high-throughput cytokine detection (58). Examination of CD4 and CD8 IFN-γ 

responses after in vitro exposure to CT antigens in a cohort of 141 subjects led to the 

identification of 8 CD4 and 18 CD8 antigens associated with spontaneous clearance or resistance 

to infection. The proteins were varied and included those involved in membrane transport, 

central metabolism, and secretion pathways. Proteins that were immunodominant were not 

associated with effective immune responses. Antigens that have been found to induce protection 

in the mouse model (e.g. MOMP, PmpG, CPAF) were not highly recognized by subjects 
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identified in this cohort as having effective immune responses. However, recent data in the 

mouse model using a novel vaccine formulation with a multivalent major outer membrane 

protein (MOMP) VD4 construct containing a conserved C. trachomatis epitope induced robust 

Th1 responses, broadly neutralizing antibodies, and reduced bacterial burden upon challenge 

(59). These data illustrate the importance of selecting protective immunogenic epitopes and the 

appropriate configuration for optimal vaccine-induced immunity. Future work is needed to 

identify protective antigens and optimally construct them to induce protective cellular and 

humoral responses in humans. 

1.4.2 Live vaccines 

A human vaccine capable of activating the cellular and humoral arms of the adaptive response to 

Chlamydia is lacking. The complex physiology of the female genital tract, a paucity of effective 

mucosal adjuvants, and limited knowledge of protective antigens further complicate vaccine 

development. An effective vaccine should induce mucosal and systemic immune responses 

devoid of cross-reactive autoantibodies and pathology. The first C. trachomatis vaccines were 

live vaccines (26). Initial studies focused on ocular, rather than genital infection. Results varied 

from limited, short-lived protection to substantial protection against infection and pathology. 

Notably, vaccination of Taiwanese children with formalin-fixed Chlamydia exhibited partial 

protection during three years of follow-up (29). A similar study using two preparations of live C. 

trachomatis in Gambian children also elicited partial protection, similar to the Taiwan study 

(27). The original interpretation of the Gambian trials indicated vaccine-induced hypersensitivity 

occurred in some vaccinated children but at the time, scarring was scored as a positive indicator 

of protection. A reanalysis of the original Gambian trials in the context of current knowledge 
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about disease pathogenesis found that vaccine-induced hypersensitivity did not occur (34). Live 

vaccines are advantageous since they contain all antigens in correct conformation; however, 

large-scale propagation of Chlamydia is challenging, requires cold storage, and avirulent strains 

could potentially revert to infectious wild-type strains (60). These safety concerns resulted in a 

switch to vaccine studies of inactivated bacteria, but killed organisms led to a suboptimal 

immune response. Use of attenuated plasmid-deficient C. muridarum and C. trachomatis strains 

have been explored as vaccination strategies; however, success in the genital tract mouse model 

did not translate to NHP (61-63). Yet, ocular inoculation of NHP with a plasmid-deficient strain 

of C. trachomatis elicited partial protection against ocular infection in a subset of macaques (37). 

This illustrates the potential need for differences in the future formulation of a protective vaccine 

for ocular or genital Chlamydia infection. 

1.4.3 Subunit vaccines 

Purified antigenic determinants known to elicit immune responses have been explored as a 

vaccination strategy. These vaccines are safer since they are unable to cause infection and lack 

virulent components. MOMP is the most well studied vaccine candidate from C. trachomatis. 

Murine immunization with purified-refolded MOMP reconstituted with Freund’s adjuvant 

significantly reduced bacterial burden after genital challenge (64). MOMP immunization 

combined with saponin-based ISCOM (immune-stimulating complex) elicited Th1 antigen-

specific responses and mice cleared vaginal infection within one week (65). Similar results have 

been achieved with subunit B cholera toxin (CTB-CpG), CPG-2395, and Montanide ISA 720 as 

adjuvants for MOMP vaccination in mice (66) and CPG-2395 and Montanide ISA 720 

formulated vaccines induced robust antibody and T cell responses in non-human primates (66, 
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67). However, MOMP subunit vaccines present the challenge of extracting, refolding, and 

purifying protein complexes at a high cost that are not standardized.  

1.4.4 Recombinant protein and DNA plasmid vaccines 

Molecular cloning has afforded the ability to express an abundance of bacterial proteins. Protein 

configuration remains challenging in this system. However, the use of plant biotechnology may 

be useful for large-scale production of antigenic proteins like recombinant MOMP (68). 

Additional vaccine candidates like recombinant CPAF and an OmcB-CT521 fusion protein have 

elicited Th1 responses and markedly reduced bacterial burdens in mice (69, 70). 

DNA vaccines that inject plasmids carrying the protein(s) of interest confer many 

advantages. DNA plasmids can be constructed quickly, purified, and can encode multiple 

epitopes in native three-dimensional structures. A DNA vaccine overcomes the concerns of 

reversion to virulent forms. While anti-DNA antibodies could be induced, clinical trials have not 

demonstrated changes in clinical markers of autoimmunity (71). Despite minimal work in this 

field, some interesting findings have been generated. DNA vaccine delivery encoding MOMP 

co-administered with the adjuvants GM-CSF and E. Coli enterotoxin subunits A and B generated 

robust protection against C. trachomatis genital challenge in pigs (72). A plasmid encoding 

MOMP epitopes inserted into human papilloma virus (HPV) was protective against vaginal 

infection and elicited a Th1 response in mice (73). Other studies have shown DNA vaccination to 

be immunogenic with only modest protection in mice (74, 75). These studies demonstrate the 

feasibility of a DNA-based vaccine and additional studies may be warranted for development of 

protective animal vaccines. However, DNA vaccine studies have largely been abandoned in 
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humans due to the inability to transfer adequate DNA concentrations. The low immunogenicity 

due to poor uptake has led to efforts to optimize delivery and immune responses (76).  

1.4.5 Adjuvants 

Due to the safety concerns of attenuated or whole-organism killed vaccines, a subunit vaccine is 

an attractive approach to vaccine development. Administration of innocuous protein subunits is 

sub-immunogenic and requires adjuvants. Natural or artificial adjuvants aim to replicate host 

induction of an immunological response during a live infection. Identifying protective antigens, 

in combination with an optimal adjuvant, is a crucial goal in vaccine development. An effective 

vaccine requires an adjuvant that can activate innate effector cells, induce type-1 cytokines, 

enhance antigen presentation, and induce protective effector cellular and humoral responses. 

Despite the use of adjuvants in research for many years, there are a limited number of effective 

adjuvants approved for vaccine usage. Alum hydroxide (Alum), AS04 (monophosphoryl Lipid A 

with alum), AS03 and MF59 (squalene-based), and liposomes are included in adjuvants currently 

utilized (77). Binding of the adjuvant and antigen allow for co-stimulation of immune cells, 

particularly maturation and antigen presentation by dendritic cells and macrophage polarization. 

Antigen delivery systems with adjuvants can include immune stimulating complexes (ISCOMS), 

virus-like particles, nanoparticles, emulsions, liposomes, calcium phosphate, tyrosine, and alum 

(78). When Th1 immunity is required, as in chlamydial protection, there is a dearth of adjuvants. 

Recently, development of adjuvants derived from plant carbohydrates (e.g. inulin, saponin) has 

shown the ability to induce protective type-1 responses (79, 80). Other immune potentiators have 

been explored, usually comprised of purified bacterial or viral components or synthetic mimics. 

Monophosphoryl Lipid A (MPL), muramyl dipeptide, CpG, lipopeptides, dsRNA, and bacterial 
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or viral components have been explored as vaccine adjuvants. MPL is a less toxic form of LPS 

and is licensed for vaccines against HPV and Hepatitis B. The cationic liposome formulation of 

dimethyldioctadecylammonium (DDA) and trehalose 6,6’-dibehenate (TDB) is currently in 

human clinical trials for vaccines against tuberculosis and HIV. LTK63, a non-toxic mutant of 

heat-labile toxin, is the only mucosal adjuvant shown to be safe in human trials (81), and a 

LTK/CpG formulation generated strong Th1 immune responses against C. muridarum in the 

mouse model (54). There is an unquestioned need to investigate the efficacy of these adjuvants 

and develop optimal epitope-adjuvant vaccines. 

1.4.6 Route of vaccination 

An efficacious chlamydial vaccine may need to target and induce protective mucosal immunity. 

The route of vaccination reflects this necessity and an approach targeting relevant mucosal 

immune responses at inductive sites of the genital mucosa could be necessary. Mucosal 

immunization has been shown to be more effective than systemic immunization against mucosal 

tissue-tropic pathogens (82). Chlamydia vaccines should be optimized with appropriate delivery 

vehicles and adjuvants to induce mucosal immunity, and selection of the appropriate route of 

vaccination is imperative to generate the most robust mucosal Th1 effector response. Nasal 

immunization can result in partial genital immunity (38, 64), but recent evidence demonstrates 

the ability of vaginal immunization to induce robust genital tract and systemic T cell responses 

(38).  
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1.5 IMMUNE RESPONSES AND PATHOGENESIS 

Inflammatory mediators are capable of inducing tissue destruction and pathogenic immune 

responses during chlamydial infection (83). Animal models of trachoma and of female genital 

infection reveal a direct correlation between neutrophil influx and activation and development of 

tissue damage (84-89) In addition, human transcriptional profiling and genetic studies have 

determined an association of enhanced innate proinflammatory responses with trachomatous 

scarring (89-91).  Finally, there is in vitro evidence for IL-1, a prominent cytokine released by 

neutrophils and monocytes, to cause direct oviduct cell damage (92). Since the innate 

inflammatory response is induced by the interaction of pathogen associated molecular patterns 

(PAMPs) with pathogen recognition receptors (PRRs) on innate inflammatory cells and host 

epithelial cells, it should not be surprising that increased bacterial burden leads to enhanced 

innate inflammation and disease (63, 85, 93). Using the mouse model of genital infection, we 

demonstrated that repeated abbreviated infections with Chlamydia muridarum led to protection 

from oviduct disease that was associated with a significant reduction in frequency of neutrophils 

and an increase in the frequency of T cells infiltrating the genital tract upon challenge (94). 

Furthermore, a single infection with a plasmid-deficient strain of C. muridarum protects mice 

from oviduct disease upon challenge with the fully virulent parental strain (61). This protection 

is again associated with reduced neutrophil influx and an anamnestic T cell response (94). Thus, 

avoidance of chlamydial-induced neutrophil influx and neutrophil activation appears essential for 

disease prevention. A vaccine that promotes adaptive T cell responses that are innocuous for the 

tissue but potently chlamydiacidal should protect from disease by avoidance of PAMP-induced 

tissue damaging responses from neutrophils. This is further supported by murine vaccine studies 

using a variety of antigens and adjuvants that reveal a direct correlation between protection and 
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the strength of the adaptive IFN-γ-producing CD4 T cell response induced by vaccination (38, 

70, 95-98).    

Human epidemiological studies demonstrate an increased risk of disease with recurrent 

infections (99, 100). However, the contribution of pathological effects of the primary infection 

versus subsequent infections is unknown, and each successful infection would induce an element 

of tissue-damaging innate responses. Cytokines that have been proposed to play an important 

role in disease include interleukin-1 (IL-1) (92, 101) and tumor necrosis factor-alpha (TNF-α) 

(102). Interferon-γ and IL-12 mediate protective T-helper 1 (Th1) responses (103), while T-

helper 2 (Th2) responses have been shown to be non-protective and pathogenic (104). The T-

helper 17 (Th17) response contributes to generation of Th1 immunity, but is dispensable for both 

protection and pathogenesis in the mouse model (105, 106). Further experimentation is needed to 

discern the role of Th17 cells in human chlamydial infection. CD8 T cells have been shown to 

play a role in pathogenesis in the macaque and mouse models of genital tract infection, possibly 

through the production of TNF-α (107, 108). Currently, there is no evidence for the role of B 

cells in tissue pathology during chlamydial infection. Recent technological advances in immune 

profiling using animal models and human clinical samples provide an opportunity to discern 

specific components of the immune response that contribute to pathology and provide insight for 

safe vaccination strategies. 
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1.6 PROTECTIVE ADAPTIVE RESPONSES 

1.6.1 B cells and antibodies 

The role of B cells and antibody in the context of anti-chlamydial immunity is not completely 

understood (109). Mice lacking B cells do not demonstrate an altered course of primary genital 

infection with C. muridarum (110), but are more susceptible to reinfection (111). Immune wild-

type mice depleted of CD4 or CD8 T cells clear a secondary challenge; however, B-cell deficient 

mice are unable to resolve secondary infection after CD4 T cell depletion (112, 113). Passive 

transfer of immune serum to naïve mice does not provide protection, but antigen-experienced 

mice with primed CD4 T cells and immune serum are afforded optimal protection (114). 

Additionally, B cell-deficient mice have a reduced capacity to prime CD4 T cells leading to 

bacterial dissemination (115). Studies utilizing B-cell deficient mice are an attractive model, but 

are limited due to the inherent reduction of a significant antigen presenting cell (APC) population 

and cytokine source, less efficient memory CD4 T cell initiation, possible disruption of lymphoid 

architecture and sub-capsular sinus macrophages, and enhanced chlamydial dissemination (109).  

Antibodies play a role in chlamydial immunity, but their protective effects are likely due 

to their ability to enhance Th1 activation and cellular effector responses (116). Although early 

human studies suggested that Chlamydia-specific antibodies might play a role in C. trachomatis 

immunity based on in vitro neutralization assays (117-119), epidemiological studies indicate that 

high antibody titers are associated with infertility, and do not correlate with infection resolution 

or control of ascending infection (120, 121). Murine studies indicate antibody can contribute to 

pathogen clearance during a secondary infection, but the protective response occurs only if CD4 

T cells are present during primary infection (112, 113). The difficulty in developing protective 
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antibodies relates to identifying epitopes needed for recognition and neutralization. Antibodies 

specific for chlamydial outer-membrane proteins have shown efficacy in animal models and 

correlate with protection (122, 123). However, data identifying antigen-specific protective or 

pathogenic antibodies are limited. Although evidence supports a role for antibody in chlamydial 

immunity, the protective mechanism seems to be primarily mediated through antibody-

augmented cellular immunity. 

1.6.2 CD8 T cells 

Ample evidence from mice and humans supports the role of CD4 T cells in the resolution of 

Chlamydia infection, but the role of CD8 T cells remains less clear. Mouse models demonstrate 

that CD8 T cells are not needed for infection clearance; however, antigen-specific CD8 T cell 

clones can home to the genital tract and enhance clearance through their production of IFN- γ 

(124, 125). Evidence suggests that up-regulation of PD-L1 in the genital tract following infection 

may impair CD8 T cell expansion via PD-1 ligation, hampering development of CD8 memory 

responses (126). This could be a mechanism to avoid cell-mediated uterine pathology, as CD8 T 

cells can play a role in tissue damage via production of TNF-α (107). Current data suggest that 

despite the ability of CD8 T cells to contribute to host defense against Chlamydia, immunization 

should seek the induction of Th1 CD4 T cells with the ability to produce high levels of IFN-γ at 

the site of infection. 
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1.6.3 CD4 T cells 

The critical role of T cells in chlamydial immunity was first demonstrated 30 years ago with the 

observation that athymic nude mice developed a chronic C. muridarum infection (127). T cells 

are detected at the site of infection in mice and humans; antigen-presenting cells can prime T 

cells in the lymph nodes, where they migrate to inductive sites within the genital tract to clonally 

expand in response to chlamydial infection. These inductive sites mainly contain CD4 T cells 

that form perivascular lymphoid clusters (128, 129). CD4 T cells that produce IFN-γ likely 

mediate protection from C. muridarum and C. trachomatis. Mice deficient in MHC class II 

(130), CD4 (113), IL-12 (103), IFN-γ (131), or the IFN-γ receptor (132) have an enhanced 

susceptibility to infection. Th2 responses correlate with disease progression and pathology 

during human ocular infection (104). Transfer of chlamydial-specific Th2 clones fails to protect 

mice from genital infection (133).  IFN-γ-mediated control of in vivo infection is not fully 

understood, but IFN-γ controls in vitro growth of C. trachomatis in human cells by inducing the 

production of indoleamine-2,3-dioxygenase (IDO) (134). IDO leads to tryptophan degradation 

and lethality to C. trachomatis by starvation of the essential amino acid, but the bacterium can be 

rescued through the addition of indole (135). IFN-γ producing Th1 cells are essential and 

sufficient for resolution of infection, but some evidence suggests that a polyfunctional response 

that includes TNF-α may enhance immunity (136, 137). Additional effector mechanisms include 

the activation of phagocytic macrophages (138) and CD4 T cell cytotoxicity (139, 140). CD4 T 

cell recruitment into the female genital tract following infection is dependent on CXCR3 and 

CCR5, coincident with expression of CCL3, CCL5, and CXCL10 in mucosal tissues (141, 142). 

T cell recruitment is dependent on the α4β1 integrin-VCAM1 and α4β7-MAdCAM leukocyte 

adhesion pathways that are upregulated in human genital tract mucosa (143-146). Evidence 
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suggests that a Th1 CD4 response that generates long-term, sterilizing mucosal immunity will be 

the optimal goal of immunization.  

1.6.4 Resident Memory CD4 T cells 

Tissue-resident memory T (TRM) cells have emerged as an important subset of memory T cells 

in tissue-specific immune responses. These cells reside in epithelial barrier tissues that interface 

with the environment, such as the gut, lungs, skin, and reproductive tract, and can provide rapid, 

effective immunity against previously encountered pathogens. TRM are able to respond to a 

pathogen challenge independent of recruited, circulating systemic T cells (147). The female 

genital tract mucosa is an important barrier to pathogenic microorganisms. Mouse studies 

illustrate that HSV infection and vaccination generates accumulation of CD4 TRM cells in the 

vaginal mucosa that are maintained by a local chemokine gradient and mount a rapid, anamnestic 

response upon antigenic challenge (148, 149). Mucosal immunization with ultraviolet light 

(UV)-inactivated C. trachomatis complexed with charge switching synthetic adjuvant particles 

(cSAPs) incorporating the TLR7-agonist resiquimod elicited long-lived protection against 

chlamydial infection in conventional and humanized mice (38). Vaccination generated mucosal 

and systemic T cell responses, but optimal clearance required TRM induction in the uterine 

mucosa. Mucosal CD4 Th1 cells will likely be instrumental to Chlamydia vaccine success, as the 

intensity of mucosal CD4 Th1 cellular responses is an important correlate of immunity (150).  
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2.0  SPECIFIC AIMS 

Chlamydia trachomatis is one of the most common sexually transmitted diseases, with more than 

50 million cases occurring worldwide and ~3 million in the United States annually (151). 

Although infections are frequently asymptomatic, they can lead to the development of serious 

pathology. In women, untreated cases can result in pelvic inflammatory disease, infertility, 

chronic pelvic pain, tubal pregnancies, and transmission to uninfected sexual partners. Infection 

does not induce sterilizing immunity, making the development of an efficacious vaccine 

necessary. Th1 cells and antibodies play an integral role in the resolution of infection in the 

mouse model. However, a human vaccine that elicits T cell mediated effector and humoral 

immunity has been elusive. This shortcoming is compounded by the lack of knowledge 

concerning immunity in the female genital tract, paucity of data illuminating the mechanisms of 

protective immune responses to chlamydial antigens, and the inherent difficulty in locating and 

characterizing low frequencies of Chlamydia-specific T cells in vivo.  

Our long-term goal is to define the protective correlates of immunity to chlamydial 

genital tract infection in the mouse model and to translate that knowledge to advance a vaccine 

for humans. Our overall objective is to utilize a T-cell receptor (TCR) transgenic mouse (Tg) 

approach to characterize the T cell response to infection, and define the role of humoral 

responses independently of T cells. Our central hypothesis is that a polyfunctional T-helper 1 

response is necessary for in situ protective immunity, and T-independent B cell responses 

function to limit bacterial dissemination from the genital tract. The rationale for the proposed 

research is that, once the contribution of T cell and B cell subsets to infection are characterized, 

their frequency and phenotype can be manipulated to induce protective responses, resulting in 
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new and innovative approaches to the prevention of Chlamydia infection. We plan to test our 

hypothesis by pursuing the following three specific aims: 

Aim 1: Characterize the phenotype of Chlamydia– specific transgenic (Tg) CD4 T cells and 

their ability to mediate protective immunity.  Using an adoptive transfer approach, I will 

evaluate the ability of Tg CD4 T cells to respond and protect against genital Chlamydia 

muridarum infection in vivo.  Transgenic cells will be analyzed by flow cytometry and evaluated 

for activation, proliferation, migration, and Th1 differentiation. 

Aim 2: Explore the contribution of T-cell independent B cell responses to protective 

immunity. To address the role of B cells in immunity to primary chlamydial infection, I will 

utilize immune-deficient mice and an adoptive transfer approach. Immune deficient mice will be 

infected with a hypervirulent C. muridarum clone (CM001) to determine their ability to survive a 

disseminated infection in the context of T-cell and B-cell deficiency.  

Aim 3: Determine the cognate chlamydial antigen specific for the transgenic TCR.  To 

expand on the adoptive transfer approach, I will utilize biochemical analyses to determine the 

cognate antigen specific for the Tg TCR. The cytosolic fraction from C. trachomatis infected 

cells and sarkosyl-soluble and insoluble C. muridarum EB or RB enriched fractions will be 

tested for their ability to stimulate Tg T cell proliferation.  
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3.0  CHAPTER ONE: A CHLAMYDIA-SPECIFIC TCR-TRANSGENIC MOUSE 

DEMONSTRATES TH1 POLYFUNCTIONALITY WITH ENHANCED EFFECTOR 

FUNCTION 
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3.2 ABSTRACT 

Chlamydia is responsible for millions of new infections annually, and current efforts focus on 

understanding cellular immunity for targeted vaccine development. The Chlamydia-specific CD4 

T cell response is characterized by the production of IFN-γ, and polyfunctional Th1 responses 

are associated with enhanced protection. A major limitation in studying these responses is the 

paucity of tools available for detection, quantification, and characterization of polyfunctional, 

antigen-specific T cells. We addressed this problem by developing a TCR transgenic mouse with 

CD4 T cells that respond to a common antigen in Chlamydia muridarum and Chlamydia 

trachomatis. Using an adoptive transfer approach, we show that naïve transgenic CD4 T cells 

become activated, proliferate, migrate to the infected tissue, and acquire a polyfunctional Th1 

phenotype in infected mice. Polyfunctional Tg Th1 effectors demonstrated enhanced IFNγ 

production compared to polyclonal cells, protected immune deficient mice against lethality, 

mediated bacterial clearance, and orchestrated an anamnestic response. Adoptive transfer of 

Chlamydia-specific CD4 TCR Tg T cells with polyfunctional capacity offers a powerful 

approach for analysis of protective effector and memory responses against chlamydial infection, 

and demonstrates that an effective monoclonal CD4 T cell response may successfully guide 

subunit vaccination strategies.  
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3.3 INTRODUCTION 

CD4 T cells contribute to cell-mediated immunity through effector functions mediated by the 

production of cytokines. Polyfunctional T-helper 1 (Th1) cells can sequentially produce IFNγ, 

IL-2, and TNF in response to T-cell receptor (TCR) stimulation (152). This phenotype has been 

reported in a variety of infectious disease models, including Leishmania (153) tuberculosis (154), 

HIV (155), Plasmodium (156), and Chlamydia (38). Polyfunctional Th1 cells demonstrate 

enhanced protective efficacy in comparison to IFNγ monofunctional cells (154), potentially by 

producing higher levels of Th1 cytokines (157, 158). Th1 polyfunctionality represents a measure 

of immunogenicity in vaccine studies (159), and generation of durable polyfunctional Th1 

memory will likely be critical for Chlamydia vaccine development (38). 

 Protective immunity against Chlamydia is primarily mediated through Th1 cells (103, 

160), and the importance of Chlamydia-specific CD4 T cells has been demonstrated by adoptive 

transfer (136, 161) and depletion studies (113). Despite the importance of CD4 T cells in 

controlling chlamydial infection, little is known about the generation of polyfunctional Th1 cells 

and how they contribute to cell-mediated immunity. Previous studies showed that a Chlamydia-

specific IFNγ monofunctional Th1 clone was not protective, whereas a clone producing IFNγ 

and TNF cleared C. muridarum infection in nude mice (162). Vaccine models have shown that 

antigens and adjuvants generating polyfunctional (IFNγ+ TNF+) Th1 cells were more protective 

than IFNγ monofunctional Th1 cells (137, 163), and this protection has been observed in 

immunogenicity studies investigating single (164, 165) or multiple chlamydial antigens (80, 98, 

166, 167). 

 We recently developed the first TCR transgenic (Tg) mouse specific for a conserved 

antigen in C. muridarum and C. trachomatis to investigate the polyfunctional Th1 response in 
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vivo. Identification of a polyfunctional Th1 clone allowed us to isolate and clone the Chlamydia-

specific TCR for Tg mouse generation. After adoptive transfer, naïve TCR Tg CD4 T cells 

proliferated in the iliac lymph nodes, migrated to the infected genital tract, and primarily 

differentiated into polyfunctional Th1 cells. Polyfunctional Tg Th1 cells exhibited enhanced 

effector function characterized by increased IFNγ production associated with improved bacterial 

clearance compared to polyclonal, predominately monofunctional, Th1 cells. These studies 

demonstrate the first transgenic TCR to protect against C. muridarum genital infection and 

exhibit C. trachomatis cross-reactivity, and further define antigen-specific, enhanced effector 

function afforded by Th1 polyfunctionality. 

3.4 MATERIALS AND METHODS 

3.4.1 Strains, cell lines, and culture conditions 

Chlamydia muridarum Nigg stock (AR Nigg) was obtained from Roger Rank at the University 

of Arkansas for Medical Sciences, and has been previously described (168). C. trachomatis 

D/UW-3/Cx (169) was obtained from the American Type Culture Collection (Manassas, VA)  

and plaque purified before use (168). Plaque-purified C. trachomatis D/UW-3/Cx, Nigg strain 

CM001 (170), and plasmid-deficient CM3.1 (61) were propagated in mycoplasma-free L929 

cells (171), and titrated by plaque assay or as inclusion-forming units (172), using a fluorescently 

tagged anti-chlamydial lipopolysaccharide monoclonal antibody (Bio-Rad). UV-inactivated 

bacteria were prepared, as described (173). 
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3.4.2 Generation of a Chlamydia-specific T cell transgenic mouse 

Two eight-week-old female C57BL/6J mice were intravaginally infected with 3×105 inclusion 

forming units (IFU) of wild-type Chlamydia muridarum Nigg. Infected mice were allowed to 

resolve primary infection, and were re-challenged two months later. The spleen and lymph nodes 

were collected one-week post-secondary challenge, and single-cell suspensions were stimulated 

ex vivo with reticulate body (RB)-enriched Nigg (1μg/mL) for 5 days prior to fusion with murine 

BW5147 T cell lymphoma cells (174) in 50% PEG solution. Fused cells were cultured in HAT 

medium for an additional 7 to 9 days. Hybridomas were screened and sorted based on CD3, 

CD4, CD8, and TCRβ expression. Sorted CD4 T cell hybridomas underwent limiting dilution 

and were co-cultured with irradiated syngeneic splenocytes in the presence of Nigg elementary 

bodies (EB) or RB (1μg/mL) for 24-48 hours at 37°C. Harvested supernatants were tested for IL-

2 and IFNγ levels by enzyme-linked immunosorbent assay (ELISA) from R&D Systems. The 

CD4 T cell clone with the highest co-production of IL-2 and IFNγ in the presence of Nigg EB 

was harvested and cultured for cloning of TCRα and TCRβ cDNA. RNA from the CD4 T cell 

clone was made using the Qiagen RNAeasy method, and TCRα and TCRβ cDNA was obtained 

using the SuperTCRExpress™ Mouse TCR Vα/ Vβ Repertoire Clone Screening Assay Kit 

(BioMed Immunotech), which contains 5’ RACE primers for all TCR Vα/Vβ. The cDNAs were 

cloned into the TOPO vector (Promega), sequenced, and identified as Vα6 and Vβ10.  Genomic 

sequences corresponding to the mRNA sequences were used to map the variable, joining, and 

constant regions in the sequence.  Primers with flanking XmaI site and NotI site, 

GATCCCGGGCAGAGCTGCAGCCTTCCCAAGGCTC and 

CATGCGGCCGCAGTGCTAGGAAGGGCGGCCTGGAC were generated for amplifying the 

variable region of Vα6 from genomic DNA. Primers with flanking XhoI site and SacII site, 

http://www.biomedimmunotech.com/store/viewItem.asp?idProduct=226986236
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TCCGCTCGAGCCTTGACCCAACTATGGGCTGT and 

ATTCCCGCGGCTGGTCTACTCCAAACTACTCCAGG were generated to amplify the 

variable region of Vβ10. Vα6 amplicon was cloned into the pTαcass and Vβ10 amplicon into 

pTβcass vectors (175), which contain the respective promoters for Vα and Vβ expression and 

provided the joining and constant region, as a genomic clone. DNA constructs were sequenced 

for confirmation, linearized at SalI (Vα6) and KpnI (Vβ10) sites, respectively, purified and 

injected into the pronuclei of (C57BL/6J x SJL/J) F2 fertilized eggs. 

3.4.3 Animals 

Female C57BL/6J (Stock No: 000664), B6.SJL-Ptprca Pepcb/BoyJ (CD45.1+; Stock No: 

002014), B6.129S7-Rag1tm1Mom/J (Rag1-/-; Stock No: 002216), and B6.129S2-Tcratm1Mom/J 

(Tcra-/-; Stock No: 002116) mice were purchased from The Jackson Laboratory (Bar Harbor, 

ME). Mice were given food and water ad libitum in an environmentally controlled pathogen-free 

room with a cycle of 12 h of light and 12 h of darkness. TCR transgenic mice generated as 

described above at the University of Pittsburgh were subsequently backcrossed onto C57BL/6J 

for over 10 generations. Transgenic mice were screened for expression of Vα6 and Vβ10 on 

CD4+ T cells from peripheral blood by PCR and FACS. Experimental mice were age-matched 

and used between 8 and 12 weeks of age. All animal experiments were approved by the 

Institutional Animal Care and Use Committee at the University of Pittsburgh and University of 

North Carolina. 
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3.4.4 Generation of bone marrow-derived DCs 

Dendritic cells were generated from the tibias/femurs of C57BL/6J mice as previously described 

(176). Briefly, erythrocytes were lysed with ACK lysis buffer, and bone marrow precursors were 

cultured for 7 days in complete media (RPMI containing 10% fetal bovine serum, 2 mM 

glutamine, 10 mM HEPES, pH 7.4, 100 μM nonessential amino acids, 1 mM sodium pyruvate, 

50 μM β-mercaptoethanol, and 50 μg/ml gentamicin) supplemented with 1000 U/mL 

recombinant murine GM-CSF and 1000 U/mL recombinant murine IL-4 (both from Peprotech). 

CD11c+ DCs were isolated using specific beads (Miltenyi Biotech), according to the 

manufacturer’s protocol. 

3.4.5 Antigen-specific T-cell proliferation, activation, and cytokine analysis 

The spleens of littermate or TCR transgenic mice were processed into a single cell suspension, as 

described previously (177). Splenocytes (1×105 cells/well) were seeded in a 96-well flat-

bottomed tissue culture plate in complete media with 5 μg/ml C. muridarum AR Nigg, plasmid-

deficient CM 3.1, C. trachomatis D/UW-3/Cx, or recombinant ovalbumin (Sigma) for 6 days. 

Splenocytes were treated with 20 U/mL murine IL-2 (Peprotech) over the final 48 hours. Cells 

were treated with 20 μl of Alamar Blue (Biosource) 6 hours before the end of the 6-day culture, 

and proliferation was measured at 530-nm excitation/590-nm emission with a Biotek 

fluorescence microplate reader.  

Alternatively, transgenic or polyclonal CD4+ T cells were isolated from the spleens of 

naïve TCR transgenic or wild-type C57BL/6J mice by negative magnetic selection (EasySep™ 

Mouse CD4 T cell). Isolated CD4+ T cells were co-cultured at a 1:5 ratio with bone marrow-

derived dendritic cells (BMDCs) for 3 days in the presence or absence of C. muridarum AR 
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Nigg (5μg/mL). Expression of CD69 and Ki67 was determined by FACS surface and nuclear 

staining respectively, as described previously (178). Supernatants from dendritic-cell stimulated 

CD4+ T cells were collected and IL-2 concentrations determined by ELISA. 

3.4.6 Murine Chlamydia infection and monitoring 

For genital tract infection, female mice at least 8 weeks old were s.c. injected with 2.5 mg 

medroxyprogesterone (Depo-Provera®; Upjohn) 5–7 days prior to infection to induce a state of 

anestrous (179). Mice were intravaginally inoculated with 3×105 inclusion-forming units (IFU) 

CM001 diluted in 30 μl sucrose-sodium phosphate-glutamic acid buffer. Mice were monitored 

for cervicovaginal shedding via endocervical swabs (180), and IFUs were calculated, as 

described previously (85). Prior to reinfection, mice were treated intraperitoneally with 0.3 mg 

doxycycline in 100 μl phosphate buffered saline for 5 days (94). Animal welfare was monitored 

daily. Genital tract gross pathology, including presence of hydrosalpinx, was examined and 

recorded at sacrifice. 

3.4.7 Lymphocyte isolation and flow cytometry 

Spleen, iliac lymph nodes, oviducts, uterine horns, and cervical tissues were isolated from 

sacrificed mice. Cervical tissue and uterine horns were minced separately and incubated with 1 

mL of collagenase I (Sigma) for 20 minutes at 37°C before neutralization with EDTA (10 μM). 

Single-cell suspensions were prepared by dispersing tissues through a 70-micron tissue strainer 

(Falcon). Cell suspensions were treated with erythrocyte lysis buffer (VitaLyse®; BioE), 

incubated in Fc block (5 µg/ml) for 10 minutes, and stained with LIVE/DEAD Fixable Yellow 

(Life Technologies) plus various combinations of the following fluorochrome-labeled antibodies: 
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anti-CD3 (clone 17A2) anti-CD3e (145-C211), anti-CD4 (GK1.5, RM4-5, H129.19), anti-CD8a 

(53-6.7), anti-TCRVβ10 (V21.5), anti-TCRβ (H57-597), anti-CD45 (30-F11) anti-CD45.1 

(A20), anti-CD45.2 (104), anti-CD44 (IM7), anti-CD62L (MEL-14), and anti-CD69 (H1.2F3), 

from BD Biosciences. The samples were analyzed on a CyAN ADP (Beckman Coulter) or LSR 

II flow cytometer (BD Bioscience), and data were analyzed with FlowJo software.  

3.4.8 CFSE-labeling and adoptive transfer 

Transgenic or polyclonal CD4+ T cells were negatively separated, and a sample of isolated cells 

was analyzed by flow cytometry to confirm >93% purity. The indicated numbers of transgenic or 

wild-type CD4+ T cells were injected i.v. into Depo-Provera®-treated CD45.1+, Rag1-/-, or Tcra-

/- mice 5-6 days prior to intravaginal infection. In some experiments, Tg CD4+ T cells were 

labeled with 1 μM CFSE (Thermo Fisher) for 5 minutes at 37°C prior to intravenous transfer and 

analysis. 

3.4.9 Intracellular cytokine detection 

Lymphocytes isolated from infected mice as described above were incubated in a 96-well plate at 

a concentration of 1×106 cells per well in the presence of UV-irradiated C. muridarum AR Nigg 

(5 µg/ml) or media alone for 6 hours at 37°C; GolgiPlug (BD Biosciences) was added, and 

incubation was continued for an additional 12-16 hours. Control samples were stimulated for 4-6 

hours in the presence of PMA/ionomycin (Cell Stimulation Cocktail; eBioscience) and 

GolgiPlug. Surface staining was performed as described above, and the cells were fixed in BD 

Bioscience Cytofix/Cytoperm for 20 minutes. For detection of intracellular cytokines, cells were 

incubated for 30 minutes in BD Bioscience Perm/Wash with various combinations of the 
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following fluorochrome-labeled antibodies: anti-IL-2 (JES6-5H4), anti-TNFα (MP6-XT22), and 

anti-IFNγ (XMG1.2) from BD Bioscience.  

3.4.10 Statistical analysis 

Differences between the means of experimental groups after infection were calculated using two-

way repeated measures (RM) ANOVA. Significant differences in flow cytometric data were 

determined by one-way and two-way ANOVA. Comparisons of animal survival were performed 

by an exact log rank test. Prism software (GraphPad Software) was utilized for statistical 

analyses, and values of P ≤ 0.05 were considered significant.  

3.5 RESULTS 

3.5.1 Generation of Chlamydia-specific TCR transgenic mouse 

Previous studies demonstrate that the frequency of IFNγ-producing CD4 Th1 cells correlate with 

enhanced chlamydial clearance from the genital tract (103, 136, 160, 181). To directly monitor 

CD4 T cell responses during murine infection, we generated a Tg mouse strain with a TCR 

specific for C. muridarum, which demonstrated cross-reactivity with C. trachomatis (Fig. 1A). 

The TCR genes were isolated from a hybridoma expressing Vα6 and Vβ10 chains specific for C. 

muridarum elementary and reticulate bodies. These genes were cloned into an expression vector 

used to generate germline Tg mice. Founder Tg mice almost uniformly express Vβ10 on the 

surface of autologous CD4 T cells (Fig. 1B), and were backcrossed to C57BL/6J mice for over 

ten generations. Tg mouse splenocytes demonstrated a 6-8-fold increase in Chlamydia-specific 

proliferation compared to littermates, with minimal proliferation induced by ovalbumin (Fig. 
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1A). C. muridarum Nigg plasmid-competent and -deficient (CM3.1) strains stimulated TCR Tg 

splenocytes equally. To further confirm the specificity of Tg CD4 T cells, we analyzed their 

ability to activate and proliferate in comparison to wild-type polyclonal CD4 T cells in vitro. 

Transgenic CD4 T cells demonstrated the ability to co-express high levels of CD69 and Ki67 

when cultured with BMDC and C. muridarum elementary bodies, with over 40% being double-

positive and ~50% expressing CD69 (Fig. 1C). In contrast, minimal activation was observed 

with polyclonal CD4 T cells. This enhanced proliferation was associated with significantly 

increased levels of IL-2 in the supernatants of stimulated TCR Tg CD4 T cells that were 29 times 

higher than polyclonal CD4 T cells (Fig. 1D). We next examined the ability of Tg CD4 T cells to 

become activated and proliferate in vivo. 
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Figure 1. Generation of a Chlamydia-specific TCR transgenic mouse. 
(A) TCR Tg or littermate splenocytes were stimulated with 5 μg/ml C. trachomatis, C. 
muridarum AR Nigg, plasmid-deficient Nigg (CM 3.1), or recombinant ovalbumin, as indicated. 
Splenocytes were stimulated for 4 days, followed by 2 additional days in the presence of 20 
U/mL IL-2. Change in proliferation was determined by the ratio of Alamar Blue fluorescent 
intensity compared to unstimulated controls (**** P < 0.0001 determined by two-way ANOVA). 
(B) Peripheral blood from C57BL/6J backcross progeny of Tg founder mice or littermate 
controls was stained with antibodies against CD3, CD4, and Vβ10. The right dot plot is 
representative of the Vβ10 expression on CD3+CD4+ T cells from Tg mice. (C) CD4+ T cells 
from Tg mice or wild type mice were incubated for 3 days with BMDC pulsed with and without 
5 μg/ml C. muridarum. The right dot plots show CD69 and Ki67 expression from Tg and 
polyclonal CD4 T cells after stimulation. (D) Supernatants from dendritic cell-stimulated CD4 T 
cells were analyzed for IL-2 by ELISA (**** P < 0.0001 determined by two-way ANOVA). 
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3.5.2 Proliferation and activation kinetics of TCR Tg CD4 T cells during C. muridarum 
genital tract infection.  

To determine the ability of TCR Tg CD4 T cells to proliferate and become activated in response 

to intravaginal C. muridarum infection, we utilized an adoptive transfer approach. To first test if 

these cells proliferate in vivo, we labeled naïve CD45.2+ TCR Tg CD4 T cells with CFSE and 

intravenously transferred 1×106 cells into congenic CD45.1+ mice. An increased percentage of 

CD45.2+ TCR Tg CD4 T cells were detectable on day 5 post-infection in the iliac lymph nodes 

compared to mock-infected controls (Fig. 2A), and infection resulted in their loss of CFSE 

expression consistent with proliferation (Fig. 2B). We then compared the activation state of 

endogenous and Tg CD4 T cells after infection by examining expression of the activation 

markers CD44, CD69, and CD62L on CD45.2+ TCR Tg and endogenous CD45.1+ CD4 T cells 

in the spleen, iliac lymph nodes, and oviducts. The gating strategy is shown in Fig. 2C. 

Comparison of the surface marker frequency between all CD45.1+ CD4 T cells or CD45.1+ CD4 

T cells expressing the Vβ10 chain did not significantly alter the frequency of surface marker-

positive endogenous cells (data not shown). TCR Tg CD4 T cells upregulated CD44 and CD69 

concomitantly with down-regulation of CD62L by day 5 in the iliac lymph nodes and 

demonstrated greater percentages of activated cells in peripheral and secondary lymphoid organs 

(SLO) compared to the endogenous pool by day 8 post-infection (Fig. 2D, 2E). TCR Tg cells 

expressed significantly higher levels of CD69 in the ILN (iliac lymph node) on each day 

analyzed after primary infection, compared to endogenous cells. This was further associated with 

significantly decreased percentages of CD62Lhi TCR Tg cells on days 5, 8, 22, and 44 post-

primary infection. Similar CD62L kinetics was observed in the spleen.  

CD44 hi expression is used as a marker of T cell activation and Th1 memory (182, 183), 

and this memory phenotype was significantly increased among TCR Tg CD4 T cells in the iliac 
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nodes throughout the course of primary infection, and on day 13 of secondary infection, 

compared to endogenous cells. Similar CD44 expression was observed for splenic TCR Tg cells. 

On day 13 post-secondary challenge, 85-98% of splenic Tg T cells were CD44hi, and these Tg 

cells comprised ~7% of the total splenic CD44hi CD4 T cell pool (Fig. 2F). The kinetics reflect 

the enhanced ability of Tg cells to adopt an activated effector and/or effector memory phenotype 

in the lymphoid tissues throughout infection compared to the endogenous T cell repertoire, and 

by day 8 in the infected peripheral tissues. These data collectively support other studies 

demonstrating Chlamydia-specific CD4 T cell priming and proliferation in the ILN (115, 184) 

and the presence of activated cells in the genital tract one-week post-infection (185).  
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Figure 2. Proliferation and activation kinetics of TCR Tg CD4 T cells during C. muridarum 
genital tract infection. 
One million CFSE-labeled Tg T cells were transferred into CD45.1+ female recipients, which 
were mock infected or infected with CM001. (A) Iliac lymph nodes from infected (top left) or 
mock-infected (top right) mice were examined for the presence of Tg T cells, and (B) Tg cells 
were examined for CFSE fluorescence. (C) Diagram of the flow cytometric gating strategy used 
to analyze CD62L, CD69, and CD44 expression by CD45.2+ Tg and CD45.1+ endogenous, 
polyclonal CD4 T cells. (D) Representative histograms comparing surface marker expression 
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between Tg (grey) and endogenous (white) CD4 T cells during early infection. (E) Expression of 
CD62L, CD69, and CD44 on donor Tg and endogenous host CD4 T cells in the spleen, iliac 
lymph node, and oviducts on the indicated days post primary and secondary infection. Data 
points are representative of individual mice. Horizontal bars indicate the mean of 3-4 mice per 
group. Statistical significance was noted relative to autologous CD45.1+ CD4 T cells and 
indicated by asterisks: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 by two-way 
ANOVA. (F) Percentage of transgenic cells comprising the CD44hi CD4 T cell population from 
the spleen on the indicated days post-infection (** P < 0.01, **** P < 0.0001 by RM one-way 
ANOVA). 
 

3.5.3 Proliferation and activation kinetics of TCR Tg CD4 T cells during C. muridarum 
genital tract infection.  

After demonstrating that TCR Tg CD4 T cells become activated, proliferate, and migrate to the 

infected genital tract, we investigated whether they would provide protection and produce IFNγ 

upon challenge. Prior data from our lab had revealed the plaque-purified strain of C. muridarum 

Nigg, CM001, resulted in disseminated lethal infection in Rag1-/- mice after intravaginal 

inoculation (170). Rag1-/- mice received adoptive transfers of 103 Tg or 103, 104, and 106 

polyclonal CD4 T cells 5 days prior to infection (Fig. 3A). A precursor frequency of 106 

polyclonal CD4 T cells was used as a positive control, based on previous observations that this 

dose conferred protection (data not shown). Mice receiving 103 Tg CD4 T cells survived 

infection, whereas 103 and 104 polyclonal CD4 T cells were not protective. TCR Tg CD4 T cells 

demonstrated a recall response characterized by the production of inflammatory cytokines. 

Transgenic CD4 T cells isolated from the uterine horns and oviducts on day 7 post-secondary 

challenge produced IFNγ and TNF in response to in vitro re-stimulation with UV-irradiated C. 

muridarum (Fig. 3B). These data indicate that TCR Tg CD4 T cells prevent death from 

disseminating infection, migrate to infected tissues, and acquire Th1 effector functions post-

infection. 
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3.5.4 TCR Tg CD4 T cells can mediate bacterial clearance during primary and secondary 
infection 

We next investigated whether adoptively transferring TCR Tg CD4 T cells to αβ TCR-deficient 

mice would lead to clearance of primary genital tract infection and enable resistance to challenge 

infection. Mice that did not receive T cells failed to clear infection, whereas adoptive transfer of 

103 or 106 TCR Tg CD4 T cells to Tcra-/- mice resulted in equivalent rates of infection clearance, 

with a 3.5-log reduction in shedding being detected by day 10 post-infection (Fig. 3C). In 

addition, infection clearance after adoptive transfer of 103 or 106 TCR Tg CD4 T cells was 

accelerated when compared to groups that received either 103 or 106 polyclonal CD4 T cells, 

indicating that the Tg CD4 T cells are more efficient effectors (Fig. 3C).   

We also investigated if TCR Tg CD4 T cells would contribute to a recall response upon 

secondary challenge. Immune mice that had received 103 or 106 TCR Tg CD4 T cells prior to 

primary infection exhibited a 4.5- and 3-log reduction in shedding, respectively, on day 3 post-

challenge compared to primary infection (Figs. 3C, 3D). Mice that received 103 Tg CD4 T cells 

prior to primary infection were more resistant to challenge when compared to mice that received 

106 Tg CD4 T cells (Fig. 3D). This was consistent with findings in other TCR transgenic models, 

where lower numbers of adoptively transferred naïve Tg CD4 T cells induce better memory 

development. It is possible that decreased interclonal competition for antigen leads to enhanced 

differentiation of the fittest effectors into memory cells (186).  In contrast, infectious burden 

during secondary infection was significantly lowered in mice receiving 106 but not 103 

polyclonal CD4 T cells. In this instance, a broad array of antigen-specific cells avoids interclonal 

competition for peptide-MHC class II stimulation.  

Although mice that were re-infected without prior receipt of adoptive T cells failed to 

exhibit any decline in infectious burden up to two weeks post inoculation, on day 3 post-



 

 39 

challenge, their infectious burden was 2-log lower than that observed during primary infection. 

This transient protection may be a result of circulating T-cell independent antibody or memory 

γδ T cells that are not capable of clearing infection independent of conventional CD4 T cells. 

3.5.5 TCR Tg CD4 T cells preferentially adopt a polyfunctional Th1 phenotype with 
increased IFNγ production 

The TCR transgenic mouse was developed using a TCR that induced a Th1 response after 

chlamydial stimulation in vitro. We hypothesized that TCR Tg CD4 T cells would differentiate 

into polyfunctional Th1 cells in vivo since adoptive transfer of these cells led to enhanced 

chlamydial clearance during primary infection (Fig. 3C). We detected significantly increased 

percentages of IFNγ+TNF+ double-positive cells in the spleen and genital tissues of Tcra-/- mice 

receiving Tg CD4 T cells, on day 13 post-infection compared to mice receiving polyclonal CD4 

T cells (Fig. 4A, 4B). Additionally, transgenic polyfunctional IFNγ+TNF+ CD4 T cells 

expressed significantly higher amounts of IFNγ compared to polyfunctional, polyclonal 

populations. TCR Tg polyfunctionality for TNF and IFNγ was associated with increased IFNγ 

production compared to cells singly positive for IFNγ (Fig. 4C). These data indicate that TCR Tg 

CD4 T cells preferentially adopt a polyfunctional phenotype characterized by high levels of IFNγ 

production. Furthermore, the percentage of triple-positive (IFNγ+TNF+IL-2+) CD4 T cells in the 

spleen was increased among the Tg CD4 T cell population when compared to polyclonal CD4 T 

cells on day 48 post-infection (Fig. 4D, 4E). Triple positive transgenic cells expressed 

significantly higher levels of IFNγ per cell compared with single- or double-positive cells (Fig. 

4F), as previously described for pathogen-specific polyfunctional T cells in other models of 

infection (155, 158, 187). Triple positive cells also expressed significantly higher levels of TNF 

per cell compared to TNF monofunctional cells, but at a reduced magnitude (60% increase), and 
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no differences were observed in IL-2 GMFI (data not shown). These data collectively show that 

Tg CD4 T cells have superior functional capacity with enhanced cytokine production, and this 

polyfunctional effector response is associated with enhanced bacterial clearance.  

 

 

Figure 3. TCR Tg CD4 T cells mediate protection and demonstrate a recall response 
following challenge. 
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Rag1-/- mice (4-5 per group) were mock treated or intravenously injected with indicated numbers 
of CD4 T cells isolated from the spleens of naïve C57BL/6J wild type or Tg mice, and 
intravaginally inoculated with CM001 5 days later. Survival was monitored daily, and an exact 
log rank test was used to analyze survival differences between polyclonal and Tg groups (** P < 
0.01). (B) Recall response of CD4+Vβ10+ Tg CD4 T cells to secondary infection. Following 
primary infection, Tg mice were treated with doxycycline, rested for 9 weeks, and re-challenged 
with CM001. On day 7 post-challenge, genital tract CD4 T cells were harvested, stimulated with 
5 μg/ml C. muridarum, and analyzed for IFNγ and TNF production by intracellular cytokine 
staining. (C) Indicated numbers of naïve Tg or polyclonal CD4 T cells were adoptively 
transferred to Tcra-/- mice 5 days prior to intravaginal infection with CM001, and the course of 
primary infection was monitored by culture of lower genital tract swabs. Significance was 
determined by two-way RM ANOVA with a post-hoc Tukey test. Data represent the mean ± 
SEM of 10 mice per group. Comparison of individual days for 103 Tg versus 106 polyclonal: * P 
< 0.05, ** P < 0.01. Comparison of primary infection course between groups: P=NS for 106 Tg 
versus 103 Tg. P =0.0001 for 103 Tg versus 106 Polyclonal.  P <0.0001 for all remaining group 
comparisons. (D) Immune mice were treated with doxycycline on days 52-56 post-infection, 
rested for 5 weeks, re-challenged with CM001, and infection monitored by culture of vaginal 
swabs. Significance was determined by two-way RM ANOVA with a post-hoc Tukey test. Data 
represent the mean ± SEM of 4-5 mice per group. Comparison of groups over primary infection 
course: P=NS for 103 Tg versus 106 polyclonal, 106 Tg versus 103 or 106 polyclonal. P < 0.05 for 
103 Tg versus 106 Tg. P <0.0001 for all remaining group comparisons. 
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Figure 4. Naïve TCR Tg CD4 T cells differentiate into polyfunctional Th1 cells with 
increased IFNγ production. 
Tcra-/- mice receiving polyclonal or Tg CD4 T cells were analyzed for polyfunctional Th1 
responses on Day 13 (A-B) and Day 48 (D-E) post-infection. (A) CD4 T cells isolated from 
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indicated tissues were stimulated with 5 μg/ml C. muridarum and evaluated for intracellular 
cytokine production. Contour plots show representative IFNγ and TNF co-production by Tg 
CD3e+CD4+Vβ10+ cells (top) and polyclonal CD3e+CD4+TCRβ+ cells (bottom). (B) 
Comparison of the percentage of cytokine positive cells between single positive (IFNγ+) and 
double-positive (IFNγ+ TNF+) polyclonal and Tg CD4 T cells (C) Associated IFNγ geometric 
mean fluorescent intensities (GMFI). Data represent the mean ± SD of 3 mice per group. * P < 
0.05, ** P < 0.01, *** P < 0.001 determined by two-way ANOVA. (D) Diagram of the flow 
cytometric gating strategy used to analyze CD4 T cell polyfunctionality on day 48 post-infection. 
(E) The frequency of single positive (IFNγ+), double positive (IFNγ+ TNF+), and triple positive 
(IFNγ+ TNF+IL-2+) Tg or polyclonal CD4 T cells on day 48 post-infection. Data represent the 
mean ± SD of 4-5 mice per group (**** P < 0.0001). (F) Comparison of the IFNγ GMFI 
between spleen-isolated Tg CD4 T cell single, double, and triple-positive populations. Data 
represent the mean ± SD of 8 mice receiving 103 and 106 Tg cells. **** P < 0.0001 determined 
by two-way RM ANOVA. 

3.6 DISCUSSION 

Pathogen-specific TCR Tg mice have been utilized in a variety of infectious disease models 

(188-195), including NR1 mice that recognize C. trachomatis (185). Adoptive transfer of naïve 

TCR Tg cells is a superior approach to transfer of in vitro maintained T cell lines, since naïve 

TCR Tg cells allow analysis of the initial antigen encounter and phenotypic differences between 

in vivo derived effector and memory populations. We developed a TCR Tg mouse that 

recognizes a conserved antigen between C. trachomatis and C. muridarum. The TCR Tg cells of 

this mouse react to C. trachomatis serovars D, F, H, and L2 (data not shown), and preliminary 

biochemical analyses reveal that they recognize a soluble, secreted protein enriched in reticulate 

bodies (data not shown). We have excluded commonly studied immunogenic antigens such as 

MOMP, OmcB, HSP60, and PmpG. This report demonstrates the first TCR to protect against C. 

muridarum genital infection, and allowed us to analyze enhanced effector function afforded by 

Th1 polyfunctionality at a level that had not been previously attainable. Generation of this mouse 

has allowed for the unique ability to adoptively transfer TCR Tg cells for investigation of 
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antigen-specific T cell responses to both mouse and human chlamydial strains in the murine 

model of genital tract infection.  

Development of the Chlamydia-specific TCR Tg mouse was based on selection of a Th1 

clone specific for both C. muridarum elementary bodies and reticulate bodies. We used a non-

biased approach, by analyzing T cell clones demonstrating the strongest IFNγ and IL-2 

production, which has been shown to be effective in TCR Tg mouse development. Selecting 

clones reactive against whole organism or crude antigen preparations has resulted in Tg CD4 T 

cells with the capacity to mount robust effector and memory responses following infection and 

vaccination (194), compared to model antigens (196). Our studies reveal that the Tg CD4 T cells 

possess a TCR, which confers protection against intravaginal C. muridarum infection. 

 These Tg CD4 T cells become activated, proliferate extensively, and produce high levels 

of IL-2 when stimulated with C. muridarum. Naïve and memory CD4 T cells require TCR 

stimulation in combination with IL-2 signaling to proliferate (197), and TCR engagement 

upregulates IL-2R subunits (198). The strength of IL-2 signaling also correlates with the 

magnitude of proliferation in Th1 cells (199), and IFNγ expression increases with successive cell 

divisions (200). Furthermore, IL-2 signaling during priming enhances differentiation of the 

effector pool into memory (201).  

Based on the ability of these cells to recognize chlamydia in vitro, we used an adoptive 

transfer approach to analyze the proliferation and activation kinetics in vivo. Similar to the C. 

trachomatis model, our approach revealed that C. muridarum infection induced significant TCR 

Tg CD4 T cell activation and expansion in the iliac lymph nodes by day 5 and Tg cells expressed 

an activated phenotype (CD44hiCD69+CD62Llo). The CD44hi CD62Llo phenotype was also 

observed in the infected oviducts. Expression of CD69 on Tg cells in the spleen and oviducts on 
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day 8, in our model, is likely due to the ability of CM001 to quickly disseminate to the distal 

organs and rapidly ascend the genital tract. Increased CD69 expression on CD4 T cells early in 

CM001 infection may be a result of local priming events, prior to tissue infiltration of activated 

T cells primed in the ILN. At later time points, CD44 expression in SLOs steadily increased, 

particularly during re-infection, consistent with the formation of memory T cells. These kinetics 

are similar to other infectious disease models of CD4 T cell activation and memory (185, 190, 

195, 202). After priming in the ILN, Tg cells made up ~7% of all CD44hi CD4 T cells in the 

spleen, which consistently decreased through infection, until mice received a secondary 

challenge. This is consistent with other systems demonstrating that peak CD4 T cell expansion 

typically occurs after one week (203), and is followed by CD4 T cell contraction over 1-2 weeks, 

where 90-95% of the expanded population undergoes cell death (204, 205). Late in the course of 

C. muridarum infection and during reinfection, a majority of Tg cells expressed high levels of 

the memory marker CD44. Additional phenotyping experiments are required to determine the 

proportions of Tg T cells in the terminal effector, effector memory, and central memory pools.   

TCR Tg cells prevented death in immunocompromised mice infected with CM001 and 

upon secondary challenge, these cells were recalled to the infected tissues and produced IFNγ 

and TNF. These results parallel other infectious disease models demonstrating that adoptive 

transfer of antigen-specific naïve CD4 T cells can protect against lethality (195). Adoptive 

transfer to T- and B-cell deficient Rag1-/- hosts illustrates the CD4 T helper-independent 

protective function of TCR Tg cells, likely mediated through their production of IFNγ (206). 

Furthermore, transfer of these cells into αβ TCR-deficient mice led to enhanced protection 

against primary infection and equivalent protection against a secondary challenge compared to 

the polyclonal response. Comparable levels of oviduct gross pathology were observed between 
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the TCR Tg and polyclonal groups (100% and 95% hydrosalpinx, respectively), which was not 

surprising given the ability of CM001 to induce severe pathology in wild-type mice (207). Future 

studies utilizing vaccination or adoptive transfer of in vitro primed TCR Tg cells should help 

reveal their capacity to protect against oviduct pathology.  

Reduced bacterial burden mediated by TCR Tg cells was associated with increased 

frequencies of double- and triple-positive Th1 populations producing higher levels of IFNγ 

compared to polyclonal CD4 T cells. IFNγ is a critical effector molecule for controlling 

chlamydial replication (131, 136, 208-210), and enhanced frequencies of polyfunctional Tg cells 

producing IL-2 could allow for enhanced Th1 effector proliferation. Our TCR Tg cells clearly 

recognize an antigen that drives a favorable response that leads to enhanced bacterial clearance 

and resistance to challenge infection. Persistent antigen and antigen depots reduce the memory 

pool leading to non-protective responses from terminally differentiated, exhausted T cells. 

Removal of antigen drives T cell transition to memory (211), and these cells remain plastic and 

heterogeneous (212, 213). Thus, triple-positive Th1 Tg cells could be a consequence of improved 

effector function leading to lower bacterial load (214, 215). In addition, Tg cells may also 

demonstrate greater functional avidity, which has been linked with improved disease outcomes 

(216) and expression of decreased levels of inhibitory receptors (217). High avidity T cells are 

less susceptible to activation-induced cell death (218) and demonstrate increased 

polyfunctionality (219, 220).  

Our analyses were limited to the study of CD4 T cells and focused on profiling three 

major Th1 cytokines. A comprehensive analysis of TCR Tg cell production of cytokines, 

chemokines, and cytotoxic effectors, as well as their helper function for antibody production by 

B cells is needed to fully delineate their protective, or pathological, mechanisms. Alternative 
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effectors (140) and antibody (111, 221) have been shown to play a significant role in mediating 

chlamydial clearance. Additional analysis of the recall response is needed to determine the 

mechanisms whereby equivalent protection from reinfection occurred in Rag1-/- mice that had 

received polyclonal T cells or monoclonal TCR Tg T cells. Potentially, polyclonal, 

polyfunctional T cells were maintained and IFNγ monofunctional cells culled, or monofunctional 

cells responding to a variety of antigens elicit similar protection to polyfunctional TCR Tg cells 

recognizing a single antigen. The finding that a single immunogenic antigen that elicits 

polyfunctional T cells can successfully induce a protective response is encouraging from a 

subunit vaccinology perspective. Viral models demonstrate that primary and secondary effectors 

share organ-specific expression patterns, but secondary effectors are more polyfunctional (triple 

positive); polyfunctional cells also express higher levels of genes associated with survival and 

migration (222). Whether CD4 T cell polyfunctionality can predict memory generation and 

subsequent, enhanced secondary effector functions is an important area to be addressed. Once we 

have identified the antigen recognized by the TCR Tg T cells, we can determine if vaccination 

with this antigen drives induction of a protective polyfunctional response, and whether adoptive 

transfer of in vitro antigen-primed Tg T cells can protect from infection and disease.  

In conclusion, we have demonstrated that adoptive transfer of Tg CD4 T cells specific for 

a single Chlamydia antigen induces polyfunctional CD4 T cells that provide enhanced immunity 

against Chlamydia. Transgenic CD4 T cells specific for Chlamydia can be further used to 

directly monitor differentiation of antigen-specific effector and memory responses during 

infection and to better delineate protective responses upon challenge. The development of a 

successful vaccine will be facilitated by better understanding of how CD4 T cell 

polyfunctionality is generated, sustained, and provides immunity at the mucosal surface.  
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4.0  CHAPTER TWO: T-CELL INDEPENDENT INTERFERON GAMMA AND B 

CELLS SYNERGIZE TO PREVENT MORTALITY ASSOCIATED WITH 

DISSEMINATED CHLAMYDIA MURIDARUM GENITAL TRACT INFECTION 

4.1 PREFACE 

This chapter is adapted from a manuscript in preparation (Taylor Poston1, Catherine O’Connell1, 

Amy Scurlock3, Jenna Girardi1, Tony Marinov2, Jeannie Sullivan1, Uma Nagarajan1, and Toni 

Darville1). Work described in this chapter is in fulfillment of specific aim 2.  
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4.2 ABSTRACT 

CD4 T-cells and antibody are required for optimal acquired immunity to C. muridarum genital 

tract infection, and conventional T-cell mediated IFN-γ production is required to survive and 

clear hypervirulent C. muridarum infection in the absence of humoral immunity. However, the 

role of protective T-cell independent responses against primary C. muridarum infection remain 

unclear. We addressed this problem by inoculating wild-type and immune-deficient mice with a 

hypervirulent strain (CM001) isolated from C. muridarum Nigg stock. Genital CM001 

inoculation resulted in transient dissemination to the lungs and spleen in immunocompetent mice 

prior to clearance. However, CM001 infection induced lethality in Rag1-/-, STAT1-/-, and IFNG-/- 

mice, while muMT, nude, and Tcra-/- mice survived. Adoptive transfer of convalescent immune 

sera or naïve B cells to Rag1-/- mice protected against CM001 lethality. B cell protection was 

associated with a significant reduction in the lung chlamydial burden of genitally infected mice. 

These data reveal a T-cell independent role for B cells and IFN-γ in control of disseminating C. 

muridarum infection and could be an important mechanism of extragenital host defense.  
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4.3 INTRODUCTION 

Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection and a 

significant cause of female reproductive tract morbidity. The development of a vaccine remains a 

top global health priority (223). Pre-clinical C. trachomatis vaccine development includes 

utilization of the murine genital infection model for determination of protective immune 

responses against Chlamydia muridarum. Genital infection of mice with specific immune 

deficiencies has provided a method for determining the protective contribution afforded by 

humoral and cell-mediated immunity. 

Previous studies revealed a central role for CD4 T cells in protection against primary 

intravaginal C. muridarum infection, and wild-type mice demonstrate comparable clearance to 

B-cell deficient mice (110). It was further revealed that infection of B-cell deficient mice results 

in a transient disseminated infection that is likely cleared through enhanced systemic CD4 T cell 

responses (115). Multiple experiments have demonstrated a clear role for IFN-γ producing Th1 

cells in primary and acquired immunity against chlamydial infection (103, 113, 136, 160, 224). 

Furthermore, recent evidence suggests that antibody and CD4 T-cell derived IFN-γ optimally 

cooperate to protect against infection through neutrophil activation and subsequent chlamydial 

killing (208, 225). Thus, the requirement for Th1 cells and T-cell dependent antibody during 

protective adaptive responses is well accepted (114).  

Earlier studies demonstrate that T-cell deficient athymic nude mice, and severe combined 

immune deficient (SCID) mice, which lack functional T and B lymphocytes because of impaired 

VDJ rearrangement, uniformly fail to resolve genital infection with the C. muridarum Weiss and 

Nigg strains, respectively (127, 226). SCID mice demonstrate high levels of dissemination, while 

IFN-γ deficient mice exhibit enhanced chlamydial dissemination, and a portion fail to resolve 
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genital tract infection (226). Furthermore, T and B-cell deficient Rag1-/- mice that fail to express 

functional Rag1 proteins required for somatic recombination develop a lethal systemic infection 

after intravaginal infection with the C. muridarum Weiss strain (227). Taken together, these data 

suggest an important, less characterized T-cell independent IFN-γ and B cell co-requirement for 

primary infection protection. 

 We recently identified a hypervirulent clonal isolate (CM001) from C. muridarum Nigg 

stock (224, 228). Identification of CM001 allowed us to explore mechanisms of protection 

against a disseminated primary intravaginal infection. Wild-type, B-cell deficient, and T-cell 

deficient mice survived CM001 infection. However, mice lacking IFN-γ signaling and Rag1-/- 

mice succumbed. Adoptive transfer of convalescent immune sera or naïve B cells protected 

Rag1-/- mice from CM001 lethality. B cell adoptive transfer to Rag1-/- hosts reduced 

disseminated lung chlamydial burden to comparable levels found in T-cell deficient mice. These 

are the first studies to demonstrate a T-cell independent co-requirement for B cells and IFN-γ in 

controlling extragenital chlamydial dissemination and associated lethality. 

4.4 MATERIALS AND METHODS 

4.4.1 Strains, cell lines, and culture conditions 

Chlamydia muridarum Nigg stock (AR Nigg) was obtained from Roger Rank at the University 

of Arkansas for Medical Sciences, and has been previously described (168). Plaque-purified C. 

muridarum strains CM001, CM002, CM005, CM006, CM012 (170), and plasmid-deficient 

CM3.1 (61) were propagated in Mycoplasma-free L929 cells (171), and titrated as inclusion-
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forming units (172), using a fluorescently tagged anti-chlamydial lipopolysaccharide monoclonal 

antibody (Bio-Rad). 

4.4.2 Animals 

6-8-week-old, female C57BL/6J (Stock No: 000664), B6.129S2-Ighmtm1Cgn/J (muMT-, Stock No: 

002288), B6.129S(Cg)-Stat1tm1Dlv/J (Stat1-/-, Stock No: 012606), B6.129S7-Ifngtm1Ts/J (Ifng-/-, 

Stock No: 002287), B6.129S7-Rag1tm1Mom/J (Rag1 KO; Stock No: 002216), B6.129S2-

Tcratm1Mom/J (Tcra-/-; Stock No: 002116), and B6.Cg-Foxn1nu/J (C57BL/6 nude, Stock No: 

000819) mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Mice were given 

food and water ad libitum in an environmentally controlled pathogen-free room with a cycle of 

12 h of light and 12 h of darkness. All animal experiments were approved by the Institutional 

Animal Care and Use Committee at the University of Pittsburgh and University of North 

Carolina.  

4.4.3 Murine Chlamydia infection and monitoring 

Female mice at least 8 weeks old were s.c. injected with 2.5 mg medroxyprogesterone (Depo-

Provera®; Upjohn) 5–7 days prior to infection to induce a state of anestrous (179). Mice were 

intravaginally inoculated with 5×105 inclusion-forming units (IFU) of Nigg or C. muridarum 

clones diluted in 30 μl sucrose-sodium phosphate-glutamic acid buffer. Mice were monitored for 

cervicovaginal shedding via endocervical swabs (180), and IFUs were calculated, as described 

previously (85).  Ascending and disseminated infection was confirmed by determining the 

bacterial load in homogenized oviduct tissues, spleen, and lungs, from sacrificed mice, as 
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previously described (61). Animal welfare was monitored daily and immune deficient mice were 

euthanized after reaching a body conditioning score of 2- (229). 

4.4.4 B cell isolation and adoptive transfer 

B cells were isolated from the spleens of naïve Tcra-/- mice by negative magnetic selection 

(Miltenyi Biotech), according to the manufacturer’s protocol. A sample of isolated cells was 

analyzed by flow cytometry to confirm 98% CD19+ B cell purity using LIVE/DEAD Fixable 

Yellow (Life Technologies) plus the following fluorochrome-labeled antibodies: anti-CD45 

(clone 30-F11), anti-CD5 (53-7.3), and anti-CD19 (1D3), from BD Biosciences. The samples 

were analyzed on a CyAN ADP (Beckman Coulter), and data were analyzed with FlowJo 

software. 3×106 spleen-derived B cells were injected i.v. into Depo-Provera®-treated Rag1-/- 

mice 5 days prior to intravaginal infection.  

Convalescent immune serum was generated after intravaginal C. muridarum Nigg 

infection of C57BL/6J mice. Mice were bled at sacrifice following infection resolution, and 

serum was collected after high speed centrifugation. Sera was pooled and complement-

inactivated at 56°C for 30 minutes. Naïve-mouse derived IgM (Rockland Immunochemicals, 

Inc.) was dialyzed overnight prior to i.p. injection. Naïve Depo-Provera®-treated Rag1-/- mice 

received i.p. injections of PBS, 0.5 mL of immune serum, or 200 μg IgM on days -1, 0, 1, 3, 7, 

10, and 13 of infection. 

4.4.5 Statistical analysis 

Differences between the means of experimental groups after infection were calculated using 

Mann Whitney U Test or two-way repeated measures (RM) ANOVA. Comparisons of animal 
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survival were performed by an exact log rank test. Prism software (GraphPad Software) was 

utilized for statistical analyses, and values of P ≤ 0.05 were considered significant. 

4.5 RESULTS 

4.5.1 C. muridarum clonal isolates reveal a variant with enhanced virulence 

Previous studies revealed that C. muridarum ‘Weiss’ and ‘Nigg’ stocks contain clonal isolates 

with genotypic and phenotypic differences (230). We hypothesized that plaque-purified isolates 

would reveal a variant with the capacity to cause enhanced burden and disease. We explored this 

possibility by inoculating wild-type mice with plaque-purified clonal isolates from a polyclonal 

population of C. muridarum Nigg (AR Nigg). Groups of mice were intravaginally inoculated 

with Nigg and five different clones. Clone CM001 demonstrated a significantly increased 

cervicovaginal burden, while clone CM012 demonstrated a reduced cervicovaginal burden 

compared to Nigg (Fig. 5A).  Due to the differential cervicovaginal burden levels between 

CM001 and Nigg, we next examined the ability of these clones to ascend to the oviduct and 

disseminate to the lungs and spleen. Mice intravaginally infected with CM001 demonstrated a 

significantly higher chlamydial burden in the lungs on day 8, and in the spleen on days 8 and 10 

post-infection, compared to Nigg (Fig. 5B). However, there was no significant difference in 

oviduct burden between CM001 and Nigg on any day examined. Both Nigg and CM001 were 

undetectable in the lungs and spleen by day 14. These data indicate that although ascension to 

the oviducts is equivalent for Nigg and CM001, CM001 exhibits enhanced dissemination to the 

lungs and spleen, although transient, in wild-type mice. 
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Figure 5. C. muridarum CM001 intravaginal infection disseminates to distal organs in wild 
type mice and is rapidly cleared. 
(A) C57BL/6J mice were intravaginally infected with Nigg or C. muridarum clones and the 
course of primary infection was monitored with lower genital tract swabs. Significance was 
determined by two-way RM ANOVA with a post-hoc Tukey test. Data represent the mean + SD 
of swabs from infected mice or swabs from infected and uninfected mice (N = 4 mice per group). 
Comparison of groups over primary infection course: P=0.02 for Nigg versus CM001, P=0.05 
for Nigg versus CM012. (B) CM001 and Nigg lung, spleen, and oviduct burdens were compared 
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by PFU on the indicated days post-infection. Statistical significance indicated by asterisks: * P < 
0.05, *** P < 0.001 by two-way ANOVA. 

4.5.2 CM001-mediated lethality and dissemination is plasmid-independent 

Prior data from our lab revealed that Rag1-/- mice intravaginally infected with plaque-purified C. 

muridarum (now designated CM001) succumbed to infection (228). Since C. muridarum 

virulence has been directly linked to the presence of its plasmid (61, 231), we further 

investigated if lethality and dissemination to the lung and spleen was plasmid-dependent. Rag1-/- 

mice infected with CM001 or plasmid-cured CM001 (CM3.1) displayed a significantly increased 

bacterial burden, compared to Nigg-infected controls (Fig. 6A). However, the infection course 

between CM001 and CM3.1 was not significantly different, and both CM3.1 and CM001 

infection resulted in lethality, while Nigg and CM012-infected mice survived (Fig. 6B). 

Mortality was associated with high chlamydial burdens in the oviducts, lungs, and spleens of 

CM001 and CM3.1 infected mice (Fig. 6C). Mice infected with CM012 demonstrated a 

significantly increased chlamydial burden in the oviducts, compared to Nigg, while both strains 

demonstrated a low burden in the lungs and spleens at the time of sacrifice on day 40. These data 

collectively show that CM001 lethality in Rag1-/- mice is plasmid-independent and is associated 

with high burdens in distal organs at the time of death. 
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Figure 6. C. muridarum CM001 intravaginal infection in Rag1-/- mice is associated with 
fatal dissemination to distal organs. 
(A) Rag1-/- mice were intravaginally infected with Nigg, CM001, CM012, or plasmid-deficient 
CM3.1, and the course of primary infection was monitored with lower genital tract swabs. 
Significance was determined by two-way RM ANOVA with a post-hoc Tukey test. Data 
represent the mean + SD of 4 mice per group. Comparison of groups over primary infection 
course: P=0.01 for Nigg versus CM001, P < 0.001 for Nigg versus CM3.1, P=0.01 for CM012 
versus CM001, P=0.001 for CM012 versus CM3.1, P=NS for remaining group comparisons. (B) 
Mice were euthanized after reaching a body condition score of 2-, and an exact log rank test was 
used to analyze survival differences between Nigg and CM001 or CM3.1 groups (P<0.01). (C) 
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Chlamydial loads in the lungs, spleen, and both oviducts were determined by plaque assay (PFU) 
at time of euthanasia (left) or on day 40 (right). Statistical significance determined by Mann-
Whitney U test. 
 
 

4.5.3 IFN-γ signaling is required for protection against CM001 lethality 

B-cell deficient mice have been shown to clear a disseminated infection with C. muridarum Nigg 

(115). Furthermore, IFNG-/- mice demonstrate extragenital dissemination, and a portion of mice 

succumb to infection (226). Thus, we next determined if CM001 infection of these immune 

deficient mice would yield similar results. Wild-type and B-cell deficient mice survived infection 

with CM001 and demonstrated a similar course of infection and clearance (Fig. 7A), but 

infection of STAT1-/- mice, which are deficient in IFN-γ signaling, and IFNG-/- mice with CM001 

resulted in complete lethality, while Nigg-infected mice survived (Fig. 7B). Based on these 

results, we extended our analysis to determine if Th1 cells were dispensable for protection 

against CM001. Nude mice have been shown to develop a chronic chlamydial infection (127), 

and with the previous observation that CM001 is lethal in Rag1-/- mice (224), we examined if T-

cell deficient mice would succumb to CM001 intravaginal infection. Tcra-/- and nude mice 

survived intravaginal CM001 infection, while Rag1-/- mice were not protected (Fig. 7C). These 

data collectively indicate that IFN-γ prevents lethal CM001 infection in the absence of T cells 

and suggests a B cell co-requirement for protection. 
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Figure 7. Genetic ablation of IFNγ signaling results in CM001-mediated lethality. 
(A) C57BL/6J (N=24) and muMt (N=14) deficient mice were intravaginally infected with 
CM001 and the course of primary infection was monitored with lower genital tract swabs. Data 
represent the mean + SD. Significance was determined by two-way RM ANOVA with a post-
hoc Tukey test (P=NS). (B) STAT1-/- (Nigg group N=10, CM001 group N=5) and IFNG-/- (5 
mice per group) mice were intravaginally infected with Nigg or CM001. Animal welfare was 
monitored daily, and an exact log rank test was used to analyze survival differences between 
Nigg and CM001 in STAT1-/- (P < 0.0001) and IFNG-/- (P= 0.0023) mice. (C) Nude, Rag1-/-, and 
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Tcra-/- mice were infected with CM001 and monitored daily (P=0.0002 for nude versus both 
Rag1-/- and Tcra-/-). 

4.5.4 B cells synergize with IFN-γ to protect against CM001 lethality in the absence of T 
cells 

A recent study revealed that convalescent immunoglobulin synergizes with T-cell derived IFN-γ 

for neutrophil activation and chlamydial clearance (225). Based on our previous finding that 

Rag1-/- mice were susceptible to CM001 lethality, while T-cell deficient mice survived, we 

hypothesized that adoptive transfer of immune sera from convalescent wild-type mice to Rag1-/- 

mice would provide transient protection. Adoptive transfer of immune sera significantly 

increased survival time compared to mice receiving naive IgM or untreated controls (Fig. 8A). 

We next investigated if Rag1-/- mice could be completely rescued by the adoptive transfer of 

naïve B cells and recapitulate the survival phenotype of T-cell deficient mice. Adoptive transfer 

of B cells derived from the spleens of T-cell deficient rescued an otherwise lethal CM001 

infection in Rag1-/- mice (Fig. 8B). T-cell deficient mice and B-cell reconstituted Rag1-/- mice 

demonstrated a respective 1.2 and 1.5 log reduction in lung chlamydial burden on day 19 post-

infection, compared to Rag1-/- controls (Fig. 8C). The chlamydial burden in the genital tract was 

not significantly different between groups over the course of primary infection (Fig. 8D). These 

data collectively demonstrate the ability of B cells to mediate protection against chlamydial 

dissemination in the absence of T-cell helper and effector functions. 



 

 61 

 
Figure 8. B cells and IFNγ synergize to prevent CM001 lethality independently of T cells. 
(A) Nude mice, and Rag1-/- mice receiving intravenous transfer of naïve mouse IgM, 
convalescent immune sera, or PBS (N=5 per group) were infected with CM001 and monitored 
daily. An exact log rank test was used to analyze survival differences in nude mice (p<0.0001) 
and Rag1-/- mice receiving immune sera (P =0.0026). (B) Rag1-/- mice were mock treated or 
intravenously injected with 3 x 105 B cells (N=5 per group) prior to CM001 infection, and were 
monitored daily (P =0.0027). (C) Tcra-/- (N=3), Rag1-/- (N=5), and B-cell reconstituted Rag1-/- 
(N=5) mice were infected with CM001 and sacrificed on Day 19 post infection. Chlamydial load 
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in the lungs was determined by plaque assay (PFU). Statistical significance indicated by 
asterisks: ** P< 0.01 by one-way ANOVA (D) Course of primary infection was monitored with 
lower genital tract swabs (P =NS). Significance was determined by two-way RM ANOVA with 
a post-hoc Tukey test. 
 

 
Table 1. Outcome of CM001 infection and immune status of mouse strains. 

 
 

4.6 DISCUSSION 

Low levels of extragenital dissemination have been described in murine chlamydial infections 

previously, however CM001 intravaginal inoculation results in significant dissemination to distal 

organs. Based on this enhanced ability to disseminate in wild type mice, we explored CM001’s 

hypervirulent potential in immune deficient mice. High chlamydial burdens were found in the 

lungs and spleens of underconditioned Rag1-/- mice that were euthanized after intravaginal 

infection. This phenotype allowed us to further explore determinants for preventing fatal 

dissemination. B-cell deficient mice were protected and cleared CM001 infection (Table 1), 

similar to previous experiments with the Nigg strain (115). However, CM001 intravaginal 

infection of mice lacking IFN-γ signaling resulted in universal lethality and supports previous 

studies demonstrating a protective role for IFN-γ in control of dissemination (226, 232, 233). In 

our experiments, in the absence of IFN-γ, dissemination of CM001 from the genital tract to the 
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lungs likely leads to lethality. Furthermore, the observation of complete clearance of CM001 

from the genital tract of wild-type or B-cell deficient mice indicates an in situ requirement for 

Th1 cells. Taken together, T-cell independent IFN-γ is capable of controlling CM001 

dissemination and preventing lethality, while Th1 cells are necessary for clearing infection from 

the genital tract. 

T-cell deficient mice with intact IFN-γ signaling survived intravaginal CM001 infection. 

However, Rag1-/- mice lacking both T and B cells succumbed to CM001 infection despite the 

presence of IFN-γ (Table 1). Rag1-/- mice were transiently rescued by the adoptive transfer of 

convalescent immune sera from wild-type mice. This result demonstrated that antibody 

generated in the presence of T-cell help can afford protection against disseminated chlamydial 

infection, without assistance from the adaptive cellular arm of the immune response. 

Furthermore, transfer of naïve B cells taken from T-cell deficient mice completely rescued Rag1-

/- mice from lethality, and this protection was associated with decreased chlamydial burden in the 

lungs of genitally infected mice. These experiments reveal a previously undescribed T cell-

independent role for B cells in concert with IFN-γ for protection against C. muridarum 

disseminated disease.  

 Our analyses were limited to delineating general requisites for protection against 

disseminated extragenital infection. While IFN-γ and B cells were shown to play a pivotal role in 

protection, the cellular source of IFN-γ and mechanism of B-cell protection was not investigated. 

However, previous experiments have demonstrated that NK cells are a critical source of IFN-γ in 

the absence of T cells (234), and B-cell protection is likely antibody-dependent, based on the 

observation that antibody-deficient (AID-/-µS-/-) B cells are unable to control dissemination from 

the genital tract (235). A role for antibody is further suggested by the successful rescue of Rag1-/- 
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mice from CM001 lethality with administration of convalescent serum. However, we cannot rule 

out a contribution of antibody-independent mechanisms of protection, such as cytokine 

production (236).  Recent investigation suggests that chlamydial-specific IgG and IFN-γ are 

necessary for neutrophil activation prior to chlamydial killing (225); however, only T-cell 

dependent antibody production was investigated.  

Significant T-cell independent immunity has been described for Ehrlichia muris (237), 

Salmonella (238), and Streptococcus pneumoniae (239). Our analyses implicate a potential role 

for T-cell independent B cell responses in prevention of lethal extragenital chlamydial infection. 

Interestingly, spleen-derived B cells have been shown to adopt a predominately marginal zone 

phenotype in vivo after adoptive transfer to lymphopenic hosts (240), and neutrophil-derived 

cytokines can directly stimulate marginal zone B cells for T-independent IgG production (241). 

T-independent IgG could activate neutrophils to phagocytose bacteria (239, 242), which would 

be enhanced in the presence of IFN-γ (225, 243). Detectable, low levels of IgG have been 

observed in nude mice intravaginally infected with C. muridarum (127), but even low levels of 

T-independent IgG can afford sufficient protection against infection (244). 

 In conclusion, we have demonstrated that IFN-γ and B cells cooperate to provide 

protection against a lethal disseminated chlamydial infection independently of T cells. 

Examination of T-cell independent responses may further reveal detailed mechanisms of 

extragenital host defense against Chlamydia. Increased understanding of T-independent 

mechanisms of anti-chlamydial host defense may also inform methods to augment T cell 

responses generated with targeted vaccines. 
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5.0  CHAPTER THREE: THE CHLAMYDIA-SPECIFIC TRANSGENIC T CELL 

RECEPTOR REACTS WITH A SOLUBLE, SECRETED PROTEIN 

5.1 PREFACE 

This chapter is in fulfillment of specific aim 3 and data herein will be incorporated into a 

separate manuscript for future publication. 

5.2 INTRODUCTION AND RESULTS 

CD4-T cell immunity is a critical component of immune responses against chlamydial infection, 

and an efficacious vaccine will require induction of T-cell memory specific for protective 

antigens. Many studies have characterized antigenicity based on antibody responses (55, 245), 

but few have determined the ability of chlamydial antigens to directly stimulate memory T cell 

responses (54, 57, 246). The induction of robust effector and memory T cell responses is 

mediated by dendritic cells (38, 247), and previous studies have illustrated the ability of dendritic 

cells to present conserved overlapping MHC class II peptides from chlamydial species (248). We 

recently identified the first Tg TCR cross-reactive with C. muridarum and C. trachomatis (224); 

as evidenced by the ability of C. muridarum and C. trachomatis live or UV-irradiated bacteria to 

stimulate proliferation of our TCR Tg CD4 T cells. We have further characterized additional 

determinants sufficient for their stimulation. Specifically, we evaluated the ability of different C. 

trachomatis serovars, cytosolic fractions from infected cells, and soluble or insoluble fractions 
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from C. muridarum elementary and reticulate bodies to induce proliferation of our TCR Tg T 

cells.  

5.2.1 The transgenic TCR demonstrates reactivity with C. muridarum and multiple C. 
trachomatis serovars. 

We determined that splenocytes from our Tg mice expressing the TCR originally cloned from 

CD4 T cells harvested from C. muridarum-infected mice proliferated in response to stimulation 

with C. trachomatis serovar D (224). Thus, we investigated the ability of additional C. 

trachomatis serovars to stimulate cellular proliferation (Fig. 9). Tg mouse splenocytes 

demonstrated marked and similar levels of proliferation in response to stimulation with serovars 

D, F, H, and L2, but minimal proliferation was induced by culture with recombinant chlamydial 

major outer membrane protein (MOMP). We also determined that TCR Tg splenocytes also 

proliferated in response to stimulation with plasmid-deficient C. muridarum Nigg (227). These 

data reveal that the transgenic TCR is specific for a conserved antigen present in both C. 

muridarum and C. trachomatis, and that the antigen is not encoded by the virulence plasmid or 

by conserved plasmid-regulated chromosomal loci (171, 249) whose expression is significantly 

downregulated in the absence of the plasmid-borne regulator Pgp4 (250).  
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Figure 9. The transgenic TCR demonstrates reactivity with C. muridarum and multiple C. 
trachomatis serovars. 
TCR Tg splenocytes were stimulated with 5 μg/ml of the indicated serovars of live C. 
trachomatis, C. muridarum AR Nigg, or recombinant MOMP. Splenocytes were cultured for 4 
days with the indicated chlamydial strain or MOMP, after which 20 U/mL IL-2 was added for 2 
days. Cellular proliferation was determined by the ratio of Alamar Blue fluorescence intensity 
compared to unstimulated controls (P < 0.0001 for all chlamydial strains versus MOMP, P=NS 
between all chlamydial strains, determined by one-way ANOVA). 
 

5.2.2 TCR transgenic splenocytes proliferate after stimulation with the cytosolic fraction 
of C. trachomatis-L2 infected cells. 

Previous studies have shown that secreted chlamydial antigens can induce robust T cell 

responses (69, 80, 248, 251). Based on these observations and the ability of C. trachomatis 

serovar L2 to induce TCR Tg cellular proliferation, we investigated if a cytosolic fraction from 

L2-infected cells was stimulatory (252) and found that it induced marked proliferation 

comparable to live C. muridarum Nigg and C. trachomatis serovar D (Fig. 10). These data 
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indicate that the Tg TCR is likely specific for a chlamydial antigen that is secreted during 

infection. 

 

Figure 10. TCR transgenic splenocytes proliferate after stimulation with the cystosolic 
fraction of C. trachomatis-L2 infected L929 cells. 
TCR Tg splenocytes were stimulated with 5 μg/ml of C. muridarum AR Nigg, C. trachomatis 
serovar D, L2-infected L929 cytosolic fraction, or the mock-infected host cytosolic fraction. 
Splenocytes were stimulated for 4 days, followed by 2 additional days in the presence of 20 
U/mL IL-2. Proliferation was determined by the ratio of Alamar Blue fluorescence intensity 
compared to unstimulated controls (****P < 0.0001 for L2-infected fraction versus uninfected 
control, P=NS for C. muridarum versus L2-infected fraction determined by one-way ANOVA). 
 

5.2.3 The transgenic TCR preferentially responds to the sarkosyl-soluble fraction from C. 
muridarum reticulate bodies.  

Chlamydial antigens have been shown to be infection-dependent and independent (55). Thus, 

some antigens are found in the infectious EB, while some are only present within the infected 

cell. Antigens can also be selectively or predominantly expressed by infectious EBs or 
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replicating RBs. Thus, we investigated the ability of purified EB and RB to activate TCR Tg T-

cell hybridoma cells. Live C. muridarum fractions enriched for either EB or RB induced 

production of IL-2 and IFN-γ by TCR transgenic hybridoma cells after 24 hours (Fig.11A), and 

EB stimulation elicited significantly increased cytokine production compared to RB. Based on 

the reactivity of the cytosolic fraction and the possibility that soluble proteins still associate with 

the chlamydial membrane (253), we next determined the ability of EB and RB sarkosyl-soluble 

or insoluble fractions to induce TCR Tg splenocyte proliferation. Membrane and soluble 

fractions from both EB and RB preparations stimulated cellular proliferation, but the strongest 

response was elicited by the soluble RB fraction that induced proliferation equivalent to 

irradiated C. muridarum mixed EB and RB (Fig. 11B). Furthermore, this soluble RB fraction 

induced significant proliferation in TCR Tg splenocytes compared to splenocytes from littermate 

controls (Fig. 11C). Due to the ability of the soluble RB fraction and infected cell cytosolic 

fractions to stimulate proliferation, we next examined if convalescent mouse sera could identify 

reactive proteins of equal size in both fractions. Immunoblotting using immune mouse sera 

detected a reactive 27-kDa protein (Fig. 11D). These data suggest that the antigen is a 27-kDa 

soluble, secreted protein enriched in RBs that may associate with the chlamydial membrane. 
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Figure 11. The transgenic TCR preferentially responds to the sarkosyl-soluble fraction 
from C. muridarum reticulate bodies. 
(A) TCR Tg hybridoma cells were cultured with irradiated syngeneic splenocytes at a 1:1 ratio in 
the presence of 5 μg/ml purified live C. muridarum EB or RB. Supernatants were harvested after 
24 hours and analyzed for IL-2 and IFN-γ by ELISA. (**P < 0.01 by one-way ANOVA).  (B) 
TCR Tg splenocytes were stimulated with 5 μg/ml irradiated C. muridarum AR Nigg, or 5 μg/ml 
each of the sarkosyl-soluble and –insoluble fractions from C. muridarum elementary or reticulate 
bodies. (C) TCR Tg splenocytes preferentially proliferate in response to the ammonium-sulfate 
precipitated sarkosyl-soluble RB fraction compared to splenocytes from littermate controls. 
(****P < 0.0001 by Student’s t-test). (D) A 27-kDa protein present in sarkosyl-soluble RB and 
L2-infected host cytosolic fractions is immunoreactive with convalescent mouse serum. 
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5.3 MATERIALS AND METHODS 

5.3.1 Strains, cell lines, and culture conditions 

Chlamydia muridarum Nigg stock (AR Nigg) was obtained from Roger Rank at the University 

of Arkansas for Medical Sciences (168). and plasmid-deficient CM3.1 has been previously 

described (61). C. trachomatis D/UW-3/Cx was obtained from the American Type Culture 

Collection (Manassas, VA); C. trachomatis F/IC-Cal-3 and H/UW-43/Cx were obtained from 

Guangming Zhong (254). C. trachomatis L2/434/Bu has been previously described (255, 256). 

All serovars were plaque purified before use and propagated in mycoplasma-free L929 cells 

(171). 

5.3.2 Chlamydia-specific cellular proliferation 

The spleens of littermate or TCR transgenic mice were processed into a single cell suspension, as 

described previously (177). Splenocytes (1×105 cells/well) were seeded in a 96-well flat-

bottomed tissue culture plate in complete media with 5 μg/ml irradiated C. muridarum EB/RB 

preparations (257), live C. muridarum AR Nigg, indicated live C. trachomatis serovars, or 

recombinant MOMP (258) for 6 days. Splenocytes were treated with 20 U/mL murine IL-2 

(Peprotech) over the final 48 hours. Cells were treated with 20 μl of Alamar Blue (Biosource) 4-

6 hours before the end of the 6-day culture, and proliferation was measured at 530-nm 

excitation/590-nm emission with a Biotek fluorescence microplate reader. Alternatively, TCR 

transgenic hybridomas were cultured at a 1:1 ratio with irradiated syngeneic splenocytes in the 

presence or absence of purified C. muridarum AR Nigg EB or RBs (5μg/mL) for 24 hours. 

Supernatants from stimulated Tg hybridoma cells were analyzed for IL-2 and IFN-γ by ELISA. 

All experiments were performed in triplicate.  
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5.3.3 Generation of soluble C. trachomatis L2 antigen 

Preparation of soluble chlamydial antigen from C. trachomatis L2-infected cells has been 

described previously (252). Briefly, L929 infected cells were incubated for 48 hours at 37°C. 

Infected monolayers were washed with HBSS, removed by scraping, and disrupted by 

sonication. Host cell debris was removed by centrifugation at 500 × g. Supernatants were 

collected and centrifuged at 22,000 × g for 30 minutes at 4°C to pellet chlamydial organisms. 

Clarified supernatant was centrifuged at 100,000 × g for 1 hour at 4°C. The supernatant was 

collected and concentrated using an Amicon Ultracell-10K (Millipore).  

5.3.4 Sarkosyl fractionation of EB and RB 

C. muridarum Nigg EBs and RBs were isolated at the appropriate stage in the developmental 

cycle (259) and subjected to sarkosyl fractionation, as previously described (253, 260). Briefly, 5 

mg of density gradient purified EB or RB were suspended in PBS (pH 7.4) containing 2% 

Sarkosyl and 1.5 mM EDTA. These suspensions were sonicated for 2 minutes and incubated at 

37°C for 1 hour. The sarkosyl-insoluble (membrane) fraction was pelleted by centrifugation at 

12,000 × g for 10 minutes, and the soluble fraction was removed from the pellet. The insoluble 

pellets were washed twice with PBS, and then suspended in DNase I and RNase A at 37°C for 2 

hours. This suspension was centrifuged, and the insoluble pellet was washed twice with PBS. 

The soluble and insoluble fractions were dialyzed for 2 hours and overnight at 4°C to remove 

excess detergent. A portion of the soluble fraction was precipitated with 40% ammonium sulfate, 

as previously detailed (261).   
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5.3.5 Immunoblot assay 

Convalescent mouse sera from Tcra-/- deficient mice that had received an adoptive transfer of 

1x106 TCR Tg CD4 T cells (224) was used to detect reactive proteins in the C. muridarum RB 

sarkosyl-soluble fraction and cytosolic fraction of L2 infected cells. Primary antibody binding 

was probed with HRP (horse radish peroxidase)-conjugated goat-anti-mouse IgG + IgM 

secondary antibody (Jackson ImmunoResearch).  

5.3.6 Statistical analysis 

Significant differences were determined by one-way ANOVA and Student’s t-test. Prism 

software (GraphPad Software) was utilized for statistical analyses, and values of P ≤ 0.05 were 

considered significant.  

5.4 DISCUSSION 

Identification of protective T cell antigens is a critical component of vaccine development, since 

CD4 T cells are a major determinant of acquired immunity against Chlamydia. These studies 

investigated chlamydial factors sufficient for activation of our recently identified Chlamydia-

specific transgenic TCR. We determined that the Tg TCR is stimulated by a conserved, 

chromosome-derived antigen expressed by the major developmental forms of all strains of C. 

trachomatis and C. muridarum tested. We further determined that the antigen is enriched in 

soluble RB fractions and is possibly derived from a 27-kDa secreted protein.  

These data demonstrate that the first TCR Tg mouse cross-reactive with both human and 

mouse chlamydial species is likely specific for a secreted antigen. This unknown antigen is 
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sarkosyl-soluble; however, insoluble chlamydial protein fractions shown to contain outer 

membrane complexes (253) also stimulated TCR Tg splenocyte proliferation. This suggests the 

antigen may be loosely associated with the chlamydial membrane and identifies this specific 

antigen as a potential secreted substrate. This furthers implies that the antigen is unlikely to be 

involved in central metabolism or protein synthesis (246), since these proteins are more likely to 

be in the bacterial cytosol. Future studies are required to confirm if the secreted antigen localizes 

solely to the infected cell cytoplasm, chlamydial inclusion space, or both compartments. 

However, this approach is limited due to the low intracellular concentrations of secreted proteins 

and difficulty in preparing uncontaminated subcellular fractions. Additional experiments will 

investigate the reactivity of conserved C. muridarum and C. trachomatis MHC Class II epitopes 

(248) due to the cross-reactivity of Tg TCR, and the Tg CD4 T cells will be screened against a 

cell-free in vitro chlamydial protein expression library.  

 Chlamydia-specific T cell immunogenicity is potentially dictated by antigenic 

characteristics such as expression kinetics, cellular location, abundance, and similarity to host 

proteins. These data are encouraging from an immunological perspective if future experiments 

identify the antigen as a secreted effector molecule. This would allow for novel analysis of T-cell 

immunity against a chlamydial effector and help determine the contribution of this specific T-

cell response to overall acquired adaptive immunity. TCR Tg mouse models have demonstrated 

utility in characterizing the immune response against effector molecules from Salmonella, 

Listeria, and Mycobacterium (192, 193, 262, 263). It is suggested that the chlamydial inclusion 

restricts MHC class II presentation of antigenic proteins. The identification of secreted, 

immunogenic antigens expressed on multiple MHC alleles would be a significant advancement. 

This could potentially allow for development of a chlamydial subunit vaccine that selectively 
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activates robust dendritic cell-mediated CD4 T cell responses against Class II epitopes expressed 

on the infected mucosal epithelium. Furthermore, T-cell epitopes could be conjugated with 

potential B-cell antigens for induction of protective antibody responses. 

 In conclusion, we have demonstrated that the Tg TCR is specific for a chlamydial antigen 

present in C. muridarum and multiple C. trachomatis serovars. This antigen is a soluble protein 

enriched in RBs and potentially secreted during infection. Better understanding of how CD4 T-

cell immunity against chlamydial effectors is generated and sustained will help instruct 

successful vaccine development. 
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6.0  OVERALL DISCUSSION AND PUBLIC HEALTH SIGNIFICANCE 

Critical advances have been made in the field of chlamydial immunology that include 

identification of the basic correlates of protective immunity and capacity of vaccination to induce 

resident-memory T cells. However, there are many challenges and questions that need to be 

addressed regarding the adaptive response to infection, in order to develop an efficacious 

chlamydial vaccine. Use of the mouse model is limited because T-cell mediated clearance 

operates through different mechanisms compared to humans. Additionally, the role of antibody 

and capacity to induce broadly neutralizing antibodies to multiple serovars remains unresolved; 

however, the recent ability to induce broadly neutralizing antibodies to the MOMP VD4 region 

shows promise. The mechanism by which C. trachomatis induces genital tract pathology in 

humans is also unclear, and we lack understanding of why some patients remain asymptomatic 

with no pathology and others develop pelvic inflammatory disease. Additionally, there is a basic 

requirement to characterize the correlates of immunity that allow for chronic infection versus 

spontaneous clearance. Exacerbating this problem is the paucity of data reflecting protective 

responses in humans, and the NHP model for vaccine testing has demonstrated more success for 

trachoma than genital infection. There is a need for more basic testing of the NHP response to 

infection and vaccination and exploration of human responses to infection. Furthermore, 

identification of protective human antigens is in its infancy (54, 57). Current research is focused 

on delineating protective versus pathogenic antigen-specific responses.  

A better understanding of mucosal immunity is necessary to address proper adjuvants and 

vaccine delivery methods. To enhance and guide the proper immune response to vaccination, 

current mucosal adjuvants will require further testing and new adjuvants may need to be 
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developed. Additionally, a vaccine may require reformulation to protect against ocular or genital 

tract infection, if a single vaccine does not prove efficacious against both routes of transmission. 

A mucosal vaccine may not be necessary if systemic immunity is capable of preventing upper 

genital tract infection and pathology. Sterilizing immunity is the ultimate goal; however, a 

partially protective vaccine that could be boosted by a live infection may be more pragmatic, 

particularly if it’s able to prevent disease, transmission, and seed the genital mucosa with tissue-

resident memory T cells (TRM). Ideally, a chlamydial vaccine would be combined with other 

vaccinations delivered during childhood or adolescence to enhance vaccine uptake, improve 

marketability, and avoid multiple immunizations. Economic analysis suggests a vaccine that 

provides partial immunity would be cost-effective compared to current screening and treatment 

strategies (264). A partially protective vaccine would reduce the prevalence of genital infection 

(265), and vaccination of both sexes could synergize to impart sterilizing immunity against 

sexual transmission (266). Current research must continue to focus on identifying correlates of 

protective immunity versus pathogenic responses and delineate adjuvants and antigens that can 

enhance protective T cell responses. 

A genital chlamydia vaccine would ideally target adolescents before sexual debut to 

maximize immunity during the period of highest transmission risk. As most of the adverse 

sequelae of chlamydial infection occur among females, an argument could be made for 

vaccinating adolescent girls only, as has been done with chlamydia screening and for HPV 

vaccination in many settings (267, 268). However, mathematical modelling and cost 

considerations can inform whether a vaccine should target both adolescent males and females to 

optimize reductions in population transmission. The vaccine should ideally be combined with 

other adolescent vaccines to improve uptake and marketability. The market profile for a 
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Chlamydia vaccine might emulate currently licensed HPV vaccines. Complete immunity to 

infection is the best-case scenario for Chlamydia vaccine development, but may be difficult to 

achieve. However, even a partially protective vaccine that inhibits upper genital tract infection 

and damage or reduces ongoing transmission could have significant impact and provide 

individual-level or population-level benefits (265). Mathematical modelling demonstrates that a 

partially protective vaccine added to current screening and treatment efforts could be cost-

effective compared to screening and treatment alone (9). 

An effective chlamydial vaccine would have public health benefits in both high-income 

countries (HICs) and low-middle income countries (LMICs). However, a chlamydial vaccine 

would probably provide the greatest benefits in LMIC settings, where lack of medical 

infrastructure and resources preclude chlamydia screening programs and the burden of 

chlamydia-associated sequelae is likely greatest. In LMICs, up to 186 million couples report 

being unable to have a child over 5 years (269). Although infertility is a global problem, the 

proportion that is tubal factor, and thus primarily caused by scarring from genital infection such 

as chlamydia, varies widely by population. In the United States, the proportion of infertility that 

is tubal factor ranges from 10–40% (270, 271). However, in sub-Saharan Africa, tubal infertility 

is the dominant cause for women, present in up to 65-85% of infertility cases (272, 273). In 

addition, the consequences of chlamydial sequelae such as ectopic pregnancy can be life-

threatening in resource-poor settings. In African developing countries, ectopic pregnancy has 

case fatality rates that are 10 times higher than those reported in high-income countries (274). 

Additional, updated, and more precise data on the attributable fraction of chlamydia to PID and 

longer-term sequelae in LMICs will be essential for better defining the potential impact of a 

chlamydial vaccine in these settings. Given the link between chlamydial infection and 
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acquisition of HIV infection, a chlamydia vaccine could also have added benefits in areas of high 

HIV prevalence (5). In addition, what is learned from chlamydial vaccine studies targeted to 

prevention of genital infection can be used to inform vaccine development for prevention of 

trachoma, which would expand the benefits for LMIC settings. 

The critical role of T cells in chlamydial immunity was first demonstrated 30 years ago 

(127). CD4 T cell IFN-γ production likely confers protection against C. trachomatis. Control of 

in vivo infection is not fully understood, since IFN-γ induces the expression of over 200 different 

genes in target cells (275). However, in vitro studies indicate it controls chlamydial growth in 

part by inducing indoleamine-2, 3-dioxygenase (IDO) production (134). IDO prompts tryptophan 

degradation and ultimately microbial starvation. IFN-γ producing Th1 cells are essential and 

sufficient for resolution of infection, but a polyfunctional response including IL-2 and TNF-α 

may be optimal for clearance (136, 137). Tissue-resident memory T (TRM) cells have emerged 

as an important T cell subset in mucosal immunity. TRM are long-lived non-circulating memory 

cells able to respond to infection independent of systemic T cells. After vaginal HSV-2 infection, 

CD4 TRM cells are maintained in the vaginal mucosa by a chemokine network facilitated by 

local macrophages (148). Mucosal Th1 cells could be instrumental to vaccine success, as the 

intensity of mucosal CD4 T cell responses is a correlate of protective immunity (150). 

Antibodies boost chlamydial protection, but the mechanism remains unclear and may be 

multifaceted, including enhancement of Th1 effector responses (116). Only recently has there 

been convincing data on the effect of neutralizing antibodies. Immunization with an extended 

major outer membrane protein (MOMP) VD4 region containing the conserved LNPTIAG region 

elicited neutralizing antibodies in mice (59). This protection was attributed to chlamydial 
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neutralization and CD4-T cell mediated immunity. Studies demonstrating protective adaptive 

immune responses to Chlamydia have recently been reviewed (276).  

Preclinical vaccine development utilizes well-established animal models for candidate 

testing. Mouse models offer convenient manipulation and research tools for analysis of the 

immune response, but differ from humans with respect to many facets of infection, disease, and 

adaptive immune responses. Chlamydia muridarum is a mouse-specific strain that shares 

extensive homology with C. trachomatis. However, C. muridarum induces a more acute 

infection with complete resolution compared to the often quiescent, chronic infection of C. 

trachomatis in humans. Further, mechanisms of IFN-γ mediated chlamydial clearance differ in 

mice and humans. The guinea pig model utilizing Chlamydia caviae elicits disease more similar 

to humans, but the relative lack of immunological reagents detracts from its use for vaccine 

studies (22). Female minipigs that have a reproductive cycle and genital tract similar to humans 

are being used for chlamydial vaccine studies but also suffer from reduced availability of 

reagents (51, 52). Non-human primate (NHP) models are often employed prior to human testing, 

but infection of the eye or genital tract in NHPs demonstrates a shorter, self-limiting infection 

compared to humans. Despite this limitation, NHP testing could play an important role in 

assessing cellular and humoral responses after infection or vaccination to identify correlates of 

protective immunity. Animal and human studies could provide insight into a protective 

transcriptional blood signature that might be translated to a biomarker of efficacy for use in 

human clinical trials (53).   

The ultimate goal of a chlamydia vaccine is to reduce the burden of upper genital tract 

sequelae in women. However, the use of disease as a clinical endpoint in vaccine trials is 

influenced by several considerations, including the natural history and timing of clinical events 



 

 81 

such as infertility following infection, the measurement of PID, the proportion of PID associated 

with C. trachomatis, and factors related to trial design. The clinical diagnosis of PID is notably 

insensitive and nonspecific, and the previous gold standard laparoscopic diagnosis is invasive, 

not widely available, and no longer routinely performed. In addition, PID is a clinical syndrome 

that has multiple causes. Typically, C. trachomatis is involved in about one third of cases; 

however, attribution of PID to a particular pathogen may be difficult. More precise, feasible, 

non-invasive measures of chlamydia-specific upper genital tract inflammation and damage are a 

critical priority for the design of practical and informative clinical studies. Additional studies are 

required to define the role of radiologic techniques such as MRI and power Doppler in PID 

diagnosis (277). In women, endometrial biopsies via minimally invasive sterile endometrial 

sampler have been increasingly used to yield data on ascension of infection and presence of 

upper tract inflammation (278, 279). Current efforts are focused on identification of a blood 

biomarker for less invasive sampling (280). Cervical bacterial burden may also be an appropriate 

surrogate for upper tract ascension (281).  

Use of C. trachomatis infection as a clinical endpoint is relatively straightforward and 

would involve interval C. trachomatis NAAT testing via urine samples for men and vaginal or 

cervical swabs for women in placebo-treated versus vaccinated subjects. Reflex quantitative 

NAAT could be used to evaluate bacterial load. However, given that complete immunity may be 

hard to achieve, it will be important to build consensus around the most appropriate primary and 

secondary vaccine trial endpoints as C. trachomatis vaccine development moves forward. 

Including disease endpoints will be most valuable if only partial immunity is achieved, since a 

vaccine might still limit ascension and protect from PID. Choice of endpoints also has 

implications for trial design, such as sample size considerations and whether frequency of 
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follow-up testing and treatment affects assessment of PID outcomes. Discussion will be aided by 

better measures of upper genital tract infection and damage, predictors of ascension, and a 

package of evidence to confirm a vaccine would not increase tubal immunopathology on 

breakthrough infection. 

Vaccine development for C. trachomatis has been in the preclinical phase of testing for 

many years, but the first Phase I trials of chlamydial vaccine candidates are underway, and 

scientific advances hold promise for additional candidates to enter clinical evaluation in the 

coming years. Current strategies hinge on a variety of different platforms and are supported by 

academic, government, and corporate institutions.  

A major focus is development of vaccines prepared with C. trachomatis MOMP.  MOMP 

vaccination utilizing cationic liposomes (CAF01) induced robust antibody responses, type-1 

immunity, and partial protection from infection in minipigs, and significant protection from 

upper tract disease in mice (59, 282). A second MOMP formulation prepared with a novel oil-in-

water nanoemulsion (Nanostat™) and delivered intranasally purportedly decreased oviduct 

pathology in mice by 80 percent (283). Protection was associated with high levels of serum and 

vaginal antibodies and robust IL-17/IFN-γ responses. An immunoproteomics approach identified 

Chlamydia polymorphic membrane proteins (PMPs) preferentially loading MHC Class II, and 

vaccination with three MOMP and four PMP alleles emulsified with DDA/MPL adjuvant 

significantly reduced bacterial shedding in a transcervical C. trachomatis mouse model (248). 

Current investigation is centered on development of an outer membrane protein based vaccine 

for Phase I testing.  

The ability to generate vaccine-induced resident memory T cells in the mouse genital 

mucosa is a major advancement in the field (38). Mucosal immunization with ultraviolet light 
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(UV)-inactivated C. trachomatis complexed with novel, charge switching synthetic adjuvant 

particles (cSAPs) incorporating the TLR7-agonist resiquimod conferred significant protection 

against chlamydial infection in mice. Uterine vaccination induced mucosal resident and systemic 

T cell responses that induced optimal chlamydial clearance compared to intranasal and 

intramuscular vaccine delivery.  

Another major advancement is the use of high-throughput technology for determination 

of T cell–specific epitopes. Examination of T-cell IFN-γ responses in a cohort of 141 subjects led 

to identification of eight CD4 and eighteen CD8 antigens associated with clearance or resistance 

to infection (57). Another group assessed 120 Chlamydia proteins and identified seven novel 

antigens that conferred partial protection in mice (54). Recent analysis demonstrated chlamydial 

proteins recognized by highly exposed women that limit or resist genital tract infection (281). 

These proteins were primarily involved in protein synthesis, central metabolism, and type III 

secretion. Ongoing research is focused on in vitro screening of PBMC responses from previously 

infected subjects to chlamydial proteins. These efforts will help identify protective antigens 

broadly expressed by human leukocyte antigen (HLA) haplotypes to better guide an effective 

vaccine strategy. 

A Vaxonella® platform for chlamydia immunization is being investigated for 

immunogenicity and efficacy in animal models. The oral delivery system utilizes an attenuated 

Salmonella enterica vector that has passed Phase II trials as the Typhella® vaccine and allows 

for insertion of chlamydial antigenic gene sequences. The bacteria are ingested and transverse M 

cells in the gut where they mount an immune response within Peyer’s patches. Salmonella act as 

an immunostimulator bypassing the necessity of additional adjuvants. The vector is constructed 
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with technology designed to generate stable attenuation and is formulated to exclude toxic bile 

salts during ingestion for optimal delivery (284, 285).  

Finally, work related to vaccine development for C. trachomatis ocular infection might 

shed light on vaccine development for the genital tract. Ocular inoculation of NHPs with 

attenuated, plasmid-deficient C. trachomatis ocular serovar A elicited partial protection against a 

virulent strain in a subset of cynomolgus macaques that appeared to correlate with MHC Class II 

haplotype (37) and CD8+ T cell responses (252). This strategy is currently in preclinical 

development with the National Institute of Allergy and Infectious Diseases (NIAID). Murine 

genital inoculation with plasmid-deficient C. muridarum conferred protection against upper 

genital tract pathology (61). These results were not replicated in the NHP model of genital 

infection; however, pathology was minimal in monkeys inoculated with wild-type C. 

trachomatis oculogenital serovar D (63). This illustrates the need for delineating protective 

immune mechanisms and optimal vaccine formulations in ocular versus genital tract infections 

(286). 

  The likelihood for financing a chlamydial vaccine by multilateral agencies is currently 

unknown, but vaccine development is likely to depend on its applicability to both HIC and LMIC 

markets. Gavi (Global Alliance for Vaccines) support of HPV vaccination provides a model for 

prioritization of an STI vaccine to prevent adverse reproductive health outcomes, as well as an 

adolescent platform for vaccine delivery in LMICs. The possibility that chlamydia prevention 

could lower HIV transmission may have a positive impact for other funding agencies. 

Developing a strong public health investment case, by obtaining better data on chlamydia-

associated PID and outcomes like infertility, ectopic pregnancy, and chronic pelvic pain and their 

costs in LMICs, will be crucial for encouraging investment in and financing of a future C. 
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trachomatis vaccine. Gaining consensus on clinical endpoints and developing more feasible and 

reliable measures of upper genital tract disease for clinical evaluation will also “de-risk” 

chlamydial vaccine development for industry and funders (287). The global roadmap for STI 

vaccine development, generated jointly by WHO, NIAID, and a wide range of technical partners, 

outlines critical next steps to address barriers to development and encourage investment in these 

important vaccines for global sexual and reproductive health (288, 289). 
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7.0  CONCLUSIONS AND FUTURE DIRECTIONS 

These studies demonstrate that future vaccines should focus on development of durable 

polyfunctional Th1 responses capable of producing high levels of IFN-γ. Protective Th1 cells 

may further enhance humoral immunity through antibody production, which would be critical for 

acquired immunity against re-infection and control of extragenital dissemination. Chlamydia-

specific antibody would further augment Th1 activation by antigen-presenting cells and may 

additionally encourage development of higher affinity B cells. Future work will focus on 

identifying the Tg TCR cognate antigen. This discovery would abet additional studies identifying 

the protective capacity of subunit vaccination, and encourage strategies investigating 

recombinant chimeric antigens consisting of T and B cell epitopes.  We will also determine if 

TCR Tg CD4 T cells develop a resident-memory phenotype that can be induced through 

vaccination. 
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