
ROBUST PARSING FOR UNGRAMMATICAL SENTENCES

by

Homa Baradaran Hashemi

B.Sc. in Software Engineering, Iran University of Science and Technology, 2007

M.Sc. in Software Engineering, University of Tehran, 2011

M.Sc. in Intelligent Systems Program, University of Pittsburgh, 2014

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Homa Baradaran Hashemi

It was defended on

October 17th 2017

and approved by

Dr. Rebecca Hwa, Department of Computer Science

Dr. Diane Litman, Department of Computer Science

Dr. Christian Schunn, Department of Psychology

Dr. Na-Rae Han, Department of Linguistics

Dissertation Director: Dr. Rebecca Hwa, Department of Computer Science

ii

Copyright

c© by Homa Baradaran Hashemi

2017

iii

ROBUST PARSING FOR UNGRAMMATICAL SENTENCES

Homa Baradaran Hashemi, PhD

University of Pittsburgh, 2017

Natural Language Processing (NLP) is a research area that specializes in studying computational

approaches to human language. However, not all of the natural language sentences are grammati-

cally correct. Sentences that are ungrammatical, awkward, or too casual/colloquial tend to appear

in a variety of NLP applications, from product reviews and social media analysis to intelligent

language tutors or multilingual processing. In this thesis, we focus on syntactic parsing, an essen-

tial component of many NLP applications. We investigate the impact of ungrammatical sentences

on statistical parsers. We also hypothesize that breaking up parse trees from problematic parts

prevents NLP applications from degrading due to incorrect syntactic analysis.

A parser is robust if it can overlook problems such as grammar mistakes and produce a parse

tree that closely resembles the correct analysis for the intended sentence. We develop a robustness

evaluation metric and conduct a series of experiments to compare the performances of state-of-

the-art parsers on the ungrammatical sentences. The evaluation results show that ungrammatical

sentences present challenges for statistical parsers, because the well-formed syntactic trees they

produce may not be appropriate for ungrammatical sentences. We also define a new framework for

reviewing the parses of ungrammatical sentences and extracting the coherent parts whose syntactic

analyses make sense. We call this task parse tree fragmentation. The experimental results suggest

that the proposed overall fragmentation framework is a promising way to handle syntactically

unusual sentences; they also validate the utility of parse tree fragmentation methods in two external

tasks of sentential grammaticality judgment and semantic role labeling.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT . xvi

1.0 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Thesis Statement . 3

1.4 Thesis Overview . 3

1.4.1 Ungrammatical Sentences . 3

1.4.2 Impact of Ungrammatical Sentences on Parsers 4

1.4.3 Parse Tree Fragmentation Framework . 4

1.4.4 Applications of Parse Tree Fragmentation 6

1.5 Thesis Contributions . 6

2.0 PRELIMINARIES AND BACKGROUND . 8

2.1 Introduction . 8

2.2 Ungrammatical Sentences . 8

2.2.1 English-as-a-Second Language (ESL) . 9

2.2.1.1 ESL Corpora . 9

2.2.1.2 NLP Research on ESL . 10

2.2.2 Machine Translation (MT) . 11

2.2.2.1 MT Corpora . 11

2.2.2.2 NLP Research on MT Outputs . 12

2.2.3 Twitter . 13

2.2.3.1 Twitter Properties . 13

v

2.2.3.2 NLP Research on Tweets . 13

2.2.4 Transcribed Conversation . 14

2.2.4.1 Transcribed Conversation Corpora 14

2.2.4.2 NLP Research on Transcribed Conversation 14

2.2.5 Comparison of Ungrammatical Domains 15

2.3 Syntactic Parsing . 16

2.3.1 Full Parsing . 16

2.3.1.1 Constituency Parse Tree . 17

2.3.1.2 Dependency Parse Tree . 17

2.3.2 Partial Parsing . 19

2.3.2.1 Chunking . 19

2.3.2.2 Hedge Parsing . 20

2.3.2.3 Vine Parsing . 20

2.3.3 Parsing Evaluation . 21

2.3.3.1 Intrinsic Evaluation . 22

2.3.3.2 Extrinsic Evaluation . 23

2.4 Syntactic Parsing Applications . 24

2.4.1 Sentence-Level Fluency Judgment . 24

2.4.1.1 Fluency Judgment Task . 24

2.4.1.2 Fleuncy Judgment Related Work 25

2.4.2 Semantic Role Labeling (SRL) . 26

2.4.2.1 SRL Task . 26

2.4.2.2 Relation of Syntactic and Semantic Analyses 27

2.4.2.3 SRL Related Work . 29

3.0 IMPACT OF UNGRAMMATICAL SENTENCES ON PARSING 30

3.1 Introduction . 30

3.2 Assessing the Impact of Ungrammatical Sentences on Parsers 31

3.3 Proposed Gold-Standard Free Methodology . 32

3.3.1 Creating Pseudo Gold Parse Trees . 32

3.3.2 Evaluating Parse Trees . 33

vi

3.4 Experimental Setup . 35

3.4.1 Parsers . 35

3.4.2 Data . 36

3.4.2.1 Parser Training Data . 36

3.4.2.2 Robustness Test Data . 37

3.4.3 Experimental Settings . 40

3.5 Experiments . 40

3.5.1 Overall Accuracy and Robustness . 41

3.5.2 Parser Robustness by Number of Errors . 41

3.5.3 Impact of Error Distances . 43

3.5.4 Impact of Error Types . 46

3.5.4.1 Impact of grammatical error types 46

3.5.4.2 Impact of error word category . 46

3.5.4.3 Impact of error semantic role . 48

3.6 Chapter Summary . 48

4.0 PARSE TREE FRAGMENTATION OF UNGRAMMATICAL SENTENCES . . . 52

4.1 Introduction . 52

4.2 A Framework for Parse Tree Fragmentation . 53

4.2.1 Ideal Fragmentation . 54

4.2.2 Dependency Tree Fragmentation . 55

4.3 Developing a Fragmentation Corpus . 55

4.3.1 Pseudo Gold Fragmentation (PGold) . 57

4.3.2 Reference Fragmentation (Reference) . 60

4.3.3 Comparing PGold and Reference . 60

4.4 Chapter Summary . 61

5.0 AUTOMATIC METHODS OF PARSE TREE FRAGMENTATION 63

5.1 Introduction . 63

5.2 Fragmentation Methods . 63

5.2.1 Classification-based Parse Tree Fragmentation (Classification) 64

5.2.2 Parser Adaptation Parse Tree Fragmentation (Parser) 65

vii

5.2.2.1 Parser Domain Adaptation . 65

5.2.2.2 Creating a Treebank of Tree Fragments 67

5.2.3 Sequence-to-Sequence Parse Tree Fragmentation (seq2seq) 68

5.2.3.1 Seq2Seq Using Deep Neural Nets 69

5.2.3.2 Sequence Representation of a Fragmented Dependency Tree 70

5.3 Comparison of Fragmentation Methods . 73

5.4 Chapter Summary . 73

6.0 EMPIRICAL EVALUATION OF PARSE TREE FRAGMENTATION 75

6.1 Introduction . 75

6.2 Evaluation of Parse Tree Fragmentation . 75

6.3 Experimental Setup . 76

6.3.1 Data . 76

6.3.1.1 English as a Second Language corpus (ESL) 76

6.3.1.2 Machine Translation corpus (MT) 79

6.3.2 Experimental Tools . 83

6.3.2.1 Reference Settings . 83

6.3.2.2 Classification Settings . 83

6.3.2.3 Parser Retraining Settings . 83

6.3.2.4 seq2seq Settings . 84

6.3.3 Evaluation Metrics . 84

6.3.3.1 Unlabeled Attachment Score (UAS) 84

6.3.3.2 Accuracy of Cut Arcs . 85

6.3.3.3 Set-2-Set F-score . 85

6.4 Evaluation . 86

6.4.1 Performance of Each Fragmentation Method 86

6.4.2 Performance of the Classification Method 88

6.4.3 Evaluation of Tree Fragmentation Methods 88

6.4.4 Relationships between Fragments Statistics 91

6.5 Chapter Summary . 92

7.0 EVALUATION OF PARSE TREE FRAGMENTATION IN NLP APPLICATIONS 94

viii

7.1 Introduction . 94

7.2 Extrinsic Evaluation: Fluency Judgment . 95

7.2.1 Fluency Judgment Tasks . 95

7.2.1.1 Binary Task . 96

7.2.1.2 Regression Task . 96

7.2.2 Feature Sets . 96

7.2.2.1 Our feature set . 96

7.2.2.2 Contrastive feature sets . 96

7.2.3 Experimental Setup . 97

7.2.4 Results . 98

7.3 Extrinsic Evaluation: Semantic Role Labeling . 100

7.3.1 Semantic Role Labeling of Ungrammatical Sentences 102

7.3.2 Creating Pseudo Gold Semantic Dependencies for Ungrammatical Sentences 104

7.3.3 Applying Fragmentation to Automatic SRL Annotations 105

7.3.3.1 Approach 1: Rule-based . 106

7.3.3.2 Approach 2: Machine-Learning-based (ML) 106

7.3.4 Evaluating Automatic SRL Annotations of Ungrammatical Sentences 108

7.3.5 Experimental Setup . 110

7.3.6 Results . 111

7.3.6.1 Overall Performances . 112

7.3.6.2 Impact of Number of Errors . 117

7.3.6.3 Impact of Error Distances . 117

7.3.6.4 Impact of Error Types . 119

7.3.6.5 Discussion . 124

7.4 Chapter Summary . 127

8.0 CONCLUSION AND FUTURE WORK . 128

8.1 Summary of Contributions and Results . 128

8.2 Future Work . 130

APPENDIX. SEMANTIC ROLE LABELS . 133

BIBLIOGRAPHY . 135

ix

LIST OF TABLES

1 Comparison of the ungrammatical domains. 16

2 Parsers performance in terms of accuracy and robustness. The best result in each

column is given in bold, and the worst result is in italics. 42

3 Parser performance on test sentences with 3 near and 3 far errors. Each box rep-

resents one train/test configuration for all parsers and error types. The bars within

indicate the level of robustness scaled to the lowest score (empty bar) and highest

score (filled bar) of the group. 45

4 Parser robustness on sentences with one grammatical error, each can be categorized

as a replacement word error, a missing word error or an unnecessary word error. . . 47

5 Parser robustness on sentences with one error, where the error either occurs on an

open-class (lexical) word or a closed-class (functional) word. 49

6 Parser robustness on sentences with one error where the error occurs on a word

taking on a verb role, an argument role, or a word with no semantic role. 50

7 An example of the transition sequence of the arc-standard actions for the depen-

dency tree of Figure 21. The last column shows the generated output sequence with

annotated fragmented arcs. We use this linear form of arc pruned dependency trees

to train the seq2seq model. 72

8 Comparison of the proposed automatic fragmentation methods. 74

9 Performance of automatic fragmentation methods by comparing their resulting de-

pendency trees against Reference fragmented trees as their training data. The No

cut method serves as a baseline and does not break any tree. 87

10 Similarity of fragmentation methods with gold fragments. 90

x

11 Relationship of fragmentation methods with Reference fragments over the number

and size of fragments. 93

12 Fluency judgment results over two datasets containing ungrammatical sentences us-

ing binary classification and regression. Accuracy and AUC measures are reported

for binary classification, and RMSE and Pearson’s r are reported for regression.

PGold and Reference as the upper bounds are given in italics, and the best result

among automatic fragmentation methods is given in bold. 99

13 Correlation between the extracted features from each fragmentation method with

the fluency of the sentence in the regression task. Reference as the upper bound is

given in italics, and the best result in each column is given in bold. 101

14 Overall performance of fragmentation methods in detecting incorrect semantic de-

pendencies in terms of False Discovery Rates (FDR). The “0+” columns indicate

the experiments over the sentences with zero or more errors, and the “1+” columns

reports the results on the sentences with at least one error. Reference as the upper

bound is given in italics, and the best result among automatic arc pruning methods

is given in bold. 113

15 Overall False Negative Rates (FNR) of fragmentation methods. Reference as the

upper bound of fragmentation methods is given in italics, and the best result among

automatic arc pruning methods is given in bold. 115

16 Performance of binary classification models of machine-Learning-based approach

(Section 7.3.3.2) using fragmentation features to detect incorrect semantic depen-

dencies. 116

17 False Discovery Rates on test sentences with two near and two far errors. Each bar

indicates the level of FDR scaled to the lowest score (empty bar) and highest score

(filled bar) of a group. 120

18 False Discovery Rates on test sentences with one error where the error occurs on a

word taking on a verb role, an argument role, or a word with no semantic role. . . . 122

19 False Discovery Rates on sentences with one error, where the error occurs on a word

taking an argument role that has one of the seven frequent role labels. 123

xi

20 False Discovery Rates on sentences with one grammatical error, each can be cate-

gorized as a replacement word error, a missing word error or an unnecessary word

error. 125

21 False Discovery Rates on sentences with one error, where the error either occurs on

an open-class (lexical) word or a closed-class (functional) word. 126

22 A list of semantic role labels. 134

xii

LIST OF FIGURES

1 An ungrammatical sentence gets a well-formed but inappropriate parse tree. 2

2 The red dotted dependencies show a set of implausible syntactic relations which

results in four fragments. 6

3 Example of a full constituency parse tree. 17

4 Example of a full dependency parse tree. 18

5 Chunking analysis of a sentence. 19

6 Example of Hedge parsing with maximum constituent span of 6. 20

7 Example of Vine parsing retaining only tree dependencies of length less than 6. The

root of the resulting parse fragments are now connected only by their dotted arcs

“vine dependencies” to $. 21

8 Example of semantic role labeling. 26

9 Syntactic (inner) and semantic (outer) analyses of an ungrammatical sentence (bot-

tom) and its corrected version (top). The dotted arcs show mismatched dependen-

cies of the ungrammatical sentence with the grammatical sentence. 28

10 Parse trees of an ESL sentence and its corrected counterpart. 31

11 Projecting parse tree of the Grammatical sentence (top) to the Ungrammatical sen-

tence (bottom) to create “gold standard” tree of the ungrammatical sentence. 34

12 Example of evaluating robustness of an automatic parse tree (bottom) with the gold

standard tree (top) of the Ungrammatical sentence. The dotted red arcs show error-

related dependencies. The robustness F1 is 66%. 35

13 Some statistics of sampled ESL and MT datasets by number of errors. 39

14 Variation in parser robustness as the number of errors in the test sentences increases. 44

xiii

15 Example of an ungrammatical sentence that gets a complete well-formed but inap-

propriate parse trees in two syntactic representations (right), and a set of coherent

tree fragments that might be extracted from the full parse tree (left). 56

16 Creating pseudo gold fragments. The upper parts of figure are parse tree of gram-

matical sentences and the lower parts are their transformation after applying errors. . 58

17 Example of PGold fragmentation of an ungrammatical sentence. There are two er-

rors in the sentence: a missing comma and a replacement word error. Starting from

the grammatical sentence and its parse tree, PGold reconstructs the ungrammatical

sentence and its fragments. 59

18 Example of Reference fragmentation of an ungrammatical sentence. The dotted red

arcs are cut dependencies based on the two word error. It results four fragments. . . 61

19 Depth and height features for the dependency arc of “known→ for”. 65

20 Word N -gram features for the dotted arc. Rectangles are words. Word bigrams

associated to the dotted arc are: whwm, wm−1wm and wmwm+1. 66

21 Example of a fragmented dependency tree. The dotted red arcs are cut dependencies

based on the mistakes in the sentence. 67

22 Schematic view of seq2seq model for parse tree fragmentation. The input words are

first mapped to word vectors and then fed into a recurrent neural network (RNN).

The final time step initializes an output RNN, upon seeing the <eos> symbol. . . . 69

23 Some statistics of sampled ESL datasets by number of errors. 78

24 Some statistics of sampled MT datasets by HTER score. 81

25 Some statistics of sampled MT datasets by number of edits. 82

26 Automatically produced semantic dependency graph of an ungrammatical sentence.

The red dotted relations show incorrect semantic dependencies. 102

27 Projecting semantic dependencies of the Grammatical sentence (top) to the Un-

grammatical sentence (bottom) to create “gold standard” semantic dependencies of

the ungrammatical sentence. 105

28 Applying fragmentation to automatic semantic dependencies of an ungrammatical

sentence using the rule-based approach. 107

xiv

29 Evaluating the automatic semantic dependencies (bottom) with the gold standard/projected

semantic dependencies (top) of the Ungrammatical sentence. The dotted red rela-

tions show produced false positive relations by the automatic SRL. The False Dis-

covery Rate (FDR) is 2/6 ≈ 33%. 111

30 Variation in False Discovery Rates as the number of errors in the test sentences

increases. 118

xv

ACKNOWLEDGEMENT

I am immensely grateful to my advisor, Rebecca Hwa, for teaching me the range of things one can

possibly learn in graduate school, from doing great research to writing papers. I am thankful for her

for occasionally having more faith in me than I had myself (especially we got four rejections in a

row). Needless to say, without her guidance and encouragement this work would not be completed.

I would like to express my sincere gratitude to the other members of my dissertation commit-

tee, Diane Litman, Na-Rae Han and Christian Schunn for their invaluable advice, especially their

thoughtful comment on unifying our ideas on one syntactic representation which vastly improved

the quality of this dissertation. I am also grateful to Jan Wiebe for discussions and comments at

earlier stages of this research. I thank Azadeh Shakery, my Masters advisor at University of Tehran,

under whose guidance I first started doing research in information retrieval and natural language

processing. I am also thankful to my mentors during my internships, Silke Witt, Reiner Kraft and

Thomas Polzin who helped me to achieve a better view of real world NLP challenges.

I was lucky to be part of ISP, a small and diverse program which presented me with so many

perspectives on artificial intelligence. Thanks so much Michele Thomas for being such a won-

derful administrator and for making the ISP seminars interesting and fun. I cannot forget Wendy

Bergstein, whose warm presence made ISP enjoyable in the first years of our PhD when I was

new to the country and culture. My PhD research was supported in part by the National Science

Foundation awards IIS-0745914, #1550635 and #1735752, and the University of Pittsburgh Center

for Research Computing through the resources provided. I specifically acknowledge the assistance

of Ketan Maheshwari.

I am grateful to my friends at ISP, CS and NLP group for making the last six years at Pittsburgh

such a memorable experience. Thanks to Huichao Xue, Fan Zhang, Fattaneh Jabbari, ChangSheng

Liu, Lingjia Deng, Yoonjung Choi, Huy Nguyen, Wencan Luo, Omid Kashefi, Roya Hosseini,

xvi

Tazin Afrin and Mahbaneh Eshaghzadeh. Many special thanks to Zahra Rahimi, who has been

influential in pretty much every aspect of my graduate life since the first time we spoke at the

University of Tehran in 2008. I spent almost the last year of my PhD in Cambridge, MA; a special

thanks to Yevgeni Berzak from MIT for introducing the EFCAMDAT dataset and Allen Schmaltz

from Harvard for helping in running seq2seq experiments which saved me much time and effort.

My deepest gratitude goes to my parents Narges and Ahmed for their love and unquestioning

support throughout. It was through talking to them during my lunch time/their dinner time, that

my battery was recharged everyday. I am grateful to my sister Sima and her husband Nima for

all the joy they have added to our life by driving to Pittsburgh even for a weekend. I thank my

brother Ali for being a role model for me (I followed his path without knowing it myself) and most

importantly for introducing Mahdi to our family. I also thank Mahdi’s parents Fatemeh and Nemat

for their patience and continuous encouragements.

Last, but certainly not least, I would like to thank my dearest Mahdi, my best friend and

husband. It was through his selfless friendship and love that shaped my life during this long

journey for the last thirteen years.

xvii

1.0 INTRODUCTION

1.1 MOTIVATION

Natural Language Processing (NLP) is a research area that focuses on studying computational

methods that analyze human languages. The ultimate goal of NLP is to construct systems that

understand and produce natural languages as humans do. To advance this goal, various NLP tasks

are established, from name entity recognition (e.g. identifying people in a sentence) and part-of-

speech tagging (e.g. detecting verbs in a sentence) to more complicated tasks such as question

answering and automatic summarization.

The input of NLP applications could come from different domains (note that by domain we

mean a collection of texts from certain genres, topics, and styles of expressions); not all of these

domains are necessarily grammatically correct. The input text can come from heavily edited do-

mains by humans, such as news, or from unedited domains, such as microblogs, consumer reviews,

forums, etc.

Knowing the relationship between individual words in a natural language sentence is essential

for an application that attempts to process the input text in some way, such as extracting the infor-

mation or translating the text to another language. It is the role of the syntactic parsing to produce

this kind of analysis. A computational analyzer that assigns syntactic structures to sentences is a

parser. Current state-of-the-art parsers employ supervised methods to learn models from annotated

training data (treebanks). These treebanks include a collection of sentences with their manually

annotated syntactic analysis.

A statistical parser trained on a standard treebank, however, often produces full, syntactically

well-formed trees for all the input sentences that might not even be appropriate for the sentences.

For example, Figure 1 shows incorrect syntactic analyses for an output of a machine translation

1

The members of the vote opposes any him

det prep
pobj

det

nsubj

dobj

det

Figure 1: An ungrammatical sentence gets a well-formed but inappropriate parse tree.

system; even though the sentence has several problems such as unusual phrases members of the

vote and any him, the parser still groups them into clauses to serve as the subject and the object

of the main verb, respectively. These incorrect analyses may later impact the performances of the

downstream NLP applications.

Moreover, as shown in the past, current state-of-the-art statistical parsers perform well on

standard (newswire) benchmarks with accuracies above 90%; however, these high accuracies are

limited to heavily edited domains, and their analyses for sentences from different domains are

less reliable (Gildea, 2001; McClosky et al., 2010; Foster, 2010; Petrov et al., 2010; Foster et al.,

2011a). Ungrammatical sentences (or even awkward sentences that are technically grammatical)

can be seen as special kinds of out-of-domain sentences; in some cases, it is not even clear whether

a complete parse should be given to the sentence.

In this thesis, we study parsing ungrammatical sentences and introduce a framework to gener-

ate meaningful syntactic analyses for these sentences based on their grammatical mistakes.

1.2 RESEARCH QUESTIONS

The primary goal of this research is to investigate the impact of ungrammatical sentences on parsers

by addressing the following questions:

• In what ways does a parser’s performance degrade when dealing with ungrammatical sen-

tences?

• Is it feasible to automatically identify parse tree fragments that are plausible interpretations for

2

the phrases they cover?

• Do the resulting parse tree fragments provide some useful information for downstream NLP

applications?

1.3 THESIS STATEMENT

While parsers have trouble when sentences contain certain types of mistakes (e.g., extra word

errors or multiple errors that are close to each other), there are still reliable parts in the parse tree

unaffected by the errors. The thesis of this dissertation is that we can identify the unaffected areas

of the parse tree and prune the problematic parts, resulting in a set of tree fragments. These tree

fragments will contain useful syntactic information that can help downstream applications such as

fluency judgment and semantic role labeling.

1.4 THESIS OVERVIEW

In the following, we present a general overview of the key concepts and the steps that we take to

address the research questions.

1.4.1 Ungrammatical Sentences

A sentence is considered ungrammatical if all its words are valid in the language, but it still contains

grammatical or usage errors (Foster, 2007). As a rule of thumb, ungrammatical sentences require a

set of corrections in order to sound “natural” to a native-speaker (Pinker, 2015). In this thesis, we

study two written data sources in which the sentences may contain grammatical mistakes: writings

of English-as-a-Second language (ESL) students and automatic machine translation (MT) outputs.

We primarily focus on written domains that their major goal is to generate fluent and grammatical

sentences; in addition, these domains have a wider range of error types, such as missing phrases,

insertion of unnecessary phrases, and incorrect phrasal ordering, than spoken domains.

3

1.4.2 Impact of Ungrammatical Sentences on Parsers

For the purpose of analyzing the impact of ungrammatical sentences on parsers, we need to eval-

uate their generated parse trees for these problematic sentences. However, previous works on

parser evaluation have primarily focused on accuracy and speed of parsers (Choi et al., 2015;

Kummerfeld et al., 2012; McDonald and Nivre, 2011; Kong and Smith, 2014), and have not taken

ungrammatical sentences into consideration. The main reason is that typically parser evaluation

requires manually annotated gold standards (treebanks); while, there does not exist large-scale an-

notated corpus for ungrammatical sentences. Therefore, to evaluate the parsers for ungrammatical

sentences, rather than creating a treebank or adapting the annotation schema for ungrammatical

sentences (which may not always be valid (Cahill, 2015; Ragheb and Dickinson, 2012)), we pro-

pose an alternative approach to consider the automatically produced parse trees of well-formed

sentences as gold standards and compare the parser output for the corresponding problematic sen-

tences against them. We say that a parser is robust for ungrammatical sentences, if it can overlook

problems such as grammar mistakes and produce a parse tree that closely resembles the correct

analysis for the intended sentence.

Evaluating robustness of parsers, however, presents another challenge; since the words of the

ungrammatical sentence and its grammatical counterpart do not necessarily match (there might be

missing or extra words). Hence, we introduce a modified evaluation metric to compare parse trees

of ungrammatical sentences against parse trees for their corresponding grammatical sentences. In

the first part of this thesis, we present our proposed robustness evaluation methodology, and we

compare state-of-the-art dependency parsers to see how much and in what ways they are robust

when applied to ungrammatical sentences.

1.4.3 Parse Tree Fragmentation Framework

Our parser robustness analyses show that ungrammatical sentences present challenges for statis-

tical parsers; however, when ignoring the erroneous parts of the sentences, a typical parser does

reasonably well on recognizing the syntactic structures of the remaining grammatical parts of the

sentences. Therefore, a reasonable approach to parse ungrammatical sentences would be to identify

well-formed syntactic structures of those parts of the sentences that do make sense. We establish

4

this idea by proposing a new framework to parse ungrammatical sentences. We call this framework

parse tree fragmentation, since it re-interprets the parse trees by pruning the implausible syntactic

relations. Pruning syntactic relations results a set of tree fragments that are linguistically appro-

priate for the phrases they cover. Figure 2 shows a set of implausible syntactic relations for the

ungrammatical sentence which results in four fragments.

To automatically fragment the parse trees of ungrammatical sentences, we need a sizable tree

fragmentation gold standard corpus. Ideally, this corpus would be a collection of trees of un-

grammatical sentences and their corresponding sets of tree fragments extracted by knowledgeable

annotators who agree with each other. However, such a corpus does not exist. Annotating a cor-

pus of ungrammatical sentences with tree fragments is not also suitable for a large scale human

annotation. Because people may not agree on the best set of fragments, and furthermore, the frag-

mentation decisions may depends on the downstream application that uses the parse trees. Instead,

detecting parse tree fragments is significantly easier if a grammatical version of the sentence is

also given. Therefore, in this thesis, we propose methods to collect annotations leveraging existing

NLP corpora that have ungrammatical sentences and their corrected versions. An example data

source of this type is a machine translation evaluation corpus, which consists of machine trans-

lated sentences and their corresponding references. Since the intended meaning is known, people

can make fragmentation decisions with high inter-annotator agreement. In the most informative

case, the fluent paraphrases also come with an explanation for each replacement. An example data

source of this type is an English-as-a-Second language learner’s corpus, which consists of student

sentences and their detailed corrections. Constrained by the location and type of each error, the

fragmentation decisions may be made deterministically without a human annotator. Therefore, in

this thesis, we create a gold standard corpus by extracting tree fragments from the more informative

data sources such as an MT evaluation corpus and an ESL learner’s corpus.

By assuming the existence of a gold standard training corpus, we propose three fragmentation

strategies to automatically produce parse tree fragments for ungrammatical sentences. In one, we

propose a post-hoc process on the outputs of off-the-shelf parsers for the ungrammatical sentences.

In the other two, we only make use of the training data to jointly learn to parse and fragment the

ungrammatical sentences. The two joint methods are based on a parser retraining method and a

sequence-to-sequence labeling method.

5

The members of the vote opposes any him

det pobj
det

Figure 2: The red dotted dependencies show a set of implausible syntactic relations which results

in four fragments.

1.4.4 Applications of Parse Tree Fragmentation

To validate the utility of the parse tree fragmentation, we use it in two downstream NLP tasks

which benefit from syntactic parsing:

• Sentential fluency judgment task which predicts how “natural” a sentence might sound to a

native-speaker human. These predictions can be useful, for instance, to help grading stu-

dents’ writings. An automatic fluency judge uses syntactic analysis to make predictions on

the sentence-level.

• Semantic role labeling (SRL) task which identifies semantic relations of groups of words with

respect to a particular verb in a sentence. The obtained semantic relations can be useful for

other NLP tasks such as question answering. The semantic relations are typically extracted

on the word-level.

Because the two applications process the sentences at different levels, we would be able to

investigate the usefulness of parse tree fragmentation in two distinct applications. We hypothesize

the parse tree fragmentation can provide informative signals to help downstream NLP applications.

Through a set of empirical studies, we show that our hypothesis holds.

1.5 THESIS CONTRIBUTIONS

This thesis advances the research on parsing ungrammatical sentences in the following ways:

6

• We have designed a metric and methodology for evaluating the impact of ungrammatical sen-

tences on statistical parsers.

– We have conducted a quantitative comparison of parser accuracy of leading dependency

parsers on ungrammatical sentences; this may help practitioners to select an appropriate

parser for their applications.

– We have conducted a suite of robustness analyses for the parsers on specific kinds of

problems in the ungrammatical sentences; this may help developers to improve parser

robustness in the future.

• We have proposed parse tree fragmentation framework as a way to address the mismatch be-

tween ungrammatical sentences and statistical parsers that are not trained to handle them.

– We have devised methods for extracting gold standard tree fragments using evaluative

corpora available for other NLP applications.

– We have proposed three practical fragmentation methods based on availability of resources

for each ungrammatical domain.

– We have verified utility of extracted tree fragments for two downstream NLP applications

of fluency detection and semantic role labeling.

7

2.0 PRELIMINARIES AND BACKGROUND

2.1 INTRODUCTION

In this chapter we give an overview of the terminology and the concepts that are discussed through-

out this dissertation. In doing so, we start out with reviewing several domains that contain ungram-

matical sentences. We then turn to syntactic parsing with the special focus on partial parsing ap-

proaches, which have similar concept as our parse tree fragmentation framework. Next, we provide

an overview of evaluating parse trees, especially on downstream NLP applications that leverage

parsing as a component. We discuss two specific applications that we explore in this thesis, by

defining the tasks and giving an overview of the related work.

2.2 UNGRAMMATICAL SENTENCES

Different domains of ungrammatical sentences might have unique properties that introduce vari-

ous challenges for the NLP applications. In this section, we review several natural data sources

in which the sentences may contain grammatical mistakes: writings of ESL students, automatic

machine translation outputs, Twitter data, and Automatic Speech Recognition (ASR) transcripts.

For each data source, we first present its main characteristics and available corpora; then we in-

troduce some common NLP approaches used to process its sentences. Finally, we compare these

ungrammatical domains from the parsing perspective. In this thesis, we focus on written domain

of ESL and MT, since their major goal is to generate fluent and grammatical sentences.

8

2.2.1 English-as-a-Second Language (ESL)

2.2.1.1 ESL Corpora

Because English-as-a-Second Language (ESL) learners tend to make mistakes when learning En-

glish, they often create ungrammatical sentences. To further study ESL mistakes, researchers have

created learner corpora where English experts mark and correct errors. These learner corpora have

different annotation standards and different error categories. Despite their differences, they all

include basically the same general types of errors. They all consider missing, unnecessary and

replacing word errors based on the part of speech tag of the involved word. By knowing the expert

corrections of the sentences that show the location and type of the errors, one can easily reconstruct

the corrected version of each ungrammatical ESL sentence. The following is an example of the

given information in an ESL corpus:

ESL Sentence: We live in changeable world.

Corrections: (Missing determiner “a” at position 3)

(An adjective needs replacing with “changing” between positions 3 and 4)

Given this information, the corrected version of the ESL sentence can be reconstructed:

Corrected ESL Sentence: We live in a changing world.

In this thesis, we use three available ESL corpora:

• First Certificate in English (FCE) (Yannakoudakis et al., 2011). This is a commonly

used corpus in the grammar error correction community and has around 31,500 sentences

written by students taking Cambridge English exams. 21,000 of the sentences have at least

one grammar mistake. These sentences are corrected by English teachers with the detailed

list of corrections (containing the type and the position of errors).

• National University of Singapore Corpus of Learner English (NUCLE) (Dahlmeier

et al., 2013). This corpus is used in the grammar error correction shared tasks of CoNLL-

2013 (Ng et al., 2013) and CoNLL-2014 (Ng et al., 2014). It contains 60,800 sentences

written by Singaporean college students; among which 21,500 sentences have at least one

mistake. The erroneous sentences are corrected by English teachers with the detailed list

of corrections (containing the type and the position of errors).

9

• EF-Cambridge Open Language Database (EFCAMDAT) (Geertzen et al., 2013)1. This

corpus has a considerable size of sentences submitted to Englishtwon, the online school of

EF that is accessed by thousands of learners each day. This corpus will continue to grow as

new data come it. The version of corpus that we used has more than 1,200,000 sentences

with at least one grammar mistakes.2 These sentences are corrected by teachers or correc-

tors to provide feedback to learners. Even though these errors are annotated with some error

codes (e.g. article or verb tense error types), the corrections are not as detailed and accurate

as FCE and NUCLE corpora. Since, the corrections are not reliable enough, we only used

them to reconstruct the grammatical sentences from the ungrammatical sentences. Thus,

we use this huge parallel sentences (ungrammatical/grammatical) as a resource to train our

automatic fragmentation methods that require a large amount of data.

2.2.1.2 NLP Research on ESL

NLP techniques are used to automatically assess learners’ writings, detect any errors, and suggest

possible corrections for these errors. In the following, we focus on the area of grammar error

detection and correction, and its connection with parsing ESL writings.

Grammar Error Correction (GEC)

The ultimate goal of GEC is to build a system to automatically provides feedback to writers,

whether they are second language learners or native speakers of a language. Spellcheckers and

grammar checking tools (e.g. Microsoft word’s grammar checker) are the most visible fruits of

GEC research. In this thesis, our focus is on processing writings of English learners.

In the past few years, the interest in GEC systems has grown considerably. The recent shared

tasks of Helping Our Own (HOO) (Dale and Kilgarriff, 2011; Dale et al., 2012) and Conference on

Natural Language Learning (CoNLL) (Ng et al., 2013, 2014) played an important role in progress

on GEC research. Three leading state-of-the-art approaches of correcting grammatical errors are:

1) building specific classifiers for different error types (Rozovskaya and Roth, 2014), 2) using

statistical machine translation to correct whole sentences (Rozovskaya and Roth, 2016; Yuan and

1https://corpus.mml.cam.ac.uk/efcamdat1/EFCamDat_UserManual_v02.pdf
2We filter out the annotated sentences that have only capitalization errors, or merging two sentences together.

Because these error types does not make any difference for our parsing strategies or are not in the sentence-level.

10

https://corpus.mml.cam.ac.uk/efcamdat1/EFCamDat_UserManual_v02.pdf

Briscoe, 2016), and 3) using sequence-to-sequence approaches to generate the correct sentences

(Schmaltz et al., 2016, 2017).

Parsing ESL Writings

The typical approach to parse domain specific sentences is to train a parser using manually an-

notated gold parse trees for the sentences of that domain. However, there are a few small semi-

manually constructed treebanks on learner text (Geertzen et al., 2013; Ott and Ziai, 2010; Berzak

et al., 2016), their size makes them unsuitable for training a parser. Moreover, some researchers

also raise valid questions over the merit of creating a treebank for ESL writings or adapting the

annotation schema (Cahill, 2015; Ragheb and Dickinson, 2012).

An alternative approach to parse ESL sentences is to use GEC systems to first correct erroneous

sentences, and then parse the corrected versions in a pipeline manner. However, fixing problematic

sentences may not always be possible, specially when they are very jumbled. Moreover, GEC sys-

tems are not perfect and even have mediocre performance on standard ESL corpora. The precision,

recall and F-measure of leading GEC systems on the standard ESL corpora are around 0.60, 0.25,

0.50 respectively (Rozovskaya and Roth, 2014, 2016).

2.2.2 Machine Translation (MT)

2.2.2.1 MT Corpora

Machine translation outputs are another source of problematic data that contain grammatical er-

rors. Unlike the ESL corpora, the MT corpora do not have detailed error corrections. The MT

corpora often contain the machine translation outputs and human translations against which MT

systems are evaluated. The human translation sentences are called reference sentences in the MT

community. In some cases, the machine translation outputs are manually revised with the goal of

performing minimal necessary operations. This set of refined translations is called human post-

editions. A good source of MT corpora is the annual conference on statistical machine translation

which is built on a series of annual Workshops on Machine Translation (WMT)3. The released

datasets contain machine translation outputs submitted to various shared tasks along with the ref-

erence translations and occasionally human post-editions. The following exemplifies an MT output

3http://www.statmt.org

11

and its accompanied resources:

MT Output: For almost 18 years ago the Sunda space “Ulysses” flies in the area.

Reference Sentence: For almost 18 years, the probe “Ulysses” has been flying through space.

Post-edited Sentence: For almost 18 years the “Ulysses” space probe has been flying in space.

In this thesis, we use the following machine translation corpora that contain machine transla-

tions and their human post-editions:

• LIG corpus (Potet et al., 2012)4. This corpus contains 10,881 French-English machine

translation outputs and their human post-editions.

• LISMI’s TRACE corpus (Wisniewski et al., 2013)5. This corpus has 6,693 French-to-

English machine translation outputs and their human post-editions.

2.2.2.2 NLP Research on MT Outputs

The NLP research on the machine translation outputs is mainly on evaluating the translations.

Existing automatic MT evaluation metrics, such as BLEU (Papineni et al., 2002), METEOR

(Denkowski and Lavie, 2011), TER (Snover et al., 2006) and MEANT (Lo and Wu, 2011), primar-

ily provide a single-value evaluation of the quality of the translation. But the task of improving a

translation system needs more detailed information about identifying source of errors in a given

system. One of the early works on error analysis of MT outputs is done by Vilar et al. (2006). They

introduced a general MT error typology that has been widely used in the literature (Fishel et al.,

2011; Berka et al., 2012; Popović and Ney, 2011). Although these error types have a significant

overlap with ESL error categories, the MT systems do not make spelling errors; instead they are

not able to translate some words and keep them untranslated.

In our own research, we have previously analyzed MT errors in terms of ESL mistake cate-

gories (Hashemi and Hwa, 2014). We assumed that an automatic translate-to-English system might

be seen as an English as a Second Language (ESL) writer whose native language is the source lan-

guage. The results suggested that MT systems have fairly similar distributions regardless of their

source languages, and the high-performing MT systems have error distributions that are more sim-

4http://www-clips.imag.fr/geod/User/marion.potet/index.php?page=download
5anrtrace.limsi.fr/trace_postedit.tar.bz2

12

http://www-clips.imag.fr/geod/User/marion.potet/index.php?page=download
anrtrace.limsi.fr/trace_postedit.tar.bz2

ilar to those of the low-performing MT systems than to those of ESL learners with the same L1.

This may be due to the common English language model component that all the MT systems use.

2.2.3 Twitter

2.2.3.1 Twitter Properties

Twitter is a new domain of noisy data for NLP. One property of tweets is that users are free to

send any short message up to 140 characters. The messages are often informal written texts that do

not follow the standard rules of writing. Tweets contain different forms of non-standard language:

using special character (e.g. # hashtags and emoticons), lengthening words (e.g. coooollll!!!!!),

shortening words (e.g. u or 2moro), and abbreviating phrases (e.g. lol) (Eisenstein, 2013). Aside

from these specific properties of tweets, tweets might also be ungrammatical and contain uninten-

tional spelling errors.

2.2.3.2 NLP Research on Tweets

Tweets differ from standard language, such as news reports, both in style and vocabulary. The

problem is that the traditional NLP tools (trained on edited text) work poorly on them (Kong et al.,

2014; Ritter et al., 2011; Foster et al., 2011a). The NLP researches have followed two approaches

to deal with the informal language of tweets: normalization and domain adaptation (Eisenstein,

2013). Normalization is the process of replacing non-standard words with “the contextually appro-

priate word or sequence of words” (Foster et al., 2011a). For example, transforming coooollll!!!!!

to cool!. Although normalization is a challenging task (because it is sometimes impossible to keep

the meaning of the sentences), some normalization labeled corpora have been created and accuracy

of automatic methods are climbing (Han and Baldwin, 2011; Han et al., 2012).

Another approach is to adapt NLP tools with the properties of tweets. Some NLP tools are

specially created for Twitter, such as a part-of-speech tagger (Gimpel et al., 2011), a named entity

recognizer (Ritter et al., 2011), and a dependency parser (Kong et al., 2014). Kong et al. (2014)

have also annotated a small set of tweets with their parse trees to train and test the Twitter depen-

dency parser, Tweebo. One property of Tweebo is that it is designed to ignore some tokens when

parsing the input text, but simultaneously use the ignored tokens as features. We hypothesize that

13

this property would be helpful for ungrammatical sentences specially when they have redundant

words. To investigate our hypothesis, we evaluate the robustness of Tweebo parser on two domains

of ungrammatical sentences in the next chapter.

2.2.4 Transcribed Conversation

2.2.4.1 Transcribed Conversation Corpora

Automatic Speech Recognition (ASR) transcripts of conversational speech offer another natural

source of problematic data; however, annotated disfluency in spoken utterances tend to focus on

removing extra fillers and repeated phrases (Rasooli and Tetreault, 2013; Honnibal and Johnson,

2014; Ferguson et al., 2015). These sentences are also typically shorter and simpler in their syntac-

tic structures. An example of annotated disfluent utterance is Switchboard corpus (Godfrey et al.,

1992), which contains transcribed conversation and parse trees annotated with edited nodes. The

annotated edited nodes help to reconstruct the fluent version of the utterances, indicating what the

speaker meant to say. The following is an example of observed utterance and its “cleaned” fluent

version:

Disfluent Utterance: I want a flight to Boston, uh, I mean Denver

Fluent Version: I want a flight to Denver

A listener can often subconsciously filter out spoken disfluencies. However, these disfluencies

negatively impact the accuracy of automated analysis performed on spoken utterances.

In this thesis, we primarily focus on written domains because ungrammatical sentences in

these domains have a wider range of error types, such as missing phrases, insertion of unnecessary

phrases, and incorrect phrasal ordering, than spoken domains.

2.2.4.2 NLP Research on Transcribed Conversation

Most of the NLP research on the speech utterances is to detect disfluencies (Georgila, 2009; Qian

and Liu, 2013). It is then possible to use a pipeline system and give the fluent version of the

utterances to the available NLP tools. Some approaches treat disfluency detection and parsing

jointly (Rasooli and Tetreault, 2013; Honnibal and Johnson, 2014). They show that a joint system

can improve the both disfluency detection and parsing of speech utterances.

14

2.2.5 Comparison of Ungrammatical Domains

We compare the four domains of ungrammatical sentences with the focus of syntactic parsing. We

specifically address the following questions:

• Do the ungrammatical sentences have various error types, i.e. missing, unnecessary, and

replacement word errors?

ESL and MT sentences might have various grammatical mistakes. While Twitter data and

ASR transcripts do not necessarily have missing terms or replacement word errors; but,

they might contain redundant terms that need to be ignored while parsing them.

• Is it possible to collect the corrected version of ungrammatical sentences to obtain a parallel

corpus of ungrammatical/grammatical sentences?

It is often possible to reconstruct corrected version of ungrammatical sentences for ESL,

MT, and ASR transcripts using the existing corpora for these domains. However, tweets

represent the informal language which often might not be possible to build unique versions

for them in the standard language of writing.

• Do the ungrammatical sentences have detailed correction annotations?

The ESL and ASR transcripts are usually annotated with the detailed corrections showing

the exact location and type of errors.

• Is there a manually created treebank for them?

There are small dependency treebanks manually annotated for a subset of ESL and Twit-

ter data. The Switchboard corpus is also a sizable constituency treebank for the spoken

language.

• Is there a specialized parser designed for them?

Tweebo parser is an adapted parser to handle parsing tweets. Researchers have also pro-

posed to adapt parsers to jointly parse and detect disfluency in spoken utterances.

Table 1 summarizes the comparison of the ungrammatical domains. In this thesis, we focus

on investigating parsing ESL and MT ungrammatical domains. Because, 1) the ultimate goal of

these domains is often to make fluent and grammatical sentences, 2) they have a wide range of

grammatical mistakes, and 3) no parser is designed for them. Furthermore, they have parallel

15

Property ESL MT Twitter ASR transcripts

Various error type 3 3 - -

Parallel data 3 3 - 3

Detailed error annotation 3 - - 3

Treebank
3

(∼ 5000 sent.)
-

3

(∼ 900 sent.)

3

(∼ 110, 500 sent.)

Specialized parser - -
3

(Tweebo)

3

(Joint systems)

Table 1: Comparison of the ungrammatical domains.

corpora of ungrammatical sentences with their corrections that we can use for studying parsing in

these domains.

2.3 SYNTACTIC PARSING

Syntactic parsing is the task of assigning a syntactic structure to a sentence. The syntactic structure

characterizes the possible relations and orderings of words within the sentence. In this section, we

give conceptual view on the various kinds of structures assign to sentences by categorizing them

into two groups of fully-connected and locally-connected structures.

2.3.1 Full Parsing

There are two major syntactic representations: a constituency (phrase-based) and a dependency.

Each representation produces a fully-connected structure for a sentence that encodes relationships

between words, but the form of the structures varies considerably. We review the general proper-

ties of both representations to indicate that our proposed approaches can be generalized for both

representations. For the purposes of this thesis, we focus on dependency representation.

16

S

.

.

VP

ADJP

SBAR

S

VP

VP

PP

NP

NNS

investors

IN

for

ADJP

JJ

treacherous

VB

remain

MD

will

NP

PP

NP

NN

market

JJ

high-yield

DT

the

IN

of

NP

JJ

much

IN

that

JJ

concerned

VBP

are

NP

NNS

Analysts

Figure 3: Example of a full constituency parse tree.

2.3.1.1 Constituency Parse Tree

A constituency (phrase-based) parse tree breaks a sentence into sub-phrases (Jurafsky and Martin,

2009). The interior nodes of the tree are types of phrases (e.g. noun phrase (NP) or verb phrase

(VP)), while the leaf nodes are the words in the sentence. Figure 3 shows the constituency parse for

the sentence Analysts are concerned that much of the high-yield market will remain treacherous for

investors. In general, a phrase structure representation may be found more suitable for languages

with rather clear constituency structures and fixed word order patterns.

Constituency representation is used as the syntactic formalism when annotating sentences with

their parse trees in several large scale human annotation treebanks, such as Penn Treebank project

(Marcus et al., 1993). These treebanks contain a collection of sentences with their manually anno-

tated parse trees which can then be used to train and evaluate statistical parsers.

2.3.1.2 Dependency Parse Tree

A dependency parse tree connects words in a sentence. Each node in the tree represents a word, and

each edge indicates the relationships between two words. The edges (or arcs) are called dependency

17

$ Analysts are concerned that much of the high-yield market will remain treacherous for investors .

NNS VBP JJ IN JJ IN DT JJ NN MD VB JJ IN NNS .

ROOT

nsubj

cop

ccomp

punct

mark

nsubj

aux

cop
prep

pobj

amod

det

prep pobj

Figure 4: Example of a full dependency parse tree.

relations and are labeled by the type of the dependency (Jurafsky and Martin, 2009). Figure 4

shows an example of the dependency tree. The direction of the arrow is from the head/parent word

to the dependent (modifier)/child word6. For instance, “Analysis” is the subject (nsubj) dependent

of the head word “concerned”. Often an artificial ROOT token ($ in our example) is added to the

dependency tree to ensure that every word in the sentence has one associated head word.

Dependency parse trees contain fewer nodes than constituency parse trees; instead of focusing

on phrase-structure rules and constituents (as in the constituency trees before), dependency struc-

ture of a sentence is only described in terms of binary relations between words, so they contain

fewer nodes. Another characteristics of dependency trees that make them more common in the

recent years is that they are more suitable for languages with free word order, such as Czech and

Turkish.

To be able to utilize the constituency treebanks in dependency representation, various work

has been done to convert constituency trees to dependency forms. These conversions leverage

linguistic phenomena and are mostly deterministic (rule-based) transformations. In Section 3.4.2.1,

we have used one of these methods to convert Wall Street Journal part of the Penn Treebank to

dependency parse trees.

6Note that the direction we follow is a convention in graph theory, and this is the reverse of the convention in
linguistics.

18

S

O

.

.

NP

NNS

investors

PP

IN

for

ADJP

JJ

treacherous

VP

VB

remain

MD

will

NP

NN

market

JJ

high-yield

DT

the

PP

IN

of

NP

JJ

much

SBAR

IN

that

ADJP

JJ

concerned

VP

VBP

are

NP

NNS

Analysts

Figure 5: Chunking analysis of a sentence.

2.3.2 Partial Parsing

Many NLP applications may not require fully connected, complex parse trees. Partial parsing (or

shallow parsing) is used in these situations to render a superficial syntactic analysis of a sentence.

For example, consider a systems that deals with tweets and needs to process them in a short amount

of time. Such text is problematic for either constituency or dependency parsers; the generated

complete parse trees might not match the tweet and most importantly they are costly. While partial

parsing is fast and still may give useful nuggets of information by omitting all but the most basic

syntactic segments.

In this section, we provide an overview of three existing approaches that partially parse sen-

tences: chunking, hedge parsing and vine parsing. Our proposed parse tree fragmentation frame-

work is similar to these existing partial parsing methods in the sense that they all tend to break

up parse trees to identify recognizable phrases. But the difference is that we break up the trees

with regard to grammar mistakes to handle mismatches between the ungrammatical sentences and

their syntactic structures. In the remaining of the section, we review the partial parsing methods to

demonstrate their differences with our work.

2.3.2.1 Chunking

Chunking is an alternative style of partial parsing. It processes the text to identify and classify

the flat non-overlapping segments. These segments correspond to the content-bearing parts of the

sentence and typically include noun, verb, adjective and prepositional phrases. The identified con-

stituents do not specify their internal structures or relations with other constituents in the sentence.

19

S

.

.

VP

VP

PP

NP

NNS

investors

IN

for

ADJP

JJ

treacherous

VB

remain

MD

will

NP

PP

NP

NN

market

JJ

high-yield

DT

the

IN

of

NP

JJ

much

IN

that

JJ

concerned

VBP

are

NP

NNS

Analysts

Figure 6: Example of Hedge parsing with maximum constituent span of 6.

Figure 5 shows an example of a chunk parse tree.

2.3.2.2 Hedge Parsing

Hedge parsing (Yarmohammadi et al., 2014) provides local internal hierarchical structure of phrases

without requiring fully connected parses. Its goal is to find a less computationally demanding

syntactic parser than a full parser but more expressive than a chunker. Hedge parsing discovers

constituents of length up to some maximum span, i.e, the constituent nodes that cover more than

some words are recursively elided. Then the hedges are sequentially connected to the top most

nonterminal in the tree. Figure 6 shows an example of hedge parse tree for the full parse tree of

Figure 3. The hedge parse tree keeps only full hierarchical annotations of structures within a local

window and ignores global constituents outside that window. In the example, the constituents that

cover less than 6 words are kept.

2.3.2.3 Vine Parsing

Similar pruning approaches have been used in dependency parsing known as vine parsing (Eisner

and Smith, 2005; Dreyer et al., 2006). Vine parsing behaves like hedge parsing and has a set of

constraints on arc lengths that considers only close words as modifiers. The assumption behind

these constraints is that a word’s dependents tend to fall near it in the sentence. Eisner and Smith

(2005) proposed a vine parser that imposes a bound on the length of each dependency relation,

20

$ Analysts are concerned that much of the high-yield market will remain treacherous for investors .

NNS VBP JJ IN JJ IN DT JJ NN MD VB JJ IN NNS .

Figure 7: Example of Vine parsing retaining only tree dependencies of length less than 6. The root

of the resulting parse fragments are now connected only by their dotted arcs “vine dependencies”

to $.

which is the string distance between the child and its parent. This set of hard constraints completely

ignores long dependencies in the parser. Figure 7 shows an example of a vine dependency tree for

the full parse tree in Figure 4. The vine parser keeps only dependencies of length less than 6;

thus five of the dependency relations are broken due to this length constraint. The modifiers of the

broken arcs are then connected to the root of the tree.

2.3.3 Parsing Evaluation

A good syntactic parser is expected to produce an accurate parse tree for a sentence. This parse tree

is typically used in a downstream NLP application. It is also to be expected that the performance

of an NLP system degrades if the generated parse tree is incorrect. Thus, the generated parse trees

can be evaluated in two main criteria (Resnik and Lin, 2010): Intrinsic evaluation and Extrinsic

evaluation. Intrinsic evaluation would analyze the accuracy of the produced parse trees as a stand-

alone system, whereas extrinsic evaluation would analyze the performance of the parse trees within

downstream NLP applications.

21

2.3.3.1 Intrinsic Evaluation

The intrinsic evaluation of parsers proceeds by comparing the output of a parser against gold

standard parse trees provided by human annotators. Depending on the representation of the parse

tree whether constituency or dependency, the standard evaluation metrics are defined differently.

Constituency parse tree

The most widely used constituency evaluation techniques are called the PARSEVAL measures

(Black et al., 1991). The PARSEVAL evaluates how much the constituents in the generated parse

tree look like the constituents in a gold standard parse tree. The gold standard parse trees are

generally drawn from a treebank such as the Penn Treebank.

A constituent in the output of parser is correct if there is a constituent in the gold standard parse

with the same span of words and same non-terminal symbol. The labeled precision and recall are

then calculated as:

Precision =
of correct constituents in generated parse

Total number of constituents in output generated parse

Recall =
of correct constituents in generated parse

Total number of constituents in gold standard parse

Often F-score is reported as the harmonic mean of precision and recall:

F-score = 2× Precision× Recall
Precision + Recall

These metrics are used to evaluate the accuracy of various constituency parsing approaches

such as chunking and hedge parsing.

Dependency parse tree

The standard metrics for evaluating dependency parsing are labeled and unlabeled attachment ac-

curacy. Given a generated parse tree and a corresponding gold standard tree, labeled and unlabeled

attachment accuracy are simply the percentage of correct assignments:

Labeled Attachment Score (LAS) =
of words with correct head and correct dependency label

Total number of words

22

Unlabeled Attachment Score (UAS) =
of words with correct head (ignoring dependency label)

Total number of words

These metric are used to evaluate the performance of dependency parsing approaches such as

vine parsing.

2.3.3.2 Extrinsic Evaluation

It is important to know not only the accuracy of a parser but also the impact of the parser in a real

NLP application. This is the goal of the extrinsic evaluation, where the parser is evaluated as an

embedded component of an application. It is only with extrinsic evaluation that researchers can

tell if a parsing technique is working in the sense of actually improving performance of a system.

On the other hand, while extrinsic evaluation gives a better sense of the impact of parsers, it

requires integrating parsers into a complete working application which making it to be much more

difficult and time-consuming to implement. Furthermore, an extrinsic evaluation analysis on one

application may not generalize to other applications.

The parser’s output is used in several downstream NLP taks, such as machine translation (Quirk

and Corston-Oliver, 2006), information extraction (Miyao et al., 2008), and semantic dependencies

(Dridan and Oepen, 2011). Just recently, a new shared task of Extrinsic Parser Evaluation (EPE)7

is introduced. This shared task focuses on providing better estimates for different dependency

representations on a variety of downstream applications that rely on the syntactic structure of

sentences. The downstream applications that EPE supported are: biological event extraction (to

recognize bio-molecular events that are mentioned in biomedical literature), fine-grained opinion

analysis (to extract MPQA-style (Wiebe et al., 2005) opinion expressions from text), and negation

resolution (to find scope of negated cue). In the next section, we discuss the NLP applications

that we explore in this thesis to evaluate the fragmentation framework over the ungrammatical

sentences.

7http://epe.nlpl.eu

23

http://epe.nlpl.eu

2.4 SYNTACTIC PARSING APPLICATIONS

As we saw in the extrinsic evaluation section (Section 2.3.3.2), there is a wide range of NLP

applications that leverage parsing as a component. In this section, we discuss the two applications

that we explore in this thesis: 1) sentence-level fluency judgment as the task of predicting how

much grammatical a sentence is, and 2) semantic role labeling (SRL) as the task of identifying

semantic dependencies between words in a sentence. We choose fluency judgment application

because it is the direct application of parsing that deals with ungrammatical sentences; we also

choose SRL application because it is one of the basic tasks in semantic analysis and studying the

behaviour of SRL systems on ungrammatical sentences could shed some light on this problem.

2.4.1 Sentence-Level Fluency Judgment

An automatic fluency judgment system detects whether a sentence is hard to read. It can be useful

in various applications; for example it can be used in grammar checking systems to help both native

and L2 speakers to improve their written communication; it can also be used to decide whether an

MT output needs to be post-processed by a professional translator.

2.4.1.1 Fluency Judgment Task

Judging fluency of a sentence is a basic task that typically has to be performed before further

analyzing the errors in the sentence. Gamon and Leacock (2010) describes fluency judgment as “a

baseline task that any error detection and correction system needs to address.” Fluency judgment

could be either a binary task, i.e. to decide whether the sentence contains errors, or a finer-grained

predication, i.e. to predict the degree of grammaticality of the sentence. Note that we use the

terms fluency and grammaticality interchangeably; in some previous work this task is referred as

grammaticality judgment (Wagner et al., 2009; Post, 2011).

One measure of grammaticality is to directly use the language model perplexities of sentences.

However, they are not sufficient because they do not capture long distance dependencies. In addi-

tion, since grammaticality is a matter of syntax of a language, syntax-based features can be used to

measure it. Therefore, various parse tree features have been incorporated to help grammaticality

24

judgment task (Post, 2011; Post and Bergsma, 2013; Mutton et al., 2007).

2.4.1.2 Fleuncy Judgment Related Work

Fluency judgment has been studied vastly in two domains of human generated text and machine

generated text. A recent resource in human generated text is introduced in Automated Evaluation

of Scientific Writing (AESW)-20168 shared task (Daudaravicius et al., 2016). The task is to predict

whether a given sentence requires editing to improve it. Thus the task evaluated as a binary clas-

sification. The machine generated text is studied more broadly in different NLP applications, such

as summarization and machine translation. In the machine translation domain, there is a series of

Quality Estimation (QE)9 shared tasks organized by the WMT conference (Bojar et al., 2016). The

QE task is to estimate the quality of machine translation output on real time given the input sen-

tence in the source language. The scores produced by a QE system can be used to decide whether

the machine translation output is good enough to be published or it needs further post-editing; the

scores can also be used to choose between translations e.g. in translation reranking.

Automatic fluency judgment can be made in various ways. The basic approach is to estimate

the grammaticality of a sentence using a language model. The simplest language models, n-grams,

have been productive throughout natural language processing applications on both human and

machine outputs; for instance, in automatic essay grading or in picking the best translation of a

machine translation system. Although n-gram models are long-studies and easy to train, they are

insufficient as models of language since they are unable to (easily) capture long distance linguistic

phenomena. As a result, they are not able to detect grammatical issues in the sentences.

Since grammaticality judgment is a matter of syntax of a language, another approach for mod-

eling grammaticality is to leverage syntactic features. The parse score and context-free grammars

(CFGs) are used as features in fluency judgment classifiers and shown improvement upon n-gram

baselines (Cherry and Quirk, 2008; Wagner et al., 2009; Wong and Dras, 2010; Heilman et al.,

2014). A further successful approach in grammaticality task is to use Tree Substitution Grammars

(TSGs) (Joshi and Schabes, 1997) which are generalized form of context-free grammars that allow

nonterminals to rewrite as tree fragments of arbitrary size. Post (2011) demonstrated that larger

8http://textmining.lt/aesw/index.html
9http://www.statmt.org/wmt17/quality-estimation-task.html

25

http://textmining.lt/aesw/index.html
http://www.statmt.org/wmt17/quality-estimation-task.html

I left my pearls to my daughter in my will .

A0
A1

A2

AM-LOC

Figure 8: Example of semantic role labeling.

tree fragments of TSG are more natural units in grammatical sentences; thus they are less likely

to fit into ungrammatical sentences. They learned TSGs automatically from a Treebank with a

Bayesian model, then used TSG derivations as features for grammaticality classification. We use

this model as one of our baselines in Section 7.2.

2.4.2 Semantic Role Labeling (SRL)

Semantic role labeling (SRL) is crucial to natural language understanding as it identifies the seman-

tic relations in text. These relations provide a more stable semantic analysis across syntactically

different sentences; as a result, they can be used in a range of NLP tasks such as information

extraction and question answering (Shen and Lapata, 2007; Maqsud et al., 2014).

2.4.2.1 SRL Task

The goal of semantic role labeling task is to identify the roles of groups of words with respect

to a particular verb in a sentence. Recognizing these roles is a key task for answering “what”,

“when”, “who”, “why”, etc. questions in all NLP applications in which some kind of semantic

interpretations is required, such as information extraction, question answering and summarization.

For example, given a sentence “I left my pearls to my daughter in my will.”, the goal is to detect

arguments of the verb “left” and produce the semantic dependencies as in Figure 8. Here “I” is the

leaver, “my pearls” is the thing left, “to my daughter” represents the beneficiary, and “in my will”

indicates the location of the action. The semantic roles are commonly divided into core arguments

(A0-A5) and additional common classes such as location, time, etc. These roles have different

26

semantics for each verb, though A0 most often refers to agents, and A1 refers to patients. Table

22 in the Appendix shows more details about semantic roles. Different senses of arguments are

specified in the frame files of the PropBank (Kingsbury and Palmer, 2002), which is an annotated

text with roles for each argument.

2.4.2.2 Relation of Syntactic and Semantic Analyses

Syntactic parsing plays an important role in semantic role labeling; it provides various syntac-

tic features, such as “path” between predicate and argument (proposed by (Gildea and Jurafsky,

2002)), that are mainstay of high performing semantic role labeling systems (FitzGerald et al.,

2015; Roth and Woodsend, 2014; Foland and Martin, 2015). For example, as depicted in the top

part of Figure 9, the semantic roles of the grammatical sentence overlaps with its dependency

tree.10 Although dependency parsing and semantic role labeling have different definitions (the

former spans over a sentence, while the latter centers around individual predicates), their outputs

often overlap. This is because the modifiers of the verbs in a parse tree tend to be its arguments in

the semantic graph. Such overlaps corroborate the impact of syntactic parsing on the semantic role

labeling.

In addition, for the purposes of this thesis, we investigate the impact of ungrammatical mistakes

on the syntax of the sentence and thus on its semantic. For example, the bottom part of the Figure

9 shows an ungrammatical sentence written by an English-as-a-Second Language (ESL) learner.

The ungrammatical sentence has two small mistakes (a missing comma and a phrase replacement

error), but the impact of these mistakes is significant on the syntactic parse. Even though the parse

tree of the ungrammatical sentence looks well-formed, the syntactic structure does not closely re-

semble the analysis for the corrected sentence (top part of figure): the head of the ungrammatical

sentence is changed to “remember” from “known”, and the “for ever” phrase has preposition re-

lation instead of time adverb. The figure also shows the impact of grammatical mistakes on the

interpretability of the semantic dependency graph, as compared to the correct version. Because of

the mistakes in the sentence, the semantic graph of the ungrammatical sentence has some extra se-

mantic dependencies: “remember→I” and “known→for”. In this thesis, we will study the impact

10Dependency trees are produced by SyntaxNet parser (Andor et al., 2016) and semantic dependency graphs are
produced by semantic role labeler of the Mate toolkit (Björkelund et al., 2009).

27

As I remember , I have known her forever

As I remember I have known her for ever

ROOT

ROOT

A0

AM-TMP

A0

A1

AM-TMP

A0

AM-TMP

A0

A1

A2A1

Se
m

an
tic

ro
le

s
Se

m
an

tic
ro

le
s

Pa
rs

e
tr

ee
Pa

rs
e

tr
ee

G
ra

m
m

at
ic

al
U

ng
ra

m
m

at
ic

al

Figure 9: Syntactic (inner) and semantic (outer) analyses of an ungrammatical sentence (bottom)

and its corrected version (top). The dotted arcs show mismatched dependencies of the ungrammat-

ical sentence with the grammatical sentence.

28

of syntax in detecting these incorrect semantic dependencies (more details are given in Section

7.3).

2.4.2.3 SRL Related Work

The availability of resources such as PropBank corpus (Palmer et al., 2005) and organizing SRL

shared tasks of CoNLL-2004 and CoNLL-200511, has enabled significant progress in SRL sys-

tems over the past decade. State-of-the-art SRL systems follow two main approaches. The first

approach, which is widely used, employs a linear classifier with feature templates. A huge amount

of efforts have been made to extract the best discriminative features. One of the most important

set of features is defined based on syntactic parsing. Pradhan et al. (2005) and Punyakanok et al.

(2008) used the generated parse trees and assigned semantic role labels to the constituents for

each parse tree. They showed that combining features from different syntactic views brings large

improvement for the SRL systems.

The second approach tries to solve SRL problem without feature engineering (Collobert et al.,

2011; Zhou and Xu, 2015). Collobert et al. (2011) proposed a convolutional neural network model

by initializing with word embeddings. Since convolution layer does not model long distance depen-

dencies, they had to process the whole sequence for each given argument-predicate pair. Therefore,

their introduced model is computationally expensive. Moreover, they also incorporated syntactic

features of Charniak parser, in order to catch up with the performance of traditional methods.

11http://www.cs.upc.edu/˜srlconll/

29

http://www.cs.upc.edu/~srlconll/

3.0 IMPACT OF UNGRAMMATICAL SENTENCES ON PARSING

3.1 INTRODUCTION

In this chapter, we investigate the impact of ungrammatical sentences on parsers by addressing

the question: How much does a parser’s performance degrade when dealing with ungrammatical

sentences? If a parser can overlook problems such as grammar mistakes and produce a parse tree

that closely resembles the correct analysis for the intended sentence, it is said that the parser is

robust (Bigert et al., 2005; Kakkonen, 2007; Foster, 2007). For example, consider the following

ESL sentence and its corresponding correction from the FCE dataset (Yannakoudakis et al., 2011):

ESL Sentence: This made me get bored.

Corrected ESL Sentence: This made me feel bored.

The only correction is the replacement of the verb “get” with “feel”. Thus, we expect that a

robust parser produces a similar syntactic structures for both sentences. However, parsing these

sentences with the Turbo parser (Martins et al., 2013), we observe inconsistencies between gen-

erated parse trees of two sentences. Figure 10 shows the parse trees of the sentences. Although,

the sentences have the same part of speech sequence, the parser generates different trees for them

around the error word.

Because there is no explicit large-scale gold standard data (treebank) for various domains of

ungrammatical sentence, such as machine translation outputs, we introduce a methodology for

evaluating robustness of parsers when dealing with ungrammatical sentences. Moreover, to explore

the impact of ungrammatical sentences on parsers, we report a set of empirical analyses of the

leading dependency parsers on two domains of ungrammatical text.

30

DT

This
VBD

made
PRP
me

VB
get

VBN

bored

This
DT

made
VBD

me
PRP

feel
VB

bored
VBN

ROOT

ROOT

E
SL

se
nt

.
C

or
re

ct
ed

se
nt

.

Figure 10: Parse trees of an ESL sentence and its corrected counterpart.

3.2 ASSESSING THE IMPACT OF UNGRAMMATICAL SENTENCES ON PARSERS

To explore the impact of ungrammatical sentences on parsers, we need to be able to evaluate their

generated parse trees over the ungrammatical text. However, parser evaluation for ungrammat-

ical text presents some domain-specific challenges. The typical approach to evaluate parsers is

to compare parser outputs against manually annotated gold standards. But, these annotated tree-

banks are not available for all the ungrammatical domains. For example, there is no treebank for

machine translation outputs, while there is a considerably large treebank for transcribed conversa-

tions Godfrey et al. (1992). For the ESL and social media domains, although there are a few small

semi-manually constructed treebanks on learner text (Geertzen et al., 2013; Ott and Ziai, 2010)

or tweets (Daiber and van der Goot, 2016), their size makes them unsuitable for the evaluation of

parser robustness. Moreover, some researchers also raise valid questions over the merit of creating

a treebank for ungrammatical sentences or adapting the annotation schema (Cahill, 2015; Ragheb

and Dickinson, 2012). We, therefore, need to come up with an alternative approach be able to

evaluate parsers’ performances on various ungrammatical domains.

A “gold-standard free” alternative is to compare the parser output for each noisy sentence with

the parse tree of the corresponding correct sentence. Foster (2004) used this approach over a small

set of ungrammatical sentences and showed that parser’s accuracy is different for different types

of errors. A limitation of this approach is that the comparison works best when the differences

31

between the noisy sentence and the correct sentence are small. This is not the case for some

ungrammatical sentences (especially from MT systems). Another closely-related approach is to

semi-automatically create treebanks from artificial errors. For example, Foster generated artificial

errors to the sentences from the Penn Treebank for evaluating the effect of error types on parsers

(Foster, 2007). In another work, Bigert et al. (2005) proposed an unsupervised evaluation of parser

robustness based on the introduction of artificial spelling errors in error-free sentences. Kakko-

nen (2007) adapted a similar method to compare robustness of four parsers over sentences with

misspelled words.

Our proposed evaluation methodology is the most similar to the “gold-standard free” approach;

we compare the parser output for an ungrammatical sentence with the automatically generated

parse tree of the corresponding correct sentence. In the next section, we discuss our evaluation

metric to address the concerns that some ungrammatical sentences may be very different from

their corrected versions. This allows us to evaluate parsers with more realistic data that exhibit

a diverse set of naturally occurring errors, instead of artificially generated errors or limited error

types.

3.3 PROPOSED GOLD-STANDARD FREE METHODOLOGY

For the purpose of parser robustness, we create pseudo gold parse tree for a problematic sentence

and then compare the parser output for the corresponding problematic sentence against it.

3.3.1 Creating Pseudo Gold Parse Trees

We propose to create the gold parse tree of an ungrammatical sentence by taking the automatically

produced parse tree of a well-formed sentence as “gold-standard”. Even if the “gold-standard” is

not perfectly correct in absolute terms, it represents the norm from which parse trees of problematic

sentences diverge: if a parser were robust against ungrammatical sentences, its output for these

sentences should be similar to its output for the well-formed ones. Our proposed gold standard

procedure is based on three assumptions (Foster, 2007):

32

1. For every ungrammatical sentence, there is a grammatical sentence that has the same

meaning as the ungrammatical sentence.

2. A state-of-the-art dependency parser produces parse trees of a grammatical sentence that

reflects, to some extent, that sentence’s correct syntactic structure.

3. The parse tree of an ungrammatical sentence should be as close as possible to the parse

tree for its corresponding grammatical sentence.

In keeping with these assumptions, we create gold parse tree for an ungrammatical sentence

by projecting the parse tree of its grammatical sentence to the ungrammatical sentence. Following

are the steps that we take:

• Step 1: Running a state-of-the-art parser over the grammatical sentences.

• Step 2: Finding word alignments between ungrammatical and grammatical sentences.

• Step 3: Projecting directly the dependency arcs of grammatical sentence to the ungram-

matical sentence using the alignments. For each dependency arc in the parse tree of

grammatical sentence, if both the head and the modifier are aligned to two words of the

ungrammatical sentence, we directly project the dependency arc to the aligned words in

the ungrammatical sentence.

Figure 11 shows an example of projecting syntactic dependencies from the grammatical sen-

tence to the ungrammatical sentence.

3.3.2 Evaluating Parse Trees

Determining the evaluation metric for comparing these trees, however, presents another challenge.

Since the words of the ungrammatical sentence and its grammatical counterpart do not necessarily

match (an example is given in Figure 12), we cannot use standard metrics such as Parseval (Black

et al., 1991). We also cannot use adapted metrics for comparing parse trees of unmatched sentences

(e.g., Sparseval (Roark et al., 2006)) because these metrics consider all the words regardless of the

mismatches (extra or missing words) between two sentences. This is a problem for comparing un-

grammatical sentences to grammatical ones because a parser is unfairly penalized when it assigns

relations to extra words, and when it does not assign relations to missing words. Since a parser

33

I appreciate all this

I appreciate all about this

ROOT

ROOT

G
ra

m
m

at
ic

al
(A

ut
om

at
ic

)
U

ng
ra

m
m

at
ic

al
(P

se
ud

o
G

ol
d)

Figure 11: Projecting parse tree of the Grammatical sentence (top) to the Ungrammatical sentence

(bottom) to create “gold standard” tree of the ungrammatical sentence.

cannot modify the sentence, we do not want to penalize these extraneous or missing relations; on

the other hand, we do want to identify cascading effects on the parse tree due to a grammar error.

For the purpose of evaluating parser robustness against ungrammatical sentences, we propose a

modified metric in which the dependencies connected to unmatched (extra or missing) error words

are ignored. A more formal definition is as follows:

• Shared dependency is a mutual dependency between two trees;

• Error-related dependency is a dependency connected to an extra word1 in the sentence;

• Precision is (# of shared dependencies) / (# of dependencies of the ungrammatical sen-

tence - # of error-related dependencies of the ungrammatical sentence);

• Recall is (# of shared dependencies) / (# of dependencies of the grammatical sentence -

of error-related dependencies of the grammatical sentence);

• Robustness F1 is the harmonic mean of precision and recall.

Figure 12 shows an example in which the ungrammatical sentence has an unnecessary word,

“about”, so the three dependencies connected to it are counted as error-related dependencies. There

are two matched dependencies between the trees, this results in a precision of 2/(5−3) = 1, recall

of 2/(4− 0) = 0.5 and F1 of 66%.

1The extra word in the ungrammatical sentences is an unnecessary word error, and the extra word in the grammat-
ical sentence is a missing word error.

34

I appreciate all about this

I appreciate all about this

ROOT

ROOT

U
ng

ra
m

m
at

ic
al

(P
se

ud
o

G
ol

d)
U

ng
ra

m
m

at
ic

al
(A

ut
om

at
ic

)

Figure 12: Example of evaluating robustness of an automatic parse tree (bottom) with the gold

standard tree (top) of the Ungrammatical sentence. The dotted red arcs show error-related depen-

dencies. The robustness F1 is 66%.

3.4 EXPERIMENTAL SETUP

Our experiments are conducted over a wide range of dependency parsers that are trained on two

different treebanks: Penn Treebank (PTB) and Tweebank. We evaluate robustness of parsers over

three datasets that contain ungrammatical sentences: writings of English as a second language

learners, machine translation outputs.

3.4.1 Parsers

Our evaluation is over eight state of the art dependency parsers representing a wide range of ap-

proaches. For all parsers we use their publicly available versions with the standard parameter

settings.

• Malt Parser (Nivre et al., 2007)2 A greedy transition-based dependency parser. We use

LIBLINEAR setting in the learning phase.

• Mate Parser v3.6.1 (Bohnet, 2010)3 A graph-based dependency parser that uses second-

order maximum spanning tree.

2www.maltparser.org
3code.google.com/p/mate-tools

35

www.maltparser.org
code.google.com/p/mate-tools

• MST Parser (McDonald and Pereira, 2006)4 A first-order graph-based parser that searches

for maximum spanning trees.

• Stanford Neural Network Parser (SNN) (Chen and Manning, 2014)5 A transition-based

parser that uses word embeddings. We use pre-trained word embeddings from Collobert

et al. (2011) as recommended by the authors.

• SyntaxNet (Andor et al., 2016)6 A transition-based neural network parser. We use the

globally normalized training of the parser with default parameters.

• Turbo Parser v2.3 (Martins et al., 2013)7 A graph-based dependency parser that uses dual

decomposition algorithm with third-order features.

• Tweebo Parser (Kong et al., 2014)8 An extension of Turbo Parser specialized to parse

tweets. A new constraint is added to Turbo Parser’s integer linear programming to ignore

some Twitter tokens from parsing, but simultaneously uses them as parsing features.

• Yara Parser (Rasooli and Tetreault, 2015)9 A transition-based parser that uses beam search

training and dynamic oracle.

3.4.2 Data

We train all the parsers using two treebanks and test their robustness over two ungrammatical

datasets.

3.4.2.1 Parser Training Data

We vary the types of training sources; the parsers are trained with the Penn Treebank (a treebank

on news text) (Marcus et al., 1993) and Tweebank (a treebank on Tweets) (Kong et al., 2014). We

4seas.upenn.edu/˜strctlrn/MSTParser/MSTParser.html
5nlp.stanford.edu/software/nndep.shtml
6github.com/tensorflow/models/tree/master/syntaxnet
7www.cs.cmu.edu/˜ark/TurboParser
8github.com/ikekonglp/TweeboParser
9github.com/yahoo/YaraParser

36

seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
nlp.stanford.edu/software/nndep.shtml
github.com/tensorflow/models/tree/master/syntaxnet
www.cs.cmu.edu/~ark/TurboParser
github.com/ikekonglp/TweeboParser
github.com/yahoo/YaraParser

choose Penn Treebank to be comparable with other studies, and Tweebank because it is a bit more

like the test domain.

Penn Treebank (PTB)

We follow the standard splits of Penn Treebank, using section 2-21 for training, section 22 for

development and 23 for testing. We transform bracketed sentences from PTB into dependency

formats using Stanford Basic Dependency representation (De Marneffe et al., 2006) from Stanford

parser v3.6. We assign POS tags to the training data using Stanford POS tagger (Toutanova et al.,

2003) with ten-way jackknifing (with 97.3% accuracy).

Tweebank

Tweebank is a Twitter dependency corpus annotated by non-experts containing 929 tweets (Kong

et al., 2014). Kong et al. (2014) used 717 of tweets for training and 201 for test10. We follow the

same split in our experiments. We use pre-trained POS tagging model of Kong et al. (2014) (with

92.8% accuracy) over the tweets.

The elements in tweets that have no syntactic function (such as hashtags, URLs and emoticons)

are annotated as unselected tokens (no tokens as the heads). In order to be able to use Tweebank

in other parsers, we link the unselected tokens to the wall symbol (i.e. root as the heads). This

assumption will generate more arcs from the root, but since we use the same evaluation setting

for all the parsers, the results are comparable. We evaluate the accuracy of the trained parser on

Tweebank with the unlabeled attachment F1 score (same procedure as Kong et al. (2014)).

3.4.2.2 Robustness Test Data

To test robustness of parsers, we choose two domains of ungrammatical sentences that we dis-

cussed in Chapter 2: English learner and machine translation outputs. For fair comparison over

test data, we automatically assign POS tags to the test data. When parsers are trained on PTB,

we use Stanford POS tagger (Toutanova et al., 2003). When parsers are trained on Tweebank, we

coarsen POS tags to be compatible with the Twitter POS tags using the mappings specified by

Gimpel et al. (2011).

10github.com/ikekonglp/TweeboParser/tree/master/Tweebank

37

github.com/ikekonglp/TweeboParser/tree/master/Tweebank

English as a Second Language corpus (ESL)

As discussed in Section 2.2.1.1, the ESL corpora contain writings of English as a second language

learners and their corresponding error corrections. Given the errors and their corrections, we can

easily reconstruct the corrected version of each ungrammatical ESL sentence. In this experiments,

we use the First Certificate in English (FCE) dataset (introduced in Section 2.2.1.1) and from this

corpus, we randomly select 10,000 sentences with at least one error; there are 4954 with one error;

2709 with two errors; 1290 with three; 577 with four; 259 with five; 111 with six; and 100 with 7+

errors.

Machine Translation corpus (MT)

We also use machine translation outputs as anther domain of problematic sentences. From the LIG

and LISMI’s TRACE corpora (introduced in Section 2.2.2.1), we randomly select 10,000 sentences

with at lease one edit distance (upon words) with their human-edited sentence. The distribution of

the number of sentences with their edit distances from 1 to 10+ is as follows (beginning with 1 edit

distance and ending with 10+): 674; 967; 1019; 951; 891; 802; 742; 650; 547; and 2752.

To better understand the sampled ESL and MT datasets, we further breakdown the sentences

by the number of errors each contains. Figure 13 presents two graphs, plotting the number of

sentences and the average sentence length against the number of errors for two datasets. In the

ESL dataset, we observe that the number of sentences degrades with the increase of errors, which

means most of the ESL sentences have only a few errors. While in the MT dataset, the number of

sentences is constant by increasing the number of edits. The jump in the MT dataset when there

are 10 or more errors shows that there are a considerable number of sentences that have more than

10 edits (2752 sentences). In terms of average sentence length, as number of errors increases, the

average sentence length increases in both datasets. This is an intuitive observations, since longer

sentences tend to have more errors. Note that, since there are very few ESL sentences with more

than 7 errors, we do not plot their average sentence length.

38

(a) Distribution of sentences

(b) Distribution of sentence length

Figure 13: Some statistics of sampled ESL and MT datasets by number of errors.

39

3.4.3 Experimental Settings

In the robustness evaluation metric (Section 3.3), shared dependencies and error-related depen-

dencies are detected based on alignments between words in the ungrammatical and grammatical

sentences. We find the alignments in the ESL and MT data in a slightly different way. In the ESL

dataset, in which the error words are annotated, the grammatical and ungrammatical sentences

can easily be aligned. In the MT dataset, we use the TER (Translation Error Rate) tool (default

settings)11 to find alignments.

In our experiments, we present unlabeled robustness F1 micro-averaged across the test sen-

tences. We consider punctuations when parsers are trained with the PTB data, because punctua-

tions can be a source of ungrammaticality. But we ignore punctuations when parsers are trained

with the Tweebank data, because punctuations are not annotated in the tweets with their dependen-

cies.

3.5 EXPERIMENTS

We have conducted a set of preliminary experiments using the proposed robustness metric to evalu-

ate robustness of parsers in various conditions. This set of experiments aim to address the following

questions given separate training and test data:

1. How do parsers perform on erroneous sentences? (Section 3.5.1)

2. To what extent is each parser negatively impacted by the increase in the number of errors in

sentences? (Section 3.5.2)

3. To what extent is each parser negatively impacted by the interactions between multiple errors?

(Section 3.5.3)

4. What types of errors are more problematic for parsers? (Section 3.5.4)

11www.cs.umd.edu/˜snover/tercom

40

www.cs.umd.edu/~snover/tercom

3.5.1 Overall Accuracy and Robustness

The overall performances of all parsers are shown in Table 2. Note that the Tweebo Parser’s

performance is not trained on the PTB because it is a specialization of the Turbo Parser, designed

to parse Tweets. Table 2 shows that, for both training conditions, the parser that has the best

robustness score in ESL domain has also high robustness for the MT domain. This suggests that

it might be possible to build robust parsers for multiple ungrammatical domains. The training

conditions do matter – Malt performs better when trained from Tweebank than from the PTB. In

contrast, Tweebank is not a good fit with the neural network parsers due to its small size. Moreover,

SNN uses pre-trained word embeddings and 60% of Tweebank tokens are missing.

Next, let us compare parsers within each train/test configuration for their relative robustness.

When trained on the PTB, all parsers are comparably robust on ESL data, while they exhibit more

differences on the MT data, and, as expected, everyone’s performance is much lower because MT

errors are more diverse than ESL errors. We expected that by training on Tweebank, parsers will

perform better on ESL data (and maybe even MT data), since Tweebank is arguably more similar

to the test domains than the PTB; we also expected Tweebo to outperform others. The results are

somewhat surprising. On the one hand, the highest parser score increased from 93.72% (Turbo

trained on PTB) to 94.36% (Malt trained on Tweebank), but the two neural network parsers per-

formed significantly worse, most likely due to the small training size of Tweebank. Interestingly,

although SyntaxNet has the lowest score on ESL, it has the highest score on MT, showing promise

in its robustness.

3.5.2 Parser Robustness by Number of Errors

To better understand the overall results, we further breakdown the test sentences by the number of

errors each contains. Our objectives are: (1) to observe the speed with which the parsers lose their

robustness as the sentences become more error-prone; (2) to determine whether some parsers are

more robust than others when handling noisier data.

Figure 14 presents four graphs, plotting robustness F1 scores against the number of errors

for all parsers under each train/test configuration. In terms of the parsers’ general degradation of

robustness, we observe that: 1) parsing robustness degrades faster with the increase of errors for

41

(a) Train on PTB §1-21

UAS Robustness F1

Parser PTB §23 ESL MT

Malt 89.58 93.05 76.26

Mate 93.16 93.24 77.07

MST 91.17 92.80 76.51

SNN 90.70 93.15 74.18

SyntaxNet 93.04 93.24 76.39

Turbo 92.84 93.72 77.79

Tweebo - - -

Yara 93.09 93.52 73.15

(b) Train on Tweebanktrain

UAF1 Robustness F1

Parser Tweebanktest ESL MT

Malt 77.48 94.36 80.66

Mate 76.26 91.83 75.74

MST 73.99 92.37 77.71

SNN 53.4 88.90 71.54

SyntaxNet 75.75 88.78 81.87

Turbo 79.42 93.28 78.26

Tweebo 80.91 93.39 79.47

Yara 78.06 93.04 75.83

Table 2: Parsers performance in terms of accuracy and robustness. The best result in each column

is given in bold, and the worst result is in italics.

42

the MT data than the ESL data; 2) training on the PTB led to a more similar behavior between the

parsers than when training on Tweebank; 3) training on Tweebank does help some parsers to be

more robust against many errors.

In terms of relative robustness between parsers, we observe that Malt, Turbo and Tweebo

parsers are more robust than others given noisier inputs. The SNN parser is a notable outlier when

trained on Tweebank due to insufficient training examples.

3.5.3 Impact of Error Distances

This experiment explores the impact of the interactivity of errors. We assume that errors have more

interaction if they are closer to each other, and less interaction if they are scattered throughout the

sentence. We define “near” to be when there is at most 1 word between errors and “far” to be when

there are at least 6 words between errors.12 We expect all parsers to have more difficulty on parsing

sentences when their errors have more interaction, but how do the parsers compare against each

other? We conduct this experiment using a subset of sentences that have exactly three errors; we

compare parser robustness when these three errors are near to each other with the robustness when

the errors are far apart.13

Table 3 presents the results as a collection of shaded bars. This aims to give an at-a-glance

visualization of the outcomes. In this representation, all parsers with the same train data and test

domain (including both the near and far sets) are treated as one group. The top row specifies

the lowest score of all parsers on both test sets; the bottom row specifies the highest score. The

shaded area of each bar indicates the relative robustness of each parser with respect to the lowest

and highest scores of the group. An empty bar indicate that it is the least robust (corresponding

to the lowest score in the top row); a fully shaded bar means it is the most robust (corresponding

to the highest score in the bottom row). Consider the left-most box, in which parsers trained on

PTB and tested on ESL are compared. In this group14, Yara (near) is the least robust parser with

a score of F1 = 87.3%, while SNN (far) is the most robust parser with a score of F1 = 93.4%; as

expected, all parsers are less robust when tested on sentences with near errors than far errors, but

12We heuristically chose 1 and 6 numbers based on the amount of sentences that we have in each group.
13We chose the subset of sentences with three errors since we had considerable amount of sentences with exactly

three errors.
14As previously explained, Tweebo is not trained on PTB, so it has no bars associated with it.

43

(a) Train on PTB §1-21

(b) Train on Tweebanktrain

Figure 14: Variation in parser robustness as the number of errors in the test sentences increases.

44

(a) Train on PTB §1-21

ESL MT

Parser Near Far Near Far

min 87.3 (Yara) 79.1 (Yara)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Yara

max 93.4 (SNN) 91.5 (Yara)

(b) Train on Tweebanktrain

ESL MT

Parser Near Far Near Far

min 82.4 (SyntaxNet) 80.6 (SNN)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Tweebo

Yara

max 94.5 (Malt) 94.4 (Malt)

Table 3: Parser performance on test sentences with 3 near and 3 far errors. Each box represents

one train/test configuration for all parsers and error types. The bars within indicate the level of

robustness scaled to the lowest score (empty bar) and highest score (filled bar) of the group.

45

they do exhibit relative differences: Turbo parser seems most robust in this setting. Turbo parser’s

lead in handling error interactivity holds for most of the other train/test configurations as well; the

only exception is for Tweebank/MT, where SyntaxNet and Malt are better. Compared to ESL data,

near errors in MT data are more challenging for all parsers; when trained on PTB, most are equally

poor, except for Yara, which has the worst score (79.1%) even though it has the highest score when

the errors are far apart (91.5%). Error interactivity has the most effect on Yara parser in all but one

train/test configuration (Tweebank/ESL).

3.5.4 Impact of Error Types

In the following experiments, we examine the impact of different error types. To remove the impact

due to interactivity between multiple errors, these studies use a subset of sentences that have only

one error. Although all parsers are fairly robust for sentences containing one error, our focus here

is on the relative performances of parsers over different error types: We want to see whether some

error types are more problematic for some parsers than others.

3.5.4.1 Impact of grammatical error types

The three main grammar error types are replacement (a word need replacing), missing (a word

missing), and unnecessary (a word is redundant). Our goal is to see whether different error types

have different effect on parsers. If yes, is there a parser that is more robust than others?

As shown in Table 4, replacement word errors are the least problematic error type for all the

parsers; on the other hand, missing word errors are the most difficult error type for parsers. This

finding suggests that a preprocessing module for correcting missing and unnecessary word errors

may be helpful in the parsing pipeline.

3.5.4.2 Impact of error word category

Another factor that might affect parser performances is the class of errors; for example, we might

expect an error on a preposition to have a higher impact (since it is structural) than an error on an

adjective. We separate the sentences into two groups: error occurring on an open- or closed-class

word. We expect closed-class errors to have a stronger negative impact on the parsers because they

contain function words such as determiners, pronouns, conjunctions and prepositions.

46

(a) Train on PTB §1-21

ESL MT

Parser Replacement Missing Unnecessary Replacement Missing Unnecessary

min 93.7 (MST) 92.8 (Yara)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Yara

max 96.9 (Turbo) 97.2 (SNN)

(b) Train on Tweebanktrain

ESL MT

Parser Replacement Missing Unnecessary Replacement Missing Unnecessary

min 89.4 (SyntaxNet) 87.8 (SNN)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Tweebo

Yara

max 97.8 (Malt) 97.6 (Malt)

Table 4: Parser robustness on sentences with one grammatical error, each can be categorized as a

replacement word error, a missing word error or an unnecessary word error.

47

Table 5 shows results. As expected, closed-class errors are generally more difficult for parsers.

But when parsers are trained on PTB and tested on MT, there are some exceptions: Turbo, Mate,

MST and Yara parsers tend to be more robust on closed-class errors. This result corroborates the

importance of building grammar error correction systems to handle closed-class errors such as

preposition errors.

3.5.4.3 Impact of error semantic role

An error can be either in a verb role, an argument role, or no semantic role. We extract semantic

role of the error by running Illinoise semantic role labeler (Punyakanok et al., 2008) on corrected

version of the sentences. We then obtain the role of the errors using alignments between ungram-

matical sentence and its corrected counterpart.

Table 6 shows the average robustness of parsers when parsing sentences that have one error.

For parsers trained on the PTB data, handling sentences with argument errors seem somewhat

easier than those with other errors. For parsers trained on the Tweebank, the variation in the

semantic roles of the errors does not seem to impact parser performance; each parser performs

equally well or poorly across all roles; comparing across parsers, Malt seems particularly robust to

error variations due to semantic roles.

3.6 CHAPTER SUMMARY

In this chapter, we have presented a set of empirical analyses on the robustness of processing

ungrammatical text for several leading dependency parsers, using an evaluation metric designed for

this purpose. We have found that parsers indeed respond differently to ungrammatical sentences

of various types. Based on our experiments till now, we can make some recommendations for

people who want to parse ungrammatical text in their applications. We recommend practitioners

to examine the range of ungrammaticality in their input data (whether it is more like Tweets or has

grammatical errors like ESL writings). If the input data contains noisy text more similar to Tweets

(e.g. containing URLs and emoticons), Malt or Turbo parser may be good choices. If the input

data is more similar to the machine translation outputs; SyntaxNet, Malt, Tweebo and Turbo parser

48

(a) Train on PTB §1-21

ESL MT

Parser Open class Closed class Open class Closed class

min 95.1 (SNN) 94.5 (Yara)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Yara

max 96.8 (Malt) 96.1 (SNN)

(b) Train on Tweebanktrain

ESL MT

Parser Open class Closed class Open class Closed class

min 89.6 (SyntaxNet) 91.5 (SNN)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Tweebo

Yara

max 97.6 (Malt) 97.0 (Malt)

Table 5: Parser robustness on sentences with one error, where the error either occurs on an open-

class (lexical) word or a closed-class (functional) word.

49

(a) Train on PTB §1-21

ESL MT

Parser Verb Argument No role Verb Argument No role

min 94.1 (SyntaxNet) 91.8 (Malt)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Yara

max 96.7 (Turbo) 96.7 (SyntaxNet)

(b) Train on Tweebanktrain

ESL MT

Parser Verb Argument No role Verb Argument No role

min 91.8 (SNN) 92.2 (SNN)

Malt

Mate

MST

SNN

SyntaxNet

Turbo

Tweebo

Yara

max 96.9 (Malt) 96.9 (Malt)

Table 6: Parser robustness on sentences with one error where the error occurs on a word taking on

a verb role, an argument role, or a word with no semantic role.

50

are good choices.

Furthermore, the results show that when ignoring erroneous parts of the ungrammatical sen-

tences, parsers are doing reasonably well on finding syntactic structures of the remaining grammat-

ical parts of the sentences. Therefore, an alternative reasonable approach to parse ungrammatical

sentences would be to identify well-formed syntactic structures of those parts of the sentences that

do make sense. The omission of the problematic structures may also help to prevent models that

learn from syntactic structures from degrading due to incorrect syntactic analysis.

51

4.0 PARSE TREE FRAGMENTATION OF UNGRAMMATICAL SENTENCES

4.1 INTRODUCTION

The previous chapter showed that ungrammatical sentences present challenges for statistical parsers

and the well-formed trees they produce may not be appropriate for these sentences. The experi-

ments also showed that when ignoring erroneous parts of the ungrammatical sentences, parsers did

reasonably well on finding syntactic structures of the remaining grammatical parts of the sentences.

Therefore, in this chapter, we introduce a framework for reviewing the parses of ungrammatical

sentences and extracting the coherent parts whose syntactic analyses make sense. We call this task

parse tree fragmentation.

One approach for obtaining these partially completed structures is to use chunking (Abney,

1991; Sha and Pereira, 2003; Sun et al., 2008) (more details are given in Section 2.3.2) to identify

recognizable low-level constituents, but this excludes higher-level complex structures. Instead, we

propose to review the full parse tree generated by a state-of-the-art parser and identify the parts of

it that are plausible interpretations for the phrases they cover. We call these isolated parts of the

parse tree fragments, and the process of breaking up the tree, parse tree fragmentation.

In prior work, breaking up dependency arcs has been explored primarily in the form of vine

parsing (Eisner and Smith, 2005; Dreyer et al., 2006), where a hard constrain on arc lengths consid-

ers only close words as modifiers (as discussed in Section 2.3.2.3). Our approach differs from vine

parsing in that we do not have any limit on arc lengths; we identify the incorrect arcs with regard to

grammar mistakes. Similar pruning approaches have been used in constituency parsing known as

hedge parsing (Yarmohammadi et al., 2014). Hedge parsing behaves like vine parsing and discov-

ers every constituent of length up to some span and prune other constituents. We also do not try to

correct grammar mistakes (Sakaguchi et al., 2017), since error detection methods mostly work for

52

ESL error categories and non-ESL mistakes are not easily fixable; we aim to salvage well-formed

syntactic structures form ungrammatical sentences in general for downstream applications that use

syntactic relationships. Our task also differs from disfluency detection in spoken utterances, which

focuses on removing extra fillers and repeated phrases (Honnibal and Johnson, 2014; Rasooli and

Tetreault, 2013; Ferguson et al., 2015); ungrammatical sentences written by non-native speakers

or generated by machines have a wider range of error types, such as missing phrases and incorrect

phrasal ordering.

In the remaining of the chapter, we first define the parse tree fragmentation task in two syn-

tactic representation (constituency and dependency) to indicate that our proposed framework can

be generalized for both representations. We then present a methodology for creating gold standard

data for training and evaluating parse tree fragmentation methods without using a task-specific

annotated corpus.

4.2 A FRAMEWORK FOR PARSE TREE FRAGMENTATION

The goal of parse tree fragmentation is to take a sentence and possibly its tree as input and extract

a set of partial trees that are well-formed and appropriate for the phrases they cover. To define this

framework, we need to address some fundamental problems:

1. What kind of partial trees are considered to be well-formed and appropriate? (Section

4.2.1)

2. How do we obtain enough examples of appropriate ways to fragment the trees? (Two

methods are proposed in Section 4.3)

3. How to automatically fragments the trees? (Three approaches are introduced in Chapter

5)

4. How should this task be evaluated? (Intrinsic and extrinsic evaluations are conducted in

Chapters 6 and 7)

In this section, we address the first problem by defining the parse tree fragmentation task and

discuss its challenges. We address the remaining problems in the next section and chapters by

53

introducing the steps that we take to tackle the challenges.

4.2.1 Ideal Fragmentation

One factor that dictates how fragmentation should be done is how the fragments will be used in

a downstream application. For example, a one-off slight grammar error (e.g., number agreement)

probably will not greatly alter a parser output. For the purpose of information extraction, this type

of slight mismatches should probably be ignored; for the purpose of training future syntax-based

computational models, on the other hand, more aggressive fragmentation may be necessary to filter

out unwanted syntactic relationships.

Even assuming a particular downstream application choice (sentential fluency judgment or

semantic role labeling in our case), the ideal fragmentation may not be obvious, especially when

the errors interact with each other. Consider the following output from a machine translation

system:

The members of the vote opposes any him.

The sentence contains three problem areas (underlined):

i. members of the vote: unusual subject noun phrase

ii. members ... opposes: number disagreement between subject and the verb

iii. any him: unusual bigram

Figure 15 shows the parsers’ outputs for this sentence in constituency and dependency syntactic

representations. The parse trees look well-formed but they are inappropriate for the sentence. For

example, both Stanford and SyntaxNet parsers group any and him into a clause to serve as the

object of the main verb. In the constituency tree, this problem is more evident, since the Stanford

parser assigns a sentential clause (S) to the any him phrase.

To tackle the inappropriate parse trees of ungrammatical sentences, we propose the parse tree

fragmentation task which extracts a set of partial trees that are appropriate for the phrases they

cover. But, which fragments should be salvaged from these parse trees? Someone who thinks the

sentence says: The members of the voting body oppose any proposal by him might produce the

coherent fragment sets shown in Figure 15. On the other hand, if they think it says: No parliament

members voted against him, they might have opted to not keep the PP (of the vote) intact.

54

This example illustrates that fragmentation decisions are influenced by the amount of infor-

mation we glean from the sentence. With only a sentence and an automatically generated tree

for it, we may mentally error-correct the sentence in different ways. If we are also given an ac-

ceptable paraphrase for the sentence, the fragmentation task becomes more circumscribed because

we now know the intended meaning. An example data source of this type is an MT evaluation

corpus, which consists of machine-translated sentences and their corresponding human-translated

references. Furthermore, if we not only have access to a closely worded paraphrase but also an ex-

planation for each change, the fragmentation decisions are purely deterministic (e.g., whenever a

phrase is recommended for deletion, the tree over it is fragmented). An example data source of this

type is an ESL learner’s corpus, which consists of student sentences and their detailed corrections.

4.2.2 Dependency Tree Fragmentation

The constituency tree fragmentation is analogous to dependency tree fragmentation (as shown in

Figure 15), but it has other challenges because of the internal structure of trees. For example,

in the constituency tree, the any him phrase contains three constituents: S, NP and NP. While in

the dependency tree, it only has one dependency relations: any→ him. Therefore, in this thesis,

we focus on fragmenting dependency trees, whose head-modifier representation offers a clearer

linguistic interpretation when dealing with ungrammatical sentences and a closer resemblance to

semantic relations. In addition to dependency fragmentation described here, we have also explored

fragmentation over constituency trees in Hashemi and Hwa (2016).

4.3 DEVELOPING A FRAGMENTATION CORPUS

Our goal is to develop a sizable tree fragmentation gold standard corpus. Ideally, this corpus

would be a collection of trees of ungrammatical sentences and their corresponding sets of tree

fragments extracted by knowledgeable annotators who agree with each other. However, since

the definition of an ideal fragmentation depends on multiple factors (e.g., the intended use and the

context in which the original sentences were generated), this task is not well-suited for a large-scale

55

S

VP

S

NP

PRP

him

NP

DT

any

VBZ

opposes

NP

PP

NP

NN

vote

DT

the

IN

of

NP

NNS

members

DT

The

(i) Stanford parse tree

?

NP

NNS

members

DT

The

?

PP

NP

NN

vote

DT

the

IN

of

S

VP

?VBZ

opposes

NP

?

?

DT

any

?

PRP

him

(ii) Coherent fragments

(a) Constituency tree fragmentation

The members of the vote opposes any him

det prep
pobj

det

nsubj

dobj

det

(i) SyntaxNet parse tree

The members of the vote opposes any him

det pobj
det

(ii) Coherent fragments

(b) Dependency tree fragmentation

Figure 15: Example of an ungrammatical sentence that gets a complete well-formed but inappro-

priate parse trees in two syntactic representations (right), and a set of coherent tree fragments that

might be extracted from the full parse tree (left).

56

human annotation project. Instead, we propose to develop our fragmentation corpus by leveraging

existing data sources previously mentioned (an ESL learner’s corpus and an MT evaluation corpus).

We exploit two types of parallel corpora to create our gold standard corpora by introducing two

approaches: Pseudo gold fragmentation and Reference fragmentation.

4.3.1 Pseudo Gold Fragmentation (PGold)

An ESL learner’s corpus in which every sentence has been hand corrected by an English teacher is

ideal for our purpose. We identified sentences that are marked as containing word-level mistakes:

unnecessary, missing or replacing word errors. Given the positions and error types, a grammatical

sentence can be reconstructed and reliably parsed. The parse tree of the grammatical sentence can

then be iteratively fragmented according to the error types that occur in the original ungrammatical

sentence. The resulting sets of fragments approximate an explicitly manually created fragmenta-

tion corpus; however, since a parser may make mistakes even on a grammatical sentence, we call

these fragments pseudo gold.

We first parse the grammatical sentence with a state-of-the-art dependency parser. We then

fragment it based on the errors in the original ungrammatical sentence. For each error, we apply the

following procedure to the tree of grammatical sentence to reconstruct the ungrammatical sentence

and its fragments:

• Prune the dependency arcs based on the type of the error (see Figure 16):

– If the error is a word replacement, prune the dependency arcs to and from the error

word.

– If the error is a missing word, remove the word and the dependencies to and from to it.

– If the error is an unnecessary word, add the extra word as a separate fragment.

• Find the immediate right and left words of the error word in the sentence, if there is an arc

to or from the right or left words that passes over the error word, prune it.

Figure 17 shows an example of PGold fragmentation for a sentence written by an English-as-

a-Second Language (ESL) learner1. There are two grammar mistakes in the sentence: a missing

comma and a phrase replacement word error (“for ever” should be replaced with “forever”). Our

1Dependency tree is produced by SyntaxNet parser (Andor et al., 2016)

57

... wi ...

... wj ...

G
ra

m
m

at
ic

al
(p

ar
se

tr
ee

)
U

ng
ra

m
m

at
ic

al
(f

ra
gm

en
te

d)
(a) Replacing word error

... wi ...

... ...

G
ra

m
m

at
ic

al
(p

ar
se

tr
ee

)
U

ng
ra

m
m

at
ic

al
(f

ra
gm

en
te

d)

(b) Missing word error

... ...

... wi ...

G
ra

m
m

at
ic

al
(p

ar
se

tr
ee

)
U

ng
ra

m
m

at
ic

al
(f

ra
gm

en
te

d)

(c) Unncessary word error

Figure 16: Creating pseudo gold fragments. The upper parts of figure are parse tree of grammatical

sentences and the lower parts are their transformation after applying errors.

58

As I remember , I have known her forever

(a) Grammatical sentence and its parse tree.

As I remember I have known her forever

(b) Reconstructing the ungrammatical sentence by applying the first error,
missing comma.

As I remember I have known her for ever

(c) Reconstructing the ungrammatical sentence by applying the second
error, replacement word error.

Figure 17: Example of PGold fragmentation of an ungrammatical sentence. There are two errors

in the sentence: a missing comma and a replacement word error. Starting from the grammatical

sentence and its parse tree, PGold reconstructs the ungrammatical sentence and its fragments.

59

goal is to identify the dependency arcs of the ungrammatical sentences that are related to grammar

mistakes. Using the PGold procedure, the parse tree fragments of the ungrammatical sentence is

iteratively constructed, given the position and type of errors.

4.3.2 Reference Fragmentation (Reference)

Even if we do not have detailed information about why certain parts of a sentence are problematic,

we can construct an almost-as-good fragmentation if we have access to a fluent paraphrase of the

original. We call this a reference sentence, borrowing the terminology from the MT community,

where it is used to refer to human translations against which MT systems are evaluated. In a lan-

guage tutoring scenario, the reference would be a teacher’s revision of a student’s original attempt.

Given a parallel corpus of ungrammatical sentences and their grammatical versions, we first parse

the ungrammatical sentence with a state-of-the-art dependency parser. Next, we find its grammar

mistakes based on alignments between words in the ungrammatical and grammatical sentences.

Then for each grammar mistake, we apply the following restrictive pruning rules (which might be

modified depending on a downstream application):

• Prune the dependency arc to the error word.

• Prune all the dependency arcs from the error word.

• Find the immediate right and left words of the error word in the sentence, if there is an edge

to or from the right or left words that passes over the error word, prune it.

Although these rules are restrictive, they simplify our argument for the use of tree fragments

and, at the same time, they still help us to validate the usefulness of fragmentation in downstream

applications. Figure 18 shows an example of the Reference method. In this example, the word

“for” is not aligned, therefore the dependencies to and from it are pruned. The comma in the

grammatical sentence is also a missing word error, thus the dependency arc from its left word that

passes over the missing comma, “remember→ known”, is pruned.

4.3.3 Comparing PGold and Reference

While both PGold and Reference made use of additional information to create reliable tree frag-

ments, they serve different purposes. PGold tree fragments represent the most linguistically plausi-

60

As I remember , I have known her forever

As I remember I have known her for ever
G

ra
m

m
at

ic
al

U
ng

ra
m

m
at

ic
al

Figure 18: Example of Reference fragmentation of an ungrammatical sentence. The dotted red

arcs are cut dependencies based on the two word error. It results four fragments.

ble interpretation of the original (ungrammatical) sentence because we can construct the intended

well-formed sentence and obtain the fragments from its corresponding well-formed tree. In con-

trast, an automatic alignment between an original sentence and a reference sentence may not be

as linguistically plausible (e.g., an error could be fixed via a substitution or via an insertion plus a

deletion). Therefore, the Reference tree fragments are formed from the automatically parsed tree

of the original sentence, and they represent an upperbound on what a real fragmentation algorithm

could achieve. Thus, we are able to use Reference fragments to train automatic fragmentation

algorithms.

4.4 CHAPTER SUMMARY

We have introduced parse tree fragmentation as a way to address the mismatch between ungram-

matical sentences and statistical parsers that are not trained to handle them. We have defined the

parse tree fragmentation framework on the dependency formalism with the goal of identifying and

pruning the syntactic dependency arcs of the ungrammatical sentences that are related to the gram-

mar mistakes. The result of breaking up the trees is a set of tree fragments that are linguistically

appropriate for the phrases they cover. Since there is not a sizable corpus with gold standard anno-

tations of tree fragments for ungrammatical sentence, we have devised methods for extracting gold

61

standard tree fragments using evaluative parallel corpora available for other NLP applications. The

gold standard corpus enables us to train and evaluate automatic fragmentation methods.

62

5.0 AUTOMATIC METHODS OF PARSE TREE FRAGMENTATION

5.1 INTRODUCTION

In this chapter, we propose some fragmentation strategies to automatically produce parse tree frag-

ments for ungrammatical sentences. The goal of these approaches is to automatically identify and

prune the syntactic dependency arcs of the ungrammatical sentences that are related to the grammar

mistakes.

5.2 FRAGMENTATION METHODS

We propose three automatic methods of fragmentation by assuming the availability of a gold stan-

dard training corpus. In the first method, we propose a post-hoc process on the outputs of off-the-

shelf parsers for the ungrammatical sentences; we then formulate this problem as a binary classi-

fication task to decide which arcs of a dependency tree should be cut. We also propose two fully

end-to-end data-driven approaches to directly build the parse fragments for ungrammatical sen-

tences. The methods jointly learn to parse and fragment ungrammatical sentences to avoid cascad-

ing parsers’ errors on these sentences. In our second method, we adapt a parser with ungrammatical

inputs by building a treebank of ungrammatical sentences. In the third proposed method, we cast

the problem of parse tree fragmentation as a sequence-to-sequence mapping problem. Inspired by

the recent works in neural network-based sequence-to-sequence learning (Sutskever et al., 2014;

Bahdanau et al., 2014; Cho et al., 2014), we use a state-of-the-art LSTM-based recurrent neural

network.

The automatic fragmentation methods are developed based on a parallel corpus of ungram-

63

matical sentences and their corrections. Using this parallel corpus, we build the Reference corpus

(described in Section 4.3.2) as the gold standard training corpus. We exploit Reference tree frag-

ments, because they are formed from the automatically parsed tree of the ungrammatical sentences,

thus they represent an upperbound on what a real fragmentation algorithm could achieve.

5.2.1 Classification-based Parse Tree Fragmentation (Classification)

As we saw in Chapter 3, when ignoring error-related dependency arcs of ungrammatical sentences,

parsers are doing reasonably well on finding syntactic structures of the remaining grammatical

parts of the sentences. Thereby, a straight-forward approach to automatically extract reliable parse

tree fragments from ungrammatical sentences is to find the error-related dependency arcs. Along

this line, we propose a post-hoc process to review the generated parse trees by off-the-shelf parsers.

Given the generated parse trees, a system needs to discriminate between the right and wrong con-

texts from some head-modifier dependencies. We formulate this as a binary classification problem:

for each dependency arc in the tree indicates whether the arc should be kept or cut. Using parse

trees that were fragmented by the Reference method as examples, we train a Gradient Boosting

Classifier (Friedman, 2001) that learns to fragment trees in a similar manner as Reference. The

trained classifier can then make predictions on the branches of unseen parse trees. The tree frag-

ments obtained in this post-hoc manner are referred to as Classification.

Because the number of kept arcs is far greater than the cut ones, when constructing the train-

ing set, we randomly sample equal number of the kept and cut arcs. The following features are

extracted from each head-modifier dependency arc:

• Depth and height of the head and the modifier when the dependency tree is traversed in

depth-first order. Figure 19 shows depth and height features for “known→ for” arc in

depth-first traversal of the dependency tree in Figure 18. The depth and height of the

head word “known” are 2 and 3 respectively. The depth and height of the modifier word

“for” are 3 and 2 respectively.

• Part-of-speech tags of the head, modifier, and the parent of the head word. For example

in the Figure 19, for the arc of “known→for” the POS tags of “known”, “for”, and

“remember” are extracted.

64

remember

known

for

ever

herhaveI

Ias

Figure 19: Depth and height features for the dependency arc of “known→ for”.

• Word bigrams and trigrams corresponding to the arc (as shown in Figure 20). Denoting

wh (h = 1, 2, ..) as the head word and wm as the modifier word, the bigram feature

are calculated for the pairs of whwm (wmwh if m < h), wm−1wm, and wmwm+1. The

trigram features are calculated for the triples of wm−1wmwm+1, wm−2wm−1wm, and

wmwm+1wm+2. We use both raw counts and pointwise mutual information of the N -

grams. To compute the N -gram counts, we use Agence France Press English Service

(AFE) section of English Gigaword (Graff et al., 2003).

5.2.2 Parser Adaptation Parse Tree Fragmentation (Parser)

Parsing ungrammatical sentences can be considered as an instance of domain adaptation, in which

the goal is to adapt a standard parser to accurately process the ungrammatical text (Foster et al.,

2008). The ungrammatical text might be considered as the target domain that contains the language

that is not covered by the parser’s grammar. We propose to adapt parsers with ungrammatical

sentences by building a treebank of these sentences and their parse tree fragments. In the following,

we first briefly describe the approaches to collect data for parser domain adaptation. Next, we

describe our proposed approach to create a treebank of ungrammatical sentences with the goal of

building an end-to-end data-driven parse tree fragmentation method.

5.2.2.1 Parser Domain Adaptation

One of the challenges of parser adaptation is the lack of training data for the target domain. There-

65

wh ... wm−1 wm wm+1

Figure 20: Word N -gram features for the dotted arc. Rectangles are words. Word bigrams associ-

ated to the dotted arc are: whwm, wm−1wm and wmwm+1.

fore, various approaches have been proposed to automatically label data in the target domain to use

as training data. These approaches include self-training (McClosky et al., 2006), parser ensemble

(Sagae and Tsujii, 2007; Baucom et al., 2013), selecting source sentences that are most similar

to a target domain (McClosky et al., 2010), and building a treebank to retrain a parser (Foster,

2007; Kong et al., 2014; Foster et al., 2011b; Berzak et al., 2016). Foster (2007) builds a tree-

bank for ungrammatical sentences by automatically generating errors to grammatical sentences.

She iteratively applies the error creation procedure to the parse tree of the grammatical sentence

to adapt it to the ungrammatical sentence. It is noteworthy to mention that our proposed pseudo

gold fragmentation in Section 4.3.1 is inspired by her work in which we iteratively fragment parse

trees according to error types. Kong et al. (2014) and Berzak et al. (2016) also introduce annota-

tion guidelines and create treebanks for tweets and ESL writings, respectively. The sizes of these

treebanks is small since they manually annotated sentences with their parse trees. Having the tree-

banks of ungrammatical sentences, they retrained parsers to make specialized parsers for the new

domains.

The task of parse tree fragmentation can also be considered as an approach for parser adapta-

tion with ungrammatical inputs. Therefore, we first introduce an approach to create a treebank of

ungrammatical sentences and their parse tree fragments. We then train a new specialized fragmen-

tation parser of ungrammatical sentences. One of the advantages of this approach is that it jointly

learns to parse a sentence and fragment it considering grammatical errors that might exist in the

sentence.

66

As I remember I have known her for ever

Figure 21: Example of a fragmented dependency tree. The dotted red arcs are cut dependencies

based on the mistakes in the sentence.

5.2.2.2 Creating a Treebank of Tree Fragments

For the purpose of creating a treebank for ungrammatical sentences, we use their dependency trees

that are fragmented by the Reference method. We adapt the dependency tree of the ungrammatical

sentence by setting the head of the pruned arcs to be the wall symbol (i.e. root as the heads).

The created treebank is in the CoNLL format. An example of the CoNLL based format for the

dependency tree in Figure 21 with its pruned arcs is:

1 As IN 3

2 I PRP 3

3 remember VB 0

4 I PRP 6

5 have VB 6

6 known VB 0

7 her PRP 6

8 for IN 0

9 ever RB 0

The first column shows the word number in the sentence; the second and the third columns

contain the original words and their part-of-speech tags respectively. The last column (which is

the focus of the parser to learn) shows the head of the word, i.e., the parent of the word which can

be another word or the wall symbol. For example, the head of the first word “As” is the third word

“remember”. In the standard CoNLL format of a dependency tree, each word should have a head

and only one word in the sentence has the wall symbol as its head. For the purpose of adapting

the parse trees of ungrammatical sentences with parse tree fragmentation, we assume that several

67

words can have the wall symbol as their heads. To build the treebank, we first find the pruned arcs

by the gold standard method. Next, we set the head of the pruned arc to be the wall symbol. For

instance, in Figure 21, the arc “remember→ known” is cut; therefore the head of the “known” is

set to be 0 in the CoNLL format.

Using this new ungrammatical treebank that are created by the Reference method as examples,

we train a statistical state-of-the-art parser that learns to prune dependency arcs in a similar manner

as Reference. The trained parser can then both parse and prune error-related arcs on the unseen in-

put sentences. We retrain SyntaxNet parser (Andor et al., 2016) with this ungrammatical treebank,

and the obtained tree fragments in this manner are referred to as Parser.

5.2.3 Sequence-to-Sequence Parse Tree Fragmentation (seq2seq)

Many tasks in natural language processing can be casted as finding an optimal mapping from

a source sequence to a target sequence including machine translation (Bahdanau et al., 2014),

sentence compression (Filippova et al., 2015), grammar error correction (Schmaltz et al., 2016),

dialogue systems (Serban et al., 2015), image or video captioning (Venugopalan et al., 2015; Xu

et al., 2015). Theoretically, Recurrent Neural Networks (RNN) were always a potential tool to be

used for learning a complex and highly non-linear seq2seq mapping. However, due to the problem

of vanishing and exploding gradient, RNNs were far away from being practical. Recent advance-

ments of deep structure RNNs are based on using Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) units, addressing the gradient vanishing and the gradient exploding prob-

lem; therefore RNNs have rapidly become a versatile tool in natural language processing.

We also formulate the parse tree fragmentation task as finding an optimal sequence-to-sequence

mapping, in which the source sequence is simply the ungrammatical input sentence and the tar-

get sequence is a linearized one-to-one mapping of the associated dependency tree with pruned

arcs. Similar to the Parser method, the seq2seq method jointly parse and fragment ungrammatical

sentences to avoid cascading parsers’ errors on these sentences. In the following, for the sake of

completeness, we first briefly describe the idea of sequence-to-sequence learning with deep neural

networks. Next, we describe how we represent the tree fragments in a linear form as the target se-

quence of the seq2seq problem. The tree fragments obtained with sequence-to-sequence learning

68

As I remember I have. . . <eos>

As I remember @L @L I have. . . <eos>

Figure 22: Schematic view of seq2seq model for parse tree fragmentation. The input words are

first mapped to word vectors and then fed into a recurrent neural network (RNN). The final time

step initializes an output RNN, upon seeing the <eos> symbol.

are referred to as seq2seq.

5.2.3.1 Seq2Seq Using Deep Neural Nets

We follow the dominant approach to train a seq2seq framework, which employs conditional lan-

guage model and a cross-entropy loss function to maximize the conditional likelihood of a succes-

sive target word in the target sequence given the the input sequence and a history of target words.

Following the past practice of the state-of-the-art seq2seq deep neural network models, in our net-

work architecture, we use a stack of LSTM recurrent networks to encode the input sequence (or to

be more accurate, a word embedding of the input sequence) into a latent representation that would

be useful in finding the target sequence. Another stack of LSTM recurrent neural networks is used

to decode the encoded latent representation of the input sequence to the target output sequence.

For the training, in each step, the error signal generated by the cross-entropy loss function will be

back-propagated through the network for tuning the weights to minimize the corresponding empir-

ical risk on a batch of data. Figure 22 shows the schematic view of our neural arc pruning seq2seq

model on our running example of Figure 21. More detailed information about the seq2seq deep

neural network models can be found in Sutskever et al. (2014) and Wiseman and Rush (2016).

The deep neural RNN based seq2seq models require an effective representation for the input

and the output to yield good performance (Vinyals et al., 2015a). We therefore utilize an interleaved

69

arc-standard transition actions to represent the arc pruned dependency trees, that is described in the

following sections.

5.2.3.2 Sequence Representation of a Fragmented Dependency Tree

We treat parse tree fragmentation as a seq2seq task by attempting to map from an input sentence

to a linear form of arc pruned dependency tree. Using the ungrammatical sentences and their

dependency trees that are pruned by the Reference method, we can train a seq2seq model. But

the challenge is to represent arc pruned dependency trees in their linear forms. To tackle this

problem, we follow the representation of Wiseman and Rush (2016) to linearize dependency trees,

by inserting arc-standard reduce actions (Nivre, 2004) interleaved with the sentence words. Table

7 illustrates an example of arc-standard representation of a parse tree from the initial configuration

(when the buffer contains the sentence and stack is empty) to a terminal one (when the buffer is

empty and the stack contains only one word which will be connected to the ROOT symbol). To

represent a parse tree, the arc-standard system defines three types of transition actions:

• Shift: moves the first word in the buffer to the top of the stack.

• Left-arc: adds an arc from the first word to the second word in the stack and removes the

second word in the stack.

• Right-arc: adds an arc from the second word to the first word in the stack and removes the

first word in the stack.

A dependency tree can be represented with a unique set of arc-standard actions. For example,

the third column of Table 7 shows the set of actions for the dependency tree of Figure 21. This

representation is particularly beneficial for our task, since each dependency arc is equivalent to

a Left-arc or Right-arc action, hence we can annotate the pruned arcs accordingly. The

last column of Table 7 shows the generated output sequence with annotated fragmented arcs. In

particular, we try to map the input sentence to the output sequence:

Input: As I remember I have known her for ever

Output: As I remember @L @L I have known @L @L her @R for ever @RCUT @RCUT

@RCUT

70

We use unlabeled arcs and show the actions with @L as the Left-arc action, and @R as

the Right-arc action. The pruned arc is denoted by @LCUT or @RCUT action whether it was

originally a Left-arc or a Right-arc action. The Shift actions are also replaced with the

sentence words.

A trained seq2seq model with this representation would be able to prune error-related arcs of an

ungrammatical sentence while parsing the remaining grammatical parts of the sentence. Another

strength of this seq2seq model is that it learns the output vocabularies as well, even though we

do not constraint the output to obey the stack constraint to use the same vocabulary of the input

sentence.

In order to evaluate the seq2seq method, we then convert back the output of seq2seq which is

in the form of interleaved arc-standard actions to a CoNLL format of dependency tree (similar to

the example in the previous section).

Alternative Representation

We have also linearized the dependency parse trees by traversing them in depth-first, similar to the

representation introduced in Vinyals et al. (2015b) for constituency trees. As the input representa-

tion, we both considered giving a sentence and also giving the linear form of the full dependency

tree. As the output representation, we represented the fragmented dependency tree by marking the

beginning and end of fragments with brackets; we also considered both keeping the vocabularies

in the output and also replacing vocabularies with “X” (to simplify the task for the model to only

learn the fragmented parts not the vocabularies). But the seq2seq model learned with these rep-

resentation were not performing well, thus we do not report them in the dissertation. Here is an

example of the the linearized form of the dependency trees that we tried but did not work:

Input: (remember As I known (I have her for (ever)))

Output: { (remember As I { known (I have her { for } ({ ever })) }) }

71

Buffer Stack Action Sequence

As I remember I have known her for ever

I remember I have known her for ever As Shift As

remember I have known her for ever As I Shift I

I have known her for ever As I remember Shift remember

I have known her for ever As remember Left-arc @L

I have known her for ever remember Left-arc @L

have known her for ever remember I Shift I

known her for ever remember I have Shift have

her for ever remember I have known Shift known

her for ever remember I known Left-arc @L

her for ever remember known Left-arc @L

for ever remember known her Shift her

for ever remember known Right-arc @R

ever remember known for Shift for

remember known for ever Shift ever

remember known for Right-arc @RCUT

remember known Right-arc @RCUT

remember Right-arc @RCUT

Table 7: An example of the transition sequence of the arc-standard actions for the dependency tree

of Figure 21. The last column shows the generated output sequence with annotated fragmented

arcs. We use this linear form of arc pruned dependency trees to train the seq2seq model.

72

5.3 COMPARISON OF FRAGMENTATION METHODS

The three proposed fragmentation methods employ different strategies: one uses a binary classifier

to distinguish the error-related dependency arcs, the second one utilizes parser technology by cre-

ating a fragmented treebank, and the third method exploits the recent advances in neural networks

to jointly learns to parse and fragment ungrammatical sentences. We summarize the strengths and

weaknesses of each fragmentation method in Table 8.

The proposed methods can be used by the practitioners based on their available ungrammatical

data. If they have a small set of ungrammatical sentences as the training data and a high quality

dependency parser, the Classification method may be a good choice. If they have a reasonably

high quality parallel data and can tune a dependency parser, Parser method may be a good choice.

Finally, if they have a large amount of parallel data and access to a good computational power,

seq2seq method would be a better choice (we will discuss the performances of the methods in the

next chapters).

5.4 CHAPTER SUMMARY

We have proposed three practical methods for extracting parse tree fragments of the ungrammatical

sentences: a classifier-trained method, a deterministic parser retraining method, and a sequence-

to-sequence method. These methods can be trained with the gold standard tree fragments to au-

tomatically produce tree fragments of the unseen ungrammatical sentences. Each of the devised

fragmentors has specific characteristics and can be adapted to other domains based on the available

resources.

73

Method Strength Weakness

Classification
• A couple of thousand sen-

tences is enough for training.

• It needs feature engineering.

• It post-processes parser outputs, so

parser’s errors might propagate.

Parser retraining

• Jointly learns to parse and

fragment.

• Theoretically any dependency

parser can be trained.

• It needs high quality or a huge

amount of training data.

• In practice, parsers’ implementa-

tions matter. Because they perform

differently even though they have

the same underlying design.

seq2seq

• Jointly learns to parse and

fragment.

• No need for feature engineer-

ing.

• No need for high quality anno-

tated data, even noisy training

data would be helpful.

• It needs a huge amount of paral-

lel training data which might not be

available for some ungrammatical

domains.

Table 8: Comparison of the proposed automatic fragmentation methods.

74

6.0 EMPIRICAL EVALUATION OF PARSE TREE FRAGMENTATION

6.1 INTRODUCTION

We introduced parse tree fragmentation framework to review parsers of ungrammatical sentences

and identify well-formed syntactic structures of the parse trees that do make sense. We also pro-

posed three automatic fragmentation methods that learns to fragment using the gold standard frag-

mentation methods. In this chapter, we perform a set of empirical evaluations to determine the

performance of the automatic fragmentation methods with respect to the gold standard fragments.

We evaluate tree fragments of two domains with ungrammatical sentences: writings of English-as-

a-Second Language (ESL) learners and the MT outputs.

6.2 EVALUATION OF PARSE TREE FRAGMENTATION

The typical approach to evaluate NLP tasks is to compare the outputs of automatic systems against

manually annotated gold standards. Therefore, in order to evaluate parse tree fragmentation meth-

ods, we seek a collection of gold standard fragments for ungrammatical sentences. However, as

we discussed in Section 4.3, the fragmentation task is not well-suited for a large-scale human an-

notation project because the definition of an ideal fragmentation depends on many factors. Thus,

instead we created near gold fragmentation corpora using existing data sources (more details in

Chapter 4). In this chapter, we aim to evaluate the automatic fragmentation methods by comparing

them to the gold fragments. This type of evaluation task is called intrinsic evaluation and it will

tell us how closely an automatic tree fragmentation method might approach the gold fragments.

In the next chapter, we will evaluate the potential uses of tree fragments in downstream applica-

75

tions which is called extrinsic evaluation. It will tell us whether the fragmentation is helpful, by

evaluating the downstream applications once with fragmentation and once without it.

6.3 EXPERIMENTAL SETUP

6.3.1 Data

The experiments that we conduct in this thesis are over two domains of ungrammatical sentences:

English as a second language learners and machine translation outputs. We choose datasets for

which the corresponding correct sentences are available (or easily reconstructed); thus, given these

parallel corpora of ungrammatical sentences and their grammatical versions, we can deterministi-

cally build the gold standard fragments. In this section, we discuss the data that we use for both

this chapter and the next chapter.

6.3.1.1 English as a Second Language corpus (ESL)

We use English learners corpora that contain ungrammatical sentences and their corresponding

error corrections. Given the location and type of the errors, a corrected version of each ungram-

matical ESL sentence can be reconstructed. For example, in a sentence “He talk with a friend” the

teacher would annotate that “talk” should be replaced by “talks” because it has the wrong number

agreement. In most cases, knowing the errors and their corrections makes it possible for us to

determine the appropriate fragments. However, some corrections are more complicated, involving

phrase-to-phrase replacement due to multiple problems. For example, suppose a teacher recom-

mended replacing “have a talk” with “talked”. This edit involves both a semantic shift as well as

a tense change. On a more micro-level, should the corrected verb “talked” be aligned with the

original noun “talk” (because they are more semantically similar) or the original verb “have” (be-

cause they are more syntactically similar)? Due to ambiguity in the phrase-to-phrase corrections,

we filter them out in experiments.

Our sampled ESL datasets

For the purpose of training and testing the fragmentation methods, we sample non-overlapping sets

76

from the ESL corpora that we introduced in Section 2.2.1.1. The following datasets will serve as

the training, development and test sets in our experiments:

• 5000 Train: From the FCE corpus, we randomly select 5000 sentences with at least one

error for training the Classification fragmentation method.

• 576,000 Train: From all the three corpora, we randomly select 576,238 sentences as the

training set of Parser and seq2seq methods.

• 30,000 Development: From the FCE and NUCLE datasets, we then randomly select non-

overlapping 30,000 sentences as the development set of Parser and seq2seq methods.

• 7000 Test: From the FCE corpus, we create a non-overlapping dataset for the intrinsic and

extrinsic evaluation. It consists of 7000 sentences and is representative of the corpus’s error

distribution; there are 2895 sentences with no error; 2103 with one error; 1092 with two

errors; and 910 with 3+ errors.

To better understand the sampled ESL datasets, we further breakdown the sentences by the

number of errors each contains. Figure 23 presents two graphs, plotting the number of sentences

and the average sentence length against the number of errors for all the sampled datasets. In

terms of number of sentences (as shown in Figure 23(a)), we observe that the number of sentences

degrades with the increase of errors, which means most of the ESL sentences have only a few

errors. The four datasets have similar behavior, the only exception is the few number of sentences

with no errors in the 576,000 Train dataset. This happens because 576,000 Train dataset is sampled

over a million sentences with at least one errors and only a few thousand sentences without any

errors.

In terms of average sentence length (Figure 23(b)), as number of errors increases, the average

sentence length increases. This is an intuitive observations, since longer sentences tend to have

more errors. We also observe that ESL sentences of 576,000 Train dataset are on average shorter

than other datasets. This shows a characteristic of the EFCAMDAT dataset which contains submit-

ted sentences to an online website; it might happen because students tend to write shorter sentences

on websites than on exams.

77

(a) Distribution of number of ESL sentences. For example, 41% sentences of the 7000 Test dataset
sentences have no errors and 30% of sentences have 1 error.

(b) Distribution of ESL sentence length.

Figure 23: Some statistics of sampled ESL datasets by number of errors.

78

6.3.1.2 Machine Translation corpus (MT)

Unlike the ESL corpus, in the MT corpus, we only have access to the human-edited sentences.

We cannot create PGold fragmentation (Section 4.3.1) for the MT data because we are not certain

about positions or types of the errors. We can only build Reference fragments (Section 4.3.2)

for MT by comparing the parse tree of the bad sentence with that of the good sentence, making

splitting point decisions on the parse tree of the bad sentence.

Human-targeted Translation Edit Rate (HTER) score

In our experiments on the MT corpus, we use the HTER (Human-targeted Translation Edit Rate)

score (Snover et al., 2006) as the fluency score of MT outputs. This score is also used in Workshop

on Statistical Machine Translation (WMT)1 for the sentence-level quality estimation task. Thus,

we use this score to be consistent with the machine translation works. HTER is defined as the

minimal rate of edits needed to change the machine translation to its manually post-edited version:

HTER =
of edits

of words in the grammatical sentence

HTER ranges between 0 and 1 (0 when no word is edited and 1 when all words are edited).

We use TER (default settings)2 to compute HTER scores.

Our sampled MT datasets

We sample the following non-overlapping datasets from the MT corpora that we introduced in

Section 2.2.2.1 as the training, development and test sets:

• 4000 Train: From the LIG corpus, we randomly select 4000 sentences with HTER score

more than 0.1 fro training the Classification fragmentation method.

• 9000 Train: From the two corpora, we randomly select 9000 sentences as training data

for the Parser fragmentation method. This training data has overlap with the 4000 Train

dataset.

• 2000 Development: From the two corpora, we randomly select 2000 sentences as devel-

opment data for training the Parser fragmentation method. This training data does not have

1http://www.statmt.org/wmt17/quality-estimation-task.html
2http://www.cs.umd.edu/˜snover/tercom/

79

http://www.statmt.org/wmt17/quality-estimation-task.html
http://www.cs.umd.edu/~snover/tercom/

overlap with the 9000 Train datset, but has overlap with the 4000 Train dataset.

• 6000 Test: From the LIG corpus, we create a non-overlapping dataset for the intrinsic and

extrinsic evaluation. It consists of 6000 sentences and is representative of the corpus’s

error distribution. The HTER score of 2109 sentences are within [0, 0.1); 1099 sentences

within [0.1, 0.2); 1195 sentences within [0.2, 0.3); 784 sentences within [0.3, 0.4); and 813

sentences have scores more than 0.4.

To train the seq2seq method, we need a huge amount of parallel data. However, to our knowl-

edge, there are not available any other larger MT corpora containing English translations and their

human-edited sentences. Therefore, we use the trained model over ESL data and test it on the

MT data. This experimental setup helps to investigate how we can transfer learning on different

ungrammatical domains.

We further analyze the sampled MT datasets by separating the sentences with their HTER

scores. Figure 24 shows two graphs, plotting the number of sentences and the average sentence

length against the HTER score for all the sampled datatsets. In terms of number of sentences (as

shown in Figure 24(a)), we observe that the number of sentences degrades with the increase of

HTER score, which means most of the MT outputs have only a few edits with respect to their total

number of words. In terms of average sentence length (Figure 24(b)), as HTER score increases,

the average sentence length gradually decreases. Although there are few MT outputs with large

HTER scores, these few sentences are on average shorter than other sentences. This is because

HTER score shows the ratio of edits with respect to the number of words in the sentence, thus a

short sentence with only a few edits will have a high HTER score.

In order to better understand the MT datasets, we also breakdown the sentences by the number

of edits each contains. Using the raw number of edits helps us to compare the MT datasets with

the ESL datasets in which we investigate the number of errors in the sentences. Figure 25 presents

two graphs, plotting the number of sentences and the average sentence length against the number

of edits for all the sampled datasets. In terms of number of sentences (as shown in Figure 25(a)),

we observe that the number of sentences is almost the same with the increase of number of edits.

The statistics indicates that there are quite a large number of MT outputs that have many edits; for

instance around 30% of the MT sentences have more than 8 edits. While in the ESL datasets, less

than 1% of sentences have more than 8 errors. In terms of average sentence length (Figure 25(b)),

80

(a) Distribution of MT sentences as the HTER score.

(b) Distribution of MT sentence length as the HTER score.

Figure 24: Some statistics of sampled MT datasets by HTER score.

81

(a) Distribution of MT sentences as the number of edit distance.

(b) Distribution of MT sentence length as the number of edit distance.

Figure 25: Some statistics of sampled MT datasets by number of edits.

82

as number of edit distance increases, the average sentence length increases. This is an intuitive

observations, since longer sentences tend to have more edits.

6.3.2 Experimental Tools

The pre-trained SyntaxNet POS tagger and parser (Andor et al., 2016)3 is used to generate depen-

dency parses for all the sentences.

6.3.2.1 Reference Settings

To create the Reference training data, all the grammatical and ungrammatical sentences are first

parsed. Then grammar mistakes are detected based on alignments between words in the ungram-

matical and grammatical sentences. We use the TER (Translation Error Rate) tool (default set-

tings)4 to find alignments. Then the Reference method are run over the trees to detect the arcs that

should cut.

6.3.2.2 Classification Settings

For the Classification binary classification, we train the standard Gradient Boosting Classifier

(Friedman, 2001) in the scikit-learn toolkit (Pedregosa et al., 2011).5 We tune Gradient Boost-

ing parameters with a 3-fold cross validation on the training data: learning rate over the

range {0.0001 . . . 100} by multiples of 10 and max depth over the range {1 . . . 5}.

6.3.2.3 Parser Retraining Settings

We create a treebank of our ESL data using the Reference method (as described in Section 5.2.2).

We then train the SyntaxNet parser (Andor et al., 2016) which is a transition-based neural network

parser and use its globally normalized training with default parameters. We train the parser on the

train set and pick the model with the best unlabeled attachment score on the development set.

3github.com/tensorflow/models/tree/master/syntaxnet/syntaxnet/models/parsey_
mcparseface

4www.cs.umd.edu/˜snover/tercom
5We have also tried SVMs with LibLinear toolkit (Fan et al., 2008), but gradient boosting learners obtained the

best results.

83

github.com/tensorflow/models/tree/master/syntaxnet/syntaxnet/models/parsey_mcparseface
github.com/tensorflow/models/tree/master/syntaxnet/syntaxnet/models/parsey_mcparseface
www.cs.umd.edu/~snover/tercom

6.3.2.4 seq2seq Settings

To train the sequence-to-sequence model, we use OpenNMT6 (Klein et al., 2017) package, which

is a neural machine translation system utilizing the Torch mathematical toolkit. In our implementa-

tion of seq2seq RNNs, we use 2-layer LSTMs with 750 hidden units in each layer both for decoding

and encoding modules. We train the network with a batch size of 48 and a maximum sequence

length of 62 and 123 for the source and target sequences, respectively. The sequence length is

chosen in a way to cover the 5 standard deviations range from the mean of the length of the source

and target sequence. The parameters of the model are uniformly initialized in [−0.1, 0.1], and the

L2-normalized gradients are constrained to be ≤ 5 to prevent the gradient exploding effect. In the

training phase, the learning rate schedule starts at 1 and halves the learning rate after each epoch

beyond epoch 10, or once the validation set perplexity no longer improved. We train the network

for up to 30 epochs choosing the model with the lowest perplexity on the validation set as the final

model.

6.3.3 Evaluation Metrics

One way to evaluate an automatic arc pruning method is to compare its resulting dependency

tree against the Reference tree. We use three metrics for this comparison: the usual dependency

tree attachment score, accuracy of the cut arcs, and an adapted version of F-score for set-to-set

comparison. Another way of evaluating whether the fragmentation methods make sense is to

perform an extrinsic evaluation (which will be discussed in the next chapter).

6.3.3.1 Unlabeled Attachment Score (UAS)

The usual dependency tree attachment score is used to compare the resulting dependency trees

against Reference trees by calculating unlabeled attachment score (UAS). UAS calculates the per-

centage of words that have the correct head:

Unlabeled Attachment Score (UAS) =
of words with correct heads

Total number of words

The head could be either another word or the wall symbol (i.e. a cut arc). Therefore, UAS

6github.com/opennmt/opennmt

84

github.com/opennmt/opennmt

measures the total performance of an automatic method considering both kept and cut arcs.

6.3.3.2 Accuracy of Cut Arcs

To measure how well a fragmentation method cuts arcs, we evaluate its accuracy only on the

cut arcs. Precision and recall (and F-score) are calculated as the percentage of correct pruned

dependency arcs in the resulting parse tree and the Reference tree respectively:

Precisioncut =
of correct cut arcs

Total number of cut arcs by an automatic fragmentation method

Recallcut =
of correct cut arcs

Total number of cut arcs by the Reference method

F-scorecut = 2× Precisioncut × Recallcut
Precisioncut + Recallcut

6.3.3.3 Set-2-Set F-score

Another way of evaluating an automatic fragmentation method is to compare its resulting frag-

ments against the gold standard fragments by adapting the usual tree-to-tree precision and recall

metrics for set-to-set. First, each fragment of the candidate set is mapped to a fragment of the gold

standard set with which it has a maximum number of shared arcs. (If there are two candidate frag-

ments but only one gold fragment, both candidates would be mapped to the same gold fragment.)

Second, precision and recall (and F-score) are calculated as the number of shared arcs between all

the mapped fragments divided by the total number of arcs in the candidate and the gold fragment

sets respectively:

Precisionset−to−set =
of shared arcs

Total number of arcs in the automatic fragment sets

Recallset−to−set =
of shared arcs

Total number of arcs in the gold fragment sets

F-scoreset−to−set = 2× Precisionset−to−set × Recallset−to−set

Precisionset−to−set + Recallset−to−set

85

We report macro-averaged precision, recall and F-score over the test sentences.

6.4 EVALUATION

To measure how well the proposed automatic fragmentation methods perform, we have conducted

a series of intrinsic evaluations. We first validate each fragmentation method using standard mea-

sures for parsing and classification; we then compare its tree fragments against those produced by

other fragmentation methods.

6.4.1 Performance of Each Fragmentation Method

Given an ungrammatical sentence, our proposed automatic fragmentation methods produce depen-

dency parse trees for it with some pruned arcs. Table 9 shows the performance of the produced

dependency trees against the Reference trees with the unlabeled attachment score (UAS) over both

ESL and MT sentences. The No cut method serves as a baseline that does not break any tree; thus,

its UAS shows the similarity of the complete trees with the Reference fragments. Its results cor-

roborate the fact that the Reference method cuts a small percentage of the dependency arcs; 84.6%

and 65.14% of the dependency arcs are not pruned in the ESL and MT domains respectively.

In the FCE dataset, the UAS suggests that the dependency trees produced by the seq2seq

method are more similar to the Reference trees than the Classification and the Parser methods’. It

shows that the seq2seq method not only learns to parse but also learns to prune dependency arcs

in a completely automatic regime. Evaluating the accuracy of only the pruned arcs also suggests

that the seq2seq method is making reasonable decisions in opting to cut an arc while parsing the

sentence.

In the MT dataset, the Classification method produces the most similar fragments to the Ref-

erence method’s. The seq2seq method is not performing well, it is because it is trained on the

ESL data and tested on the MT data. In order to further investigate the cross domain effect of the

training data, we apply the Classification method when trained on ESL over the test sentences of

86

(a) ESL dataset

Accuracy of cut arcs

Automatic Method UAS Precisioncut Recallcut F-scorecut

Classification 61.36 0.35 0.79 0.48

Parser 63 0.35 0.53 0.42

seq2seq 82.4 0.71 0.57 0.63

No cut 84.6 - - -

(b) MT dataset

Accuracy of cut arcs

Automatic Method UAS Precisioncut Recallcut F-scorecut

Classification 60.67 0.49 0.66 0.56

Parser 50.55 0.43 0.70 0.54

seq2seq (trained on ESL) 58.82 0.68 0.16 0.26

Classification (trained on ESL) 62.23 0.51 0.52 0.51

No cut 65.14 - - -

Table 9: Performance of automatic fragmentation methods by comparing their resulting depen-

dency trees against Reference fragmented trees as their training data. The No cut method serves as

a baseline and does not break any tree.

87

MT. Even though the seq2seq method is not performing well when transferring the models, the

Classification method trained on ESL is doing well and somewhat comparable to the Classification

method trained on MT. The reason is that the seq2seq method is conservative in pruning the arcs (it

has high precisioncut but low recallcut), while the Classification method is pruning more arcs (it has

high recallcut) in both domains; therefore, since the MT sentences have more errors than ESL sen-

tence, the Reference method cuts more dependency arcs, as a result the Classification method that

prunes more arcs is showing more similarity to the Reference in this cross domain setup. These

results suggest that the difference between the training and testing data, and the characteristics

of the fragmentation method (e.g. whether it is conservative in pruning) are important factors in

transferring the models.

6.4.2 Performance of the Classification Method

The Classification method runs a binary prediction model over parse tree arcs, deciding whether to

keep an arc or cut it. The ground-truth labels come from the Reference fragments. We performed

a 10-fold cross validation for the two domains of ESL and MT. Note that while the Classification

training data is balanced, the test data is not; thus, a baseline of never cutting any arc would

result in a high classification accuracy (84% on ESL and 65% on MT). To take the skewed class

distribution into account, we evaluate classifiers with the AUC measure (the area under the receiver

operating characteristic curve) (Hanley and McNeil, 1982). AUC estimates how probable it is that

a classifier might give a higher rank to a randomly cut-arc compared to a randomly not-cut-arc.

In our experiments, the AUC of the Classification on ESL and MT is 0.75 and 0.63 respectively

whereas the AUC of the baseline (cutting no arc) is 0.5 for both. The AUC of the Classification

when trained on the ESL data and tested on the MT data is also 0.61. The AUC scores suggest that

Classification method is making reasonable decisions, opting to cut an arc when it is certain.

6.4.3 Evaluation of Tree Fragmentation Methods

In the next experiment, we evaluate the fragmentation methods by how well their resulting tree

fragments match the gold tree fragments. To perform the comparison, we use an adapted version

88

of the usual precision and recall metrics for set-to-set (as described in Section 6.3.3). Table 9(a)

summarizes the comparison of different fragmentation methods over the ESL dataset in terms of

their average number of fragments, average fragment size, and F-score against PGold and Refer-

ence fragments. We see that the Reference fragments are the most similar to PGold. This validates

our choice of using Reference fragments as the training data for automatic fragmentation methods.

The average number and size of fragments indicate how much the method fragments the tree in

comparison with the gold fragments. We see that the Classification method over-prune the depen-

dency trees; as a result, it shows less similarity to the Reference. On the other hand, the Parser

method is cautious in breaking the trees which results in fewer fragments. One reason is that

the SyntaxNet is a transition-based parser which is designed to assign root as the head to the last

remaining words in the stack. Even though we train the parser with a large treebank of ungram-

matical sentences with multiple words with root as their heads, the parser still tends not to prune

arcs. This result suggests that some adaptations may be necessary for the parser; one possible

modification is to add a new action to the transition-based dependency parser that marks pruned

arcs without removing the modifiers from the stack (because we need the modifiers to obtain the

internal syntactic structure of fragments).

The set-2-set F-score similarity of seq2seq to Reference is 0.83, which indicates it has learned

useful signals from the Reference method. But, the seq2seq has on average fewer fragments; which

shows it prunes less arcs than the Reference method. The results of Tables 8(a) and 9(a) highlight

that the seq2seq is conservative on pruning the error-related arcs but when it makes decisions on

pruning an arc, it is almost certain.

Table 9(b) compares the fragmentation methods over the MT dataset. The Classification and

the Parser methods are making more fragments than the Reference method. The seq2seq is pro-

ducing much fewer fragments for the MT sentences since it is trained on the ESL data in which it

is learned to make fewer fragments. On the other hand, the Classification trained on the ESL data

is relatively breaking the trees into right number of fragments; the fragments even show higher

similarity to the Reference. This results suggests the helpfulness of the transfer learning in the MT

domain for the Classification method. In this thesis, throughout the experiments we perform the

cross domain analysis over the seq2seq and the Classification methods to compare and observe the

transfer learning behaviour in different experimental setups.

89

(a) ESL dataset

Method
Avg. #of

Fragments

Avg. Size of

Fragments

set-2-set P/R/F1 to

PGold

set-2-set P/R/F1 to

Reference

PGold 3.51 8.61 - -

Reference 3.51 8.60 0.97/0.97/0.97 -

Classification 7.29 2.40 0.89/0.57/0.66 0.90/0.57/0.67

Parser 1.8 13.62 0.75/0.81/0.76 0.77/0.82/0.77

seq2seq 2.92 9.36 0.84/0.83/0.82 0.85/0.85/0.83

No cut 1 16.46 0.75/0.88/0.8 0.76/0.89/0.81

(b) MT dataset

Method
Avg. #of

Fragments

Avg. Size of

Fragments

set-2-set P/R/F1 to

Reference

Reference 9.66 5.36 -

Classification 12.96 2.09 0.71/0.57/0.60

Parser 15.61 2.38 0.63/0.37/0.41

seq2seq (trained on ESL) 2.29 18.70 0.54/0.72/0.59

Classification (trained on ESL) 9.80 2.88 0.67/0.64/0.62

No cut 1 24.82 0.52/0.76/0.60

Table 10: Similarity of fragmentation methods with gold fragments.

90

Comparing the two domains of ESL and MT, we see several differences. First, the Reference

method produces more fragments in the MT data than the ESL data. This comes from the fact

that MT outputs contain more edits than ESL sentences; thus, the Reference method breaks more

the MT parse trees. Second, the Parser method behaves differently in the MT than ESL; it makes

very few fragments in the ESL data, while it makes many fragments in the MT data. One reason

is that the sizes of their training data are different. The parser is trained over 576k ESL sentences

and 11k MT sentences, respectively. Thus, it suggests that as the number of training data grows,

the parser tends to cut less arcs. To further study the behaviour of the Parser considering the size

of the training data, we train the SyntaxNet with the 5000 train ESL dataset instead of 576k train

dataset. We observe that the average number of fragments increases to 5.37 with the average size of

4.86; but the similarity of the Parser’s fragments to the Reference’s with the set-2-set F-score drops

to 0.69. This observation also confirms that the Parser’s performance depends on the size of the

training data; when training the SyntaxNet with the smaller training data, we saw that it fragments

more. Having small training set might not be enough to make a parser to be a good fragmentor; on

the other hand, having a large training set might also not be optimal since the parser will perform

more like a normal parser than a fragmentor. Therefore, it is important to find an optimal parameter

in this spectrum. Since the focus of this thesis is on introducing the parse tree fragmentation and

proposing practical approaches, we leave finding the optimal training size of parsers with respect

to their performance for the future work.

6.4.4 Relationships between Fragments Statistics

To further evaluate the fragmentation methods, we analyze the relationships between the simple

statistics of the produced fragments with the Reference fragments. The results in Table 10 reports

the average number and size of each fragmentation method; however, the average might not best

reflect the differences between the fragments, as it gives an aggregate but not the trend or the

differences. To get a better insight on the relationships between the fragments, we further report

the Pearson’s r correlation and the root mean square error (RMSE) between the number and size

of produced fragments and the Reference fragments. Table 11 summarizes the results. We ob-

serve that the Classification method has the highest correlation with Reference in terms of number

91

of fragments and their sizes, but its RMSE numbers are far from the Reference fragments. This

results suggest that even though the Classification does not break the trees into right number of

fragments, its trend in breaking the trees is similar to Reference; when the Reference breaks more,

the Classification also breaks more, and vice versa. On the other hand, the seq2seq method has

the lowest RMSE numbers which shows its preciseness in fragmenting. In the MT dataset, the

Classification method trained on ESL is making more accurate fragments and the results are along

the line of the results in Table 9(b). These intrinsic evaluations suggest that different fragmenta-

tion methods might be useful for different NLP tasks that deal with ungrammatical sentences; the

choice of fragmentation method might depend on a downstream application whether it benefits

more from the number of fragments or the accuracy of the fragmentation.

6.5 CHAPTER SUMMARY

We have performed a set of empirical evaluations to investigate the impact of parse tree fragmen-

tation. We compared the automatic fragmentation methods that we proposed in Chapter 5 with the

gold standard fragments. We find that automatic fragmentation methods have different responses

to ungrammatical sentences of various types. Our results suggest that given the domain of un-

grammatical data and the size and type of the available resources, one can select an appropriate

automatic fragmentation method.

92

(a) ESL dataset

of Fragments size of Fragments

Method Pearson r RMSE (↓) Pearson r RMSE (↓)

Classification 0.453 5.086 0.299 0.543

Parser 0.092 3.946 0.076 0.545

seq2seq 0.407 3.068 0.281 0.444

(b) MT dataset

of Fragments size of Fragments

Method Pearson r RMSE (↓) Pearson r RMSE (↓)

Classification 0.646 7.433 0.377 0.335

Parser 0.527 11.135 0.223 0.364

seq2seq (trained on ESL) 0.012 10.212 -0.011 0.654

Classification (trained on ESL) 0.589 6.169 0.326 0.327

Table 11: Relationship of fragmentation methods with Reference fragments over the number and

size of fragments.

93

7.0 EVALUATION OF PARSE TREE FRAGMENTATION IN NLP APPLICATIONS

7.1 INTRODUCTION

The previous chapter on intrinsic evaluation only tells us how closely an automatic tree fragmenta-

tion method might approach the gold fragments. Since even the gold fragments are automatically

created, we evaluate the potential utility of tree fragments in external NLP applications. We be-

lieve that the resulting fragments may still provide some useful information for downstream NLP

applications that use parsing and deal with ungrammatical sentences in some way. Such applica-

tions are information extraction (IE), machine translation (MT), and automatic evaluation of text

(e.g., generated by MT or summarization systems or human second language learners). One might

also note that different applications may try to use tree fragments differently; and since the ex-

trinsic evaluation is indirect, the results might depend on a selected application and its settings

(i.e. different results might be obtained with different applications). This indicates that an extrinsic

evaluation analysis on one application may not generalize to other application, as shown previously

on extrinsic evaluation of parsers (Miyao et al., 2008; Elming et al., 2013; Oepen et al., 2017).

In this thesis, we verify the utility of tree fragments for two distinct NLP applications that use

parsing in different levels, one on the sentence-level and the other on the word-level; therefore, we

would be able to investigate different aspects of the parse tree fragmentation:

i. Sentence-level fluency judgment, in which a system automatically predicts how “natural” a

sentence might sound to a native-speaker human. An automatic fluency judge can be used to

decide whether an MT output needs to be post-processed by a professional translator; it can

also be used to help grading student writings. We choose fluency judgment application since

it is the direct application of parsing that deals with ungrammatical sentences.

94

ii. Semantic role labeling (SRL), in which a system identifies semantic roles of groups of words

with respect to a particular verb in a sentence. A semantic role labeler can be used to under-

stand sentences better; it can also be used to build knowledge bases for question answering

systems. We choose semantic role labeling application since it is one of the basic tasks in

semantic analysis of sentences, and studying semantic analysis of ungrammatical sentences

could shed some light on this problem.

We hypothesize that if the fragmentation were helpful, the downstream applications should

perform better with it than without it. For both applications, we consider two domains with un-

grammatical sentences: writings of English-as-a-Second Language (ESL) learners and the MT

outputs.

7.2 EXTRINSIC EVALUATION: FLUENCY JUDGMENT

There have been several previous work on sentence-level fluency judgment. Researchers have

found that language model metrics alone are not sufficient, and various syntax-based features have

been proposed to be incorporated into the fluency metric (Mutton et al., 2007; Post, 2011; Post

and Bergsma, 2013). However, in order for these features to work well, they ought to be extracted

from appropriate parse trees. Given that statistical parsers have difficulties with ungrammatical

sentences, mis-interpreted parse trees may degrade the predictive power of the features. We hy-

pothesize that through parse tree fragmentation, major syntactic problems can be identified; thus,

tree fragments should be useful for judging sentence fluency.

7.2.1 Fluency Judgment Tasks

There are many different ways to set up a fluency judgment task; typically the desired granularity

of the judgment differs depending on the application. We evaluate both binarized and ordinal level

of grammaticality of sentences, because some applications might benefit more from binary clas-

sification of grammatical/ungrammatical sentences than a fine-grained judgment. For example, a

systems that decides whether an ESL sentence needs to be corrected benefits from the binary flu-

95

ency judgment, and a systems that helps grading ESL writings benefits more from a fine-grained

judgment. Hence, we report two fluency judgment conditions: a binary classification and a regres-

sion formulation.

7.2.1.1 Binary Task For the binary classification task, we train a classifier to distinguish be-

tween sentences that have virtually no error and those that have many errors. Thus, an ESL sen-

tence is labeled 0 if it has no errors, and it is labeled 1 if it has three or more errors; an MT output

is labeled 0 if its HTER score is less than 0.1, and it is labeled 1 if its HTER score is greater than

0.4. Although the setup is a little artificial, this study tells us how well each method performs on

the extreme cases.

7.2.1.2 Regression Task In contrast, the regression task is more challenging because the sys-

tems have to make finer distinctions of fluency. For the ESL dataset, the system has to predict the

number of errors in each sentence (0, 1, 2, or 3+); for the MT dataset, the HTER score (a real

number between 0 and 1).

7.2.2 Feature Sets

7.2.2.1 Our feature set We extract four simple features from the output of each fragmentation

method for each sentence:

i. Number of fragments

ii. Average size of fragments

iii. Minimum size of fragments

iv. Maximum size of fragments

7.2.2.2 Contrastive feature sets We compare the proposed fragmentation approach against

several contrastive baselines. In addition to typical language model features, we especially focused

on previous work that rely on parse information:

• Sentence length (l).

96

• LM (Language Modeling). An N -gram precision for 1 ≤ N ≤ 5 is computed as a

fraction of N -grams appearing in the reference text (we used the Agence France Press

English Service (AFE) section of the English Gigaword Corpus (Graff et al., 2003).

• C&J (Charniak&Johnson) . This set of features is based on the complete set of parse

tree reranking features of (Charniak and Johnson, 2005)1 from Stanford parser’s output

version 3.2.0 (Klein and Manning, 2003). These features have been used previously

for predicting grammaticality and are shown to perform well (Post and Bergsma, 2013).

The feature set contains more than 60,000 features.

• TSG (Post). This set of features is based on the tree substitution grammar (TSG) deriva-

tion counts from constituency tree (Post, 2011)2. This approach extracts more than 6000

features from the parse trees.

7.2.3 Experimental Setup

For all binary classification or regression tasks, we use the test datasets of ESL and MT which are

containing 7000 and 6000 sentences respectively (discussed in Section 6.3.1). We run a 10-fold

cross validation with the standard Gradient Boosting Classifier or Regressor (Friedman, 2001) in

the scikit-learn toolkit (Pedregosa et al., 2011).3 We tune Gradient Boosting parameters with a

3-fold cross validation on the training data: learning rate over the range {0.0001 . . . 100} by

multiples of 10 and max depth over the range {1 . . . 5}.

Since the test datasets are imbalanced, it is important to choose proper evaluation measures.

For the binary classification, we report the standard accuracy metric that shows the percentage of

correct predictions, and the AUC metric to take imbalanced test set into account. AUC estimates

how probable it is that a classifier might give a higher rank to a randomly fluent sentence to a

randomly disfluent one. The AUC of a random system is 0.5, while the its accuracy might be as

high as the portion of skewed class. For example, in the ESL dataset, the accuracy of a system

that tells all the sentences are fluent is 76% while its AUC in 0.5. The reported metrics for the

regression task are root mean square error (RMSE) and Pearson’s r correlation coefficient between

1https://github.com/mjpost/extract-spfeatures
2https://github.com/mjpost/post2011judging
3We have also tried SVMs with LibLinear toolkit (Fan et al., 2008), but gradient boosting learners obtained the

best results.

97

https://github.com/mjpost/extract-spfeatures
https://github.com/mjpost/post2011judging

the predicted and expected values.4 RMSE penalizes the errors more than the mean absolute error

(because of the square of distance); it is also shown to be a robust metric for ordinal evaluation

of imbalanced data (Baccianella et al., 2009). A lower RMSE value indicates a better prediction

system.

7.2.4 Results

Table 12 summarizes a comparison of different fluency judgment feature sets. Accuracy and AUC

measures are reported for binary classification, root mean square error (RMSE) and Pearson’s r

are reported for regression.

The first block reports the baselines. For the ESL domain, the length of a sentence is a good

indicator of the fluency of a sentence; longer sentences tend to have more errors than shorter

sentences, but sentence length is not as strongly correlated with HTER score in the MT domain.

The second block of feature sets in the table shows that the four features extracted from parse

tree fragments are correlated with the fluency quality of sentences. While it is expected that fea-

tures based on PGold and Reference fragments should correlate strongly with fluency, Classifica-

tion and seq2seq features also correlate with fluency better than C&J and TSG features in both

domains. Moreover, they have different model sizes: the Classification and seq2seq feature sets

consist of only 4 simple extracted features from the tree fragments, while C&J has more than 60k

features and TSG has more than 6k features.

The Classification method significantly outperforms other methods (using a two-sided paired

t-test with > 95% confidence from the 10 folds) on both domains. Also it performs comparable

with the seq2seq in the binary task of ESL dataset. Although the seq2seq method makes more

accurate pruning decisions (as we observed in the intrinsic evaluations of the previous chapter),

it is not performing better than the Classification method in the fluency judgment application.

This is because of the setup of the task, which uses only four simple features from fragments;

especially since Classification produces more fragments, its number-of-fragments feature becomes

a good indicator in the regression error prediction. Table 13 shows the Pearson r correlation

of the extracted features with the fluency of the sentences in the regression task. We observe

4We have also evaluated the regression task with Kendall’s τ and Spearman’s ρ. Since the general trend of the
results was similar to Pearson’s r, we only report Pearson’s r.

98

(a) ESL dataset

Binary Regression

Feature Set Acc.(%) AUC RMSE (↓) r

Chance 76.1 0.5 1.249

length (l) 77.3 0.75 0.994 0.304

LM 76.7 0.73 0.963 0.279

LM+l 80.6 0.84 0.933 0.417

C&J (Charniak&Johnson) 76.3 0.74 1.179 0.318

TSG (Post) 77.3 0.74 1.153 0.285

PGold 100 1 0.537 0.889

Reference 100 1 0.557 0.879

Classification 80.7 0.82 0.905 0.411

Parser 77.6 0.73 1.035 0.3

seq2seq 81.3 0.75 0.947 0.377

(b) MT dataset

Binary Regression

Feature Set Acc.(%) AUC RMSE (↓) r

Chance 72.2 0.5 1.308

length (l) 72 0.5 0.171 0.018

LM 74.4 0.71 0.163 0.307

LM+l 74.2 0.71 0.163 0.306

C&J (Charniak&Johnson) 68.3 0.6 0.186 0.136

TSG (Post) 69.8 0.59 0.179 0.105

Reference 98.8 1 0.085 0.865

Classification 73.3 0.68 0.166 0.228

Parser 71.8 0.56 0.171 0.077

seq2seq (trained on ESL) 71.9 0.52 0.171 0.06

Classification (trained on ESL) 72.4 0.66 0.167 0.207

Table 12: Fluency judgment results over two datasets containing ungrammatical sentences using

binary classification and regression. Accuracy and AUC measures are reported for binary classifi-

cation, and RMSE and Pearson’s r are reported for regression. PGold and Reference as the upper

bounds are given in italics, and the best result among automatic fragmentation methods is given in

bold.

99

that the number of fragments from the Classification method trained on ESL data has the highest

correlation with the number of errors in the sentences. Note that, however, seq2seq fragmentation

method is completely automatic without any feature engineering to cut arcs and more importantly

it learns to parse the sentences as well as pruning the arcs; while the Classification method uses

hand engineered features for a binary classifier to decide which arcs of a given dependency tree to

cut.

As a simpler fragmentation method, Parser is not as competitive for fluency judgment, espe-

cially with Classification and seq2seq methods. But it is still comparable to the other baseline

methods. This suggests that Parser has learned some useful signals from the Reference training

examples.

7.3 EXTRINSIC EVALUATION: SEMANTIC ROLE LABELING

To further verify parse tree fragmentation utility, we apply it in another downstream NLP appli-

cation which benefits from syntactic parsing: semantic role labeling (SRL). The goal of SRL task

is to identify the relations between group of words with respect to a particular verb in the sen-

tence. These relations can then be used to understand the sentence better and help other NLP tasks

such as question answering. Traditionally syntactic parsing plays an important role in SRL sys-

tems. Extracted features from parse trees are one of the main sets of features to detect semantic

dependencies between parts of a sentence (Punyakanok et al., 2008). In this section, we aim to ad-

dress performance of SRL systems on the ungrammatical sentences. Furthermore, we investigate

whether extracted fragments from ungrammatical sentences might help to detect incorrect seman-

tic dependencies in these sentences. As an example, Figure 26 shows an ungrammatical sentence

and its automatically produced semantic dependencies. Because of the mistakes in the sentence,

the SRL system assigns two incorrect semantic dependencies: “remember→I” and “known→for”.

We hypothesize that through parse tree fragmentation, major syntactic problems can be identified;

thus, tree fragments should be useful to detect incorrect dependencies of semantic role labeling.

Detecting incorrect semantic dependencies is crucial for systems that high accuracy is de-

sirable. An example of these systems is modern search engines. To satisfy users’ information

100

(a) ESL dataset

Method # of fragments Avg. size Min size Max size

Reference 0.842 -0.822 -0.765 -0.766

Classification 0.409 -0.317 -0.178 -0.241

Parser 0.099 -0.093 -0.084 -0.063

seq2seq 0.285 -0.241 -0.215 -0.177

(b) MT dataset

Method # of fragments Avg. size Min size Max size

Reference 0.662 -0.608 -0.476 -0.77

Classification 0.155 -0.122 -0.047 -0.171

Parser 0.081 -0.056 -0.042 -0.082

seq2seq (trained on ESL) 0.076 -0.077 -0.073 -0.058

Classification (trained on ESL) 0.191 -0.148 -0.06 -0.179

Table 13: Correlation between the extracted features from each fragmentation method with the

fluency of the sentence in the regression task. Reference as the upper bound is given in italics, and

the best result in each column is given in bold.

101

As I remember I have known her for ever

A0 A1

AM-TMP

A0
A1

AM-TMP

Figure 26: Automatically produced semantic dependency graph of an ungrammatical sentence.

The red dotted relations show incorrect semantic dependencies.

needs, they go beyond retrieving relevant documents and display a concise answer to the user’s

query. For example, the query “barack obama wife”, which asks for factual information, would

return Michelle Obama as the answer. Thus search engines not only require a deep understanding

of the user’s query, but also need an accurate knowledge base to retrieve the correct answer. A

Knowledge base is a graph of entities and their relations to provide answers to questions. They are

typically automatically built by processing unstructured natural language text. One way to build a

knowledge base is by adding semantic dependencies of a SRL system. Therefore, in order to have

accurate knowledge base, it is important to add only correct semantic dependencies. It would not

be acceptable if the search engine returns an incorrect answer, e.g. displays someone else’s name

as the Obama’s wife. While it is still satisfactory if the search engine does not display any answer,

since it would still retrieve some relevant documents based on the query words. Thus, adding noise

to knowledge bases has negative consequences that should be avoided.

7.3.1 Semantic Role Labeling of Ungrammatical Sentences

Semantic role labeling evaluation for ungrammatical texts presents some domain-specific chal-

lenges. Similar to parsing, the typical approach to evaluate SRL systems is to compare extracted

semantic dependencies against manually annotated gold standards. The available gold standard

corpora with semantic roles are often created over grammatical text. A commonly used corpora are

CoNLL-2005 and CoNLL-2009 shared task datasets which consist of the information on predicate-

argument structures extracted from the PropBank corpus (Palmer et al., 2005) for the sections of

the Wall Street Journal part of the Penn TreeBank (Marcus et al., 1993). In order to evaluate perfor-

102

mance of the SRL system on ungrammatical sentences, we need to have a dataset with annotated

semantic roles for these noisy sentences. Although there exists 300 machine translation outputs

manually annotated with their semantic roles (Birch et al., 2013), its size makes it unsuitable for

our extrinsic evaluation.

A “gold-standard free” alternative is to compare semantic roles for each noisy sentence with

the semantic roles of the corresponding correct sentence. This approach is similar to our proposed

parser robustness metric in Chapter 3. Here instead of comparing parse trees, we compare semantic

graphs. We, therefore, can build a large amount of near gold annotated semantic dependencies for

ungrammatical sentences as long as we have a parallel corpus of problematic sentences with their

corrected versions. These parallel data can be either ESL writings with their corrected versions, or

machine translation outputs with their human post-editions. A limitation of this approach is that

the comparison works best when the differences between the problematic sentence and the correct

sentence are small. This is not the case for some ungrammatical sentences (especially from MT

systems).
One difference between parsers and SRL systems is that parsers perform slightly better than

SRL systems. Although there has been a huge progress on SRL systems, the overall F1 score

of state-of-the-art SRL systems is around 87%; while accuracy of state-of-the-art parsers is more

than 93%. One reason of lower performance of SRL systems is that they typically use parsers’s

outputs as features. Therefore, errors in parser’s output may propagate through semantic role de-

tection. Despite of the lower performance of SRL systems, there have been several previous works

that used state-of-the-art SRL systems to build gold annotations. On a series of work by Akbik

et al. (Akbik et al., 2015; Akbik and Li, 2016), they used an English off-the-shelf SRL system

to project SRL annotations of an English sentence to its translations in other languages. In this

way, they were able to automatically construct annotated corpora with semantic dependencies for

several languages. Our proposed evaluation methodology is similar to their approach of project-

ing semantic roles; instead we project the semantic dependencies of grammatical sentence to its

corresponding ungrammatical sentence.

103

7.3.2 Creating Pseudo Gold Semantic Dependencies for Ungrammatical Sentences

For the purpose of evaluating semantic dependencies of an ungrammatical sentence, we take the

automatically produced semantic relations of a grammatical sentence as “gold standard” and com-

pare the SRL output for the corresponding ungrammatical sentence against it. Our proposed gold

standard procedure is based on three assumptions:5

i. For every ungrammatical sentence, there is a grammatical sentence that has the same

meaning as the ungrammatical sentence.

ii. A state-of-the-art SRL system produces semantic dependencies of a grammatical sen-

tence that reflect, to some extent, that sentence’s intended meaning.

iii. The semantic dependencies of an ungrammatical sentence should be as close as possible

to semantic dependencies for its corresponding grammatical sentence.

In keeping with these assumptions, we create gold semantic dependencies for an ungrammat-

ical sentence by projecting the semantic dependencies of its grammatical sentence to the ungram-

matical sentence. Following are the steps that we take:

• Step 1: Running a state-of-the-art SRL system over the grammatical sentences. We use

Mate SRL toolkit (Björkelund et al., 2009) (see Section 7.3.5 for details).

• Step 2: Finding word alignments between ungrammatical and grammatical sentences.

The word alignment in semantic role labeling is slightly different from parsing as in our

proposed robustness evaluation metric in Section 3.3. Finding word to word alignments

in the ESL dataset is pretty straightforward, because we have the error corrections. But

alignment of MT data is more challenging. In the parsing evaluation, we used word edit

distance to find MT word alignments. It was a reasonable choice for parsing evaluation,

because we wanted to investigate the impact of each single error. While in the SRL, we

do not want to penalize the SRL system when the errors come from semantic differences,

for example replacement of two synonyms “commence” and “start”. Thus, for the SRL

word alignment, we use a state-of-the-art monolingual word alignment system (Sultan

5Similar assumptions have been introduced by Foster (2007) for parse trees.

104

As I remember , I have known her forever

As I remember I have known her for ever

A0

AM-TMP

A0
A1

AM-TMP

A0

AM-TMP

A0
A1

AM-TMP

G
ra

m
m

at
ic

al
(A

ut
om

at
ic

)
U

ng
ra

m
m

at
ic

al
(P

se
ud

o
G

ol
d)

Figure 27: Projecting semantic dependencies of the Grammatical sentence (top) to the Ungram-

matical sentence (bottom) to create “gold standard” semantic dependencies of the ungrammatical

sentence.

et al., 2014) which aligns related words in the two sentences by exploiting the semantic

and contextual similarities of the words.

• Step 3: Projecting directly SRL annotations of grammatical sentence to the ungrammat-

ical sentence using the alignments. If a word in the ungrammatical sentence is aligned

to a word in the grammatical sentence, we directly project the semantic role of the word

in the grammatical sentence to the word in the ungrammatical sentence.

Figure 27 shows an example of projecting semantic dependencies from the grammatical sen-

tence to the ungrammatical sentence. Even if the process of projecting “gold standard” semantic

dependencies is not perfectly correct, it presents the norm from which semantic dependencies of

ungrammatical sentences diverge: if two sentences have the same meaning, their semantic depen-

dencies for these sentences should be similar. Therefore, we assume that SRL annotations of the

ungrammatical sentence are the same as their corresponding grammatical sentence.

7.3.3 Applying Fragmentation to Automatic SRL Annotations

Our goal is to investigate the impact of parse tree fragmentation on detecting incorrect semantic

dependencies of ungrammatical sentences. For this purpose, we propose two approaches to utilize

parse tree fragmentation of ungrammatical sentences. In one, we introduce a heuristic rule-based

105

method to detect incorrect semantic dependencies. In the second one, we introduce a classification

model that finds incorrect dependencies based on fragmentation features.

7.3.3.1 Approach 1: Rule-based

One way to detect incorrect semantic dependencies of an ungrammatical sentence is to assume that

any semantic dependency that crosses the sentence’s parse tree fragments is not correct and should

be removed. Although this is a restrictive assumption, it simplifies our argument for the use of

fragmentation and, at the same time, it still helps us to evaluate the usefulness of fragmentation by

counting the number of detected incorrect semantic dependencies.

Given an ungrammatical sentence, the steps that we take to apply parse tree fragments to the

semantic dependencies are as below:

• Step 1: Finding parse tree fragments of the ungrammatical sentence using one of the

fragmentation methods introduced in the Chapters 4 and 5.

• Step 2: Running a state-of-the-art SRL system over the ungrammatical sentence.

• Step 3: Removing semantic dependencies that cross between fragments, i.e. when

the predicate and the argument of a semantic dependency are in different parse tree

fragments.

• Step 4: Comparing the resulting semantic dependencies with the gold standard (pro-

jected) dependencies of the ungrammatical sentence (which will be discussed in Section

7.3.4).

Figure 28 shows an example of the fragmented semantic dependencies of an ungrammatical

sentence. The ungrammatical sentence has four parse tree fragments. Using the rule-based ap-

proach, all the three cross-fragment semantic dependencies are removed. Two of the dependencies

are correctly removed, but the relation “known→remember” is a correct semantic dependency

that should not be removed. To address the issue of cutting correct relations, in the next section

we propose a smarter approach to learn when to cut semantic dependencies using fragmentation

features.

7.3.3.2 Approach 2: Machine-Learning-based (ML)

Yet another way to detect incorrect semantic dependencies is to train a classifier to discriminate

106

As I remember I have known her for ever

As I remember I have known her for ever

A0

AM-TMP

A0
A1

A1 A2

A0
A0

A1

U
ng

ra
m

m
at

ic
al

(A
ut

om
at

ic
)

U
ng

ra
m

m
at

ic
al

(F
ra

gm
en

te
d)

Figure 28: Applying fragmentation to automatic semantic dependencies of an ungrammatical sen-

tence using the rule-based approach.

between the right and wrong contexts for some semantic dependencies. We formulate this as a

binary classification problem: for each semantic dependency generated by an automatic SRL sys-

tem indicates whether the dependency is correct or incorrect. Using projected SRL annotations

as examples, we train a Gradient Boosting Classifier that learns to detect incorrect semantic de-

pendencies. The trained classifier can then make prediction on the unseen semantic graphs of

ungrammatical sentences.

Because the number of correct semantic dependencies is greater than the incorrect ones, we

make a balanced training set by randomly sampling equal numbers of the correct and incorrect

dependencies6. We extract the following features for each semantic dependency in an automatically

generated semantic graph of an ungrammatical sentence:

• A binary feature that denotes whether the semantic role crosses between parse tree frag-

ments. For example the semantic dependency of “known→for” in the Figure 28 crosses

two fragments, while the semantic dependency of “known→her” does not cross parse

tree fragments. This feature value is extracted for each parse tree fragmentation method

separately.

• Type of the semantic dependency (e.g. A0, A1, A2 or AM-LOC). This feature is also

dependent to each parse tree fragmentation method.

6We have followed a similar approach in the binary classification discussed in Section 5.2.1

107

The next sets of features are independent from the fragmentation method and are the

adapted versions of the features of the parse trees described in Section 5.2.1:

• Depth and height of the predicate and argument of semantic dependency when the SRL

graph is traversed in depth-first order. Similar example for parse trees is given in Figure

19.

• Part-of-speech tags of the predicate, argument, and the parent of the predicate word. For

example in the Figure 19, for the arc of “known→for” the POS tags of “known”, “for”,

and “remember” are extracted.

• Word bigrams and trigrams corresponding to the arc (a similar example for parse trees

is shown in Figure 20). Denoting wh (h = 1, 2, ..) as the predicate word and wm as

the argument word, the bigram feature are calculated for the pairs of whwm (wmwh if

m < h), wm−1wm, and wmwm+1. The trigram features are calculated for the triples

of wm−1wmwm+1, wm−2wm−1wm, and wmwm+1wm+2. We use both raw counts and

pointwise mutual information of the N -grams. To compute the N -gram counts, we use

Agence France Press English Service (AFE) section of English Gigaword (Graff et al.,

2003).

7.3.4 Evaluating Automatic SRL Annotations of Ungrammatical Sentences

Given a set of “gold standard” semantic dependencies for an ungrammatical sentence, we can eval-

uate performance of an automatic SRL system or fragmented semantic graph of an ungrammatical

sentence. We focus on evaluating argument identification and labeling because these are the steps

which have been previously believed to require syntactic information (Punyakanok et al., 2008).

For a given semantic dependency, the head of an argument span is connected to the predicate and

labeled with a semantic role (e.g. A0 or A1). For example as depicted in the Figure 29, the verb

“known” is the predicate and “her” is one of its arguments, representing A1 (described as patient

or theme) relation.

In order to compare the SRL annotations7 of ungrammatical sentences with the gold standard

SRL annotations (i.e. projected annotations, introduced in Section 7.3.2), we use the standard

7The SRL annotations could be either the output of the automatic SRL system or the fragmented SRL graph by the
methods introduced in Section 7.3.3.

108

CoNLL-2009 evaluation scrip8. The script computes the confusion matrix between the automatic

and gold semantic dependencies. In our evaluation, the four values of confusion matrix are defined

as below:

• True Positive (TP): Correctly identified semantic dependencies by both automatic sys-

tem and the gold standard.

• False Positive (FP): Incorrectly identified semantic dependencies by automatic system,

while there are not semantic dependencies in the gold standard. This type of error is

also called false alarm or Type I error.

• True Negative (TN): Correctly identified no semantic dependencies by both automatic

system and the gold standard.

• False Negative (FN): Incorrectly identified no semantic dependencies by the automatic

system, while there are semantic dependencies in the gold standard. This type of error

is also called miss or Type II error.

In this research, we do not have any control on adding new semantic dependencies; we can

only remove the incorrect semantic dependencies since applying fragmentation methods over the

automatic SRL annotations cuts some of the semantic dependencies. Therefore, monitoring the

number of False Positives is a crucial measure to evaluate the helpfulness of fragmentation methods

to detect incorrect semantic dependencies. A method of measuring Type I error is False Discovery

Rate (FDR) (Murphy, 2012) which defined as:

False Discovery Rate (FDR) =
False Positive

False Positive + True Positive

In another words, FDR is the ratio of incorrect semantic dependencies out of all the identified

semantic dependencies by an automatic SRL system. In our experiments, to compare the perfor-

mance of SRL systems, we report their False Discovery Rates. The smaller the FDR number,

the better the system performs in detecting incorrect semantic dependencies. Figure 29 shows an

example of evaluating automatic semantic dependencies of an ungrammatical sentence against its

projected (gold standard) semantic dependencies. There are two incorrect semantic dependencies

in the automatic SRL system which result in False Discovery Rate of 2/6 ≈ 33%.

8http://ufal.mff.cuni.cz/conll2009-st/eval09.pl

109

http://ufal.mff.cuni.cz/conll2009-st/eval09.pl

Since applying fragmentation methods may remove mistakenly some correct semantic depen-

dencies as well as the incorrect ones, we also report the overall number of the missing semantic

dependencies by measuring False Negatives. A method of measuring False Negatives is False

Negative Rate (FNR) (Murphy, 2012) which defined as:

False Negative Rate (FNR) =
False Negative

False Negative + True Positive

FNR measures the ratio of missing semantic dependencies by an automatic SRL system out

of all the semantic dependencies of the gold standard. Therefore, the smaller FNR number, the

better the system performs in preserving correct semantic dependencies. In the example of Fig-

ure 29, there is one missing semantic dependency in the automatic semantic dependencies when

comparing with the pseudo gold dependencies (“known→ever”), which results in having one False

Negative. Thus, the False Negative Rate is calculated as 1/(1 + 4) = 0.2.

In this research, we are less concerned with the False Negatives because we do not have any

control over adding new semantic dependencies – applying fragmentation methods will only cut

semantic dependencies. While the fragmentation methods may cut some correct semantic depen-

dencies, thus introducing false negative cases, that is less problematic than leaving in incorrect

semantic dependencies. Detecting incorrect semantic dependencies is crucial for applications that

need high accuracy e.g. by building accurate knowledge bases. Therefore, we mainly monitor

the number of false positives using the FDR metric to evaluate the helpfulness of fragmentation

methods when detecting incorrect semantic dependencies.

7.3.5 Experimental Setup

We use the test datasets of ESL and MT (that are discussed in Section 6.3.1) and parse the sentences

using the SyntaxNet parser. We then run the semantic role labeler of the Mate toolkit (Björkelund

et al., 2009). Mate toolkit has achieved state-of-the-art semantic F-score in the semantic role label-

ing task of the CoNLL-2009 shared task (Hajič et al., 2009), and has been used as an off-the-shelf

SRL system since (Akbik et al., 2015; Akbik and Li, 2016). The Mate SRL system is implemented

as a sequence of local logistic regression classifiers for the four steps of predicate identification,

predicate classification, argument identification and argument classification. It uses a standard

110

As I remember I have known her for ever

As I remember I have known her for ever

A0

AM-TMP

A0
A1

AM-TMP

A0

AM-TMP

A0
A1

A2A1

U
ng

ra
m

m
at

ic
al

(P
se

ud
o

G
ol

d)
U

ng
ra

m
m

at
ic

al
(A

ut
om

at
ic

)

Figure 29: Evaluating the automatic semantic dependencies (bottom) with the gold stan-

dard/projected semantic dependencies (top) of the Ungrammatical sentence. The dotted red re-

lations show produced false positive relations by the automatic SRL. The False Discovery Rate

(FDR) is 2/6 ≈ 33%.

feature set of lexical and syntactic features. In addition, it reranks sets of local predictions by

implementing a global reranker.

For the machine-learning-based method of applying fragmentation on SRL annotations (dis-

cussed in Section 7.3.3.2), we train the standard Gradient Boosting Classifier (Friedman, 2001) in

the scikit-learn toolkit. We use the 10-fold cross validation over the test data.

7.3.6 Results

The experiments aim to address the usefulness of the parse tree fragmentation methods to detect

incorrect semantic dependencies of ungrammatical sentences. Specifically, we are interested in

answering the following questions:

• How do fragmentation methods perform on detecting incorrect semantic dependencies of

erroneous sentences? (Section 7.3.6.1)

• To what extent detecting incorrect semantic dependencies negatively impacted by the in-

crease in the number of errors in sentences? (Section 7.3.6.2)

• To what extent detecting incorrect semantic dependencies negatively impacted by the in-

teractions between multiple errors? (Section 7.3.6.3)

111

• What types of errors are more problematic for detecting incorrect semantic dependencies?

(Section 7.3.6.4)

7.3.6.1 Overall Performances

In this section, we address the first question by exploring the overall performance of fragmentation

methods on detecting incorrect semantic dependencies in terms of False Discovery Rate (FDR)

and False Negative Rate (FNR). We also evaluate the overall performance of the machine-learning-

based method.

Overall False Discovery Rates

The overall False Discovery Rates (FDR) of the fragmentation methods in detecting incorrect

semantic dependencies are shown in Table 14. The “0+” columns indicate the experiments over

the original test datasets in which sentences are randomly selected from each domain and might

contain no errors. Since more than 40% of the ESL sentences, and 35% of the MT sentences do

not have any or very few changes (as shown in Figures 23(a) and 24(a)), to remove the impact

of these sentences, we also report the overall SRL results on the sentences with at least one error

i.e. “1+”. The performance of detecting incorrect semantic dependencies are reported with respect

to the metric of False Discovery Rate (FDR). Note that the smaller FDR indicates lower rate of

type I error. The FDRrule and FDRML columns show the performance of fragmentation methods

when applied on the output of automatic SRL system using two approaches of rule-based and

machine-learning-based respectively (discussed in Section 7.3.3).

The first row of the table is the baseline method a.k.a Basic. The Basic method compares

the projected semantic dependencies (as the gold standard) with the automatically produced se-

mantic dependencies on the ungrammatical sentences. In both ESL and MT datasets, the Basic

method shows how well the automatic SRL system performs when processing domains that con-

tain ungrammatical sentences. As expected, the FDR numbers are higher in the 1+ dataset, as it is

because the sentences with no errors are ignored and so the total number of semantic dependencies

are reduced which makes the ratio of incorrect dependencies to the total dependencies increases.

Table 14 shows that, for both datasets, applying fragmentation methods reduces the False Dis-

covery Rates. This suggests that tree fragments are useful in decreasing the rate of incorrect se-

112

(a) ESL dataset

0+ errors 1+ errors

Method FDRRule FDRML FDRRule FDRML

Basic 12.81 22.68

Reference 3.82 3.65 9.51 9.19

Classification 7.07 7.40 19.57 14.87

Parser 12.24 7.88 22.68 15.01

seq2seq 9.24 7.32 17.26 14.11

(b) MT dataset

0+ HTER 0.1+ HTER

Method FDRRule FDRML FDRRule FDRML

Basic 33.51 39.51

Reference 16.98 16.16 21.79 20.72

Classification 26.35 26.96 37.30 32.42

Parser 29.29 26.72 38.40 32.54

seq2seq (trained on ESL) 32.86 26.43 38.61 31.93

Classification (trained on ESL) 28.78 26.84 38.61 31.91

Table 14: Overall performance of fragmentation methods in detecting incorrect semantic depen-

dencies in terms of False Discovery Rates (FDR). The “0+” columns indicate the experiments over

the sentences with zero or more errors, and the “1+” columns reports the results on the sentences

with at least one error. Reference as the upper bound is given in italics, and the best result among

automatic arc pruning methods is given in bold.

113

mantic dependencies of ungrammatical sentences. The Reference method is outperforming other

tree fragmentation methods as it uses extra source of information to identify major syntactic prob-

lems. When applying fragmentation, the machine-learning-based approach is mostly performing

better than the rule-based approach. Moreover, The machine-learning-based approach uses other

features than fragmentation features to detect incorrect semantic dependencies, so this makes it

pretty much robust among the automatic fragmentation methods, i.e. the FDRML is similar for

the Classification, Parser and seq2seq fragmentation methods. However, on the sentences with at

least one error, the seq2seq method gets the best overall results. Since the machine-learning-based

approach outperforms the rule-based approach, we use the machine-learning-based approach for

the rest of the experiments.

Overall False Negative Rates

In this experiment, we evaluate the fragmentation methods by how well they preserve the correct

semantic dependencies from removing. Although our main goal is to evaluate the performance of

fragmentation methods in detecting incorrect semantic dependencies, we are also interested to see

what percentage of semantic dependencies are missed by each method. We evaluate the percentage

of missing semantic dependencies in terms of False Negative Rate (FNR). Table 15 shows the over-

all FNR of the fragmentation methods. As we expected, the fragmentation methods have higher

FNRs than the Basic method, because they are designed to remove semantic dependencies so they

may remove semantic dependencies mistakenly which results in having higher False Negatives as

well as lowering True Positives. The Reference method is also performing better than other frag-

mentation methods since it uses extra source of information so it serves as the upper bound for the

automatic methods. But even among the automatic fragmentation methods, the seq2seq method

outperforms other methods in the ESL data which shows it is a practical fragmentation method that

both learns to parse and fragment ungrammatical sentences. The FNR scores in the MT data are

higher than the ESL data which shows MT sentences are more challenging than ESL.

Performance of Machine-Learning-based methods

Machine-Learning-based approach runs a binary classification modal over semantic dependencies,

deciding whether a dependency is correct or incorrect. The ground-truth labels come from the

projected semantic dependencies. We performed a 10-fold cross validation over the ESL and MT

114

(a) ESL dataset

0+ errors 1+ errors

Method FNRML FNRML

Basic 5.76 12.03

Reference 23.12 32.63

Classification 38.30 46.20

Parser 40.37 46.52

seq2seq 34.48 42.87

(b) MT dataset

0+ HTER 0.1+ HTER

Method FNRML FNRML

Basic 17.13 21.70

Reference 42.03 47.16

Classification 53.07 55.37

Parser 52.48 55.60

seq2seq (trained on ESL) 52.55 55.63

Classification (trained on ESL) 52.84 55.68

Table 15: Overall False Negative Rates (FNR) of fragmentation methods. Reference as the upper

bound of fragmentation methods is given in italics, and the best result among automatic arc pruning

methods is given in bold.

115

(a) ESL dataset

0+ error 1+ error

Method AUC AUC

Reference 0.815 0.755

Classification 0.68 0.65

Parser 0.67 0.648

seq2seq 0.698 0.666

(b) MT dataset

0+ error 1+ error

Method AUC AUC

Reference 0.747 0.721

Classification 0.617 0.607

Parser 0.619 0.602

seq2seq (trained on ESL) 0.619 0.608

Classification (trained on ESL) 0.616 0.608

Table 16: Performance of binary classification models of machine-Learning-based approach (Sec-

tion 7.3.3.2) using fragmentation features to detect incorrect semantic dependencies.

116

test data. Note that while we make the train data to be balanced (using 9 folds), the test data (the

10th fold) is not; thus, a baseline of never detecting incorrect dependencies would result in a high

classification accuracy (84% on ESL and 57% MT “0+ error” datasets). Similar to the other imbal-

anced test sets in this thesis, in order to take the skewed class distribution into account, we evaluate

classifies with the AUC measure. The AUC estimates how probable it is that a classifier might give

a higher rank to a randomly incorrect dependency compared to a randomly correct one. Table 16

presents the AUC of the classifiers with the features from different fragmentation methods. The

AUC of the classifiers with the Reference features are higher than other classifiers. However, all

the classifiers are performing better than the baseline (detecting no incorrect semantic dependen-

cies) which is 0.5. The AUC scores suggest that the Machine-Learning-based classifiers with the

fragmentation features are making reasonable decisions to detect incorrect semantic dependencies

of ungrammatical sentences.

7.3.6.2 Impact of Number of Errors

We further analyze the results by separating the test sentences by the number of errors each con-

tains. Our objectives are: (1) to observe the speed with which the rates of false positives increases

as the sentences become more error-prone; (2) to determine the differences between fragmentation

methods and the basic SRL system when handling noisier data.

Figure 30 presents two graphs, plotting False Discovery Rates against the number of errors for

two test datasets of ESL and MT. We observe that 1) the FDR score is increasing more rapidly for

the Basic method than the Reference method; 2) using fragmentation features to detect incorrect

semantic dependencies led to a similar behavior between the fragmentation methods. In both

datasets, the FDR increases gradually with increasing number of errors; therefore, the fact of

detecting incorrect semantic dependencies becomes more crucial for the noisier sentences.

7.3.6.3 Impact of Error Distances

In this experiment, we explore the impact of the interactivity of errors. Similar to the experiments

in Section 3.5.3, we assume that errors have more interaction if they are closer to each other,

and less interaction if they are scattered throughout the sentence. We define “near” to be when

there is at most 1 word between errors and “far” to be when there are at least 6 words between

117

(a) ESL dataset

(b) MT dataset

Figure 30: Variation in False Discovery Rates as the number of errors in the test sentences in-

creases.

118

errors. We expect that the SRL system and the fragmentation methods have more difficulty on

detecting incorrect semantic dependencies when the errors have more interaction. We conduct this

experiment using a subset of sentences that have exactly two errors; we compare False Discovery

Rate of the methods when the two errors are near each other and when the errors are far apart.9

Table 17 presents the results using our representation of the shaded bars. Each dataset is treated

as one group. The top row specifies the lowest FDR and the bottom row specifies the highest FDR.

The shaded area of each bar indicates the relative FDR of each method with respect to the lowest

and highest FDR scores of the group. Note that the lower FDR is desirable, so the emptier bar

indicates the system that detects lower ratio of incorrect semantic dependencies. In all the datasets,

the Reference method has the least ratio of incorrect semantic dependencies (indicating the empty

bar) and the Basic method has the highest ratio of incorrect dependencies (indicating the fully

shaded bar). As expected, the Basic method shows more difficulty with near errors than far errors

(the ratio of its False Positives is higher with near errors). In the ESL dataset, the near errors

are less challenging for the fragmentation methods; they only exhibit minor differences between

near and far errors. Compared to ESL data, near errors in MT data are more challenging for the

fragmentation methods; they all have more problems in detecting incorrect semantic dependencies

when the errors are near.

The results of error interactivity in detecting incorrect semantic dependencies are consistent

with the error interactivity in parser robustness. They both show that the near errors are more

problematic for both parsers and SRL systems. With respect to the SRL results, the fragmenta-

tion methods are helpful to reduce the ratio of incorrect semantic dependencies. Specifically the

Reference method outperforms other methods.

7.3.6.4 Impact of Error Types

In the following experiments, we examine the impact of different error types. To remove the

impact due to interactivity between multiple errors, we study a subset of sentences that have only

one error. Our objective is to see whether some error types are more challenging for SRL systems

than others.

9We chose the sentences with exactly two errors in order to have more sentences in each group. While in the
experiments of Section 3.5.3, we chose sentences with three errors since the test datasets were larger in that experiment.

119

(a) ESL dataset

0+ errors 1+ errors

Method Near Far Near Far

min 7.76 (Reference) 9.25 (Reference)

Basic

Reference

Classification

Parser

seq2seq

max 21.44 (Basic) 23.58 (Basic)

(b) MT dataset

HTER 0+ errors HTER 1+ errors

Method Near Far Near Far

min 7.45 (Reference) 9.39 (Reference)

Basic

Reference

Classification

Parser

seq2seq (trained on ESL)

Classification (trained on ESL)

max 16.17 (Basic) 18.43 (Basic)

Table 17: False Discovery Rates on test sentences with two near and two far errors. Each bar

indicates the level of FDR scaled to the lowest score (empty bar) and highest score (filled bar) of a

group.

120

Impact of error semantic role

An error can be either in a verb role, an argument role, or no semantic role. We extract semantic

role of the error on the ungrammatical sentence by running an automatic SRL system on the cor-

rected version of the sentences. We then obtain the role of the errors using alignments between

ungrammatical sentence and its corrected counterpart. Table 18 presents the performance of the

methods in detecting incorrect semantic roles over sentences that have one error. Sentences with

argument errors are more challenging for all the methods even the Reference method; the ratio

of false positives are higher when there is an argument error in the sentence. These results are

opposite of the parser robustness results in which we observed that handling errors in argument

words is somewhat easier for parsers. The reason may be because the errors in arguments might

not impact the syntactic structure of the sentence, but these errors may change the semantic of the

sentence and so make difficulties to detect incorrect semantic dependencies.

To

further

study

the

impact

of

argument

errors

and

to

see

which

semantic

role

is

more

chal-

lenging,

we

breakdown

the

sentences

with

one

argument

error

with

the

semantic

role

label

of

the

argument

error.

Table

19

shows

the

results

for

the

top

seven

argument

roles

in

our

test

data.

A

brief

description

of

the

semantic

roles

is

given

in

Table

22.

In

the

the

ESL

dataset,

the

A2

semantic

role

seems

to

be

the

most

challenging

role

for

all

the

methods.

In

the

MT

dataset,

the

AM-LOC

is

the

most

difficult

semantic

role

to

detect;

even

the

Reference

method

has

the

highest

ratio

of

false

positives

for

this

role.

In

general,

the

variation

of

the

semantic

roles

does

not

seem

to

im-

pact

the

performance

of

the

methods

in

detecting

incorrect

semantic

roles;

each

method

performs

equally

well

or

poorly

across

most

of

the

roles.

But

there

are

some

exceptions,

for

instance

in

the

ESL

dataset,

fragmentation

methods

perform

differently

for

the

AM-MNR

semantic

role;

the

Reference

method

has

the

best

performance

by

removing

all

the

false

positives,

while

the

seq2seq

has

the

worst

performance.

One

reason

of

this

huge

variation

is

that

there

are

only

25

sentences

with

one

error

where

the

error

occurs

on

a

word

taking

on

an

AM-MNR

semantic

role.

Thus,

considering

a

larger

test

sample,

the

average

results

might

be

different.

Impact of grammatical error types

In this experiment, we explore the impact of the three grammar error types: replacement (a word

need replacing), missing (a word missing), and unnecessary (a word is redundant). Our goal is to

121

(a) ESL dataset

Method Verb Argument No role

min 3.05 (Reference)

Basic

Reference

Classification

Parser

seq2seq

max 18.09 (Parser)

(b) MT dataset

Method Verb Argument No role

min 7.71 (Reference)

Basic

Reference

Classification

Parser

seq2seq (trained on ESL)

Classification (trained on ESL)

max 20.1 (Classification)

Table 18: False Discovery Rates on test sentences with one error where the error occurs on a word

taking on a verb role, an argument role, or a word with no semantic role.

122

(a) ESL dataset

Method A0 A1 A2 AM-MOD AM-TMP AM-MNR AM-LOC

min 0.00 (Reference)

Basic

Reference

Classification

Parser

seq2seq

max 33.33 (seq2seq)

(b) MT dataset

Method A0 A1 A2 AM-MOD AM-TMP AM-MNR AM-LOC

min 0.00 (Reference)

Basic

Reference

Classification

Parser

seq2seq (trained on ESL)

Classification (trained on ESL)

max 38.46 (Reference)

Table 19: False Discovery Rates on sentences with one error, where the error occurs on a word

taking an argument role that has one of the seven frequent role labels.

123

see what types of errors are more problematic for detecting incorrect semantic dependencies. As

shown in Table 20, in the ESL dataset, the missing word error is somewhat the less challenging

error type, and the replacement word error is the most challenging one. While in the MT dataset,

the missing word error is the most challenging error. In the MT dataset, except the Reference

method, almost all the methods have difficulties with detecting incorrect semantic dependencies.

This shows that the MT domain is more challenging than the ESL domain even when there is only

one word change between the ungrammatical sentence and its corrected counterpart.

Impact of error word category

Another factor that might affect performance of the fragmentation methods in detecting incorrect

semantic dependencies is the class of the errors. We separate the sentences into two groups: errors

occurring on an open-class word (e.g. verbs and nouns) and errors occurring on closed-class word

(e.g. prepositions and pronouns). As the Table 21 shows the open-class errors are generally more

difficult. This might be because the impact of the open-class words is higher in the semantic of the

sentence than the closed-class errors which are functional words. While in the parser robustness

experiments (Section 3.5.4.2) the closed-class errors were more difficult for parsers, since they

have higher impact on the structure of sentences.

7.3.6.5 Discussion

The results of the semantic role labeling experiments highlight the helpfulness of parse tree frag-

mentation in detecting incorrect semantic dependencies of ungrammatical sentences. We observe

that the off-the-shelf semantic role labeler (Basic method) identifies high ratio of semantic de-

pendencies that are not correct; using fragmentation features we are able to detect some of these

incorrect semantic dependencies. Specifically, the Reference method significantly helps this task

as the upper bound approach. Although there is a performance gap between the automatic frag-

mentation methods and the Reference method, the automatic methods are still useful in detecting

incorrect semantic dependencies.

We also performed a set of error analysis experiments to examine the impact of various error

types in this task. We observe that the performance of different methods varies with different error

types; some error types are more problematic than others. The results of the error analysis would

124

(a) ESL dataset

Method Replacement Missing Unnecessary

min 3.62 (Reference)

Basic

Reference

Classification

Parser

seq2seq

max 15.03 (Basic)

(b) MT dataset

Method Replacement Missing Unnecessary

min 8.27 (Reference)

Basic

Reference

Classification

Parser

seq2seq (trained on ESL)

Classification (trained on ESL)

max 13.6 (seq2seq)

Table 20: False Discovery Rates on sentences with one grammatical error, each can be categorized

as a replacement word error, a missing word error or an unnecessary word error.

125

(a) ESL dataset

Method Open class Closed class

min 4.07 (Reference)

Basic

Reference

Classification

Parser

seq2seq

max 16.45 (Basic)

(b) MT dataset

Method Open class Closed class

min 7.6 (Reference)

Basic

Reference

Classification

Parser

seq2seq (trained on ESL)

Classification (trained on ESL)

max 14.55 (Basic)

Table 21: False Discovery Rates on sentences with one error, where the error either occurs on an

open-class (lexical) word or a closed-class (functional) word.

126

help researchers to adapt semantic role labelers to deal with ungrammatical text; they would also

help to analyze the strength and weaknesses of different fragmentation methods on various error

types to further improve them.

7.4 CHAPTER SUMMARY

We have applied the parse tree fragmentation framework in two downstream NLP applications.

We have verified that the automatically extracted tree fragments are competitive with existing

methods for making fluency judgments. Moreover, we evaluated parse tree fragmentation in the

downstream NLP application of semantic role labeling and showed that fragmenting parse trees of

ungrammatical sentences is helpful to detect their wrong semantic dependencies.

127

8.0 CONCLUSION AND FUTURE WORK

In this dissertation, we have examined the problems of parsing ungrammatical sentences. We have

analyzed the negative impact that ungrammatical sentences have on the state-of-the-art statistical

parsers and downstream applications that depend on accurate parse trees. We have introduced a

new framework called parse tree fragmentation to address the challenges faced by these standard

statistical parsers. The goal of parse tree fragmentation is to prune implausible dependency arcs

of the parse trees. We have shown through empirical studies that fragmenting trees is helpful

for natural language processing applications such as sentence-level grammaticality judgment and

semantic role labeling. In the remaining of the chapter, we provide a summary of the contributions

in this dissertation work and discuss how they address the thesis statements. Next, we propose

some future research directions to further tackle this challenging NLP problem.

8.1 SUMMARY OF CONTRIBUTIONS AND RESULTS

The primary goal of this research was to investigate the impact of ungrammatical sentences on

parsers. To accomplish this goal, we formulated three research questions and proposed method-

ologies to address them. In this section, we summarize the approaches that we took to deal with

this problem, but there could be other directions even with better performances that we leave as

the future work.

Question 1. In what ways does a parser’s performance degrade when dealing with ungrammatical

sentences?

To study the impact of ungrammatical sentences on statistical parsers, we have devised a ro-

128

bustness evaluation procedure and reported a set of empirical analysis on the performance of sev-

eral leading parsers on these sentences. We have found that parsers indeed degrade and perform

differently when dealing with ungrammatical sentences of various error types. The results of our

error analysis would also help researchers to improve robustness of parsers in terms of various

error types; they would also help practitioners to select an appropriate parser for their applications.

Moreover, our results show that parsers do reasonably well when the dependency arcs that are re-

lated to the erroneous parts are ignored. This finding led us to approach parsing ungrammatical

sentences by pruning their implausible dependency arcs.

Question 2. Is it feasible to automatically identify parse tree fragments that are plausible interpre-

tations for the phrases they cover?

We have approached the problem of parsing ungrammatical sentences by proposing a new

framework to re-interpret the parse trees by pruning the implausible dependency arcs. This results

a set of tree fragments that are linguistically appropriate for the phrases they cover. We have pro-

posed gold standard methods to automatically identify parse tree fragments using parallel corpora

available for other NLP tasks; and we have used these methods to collect gold standard data. We

have then proposed three automatic fragmentation methods that learn to fragment trees by training

with the gold standard data: classification-based, parser-based, and sequence-to-sequence based

methods. While these methods learn to fragment in a similar manner as the gold standard method,

our studies suggest that the sequence-to-sequence mapping approach provides more accurate frag-

ments. The sequence-to-sequence has an additional advantage in that it learns both to parse and

fragment ungrammatical sentences. On the other hand, a drawback of this approach is that it

needs a huge amount of parallel data that might not be available for some ungrammatical domains.

While the Classification approach is applicable for domains that have a small but high quality error

annotated ungrammatical sentences.

Question 3. Do the resulting parse tree fragments provide some useful information for downstream

NLP applications?

We have investigated the utility of tree fragments for two NLP applications: sentence-level

fluency judgment and semantic role labeling. Through experiments, we have found that parse

tree fragmentation is helpful for these applications when dealing with ungrammatical sentences.

129

Especially applying the extracted features from the pseudo gold fragments significantly boosts

the performance of two tasks. Although the pseudo gold fragments are considered as the upper

bound, there is a performance gap between the automatic fragmentation methods and the pseudo

gold fragments. One reason of this gap is that our trained fragmentation models are not optimal,

for instance we did not search for the optimal training size for the Parser or the optimal size of

the network for the sequence-to-sequence model, since our focus in this thesis was on validating

the helpfulness of the fragmentation methods. In spite of the lower performance of automatic

methods, our experiments show that they are still making reasonable decisions on fragmenting the

trees; additionally, they are useful in judging fluency of sentences and detecting incorrect semantic

dependencies. But it is apparent that there is still further scope for future improvements.

8.2 FUTURE WORK

Our study suggests that robustness evaluation of parsers and parse tree fragmentation framework

are promising directions for further exploration. Although the approaches we proposed and the

experiments we have conducted have shed some lights on parsing ungrammatical sentences, there

are undoubtedly other directions and more sophisticated approaches that would lead to even more

accomplishments. In this section, we discuss a number of areas for the future research on parser

robustness and parser adaptation for ungrammatical sentences.

Parser Robustness

Our robustness evaluation study indicates that dependency parsers have different responses

to ungrammatical sentences. This line of research can be further studied in several directions.

First, since there are specialized parsers on different syntactic representation (dependency or con-

stituency), it would be interesting to analyze the robustness of different parsers across the syntactic

representation. In this case, our proposed robustness evaluation metric needs to be adapted to the

constituency formalism.

Second, we have trained the parsers on two domains of the news texts and tweets data, and

tested them on two domains of the learners’ writings and machine translation outputs. One future

130

direction is to expand these training and testing domains with the available treebanks on different

domains of ungrammatical sentences. There is a newly released treebank for ESL writings that

is manually annotated for erroneous sentences (Berzak et al., 2016). Although this is relatively a

small corpus (containing around 5000 sentences), it can still be helpful to evaluate the robustness

of parsers. Another treebank of noisy sentences is the Switchboard corpus (Godfrey et al., 1992),

that contains Automatic Speech Recognition (ASR) transcripts of conversations and their manually

annotated constituency parse trees. The error types of the annotated ASR transcripts is limited, but

still it would be interesting to explore parser robustness on this corpus.

Parse Tree Fragmentation

Our proposed fragmentation framework consists of various parts that each could be optimized

with more sophisticated methods; especially there is a performance gap between the proposed

practical methods and the oracle which can be reduced by training a more powerful model for this

task. Furthermore, since the focus of this thesis was on introducing the parse tree fragmentation

and validating it, we have left finding the optimal models such as finding the optimal training size

for the Parser and the optimal size of the network for the seq2seq method for the future work.

Furthermore, we have illustrated two possible use of tree fragments (for fluency assessment

and semantic role labeling) to demonstrate how having tree fragments improves downstream ap-

plications when encountering ungrammatical sentences, but it would be interesting to apply frag-

mentation on a wider set of applications as well. A starting point could be based on the findings of

the recent shared task of the Extrinsic Parser Evaluation (EPE)1; but still there is a need to collect

annotated trees for the ungrammatical sentences to be able to evaluate them in the specific extrinsic

applications of this shared task.

Parser Adaptation

We approached parsing ungrammatical sentences by introducing parse tree fragmentation, a

framework to prune the incorrect dependency arcs of parse trees; another direction could be to

build specialized parsers to handle these sentences. One approach is to adapt transition-based

dependency parsers by adding new actions to handle grammatical mistakes in the sentences. This

is more challenging than the previous work on jointly parsing and detecting disfluency in spoken

1http://epe.nlpl.eu/

131

utterances (Honnibal and Johnson, 2014; Yoshikawa et al., 2016), since there is a wider range

of errors in written text. Another challenge is on collecting enough annotated data for training

the adapted parser. An alternative to collect ungrammatical treebanks is to build one artificially;

this could be done by adding simulated real world mistakes to grammatical sentences and alter

their trees accordingly (Foster, 2007), but it still needs careful adaptation to filter out unrealistic

grammatical mistakes.

132

APPENDIX

SEMANTIC ROLE LABELS

In this thesis, we use the PropBank style semantic role labels. A brief description of its semantic

role labels are shown in Table 22. More details about PropBank semantic role labels are discussed

in Bonial et al. (2010).

133

Label Description

A0 Agent

A1 Patient, theme

A2 Instrument, benefactive, attribute

A3 Staring point

A4 Ending point

AM-MOD Modals

AM-TMP Temporal

AM-MNR Manner

AM-LOC Location

AM-DIR Direction

AM-EXT Extent

AM-REC Reciprocals

AM-PRD Secondary Predication

AM-PNC Purpose

AM-CAU Cause

AM-DIS Discourse

AM-ADV Adverbials

AM-NEG Negation

Table 22: A list of semantic role labels.

134

BIBLIOGRAPHY

Abney, S. P. (1991). Parsing by chunks. In Principle-Based Parsing.

Akbik, A., Chiticariu, L., Danilevsky, M., Li, Y., Vaithyanathan, S., and Zhu, H. (2015). Generating
high quality proposition banks for multilingual semantic role labeling. In ACL.

Akbik, A. and Li, Y. (2016). Polyglot: Multilingual semantic role labeling with unified labels.
ACL.

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and
Collins, M. (2016). Globally normalized transition-based neural networks. arXiv preprint
arXiv:1603.06042.

Baccianella, S., Esuli, A., and Sebastiani, F. (2009). Evaluation Measures for Ordinal Regression.
Intelligent Systems Design and Applications, pages 283–287.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Baucom, E., King, L., and Kübler, S. (2013). Domain adaptation for parsing. In Proceedings of
the International Conference Recent Advances in Natural Language Processing, pages 56–64.

Berka, J., Bojar, O., Fishel, M., Popovic, M., and Zeman, D. (2012). Automatic MT Error Analysis:
Hjerson Helping Addicter. LREC, pages 2158–2163.

Berzak, Y., Kenney, J., Spadine, C., Wang, J. X., Lam, L., Mori, K. S., Garza, S., and Katz, B.
(2016). Universal dependencies for learner English. In ACL, pages 737–746.

Bigert, J., Sjöbergh, J., Knutsson, O., and Sahlgren, M. (2005). Unsupervised evaluation of parser
robustness. In Computational Linguistics and Intelligent Text Processing, pages 142–154.

Birch, A., Haddow, B., Germann, U., Nadejde, M., Buck, C., and Koehn, P. (2013). The feasibility
of HMEANT as a human MT evaluation metric. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 52–61.

Björkelund, A., Hafdell, L., and Nugues, P. (2009). Multilingual semantic role labeling. In Pro-
ceedings of the Thirteenth Conference on Computational Natural Language Learning: Shared
Task, pages 43–48. Association for Computational Linguistics.

135

Black, E., Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D., Ingria, R.,
Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B., and Strzalkowski,
T. (1991). A procedure for quantitatively comparing the syntactic coverage of English grammars.

Bohnet, B. (2010). Very high accuracy and fast dependency parsing is not a contradiction. In
Proceedings of the 23rd International Conference on Computational Linguistics, pages 89–97.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M., Yepes, A. J., Koehn,
P., Logacheva, V., Monz, C., et al. (2016). Findings of the 2016 conference on machine transla-
tion (WMT16). Proceedings of WMT.

Bonial, C., Babko-Malaya, O., Choi, J. D., Hwang, J., and Palmer, M. (2010). PropBank annotation
guidelines. Center for Computational Language and Education Research Institute of Cognitive
Science University of Colorad at Boulder.

Cahill, A. (2015). Parsing learner text: to shoehorn or not to shoehorn. In The 9th Linguistic
Annotation Workshop held in conjuncion with NAACL 2015, page 144.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics, pages 173–180.

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), volume 1, pages 740–750.

Cherry, C. and Quirk, C. (2008). Discriminative, syntactic language modeling through latent
SVMs. Proceeding of Association for Machine Translation in the America (AMTA), pages 21–
25.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Choi, J. D., Tetreault, J., and Stent, A. (2015). It depends: Dependency parser comparison using
a web-based evaluation tool. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics, pages 26–31.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Nat-
ural language processing (almost) from scratch. The Journal of Machine Learning Research,
12:2493–2537.

Dahlmeier, D., Ng, H. T., and Wu, S. M. (2013). Building a large annotated corpus of learner En-
glish: The NUS corpus of learner English. In Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications, pages 22–31.

Daiber, J. and van der Goot, R. (2016). The denoised web treebank: Evaluating dependency
parsing under noisy input conditions. In LREC.

136

Dale, R., Anisimoff, I., and Narroway, G. (2012). HOO 2012: A report on the preposition and
determiner error correction shared task. In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 54–62.

Dale, R. and Kilgarriff, A. (2011). Helping our own: The HOO 2011 pilot shared task. In Pro-
ceedings of the 13th European Workshop on Natural Language Generation, pages 242–249.

Daudaravicius, V., Banchs, R. E., Volodina, E., and Napoles, C. (2016). A report on the automatic
evaluation of scientific writing shared task. In Workshop on Building Educational Applications
Using NLP, pages 53–62.

De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–454.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: Automatic Metric for Reliable Optimization
and Evaluation of Machine Translation Systems. In Proceedings of the EMNLP 2011 Workshop
on Statistical Machine Translation.

Dreyer, M., Smith, D. A., and Smith, N. A. (2006). Vine parsing and minimum risk reranking
for speed and precision. In Proceedings of the Tenth Conference on Computational Natural
Language Learning, pages 201–205.

Dridan, R. and Oepen, S. (2011). Parser evaluation using elementary dependency matching. In
Proceedings of the 12th International Conference on Parsing Technologies, pages 225–230.

Eisenstein, J. (2013). What to do about bad language on the internet. NAACL, pages 359–369.

Eisner, J. and Smith, N. A. (2005). Parsing with soft and hard constraints on dependency length.
In Proceedings of the Ninth International Workshop on Parsing Technology, pages 30–41.

Elming, J., Johannsen, A., Klerke, S., Lapponi, E., Alonso, H. M., and Søgaard, A. (2013). Down-
stream effects of tree-to-dependency conversions. In HLT-NAACL, pages 617–626.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A library
for large linear classification. The Journal of Machine Learning Research, 9:1871–1874.

Ferguson, J., Durrett, G., and Klein, D. (2015). Disfluency detection with a semi-markov model
and prosodic features. In NAACL.

Filippova, K., Alfonseca, E., Colmenares, C. A., Kaiser, L., and Vinyals, O. (2015). Sentence
compression by deletion with LSTMs. In EMNLP, pages 360–368.

Fishel, M., Bojar, O., Zeman, D., and Berka, J. (2011). Automatic translation error analysis. Text,
Speech and Dialogue.

FitzGerald, N., Täckström, O., Ganchev, K., and Das, D. (2015). Semantic role labeling with
neural network factors. In EMNLP, pages 960–970.

137

Foland, W. and Martin, J. H. (2015). Dependency-based semantic role labeling using convolutional
neural networks. In * SEM, NAACL-HLT, pages 279–288.

Foster, J. (2004). Parsing ungrammatical input: an evaluation procedure. In LREC.

Foster, J. (2007). Treebanks gone bad. International Journal of Document Analysis and Recogni-
tion, 10(3-4):129–145.

Foster, J. (2010). “cba to check the spelling” investigating parser performance on discussion fo-
rum posts. In The Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 381–384.

Foster, J., Çetinoglu, Ö., Wagner, J., Le Roux, J., Hogan, S., Nivre, J., Hogan, D., Van Genabith,
J., et al. (2011a). # hardtoparse: POS tagging and parsing the twitterverse. In proceedings of the
Workshop On Analyzing Microtext (AAAI 2011), pages 20–25.

Foster, J., Cetinoglu, O., Wagner, J., and Roux, J. L. (2011b). From news to comment: Resources
and benchmarks for parsing the language of web 2.0. IJCNLP.

Foster, J., Wagner, J., and Van Genabith, J. (2008). Adapting a WSJ-trained parser to grammat-
ically noisy text. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, pages 221–224.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232.

Gamon, M. and Leacock, C. (2010). Search right and thou shalt find...: using web queries for
learner error detection. In Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative
Use of NLP for Building Educational Applications, pages 37–44.

Geertzen, J., Alexopoulou, T., and Korhonen, A. (2013). Automatic linguistic annotation of large
scale l2 databases: the ef-cambridge open language database (EFCAMDAT). In Proceedings of
the 31st Second Language Research Forum.

Georgila, K. (2009). Using integer linear programming for detecting speech disfluencies. In Pro-
ceedings of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 109–112.

Gildea, D. (2001). Corpus variation and parser performance. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 167–202.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Computational linguis-
tics, 28(3):245–288.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yo-
gatama, D., Flanigan, J., and Smith, N. A. (2011). Part-of-speech tagging for Twitter: Annota-
tion, features, and experiments. In ACL-HLT, pages 42–47.

138

Godfrey, J. J., Holliman, E. C., and McDaniel, J. (1992). Switchboard: Telephone speech corpus
for research and development. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 517–520.

Graff, D., Kong, J., Chen, K., and Maeda, K. (2003). English Gigaword. Linguistic Data Consor-
tium.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martı́, M. A., Màrquez, L., Meyers, A.,
Nivre, J., Padó, S., Štěpánek, J., et al. (2009). The CoNLL-2009 shared task: Syntactic and
semantic dependencies in multiple languages. In Proceedings of the Thirteenth Conference on
Computational Natural Language Learning: Shared Task, pages 1–18.

Han, B. and Baldwin, T. (2011). Lexical normalisation of short text messages: Makn sens a# twit-
ter. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 368–378.

Han, B., Cook, P., and Baldwin, T. (2012). Automatically constructing a normalisation dictionary
for microblogs. In Proceedings of the 2012 joint conference on empirical methods in natural
language processing and computational natural language learning, pages 421–432.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143(1):29–36.

Hashemi, H. B. and Hwa, R. (2014). A comparison of MT errors and ESL errors. In LREC, pages
2696–2700.

Hashemi, H. B. and Hwa, R. (2016). Parse tree fragmentation of ungrammatical sentences. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI).

Heilman, M., Cahill, A., Madnani, N., and Tetreault, J. (2014). Predicting Grammaticality on an
Ordinal Scale. ACL, pages 174–180.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Honnibal, M. and Johnson, M. (2014). Joint incremental disfluency detection and dependency
parsing. Transactions of the Association for Computational Linguistics, 2:131–142.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. Handbook of formal languages,
3:69–124.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing An Introduction to Natural
Language Processing, Computational Linguistics, and Speech. Pearson Education.

Kakkonen, T. (2007). Robustness evaluation of two ccg, a pcfg and a link grammar parsers. Pro-
ceedings of the 3rd Language & Technology Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics.

139

Kingsbury, P. and Palmer, M. (2002). From TreeBank to PropBank. In LREC.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of the
Annual Meeting on Association for Computational Linguistics, pages 423–430.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). OpenNMT: Open-source
toolkit for neural machine translation. arXiv preprint arXiv:1701.02810.

Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A., Dyer, C., and Smith, N. A. (2014). A de-
pendency parser for tweets. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing.

Kong, L. and Smith, N. A. (2014). An empirical comparison of parsing methods for stanford
dependencies. arXiv preprint arXiv:1404.4314.

Kummerfeld, J. K., Hall, D., Curran, J. R., and Klein, D. (2012). Parser showdown at the wall street
corral: An empirical investigation of error types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 1048–1059.

Lo, C.-k. and Wu, D. (2011). MEANT: an inexpensive, high-accuracy, semi-automatic metric for
evaluating translation utility via semantic frames. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages
220–229.

Maqsud, U., Arnold, S., Hülfenhaus, M., and Akbik, A. (2014). Nerdle: Topic-specific question
answering using wikia seeds. In 25th International Conference on Computational Linguistics,
Proceedings of the Conference System Demonstrations, pages 81–85.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated corpus
of English: The penn treebank. Computational linguistics, 19(2):313–330.

Martins, A. F., Almeida, M., and Smith, N. A. (2013). Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 617–622. Citeseer.

McClosky, D., Charniak, E., and Johnson, M. (2006). Reranking and self-training for parser adap-
tation. In Proceedings of the annual meeting of the Association for Computational Linguistics,
pages 337–344.

McClosky, D., Charniak, E., and Johnson, M. (2010). Automatic domain adaptation for parsing.
In The Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 28–36.

McDonald, R. and Nivre, J. (2011). Analyzing and integrating dependency parsers. Computational
Linguistics, 37(1):197–230.

140

McDonald, R. T. and Pereira, F. C. (2006). Online learning of approximate dependency parsing
algorithms. In EACL.

Miyao, Y., Sætre, R., Sagae, K., Matsuzaki, T., and Tsujii, J. (2008). Task-oriented evaluation of
syntactic parsers and their representations. In ACL, volume 8, pages 46–54.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Mutton, A., Dras, M., Wan, S., and Dale, R. (2007). GLEU: Automatic evaluation of sentence-level
fluency. In ACL.

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., and Bryant, C. (2014). The
CoNLL-2014 shared task on grammatical error correction. In CoNLL Shared Task, pages 1–14.

Ng, H. T., Wu, S. M., Hadiwinoto, C., and Tetreault, J. (2013). The CoNLL-2013 shared task
on grammatical error correction. In Conference on Computational Natural Language Learning:
Shared Task, pages 1–12.

Nivre, J. (2004). Incrementality in deterministic dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering and Cognition Together, pages 50–57. As-
sociation for Computational Linguistics.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E.
(2007). MaltParser: A language-independent system for data-driven dependency parsing. Natu-
ral Language Engineering, 13(02):95–135.

Oepen, S., Øvrelid, L., Björne, J., Johansson, R., Lapponi, E., Ginter, F., and Velldal, E. (2017).
The 2017 Shared Task on Extrinsic Parser Evaluation. Towards a reusable community infras-
tructure. In The 2017 Shared Task on Extrinsic Parser Evaluation (EPE), pages 1–16.

Ott, N. and Ziai, R. (2010). Evaluating dependency parsing performance on german learner lan-
guage. Proceedings of TLT-9, 9:175–186.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71–106.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in Python.
The Journal of Machine Learning Research, 12:2825–2830.

Petrov, S., Chang, P.-C., Ringgaard, M., and Alshawi, H. (2010). Uptraining for accurate deter-
ministic question parsing. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 705–713.

141

Pinker, S. (2015). The Sense of Style: The Thinking Person’s Guide to Writing in the 21st Century!
Penguin Books.

Popović, M. and Ney, H. (2011). Towards automatic error analysis of machine translation output.
Computational Linguistics.

Post, M. (2011). Judging grammaticality with tree substitution grammar derivations. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages
217–222.

Post, M. and Bergsma, S. (2013). Explicit and implicit syntactic features for text classification. In
ACL, volume 2, pages 866–872.

Potet, M., Esperança-Rodier, E., Besacier, L., and Blanchon, H. (2012). Collection of a large
database of French-English SMT output corrections. In LREC, pages 4043–4048.

Pradhan, S., Hacioglu, K., Ward, W., Martin, J. H., and Jurafsky, D. (2005). Semantic role chunk-
ing combining complementary syntactic views. In Proceedings of the Ninth Conference on Com-
putational Natural Language Learning, pages 217–220. Association for Computational Linguis-
tics.

Punyakanok, V., Roth, D., and Yih, W.-t. (2008). The importance of syntactic parsing and inference
in semantic role labeling. Computational Linguistics, 34(2):257–287.

Qian, X. and Liu, Y. (2013). Disfluency detection using multi-step stacked learning. In HLT-
NAACL, pages 820–825.

Quirk, C. and Corston-Oliver, S. (2006). The impact of parse quality on syntactically-informed
statistical machine translation. In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 62–69. Association for Computational Linguistics.

Ragheb, M. and Dickinson, M. (2012). Defining syntax for learner language annotation. In COL-
ING (Posters), pages 965–974.

Rasooli, M. S. and Tetreault, J. (2015). Yara parser: A fast and accurate dependency parser. arXiv
preprint arXiv:1503.06733.

Rasooli, M. S. and Tetreault, J. R. (2013). Joint parsing and disfluency detection in linear time. In
EMNLP, pages 124–129.

Resnik, P. and Lin, J. (2010). Evaluation of NLP Systems. Handb. Comput. Linguist. Nat. Lang.
Process., 57:271.

Ritter, A., Clark, S., and Etzioni, O. (2011). Named Entity Recognition in Tweets : An Experi-
mental Study. EMNLP, pages 1524–1534.

142

Roark, B., Harper, M., Charniak, E., Dorr, B., Johnson, M., Kahn, J. G., Liu, Y., Ostendorf, M.,
Hale, J., Krasnyanskaya, A., et al. (2006). SParseval: Evaluation metrics for parsing speech. In
Proc. LREC.

Roth, M. and Woodsend, K. (2014). Composition of word representations improves semantic role
labelling. In EMNLP, pages 407–413.

Rozovskaya, A. and Roth, D. (2014). Building a state-of-the-art grammatical error correction
system. Transactions of the Association for Computational Linguistics, 2:419–434.

Rozovskaya, A. and Roth, D. (2016). Grammatical error correction: Machine translation and
classifiers. ACL.

Sagae, K. and Tsujii, J. (2007). Dependency parsing and domain adaptation with LR models and
parser ensembles. In EMNLP-CoNLL, volume 2007, pages 1044–1050.

Sakaguchi, K., Post, M., and Van Durme, B. (2017). Error-repair dependency parsing for ungram-
matical texts. In ACL.

Schmaltz, A., Kim, Y., Rush, A. M., and Shieber, S. M. (2016). Sentence-level grammatical error
identification as sequence-to-sequence correction. arXiv preprint arXiv:1604.04677.

Schmaltz, A., Kim, Y., Rush, A. M., and Shieber, S. M. (2017). Adapting sequence models for
sentence correction. EMNLP.

Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2015). Building end-
to-end dialogue systems using generative hierarchical neural network models. arXiv preprint
arXiv:1507.04808.

Sha, F. and Pereira, F. (2003). Shallow parsing with conditional random fields. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics, pages 134–141.

Shen, D. and Lapata, M. (2007). Using semantic roles to improve question answering. In Emnlp-
conll, pages 12–21.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation
edit rate with targeted human annotation. In Proceedings of association for machine translation
in the Americas, pages 223–231.

Sultan, M. A., Bethard, S., and Sumner, T. (2014). Back to basics for monolingual alignment:
Exploiting word similarity and contextual evidence. Transactions of the Association for Compu-
tational Linguistics, 2:219–230.

Sun, X., Morency, L.-P., Okanohara, D., and Tsujii, J. (2008). Modeling latent-dynamic in shal-
low parsing: a latent conditional model with improved inference. In Proceedings of the 22nd
International Conference on Computational Linguistics, pages 841–848.

143

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural net-
works. In Advances in neural information processing systems, pages 3104–3112.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In NAACL, pages 173–180.

Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., and Saenko, K. (2015).
Sequence to sequence-video to text. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4534–4542.

Vilar, D., Xu, J., D’Haro, L., and Ney, H. (2006). Error analysis of statistical machine translation
output. Proc. Lr., pages 697–702.

Vinyals, O., Bengio, S., and Kudlur, M. (2015a). Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391.

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2015b). Grammar as a
foreign language. In Advances in Neural Information Processing Systems, pages 2773–2781.

Wagner, J., Foster, J., and van Genabith, J. (2009). Judging grammaticality: Experiments in sen-
tence classification. CALICO Journal, 26(3):474–490.

Wiebe, J., Wilson, T., and Cardie, C. (2005). Annotating expressions of opinions and emotions in
language. Language resources and evaluation, 39(2):165–210.

Wiseman, S. and Rush, A. M. (2016). Sequence-to-sequence learning as beam-search optimization.

Wisniewski, G., Singh, A. K., Segal, N., and Yvon, F. (2013). Design and analysis of a large corpus
of post-edited translations: quality estimation, failure analysis and the variability of post-edition.
In Machine Translation Summit, volume 14, pages 117–124.

Wong, S.-M. J. and Dras, M. (2010). Parser features for sentence grammaticality classification. In
Proceedings of the Australasian Language Technology Association Workshop, pages 67–75.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y.
(2015). Show, attend and tell: Neural image caption generation with visual attention. In Inter-
national Conference on Machine Learning, pages 2048–2057.

Yannakoudakis, H., Briscoe, T., and Medlock, B. (2011). A new dataset and method for automat-
ically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, pages 180–189.

Yarmohammadi, M., Dunlop, A., and Roark, B. (2014). Transforming trees into hedges and parsing
with “hedgebank” grammars. In ACL (2), pages 797–802.

Yoshikawa, M., Shindo, H., and Matsumoto, Y. (2016). Joint transition-based dependency parsing
and disfluency detection for automatic speech recognition texts. In EMNLP, pages 1036–1041.

144

Yuan, Z. and Briscoe, T. (2016). Grammatical error correction using neural machine translation.
In Proceedings of NAACL-HLT, pages 380–386.

Zhou, J. and Xu, W. (2015). End-to-end learning of semantic role labeling using recurrent neural
networks. In Proceedings of the Annual Meeting of the Association for Computational Linguis-
tics.

145

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Comparison of the ungrammatical domains.
	2. Parsers performance in terms of accuracy and robustness. The best result in each column is given in bold, and the worst result is in italics.
	(a). Train on PTB §1-21
	(b). Train on Tweebanktrain
	3. Parser performance on test sentences with 3 near and 3 far errors. Each box represents one train/test configuration for all parsers and error types. The bars within indicate the level of robustness scaled to the lowest score (empty bar) and highest score (filled bar) of the group.
	(a). Train on PTB §1-21
	(b). Train on Tweebanktrain
	4. Parser robustness on sentences with one grammatical error, each can be categorized as a replacement word error, a missing word error or an unnecessary word error.
	(a). Train on PTB §1-21
	(b). Train on Tweebanktrain
	5. Parser robustness on sentences with one error, where the error either occurs on an open-class (lexical) word or a closed-class (functional) word.
	(a). Train on PTB §1-21
	(b). Train on Tweebanktrain
	6. Parser robustness on sentences with one error where the error occurs on a word taking on a verb role, an argument role, or a word with no semantic role.
	(a). Train on PTB §1-21
	(b). Train on Tweebanktrain
	7. An example of the transition sequence of the arc-standard actions for the dependency tree of Figure 21. The last column shows the generated output sequence with annotated fragmented arcs. We use this linear form of arc pruned dependency trees to train the seq2seq model.
	8. Comparison of the proposed automatic fragmentation methods.
	9. Performance of automatic fragmentation methods by comparing their resulting dependency trees against Reference fragmented trees as their training data. The No cut method serves as a baseline and does not break any tree.
	(a). ESL dataset
	(b). MT dataset
	10. Similarity of fragmentation methods with gold fragments.
	(a). ESL dataset
	(b). MT dataset
	11. Relationship of fragmentation methods with Reference fragments over the number and size of fragments.
	(a). ESL dataset
	(b). MT dataset
	12. Fluency judgment results over two datasets containing ungrammatical sentences using binary classification and regression. Accuracy and AUC measures are reported for binary classification, and RMSE and Pearson's r are reported for regression. PGold and Reference as the upper bounds are given in italics, and the best result among automatic fragmentation methods is given in bold.
	(a). ESL dataset
	(b). MT dataset
	13. Correlation between the extracted features from each fragmentation method with the fluency of the sentence in the regression task. Reference as the upper bound is given in italics, and the best result in each column is given in bold.
	(a). ESL dataset
	(b). MT dataset
	14. Overall performance of fragmentation methods in detecting incorrect semantic dependencies in terms of False Discovery Rates (FDR). The ``0+" columns indicate the experiments over the sentences with zero or more errors, and the ``1+'' columns reports the results on the sentences with at least one error. Reference as the upper bound is given in italics, and the best result among automatic arc pruning methods is given in bold.
	(a). ESL dataset
	(b). MT dataset
	15. Overall False Negative Rates (FNR) of fragmentation methods. Reference as the upper bound of fragmentation methods is given in italics, and the best result among automatic arc pruning methods is given in bold.
	(a). ESL dataset
	(b). MT dataset
	16. Performance of binary classification models of machine-Learning-based approach (Section 7.3.3.2) using fragmentation features to detect incorrect semantic dependencies.
	(a). ESL dataset
	(b). MT dataset
	17. False Discovery Rates on test sentences with two near and two far errors. Each bar indicates the level of FDR scaled to the lowest score (empty bar) and highest score (filled bar) of a group.
	(a). ESL dataset
	(b). MT dataset
	18. False Discovery Rates on test sentences with one error where the error occurs on a word taking on a verb role, an argument role, or a word with no semantic role.
	(a). ESL dataset
	(b). MT dataset
	19. False Discovery Rates on sentences with one error, where the error occurs on a word taking an argument role that has one of the seven frequent role labels.
	(a). ESL dataset
	(b). MT dataset
	20. False Discovery Rates on sentences with one grammatical error, each can be categorized as a replacement word error, a missing word error or an unnecessary word error.
	(a). ESL dataset
	(b). MT dataset
	21. False Discovery Rates on sentences with one error, where the error either occurs on an open-class (lexical) word or a closed-class (functional) word.
	(a). ESL dataset
	(b). MT dataset
	22. A list of semantic role labels.

	LIST OF FIGURES
	1. An ungrammatical sentence gets a well-formed but inappropriate parse tree.
	2. The red dotted dependencies show a set of implausible syntactic relations which results in four fragments.
	3. Example of a full constituency parse tree.
	4. Example of a full dependency parse tree.
	5. Chunking analysis of a sentence.
	6. Example of Hedge parsing with maximum constituent span of 6.
	7. Example of Vine parsing retaining only tree dependencies of length less than 6. The root of the resulting parse fragments are now connected only by their dotted arcs ``vine dependencies" to $.
	8. Example of semantic role labeling.
	9. Syntactic (inner) and semantic (outer) analyses of an ungrammatical sentence (bottom) and its corrected version (top). The dotted arcs show mismatched dependencies of the ungrammatical sentence with the grammatical sentence.
	10. Parse trees of an ESL sentence and its corrected counterpart.
	11. Projecting parse tree of the Grammatical sentence (top) to the Ungrammatical sentence (bottom) to create ``gold standard" tree of the ungrammatical sentence.
	12. Example of evaluating robustness of an automatic parse tree (bottom) with the gold standard tree (top) of the Ungrammatical sentence. The dotted red arcs show error-related dependencies. The robustness F1 is 66%.
	13. Some statistics of sampled ESL and MT datasets by number of errors.
	(a). Distribution of sentences
	(b). Distribution of sentence length
	14. Variation in parser robustness as the number of errors in the test sentences increases.
	(a). Train on PTB §1-21
	(b). Train on Tweebanktrain
	15. Example of an ungrammatical sentence that gets a complete well-formed but inappropriate parse trees in two syntactic representations (right), and a set of coherent tree fragments that might be extracted from the full parse tree (left).
	(a). Constituency tree fragmentation
	(b). Dependency tree fragmentation
	16. Creating pseudo gold fragments. The upper parts of figure are parse tree of grammatical sentences and the lower parts are their transformation after applying errors.
	(a). Replacing word error
	(b). Missing word error
	(c). Unncessary word error
	17. Example of PGold fragmentation of an ungrammatical sentence. There are two errors in the sentence: a missing comma and a replacement word error. Starting from the grammatical sentence and its parse tree, PGold reconstructs the ungrammatical sentence and its fragments.
	(a). Grammatical sentence and its parse tree.
	(b). Reconstructing the ungrammatical sentence by applying the first error, missing comma.
	(c). Reconstructing the ungrammatical sentence by applying the second error, replacement word error.
	18. Example of Reference fragmentation of an ungrammatical sentence. The dotted red arcs are cut dependencies based on the two word error. It results four fragments.
	19. Depth and height features for the dependency arc of ``known for''.
	20. Word N-gram features for the dotted arc. Rectangles are words. Word bigrams associated to the dotted arc are: wh wm, wm-1 wm and wm wm+1.
	21. Example of a fragmented dependency tree. The dotted red arcs are cut dependencies based on the mistakes in the sentence.
	22. Schematic view of seq2seq model for parse tree fragmentation. The input words are first mapped to word vectors and then fed into a recurrent neural network (RNN). The final time step initializes an output RNN, upon seeing the <eos> symbol.
	23. Some statistics of sampled ESL datasets by number of errors.
	(a). Distribution of number of ESL sentences. For example, 41% sentences of the 7000 Test dataset sentences have no errors and 30% of sentences have 1 error.
	(b). Distribution of ESL sentence length.
	24. Some statistics of sampled MT datasets by HTER score.
	(a). Distribution of MT sentences as the HTER score.
	(b). Distribution of MT sentence length as the HTER score.
	25. Some statistics of sampled MT datasets by number of edits.
	(a). Distribution of MT sentences as the number of edit distance.
	(b). Distribution of MT sentence length as the number of edit distance.
	26. Automatically produced semantic dependency graph of an ungrammatical sentence. The red dotted relations show incorrect semantic dependencies.
	27. Projecting semantic dependencies of the Grammatical sentence (top) to the Ungrammatical sentence (bottom) to create ``gold standard" semantic dependencies of the ungrammatical sentence.
	28. Applying fragmentation to automatic semantic dependencies of an ungrammatical sentence using the rule-based approach.
	29. Evaluating the automatic semantic dependencies (bottom) with the gold standard/projected semantic dependencies (top) of the Ungrammatical sentence. The dotted red relations show produced false positive relations by the automatic SRL. The False Discovery Rate (FDR) is 2/6 33%.
	30. Variation in False Discovery Rates as the number of errors in the test sentences increases.
	(a). ESL dataset
	(b). MT dataset

	ACKNOWLEDGEMENT
	1.0 INTRODUCTION
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Statement
	1.4 Thesis Overview
	1.4.1 Ungrammatical Sentences
	1.4.2 Impact of Ungrammatical Sentences on Parsers
	1.4.3 Parse Tree Fragmentation Framework
	1.4.4 Applications of Parse Tree Fragmentation

	1.5 Thesis Contributions

	2.0 PRELIMINARIES AND BACKGROUND
	2.1 Introduction
	2.2 Ungrammatical Sentences
	2.2.1 English-as-a-Second Language (ESL)
	2.2.1.1 ESL Corpora
	2.2.1.2 NLP Research on ESL

	2.2.2 Machine Translation (MT)
	2.2.2.1 MT Corpora
	2.2.2.2 NLP Research on MT Outputs

	2.2.3 Twitter
	2.2.3.1 Twitter Properties
	2.2.3.2 NLP Research on Tweets

	2.2.4 Transcribed Conversation
	2.2.4.1 Transcribed Conversation Corpora
	2.2.4.2 NLP Research on Transcribed Conversation

	2.2.5 Comparison of Ungrammatical Domains

	2.3 Syntactic Parsing
	2.3.1 Full Parsing
	2.3.1.1 Constituency Parse Tree
	2.3.1.2 Dependency Parse Tree

	2.3.2 Partial Parsing
	2.3.2.1 Chunking
	2.3.2.2 Hedge Parsing
	2.3.2.3 Vine Parsing

	2.3.3 Parsing Evaluation
	2.3.3.1 Intrinsic Evaluation
	2.3.3.2 Extrinsic Evaluation

	2.4 Syntactic Parsing Applications
	2.4.1 Sentence-Level Fluency Judgment
	2.4.1.1 Fluency Judgment Task
	2.4.1.2 Fleuncy Judgment Related Work

	2.4.2 Semantic Role Labeling (SRL)
	2.4.2.1 SRL Task
	2.4.2.2 Relation of Syntactic and Semantic Analyses
	2.4.2.3 SRL Related Work

	3.0 IMPACT OF UNGRAMMATICAL SENTENCES ON PARSING
	3.1 Introduction
	3.2 Assessing the Impact of Ungrammatical Sentences on Parsers
	3.3 Proposed Gold-Standard Free Methodology
	3.3.1 Creating Pseudo Gold Parse Trees
	3.3.2 Evaluating Parse Trees

	3.4 Experimental Setup
	3.4.1 Parsers
	3.4.2 Data
	3.4.2.1 Parser Training Data
	3.4.2.2 Robustness Test Data

	3.4.3 Experimental Settings

	3.5 Experiments
	3.5.1 Overall Accuracy and Robustness
	3.5.2 Parser Robustness by Number of Errors
	3.5.3 Impact of Error Distances
	3.5.4 Impact of Error Types
	3.5.4.1 Impact of grammatical error types
	3.5.4.2 Impact of error word category
	3.5.4.3 Impact of error semantic role

	3.6 Chapter Summary

	4.0 PARSE TREE FRAGMENTATION OF UNGRAMMATICAL SENTENCES
	4.1 Introduction
	4.2 A Framework for Parse Tree Fragmentation
	4.2.1 Ideal Fragmentation
	4.2.2 Dependency Tree Fragmentation

	4.3 Developing a Fragmentation Corpus
	4.3.1 Pseudo Gold Fragmentation (PGold)
	4.3.2 Reference Fragmentation (Reference)
	4.3.3 Comparing PGold and Reference

	4.4 Chapter Summary

	5.0 AUTOMATIC METHODS OF PARSE TREE FRAGMENTATION
	5.1 Introduction
	5.2 Fragmentation Methods
	5.2.1 Classification-based Parse Tree Fragmentation (Classification)
	5.2.2 Parser Adaptation Parse Tree Fragmentation (Parser)
	5.2.2.1 Parser Domain Adaptation
	5.2.2.2 Creating a Treebank of Tree Fragments

	5.2.3 Sequence-to-Sequence Parse Tree Fragmentation (seq2seq)
	5.2.3.1 Seq2Seq Using Deep Neural Nets
	5.2.3.2 Sequence Representation of a Fragmented Dependency Tree

	5.3 Comparison of Fragmentation Methods
	5.4 Chapter Summary

	6.0 EMPIRICAL EVALUATION OF PARSE TREE FRAGMENTATION
	6.1 Introduction
	6.2 Evaluation of Parse Tree Fragmentation
	6.3 Experimental Setup
	6.3.1 Data
	6.3.1.1 English as a Second Language corpus (ESL)
	6.3.1.2 Machine Translation corpus (MT)

	6.3.2 Experimental Tools
	6.3.2.1 Reference Settings
	6.3.2.2 Classification Settings
	6.3.2.3 Parser Retraining Settings
	6.3.2.4 seq2seq Settings

	6.3.3 Evaluation Metrics
	6.3.3.1 Unlabeled Attachment Score (UAS)
	6.3.3.2 Accuracy of Cut Arcs
	6.3.3.3 Set-2-Set F-score

	6.4 Evaluation
	6.4.1 Performance of Each Fragmentation Method
	6.4.2 Performance of the Classification Method
	6.4.3 Evaluation of Tree Fragmentation Methods
	6.4.4 Relationships between Fragments Statistics

	6.5 Chapter Summary

	7.0 EVALUATION OF PARSE TREE FRAGMENTATION IN NLP APPLICATIONS
	7.1 Introduction
	7.2 Extrinsic Evaluation: Fluency Judgment
	7.2.1 Fluency Judgment Tasks
	7.2.1.1 Binary Task
	7.2.1.2 Regression Task

	7.2.2 Feature Sets
	7.2.2.1 Our feature set
	7.2.2.2 Contrastive feature sets

	7.2.3 Experimental Setup
	7.2.4 Results

	7.3 Extrinsic Evaluation: Semantic Role Labeling
	7.3.1 Semantic Role Labeling of Ungrammatical Sentences
	7.3.2 Creating Pseudo Gold Semantic Dependencies for Ungrammatical Sentences
	7.3.3 Applying Fragmentation to Automatic SRL Annotations
	7.3.3.1 Approach 1: Rule-based
	7.3.3.2 Approach 2: Machine-Learning-based (ML)

	7.3.4 Evaluating Automatic SRL Annotations of Ungrammatical Sentences
	7.3.5 Experimental Setup
	7.3.6 Results
	7.3.6.1 Overall Performances
	7.3.6.2 Impact of Number of Errors
	7.3.6.3 Impact of Error Distances
	7.3.6.4 Impact of Error Types
	7.3.6.5 Discussion

	7.4 Chapter Summary

	8.0 CONCLUSION AND FUTURE WORK
	8.1 Summary of Contributions and Results
	8.2 Future Work

	APPENDIX. SEMANTIC ROLE LABELS
	BIBLIOGRAPHY

