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ABSTRACT

CONTEXT-AWARE ARGUMENT MINING AND ITS APPLICATIONS IN

EDUCATION

Huy V. Nguyen, PhD

University of Pittsburgh, 2017

Context is crucial for identifying arguments and argumentative relations in text, but existing

argument studies have not addressed context dependence adequately. In this thesis, we

propose context-aware argument mining that makes use of contextual features extracted

from writing topics and context sentences to improve state-of-the-art argument component

and argumentative relation classifications. The effectiveness as well as generality of our

proposed contextual features is proven through its application in different argument mining

tasks in student essays. We further evaluate the applicability of our proposed argument

mining models in automated persuasive essay scoring tasks.

Keywords: argument mining, topic context, context segment, automated essay scoring.
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1.0 INTRODUCTION

Van Eemeren and Grootendorst defined argumentation as “a social, intellectual, verbal ac-

tivity serving to justify or refute an opinion, consisting of a constellation of utterances which

have a justifying or refuting function and being directed towards obtaining the agreement of

a judge who is deemed to be reasonable” (Van Eemeren and Grootendorst, 1982). Originally

proposed within the realms of Logic, Philosophy, and Law, computational argumentation

has become an increasingly central core study within Artificial Intelligence (AI) through

the connection with research in knowledge representation, non-monotonic reasoning and

multi-agent systems (Bench-Capon and Dunne, 2007; Bentahar et al., 2010). In such areas,

abstract argumentation in which each argument is regarded as atomic with no internal struc-

ture provides a formalism to model the reasoning process (Lippi and Torroni, 2015). While

that high abstraction of argumentation facilitates modeling and analysis of attack relations

and acceptability of arguments, it has no specification of what is an argument or an attack

(Dung, 1995).

On the contrary, structured argumentation assumes a knowledge representation formal-

ism to specify how arguments are constructed from components. Over the past decades,

structured argumentation theories have gained an increasing interest as a vehicle for rep-

resenting components of arguments and the interactions between components, evaluating

arguments, and distinguishing legitimate from invalid arguments (Bench-Capon and Dunne,

2007). This, together with the rapid growth of textual data and tremendous advances in

text mining, has brought the emergence of a new research area – argument (argumentation)

mining in text1 – to draw a bridge between formal argumentation theories and everyday life

argumentative reasoning.

1Argument mining for short.
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Aiming at automatically identifying argument components (e.g., premises, claims, con-

clusions) in natural language text, and the argumentative relations (e.g., support, attack)

between components, argument mining is found to promise novel opportunities for opinion

mining, automated essay evaluation as well as offers great improvement for current legal infor-

mation systems or policy modeling platforms. Argument mining has been studied in a variety

of text genres like legal documents (Moens et al., 2007; Mochales and Moens, 2008; Palau and

Moens, 2009), scientific papers (Teufel and Moens, 2002; Teufel et al., 2009; Liakata et al.,

2012), news articles (Palau and Moens, 2009; Goudas et al., 2014; Sardianos et al., 2015),

user-generated online comments (Cabrio and Villata, 2012; Boltužić and Šnajder, 2014), and

student essays (Burstein et al., 2003; Stab and Gurevych, 2014b; Rahimi et al., 2014; Ong

et al., 2014). Problem formulations of argument mining have ranged from the separation of

argumentative from non-argumentative text, the classification of argument components and

argumentative relations, to the identification of argumentation structures/schemes.

To illustrate different tasks in argument mining, let us consider a sample student essay

in Figure 1. The first sentence in the example is the writing prompt. The MajorClaim

which states the author’s stance towards the writing topic is placed at the first sentence of

the essay’s body, i.e., sentence 1. The student author used different Claims (controversial

statements) to validate/support and attack the major claim, e.g., claims in sentences {2, 5,

8}. Validity of the claims are underpinned/rebutted by Premises (reasons provided by the

author), e.g., premises in sentences {5, 6, 7}.

As the first task in argument mining, Argument Component Identification aims at recog-

nizing argumentative portions in the text (Argumentative Discourse Units – ADUs (Peldszus

and Stede, 2013)), e.g., a subordinate clause in sentence 1, or the whole sentence 2, and clas-

sifying those ADUs accordingly to their argumentative roles, e.g., MajorClaim, Claim, and

Premise. The two sub-tasks are often combined into a multi-way classification problem by in-

troducing the None class. Thus, possible class labels for a candidate ADU are {MajorClaim,

Claim, Premise, None}. However, determining boundaries of candidate ADUs to prepare

input for argument mining models is a nontrivial preprocessing task. In order to simplify

the main argument mining task, sentences are usually taken as primary units (Moens et al.,

2007), or the gold-standard boundaries are assumed available (Stab and Gurevych, 2014b).
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Essay 75: (0)Do arts and music improve the quality of life?
(1)My view is that the [government should give priorities to invest more money on the
basic social welfares such as education and housing instead of subsidizing arts relative
programs]MajorClaim.
(2)[Art is not the key determination of quality of life, but education is]Claim. (3)[In
order to make people better off, it is more urgent for governments to commit money to
some fundamental help such as setting more scholarships in education section for all
citizens]Premise.

(4)This is simply because [knowledge and wisdom is the guarantee of
the enhancement of the quality of people’s lives for a well-rounded social system]Premise.
(5)Admittedly, [art, to some extent, serve a valuable function about enriching one’s
daily lives]Claim, for example, [it could bring release one’s heavy burden of study pres-
sure and refresh human bodies through a hard day from work ]Premise.

(6)However, [it
is unrealistic to pursuit of this high standard of life in many developing countries, in
which the basic housing supply has still been a huge problem with plenty of lower in-
come family have squeezed in a small tight room]Premise.

(7)By comparison to these
issues, [the pursuit of art seems unimportant at all ]Premise.
(8)To conclude, [art could play an active role in improving the quality of people’s
lives]Premise, but I think that [governments should attach heavier weight to other social
issues such as education and housing needs]Claim because [those are the most essential
ways enable to make people a decent life]Premise.

Figure 1: A sample student essay taken from the persuasive essay corpus (Stab and Gurevych,

2014a). The essay has sentences numbered and argument components enclosed in tags for

easy look-up.

The second task, Argumentative Relation Classification(Stab and Gurevych, 2014b), con-

siders possible pairs of argument components in a definite scope, e.g., paragraph or pairs of

argument component and argument topic. For each pair, the task is to determine if a com-

ponent supports or attacks the other component. The definite scope is necessary to make the

distribution less skewed. In fact, the number of pairs that hold an argumentative relation

is far smaller than the total number of possible pairs. In the example essay, the Claim in

sentence 2 supports the MajorClaim in sentence 1: Support(Claim(2), MajorClaim(1)). We

also have Attack(Claim(5), MajorClaim(1)), Support(Premise(5), Claim(5)). Given the direct

relations as in the examples, one can infer Attack(Premise(5), MajorClaim(1)) and so on.

While in argumentative relation classification one does not differentiate direct and in-

ferred relations, Argumentation Structure Identification (Mochales and Moens, 2011) aims
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MajorClaim(1)

Claim(2) Claim(5)

Premise(5) Premise(7)

Premise(6)

Support Attack

Support Attack

Support

Figure 2: Graphical representation of a part of argumentation structure in the example essay.

Argumentative relations are illustrated based on annotation by (Stab and Gurevych, 2014a).

at constructing the graphical representation of argumentation in which edges are direct at-

tachments between argument components. Attachment is an abstraction of support/attack

relations, and is illustrated as arrowhead connectors in Figure 2. Attachment between ar-

gument components does not necessarily correspond to the components’ relative positions

in the text. For example, Premise(6) is placed between Claim(5) and Premise(7) in the essay,

but Premise(7) is the direct premise of Claim(5) as shown in the figure.

1.1 AN OVERVIEW OF MY THESIS WORK

In education, teaching argumentation and argumentative writing to students are in partic-

ular need of attention (Newell et al., 2011; Barstow et al., 2015). Automated essay scoring

(AES) systems have been proven effective to reduce teachers’ workload and facilitate writing
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practices, especially in large-scale (Shermis and Burstein, 2013). AES research has recently

shown interest in automated assessment of different aspects of written arguments, e.g., ev-

idence (Rahimi et al., 2014), thesis and argument strength (Persing and Ng, 2013, 2015).

However, the application of argument mining in automated argumentative essay scoring has

been studied limitedly (Ong et al., 2014; Song et al., 2014). Motivated by promising results

of argument mining as well as a desire of automated support for argumentative writings in

school, this research aims at building models that automatically mine arguments in natural

language text, and applying argument mining outcome to automatically score argumentative

essays.

In particular, this thesis proposes context-aware argument mining models to improve

state-of-the-art argument component and argumentative relation classifications. In order

to make the proposed approaches more applicable to the educational context, the current

research conducts both intrinsic and extrinsic evaluations when comparing the proposed

models to the prior work. Regarding intrinsic evaluation, the current research performs

both random folding cross validation and cross-topic validation to assess robustness of the

models. For extrinsic evaluation, this thesis investigates the uses of argument mining for

automated essay scoring. Overall, our research on argument mining can be divided into

three components with respect to their functional aspects.

1.1.1 Context-aware Argument Mining Models

The main focus of the current research is to build models for argument component identifi-

cation and argumentative relation classification. Context is crucial for identifying argument

components and argumentation structures (Stab and Gurevych, 2014a). However, context

dependence has not been addressed adequately in prior work (Stab et al., 2014). Most argu-

ment mining studies built prediction models that process each candidate ADU in argument

component identification, or pair of argument components in argumentative relation classi-

fication, isolatedly from the surrounding text. To enrich the feature space of such models,

history features such as argumentative roles of one or more preceding components, and fea-

tures extracted separately from preceding and/or following text spans have been usually used
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(Teufel and Moens, 2002; Hirohata et al., 2008; Palau and Moens, 2009; Guo et al., 2010;

Stab and Gurevych, 2014b). However, the idea of using surrounding text as a context-rich

representation of the prediction input for feature extraction was studied limitedly in prior

research (Biran and Rambow, 2011).

In many writing genres, e.g., debates, student essays, scientific articles, the availability

of writing topics provides valuable information to help identify argumentative text as well

as classify their argumentative roles (Teufel and Moens, 2002; Levy et al., 2014). Especially,

Levy et al. (2014) defined the term Context Dependent Claim to emphasize the role of

discussion topic in distinguishing claims relevant to the topic from the irrelevant statements.

The idea of using topic and discourse information to help resolve ambiguities are commonly

used in word sense disambiguation and sentiment analysis (Navigli, 2009; Liu, 2012).

Based on the above observations, we hypothesize that argument component identifica-

tion and argumentative relation classification can be improved with respect to prediction

performance by considering contextual information at both local and global levels when

developing prediction features. This thesis differentiates between global context and local

context. While global context refers to the main topic/thesis of the document, the local

context is instantiated by the actual text segment covering the textual unit of interest, e.g.,

preceding and following sentences.

Instead of building prediction models that process each textual input isolatedly, the

proposed context-aware approach considers the input within its context window to enable

advanced contextual features for argumentative relation classification.

Definition 1. The context window of a textual unit is a text segment formed by neighboring

sentences and the unit itself. The neighboring sentences are called context sentences, and

must be in the same paragraph with the textual unit.

The term “context sentences” was used by Qazvinian and Radev (2010) to refer to

sentences surrounding a citation, that contain information about the cited source but do

not explicitly cite it. In this thesis, we place no other constraint to context sentences than

requiring them to be adjacent to the textual unit. Our approach aims at extracting discourse

relations within the context window to better characterize the rhetorical function of the unit
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in the entire text. In addition, the context windows instead of their units will be fed to

textual entailment and semantic similarity scoring functions to extract semantic relation

features. We expect that the aggregated semantic score (e.g., entailment and semantic

similarity) computed from possible pairs extracted from two windows better represents the

semantic relations of the two input units than their single score. As defining the context and

identifying boundaries of context window are not a focus of this thesis, this thesis proposes to

use different heuristics, e.g., window-size and text segmentation, to approximate the context

window given a textual unit, and evaluate the contribution of such techniques to the final

argument mining performance.

As for a global context, this thesis proposes an approach that uses writing topics to guide

a semi-supervised process for separating argument words from domain words.

Definition 2. Argument words are words that signal the argumentative content and are

commonly used across different argument topics, e.g., ‘believe’, ‘opinion’. In contrast, do-

main words are specific terminologies commonly used within the topic, e.g., ‘art’, ‘education’.

Domain words are a subset of content words that form the argumentative content.

The above definition of argument and domain words shares similarities with the idea

of shell language and content in (Madnani et al., 2012) in that it aims to model the lexical

signals of argumentative content. The extracted vocabularies of argument words and domain

words are then used to derive novel features and constraints for an argument component

identification model.

1.1.2 Intrinsic Evaluation: Cross validation

In educational settings, students can have writing assignments in a wide range of topics.

Therefore a desired argument mining model that has practical application in student essays

is the one that can yield good performance for new essays of different topic domains than

those of the training essays. As a consequence, features which are less topic-specific will be

more predictive when cross-topic evaluated. Given this inherent requirement to the argument

mining tasks for student essays, this research emphasizes the evaluation of the robustness of

argument mining models. In addition to k-fold cross-validation (i.e., training and testing data
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are randomly split from the corpus), the current research also conduct cross-topic validation

(i.e., training and testing data are from essays of different writing topics) when comparing

the proposed approaches with prior studies (Burstein et al., 2003).

For both cross-fold and cross-topic validations, we use different corpora to evaluate the

effectiveness of the proposed approaches. The first corpus consists of 90 persuasive essays

and the associated coding scheme specifying three different types of argument components:

Major Claim, Claim, and Premise (Stab and Gurevych, 2014a). The coding scheme was then

revised for use in a more expensive annotation study which yielded 420 annotated persuasive

essays (Stab and Gurevych, 2017). The third corpus are academic writings collected from

college Psychology classes and has sentences classified based on their argumentative roles:

hypothesis, support finding, opposition finding, or non-argumentative (Barstow et al., 2015).

We directly compare the proposed argument mining approaches to state-of-the-art models

(Stab and Gurevych, 2014b, 2017).

1.1.3 Extrinsic Evaluation: Automated Essay Scoring

Aiming at high performance and robust models of argument mining, the second goal of this

thesis is to apply argument mining in automated argumentative essay evaluation. As pro-

posed in the literature, a direct approach would be using prediction outcome (e.g., arguments

identified by prediction models) to call students’ attention to not only the organization of

their writings but also the plausibility of the provided arguments in the text (Burstein et al.,

2004; Falakmasir et al., 2014). Such feedback information also helps teachers quickly eval-

uate writing performance of their students for better instructions. However, deploying an

argument mining model to an existing computer-supported writing service, and evaluating

its benefit to student learning would require a great amount of time and effort. Thus, it is

set up as the long-term goal of our research. In the course of this thesis, we instead look for

answers to the question of whether the outcome of automated argument mining can predict

essay scores (Ghosh et al., 2016; Klebanov et al., 2016; Wachsmuth et al., 2016).

In a recent study, Ghosh et al. (2016) annotated a set of persuasive essays following

the coding scheme in (Stab and Gurevych, 2014a) and evaluated a set of coarse-grained
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argumentation features for persuasive essay scoring. In a similar vein of study, Klebanov

et al. (2016) investigated a relationship between argumentation content and structure with

essay quality using TOEFL11 corpus (Blanchard et al., 2013). We follow their settings to

conduct AES experiments but further leverage the extrinsic evaluation of argument mining

models to reveal how their accuracy impacts the performance of automated persuasive essay

scoring. By argument mining accuracy, we mean the classification performance of each basic

argument mining task.

Moreover, this thesis explores the value of argument mining in AES by investigating how

much argumentation content and structure contribute to AES performance in comparison

with other frequently used features of essay such as word-count, lexicon. We both proposed

a compatitive base model for AES as well as use the Enhanced AI Scoring Engine (EASE)

library2 to extract features from essays for base AES models.

When an AES system is trained using essays from a specific writing prompt, it usually

suffers from low performance when used on essays of different prompts. Because obtaining

a large number of manually graded essays each time a new prompt is introduced is costly,

domain adaptation is highly desired but yet challenging when designing AES systems. Re-

garding this matter, we evaluate how well argumentation content and structure perform in

AES when training and test essays are of different prompts. Argumentative essays for eval-

uation are collected from the Automated Student Assessment Prize (ASAP) Competition3

sponsored by the Hewlett Foundation in 2012.

1.2 THESIS STATEMENTS

Motivated by the benefit of using contextual information in writing topics and context win-

dows in argument mining, this thesis proposes context-aware argument mining approaches

that make use of additional context features derived from such contextual information. This

thesis aims to support the following hypotheses of the effectiveness of the proposed context

2https://github.com/edx/ease
3http://www.kaggle.com/c/asap-aes
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features :

• H1. The proposed contextual features improve the argument component identification

in student essays.

• H2. The proposed contextual features improve the argumentative relation classification

in student essays.

• H3. Prediction output of end-to-end argument mining provides effective features for

automated argumentative essay scoring.

1.3 CONTRIBUTIONS

Through supporting the above research hypotheses, the contributions of the thesis are re-

vealed. The first contribution is an argument mining system that offers state-of-the-art

performance.

• A novel algorithm to extract argument and domain words from text. As shown in

subsequent studies, the extracted lexicons are essential to improve argument mining

performance, especially in cross-topic validation. Although different approaches were

proposed to learn different aspects of argumentative languages, e.g., language expressing

claims vs. language organizing these claims, in argumentative text, this research is the

first time that language aspects separation is brought into an application in argument

mining.

• Innovative local-context features by exploiting context windows. While argument and

domain words enable abstractions of topic-dependent information and thus make use of

the global context of the topic domain, a context window captures the local relations

between the input argument component and surrounding sentences. Our experiments

show that local and global context information represent complementary aspects of the

relation between two argument components, and combining the two sets of contextual

features achieves the best performance.
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• While the main focus of this thesis is to solve the two classification tasks in argument

mining, i.e., argument component and argumentative relation classifications, we also

develop a sequence labeling model to segment sentences into argumentative vs. non-

argumentative phrases for the AES studies. As a consequence, an end-to-end argument

mining system that performs the argument parsing pipeline is developed. Given a free

text as input, the argument mining system can parse its sentences to identify differ-

ent types of argument components, and determine argumentative relations among those

components.

The second contribution of this thesis is a comprehensive study on the impact of argument

content and structure on AES performance.

• The current research is the first to perform an extrinsic comparison of argument mining

models for persuasive essay scoring. We evaluate argument mining models in two extreme

cases where argument components were segmented manually versus automatically.

• We also study a larger set of argumentation features for persuasive essay scoring than

prior studies. Our study not only compares argumentation features with word-count and

sentence-count, but also more advanced features extracted by an existing AES program.

• Finally, we are the first to evaluate the generality of argumentation features in AES

in both in-domain and cross-domain evaluations. Research has explored a wide variety

of domain adaptation techniques for AES depending on whether annotated data from

a target domain is available or not. Our study does not solve domain adaptation but

uses argumentation features to capture off-topic argumentation strategies in persuasive

essays, and thus are domain-independent.

1.4 THESIS OUTLINE

1.4.1 Background and Data

In the Chapter 2, we discuss argument mining from its theoretical fundamentals to existing

computational studies in different domains, and briefly introduce recent research on argument
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mining for automated essay scoring.

Chapter 3 presents in detail the three corpora for argument mining research. Our research

utilizes two annotated corpora of persuasive essays, and a corpus of academic essays to prove

the generality of the proposed approaches.

1.4.2 Argument Component Classification

Chapters 4 and 5 present the work on argument component classification and support the

first hypothesis H1. In Chapter 4 we develop an algorithm for extracting argument and

domain words to use as novel topic-context features and feature constraints. Chapter 5

presents the improved model which achieves state-of-the-art performance in two argument

mining corpora.

1.4.3 Argumentative Relation Mining

Chapters 6 and 7 supports the second hypothesis H2 through presenting context-aware argu-

mentative relation mining approaches that make use of topic and window-context features.

From the idea of context-window, we not only introduce new discourse relation features but

also leverage textual relation features to improve argumentative relation mining in differ-

ent corpora. We also experiment with different heuristics for forming context-windows of

argument components.

1.4.4 End-to-end Argument Mining

Given the improvements made to argument mining tasks, Chapter 8 compares the proposed

end-to-end argument mining system with the state-of-the-art models. The proposed system

significantly outperforms a pipeline argument mining system, and achieves performance close

to a joint-prediction model.
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1.4.5 Automated Score Prediction for Persuasive Essays

Our first extrinsic evaluation of argument mining is presented in Chapter 9 where two end-to-

end argument mining systems in Chapter 8 are compared in terms of using argumentation

features derived from argument mining output to predict essay scores. Argument mining

systems are evaluated in two extreme cases that their inputs are manually or automatically

identified argument components.

While the first extrinsic evaluation only considers argumentation features, Chapters 10

and 11 further leverage the evaluation by putting argumentation features in context of base

models for automated essay scoring. Moreover, Chapter 11 emphasizes the value of argu-

mentation features in cross-domain essay scoring. Findings in these three chapters support

the third hypothesis H3.

1.4.6 Appendixes

• Appendix A lists two set of argument words that are extracted from unlabeled data and

used in the proposed argument mining models.

• Appendix B summarizes the coding manual for academic essays used in our studies (see

Chapters 5, 7).

• Appendix C gives an output example of the Bayesian segmentation algorithm. This

algorithm is utilized to create segment contexts for our proposed argumentative relation

mining models (Chapter 7).

• Appendix D presents the results of using argumentation features for predicting peer

ratings in academic essays.

• Appendix E presents a preliminary study on essay score explanation with argumentation

features. This is the first step towards an envisioned intelligent feedback system for

argumentative writings.

• Appendix F investigates the cross-domain essay scoring problem from a new perspective

of score scaling.
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2.0 BACKGROUND

2.1 ARGUMENTATION THEORIES

From dialectics and philosophy, models of argumentation have spread to core areas of AI

including knowledge representation, non-monotonic reasoning, and multi-agent system re-

search (Bench-Capon and Dunne, 2007). This has given rise to computational argumentation

with two main approaches which are abstract argumentation and structured argumentation

(Lippi and Torroni, 2015). Abstract argumentation considers each argument as a primary

element without internal structure, and focuses on the relation between arguments, or sets

of them. In contrast, structured argumentation studies internal structure (i.e., argument

components and their interaction) of argument that is described in terms of some knowl-

edge representation formalism. While abstract argumentation which is also called macro

argumentation considers argumentation as a process, structured argumentation considers

argumentation as a product and is also called micro argumentation (Mochales and Moens,

2011; Stab et al., 2014). Structured argumentation models are those typically employed in

argument mining where the goal is to extract argument components from natural language

texts. In this section, we describe two notable structured argumentation theories which are

Macro-structure of Argument by Freeman (1991), and Argumentation Scheme by Walton

et al. (2008). From the provided description of argumentation theories, we expect to give

a concise yet sufficient introduction of related argument mining studies from a theoretical

perspective.

Among a vast amount of structured argumentation theories (Bentahar et al., 2010;

Besnard et al., 2014), the premise-conclusion models of argument structure (Freeman, 1991;

Walton et al., 2008) are the most commonly used in argument mining studies. In fact, the
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three corpora of argumentative writings that are studied in this thesis have coding schemes

derived from the premise-conclusion structure of argument. Walton et al. (2008) gave a

simple and intuitive description of argument which specifies an argument as a set of state-

ments consisting a conclusion, a set of premises, and an inference from the premises to the

conclusion. In the literature, claims are sometimes used as a replacement of conclusion, and

premises are mentioned as evidences or reasons (Freeley and Steinberg, 2008). The conclu-

sion is the central component of the argument, and is what “we seek to establish by our

argument” (Freeley and Steinberg, 2008). The conclusion statement should not be accepted

without additional reasons provided in premises.

The second component of argument, i.e., premise, is therefore necessary to underpin the

plausibility of the conclusion. Premises are “connected series of sentences, statements or

propositions that are intended to give reason” for the conclusion (Freeley and Steinberg,

2008). In a more general representation, premise can either support or attack the conclu-

sion (i.e., giving reason or refutation) (Besnard and Hunter, 2008; Peldszus and Stede, 2013;

Besnard et al., 2014). Based on the premise-conclusion standard, argument mining studies

have proposed different argumentative relation schemes to cope with the great diversity of

argumentation in natural language texts, for instances claim justification (Biran and Ram-

bow, 2011), claim support vs. attack (Stab and Gurevych, 2014b), verifiability of support

(Park and Cardie, 2014).

While most premise-conclusion models do not differentiate functions of different premises,1

they enable the macro-structure of arguments which specifies the different ways that premises

and conclusions combine to form larger complexes (Freeman, 1991). In the Macro-structure

of Argument Theory the term ‘argument’ is thus not for premises, but for the complex of

one or more premises put forward in favor of the conclusion. For example, Freeman (1991)

identified four main macro-structures of arguments: linked, serial, convergent, and divergent,

to represent whether different premises contribute together, in sequence, or independently to

one or multiple conclusions. An example of a complex macro-structures of argument is shown

in Figure 3. Based on Freeman’s theory, Peldszus and Stede (2013) expanded the macro-

1Toulmin’s argument structure theory distinguishes the role of different types of premise, i.e., data,
warrant, and backing, in the argument (Toulmin, 1958).

15



Conclusion1

Premise1

Support

Premise2

Conclusion2Support

Figure 3: A complex macro-structure of argument consisting of linked structure (i.e., the

support of Premise1 and Premise2 to Conclusion1), and serial structure (i.e., the support of

the two premises to Conclusion2).

structure to cover more complex attack and counter-attack relations. In argument mining,

the argumentation structure identification task aims at identifying the macro-structure of

arguments in text (Palau and Moens, 2009; Peldszus and Stede, 2015; Persing and Ng, 2016;

Stab and Gurevych, 2017).

Another notable construct of premise-conclusion abstraction is the Argumentation Scheme

Theory (Walton et al., 2008). The authors used the argumentation scheme notion to identify

and evaluate reasoning patterns commonly used in everyday conversational argumentation,

and other contexts, notably legal and scientific argumentation. In Argumentation Scheme

Theory, arguments are instances of abstract argumentation schemes each of which requires

premises, the assumption implicitly holding, and the exceptions that may undercut the ar-

gument. Each scheme has a set of critical questions matching the scheme and corresponding

to its premises, assumptions and exceptions, and such a set represents standard ways of

critically probing into an argument to find aspects of it that are open criticism. Figure 4

illustrates the Argument-from-Cause-to-Effect scheme consisting of two premises and a con-

clusion. As we can see, argument schemes are distinguished by their content templates

rather than their premise-conclusion structures. Identifying the argumentation scheme in

the written argument has been considered to help recover implicit premises and re-construct

the full argument (Feng and Hirst, 2011). On the other hand, research was also conducted to

analyze the similarity and difference between argumentation schemes and discourse relations

16



Argument from cause to effect

• Major premise: Generally, if A occurs, then B will (might) occur.
• Minor premise: In this case, A occurs (might occur).
• Conclusion: Therefore, in this case, B will (might) occur.

Critical questions

1. Critique the major premise: How strong is the causal generalization (if it is true at all)?
2. Critique the minor premise: Is the evidence cited (if there is any) strong enough to warrant

to the generalization as stated?
3. Critique the production: Are there other factors that would or will interfere with or coun-

teract the production of the effect in this case?

Figure 4: Argumentation scheme: Argument from Cause to Effect.

(i.e., Penn Discourse Treebank discourse relations (Prasad et al., 2008)) which is considered

a fruitful support of automated argument classification and process (Cabrio et al., 2013).

This thesis utilizes the annotated corpora compiled by Stab and Gurevych (2014a, 2017),

whose annotation scheme is a simplification of the premise-conclusion model (see the first

section of Chapter 1). The annotation scheme defines three types of argument components

and considers only relations in argument component pairs. Thus, it ignores the more complex

structures that may involve interaction, e.g., linked vs. convergent, between premises. We

think such a simplification is reasonable for the purpose of a wide application to different text

genres and the ease to develop prediction models with limited data. Argumentation schemes

are also skipped in the annotation so that the focus is on direct support and opposition

between argumentative content.

2.2 ARGUMENT MINING IN DIFFERENT DOMAINS

Argument mining is a relatively new research domain so its problem formulation is not

well-defined but rather is considered potentially relevant to any text mining application
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that targets to argumentative text (Mochales and Moens, 2011; Peldszus and Stede, 2013;

Lippi and Torroni, 2015). Moreover, there is no consensus yet on an annotation scheme for

argument components, or on the minimal textual units to be annotated. For these reasons,

we follow Peldszus and Stede (2013) and consider in this study “argument mining as the

automatic discovery of an argumentative text portion, and the identification of the relevant

components of the argument presented there.” We also borrow the term “argumentative

discourse unit” to refer to the textual unit, e.g., text segment, sentences, clauses, which are

considered as argument components (Peldszus and Stede, 2013).

In scientific domains, research has been long focusing on identifying the rhetorical status

(i.e., the contribution to the overall text function of the article) of text segments, i.e., zone,

to support summarization and information extraction of scientific publications (Teufel and

Moens, 2002). Different zone mining studies were also conducted for different scientific do-

mains, e.g., chemistry, biology, and proposed different zone annotation schemes that targets

the full-text or only abstract section of the articles (Lin et al., 2006; Hirohata et al., 2008;

Teufel et al., 2009; Guo et al., 2010; Liakata et al., 2012). However, none of the zone mining

models described local interactions across segments and thus the embedded argument struc-

tures in text are totally ignored. Despite this mismatch between zone mining and argument

mining, the two areas solve a similar core problem which is text classification, which makes

zone mining an inspiration for argument mining models.

Two other domains that have argument mining intensively studied are legal documents

and user-generated comments. In the legal domain, researchers seek for applications of

automated recognition of arguments and argumentation structures in legal documents to

support information retrieval, visualizing and qualifying arguments (Grabmair et al., 2015;

Mochales and Moens, 2011). A wide range of argument mining tasks have been studied

including argumentative text identification (Moens et al., 2007), sentence role identification

in legal arguments (Grabmair et al., 2015; Bansal et al., 2016), argument component classi-

fication (i.e., premise vs. conclusion), and argumentation structure identification (Mochales

and Moens, 2008; Palau and Moens, 2009). While the computational models for such argu-

ment mining tasks were evaluated using legal document corpora, those studies all employed

the genre-independent premise-conclusion framework to represent the argument structure.
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Therefore many prediction features used in argument mining models for legal text, e.g., in-

dicative keywords for argumentation, discourse connectives, are generally applicable to other

argumentative text genres, e.g., student essays. In fact, studies on argument mining in stu-

dent essays including ours have taken advantage of solid work for scientific publications and

legal documents to develop prediction features.

In user-generated comments, argument mining has been studied as a natural extension

to opinion mining. While opinion mining answers what people think about for instance a

product (Somasundaran and Wiebe, 2009), argument mining identifies reasons that explain

the opinion. Among the first research on argument in user comments, Cabrio and Villata

(2012) studied the acceptability of arguments in online debates by first determining whether

two user comments support each other or not. In their study, arguments are users’ pros

and cons comments of the debate topic and were manually selected. Boltužić and Šnajder

(2014) extended the work by mining user comments for more fine-grained relations, i.e.,

{explicit, implicit} × {support, attack}. Park and Cardie (2014) addressed a different

aspect of argumentative relation which is the verifiability of argumentative propositions in

user comments. While the task does not solve whether the given proposition is a support

or opposition of the debate topic, it provides a mean to analyze the arguments in terms

of the adequacy of their support assuming support/attack propositions are labeled already.

From another aspect, predicting argumentative relations between user comments usually has

multiple-sentence texts as input while argument mining in legal and scientific domains usually

work at sentence/clause levels. For our research on argument mining in student essays, while

the prediction problems are formulated as sentence/clause classification, our window-context

features are inspired by prior work on argumentative relations of user comments.

Argument mining in student essays is rooted in argumentative discourse analysis for

automated essay scoring (Burstein et al., 2003). In argumentative2 writing assignments,

students are given a topic and asked to propose a thesis statement and justify support

for the thesis. Oppositions are sometime required to make the thesis risky and nontrivial

(Barstow et al., 2015). Classifying argumentative elements in student essays has been used

to support automated essay grading (Ong et al., 2014), peer review assistance (Falakmasir

2The term “persuasive” was also used as an equivalent (Burstein et al., 2003; Stab and Gurevych, 2014a).
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et al., 2014), and providing writing feedback (Burstein et al., 2004). Burstein et al. (2003)

built a discourse analyzer for persuasive essays that aimed at identifying different discourse

elements (i.e., sentence) such as thesis, supporting idea, conclusion. Similarly, Falakmasir

et al. (2014) aimed at identifying thesis and conclusion statements in student writings, and

used the prediction outcome to scaffold peer reviewers of an online peer review system.

Stab and Gurevych (2014a) annotated persuasive essays using a domain-independent scheme

specifying three types of argument components (major claim, claim, and premise) and two

types of argumentative relations (support and attack). Stab and Gurevych (2014b) utilized

the corpus for automated argument component and argumentative relation identification.

Ong et al. (2014) developed a rule-based system that labels each sentence in student writings

in psychology classes with an argumentative role, e.g., hypothesis, support, opposition, and

found a strong relation between the presence of argumentative elements and essay scores.

Our context-aware argument mining models are developed and evaluated using the persuasive

corpora developed by Stab and Gurevych (2014a, 2017), which have been used widely for

argument mining studies. This allows us to not only compare our proposed models with the

state-of-the-art, but also apply argument mining to student essay scoring.

2.3 ARGUMENT MINING TASKS AND FEATURES

2.3.1 Argument Component Identification

Argument component identification aims at determining the boundaries (i.e., begin and end

tokens) of argument components in a sentence. While this is usually considered the first

step in end-to-end argument mining systems, it is not always needed for some text genres.

For example, our Academic Essay Corpus applies argumentative label, i.e., Hypothesis vs.

Finding, to the whole sentence, so that does not require an identification of argument com-

ponent (Barstow et al., 2015). In contrast, the Persuasive Essay Corpora have argument

components, e.g., claim and premise, identified both identical or internal to sentences (Stab

and Gurevych, 2014a, 2017), and there exist multiple-component sentences like the following:
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I think that [governments should attach heavier weight to other social issues such as edu-
cation and housing needs]Claim because [those are the most essential ways enable to make
people a decent life]Premise.

Madnani et al. (2012) were among the first to address the problem of identifying the

organizational elements, which they called “shell”, in argumentative discourse. In the above

sentence, the shell is detected as “I think that” and “because”. Their study annotated

a set of student essays and developed a supervised sequence model using the Conditional

Random Field algorithm (Lafferty et al., 2001) to label each word in the sequence as shell or

not. Similar sequence labeling approaches were also proposed in later studies on argument

component, e.g., claim and premise, extraction in social media and persuasive essays (Goudas

et al., 2014; Stab and Gurevych, 2017). Among a great variety of features, raw token, cue

words, term frequency and term likelihood given label are commonly used and the most

effective.

Argument component identification was also cast as a text classification problem. Levy

et al. (2014) proposed a pipeline approach in which the first step detects topic-relevant

sentences and the second step detects boundaries of claim in such sentences. They, however,

extracted claims from a set of sub-sentence candidates, i.e., consecutive sequence of three

tokens or more. Solving a classification on claim candidates gives them a flexibility to rank

candidates and retrieve top instances, which is usually helpful for later information retrieval

tasks. Persing and Ng (2015) utilized a persuasive essay corpus (Stab and Gurevych, 2014a)

to develop a heuristic for extracting phrases from sentences. While their method did not

directly solve the argument component identification, the extracted phrases were claimed to

have a high coverage of argument components and fed as input to an argument component

classification model.

In this thesis, we implement the sequence model proposed in (Stab and Gurevych, 2017)

for argument component identification in our end-to-end argument mining system.

2.3.2 Argument Component Classification

To solve the argumentative label classification tasks (e.g., argumentative vs. not, premise

vs. conclusion, rhetorical status of sentence), a wide variety of machine learning models

21



have been applied ranging from classification models, e.g., Naive Bayes, Logistic Regression,

Support Vector Machine (SVM), to sequence labeling models such as Hidden Markov Model

(HMM), Conditional Random Field (CRF). Especially for zone mining in scientific articles,

sequence labeling is a more natural approach given an observation that the flow of scien-

tific writing exposes typical moves of rhetorical roles across sentences. Studies have been

conducted to explore both HMM and CRF for automatically labeling rhetorical status of

sentences in scientific publications using features derived from language models and relative

sentence position (Lin et al., 2006; Hirohata et al., 2008; Liakata et al., 2012).

In the realm of argument mining, argument component identification studies have been

focusing on deriving features that represent the argumentative discourse while being loyal

to traditional classifiers such as SVM, Logistic Regression. Sequence labeling models were

not used mostly due to the loose organization of natural language texts, e.g., student essays,

user comments, that are studied here. Prior studies have often used seed lexicons, e.g.,

indicative phrases for argumentation (Knott and Dale, 1994), discourse connectives (Prasad

et al., 2008), to represent the organizational shell of argumentative content (Burstein et al.,

2003; Palau and Moens, 2009; Stab and Gurevych, 2014b; Peldszus, 2014). While the use

of such lexicons was shown to improve prediction output, their coverage is far from efficient

given the great diversity of argumentative writing in terms of both topic and style.

Given the fact that the argumentative discourse consists of a language used to express

claims, evidences and another language used to organize them, researchers have explored

both supervised and unsupervised approaches to mine the organizational elements of argu-

mentative text. Madnani et al. (2012) used CRF to train a supervised sequence model using

simple features like word frequency, word position, regular expression patterns. To leverage

the availability of large amount of unprocessed data, Séaghdha and Teufel (2014) and Du

et al. (2014) built topic models based on LDA (Blei et al., 2003) to learn two language mod-

els: topic language and shell language (rhetorical language, cf. (Séaghdha and Teufel, 2014)).

While Madnani et al. (2012) and Du et al. (2014) used data which were annotated for shell

boundaries to evaluate how well the proposed model separates shell from content, Séaghdha

and Teufel (2014) showed that features extracted from the learned language models help

improves a supervised zone mining model. In a similar vein, we post-process LDA output
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to extract argument and domain words which are used to improve the argument component

identification.

In addition, contextual features were also applied to represent the dependency nature of

argument components. The most popular are history features that indicate the argumenta-

tive label of preceding one or more components, and features extracted from preceding and

following components (Teufel and Moens, 2002; Palau and Moens, 2009; Liakata et al., 2012;

Stab and Gurevych, 2014b). In many writing genres, e.g., debate, essay, scientific article, the

availability of argumentative topics provide valuable information to help identify argumenta-

tive portions in text as well as classify their argumentative roles. Levy et al. (2014) proposed

the context-dependent claim detection task in which a claim is determined with respect to

a given context - i.e., the input topic. To represent the contextual dependency, the authors

made use of cosine similarity between the candidate sentence and the topic as a feature. For

scientific writings, genre-specific contextual features were also considered including common

words with headlines, section order (Teufel and Moens, 2002; Liakata et al., 2012). As for

context features, we use writing topic to guide the separation of argument words from do-

main words. We also use common words with surrounding sentences and with writing topic

as features.

2.3.3 Argumentative Relation Classification

The next step of identifying argument components is to determine the argumentative rela-

tions, e.g., attack and support, between those components, or between arguments formed

by those components. Researchers have explored different argumentative relation schemes

that can be applied to a pair of components, e.g., support vs. not (Biran and Rambow,

2011; Cabrio and Villata, 2012; Stab and Gurevych, 2014b), implicit and explicit support

and attack (Boltužić and Šnajder, 2014). Because the instances being classified are pairs

of textual units, features usually involve information from both elements (i.e., source and

target) of the pair (e.g., word pair, discourse indicators in source and target) and the relative

position between them (Stab and Gurevych, 2014b). Beyond features from superficial level,

features were also extracted from semantic level of the relation including textual entailment
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and semantic similarity (Cabrio and Villata, 2012; Boltužić and Šnajder, 2014). Based on

those ideas, our research combines semantic relations with window segments to leverage the

use of contextual features for argumentative relation mining.

Unlike argument component identification where textual units are sentences or clauses,

textual units in argumentative relation classification vary from clauses (Stab and Gurevych,

2014b) to multiple sentences (Biran and Rambow, 2011; Cabrio and Villata, 2012; Boltužić

and Šnajder, 2014). However, only little research has investigated the use of discourse

relations within the text fragment to support the argumentative relation prediction. Biran

and Rambow (2011) proposed that justifications of claims usually contain discourse structure

which characterizes the argumentation provided in the justification in support of the claim.

On the other hand, Cabrio et al. (2013) studied the similarities and differences between Penn

Discourse Treebank (Prasad et al., 2008) discourse relations and argumentation schemes

(Walton et al., 2008) and showed that some PDTB discourse relations can be appropriate

interpretations of particular argumentation schemes. Inspired by these pioneering studies,

our thesis proposes to consider each argumentative unit in its relation with other surrounding

text to enable advanced features extracted from the discourse context of the unit.

2.3.4 Argumentation Structure Identification

In contrast to the argumentative relation task, argumentation structure task emphasizes the

attachment identification that is to determine if two argument components directly attach

to each other, based on their rhetorical functions for the persuasion purpose of the text.

Attachment is considered a generic argumentative relationship that abstracts both support

and attack and is restricted to tree-structures in that a node attaches (has out-going edge)

to only one other node, while can be attached (has in-coming edge) from one or more other

nodes. Palau and Moens (2009) viewed legal argumentation as rooted at a final decision that

is attached by conclusions which are further attached by premises. They manually examined

a set of legal texts and defined a context-free argumentative grammar to show a possibility

of argumentative parsing for case law argumentation. Peldszus and Stede (2015) similarly

assumed the tree-like representation of argumentation that has central claim be the root
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node to which claims point (i.e., support or attack). Their data-driven approach took a

fully-connected graph of all argument components as input and determined the edge weights

based on features extracted from each component such as lemma, part-of-speech, dependency,

as well the relative distance between the components. The minimum spanning tree of such

weighted graph is returned as the output argumentation structure of the text. Assuming that

premises, conclusions and their attachment were already identified, Feng and Hirst (2011)

aimed at determining the argumentation scheme (Walton et al., 2008) of the argument with

the ultimate goal of recovering the implicit premises (enthymemes) of arguments. Besides

the general features (relative position between conclusion and premises, number of premises)

the study included scheme-specific features which are different for each target scheme (in

one-vs-others classification) and based on pre-defined keywords and phrases.

A challenge to our context-aware argument mining model is to determine the right con-

text window given the argument component. An ideal context window is the minimal seg-

ment that expresses a complete justification in a support of the argument component. Thus,

identifying the ideal context window of an argument component requires identifying the ar-

gumentation structure. To make the context-aware argument mining idea more practical

and easier to implement, our research does not require sentences in a context window to be

semantically or topically related while some kind of relatedness among those sentences might

be useful for the final argument mining tasks. In the course of this thesis, context windows

are determined using simple heuristics such as window-size and text segmentation output.

In the future, argument structure identification for determining context windows is worth

an investigation.

2.3.5 End-to-End Argument Mining

Despite the fact that argument mining is a new research field, its tasks all find relevance

in long-history research such as discourse parsing, sequence model, text classification. This

advantage certainly boosts-up the development of argument mining and the creation of end-

to-end argument mining systems (Palau and Moens, 2009; Persing and Ng, 2016; Stab and

Gurevych, 2017). Given an unannotated text, an end-to-end argument mining system first
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Figure 3: Graphical model representation of different models of discrete data.

4.2 Mixture of unigrams

If we augment the unigram model with a discrete random topic variablez (Figure 3b), we obtain a
mixture of unigramsmodel (Nigam et al., 2000). Under this mixture model, each document is gen-
erated by first choosing a topicz and then generatingN words independently from the conditional
multinomial p(w|z). The probability of a document is:

p(w) = ∑
z

p(z)
N

∏
n=1

p(wn |z).

When estimated from a corpus, the word distributions can be viewed as representations of topics
under the assumption that each document exhibits exactly one topic. As the empirical results in
Section 7 illustrate, this assumption is often too limiting to effectively model a large collection of
documents.

In contrast, the LDA model allows documents to exhibit multiple topics to different degrees.
This is achieved at a cost of just one additional parameter: there arek− 1 parameters associated
with p(z) in the mixture of unigrams, versus thek parameters associated withp(θ |α) in LDA.

4.3 Probabilistic latent semantic indexing

Probabilistic latent semantic indexing (pLSI) is another widely used document model (Hofmann,
1999). The pLSI model, illustrated in Figure 3c, posits that a document labeld and a wordwn are

1000

Figure 5: Probabilistic Latent Semantic Analysis

identifies argument components (or argumentative sentences) to prepare input for the argu-

mentation structure tasks: argument component and argumentative relation classifications.

While classifying argument components and argumentative relations can be solved in-

dependently, the mutual information between them, e.g., argumentative relations are only

allowed between certain types of argument components, suggests that exploiting prediction

output of one task can improve the other. For example, predicted label of argument com-

ponents has been used as an effective feature in argumentative relation mining (Stab and

Gurevych, 2014b; Nguyen and Litman, 2016a). This suggests pipeline-based argument min-

ing in which argument component and argumentative relation classifications are resolved in

sequence. To better utilize the benefit of mutual information between argument components

and argumentative relations, research also proposed to solve the two tasks jointly. The idea is

that each task is first solved individually by base classifiers. The base classifiers assign labels

to components and component pairs along with optional confidence scores. Then, a con-

strained optimization problem is formed to determine the best label assignment by resolving

conflicts in the current assignments. In the approach proposed by Peldszus and Stede (2015),

a complete argument graph is created where weights of edges between argument component

are determined from output of base classifiers. The authors then solved a minimal spanning

tree (MST) problem from the argument graph, which returned an argumentation structure

in tree-like form.

In a different approach, Stab and Gurevych (2017) and Persing and Ng (2016) proposed

Integer Linear Programming (ILP) frameworks to solve the argumentation structure tasks

jointly. The proposed ILP frameworks used binary variables to represent labels of argument
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component and argumentative relation, and prediction output of base classifiers are incor-

porated into objective functions. Both MST and ILP frameworks are generic and have no

specific requirement on the base classifiers. This thesis, however, focuses on improving base

classifiers for argument components and argumentative relations and developing a pipeline

end-to-end argument mining. However, joint prediction frameworks should be easily applied

to our system. We believe that by offering more accurate stand-alone models for argument

component and argumentative relation classifications, we will improve the joint prediction.

2.4 TOPIC MODELS AND APPLICATIONS IN ARGUMENT MINING

2.4.1 Latent Dirichlet Allocation Topic Model

The principle idea in topic models is that documents are mixtures of topics, where a topic is

a probability distribution over words (Blei et al., 2003; Hofmann, 1999, 2001; Steyvers and

Griffiths, 2007; Griffiths and Steyvers, 2004; Blei, 2012). Hofmann (1999, 2001) introduced

Probabilistic Latent Semantic Analysis (PLSA) that decomposes the joint probability of

observing a term w and a document d with the use of a latent variable z which represent

latent topics, where w and d are independent given z, and

P (w,d) = P (d)P (w|d)

P (w|d) =
∑
z

P (w|z)P (z|d)

Figure 5 illustrates the plate digram of PLSA. Document d and word w are observed so

they are represented by shaded nodes. Plates indicate repetition. The outer plate represents

documents and the inner plate represents the repeated choices of topics and words within a

document. PLSA assumes that a topic z is a distribution over a fixed size of vocabulary V ,

but does not explicitly specify this distribution. The model also assumes that a document

d consists of multiple topics, but the distribution over that fix number of topics is not

specified either. Therefore, in PLSA both topics and documents are represented as generic

multinomial distributions, i.e., lists of numbers. Because PLSA does not define a generative
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Figure 7: Graphical model representation of the smoothed LDA model.

These two steps are repeated until the lower bound on the log likelihood converges.
In Appendix A.4, we show that the M-step update for the conditional multinomial parameterβ

can be written out analytically:

βi j ∝
M

∑
d=1

Nd

∑
n=1

φ∗
dniw

j
dn. (9)

We further show that the M-step update for Dirichlet parameterα can be implemented using an
efficient Newton-Raphson method in which the Hessian is inverted in linear time.

5.4 Smoothing

The large vocabulary size that is characteristic of many document corpora creates serious problems
of sparsity. A new document is very likely to contain words that did not appear in any of the
documents in a training corpus. Maximum likelihood estimates of the multinomial parameters
assign zero probability to such words, and thus zero probability to new documents. The standard
approach to coping with this problem is to “smooth” the multinomial parameters, assigning positive
probability to all vocabulary items whether or not they are observed in the training set (Jelinek,
1997). Laplace smoothing is commonly used; this essentially yields the mean of the posterior
distribution under a uniform Dirichlet prior on the multinomial parameters.

Unfortunately, in the mixture model setting, simple Laplace smoothing is no longer justified as a
maximum a posteriori method (although it is often implemented in practice; cf. Nigam et al., 1999).
In fact, by placing a Dirichlet prior on the multinomial parameter we obtain an intractable posterior
in the mixture model setting, for much the same reason that one obtains an intractable posterior in
the basic LDA model. Our proposed solution to this problem is to simply apply variational inference
methods to the extended model that includes Dirichlet smoothing on the multinomial parameter.

In the LDA setting, we obtain the extended graphical model shown in Figure 7. We treatβ as
a k×V random matrix (one row for each mixture component), where we assume that each row
is independently drawn from an exchangeable Dirichlet distribution.2 We now extend our infer-
ence procedures to treat theβi as random variables that are endowed with a posterior distribution,

2. An exchangeable Dirichlet is simply a Dirichlet distribution with a single scalar parameterη. The density is the same
as a Dirichlet (Eq. 1) whereαi = η for each component.
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Figure 6: Latent Dirichlet Allocation

process for its topic distribution, the model exposes several problems: number of parameters

increases linearly with the size of the training corpus and no way to assign probability to

unseen documents (Blei et al., 2003).

Blei et al. (2003) extended PLSA by introducing a Dirichlet prior over the topic distri-

bution and named the resulting generative model Latent Dirichlet Allocation. The model’s

graphical representation is shown in Figure 6. The generative process of each document d

in a corpus D is as follows (Blei et al., 2003):

1. Decide on the number of words N the document will have: N ∼ Poisson(ξ).

2. Choose a topic mixture, i.e., multinomial distribution, θ for the document according to

a Dirichlet distribution over a fixed set of k topics: θ = Dir(α)

3. Generate each word wi in the document by:

a. Picking a topic according to the multinomial distribution that was sampled above:

zi = Multinomial(θ).

b. Choose a word wi from p(wi|zi, β)

In this setting, the dimensionality k of of Dirichlet distribution (i.e., dimension of topic

variable z) is provided and fixed. Alpha is a k-dimensional parameter vector with components

αi > 0. Beta is a k×V matrix of word probability given topic, where βij = p(wj = 1|zi = 1)

and V is the vocabulary size. Each row of β is drawn independently from a Dirichlet

distribution with a symmetric parameter vector, i.e., vector components are all equal to η.
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Along with number of topics k, two hyper-parameters α, i.e., document-topic prior pa-

rameter, and β, i.e., word-topic prior parameter, need to set-up before run LDA. A simple

implementation of LDA is to have symmetric Dirichlet priors when components in the pa-

rameter are the same. However, it has been shown that asymmetric α performs better than

a symmetric prior, while an asymmetric β is largely not more helpful than a symmetric prior

(Wallach et al., 2009). Also, a general intuition on the magnitude of α and β is that higher

α values mean documents contain more similar topic contents, and a high β will result in

topics with more similar word contents.

Given a set of documents, different learning algorithms were proposed to learn the

document-topic and word-topic probabilities including variational expectation maximization

(Blei et al., 2003) and collapsed Gibbs sampling (Griffiths and Steyvers, 2004). Extensions

to LDA has been proposed including hierarchical LDA (Teh et al., 2005), supervised LDA

(Mcauliffe and Blei, 2008).

2.4.2 LDA Topic Modes in Argument Mining

LDA topic models have been recognized as a useful tool for analyzing large collections of

free-text documents. Applications of LDA to natural language processing can be found in a

wide variety of areas such as entity analysis (Newman et al., 2006), multi-document summa-

rization (Haghighi and Vanderwende, 2009), word-sense disambiguation (Boyd-Graber et al.,

2007). In opinion mining and sentiment analysis, LDA topic models were successfully used

to separate topic and opinion words (Mei et al., 2007; Lin and He, 2009; Zhao et al., 2010;

Jo and Oh, 2011). However, LDA has been studied limitedly in argument mining.

Madnani et al. (2012) were the first who proposed the idea of separating shell language,

e.g., “The argument states that”, from the language that specifies claims and evidences, e.g.,

“based on the result of the recent research, there probably were grizzly bears in Labrador.”

Du et al. (2014) based on the idea of HMM-LDA (Griffiths et al., 2005) and developed an

unsupervised topic model, called Shell Topic Model, to separate shell phrases from topical

contents. Their idea based on two assumptions. The first was that each word in the document

is associated with a status variable which tells if the word has a shell, topic or function status.
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Each status generates word using a multinomial distribution which in turn is sampled from

a Dirichlet prior. Then, the authors assumed that there are transition probabilities between

statuses, which follow a multinomial distribution.

In document zoning, the problem is to recognize the information structure of documents

to help assist information extraction and organize factual information from the documents

(Teufel and Moens, 2002). Varga et al. (2012) adapted LDA topic model to document zone

classification (e.g., introduction, method, results ...) with assumptions that a document is

a mixture of zones and a zone is a probability distribution over words. The authors also

proposed a special zone, i.e., background zone, which contains common words of different

zone types, e.g., “use”, “determine”. Thus, the generative process involves a decision of

whether a word is sampled from the background zone or other regular zones.

While also adapting LDA topic model to document zoning, Séaghdha and Teufel (2014)

replied on the intuition that rhetorical language used in a document is independent of the

topic. Their proposed model assumes that each word is generated either from an LDA-style

topic model (captures topic matter of the document) or from a distribution associated with

the rhetorical category, i.e., zone type, of the sentence (captures conventional language).

The resulting model combines Hidden Markov process and “switching variable” mechanism

with original LDA. Their experiments showed that features from output of the topic model,

e.g., zone index, yielded significant improvement to a feature-based model.

In this thesis, we hypothesize that argumentative text can be separated into argument

words and domain words, and the extracted vocabularies of argument and domain words

can be used to improve argument mining models. However, we do not modify but use the

original LDA topic model to parse the texts and then process the output to extract argument

and domain words.

2.5 ARGUMENT MINING FOR AUTOMATED ESSAY SCORING

Automated essay scoring (AES) is advancing greatly with the success of many commercial

and open-source systems in real-world applications (Shermis and Burstein, 2013). With
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argumentation and argumentative writing as a key focus of Common Core Standards, a

natural need for AES systems is the ability to consider argumentation in writings. Research

on AES has recently investigated possibilities of grading essays on argument aspects, e.g.,

evidence (Rahimi et al., 2014), thesis clarity (Persing and Ng, 2013), and argument strength

(Persing and Ng, 2015).

Targeting to identifying the argumentation structure in argumentative writings, argu-

ment mining offers the complete solution for argumentation-aware AES systems (Klebanov

et al., 2016). In a preliminary study, Song et al. (2014) proposed to annotate argument

analysis essays to identify responses of critical questions to judge the argument in writing

prompts. The annotation was then used as features to improve an existing essay scoring

model. Ong et al. (2014) were one of the first who investigate the relation between argument

statistics and essay scores. However, their model used hand-crafted rules to extract different

type of argumentative discourse units.

Argument mining has recently gained much interest in enabling automated argumenta-

tion feature extraction for AES and shows promising results. Ghosh et al. (2016) proposed

a wide range of statistical features based on types of argument components and argumen-

tative relations. Their study showed that automatically generated argumentation features

yield a high correlation with human scores, and only 7% lower than using true values of

argumentation features. However, their implementation of argument mining considered true

argument components as inputs and solved a simplified argumentative relation classification

problem. Therefore, the results did not reflect the capability of argumentation features on

scoring unannotated essays.

Klebanov et al. (2016) were the first to use end-to-end argument mining to parse per-

suasive essays for argumentation features. Their results reveal that adding argumentation

features yielded improvement to AES in comparison to a length-only model. Our study fur-

ther investigates application of argument mining for AES on different perspectives including

impact of argument mining accuracy, cross-domain essay scoring, and more advanced AES

baseline models.

To deal with error-propagation in end-to-end argument mining, Wachsmuth et al. (2016)

made two simplifications: (1) each sentence corresponds to an argumentative discourse unit
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(AUD), (2) each paragraph corresponds to an argument. With the first simplification the

authors avoided the need for argument component identification. The second simplification

implicitly assumes that argument components within each paragraph support each other,

thus argumentative relation classification can be skipped. The argumentative structure of

an essay is represented as a sequence of arguments and each argument as a sequence of ADU

types. Their argument flow features were shown to be effective for scoring essay organization

and to gain improvement for scoring argument strength. Our study also confirms that

argument flow features disregarding granularity of ADU are effective for predicting holistic

score of essays.
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3.0 DATA SETS FOR ARGUMENT MINING TASKS

With the concentration on application of argument mining in student essays, our argument

mining models are mainly evaluated using different corpora of argumentative writings by

students and test takers. Despite such a fact, this thesis aims for demonstrating the generality

of proposed approaches because of the data diversity in our study. In particular, we employ

three annotated corpora that are different in terms of writing styles, argumentative labels,

and coding manuals.

3.1 FIRST CORPUS OF PERSUASIVE ESSAYS

The first dataset for our study (referred to as Persuasive1) is a corpus of persuasive es-

says which were annotated in accordance with the initial coding manual proposed by Stab

and Gurevych (2014a). The corpus consists of 90 persuasive essays which were posted to

an online forum (www.essayforum.com). Those essays are practice writings in response to

sample test questions of standardized English tests for ESL learners. Essays were posted to

the forum by users for feedback from the community. In the essays, the writers state their

opinions (labeled as MajorClaim) towards the writing topics and validate those opinions

with convincing arguments consisting of controversial statements (i.e., Claim) that support

or attack the Major Claims, and evidences (i.e., Premise) that underpin the validity of the

Claims. Three experts were asked to identify possible argument components, i.e., Major

Claim, Claim, Premise, within each sentence, and connect the argument components us-

ing argumentative relations: Support and Attack. An argumentative relation is a directed

connection that specifies source and target components. The coding manual only allows
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argumentative relations to be held between Premises, from Premises to Claims or Major

Claims, and from Claims to Major Claims. Except for the argumentative relation between

Claim and Major Claim, other argumentative relations do not cross paragraph boundaries.

According to the coding manual, Major Claim, Claim and Premise are different types of Ar-

gumentative Discourse Unit (ADU), and an argument is formed by a complex of a sequence

of such ADUs along with specific relations between them. A paragraph may contain one or

more complete arguments.

An example of a persuasive essay in the corpus is given in the excerpt below. Essay

sentences are numbered and argument components are enclosed in tags which show their

argumentative labels.

Example essay 1: (0)Effects of Globalization (Decrease in Global Tension)
(1)During the history of the world, every change has its own positive and negative sides.
(2)Globalization as a gradual change affecting all over the world is not an exception.
(3)Although it has undeniable effects on the economics of the world; it has side effects
which make it a controversial issue.
(4)[Some people prefer to recognize globalization as a threat to ethnic and religious values of
people of their country ]Claim. (5)They think that [the idea of globalization put their inherited
culture in danger of uncontrolled change and make them vulnerable against the attack of
imperialistic governments]Premise.
(6)Those who disagree, believe that [globalization contribute effectively to the global im-
provement of the world in many aspects]Claim. (7)[Developing globalization, people can have
more access to many natural resources of the world ]Premise and [it leads to increasing the
pace of scientific and economic promotions of the entire world ]Premise.

(8)In addition, they
admit that [globalization can be considered a chance for people of each country to promote
their lifestyle through the stuffs and services imported from other countries]Premise.
(9)Moreover, [the proponents of globalization idea point out globalization results in consid-
erable decrease in global tension]Claim due to [convergence of benefits of people of the world
which is a natural consequence of globalization]Premise.
(10)In conclusion, [I would rather classify myself in the proponents of globalization as a speed-
ing factor of global progress]MajorClaim. (11)I think [it is more likely to solve the problems
of the world rather than intensifying them]Premise.

According to the coding manual, each essay has one and only one Major Claim. An essay

sentence (e.g., sentence 9) can simultaneously have multiple argument components which are

clauses of the sentence (Argumentative spans), and text spans that do not belong to any

argument components (None spans). None spans can be as short as a single punctuation. An

argument component can be either a clause or a whole sentence (e.g., sentence 4). Sentences

that do not contain any argument component are labeled Non-argumentative (e.g., sentences
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{1, 2, 3}). The three experts achieved inter-rater accuracy of 0.88 for argument component

labels, Krippendorff (2004) αU of 0.72 for argument component boundaries, and Krippendorff

(1980) α of 0.81 for argumentative relations.

Forming prediction inputs for argument component classification from the corpus is com-

plicated due to the multiple-component sentences. For an illustration, consider sentence 9

in the sample essay. We have the following text spans with their respective labels:

Text span Label

Moreover, None

the proponents of globalization idea point out globalization results

in considerable decrease in global tension

Claim

due to None

convergence of benefits of people of the world which is a natural

consequence of globalization

Premise

. None

As described in (Stab and Gurevych, 2014b), the None spans are not considered as

prediction inputs. Stab and Gurevych (2014b) defined a proper input of their prediction

model as either a Non-argumentative sentence or an Argumentative span. Overall, the

Persuasive Essay Corpus has 327 Non-argumentative sentences and 1346 Argumentative

sentences with 1552 argument components. The distribution of argumentative labels is

shown in Table 1. With regards to argumentative relations, Table 2 reports numbers of

Support and Attack relations with different constraints. It is notable that Premise and

Support are the dominant classes which characterizes the style of persuasive essays that

writers usually support each of their claims by several premises.

3.2 SECOND CORPUS OF PERSUASIVE ESSAYS

Stab and Gurevych (2017) compiled the second corpus of persuasive essays (Persuasive2)

with 402 essays to address the small size of the first corpus. The essays were again persua-
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Argumentative label First corpus Second corpus

Major Claim 90 751

Claim 429 1506

Premise 1033 3832

Non-argumentative 327 1631

Total 1879 7720

Table 1: Counts of argument components in two persuasive essay corpora.

Argumentative relation First corpus Second corpus

With paragraph constraint

Support 989 3613

Attack 103 219

Between Claim – Major Claim

Support 365 1228

Attack 64 278

Table 2: Counts of argumentative relations in two persuasive essay corpora.

sive writings selected from www.essayforum.com with similar criteria. However, the coding

manual was revised with significant differences. First, the authors removed the restriction

that each essay has only one major claim. Allowing multiple instances of major claims

yielded less confusion when formulating major claims and claims.

Second, the argumentative relations are defined by level in which the first level is between

claim and major claim. Because the major claim may have more than one appearance,

support and attack relations from claim to major claim contract into the stance attribute of

claims, which can take values for or against. The second and third levels of argumentative

relation are from premise to claim, and premise to premise, respectively.
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Third, the new coding manual defines that each argument consists of only one claim

(viewed as its conclusion) and one or more premises (as reasons given justifying or refuting

another argument components). As a consequence, argumentative relation is not allowed

between claims, or from premise to major claim. While the annotation scheme of the second

persuasive essay corpus consists of the same class label set as those of the first corpus,

the new annotation scheme specifies argument component and argumentative relation more

consistently. Three experts annotated 80 essays and obtained Krippendorff αU = 0.77 for

argument component boundaries, Fleiss (1971) κ = 0.71 and 0.74 for support and attack

relations, respectively. Data statistics of this corpus is reported in Tables 1 and 2.

3.3 ACADEMIC ESSAY CORPUS

The third corpus for our study consists of 115 student essays collected from a writing as-

signment of University Introductory Psychology classes in 2014 (Barstow et al., 2015). The

assignment requires each student to write an introduction of an observational study that

the student conducted. With regard to the observational study, each student proposes one

or two hypotheses about effects of different observational variables to a dependent variable,

e.g., effect of gender to politeness. Students are asked to use relevant studies/theories to

justify support for the hypotheses, and to present at least one theoretical opposition with

a hypothesis. Students are also required to write their introductions in the form of an ar-

gumentative essay and follow the APA guideline that use citations whenever students refer

to prior studies. Comparing to the Persuasive Essay Copora, while claims in the persuasive

essays are mostly substantiated by personal experience, hypotheses in the academic essays

are elaborated by findings from the literature. This makes the most distinguished difference

between the two types of student writing.

Two experts labeled each sentence of the essays as to whether it contains Hypothesis

statement, Support finding, or Opposition finding. If so it is an argumentative sentence,

and the experts highlighted the argumentative parts of the sentence. Because an essay can

address more than one hypothesis, annotators were required to number hypothesis state-

37



Argumentative label #sentences

Hypothesis 185

Finding 130

– Support finding 50 (46)

– Opposition finding 83 (79)

Non-argumentative 2999

Total 3314

Table 3: Counts of argumentative sentences in Academic Essay Corpus.

ments. If a sentence is identified as a Support or Opposition, it will be linked to the relevant

hypothesis statement. Direct relation between finding sentences are not considered. The

detailed coding manual is provided in Appendix B.

For the argument component classification problem, Support and Opposition sentences

were grouped into Finding category to make data less skewed and shift the focus to argumen-

tative roles as claim (hypothesis) and premise (finding). The argumentative relation mining

problem then classifies each possible pair of argumentative sentences as support, opposition

or no-relation.

The two annotators achieved inter-rater Cohen’s kappa 0.79 for the agreement on sentence

labels for the coding scheme Hypothesis-Finding. Inter-rater kappa is 0.67 for coding scheme

Hypothesis-Support-Opposition.

As an example, two last paragraphs of an academic essay are given below. The essay’s

topic is “Amount of Bystanders Effect on Helping Behavior”.1

Example essay 2:
(1)Several studies have been done in the past that also examine the ideas of the bystander
effect and diffusion of responsibility, and their roles in social situations. (2)[Daniel M. Weg-
ner conducted a study in 1978 that demonstrated the bystander effect on a college campus
by comparing the ratio of bystanders to victim, which showed that the more bystanders
in comparison to the victims led to less people helping (Wegner, 1983).]Support

(3)[Another

1Topic sentence and content of the essay are shown as they were written by the student.
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supporting study was conducted Rutkowski in 1983 that also demonstrated that with larger
groups comes less help for victims in non-emergency situations due to less social pressure
(Rutkowski, 1983).]Support

(4)Although these studies demonstrate the bystander effect and
diffusion of responsibility, other studies oppose these ideas. (5)[One strong study that op-
poses the bystander effect was done in 1980 by Junji Harada that showed that increase in
group size, even in a face to face proximity, did not decrease the likelihood of being helped
(Harada, 1980).]Opposition

(6)In order to find out specifically the effects that the bystander effect has in diverse settings,
this study focuses on a non-emergency situation on a college campus. (7)[The hypothesis,
based on the bystander effect demonstrated in Wegner’s study (1978), is that with more
people around, less people will take the time to help the girl pick up her papers.]Hypothesis

In the example, the main content of argumentative sentences that express the argumen-

tative role of the sentences (e.g., hypothesis, support, or opposition) are italicized. Given the

annotation, Finding sentences are {2, 3, 5}.
While the coding manual allows essay sentences to have multiple labels, annotators were

not required to split each sentence into smaller ADUs. The reason was that no sentence has

both hypothesis and finding content, and the number of multiple-label sentences is small (9

out of total 3314 sentences). In particular, two sentences contain more than one hypoth-

esis, and seven sentences contain different support and/or opposition findings. Therefore,

maintaining sentence as the primitive ADU does not cause trouble for argument component

identification.

Table 3 shows the label distribution in the corpus. Because of multiple-label sentences,

number of Finding sentences is smaller than total of sentences that contain Support or

Opposition. Among 50 Support sentences, 46 sentences are single-label. There are 79 single-

label sentence out of 83 Opposition sentences. As we can see, the dataset is very skewed

with Non-argumentative sentences as more than 90% of the data. Also while each essay has

at least one Hypothesis statement, not all essays have Support and Opposition sentences.

Argumentative relations in academic essays are defined from a finding sentence to its

linked hypothesis sentence. There are cases that a finding sentence supports and/or opposes

different hypotheses. However, there exist three tricky sentences that each contains findings

that support and oppose the same hypothesis. Thus, each of those sentences will create

both support and opposition relation to a hypothesis sentence, and violate the class label

consistency. Because of the small number of argumentative support relations, we re-label
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those three sentences as support findings, which creates three support relations and discards

four opposition relations. Our final data after that adjustment contains 50 support and 82

opposition relations. Because of this adjustment, the number of opposition relations (i.e.,

pairs of opposition finding and relevant hypothesis) does not match number of opposition

findings shown in the Table 3.

3.4 SUMMARY

In this chapter, we present three annotated corpora for argument mining in which one con-

sists of academic writings by college students and the other two are persuasive essays by

ESL learners. The data sets expose great differences in writing style, fluency, and annota-

tion scheme. While the persuasive essay corpora have ADUs at clause level, the academic

essay corpus works at sentence level. The argumentation structure of academic essays are

simplified as a flat tree to capture only support and opposition relations between findings

and hypotheses. Persuasive essays were annotated for more complex argument structures in

which argumentation relations are determined by layers, i.e., premise to premise, premise

to claim, and claim to major claims. These data diversity gives us a good opportunity

to demonstrate the generality of our proposed approaches that we will present in the next

chapters.

To avoid distraction to readers, we decided to not introduce the data sets for persuasive

essay score prediction tasks in this chapter. Instead, we will present essay score data within

each of chapters 9, 10, and 11 which are about our studies on applying argument mining for

automated essay scoring.
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4.0 EXTRACTING ARGUMENT AND DOMAIN WORDS FOR

IDENTIFYING ARGUMENT COMPONENTS IN TEXTS

4.1 INTRODUCTION

Argument component identification studies often use lexical (e.g., n-grams) and syntactic

(e.g., grammatical production rules) features with all possible values (Burstein et al., 2003;

Stab and Gurevych, 2014b). However, such large and sparse feature spaces can cause diffi-

culty for feature selection. In our study (Nguyen and Litman, 2015), we propose an inno-

vative algorithm that post-processes the output of an LDA topic model (Blei et al., 2003)

to extract argument words (argument indicators, e.g. ‘hypothesis ’, ‘reason’, ‘think ’) and

domain words (specific terms commonly used within the topic’s domain, e.g. ‘bystander ’,

‘education’) which are used as novel features and constraints to improve the feature space.

Particularly, we keep only argument words from unigram features and remove higher order

n-gram features (e.g., bigrams, trigrams). Instead of production rules, we derive features

from dependency parses which enables us to both retain syntactic structures and incorpo-

rate abstracted lexical constraints. Our lexicon extraction algorithm is semi-supervised in

that we use manually-selected argument seed words to guide the process.

Different data-driven approaches have been proposed to identify aspects of argumentative

language (e.g., organizational content vs. topical content), such as supervised sequence

modeling (Madnani et al., 2012), probabilistic topic models (Séaghdha and Teufel, 2014;

Du et al., 2014). Post-processing LDA (Blei et al., 2003) output was studied to identify

topics of visual words (Louis and Nenkova, 2013) and representative words of topics (Brody

and Elhadad, 2010; Funatsu et al., 2014). Our algorithm has a similarity with (Louis and

Nenkova, 2013) in that we use seed words to guide the separation.
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Our argument component identification model with novel features enabled by argument

and domain lexicons is evaluated using the first persuasive essay corpus that we have in-

troduced. Stab and Gurevych (2014b) were the first to utilize the corpus for developing an

argument mining model for persuasive essays. Given a candidate argument component, the

problem is to classify its argumentative label, i.e., Major Claim, Claim, Premise, or None. We

re-implement the argument component classifier described in (Stab and Gurevych, 2014b)

as a baseline to evaluate our approach in different experimental settings. We also follow

experiments conducted in (Stab and Gurevych, 2014b) to directly compare our results with

those reported in the prior study.

4.2 ARGUMENT AND DOMAIN WORD EXTRACTION

In this section we describe our algorithm to extract argument and domain words from a

development dataset using predefined argument keywords (Nguyen and Litman, 2015). We

recall that argument words are those playing a role of argument indicators and commonly

used in different argument topics, e.g. ‘reason’, ‘opinion’, ‘think ’. In contrast, domain words

are specific terminologies commonly used within the topic, e.g. ‘art ’, ‘education’. Our notions

of argument and domain languages share a similarity with the idea of shell language and

content in (Madnani et al., 2012) in that we aim to model the lexical signals of argumentative

content. However while Madnani et al. (2012) emphasized the boundaries between argument

shell and content, we emphasize more the lexical signals themselves and allow argument

words to occur in the argument content. For example, the MajorClaim in Figure 1 has two

argument words ‘should ’ and ‘instead ’ which make the statement controversial.

The development data for the persuasive essay corpus are 6794 unlabeled essays (Persua-

sive Set) with titles collected from www.essayforum.com. We manually select 10 argument

keywords/seeds that are the 10 most frequent words in the titles that seemed argument

related: agree, disagree, reason, support, advantage, disadvantage, think, conclusion, result,

opinion. We extract seeds of domain words as those in the titles but not argument keywords

or stop words, and obtain 3077 domain seeds (with 136482 occurrences). Each domain seed
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Topic 1 reason exampl support agre think becaus disagre state-

ment opinion believe therefor idea conclus ...

Topic 2 citi live big hous place area small apart town build com-

muniti factori urban ...

Topic 3 children parent school educ teach kid adult grow child-

hood behavior taught ...

Table 4: Samples of top argument words (topic 1), and top domain words (topics 2 and 3)

extracted from persuasive development set. Words are stemmed.

is associated with an in-title occurrence frequency f .

All words in the development set including seed words are stemmed, and named entities

are replaced with the corresponding NER labels by the Stanford parser. We run Gibb-

sLDA++1 implementation of LDA (Phan and Nguyen, 2007) on the development set, and

assign each identified LDA topic three weights: domain weight (DW ) is the sum of domain

seed frequencies; argument weight (AW ) is the number of argument keywords; and combined

weight CW = AW − DW . Argument keywords are weighted more than domain seeds to

reduce the size disparity of the two seed sets. For an example of these weights, topic 2 in the

LDA’s output of Persuasive Set in Table 4 has AW = 5 (five argument keywords not shown

in the table are: more, conclusion, advantage, who, which), DW = 0.15, CW = 4.85. The

in-title frequency of the stem citi is f(citi) = 381/136482 = 0.0028 given its 381 occurrences

in the 136482 domain seed occurrences in the titles.

LDA topics are then ranked by CW with the top topic has highest CW value, and we

calculate the ratio of CW of top-2 topics. We vary number of LDA topics k and select the

k with the highest CW ratio (k = 36). The argument word list is the LDA topic with the

largest combined weight given the best k. Domain words are the top words of other LDA

topics but not argument or stop words.

1http://gibbslda.sourceforge.net
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For the persuasive development set, our algorithm found k = 36 as the best number of

LDA topics. Given 10 argument keywords, our algorithm returned a list of 263 argument

words which is a mixture of keyword variants (e.g. think, believe, viewpoint, opinion, ar-

gument, claim), connectives (e.g. therefore, however, despite), and other stop words. The

complete set of argument words extracted from the persuasive development set is presented

in Appendix A.1. 1806 domain words are extracted by the algorithm. We note that domain

seeds are not necessarily present in the extracted domain words partially because words with

occurrence less than 3 are removed from LDA topics. On the other hand, the domain word

list of Persuasive Set has 6% not in the domain seed set.

4.3 PREDICTION MODELS

4.3.1 Stab & Gurevych 2014

We first describe in detail the model developed by Stab and Gurevych (2014b) because many

of the features proposed here are used in our model. The model in (Stab and Gurevych,

2014b) (referred to as Stab14 hereafter) uses the following features extracted from persuasive

essays:

• Structural features: #tokens and #punctuations in argument component (AC), in cover-

ing sentence, and preceding/following the AC in sentence; token ratio between covering

sentence and AC. Two binary features indicate if the token ratio is 1 and if the sentence

ends with a question mark. Five position features are covering sentence’s position in es-

say, whether the AC is in the first/last paragraph, the first/last sentence of a paragraph.

• Lexical features: all n-grams of length 1-3 extracted from the text span that include the

AC and its preceding text which is not covered by other AC’s in sentence; verbs like

‘believe’; adverbs like ‘also’; and whether the AC has a modal verb.

• Syntactic features: #sub-clauses and depth of syntactic parse tree of the covering sen-

tence of the AC; tense of main verb and grammatical production rules (VP→ VBG NP)

from the sub-tree that represent the AC.
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• Discourse markers: discourse connectives of 3 relations: Comparison, Contingency, and

Expansion are extracted by the addDiscourse program (Pitler et al., 2009). A binary

feature indicates if the corresponding discourse connective precedes the AC.

• First person pronouns: Five binary features indicate whether each of I, me, my, mine,

and myself is present in the covering sentence. An additional binary feature indicates if

one of five first person pronouns is present in the covering sentence.

• Contextual features: #tokens, #punctuations, #sub-clauses, and presence of modal verb

in preceding and following sentences of the AC.

Their study assumes that gold-standard boundaries of argument components are avail-

able, and the main focus is predicting the argumentative labels of those components. To de-

velop discourse marker features, the authors manually collected 55 Penn Discourse Treebank

markers after removing those that do not indicate argumentative discourse, e.g. markers of

Temporal relations. Because the list of 55 discourse markers was not publicly available, we

used a program to extract discourse connectives.

4.3.2 Nguyen & Litman 2015

Our proposed model (referred to as Nguyen15) improves Stab14 by using extracted argument

and domain words as novel features and constraints to replace its n-gram and production rule

features (Nguyen and Litman, 2015). Compared to n-grams in lexical aspect, argument words

are believed to provide a much more compact representation of the argument indicators. As

for the structural aspect, instead of production rules, e.g. “S→ NP VP”, we use dependency

parses to extract pairs of subject and main verb of sentences, e.g. “I.think”, “view.be”.

Dependency relations are minimal syntactic structures compared to production rules. To

further make the features topic-independent, we keep only dependency pairs that do not

include domain words.

In summary, our proposed model takes all features from the baseline except n-grams

and production rules, and adds the following features: argument words as unigrams; filtered

dependency pairs which are argumentative subject–verb pairs are used as skipped bigrams;

and numbers of argument and domain words (see Figure 7). Our proposed model is compact
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Figure 7: Feature illustration of Stab14 and Nguyen15. N-grams and production rules in

Stab14 are replaced by argument words and argumentative subject–verb pairs in Nguyen15.

with 956 original features compared to more than 5000 features in our implementation of

the baseline model. In fact, because our implementation removes n-grams with less than 3

occurrences, it should not have larger feature space than the original model in (Stab and

Gurevych, 2014b).

4.4 EXPERIMENTAL RESULTS

4.4.1 Proposed vs. Baseline Models

This experiment replicates what was conducted in (Stab and Gurevych, 2014b). We perform

10-fold cross validations and report the average results. In each run models are trained using

LibLINEAR (Fan et al., 2008) algorithm with top 100 features returned by the InfoGain

feature selection algorithm performed in the training folds. We use LightSIDE2 to extract

2http://ankara.lti.cs.cmu.edu/side
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Reported Stab14 Nguyen15 Stab14 Nguyen15

#features 100 100 100 130 70

Accuracy 0.77 0.783 0.794+ 0.803 0.828*

Kappa NA 0.626 0.649* 0.640 0.692*

Precision 0.77 0.760 0.756 0.763 0.793

Recall 0.68 0.687 0.697 0.680 0.735+

Table 5: Argument component classification performances with top 100 features (left) and

best number of features (right). Corpus: Persuasive1.

n-grams and production rules, the Stanford Parser3 (Klein and Manning, 2003) to parse the

texts, and Weka4 (Hall et al., 2009) to conduct the machine learning experiments.

Table 5 (left) shows the performances of three models: Reported and Stab14 are respec-

tively the reported performance and our implementation of Stab14, and Nguyen15 is our

proposed model. Because of the skewed label distribution, all reported precision and recall

are un-weighted average values from by-class performances. In the table, symbols + and *

indicate trending and significant difference (p < 0.1 and p < 0.05) in Stab14 vs. Nguyen15

comparison, respectively. Best values are highlighted in bold.

We note that there are performance disparities between Stab14 (our implementation),

and reported performance (Stab and Gurevych, 2014b). The differences may mostly be due

to dissimilar feature extraction methods and NLP/ML toolkits. Comparing Stab14 and

Nguyen15 shows that our proposed model Nguyen15 yields higher Kappa (significantly) and

accuracy (trending).

To further analyze performance improvement by Nguyen15 model, we use 75 randomly-

selected essays to train and estimate the best numbers of features of Stab14 and Nguyen15

(w.r.t F1 score) through a 9-fold cross validation, then test on 15 remaining essays. As shown

in Table 5 (right), Nguyen15’s test performance is consistently better with far smaller number

3https://nlp.stanford.edu/software/lex-parser.shtml
4https://www.cs.waikato.ac.nz/ml/weka
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of top features (70) than Stab14 (130). Nguyen15 has 6 of 31 argument words not present

in Stab14’s 34 unigrams: analyze, controversial, could, debate, discuss, ordinal . Nguyen15

keeps only 5 dependency pairs: I.agree, I.believe, I.conclude, I.think and people.believe while

Stab14 keeps up to 31 bigrams and 13 trigrams in the top features. These indicate the

dominance of our proposed features over generic n-grams and syntactic features.

4.4.2 Alternative Argument Word List

In this experiment, we study the prediction transfer of argument words when the develop-

ment data to extract them is of a different genre than the test data. To create an alternative

argument word list, we utilize 254 unannotated essays (Academic Set) with titles from Psy-

chology classes in years 2011 and 2013 as the development data. We select 5 argument

keywords which were specified in the writing assignments: hypothesis, support, opposition,

finding, study. Filtering out argument keywords and stop words in essay titles of the aca-

demic set, we obtain 264 domain seeds (with 1588 occurrences), and their in-title occurrence

frequency f .

With regard to this development set, the argument and domain word extraction algorithm

returns 11 LDA topics, 315 (stemmed) argument words, and 1582 (stemmed) domain words.

The learned argument words consist of keyword variants (e.g. research, result, predict),

methodology terms (e.g. effect, observe, variable, experiment, interact), connectives (e.g.

also, however, therefor), and other stop words. The set of learned domain words has 86%

not in the domain seed set. Table 6 shows examples of top argument and domain words

(stemmed) returned by the algorithm. The complete list of argument words extracted from

the development set of academic writings is reported in Appendix A.2.

To build a model based on the alternative argument word list (referred to as AltAD),

we replace the argument words in Nguyen15 with those 315 argument words, re-filter the

dependency pairs and update the number of argument words. We follow the same setting

in the experiment above to train Nguyen15 and AltAD using top 100 features. As shown

in Table 7, AltAD performs worse than Nguyen15, with significantly lower accuracy and

Kappa.
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Topic 1 studi research observ result hypothesi time find howev

predict support expect oppos ...

Topic 2 respons stranger group greet confeder individu verbal

social size peopl sneez ...

Topic 3 more gender women polit femal male men behavior differ

prosoci express gratitud ...

Table 6: Samples of top argument words (topic 1), and top domain words (topics 2 and 3)

extracted from academic development set. Words are stemmed.

AltAD Nguyen15

Accuracy 0.770 0.794*

Kappa 0.623 0.649*

Precision 0.748 0.756

Recall 0.688 0.697

Table 7: Argument component classification performance with different argument word lists.

Corpus: Persuasive1.

Comparing the two argument word lists gives interesting insights. The two lists have 119

common words with 9 discourse connectives (e.g. ‘therefore’, ‘although’), 52 content words

(e.g. ‘result ’, ‘support ’), and 58 stop words. 28 of the common argument words appear in

top 100 features of AltAD, but only 9 are content words (e.g., ‘believe’, ‘conclude’, ‘example’,

‘topic’, ‘tendency ’, ‘conclusion’, ‘instance’, ‘analyze’, and ‘final ’). This shows that while the

two argument word lists have a fair number of words in common, the transferable part is

mostly limited to function words, e.g. discourse connectives, stop words. In contrast, 188

of the 196 unique words to AltAD are not selected for top 100 features, and most of those

are popular terms in academic writings, e.g. ‘research’, ‘hypothesis ’, ‘variable’. Moreover,
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Nguyen15’s top 100 features have 12 argument words unique to the model, and 11 of those

are content words, e.g. ‘believe’, ‘agree’, ‘discuss ’, ‘view ’. These non-transferable parts

suggest that argument words should be learned from appropriate seeds and development

sets for best performance.

4.5 SUMMARY

Our proposed features are shown to efficiently replace generic n-grams and production rules

in argument component classification tasks for significantly better performance. The core

component of our feature extraction is a novel algorithm that post-processes LDA output

to learn argument and domain words with a minimal seeding. These results support the

first main hypothesis H1 (§1.2) about the effectiveness of topic-context features enabled by

argument and domain word lexicons in argument component identification. Moreover, our

analysis gives insights into the lexical signals of argumentative content. While argument

word lists extracted for different data can have parts in common, there are non-transferable

parts which are genre-dependent and necessary for the best performance.
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5.0 IMPROVING ARGUMENT MINING IN STUDENT ESSAYS USING

ARGUMENT INDICATORS AND ESSAY TOPICS

5.1 INTRODUCTION

Argument mining systems for student essays need to be able to reliably identify argument

components independently of particular writing topics. Prior argument mining studies have

explored linguistic indicators of argument such as pre-defined indicative phrases for argu-

mentation (Mochales and Moens, 2008), syntactic structures, discourse markers, first person

pronouns (Burstein et al., 2003; Stab and Gurevych, 2014b), and words and linguistic con-

structs that express rhetorical function (Séaghdha and Teufel, 2014). However only a few

studies have attempted to abstract over the lexical items specific to argument topics for new

features, e.g., common words with title (Teufel and Moens, 2002), cosine similarity with the

topic (Levy et al., 2014), or to perform cross-topic evaluations (Burstein et al., 2003). In

a classroom, students can have writing assignments in a wide range of topics, thus features

that work well when trained and tested on different topics (i.e., writing-topic independent

features) are more desirable.

Stab and Gurevych (2014b) studied the argument component identification problem

in persuasive essays, and used linguistic features like ngrams and production rules (e.g.,

VP→VBG NP, NN→sign) in their argument mining system. While their features were

effective, their feature space was large and sparse. Our prior work (Chapter 4) addressed that

issue by replacing n-grams with a set of argument words learned in a semi-supervised manner,

and using dependency rather than constituent-based parsers, which were then filtered based

on the learned argument versus domain word distinctions (Nguyen and Litman, 2015). While

our new features were derived from a semi-automatically learned lexicon of argument and
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domain words, the role of using such a lexicon was not quantitatively evaluated. Moreover,

neither (Stab and Gurevych, 2014b) nor we used features that abstracted over topic lexicons,

nor performed cross-topic evaluation.

In this chapter, we present our new study that addresses the above limitations in four

ways (Nguyen and Litman, 2016b). First, we run all of our studies using the first corpus

of persuasive essays and the academic essay corpus (§3). Second, we present new features

to model not only indicators of argument language but also to abstract over essay topics.

Third, we build ablated models that do not use the extracted argument and domain words

to derive new features and feature filters, so we can quantitatively evaluate the utility of

extracting such word lists. Finally, in addition to 10-fold cross validation, we conduct cross-

topic validation to evaluate model robustness when trained and tested on different writing

topics.

Through experiments on two different corpora, we aim to provide support for the follow-

ing three model-robustness hypotheses: models enhanced with our new features will outper-

form baseline models when evaluated using (h1) 10-fold cross validation and (h2) cross-topic

validation; our new models will demonstrate topic-robustness in that (h3) their cross-topic

and 10-fold cross validation performance levels will be comparable.

5.2 PREDICTION MODELS

5.2.1 Stab14

As described in §4.3.1, the Stab14 model was developed using the first version of the Persua-

sive Essay Corpus. Despite the differences between persuasive essays and academic essays,

the Stab14 model is also applicable to the Academic Essay Corpus. First, the two cor-

pora share certain similarities in writing styles and coding schemes. Both corpora consist

of student writings whose content is developed to elaborate a main hypothesis for a per-

suasion purpose. Regarding coding schemes, MajorClaims in persuasive essays correspond

to Hypothesis statements in academic essays, and Claims match Support and Opposition
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findings. Premises in persuasive essays can be considered student writer’s elaborations of

previous studies in academic essays. Second, most of prediction features proposed in their

study are generic, e.g., n-grams, grammatical production rules, and discourse connectives,

which are expected to work for student writings in general. Therefore, we adapt the Stab14

model to the Academic Essay Corpus for a baseline model to evaluate our approach.

As the Academic Essay Corpus has annotation done at sentence-level and contains no

information of argument component boundaries, all features of Stab14 that involve boundary

information are not applicable to the Academic Essay Corpus. Therefore, the Stab14 model is

adapted to the Academic Essay Corpus by simply extracting all features from the sentences,

and removing features that require both argument component and covering sentence, e.g.,

token ratio.

5.2.2 Nguyen15v2

We implement two modified versions of the Nguyen15 model (§4.3.2) as the second baselines

(referred to as Nguyen15v2), one for each corpus. Additional experiments with the Persuasive

Essay Corpus showed that argument and domain word count features were not effective, so

we decided to remove these two features from Nguyen15. For each version we re-implement

the argument and domain word extraction algorithm to extract argument and domain words

from a development dataset (§4.2).

5.2.3 Proposed Model

Our proposed model of this study, ADw4, is Nguyen15v2 (with the argument- and domain-

word based features) expanded with 4 new feature sets extracted from the sentences of the

associated argument components, i.e., covering sentences. A summary of features used in

this model is given in Figure 8. To model the topic cohesion of essays, we include two

contextual features that count words in common:

1. Numbers of common words of the given sentence with the preceding one and with the

essay title.
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We also proposed new lexical features for better indicators of argument language. We

observe that in argumentative essays students usually use comparison language to compare

and contrast ideas. However not all comparison words are independent of the essay topics.

For example, while adverbs (e.g., ‘more’) are commonly used across essays, adjectives (e.g.,

‘cheaper ’, ‘richer ’) seem specific to the particular topics. Thus, we introduce the following

comparison features:

2. Comparison words : comparative and superlative adverbs. Comparison POS : two binary

features indicating the presences of RBR and RBS part-of-speech tags.

We also see that student authors may use plural first person pronouns (we, us, our,

ours, and ourselves) as a rhetorical device to make their statement sound more objec-

tive/persuasive, for instance “we always find that we need the cooperation.” We supplement

the first person pronoun set in the baseline models with 5 plural first person pronouns:

3. Five binary features indicating whether each of 5 plural first person pronouns is present.

We notice that many discourse connectives used in baseline models are duplicates of our

extracted argument words, e.g., ‘however ’. Thus using both argument words and discourse

connectives may inefficiently enlarge the feature space. To emphasize the discourse informa-

tion, we include discourse relations as identified by the addDiscourse program (Pitler et al.,

2009) as new features:

4. Three binary features showing if each of Comparison, Contingency, Expansion discourse

relations is present. Stab and Gurevych (2014b) did not use temporal discourse relations

so we ignored those relations in this study.

5.2.4 Ablated models

We propose two simple alternatives to ADw4 to examine the role of argument and domain

word lists in our argument mining task:

• woAD: we disable the argument/domain-word based features and constraints in ADw4

so that woAD does not include argument words, but uses all possible subject–verb pairs.

All other features of ADw4 are unaffectedly applied to woAD. Comparing woAD to ADw4
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Figure 8: Feature illustration of Stab14, Nguyen15v2 and ADw4. 1-, 2-, 3-grams and

production rules in Stab14 are replaced by argument words and argumentative subject–verb

pairs in Nguyen15v2. ADw4 extends Nguyen15v2 with 4 new feature sets.

will show the contribution of the extracted argument and domain words to the model per-

formance.

• Seed: extracted argument and domain word lists are replaced with only the seeds

that were used to start the semi-supervised argument and domain word learning process (see

next section). Comparing Seed to ADw4 will show whether it is necessary to use the semi-

supervised approach for expanding the seeds to construct the larger/more comprehensive

argument and domain word lexicons.

5.3 EXPERIMENTAL RESULTS

5.3.1 10-fold Cross Validation

We first conduct 10-fold cross validations to evaluate our proposed model and the baseline

models. All models are trained using the SMO (as in (Stab and Gurevych, 2014b)) imple-

mentation of SVM in Weka (Hall et al., 2009). LightSIDE1 and Stanford Parser (Klein and

1http://ankara.lti.cs.cmu.edu/side
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Manning, 2003) are used to extract n-grams, parse trees and named entities. We follow (Stab

and Gurevych, 2014b) and use top 100 features ranked by InfoGain algorithm on training

folds to train the models.

To obtain enough samples for a significance test when comparing model performance

in 10-fold cross validation to cross-topic validation, we perform 10 runs of 10-fold cross

validations (10×10 cross-validation) and report the average results over 10 runs. From

our prior study, and additional experiments, we also noticed that the skewed distributions

and small sizes of our corpora make stratified 10-fold cross validation performance notably

affected by the random seeds. Thus, we decided to conduct multiple cross validations in this

experiment to reduce any effect of random folding. We use T-tests to compare performance

of models given that each model evaluation returns 10 samples of 10-fold cross validation

performance.

As the two corpora are very class-skewed, we report unweighted precision and recall. Also

while accuracy is a common metric, kappa is a more meaningful value given our imbalanced

data. Model performances are reported in Table 8. Best values are highlighted in bold.

Symbols + and * indicate trending and significant difference (p < 0.1 and p < 0.05) by

T-test when comparing with ADw4, respectively.

Our first analysis is about the performance improvement of our proposed model over the

two baselines. We see that our model ADw4 significantly outperforms Stab14 in all reported

metrics across both corpora. However comparing ADw4 and Nguyen15v2 reveals inconsis-

tent patterns. While ADw4 yields a significantly higher performances than Nguyen15v2

when evaluated in the persuasive corpus, our proposed model performs worse than that

baseline in the academic corpus. Looking at individual metrics of these two models we see

that Nguyen15v2 has trending higher accuracy (p = 0.05) and also trending higher precision

(p = 0.09) than ADw4 in academic corpus. The differences on kappa and recall between the

two models are not significant. These results partially support our first model-robustness

hypothesis (h1) in that our proposed features improve over both baselines using 10-fold cross

validation in the persuasive corpus only.

We now turn to our feature ablation results. Removing the argument/domain-word based

features from ADw4, we see that woAD’s performance figures are all significantly worse than
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Persuasive Essay Corpus

Metric Stab14 Nguyen15v2 woAD Seed ADw4

Accuracy 0.787* 0.792* 0.780* 0.781* 0.805

Kappa 0.639* 0.649* 0.629* 0.632* 0.673

Precision 0.741* 0.745* 0.746* 0.740* 0.763

Recall 0.694* 0.698* 0.695* 0.695* 0.720

Academic Essay Corpus

Metric Stab14 Nguyen15v2 woAD Seed ADw4

Accuracy 0.934* 0.942+ 0.933* 0.935* 0.941

Kappa 0.558* 0.635 0.528* 0.564* 0.629

Precision 0.804* 0.830+ 0.829 0.826 0.825

Recall 0.628* 0.695 0.594* 0.637* 0.695

Table 8: Argument component classification performance. Corpora: Persuasive1, Academic.

ADw4 except for precision in the academic corpus. Furthermore, we find that argument

keywords and domain seeds are poor substitutes for the full argument and domain word

lists learned from these seeds. This is shown by the significantly lower performances of Seed

compared to ADw4, except for precision in the academic corpus. Nonetheless, adding the

features computed from just argument keywords and domain seeds still helps Seed perform

better than woAD (with higher accuracy, kappa and recall in both persuasive and academic

corpora).

5.3.2 Cross-topic Validation

To better evaluate the models when predicting essays of unseen topics we conduct cross-

topic validations where training and testing essays are from different topics (Burstein et al.,

2003). We examined 90 persuasive essays and categorized them into 12 groups including 11

single-topic groups, each corresponding to a major topic (groups have 4 to 11 essays). The
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Persuasive Essay Corpus

Metric Stab14 Nguyen15v2 woAD Seed ADw4

Accuracy 0.780* 0.796 0.774* 0.776* 0.807

Kappa 0.623* 0.654+ 0.618* 0.623* 0.675

Precision 0.722* 0.757* 0.751 0.734 0.771

Recall 0.670* 0.695* 0.681* 0.686* 0.722

Academic Essay Corpus

Metric Stab14 Nguyen15v2 woAD Seed ADw4

Accuracy 0.928* 0.939+ 0.931* 0.935* 0.944

Kappa 0.491* 0.598+ 0.474* 0.547* 0.630

Precision 0.768 0.832 0.866 0.839* 0.851

Recall 0.565* 0.664 0.551* 0.617* 0.686

Table 9: Argument component classification with cross topic performance. Corpora: Per-

suasive1, Academic

twelfth group (Other) is a mixture of 17 essays of minor topics (each has less than 3 essays),

e.g., 3 essays about Languages, 2 essays about Prepared Food.

Technologies (11 essays), National Issues (10), School (8), Policies (7), Advertisement (6),
International Relations (6), Learning (6), Art (5), Gender (5), Animal (5), Living Abroad
(4), Other (17).

We manually split 115 academic essays into 5 topics accordingly to the studied variables.

• Attractiveness as a function of clothing color (20 essays)

• Email-response rate as a function of recipient size (22)

• Helping-behavior with effects of gender and group size (31)

• Politeness as a function of gender (23)

• Self-description and word choices with influences of gender and self-esteem (19)

Again all models are trained using the top 100 features selected in training folds. In each

folding, we use essays of one topic for evaluation and all other essays to train the model.
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T-test is used to compare each of two sets of by-fold performances.

We first evaluate the performance improvement of our model compared to the baselines.

As shown in Table 9, ADw4 again yields higher performance than Stab14 in all metrics

of both corpora, and the improvements are significant except for precision in the academic

essays. Moreover we generally observe a larger performance gap between ADw4 and Stab14

in cross-topic validation than in 10-fold cross validation. More importantly, with cross-

topic validation, ADw4 now yields better performance than Nguyen15v2 for all metrics

in both persuasive and academic corpora. Especially, our proposed model now even has

trending higher accuracy and kappa than Nguyen15v2 in academic corpus. This shows a

clear contribution of our new features in the overall performance, and supports our second

model-robustness hypothesis (h2) that our new features improve the cross-topic performance

in both corpora compared to the baselines.

With respect to feature ablation results, our findings are consistent with the prior cross-

fold results in that woAD and Seed both have lower performance (often significantly) than

ADw4 (with one exception). Seed again generally outperforms woAD, indicating that de-

riving features from even impoverished argument and domain word lists is better than not

using such lexicons at all.

Next, we compare ADw4 performance across the cross-fold and cross-topic experimental

settings (using a T-test to compare the mean of 10 samples of 10-fold cross validation perfor-

mance versus the mean of cross-topic validation performance). In both corpora we see that

ADw4 yields higher performance for all metrics in cross-topic versus 10-fold cross validation,

except for recall in the academic corpus. Of these cross-topic performance figures, ADw4

has significantly higher precision and trending higher accuracy in the persuasive corpus.

In academic corpus, ADw4’s cross-topic accuracy, precision and recall are all significantly

better than the corresponding figures for 10-fold cross validation. These results support

strongly our third model-robustness hypothesis (h3) that our proposed model’s cross-topic

performance is as high as 10-fold cross validation performance.

In contrast, Nguyen15v2’s performance difference between cross-topic and random-folding

validations does not hold a consistent direction. Stab14 returns significantly higher results in

10-fold cross validation than cross-topic validation in both persuasive and academic corpora.

59



Also woAD and Seed’s cross-topic performances are largely worse than those of 10-fold cross

validation. Overall, the cross-topic validation shows the ability of our proposed model to

perform reliably when the testing essays are from new topics, and the essential contribution

of our new features to this high performance.

To conclude this section, we give a qualitative analysis of the top features selected in

our proposed model. In each folding we record the top 100 features with associated ranks.

By the end of cross-topic validation, we have a pool of top features (≈200 for each corpus),

with an average rank for each. First we see that the proportion of argument words is about

49% of pooled features in both corpora, and the proportion of argumentative subject–verb

pairs varies from 8% (in persuasive corpus) to 15% (in academic corpus). The new features

introduced in ADw4 that are present in the top features include: two common word counts;

RBR part-of-speech; person pronouns We and Our ; discourse labels Comparison, Expansion,

Contingency. All of those are in the top 50 except that Comparison label has average rank

79 in the persuasive corpus. This shows the utility of our new feature sets. Especially the

effectiveness of common word counts encourages us to study advanced topic cohesion features

in future work.

5.3.3 Performance on Held-out Test Sets

The experiments above used 10×10-fold cross-validation and cross-topic validation to inves-

tigate the robustness of prediction features. Note that this required us to re-implement both

baselines as neither had previously been evaluated using cross-topic validation.2 However,

since both baselines were evaluated on single held-out test sets of the Persuasive Essay Cor-

pora, that were available to us, our last experiment compares ADw4’s performance with

the best reported results for the original baseline implementations using their exact same

training/test set splits (Stab and Gurevych, 2014b; Nguyen and Litman, 2015). That is,

we train ADw4 using SMO classifier with top 100 features with the two training sets of 72

essays (Stab and Gurevych, 2014b) and 75 essays (Nguyen and Litman, 2015), and report

the corresponding held-out test performances in Table 10.

2While Nguyen15v2 (but not Stab14) had been evaluated using 10-fold cross-validation, the random fold
data cannot be replicated.
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Stab’s test set Nguyen’s test set

Metric Stab best Our SMO Nguyen best Our SMO Our Lib-LINEAR

Accuracy 0.77 0.816 0.828 0.819 0.837

Kappa – 0.682 0.692 0.679 0.708

Precision 0.77 0.794 0.793 0.762 0.811

Recall 0.68 0.726 0.735 0.703 0.755

Table 10: Argument component classification performance on held-out test sets. Corpora:

Persuasive1, Academic.

While test performance of our model is higher than (Stab and Gurevych, 2014b), our

model has worse test results than (Nguyen and Litman, 2015). This is reasonable as our

model was trained following the same configuration as in (Stab and Gurevych, 2014b), but

was not optimized as in (Nguyen and Litman, 2015). In fact, (Nguyen and Litman, 2015)

obtained their best performing model using LibLINEAR classifier with top 70 features. If we

keep our top 100 features but replace SMO with LibLINEAR, then ADw4 gains performance

improvement with accuracy 0.84 and Kappa 0.71. With respect to the cross validations, while

our chosen setting is in favor of Stab14, it still offers an acceptable evaluation as it is not

the best configuration for either Nguyen15v2 or ADw4. Therefore, the conclusions from our

new cross fold/topic experiments also hold when ADw4 is directly compared with published

baseline test set results.

5.4 SUMMARY

Motivated by practical argument mining for student essays (where essays may be written

in response to different assignments), we have presented new features that model argument

indicators and abstract over essay topics, and introduced a new corpus of academic essays
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to better evaluate the robustness of our models. Our proposed model in this study shows

robustness in that it yields performance improvement with both cross-topic and 10-fold cross

validations for different types of student essays, i.e., academic and persuasive. Moreover, our

model’s cross-topic performance is even higher than cross-fold performances for almost all

metrics.

Experimental results also show that while our model makes use of effective baseline

features that are derived from extracted argument and domain words, the high performance

of our model, especially in cross-topic validation, is also due to our new features which are

generic and independent of essay topics. That is, to achieve the best performance, the new

features are a necessary supplement to the learned and noisy argument and domain words.

62



6.0 EXTRACTING CONTEXTUAL INFORMATION FOR

ARGUMENTATIVE RELATION CLASSIFICATION

6.1 INTRODUCTION

Given a pair of arguments or argument components with one referred to as the source

and the other as the target, argumentative relation mining involves determining whether

a relation holds from the source to the target, and classifying the argumentative function

of the relation, e.g., support vs. attack. While some sort of heuristics may be useful to

pre-determine source and target components, e.g., relative positions of the components, the

general form of the argumentative relation mining problem considers two ordered pairs for

each two argument components, i.e., each component is considered as the source source and

target in turn. Argumentative relation mining – beyond argument component mining – is

perceived as an essential steps towards more fully identifying the argumentative structure

of a text (Peldszus and Stede, 2013; Sergeant, 2013; Stab and Gurevych, 2014b). Consider

the second paragraph shown in Figure 9. Only detecting the argument components (a claim

in sentence 2 and two premises in sentences 3 and 4) does not give a complete picture of

the argumentation. By looking for relations between these components, one can also see

that the two premises together justify the claim. The argumentation structure of the text in

Figure 9 is illustrated in Figure 10 according to the annotation provided in the first corpus

of persuasive essays.

Research on classifying argumentative relations between pairs of arguments or argument

components has proposed a variety of features ranging from the superficial level, e.g., word

pair, relative position, to the semantic level, e.g., semantic textual similarity, textual entail-

ment. Cabrio and Villata (2012); Boltužić and Šnajder (2014) studied online debate corpora
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Essay 73: Is image more powerful than the written word?

... (1)Hence, [I agree only to certain degree that in today’s world, image serves as a
more effective means of communication]MajorClaim.

... (2)[pictures can influence the way people think ]Claim. (3)For example, [nowadays
horrendous images are displayed on the cigarette boxes to illustrate the consequences
of smoking ]Premise.

(4)As a result, [statistics show a slight reduction in the number of
smokers, indicating that they realize the effects of the negative habit ]Premise...

Figure 9: Excerpt from a student persuasive essay. Sentences are numbered and argument

components are tagged.

and aimed at identifying whether user comments support or attack the debate topic. They

proposed to use content-rich features including semantic similarity and textual entailment.

In principle, they expect the comment text (which is usually longer) to entail the topic

phrase (which is usually shorter). Boltužić and Šnajder (2014) calculated semantic similar-

ity between each comment sentence and the topic phrase, and returned the max and mean

of sentence-level similarity scores. Despite the fact that user comments are usually long with

multiple sentences, both Cabrio and Villata (2012) and Boltužić and Šnajder (2014) did

not consider the discourse structure of the comment as auxiliary information to support the

prediction. It has been proposed in (Biran and Rambow, 2011) that justifications (e.g., user

comment) usually contain discourse structures that characterize argumentation. However,

their study made use of only discourse indicators but not the discourse relations. We believe

that identifying the discourse structures of justification will give insights to argumentation

patterns used by writers to show their stances towards the argument topic.

To illustrate our idea, consider the following excerpt from a persuasive essay in the first

corpus:

Essay 26: Prepared food
(1)In addition, cooking is one of arts humans create. (2)The more cooked food we chosen,
the more cooking skills we lose. (3)At the increasing living pace, the majority of people tend
to choose microwave as their unique cooker that help them prepare a dish in five minutes.
(4)But rare people have been aware that this has contributed to a modification of cooking
habits, which may cause the loss of our custom and culture about cooking.
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MajorClaim(1)

Claim(2)

Premise(4)Premise(3)

Premise(6)

Support

Support Attack

Support

Support Support

Figure 10: Structure of the argumentation in the excerpt in Figure 9. Premises 3 and 4 were

annotated for separate relations to Claim 2. Our visualization should not mislead that the

two premises are linked or convergent.

(5)In conclusion, although the invention of prepared foods definitely satisfies the demand
of some people who are busy in their work, it is not a good thing.

The excerpt consists of a justification in sentences {1, 2, 3, 4} which supports a claim in

sentence 5. Analyzing the discourse structure of the justification, we can see that the writer

wanted to prove that “losing cooking skills” is a bad thing, which causes “losing custom and

culture”, which consequently shows a stance against the “prepared foods”.

Another example can be taken from Figure 9. Without knowing the content “horrendous

images are displayed on the cigarette boxes” in sentence 3, one cannot easily tell that “re-

duction in the number of smokers” in sentence 4 supports the “pictures can influence” claim

in sentence 2. We expect that such content relatedness can be revealed from a discourse

analysis, e.g., the appearance of a discourse connective “As a result”.

Differently from (Cabrio and Villata, 2012; Boltužić and Šnajder, 2014), Stab and Gurevych

(2014b) aimed at classifying the argumentative relations (i.e., support vs. non-support) be-

tween argument components. An argument component in (Stab and Gurevych, 2014b) is

a sentence or a clause so it is less content-rich than user comments in (Cabrio and Villata,

2012; Boltužić and Šnajder, 2014). Stab and Gurevych (2014b) proposed a diverse feature

set including features involving information from both components of the pair. e.g., word
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pairs, common words, relative positions. However, a limitation of their model is the lack of

contextual information as mentioned in their paper. For example, it is hard to determine

the support relation between these two argument components: “It helps relieve tension and

stress” and “Exercising improves self-esteem and confidence” without knowing that “it”

refers to “Exercising”. Although anaphora resolution may help in this case, other situations

could require topic inference to determine the relatedness between texts. While topic in-

formation in many writing genres (e.g., scientific publications, Wikipedia articles, student

essays) has been used to create features for argument component mining (Teufel and Moens,

2002; Levy et al., 2014; Nguyen and Litman, 2015), topic-based features have been less ex-

plored for argumentative relation mining. In the excerpts below, knowing that ‘technology ’

and ‘weapons ’ in essay 8, and ‘online game’ and ‘computer ’ in essay 24 are topically related

might help a model decide support relations between sentences.

Essay 8: Technology cannot solve all the world’s problems
(1)...[there are some serious problems springing from modern technology ]Claim. (2)First,
[deadly and powerful weapons can be a huge threat to the world’s peace]Premise.

Essay 24: Computer has negative effects to children
(1)[People who are addicted to games, especially online games, can eventually bear dangerous
consequences]Claim. (2)Although [it is undeniable that computer is a crucial part of human
life]Premise, [it still has its bad side]MajorClaim.

Motivated by the discussion above, we propose context-aware argumentative relation

mining – a novel approach that makes use of contextual features that are extracted by

exploiting context sentence windows and writing topic to improve relation prediction.

6.2 CONTEXT-AWARE ARGUMENTATIVE RELATION MINING

Given these issues of existing work on argumentative relation classification, we propose a

general framework that exploits contextual information to tackle the problems. First we

derive features from argument and domain word lexicons which were automatically created

by post-processing an essay’s topic model. Besides using argument words as unigrams, we
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also pair domain words that have the same or different LDA topic between source and target

components.

Second, instead of considering argument components isolatedly as in (Stab and Gurevych,

2014b), our approach puts each argument component in its context window (Definition 1)

to enrich the justification and enable contextual features. In particular, we derive features

from discourse relations between argument components and windows of their surrounding

sentences. We consider two discourse structure frameworks which are Penn Discourse Tree-

bank (Prasad et al., 2008), and Rhetorical Structure Theory (Carlson et al., 2001) and use

available toolkits for discourse relation extraction. Below we describe in detail the model

developed by Stab and Gurevych (2014b) and how we improve it by our proposed contextual

features for argumentative relation mining.

6.2.1 Baseline

We adapt Stab and Gurevych (2014b) to use as a baseline for evaluating our approach. Given

a pair of argument components, we follow Stab and Gurevych (2014b) by first extracting 5

feature sets:

• Structural features : numbers of tokens and punctuations in source and target compo-

nents, the absolute difference in numbers of tokens and punctuations between source

and target. Positions of covering sentences of source and target components, sentence

distance between source and target, whether source and target components are of the

same sentence. Whether source and target components are in first or last sentences of a

paragraph, whether target component occurs before source component.

• Lexical features : pairs of words from source and target components. The first word of

argument component, pair of first words from source and target components. Whether

source and target components contain modal verb, number of terms in common between

two components.

• Syntactic features : grammatical production rules (e.g., S→NP,VP) extracted from source

and target components
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• Indicators : whether source and target components start with a discourse connective from

a set of 55 discourse connectives.

• Predicted type: the argumentative labels (e.g., Major Claim, Claim, Premise) of source

and target components, which were identified by an argument component model.

We further improve the baseline model with additional features that were found helpful

in prior studies.

• Structural features : Because a sentence may have more than one argument component,

the relative component positions might provide useful information (Peldszus, 2014). We

include 8 new component position features: whether the source and target components

are the whole sentences or the beginning/end components of the sentences; whether

the source is before or after the target component; and the absolute difference of their

positions.

• Indicators : We expand discourse connective set by combining them with a 298-discourse

marker set developed in Biran and Rambow (2011). We expect the expanded set of

discourse connectives will represent better possible discourse relations in the texts.

• Predicted type: we use predicted labels returned by our argument component model which

was shown to significantly outperform the corresponding model of Stab and Gurevych

(Nguyen and Litman, 2016b).

For later presentation purposes, we name the set of all features from this section except

word pairs and production rules as the common features. While word pairs and grammat-

ical production rules were the most predictive features in (Stab and Gurevych, 2014b), we

hypothesize that this large and sparse feature space may have a negative impact on model

robustness (Nguyen and Litman, 2015). Most of our proposed models replace word pairs

and production rules with different combinations of new contextual features.

6.2.2 Topic-context Model

Our first proposed model (Topic) makes use of topic-context features derived from the

lexicon of argument and domain words for persuasive essays (Chapter 4). Using the lexicon,
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we extract the following Topic-context features:

• Argument word : from all word pairs extracted from the source and target components, we

remove those that have at least one word not in the argument word list. Each argument

word pair defines a boolean feature indicating its presence in the argument component

pair. We also include each argument word of the source and target components as a

boolean feature which is true if the word is present in the corresponding component. We

count number of common argument words, the absolute difference in number of argument

words between source and target components.

• Domain word count : to measure the topic similarity between the source and target

components, we calculate number of common domain words, number of pairs of two

domain words that share an LDA topic, number of pairs that share no LDA topic, and

the absolute difference in number of domain words between the two components.

• Non-domain MainVerb-Subject dependency : we extract MainVerb-Subject dependency

triples, e.g., nsubj(belive, I), from the source and target components, and filter out triples

that involve domain words. In this case, the domain word lexicon is used as contextual

constraints to keep our dependency features domain-independent. We model each ex-

tracted triple as a boolean feature which is true if the corresponding argument component

has the triple.

Finally, we include the common feature set. To illustrate the topic-context features,

consider the following source and target components. Argument words are in boldface, and

domain words are in italic.

Essay 54: museum and art gallery will disappear soon?

Source: [more and more people can watch exhibitions through television or internet at
home due to modern technology ]Premise

Target: [some people think museums and art galleries will disappear soon]Claim

An argument word pair is people-think. There are 35 pairs of domain words. A pair of

two domain words that share an LDA topic is exhibitions-art. A pair of two domain words

that do not share any LDA topic is internet-galleries.
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6.2.3 Window-context Model

Our second proposed model (Window) extracts features from discourse relations and com-

mon words between context sentences in the context windows (Definition 1) of the source

and target components.

In this study, context windows are determined using window-size heuristics. Given a half-

size n, we form a context window by grouping the covering sentence with at most n adjacently

preceding and n adjacently following sentences that must be in the same paragraph. Thus,

the context window has the size 2n. To minimize noise in feature space, we require that

context windows of the source and target components must be mutually exclusive. Biran

and Rambow (2011) observed that the relation between a source argument and a target

argument is usually instantiated by some elaboration/justification provided in a support

of the source argument. Therefore we prioritize the context window of source component

when it overlaps with the target context window. Particularly, we keep overlapping context

sentences in the source window, and remove them from the target window. Due to the

paragraph constraint and window overlapping as mentioned, half-size does not infer the

actual context-window size. However, half-size infers the maximum size that a window can

have.

For example, with half-size 1, context windows of the Claim in sentence 2 and the

Premise2 in sentence 4 in Figure 11 overlap at sentence 3. When the Premise2 is set as a

source component, its context window includes sentences {3, 4}, and the Claim as a target

has context window with only sentence 2.

We extract three window-context feature sets from the context windows to use with the

common feature set.

• Common word : as common word counts between adjacent sentences were shown useful

for argument mining (Nguyen and Litman, 2016b), we count common words between the

covering sentence with preceding context sentences, and with following context sentences,

for source and target components.

• Discourse relation: for both source and target components, we extract discourse relations

between context sentences, and within the covering sentence. We also extract discourse
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Target

Sentence 2: [picture can influence the way people think]Claim.

Sentence 4: As a result, [statistics show a slight reduction in the 
number of smokers, indicating that they realize the effects of 
the negative habit]Premise2.

Sentence 3: For example, [nowadays horrendous images are 
displayed on the cigarette boxes to illustrate the consequences 
of smoking]Premise1.

Target

Source

Sentence …

Sentence …

Figure 11: Context-windows for argument components in Figure 9 when sentence 4 is the

source and sentence 2 is the target components.

relations between each pair of source context sentence and target context sentence. Each

relation defines a boolean feature. We extract both Penn Discourse Treebank (PDTB)

relations and Rhetorical Structure Theory Discourse Treebank (RST-DTB) relations

using publicly available discourse parsers (Ji and Eisenstein, 2014; Wang and Lan, 2015).

Each PDTB relation has sense label defined in 3 layers (class, type, subtype), e.g.,

CONTINGENCY.Cause.result. While there are only four semantic class labels at the

class-level which may not cover well different aspects of argumentative relation, subtype-

level output is not available given the discourse parser we use. Thus, we use relations at

type-level as features.

For RST-DTB relations, we use only relation labels, but ignore the nucleus and satellite

labels of components as they do not provide more information given the component order

in the pair. Because temporal relations were shown not helpful for argument mining tasks,

we exclude them here (Biran and Rambow, 2011; Stab and Gurevych, 2014b).

• Discourse marker : while the baseline model only considers discourse markers within the

argument components, we define a boolean feature for each discourse marker classifying

whether the marker is present before the covering sentence of the source and target com-
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BASELINE

Common features

Word pairs + Production rules

TOPIC

Common features

Topic context features +

Window context featuresWINDOW

Common features

Window context features

COMBINED

Common features

Topic context features +

Window context features +

Word pairs + Production rules

FULL

Common featuresTopic context features

Figure 12: Features used in the baseline and our proposed models for argumentative relation

mining. Feature change across models are denoted by connectors.

ponents or not. This implementation aims to characterize the discourse of the preceding

and following text segments of each argument component separately.

6.2.4 Combined Model

While window-context features are extracted from surrounding text of the argument com-

ponents, which exploits the local context, the topic-context features are an abstraction of

topic-dependent information, e.g., domain words are defined within the context of topic do-

main (Nguyen and Litman, 2015), and thus make use of the global context of the topic

domain. We believe that local and global context information represent complementary as-

pects of the relation between argument components. Thus, we expect to achieve the best

performance by combining Window-context and Topic-context models.

6.2.5 Full Model

Finally, the Full model includes all features in Baseline and Combined models. That is,

the Full model is the Combined model plus word pairs and production rules. A summary

of all models is shown in Figure 12.
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Label #pairs

Within-paragraph constraint

Support 989

Attack 103

No paragraph constraint

Support 1312

Attack 161

Table 11: Argumentative relations with different constraints in corpus Persuasive1.

6.3 ARGUMENTATIVE RELATION TASKS

6.3.1 Task 1: Support vs. Non-support

We utilize the first corpus of persuasive essays to demonstrate our context-aware argumen-

tative relation mining approaches. Our first task follows (Stab and Gurevych, 2014b): given

a pair of source and target argument components, identify whether the source argumenta-

tively supports the target or not. When a support relation does not hold, the source may

attack or have no relation with the target component. For each of two argument components

in the same paragraph, we form two pairs (i.e., reversing source and target). In total we

obtain 6330 pairs in 90 essays, in which 989 (15.6%) have Support relation. Among 5341

Non-support pairs, 103 have Attack relation and 5238 are no-relation pairs (Table 11). Stab

and Gurevych (2014b) split the corpus into an 80% training set and a 20% test set which

have similar label distributions. We use this split to train and test our proposed models,

and directly compare our models’ performance to their reported results.

6.3.1.1 Tuning Half-size Parameter Because our Window model uses a half-size

parameter to form context windows of the source and target argument components, we in-

vestigate how the half-size of context window impacts the prediction performance of the
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Figure 13: Performance of window-context features by half-size n. Corpus: Persuasive1.

window-context features. We set up a model with only window-context features (i.e., Win-

dow model without common features) and determine the window-size in range [0, 8] that

yields the best F1 score in 10-fold cross validation. Half-size 0 means covering sentence is the

only context sentence. We experimented with not using context sentence at all and obtained

worse performance. Our data does not have context window with half-size 9 or larger.1

We use the training set as determined in Stab and Gurevych (2014b) to cross-validate

the model using LibLINEAR algorithm (Fan et al., 2008) without parameter or feature op-

timization. Cross-validations are conducted using Weka (Hall et al., 2009). We use Stanford

Parser to perform text processing (Klein and Manning, 2003).

As shown in Figure 13, while increasing the half-size from 2 to 3 improves F1 score (signif-

icantly), using half-sizes greater than 3 does not gain further improvement. We hypothesize

that after a certain limit, larger context windows will produce more noise than helpful in-

formation for the prediction. Therefore, we set the half-size to 3 in all of our experiments

involving window-context features (all with a separate test set).

1Counting the whole corpus, the maximal paragraph has 10 sentences – see Table 16.
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6.3.1.2 Performance on Test Set We train all models described above using the train-

ing set and report their performances on the test set in Table 12. Best values are highlighted

in bold. Values smaller than baseline are underlined. Symbol * indicates significantly differ-

ent from the baseline (p < 0.05). The learning algorithm with parameters are kept the same

as in the window-size tuning experiment. Given the skewed class distribution of this data,

Accuracy and F1 of Non-support (the major class) are less important than Kappa, F1, and

F1 of Support (the minor class). To conduct T-tests for performance significance, we split

the test data into subsets by essays’ ID, and record prediction performance for individual

essays. We also compare our baseline to the reported performance (Reported) for Support

vs. Non-support classification in (Stab and Gurevych, 2014b).

We first notice that the performances of our baseline model are better than (or equal

to) Reported, except the Macro Recall. We reason that these performance disparities

may be due to the differences in feature extractions between our implementation and Stab

and Gurevych’s, and also due to the minor set of new features (e.g., new predicted labels,

expanded marker set, component position) that we added in our implementation of the

baseline model.

Comparing proposed models with Baseline, we see that Window, Combined, and

Full models outperform Baseline in important metrics: Kappa, F1, Recall, but Topic

yields worse performances than Baseline. However, the fact that Combined outperforms

Baseline, especially with significantly higher Kappa, F1, Recall, and F1:Support, has shown

the value of Topic-context features. While Topic-context features alone are not effective,

they help improve Window model which supports our hypothesis that Topic-context and

Window-context features are complementary aspects of context, and they together obtain

better performance.

Comparing our proposed Topic, Window, Combined models with each other shows

that Combined obtains the best performance while Topic performs the worst, which reveals

that Topic-context feature set is less effective than Window-context set. While Full model

achieves the best Accuracy, Precision, and F1:Non-support, it has lower performance than

Combined model in important metrics: Kappa, F1, F1:Support. We reason that the noise

caused by word pairs and production rules even dominate the effectiveness of Topic-context
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Reported Baseline Topic Window Combined Full

Accuracy 0.863 0.869 0.857 0.857 0.870 0.877

Kappa – 0.445 0.407 0.449 0.507* 0.481

Macro F1 0.722 0.722 0.703 0.724 0.753* 0.739

Macro Precision 0.739 0.758 0.728 0.729 0.754 0.777

Macro Recall 0.705 0.699 0.685 0.720 0.752* 0.715

F1:Support 0.519 0.519 0.488 0.533 0.583* 0.550

F1:Non-support 0.920 0.925 0.917 0.916* 0.923 0.929

Table 12: Support vs. Non-support classification performances on held-out test set. Corpus:

Persuasive1.

and Window-context features, which degrades the overall performance.

Overall, by combining Topic and Window models, we obtain the best performance.

Most notably, we obtain the highest improvement in F1:Support, and have the best balance

between Precision and Recall values among all models. These reveal that our contextual

features not only dominate generic features like word pairs and production rules, but also

are effective to predict minor positive class (i.e., Support).

6.3.2 Task 2: Support vs. Attack

To further evaluate the effectiveness of our approach, we conduct an additional task that

classifies an argumentative relation as Support or Attack. For this task, we assume that the

relation, i.e., attachment (Peldszus, 2014), between two components is given, and aim at

identifying the argumentative function of the relation. Because we remove the paragraph

constraint in this task, we obtain more Support relations than in Task 1. As shown in

Table 11, of the total 1473 relations, we have 1312 (89%) Support and 161 (11%) Attack

relations. Because this task was not studied in (Stab and Gurevych, 2014b), we conduct

5×10-fold cross validation and use our implementation of Stab and Gurevych’s model as the
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baseline. We do not optimize the window-size parameter of the Window model, and use

the value 3 as set up before. Prediction performance of all models are reported in Table 13.

Symbol ** indicates significant difference with the baseline (p < 0.01). Because we perform

multiple k-folds, we expect significance at lower p-value to capture the stability across runs.

Comparing our proposed models with the baseline shows that all of our proposed models

significantly outperform the baseline in important metrics: Kappa, F1, F1:Attack. More

notably than in the Support vs. Non-support classification, all of our proposed models pre-

dict the minor class (Attack) significantly more effectively than the baseline. The baseline

achieves significantly higher F1:Support than Window model. However, F1:Support of the

baseline is virtually in a tie with Topic, Combined, and Full.

Comparing our proposed models, we see that Topic and Window models reveal differ-

ent behaviors. Topic model has significantly higher Precision and F1:Support, and signifi-

cantly lower Recall and F1:Attack than Window. Moreover, Window model has slightly

higher Kappa, F1, but significantly lower Accuracy. These comparisons indicate that Topic-

context and Window-context features are equally effective but impact differently to the

prediction. The different nature between these two feature sets is clearer than in the prior

experiment, as now the classification involves classes that are more semantically different,

i.e., Support vs. Attack. We recall that Topic model performs worse than Window model

in Support vs. Non-support task.

Our Full model performs significantly worse than all of Topic, Window, and Com-

bined in Kappa, F1, Recall, and F1:Attack. Along with results from Support vs. Non-

support task, this further suggests that word pairs and production rules are less effective

and cannot be combined well with our contextual features.

Despite the fact that the Support vs. Attack task (Task 2) has smaller and more imbal-

anced data than the Support vs. Non-support (Task 1), our proposed contextual features

seem to add even more value in Task 2 compared to Task 1. Using Kappa to roughly compare

prediction performance across the two tasks, we observe a greater performance improvement

from Baseline to Combined model in Task 2 than in Task 1. This is an evidence that our

proposed context-aware features work well even in a more imbalanced with smaller data

classification task. The lower performance values of all models in Support vs. Attack than
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Baseline Topic Window Combined Full

Accuracy 0.885 0.886 0.872 0.885 0.887

Kappa 0.245 0.305** 0.306** 0.342** 0.274**

Macro F1 0.618 0.651** 0.652** 0.670** 0.634**

Macro Precision 0.680 0.692 0.663 0.697 0.693

Macro Recall 0.595 0.628** 0.644** 0.652** 0.609**

F1:Support 0.937 0.937 0.928** 0.936 0.938

F1:Attack 0.300 0.365** 0.376** 0.404** 0.330**

Table 13: Support vs. Attack classification performance in 5×10-fold cross validation.

Corpus: Persuasive1.

in Support vs. Non-support indirectly suggest that Support vs. Attack classification is a

more difficult task. We hypothesize that the difference between support and attack exposes

a deeper semantic relation than that between support and no-relation. We extract textual

text similarity and textual entailment features to investigate this hypothesis in the next

chapter (Cabrio and Villata, 2012; Boltužić and Šnajder, 2014).

6.4 SUMMARY

In this study, we have presented context-aware argumentative relation mining that makes

use of contextual features by exploiting information from topic and context sentences. We

have explored different ways to incorporate our proposed features with baseline features used

in a prior study, and obtained insightful results about feature effectiveness. The proposed

contextual features are evaluated with two argumentative relation mining tasks: support

vs. non-support and support vs. attack. Experimental results show that topic-context and

window-context features are both effective but impact predictive performance measures dif-
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ferently. In addition, predicting an argumentative relation will benefit most from combining

these two set of features as they capture complementary aspects of context to better char-

acterize the argumentation in justification. Overall, we have supported strongly our second

main hypothesis H2 (§1.2) of the effectiveness of topic-context and window-context features

in argumentative relation mining.

The results obtained in this study are promising and encourage us to explore more direc-

tions to enable contextual features. In Chapter 7, we investigate uses of topic segmentation

to identify context sentences and compare this linguistically-motivated approach to our cur-

rent window-size heuristic. While support vs. attack relation classification are commonly

studied in argument mining because this relation scheme is widely applicable to different text

genres, we experiment the capabilities of our proposed context features for the attachment

problem in Chapter 8, and plan for more advanced schemes, e.g., types of support, in the

futures.
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7.0 IMPROVING ARGUMENTATIVE RELATION MINING IN STUDENT

WRITINGS

In the prior study, we showed that features derived from topic-context (i.e., argument and

domain word lexicons) and window-context (i.e., surrounding sentences) help improve signif-

icantly performance of argumentative relation classification tasks in persuasive essays. This

chapter explores our proposed context-aware argumentative relation model in academic es-

says which expose different writing style and coding manual than the academic essays. We

also propose new window-context features derived from textual similarity and textual entail-

ment, and to use text segmentation for context window formation.

7.1 ACADEMIC ESSAY DATA

Our current study utilizes the corpus of 115 academic essays (Chapter 3). Recall that two

experts labeled each sentence of the essays as to whether it is a Hypothesis statement, Sup-

port finding, or Opposition finding. If a sentence is identified as a Support or Opposition,

it will be linked to the relevant Hypothesis statement. Differently from persuasive essays in

which argumentative relations are identified between argument components in a paragraph,

argumentative relations in academic essays are determined from findings to hypotheses re-

gardless of paragraph boundaries. As described in §3.3, the Academic Essay Corpus contains

132 argumentative relations with 50 support and 82 opposition.

In persuasive essays, the argumentative relation mining problem assumes that argument

components were minimally identified, which mean their positions are known but not neces-

sarily their argumentative labels. We follow the same setting to formulate the argumentative
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Label #pairs

Support 50

Opposition 82

None 702

Total 834

Table 14: Number of argumentative relations in corpus Academic.

relation classification in academic essays: assuming all argumentative sentences are located

in a given essay but not necessarily classified, determine argumentative relation of each or-

dered pair of argumentative sentences. Overall, we form 834 ordered pairs of argumentative

sentences in the corpus. Class distribution of this data set is shown in Table 14.

7.2 PREDICTION MODELS

Similarly to our prior study in Chapter 6, we enhance Stab and Gurevych’s model to use

as a baseline along with Topic and Window models. Combined model has all features

in Topic and Window, and Full model is the combination of Baseline, Topic, and

Window models. A summary of all models is shown in Figure 12. Beside those prediction

models that we have introduced in the previous chapter, we modify Combined in two ways.

7.2.1 Context Window from Text Segmentation Output

First, instead of using the window-size heuristic to form context windows of argumentative

sentences, we employ text segmentation to determine context windows’ boundaries. Given

an essay split by a text segmentation algorithm, the context window of an argumentative

sentence includes adjacent sentences in the same segment and same paragraph with the ar-

gumentative sentence. When context windows overlap, overlapping context sentences are
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resolved by prioritizing the source context window as in Chapter 6. In this study, we exper-

iment with the Bayesian Topic Segmentation algorithm by Eisenstein and Barzilay (2008).1

The algorithm takes raw text as input and returns a list of positions of segment boundary

sentences. An example of topic segmentation output for an academic essay is given in Ap-

pendix C. We will compare Window-based models of different window sizes with the model

based on text segmentation (referred to as ADwSEG).

7.2.2 Semantic Relation Features

Our other modified Combined models exploit semantic relations between short texts, e.g.,

sentences. Textual entailment and semantic textual similarity have been used in prior studies

on identifying whether user comments support or attack a debate topic (Cabrio and Villata,

2012; Boltužić and Šnajder, 2014). For semantic similarity computation, we use the TakeLab

STS library which was ranked in top 5 of the SemEval-2012: Semantic Evaluation Exercises

to perform the Semantic Textual Similarity task (Sarić et al., 2012).2 Given two sentences,

the program returns a similarity score in range from 0 to 5 in which score 0 means two

sentences are on different topics, and score 5 indicates the two sentences are completely

equivalent as they mean the same thing. We use the Excitement Open Platform for textual

entailment computation (Magnini et al., 2014).3 This program also takes a pair of sentences

as input, but one sentence as a source and the other as a target. The output includes

entailment score and label with Entailment means the source sentence is predicted to entail

the target sentence, and No-entailment indicates no relation.

We propose to derive features from textual entailment (TE) and semantic textual sim-

ilarity (STS) between pair of sentences to support argumentative relation classification. In

particular, we first simply calculate TE and STS scores between source and target argu-

mentative sentences to use as numerical features. The group of these two semantic relation

features is named R1.

We further utilize the context window of argumentative sentences to extract more TE and

1https://github.com/jacobeisenstein/bayes-seg
2http://takelab.fer.hr/sts/
3https://hltfbk.github.io/Excitement-Open-Platform/
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STS features. Given a context window of the source argumentative sentence, we calculate

STS score between each sentence in the source context window and the target argumentative

sentence. Similarly, we calculate STS score between each sentence in the target context

window and the source argumentative sentence. The maximum score value is then used as a

numerical feature. We expect that the max from a set of STS scores better captures the topic

similarity between source and target argumentative sentences than the single STS score.

Because textual entailment is a directed relation, we only consider TE scores from each

sentence of source context window to the target argumentative sentences. The maximum TE

score value is used as a feature. We calculate the entailment score from the source context

window as a whole to the target argumentative sentence, and extract TE score as a feature.

We create a feature group Rc by adding 4 semantic relation scores extracted from con-

text windows to R1. While R1 only exploits semantic relations between source and target

argumentative sentences, Rc is expected to approximate also semantic relations between

source sentence’s justification and target sentence.

7.3 EXPERIMENT RESULTS

7.3.1 Performance on Academic Essay Corpus

Our first experiment conducts 10×5-fold cross validation on academic essays to compare

different models which were proposed in Chapter 6. We do not split data into training and

development sets to optimize half-size for context window-based models. In this experiment,

we start with context windows with the smallest half-size n = 1, which contain at most 3

sentences. In the follow-up experiment, we will use the whole data to quantify the impact

of the size of context windows to prediction performance.

Because of the small data with just more than 800 instances, this experiment performs

5-fold cross validation so that training and test folds should have reasonable numbers of

instances for each class. We further run 10 times of cross validation to eliminate noise caused

by minor classes (i.e., Support and Opposition). Models are trained using LibLINEAR
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algorithm (Fan et al., 2008) and cross-validations are conducted using Weka library. Table 15

presents prediction performance on the Academic Essay Corpus using the 5 argumentative

relation classification models studied in Chapter 6. Best values are highlighted in bold.

Values smaller than baseline are underlined. Symbol ** indicates significant difference with

the baseline (p < 0.01).

As shown in the table, three of our proposed models, i.e., Topic, Window and Com-

bined, significantly outperform Baseline. While Baseline yielded higher F1 for None

class, it achieved lower F1 for positive classes, i.e., Support and Opposition, which are the

classes of interest. Full model performed not better than Baseline even though it has

our proposed context features. In fact, most performance measures of Full model are sig-

nificantly lower than those of our other proposed models. These results confirm the finding

in Chapter 6 that our proposed topic-context and window-context features are much more

effective than the n-gram and production rule features. However, the noise of n-gram and

production rule features is dominant, and degrades performance when those features are

combined with our proposed features.

While Topic model obtains significantly higher F1 for Support class than Window

model, it has significantly lower F1 for Opposition class. We hypothesize that topic-context

features may help identify support relation more efficiently than opposition because it is

more reliable to reason that two words are topically-related than unrelated. In contrast, it

seems that discourse relations in context windows become an essential factor to characterize

the opposition relations between argumentative sentences. Combining topic-context with

window-context features yields the best model, except that Combine’s F1 for Opposition

is lower than that of Window. This shows a sign of conflict between window-context and

topic-context feature when predicting opposition relations. We expect to relieve this feature

inhibition by adding semantic relations such as textual entailment and textual similarity.

7.3.2 Window-size Impact

In this experiment, we investigate the impact of window-size to the prediction performance

of window-context features on academic essays. We vary the half-size parameter and report
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Baseline Topic Window Combined Full

Accuracy 0.828 0.823** 0.819** 0.829 0.827

Kappa 0.291 0.315** 0.315** 0.342** 0.291

Macro F1 0.493 0.540** 0.521** 0.553** 0.494

Macro Precision 0.529 0.560** 0.536** 0.575** 0.528

Macro Recall 0.472 0.525** 0.510** 0.536** 0.474

F1:Support 0.260 0.399** 0.300** 0.405** 0.265

F1:Opposition 0.307 0.317 0.360** 0.344** 0.305

F1:None 0.912 0.904** 0.904** 0.909** 0.911

Table 15: Argumentative relation classification performance in 10×5-fold cross validation.

Corpus: Academic.

F1 scores of Combined model in Figure 14. In the chart, the X-axis indicates half-size n of

context windows. F1 scores of Combined in Table 15 correspond to n = 1.4

As we can observe, the macro F1 line has two peaks at n = 4 and n = 8, and its values

are stable after n = 11. Similarly, F1 scores of Support and Opposition vary much less with

large n. This is reasonable that after a certain value, increasing n will introduce only a

few number of larger context windows, which affects just a small portion of argumentative

sentences. Thus, changes to prediction performance are getting negligible with larger n.

These findings are similar to the results on persuasive essays as shown in Figure 13. The

best half-size n = 8 for academic essays is larger than the best n = 3 for persuasive essays

probably because academic essays have longer paragraphs in average than persuasive essays

(see Table 16).

Looking at per-class F1 scores, we see that with very small n, i.e., n = {1, 2}, F1 of

Support are larger than F1 of Opposition. However, from n = 3, F1 scores of Opposition

increase and stay at high values when n increases. On the contrary, F1 scores of Support vary

4Recall that given a half-size n, the context window has at most n preceding and n following sentences
adjacently to the argumentative sentence of interest, so the context window has size 2n + 1 at the largest.
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Figure 14: F1 scores of Combined model in academic essays by half-size n.

Paragraph length Academic essays Persuasive essays

Min 1 1

Max 28 10

Mean 5.28 3

Median 5 3

Std 3.63 1.94

Table 16: Paragraph length in persuasive and academic essays.

more greatly. We, however, observe the trend that large n degrades F1 of Support. With

larger context windows, Combined can capture more local relations among context sentences

and that seems to help identify opposition relation between argumentative sentences. We

hypothesize that when developing opposition findings, writers may make argument switches

back and forward which can be revealed on the usage of markers and an analysis of discourse

relations. However, justification of support findings may expose no to very little reversal of
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Academic essays Persuasive essays

Combinedn=8 ADwSEG Combinedn=3 ADwSEG

Accuracy 0.836* 0.829 0.871 0.873*

Kappa 0.377* 0.343 0.487 0.493*

Macro F1 0.571* 0.545 0.743 0.746*

Macro Precision 0.590* 0.567 0.758 0.762*

Macro Recall 0.556* 0.530 0.731 0.734*

Table 17: Cross-validation performance of ADwSEG models in corpora Academic and

Persuasive1.

argument flow so that expanding the search for local discourse relations does not gain more

information to help prediction.

7.3.3 Text Segmentation-based Context Windows

An inherent problem with the window-size heuristic is that model performance is sensitive to

the half-size parameter. For example, while our Combined model achieved high performance

with the first trial half-size n = 1 (Table 15), it could be further improved if the best half-

size could be estimated, e.g., with some development data. Therefore, we propose to use

text segmentation to approximate context windows without a need to tune the window-size

parameter.

Performance of ADwSEG model on academic and persuasive essays is shown in Table 17.

For reference models in each corpus, we report Combined models with the best half-size n.

This gives us upper-bound performance of argumentative relation model using windows-size

heuristics. For persuasive essays, we conduct the Support vs. Not task, which classifies each

pair of argument components in the same paragraph as holding a support relation or not.

All experiments conduct 10×5-fold cross validation.

ADwSEG is shown to perform differently in the two corpora in comparison to the
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reference models. In academic essays, ADwSEG performs worse than Combined with

n = 8, and the differences on major measures are significant (p < 0.05). For per-class

measures, ADwSEG also returned significantly lower F1 scores of Support and Opposition.

Considering Figure 14, we see that ADwSEG even has worse F1 than Combined with

other half-size n, although the disparities are insignificant for small n ≤ 3.

On the contrary, in persuasive essays ADwSEG significantly (p < 0.05) outperforms

Combined with best n = 3 even the performance disparities are quite small. ADwSEG’s

F1 score of Support is also significantly higher than that of Combined. This result is

impressive as it shows a case that topic segmentation-based context window works better

than window-size heuristic. However, the advantage of ADwSEG was not observed in

academic essays. While we expected that topic segments naturally fits argument justification

and thus offers a good alternative of window-size heuristic for context windows, results of

ADwSEG in two corpora give both caution and promise on the benefit of text segmentation

for argument mining. We believe an analysis on the segmentation quality with different

corpora is necessary to explain the result conflict of ADwSEG in academic essays versus

persuasive essays. However, such an analysis is out of scope of this thesis. In the course of

this study, we report in Tables 18 and 19 average sizes of topic segments as well as source

and target context windows as identified by text segmentation.

In academic essays, the average topic segment returned by the text segmentation algo-

rithm has size of 4.13 sentences, while persuasive essays have average size of topic segment

about 2.14 (Table 18). As a consequence, ADwSEG model has source and target con-

text windows with average size 6.33 and 5.52 respectively for academic essays, which are

twice larger than the average sizes 3.35 and 2.30 for source and target context windows in

persuasive essays (Table 19). However, when we compare context windows of ADwSEG

with Combined, we do not see any remarkable difference. In particular, Combinedn=8

has source and target context windows with average size 6.40 and 5.50 in academic essays,

respectively. Combinedn=3 has average size 3.17 and 2.28 for source and target windows in

persuasive essays.

We also count number of topic segments that span across paragraphs (Table 18). As-

suming that each paragraph should contain completely one or more topics, a large portion
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Segment statistic Academic essays Persuasive essays

Min size 1 1

Max size 24 13

Average size 4.13 2.14

Segments/essay 6 8

Cross-paragraph segments/essay 2.80 3.92

Cross-paragraph segment ratio 0.40 0.45

Table 18: Statistics on segmentation output in corpora Academic and Persuasive1.

of cross-paragraph topic segments may indicate a noisy output of the text segmentation

algorithm. In academic essays, each essay has 6 topic segments in average, and 2.8 are

cross-paragraph. With regard to persuasive essays, there are 8 topic segments per essay, and

3.9 of those span across paragraphs. Averaging over all essays, the Academic Essay Corpus

has cross-paragraph segment ratio 0.4, and the ratio of Persuasive Essay Corpus is 0.45. In-

terestingly, persuasive essays have higher ratio of cross-paragraph segments, but ADwSEG

performs better than it does in academic essays.

7.3.4 Impact of Semantic Relation Features

We evaluate the impact of semantic relation features, i.e., R1 and Rc, in different combina-

tions with Combined and ADwSEG models. Because semantic relation features in Rc are

extracted from context sentences, actual feature values of Rc highly depend on the context

windows of source and target argumentative sentences. Thus we expect that impact of Rc

features to Combined and ADwSEG are different. We keep the same experimental setting

as in prior experiments. For academic essays, we solve the 3-way classification problem:

Support vs. Opposition vs. Non-argumentative. Regarding persuasive essays, we perform

the Support vs. Not task. Performances are calculated from 10×5-fold cross validation.

Results are shown in Tables 20 and 21. Symbol ** indicates significant difference
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Corpus Academic Persuasive1

Context window Source Target Source Target

ADwSEG 6.33 5.52 3.35 2.30

Combined (with best n) 6.40 5.50 3.17 2.28

Table 19: Average sizes of source and target context windows.

Combinedn=8 + ADwSEG +

∅ R1 Rc ∅ R1 Rc

Accuracy 0.836 0.835 0.837 0.829 0.829 0.833**

Kappa 0.377 0.374 0.380 0.343 0.341 0.359**

Macro F1 0.571 0.569 0.573 0.545 0.544 0.556**

Macro Precision 0.590 0.587 0.593 0.567 0.565 0.578**

Macro Recall 0.556 0.555 0.558 0.530 0.528 0.540**

F1:Support 0.392 0.393 0.393 0.348 0.344 0.358**

F1:Opposition 0.408 0.404 0.413 0.380 0.379 0.399**

F1:None 0.912 0.911 0.912 0.908 0.908 0.910**

Table 20: Performance of argumentative relation classification by adding semantic relation

features. Corpus: Academic.

(p < 0.01) with the model not using semantic relation features, denoted as ∅. As we

can see adding semantic relation, i.e., textual entailment and semantic textual similarity,

features Rc consistently helps improve argumentative relation mining problem across the

two corpora. The improvement is significant for ADwSEG model on the Academic Essay

Corpus. However, simply using TE and STS scores between source and target argument

components does not gain performance increase but decrease. Both Combined + R1 and

wSegment + R1 models perform worse than the corresponding Combined and ADwSEG
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Combinedn=3 + ADwSEG +

∅ R1 Rc ∅ R1 Rc

Accuracy 0.871 0.871 0.872 0.873 0.872 0.873

Kappa 0.487 0.486 0.490 0.493 0.492 0.495

Macro F1 0.743 0.743 0.745 0.746 0.746 0.747

Macro Precision 0.758 0.758 0.759 0.762 0.761 0.762

Macro Recall 0.731 0.731 0.733 0.734 0.733 0.735

F1:Support 0.562 0.561 0.564 0.567 0.566 0.569

F1:Not-support 0.925 0.925 0.925 0.926 0.925 0.926

Table 21: Performance of argumentative relation classification by adding semantic relation

features. Corpus: Persuasive1.

models. This result shown the advantage of aggregating semantic relation scores in context

windows. While max score of STS was used in a prior study on classifying relation between

multiple-sentence comments and topic, our proposed approach with context windows allows

to incorporate the aggregated scores even when the relation of interest is between two single

sentences and/or clauses.

7.4 SUMMARY

In this chapter, we explored different ways of improving argumentative relation mining

and evaluate proposed approaches using two corpora of student writings. Our experiments

showed a promising result that text segmentation can be used to outperform the window-size

heuristic for context window-based models in persuasive essays. However, further analysis

is needed to explain how quality of text segmentation affects argumentative relation min-

ing. Furthermore, we proposed to extract textual entailment and semantic textual similarity
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relation from context windows of argument components. While the simple TE and STS

scores between argument components did not help, the aggregated scores, i.e., max scores

of TE and STS, consistently improve prediction across data and models. In conclusion, our

results here further support the second main hypothesis H2 (§1.2) of the effectiveness of

topic-context and window-context features in argumentative relation mining.
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8.0 END-TO-END ARGUMENT MINING IN STUDENT ESSAYS

This chapter describes our end-to-end argument mining system that can process unannotated

essays for extracting argument component and identifying argumentative relations. Our

main motivation is to have an automated argument parsing system for studying application

of argument mining in automated essay scoring. The system makes use of our improved

models for argument component and argumentative relation classifications. For argument

component identification, we implement the supervised sequence model that is proposed in

a study by Stab and Gurevych (2017).

In 2017, Stab and Gurevych released a second corpus of persuasive essays and developed

a joint model for recognizing argumentation structure in essays. We train our argument

mining system using this corpus to take advantage of the larger data set. To the best of

our knowledge, this is the largest corpus with 402 annotated essays for argument mining

research. We, however, only employ a pipeline paradigm for our argument mining system:

argumentative relation classification can take prediction output from argument component

classification but not vice versa. Experimental results show that our argument mining system

can achieve a high performance close to the best system by Stab and Gurevych (2017) even

without a joint prediction model.

8.1 PIPELINE ARGUMENT MINING

In general, an argument mining system involves three major basic tasks (Mochales and

Moens, 2011; Peldszus and Stede, 2015; Stab and Gurevych, 2017). (1) Argument compo-
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Argument Component Identification
Argumentative vs. Not

Argumentative Relation Classification
as Support or Attack

Argument Component Classification
as Major Claim, Claim or Premise

“In conclusion, I would concede that city life 
has its own advantages. Nonetheless, peaceful 
atmosphere, friendliness of people, and green 
landscape strongly convince me that a small 
town is the best place for me to live in. I love 
the life in my town.”

Premise 1: city life has its own advantages
Premise 2: peaceful atmosphere, friendliness of 
people, and green landscape strongly convince me
Claim: a small town is the best place for me to live in

Attack (Premise1, Claim)
Support (Premise2, Claim)

Premise1 Claim

Premise2

Attack

Figure 15: Pipeline argument mining. Each basic argument mining task is associated with

the expected output from a given excerpt. In left text box, argument components are in bold

face. Label of argument components may be passed to argumentative relation classification

as features to improve performance.

nent identification aims at determining the boundaries of argumentative text units1, i.e.,

argument components. (2) Argument component classification labels each component for its

argumentative function, for example, Major Claim (author’s stance toward a topic), Claim

(controversial statement that argues for/against the stance), Premise (reason that under-

pins/rebuts the validity of claim) (Stab and Gurevych, 2014a). (3) Argumentative relation

classification determines if an ordered pair of argument components has a relation, i.e., Sup-

port vs. Attack. Different approaches have been proposed to solve the second and third tasks

in order, i.e., pipeline argument mining (Stab and Gurevych, 2014b), or jointly (Peldszus

and Stede, 2015; Stab and Gurevych, 2017).

We follow Stab and Gurevych (2014b) and design a pipeline argument mining system

that makes use of our context-aware argument mining models. Figure 15 depicts our pipeline

argument mining which was tailored for persuasive essays. For the argument component

identification task, we adapt the supervised sequence model proposed in their paper. This

model is described in detail in the next section.

To solve the argument component classification, our system employs the wLDA+4

1Text portions (e.g., sentences, clauses) that have specific roles in forming the arguments in the text
(Peldszus and Stede, 2013).
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model (§5) with novel topic-context features derived from our lexicon of argument and do-

main words. Because our argument mining system will be applied for argumentative writings

that share much similarity with the persuasive essays used in our studies, we use the argu-

ment and domain word lexicon that was learned from the development data of persuasive

essays. Finally, with regard to argumentative relation mining, we employ the wSegment

model which uses topic segmentation to identify context windows of argument components.

Stab and Gurevych (2017) split the corpus into training and test sets with 322 and

80 essays, respectively. We train our argument mining system using the training set, and

compare the performances on the test set with the reported results by Stab and Gurevych

(2017). Parameters of prediction models in our argument mining system are optimized

through 10-fold cross validation within training set. Creation and statistics of this corpus

were introduced in §3.2. Class distributions in training and test sets are shown in Table 22.

8.2 SUPERVISED SEQUENCE MODEL FOR ARGUMENT COMPONENT

IDENTIFICATION

Stab and Gurevych (2017) encodes argument components using BIO tagset that every token

in the essay has either B, I or O label depending on whether it is at the beginning, inside, or

outside the argument component. Figure 16 shows an example argumentative sentence with

BIO labels assigned to its tokens. The authors used Conditional Random Field algorithm

(Lafferty et al., 2001) to learn a sequence labeling model. We adapt their model to use in

our argument mining system. For each tokens, we extract following features as proposed in

the prior study (Stab and Gurevych, 2017):

• Structural features

– Token position: token present in first or last paragraph; token is first or last token in

sentence; relative and absolute token position in document, paragraph and sentence.

– Punctuation: token precedes or follows any punctuation, full stop, comma and semi-

colon; token is any punctuation or full stop.
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Class Training set Test set

Argument Components

Major Claim 598 (12%) 153 (12%)

Claim 1202 (25%) 304 (24%)

Premise 3023 (63%) 809 (64%)

In-paragraph Argument Component Pairs

Linked 3023 (18%) 809 (16%)

Not-linked 14227 (82%) 4113 (84%)

In- and Cross-paragraph Argumentative Relations

Support 3820 (90%) 1021 (92%)

Attack 405 (10%) 92 (8%)

Table 22: Class distributions in training and test sets of corpus Persuasive2.

– Position of covering sentence: absolute and relative position of the token’s covering

sentence in the document and paragraph.

• Syntactic features

– Part-of-speech: the token’s part-of-speech.

– Lowest common ancestor (LCA): length of the path to the LCA with the following

and preceding token in the parse tree normalized by the depth of the tree.

– LCA types: constituent types of two LCA of the current token with its preceding

and following tokens.

• Lexico-syntactic features : for each token t, extract its uppermost node n in the parse

tree with the lexical head t. A lexico-syntactic feature is defined as the combination of t

and the constituent type of n. We also consider the child node of n in the path to t and

its right sibling, and extract their lexico-syntactic features (Soricut and Marcu, 2003).

• Probability feature: we compute the maximal conditional probability of the current token
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It ’s true that technology and computers do make their jobs easier but it cannot definitely replace them .
B I I I I I I I I I I I O B I I I I O

 

Figure 16: Tokens with BIO tagset.

ti being the beginning of an argument component given its preceding tokens:

maxn∈{1,2,3}P (tagset(ti) = B|ti−n, ..., ti−1)

The probability is estimated as a division of the number of times the preceding tokens

precede a token ti with tag B by the total number of occurrences of the preceding tokens

in the training data.

We add six features derived from argument and domain word lexicon:

• AD features: two boolean features indicate whether the current token is an argument

word or a domain word; four boolean features indicate whether the preceding or following

tokens are argument or domain words.

Performances of argument component identification (ACI) on the test set are reported in

Table 23. The first row shows reported results in Stab and Gurevych (2017). The two next

rows present results of our implementation of Stab and Gurevych (2017), and our improved

version with AD features (referred to as adACI). Our implementation of Stab & Gurevych’s

model obtained close results to what is reported in their paper. Our improved version with

AD features yielded the best performance.

To further evaluate the impact of AD features in the task, we conduct 10-fold cross val-

idation on training set and report results in Table 24. T-tests show that all performance

improvement by AD features are significant with p < 0.01. Given this result, we integrate

improved ACI model into our argument mining system to solve argument component identi-

fication.
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Model F1 Prec. Recl. F1:B F1:I F1:O

Human upper bound 0.886 0.887 0.885 0.821 0.941 0.892

ACI by Stab and Gurevych 0.867 0.873 0.861 0.809 0.934 0.857

ACI (our implementation) 0.865 0.868 0.862 0.799 0.938 0.859

adACI 0.872 0.877 0.868 0.814 0.939 0.863

Table 23: Argument component identification performance on the test set. Corpus: Persua-

sive2.

Model F1 Prec. Recl. F1:B F1:I F1:O

ACI 0.850 0.853 0.848 0.778 0.931 0.841

adACI 0.856* 0.859* 0.854* 0.791* 0.932* 0.844*

Table 24: 10-fold cross validation performance of argument component identification in the

training set. Corpus: Persuasive2.

8.3 ARGUMENT COMPONENT CLASSIFICATION

The next component in our argument mining system aims at classifying each argument

component as MajorClaim, Claim, or Premise. This problem setting is more practical than

the classification problem we solved in Chapters 4 and 5. While the old 4-way classification

also considered non-argumentative sentences, this 3-way classification works on the output of

the argument component identification step, and thus can skip non-argumentative sentences.

For this task, Stab and Gurevych (2017) had significantly improved their first model in

2014b with novel features. The most notable change that Stab and Gurevych made to their

model was that they used dependency triples rather then production rules. It has been shown

in our prior study that dependency triples are more effective then production rules for this

classification task. Besides, they expanded their discourse marker set and included output
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ADw4 ADw4 + Prob. ADw4 + Embedding

Accuracy 0.820 0.845* 0.818

Kappa 0.656 0.704* 0.650

Macro F1 0.792 0.825* 0.788

Macro Precision 0.795 0.829* 0.795

Macro Recall 0.790 0.821* 0.783

F1:MajorClaim 0.866 0.896* 0.862

F1:Claim 0.628 0.681* 0.618

F1:Premise 0.883 0.898* 0.884

Table 25: 10-fold cross validation performance of ACC models in the training set. Corpus:

Persuasive2.

of a discourse parser (Lin et al., 2014). Finally, the authors proposed two novel feature sets.

The probability features are the conditional probabilities of the current component C

having the argumentative label t in {MajorClaim, Claim, Premise} given the sequence of

preceding tokens p:

P (label(C) = t|p)

Conditional probabilities P are estimated from the training data.

The second new feature set is based on the pre-trained Word2Vec word embedding

(Mikolov et al., 2013). They summed vectors of words in the argument component and

preceding tokens within the sentence. The summation vector was then added to the feature

space.

While their new lexical features, e.g., dependency parse and discourse relations, over-

lap with our features, their probability and embedding features are novel. However, their

experiments showed that adding probability and embedding features yielded very little per-

formance improvement, i.e., less than 0.5%. Moreover, because the conditional probability

of argumentative labels are estimated in the training set, we worry that relying on probabil-
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ity features may over-fit with training data and degrade performance on unseen test data.

Therefore, we experiment with adding these feature sets to our proposed model.

8.3.1 Experiment Results: Cross Validation in Training Set

For argument component classification, we employ the ADw4 model, and train the model

using LibSVM (Chang and Lin, 2011). As shown in Table 25, adding probability features

significantly improves performance for ADw4, but adding embedding features does not.

In fact, ADw4 + Embedding performs worse than our original model. However, the high

performance of ADw4 + Probability is expected because the probabilities are computed in

the training set.

8.3.2 Experiment Results: Performance in Test Set

Argument component classification performances on the test set are shown in Table 26. Base

column reports performance of the improved base classifier, and ILP column presents perfor-

mance of the ILP-based joint prediction (Stab and Gurevych, 2017). ILP model exploits the

mutual information between argument components and argumentative relations to optimize

the prediction. As a result, ILP obtained remarkably better performance than Base.

Comparing our proposed models, adding probability or embedding features do not im-

prove performance of ADw4. While ADw4 + Probability yielded the best performance in

the training set, its performance is the lowest in the test set. This suggests that probability

features might cause over-fitting. Although embedding features allow a much more efficient

representation than bag-of-words, a simple usage like adding word vectors to feature space

seems to not help. However, given all successes of word embeddings in many different NLP

tasks, we plan to explore more advanced usage of word embeddings in argument mining in

the future.

Comparing ADw4 with Stab and Gurevych’s results, our model achieved significantly

higher performance than their base classifier. Despite the fact that ADw4 does not have

any information from argumentative relation prediction, its F1 score is comparable to ILP’s

F1, and it even could predict MajorClaim better than the ILP model did. This makes us
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Base ILP ADw4 ADw4+Prob. ADw4+Embd.

Accuracy - - 0.848 0.839 0.841

Kappa - - 0.702 0.684 0.687

F1 0.794 0.826 0.825 0.814 0.816

Precision - - 0.831 0.825 0.825

Recall - - 0.822 0.805 0.810

F1:MajorClaim 0.891 0.891 0.910 0.901 0.906

F1:Claim 0.611 0.682 0.667 0.646 0.648

F1:Premise 0.879 0.903 0.900 0.896 0.896

Table 26: Test performance of ACC models. Corpus: Persuasive2.

believe that we can further improve state-of-the-art performance when implementing joint

prediction from our base classifier.

Given the above results, we integrate ADw4 into our argument mining system to solve

argument component classification.

8.4 ARGUMENTATIVE RELATION IDENTIFICATION

The last component in our end-to-end argument mining system aims at argumentative rela-

tion mining task. Differently from the previous tasks, argumentative relation mining can be

cast to different classification problems depending on which representation of argumentative

relation is of interest. In prior chapters, we have demonstrated our context-aware models

by solving the argumentative relation mining problem in the forms of Support vs. Not and

Support vs. Attack classifications. In this chapter, we experiment with the attachment

problem that determines whether a pair of argument components with one as the source and

the other as the target holds an argumentative relation (i.e., argumentative relation identi-
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fication). If so, the two argument components are said to be linked in order (Peldszus and

Stede, 2015; Stab and Gurevych, 2017). Support and attack relations then can be classified

from linked pairs of argument components. For the argumentative relation mining task, we

deploy ADwSEG2 model which is ADwSEG model with textual entailment and semantic

textual similarity features.

Based on a prior model developed using corpus Persuasive1, Stab and Gurevych (2017)

proposed an improved model for argumentative relation mining with new features and larger

training data from corpus Persuasive2. The authors first limited numbers of n-grams and

production rules to the 500 most frequent items in each set. This certainly is to address

the large and sparse feature space generated by generic n-grams and production rules. Our

proposed models have addressed this issue by eliminating domain words in n-grams and

dependency triples.

The authors also introduced the pointwise mutual information feature that measures the

dependency between a lemmatized token t of an argument component and the direction d

of argumentative relation that attaches to the component:

PMI(t, d) = log
P (t, d)

P (t)P (d)

where d ∈ {incoming, outgoing}. P (t, d) is the probability that token t occurs in an argument

component with either incoming or outgoing relations. Probabilities are estimated from the

training set of the corpus. Given the over-fitting issue with the probability feature for

argument component classification, we do not include the PMI feature to our model for

argumentative relation mining because our argument mining system will apply to different

data sets of student essays that vary on topic domains and writing characteristics.

Finally, Stab and Gurevych added two shared-noun features that determine if the two

argument components share a noun, and count number of shared nouns. These features are

motivated by a fact that premises and claims in classical syllogisms share the same subjects

(Govier, 2013). Our model has similar features that count shared argument and domain

words. Our preliminary experiments showed that adding shared noun features does not help

our model.
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Base ILP Combinedn=3 ADwSEG ADwSEG2

Accuracy - - 0.861 0.865 0.866

Kappa - - 0.449 0.462 0.467

F1 0.717 0.751 0.724 0.730 0.733

Precision - - 0.751 0.759 0.760

Recall - - 0.705 0.711 0.713

F1:Linked 0.508 0.585 0.528 0.540 0.544

F1:Not-linked 0.917 0.918 0.919 0.921 0.922

Table 27: Test performance of models for attachment task. Corpus: Persuasive2.

8.4.1 Test Performance of Models

We compare performance of our three proposed models with the published results (Stab

and Gurevych, 2017) and report in Table 27. Combinedn=3 model uses half-size n = 3 to

identify context window of argument components (Chapter 6). ADwSEG takes output of a

text segmentation algorithm to form context windows. ADwSEG2 adds textual entailment

and semantic textual similarity features to ADwSEG (Chapter 7). Columns Base and ILP

show performance of the base classifier and the joint model in the prior study (Stab and

Gurevych, 2017).

As we can see in the table, ILP is the best model and has F1 score greatly improved

in comparison with that of the base classifier. Among our proposed models, ADwSEG2

achieves the best performance. Also, ADwSEG2 has larger performance disparity with

Combinedn=3 than with ADwSEG, which confirms that topic segmentation-based context

windows yielded higher improvement than textual semantic relations. ADwSEG2’s per-

formance is higher than Base, which again demonstrates the effectiveness of our contextual

features. However, the fact that ADwSEG2 performed worse than ILP clearly shows the

advantage of joint prediction. We plan to implement a similar ILP framework and expect to

further improve both argument component and argumentative relation classifications.
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8.5 END-TO-END PERFORMANCE

In previous sections, we have described in detail our pipeline argument mining system and

compared our proposed models with the baselines for different argument mining tasks. While

prediction performance of each argument mining task was reported, those results do not re-

flect the true capability of the system because each task was performed using the input with

true labels instead of output from the task before. In particular, both argument component

classification and argumentative relation identification were fed with true argument com-

ponents (AC). In this section, we test the end-to-end performance of our argument mining

system.

Considering essays in the test set, argument components are first automatically extracted.

Then, the extracted argument components are classified for their argumentative labels (i.e.,

MajorClaim, Claim, Premise) and pairs of components that hold a argumentative relation

are identified. To measure the end-to-end performance, we first form an union set U of

extracted argument components E and true argument components T which are missed at

the identification task.

U = E ∪ T, E ∩ T = ∅

With the extracted argument components E, we assign true argumentative labels to those

that have exact matches with true argument components. The other extracted argument

components should have true non-argumentative labels (i.e., false positive). Because the true

argument components in T are not given to later classification tasks, the creation of U is

to assure that the missing argument components in T , and subsequently the argumentative

relations among them, are taken into account when measuring performance. Thus, our

performance measures for argument component classification and argumentative relation

identification embed the performance of argument component identification.

The test set has 1266 true argument components (AC). Our argument component identi-

fication (ACI) model returned 3460 textual spans (i.e., sub-sentence portions) in which 1272

were identified as AC. Out of the extracted AC, 941 have exact matches with true AC (i.e.,

true positive). The confusion matrix is given in Table 28. Our union set U includes 1597

AC in which 1272 were returned by our model (set E) and 325 true AC were misidentified
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True argumentative True non-argumentative

Predicted argumentative 941 331

Predicted non-argumentative 325 1868

Table 28: Confusion matrix of argument component identification on the test set. Corpus:

Persuasive2.

True MajorClaim True Claim True Premise True Non

Predicted MajorClaim 81 10 1 64

Predicted Claim 15 138 50 95

Predicted Premise 0 77 569 172

Predicted Non 57 79 189 0

Table 29: Confusion matrix of argument component classification on the test set. Corpus:

Persuasive2.

as non-argumentative (set T ). We also wanted to mention that approximate match, i.e.,

two text spans are considered a match if their overlap portion is greater than some thresh-

old (Persing and Ng, 2016), should be more favorable for the boundary extraction problem.

We, however, use exact match in this study to give a sense of argument mining difficulty.

Approximate match may make more sense when we are aware of how much flexibility an

end-application allows for argument mining output.

8.5.1 Argument Component Classification

Given the set U, Table 29 presents the confusion matrix of argument component classification

(ACC). The row Predicted Non does not reflect the misclassification by our ACC model, but

shows errors carried over from ACI’s results. Our ACC model achieves end-to-end F1 of

0.421 with F1:MajorClaim = 0.524, F1:Claim = 0.458, and F1:Premise = 0.699. Stab and
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True Linked True Not-linked

Predicted Linked 252 369

Predicted Not-linked 449 3978

Table 30: Confusion matrix of argumentative relation identification on the test set. Corpus:

Persuasive2.

Gurevych (2017) did not report the end-to-end performance of their models so we do not

have a baseline for direct comparison. To give more intuition on the task difficulty, here we

present the end-to-end measures reported in a study by Persing and Ng (2016). The authors

developed a heuristic for argument component candidate extraction and an ILP framework

for joint prediction. They conducted 5-fold cross validation in corpus Persuasive1. Essays in

the corpus are of the same kind with those in Persuasive2 that we are using for this study

(see Chapter 3). Their best system with exact matching returned F1:MajorClaim = 0.169,

F1:Claim = 0.374, and F1:Premise = 0.534.

8.5.2 Argumentative Relation Identification

From 1272 argument components returned by our ACI model, our argumentative relation

identification (ARI) model formed 4854 ordered pairs of AC in which 621 were predicted as

Linked. With regard to 325 true AC which were missed by our ACI model, 189 Linked pairs

of AC were not considered as input of the ARI model.

To have an end-to-end F1 for Linked pairs, we add 189 true Linked pairs to the cell

[Predicted Not-linked, True Linked] in the confusion matrix. Thus, the confusion matrix in

Table 30 has 189 more instances than the total number of pairs formed by our ARI model.

With this adjustment, our ARI model obtained F1:Linked = 0.381. Persing and Ng (2016)

achieved F1 = 0.136 using corpus Persuasive1, but their task was more difficult when it

classified Support, Attack and No-relation.

Because all True Positive instances are included in our end-to-end measures, we can
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roughly compare the end-to-end F1 scores with the results of individual tasks in previous

sections. We observe a great reduction in performance with our end-to-end setting. For

example, F1:Linked has decreased 30% while F1 of ACC has reduced nearly 50%. Despite

the fact that argument component identification could obtain high performance (about 1.5%

lower than human upper bound), the performance degradation in end results are remarkable

which shows the essential value of a good ACI model.

8.6 SUMMARY

This section presents the end-to-end performance of our pipeline argument mining system

in the corpus Persuasive2. The reported performances are promising but show need of

improvement. Our plan for enhancing our argument mining system includes improving the

ACI model and implementing joint prediction. We also suggest to use approximate match

for ACI to increase model coverage when applying argument mining to a real task.
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9.0 AUTOMATED ESSAY SCORING: AN EXTRINSIC EVALUATION OF

ARGUMENT MINING MODELS

9.1 INTRODUCTION

Applications of argument mining in real-world tasks, e.g., automated writing evaluation, have

gained an increasing interest. While prior studies proposed different approaches to improve

argument mining, no study has investigated the impact of argument mining accuracy to the

application tasks. In this research, we study argument mining for automated persuasive

essay scoring and examine whether more accurate argument mining models help to predict

essay scores more accurately. Our essay scoring study uses a larger set of features enabled

by argument mining output compared to prior work, and performs argument mining at

different levels of automation. The experimental results not only confirm that more accurate

argument mining yields higher essay scoring performance, but also gives interesting insights

on the contribution of different argumentation features.

In automated essay scoring (AES), argument mining offers new abilities for AES systems

to consider argumentation aspects of persuasive essays beyond legacy essay dimensions, e.g.,

grammar, mechanics, discourse structure. Research has proposed different argumentation

features for persuasive essay score prediction to improve automated scoring performance,

e.g., numbers of claims and support relations, tree-form vs. chain-form arguments. In

these studies, different levels of automation have been employed for argumentation feature

extraction (Ghosh et al., 2016; Klebanov et al., 2016). However, no prior studies have

investigated the impact of argument mining accuracy to the scoring performance. This

issue is of particular interest given that argumentation features can be computed at different

steps of the argument mining pipeline (Figure 15), and error propagation may degrade the
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effectiveness of features computed at later steps of the pipeline (Chapter 8).

Our current study is the first time that argument mining models are extrinsically com-

pared in terms of how their accuracy impacts the performance of automated persuasive essay

scoring. By argument mining accuracy, we mean the classification performance of each basic

argument mining task. We first adapt two argument mining models developed for persuasive

essays: Stab and Gurevych (2014b), and our pipeline argument mining system (Chapter 8)

which we name ArgS and ArgN respectively. We review prior studies and consider a large

set of argumentation features for essay scoring. We hypothesize that argumentation features

computed by more accurate argument mining models will predict essay score more accurately.

Furthermore, we categorize the argumentation features into sets corresponding to the basic

tasks where they are computed, and compare them for insights of their contributions to essay

score prediction.

Most persuasive essay scoring tasks adopt a holistic scoring scheme in which argument

convincingness is just a dimension of the overall essay quality (Song et al., 2014; Ong et al.,

2014). Even when the argument quality could be an explicit criterion to evaluate the essay

in some cases, predicting argument strength may require feature selection from argument

mining output (Persing and Ng, 2015). Therefore, applying argument mining to automated

essay scoring is usually taken as a feature engineering task. On the other hand, the literature

on extrinsic evaluation of Natural Language Processing systems has shown that better intrin-

sic performance might not lead to better extrinsic performance (Belz and Gatt, 2008; Chiu

et al., 2016). These bring-up the necessity of an empirical study on the effect of argument

mining accuracy and argumentation features to AES performance.

9.2 ARGUMENT MINING SYSTEMS AND AES DATA

Our current study exploits different corpora for argument mining systems and essay scoring

experiments. The ArgS system is our implementation of models proposed by Stab and

Gurevych (2014b), and trained using the first corpus of persuasive essays (§3.1). Our end-

to-end argument mining system ArgN was introduced in Chapter 8, which employs our
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proposed argument mining models, and was trained using the second corpus of persuasive

essays (§3.2). The two argument mining systems are implemented following the pipeline

structure as depicted in Figure 15. Given an input essay, argument components are first

extracted, then classified as Major Claim, Claim or Premise. Finally, for every ordered

pairs of argument components in each paragraph, the systems determine if there exists a

support relation or not. Both ArgS and ArgN systems are equipped with adACI model

for argument component identification (§8.2).

For essay scoring experiments, we use essays of the TOEFL11 corpus (Blanchard et al.,

2013). The corpus contains over 12 thousand TOEFL essays written by non-native test

takers to argue for opinions towards issues stated in 8 writing prompts. Although the corpus

was first introduced for a Native Language Identification shared task, the coarse-grained

holistic scores (i.e., Low, Medium, and High) of essays were provided. Particularly, we use a

set of essays from this corpus which has been used in a prior study on argumentation features

for essay score prediction (Ghosh et al., 2016).

To evaluate a set of coarse-grained argumentation features for persuasive essay scoring,

Ghosh et al. (2016) annotated 107 essays (Te107) from the TOEFL11 corpus using a similar

annotation scheme as proposed in Stab and Gurevych (2014a) for the corpus Persuasive1.

However, because our ArgN system is trained using the corpus Persuasive2 which were

annotated with the improved scheme, there are certain types of argumentative relations in

Te107 essays that cannot be identified by ArgN system, e.g., relations between claims.

To better estimate ArgN’s performance on Te107, we discard annotated relations between

claims, from premises to major claims in Te107 essays. Te107 data includes 105 Major

Claims, 468 Claims, and 603 Premises.1 There are 4178 ordered pairs of argument compo-

nents in which 507 pairs hold support relations (656 pairs before our adjustment). As this

annotated dataset has true boundaries of argument components, we can evaluate ArgS and

ArgN when the inputs are gold-standard argument components. Scores of Te107 essays

are reported in Table 31. Because the essays were sampled in a way that keeps similar

numbers of essays across scores, the score distribution does not match the distribution of

1The data was made available online at github.com/debanjanghosh/argessay ACL2016/. We, however,
observe a difference in number of Major Claims than reported in their paper.
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#essays 107

Low score 31

Medium score 36

High score 40

Table 31: Statistics of Te107 data.

the TOEFL11 corpus.

The advantage of Te107 data is that its essays were both graded for writing quality

and annotated for argumentation structures. This data is ideal for us to study the impact

of argumentation features on predicting essay scores, and evaluate argument mining systems

extrinsically on an automated essay scoring task. However, there are certain dissimilarities

between TOEFL11 essays and those in the training corpora of the two argument mining

systems used in this study. First, essays in our training corpora are practice writings which

might be prepared without any limits of time or references. On the contrary, TOEFL11

essays were written in real tests with time limits and no reference material. Second, while

persuasive essays in the training corpora were manually collected to assure that they are

argument-rich (Stab and Gurevych, 2014a, 2017), TOEFL11 essays were sampled with an

emphasis on variety to assure the inclusion of both high and low quality essays (Blanchard

et al., 2013). Thus, TOEFL11 essays are expected to have lower quality as well as greater

quality range compared to persuasive essays in our training corpora. Although both corpora

are opinionated essays written by student authors, their quality disparity make TOEFL11

essays a challenging data set to evaluate our argument mining models.

9.3 INTRINSIC EVALUATION OF ARGUMENT MINING SYSTEMS

We first evaluate the performance of two argument mining pipelines, ArgS and ArgN,

using true argument components provided in Te107 data. In this setting, we conduct both
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System F1:MajorClaim F1:Claim F1:Premise F1:Support F1:Not-support

10-fold cross validation

ArgS 0.570 0.549 0.732 0.226 0.906

ArgN 0.604* 0.606* 0.753* 0.320* 0.915

Test performance

ArgS 0.453 0.295 0.710 0.148 0.917

ArgN 0.622* 0.508* 0.751* 0.211* 0.915

Table 32: Argument mining performance in Te107 essays when inputs are true argument

components.

System Low-score Set Medium-score Set High-score Set

F1:AC F1:Support F1:AC F1:Support F1:AC F1:Support

ArgS 0.400 0.234 0.482 0.115 0.501 0.050

ArgN 0.570 0.179 0.598 0.156 0.644 0.242

Table 33: Test performance in Te107 for different score sets. F1:AC reports macro average

F1 score of argument component classification.

in-domain cross validation and out-of-domain validation. In-domain cross validation eval-

uates approaches in ArgS and ArgN through 10-fold cross validation. This experiment

merely compares efficiency of prediction features in (Stab and Gurevych, 2014b), and fea-

tures proposed in our studies. Out-of-domain validation evaluates the two argument mining

systems in which prediction models are pre-trained using different argument mining corpora

as mentioned above.

Table 32 reports prediction performance of the two argument mining pipelines when

the argument components were manually identified.2 Symbol * denotes difference with p <

2In 10-fold cross validation on Te107, we obtained lower argumentative relation performance than re-
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0.05 when comparing performances of Args and ArgN. As we can see, ArgN system

significantly outperformed ArgS models with all measures, except for the test F1 scores of

Not-support. Not-support is the major class, and performance difference between the two

systems are not significant. We, however, are more interested in F1 scores of the Support

class, where ArgN yielded significantly higher scores. These results again confirm our prior

findings regarding the effectiveness of our contextual features in ArgN. The results also

show that the test performances of both systems on Te107 essays are lower than 10-fold

performances for most measures. This is probably due to differences in writing quality and

annotation between training essays and TOEFL11 essays that we have discussed.

To investigate the hypothesis whether essay quality affects argument mining performance,

we report the test performance of ArgS and ArgN for differrent essay score sets in Ta-

ble 33. Considering the argument component classification, we can see that the average

F1 score increases when the prediction moves from low score to high score sets. Regard-

ing argumentative relation classification, we also have ArgN obtained higher F1:Support in

high-score essays than low-score essays. Although the score sets have different sizes and class

distributions, these results roughly show that argument mining performs more accurately in

high-quality essays than low-quality ones. However, the F1:Support of ArgS is higher in

the low-score set and lower in the high-score set. We observe that the essays in high-score

set are usually longer and produces more candidate pairs of components. The very skewed

distribution in high-score essays might affect ArgS which caused its low performance.

Our next evaluation tests the two argument mining systems with automatically identified

argument components. This evaluation follows exactly the same setting as in Chapter 8, and

has only one difference in that test essays in this study (i.e., Te107) are from different data

domain than the training data for argument mining. Model adACI is employed to extract

argument components from the essays. Performance of argument component identification

is shown in Table 34. Referring to results in Table 23, the model adACI performed much

worse in Te107 data than in Persuasive2 corpus. The low performance in Te107 is expected

ported in (Ghosh et al., 2016). The reason was that we extracted all possible ordered pairs of argument
components in each paragraph (Stab and Gurevych, 2014b), while Ghosh et al. (2016) only extracted cer-
tain pairs based on true labels of argument components. Thus, our setting is much more challenging and
applicable to unannotated data.
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F1 Prec. Recl. F1:B F1:I F1:O

0.578 0.575 0.591 0.436 0.757 0.540

Table 34: Argument component identification performance of adACI model in Te107 data.

System F1:MajorClaim F1:Claim F1:Premise F1:Support F1:Not-support

ArgS 0.078 0.226 0.343 0.088 0.962*

ArgN 0.156* 0.258* 0.404* 0.126* 0.947

Table 35: Argument mining performance in Te107 essays when inputs are automatically

identified argument components.

because of differences in writing quality, topic domains and annotation.

Regarding end-to-end argument mining in Te107, as shown in Table 35, test performance

on Te107 is much lower for both argument mining systems when argument components were

automatically rather than manually identified. However, we still observe that ArgN per-

formed better than ArgS, except for F1:Not-support. As we are more interested in detecting

Support relations, F1:Not-support measure is less important. Overall, intrinsic comparative

evaluations confirm that ArgN can predict argumentation structure more accurately than

ArgS.

9.4 ARGUMENTATION FEATURES FOR PREDICTING ESSAY SCORES

This section describes different argumentation features that have been used in prior studies

for persuasive essay scoring (Persing and Ng, 2015; Ghosh et al., 2016; Klebanov et al., 2016;

Wachsmuth et al., 2016), and introduces new features for a more comprehensive evaluation.

Because the argumentative relation models that we implemented for ArgS and ArgN only
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classify pairs of components in the same paragraph as having support relation or not, we do

not include argumentation features that involve attack relations or cross-paragraph argument

component pairs. Table 36 lists 38 argumentation features in 5 sets that we study in our

essay scoring experiments.

For argument component (AC) features, we use raw counts as well as the ratios of

argument components and argumentative sentences (i.e., sentences that contain at least one

argument component) over the total number of sentences in the essay. Numbers of argument

components and argumentative sentences were widely used in prior studies on argument

mining for essay score prediction (Ghosh et al., 2016; Klebanov et al., 2016). Our preliminary

analysis found moderate correlations (r > 0.7) between number of argument components

(also argumentative sentences) and essay length (i.e., word and sentence counts). Therefore,

argument count features are expected to simulate the effect of essay length features.

Wachsmuth et al. (2016) hypothesized that essays largely argue sequentially, so they

restricted to sequences of types (i.e., Thesis, Conclusion, Premise) of argumentative discourse

units (i.e., argument flow) in paragraphs to mine reliable patterns of argumentation structure

of persuasive essays. For example, argument flows (Conclusion, Premise) and (Conclusion,

Premise, Premise) are found to be the most frequent in the International Corpus of Learner

English (ICLE) (Granger et al., 2009). We adapt their idea to extract bigrams of types of

argument components from paragraphs of essays to use as features. With three possible

argumentative labels: MajorClaim, Claim and Premise, we have 9 possible typed bigrams of

argument components. We do not consider the MajorClaim–MajorClaim bigrams which do

not hold an argumentative relation, and retain 8 remaining typed bigrams. Also, we count

number of paragraphs that have simultaneously MajorClaim and Claim, Claim and Premise,

or MajorClaim and Premise.

For argumentative relation features, we count number of Claims that are supported by

Premises, number of dangling Claims which are not supported by any Premises, number of

Premises that support Claims.

Argumentation structure typology features (TS) were first proposed in (Ghosh et al.,

2016). The authors constructed a directed acyclic graph of support relations for each para-

graph, and defined three argumentation structure typologies: Chain-structure (i.e., Claim is
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Argument component features (AC)

1, 2
Number and fraction of argument components over total number of sentences
in essay (Ghosh et al., 2016)

3, 4 Number and fraction of argumentative sentences (Ghosh et al., 2016)
5 Total number of words in argument components

6
Number of paragraphs containing argument components (Persing and Ng,
2015)

7
Whether the essay has paragraph without any argument component (Persing
and Ng, 2015)

Component label features (CL)

8 Number of Major Claims (this study)

9, 10
Number and fraction of Claims over total number of sentences (Persing and
Ng, 2015; Ghosh et al., 2016)

11, 12 Number and fraction of Premises (Persing and Ng, 2015; Ghosh et al., 2016)
13 Average number of Premises per Claim (Klebanov et al., 2016)

Argument flow features (AF)

14
Number of paragraphs that contain Major Claims and Claims (Persing and
Ng, 2015)

15 Number of paragraphs that contain Major Claims and Premises (this study)
16 Number of paragraphs that contain Claims and Premises (this study)

17–24 Frequency of 8 typed bigrams of argument components (this study)

Argumentative relation features (RL)

25 Number of supported Claims (Ghosh et al., 2016)
26 Number of dangling Claims (Ghosh et al., 2016)
27 Number of supporting Premises (this study)
28 Number of paragraphs that have support relations (this study)

Argumentation structure typology features (TS)

29 Number of Chain-structures (Ghosh et al., 2016)
30 Number of Tree-structures (this study)
31 Number of Tree-structures with height = 1 (Ghosh et al., 2016)
32 Number of paragraphs that contain Chain-structures (this study)
33 Number of paragraphs that contain Tree-structures (this study)

Table 36: Argumentation features for essay score prediction

the root of single-brand tree), Tree-structure of height > 1 (Treeh>1), and Tree-structure of

height = 1 (Treeh=1). Typology features are essentially different from argument flow features.

While the former requires the existence of support relations, the other merely considers the

appearance order of argument components. Due to the rare occurrence of Tree-structures

in essays (Wachsmuth et al., 2016), we group Treeh>1 and Treeh>1-structures together.
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9.5 ESSAY SCORE PREDICTION IN TE107 DATA

We evaluate two argument mining pipelines, i.e., ArgS and ArgN, with respect to how

accurately their argumentation features predict essay scores in Te107 data to leverage the

annotation. While Te107 has a small number of essays, and the score distribution does

not truly represent the TOEFL11 corpus, its annotation allows us to derive argumentation

features from true labels of argumentation structure.

Given a set of features, an essay score prediction model is trained using Logistic Regres-

sion algorithm and evaluated in 10× 10-fold cross validation to obtain reliable performance

estimation (Kohavi, 1995). The data is reshuffled and re-stratified before each 10-fold run.

Reported performance figures include Cohen’s kappa (κ) and quadratically-weighted kappa

(qwk). While qwk is a standard measure in AES literature (Shermis and Burstein, 2013), κ

is included because the prediction model is essentially a classifier. For each set of argumenta-

tion features, feature values are extracted in three ways: (1) from true argument components

and argumentative relations (TrueLabel), (2) from output of ArgN, and (3) from output

of ArgS.

9.5.1 AES Performance Based on Human-identified Argument Components

We first evaluate the argumentation features when their corresponding argument mining

models work on human-identified argument components. This setting assumes true argument

components are provided so effectiveness of argumentation features depends on the accuracy

of argument component and argumentative relation classifications. Therefore, TrueLabel,

ArgN and ArgS have identical values for AC features.

As reported in Table 37, argumentation features (except AF features) extracted by Tru-

eLabel outperform those extracted from the output of ArgN and ArgS in score prediction.

Symbols ** and † mean significantly higher and lower than the other two with p < 0.01 (be-

cause we perform multiple k-folds, we expect significance at lower p-value to capture the

stability across runs), respectively. However, the performance disparity is larger for relation-

based features (i.e., RL, TS) than component-based features (i.e., CL and AF). These could
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Component-based Relation-based

Feature set AC CL AF RL TS All

κ

TrueLabel 0.583 0.591** 0.449 0.466** 0.384** 0.402

ArgN 0.583 0.504 0.440 0.318 0.031 † 0.422

ArgS 0.583 0.486 0.370 † 0.197 † 0.112 0.317 †
qwk

TrueLabel 0.765 0.768** 0.686 0.747** 0.620** 0.636

ArgN 0.765 0.744 0.695 0.454 0.139 0.608

ArgS 0.765 0.729 † 0.577 † 0.423 † 0.165 0.559 †

Table 37: Essay score prediction performance in Te107 data. Argument components are

manually identified.

be explained by the fact that argument component classification’s output is more reliable

than argumentative relation classification’s output (see results in Table 32).

Comparing the two argument mining systems, we see that ArgN’s argumentation fea-

tures return significantly higher qwk and κ than ArgS, except for TS features. However,

the absolute κ and qwk values of TS features are really small which makes us reason that

neither argument mining systems derive reliable topology features. In fact, topology features

involve multiple relations to form a structure, thus it is much more difficult for an argument

mining system to approximate a topology feature as it is extracted from true label. In Ghosh

et al. (2016), TS features were shown useful even they were computed from output of an

argumentative relation model. This does not conflict with our finding here because their

argumentative relation model solved a simplified problem and achieved high F1 scores (see

footnote 2).

Comparing different sets of argumentation features, the general trend is that component-

based features (AC, CL and AF) are more effective than relation-based features (RL and
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Feature set AC CL AF RL TS All

κ

ArgN 0.506 0.367 0.307** 0.171 0.018 0.381**

ArgS 0.506 0.383 0.230 0.175 0.094** 0.294

qwk

ArgN 0.716 0.633 0.512** 0.312* 0.057 0.536

ArgS 0.716 0.603 0.423 0.259 0.189** 0.514

Table 38: Essay score prediction performance in Te107. Argument components are auto-

matically identified.

TS). However, while RL features by TrueLabel are very competitive, those derived from

argument mining output perform worse than component-based features. This may be due

to poor results of argumentative relation classification. These facts suggest that argument

component-based features are more favorable choices for AES tasks until we can have more

reliable argumentative relation models.

When combining all argumentation features, all TrueLabel, ArgN and ArgS degrade

performance compared to using only AC features, which reveals feature interaction and

inference. Therefore, feature selection is necessary for the best performance.

9.5.2 AES Performance Based on Automatically Identified Argument Compo-

nents

In this experiment, argumentation features are all extracted from output of the end-to-end

argument mining process. Because both ArgN and ArgS are equipped with the same model

for argument component identification, they have the identical values for AC features. Essay

score prediction experiments are conducted following the same setting as above. Results are

presented in Table 38.

First, essay score prediction performances are much lower when argument mining systems
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have to take predicted argument component as inputs. The most effective features are still

argument component statistics (AC). At the other end, TS features are the least reliable

with very low κ and qwk. Combining all argumentation features yields significantly lower

performance than using component-based features alone. These results confirm our findings

from the previous experiments that complex relation-based features such as topology are

not ready to be applied in AES tasks, and obtaining the best AES performance may require

feature selection.

Comparing the two argument mining systems, we do not generally have ArgN’s argu-

mentation features perform better than ArgS. In particular, TS features of ArgN perform

significantly worse than those of ArgS, which confirm the findings in Table 37. Moreover,

performance disparity between ArgS and ArgN is not consistent across κ and qwk of CL

and RL features. Similarly to AES performance based on true argument component, ArgN’s

all features returned higher qwk and κ than ArgS’s all features.

To give a fair comparison between the two argument mining systems with respect to

AES performance of their argumentation features, we conducted the experiments with a

comprehensive set of argumentation features but did not apply any optimization such as

feature selection. This is both an advantage and disadvantage of our analysis. At first, this

analysis achieves the ultimate goal of the current study that is giving insights of impact

of argument mining accuracy to AES performance. We compare argumentation features

derived from not only different argument mining tasks, but also different argument mining

systems.

However, in a different perspective the analysis has not answered the real question

whether argumentation features from output of an end-to-end argument mining model even-

tually helps improve AES performance. By that we actually mean our evaluation of AES

performance was not grounded on a base AES model. Let us consider a naive AES model

that uses only word-count (WC) features and obtains 10-fold κ = 0.552 and qwk = 0.743

in Te107 data. Although word-count is much less descriptive than argumentation features,

it alone can predict essay scores far better than any combination of argumentation features.

From this fact, we do not expect argumentation features to be used as a replacement for

baseline features in existing AES systems. In the next chapter we look for answers to the
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research question of whether argumentation features can supplement base AES models with

information of argumentation structure to improve persuasive essay score prediction.

9.6 SUMMARY

To the best of our knowledge, we are the first to perform an extrinsic comparison of argument

mining systems for persuasive essay scoring. We evaluated argument mining models in two

extreme cases where argument components were identified by human versus automatically.

We also studied a larger set of argumentation features for persuasive essay score prediction

than prior studies. Therefore, another contributions of our study are insights on the impact

of argumentation features to essay score prediction. Among our results, notable findings

include (1) features based on argument components can predict essay score better than

features derived from argumentative relations; (2) argumentation features extracted by more

accurate argument mining models predict essay scores more accurately. For the next study,

we will extend the extrinsic evaluation by adding argumentation features to a base essay

scoring system.
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10.0 ARGUMENT MINING FOR IMPROVING PERSUASIVE ESSAY

SCORE PREDICTION

10.1 INTRODUCTION

In Chapter 9, we showed that argumentation features derived by more accurate argument

mining models can predict essay scores more accurately. However, the study also showed

that the low performance of argumentative relation models make its argumentation features

much less reliable in essay score prediction. In fact, although our proposed argument mining

system has an improved argumentative relation model, its argument typology features did not

predict essay scores better because the performance of argumentative relation classification

is still low (Tables 32 and 35). Furthermore, adding all argumentation features significantly

degraded AES performance compared to using only argument component features (Tables 37

and 38). These results seem to suggest that argument component features are more favorable

choices for automated essay scoring while argumentative relation features are not ready

for this task. Although such a finding is reasonable given experimental results, it indeed

does not conclude about the true benefit of using argumentation features in automatically

predicting persuasive essay scores. We hypothesize that while argumentation features may

not effectively predict essay scores when used alone, they can help gain improvement when

used with a base model for essay score prediction. This chapter seeks such a benefit of

argumentation features when they are evaluated in the context of a base AES model.

Prior studies on argument mining for persuasive essay scoring have not considered the

role of enhancing a base AES model adequately. Ghosh et al. (2016) was the first to study

argumentation features but only compared against sentence-count feature. Klebanov et al.

(2016) used word-count feature as the baseline to evaluate performance improvement when
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adding proposed argumentation features. While their studies showed added values of argu-

mentation features, such conclusions may not generally apply to real AES tasks when scoring

models are usually tailored for the best performance. In a study by Wachsmuth et al. (2016),

argument flow features gained improvement for state-of-the-art models. However, their study

aimed at predicting trait scores of essays which are organization and argument strength. Our

study aims for improving holistic score prediction by exploiting argumentation features.

In this study we evaluate AES models using both cross validation and held-out test sets.

While the former minimizes bias in comparisons, the latter enables a direct comparison with

a prior study.

10.2 DATA AND BASE MODEL FOR AUTOMATED ESSAY SCORING

In this study, we continue to utilize the TOEFL11 corpus for AES experiments. We, however,

use the essay sets sampled by Klebanov et al. (2016), which have a larger size and their score

distribution are similar to the original corpus. In particular, the authors compiled a training

set of 6074 essays and a test set of 2023 essays. We did not experiment with this data

set because it does not have human annotation. Numbers of essays with different scores are

reported in Table 39. More than half of the total essays receive medium scores, and low-score

essays have the smallest portion.

For the purpose of easy integration and evaluation, our current study implements a

competitive base model for essay score prediction. We review the literature on AES and

employ a variety of features that were found effective for essay scoring (Shermis and Burstein,

2013; Dikli, 2006). Our first group of features (Length) include 5 numerical features that

model fluency and readability of the writing. While we do not have a direct model for

writing fluency, we use essay length features as an estimate because it is believed that a

more fluent writer will be able to write more (Klebanov et al., 2016). Readability features

are adapted from Automated Readability Index formula which involves average sentence

length and average word length.1

1https://en.wikipedia.org/wiki/Automated readability index
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Training Test

#essays 6074 2023

#prompts 8

Low score 655 222

Medium score 3318 1101

High score 2101 700

Table 39: Essay score data description.

• Word count: number of tokens in the essay.

• Sentence count: number of sentences in the essay.

• Character count: number of characters not including white-space characters.

• Average sentence length: average number of words per sentence.

• Average word length: average number of characters per word.

Our second group of features (Content) aim for modeling different aspects of writing

mechanics including spelling errors, content-richness and sentence complexity:

• Spell: number and percentage of spelling errors in the essay. We use the Jazzy library

with Ispell dictionary to detect incorrect words.2

• Stop-word: number and percentage of stop-words in the essays.

• Prompt: number and percentage of words found in the writing prompt.

• Vocabulary: number and percentage of words found in the SAT 5000-word list.3

• Comma: number of commas, semi-colons, and colons.

• Punctuation: numbers of question marks, exclamation marks and double quote symbols.

Word and POS n-grams are commonly used in AES research, but we found that adding

these features makes our base model significantly less effective. While the utilized features

are simple, their performance are shown competitive in our next experiments.

2http://jazzy.sourceforge.net/
3http://www.freevocabulary.com
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Count ArgS ArgN

Sentences 91349 (15.03±6.02)

Argument components 85205 (14.02±5.44)

Major-Claims 4119 (0.67±0.83) 8237 (1.35±0.96)

Claims 15460 (2.54±1.93) 24423 (4.02±2.31)

Premises 65626 (10.80±5.20) 52545 (8.65±5.10)

Support relations 12547 (2.06±2.38) 29322 (4.82±3.87)

Table 40: Statistics of argument mining output in train set. Mean and standard deviation

are parenthesized.

10.3 IMPROVING ESSAY SCORING WITH ARGUMENTATION

FEATURES

10.3.1 Cross Validation in Training Set

Our current study continues to use 38 argumentation features and compare two argument

mining systems ArgS and ArgN as described in Chapter 9. 38 argumentation features

are grouped in 5 sets: argument component (AC), argumentative label of components (CL),

sequence of argument components (i.e., argument flow, AF), argumentative relation (RL),

and argument typology (TS). Essays in the data set are first segmented into argument com-

ponent by using adACI model (Chapter 8). The two argument mining systems are then

employed to label argument components and identify support relations. Finally, argumen-

tation features are extracted from argument mining output. Number of predicted argument

components and support relations are shown in Table 40. T-test results show that statistical

values of ArgS and ArgN are all significantly different with p < 0.0001.

Given two sets of baseline features and 5 sets of argumentation features, we evaluate

different combinations. AES models are trained using Logistic Regression algorithm in Weka

(Hall et al., 2009), and evaluated in 10-fold cross validation. Essay scoring performance are
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Feature set κ qwk

Length 0.440† 0.567†
Content 0.453† 0.582†

Length + Content (Base) 0.475 0.599

ArgS ArgN ArgS ArgN

AC 0.341† 0.469†
Base + AC 0.474 0.599

CL 0.119† 0.118† 0.215† 0.211†
Base + CL 0.475 0.482* 0.599 0.605*

AF 0.058† 0.042† 0.141† 0.091†
Base + AF 0.477 0.476 0.602 0.601

RL 0.029† 0.054† 0.058† 0.092†
Base + RL 0.466† 0.478 0.592† 0.602

TS 0.015† 0.000† 0.029† 0.000†
Base + TS 0.475 0.470 0.600 0.595

ARG 0.346† 0.364† 0.481† 0.494†
ARG + Base (All) 0.480 0.486* 0.604 0.611*

All – AC 0.475 0.487* 0.599 0.610*

All – CL 0.477 0.484* 0.602 0.608*

All – AF 0.480 0.480 0.603 0.604

All – RL 0.481 0.481 0.605 0.606*

All – TS 0.485 0.487* 0.608 0.611*

Table 41: 10-fold cross validation performance of essay score prediction of base and argu-

mentation features. ARG denotes all argumentation features.

shown in Table 41. Best values are highlighted in bold. Symbols * and † indicate significantly

higher and lower than Base values (p < 0.05), respectively.
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As shown in the middle part of the table, 4 of 5 argumentation feature sets derived from

ArgS do not gain improvement for the base model when adding them individually to the

base model. Only AF set is effective in that combining them with base features yielded

higher κ and qwk.

With regard to ArgN, 3 of 5 argumentation feature sets (i.e., CL, AF and RL) helped

improve the base model, and the improvement by CL features are significant. Significant

improvements are obtained when combining argumentation features. The best combination

includes base features with all argumentation features except argument structure typology

(TS) features. This provides an evidence that argumentation features indeed help improve

essay score prediction, and the performance increase is more significant when the argument

mining output is more accurate.

Considering each set of argumentation features individually, we can see that they almost

cannot predict essay score when used alone except AC features which yielded κ = 0.341 and

qwk = 0.469. Interestingly, although AC features returned the highest performance among

argumentation features, those do not help improve base performance at all. In fact, count

features in AC correlate moderately to strongly with the corresponding Length features.

For example, Pearson’s correlation tests for number of argumentative sentences vs. number

of sentences, number of words in argument components vs. number of words returned r >

0.8, p = 0. Thus, we hypothesize that AC features do not provide more predictive information

than those captured in Length features.

The least effective argumentation features are TS features in that ArgN’s TS features

had κ and qwk almost zeros. Adding TS features extracted by either ArgS or ArgN to the

baseline both degraded performance of the base model. As shown in the bottom part of the

table, we achieved the best κ and qwk by removing ArgN’s TS features from all features.

Despite the low performance by each argumentation feature set, the performance increase

by combining those argumentation features with the base AES model confirms our hypothesis

of the improvement benefit of argumentation features. The improvements are significant

when the base model is enhanced with ArgN’s features. This makes us believe that base

features such as length statistics and writing mechanics grade essays at a coarse grain and

argumentation features help further refine the prediction.
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Feature set κ qwk

ArgS ArgN ArgS ArgN

Length + Count (Base) 0.463 0.591

ARG 0.346† 0.361† 0.481† 0.492†
ARG + Base (All) 0.470 0.475* 0.597 0.600*

Base + AC 0.471* 0.471* 0.596 0.596

Base + CL 0.467 0.473* 0.594 0.600*

Base + AF 0.465 0.469* 0.594 0.597*

Base + RL 0.464 0.466 0.592 0.593

Base + TS 0.465 0.465 0.593 0.592

All – AC 0.468 0.474* 0.595 0.600*

All – CL 0.466 0.474* 0.595 0.600*

All – AF 0.470 0.474* 0.597 0.601*

All – RL 0.470 0.469 0.597 0.595

All – TS 0.472* 0.476* 0.599* 0.601*

Table 42: Cross-prompt performance of essay score prediction of base and argumentation

features.

The above finding is also confirmed in Table 42 where we conduct cross-prompt vali-

dation. In each run, we hold essays of a prompt as a test data and use essays of the 7

remaining prompts for training the models. Similarly to 10-fold cross validation results,

adding argumentation features improve cross-prompt AES performance, and the improve-

ments are significant (p < 0.05) for features extracted by ArgN. For ArgS’s features, a

significant improvement is obtained when removing TS features from the complete set. Not

using TS features also helps obtain the best κ = 0.476 and qwk = 0.601 for ArgN. Overall,

AES results by adding ArgN features are better than adding ArgS features most of the

times.
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Cross-prompt experiment is considered a more difficult evaluation because test and train-

ing essays are of different writing topics. The AES improvements by adding argumentation

features are revealed more clearly in the cross-prompt setting which demonstrates the topic-

independent advantage of argumentation features. In the next chapter, we further study this

aspect of argumentation features in cross-domain AES.

Our experiments did not do an exhaustive feature selection, but aimed for evaluating

argumentation features by groups to get an insight of how possible outputs of argument

mining help improve AES. When comparing results in 10-fold cross validation and cross-

prompt validation, a finding is that the best combination of argumentation features is {AC,

CL, RL, AF} and it is true for both ArgS and ArgN. Argument typology features (TS)

perform the worst when used alone, and give the lowest (or second lowest) performance when

adding to the base model. Although adding TS features still gains improvement for the base

AES model (by a small amount), we hypothesize that the value of typology features is

restricted by the low performance of argumentative relation mining. In future work, we plan

to improve argumentative relation mining with joint prediction and study if relation-based

features (i.e., RL and TS) can be more effective.

10.3.2 Test Performance

In this experiment, we evaluate argumentation features and the base features on a held-out

test set as described in Klebanov et al. (2016). This allows us to directly compare our results

with the prior study. For the best performance of the base AES model, we conduct 10-fold

cross validation in the training set for model selection. The result shows that Random Forest

algorithm (Breiman, 2001) works the best. Therefore, all AES models in this experiment

are trained with Random Forest algorithm.4 Test performance is shown in Table 43. Values

higher than Base are highlighted in bold.

First, our base AES model performs much better than the word-count baseline used

by Klebanov et al. (2016). The author reported a test performance on this data set using

4Logistic Regression that was used in our previous experiments was not set up for ridge regularization so
that we can assure all features are considered in the training process. By this way, we had a fair evaluation
of each feature set. However, we believe not all features are equivalently effective so we exploit Random
Forest, a learning algorithm with built-in feature selection for the best results.
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Feature set κ qwk

(Klebanov et al., 2016) 0.389 0.540

Length + Content (Base) 0.486 0.604

ArgS ArgN ArgS ArgN

ARG 0.340 0.361 0.474 0.491

ARG + Base (All) 0.484 0.490 0.602 0.607

Base + AC 0.481 0.481 0.600 0.600

Base + CL 0.488 0.493 0.606 0.612

Base + AF 0.484 0.484 0.597 0.605

Base + RL 0.489 0.486 0.603 0.603

Base + TS 0.490 0.485 0.608 0.604

All – AC 0.477 0.496 0.597 0.611

All – CL 0.489 0.492 0.603 0.608

All – AF 0.483 0.491 0.601 0.609

All – RL 0.488 0.508 0.604 0.622

All – TS 0.483 0.503 0.602 0.618

Table 43: Test performance of essay score prediction of base and argumentation features.

word-count feature with z-transform yielding κ = 0.365 and qwk = 0.518. Our baseline

even yielded notably higher performance than their best model which combined word count

with 9 argument structure features to obtain κ = 0.389 and qwk = 0.540. Second, using

argumentation features to augment the base AES model yielded better performance. How-

ever, adding all argumentation features does not return the best performance. In fact, with

regard to ArgN’s argumentation features, the best result is obtained when not using RL

features: AES κ = 0.508 and qwk = 0.622 as shown in the table. About ArgS’s features,

the best result is when using CL and TS features with the base model: AES κ = 0.501 and

qwk = 0.618 (not shown in the table). While argument structure typology (TS) has little

130



value in cross-validation AES (see Tables 41 and 42), it helps a lot for ArgS features to

improve AES performance. Regarding ArgN features, using the best combination of argu-

mentation features (i.e., {AC, CL, RL, AF}) which was determined in cross-validation AES

above, we obtain the second best result in this experiment: κ = 0.503 and qwk = 0.618.

Even though this does not gain the best result, the improvement is impressive given the fact

that the learning algorithm was optimized for the base AES model.

Overall, the test results again confirm our prior findings of the value of argumentation

features for automated essay scoring, and more accurate argument mining helps gain higher

improvement.5 The results also suggest that the best set of argumentation features for

automated essay scoring is an open problem and may need extensive studies to determine

for different use cases.

10.4 SUMMARY

Our current study evaluates argumentation features for essay scoring in the context of a

competitive base model for automated essay scoring. The results strongly suggest that ar-

gumentation features extracted by a more accurate argument mining system improve essay

score prediction more effectively. With the use of a base AES model, we showed that ar-

gumentation features extracted by an end-to-end argument mining system indeed improve

essay scoring performance significantly. Thus, this study support our third main hypothesis

H3 (§1.2) and brings up a stronger evidence about an application of argument mining for

essay scoring tasks. To the best of our knowledge, none of the prior studies have addressed

completely the matter of end-to-end argument mining for improving holistic score prediction

in persuasive essays.

5Argument mining accuracies are mentioned based on evaluation in previous studies. We do not have
human annotation to conclude whether ArgN is more accurate than ArgS and by how much in this data.
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11.0 ARGUMENT MINING FOR CROSS-DOMAIN ESSAY SCORE

PREDICTION

11.1 INTRODUCTION

For the best performance, AES models are usually trained and tested with data of the same

or similar topic domains. However, this requires additional data whenever an AES model is

deployed for new writing prompts. Because collecting and annotating new data are typically

costly or even not possible for quick deployment, domain adaptation in AES has recently

been studied as a remedy for the lack of new data (Phandi et al., 2015; Dong and Zhang,

2016). In this study, we further investigate the application of argument mining in AES by

showing that argumentation features which are not dependent on topic domains can help

improve AES in cross-domain evaluation.

11.2 DATA AND BASE MODEL

Our current study utilizes the Kaggle’s Automated Student Assessment Prize (ASAP) data1

which has been studied widely in automated essay scoring research (Phandi et al., 2015;

Dong and Zhang, 2016; Taghipour and Ng, 2016). The ASAP data consists of 8 essay sets

each of which include essays of the same prompt. Selected essays range from an average

length of 150 to 550 words per response. All essays were written by students ranging in

grade levels from Grade 7 to Grade 10. All essays were hand graded and were double-scored.

Each of the eight data sets has its own unique characteristics. Phandi et al. (2015) and Dong

1https://www.kaggle.com/c/asap-aes/data
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Set #essays Average length Score range Median

1 1783 350 2–12 8

2 1800 350 1–6 3

Table 44: Essay score data description.

and Zhang (2016) have utilized the ASAP data to develop domain adaptation algorithms

for the AES problem. They experimented with different pairs of essay sets in which essays

of one set were used to train the models, and essays of the other set were for testing.

Among 8 writing prompts, we use two prompts whose essays are argumentative. Data

statistics of the two essay sets are shown in Table 44. Essays of both sets were double-graded

but while the essays of set 2 have resolved scores, essays of set 1 have finals score as the

summation of the two expert scores.

Prompt 1: More and more people use computers, but not everyone agrees that this benefits
society. Those who support advances in technology believe that computers have a positive
effect on people. They teach hand-eye coordination, give people the ability to learn about
faraway places and people, and even allow people to talk online with other people. Others
have different ideas. Some experts are concerned that people are spending too much time
on their computers and less time exercising, enjoying nature, and interacting with family
and friends. Write a letter to your local newspaper in which you state your opinion on the
effects computers have on people. Persuade the readers to agree with you.

Prompt 2: Write a persuasive essay to a newspaper reflecting your views on censorship in
libraries. Do you believe that certain materials, such as books, music, movies, magazines,
etc., should be removed from the shelves if they are found offensive? Support your position
with convincing arguments from your own experience, observations, and/or reading.

Our primary goal in the current study is to evaluate argumentation features in cross-

domain AES. We hypothesize that argumentation features which abstract over the arguments

and argumentation structure of the writing will work effectively even in cross-domain AES.

Thus we differentiate our study from prior studies which proposed different machine learning

approaches for domain adaptation in AES, e.g., correlated linear regression (Phandi et al.,

2015) and automatic features using neural network (Dong and Zhang, 2016). As our base

AES model, we use a publicly available open-source AES system called “Enhanced AI Scoring
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Engine”2. EASE system was ranked in the top three of the Kaggle ASAP competition despite

the fact that it used simple features as described in (Phandi et al., 2015):

1. Length:

• Number of characters

• Number of words

• Number of commas

• Number of apostrophes

• Number of sentence ending punctuations (“.”, “?”, “!”)

• Average word length (in character).

2. Prompt:

• Number and fraction of words in the essay that appears in the prompt divided by

the total number of words in the essay.

• Number and fraction of words in the essay which is a word or a synonym of a word

that appears in the prompt.

3. Bag of words:

• Count of useful unigrams and bigrams (unstemmed)

• Count of stemmed and spell corrected useful unigrams and bigrams

4. Part-of-speech: number and fraction of good POS sequence over the total number of

words.

EASE system uses NLTK library3 to tag essays and WordNet4 to extract synonyms.

While bag of words and POS sequences are commonly used in AES, EASE proposed to use

refined ngrams and POS features for the best performance. Useful n-grams were defined as

n-grams that separate high-score essays and low-score essays, determined using the Fisher

test. EASE use the top 200 n-grams for each of unstemmed and stemmed set. To collect

good POS sequences, 12 novels in the collection The Adventures of Sherlock Holmes by Sir

Author Conan Doyle5 were tagged and POS sequences of size 2 to 4 were collected. For each

essays, ratio of good POS, i.e., POS sequences found in the collection, is computed.

2https://github.com/edx/ease
3http://www.nltk.org/
4https://wordnet.princeton.edu/
5The texts are made available online by Project Gutenberg (http://www.gutenberg.org).

134



Essay set 1 Essay set 2

Feature set κ qwk κ qwk

(Phandi et al., 2015) – 0.781 – 0.621

EASE 0.316 0.792 0.463 0.663

ARG 0.308 0.763 0.414 0.612

EASE + ARG 0.328* 0.797 0.475* 0.676

Table 45: In-domain performance of essay score prediction in ASAP data. ARG denotes

all argumentation features.

11.3 EXPERIMENT RESULTS

11.3.1 In-domain Cross Validation

Similarly to our previous study, we augment EASE with argumentation features which were

described in Table 36. However, because essays of ASAP data do not have paragraphs, all

paragraph-related features are not available for ASAP essays, thus we have only 25 argumen-

tation features. Argumentation features are extracted from output of our argument mining

pipeline ArgN. Because the test sets of Kaggle ASAP data are not publicly available, we

follow prior studies to conduct 5-fold cross validation for each essay set. In this experiment,

AES is formulated as a classification problem. EASE system uses Stochastic Gradient Boost-

ing provided in Scikit-learn library6 to train its AES model. We keep all default settings of

EASE system and its training process. The only modification we make, which is the only

focus of this study, is that we add argumentation features into EASE’s feature set.

Table 45 reports 5-fold cross validation performance of the EASE model with and without

argumentation features. Symbol * means significantly higher than EASE (p < 0.05). As

shown in the table, argumentation features perform significantly worse than EASE features.

However, similarly to results in TOEFL11 data, the current experiment shows that adding

6http://scikit-learn.org
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argumentation features improves AES performance. Improvements in κ are significant.

Phandi et al. (2015) and Taghipour and Ng (2016) also reported 5-fold cross validations

using EASE features with ASAP data. While we do not have the data splits used in those

prior studies, we experimented with different runs of 5-fold cross validation for EASE, and

observed that results of different runs were very close to each other and all higher than those

reported in the prior studies (Phandi et al., 2015; Taghipour and Ng, 2016). A possible

reason is that the EASE system used in our study utilizes a stochastic gradient boosting

algorithm while the EASE models in previous studies used Bayesian Linear Regression and

Support Vector Machine algorithms. The authors only utilized features extracted by EASE

but did not use the learning algorithm which was implemented for the system. Our next

experiment shows that the learning algorithm of EASE is also effective for cross-domain

predictions.

11.3.2 Cross-domain Validation

Phandi et al. (2015) were the first to conduct cross-domain AES with ASAP data. With the

essay sets 1 and 2, they experimented with set 1 as the training data and set 2 as the test

data. Because essays of sets 1 and 2 have different score range, they scaled essay scores into

an intermediate range of [-1, 1] and solved AES as a regression problem. Given the regression

output, predicted values are re-scaled back to the score range of test essays, and κ and qwk

can be computed. We follow their experiment setting for score scaling. However, we use

EASE in regression mode which activates the gradient boosting regressor of the system. We

conduct two cross-domain experiments in which each of essay set will be training and test

data turn by turn.

Cross-domain results are reported in Table 46. Values higher than EASE are highlighted

in bold. Best results in (Phandi et al., 2015; Dong and Zhang, 2016) are reported in the

top rows. In Dong and Zhang’s experiment, essay scores were scaled to range [0, 1] before

the machine learning process. Similarly to the in-domain experiments, our use of EASE

obtains higher qwk than the prior studies, which may be due to different learning algorithms.

However, while the prior studies conducted experiments with other essay sets, we only work
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with sets 1 and 2. Therefore, results in Table 46 is not an evidence to conclude that Gradient

Boosting algorithm of EASE is generally better than prior studies for cross-domain AES.

However, because the main focus of our current study is the impact of argumentation features

to cross-domain AES, using a learning algorithm that is particularly good for the data of

interest gives us a better context to conclude our hypotheses.

Recall that argumentation features are placed in 5 sets: AC (argumentative components),

CL (argument component label), AF (argument flow), RL (argumentative relation label),

and TS (argument structure typology). First, we see that cross-domain Set:2→1 (set 2 as

training and set 1 as test data) has much lower performance than cross-domain Set:1→2

(set 1 as training and set 2 as test data). Also, cross-domain performances are generally

lower than in-domain performances (see Table 45). We reason that scaling essay scores in

range [1, 6] and [2, 12] to smaller range, e.g., [-1, 1], then re-scaling to original ranges will

cause information loss, which degrades performance. The information loss is more severe

when the target range is larger than the original range, e.g., the case of Set 2 → 1. Our

experiments in Appendix F shows that the choice of intermediate range affects greatly to

regression performance.

Second, we observe that adding argumentation features generally improve cross-domain

AES. While combining all argumentation features with EASE (i.e., EASE + ARG) returned

higher κ and qwk for both cross-domain settings, the results also show that better im-

provements are achieved when not using all argumentation features. We experimented with

different combination of argumentation feature sets and record the best combination for each

cross-domain setting. For Set:1→2, the best performance is obtained when using AC, CL,

and TS features with EASE for κ = 0.336 and qwk = 0.649. For Set:2→1, we have the

best κ = 0.053 and the best qwk = 0.529 when adding AC, RL and TS to EASE. Both

argument component and argumentative relation features are present in the best set, which

shows the necessity of complete argument mining from argument component identification

to argumentative relation classification. However, comparing with our prior experiments in

Chapter 10, we see that the best sets of argumentation features do not generalize across

experiments. We hypothesize that argument mining accuracy and interactions between ar-

gumentation features and base features determine which classes of argumentation features
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Feature set Set:1→2 Set:2→1

κ qwk κ qwk

(Phandi et al., 2015) – 0.545 – –

(Dong and Zhang, 2016) – 0.569 – –

EASE 0.234 0.585 0.048 0.491

EASE + ARG (All) 0.298 0.622 0.049 0.493

EASE + AC 0.302 0.628 0.052 0.529

EASE + CL 0.225 0.589 0.049 0.493

EASE + AF 0.241 0.596 0.041 0.482

EASE + RL 0.230 0.595 0.050 0.483

EASE + TS 0.242 0.598 0.051 0.492

All – AC 0.261 0.610 0.041 0.516

All – CL 0.271 0.596 0.033 0.456

All – AF 0.263 0.611 0.055 0.498

All – RL 0.311 0.626 0.047 0.471

All – TS 0.303 0.622 0.050 0.494

Our best 0.336 0.649 0.053 0.529

Table 46: Cross-domain performance of essay score prediction in ASAP data.

are more effective. This suggests that feature selection is a necessary task-specific practice

when deploying argument mining for automated essay scoring tasks.

11.4 SUMMARY

The current study expands our research on application of argument mining in automated

essay scoring with new data and cross-domain validation. Experiment results confirm again
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the value of argumentation features for improving AES performance even when the training

and test essays of different writing prompts. This proof is more valuable when argumentation

features are evaluated using a real AES system which is one of the most competitive for the

studied data. While prior studies explored different machine learning approaches for boost-

ing simple, domain-independent features in cross-domain persuasive essay score prediction

(Phandi et al., 2015; Dong and Zhang, 2016), our study addresses the problem by exploiting

argument structure of the persuasive essays. Argument structure has been shown to be an

effective indicator of persuasive essay quality, which abstracts over the essay content.
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12.0 CONCLUSIONS AND DISCUSSIONS

12.1 CONTRIBUTION SUMMARY

In this thesis, we propose context-aware argument mining models that use global and lo-

cal contextual information to improve state-of-the-art argument mining performance. Our

works on argument component identification (Chapters 4 and 5) show that context features

that exploit argument indicators and writing topic significantly improve the prediction per-

formance. Our studies on argumentative relation mining (Chapters 6 and 7) investigated

features extracted from context segments and achieved significant improvement. Thus, the

first contribution of this thesis is the innovative contextual features which were shown to ef-

fectively improve argument mining accuracy. Results show that our context-aware argument

mining models achieved comparable performance with the state-of-the-art despite the fact

that we did not optimize with joint prediction (see §2.3.5). This result makes us believe that

we can further increase the state-of-the-art argument mining when our models are optimized

with joint prediction.

The second contribution is presented through Chapters 9, 10, and 11 where we conducted

extensive studies on the application of argument mining in automated essay scoring. This

thesis is the first where argument mining systems are extrinsically compared with respect to

AES performance. As expected, our finding support that more accurate argument mining

helps predict essay score more accurately. Moreover, our thesis explored a large set of

argumentation features and demonstrated that argument mining output can be used to

extract features that significantly improve competitive AES models, even when the test

essays are of different writing prompts or topic domains.

Both argument mining and persuasive essay score prediction have been studied com-
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prehensively in this thesis. Argument mining models were evaluated with different corpora

ranging from academic writings by college students to persuasive essays by ESL learners,

from high-quality practice writings to real-test essays. Models were also validated in differ-

ent experimental settings from cross-fold, cross-topic to end-to-end. Regarding automated

persuasive essay scoring, the thesis studies different uses of argumentation features in dif-

ferent contexts of base AES models ranging from score classification to score regression,

in-domain to cross-domain validations. Our thesis is the first time that application of ar-

gument mining in AES is studied in three important perspectives: end-to-end argument

mining, improvement to advanced AES model, holistic score of essays. Our thesis brings the

strongest demonstration of the values of argument mining in practical AES.

Two other contributions of our thesis are derived from the side works of our research.

First, we proposed a novel algorithm to extract argument and domain words semi-automatically

from texts. Features computed from those lexicons play vital roles in the success of our

context-aware argument mining approaches. Second, we developed an end-to-end argument

mining system that can parse persuasive essays to extract argument components and ar-

gumentative relations. We are in the process of making the system publicly available for

anyone who is interested in argument mining and its application.

12.2 LIMITATIONS AND FUTURE WORK

Despite our great effort to improve argument mining and uncover its potentials in educational

application, the thesis still exposes limitations that we hope to resolve in future work.

First of all, our research has not answered how the quality of argument/domain word

lexicons might affect the argument mining performance. In Chapter 5, we compared the

extracted argument words with the set of argument seed words to test the lexicon cover-

age. However, such test did not handle the precision of the lexicon. In other words, we

did not evaluate the quality of our extracted argument words, and how the argument min-

ing accuracy will be if we adjusted the lexicon extraction algorithm. Second, our lexicon

extraction algorithm is semi-supervised in that it needs a set of argument seed words to

141



start. This makes our algorithm not easy to adapt to other writing genres such as online

debates or product reviews. In the future, we first plan to revise the argument and domain

word extraction algorithm by first automating the argument keyword selection phrase. One

solution is to use argumentative discourse markers to initiate the process. Second, we will

compare our lexicon extraction algorithm with other approaches for argument and domain

word learning proposed in prior studies (Madnani et al., 2012; Séaghdha and Teufel, 2014) in

terms of how the extracted argument/domain words help improve argument mining models.

It is also worth measuring the relative precision and coverage of lexicons learned by different

approaches to see how their quality impacts argument mining accuracy.

Secondly, there is still room for improvement in window-context features for argumen-

tative relation mining. This thesis has proposed two approaches to create context-windows

including window-size heuristics and text segmentation. Experimental results (Table 17)

showed that each approach worked better for one of the two data sets. Thus, one question

to investigate in future work is whether quality of text segmentation output has impact on

the effectiveness of window-context features. To answer this, we plan to manually compare

text segmentation output in persuasive essays and academic writings and conduct an error

analysis for argumentative relation mining with respect to window-context features. Beside

hard-boundary context windows as we have studied, soft-boundary window (i.e., shaped

windows) is an interesting idea to explore next. The basic idea is that each context sentence

will have a probability of belonging to the context window of an argument component. This

membership probability can be inferred from the data and may depend on the distance,

discourse relation and content relatedness between the context sentence and the argument

components. We see research in probabilistic topic models, text segmentation and discourse

parsing are valuable resources for us to develop an approach for this idea.

Our other follow-up plan is a joint model that labels argument components and argu-

mentative relations simultaneously to take advantage of mutual information between the two

problems. Joint prediction has shown great successes in argument mining and we believe

such a mechanism will further improve our context-aware argument mining models. Also, an

interesting direction is to apply deep learning in argument mining. Researchers have used

word embeddings as feature vectors for argument component classification. We are thinking

142



of exploiting deep learning to model argumentative discourse relations in an unsupervised

way. With great availability of free texts, we believe to have more than enough pairs of

sentences/clauses with explicit discourse markers that likely signal argumentative relations,

e.g., because, therefore, but, however. We now need a learning mechanism to create an

relation embedding that can represent the deep semantics of the relevance in each pair. For

this ambition, we see recent research on sentence embedding, representation learning for

discourse parsing as valuable resources.

In parallel with continuously improving argument mining models, deploying argument

mining in real-world tasks is also of interest. A possible direction is to use argument min-

ing for a complete assessment of student argumentative writing in the SWoRD peer review

system. However, this would need a larger corpus of academic writing annotated for argu-

mentation structures, and also the same or other writings graded by experts. We believe

that with larger data sets for argument mining and essays with expert scores, we can have

a stronger evidence of the effectiveness of argumentation features for academic essay score

prediction.

Finally, expanding our context-aware argument mining research to different writing gen-

res beyond persuasive essays, and with broader concepts of context is our long-term vision.

We believe our proposed topic- and window-context features are applicable to wide range of

text genres, e.g., online debate and product reviews. In fact, researchers have studied argu-

mentative relations between user comments in a debate but have not yet considered the full

potential of discourse structures among comment sentences. Moreover, topic information is

generally available in such texts, e.g., debate topics, product keywords, user opinions. Thus,

we can adapt our algorithm to extract argument and domain words from texts. On the other

hand, the scope of context can be expand to beyond the documents. To identify argument

moves in online debates, or evidences in user comments, we should not limit ourself to the

textual domain. External contexts such as thread structure, user activity history, and other

metadata can be useful. Therefore, an ultimate model should be the one that exploits as

much context as the data provides to get the most insights of the data.
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APPENDIX A

LISTS OF ARGUMENT WORDS

A.1 ARGUMENT WORDS IN PERSUASIVE ESSAYS

263 argument words extracted from the persuasive development set (6794 essays). Words are

stemmed, named entities are replaced by their NER labels. Words are sorted in descending

order of their probabilities returned by the LDA topic model.

that the is of it peopl some be to other in are a on as this there for more believ view
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A.2 ARGUMENT WORDS IN ACADEMIC ESSAYS

315 argument words extracted from the academic development set (254 essays). Words are

stemmed, named entities are replaced by their NER labels. Words are sorted in descending

order of their probabilities returned by the LDA topic model.
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conduct look them had hypothes while done base variabl way into all rate about did some
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APPENDIX B

ARGUMENT CODING MANUAL FOR ACADEMIC ESSAYS

B.1 LABEL EXPLANATION

B.1.1 Finding

• Text segment that is a summary, claim or conclusion of/about one or more ideas of the

cited study.

• The text must include citation expression inside, and forms a continuous segment covering

related content

• If the cited study supports (opposes) the hypothesis then supporting (opposing) idea

must be included in the finding.

• Example: “Students who lack academic effort as well as perceive controllability leads to

unwillingness to help, anger and neglect (Weiner, 1980).”

B.1.2 Hypothesis

• Do they clearly state at least one hypothesis for their study?

• Hypothesis is expressed in form of a to-be-proven statement, but not a premise statement.

• Example: “Our study predicts that students will provide more positive responses if the

email excuse is uncontrollable rather than controllable.”
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B.1.3 Support

• Does the author cite at least one study that lends support to at least one of their hy-

potheses?

• The supporting cite must be relevant to the hypothesis.

B.1.4 Opposition

• Does the author cite at least one study that opposes at least one of their hypotheses?

• The opposing cite must be relevant to the hypothesis.

B.1.5 Relevance

• Does the student compare the cited study to his/her own study or to other studies?

• And/or does he/she use the term relevance/relevant?

• The student should compare the ways that the study was conducted, not the results that

were found.

• Example: “while they looked at the front half and back half of the classroom, we looked

at the classroom in thirds.”

B.1.6 A note about idea development

The author can start with a summary of a study and end up with a conclusion. When you

identify support/opposition, only need to locate the statement that conveys the support-

ing/opposing idea.

B.2 CODING PROTOCOL

• Please make sure you annotator strictly follow this protocol when code the data

• Your cooperation is important to evaluate the protocol in our effort of improving anno-

tation quality and coder agreement
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• Step 1: Read the attached introduction carefully

– At this step annotator doesn’t need to care about the coding manual.

– Instead, pay attention to understand the author’s hypothesis statement

– And author’s intent of making argument to support and/or oppose his hypothesis.

• Step 2: Start coding sentences of the introduction using the coding file

– Identify the hypothesis. If no hypotheses are identified, no needs to identify sup-

port/opposition sentences.

– Identify the finding. It’s more important to locate the core sentence (i.e., sentence

with citation expression) and content-related satellite sentences than the transition

sentences

– Identify the support/opposition sentences. Most of the time, support/opposition

sentences are satellite sentences. There however are cases whether orphan sentences

(non-satellite, non-core) play support/opposing role.

– If the study supports/opposes the hypothesis, choose the best sentence(s) that states

the ideas: (1) Differentiate idea statement and explanation/elaboration sentences,

or (2) Sentences that explain/elaborate the key idea should not be coded as support

or opposition sentences.

• Highlight guidelines

– Hypothesis sentence is not a question sentence.

– Only mark the hypothesis content.

Example: “Our hypothesis as a class was that time of day and gender will not

make a difference in the responses of strangers and our alternative hypothesis

Is that time of day and gender will alter the responses of participants”

– Mark all possible study mentions (i.e., citation) no matter which standard they have.

Example: “Another supporting study was conducted Rutkowski in 1983 that also

demonstrated that with larger groups comes less help for victims in non-emergency

situations due to less social pressure Rutkowski, 1983.”

– Only mark the support/opposition idea(s), include citation text if necessary.
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Example: “One strong study that opposes the bystander effect was done in 1980 by

Junji Harada that showed that increase in group size, even in a face to face

proximity, did not decrease the likelihood of being helped (Harada, 1980).”
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APPENDIX C

SAMPLE OUTPUT OF SEGMENTATION ALGORITHM

Gender discrimination is prevalent in varying degrees of severity worldwide. Some countries have a reported lack of 
gender discrimination but it is difficult for every individual society to remove all gender bias. Some cultures are inherently 
gender-biased through the use of a gendered language. A study published in October of 2011, researchers found that 
countries with gendered language exhibit less gender equality than those with gender neutral language. (Prewitt-Freilino, 
Caswell, & Laasko (2012).) Gendered language can take the form of masculine and feminine verbs in romance languages 
but in English, a naturally gendered language (Prewitt-Freilino, Caswell, & Laasko (2012).), certain words are given a gender 
through their continued use in a gender discriminatory way. Gendered language affects how people perceive themselves 
and how they present themselves to others through the use of language, biased or neutral. 

Gendered language affects self-perception beginning at a very young age and carries through to adult life in many 
people. Gender-biases are highly prevalent in adult society when it comes to self-perception, whether it is division of labor 
in the home or success and compensation in the workplace. A study published in the European Journal of Social Psychology 
comparing the femininity and masculinity of someone’s actual and ideal selves, found that, regarding professional life, 
people, both male and female, described their ideal-self being more masculine than their true-self. In the same study, 
researchers found that in personal relationships people tended to value neutral, or feminine qualities over masculine 
ones. (DeMarree (2014).) 

The traits people assign themselves, whether ideal or true, define who they are and how they describe themselves. 
Beginning at a young age, each person gathers information about his or her-self based on his or her perceived worth as a 
person and as a member of a specific group of people or society. Self-esteem is not static and can change on a daily basis. 
Even something as simple as a person’s mood can change how the perceive themself. Although people with both high and 
low self-esteem rate themselves positively when in a good mood, it only takes a bad mood for someone with low self-
esteem to look at themselves negatively. (Brown, & Mankowski (1993).) People with a higher self-esteem are more 
influenced by extreme or high intensity words. (Bowers (1963).) The dynamic shifts in self-esteem make understanding it 
and learning to manipulate it so important to allow society to grow in a more positive, self-confident direction. 

In the study we conducted in our research methods in psychology class, we wanted to see if people chose words to 
describe themselves based on the gender identities assigned to them by their biological sex. We predicted that 
Participants would more strongly endorse gender-biased words to fit the gender-stereotypes society expects them to fit. 
The second thing we tested was if a participant had high self-esteem, would they more strongly endorse formal words to 
describe themselves rather than informal counterparts. 
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APPENDIX D

PREDICTING PEER RATING IN ACADEMIC ESSAYS

D.1 PEER RATING DATA

In Chapters 9 and 10 we showed that argument mining output helps improve persuasive essay

score prediction. In this study, we explore an application of argument mining for academic

essay scoring. We utilize the academic essay corpus which has been used for our argument

mining research (Chapter 3).

The corpus consists of 115 introductions of observational studies written by college stu-

dents. The essays were submitted to the SWoRD peer review system (Cho and Schunn,

2007) and reviewed by students in the same classes.1 Student reviewers were asked to pro-

vide textual comments and numerical ratings to the papers that they review. The rating

rubric is listed in Figure 17. Among 115 essays, we have 113 essays reviewed and graded

by student reviewers. Each essay was graded by at least 3 and at most 5 students in scale

1–7. The final score of each essay is a weighted average of peer ratings in which weights

indicate rating reliability computed by SWoRD. Although we do not have teacher’s grade

for the essays, research in peer assessment has shown that peers’ grade can be as reliable

as teacher’s in multiple peer condition (Cho et al., 2006). Thus, our current study uses the

weighted average rating of student reviewers as an estimate of essay quality. As shown in

Figure 18, the majority of the essays have high score (> 4) and no essay was graded below

2.

1https://sword.lrdc.pitt.edu/sword
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Consider the following points when giving your rating:

• Central topic introduced and background information provided?

• Brief high-level overview of study design and clear statement of hypotheses?

• Appropriate integration of conflicting research findings into a convincing ar-

gument for at least one hypothesis?

Figure 17: Peer rating rubric.

Figure 18: Peer rating histogram.

D.2 ARGUMENTATION FEATURES

We extract the following argumentation features from the essays. Because the rating rubric

explicitly asks reviewers to check for presence of opposition findings in the essay, our feature
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set emphasizes more on the presence and ratio of opposition findings. Argumentation features

are placed in two sets: H (Hypothesis) and F (Finding):

1. H (Hypothesis):

• Number of hypothesis sentences.

• Number and percentage of hypotheses that are supported.

• Number and percentage of hypotheses that are opposed.

• Number and percentage of hypotheses that are neither support or opposed.

• Does the essay have at least one hypothesis opposed.

2. F (Finding):

• Number of finding sentences.

• Number and percentage of support findings.

• Number and percentage of opposition findings.

• Number and percentage of findings that neither support or oppose.

• Does the essay have at least one finding that opposes

D.3 EXPERIMENT RESULTS

Our current study examines whether argumentation features can help improve a baseline

model for peer rating prediction in academic essays. Our baseline model uses solely word

and part-of-speech n-grams features which achieves higher performance than the count-based

base model in Chapter 10. In particular, we extract 1, 2, 3-grams of tokens and their POS

tags, and use one numeric feature to indicate the frequency of corresponding ngram in the

essay. We remove ngrams that have less than 5 occurrences in the corpus. We extract

argumentation features in two ways: (True) using true labels annotated by experts, and

(Arg) predicted labels by our models in Chapters 5 and 7. For Arg extraction method,

because we do not have a dedicated data to train our argument mining models, we conduct 10-

fold cross validation and take prediction output to extract argumentation features. Given a

set of features, peer rating prediction models are trained using LibSVM regresssion algorithm

in Weka (Hall et al., 2009).
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Table 47 reports 10 × 10-cross validation performances including Pearson’s correlation

(cc), mean absolute error (mae), and root-mean-square error (rmse). While for the cc mea-

sure one should look for higher value, the two error measures are better if lower. Values

better than Base are in boldface. Symbol ** and † indicates significantly higher and lower

than Base values (p < 0.01), respectively. As we can see in the upper half of the table, argu-

mentation features extracted from true labels significantly improved base performance, and

the best performance is achieved when adding all argumentation features by true labels to

the base model. On the contrary, using all argumentation features extracted from predicted

labels significantly degrade performance of the base model. However, F features by pre-

dicted labels help improve the baseline. While the results show the value of argumentation

features for predicting peer rating in academic essays, it is only true for argumentation fea-

tures extracted from true labels. This further shows that predicted labels of argumentation

structures might not be accurate enough to gain AES improvement.

D.4 DISCUSSIONS

In this experiment, we have showed an application of argument mining in peer rating pre-

diction for academic essays. While the results suggest that argumentation features can help

improve the peer rating prediction, there are limitations that prevent us from a strong con-

clusion of the value of argument mining for AES in academic writings. First of all, we do not

have a dedicated training data to develop an end-to-end argument mining model. Second,

the annotated data is small which may limit our argument mining accuracy. Third, although

peer ratings are usually considered a good estimate of teacher’s grades, we cannot conclude

the quality of peer rating in our data due to the lack of teacher’s grades. In the future, we

plan to annotated more data to improve argument mining and apply argumentation features

to predict teacher’s grades.

154



Feature sets cc mae rmse

Base 0.408 0.848 1.024

Base + True(H, F) 0.414** 0.845 † 1.021 †
Base + True(H) 0.411** 0.846 † 1.023 †
Base + True(F) 0.413** 0.845 † 1.021 †
Base + Arg(H, F) 0.404 † 0.848 1.027**

Base + Arg(H) 0.403 † 0.850** 1.027**

Base + Arg(F) 0.409 0.846 † 1.024

Table 47: Peer rating prediction performance in academic essays.
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APPENDIX E

ESSAY SCORE EXPLANATION BY ARGUMENTATION FEATURES

E.1 INTRODUCTION

Machine learning-based approaches for automatically scoring essays (also written/spoken

responses in general) are usually optimized for the best agreement between scores produced

by the models and those by human raters. However this process can lend the outcome model

to criticism for model validity when its most predictive features fail to represent or interpret

the certain basic considerations of the assessment design (Williamson et al., 2012; Bernstein

et al., 2010; Ramineni and Williamson, 2013). Different researches have been conducted to

build automated essay scoring models that are balanced between performance and validity.

Rahimi et al. (2014) designed features for their machine learning model using scoring rubrics.

Loukina et al. (2015) evaluated different feature selection methods in terms of how selected

features cover criteria identified by a scoring expert.

In previous chapters, we have evaluated impact of argument mining to automatically

scoring persuasive essays in terms of scoring performance by different sets of argumentation

features. In this study, we evaluate the validity of the argumentation features in terms of

how the features explain the essay scores. For this purpose, we use Decision Tree algorithm

to build the prediction model because decision tree models are easy to visualize, interpret

and explain for how feature values separate classes.

Moreover, to set-up a reference standard for decision rules in the tree models, we consider
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Score Task description

5
• Is well organized and well developed, using clearly appropriate explanations,
exemplifications and/or details

4
• Addresses the topic and task well, though some points may not be fully
elaborated • Is generally well organized and well developed, using appropriate
and sufficient explanations, exemplifications and/or details

3
• Addresses the topic and task using somewhat developed explanations, ex-
emplifications and/or details

2
• Inappropriate or insufficient exemplifications, explanations or details to sup-
port or illustrate generalizations in response to the task

1
• Little or no detail, or irrelevant specifics, or questionable responsiveness to
the task

0
• Merely copies words from the topic, rejects the topic, or is otherwise not
connected to the topic

Table 48: TOEFL iBT Independent Writing Rubrics

the TOEFL iBT Independent Writing Rubrics1 which were used to grade essays of the

TOEFL11 corpus (Blanchard et al., 2013). Table 48 shows part of the scoring guidelines for

TOEFL essays. To make this reference more relevant to the decision rules learned with the

argumentation features, we keep only rubric statements that are related to topic development

and response elaboration, but ignore those about organization and language usage. For the

complete rubrics, one can refer the link provided. Although the scoring guidelines were

designed for score range [0, 5] while essays in our data have scored categorized to levels

a, b, c, the guidelines are still applicable to our study because the score levels a, b, c were

derived consistently from the raw numerical scores (Blanchard et al., 2013).

Data used in this study is the set of 107 TOEFL essays which were annotated for argu-

mentation structure (see Chapter 9). Decision tree models are trained with argumentation

features as extracted from (1) true labels of argumentation structures (referred to as Tru-

eLabel tree models), and (2) predicted labels of our argument mining pipeline (referred to

as ArgN tree models), respectively. Data statistics and list of argumentation features are

reported in Tables 31 and 36.

1http://www.ets.org/s/toefl/pdf/toefl writing rubrics.pdf
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AC CL AF RL TS All

κ 0.446 0.569 0.260 0.216 0.360 0.550

qwk 0.708 0.768 0.485 0.465 0.540 0.742

Table 49: 10-fold cross validation performance with Decision Tree algorithm in Te107 data.

Argumentation features are extracted from true labels.

E.2 ARGUMENTATION FEATURES FROM TRUE LABELS

For each set of argumentation features, i.e., argument component (AC), component label

(CL), argument flow (AF), relation label (RL), and typology structure (TS), Table 49 shows

10-fold cross validation performance with the Decision Tree classifier implementation in

Scikit-learn2. Comparing with Logistic Regression algorithm (see Table 37), while Deci-

sion Tree yielded lower score prediction performance for each argumentation feature set,

the algorithm obtained better κ and qwk than Logistic Regression when trained with all

argumentation features. One reason is that Decision Tree algorithm is capable of pruning

ineffective features which do not help further classify data. Unfortunately, the pruning capa-

bility of Decision Tree algorithm does not always yield to optimal feature set. An evidence

is that 10-fold cross validation performance with all argumentation feature is lower then the

performance with component label features.

To illustrate the feature importance, Figure 19 visualizes the Decision Tree trained with

107 essays using all argumentation features. Five features that show up in the tree include:

1. WordInArgument: number of words in argument components (AC)

2. SentencewArgument: number of sentences that have AC

3. danglingClaim: number of claims that have no support premises

4. SentencewArgumentPct: percentage of argumentative sentences

5. PremisePct: percentage of premises

2scikit-learn.org
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Figure 19: Decision tree learned using argumentation features with true labels

Each node of the tree has darker color if the distribution of its data is more skewed to

the major class, and includes the following content in top-down order:

• The condition that split its data. For example, the right branch from node #0 says that

essays with more than 212 words in AC can have scores either b or a. However, essays

with less than 212 words in AC have scores c or b.

• Gini impurity score that measures the error probability of a random labeling given the

distribution of labels in the subset (Breiman et al., 1984). The splitting conditions that

yield small gini scores are desired.
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Set Feature Short name

AC Number of words in AC WordInArgument
Number of argumentative sentences SentencewArgument
Percentage of argumentative sentences SentencewArgumentPct

CL Number of premises Premise
Premise percentage PremisePct
Number of claims Claim

AF Number of paragraphs with claim and premise ParagraphwClaim-Premise
Percentage of typed bigram MajorClaim-Claim MajorClaim-Claim
Percentage of typed bigram Claim-Claim Claim-Claim
Percentage of type bigram Premise-Claim Premise-Claim

RL Number of supporting premises supportPremise
Number of dangling claims danglingClaim

TS Number of paragraphs that have chain arguments pwChainTopo
Number of tree arguments treeTopo

Table 50: Most important features of each feature set

• Total samples of the subset, e.g., node #1 contains 58 essays.

• Class distribution of the subset. For instance, node #2 has all 12 essays of score c and

no essays of scores a or b.

• The major class, e.g., score b in node #3.

As shown in the figure, branches from nodes #0 and #5 generalize a rule that essays

with more words in argument components (AC) tend to have higher scores than those with

less words. Among essays with more words in AC, the number of dangling claims (node #8)

and percentage of premises (node #9) further refines essay scores. To get scores of a, essays

should not have many dangling claim (e.g., more than 5) and small percentage of premise

(e.g., less than 0.3). While the conditions that formulate this decision tree may be specific to

the training data, e.g., WordInArgument ≤ 212, the generalized rules instantiate well rubric

statements in Table 48, especially the rules of dangling claims and percentage of premises.

To examine feature importance in each argumentation feature set, Figures 20, 21, 22,

23, and 24 visualize the decision trees learned with argumentation features of each set,

respectively. Table 50 shows important features which show up in the learned decision trees.

Over the five trees, we consider the leaf nodes that have the smallest gini scores and obtain
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the following rules for each of the score levels. By only considering the leaf nodes with the

smallest gini scores, we aim for the most reliable decision rules to validate the argumentation

features that show up.

• Score c:

– WordInArgument ≤ 212 AND SentencewArgument ≤ 3.5 (Figure 20, gini = 0)

– ParagraphwClaim-Premise ≤ 1.5 AND MajorClaim-Claim > 0.415 (Figure 22, gini

= 0)

• Score b:

– WordInArgument ≤ 212 AND SentencewArgument > 3.5 AND SentencewArgu-

mentPct ≤ 0.435 (Figure 20, gini = 0.1327)

• Score a:

– Premise > 4.5 AND PremisePct > 0.345 AND Claim ≤ 9.5 (Figure 21, gini = 0.0986)

First, we can see that decision rules for score c and a have very low gini score and are

consistent with the writing rubrics. One of the rules for score c states that essays that have

one or no paragraph with claim and premise, but a high ratio of major claim – claim chain

will have score c. On the other hand, essays that have many premises (more than 4) but

not too many claims (less than 9) will have score a. However, rules for score b have higher

gini and their clauses are contradictory. As stated in the rule above, essays that have less

words in argument components (less than 212), but not too few or too many argumentative

sentences will have scores of b. The conflicting clauses of that rule and also many other rules

of score b (e.g., node #7 in Figure 21) may reveal the challenges of classifying this score level

which is considered more ambiguous than the levels a and c.

Overall, the results show that the extracted rules from decision tree models trained with

argumentation features align well with the reference writing rubrics. This is expected because

the decision tree models were trained with argumentation features derived from true labels

of argumentation features. In the next experiment, we study argumentation features in the

case they are computed from predicted labels of argumentation features.
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Figure 20: Decision tree learned with TrueLabel AC features

Figure 21: Decision tree learned with TrueLabel CL features
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Figure 22: Decision tree learned with TrueLabel AF features

Figure 23: Decision tree learned with TrueLabel RL features
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Figure 24: Decision tree learned with TrueLabel TS features

E.3 ARGUMENTATION FEATURES FROM PREDICTED LABELS

We replicate the experiment in §9.5.2 but use Decision Tree algorithm to learn the prediction

model. In particular, our end-to-end argument mining pipeline (see Chapter 8) was used to

first identify argument component, then classify components by their argumentative roles

and determine if each pair of components holds a support relation. 10-fold cross validation

performance are reported in Table 51.

Comparing to the score prediction results when argumentation features are computed

from true argument labels (Table 49), the automated scoring performance are significantly

worse with argumentation features from predicted argument labels. We, however, still ob-

serve that using all argumentation features yielded better performance than each of feature

sets.

Regarding feature importance, we visualize ArgN decision trees which are learned with
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AC CL AF RL TS All

κ 0.388 0.285 0.185 0.082 0.0 0.456

qwk 0.600 0.556 0.348 0.186 0.0 0.672

Table 51: 10-fold cross validation performance with Decision Tree algorithm in Te107 data.

Argumentation features are extracted from predicted labels.

AC and All feature sets, and compare the decision rules with those of the corresponding

TrueLabel decision trees. We observe that at high-level ArgN AC and CL decision

tree models perform similarly as the corresponding TrueLabel models. In particular,

WordInArgument is the most important feature and essays with more words in argument

components usually have high scores, e.g., nodes #0, #2 and #6 in Figure 25. Number

of argumentative sentences helps further refine essay scores, e.g., node #7. Number of

premises is the most important feature of CL set and essays with more premises have higher

scores, e.g., nodes #0, #6 in Figure 26. However, decision rules learned with ArgN features

generally have higher gini scores than the rules learned with TrueLabel features. These

reflect the lower essay score prediction performance of ArgN features than TrueLabel

features.

Examining the ArgN tree models learned with AF, RL and TS feature sets, we see that

decision rules are more conflicting with the scoring guidelines. This could be due to the very

low score prediction performance of those tree models. For example, node #2 in Figure 27

says that essays with no dangling claim have score c but with one or more dangling claims

have score a. Node #0 and #1 make a rule that essays with less then 5 supporting premises

but more than one supported claim have score c.

In conclusion, while ArgN AC and CL features could yield decision rules that align with

the writing rubrics, the remaining ArgN features perform much worse and their learned

decision tree models are more conflicting.
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node #0
WordInArgument ≤ 196.5

gini = 0.6631
samples = 107

value = [40, 36, 31]
class = a

node #1
TotalArgumentPct ≤ 0.8819

gini = 0.4244
samples = 36

value = [0, 11, 25]
class = c

True

node #6
WordInArgument ≤ 277.5

gini = 0.5515
samples = 71

value = [40, 25, 6]
class = a

False

node #2
WordInArgument ≤ 124.5

gini = 0.477
samples = 28

value = [0, 11, 17]
class = c

node #5
gini = 0.0

samples = 8
value = [0, 0, 8]

class = c

node #3
gini = 0.3047
samples = 16

value = [0, 3, 13]
class = c

node #4
gini = 0.4444
samples = 12

value = [0, 8, 4]
class = b

node #7
SentencewArgument ≤ 8.5

gini = 0.5862
samples = 40

value = [14, 21, 5]
class = b

node #10
TotalArgumentPct ≤ 0.8349

gini = 0.2789
samples = 31

value = [26, 4, 1]
class = a

node #8
gini = 0.4898
samples = 7

value = [0, 3, 4]
class = c

node #9
gini = 0.5216
samples = 33

value = [14, 18, 1]
class = b

node #11
gini = 0.6122
samples = 7

value = [3, 3, 1]
class = a

node #12
gini = 0.0799
samples = 24

value = [23, 1, 0]
class = a

Figure 25: Decision tree learned with ArgN AC features

node #0
Premise ≤ 6.5
gini = 0.6631

samples = 107
value = [40, 36, 31]

class = a

node #1
Claim ≤ 6.5

gini = 0.4917
samples = 44

value = [2, 14, 28]
class = c

True

node #6
PremisePct ≤ 0.634

gini = 0.512
samples = 63

value = [38, 22, 3]
class = a

False

node #2
Claim ≤ 1.5

gini = 0.5207
samples = 39

value = [2, 14, 23]
class = c

node #5
gini = 0.0

samples = 5
value = [0, 0, 5]

class = c

node #3
gini = 0.2188
samples = 8

value = [0, 1, 7]
class = c

node #4
gini = 0.5536
samples = 31

value = [2, 13, 16]
class = c

node #7
ClaimPct ≤ 0.1937

gini = 0.5827
samples = 31

value = [14, 14, 3]
class = a

node #10
Premise ≤ 13.5

gini = 0.375
samples = 32

value = [24, 8, 0]
class = a

node #8
gini = 0.5

samples = 12
value = [2, 8, 2]

class = b

node #9
gini = 0.4986
samples = 19

value = [12, 6, 1]
class = a

node #11
gini = 0.0

samples = 11
value = [11, 0, 0]

class = a

node #12
gini = 0.4717
samples = 21

value = [13, 8, 0]
class = a

Figure 26: Decision tree learned with ArgN CL features
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node #0
supportPremise ≤ 4.5

gini = 0.6631
samples = 107

value = [40, 36, 31]
class = a

node #1
supportedClaim ≤ 1.5

gini = 0.6504
samples = 64

value = [18, 18, 28]
class = c

True

node #6
danglingClaim ≤ 2.5

gini = 0.5581
samples = 43

value = [22, 18, 3]
class = a

False

node #2
danglingClaim ≤ 0.5

gini = 0.6605
samples = 54

value = [18, 15, 21]
class = c

node #5
gini = 0.42

samples = 10
value = [0, 3, 7]

class = c

node #3
gini = 0.2449
samples = 7

value = [0, 1, 6]
class = c

node #4
gini = 0.6627
samples = 47

value = [18, 14, 15]
class = a

node #7
supportPremise ≤ 6.5

gini = 0.4821
samples = 28

value = [18, 9, 1]
class = a

node #10
paragraphwSupport ≤ 2.5

gini = 0.5511
samples = 15

value = [4, 9, 2]
class = b

node #8
gini = 0.314

samples = 11
value = [9, 1, 1]

class = a

node #9
gini = 0.4983
samples = 17

value = [9, 8, 0]
class = a

node #11
gini = 0.2778
samples = 6

value = [0, 5, 1]
class = b

node #12
gini = 0.5926
samples = 9

value = [4, 4, 1]
class = a

Figure 27: Decision tree learned with ArgN RL features
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APPENDIX F

IMPACT OF INTERMEDIATE SCORE RANGE IN CROSS-DOMAIN

ESSAY SCORE PREDICTION

In cross-domain essay score prediction, when the source and the target domains have different

score ranges (chapter 11), re-scaling is required to convert the regression output into the

target score range. This brings up the questions whether to use an intermediate score

range, and how to determine such range for the best performance. We re-investigate the

cross-domain AES in chapter 11 but with different intermediate score ranges. For each

choice of intermediate score range, we compare EASE model with EASE augmented with

argumentation features. Results are shown in Table 52.

The intermediate range [0, 1] was used in (Dong and Zhang, 2016). However, this

intermediate range does not work for the EASE system in our study, which may be due to

the choice of learning algorithm in EASE.

With no intermediate score ranges (i.e., direct scaling), AES models are trained with

the original score of training essays, and regression output is scaled directly to score range

of target essays. While Set:2→1 has the best performance using direct scaling, Set:1→2

achieves the highest κ and qwk with range [-1, 1]. Moving from small to large ranges,

Set:1→2 has performance decrease but Set:2→1 has performance increase.

These results show that choosing the intermediate score range for cross-domain AES

is not trivial and dependent factors may include characteristics of the learning algorithm,

original scores, and target scores.
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Inter. range Feature set Set:1→2 Set:2→1

κ qwk κ qwk

[0, 1] EASE 0.000 0.091 0.000 0.003

EASE + ARG 0.000 0.106 0.000 0.004

[-1, 1] EASE 0.234 0.585 0.048 0.491

EASE + ARG 0.298 0.622 0.049 0.493

[-3, 3] EASE 0.156 0.547 0.249 0.790

EASE + ARG 0.185 0.565 0.274 0.792

No EASE 0.016 0.436 0.291 0.809

EASE + ARG 0.025 0.431 0.289 0.810

Table 52: Cross-domain performance of essay score prediction in ASAP data with different

intermediate score ranges.
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