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It has been known for over a century that the CA1 subregion of the hippocampus is more 

vulnerable than the CA3 to ischemic damage. While many studies have been conducted, the 

exact mechanism is still unknown. Ectopeptidases are membrane-bound enzymes whose 

catalytic domains face the extracellular space. Traditionally, their role was believed to only 

involve clearance of active peptides but recent studies have shown that they play an important 

role in regulating peptide activity. Here we report the quantitative measurement of ectopeptidase 

activity using electroosmotic push-pull perfusion coupled to offline capillary liquid 

chromatography. This method revealed a three-fold higher aminopeptidase activity hydrolyzing 

the neuroprotective peptide Leu-enkephalin in the CA1 region of the rat hippocampus. Inhibition 

of the higher aminopeptidase activity in the CA1 selectively protects this region from ischemic 

damage due to oxygen-glucose deprivation. This is the first report of spatially-resolved 

quantitative measurements of enzyme activity in intact tissue using native substrates. The studies 

in this dissertation combine both computational and experimental approaches to tackle a 

longstanding question in neuroscience.  
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1.0  INTRODUCTION 

Portions of the following introduction are reprinted with permission from ACS Chemical 

Neuroscience 2017 DOI: 10.1021/acschemneuro.7b00326. Copyright (2017) American Chemical 

Society.  

 

Stroke is the leading cause of adult disability in the U.S, with a new stroke case occurring every 

40 seconds1. The hippocampus, the center of learning and memory in the brain, is one of the 

most severely affected regions in stroke. Like other brain structures, its proper functions rely on 

the transmission of chemical signals over both short and long distances. Extrasynaptic or volume 

transmission of neuropeptides is one important way by which neurons communicate. Unlike 

synaptic transmission, where chemical messengers travel only a short distance to bind to 

receptors within the synapse, molecules often leave the synaptic cleft or are directly released into 

the extracellular space (ECS) in volume transmission. Factors that govern this process include 

quantity of neuropeptides released into the ECS, reuptake (if any), diffusion, and degradation by 

enzymes. Thus, the ECS of the brain holds valuable chemical information. Having quantitative 

tools capable of extracting and understanding this information could be extremely fruitful in 

understanding the physiology and pathophysiology of the hippocampus and other regions of the 

brain.  
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1.1 THE HIPPOCAMPUS AND ISCHEMIA 

The hippocampus is the center of learning and memory. The Alexandrian school of medicine 

thought the curved structure resembled the horn of a ram and thus named the hippocampus 

Cornu ammonis2. This terminology survives to this day in the acronym of the different CA 

subfields of the hippocampus proper. The term “hippocampus” refers to the CA fields identified 

by neuroanatomist Rafel Lorente de Nó3 and should not be confused with the term “hippocampal 

formation.” The latter refers to the entire hippocampus plus the dentate gyrus (DG), subiculum, 

and entorhinal cortex2. As originally categorized by Lorente de Nó, there are three main CA 

subfields, the CA1, CA2, and CA33. The pyramidal cells in the CA2 and CA3 are greater in size 

that those in the CA1. The CA3 is also innervated by the mossy fiber pathway from the DG 

while the CA1 is not. The existence of the CA2 region has been questioned for many years, but it 

is generally accepted that it does exist as a narrow region between the CA1 and CA32. It is 

characterized by large pyramidal neurons like those in the CA3 but, like the CA1, is not 

innervated by the mossy fiber pathway. This dissertation will focus herein on the CA1 and CA3 

subfields only.  

 

Figure 1. Propidium iodide image of organotypic hippocampal slice culture exposed to 200 μM N-methyl-D-
aspartic acid (NMDA) for 40 min. The CA1 has higher cell death than CA3, indicated by more fluorescence. 
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It has been known for over a century that the hippocampus responds selectively to insults 

such as ischemia, with the CA1 region being much more susceptible to damage (Figure 1)4. This 

phenomenon was first observed in a patient in 1962,5 and demonstrated in transient ischemia 

models of rats and gerbils in the 1980s,6,7 and rat hippocampal slice models in 19908, showing a 

time course of “delayed neuronal death.” This delay is characterized by an initial onset of 

damage within the first 24 hours and results in maximum damage around 48-72 hours post-

ischemia9. This delay provides medical professionals with a window immediately after the 

ischemic event during which treatment can reduce or reverse the damage. There have been 

numerous molecular studies focused on excitotoxicity and abnormal calcium influx, oxidative 

stress and reactive oxygen species (including work done in our group10), as well as apoptotic 

processes and structural changes (reviewed in Dirnagl et al.11 and Schmidt-Kastner et al.12). 

Changes in protein expression have also been observed, including suppressed protein synthesis 

in the CA1 at 6-hours and 3-days post-ischemia13-15 as well as post-translational modifications16-

18. Despite extensive studies, the exact mechanism behind the selective vulnerability of the CA1 

region has not been decisively determined. There is, however, some consensus that this 

vulnerability involves calcium-related pathways4,12,19-21.  

1.2 ENKEPHALINS AND NEUROPROTECTION 

Since the discovery and characterization of endogenous opioids and their receptors in the 

1970s22-26, four major families have been identified: preproopiomelanocortin, preproenkephalin, 

preprodynorphin, and proorphanin27-33. The products that are cleaved from these precursors are 

the active peptides that bind to the various opiate receptors. One of these active products is called 
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enkephalin (cleaved from preproenkephalin). Over 90% of the opioid peptide activity isolated 

from the brain and gut were found to be from Leu-  (YGGFL) and Met-enkephalins (YGGFM)34. 

Interestingly, the sources of the endogenous enkephalins differ in the different subregions. In the 

CA1, fibers from interneurons provide a source of enkephalins35 while in the CA3, the mossy 

fibers from the DG provides an abundant amount35. It is known that enkephalins are stored in 

dense-core vesicles and are released extrasynaptially36-38. Thus, even though they can be released 

at the synaptic junction and act cooperatively with classical neurotransmitters, they may also 

diffuse to other targets over longer distances or be released outside of the synapse altogether 

(reviewed in Hokfelt39). Like other opioid peptides, the actions of enkephalins are produced via 

their binding to opioid receptors. β-endorphin has high affinity for μ- and δ-opioid receptors 

(DOR); dynorphins have the highest affinity for κ-opioid receptors; and enkephalins have the 

highest affinity for δ-opioid receptors40. DOR expression has been found in both pyramidal and 

non-pyramidal cell types in the hippocampus41,42 (reviewed in Gendron et al.43) and it has been 

suggested that DOR action is site-dependent and may be coupled to different second messengers 

at different locations41.  

Interestingly, numerous studies have shown that DOR activation is neuroprotective. For 

example, the upregulation of DORs during hypoxic preconditioning, in which the tissues are 

exposed to a sub-lethal level of hypoxia prior to the actual hypoxic event, can protect neuronal, 

cardiac, and retinal tissues from hypoxia44-46. Furthermore, as mentioned previously, DOR 

activation is thought to decrease hypoxia-induced Ca2+ levels by inhibition of L-VGCCs and 

activation of K+ channels47,48.  Zhang et al. demonstrated that DOR activation protects cortical 

neurons against glutamate-induced injury49, which mimicks the excitotoxicity that occurs during 

ischemia. Severe hypoxia has been shown to decrease endogenous Leu-enkephalin while 
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hypoxic preconditioning increased both DOR mRNA and protein levels as well as reversed the 

decrease in YGGFL caused by severe hypoxia44,50. Moreover, preconditioning the neurons with 

opioid peptides prior to ischemia results in reduced brain infarct volume and improved 

neurological functions 24-hours post-occlusion in male rats51. Elevated endogenous opioid 

peptides had a similar effect on reducing infarct volume46. In summary, opioid peptides such as 

Leu-enkephalin are neuroprotective to neurons against ischemic damage through activation of 

their native receptors.  

 

1.3 ECTOPEPTIDASES 

 

Enkephalins, like other neuropeptides, are different from classical neurotransmitters such as 

glutamate in several ways: 1) they are stored in dense-core vesicles, which are larger than 

synaptic vesicles and can participate in volume transmission36,38, 2) intense stimulation is often 

 

Figure 2. Schematic of aminopeptidase N (APN), an ectopeptidase whose catalytic domains face the 
extracellular space. APN cleaves YGGFL into its major product GGFL. 
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required to induce release of neuropeptides52, and 3) they are primarily limited by extracellular 

degradation and diffusion but not so much by reuptake53. One of the primary players in the 

degradation of neuropeptides in the ECS is a group of enzymes called ectopeptidases. 

Ectopeptidases are a family of membrane-bound proteins whose catalytic domains face the ECS 

(reviewed in Ou et al.54). Evidence suggest that only ~10-20 ectopeptidases are responsible for 

the inactivation of neuropeptides in the central nervous system55-61.  This was believed to be their 

only role until studies have shown that they also alter the activity of many peptides important to 

growth processes, cell survival, and stress response62-66, to name a few examples. The idea that 

ectoenzymes can be sites of peptide regulation was first proposed by Davis and Konkoy in 1995 

and is summarized in their review67. Since then, several prominent ectopeptidases such as 

dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), aminopeptidase N (APN, EC 3.4.11.2, Figure 2) 

and neutral endopeptidase (NEP, EC 3.4.24.11) have been targeted for therapeutic treatement of 

specific disease states68-71. Interestingly, it was recently revealed that the activity of 

ectopeptidase themselves can be altered due to trophic and/or pathological factors. For example, 

acute immobilization stress in rats caused changes in NEP and insulin-regulated aminopeptidase 

(IRAP, EC 3.4.11.3), two aminopetipdases that regulate anxiolytic peptides66. On the other hand, 

ischemic preconditioning has been shown to restore the activity of NEP and endothelin-

converting enzyme 1 (ECE-1, EC 3.4.24.71) that hydrolyze toxic αβ72. Furthermore, NEP 

activity has been shown to be altered in stroke73. Given this collective evidence, ectopeptidase 

activity is a largely unexplored but important modulator of peptide activity.   



 7 

1.4 MEASURING ENZYME ACTIVITY EX VIVO AND IN VIVO 

This section is part of a review submitted to the Annual Review of Analytical Chemistry74. 

  

Many different enzymes catalyze chemical transformations that alter or control peptide activity 

and concentration. Enzymes also are implicated in various physiological disorders, including but 

not limited to stroke, diabetes, Parkinson’s, Alzheimer’s, and cancer. Due to the immense need 

to identify, localize, and characterize the role of enzymes, several different tools have been 

developed to study them. While there are many approaches to studying enzyme activity, each 

approach has benefits and limitations. The following discusses the pros and cons of some of the 

recent methods in probing enzyme activity ex vivo and in vivo. This is by no means a 

comprehensive picture of all literature but an assessment of selected techniques that focuses on 

application related to this dissertation (e.g. stroke, ischemia, oxygen-gluocse deprivation, etc.) or 

measurement of enzyme rates.  

There are a couple of categories of fluorescence-based methods. One such method is 

zymography. The term is defined as “visualization of enzymatic activity by substrate 

conversion.”75 It was first used to measure enzyme activity in tadpole tissue76. ISZ was used to 

discover elevated MMP-9 activity in the infarct core of ischemic and hemorrhagic human 

tissues77. This increase was attributed to elevated MMP-9 expression near blood vessels due to 

neutrophil infiltration and activated microglia. Ziemka-Nalecz et al. discovered increases in 

oxygen-glucose deprivation (OGD)-induced MMP, which contributed to the progression of 

gliogenesis in organotypic hippocampal slice cultures (OHSCs)78. This microglial proliferation 

along with elevated MMP activity could play a role in massive loss of pyramidal neurons in the 

CA178. The advantage of ISZ is its ability to provide quantitative information about enzyme 
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activity in a spatially-dependent manner. The drawback is that it is used almost exclusively to 

study matrix metalloproteinase activity in slices. In the last decade, the development of protease-

activated fluorogenic probes led to the development of in vivo zymography (IVZ). Early work 

relied on nonspecific substrates for measuring general enzyme activity79 but more specifically 

targeting probes have been created since80. In a typical experiment, heavily fluoresceinated 

native collagens are injected in vivo, where they are degraded and unquenched, resulting in an 

increase in fluorescence intensity. IVZ has been used to study the degradation of type I and type 

II collagens in the zebrafish embryo during development81. It was found that more hydrolysis 

occurs later in development than earlier stages. A classical zymography substrate is DQ-

collagen, in which the “DQ” prefix indicate that it is an analog of the native peptide with 

excessive amount of fluorescent tags, which results in self-quenching. Keow et al.82 improved 

upon this method by replacing the DQ-collagen substrate with a Förster (or fluorescence) 

resonance energy transfer-quenched fluorophores. The main difference here is that the substrate 

now consists of a fluorophore and quencher moiety linked by a 10-amino-acid sequence. The 

benefit of this modification is that there is greater control over the linking sequence, allowing for 

better targeting of specific enzymes. Moreover, the variety of fluorophore/linker combinations 

and their different spectral properties allows for the measurement of multiple enzyme activities 

simultaneously82. Vandooren et al. provides a detailed review of zymography techniques through 

201375.    

Another type of fluorescence-based method is based on activity-based probes (reviewed 

in Razgulin et al.83). In a typical experiment, there is a quenched fluorescent probe that binds 

irreversibly to an enzyme target, upon which the attenuating linker is cleaved off and the probe 

fluoresces. The advantage of this method is high sensitivity and selectivity. The drawback is that 
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the substrate is covalently attached to the enzyme target, thereby preventing any dynamic 

monitoring. Furthermore, experts in the field also recognize that the one enzyme-one fluorescent 

molecule stoichiometry prevents amplification of the signal. Activity-based probes are primarily 

used for imaging tumors by monitoring enzymes like β-galactosidase84.  

 Matrix assisted laser desorption/ionization (MALDI) is a powerful technique due to its 

high sensitivity and spatial resolution. It does not require any tags, such as fluorophores, making 

it agreeable for tissue-based studies85. The Andersson group has combined mass spectrometric 

imaging with in situ histochemistry to discover differential hydrolysis of the neuropeptide 

dynorphin B in different regions of the rat brain85. The authors perfused both hemispheres of the 

rat brain with exogenous dynorphin B  and only one of the hemispheres with selective inhibitors 

in an effort to study the potency of these inhibitors on dynorphin B hydrolysis. This is relevant to 

Parkinson’s disease research, as there are elevated levels of dynorphin B in the striatum and 

substantia nigra in patients with Parkinson-related dyskinesia. The Sweedler group used 

MALDI-TOF/TOF with a D-amino acid containing peptide discovery funnel approach to detect 

the D-form of any common chiral amino acids86,87. Using this approach, they discovered two D-

amino-acid-containing peptides in Aplysia californica, one of which was GDYDFDD, a D-amino 

acid peptide that may play a role in feeding and locomotor circuits through the action of 

isomerases87.  

So far, most of the discussion has been focused on imaging-based methods. One of the 

main non-imaging methods for measuring enzyme activity is to utilize physical probes such as 

microdialysis88. In this technique, there is an inlet and outlet capillary inside a stainless steel 

cannula that ends in a porous membrane at the tip. The length of the membrane is approximately 

1-4 mm long and ~250 μm outer diameter (o.d.). The technique utilizes the dialysis principle in 
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that a membrane permeable to water and small molecules separates two fluid compartments, i.e. 

the extracellular space of the tissue and chamber inside the probe, which is constantly perfused 

with artificial cerebral spinal fluid (aCSF). There are two configurations of the inlet and outlet – 

either concentric or side-by-side. Due to the “closed-system” nature of the probe, microdialysis 

samples are free of brain tissue since exchange across the membrane is facilitated by diffusion89. 

The substrates can be introduced locally to the tissue from the inlet, across the membrane, and 

into the tissue ECS. Hydrolysis products can then diffuse back across the membrane and be 

collected and quantified. The main appeal of microdialysis is its breadth, particularly in its ability 

to couple to a variety of quantitation methods as well as the variety of analytes it can study. One 

of the main limitations of microdialysis is its size, which results in damage to the vasculature and 

resulting foreign body response, but there have been recent efforts in miniaturizing the probe size 

by microfabrication90. In vivo microdialysis measured elevated extracellular glutamate 

concentration in the periphery of the injured region after focal cerebral ischemia91. In another 

study, in vivo microdialysis detected increased adenosine concentration as a result of 

lysophosphatidylcholine (LPC) administration92,93. Since adenosine is generated from 

dephosphorylation of adenosine monophosphate by the membrane-bound enzyme ecto-5’-

nucleotidase, this observation was taken as an indirect evidence that there was elevated ecto-5’-

nucleotidase activity as a result of LPC administration. Retrodialysis with a protein kinase C 

antagonist abolished ecto-5’-nucleotidase activity due to LPC. This led the authors to conclude 

that LPC results in elevated ecto-5’-nucleotidase activity via protein kinase C pathway. 

Neuropeptide degradation has also been investigated using in vivo microdialysis. For example, 

dynorphin degradation/processing was found to be reduced in the dopamine-depleted hemisphere 

of the hemiparkinsonian rat model94. There have also been human microdialysis experiments. In 
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one study, kinetics of cortisol metabolism by 11β-hydroxysteroid dehydrogenase (11βHSD) was 

determined by infusing the subcutaneous adipose tissue of human patients with isotopically-

labeled substrates and subsequently measuring the amount of isotopically-labeled hydrolysis 

products. 11βHSD type 1 (11βHSD1) can catalyze the reduction of cortisone to cortisol in the 

presence of the cofactor nicotinamide adenine dinucleotide phosphate, or NADPH. It was shown 

using other methods that11βHSD knockout mice on a high-fat diet were rescued from obesity 

and hyperglycemia95-97. In one microdialysis study, the subcutaneous adipose tissue of human 

patients was infused with 1,2,6,7-[3H]-cortisone and 1,2[3H]-cortisone and 1,2[3H]-cortisol were 

measured in the dialysates98. 11βHSD1 activity was inferred from the steady-state concentrations 

of the two species using unlabeled cortisol and cortisone as internal standards. It was found that 

obese subjects had more rapid conversion of [3H]-cortisone to [3H]-cortisol, indicating higher 

11βHSD1 activity. The diffusional exchange rates of cortisone and cortisol across the 

microdialysis membrane were comparable and thus the differences in the cortisone and cortisol 

products were not due to mass transport across the membrane. 

One of the main benefits of microdialysis is that it has the ability to measure the fates of 

multiple substrates, products, and enzyme activities. Wang et al. implanted microdialysis probes 

into each side of the dorsal spine of freely moving rats and infused with MMP-1 and MMP-2/-9 

substrates via retrodialysis99. MMP-2/-9 share substrates and were thus indistinguishable in this 

case. Dialysates were collected every 30 min for 3.5 hours and subjected to LC/MS/MS analysis. 

The authors performed a blank dialysate experiment to see if any MMPs or other proteolytic 

enzymes were collected during the sampling. In this control experiment, MMP substrates were 

not introduced via retrodialysis but were instead spiked into the dialysate after collection. 

Through this approach, the authors found no significant enzyme activity in the dialysate until 7 
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days post-implantation. Next, retrodialysis was used to introduce MMP-1 and MMP-2/-9 

substrates into the tissue. It was found that the concentrations of MMP-1 and MMP-2/-9 N-

terminal products (NTPs) stabilized around 90 min at 2.6 μM and 3.1 μM, respectively. These 

were approximately 7-fold lower than what was reported in vitro. Retrodialysis of the broad-

spectrum MMP inhibitor GM 6001 reduced MMP-1 activity by 29% and MMP-2/-9 activity by 

22%. This was also lower than expected based on in vitro studies. To confirm the activity of 

MMPs near the tissue, the authors then explanted tissues from near the probe and far from the 

probe for zymography measurements of MMP activity. They found that there was actually higher 

MMP activity in the encapsulated tissue around the probe than in normal tissue, suggesting that 

long-term microdialysis implantation activated MMP-1, -2, and -9 and altered the tissue 

biochemistry99. Interestingly, this has been an active field of study in recent years, culminating in 

the discovery that the microdialysis probe implantation causes foreign body response100. In the 

short term, this foreign body response can influence measurements. In the long term, it can result 

in a scar tissue around the probe that reduces probe recovery of species in the ECS. This may 

explain the low MMP products seen in the example above99. Fortunately, recent strategies have 

been developed that show promise in minimizing the effects of the probe, including retrodialysis 

of the anti-inflammatory glucocorticoid dexamethasone101-105.  
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1.4.1 Electroosmosis-based methods for studying enzyme activity 

 

  
 

The other sampling-based technique has been developed by our lab using electroosmosis instead 

of pressure to drive fluid flow. Electroosmosis (Figure 3) is the bulk fluid movement that occurs 

when an electric current is passed through a fluid-filled conduit with charged walls, such as fused 

silica capillaries. Due to the accumulation of mobile counterions near the wall from electrostatic 

interactions, the application of an electric field induces movement of these mobile counterions 

that “carries” the rest of the electroneutral solution with it through diffusion of momentum54. A 

shear plane forms in the double layer at the wall that separates the mobile counterions and the 

fixed counterions on the wall surface. The electrostatic potential at this plane with respect to a 

point in the electroneutral solution is the zeta (ζ) potential. The magnitude of this potential, along 

with the magnitude of applied current, the dynamic viscosity of the solution, and the bulk 

conductivity of the electrolyte solution, determines the magnitude of the EO flow rate54. 

 
 
Figure 3. Zoomed in schematic of the double layer near the capillary wall. Upon application of an external 
current through an electrolyte-filled conduit, a stationary layer of counterions accumulate at the wall surface. 
Another layer of mobile counterions also accumulate just outside of this stationary layer. The potential at the 
imaginary plane between mobile counterions and stationary counterions with respect to the electroneutral 
solution is the zeta-potential. 
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Sampling using EO is possible because the ECS of the brain is essentially a network of conduits 

with charged walls with a measurable ζ-potential106, allowing for EO-driven flow to introduce 

and/or collect species. There are two generations of EO-based sampling techniques for 

measuring enzyme activity ex vivo in tissue cultures, as described below. All of the work done is 

on organotypic hippocampal slice cultures, which is described in more detail later in Chapter 3. 

More detailed, mathematical overview of the EO flow basics can be found in this review from 

our lab54. 

 

In the first generation of EO sampling, a typical experiment consists of positioning the 

proximal end of a fused silica (sampling) capillary on top of an OHSC with the distal end (the 

farther end with respect to the tissue) in an electrode-containing vessel. A second electrode is 

placed in the same bath as the OHSCs to complete the circuit. The electrodes are connected to a 

current source. Substrates are added to the bath underneath the insert membrane, on top of which 

OHSCs are grown. Upon the application of a current, fluid flows from the bath beneath the 

culture, through the tissue culture, and into the sampling capillary. Ectopeptidases hydrolyze the 

exogenous substrates being carried through by EO flow. EO sampling has been integrated with 

 

Figure 4. Schematic of EOPPP, the second-generation technique.  
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microfluidic capillary electrophoresis coupled to confocal laser-induced fluorescence 

detection107,108. The distal end of the sampling capillary is directly attached to the microfluidic 

device. Thiols collected from the extracellular space in the CA3 react with ThioGlo-1 dye in the 

reaction channel before separation by electrophoresis. This method was used to measure 

endogenous free cysteine (11.1 ± 1.2 μM), homocysteine (0.18 ± 0.01 μM), and cysteamine 

concentrations (10.6 ± 1.0 nM) in the ECS of the OHSCs108. Cysteamine (CSH) is the active 

terminal product of synthesis and degradation of coenzyme A (CoA), an important cofactor for 

4% of all enzymes108. Wu et al. perfused the CA3 region of OHSCs with CoA and monitored 

changes in CSH and pantetheine (PSH) concentrations (an intermediate in CoA catabolism) in 

the ECS using the integrated method described above107,109. Typical reaction time for these 

experiments was estimated by dividing the total effective volume of the tissue (taking into 

account the porosity of the medium) by the flow rate and was determined to be 55 s. Plotting 

CSH product as a function of initial CoA concentration yielded a Michaelis-Menten curve, from 

which the overall reaction rate of the CoA  CSH can be extracted. Because of the high flow 

rates used in the EO sampling method (hundreds of nL/min), the entire OHSC is filled with the 

substrate within seconds, and consequently the assumption that the initial substrate concentration 

does not change can be used. Thus the Michaelis-Menten equation can be applied to these 

measurements. Wu et al. reported an apparent Vmax(app)  = 7.1 ± 0.5 nM/s and Km(app) = 16 ± 4 μM 

for the overall enzymatic degradation of CoA in the CA3. The word “apparent” here refers to the 

overall kinetics for a multi-step enzyme reaction. Furthermore, fitting the Michaelis Menten 

equation to the plot of generated pantetheine as a function of CoA concentration revealed a 

comparable K’m for pantetheine (18 ± 6 μM) to that for CoA  CSH. This suggests that the final 

process in the CoA catabolism pathway, catalyzed by pantetheinase, is not the rate-limiting step 
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and is in the first-order regime. These reports provide the first rates of pantetheine and 

cysteamine formation in mammalian tissues, which had not been reported prior to this work due 

to lack of appropriate tools that can measure low endogenous concentrations. The authors also 

administered the disulfide forms of cysteamine and pantetheine, cystamine and pantethine 

respectively, two drugs that treat cystinosis, an autosomal recessive genetic disease that causes 

cysteine to accumulate in lysosomes. Cysteamine is the active molecule in the treatment of 

cystinosis. Wu et al.107 found that cysteamine is more rapidly produced from cystamine than 

pantethine, which agrees with the higher efficacy of cystamine in treating cystinosis. Since 

cysteamine is toxic in high doses, the rapid production of cysteamine from cystamine also agrees 

with findings that cystamine is more toxic than pantethine.  

EO sampling has also been coupled to offline capillary liquid chromatography (cLC) with 

electrochemical detection110. Rather than being coupled to a microfluidic device, the sampling 

capillary is removed from the OHSC after sampling is complete and the contents are ejected 

using a syringe containing 0.1% trifluoroacetic acid (TFA) to quench any enzyme reaction if 

enzymes were collected in the sampling process. The samples were analyzed with capillary 

liquid chromatography, reacted with biuret reagent postcolumn to make the peptides 

electrochemically active, and detected with amperometry at a carbon fiber microelectrode. Xu et 

al. used this method to measure the rate of hydrolysis in whole OHSCs. They found the major 

hydrolysis product to be GGFL. Inhibitor experiments indicate that the peptidase is likely to be 

bestatin-sensitive aminopeptidase, with Vmax = 770 ± 95 μM/s and Km = 1.2 ± 0.5 mM. Product 

generation was unaffected by GEMSA, captopril, and puromycin. This suggests that neither 

angiotensin-converting enzyme (EC 3.4.15.1) nor puromycin-sensitivity aminopeptidase (EC 

3.4.11.14) had any significant contribution the generation of the major hydrolysis product GGFL. 
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To improve spatial resolution, a second capillary was added such that it was pulled to a 

fine tip, inserted into the tissue, and filled with exogenous substrate for more controlled delivery 

of the substrate of interest to specific regions. This second-generation EO-based sampling 

technique is called electroosmotic push-pull perfusion (EOPPP, Figure 4)111. Rupert et al. 

coupled this technique with offline MALDI mass spectrometry to qualitatively determine the 

differences in galanin hydrolysis patterns in CA1 and CA3 of the OHSCs. Galanin is a 29mer 

peptide that reduces glutamate concentration after ischemia and is protective against glutamate-

induced damage112,113.  At both short and long reaction times, there was a significantly higher 

probability of finding short peptides with intact carboxy terminus (indicating aminopeptidase 

activity) in the CA3. At short but not long reaction times, there was a higher probability of 

finding long peptides with intact carboxy terminus in the CA3. No quantitative information was 

reported. The first-generation and qualitative work by EOPPP are reviewed in this paper from 

our lab54. 

The long-term goal is to determine quantitative differences in ectopeptidase activity in a 

spatial and temporal manner in order to elucidate the role of ectopeptidases in ischemic damage 

and neuroprotection. This dissertation investigates the EOPPP technique through dual lenses: the 

first is through computational model that assesses the technique in detail and provides a guide for 

data analysis, and the second is applying the technique to measure spatially resolved 

aminopeptidase activity in the context of hippocampal cell death as a result of oxygen-glucose 

deprivation.   
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2.0  FINITE ELEMENT MODEL OF ELECTROOSMOTIC PUSH-PULL 

PERFUSION FOR MEASURING EX VIVO ENZYME ACTIVITY 

Reprinted with permission from Analytical Chemistry 2017 89(11): 5864-5873. Copyright 

(2017) American Chemical Society. 

 

Traditional measurements of enzyme kinetics in vitro involve adding the substrate to a medium 

containing whole cells or membrane fractions isolated via homogenization. Products in the 

supernatant can then be quantified using various analysis methods, including colorimetric assay, 

radiochemical assay, or HPLC analysis. In these experiments, the concentration of substrate, 

enzyme, and the reaction times are all under experimentalist control. However, for ex vivo or in 

vivo measurements of enzyme activity, the picture is more complex. Before any experimental 

measurements can be made, it is thus important to assess the concentration of substrate, product, 

and reaction times in the tissue during any given experiment. For first-generation of EO 

sampling, the high flow rates (hundreds of nL/min) fills the entire OHSCs with substrate(s) 

within seconds, and consequently the assumption that the initial substrate concentration does not 

change during an enzyme reaction can be made. The traditional Michaelis-Menten can be used in 

this case. For the second-generation EOPPP method, however, the flow rates are slower (10-50 

nL/min) and thus the tissue does not fill up with substrates within a matter of seconds as is the 

case for the EO sampling counterpart. Thus, the initial substrate concentration never reaches 
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steady-state in the tissue ECS and thus the traditional Michaelis-Menten equation cannot be used. 

Instead, the integrated Michaelis-Menten is required. In this form of the equation, there are three 

experimental parameters that can be measured (the initial substrate concentration and the amount 

of product generated at each substrate concentration) or calculated (residence time) and two 

unknowns (Vmax and Km). For EOPPP method, there is a gradient of substrate concentration and 

a distribution of velocities in the tissue ECS, both in a spatially-dependent manner. Simulations 

are thus needed to understand the method and guide data analyses in order to accurately measure 

Vmax and Km values in the tissue ECS.  

2.1 INTRODUCTION 

Techniques for measuring extracellular concentrations of solutes (such as neurotransmitters, 

metabolites, peptides, drugs) have been around for over half a century. Modern sampling tools, 

such as microdialysis88,89,114-119, low-flow push-pull perfusion120-124, and solid-phase 

microextraction125-127 are valuable assets for answering biological questions based at least in part 

on analytical measurements of solute concentrations in the extracellular space (ECS)54. These 

sampling procedures are a key component of the analytical methods that use them, and thus their 

influence on the analytical result must be well understood. For this reason, mathematical models 

of fluid and mass transport in these procedures have been developed and used to refine the 

application of sampling techniques. Various mathematical models have been developed for 

microdialysis (reviewed by Kehr)128. Bungay et al.118, following up on earlier and simpler 

models129,130, created a unifying approach by including both axial and radial diffusion to the 

probe. The numerical model provides outflow concentration given the inflow and external 
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medium concentrations as well as the probe membrane permeability and geometry. In recent 

years, Diczfalusy et al.131,132 developed a finite element method (FEM) model to predict the 

volume of tissue accessed by microdialysis. They introduced diffusion tensors from patient 

magnetic resonance imaging data into the FEM model for accurate computation of patient-

specific sampling volume around the microdialysis probe132. This accounts for anisotropy and 

heterogeneity in the brain, which are important to solute transport in the ECS as shown by 

Syková and Nicholson133,134. In contrast, there are fewer mathematical models of low-flow push-

pull perfusion and solid-phase microextraction. Cepeda et al.135 related sampling-induced cell 

death from low-flow push-pull perfusion to sampled fluid velocity, local pressure, and shear 

stress near the sampled site. Alam et al.136 developed a numerical model for solid-phase 

microextraction that simulates solute partitioning under various conditions of fluid agitation, 

fiber coating thickness, and the presence of a binding matrix. Taken together, these 

computational results provide insight into the complex processes that occur during sampling and 

a means to optimize experimental conditions without the need to perform a large number of 

experiments. 

There are in principle significant advantages to the use of electroosmotic flow to perfuse 

tissue as long as the tissue itself has a sufficiently large zeta potential, which is true for the 

brain137. The current path guides the direction of fluid flow and the current magnitude can in 

principle easily control the flow rate. Thus, we envisioned electroosmotic push-pull perfusion as 

a novel and useful approach, particularly to measure quantitatively (how fast) and qualitatively 

(what products) the rates of enzymatic hydrolysis of peptides by membrane-bound, extracellular 

peptidases. The first-generation electroosmotic sampling107-110,138 was used to determine 

extracellular cysteamine in organotypic hippocampal cultures and to characterize enzyme 
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activity in the tissue ECS related to neuropeptide degradation and coenzyme A catabolism. A 

second-generation111,139 electroosmotic push-pull perfusion (EOPPP) technique, which has better 

spatial resolution that its predecessor, was used to assess differences in product distribution from 

extracellular peptidase activity acting on the 29-amino acid neuropeptide, galanin, in the CA1 

and CA3 regions of organotypic hippocampal slice cultures.  

Our long-term goal is to determine quantitative and qualitative differences in enzyme 

activity over time and in a spatially dependent manner. For a method to be useful in this pursuit, 

or any investigations of the fate of molecules as they pass through the ECS, it must be able to 1) 

perfuse tissue and collect the perfusate for quantitative and/or qualitative analysis of the solutes 

introduced and reaction products produced, 2) control the average residence time of the active 

solutes, and 3) have the appropriate spatial resolution for the process of interest. EOPPP is in 

principle suitable to meet these needs. However, much like the case for microdialysis, low-flow 

push-pull perfusion, and solid-phase microextraction, there are parameters that are needed for 

quantitative interpretation of data but that cannot be measured easily (or at all) in EOPPP. A 

robust computational model would be very useful for understanding the fluid and mass transport 

events, for optimizing conditions, and for use in data interpretation to obtain quantitative results 

from the perfusion/collection of solutes and their reaction products.  

We previously developed a physical model composed of a slice culture and two probes. 

With this model, we investigated the potential drop in the tissue and correlated that with cell 

death in order to find “safe” conditions.31 We also used the model to show that the flow rate 

through the tissue culture under an applied current depended on the diameter of the sampling 

capillary111,139, but this was not discussed quantitatively.  The model described in this 

dissertation is built upon the previous model and also includes, solute transport and enzyme 
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kinetics. Thus, this model provides a more comprehensive, quantitative understanding of 

EOPPP, including the factors influencing solute distribution and residence time within the tissue.  

We show how to use the model to extract kinetic parameters of an enzyme in the tissue ECS 

based on EOPPP of the perfused substrate and collection of generated product. 

2.2 THEORY 

2.2.1 Finite element numerical model 

 

 
Figure 5. (Left) Side-view schematic showing the general setup of EOPPP, in which a source capillary is 
inserted into the tissue at a controllable depth and the sampling capillary rests on top of the tissue at some 
controllable depth. A buffer layer on top of the tissue maintains electrical contact between the sampling 
capillary and the tissue. Application of a current drives fluid and mass flow from source to the tissue to the 
sampling capillary. Not drawn to scale. (Right) The same geometry built in COMSOL Multiphysics showing 
the different experimental parameters.  Drawn to scale. The walls of the capillaries are not shown. 
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The model in COMSOL Multiphysics (v5.2) simulates electroosmotic flow (“Electric Currents” 

and “Free and Porous Media” modules) as well as solute transport and reaction kinetics 

(“Transport of Diluted Species in Porous Media” module). A 3-D geometry representing the 

capillary lumens and tissue culture was built on the COMSOL Multiphysics geometry interface 

using simple shapes and parametric curves (Figure 5). The buffer droplet between the sampling 

capillary and tissue surface was represented in the simulation as a truncated cone. The tissue was 

treated as a rigid, homogeneous porous material. The program applies a current boundary 

condition to create EO flow.  

EO flow in a porous medium140-142 can be modeled as a body force resulting in a 

modified Darcy’s law (Eqn. 1), 

         [1] 

where η is the dynamic viscosity (Pa s), κ is the permeability (m2), u is the superficial velocity 

(m/s), P∇ is the  pressure gradient (Pa/m), ρeff is the effective charge density of the fluid (C/m3), 

and φ∇   is the gradient of the electric potential (V/m). The superficial velocity is the volume 

flow rate divided by total cross-sectional surface area (including the impermeable portion of the 

medium). The interstitial velocity is the average velocity in the macroscopic direction of flow 

through the interstitial space of the porous medium. In order to determine the effective charge 

density, we started with an equation for superficial electroosmotic velocity in a porous 

medium111,143: 

          [2] 
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where εw is the permittivity of water (F/m), ζ is the zeta-potential (V), ε is the porosity, and λ is 

the tortuosity (or , where l is the length of the curved path and L is the length of the straight 

path through the porous medium). By equating the superficial velocities in Eqns. 1 and 2, in the 

absence of a pressure gradient, the effective charge density is 

          [3] 

Thus, the equation used for EO-driven fluid flow in the tissue is: 

02 =∇−∇+ φ
κλ

ζεε
κ
η wPu          [4] 

In the capillaries and buffer layer between the sampling capillary and tissue, the Navier-Stokes 

equation is used.  

In order to save computational time, we shortened the length of the capillaries from 30 

cm to 2 mm. This truncation affects the pressure resulting from differences in ζ-potential 

between two adjacent media (capillary and tissue) through which the current flows. In order to 

account for this truncation, we defined boundary conditions at the inlet (to the source capillary) 

and outlet (from the sampling capillary) as “Hagen-Poiseuille” boundaries that define the 

pressure drop in the missing length for an incompressible Newtonian fluid with laminar flow:  

2

8 LmP uη
∆ = ∆

a
          [5] 

where ΔP is the pressure drop in the missing length of capillary, Lm is the missing length of the 

capillary, Δu is the difference between wall velocity and average fluid velocity at the exit of the 

truncated capillary, and a is the radius of the capillary. The Hagen-Poiseuille boundary condition 

takes advantage of the fact that the flow profile is constant in this portion of the capillary to 

determine the pressure drop that would have been generated if the missing length had been 
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included in the geometry. All boundary conditions are defined on pages S-5 to S-7 of the 

Supporting Information. 

The module “Transport of Diluted Species in Porous Media” uses the following equation 

for each species, ‘i’: 

 
     [6] 

where ci is the concentration (in M) for solute ‘i’ in the interstitial space, 
t
c
∂
∂  (M/s) is the change 

in concentration with respect to time, Ri is a reaction rate (M/s)), u is the superficial velocity (m/s 

from Eqn. 4), De,i is the effective diffusion coefficient (m2/s), and μep,i is the effective 

electrophoretic mobility (m2/Vs). Here, the term “effective” refers to the incorporation of 

tortuosity to obtain a value of a parameter originally determined in free solution that would be 

observed macroscopically in the porous medium. The effective diffusion coefficient in a porous 

medium is 
 
144, where D is the diffusion coefficient in free solution. The terms on the right-

hand side of the equation represent, respectively, chemical reaction, convection, diffusion, and 

electrophoretic migration.  

Two approximations were made to simplify the calculations. First, we modeled the brain 

as a rigid porous medium. Work by Støverud et al.145 demonstrated no significant difference 

between using a rigid or an elastic model to simulate drug infusion (by pressure) into the brain 

for tissue permeability greater than 1.82 x 10-15 m2.  The permeability we used in the model is 10-

14 m2 146, thus the rigid model is appropriate for our system. Second, the 25 m layer of buffer 

that exists between the sampling capillary’s end close to the culture and the top surface of the 

culture is modeled as a fixed truncated cone shape (see Figure 5). In reality, this is an 
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approximation. The true surface shape depends on the surface tension of the droplet, the pressure 

outside the droplet, and the pressure within the droplet. The added complexity required to 

include this effect did not seem justified based on the fact that this droplet is merely a 

throughway for current and solute to pass from the tissue to the lumen of the sampling capillary. 

2.3 RESULTS AND DISCUSSION 

2.3.1 Model assessment 

The FEM model was built based on the assumption that the tissue is a homogeneous porous 

medium and uses several parameters from the literature, including viscosity (η = 8.9 x 10-4 Pa s), 

zeta potential of the capillaries (ζcap = -46.5 mV)54, zeta potential of the tissue (ζtissue = -22.8 

mV)147, peptide diffusion coefficients (DyaGfl = 4.45 x 10-10 m2/s)148, as well as tissue culture 

porosity (ε = 0.2-0.6)43,44 and tortuosity (λ = 1.2-1.6)149,150.  We wanted to know whether results 

from this model would be closely correlated to experimental observations. Thus, we assessed the 

 
 
Figure 6. Plot of moles of DYDAGDFDL (yaGfl) collected divided by initial yaGfl concentration in the source 
capillary [yaGfl]0 at the two different currents 5 and 15 μA. 
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transport portion of the model using data for the collection of a D-amino acid peptide 

DYDAGDFDL (yaGfl) with the EOPPP setup. Due to its D-amino acids, yaGfl is not rapidly 

hydrolyzed in the tissue and thus makes for a good sampling internal standard (this will be 

discussed in more detail later when we discuss using the FEM model for simulating enzyme 

activity). Both experimentally and computationally, the tissue ECS was perfused with exogenous 

yaGfl and the moles of yaGfl collected in ten minutes at two different currents (i = 5 and 15 μA) 

were obtained. Experimentally, this means measuring the moles of yaGfl collected via capillary 

liquid chromatography with UV-Vis detection. Computationally, this means performing a 

surface- and time-integral of the total flux of yaGfl at the entrance of the sampling capillary. 

Then the moles of yaGfl collected is divided by the initial concentration of yaGfl in the sampling 

capillary. This ratio, with units of nL, is related to the collection efficiency, which is defined as 

the fraction of the moles captured at the sampling capillary to those introduced at the source 

(Figure 6). As seen in Figure 6, this ratio at 5 μA was 14 ± 2 nL for experiments (mean ± SEM, n 

= 4) and 22 nL for the model. At 15 μA, the the ratio was 71 ± 7 nL for experiments (n = 11) and 

97 nL for the model. Given the complexity of the system, the fact that we are using estimates of 

tissue properties (e.g. porosity, tortuosity, permeability, etc.), and the general variability that 

comes with absolute moles collected because of tissue-to-tissue and rat-to-rat differences, the 

error between experiment and simulations is very reasonable. We also should mention that the 

currents used in many experiments for measuring enzyme activity are in the 10 – 20 μA range, so 

the 15 μA comparison has more weight. 
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2.3.2 Fluid transport 

 

There is a linear relationship between the current and electroosmotic flow rate in a homogenous 

medium111: 

          [7] 

where UEO is the electroosmotic flow rate, σ is the conductivity of the electrolyte itself, and i is 

the current. However, the ζ-potential of fused silica capillaries, -46 mV54, is different from that 

of the tissue, -23 mV147. For an incompressible fluid in a closed system, EO flow through a 

medium with non-uniform ζ-potentials results in non-uniform EO velocities. Mass balance 

requires that pressure be created to augment flow where the magnitude of the EO velocity is 

lower and to decrease flow where the EO velocity is greater. This generates a pressure gradient 

in the system54,151. The magnitude of this pressure difference increases linearly with the 

magnitude of the applied current and decreases nonlinearly with the inner diameter (i.d.) of the 

 

Figure 7. A) False color surface plot of pressure (normalized to applied current) in the source capillary, tissue 
and sampling capillary. The plane goes through the symmetry axis of the capillaries. B) Pressure/current vs. 
distance from the source tip (at the source center) along the indicated dashed line. While there is pressure 
drop in the capillaries, most of the pressure drop occurs between the two capillary tips in the tissue. The 
sampling capillary i.d. is 100 μm. 
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sampling capillary (discussed later) for a rigid porous medium of constant temperature 

containing a fluid with constant viscosity151. In EOPPP, we impose a positive current from the 

source to the sampling capillary so fluid flows from the source capillary with high EO velocity to 

the tissue with low EO velocity and then to the sampling capillary with a high EO velocity.  

Figure 7A shows a surface plot of the ratio of pressure to current during perfusion at steady state, 

with red indicating positive pressure and blue indicating negative pressure. Figure 7B shows a 

plot of that ratio as a function of distance from the source capillary, along the dashed line 

indicated in Figure 7A. The pressure/current ratio drop is around 2 Pa/μA at the tip of the source 

capillary and -0.3 Pa/μA at the sampling capillary. This pressure difference, though small, exists 

across a small distance, so it actually assists EO flow in pumping fluid through the tissue, as the 

flow rate is higher in the tissue than it would be without this effect.  

 

Our model shows that the contribution of this EO pumping phenomenon to the overall 

flow rate depends on the size of the sampling capillary151 as mentioned above and shown in 

Figure 8 (black symbols). The flow rate was calculated by integrating the superficial velocity in 

the sampling capillary over the cross-sectional surface area. In Figure 8, it is normalized to the 

applied current. The magnitude of the EO flow rate/current does not depend on capillary i.d. 

 
 
Figure 8. Plot of flow rate/current ratio as a function of sampling i.d. (black). Contribution from EO flow is in 
blue. Contribution from pressure (P) is in red. The total flow rates are shown in black (EO + P). Dashed line 
indicates the current-normalized EO flow rate predicted by. Eqn. 7. 
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(blue, Figure 8). In fact, the FEM calculations agree with Eqn. 7 quantitatively (see blue symbols 

and black dashed line). (This is further model validation.) To assess the contribution of the 

pressure generated by the ζ-potential mismatch to the total flow rate, we performed a separate 

calculation with the generated pressure (shown in Figure 7) as the only driving force in the 

absence of current. The pressure-induced flow rate/current ratio calculated for this pressure-only 

system is shown in red in Figure 8. We found that for a sampling i.d. of 100 μm, the pressure-

induced flow rate/current ratio is 0.87 nL/min/μA, accounting for nearly 60% of the total flow 

rate (1.63 nL/min/μA). On the other hand, for a larger, 250 μm, sampling i.d., the pressure-

induced flow rate/current ratio is 0.09 nL/min/μA, which is only about 10% of the total flow rate 

(0.86 nL/min/μA). The contribution of the pressure-induced flow for constant capillary length 

diminishes at larger sampling i.d.s because generated pressure for an incompressible Newtonian 

fluid is inversely proportional to the square of the capillary radius, as shown in Eqn. 5. The 

sampling capillary acts as an electroosmotic pump. 

There are several geometric parameters in EOPPP, including source tip i.d., source barrel 

i.d., how far the pulled tip is inserted into the tissue, sampling i.d., how far the sampling capillary 

is positioned above the tissue, and the length of the two capillaries (see Figure 18 in the 

Appendix A). Using our model, we found that the majority of the parameters do not significantly 

affect the flow rate in the ranges we examined (Figure 18), with the exception of sampling i.d. 

(which was discussed in the previous paragraph) and the lengths of the capillaries (see Figure 

18).  The sampling capillary i.d. has more influence on the flow rate than the source capillary i.d. 

because the source capillary barrel i.d. (200 μm) is larger than that of the sampling capillary. The 

lengths of the capillaries affect the pressure generated from the ζ-potential mismatch. The 

magnitude of the pressure generated is directly proportional to the length of the capillary, as 
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shown by the Lm term in Eqn. 5. This finding is consistent with the fact that in a homogeneous 

system where the ζ-potential is uniform, the only parameter that affects EO flow is the current, as 

described by Eqn. 7.  This is a favorable outcome. Of the suite of parameters listed above, 

current (controlling EO flow and contributing to EO pumping), sampling capillary i.d. , and 

capillary lengths (together controlling EO pumping) are the three easiest parameters to control. 

 

An interesting consequence of the EO pumping phenomenon is the ability to sample 

solutes that are otherwise impossible to obtain via EO alone. For neutral and cationic solutes, 

electrophoresis does not hinder sampling by EO. (In the case of cations, it actually facilitates 

sampling.) However, the ability to sample anions is dependent on the relative magnitudes of the 

bulk fluid velocity and electrophoretic velocity. Under typical experimental conditions (sampling 

i.d. = 100 μm, current = 10 μA), monovalent anionic solutes with MW equal to or greater than 

150 g/mol, such as glutamate and glutathione, can be sampled successfully (see Figure 9). Figure 

 

Figure 9. False color plots show the concentration gradients for increasing molecular weight (from left to 
right) and increasing sampling capillary i.d. (from bottom to top). Molecular weights are 50, 100, and 150 
g/mol going from left to right. Dimensions for the top three are as follows: source capillary 200 μm (barrel) 20 
μm (tip), sampling capillary 100 μm, length of capillaries were 30 cm each. Dimensions of the bottom three 
series are as follows: source capillary 100 μm (barrel), 10 μm (tip), sampling capillary 50 μm, and length of 
capillaries were 60 cm each. On the right, the concentration gradient for sampling of a neutral solutes (z = 0) 
is shown as a control. 
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19 shows that more highly charged anions (e.g. z = -2) could be collected if the MW is high 

enough. If the internally generated pressure is increased further by decreasing sampling i.d., 

increasing length, or a combination of the two, smaller solutes with the same charge can be 

sampled. In the example in Figure 9, we halved the sampling i.d. and doubled the length of the 

capillaries to 60 cm. As a result, a monovalent anion with a molecular weight of 100 g/mol could 

be sampled via EOPPP, according to computations (see Figure 9).   

2.3.3 Solute transport 

Most of the following discussion is based on the transport of yaGfl through the tissue via 

EOPPP. We will use the Péclet number in some of the following discussion to understand the 

relative effects of diffusion and convection. It is defined as  

Pé








=

2λ
D
bu            [8] 

where Pé is the dimensionless Péclet number, u is the interstitial velocity, and ‘b’ is the 

characteristic dimension of the system (in this case, ~100 µm). Pé can provide a semi-

quantitative assessment of the ratio of convective to diffusional solute velocity. When Pé is much 

less than one diffusion dominates while when Pé is much greater than one convection dominates.  

In the following, the stated concentrations of the solute in the tissue culture are all based on 

moles per volume of extracellular space. 
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Time-dependent calculations of the evolution of the solute distribution profile in tissue 

for the peptide yaGfl are summarized in Figure 20. The radially averaged solute concentration 

inside the sampling capillary reaches 95% of the steady-state level after 65, 42, and 32 s for i = 

10, 30, and 50 μA, respectively. Figure 10A shows a set of surface plots of concentration profile 

at t = 600 s for current = 0 (diffusion-only), 10 μA, 30 μA, and 50 μA EOPPP. Interestingly, the 

concentration profiles are asymmetrical: solute transport is clearly biased toward the sampling 

capillary, driven by the current flow between the two probes. This demonstrates an important 

advantage of EOPPP over diffusion-based as well as pressure-driven methods: there is a 

straightforward, instrumental means (i.e., current source) to establish flow rate with some control 

 

Figure 10. A) False color surface plot of the concentration profile at t = 600 s for i = 0 (diffusion only), 10, 30, 
and 50 μA. All concentrations are expressed as a percentage of initial concentration in the source capillary, c0. 
B) Distribution of solute in the tissue culture between regions with Pé greater than one (red) and less than one 
(blue).  C) 3D plot of concentration in several parallel XY planes at different Z positions. The concentration 
at the tissue surface is shown in more detail (from an eagle-eye perspective) on the right in order to illustrate 
the concentration gradient as well as the boundaries (white line) where Pé = 1 for the three different currents. 
The brownish-red ellipse/white ring left of center is the source capillary lumen. 
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over the directionality in the transport in tissue. This aspect is useful for introducing solutes to 

and sampling from specific regions, which is precisely what is needed to study activities of 

various processes, such as degradation, that affect the fate of solutes. The plots also reveal that 

an increase in current results in an increase in the perfused volume in the tissue. We estimated 

these volumes by determining the volume of the tissue where Pé is greater than one and 

convection dominates. These volumes are 7, 33, and 49 nL for 10, 30, and 50 μA, respectively. 

The shape of these volumes resemble hemispheres in Figure 10C, so the radii based on these 

volumes are 150, 250, and 286 µm, respectively. These provide a semi-quantitative estimate of 

the spatial resolution that can be achieved at different currents. Figure 10B is a bar graph 

showing what percentage of the total moles of solute in the tissue at steady-state is either in 

diffusion-dominant regions (Pé < 1) or convection-dominant regions (Pé > 1). An increase in 

current increases the proportion of solutes in the high Pé region, with only about 40% of the 

solute in convection-dominant regions at low current (10 μA) compared to more than 80% of the 

solute in the equivalent region at high current (50 μA). This suggests that an increase in current 

would result in an increase in solute transfer from the source capillary to the sampling capillary. 

One prominent feature of both Figure 10A and Figure 10C is the gradient of concentration that 

exists in the tissue. The highest concentration in the tissue is adjacent to the source capillary tip, 

with tissue concentrations that are nearly 100% of the initial concentration in the source capillary 

(c0). This concentration decreases to approximately 10-20% of c0 in the tissue directly under the 

sampling lumen and roughly 1% near the bottom of the tissue culture. In fact, from the eagle-eye 

view of the concentration distribution at the surface of the culture (far right in Figure 10C), it is 

clear that by the time the solutes reach the tissue surface to be collected into the sampling 

capillary, there is a gradient of concentration within the convection-dominant zones, the 
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boundaries of which are outlined by the white line. An increase in current increases the area of 

the tissue surface that is perfused with solutes. An increase in current, however, also increases 

the area of the tissue where convection dominates. This means that the average concentrations 

within the regions where Pé is greater than one decreases with increasing current. This is 

initially counterintuitive but it makes sense given the concentration profiles and the relative sizes 

of the convection-dominant zones seen in Figure 10C. Figure 21 in the Appendix A illustrates 

this further. It shows plots of the average concentration and the average Pé in the area where Pé 

is greater than one in planes perpendicular to those shown in Figure 10C. The concentration is 

low far from the source tip. It is a maximum at the source capillary tip, and then decreases to 

nearly zero within 100 μm below the tip and within 200 μm laterally. The Pé profile is similar to 

the concentration profile in both directions, with the highest value of Pé at the source capillary 

tip.  In the context of enzyme activity, this means that the concentrations of the substrates and the 

enzyme-substrate reaction time vary spatially. We will explore how this affects data 

interpretation relating to in vivo enzyme kinetics measurements in a later section. 

We define the collection efficiency of EOPPP as the moles of solute, yaGfl, collected 

divided by moles of solute injected. We hypothesize that the factors that significantly affect 

collection efficiency are those that control convection, diffusion, or both. We discussed 

previously how the sampling capillary i.d. influences the flow rate by affecting the magnitude of 

the internal pressure gradient generated due to the ζ-potential mismatch. Figure 22 shows that an 

increase in sampling i.d. decreases the collection efficiency. Doubling the sampling i.d. from 100 

to 200 μm, for example, reduces the collection efficiency from 44 to 40%. This small change is a 

result of two competing factors. The larger i.d. column creates a smaller pressure gradient, which 

reduces collection efficiency, but the collection area is larger which increases collection 
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efficiency. We also discussed previously that applied current is the other major factor that 

controls flow rate. Figure 22 demonstrates that increasing the applied current from 5 to 55 μA 

increases the collection efficiency from 33 to 73%. This is consistent with the observation made 

above that an increase in current results in a higher proportion of solutes in convection-dominant 

zones.  

 

In addition to the effects of changing experimental parameters on collection efficiency 

(e.g. sampling i.d. and current), there is an effect of the local tissue environment on collection 

embodied in ε and λ. Because ε and λ are interdependent, we examined these two properties of 

the porous medium collectively as a single dimensionless ratio, , called the formation factor 

(fF). This is a geological term that relates electrical resistivity in free solution to that in a porous 

medium152. Our calculations show that changes in fF had little effect on EO flow rate itself (see 

Figure 24). However, as seen in Figure 11, there is a significant effect of fF on solute transport. 

Increasing the fF decreased collection efficiency at all applied currents. To understand why, we 

need to look at residence time.  

 
 
Figure 11. Plot of collection efficiency as a function of formation factors under three different currents (10, 
30, and 50 µA). Collection efficiency was calculated as moles of yaGfl collected divided by moles of yaGfl 
injected. Shaded region indicate the range of values for fF for healthy organotypic hippocampal slice cultures. 
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Residence time is the length of time any individual solute spends in the tissue. It is an 

important parameter especially for enzyme kinetics because it determines how long the solutes, 

e.g. peptide substrates, are exposed to the different processes, e.g. degradation, in the ECS. The 

trajectories of the individual solute molecules in EOPPP will vary at least due to convection, 

diffusion, and the tissue environment. The consequence is that in any experiment there will be a 

distribution of residence times. We applied a Gaussian solute concentration pulse of 0.05 s 

standard deviation at the source capillary and observed the solute leaving the tissue over time at 

the interface between the tissue and the buffer layer. From this time distribution, we determined 

the first moment, tR, which is the mean time that the solute molecules spend in the tissue. Values 

of tR for fF 0.1, 0.2, and 0.3 are 4.2, 4.8, and 5.3 s, respectively, for applied current of 10 μA (see 

Figure 23). Thus, an increase in fF results in an increase in the average residence time in the 

tissue. In order to understand why, we need to revisit Péclet. 

 

 

Figure 12. Left) Series of false color surface plots showing the effect of fF on Pé. (Right) Line plot of Pé as a 
function of distance from source tip along the white dashed line shown in left panel (fF = 0.1). Distances 0-100 
μm are the tissue region, whereas 100-150 μm is the buffer layer between the sampling capillary and tissue. i 
= 10 μA for all plots here. Analogous plots for i = 30 and 50 μA are shown in Figure 25 in the Appendix A. 
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Figure 12 demonstrates how the fF affects Pé. On the left, the zones where convection 

and diffusion dominate are presented graphically in a false color cross sectional surface plot. 

Brown indicates zones where convection dominates, while the other colors indicate zones where 

diffusion dominates. On the right, the same information is presented in a more quantitative 

manner in the form of a line plot. Pé is between 400 (fF = 0.3) and 1400 (fF = 0.1) at the source 

probe tip and decreases to 5 (fF = 0.3) to 12 (fF = 0.1) at the tissue surface under the sampling 

capillary. These data suggest that if the tissue is less porous and more tortuous, 1) the volume of 

the tissue where convection dominates increases in size, and 2) there is a greater ratio of 

convectional to diffusional solute transport in the tissue. For example, the average interstitial 

velocities in the volume of tissue where Pé is greater than one are 6.7, 5.9, 5.6 µm/s for fF= 0.1, 

0.2, and 0.3, respectively (i = 10 µA). A decrease in fF results in higher current density in the 

ECS, thereby causing an increase in the interstitial velocity by EO. In contrast, the effective 

diffusion coefficient in a porous medium is related to the free diffusion coefficient by 144, 

thus a decrease in fF results in a decrease in effective diffusion coefficient in the tissue. While 

interstitial velocity is increased by a decrease in fF, diffusional transport is reduced, resulting in 

higher collection efficiency in low-porosity/high-tortuosity environments. We note that pressure-

driven velocities are heavily dependent on the permeability of the tissue, in contrast to EO-driven 

velocities, which are only minimally affected. (Rearranging Eqn. 4 and taking the pressure 

gradient to be zero shows that the superficial electroosmotic velocity is independent of 

permeability in a homogeneous medium at constant pressure.) This is explored in a simple model 

calculation in Figures S-15 and S-16. These figures show that EO flow delivers more fluid and 

solute to regions with lower fF than those with higher fF. In fact, the greater the difference in 
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porosity and tortuosity between two adjacent regions, the more effective EO flow is at 

transporting than its pressure counterpart. 

2.3.4 Quantitative estimation of enzyme Vmax and Km 

We have discussed thus far the fluid dynamics and mass transport of solutes in the tissue during 

EOPPP, the spatial resolution that can be achieved under various experimental conditions, the 

ability to control experimental parameters to tune the perfusion rate and reaction time, as well as 

the effect of local tissue environment on collection. These discussions have provided a broad 

understanding of the perfusion process and its general applicability to studying reactions in the 

ECS. This last section addresses how to obtain quantitative information about enzyme activity in 

the tissue from the perfusion data. An example reaction that can occur in the tissue is as follows: 

 

where YGGFL is Leu-enkephalin, a common endogenous opioid peptide in the brain ECS, and 

GGFL is the major hydrolysis product after cleavage by membrane-bound aminopeptidase(s) 

whose catalytic domains face the ECS54,110,111. The following discussion assumes a Michaelis-

Menten model but other appropriate models could also be used. 

In conventional laboratory in vitro measurement of enzyme kinetics, observed rates are 

so-called “initial rates” because the experimental observation is the reaction rate, and the initial 

substrate concentration changes very little during the monitoring of the reaction. The Michaelis-

Menten, or an analogous rate equation, is directly fitted to the data to derive parameters related to 

the reaction. In tissue measurements, this is not the case. When using natural substrates, 

observing the rate in real-time is difficult so a measurement of substrate or product concentration 
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is often taken after a specific reaction time has passed. In addition, the substrate concentration 

may change significantly as it passes through the tissue. Thus, the integrated form of the 

Michaelis-Menten equation must be used instead. Furthermore, there is a range of substrate 

concentrations in the tissue due both to reaction and diffusion (see Figure 10). Thus, the 

parameters derived from fitting the integrated Michaelis-Menten equation to the measured 

quantities may need to take into account the difference between the laboratory initial substrate 

concentration and the actual initial substrate concentration in the tissue. 

Classical Michaelis-Menten kinetics describes the rate of product formation as a function 

of Vmax, the limiting rate at saturating substrate concentrations, Km, the substrate concentration 

when the observed rate is half of Vmax, and the initial substrate concentration exposed to the 

enzyme, S0. Beal first derived a closed form solution for product (or substrate) concentration as a 

function of S0 and time153 (and analytical approximations have been described by Goličnik154): 

        [9] 

where P is the concentration of product generated after time ‘t’ and W is the Lambert W 

function155,156 that can be found in several commercial software packages (e.g., Matlab, 

MathCad, Mathematica). An implicit solution for product or substrate can be derived as 

well157,158 which can be solved with a nonlinear solver.  In order to extract the appropriate kinetic 

parameters, P/S0, S0, and t must be known. The residence time, t, was discussed above. We 

consider P/S0, and S0 below. 

P/S0. During a sampling experiment, we can experimentally vary S*0 by changing the 

concentration of S in the fill solution in the source capillary. Herein, we use an asterick to 

differentiate between the initial concentration in the fill solution and that in the tissue ECS, S0. 

After perfusion is complete, we measure the concentration of product P, substrate S, and internal 
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standard IS collected in the sampling capillary by coupling EOPPP with capillary liquid 

chromatography (with absorbance, fluorescence, or mass spectrometric detection). The internal 

standard, yaGfl, has properties similar to the substrate. As we make the IS0 the same as S0, 

experimentally measured substrate and product concentrations are normalized to the measured IS 

concentration to give estimates of S/S0 and P/S0 respectively. This minimizes the effect of 

differences in fF on collection efficiency as well as analytical errors on the measured quantities 

(see Appendix A).  

We simulated a simple one-enzyme, one-substrate, one-product system that obeys the 

Michaelis-Menten model, for which the rate of product generation in the tissue domain is equal 

to . The geometry is the same as that described earlier for the EOPPP system. We 

simulated measurements at thirteen different values of S*0 ranging from 1 μM to 10 mM and 

nine different pairs of Vmax and Km values (all combinations of Vmax = 1, 10, 50 μM/s; Km = 100, 

200, 500 μM). It is important to note that the initial substrate concentrations used in this 

simulation span an extremely wide range encompassing pure zero order (the limit of Michaelis 

Menten at high substrate concentration), pure first order (low substrate concentration) and 

fractional order. Only in this way can both kinetic parameters, Vmax and Km, be determined.  
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The simulation provided the P/IS ratios, a surrogate for P/S0, in the sampling capillary, 

for each S0 after 600 s of perfusion as we do experimentally.  The simplest approach to obtain 

Michaelis Menten parameters is to fit Eqn. 9 to P/S0, S*0, and the first moment of the reaction 

time distribution tR to obtain values of V’max and K’m. The question is whether or not we can 

obtain estimates of Vmax and Km (the true values) from these primed values. The in silico 

experiments demonstrates that indeed we can. V’max and K’m values derived from the fitting were 

plotted against actual Vmax and Km values defined in the simulation. The fitting was done using 

both the entire time distribution and the first moment to compare and contrast the validity of 

using tR.  These results are summarized in the Figure 13 and in the Appendix A in Figure 29. 

Vmax and  V’max are directly proportional to each other when using either the full residence time 

distribution (slope = 10.6 ± 0.3, ± SE) or the first moment (slope = 11.3 ± 0.4) and the 

proportionality is independent of Km (Figure 13A). Km and K’m are directly proportional as well 

using either the full time distribution (slope = 2.8 ± 0.2, Figure 13B) or the first moment (slope = 

 

Figure 13. Correlation plot of inferred values of V’max and K’m vs. actual values of Vmax and Km in the tissue 
ECS. A) There was no statistically significant difference in using the time distribution or the first moment to 
estimate V’max and the values of V’max were not Km dependent. The values of V’max and Vmax are directly 
proportional. B) Correlation plot of K’m vs. Km when the time distribution is used. For Vmax ≤ 10 μM/s, K’m 
and Km are directly proportional. For high Vmax (>10 μM/s), the nonzero intercept is statistically different 
from zero. 
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3.0 ± 0.6), but only for low values of Vmax (≤10 μM/s). When Vmax is high (i.e. >10 μM/s), the 

full regression equation for K’m vs Km with a nonzero intercept should be used, taking into 

account that the magnitude of the intercept is Vmax-dependent (see Figure 29 in the Appendix A). 

Finally, the kinetic parameters estimated from fitting either P/S0 or S/S0 are not significantly 

different from each other for this single enzyme system that converts S to P (see Figure 29). 

Altogether, this provides a simple but reliable approach for data treatment and interpretation 

without the need for precise knowledge of S0 in the ECS.   

2.4 CONCLUSION 

Using FEM calculations, we have demonstrated the suitability of EOPPP as a method for 

measuring enzyme activity that can equally well be applied to other processes that affect the fate 

of solutes in the ECS. EOPPP can be used to introduce exogenous solutes via the source 

capillary and collect both exogenous and endogenous solutes (as well as any reaction products) 

via the sampling capillary. There are three instrumental parameters, namely current, sampling 

i.d., and capillary lengths that control the perfusion rate, the Péclet number, and, consequently, 

the residence time of the solutes in the ECS. Thus, the experimenter has control over the reaction 

time between the solutes and the enzymes in tissue. The current also influences the spatial 

resolution of the measurement.  

In addition to the three instrumental parameters, we found that the tissue’s local geometry 

(formation factor) also significantly affects Pé and collection efficiency. Our simulations 

demonstrate that by using an internal standard that has similar diffusion coefficient as the solute 

of interest and that cannot be degraded by enzymes minimizes the effect of tissue properties on 
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collection efficiency. All quantitative measurements of the amount of solute collected should 

thus be reported as a ratio to the amount of internal standard collected. Moreover, by making the 

initial substrate and internal standard concentrations equal, the amount of internal standard 

collected can be used as a surrogate for the amount of substrate collected if no enzymes had been 

present.  

There is a spatial distribution of solute concentrations and velocities. Both quantities 

follow a similar profile, with maximum levels near the source capillary tip that decreases steadily 

toward the tissue surface near the sampling capillary. In the context of enzyme kinetics, this 

means that kinetic parameters derived from the data must account for these variations. In silico 

experiments using the Michaelis-Menten model demonstrate that useful information about Vmax 

and Km can be obtained despite the complex profiles of S0 and Pé in the ECS. In applying 

EOPPP to biological questions, there are generally “experiments” and “controls.” The ratios of 

kinetic parameters (experiment to control) will be much less affected by the distribution of solute 

concentration and velocity in the ECS.   

We conclude that EOPPP is generally applicable to studying enzyme activity in the ECS. 

The spatial resolution is on the order of 100 - 200 m. Conditions can be altered to improve 

collection of  low-molecular weight anions. The model grants a simple approach to data 

treatment and interpretation to obtain useful information about actual kinetics in the tissue.  
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2.5 SUPPORTING INFORMATION FOR NUMERICAL MODELING 

2.5.1 Boundary condition for comsol multiphysics 

 

 

Figure 14. 3D geometry of EOPPP. A – sampling capillary; B – source capillary; C – 
droplet; D – tissue. All of the boundaries are labeled as numbers and the domains as 
letters. 
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Table 1. Boundary conditions for Electric Currents module in COMSOL Multiphysics v5.2 for EOPPP 
model. J is the current density, σ is the conductivity, V is the voltage drop, Je is the external current density 
source, n is the normal vector, and I0 is the applied current. 

Boundary/Domain Boundary condition Equation, if applicable 
All domains Current conservation 0)( =−∇⋅−∇=⋅∇ eJVJ



σ  
2-12, 14-21 Electric insulation 0=⋅ Jn



  
1 Terminal, current i = i0, where  

i0 = 10, 30, 50 μA 
13 Ground V = 0 

 

Table 2. Boundary conditions for Free and Porous Media Flow for EOPPP model. u is the superficial velocity, 
µeo is the electroosmotic mobility, E is the electric field, P is the pressure, Lm is the length of the capillary 
unaccounted for in the model geometry (the capillaries were truncated to save on computation time), η is the 
dynamic viscosity, Δu is the difference between the wall velocity and average velocity, a is the radius of the 
capillary, and f0 is the normal stress. 

Boundary Boundary condition Equation, if applicable 
6-7, 9-11, 15 Slip walls  

 

Figure 15. Mesh elements for EOPPP model. 
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2-5, 12, 14, 16-21 Moving walls 

zeozyeoyxeox

zyx

EuEuEu

uuuu














⋅=⋅=⋅=

++=

µµµ ;;

222

 

1 “Hagen-Poiseuille 
inlet”  

13 “Hagen-Poiseuille 
outlet”  

8 Open boundary f0 = 0 
 

Table 3. Boundary conditions for Transport of Diluted Species in Porous Media module for EOPPP model. N 
is the flux, c is the concentration at any time t, c0 is the initial concentration, and D is the diffusion coefficient. 
*Boundary condition for residence time distribution (replaces concentration boundary condition). 
**Boundary conditions for calculating reactions. 

Boundary/Domain Boundary condition Equation, if applicable 
2-7, 9-12, 14-21 No flux 0=⋅− Nn



  
1 Flux 1 )( cDucnN ∇−⋅=





 
13 Flux 2 )( cDucnN ∇−⋅=





 
1 Concentration c = c0; c0 = 0.2, 2.2 mM  
1* Pulsed concentration c = gp1(t[1/s])*c0; sd = 0.05 s 
8 Open boundary 





<⋅=
≥⋅=∇⋅−

0if0
0if0

unc
uncDn




 

A, C, D Initial values c0 = 0 
B Initial values c0 = various 

D** Reactions 

 
 

Table 4. General fluid and porous properties for EOPPP. 
Domain(s) Property Value 

All Density (ρ) 1 x 103 kg/m3 
Permittivity of water (εw) 7.1 x 10-10 F/m 

Permittivity of vacuum (ε0) 8.85 x 10-12 F/m 
Dynamic viscosity (η) 8.9 x 10-4 Pa s 

A, B, C Conductivity (σ) of buffer111 1.43 S/m 

Capillary ζ-potential54 -46.5 mV 
D Porosity (ε)149,150  0.2, 0.4, 0.6 

Tortuosity (λ)149,150  1.2, 1.4, 1.6 
Tissue ζ-potential 106 -22.8 mV 

Electroosmotic mobility* 
(μeo) 

3.99 x 10-8 m2/( V s) 

Effective charge density* 
(ρeff) 

3.25 x 102 C/m3 
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Permeability (κ) 145 10-14 m2 
Conductivity of tissue* 

  

 

Table 5. Species properties and reaction kinetics. 

 

 

Property Values 
Diffusion coefficient, DYDAGDFDL 148 3.61 x 10-10 m2/s (free solution) 

7.37 x 10-11 m2/s (tissue) 
Diffusion coefficient, YGGFL148 3.36 x 10-10 m2/s (free solution) 

6.86 x 10-11 m2/s (tissue) 
Diffusion coefficient, GGFL148 4.45 x 10-10 m2/s (free solution)  
Diffusion coefficient in tissue D* = D/λ2 

IS0 (for no reaction) 200 µM 
S0 = IS0 (for reactions) 1-10,000 μM 

Vmax 1, 10, 50 μM/s  
Km 100, 200, 500 μM 

 

Figure 16. Two ways of visualizing the electroosmotic push-pull perfusion process in organotypic 
hippocampal slice cultures via finite element method calculations in COMSOL (top panel) and 
experimentally through TR3 fluorescence monitored by inverted IX-71 microscope (bottom panel). Dashed 
lines trace out the shapes and location of the source capillary and the lumen of the sampling capillary. Arrow 
indicates the tip of the source capillary. Time stamp is in minutes:seconds. The shift to a lighter blue hue 
computationally and an increase in fluorescence experimentally in the sampling capillary both indicate 
successful sampling. 
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Table 6. Boundary conditions for Electric Currents module in COMSOL Multiphysics v5.2 for 2D 
axisymmetric model. 

Boundary/Domain Boundary condition Equation, if applicable 
1, 6-9 Axial symmetry  

All domains Current conservation 0)( =−∇⋅−∇=⋅∇ eJVJ


σ  
2-12, 14-21 Electric insulation 0=⋅ Jn



  
10 Ground V=0  
11 Terminal, potential V = V0; V0 = 1000 V 

 
Table 7. Boundary conditions for Free and Porous Media Flow for simulating EOF in 2D axisymmetric 
model. 

Boundary/Domain Boundary condition Equation, if applicable 
1, 6-9 Axial symmetry  

3, 4, 12, 13 Slip walls  
2, 5 Moving walls 
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10 Inlet  
11 Outlet  

 

Figure 17. Mesh for 2D axisymmetric model. Letters denote the domains. A and B are tissue. C and D 
are capillaries. Numbers denote the boundaries. Boundaries 10 and 11 are pointing to the inflow and 
outflow boundaries (not shown), respectively. Tissue region B is actually a circular region with a 5-mm 
radius that spans outside the scale of this figure. The outermost boundaries of this region are open 
boundaries. The capillaries have inner diameter of 100 μm, outer diameter of 180 μm, and length of 5 
mm. 
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Outermost 
boundaries of domain 

B (not shown in 
Figure 17) 

Open boundary f0 = 0 

 
Table 8. Boundary conditions for Free and Porous Media Flow for simulating PDF in 2D axisymmetric 
model. 

Boundary/Domain Boundary condition Equation, if applicable 
1, 6-9 Axial symmetry  

2, 3, 5, 12 No slip walls  
10 Inlet P = 750 Pa 
11 Outlet P = -750 Pa 

Outermost 
boundaries of domain 

B (not shown in 
Figure 17) 

Open boundary f0 = 0 

 
Table 9. General fluid and porous matrix properties for 2D axisymmetric model. 

Domain(s) Property Value 
All Density (ρ) 1 x 103 kg/m3 

Permittivity of water (εw) 7.1 x 10-10 F/m 

Permittivity of vacuum (ε0) 8.85 x 10-12 F/m 
Dynamic viscosity (μ) 8.9 x 10-4 Pa s 

C, D Electroosmotic mobility 3.71 x 10-8 m2/(V s) 
Conductivity (σ) of buffer 111 1.43 S/m 

Capillary ζ-potential 54 -46.5 mV 
A Porosity (ε1) 0.2 

Tortuosity (λ1) 1.6 
Tissue ζ-potential 106 -22.8 mV 

Effective charge density* (ρeff) 186.49 C/m3 
Permeability* (κ) 6.78 x 10-15 m2 

Conductivity of tissue* 0.29 S/m 
B Porosity (ε2) 0.4 

Tortuosity (λ2) 1.4 
Tissue ζ-potential 106 -22.8 mV 

Effective charge density* (ρeff) 26.23 C/m3 

Permeability* (κ) 1.26 x 10-13 m2 

Conductivity of tissue* 0.29 S/m 
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2.5.2 Experimental section for model assessment 

Solutions and Reagents. Hank’s balanced salt solution (HBSS, Gibco by Life Technologies) 

was used as the running buffer during all sampling experiments. Model peptide DYDAGDFDL, 

yaGfl, was dissolved in HBSS for a final concentration of 200 μM. Solid Texas Red dextran 

conjugate 3kDa (TR3, Sigma Aldrich) was dissolved in HBSS for a stock concentration of 20 

mM. This can be further diluted to a final concentration of 3-4 mM. All solutions were 

frozen until use. The injection standard GGFM was dissolved in 0.1% trifluoroacetic acid 

(TFA, Sigma Aldrich) HBSS solution for a final concentration of 16 μM. 

Organotypic hippocampal slice culture. Dissection and culturing techniques were adapted 

from Gogolla et al.159 and approved by Institutional Animal Care and Use Committee 

(IACUC protocol #14021579) at the University of Pittsburgh. Briefly, the freshly 

decapitated heads of postnatal 7-day-old Sprague Dawley pups were disinfected by 

submersion in 70% ethanol prior to dissection. The hippocampi were removed and 

chopped along the septotemporal axis at a thickness of 350 μm (McIlwain, model TC752). 

Slices were immediately transferred to a Petri dish and incubated at 4 oC for 30 min prior 

to plating. The slices were separated under a dissection microscope using microspatulas. 

Slices with intact laminar structures were chosen for plating. To plate, 2-4 slices were 

placed onto a single porous (0.4 μm) modified PTFE insert membranes (Millipore) and 

cultured in a six-well plate (Sarstedt) with 95% air/5% CO2 maintained at 36.5 oC. Culture 

medium is 50% opti-MEM (Gibco), 25% horse serum (Gibco), 25% HBSS with phenol red 

(Life Technologies, 14025076), and 1% D-(+)-glucose (Sigma Aldrich). The medium was 
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changed every 2-3 days (every other day for 4 cultures/well). The cultures can be kept 

alive ex vivo for up to 4 weeks. 

Sampling process and capillary liquid chromatography. EOPPP experiments were done as 

described previously111.  Fused-silica sampling (100 μm i.d., 350 μm o.d., Polymicro 

Technologies) and source (200 μm i.d., 350 μm o.d., Polymicro Technologies) capillaries 

were prepared by cutting each to 30 cm long using a Shortix capillary cutter with diamond 

blade (Scientific Instrument Services). They were then mounted onto capillary holders, 

filled with HBSS, and positioned using an electronic micromanipulator (model MP-285, 

Sutter Instruments, Inc.). One end of the sampling capillary was placed at a distance of 25 

μm above the organotypic hippocampal slice culture (see slice preparation above) that are 

grown on insert membranes, which floats on top of a 1.2 mL HBSS solution. One end of the 

source capillary was pulled to a tip of 20 μm i.d. (~35 μm o.d.), backfilled with yaGfl and 

TR3 solution, and inserted to a depth of 60 μm below the top surface of the tissue at a 45o 

angle. The other ends of the two capillaries were placed in two separate Petri dish filled 

with the same volume of HBSS. Pt electrodes in these latter dishes are connected to a high-

voltage current source (model PS350, Stanford Research Systems). The application of a 

current (5, 15 μA) results in bulk flow from the source capillary, through the tissue, and 

into the sampling capillary. The TR3 was used to visualize the flow path with fluorescence 

microscopy. After 10 min of sampling, the current source was turned off and the contents 

of the capillary were pushed into a 10 μL solution of 16 μM GGFM in 0.1 % TFA in HBSS. 

The GGFM concentration measured by capillary liquid chromatography is used to 

determine the volume collected from the capillary. The sample was then analyzed using 

capillary reversed phase liquid chromatography (RSLC Nano, absorbance detection, 
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Thermo Fisher). Columns were packed locally (100 μm inner diameter x 1.7 μm particles, 

CSH-C18, Waters Corp.).  Moles of the yaGfl collected divided by the initial concentration of 

yaGfl in the source capillary is summarized in Figure 6 of the main text. 

2.5.3 Effect of different parameters on flow rate and collection efficiency 

 

 

Figure 18. The effect of different geometric parameters on the current-normalized flow rate. Most of the 
factors had no significant effect, with the exception of the length of the capillary showing a slight effect: the 
longer the length, the higher the flow rate/current.  DPC = how far the source capillary is inserted into the 
tissue. DAT = distance of the sampling capillary above the tissue. 

 

Figure 19. False color surface plot showing how larger molecular weight species can be collected via EOPPP 
despite having a large negative charge. A neutral species (z = 0) was used as a control. Molecular weights and 
charges are separated by a comma, e.g. 50, -1 means 50 g/mol, -1 charge. Source capillary i.d. = 200 μm 
(barrel), 20 μm (tip). Sampling i.d. = 100 μm. Current applied (i) = 10 μA. 
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Figure 20. (Left) Plot of mols/s as a function of time for three different applied currents in 
EOPPP. (Right) First derivative of the plot on the left. 

 

Figure 21. All concentrations (c) are expressed as % initial c in source capillary (c0). Both averages of c and 
Pé were measured in Pé  > 1 regions in the tissue. A) Average c at three different currents as a function of 
tissue thickness. Position 0 μm is the bottom surface of the tissue. 150 μm is the top surface. The source 
capillary tip is located at 110 μm. B) Average c as a function of X position (source tip → underneath sampling 
capillary). Source capillary tip is located at 600 μm. The i.d. of the sampling capillary span positions 650-750 
μm. C) Average Pé as a function of tissue thickness. D) Average Pé as a function of X position. 
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Figure 22. Plot of collection efficiency as a function of current and sampling i.d. Formation factor was held 
constant at fF = 0.2. For the sampling i.d. calculations, current was maintained at i = 10 μA. 

 

Figure 23. A) Cross section showing false color surface plot of pulsed concentration used to determine the 
residence or reaction time distribution. B-C) Plot of mols/s as a function of time for three different formation 
factors (fF, B) and three different currents (i, C). The weighted average residence times are 4.2, 4.8, and 5.3 s 
for fF = 0.1, 0.2, and 0.3, respectively. The weighted average residence times are 5.2, 3.7, and 3.0 s for i = 10, 
30, and 50 μA, respectively. 
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Figure 24. Plot of EO flow rate in the sampling capillary as a function of formation factor. 

 

Figure 25. (Left) Surface plot of Pé at different fF and two different currents. (Right) Line plot showing the 
Pé as a function of distance from the source capillary along the dashed line shown in Figure 12 of the main 
text. 
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2.5.4 Formation factor and internal standard 

 

There is clearly an effect of local tissue environment on residence time and collection 

efficiency that we cannot control. However we can make sure these variations do not affect 

our measured quantities by normalizing all of the collected species to an internal standard 

(IS) for all sampling experiments. To demonstrate the efficacy of using an internal 

standard, we simulated a simple system with one substrate (YGGFL, S), one product (GGFL, 

P), one IS (yaGfl, IS), and one enzyme that obeys Michaelis-Menten kinetics (Vmax = 6 μM/s, 

Km = 50 μM). Figure 26 shows the concentration profile of all three species in the sampling 

capillary over the first 150 s of the perfusion for two different initial substrate (and 

corresponding internal standard) concentrations, 0.2 mM and 2.2 mM. Note that [S]0 = [IS]0 

for both cases. Despite the fact that [S] remaining and [P] generated are different for the 

two conditions, two things are true: 1) the collected [IS]/[IS]0 in the source capillary are 

 

Figure 26. Evolution of the concentrations of substrate (S, blue), product (P, red), and internal standard (IS, 
black) over the course of 150 s of sampling. All concentrations are expressed as a percent of initial 
concentration of IS, [IS]0, in the source capillary. Two different substrate concentrations are shown: [S]0 = 
[IS]0 = 2.2 mM for [S]1 and [P]1, [S]0 = [IS]0 = 0.2 mM for [S]2 and [P]2. Vmax  = 6 μM/s, Km = 50 uM for 
both cases. i = 10 μA. 
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equal in both cases because the sampling conditions were identical, and 2) the sum of the 

[S]/[IS]0 and [P]/[IS]0 at steady-state equal the [IS]/[IS]0 at steady-state. The implications 

are that 1) the internal standard is sensitive to the sampling conditions and, consequently, 

the collection efficiency and thus can be used to normalize for any subtle changes due to 

tissue-to-tissue variability, and 2) the IS acts as a surrogate for the amount of exogenous 

substrate that could have been sampled if no enzyme reaction had occurred. The internal 

standard should ideally be as close in the primary sequence to the substrate of interest as 

possible (similar molecular weights and diffusion coefficients) and has all D-amino acid 

configuration to prevent hydrolysis by natural mammalian enzymes.  

2.5.5 Comparing calculated Vmax and Km vs. actual Vmax and Km 

An example is given for zero order kinetics. Analogous derivations can be made for other 

conditions. For zero order kinetics, the substrate concentration after a time, t, is 

0 max( )S t S V t= −            [10] 

Here, S0 is the initial substrate concentration in the source capillary, S*0. The experimentally 

measured quantity is the ratio of moles of substrate to internal standard, IS, the latter also being a 

surrogate for the initial substrate concentration (F is flow rate): 

0

( ) ( ) ( )S

IS

m F S t S t S t
m F IS IS S

⋅
= = =

⋅         [11] 
 

Now, we assume that the concentrations within the ECS are diluted by a factor, f. We denote the 

diluted concentrations with lower case. 

/ ; /s S f is IS f= =           [12] 
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In the tissue, the zero order reaction proceeds for time, t, so that the actual mole ratio is: 

max max max1 1S

IS

m s V t V t fV t
m is is IS

−
= = − = −         [13] 

As shown above, if the laboratory concentration, IS, is used to infer a value for Vmax from the 

experimentally measured ratio of moles of substrate to moles of internal standard, the inferred 

value will be greater than the true value by the dilution factor, f (a number greater than one). 

These derivations are summarized in Table 10. 

Table 10. Summary of the relationship between Vmax and Km in the ECS of the tissue and V’max and K’m 
derived from undiluted initial substrate concentrations (S0 or IS) for zero-order, first-order, and intermediate 
regimes. Lowercase p/is represents the moles of product to internal standard ratios in the ECS. 

Regime P/IS  p/is V’max/Vmax K’m/Km 

S0 << Km 
   

S0 ≈ Km 
   

S0 >> Km 
  

f N/A 
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Figure 27. Enzyme kinetics derived from fitting integrated Michaelis Menten equation to P/S0 values (A-C) or 
S/S0 (D-F) as a function of S*0. The results are summarized as correlation plots of either V’max vs. Vmax (A, 
D) or K’m vs. Km (B-C, E-F). We use primed quantities to denote the inferred enzyme kinetics from the 
fitting and to differentiate it from actual enzyme kinetics in the tissue ECS (no apostrophe). A) There are no 
significant differences in using time distribution or the average tR for estimates of V’max. The slopes of the 
V’max vs Vmax regression are 10.6 ± 0.3 and 11.3 ± 0.4 (± SE) when using time distribution and tR, 
respectively (the intercepts are not significantly different from zero). Moreover, the estimates of V’max are 
independent of the Km values. B-C) For regression analyses of K’m vs Km correlation plots, there are no 
significant differences between using the time distribution or the average tR for estimates of K’m at 
corresponding Vmax values ≤ 10 μM/s. The slopes are 2.8 ± 0.2 and 3.0 ± 0.6 for distribution and tR, 
respectively, and the intercepts are not significantly different from zero. However, for large values of Vmax 
(>10 μM/s), i.e. Vmax = 50 μM/s, there is significant intercept to the regression of K’m vs. Km and the 
magnitude of this intercept is Vmax-dependent. The regression equations for K’m vs. Km at Vmax = 50 μM/s 
are: K’m = (3.1 ± 0.2)*Km + (400 ±70 μM) (± SE) when the distribution was used and K’m = (3.5 ± 0.4)*Km + 
(1100 ±100 μM) when the first moment was used. This suggests that there is larger error in estimates of K’m 
when the first moment is used to estimate reaction time at large corresponding values of Vmax (>10 μM/s). 
Thus, for estimating K’m from the fitting, the entire time distribution should be used and if the 
corresponding Vmax is known, then either  a simple calibration factor can be used (for Vmax ≤ 10 μM/s) or a 
full regression equation needs to be used (for Vmax >10 μM/s). We then performed the same fitting to 
integrated Michaelis Menten using the S/S0 values instead of the P/S0 values. Interestingly, the correlation 
plots were nearly identical. This makes sense as we simulated only a single enzyme reaction. The only 
scenario in which fitting P/S0 or S/S0 would give different kinetics is if there is more than one reaction 
affecting the substrate, the product, or both. D) Slope of V’max vs. Vmax regression analyses: 11.2 ± 0.3 
(distribution) and 12.1 ± 0.4 (t = tR). E-F) Full regression equation for Vmax = 50 μM/s: K’¬m = (3.0 ± 
0.2)*Km + (240 ± 50 μM) (distribution) and K’m = (3.4 ± 0.4)*Km + (900 ± 100 μM) (t = tR). Slopes from 
regression of Vmax = 1-10 μM/s:  2.4 ± 0.3 (distribution) and 2.6 ± 0.6 (t = tR). All regression analyses were 
done in Stata SE 14.2. 
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2.5.6 Comparison of EO-driven and P-driven flow 

2.5.6.1 2D axisymmetric model 

 

 

Figure 28. 2-D axisymmetric calculations contrasting EO-driven (left) and P-driven (right) flow. The 
colored plot indicates magnitude of interstitial velocity, with red being the fastest and blue being the 
slowest. Red arrows indicate direction of velocity, not magnitude. The central ellipse (region 1, fF = 0.08) 
represent a region of higher tortuosity (λ) and smaller porosity (ε) than the surrounding porous medium 
(region 2, fF = 0.2). Region 1 is flanked on top and bottom by capillaries. Pressure gradient and electric 
fields were chosen such that the flow rates in the capillaries are equivalent in both cases (1.1 μL/min). ζcap 
is the zeta-potential of the capillary; ζtissue is the zeta-potential of the tissue. 
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Figure 28 shows the interstitial velocity profiles for a simple 2D axisymmetric model to 

directly compare and contrast the two different types of flow. This model has cylindrical 

symmetry with a region of higher porosity and lower tortuosity (region 2, ε = 0.4, λ = 1.4; fF 

= 0.20) enclosing an oblate spheroid of lower porosity and higher tortuosity (region 1, ε = 

0.2, λ = 1.6; fF = 0.08). We used the Kozeny-Carman equation to calculate permeability in a 

packed bed of particles: 

             [14] 

where dp is the particle diameter. We chose 10 μm for the particle diameter. In Figure 28, 

the red arrows show direction, but not magnitude, of flow. For pressure-driven flow (right), 

there is minimal flow in region 1 (dark blue), which is a region of low porosity and high 

tortuosity, and more flow around it. For EO flow (left), there is greater flow in region 1 

(cyan) than in its pressure-driven counterpart. In fact, there is a nearly four-fold higher 

 

Figure 29. Line plot along the z-direction of the intersitial velocity (in mm/s) for EO-driven and P-driven 2D 
axisymmetric models in Figure 28. 
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flow rate in region 1 for EO flow than pressure-driven flow (~400 nL/min vs. ~100 

nL/min), even though the average flow rates in the capillary are the same (1.1 µL/min) for 

the two models. This suggests that EO flow delivers more fluid to regions of small 

porosities and high tortuosities, regions that are less accessible to flow driven by pressure. 

In fact, the greater the difference in porosity and tortuosity between two neighboring 

regions, the more effective EO flow is at transporting than its pressure counterpart. A line 

plot comparing and contrasting the interstitial velocity through the axis of symmetry in 

Figure 28 can be seen in Figure 29. 

2.5.6.2 3D heterogeneous model 

In order to better demonstrate the efficacy of using EO over P-driven flow to deliver 

solutes, a 3D heterogeneous model was developed to compare and contrast mass transport 

through an anisotropic domain. In this model, an infusion capillary is placed in the cortex of 

the rat brain while a second sampling capillary is placed in the striatum. In order for 

collection to occur, the solutes need to transport across an anisotropic domain, the corpus 

callosum, which is a bundle of fibers stemming from the midline of the brain to both 

hemispheres. This structure results in low permeability perpendicular to the domain and 

high permeability parallel to the domain. In one simulation, fluid flow is driven by positive 

pressure in the infusion capillary and negative in the sampling capillary. In a second 

simulation, fluid flow is driven electrokinetically, by both electroosmosis and 

electrophoresis. In order to make direct comparisons and contrast possible, conditions for 

pressure and current were chosen such that flow rates in the capillaries were equal in both 

cases. 
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Pressure boundaries were chosen such that the flow rate in the infusion capillary is 

comparable to that for electrokinetic CED (ECED). For an applied current of 75 μA and 100 

μm i.d. infusion and sampling capillary, the infusion flow rate is calculated to be 52 nL/min. 

For a comparable flow rate in the infusion capillary using pressure, a pressure difference of 

~6000 Pa is required (+3000 Pa at the infusion and -3000 Pa at the counter). 

Computational results are summarized in Figure 30. First of all, despite having the same 

flow rate in the infusion capillary, ECED infuses Ru(bpy)32+ into a larger volume of the 

brain in the same amount of time (t = 290 min) than its pressure counterpart. In the 

previous subsection, it was demonstrated that electroosmosis delivers more fluid and 

solute to porous media than its pressure counterpart. In this particular application, the 

infusion is further facilitated by electrophoresis, as the Ru(bpy)32+ molecule has a 2+ 

charge. Moreover, unlike pressure-driven flow, ECED is less dependent on the permeability 

 

Figure 30. 2D slice of a 3D geometry showing the evolution of tris(bipyridine)ruthenium(II) chloride 
(Ru(bpy)32+) over time for electrokinetically driven (top) and pressure-driven (bottom) convection enhanced 
delivery. The infusion capillary is located in the cortex while the sampling capillary is positioned benath the 
corpus callosum in the striatum. Red indicates high concentration while dark blue indicates low 
concentration. The color scale denotes actual concentration ranges in mol/m3. The corpus callosum (CC) is 
outlined in white dashed lines. 
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of a medium. The superficial electroosmotic velocity is independent of permeability in a 

homogenous medium at constant pressure (discussed in 2.3.2). However, due to the zeta 

potential mismatch that occurs between the infusion/counter capillaries (ζ = -46 mV)54 and 

the tissue (ζ = -23 mV)147, there is a pressure gradient that forms in the tissue between the 

two capillary tips. Specifically there is a positive pressure at the infusion/tissue interface 

and a negative pressure at the tissue/sampling capillary interface. This pressure gradient is 

dependent on the permeability and increases with increasing current (see 2.3.2). For an 

applied current of 75 μA, the pressure drop is approximately 200 Pa between the two 

capillary tips in the tissue. It is possible, thus, that some fluid and Ru(bpy)32+ is delivered 

along the fibers of the corpus callosum fibers. However, it is apparent from Figure 30 that 

delivery of the Ru(bpy)32+ molecule across the corpus callosum to the sampling capillary is 

highly preferred because the path of the fluid and species follows the path of the current. In 

pressure-driven CED, however, the path parallel to the corpus callosum fibers is preferred 

due to the high permeability along that axis.  
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3.0  MEASURING EX VIVO AMINOPEPTIDASE ACTIVITY IN THE RAT 

HIPPOCAMPUS 

Reprinted with permission from ACS Chemical Neuroscience 2017 DOI: 

10.1021/acschemneuro.7b00326. Copyright (2017) American Chemical Society.  

 

With guidance from simulations in Chapter 2, it is possible to perform optimized experiments 

using EOPPP and analyze the data in order to obtain information about enzyme kinetics in intact 

tissue. It has been known for over a century that the hippocampus, the center for learning and 

memory in the brain, is selectively vulnerable to ischemic damage, with the CA1 being more 

vulnerable than the CA3. It is also known that Leu-enkephalin, or YGGFL, is neuroprotective. 

We hypothesized that the extracellular hydrolysis of YGGFL may be greater in the CA1 than the 

CA3, which would lead to the observed difference in susceptibility to ischemia. In rat 

organotypic hippocampal slice cultures, we estimated the Michaelis constant and the maximum 

velocity for membrane-bound aminopeptidase activity in the CA1 and CA3 regions. Using 

electroosmotic push-pull perfusion and offline capillary liquid chromatography we inferred 

enzyme activity based on the production rate of GGFL, a natural and inactive product of the 

enzymatic hydrolysis of YGGFL. We found nearly three-fold higher aminopeptidase activity in 

the CA1 than the CA3. The aminopeptidase inhibitor bestatin significantly reduced hydrolysis of 

YGGFL in both regions by increasing apparent Km. Based on propidium iodide cell death 
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measurements 24 hours after oxygen-glucose deprivation, we demonstrate that inhibition of 

aminopeptidase using bestatin selectively protected CA1 against delayed cell death due to 

oxygen-glucose deprivation and that this neuroprotection occurs through enkephalin-dependent 

pathways. 

3.1 INTRODUCTION 

According to the American Stroke Association160, ischemic stroke makes up approximately 87% 

of all stroke cases. It occurs due to obstruction of blood flow to the brain, resulting in oxygen and 

glucose deprivation. For over 130 years, it has been known that ischemia and other pathological 

insults result in damage to the hippocampus, the center of learning and memory4. The 

hippocampus responds selectively to these insults, with the CA1 region being the most 

susceptible to ischemic injury. This was first documented in a human patient in 19625 and 

demonstrated in transient ischemia models of rats and gerbils in the 1980s6,7, showing a time 

course of “delayed neuronal death.” This delay is marked by an initial onset of damage within 

the first 24 hours post-insult and results in maximum damage around 48-72 hours9. This allows 

for a window during which treatment can reduce or reverse the damage. There have been 

numerous molecular studies focused on excitotoxicity and abnormal calcium influx, oxidative 

stress and reactive oxygen species (ROS)10, as well as apoptotic processes and structural changes 

(reviewed in Dirnagl et al.11 and Schmidt-Kastner et al.12). Changes at the protein level have also 

been observed, including suppressed protein synthesis in the CA1 at 6 hours and 3 days post-

ischemia13,15,161 as well as post-translational modification, e.g. ubiquitination16, ROS-induced 

carbonyl modification17, and sumoylation18.  
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Despite the characterization of these events between initial onset of ischemia and 

subsequent acute and chronic effects, the exact mechanism behind the selective vulnerability of 

CA1 is not well understood. There is, however, some consensus that this vulnerability involves 

calcium-mediated processes12,19-21,162. The CA1, CA3, and dentate gyrus all exhibit increases in 

intracellular calcium 10 min after the initial onset of oxygen-glucose deprivation (OGD) in acute 

slices163. The CA1, however, displays a significantly higher level of intracellular Ca2+ than the 

other two regions. Mitani et al. found no differences in hypoxia-induced glutamate levels 

released to the extracellular space in the three regions164, suggesting that the differences in 

intracellular Ca2+ levels are not due to glutamate. However, the difference was eliminated in the 

presence of either nifedipine or verapamil, two L-type voltage gated Ca2+ channel (L-VGCC) 

antagonists163. Interestingly, opioid peptides, such as enkephalins and dynorphins, are thought to 

decrease Ca2+ levels by direct inhibition of L-VGCCs and indirect activation of K+ channels 

through activation of δ-opioid receptors (DORs)47,165. DOR expression has been found in both 

pyramidal and non-pyramidal cell types in the hippocampus41,42(reviewed in Gendron et al.)43 

and it has been suggested that DOR action is coupled to different second messengers at each 

site41. Zhang et al. demonstrated that DOR activation protects cortical neurons against glutamate-

induced injury49. Severe hypoxia has been shown to decrease endogenous YGGFL while 

hypoxic preconditioning increases both DOR mRNA and protein as well as reverses the 

reduction of YGGFL that was caused by severe hypoxia44,50. Preconditioning the neurons with 

opioid peptides prior to ischemia results in reduced brain infarct volume and improved 

neurological functions 24-hours post-occlusion in male rats51. Elevated endogenous opioid 

peptides had a similar effect on reducing infarct volume46. The range of  of DOR actions include 

1) maintaining ionic homeostasis, 2) inhibiting excitatory transmitter release, 3) increasing 
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antioxidants, and 4) regulating anti-apoptotic and pro-survival pathways, to name a few166. All of 

this evidence suggests that opioid peptides and DOR activation play crucial roles in protecting 

against ischemic damage.  

It is known that enkephalins are stored in large dense-core vesicles that are released 

extrasynaptically, resulting in volume transmission36-38. While there are numerous studies on 

enkephalins and their binding action at receptors such as DOR, the fate of opioid peptides once 

they are released into the ECS is less well known. Enkephalins, unlike many classical 

neurotransmitters (e.g. glutamate), are not limited by reuptake but solely by diffusion and 

extracellular degradation. Ectopeptidases are membrane-bound enzymes whose catalytic domain 

faces the extracellular space (ECS)68. These enzymes degrade active peptides, such as 

enkephalins, in the ECS, but recently it was revealed that they play a greater role in regulating 

peptide activities crucial to physiological function (reviewed in Konkoy et al. and Ou et al.)54,67. 

Not only that, but the activity of these enzymes can be altered as a result of either trophic or 

pathological triggers. Acute immobilization stress caused changes in enkephalinase and 

oxytocinase, two ectopeptidases that regulate anxiolytic peptides 66. Ischemic preconditioning, a 

neuroprotective treatment, restores the activity of two ectopeptidases that hydrolyze amyloid beta 

(Aβ), a toxic peptide implicated in Alzheimer’s disease72. Thus, ectopeptidase activity is a 

largely unexplored mechanism of neuropeptide control. Our group showed previously110 that 

exogenously-applied YGGFL is primarily hydrolyzed at the Tyr-Gly bond into GGFL in the rat 

hippocampus. Cleavage at this bond inactivates enkephalins167. There are two prominent 

ectopeptidases that cleave at the Tyr-Gly bond with high affinity for enkephalins in the rat 

hippocampus: aminopeptidase N (APN, EC 3.4.11.2) and puromycin-sensitive aminopeptidase 

(PSA, EC 3.4.11.14)168. We questioned whether or not the degradation of enkephalins, and thus 
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the ectopeptidase activity, is different between the different regions of the rat hippocampus. 

However, in order to best answer this question, we need tools that are capable of making enzyme 

measurements in their native state in the tissue. 

Traditional methods require homogenization of tissue and result in loss of any matrix 

information as well as all spatial and temporal resolution (reviewed in Ou et al.)54. In situ 

zymography was the first method to study localized enzyme activity in intact tissue 77,169-172. The 

limitation of this method, however, is the need for frozen brain sections rather than live tissue. 

Thus, there is a need for biochemical and biophysical tools to probe membrane-bound enzymes 

in their native, unperturbed states with adequate spatial resolution to study regional differences in 

enzyme activity. Our lab reported the first quantitative measurements of enzyme kinetics in live 

tissue based on the development of electroosmotic (EO) sampling107,110 from organotypic  

hippocampal slice cultures (OHSCs). OHSCs live on a membrane under which is growth 

medium. The growth medium can be replaced by a synthetic physiological fluid like artificial 

cerebrospinal fluid, aCSF. The aCSF can be augmented by peptide substrates. Fluid was drawn 

through OHSCs by the application of an external electric field, creating fluid movement via 

electroosmosis. Coupling EO sampling to an online microfluidic system, Wu et al. measured the 

apparent Michaelis constant (Km) and maximum reaction rate (Vmax) for sequential degradation 

of exogenous coenzyme A to cysteamine in OHSCs107. Xu et al. coupled EO sampling to 

capillary liquid chromatography with electrochemical detection and established Michaelis-

Menten parameters for aminopeptidase activity in whole-tissue OHSCs110. Interestingly, they 

found significant hydrolysis of exogenous YGGFL by a bestatin-sensitive aminopeptidase. 

Despite its successes, EO sampling lacked the spatial resolution required to determine the 

differences among the different regions of the hippocampus. Thus, a second capillary probe was 
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added to permit perfusion and sampling from specific regions of the hippocampal culture instead 

of sampling from the entire culture. This technique is called electroosmotic push-pull perfusion 

(EOPPP). Rupert et al. perfused the OHSCs with neuropeptide galanin and reported qualitative 

differences in galanin products in CA1 and CA3 using EOPPP followed by MALDI-

TOF/TOF111. No quantitative information on enzyme activity was reported.  

In this section of the dissertation, we report quantitative measurements of enzyme activity 

for hydrolysis of YGGFL to GGFL in the CA1 and CA3 regions of the rat hippocampus using 

EOPPP with offline capillary liquid chromatography (cLC), complemented with finite element 

method (FEM) calculations. We derived the values of Vmax and Km by fitting an integrated form 

of the classical Michaelis-Menten equation to both experimentally- and computationally-

determined parameters.  We found nearly three-fold higher activity of this enzyme in the CA1 

region. This observation led to the hypothesis that higher aminopeptidase activity may contribute 

to selective CA1 vulnerability to ischemic damage.  We tested this hypothesis using 20-, 30-, and 

40-min OGD (an ex vivo model for stroke) combined with cell-death analyses by propidium 

iodide staining. We found that inhibiting aminopeptidase activity with bestatin selectively 

reduced cell death in CA1 as a result of OGD. This neuroprotection was reversed by the δ-opioid 

receptor antagonist naltrindole. This is the first report of spatially resolved, quantitative enzyme 

activity using natural substrates in live tissue.  
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3.2 EXPERIMENTAL SECTION 

 

Organotypic hippocampal slice cultures. Dissection and culturing techniques were adapted 

from Gogolla et al.159 and approved by Institutional Animal Care and Use Committee (IACUC 

protocol #14021579) at the University of Pittsburgh. Briefly, the freshly decapitated heads of 

postnatal 7-day-old Sprague Dawley pups were disinfected by submersion in 70% ethanol prior 

to dissection. The hippocampi were removed and chopped along the septotemporal axis at a 

thickness of 350 μm (McIlwain, model TC752). Slices were immediately transferred to a Petri 

dish and incubated at 4 oC for 30 min prior to plating. The slices were separated under a 

 

 
Figure 31. A) Bright-field image of organotypic hippocampal slice culture. Sampling regions from the CA1 
and CA3 are circled. (B) Schematic showing the EOPPP process. The substrate YGGFL (LE in this figure), 
IS DYDAGDFDL, and fluorescent dye TR3 were passed through the culture via electroosmosis. (C) 
Chromatograms of calibration standard (black), CA1 sample (red), and CA3 sample (blue). Peaks were 
measured using UV detection at 214 nm. The major hydrolysis product was determined to be GGFL 
(indicated by arrows). GGFM, YGGFL, and IS peaks were also quantified. 



 73 

dissection microscope using microspatulas. Slices with intact laminar structures were chosen for 

plating. To plate, 2-4 slices were placed onto a single porous (0.4 μm) modified PTFE insert 

membranes (Millipore) and cultured in a six-well plate (Sarstedt) with 95% air/5% CO2 

maintained at 36.5 oC. Culture medium is 50% opti-MEM (Gibco), 25% horse serum (Gibco), 

25% Hank’s balanced salt solution with phenol red (Life Technologies, 14025076), and 1% D-

(+)-glucose (Sigma Aldrich). The medium was changed every 2-3 days (every other day for 4 

cultures/well). The cultures can be kept alive ex vivo for up to 4 weeks (Figure 31A).    

Capillary liquid chromatography. High-pressure pumps, autosampler, column oven, and UV-

Vis detector are part of the Ultimate 3000 Nano LC system (Thermo Fisher). After samples were 

transferred to the autosampler vial (see sampling experimental section), they were injected onto a 

homemade capillary column (100 μm inner diameter (i.d.) x 1.7 μm particles, CSH-C18) and 

separated at 50 oC. Pump flow rate was 1.0 μL/min under isocratic conditions. Mobile phase 

composition was 20% acetonitrile (Fisher Scientific) in HPLC-grade water (Fisher Scientific) 

with 0.1% TFA. Absorbance measurements were made at 214 nm. Peak areas were measured 

from chromatograms in Chromeleon (Thermo Fisher). Using calibration curves, we converted 

the peak areas to concentrations. 

Analysis of cLC data. Calibration standards of YGGFL, IS, GGFM, and GGFL (1-10 μM for all 

except for GGFL, for which the concentration range was 0.1-1 μM) were injected between every 

sample for quality control and for quantitative analysis (Figure 31C). The degree of dilution of 

GGFM concentration was used to calculate the volume ejected from the sampling capillary. 

From there, we calculated the concentration of GGFL, substrate, and IS in the sampling 

capillary. The calculation is summarized by the following equation (using product GGFL as an 

example): 
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      [15] 

where P is the concentration of GGFL in the tissue after perfusion (not to be confused with P*, 

which is the concentration of GGFL in the sampling capillary), mGGFL is the moles of GGFL 

collected, Vt is the volume of ECS collected, Vs is the volume of the sampling capillary, Ueo is 

the flow rate during perfusion (L/min), ts is the total sampling time (in min), AGGFL is the peak 

area of GGFL from chromatogram (in  ), fGGFL is the calibration factor for GGFL 

peak (in ), AGGFM is the peak area of GGFM (in ), and fGGFM is the 

calibration factor for GGFM (in ). GGFMi and Vi are, respectively, the concentration 

and volume of GGFM solution in the autosampler vial prior to adding the sample from the 

sampling capillary. The concentration of substrate and IS in the tissue could also be calculated in 

a similar fashion. The final quantity reported was a concentration ratio of GGFL (or YGGFL) to 

IS in order to normalize for differences in collection efficiency (see next section). 

Fitting to integrated Michaelis-Menten equation. S*0 was varied (0.2, 0.4, 0.8, 1.2, 2.2 mM) 

while ‘t’ was held constant. Because the substrate is diluted in the tissue, we perfuse at the same 

time an internal standard at the same values of concentration as the substrate (IS = S0). From cLC 

chromatograms we obtain concentrations of YGGFL, GGFL, and IS collected at each S*0. We 

previously173 showed that normalizing all collected quantities to the IS allows for correction for 

collection efficiency due to tissue-to-tissue variations and, if the IS has similar diffusion 

coefficient to the substrate of interest (as it applies here), then it can also be treated as a surrogate 

for the amount of substrate that could have been collected if no reaction had occurred. Thus we 

divide the measured concentration of YGGFL and GGFL by the concentration of IS collected in 



 75 

the sampling capillary to obtain S/S0 and P/S0, respectively. Ou et al.173 detail how to fit the 

integrated form of the Michaelis Menten (reproduced below) to the perfusion data P/S0 to obtain 

the best estimates of Michaelis Menten kinetics.  

       [16] 

All t-tests were done using the QuickCalcs software from GraphPad Software, Inc.  

Electroosmotic push-pull perfusion. Prior to sampling, cultures were incubated in medium 

with 7 μM propidium iodide (PI, Sigma Aldrich) for 24 hours to assess their health. Only healthy 

cultures were used for sampling. Sampling was performed as previously described (refer to 

Figure 31)111. In brief, the source fused silica capillary (200 μm i.d. x 30 cm, Polymicro 

Technologies) was pulled to a bee-stinger tip using a laser-based capillary puller (Sutter 

Instruments, Inc., model P-2000) and then cut to 15-20 μm i.d. The source and sampling (100 μm 

i.d. x 30 cm) capillaries (Polymicro Technologies) were filled with Hanks’ balanced salt solution 

(HBSS, with calcium, magnesium, without phenol red, Sigma Aldrich), mounted, and positioned 

using micromanipulators (Sutter Instruments, Inc., model MP-285) above a clean Petri dish 

(Corning Life Sciences) upon which the insert membrane and OHSC were placed. The other 

ends of the two capillaries (not in contact with OHSC) were submerged into two separate Petri 

dishes, each with 1.2 mL buffer and a Pt wire (Alfa Aesar). The Pt wires were connected via 

alligator clips to a high-voltage source (Stanford Research Systems, model PS350). The source 

capillary was filled with the substrate (YGGFL, American Peptide Company), internal standard 

(DYDAGDFDL, IS, GL Biochem Ltd), and Texas Red dextran 3kDa (Life Technologies). The 

source capillary was placed 60 μm below the OHSC surface at a 45o angle. The sampling 

capillary was placed 20 μm above the surface. We showed that the diagonal depth of source 
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capillary into the tissue (40-125 μm) and distance of sampling capillary above the tissue (14-60 

μm) have no effect on the flow rate. Perfusate consisted of fluorescent TR3 dye, YGGFL (0.2-

2.2 mM), and IS (0.2-2.2 mM). Perfusate solutions were made so that concentration of YGGFL 

and IS were the same for any given experiment. The current was turned on at t = 0 (Figure 31B). 

After 10 min of sampling the current was turned off, the sampling capillary was removed from 

the micromanipulator and the contents were pushed via insulin syringe (Fisher Scientific) into 10 

μL HBSS solution of 16 μM GGFM (BACHEM) with 0.1% trifluoroacetic acid (TFA, Sigma 

Aldrich). The collected sample was pipetted into a conical glass insert (Thermo Fisher Scientific) 

and placed into a glass autosampler vial (Chrom Tech, Inc.) for injection onto the cLC column. 

For initial substrate concentrations less than 400 μM, samples from 8 experiments were 

combined into one injection. For initial substrate concentration greater than or equal to 400 μM, 

4 experiments were combined. The sampling capillary was rinsed with 0.1 M NaOH between 

each sampling experiment to clean the capillary walls of any adsorbed residues. The base was 

rinsed out with additional HBSS. For inhibitor sampling experiments, all experimental 

conditions were the same as above, except 100 μM bestatin hydrochloride (Sigma Aldrich) was 

added to the bath underneath the cultures the night prior to sampling. This inhibitor was chosen 

based on OHSC sampling data from Xu et al.110. In the determination of Michaelis-Menten 

parameters with inhibitor, we only performed experiments at S*0 = 0.4, 0.8, and 1.2 mM. 

  

Oxygen-glucose deprivation and neuronal survival. Oxygen-glucose deprivation was done by 

submersion of OHSCs (up to four insert membranes at a time) in a nitrogen-purged, glucose-free 

buffer. A submersion chamber was fabricated in-house (Chemistry & Physics Machine Shop, 

University of Pittsburgh) that allows for perfusion of up to four insert membranes in a single 
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experiment (maximum 16 individual OHSCs). Glucose-free HBSS (125 mM NaCl (Fisher 

Scientific), 5 mM KCl, 2 mM CaCl2 (Fisher Scientific), 1 mM MgSO4 (Fisher Scientific), 25 

mM NaHCO3 (Fisher Scientific), 1.25 mM NaH2PO4 (Sigma Aldrich), 25 mM sucrose (Sigma 

Aldrich), pH 7.40) was prepared the day before experiment and warmed to 36 oC before use. 

Solution was poured into the submersion chamber and circulated using a variable-flow peristaltic 

pump (Fisher Scientific). The buffer was bubbled with N2 (Matheson). Dissolved O2 levels were 

monitored using DO110 portable dissolved O2 meter (Oakton Instruments). All components of 

the OGD chamber were placed into the humidified CO2 incubator to maintain the temperature 

throughout the experiment. Once O2 levels reached 0% (with 100% calibrated to O2 level in the 

ambient air), the OHSCs were secured into a 4-well platform (built in-house) and submerged in 

the bubbling buffer solution for 20, 30, or 40 min (depending on the condition). This time frame 

was chosen based on previous work by others69,174-176. Tissues that were treated with naltrindole 

were pre-incubated for 20 min and naltrindole was also added in the OGD solution. Immediately 

after the treatment, the dishes were returned to 6-well plate containing warm 36 oC culture 

medium with or without bestatin. Cultures were returned to the incubator for 2 hours and then 

exchanged for new medium containing PI. Cultures were imaged using the Leica TCS SP5 

confocal and multi-photon microscope 24 hours later. The Argon and DPSS561 lasers were used. 

The Argon laser was set to 25% power. The visible 561-nm wavelength laser was set to 15% 

power. Images were taken as 512 x 512 at 100 Hz with 5 line averages and pinhole size set to 

74.25 μm.  

Regions of interest were drawn around CA3 and CA1 areas of the hippocampus. Area of 

the regions was determined by area of visible damage (PI fluorescence) in positive controls, 

which were exposed to 200 μM NMDA (Sigma Aldrich) for 40 min. The same areas were drawn 
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for all experimental groups as well as negative controls. Exposure time was determined by the 

positive control fluorescence. Negative controls were not subjected to any treatment and were 

kept in the same incubator as the positive controls and OGD chamber. The incubator was 

maintained at 5% CO2 in air and 36 oC. The mean fluorescence intensity was measured. Cell 

death was measured as a percent . 

3.3 RESULTS AND DISCUSSION 

3.3.1 Sensitivity and selectivity 

In all EOPPP experiments, we perfuse cultures with a solution containing varying 

concentrations of the substrate YGGFL (S), a matching concentration of a peptidase-

resistant internal standard, DYDAGDFDL (IS), and a fluorescent dye, Texas Red-modified 

3kDa dextran (TR3) to visualize the process under a microscope.  Xu et al. showed that no 

hydrolysis occurs in the perfusate after peptides are extracted from the tissue using EO 

sampling, implying that the effect of soluble cytosolic peptidases in the extracted fluid is 

negligible110. Additionally, Rupert et al. showed that EOPPP causes minimal cell death in 

the surrounding tissue under certain conditions139. We employed these conditions here.  

Using EOPPP, we perfused the CA1 and CA3 regions of OHSCs (see Figure 31) with 

varying concentrations of S and IS. Perfusion at each concentration of substrate was 

performed at least eight times. We found the major hydrolysis product of YGGFL to be 
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GGFL in the rat hippocampal slice culture, in agreement with previous findings by us110 and 

others177. 

We wanted to assess how selective the determination of aminopeptidase activity on 

YGGFL in tissue cultures is by determining the ratio of the sum of YGGFL and GGFL 

concentrations in collected perfusate to the initial concentration of substrate YGGFL. The IS 

has a similar diffusion coefficient to YGGFL but it is not hydrolyzed enzymatically. Thus the 

collected IS concentration represents the concentration of YGGFL that would have been 

collected in the absence of enzyme activity. It accounts for the dilution experienced by the 

electroosmotically introduced substrate solution as well as substrate loss by diffusion away 

from the sampling capillary. It is used as a surrogate for the initial substrate concentration 

exposed to the enzymes in the tissue, S0. We perfused CA1 and CA3 regions in cultures at 

various initial YGGFL and IS concentrations in the presence and absence of the inhibitor 

bestatin. The hypothesis is that if the sum of the concentration of the product, P, plus the 

remaining substrate, S, was a significant fraction of the concentration of IS collected 

((S+P)/S0) and that fraction was independent of the presence of the inhibitor bestatin, then 

we could use the measurement to assess differences in aminopeptidase activity in CA1 and 

CA3.  

EOPPP was carried out in CA1 and CA3 using a range of initial concentrations in the 

source capillary, which we denote S*0 from 0.2 to 2.2 mM. The asterick differentiates this 

term from the initial concentration in the tissue ECS, S0. We found that the average 

(S+P)/S0 is 69.6 ± 0.5% for this S*0 range with no inhibitor treatment. This is in agreement 

with the prior work cited above. In order to assess the dependence of ((S+P)/S0) on 

inhibitor, we pooled all of the data together (two regions, five S*0, and with/without 
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inhibitor) and carried out a linear regression of the observed measurements of (S+P)/S0 on 

the categorical variables “Region” (CA1 = 0, CA3 = 1), “Inhibitor” (absence = 0, presence = 

1), and the continuous variable S*0 (0.2, 0.4, 0.8, 1.0, and 2.2 mM). Because the data also 

seemed to show that the dependence of ((S+P)/S0) on S*0 was dependent on region, we 

used the product ‘region x S*0’ as another independent variable. Table 1 summarizes the 

results of the regression. 

Table 11. Summary of regression statistics. 
 Coefficient Std. Error t value p value 

Intercept 0.36 0.05 7.14 2.97 x 10-9 

Region 0.31 0.07 4.45 4.55 x 10-5 

S*0 0.32 0.04 7.19 2.44 x 10-9 

Inhibitor -0.02 0.04 -0.51 0.610 

Region x S*0 -0.26 0.07 -3.89 2.83 x 10-4 

 

Regression results for CA3 (Eqn. 17a) and CA1 (Eqn. 17b) can be summarized by two 

equations: 

((S+P)/S0) = 0.65 + 0.06 S*0     [17a] 

((S+P)/S0) = 0.36 + 0.32 S*0     [17b] 

There are several observations to be made from this analysis. Foremost, the presence of 

the inhibitor does not significantly affect ((S+P)/S0). In addition, for S*0 values near 1 mM the 

sensitivity to aminopeptidase activity is high, as in both CA1 and CA3 the fraction of YGGFL 

hydrolyzed to the product GGFL is on the order of 70%.  On the other hand, at the lowest value 

of S*0, 0.2 mM, while the CA3 region still maintains a reasonable ratio of ((S+P)/S0) of 66%, in 

the CA1 is only 42%. As a result, in the determination of Michaelis-Menten parameters, we did 

not use the data for S*0 = 0.2 mM in the CA1.  
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The fact that the presence of the inhibitor does not significantly affect the ratio ((S+P)/S0) 

means that the remaining 30% of the total activity is due to a bestatin-insensitive enzyme or 

enzymes. This remaining activity could be due to an enzyme that cleaves the substrate YGGFL 

at a different site (such that GGFL is not produced) and/or an enzyme that cleaves GGFL into 

smaller fragments. Because the ratio P/S0 is more selective for the activity of the bestatin-

sensitive aminopeptidase than the ratio of S/S0, we primarily focus on Michaelis-Menten 

parameters derived from the former ratio than the latter ratio. It is true, however, that despite 

quantitative differences, the qualitative conclusions drawn from examining P/S0 and S/S0 

measurements are the same (to be discussed in the next section).   

3.3.2 Differential aminopeptidase activity in the hippocampus 

Using the Lambert W code in Matlab R2015b we derived apparent Vmax and Km,  V’max and K’m, 

for each region from fitting the integrated Michaelis-Menten equation (Eqn. 16 in the 

 
 
Figure 32. Plots of P/S0 as a function of S*0 for both CA1 (blue) and CA3 (red) regions. Experimental values 
are shown as scatter plots with error bars (SEM) and predicted values from the integrated Michaelis Menten 
function are shown as dashed lines.  
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Experimental section) to P/S0 vs S*0 (Figure 32). The results from the fit are summarized in 

Table 2. The term “apparent” here is not the same as that used in Chapter 1.4.1. “Apparent” used 

previously referred to the fact that the enzyme kinetics was for an overall reaction comprised of 

multiple steps. The “apparent” here refers to the observed kinetics before dilution of initial 

substrate concentration has been taken into account. We distinguish these maximal rates and 

Michaelis-Menten constants with a prime because they were derived using S*0, the initial 

laboratory concentrations of the substrate (in the fill solution of the source capillary), as opposed 

to actual substrate concentrations in the tissue. We showed using in silico experiments173 that 

both the substrate concentration and local velocities vary within the interrogated region. 

Fortunately, despite this complexity, the actual Vmax and Km in the tissue ECS are related to the 

inferred V’max and K’m from the fitting by simple calibration factors. In fact, Vmax and Km in the 

tissue ECS can be obtained by dividing the V’max and K’m by 10.6 ± 0.3 and 2.8 ± 0.2 (mean ± 

SE), respectively173. The values of V’max and K’m as well as Vmax and Km are summarized in 

Table 2.  

Table 12. Michaelis-Menten parameters in CA3 and CA1 regions of the rat hippocampus (mean ± SEM), 
derived from fitting the integrated Michaelis Menten to the P/S0 perfusion data.  

Region V’max (μM/s) Vmax (μM/s) K’m (mM) Km (μM) 

CA3 33 ± 6 3.1 ± 0.6 0.2 ± 0.1 70 ± 40 

CA1 90 ± 10 9 ± 1 0.4 ± 0.2 100 ± 70 

As seen in Table 2, the Vmax in CA1 is nearly three-fold higher than that in CA3. Since 

Vmax is the maximum rate of reaction, this indicates that a higher level of aminopeptidase activity 

is present in the CA1, which could indicate a higher concentration of enzymes and/or a more 

active isoform of the enzyme. This regional difference was significant with a p-value < 0.0001 

(one-tailed t-test). There was no significant difference between the values for Km, however (p = 
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0.14, two-tailed t-test). Interestingly, Km values in both regions are comparable to that of APN 

reported in the literature (45-60 μM)167.  

In order to characterize the aminopeptidase, we incubated the OHSCs with 100 μM of the 

aminopeptidase inhibitor bestatin prior to sampling. Xu et al. demonstrated previously that it was 

the only inhibitor in a set of inhibitors that significantly decreased the production of GGFL from 

YGGFL in OHSCs110. As described above, experimental P/S0 and S*0 were used with the 

integrated Michaelis-Menten equation (Eqn. 16) to determine V’max. Because bestatin is known 

to be a competitive inhibitor, the integrated Michaelis-Menten is similar to Eqn. 16 with the 

exception that K’m is replaced by K’m
app. By fitting the integrated Michaelis-Menten equation to 

the inhibitor data for both regions, we determined the values for K’m
app. Given that the 

calibration factor of K’m
app/Km

app is 2.8 ± 0.2173, we can obtain Km
app accordingly. Furthermore, 

because we know Km from our data without the inhibitor, we can determine Ki for the two 

regions by using the simple relationship . These results are summarized in 

Table 3. The amount of GGFL was significantly reduced compared to amount of IS collected. 

Bestatin inhibited aminopeptidase activity in both CA1 and CA3 regions of the rat hippocampus 

during the sampling experiments by dramatically increasing the Michaelis-Menten constant from 

100 ± 70 μM to 1.0 ± 0.2 mM in the CA1 and 70 ± 40 μM to 0.6 ± 0.2 mM in the CA3. The 

Km
app and Ki values for the two regions are not significantly different (p = 0.31 and 0.43, 

respectively, two-tailed t-test). Interestingly, the Ki values, although accompanied by significant 

uncertainty, are comparable to the Ki of bestatin for APN reported in the literature (4 μM)167. 

Table 13. Kmapp in both CA1 and CA3 after addition of the inhibitor bestatin (mean ± SEM). 
Region K’mapp (mM) Kmapp(mM) Ki (μM) 

CA3 + bestatin 1.7 ± 0.5 0.6 ± 0.2 11 ± 7 



 84 

CA1 + bestatin 2.7 ± 0.5 1.0 ± 0.2 12 ± 9 

As mentioned in the introduction, the most prominent ectopeptidases that cleave at the 

Tyr-Gly bond with high affinity for enkephalins in the rat hippocampus are APN and PSA168. 

Autoradiographic profiling showed moderate to high labeling of APN in the hippocampus178. 

PSA and APN have similar Km for YGGFL (32 μM, 45 μM, respectively)167,179. PSA is highly 

sensitive to both puromycin (Ki = 1 μM) and bestatin (Ki = 0.5 μM) while APN is significantly 

more inhibited by bestatin (Ki = 4 μM) than puromycin (Ki = 100 μM)167. Previous work in our 

group showed little to no effect of puromycin on hydrolysis of exogenously applied YGGFL in 

whole OHSCs110. We demonstrate here that the Km of the bestatin-sensitive aminopeptidase 

activity in both CA3 and CA1 are comparable to that of APN and the Ki we derive from inhibitor 

experiments for both regions are comparable to that of bestatin for APN, as reported in the 

literature. This combination of results suggests that a significant contribution to the activity we 

see in both hippocampal regions is from APN.  

Fitting integrated Michaelis Menten equation to complementary S/S0 data yielded 

interesting results (see Table 14 in Appendix B). In contrast to the results based on P/S0, which 

showed a ~three-fold higher activity in the CA1 than the CA3, the activity in CA1 is ~two-fold 

higher than that of CA3 (p = 0.0045). This is due to the fact that the three-fold difference in 

aminopeptidase activity is “diluted” by the activity of other enzymes present.  Vmax in both 

regions are significantly higher than those derived using P/S0 in Table 2 (p < 0.0001 for CA3 and 

p = 0.0037 for CA1). This is consistent with the hypothesis that there is an additional enzyme or 

enzymes hydrolyzing YGGFL at sites other than the Tyr-Gly bond. Km values were not 

significantly different from those derived from P/S0 data (p = 0.48 for CA3 and p = 0.88 for 

CA1); however, Km values are significantly different (p < 0.0001) between the two regions. 

Based on this data, we hypothesize that the “missing” 30% in the (P+S)/S0 ratio may be due 
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to membrane-bound neutral endopeptidase (NEP, enkephalinase, neprilysin, CD10, EC 

3.4.24.11) and/or angiotensin converting enzyme (ACE, EC 3.4.15.1). NEP has moderate 

expression in the hippocampus180, has good affinity for YGGFL (Km = 74-200 μM)181, cleaves 

it and its product GGFL at the Gly-Phe bond, and is bestatin-insensitive. Similarly, ACE also 

cleaves at the Gly-Phe bond. EO sampling data from Xu et al. semi-quantitatively showed 

that a cocktail of thiorphan (selective NEP inhibitor), captopril (ACE inhibitor), and GEMSA 

(carboxypeptidase inhibitor) increased the GGFL peak by 2-fold relative to the IS110. Since 

carboxypeptidases have low affinity for peptides with C-terminal leucines according to the 

MEROPS database, this is indirect evidence NEP and/or ACE may contribute to the missing 

30%. We focus here on membrane-bound peptidases because we demonstrated before110 

that incubation of the collected sample at room temperature for 45 min did not change, 

quantitatively or qualitatively, the outcome compared to samples quenched with acid 

immediately after collection. This makes it unlikely that there is hydrolysis by soluble 

enzymes contributing to the observed outcome. 

 

3.3.3 Neuroprotection from aminopeptidase inhibition  

After we observed higher aminopeptidase activity in the CA1, we wondered whether or not 

this higher activity contributes to the selective damage of the CA1 to ischemia. Recall that 

enkephalin acting through the DOR are neuroprotective during ischemia. It has been 

suggested that ectopeptidases are required to maintain a tight control of the level of opioid 

peptides182. Although literature on the neuroprotective effects of DOR and enkephalins is 
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extensive, there is little discussion on the role of the ectopeptidases that hydrolyze enkephalins in 

neuroprotection. Ansorge et al. showed that the use of synthetic APN inhibitor actinonin 

significantly reduced cell death of the CA1 pyramidal neurons69. They did not examine effects of 

APN inhibition on the other subregions of the hippocampus nor did they explore why this 

neuroprotection occurred. Moreover, opiorphin, a naturally-occurring antidepressant in humans, 

protects enkephalins from degradation by APN183,184 and elicits antidepressant-like effects by 

activating endogenous δ-opioidergic pathways184. Thus, we questioned 1) whether the higher 

aminopeptidase activity that we observed in the CA1 may contribute to selective CA1 

vulnerability to ischemic damage because of faster hydrolysis (and deactivation) of 

neuroprotective peptides in that region, and 2) whether the neuroprotection occurs through 

enkephalin-dependent pathway. We thus performed a series of imaging experiments to explore 

whether inhibiting aminopeptidase activity protects CA1 and/or CA3 against ischemic damage 

following 20-, 30-, and 40-min OGD. Fluorescence from the DNA intercalator propidium iodide 

(PI) was used as a cell death marker. All cell death is reported as (as a %), where F is 

the fluorescence intensity of samples, F+ is the fluorescence intensity of NMDA-treated cultures, 

and F- is the fluorescence intensity of negative controls (no treatment). 
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First of all, in agreement with literature185, there is higher cell death in the CA1 than the 

CA3 for longer OGD times (p = 0.038, 0.011 for 30-min and 40-min OGD respectively, one-tail 

t-test, Figure 33F-G). There is no significant difference in cell death between the two regions at 

20-min OGD (p = 0.15, one-tail t-test, Figure 33E). We found that addition of bestatin 

immediately after OGD significantly decreased cell death in the CA1 for all OGD durations (p = 

0.032, 0.035, 0.032 for 20-, 30-, and 40-min OGD, respectively, one-tail, Figure 33E-G). These 

results support the first hypothesis that higher aminopeptidase activity in the CA1 may contribute 

to selective CA1 vulnerability to ischemic damage because of faster hydrolysis (and 

deactivation) of neuroprotective peptides in that region. We did not observe any effect of bestatin 

 
 
Figure 33. A) Propidium iodide (PI) fluorescence for positive control (200 μM N-methyl-D-aspartic acid, 
(NMDA) and negative control (NEG), B) PI fluorescence after 20-min oxygen-glucose deprivation alone 
(OGD), OGD and incubation with 100 μM bestatin immediately after (BEST), OGD and incubation of 
cultures with 10 μM naltrindole hydrochloride  20 min prior to OGD as well as during OGD (NAL), and 
OGD with both bestatin and naltrindole incubation (BEST + NAL), C) same as B) except for 30-min OGD 
condition, D) same as B) except for 40-min OGD condition, E-G) % cell death for the different conditions 
mentioned previously for 20-, 30-, and 40-min OGD conditions, respectively.  All images were taken on the 
Leica TCS SP5 confocal and multiphoton microscope. *p < 0.05, **p < 0.01, ***p < 0.001. 
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administration on CA3 neuronal cell death compared to OGD treatment alone (p = 0.11, 0.32, 

0.18 for 20-, 30-, and 40-min OGD, one-tail). Literature searching revealed no reports of 

enkephalins or enkephalin-derivatives rescuing the CA3 region from ischemic damage, which is 

consistent with our findings. 

Secondly, because aminopeptidase N is not a selective enzyme and has numerous natural 

substrates, including angiotensin III, both Leu- and Met-enkephalin, substance P, and bradykinin, 

we wanted to determine whether or not the neuroprotection from bestatin administration is from 

an increase in enkephalin lifetime. Both Leu- and Met-enkephalin have high affinities for DOR, 

a ten-times lower affinity for the mu opioid receptor and negligible affinity for the kappa opioid 

receptor186. An enkephalin analog [D-Ala2, D-Leu5] administered post-transient forebrain 

ischemia is neuroprotective to hippocampal CA1 neurons and this neuroprotection was reversed 

using naltrindole187, a selective DOR antagonist188. We hypothesize that the bestatin-induced 

decrease in cell death from OGD in the CA1 occurs through an enkephalin-dependent pathway, 

thus a selective DOR antagonist should reverse this neuroprotective effect. Co-administration of 

naltrindole with bestatin increased the cell death observed in the CA1 neurons relative to those 

treated with bestatin alone for all three OGD durations (p = 0.0001, 0.038, 0.0012 for 20-, 30-, 

and 40-min OGD, respectively, one-tail). We conclude that the effect of bestatin is most likely 

caused by an increase in enkephalin steady-state concentration in the extracellular space in CA1. 

An important caveat is that we measured enzyme activity pre-deprivation and not post-

deprivation. Others have demonstrated using immunohistochemistry, RT-PCR, and 

protease activity assays that aminopeptidase N is upregulated in the frontal, temporal, and 

occipital cortices from 6 hrs to 7 days post ischemia189. Since this study did not look at 

subregional differences in the hippocampus, it is unknown whether or not the CA1 and CA3 
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had different degrees of upregulation. We do not think this changes the conclusion in this 

paper. 

Interestingly, administration of naltrindole without co-administratrion of bestatin 

increased cell death relative to OGD only for 30-min OGD (p = 0.042, one-tail, Figure 33F) but 

not for shorter (20-min, p = 0.11) or longer (40-min, p = 0.80) ischemic insults. The time 

dependence of this naltrindole effect is unexpected. Several factors contribute to the observed 

effect of the antagonist.  After shorter (20-min) ischemic insult, which is considered a mild form 

of ischemia for OHSCs and is often used as a preconditioning paradigm50, there are increases in 

both DOR mRNA and protein as well as Leu enkephalin levels50. On the other hand, Leu-

enkephalin levels50, DOR mRNA and protein50,190,191 are suppressed after severe ischemia. The 

latter seems at odds with the observations that enkephalin administration post-ischemia rescues 

the CA1 pyramidal neurons187. The DOR system is both dynamic and responsive to its 

environment. Agonist binding to DORs results in internalization of the ligand/receptor complex, 

which leads to enhanced receptor recycling and resensitization (receptor reactivation) in an 

agonist-specific manner192 (reviewed by Gendron et al.43). Clearly, more work is required to fully 

understand the time-dependence of the effect of a DOR antagonist on neuroprotection in the 

hippocampal formation43. 

Based on these results, we propose that the three-fold higher aminopeptidase activity in 

the CA1 results in significantly shorter lifetime of neuroprotective endogenous opioid peptides in 

the ECS of the CA1 region compared to that in the CA3. The shorter lifetime of these peptides in 

the ECS decreases their effectiveness to activate the DOR reducing neuroprotection. The 

inhibitor bestatin reduces the aminopeptidase activity in the CA1 such that the steady-state 
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concentration of enkephalins are higher in the ECS, increasing activation of DORs, consequently 

reducing cell death in the CA1 following OGD. 

3.4 CONCLUSIONS 

We have measured for the first time quantitative differences in membrane-bound aminopeptidase 

activity in different regions of organotypic hippocampal cultures using a novel EOPPP-cLC 

method. The difference in aminopeptidase activity was the motivation to carry out further 

experiments to determine whether this difference might contribute to the differential 

susceptibility of CA1 and CA3 pyramidal neurons to OGD. Indeed, it does. Bestatin at all three 

OGD durations decreases neuronal damage in the CA1 region but has no effect in the CA3. This 

effect is likely due to the increase in steady-state extracellular concentration of enkephalins 

which leads to neuroprotection via the DOR. The method not only opens doors to understanding 

membrane-bound enzyme activities in their native environment but also allows for answers to 

some important, long-standing neurochemical and biochemical questions that have been 

unanswered due to lack of appropriate tools. 
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3.5 SUPPORTING INFORMATION FOR MEASURING AMINOPEPTIDASE 

ACTIVITY  

3.5.1 Enzyme kinetics derived from S/S0  

Table 14. Enzyme kinetics derived from fitting integrated Michaelis-Menten equation to S/S0 vs S0 data 
(mean ± SEM). 

Region V’max (μM/s) Vmax (μM/s) K’m (mM) Km (μM) 
CA3 100 ± 10 9 ± 1 115 ± 1 41 ± 3 
CA1 170 ± 20 16 ± 2 267 ± 2 95 ± 7 

3.5.2 % cell death from propidium iodide experiments 

Table 15. Summary of % cell death for all experimental groups in both regions of hippocampus. 
  20 min-OGD 30-min OGD 40-min OGD 

Region Condition % cell death ± SEM % cell death ± SEM % cell death ± SEM 
CA3 OGD 

BEST 
NAL 

BEST+NAL 

24 ± 2 
20 ± 3 
26 ± 8 
34 ± 6 

40 ± 4 
35 ± 10 
45 ± 9 
50 ± 9 

52 ± 5 
42 ± 9 

63 ± 20 
47 ± 10 

 
CA1 OGD 

BEST 
NAL 

BEST+NAL 

26 ± 3 
20 ± 2 
34 ± 6 
40 ± 2 

58 ± 8 
35 ± 9 

82 ± 10 
54 ± 5 

84 ± 12 
44 ± 9 
67 ± 9 
87 ± 6 
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3.5.3 Control experiments 

 

 

Figure 34. % cell death naltrindole only without any OGD 
conditions. Naltrindole itself does not cause significant 
damage. 



 93 

4.0  THE USE OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TO 

MEASURE FORMATION FACTOR IN THE BRAIN 

The last part of this dissertation covers ongoing work using electrochemical impedance 

measurements to understand the formation factor of the brain, which, as previously mentioned, is 

important in understanding the mass transport. This method utilizes carbon fiber microelectrodes 

coated with poly(3,4-ethylenedioxythiophene)/carbon nanotubes for a high charge storage 

capacity compared to bare electrodes. 

4.1 INTRODUCTION 

The neurons and glial cells of the brain exist in a jelly-like150 extracellular matrix that resembles 

a porous medium. The extracellular space, or the fluid-filled space between the cells, has a foam-

like structure193 with characteristics that affect mass transport such as in volume transmission of 

neurotransmitters. Monitoring neurotransmitters in the brain extracellular space using implanted 

probes have provided valuable information about brain function and pathology (see 

Introduction). One of the most popular methods for measuring neurotransmitter concentration in 

the ECS is microdialysis88 (reviewed in Ou et al 2014}. Since its advent in the 1970s, it has 

become the gold standard in the field of sampling194 due to not only its ability to sample a variety 
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of molecules such as amino acids, neuropeptides, and hormones but also its ability to introduce 

drugs and substrates into the tissue of interest via retrodialysis.    

 

While many think of processes such as degradation and reuptake in affecting the mass 

transport of neurotransmitters in the ECS, the structure of the ECS itself also plays a significant 

role in the efficacy of the neurotransmission (Figure 35). The structure of the ECS can change 

with various factors, including brain region150, disease195, age196, and environment, such as the 

osmolarity of the solution149 and the presence of any implanted devices. Along the lines of this 

latter issue, several early studies in the field raised concerns about the perturbation of the 

microdialysis probe on tissue health and whether or not it was affecting the amount of 

neurotransmitter collected. It is known, for instance, that the probe (~300 μm in diameter) is 

significantly larger than neurons and glia (5-100 μm diameter)197, myelinated fiber bundles (0.2-

2 μm)197, as well as the spacing between blood vessels (50 μm)194. Emerging evidence suggests 

that penetration injury from probe insertion into living brain tissue leads to an inflammatory 

 

Figure 35. Schematic showing the different processes a neurotransmitter (red dot) can encounter in the 
extracellular space of the brain, including degradation by ectopeptidases and reuptake. The geometry of the 
ECS also plays a role in the mass transport of the neurotransmitter to its target action, such as binding to a 
receptor.  
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response called the foreign body response104. During this event, implantation of the neural probes 

such as microdialysis probes results in injury to the vasculature and disruption of the blood-brain 

barrier (BBB) 100,198,199, activation of microglia and astrocytes100,200, inflammation201, oxygen 

deprivation100,194,200, and neural degeneration104. Not only that, but the activation and 

proliferation of glial cells around the probe, called gliosis, results in a diffusion barrier for 

analytes of interest to reach the probe, affecting the concentration measured101,202. Efforts have 

been made to mitigate this foreign body response using pharmacology, such as the synthetic, 

highly potent glucocorticoid dexamethasone101-105. The majority of the studies monitoring the 

detrimental effects are often perturbing the environment themselves or are just downright 

destructive, such as the need to isolate the tissue samples, fix, and perform antibody treatment for 

imaging studies. Moreover, while recent advances in in vivo microscopy have been extremely 

powerful in revealing immediate microglia reaction to implanted probes200, even two-photon 

microscopy is limited by penetration depth in the brain and thus cannot access deep-brain 

structures.  

The lipid bilayer of the plasma membrane acts as a capacitor at low frequencies (~10 kHz 

and lower) of alternating current (AC), but at high frequencies (1 MHz), the capacitance 

contribution of the cell membrane decreases and current can pass through both extracellular and 

intracellular compartments203. Gardner-Medwin pointed out204 that under the assumption that 

current is confined to the ECS, the resistivity of the brain is proportional to λ2/ε, which is the 

inverse of the ‘formation factor,’ a geological term relating conductivity in free media to that in 

porous media205. Herein, we will focus primarily on conductivity because the formation factor, 

the quantity of interest, is directly proportional to conductivity. It should be noted that the 

majority of literature uses resistivity instead but the two terms are reciprocals. Electrical 
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impedance spectroscopy (EIS) is a technique that can characterize tissue based on its electrical 

properties. A small sinusoidal AC excitation potential is applied to the cell of interest and the 

current is measured. Oftentimes equivalent circuit modeling is used to extract the appropriate 

impedance. Different driving frequency can be used to tune into different behavior; for example, 

the range 1 kHz – 1 MHz is often called the β-dispersion region203 and is ideal for investigating 

the electrical properties of the ECS. The higher frequencies in this range can be used to study 

intracellular electrical properties as well. Since its advent more than six decades ago, 

electrochemical impedance measurements of living tissue have been used extensively for 

medical technology, physiological research, and clinical diagnosis206. The first application of 

impedance measurements in vivo was to examine myocardial function207. Researchers have 

measured conductivity differences between white vs. gray matter208, due to neural 

activity209, as well as changes in conductivity due to hypothermia210, penetration 

injury211,212, hypoglycemia213, ischemia214-216, seizures217-219, spreading depression218,220,221, 

and stroke222.  EIS has been used for a wide range of medical applications223-225 as well as 

being used to characterize electrodes226-228 and measure tissue encapsulation around 

implanted probes212,229,230. Unlike the other methods, impedance measurements do not require 

a well-chosen probe molecule. One limitation, however, is that because the conductivity in 

porous medium relates to conductivity in free medium via the formation factor, which is a 

function of both ε and λ, the two terms cannot be differentiated. However, in many instances, 

changes in λ are small so changes in conductivity will predominantly reflect changes in ε134. 

The benefit of conductivity measurements via are two-fold: 1) they provides structural 

information that would be obtained with an ideal point molecule and 2) these 

measurements are instantaneous134.  
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We are interested in developing a rapid and sensitive method for measuring 

changes in the ECS 1) with high spatiotemporal resolution, 2) without the technique itself 

causing injury to the brain, and 3) be applicable for chronic implantation to monitor 

processes over a long period of time. Specifically, we are interested in the timeline of glial 

scar formation around a microdialysis probe and how this scar affects the formation factor 

and, consequently, mass transport in the ECS. To do this, we utilize 400 μm long x 7 μm i.d. 

carbon fiber microelectrodes coated with poly(3,4-ethylenedioxythiophene)/carbon 

nanotubes (PEDOT/CNT) for EIS measurements. PEDOT is a conducting polymer used for 

chronically implanted neural prosthesis due to its excellent electrochemical stability and 

compatibility with various electrolytes231-234. PEDOT coatings can be readily deposited onto 

electrode surfaces using electrochemical deposition198,231,235,236 and significantly increases 

charge storage capacity compared to bare electrodes237-241. PEDOT is often doped with 

carbon nanotubes (CNTs), which provides additional structural support, reduced astrocyte 

activation, and increased local neuron density242. Recording devices coated with 

PEDOT/CNT were implanted for at least 12 weeks in mice primary visual cortex228. These 

are all important criteria for minimizing perturbation to the tissue environment and 

increasing the lifetime of the electrodes, especially for chronic implantation. Furthermore, 

because of the small size of the electrodes relative to those previously used for EIS, it 

should not disrupt the vasculature. In this chapter, we demonstrate the sensitivity of the 

method to changes in the conductivity due to the presence of borosilicate beads, which is 

our in vitro brain surrogate. We also demonstrate the sensitivity of this method in detecting 

changes in formation factor as the electrode is implanted deep inside the rat brain. In order 

to accurately extract the conductivity of the surrounding medium around the working 
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electrode, we developed an equivalent circuit model that takes into account the shunt 

capacitance and the coating. 

4.2 EXPERIMENTAL SECTION 

 

Microelectrodes. The experiments used a three-electrode cell, with a carbon fiber 

microelectrode as the working electrode, a Ag/AgCl reference electrode, and either a 

stainless steel bone screw (in vivo, Fisher Scientific) or Pt wire (in vitro, Alfa Aesar) for 

counter electrode. Single carbon fibers (7 μm i.d., T650, Cytec Carbon Fibers LLC) were 

threaded through pulled (Narishige) borosilicate capillary (0.58 mm i.d., 1.0 mm o.d., Sutter 

Instruments). They were sealed with a low viscosity epoxy (Spurr Epoxy, Polysciences 

Inc.), cured overnight at 72 oC, and trimmed to 400 μm with scalpel blade under a 

dissection microscope. The capillaries were completed by filling them with Hg (Sigma 

Aldrich) and a single Nichrome wire was inserted into each electrode. Prior to use, 

electrodes were soaked for 10 min in isopropyl alcohol (Fisher Scientific) to clean the 

electrode surfaces.  

PEDOT/CNTs. Carbon fiber microelectrodes were coated with PEDOT/CNT (Figure 36) 

within 24 hours of in vivo experiments. CNTs were functionalized according to previous 

reports228. In brief, CNTs were soaked in concentrated nitric and sulfuric acids in 1:3 

volume ratio, respectively, sonicated, and rigorously stirred overnight at room 

temperature. The carboxylated CNTs form a precipitate and crash out of solution. The 
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solution was then centrifuged at 16 kr/min for 1 hr at 4 oC and the pH of the supernatant 

was measured. The supernatant was removed and the carboxylated CNTs were 

resuspended in Milli-Q water (Milli-Q Integral Water Purification System, Millipore Sigma) 

and then centrifuged. The pH of the supernatant was again measured and then removed. 

This process was repeated until the supernatant reached neutral pH. Samples were then 

dried at 60oC and stored at -20 oC until further use.  For deposition, 1.5 mg of functionalized 

CNTs were resuspended in 1.5 mL of Millipore-filtered deionized water by sonication for 5 

min. 1.5 μL of EDOT was pipetted in and the solution was vortexed for 2 min. The entire 

suspension was then sonicated using a probe sonicator (2 s on, 1 s off pulses for a total of 

45 min).  Electrochemical deposition was done by chronocoulometry. 0.9 V was applied vs. 

Ag/AgCl reference (and Pt counter) and a charge cutoff was set to achieve a specific charge 

density on the surface. For example, for 15 mC/cm2 for a 7 μm i.d. x 400 μm length, the total 

charge cutoff should be set to 1.33 x 10-5 C.  

Electrochemical impedance spectroscopy. Cyclic voltammograms (Figure 36, 10 mM of 

hexaammineruthenium (III) chloride (Ruhex) dissolved in 100 mM KCl (both from Sigma 

Aldrich)) were taken before and after each coating. Sweep rate was 100 mV/s. Potential 

was scanned from -0.3 V to +0.7 and back to -0.3 V. Electrochemical impedance spectra 

(EIS) were also taken to verify the decrease in impedance due to the PEDOT/CNT coating. 

The three-electrode cell was connected to the Gamry Interface 1000E Potentiostat (Gamry 

Instruments).   A small (10 mV) RMS sine wave was applied vs. the open circuit potential 

and impedance was measured in the frequency range from 1-100kHz. An equivalent circuit 

model was fitted to the resulting spectra using Gamry Echem Analyst software v7.05. The 

circuits were created in the software and the different parameters were extracted using the 
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Simplex method. From these fits, the solution resistance can be extracted, converted to 

conductance (reciprocal), and then plotted as a function of solution conductivity to 

generate a calibration curve, in which the slope is equal to the inverse of the cell constant. 

In vitro particle experiments. The three-electrode system was set in place in a small 

vessel for in vitro experiments. 15 μm borosilicate beads (15.9 ± 0.6 μm diameter, 9000 

Series Glass Particle Standards, ThermoFisher Scientific) were suspended in different 

concentrations of KCl and pipetted into the electrochemical cell. The particles were allowed 

to settle before any measurements are made. Impedance measurements were made in the 

particle bed first and then raised such that the entire electrode is in the conducting medium 

without particles and another measurement is taken. This way, there are two 

measurements per concentration of KCl, one with particles and one without. By plotting 

conductance vs. conductivity, two slopes were obtained: one with particles and one 

without particles. The ratio of the former slope to the latter yields the formation factor.  

Animals and surgery. All procedures involving animals were approved by the University 

of Pittsburgh Institutional Animal Care and Use Committee (Protocol #14125186). Male 

Sprague Dawley rats (250-275 g, Charles River) were anesthesized with isofluorane (5% by 

volume O2 initially and then 2.5% by volume for maintenance) and wrapped in a 

homeothermic blanket (Harvard Apparatus), which is set to 37 oC. After anesthesia, the rats 

were placed in a stereotaxic frame (Harvard Apparatus). Isofluorane was administered 

throughout the experiment. Holes were drilled into the skull in the appropriate positions 

(Bregma -0.8 mm AP, +/- 1.50 mm ML, and 0.8-4.0 mm below the surface of the brain). A 

hole was drilled for the reference electrode, which was put into contact with the brain 

using a salt bridge. The dura was removed with a scalpel for all electrode implantation.   
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Finite element calculations. A cylindrical model was created in COMSOL Multiphysics to 

represent the carbon fiber microelectrodes. A significantly larger (1 mm i.d. x 1 mm long) 

cylinder enclosed the microelectrode to represent the bulk electrolyte solution. Ground 

was chosen to be one of the enclosing walls of the larger cylinder. All other boundaries are 

insulation. A 10 mV AC potential was applied at the top surface of the 400-μm long 

electrode. The corners were rounded to prevent any sharp corner anomalies. The electric 

field in the model geometry was solved in the frequency domain from 1-100 kHz, with five 

points per decade. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Characterization of carbon fiber microelectrodes coated with PEDOT/CNT 

 

 

Scanning electron microscopy was used to image the surface of the carbon fiber microelectrodes 

before and after coating (Figure 36A and C). Bare carbon fiber microelectrode has a striated 

surface due to the presence of numerous nanofibers. After coating, however, the surface is 

Figure 36. A) Scanning electron microscopy image of bare microelectrode. B) Comparing and contrasting the 
cyclic voltammograms of a bare vs. a coated electrode. Im is the current and Vf is the potential. There is an 
oxidation of hexaammineruthenium (III) chloride (Ruhex) at -80 mV and a reduction peak at -250 mV. 
The non-Faradaic current magnitude is higher for coated than bare as indicated by inset, meaning 
that there is higher double layer capacitance for the coated than bare electrode.  C) SEM image of a 
coated microelectrode with PEDOT/CNT. D) Bode modulus plot comparing and contrasting bare and coated 
electrodes. Zreal is the real component of the impedance and Zimag is the imaginary component of the 
impedance. There is a nice charge-transfer limited semi-circle in the coated Nyquist plot. SEM images 
courtesy of I. Mitch Taylor of Prof. Tracy Cui’s group in the Department of Engineering at the University of 
Pittsburgh. All coated data are for 15 mC/cm2 surface charge density. 
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covered in a “bird-nest” like texture, with a significant increase in effective surface area. Cyclic 

voltammetry reveals that if electrodes are not soaked in isopropyl alcohol for 10 min before any 

measurements, there is no oxidation or reduction peaks for Ruhex. After soaking, however, the 

bare electrode has an oxidation peak at -80 mV and a reduction peak at -250 mV against 

Ag/AgCl reference electrode. The peak amplitude does not change after coating with 

PEDOT/CNT for a total charge density of 15 mC/cm2
 (Figure 36B). However, the magnitude of 

the background non-Faradaic current in the plateau region (~200 mV) is increased by four-five-

fold (see inset in Figure 36B). We can calculate a double layer capacitance using the simple 

equation , where C is the magnitude of the capacitance, i+ is the magnitude of the 

current in the forward sweep towards positive potentials, i- is the magnitude of the current in the 

backward sweep toward negative potentials, and υ is the sweep rate in V/s. For bare electrodes, 

the maximum capacitance is usually 5-8 nF. For coated, the capacitance usually increases by 4-5 

fold to 20-40 nF. EIS spectra before and after coating (Figure 36D) show that the Nyguist plot 

for a bare electrode is diffusion-limited at all frequencies while that for a coated electrode has a 

nice charge-transfer limited semicircle section. In our experiments, this semicircle portion does 

not appear unless the capacitance of the double layer is ≥20 nF.  Overall impedance is also 

significantly reduced after coating. 
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4.3.2 Equivalent circuit modeling and depth test 

 

We developed an equivalent circuit model to extract the resistance of the surrounding medium 

around the microelectrode. Generally an electrode-electrolyte interface can be modeled with a 

Randles circuit, which consists of solution resistance (Rsolution) in series with both a double layer 

capacitance (Cdl) and charge transfer resistance (Rct), which are in parallel with each other 

(Figure 37). A constant phase element (CPE), an imperfect capacitor, is in series with the 

solution resistance and models the impedance due to diffusing redox species31 and can be 

 

Figure 37. A) Equivalent circuit modeling without shunt capacitor. B) Plot of conductivity as a function of 
conductance at two different depth in a beaker experiment at 20 oC. C) Equivalent circuit modeling with a 
shunt capacitor added. D) Plot of conductivity as a function of conductance at two different depths. The 
difference between depth 1 and depth 2 is approximately 2 cm. The error bars indicate error from the fitting. 
The regression analyses were done in Stata using analytic weights, which are inverses of the variances for 
each data point.  The conductance values are all on the order of 10-4 S (e.g. 2 x 10-4 S), but the 10-4 has been 
divided out for clarity. Inverse of the slope x 100 yields the cell constant in cm-1. 
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observed at low frequencies. While work characterizing the impedance properties of a single 

carbon microelectrode due to fouling has been done243, no measurement using carbon fiber 

microelectrode to measure solution resistance has been reported previously. In the first 

generation of the equivalent circuit model (Figure 37A), we observed that the calibration curve 

in different concentrations of KCl solutions is dependent on the depth of the electrode submerged 

in the solution (Figure 37B). In fact, the slopes are significantly different based on regression 

analyses at the 95% confidence level. At each concentration of KCl, there appears to be a higher 

conductance measurement at a greater depth. Robinson244 reported that there need to be a 

capacitor in parallel to the entire equivalent circuit to model all of the shunt capacitances (Cshunt) 

to ground from the tip to the input of the amplifier. This capacitor takes into account the 

capacitance that arises due to the separation of two conducting media (one inside the electrode 

comprised of Hg and one outside the electrode comprised of the salt solution) by the insulating 

glass as well as other stray capacitances from connectors and shielded wires244. This capacitance 

is particularly significant at the tip of the microelectrode where the glass insulation is thin, as 

capacitance is inversely related to the distance between two charging surfaces. Robinson 

reported that the magnitude of the shunt capacitance (in 10-100s of pF) is linearly dependent on 

the depth of immersion in the conducting medium. The slope of this plot gives the dielectric 

constants of the medium in which the electrode is submerged. We thus added a capacitor in 

parallel to the entire circuit to account for this shunt capacitance (Figure 37C). After this shunt 

was included, the calibration curve became independent of depth (Figure 37D), which is 

important for any implantation in vivo where measurements are taken at different depths. 

Interestingly, looking at the values of the different fitted parameters, depth did not impact Cdl, 

Rct, or CPE but did impact Rs and Cshunt. The value for Cdl and CPE were not affected by the 
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concentration of the KCl but all other values were dependent on the conductivity of the medium. 

The range of values for Cshunt was 10-50 pF, in agreement with those observed by Robinson244. 

We did observe that at low (<0.15 S/m) conductivity, there is deviation from linearity when 

plotting conductance vs. conductivity. It appears that below this level, the electrode becomes less 

sensitive to its conductivity and the slope changes. This is indication that the current is passing 

through a parallel path. We are currently unsure what the source of this parallel path is. We 

know, however, that the magnitude of the resistance of this path is approximately 20-50 kΩ and 

varies from electrode to electrode possibly due to variability in electrode fabrication. Raw data of 

the Nyquist plots for various concentrations of KCl can be found in the Supporting Information 

in Chapter 4.5.  
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4.3.3 Finite element simulation  

 

We created a simple 3D model in COMSOL Multiphysics (see Experimental section in Chapter 

4.2 and Supporting Information in Chapter 4.5) in which a cylinder is used to represent the 

microelectrode and a second, much larger cylinder (1 mm i.d. x 1 mm height) is used to represent 

the surrounding electrolyte medium. A potential of 10 mV was applied to the top surface of the 

microelectrode (see boundary 1 in Figure 43). The study was set up to solve in the frequency 

domain (1-100kHz). The resulting electric field profile is seen in Figure 38. Because of the 

incredibly small size of the working electrode relative to the reference and counter electrodes, 

 

Figure 38. Electric field profile in 100 mM KCl solution near the surface of the carbon fiber microelectrode 
at 20 oC. The maximum field is localized in the electrode front edges, which is not an artifact of sharp 
corners, as the corners are rounded in this geometry. The highest electric field strength is near the electrode 
surface (~2000 V/m) but the field drops to 10% that within a radial distance of 10 μm from the probe, 
indicated by the white contour line.  
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most of the potential drop occurs near the working electrode. The electric field potential drops to 

10% of its maximum magnitude (~2000 V/m) within 10 μm radially from the carbon fiber 

microelectrode. This is a rough estimate of the spatial resolution of the method.  

4.3.4 In vitro model  

 

Once the equivalent circuit model was optimized, we then proceeded to in vitro experiments. In 

these experiments, the three-electrode system is set up in a vessel (Figure 39, left) such that the 

reference electrode is in contact via a salt bridge and all of the electrodes are in place before a 

suspension of 15-μm borosilicate particles are added. These particles were chosen because their 

sizes are comparable to the average sizes of neurons in the brain (~10 μm). The particles are 

allowed to settle around the working electrode, separating from the KCl solution in which they 

are suspended, forming a randomly packed bed of particles. This was repeated for a total of four 

different concentrations of KCl (20-100 mM) and the impedance spectra are measured from 1-

 

Figure 39. (Left) Photo of the in vitro experiment. CFME = carbon fiber microelectrode. (Right) Plot of 
conductance as a function of concentration of KCl with and without (wo) particles at 20 oC. In this in vitro 
brain surrogate, the particles are 15 μm borosilicate glass beads that randomly packed in solution. 
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100kHz. Fitting the equivalent circuit model with a shunt capacitor seen in Figure 37C to these 

spectra yields resistances that can be converted to conductances (Figure 39, right). First of all, 

there is a linear dependence of the conductance on the conductivity of the solution, with and 

without particles. Moreover, the conductance decreased at every concentration of KCl in the 

presence of the particles. This is in agreement with expectations that if the formation factor 

decreased due to the presence of particles (more tortuous and/or smaller porosity), it would 

decrease the conductivity of the solution. The average formation factor calculated for this bed of 

randomly packed borosilicate particles is 0.62 ± 0.07 (std. dev., n = 4 electrodes). This formation 

factor seems higher than what we expect for bed of randomly packed particles. However, this 

observation may be explained by the wall effect seen in packed beds for separation. The average 

porosity in cylindrical capillaries is dependent on the ratio of the column diameter (dc) to particle 

diameter (dp). When the dc/dp = 5, the porosity was observed to be 0.47, which is significantly 

higher than if the dc/dp ratio > 35 (porosity = 0.36-0.37)245. This phenomenon occurs because of 

the inability of particles to form a dense packing against the hard surface of the column wall245. 

Even though we are not packing a column of particles, the particles in the in vitro experiments 

are allowed to settle around the working electrode, which acts as a “wall” and thus the same 

effect should apply. Furthermore, these porosity values are for packed beds with optimized 

slurry, high pressure, and ultrasonication. In our system, none of these conditions apply and dc ≈ 

dp, thus the porosity should be even higher than 0.47, which is exactly what we observe. This is 

evidence that our method is sensitive to the changes in formation factor due to the presence of 

particles, which is a promising result for measuring formation factor changes in the brain. 
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4.3.5 In vivo experiments 

 

Next, we performed in vivo experiments in anesthesized male Sprague Dawley rat. The purpose 

of these experiments is to measure the changes in formation factor as a result of changes in the 

local region, e.g. from the cortex, corpus callosum, and into the ventricle, where the formation 

factor should be close to one since it is filled with cerebrospinal fluid. Temperature should not 

have any effects on the cell constant and thus calibration can be done at room temperature for 

measurements at body temperature. Figure 40 summarizes the results. The formation factor in 

the cortex regions (depth 0.8-2.4 mm) is 0.21 ± 0.02 (SEM). The corpus callosum formation 

factor is 0.40 ± 0.04 in the x-direction (because of the orientation of the electrode). The 

formation factor in the ventricle is 0.72 ± 0.06 (~3.2 mm depth). Even though our radial spatial 

resolution is ~10 μm (see Figure 38), the overall spatial resolution is limited by the length of the 

microelectrode. Thus, we hypothesize that the reason the formation factor in the ventricle is not 

equal to one is because 1) there is variability in sizes and shapes of the ventricle between 

individual rats and 2) the entire electrode may not be submerged in the ventricle (the electrode 

may be partially in contact with the surrounding tissue). In future work, the length of the 

 
Figure 40. A) Diagram showing the different regions of the brain as well as the placement of the electrode (tip 
length shown in red is drawn to scale, the shaft and diameters are not). B) Bright field image of fixed brain 
slice showing the probe track that was formed when the barrel of the electrode was lowered deep into the 
brain to leave a mark. C) Plot of formation factor as a function of depth. Depth 3.2 mm should be in the 
ventricles, which is filled with cerebrospinal fluid. C = cortex, CC = corpus callosum, V = ventricle.  
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electrode can be optimized for better spatial resolution. However, it is possible that in order to 

maintain the same double layer capacitance, a thicker coating is required for a shorter electrode. 

4.4 CONCLUSION  

We developed a simple, rapid, robust method of determining formation factor of the porous 

medium, such as the brain, by adapting carbon fiber microelectrodes coated with PEDOT/CNT 

for electrochemical impedance spectroscopy. The method has a 10 μm radial resolution based on 

finite element results. This method is sensitive to the changes in formation factor in the absence 

and presence of 15-μm borosilicate particles and is also sensitive to in vivo regional changes. The 

diameter of the electrode, which is significantly smaller than the spacing between blood vessels, 

and the presence of the PEDOT/CNT coating should allow for chronic implantation of the 

microelectrodes in vivo with minimal perturbation to the tissue. Collectively, these promising 

results allow for future work in measuring changes in ECS structure due to microdialysis probe 

implantation and other related applications. 



 112 

4.5 SUPPORTING INFORMATION FOR EIS MEASUREMENTS 

 

 

Figure 41. Example spectra for electrochemical impedance measurements for different concentrations of KCl 
at T = 20 oC. As seen, the x-intercept of the Nyquist plot is sensitive to the conductivity of the solution, 
ranging from 10-100 mM KCl in this case. X-axis is the real component of the impedance and the Y-axis is 
the negative of the imaginary component of the impedance. 
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Figure 42. Example spectra in vivo T = 37 oC. The different colors represent different depth in the rat brain. 
X-axis is the real component of the impedance and the Y-axis is the negative of the imaginary component of 
the impedance. 

 

Figure 43. Mesh elements for finite element model. The corner is rounded and finely meshed. 



 114 

Table 16. Boundary condition for Electric Currents module in COMSOL Multiphysics v5.3. J is the current 
density, σ is the conductivity, V is the voltage drop, Je is the external current density source, n is the normal 
vector, and I0 is the applied current. 
 

Boundary/Domain Boundary condition Equation, if applicable 
A-B Current conservation  0)( =−∇⋅−∇=⋅∇ eJVJ



σ  
All boundaries except 1 Electric insulation 0=⋅ Jn



  
1 Terminal, potential V = V0, where  

V0 = 10 mV 
Outer wall of domain B (not 

shown in Figure 43) 
Ground V = 0 

 

Table 17. Material properties for carbon fiber and electrolyte solution. 
 

Domain Property Value 
A Electrical conductivity 8.9 x 106 S/m 

Relative permittivity 3 
B Electrical conductivity 1.1615 S/m  

(for [KCl] = 100 mM at 20 oC) 
Relative permittivity 80 
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5.0  CONCLUDING REMARKS 

We have adapted the method of electroosmotic push-pull perfusion coupled to offline capillary 

liquid chromatography for quantitative measurement of ectopeptidase activity in live, intact 

tissue. We developed a robust finite element model for understanding the sampling conditions, 

including electric field, flow rate, Péclet number, spatial resolution, and collection efficiency, to 

name a few, without the need to perform expensive or otherwise impossible experiments in the 

laboratory. We also used the model as a guide for data analyses such that important parameters 

such as Vmax and Km in the extracellular space can be obtained from the sampling data.  

Electroosmotic push-pull perfusion coupled to offline capillary liquid chromatography 

fills a need for answering longstanding neuroscience questions that requires spatially-resolved 

quantitative measurements of membrane-bound enzyme activity in their native environment. One 

of the longstanding questions in neuroscience has been why the CA1 subregion of the 

hippocampus is more vulnerable to ischemic damage than its CA3 counterpart. Using our 

quantitative approach, we measured three-fold higher aminopeptidase activity in the CA1 than 

the CA3 region of the hippocampus. We hypothesized that this aminopeptidase activity may 

contribute to higher vulnerability of CA1 region to ischemic damage. Thus, using an ex vivo 

model of stroke in the form of OGD and propidium iodide fluorescence staining, we found that 

inhibition of the aminopeptidase activity in the CA1 using bestatin selectively reduced the 

damage seen as a result of ischemic conditions. Moreover, this neuroprotection was not observed 
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in the CA3 and this neuroprotection was reversed upon the addition of the delta-opioid receptor 

antagonist naltrindole hydrochloride. These results confirm our hypotheses that 1) the higher 

aminopeptidase activity in the CA1 region does contribute to selective vulnerability of this 

region to ischemic damage and 2) this contribution acts through an enkephalin- and delta-opioid 

receptor-dependent pathway. 

 It is important to note that our measurement of higher aminopeptidase Vmax in the CA1 

does not distinguish between the concentration and isoforms of the enzymes. Thus, interesting 

future work could use Western blotting to assess the amount of aminopeptidases (especially 

aminopeptidase N) present in the two different regions. Mass spectrometry analyses can also be 

used to assess the presence of different isozymes if present. There is literature evidence on 

different isozymes of aminopeptidase N being present in the gut, but it is unclear if these 

isozymes are also present in the central nervous system. Moreover, our measurements of enzyme 

activity were done pre-OGD and in other words, under basal conditions. It is unclear if OGD 

itself would differentially change the expression of the aminopeptidases in the two subregions of 

the hippocampus. The lack of this information does not change the conclusions in this work but 

would be interesting follow-up questions for the future. Lastly, despite the extensive studies of 

delta opioid receptor expression and endogenous enkephalins, it is unclear why we observe the 

interesting time-dependent effects for 20-, 30-, and 40-min OGD. More extensive studies are 

required to further understand this incredibly intricate and complex peptidergic system.  
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	Figure 10. A) False color surface plot of the concentration profile at t = 600 s for i = 0 (diffusion only), 10, 30, and 50 μA. All concentrations are expressed as a percentage of initial concentration in the source capillary, c0. B) Distribution of solute in the tissue culture between regions with Pé greater than one (red) and less than one (blue).  C) 3D plot of concentration in several parallel XY planes at different Z positions. The concentration at the tissue surface is shown in more detail (from an eagle-eye perspective) on the right in order to illustrate the concentration gradient as well as the boundaries (white line) where Pé = 1 for the three different currents. The brownish-red ellipse/white ring left of center is the source capillary lumen.
	Figure 11. Plot of collection efficiency as a function of formation factors under three different currents (10, 30, and 50 (A). Collection efficiency was calculated as moles of yaGfl collected divided by moles of yaGfl injected. Shaded region indicate the range of values for fF for healthy organotypic hippocampal slice cultures.
	Figure 12. Left) Series of false color surface plots showing the effect of fF on Pé. (Right) Line plot of Pé as a function of distance from source tip along the white dashed line shown in left panel (fF = 0.1). Distances 0-100 μm are the tissue region, whereas 100-150 μm is the buffer layer between the sampling capillary and tissue. i = 10 μA for all plots here. Analogous plots for i = 30 and 50 μA are shown in Figure 25 in the Appendix A.
	Figure 13. Correlation plot of inferred values of V’max and K’m vs. actual values of Vmax and Km in the tissue ECS. A) There was no statistically significant difference in using the time distribution or the first moment to estimate V’max and the values of V’max were not Km dependent. The values of V’max and Vmax are directly proportional. B) Correlation plot of K’m vs. Km when the time distribution is used. For Vmax ≤ 10 μM/s, K’m and Km are directly proportional. For high Vmax (>10 μM/s), the nonzero intercept is statistically different from zero.
	Figure 14. 3D geometry of EOPPP. A – sampling capillary; B – source capillary; C – droplet; D – tissue. All of the boundaries are labeled as numbers and the domains as letters.
	Figure 15. Mesh elements for EOPPP model.
	Figure 16. Two ways of visualizing the electroosmotic push-pull perfusion process in organotypic hippocampal slice cultures via finite element method calculations in COMSOL (top panel) and experimentally through TR3 fluorescence monitored by inverted IX-71 microscope (bottom panel). Dashed lines trace out the shapes and location of the source capillary and the lumen of the sampling capillary. Arrow indicates the tip of the source capillary. Time stamp is in minutes:seconds. The shift to a lighter blue hue computationally and an increase in fluorescence experimentally in the sampling capillary both indicate successful sampling.
	Figure 17. Mesh for 2D axisymmetric model. Letters denote the domains. A and B are tissue. C and D are capillaries. Numbers denote the boundaries. Boundaries 10 and 11 are pointing to the inflow and outflow boundaries (not shown), respectively. Tissue region B is actually a circular region with a 5-mm radius that spans outside the scale of this figure. The outermost boundaries of this region are open boundaries. The capillaries have inner diameter of 100 μm, outer diameter of 180 μm, and length of 5 mm.
	Figure 18. The effect of different geometric parameters on the current-normalized flow rate. Most of the factors had no significant effect, with the exception of the length of the capillary showing a slight effect: the longer the length, the higher the flow rate/current.  DPC = how far the source capillary is inserted into the tissue. DAT = distance of the sampling capillary above the tissue.
	Figure 19. False color surface plot showing how larger molecular weight species can be collected via EOPPP despite having a large negative charge. A neutral species (z = 0) was used as a control. Molecular weights and charges are separated by a comma, e.g. 50, -1 means 50 g/mol, -1 charge. Source capillary i.d. = 200 μm (barrel), 20 μm (tip). Sampling i.d. = 100 μm. Current applied (i) = 10 μA.
	Figure 20. (Left) Plot of mols/s as a function of time for three different applied currents in EOPPP. (Right) First derivative of the plot on the left.
	Figure 21. All concentrations (c) are expressed as % initial c in source capillary (c0). Both averages of c and Pé were measured in Pé  > 1 regions in the tissue. A) Average c at three different currents as a function of tissue thickness. Position 0 μm is the bottom surface of the tissue. 150 μm is the top surface. The source capillary tip is located at 110 μm. B) Average c as a function of X position (source tip → underneath sampling capillary). Source capillary tip is located at 600 μm. The i.d. of the sampling capillary span positions 650-750 μm. C) Average Pé as a function of tissue thickness. D) Average Pé as a function of X position.
	Figure 22. Plot of collection efficiency as a function of current and sampling i.d. Formation factor was held constant at fF = 0.2. For the sampling i.d. calculations, current was maintained at i = 10 μA.
	Figure 23. A) Cross section showing false color surface plot of pulsed concentration used to determine the residence or reaction time distribution. B-C) Plot of mols/s as a function of time for three different formation factors (fF, B) and three different currents (i, C). The weighted average residence times are 4.2, 4.8, and 5.3 s for fF = 0.1, 0.2, and 0.3, respectively. The weighted average residence times are 5.2, 3.7, and 3.0 s for i = 10, 30, and 50 μA, respectively.
	Figure 24. Plot of EO flow rate in the sampling capillary as a function of formation factor.
	Figure 25. (Left) Surface plot of Pé at different fF and two different currents. (Right) Line plot showing the Pé as a function of distance from the source capillary along the dashed line shown in Figure 12 of the main text.
	Figure 26. Evolution of the concentrations of substrate (S, blue), product (P, red), and internal standard (IS, black) over the course of 150 s of sampling. All concentrations are expressed as a percent of initial concentration of IS, [IS]0, in the source capillary. Two different substrate concentrations are shown: [S]0 = [IS]0 = 2.2 mM for [S]1 and [P]1, [S]0 = [IS]0 = 0.2 mM for [S]2 and [P]2. Vmax  = 6 μM/s, Km = 50 uM for both cases. i = 10 μA.
	Figure 27. Enzyme kinetics derived from fitting integrated Michaelis Menten equation to P/S0 values (A-C) or S/S0 (D-F) as a function of S*0. The results are summarized as correlation plots of either V’max vs. Vmax (A, D) or K’m vs. Km (B-C, E-F). We use primed quantities to denote the inferred enzyme kinetics from the fitting and to differentiate it from actual enzyme kinetics in the tissue ECS (no apostrophe). A) There are no significant differences in using time distribution or the average tR for estimates of V’max. The slopes of the V’max vs Vmax regression are 10.6 ± 0.3 and 11.3 ± 0.4 (± SE) when using time distribution and tR, respectively (the intercepts are not significantly different from zero). Moreover, the estimates of V’max are independent of the Km values. B-C) For regression analyses of K’m vs Km correlation plots, there are no significant differences between using the time distribution or the average tR for estimates of K’m at corresponding Vmax values ≤ 10 μM/s. The slopes are 2.8 ± 0.2 and 3.0 ± 0.6 for distribution and tR, respectively, and the intercepts are not significantly different from zero. However, for large values of Vmax (>10 μM/s), i.e. Vmax = 50 μM/s, there is significant intercept to the regression of K’m vs. Km and the magnitude of this intercept is Vmax-dependent. The regression equations for K’m vs. Km at Vmax = 50 μM/s are: K’m = (3.1 ± 0.2)*Km + (400 ±70 μM) (± SE) when the distribution was used and K’m = (3.5 ± 0.4)*Km + (1100 ±100 μM) when the first moment was used. This suggests that there is larger error in estimates of K’m when the first moment is used to estimate reaction time at large corresponding values of Vmax (>10 μM/s). Thus, for estimating K’m from the fitting, the entire time distribution should be used and if the corresponding Vmax is known, then either  a simple calibration factor can be used (for Vmax ≤ 10 μM/s) or a full regression equation needs to be used (for Vmax >10 μM/s). We then performed the same fitting to integrated Michaelis Menten using the S/S0 values instead of the P/S0 values. Interestingly, the correlation plots were nearly identical. This makes sense as we simulated only a single enzyme reaction. The only scenario in which fitting P/S0 or S/S0 would give different kinetics is if there is more than one reaction affecting the substrate, the product, or both. D) Slope of V’max vs. Vmax regression analyses: 11.2 ± 0.3 (distribution) and 12.1 ± 0.4 (t = tR). E-F) Full regression equation for Vmax = 50 μM/s: K’¬m = (3.0 ± 0.2)*Km + (240 ± 50 μM) (distribution) and K’m = (3.4 ± 0.4)*Km + (900 ± 100 μM) (t = tR). Slopes from regression of Vmax = 1-10 μM/s:  2.4 ± 0.3 (distribution) and 2.6 ± 0.6 (t = tR). All regression analyses were done in Stata SE 14.2.
	Figure 28. 2-D axisymmetric calculations contrasting EO-driven (left) and P-driven (right) flow. The colored plot indicates magnitude of interstitial velocity, with red being the fastest and blue being the slowest. Red arrows indicate direction of velocity, not magnitude. The central ellipse (region 1, fF = 0.08) represent a region of higher tortuosity (λ) and smaller porosity (ε) than the surrounding porous medium (region 2, fF = 0.2). Region 1 is flanked on top and bottom by capillaries. Pressure gradient and electric fields were chosen such that the flow rates in the capillaries are equivalent in both cases (1.1 μL/min). ζcap is the zeta-potential of the capillary; ζtissue is the zeta-potential of the tissue.
	Figure 29. Line plot along the z-direction of the intersitial velocity (in mm/s) for EO-driven and P-driven 2D axisymmetric models in Figure 28.
	Figure 30. 2D slice of a 3D geometry showing the evolution of tris(bipyridine)ruthenium(II) chloride (Ru(bpy)32+) over time for electrokinetically driven (top) and pressure-driven (bottom) convection enhanced delivery. The infusion capillary is located in the cortex while the sampling capillary is positioned benath the corpus callosum in the striatum. Red indicates high concentration while dark blue indicates low concentration. The color scale denotes actual concentration ranges in mol/m3. The corpus callosum (CC) is outlined in white dashed lines.
	Figure 31. A) Bright-field image of organotypic hippocampal slice culture. Sampling regions from the CA1 and CA3 are circled. (B) Schematic showing the EOPPP process. The substrate YGGFL (LE in this figure), IS DYDAGDFDL, and fluorescent dye TR3 were passed through the culture via electroosmosis. (C) Chromatograms of calibration standard (black), CA1 sample (red), and CA3 sample (blue). Peaks were measured using UV detection at 214 nm. The major hydrolysis product was determined to be GGFL (indicated by arrows). GGFM, YGGFL, and IS peaks were also quantified.
	Figure 32. Plots of P/S0 as a function of S*0 for both CA1 (blue) and CA3 (red) regions. Experimental values are shown as scatter plots with error bars (SEM) and predicted values from the integrated Michaelis Menten function are shown as dashed lines. 
	Figure 33. A) Propidium iodide (PI) fluorescence for positive control (200 μM N-methyl-D-aspartic acid, (NMDA) and negative control (NEG), B) PI fluorescence after 20-min oxygen-glucose deprivation alone (OGD), OGD and incubation with 100 μM bestatin immediately after (BEST), OGD and incubation of cultures with 10 μM naltrindole hydrochloride  20 min prior to OGD as well as during OGD (NAL), and OGD with both bestatin and naltrindole incubation (BEST + NAL), C) same as B) except for 30-min OGD condition, D) same as B) except for 40-min OGD condition, E-G) % cell death for the different conditions mentioned previously for 20-, 30-, and 40-min OGD conditions, respectively.  All images were taken on the Leica TCS SP5 confocal and multiphoton microscope. *p < 0.05, **p < 0.01, ***p < 0.001.
	Figure 34. % cell death naltrindole only without any OGD conditions. Naltrindole itself does not cause significant damage.
	Figure 35. Schematic showing the different processes a neurotransmitter (red dot) can encounter in the extracellular space of the brain, including degradation by ectopeptidases and reuptake. The geometry of the ECS also plays a role in the mass transport of the neurotransmitter to its target action, such as binding to a receptor. 
	Figure 36. A) Scanning electron microscopy image of bare microelectrode. B) Comparing and contrasting the cyclic voltammograms of a bare vs. a coated electrode. Im is the current and Vf is the potential. There is an oxidation of hexaammineruthenium (III) chloride (Ruhex) at -80 mV and a reduction peak at -250 mV. The non-Faradaic current magnitude is higher for coated than bare as indicated by inset, meaning that there is higher double layer capacitance for the coated than bare electrode.  C) SEM image of a coated microelectrode with PEDOT/CNT. D) Bode modulus plot comparing and contrasting bare and coated electrodes. Zreal is the real component of the impedance and Zimag is the imaginary component of the impedance. There is a nice charge-transfer limited semi-circle in the coated Nyquist plot. SEM images courtesy of I. Mitch Taylor of Prof. Tracy Cui’s group in the Department of Engineering at the University of Pittsburgh. All coated data are for 15 mC/cm2 surface charge density.
	Figure 37. A) Equivalent circuit modeling without shunt capacitor. B) Plot of conductivity as a function of conductance at two different depth in a beaker experiment at 20 oC. C) Equivalent circuit modeling with a shunt capacitor added. D) Plot of conductivity as a function of conductance at two different depths. The difference between depth 1 and depth 2 is approximately 2 cm. The error bars indicate error from the fitting. The regression analyses were done in Stata using analytic weights, which are inverses of the variances for each data point.  The conductance values are all on the order of 10-4 S (e.g. 2 x 10-4 S), but the 10-4 has been divided out for clarity. Inverse of the slope x 100 yields the cell constant in cm-1.
	Figure 38. Electric field profile in 100 mM KCl solution near the surface of the carbon fiber microelectrode at 20 oC. The maximum field is localized in the electrode front edges, which is not an artifact of sharp corners, as the corners are rounded in this geometry. The highest electric field strength is near the electrode surface (~2000 V/m) but the field drops to 10% that within a radial distance of 10 μm from the probe, indicated by the white contour line. 
	Figure 39. (Left) Photo of the in vitro experiment. CFME = carbon fiber microelectrode. (Right) Plot of conductance as a function of concentration of KCl with and without (wo) particles at 20 oC. In this in vitro brain surrogate, the particles are 15 μm borosilicate glass beads that randomly packed in solution.
	Figure 40. A) Diagram showing the different regions of the brain as well as the placement of the electrode (tip length shown in red is drawn to scale, the shaft and diameters are not). B) Bright field image of fixed brain slice showing the probe track that was formed when the barrel of the electrode was lowered deep into the brain to leave a mark. C) Plot of formation factor as a function of depth. Depth 3.2 mm should be in the ventricles, which is filled with cerebrospinal fluid. C = cortex, CC = corpus callosum, V = ventricle. 
	Figure 41. Example spectra for electrochemical impedance measurements for different concentrations of KCl at T = 20 oC. As seen, the x-intercept of the Nyquist plot is sensitive to the conductivity of the solution, ranging from 10-100 mM KCl in this case. X-axis is the real component of the impedance and the Y-axis is the negative of the imaginary component of the impedance.
	Figure 42. Example spectra in vivo T = 37 oC. The different colors represent different depth in the rat brain. X-axis is the real component of the impedance and the Y-axis is the negative of the imaginary component of the impedance.
	Figure 43. Mesh elements for finite element model. The corner is rounded and finely meshed.
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