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METHODOLOGY FOR LIGHTNING PERFORMANCE IMPROVEMENT

Matthieu Bertin, M.S.

University of Pittsburgh, 2017

A counterpoise ground model is added to EPRIs open source transient simulator. The

approach to integrate this model is based on nodal analysis of the counterpoise conductor

and electrical transient computations. A new graphical user interface for OpenEtran is

added and described in this thesis. The user-interface regroups a tab window replacing the

previous Excel spreadsheet interface for OpenEtran, and adds a line visualization tool for

more efficient line design in terms of shield wires, grounds, insulation and line arresters.
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1.0 INTRODUCTION

Lightning is a significant cause of outages and damage to power systems all over the world.

It is necessary to protect transmission and distribution lines against these strikes, by adding

shielding devices such as surge arresters, insulators or grounding systems. This study is

based around the transient simulation engine of Electric Power Research Institute (EPRI)’s

Lightning Protection Design Workstation (LPDW): OpenEtran. This software has been

released under an open-source license (GPL v3) in 2002 so it can be added to other projects,

such as IEEE Flash [1]-[2]. Fig. 1.1 shows a typical overhead line system that can be

simulated in OpenEtran [1]. This line has several poles, with the neutral wire being grounded

at the different poles. Some of the optional components (arrester, insulator etc.) that can

be added to the system are also shown in this figure.

Figure 1.1: Distribution line components model in OpenEtran [1]

The capabilities of OpenEtran include:

- Calculating critical current magnitudes that can cause flashovers at different locations on

the line.
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- Analysing insulators, surge arresters or grounds with time-dependent or nonlinear models.

- Modeling traveling wave models for transmission lines using the Bergeron/Dommel method

of the Electromagnetic Transient (EMT) software [3]-[4].

- Using several lightning stroke shapes, for first and subsequent strokes.

However, unlike EMT softwares, OpenEtran only focuses on lightning transients and

does not address steady-state analysis, switching event surges, power electronics or control

effects on systems.

This project has been funded by CEATI International Inc., with an aim to provide a more

efficient and user-friendly lightning analysis tool, to simplify the benchmarking of lightning

performance results to predictions and to promote updates to the IEEE design guide for

transmission line lightning protection. The two tasks that were performed in this work are:

adding a new grounding model to the OpenEtran kernel (counterpoise model) and creating

a new Graphical User Interface (GUI) in order to make the software more user-friendly and

efficient. The short-term benefits of this work include:

- The addition of a more efficient and user-friendly tool for lightning performance analysis,

as compared to general-purpose EMT programs. This should enable broader use of EMT

methods for lightning analysis in utility companies.

- Better evaluation of the impact of pending changes to surge arresters standards. New

versions of IEC 60099 specify arresters duty in terms of current, charge and energy in

varying circumstances. This enables more comprehensive evaluation of line trip-out rates

vs. line arrester capabilities and failure rates.

- Designing and benchmarking lightning performance improvement programs. Given the

stochastic variations in lightning activity and severity, accurate predictions and cost esti-

mates become critical.

- Promote updates to the IEEE guide for transmission line lightning protection [5]. The

present version of this guide does not address transmission line arresters, nor does it address

EMT modeling for lightning analysis.

2



In this report, the work put forth to implement the counterpoise ground model into

OpenEtran is described, theoretically and from a practical standpoint. Next the new GUI

is introduced, with its capacities first described at user-level, then more in details.
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2.0 LITERATURE REVIEW OF THE PREVIOUS COUNTERPOISE

RESEARCH EFFORTS

When doing classic circuit analysis, we consider the earth to be a perfect medium with no

resistance and that can dissipate any fault current. This is not the case in reality, as earth

also has a resistance and voltage rises can be experienced when intense fault current from a

power system or from a lightning bolt leak into the ground. This can cause serious safety

issues, as the voltage levels can be dangerously high if the earth as a high resistivity, which

proves to be quite common.

Figure 2.1: Counterpoise effect on the voltage distribution around a fault [6]

A solution to this issue is to install an earth grid around a power system. An earth

grid is made of several horizontal and vertical metal rods, which are used to reduce the

footing impedance and the voltage levels around the fault. However, due to the proximity

of the different conductors the performances of an earth grid can quickly saturate, hence
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diminishing the safety level of the installation [6]. A way to avoid that problem is to install

horizontal grounding rods, with length ranging from several meters to tens or hundreds

of meters, and connect them to the earth grid. These conductors are called counterpoise

rods. When directed away from the earth grid, they allow the creation of a larger effective

earth grid (see Fig. 2.1), hence increasing the overall performances of the system in avoiding

overvoltages to nearby structures.

Ground work on the study of the counterpoise conductors started in the 1930s, with

research papers from L. V. Bewley [8] and Charles L. G. Fortescue [7]. At this time, coun-

terpoises were installed mainly to increase lightning protection of transmission lines [8]. The

first studies of the counterpoise effects were mostly experimental, where the performances

of several counterpoise systems (crowfoot, parallel conductors [7]) were measured first, then

empirical models were designed.

A few years later, a substantial research effort was made to find a precise analytical model

of the surge response of grounding systems that accounts for soil ionization. Indeed, lightning

surge currents induces an ionization of the soil, which makes the area around the grounding

rod electrically conductive and changes the surge impedance [9]. This greatly increases the

difficulty of the analysis. When accounting for the soil ionization, a trend when developing

counterpoise models is to treat the conductor as a transmission line with lumped parameters.

It is done in [10], [11] or [12]. [11] also takes into account the frequency-dependent aspect of

ground resistivity. This aspect was not considered in the model implemented in OpenEtran,

but it can be part of a future work effort on the project.
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3.0 C-PROGRAMMING AND COUNTERPOISE MODEL

3.1 INTRODUCTION

In this section, all the work that was done to integrate the counterpoise model into Open-

Etran is presented. First, the theoretical model used to describe the counterpoise behavior

under lightning transient conditions is explained, then the different steps to implement this

model are described. Finally, the organization of the code itself within OpenEtran is given

in detail.

A counterpoise is a grounding system consisting of one or several buried horizontal con-

ductors, each of them linked to a transmission tower so as to reduce its footing impedance [8]

by allowing the lightning impulse current to flow more easily into the ground. It is also used

in telecommunications as a ground substitute for antennas when the earth has a high resis-

tivity [12]. Counterpoise conductors have a length that can range from a few meters to more

than a hundred meters.

Figure 3.1: Physical representation of a counterpoise under lightning conditions

6



3.2 THEORETICAL MODEL OF THE COUNTERPOISE

The previous grounding model in OpenEtran was limited to vertical rods with soil ionization,

following the model originated by K.-H. Weck [13]. It is described by (3.1) and (3.2).

Ibrk =
ρE0

2πR2
60

(3.1)

RG =
R60√

1 + I
Ibrk

(3.2)

R60 is the low-current ground resistance, ρ is the soil resistivity, E0 is the soil break-

down gradient, I is the iterated peak ground current, and RG is the iterated high-current

ground resistance. Frequency-dependent effects could be approximated with lumped L and

C elements, but this is not presently done in OpenEtran.

As stated before, the purpose of this work is to add another common lightning protection

system: the counterpoise conductor. The model that was used to describe its behavior

under lightning impulse conditions is the one developed in [12]. It represents the grounding

electrode as a transmission line with distributed lumped parameters, as shown in Fig. 3.2.

Figure 3.2: Distributed model of the counterpoise [12]

The components associated with the counterpoise model can be calculated with (3.3)-

(3.5) from [12].

Li '
µ0li
2π

(
ln

2li
a
− 1

)
(3.3)

Ci = C(ai) + C(2h− ai) (3.4)

Gi =
Ci

ερ
(3.5)
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Where µ0 is vacuum’s magnetic permeability, li is the length of a segment of the coun-

terpoise, a is the radius of the counterpoise conductor, ρ is the resistivity of earth, h is the

depth at which the counterpoise is buried, ai is the radius of the ionized zone around the

counterpoise and ε is the electric permittivity of earth.

In developing the user interface for this model, we used a ladder network reduction

formula from [14] to solve for Gi and Ri that would match the users input low-frequency

counterpoise resistance, which is known from measurement. After a review of [15] and other

references, we used these Ri values instead of the much higher ones calculated from [12].

Equation (3.4) gives the capacitance of a segment when the conductor is buried at a

depth of h. It is a function of the capacitance of that same segment in an infinite medium,

which is defined as:

C(ai) =
2πεli

ai
li

+ ln
li+
√

l2i +a2i
ai

−
√

1 +
(

ai
li

)2
(3.6)

Finally, the ionized zone radius can be obtained using the value of the leaked current

into the earth at each segment [12]:

ai =
∆iiρ

2πEC li
(3.7)

In (3.7), ∆ii is the leaked current into the earth and EC is the critical electrical field

gradient at which the soil starts to ionize. It is typically 300kV/m [12].

The important aspect of this model is that, since it takes the soil ionization into account,

it is highly nonlinear. Indeed, the shunt capacitance and conductance in (3.4) and (3.5) are

a function of the ionization radius, which changes continuously during the impulse. Hence,

the values of Ci and Gi will also vary during the analysis and the computer model will need

to be updated at each time step during a simulation. In this model, the ground resistivity

ρ is considered uniform along the whole length of the line and is constant. From these

assumptions, the resistance ri and inductance Li are constant over time. They are also the

same for each segment.
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3.3 IMPLEMENTATION OF THE MODEL

3.3.1 THE GSL LIBRARY

OpenEtran relies heavily on the GSL library, which is very commonly used as it regroups

many tools to perform a large panel of operations over different subjects, such as: linear al-

gebra, complex numbers, large vectors and matrices management, fast Fourier transform [16]

etc. This tool is perfectly adapted to the counterpoise project, since it is needed to perform

large matrices transforms, decompositions and linear systems solving. Using the library

greatly simplifies the coding, as the operations like the LU decomposition of a matrix, which

is used in the implemented algorithm (refer to section 3.3.2), can be performed by just calling

the appropriate function. The library code is also optimized so the calculations are done

much faster than if they had been recoded.

3.3.2 THE IMPLEMENTATION PROCESS

The OpenEtran software gives the value of It, the current injected into the conductor at the

beginning of the simulation. The goal of the counterpoise implementation is to simulate the

evolution of the ground current by calculating the leakage rate into the earth. To perform

this task, the voltages at each node must be calculated using nodal analysis, then the currents

in each branch are computed using the impedances of each element.

The code for this implementation of the counterpoise model is separated, as it’s usually

done in C/C++ programming, between a header and code file. The general ground structure

with all the data fields, along with all the function prototypes, is stored in the header file

ground.h. The new data fields relative to the counterpoise are either floating point numbers

containing counterpoise parameters, such as the radius or depth, or GSL vectors and matrices

to store the voltages/currents at each node and the admittances. The complete list of new

parameters is shown in Fig. 3.3.

When OpenEtran starts, the first step is to read the input file then to add all the

parameters to the main ground structure. This is done by the function add counterpoise,

analogous to the add ground function which already existed in OpenEtran. The point of

9



Figure 3.3: C-code declaration of all counterpoise fields

adding a separate function was to minimize the structural changes to the original program

and address the fact that the counterpoise addition is optional, so this new function will not

be called if not all the mandatory parameters are present in the file. In this case the original

model of (3.1) is used.

Once the structure is updated, the program allocates memory space to store the different

vectors and matrices, such as the system’s admittance matrix. This is done using built-in

GSL functions, which return a pointer to a vector or matrix, as shown in Fig. 3.4.

Figure 3.4: C-code for matrices memory allocations

10



The next step in the implementation is to calculate the conductor’s admittance (Ybus)

matrix in preparation for solving (3.8). From Fig. 3.2, this will be symmetric tridiagonal.

Ybus · I = V (3.8)

From the trapezoidal integration formulas in [4], the admittance contributions at each

segment can be computed with (3.9) and (3.10).

Yseries =
1

Ri + 2Li

∆t

(3.9)

Yshunt = Gi +
2Ci

∆t
(3.10)

With ∆t being the simulation time step. The values for the capacitance and conductance

are initially calculated using ai equal to the conductor radius a for the first simulation time

step. Off-diagonal elements in (3.8) are all equal to −Yseries, and remain constant through

the simulation. The first diagonal element is Yseries, the last one is Yseries + Yshunt, and all

others are 2Yseries +Yshunt. These diagonal elements can change during simulation according

to (3.4)-(3.7).

This concludes the initialization steps. Now the program starts the simulation process

and enters the main function check ground in which the counterpoise model is solved. In

this function, the program first gets the injected voltage from the pole into the grounding

system, which is also the voltage a node 0 of the electrode. From this initial voltage, the

current at node 0 is determined using the pole admittance and the counterpoise’s current

at the previous time step. This value is stored in the current vector in the main ground

structure. The program then solves the system in (3.8) using the built-in GSL function

gsl linalg solve symm tridiag and updates the voltage vector.

Once the voltages have been calculated using nodal analysis, the program enters the

function updateModel in which the currents through each branch of the network are updated

for the given time step. The right-hand side of (3.8) consists of the tower current, IT , injected

at node 0, along with trapezoidal integration history currents at all nodes from the series

Ri and Li components (flowing left to right) and Ci components (node to ground). Initially

11



Figure 3.5: C-code to solve for the counterpoise voltages

these are all zero. When (3.8) is solved at a time step, the actual series and shunt currents

are found from (3.11)-(3.13).

IRLi(t) = Yseries (Vi(t)− Vi+1(t)) + hRL(t)(t−∆t) (3.11)

ICi(t) =
2Ci

∆t
· Vi(t) + hCi(t−∆t) (3.12)

∆Ii(t) = ICi(t) +GiVi(t) (3.13)

Where hRLi and hCi are the previous trapezoidal history currents [4]. For the next time

step, the leaked segment currents from (3.13) update (3.4)-(3.7) and (3.10). The history

currents are then updated from (3.14)-(3.15) [4].

hRLi(t) = Yseries

[(
2Li

∆t
−Ri

)
IRLi(t) + Vi(t)− Vi+1(t)

]
(3.14)

hCi(t) = −ICi(t)−
2Ci

∆t
Vi(t) (3.15)

The first node voltage obtained from (3.8), namely V0, approximates the counterpoise

voltage, VG, in Fig. 3.2. They won’t match because of nonlinearities in the model. We

also have to account for the tower surge impedance, approximated with inductance LT in

Fig. 3.6. The tower-top voltage is then VT . In OpenEtran, the tower and ground impedances

are combined in a single element, connected to a shield or neutral.

12



Figure 3.6: Counterpoise with compensation current source

The circuit in Fig. 3.6 is connected to the rest of the system. In order to make this

represent the counterpoise model depicted in Fig. 3.2 and solved in (3.3)-(3.15), we use the

compensation method [3]. A bias current, defined in (3.16), circulates through the nominal

counterpoise resistance, R60. This accounts for the counterpoise nonlinearities, with a lag

of ∆t. This lag is not harmful in the ground model because the current variations are

relatively slow and smooth, compared to the surge arrester models, which OpenEtran solves

by iteration within each time step.

Ibias =
VG
R60

− IT =
V0

R60

− IT (3.16)

The tower inductor current and history terms in Fig. 3.6 are calculated as in (3.11)

and (3.14), but with zero resistance. Using Kirchhoffs Voltage Law, we can eliminate the VG

node using (3.17) to arrive at the simpler model to the right in Fig. 3.6. OpenEtran uses

this right-hand model to calculate the next time steps current injection, IT in Fig. 3.2.

Iinj =
hT · 2LT

∆t
+ IbiasR60

R60 + 2LT

∆t

(3.17)

Finally, it is important to mention that the counterpoise model is an add-on and has not

replaced the original ground rod model, which is described in the OpenEtran user manual.

It is still possible to use the ground rod model defined by (3.1) and (3.2) by simply not filling

in the counterpoise parameters part of the new user interface described next.
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4.0 THE OPENETRAN GUI

4.1 INTRODUCTION

In this part, the new Graphical User Interface (GUI) for OpenEtran is described extensively.

First, the report will focus on the user-level features of the program, then the next part dives

into the technical details, for both the OpenEtran window and the visualization tool.

4.2 OPENETRAN WINDOW

4.2.1 USER LEVEL DESCRIPTION

The original Excel interface for OpenEtran is described in [13]. As seen in Fig. 4.1, this

spreadsheet interface contains four input regions: program and input/output files paths

(area A), simulation parameters (area B), mandatory conductor parameters (area C) and

optional component parameters (area D). This spreadsheet interface presents many issues:

it crashes frequently, it is usable on Windows only and it does not make any interpretations

of the output files, so the user needs to format the output data after each simulation to get

the plots. This results in high losses of efficiency and productivity.

The new user-interface, programmed in Python v3.5, is separated in two windows: one

replaces the Excel spreadsheet interface for OpenEtran (see Fig. 4.2), the other is a line

visualization tool that allows the user to see the level of each conductor’s exposure and vul-

nerability to lightning, with the possibility of calculating the flashover rate (see section 4.3).
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Figure 4.1: Excel spreadsheet for OpenEtran

Figure 4.2: OpenEtran GUI - Simulation tab

Fig. 4.2 shows the tab window for the new OpenEtran interface. In this GUI, the first

tab is the Project Tab, in which the user can save/load a project and switch between a

simplified or full interface. The simplified interface only shows the most commonly used

components: pole/phase labels, grounds, surges, arrbez, LPM and meters. One can refer

to the OpenEtran manual [13] for complete description on the different components. The

input files for the GUI are JSON files, where all components and simulation parameters are

stored. During a simulation, the GUI first translates the project JSON file into a DAT file

that is directly used by OpenEtran.
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The tab shown in Fig. 4.2 regroups the simulation parameters. There are two possible

types of simulation in OpenEtran: a one-shot mode with plot files and a critical current

iteration mode.

In one-shot simulation mode, OpenEtran performs a time domain simulation of the

system and writes in a CSV file the values of current / voltage at locations specified by

the user (by placing Meter components on the line). Once the simulation is done, the GUI

reads the output CSV file and plots the curves using the Matplotlib framework, which is very

similar to the plotting framework of Matlab. An overview of the output curves in one-shot

mode is shown in Fig. 4.3.

Figure 4.3: Plots results in one-shot mode simulation

The critical current mode forces OpenEtran to calculate the minimum lightning current

value that can create an insulation back-flashover at a certain location on the line. To do the

analysis, the user needs to specify which poles in the line need to be hit by lightning. This

is done by defining a pole sequence using the First pole to hit and Last pole to hit text fields

in the Simulation tab (see Fig. 4.2), and also by defining a wire sequence. This sequence

tells OpenEtran which phases are to be considered in the analysis. For example, if the user

enters ”1 1 1 0 1” in the Wire text field for a five phase system, OpenEtran will calculate

the critical current for phases 1, 2, 3 and 5. Phase 4 will be discarded in this example. To

launch the simulation the user simply needs to press the button Simulate. The output values

are then written in a text file, located in the same folder as the input file for OpenEtran (see

section 4.2.2 for more detail).
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The other tabs are all component tabs, similar to the one shown in Fig. 4.4. In these

tabs, the user enters the necessary parameters for each component and can add/delete them

dynamically using the appropriate push buttons. Only the conductors data is mandatory.

The line must have at least one wire, but all the other components are optional. In every

components tabs, the two common text fields are Poles and Pairs. The Poles text field

specifies at which poles the component is placed, this input accepts either a single pole

number, a sequence such as ”1 2” for poles 1 and 2, or the words even, odd and all for

even numbered poles, odd numbered poles or all poles respectively. The Pairs input specifies

between which phases the component needs to be put. For example, a pairs input of ”1

2” means the component is placed between phases 1 and 2. A pairs input of ”1 0” means

between phase 1 and the ground.

The only feature other than adding/deleting elements is in the Ground tab. It is possible

to calculate the low current resistance, also called power frequency resistance (R60) for the

counterpoise. For executing this calculation, the user simply needs to press the button Get

Counterpoise R60 in the ground tab. The value of low current resistance for each ground

component is then updated in the R60 text field. More detail about this calculation is given

in section 4.2.2.4.

Figure 4.4: OpenEtran GUI - Component tab

Finally, once the user has finished entering all parameters, he needs to press the Simulate

button in the Simulation tab. The GUI then opens a file selection window for the user to

save his current project, and launches OpenEtran. The output files, CSV plot file for the

”one-shot” mode or text file for the critical current mode, are written in the same folder as

the input file.
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4.2.2 CODE ORGANIZATION AND INTERNAL CALCULATIONS

The OpenEtran GUI is coded using PyQt5, which is a bridge between Python and the Qt

C++ graphical library. In this framework, all components are widgets which can be linked

to callback functions and organized using layouts.

The GUI is based around a Tab Widget. All tabs in this main widget are organized in

the same fashion using a grid layout. With a grid layout, the user can access widgets by

using a line and column number, which makes it very easy to organize a window and access

the different components.

4.2.2.1 INITIALIZATION OF THE APPLICATION: The graphical application

itself is based around a Python class, called GUI Tab. During the initialization of this class,

each tabs of the GUI are created, with their corresponding text fields. Since all components

tabs are organized in the same way, a generic function (shown in Fig. 4.5) was designed to

add the widgets, as seen in Fig. 4.5. This function takes as arguments the widget’s layout,

the list of names for all the labels and the number of lines and columns in the layout.

Figure 4.5: Function to add widgets for the first time

Once all components are created in the tab, the different Push-Buttons are linked to

their respective callback functions using the pyqtSlot framework. PyqtSlots are functions

that can be linked to an event for a component, for example when a button is pressed. The

appropriate syntax for this action is shown in Fig. 4.6.
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Figure 4.6: PyQt Slots and link to button events

Once all these steps are done, the initialization is complete. The application is then

event based. This is typical of GUIs, it means that unless the user triggers an event nothing

happens and the application is on hold. Next, the report will detail the different actions the

user can trigger and how they are executed within the program.

4.2.2.2 ADDING AND DELETING WIDGETS DYNAMCALLY: One of the

basic events that the user can trigger is the addition or deletion of widgets on a specific tab,

by using the Add or Delete buttons. This is useful if different grounding systems are to be

added to the line for example. The framework to add and delete widgets is based on two

generic functions, shown in Fig. 4.7.

These functions are extremely similar to the one described in Fig. 4.5 for the GUI ini-

tialization. The only difference is that the program needs to keep track of the total number

of elements in the tab, in order to add them in the right place and to always keep all the

elements of the first component in the tab.

4.2.2.3 SAVING AND LOADING A PROJECT: When saving a project, the GUI

needs to read every text field in the tabs and store them in a structure. In this project,

the main structure used to store all parameters is a Python dictionary. They are the few

basic data types in Python with lists. Dictionaries contain elements that are sorted using

string-type keys. For example, conductor data is stored under the conductor key, ground

data is stored under the key ground etc. The main dictionary for this project is called
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Figure 4.7: Functions to dynamically add/delete widgets

openetran and contains a key for each type of component, along with a key for the project

name and simulation data. Since there are several parameters for each type of components,

the data stored under each key is represented as a list of numerical values. If there are

several components of the same type in the design, there will be a list of lists under the

corresponding key in the dictionary. A visual representation of the main structure is given

in Fig. 4.8.

Again, since each tab is organized in the same way, a generic function was written to

read each parameter and store them in the main dictionary. It is shown in Fig. 4.9.

This function goes through every widget in the tab but with a step of 2. Indeed, the
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Figure 4.8: Visual representation of the main dictionary

widget configuration is always a label followed by a text field. Only the text field is relevant.

The program keeps track of the current widget by updating an index of the current element

being read. This index, called count in the function, is the product of the row number by

the column number. Once the index is above the number of elements in the tab countTotal,

then the reading is complete. Finally, when the argument notEven is 1, this means that the

two last widgets of the tab are labels so they are discarded. This is used when the number

of parameters is odd and the bottom right widget is not a textfield, like Meter or LPM. If

it is 0, the number of parameters is even and the last widget on the tab is a text field, so it

is read like all the others.

Once all parameters on every tab are read and stored in the main dictionary, the GUI

writes them in a JSON file. JSON is a file format, specified in the RDC 7159 standard [17],
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Figure 4.9: Generic function to read text fields

used to store arrays in a human readable way. JSON is specified in the standard RDC

7159 [17]. There is a built-in JSON parser in Python, so writing files in this format is

extremely simple and is achieved with the following instruction: json.dump(openetran, f,

indent=2), with openetran the array type element and f the file handle. To read a JSON

file, a unique instruction is needed: json.load(f). Since the structure is saved as a dictionary

in JSON, it is also read as a dictionary so there it is directly usable after being read by the

load instruction.
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4.2.2.4 CALCULATING THE COUNTERPOISE LOW CURRENT RESIS-

TANCE The ground low current resistance (R60) is used in OpenEtran for the admittance

adjustment between the pole and ground impedances. The GUI adds the possibility to ap-

proximate the counterpoise R60 value to have more realistic results.

As shown in Fig. 3.2, the counterpoise is modeled as a ladder network. Since the current

is considered low in this calculation, only the resistances and conductances defined in the

counterpoise theoretical model are used (the capacitance is however still needed to calculate

the conductance). The resistance of the counterpoise is then defined as the ladder network

input impedance [18]:

R60 = ri ·
∑N

j=0 [b[N ][j] ·Kj]∑N
j=0 [c[N ][j] ·Kj]

(4.1)

In (4.1), b and c are the matrices of coefficients of the DFF and DFFz triangles, which

were introduced in [18]. The coefficients for these triangles are calculated with the following

recurrent relationships:

b(i, j) =


1, for j = 0 or j = i = 1

0, for j > i

2b(i− 1, j) + b(i− 1, j − 1)− b(i− 2, j), for j ≥ 1, i ≥ 2, j ≤ i

(4.2)

c(i, j) =


i, for j = 0

0, for j ≥ i

2c(i− 1, j) + c(i− 1, j − 1)− c(i− 2, j), for j < i, j 6= 0

(4.3)

4.2.2.5 SIMULATING A PROJECT When the user presses the simulation button,

the first thing the program does is save the project in a JSON file. The operating system’s

selection window comes up so the user can select the appropriate file.

Then, the GUI parses the DAT input file needed to execute OpenEtran. The function

that executes this operation is called in a loop for each key in the main dictionary, and it is

shown in Fig. 4.10.

In this function, the program starts to check if all parameters are specified for each

component. This means that each text field must contain something else than an empty
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Figure 4.10: Function to parse the OpenEtran input file

string. The only exception to that rule is for the ground component, because the counterpoise

parameters are optional. This means only the first five components, plus ”Pairs” and ”Poles”

are mandatory. No check is made on the content of the actual text field. Once the verification

is complete, the program writes the name of the key first, which corresponds to the type of

component, then the parameters are written using the standard write function for text files.
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Finally, once the input file is parsed the GUI launches OpenEtran. The routine used to

launch another program from Python is executed using the subprocess framework and the

run function. This is shown in Fig. 4.11.

Figure 4.11: Function to call OpenEtran from Python

The only mandatory argument in this function is args, which is a list of strings regroup-

ing the different arguments necessary when calling OpenEtran: executable name, type of

simulation and parameters, input file. The args list shown in Fig. 4.11 is for a plot-mode

simulation. The two following arguments mean that the function will capture in a buffer the

output or error return message of OpenEtran. The last argument means that these outputs

are sent as strings. If it is False, they are returned as uninterpreted binary outputs.

When simulating in critical current mode, the GUI reads the pole and wire sequences,

saves them as lists, then calls OpenEtran in a loop for each pole. The arguments for this

simulation mode are shown in Fig. 4.12.

Figure 4.12: OpenEtran call arguments in critical current mode
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4.3 VISUALIZATION TOOL

4.3.1 USER LEVEL DESCRIPTION

Fig. 4.13 shows the line visualization tool. It can only be used for five-wire transmission

lines, with three phases and two shield wires. In this window, the arcs represent each wire’s

vulnerability zone, meaning that if lightning were to cross that arc it would hit the conductor.

The thick green line below the conductors is the ground plane. The thin green lines crossing

the arcs represents the striking distances to ground and objects, meaning that if a lightning

bolt crosses these lines, it will hit the ground or an object. These striking distances are

defined as:

rc = 10I0.65 (4.4)

rg =
βrc

cosα
(4.5)

rc is the radius of the arcs, rg is the striking distance to ground, α is the ground slope,

which can be between 0 and 45 degrees, and I the current going through the conductor. The

term β is defined as:

β =

0.37 + 0.17 · log10 (43− hmax) , for hmax < 43

0.55, for hmax > 43

(4.6)

The green arcs outline the vulnerability zone for the shield wires and the red arcs for the

phase wires. If a red arc is contained by two green arcs or is positioned below the thin green

line, then the phase conductor is protected. If part of a wire is exposed, the exposure width

is defined as the horizontal length of the exposed region of the arc. More details about the

exposure width calculation are given in the next section.

In order to analyze the system properly, the user can enter the conductor’s coordinates,

either manually or by using the button Update coordinates. By pressing this button, the GUI

copies the conductor coordinates that are written in the Conductor tab of the OpenEtran

window. Then, it is possible to add objects to the design. The user also can specify the

ground slope, total line length and flash density for the region the line will be installed.
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Figure 4.13: Phase visualization tool

Finally, the striking distances for the wires depend on the current going through them, so

by changing the value in the textfield Current, the user changes the radii of the arcs. This

setting is not used when calculating the flashover rate, it is solely used for display purposes

to aid the user in the analysis.

The most important feature of the visualization tool is the calculation of the flashover

rate. It is executed by pressing the Flashover Rate button, and the result is displayed in the

bottom label of the window. The result is the yearly flashover rate on the whole length of the

line. In order to work, the program needs the line geometry, along with the flash density and

the critical current values for each conductor. These values of critical currents are calculated

by OpenEtran in a critical current iteration simulation, and stored in a text file as an output

(refer to section 4.2.2). When the flashover button is pressed, the GUI prompts the operating

system’s file section window, in order for the user to select the critical current file.
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4.3.2 CODE ORGANIZATION AND INTERNAL CALCULATIONS

4.3.2.1 INITIALIZATION OF THE APPLICATION: The visualization tool is,

just like the OpenEtran window, based on a Python class. This one is called SysView.

When it is created it first needs to initialize. During the initialization of the application,

the program places the different widgets in their position: the left half of the window is the

parameter area, with the different labels and text fields for conductors coordinates to display

the flashover rate. A grid layout is used to organize the widgets in that part of the window.

The right half is a simple widget, which is used for the drawing area.

4.3.2.2 PAINTING ELEMENTS ON THE DRAW VIEW: The main function of

the visualization tool is the callback function for a painting event. This function is called

automatically to redraw the view each time something changes, for example if the user wants

to change the window size or moves it on the screen. It can also be called manually when the

user clicks on the update view button. This is useful when the value in the Current textfield

is changed, because the window will not update automatically.

The different tasks that are executed in that function are:

- Translate the physical coordinates to screen coordinates

- Draw the ground plane

- Draw the vulnerability arcs

- Draw the objects and their strike line

The most time-consuming part is to adapt the coordinates to keep the scales true on

screen. This is done with the function calcCoordinates. In this function, the GUI starts

by reading all the physical coordinates from the text fields: ground slope, wires height and

horizontal positions and the striking distances, are calculated using (4.4) and (4.5). In the

rest of the description, the right half of the window, where the system is drawn, is called the

DrawView widget.
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After reading all the physical coordinates and striking distances, a horizontal and vertical

scale is defined. The first value of this scale is:

vScale = Hw/50 (4.7)

hScale = w/50 (4.8)

With Hw the window’s height and w the DrawView ’s width.

Now that the scales are defined, the program translates the physical coordinates of the

components into screen coordinates. The coordinates in a PyQt window are defined as pixel

indexes, starting from the top left corner where the coordinates are (0,0). The phases’ screen

coordinates are:

xsc = Ww −
w

2
+ x · hScale (4.9)

ysc = Hw − y · vScale (4.10)

With Ww the width of the whole window and (x,y) the wire’s physical coordinates.

The arcs’ radii and starting points’ coordinates are calculated in the following way:

wa = 2 · rc · hScale (4.11)

ha = 2 · rg · vScale (4.12)

xa = xsc −
wa

2
(4.13)

ya = ysc −
ha
2

(4.14)

wa and ha are the width and height of the arc respectively (they can be different since the

window is not always a square), (xa,ya) are the coordinates of the arc’s bottom left point. It

is defined this way because the function used to paint the arcs takes this point’s coordinates,

along with the height and width, as parameters.

Finally, the objects are defined with only a horizontal position and a height. The first

object starts from the right side of the DrawView and is in contact with the ground. The
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two coordinates define the object length from the right side of the window and its height.

These two metrics are calculated as:

xsc,obj = Ww −
w

2
+ xobj · hScale (4.15)

ysc,obj = Hw − yobj · vScale (4.16)

All these coordinates are stored in a structure called coord. This structure is composed

of several lists, one list for each type of coordinates:

1. x-component of all phase conductors

2. y-component of all phase conductors

3. x-component of all arcs’ left starting point

4. y-component of all arcs’ left starting point

5. arcs width

6. arcs height

7. striking distance to ground

8. x-component of all objects’ top left/right point

9. y-component of all objects’ top left/right point

Now that all the screen coordinates are calculated, it is necessary to verify whether all

elements are inbound or not. In order to do that the program calculates one boolean value

for each element, if it is true the element is out of bounds. The different conditions to

determine if an element is out of bounds are:

c Out = x < (Ww − w) or x > Ww

or y < 0 or y > Hw (4.17)

a Out = c Out(origin) == True

or xorigin + wa > Ww

or yorigin + ha > Hw (4.18)

o Out = c Out(origin) == True (4.19)
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With c Out, a Out and o Out the conditions for a conductor, an arc and an object

respectively. The origin point for an arc is the bottom left end of the arc. For an object, it

is either the top right (object1) or top left (object2) point.

If one or more of the three conditions are true, the program lowers the scale and re-

calculates the screen coordinates and out-of-bounds conditions. The new scales are defined

as:

hScale′ =
9

10
· hScale (4.20)

vScale′ =
9

10
· vScale (4.21)

An overview of what the drawing area looks like after rescaling is shown in Fig. 4.14.

Figure 4.14: Phase visualization tool with rescaled drawing section

Once the scales have been calculated, the next step is to paint the ground line, phases,

arcs and striking lines on the screen. In order to do that, several functions are called, one

for each type of element to draw.

To draw on a window with PyQt, the user first needs to declare a QPainter object. No

arguments are needed in the constructor, the QPainter object is the canvas on which the

other objects will be drawn. Then a QPen object needs to be defined. The classic arguments
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for this constructor are the colour, type of line (i.e dotted, solid etc.) and thickness. In the

case of the ground, the pen is defined as QPen(Qt.darkGreen,10,Qt.SolidLine). The program

then draws a line, by using the function drawLine of the QPainter class. This function takes

a QLineF object as an argument. This QLineF object defines a line between two points

whose coordinates are floating point numbers. In the case of the ground line the two points

to draw the line between have the coordinates (x1,y1) and (x2,y2), which are defined as:

x1 = Ww − w (4.22)

y1 = Hw + w · tanα

2
(4.23)

x2 = w (4.24)

y2 = Hw − w ·
tanα

2
(4.25)

The striking line to ground is drawn using the same functions and the coordinates of its

two points are the same, with a vertical offset equal to rg, the striking distance to ground,

times the vertical screen scale.

After drawing the ground line, the program starts drawing the phase conductors. In the

visualization tool these conductors are represented as points, so drawing them is straightfor-

ward. The standard drawPoint function (see Fig. 4.15), which is a method of the QPainter

class, is used. This function takes a QPointF object as an argument. This QPointF object

only takes the coordinates of the point as floating point numbers. The screen scale coordi-

nates of the phase wires are then simply copied into the function to draw them on the screen.

Once the phases are drawn, the program starts to define the arcs. Since all the neces-

sary coordinates have been calculated already, the only function that needs to be called is

drawArc (see Fig. 4.16), which is also a method of the QPainter class. This function takes

as arguments the (x,y) coordinates of the bottom left point of the arc, its width, its height,

the start angle (in this case 0) and the span angle in 1/16th of degree. For a total semi-circle

the total span angle is then 180*16=2880.

Finally, the last things to draw are the objects (see Fig. 4.17). They are drawn using

QPolygonF objects, which behave as a list of QPointF objects. To draw a parallelogram like
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Figure 4.15: drawPhases function

Figure 4.16: drawArcs function

the objects, only four points are needed. As stated before the objects on the visualisation

tool are defined only with one point and span all the way to a side of the drawing area: top

right point and left side for Object1, top left point and right side for Object2.

Let’s define (xtr,ytr) the original coordinates of the top-right point of Object1. Since some

adjustments need to be made to compensate for the ground slope α, the final coordinates

for each point of Object1 are:

p11 =

(
Ww − w, Hw +

w · tanα

2

)
(4.26)

p12 =

(
Ww − w, ytr +

w · tanα

2

)
(4.27)

p13 =
(
xtr, ytr + tan(α) ·

(
Ww −

w

2
− xtr

))
(4.28)

p14 =
(
xtr, Hw + tan(α) ·

(
Ww −

w

2
− xtr

))
(4.29)
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With each point being respectively the bottom left, top left, top right and bottom right

points. Similarly, with (xtl,ytl) the original coordinates of the top-left point, the final coor-

dinates for each point of Object2 are defined as:

p21 =
(
xtl, Hw + tan(α) ·

(
Ww −

w

2
− xtl

))
(4.30)

p22 =
(
xtl, ytl + tan(α) ·

(
Ww −

w

2
− xtl

))
(4.31)

p23 =

(
Ww, ytl −

w · tanα

2

)
(4.32)

p24 =

(
Ww, Hw −

w · tanα

2

)
(4.33)

With each point being respectively the bottom left, top left, top right and bottom right.

After appending the points to the polygon structure, the last operation is to fill the geometry.

In order to do that, it is necessary to declare a QPainterPath object, associate the polygon to

the path by using the function addPolygon then fill the path with the function fillPath. This

last function is a member of the QPainter class, and takes as arguments the QPainterPath

object and a color, represented as a QColor object.

This finishes the description of all the operations needed to draw the system on the

window.

4.3.2.3 CALCULATING THE FLASHOVER RATE The other main functionality

of the visualization tool is the calculation of the yearly average flashover rate on the total

length of the line. This function is by far the heaviest of the program in terms of calculations,

and is separated in two main steps:

- Calculating each phase wire’s exposure width.

- Calculating the total flashover rate at each pole.

As a reminder, during a critical-current simulation in OpenEtran the results are written

in a text file. The user defines the wire and pole sequence for the analysis, so potentially

not all phases and not all poles are concerned by the analysis. The first step in the flashover

rate function is then to parse this output text file, which is shown in Fig. 4.18. The program

starts by creating a list of five other lists. Each list contains the current values at different

poles for a specific phase.
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Figure 4.17: First half of the drawObjects function, for Object1

Figure 4.18: Critical current file

At each line of the text file, the index of the concerned wire is given, followed by the

value of the critical current. The program reads this index first to determine in which list
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to store the current, then the actual value is read and converted in kA. Finally, after all

currents in the file have been read, the program adds -1 values in unused lists to indicate

that the corresponding phases are not concerned by the flashover analysis.

Figure 4.19: Critical current parser

Once the parsing operations are done, the program starts the actual flashover rate cal-

culation for each pole. In order to do that, the program calculates in a loop the exposure

widths of each concerned phase for several values of current going through them, from 2.5kA

to 300kA with a step of 0.5kA. If the value of current is inferior to the critical current of a

specific phase, the probability of causing a back-flashover is 0 so this phase’s exposure width

is set to 0. If the critical current of a phase is -1, it means it is not considered for the analysis

so the exposure width is also set to 0. Finally if the current value is superior to the critical

current, the exposure width for a specific arc is calculated as follows:

Step 1: The program enumerates and stores all the coordinates of the intersections

between the considered arc and the arcs from the other four phases, or between the considered

arc and a striking line from the ground or an object. This is done by solving a second degree

equation on the arc’s equation:

(x− x1)2 + (y − y1)2 = r2
c (4.34)

(x− x2)2 + (y − y2)2 = r2
c (4.35)
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In the previous system, (x,y) are the intersection’s coordinates, (x1,y1) and (x2,y2) are

the coordinates of each arc’s center and rc is the arcs’ radii. The solutions for this system

are, if x1 6= x2 and y1 6= y2:

x = ay + b (4.36)

y =
−B1 +

√
∆1

2A1

, if ∆ ≥ 0 (4.37)

With:

a =
−2(y2 − y1)

2(x2 − x1)
(4.38)

b =
x2

2 + y2
2 − x2

1 − y2
1

2(x2 − x1)
(4.39)

A1 = a2 + 1 (4.40)

B1 = 2ab− 2ax1 − 2y1 (4.41)

C1 = b2 − 2bx1 + x2
1 + y2

1 − r2
c (4.42)

∆1 = B2
1 − 4A1C1 (4.43)

Note that, even if there are two solutions for y theoretically, since the only section of

interest in the arc is the upper half, the stored solution is the highest. Similarly, if x1 = x2,

the solutions are:

x =
−B2 +

√
∆2

2A2

(4.44)

y =
y2

2 − y2
1

2(y2 − y1)
(4.45)

With:

A2 = 1 (4.46)

B2 = −2x1 (4.47)

C2 = x2
1 + y2 − 2yy1 + y2

1 − r2
c (4.48)

(4.49)
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When y1 = y2 the solutions are analogous to the previous case:

x =
x2

2 − x2
1

2(x2 − x1)
(4.50)

y =
−B3 +

√
∆3

2A3

(4.51)

With:

A3 = 1 (4.52)

B3 = −2y1 (4.53)

C3 = x2 − 2xx1 + x2
1 + y12 − r2

c (4.54)

These solutions are considered valid only if their y-component is above both of the phases

of the concerned arcs. If they are not, it means the intersection happens in the lower half of

one arc so it is not relevant.

Finally, if there is an intersection with a striking line, the equation to solve is:

(x− x1)2 + (rg + yo + tanα · x1 − y1)2 = r2
c (4.55)

With (x1, y1) the arc’s center’s coordinates, yo the object’s top right/left point’s y-

component coordinate. The solutions for this system are:

x =
−Bo ±

√
∆o

2Ao

(4.56)

y = rg + yo + tanα · x1 (4.57)

With:

Ao = 1 (4.58)

Bo = −2x1 (4.59)

Co = x2
1 + (rg + yo + tanα · x1 − y1)2 − r2

c (4.60)

In the case of an intersection with a striking distance line, unlike for an arc, there may

be two intersections in the upper-half of the circle.

38



Step 2: After having all the intersections for a specific arc, the program isolates the

”exposed” intersections. If an intersection is inside another arc or below a ground/object

striking line, then it is protected and discarded. This operation is done by the isContained

function, which returns a boolean value. For an intersection to be contained within an arc,

it needs to respect the following inequation:

(x− xi)2 + (y − yi)2 < r2
c (4.61)

For an intersection to be contained by a ground or object1 striking line, it needs to

respect the following conditions:y < rg

y < rg + yo + tanα · x and x < xo

(4.62)

In the previous cases, (xo, yo) are the object’s top right point’s coordinates. To be con-

tained by the Object2 striking line, the conditions are the same, except that x > xo.

Step 3: The last step when calculating the exposure width is to check whether the

portion of the arc between to exposed intersections is also vulnerable to lightning. In order

to verify this, the program calculates the coordinates of the point at mid-distance between

the two intersections and calls the isContained function a second time. If this point is also

vulnerable then the horizontal distance between the two exposed intersections is stored as

the exposure width. These values for each phase at a specific pole are stored in a list called

expo.

Now that the exposure widths of each phase at a specific pole are calculated, the program

starts the operations to get the yearly flashover rate per pole. This is predicted by:

fy =
L

N
·Dflash · p ·

K∑
k=0

wexpo(k)

1000
(4.63)

In (4.63), fy is the flashover rate per year at a specific pole, wexpo(k) is an exposure

width at a specific pole in meters, K is the size of the exposure width list, L is the length of

the line in km, N is the number of poles in the line, Dflash is the lightning flash density in
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flash/km2 (this can be obtained from geographical data) and p is the probability that the

lightning’s first stroke current will be greater or equal to the current value in the loop. This

probability is set in [19] and is defined as:

p (I ≥ i0) =
1

1 +
(
i0
31

)2.6 (4.64)

As a reminder, the program does the previous calculations in a loop for several values

of current between 2.5kA and 300kA, so the final flashover rate value for each pole is the

sum of all results from (4.63) for each current value. Then finally, the value displayed in the

visualization tool is the arithmetical average of the flashover rates at each pole:

Fy =

∑N
n=0 fy(n)

N
(4.65)
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5.0 CASE STUDIES

5.1 NEPC230 - NEW ENGLAND 230KV STEEL

OpenEtran has been executed on two different variations of an IEEE Flash test case NEPC230 [2].

This system represents a 230kV line with a 122m span, 11 towers modeled and 5 conductors:

3 phases and 2 shield wires. In this test case, a -80kA lightning surge strikes tower 6 on one

of the shielding wires. The critical flashover voltage (CFO) is estimated at 1350 kV on each

phase. Fig. 5.1 shows the results of the transient simulation of the ground current on the

struck tower, for two different grounding methods.

Figure 5.1: Ground currents for -80kA stroke to the NEPC230 tower with counterpoise and

ground rod
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On the first variation, a 122m long counterpoise conductor with a 1cm radius, divided

into 20 segments and buried at 1m beneath ground is used. On the second variation, the

tower only has a 20m vertical ground rod but no counterpoise. With ρ = 1000Ωm, the 60-

Hz low-current ground resistance is 16.86Ω for the counterpoise and 63.56Ω for the ground

rod. Fig. 5.2 shows that the peak insulation voltage (1457.5kV) with ground rod exceeds the

CFO, but with counterpoise the peak (1071.8kV) is less than the CFO. Here, the counterpoise

appears to be effective, but higher stroke currents, line arresters and insulator upgrades can

also be simulated.

Figure 5.2: Phase A insulator voltages for -80 kA stroke to the NEPC230 tower with coun-

terpoise and ground rod; CFO is 1350 kV.

Note that the voltage peaks at around 1µs in both cases, due to the effects of LT . The

peak counterpoise current in Fig. 5.1 is higher than the peak ground rod current, because of

differences in the resistance. From the VT waveforms, not plotted here, the apparent ground

resistance at 10µs is 15.99Ω for the counterpoise and 44.38Ω for the ground rod. These

values include the effect of LT , but that is negligible at 10µs. The ground rod has a greater

reduction in resistance than the counterpoise, because of heavier soil ionization predicted

in (3.1) and (3.2). Even so, the counterpoise performs better.
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6.0 CONCLUSION

A theoretical model for the counterpoise conductor, inspired from [12], was added to the

OpenEtran transient simulation engine in order to better benchmark lightning performance

in modern power systems. Results show a coherent behavior of the counterpoise conductor.

A new GUI has been added, in order to increase user efficiency while using OpenEtran.

This GUI regroups a new tab window, similar in organization to the previous Excel spread-

sheet interface, and a line visualization tool has been introduced to allow the user to better

design line shielding to reduce flashover rates. The software will be publicly available for the

engineering community under the open source GNU General Public License.

Future work ideas on this project would include adding more counterpoise system archi-

tectures (crow foot, parallel counterpoise etc.), and address the frequency-dependent aspect

of the soil resistivity, which in turn affects the current leakage rate into the ground and hence

modifies the total grounding impedance [11].
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