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ABSTRACT 

The skin is the primary site of dengue virus (DENV) replication following the bite of an infected 

mosquito, but the factors that contribute to productive infection in human skin and virus spread 

out of skin are not understood. We defined the dynamics of DENV infection in human skin 

explants using quantitative in situ imaging. A transient interferon-α response occurred prior to 

detectable virus replication, which initially established in cells in the epidermis. DENV infected 

a wide variety of cell types including Langerhans cells (LC), dermal macrophages (Mϕ), dermal 

dendritic cells (DC), fibroblasts, mast cells, and lymphatic endothelium, but keratinocytes were 

the earliest and quantitatively most important target of DENV infection, contributing to 60% of 

overall infected skin cell over time. DENV infection led to the recruitment and infection of LC, 

dermal DC, and dermal Mϕ. These immune cells emigrated out of the skin in increased number 

as a result of infection, presumably leading to dissemination of virus. Infection of keratinocytes 

led to the abundant production of inflammatory mediators, most significantly IL-1β. Blocking 

keratinocyte-derived IL-1β reduced the infection of LC, dermal DC, and dermal Mϕ by 75-90% 

and decreased the total number of infected cells in epidermis and dermis by 33% and 65%, 

respectively. In the first demonstration of antibody-dependent enhancement of DENV infection 

in human skin, we showed that the presence of heterotypic DENV-immune serum enhanced the 

recruitment and infection of dermal Mϕ by 50-70%, and increased emigration of myeloid cells 
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out of skin. Aedes aegypti mosquito salivary gland extract did not impact dermal Mϕ recruitment 

or infection with DENV, with or without immune serum. Blocking FcγRIa and FcγRIIa inhibited 

antibody-mediated infection of dermal Mϕ, and decreased the number of cell emigrants, resulting 

in reduction of the overall number of infected cells in the dermis by 70%, without notable 

changes in the epidermis. Ethnic differences in skin immune responses to DENV were observed 

for the first time in our study. In comparison with skin from Caucasians donors, skin from 

African American donors maintained robust antiviral IFN-α responses for at least 48 hours. This 

was observed in association with less DENV replication, a reduced production of IL-1β in the 

epidermis, less recruitment and infection of LC and dermal Mϕ, and less cell emigration out of 

the skin. These findings suggest that innate immune responses in skin control DENV replication 

and spread, and equates with epidemiologic data that African ancestry protects against severe 

dengue. Our findings highlight the importance of skin and the complex interplay between 

resident and immune skin cell populations in DENV infection and dengue pathogenesis. 

Defining DENV infection in human skin therefore has considerable public health significance 

because these data will provide a rationale for exploration of therapeutic strategies through 

targeting the mechanism DENV exploits skin microenvironment and preventing the risk of 

systemic infection as well as severe dengue. 
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1.0  CHAPTER ONE: INTRODUCTION 

1.1 HISTORY AND CURRENT GLOBAL STATUS OF DENGUE 

1.1.1 Evolution of dengue virus (DENV)  

Dengue fever is an old disease caused by infection with any of four serotypes of dengue virus 

(DENV), DENV-1, 2, 3 and 4. The origin of DENV is unclear but most likely it originated as a 

mosquito-specific virus (1). DENV were maintained by vertical transmission among canopy-

dwelling mosquito species responsible for sylvatic (forest) cycles, which periodically adapted to 

involve lower primates, and later humans (2). DENV capable of infecting humans likely evolved 

in the forest cycle and moved into rural areas after urbanization had become common. The 

geographic and evolutionary origin of the virus remain under discussion to recent days. It is 

unclear whether DENV originated in Asia, in Africa, or in both areas.  

 

The Asian-origin hypothesis suggested that dengue fever in Asia was predominantly transmitted 

by Aedes albopictus, an Asian mosquito species (3). The earliest record of an epidemic case with 

dengue-like illness, characterized by rash, fever, pain in eyes, muscles, joints, and bleeding in 

various organs (4), was documented in a Chinese medical encyclopedia, first published during 

AD 265-420. Nevertheless, this raises a question whether the true etiology was DENV, as the 
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manifestation of arthralgia could be compatible with a disease caused by Chikungunya virus 

(CHIKV). All four serotypes of DENV are transmitted in sylvatic cycles in Malay Peninsula, 

whereas only DENV-2 has been documented in a forest cycle in Africa (5). Serological surveys 

in the 1950s confirmed that the people and canopy-dwelling animals living in diverse ecologies 

in Malaysia had a similar prevalence rate of DENV-1 neutralizing antibody (Ab), increasing with 

age, suggesting that dengue endemics were common in the area (6). Phylogenetic analysis placed 

the Asian sylvatic strains in a deep position in the phylogenetic tree (7). This provides further 

support for the Asian-origin of the virus. 

 

Alternative theories supporting an African origin speculated that dengue was transmitted by 

Aedes aegypti, a species of mosquito that has the ancestral type as well as domestic populations 

in sub-Saharan Africa (3). Nowadays, it is a primary vector of DENV and the related Zika virus, 

and inhabits much of the tropical and subtropical region. DNA sequencing analysis of DENV 

and other related flaviviruses indicated a progenitor originating from Africa (8). Genetic studies 

proposed a phylogenetic tree of Aedes aegypti showing genetic similarities between mosquito 

populations in the Americas and those in Asia-Pacific regions, indicating the notion of global 

westward development of dengue (9). Thereby, it is believed that dengue spread from West 

Africa through the import of African slaves to non-immune indigenous populations since the 17th 

Century, and from there to the Asia-Pacific region as the global shipping industry expanded in 

the 18th and 19th Centuries. Earliest epidemics of dengue-like illness in the New World were 

reported in French West Indies (1635) and Panama (1699), in one of the Atlantic ports where 

enslaved Africans entered, supporting a disease widespread from Africa following the slave trade 
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routes. Because the Aedes African mosquito was a highly efficient vector, it rapidly infested 

when introduced into port cities, moved to inland cities, and caused urban epidemics (10).  

1.1.2 Overview of dengue history and its emergence as a global public health threat 

1.1.2.1 Dengue in the past (17th Century to mid-20th Century) 

Prior to an arrival of Aedes aegypti in Asia, dengue outbreaks were limited, short-lived and 

infrequent as dengue urban epidemics were unknown. Many observations suggested an 

introduction of the mosquito species in Asia and Australia in the last half of the 19th Century (3). 

Dengue epidemics became common in the region and increased in frequency, as Aedes aegypti 

distribution expanded.  

 

The global pandemic of dengue began during the Second World War (1930s-1940s) (4, 11). The 

war activities provided an ideal larval habitat for Aedes aegypti, with water storage and constant 

movement of new susceptible individuals as well as their eggs and viruses, resulting in a greatly 

expanded geographic distribution and increased densities of the mosquito vector, and increased 

dengue epidemics. Also, it has created the perfect conditions for initiating the 20th Century 

dengue pandemic worldwide. 

 

Following the end of the Second World War, many countries experienced strong economic 

growth which was a driving force of unprecedented, rapid urban growth that continues today. 

Millions of people migrated from rural areas to urban cities for work. A rapid societal expansion 

resulted in inadequate management of infrastructures, supplies and wastes. As effective mosquito 

control had not been fully developed, DENV transmission progressively increased accordingly, 
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with increasing frequency of epidemics occurring in migrant workers and children. Together, 

fast-paced population growth and uncontrolled global trade and travel, combined with a large 

population of mosquitoes living in intimate association with crowded human populations, were 

key factors that inevitably led to hyperendemic conditions where the multiple DENV serotypes 

began to co-circulate (12, 13). It was in this setting that the emergence of dengue hemorrhagic 

fever (DHF) was observed in Southeast Asia. DHF is a severe and fatal hemorrhagic disease 

associated with DENV infection in a small minority of infected individuals. The first epidemic 

was recorded in Manila, Philippines in 1953-1954, followed by another in 1956, and a 

subsequent epidemic in Bangkok, Thailand in 1958 (14, 15). It is believed that many DHF cases 

in such regions went unclassified throughout the 1950s. Since then, it has changed the core belief 

of dengue that was once thought to have limited clinical significance.  

 

Throughout the 17th to the early 20th Centuries, vector-borne diseases including malaria, yellow 

fever, dengue and plague were responsible for more human illness and death than all other 

causes combined (16). Yellow fever received much attention after the vector role of Aedes 

aegypti was first demonstrated by Walter Reed. Later, dengue was shown to have a similar 

transmission cycle. That knowledge pushed forward new possibilities of eradicating the diseases. 

Shortly, the large-scale prevention and control program was established by the Pan American 

Health Organization (PAHO) in the Americas in 20th century (1947-1970). The program that was 

implemented emphasized elimination of mosquito breeding sites through environmental hygiene 

along with limited use of chemical insecticides, and succeeded in 23 out of 27 countries, mainly 

in Central and South Americas. Field operations indicated that sampling sites were either free of 

infestations or that the mosquito was present in exceedingly small numbers at yellow-fever 
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receptive areas in the US. Correspondingly, the threat of urban yellow fever as well as dengue 

was almost eliminated. The control of urban yellow fever in the Americas through the 

eradication of Aedes aegypti was marked as a great achievement. On the other hand, the 

eradication plan or effective vector control was never achieved in Asia.  

1.1.2.2 Emergence/Resurgence of dengue (1970 to present day) 

The Aedes aegypti eradication campaign was disbanded in the early 1970s because yellow fever 

and dengue were no longer a critical problem (16), resulting in proliferation and invasion of this 

mosquito in nearly all countries that had once achieved eradication (17). The period of failed 

public health support on arboviruses happened to coincide with a globally expanding 

urbanization as well as increased movement of DENV both into and within the Americans (18), 

leading to a dramatic increase in dengue that reached staggering levels in only a decade (1970-

1980). Nevertheless, the clinical presentation reported was self-limiting dengue fever. Dengue 

during that time was a hypoendemic disease as either DENV-2 or DENV-3 viruses were present 

at one time. Epidemiologic evidence suggested that DENV-1 as well as DENV-4 were 

introduced to the Americas from Asia, rapidly spreading from islands in the Caribbean to inland 

countries.  

 

In 1981, Cuba was the first country in the region that suffered a serious DHF outbreak (19, 20). 

There were 344,203 cases of dengue-like illness, 10,312 cases of DHF reported, and 158 deaths. 

It was following by more DHF cases in other American countries, which in total accounted for 

about 10,000 DHF cases and 165 deaths during 1981-1992. DENV-2 appeared to be a serotype 

that was most associated with fatal cases. These epidemics of DHF, particularly the one that 

occurred in Cuba, were thought to be caused by an introduction of a strain of DENV-2 from 
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Southeast Asia. The sequence of events associated with the changing epidemiology of dengue 

indicated that the Americas were likely facing a similar situation as Southeast Asia’s in the 

1950s and 1960s. 

 

The transmission of dengue in Asia has been persistently maintained. Failure to control the 

mosquito vector coincided with a period of economic expansion, which is a key driver of intense 

urban growth, globalization, and growing industries since the 1960s (13). This setting has a 

profound impact on dengue, especially in major cities as they provide an ideal, sustainable 

environment for DENV to fully adapt to humans, without the need to replicate in a sylvatic 

cycle. Unfortunately, this continues to the present time where a region experiences repeated 

epidemics, with dengue outbreaks getting progressively larger (21). Singapore, a country that 

once had dengue in controllable levels, experienced a drastic resurgence of dengue epidemics 

that still lasts to this day (22). As DHF has been endemic in this region, the frequency and 

magnitude of epidemic DHF increased, with major epidemics occurred every 3-5 years. It is a 

leading cause of hospitalization and death among children in many countries in Asia (23). 

 

The introduction of air transportation during 1960s-1970s has changed the epidemiology of 

dengue. It provides a much larger landscape and faster routes to rapidly import dengue from 

endemic areas to non-endemic areas. Many dengue-endemic countries are popular tourist 

destinations. Like migrant workers, travelers are at significant risk of acquiring the disease 

caused by strains of virus capable of causing epidemics, and contribute to its spread throughout 

the country, region, and globally. With most countries in the Americas changing from non-
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endemic or hypoendemic conditions to hyperendemic in less than 30 years since the 1970s (23), 

there has been rapid amplification of the disease driven by all possible factors combined. 

 

While yellow fever has ceased to be a global threat because of the vector eradication program 

and mass yellow fever vaccination campaigns in the mid-20th Century, dengue has emerged as a 

major public health problem. Although dengue research has been making advances, a safe and 

effective vaccine has yet to be found because of the underlying complex pathogenic mechanisms. 

Further research into dengue disease pathogenesis will hopefully help solve this global health 

threat of the 21st Century. 

1.1.3 Current global distribution 

Currently, the distribution of dengue has been reported in more than 125 countries globally. The 

World Health Organization (WHO) estimates that 2.5 billion individuals are at risk of exposure 

to dengue, with approximately 50-100 million infections, 500,000 severe cases and 12,500 

deaths, mainly in children at an age younger than 15, occurring annually (23). A recent 

epidemiological survey suggests 3.6 billion people are at risk, producing 390 million DENV 

infections annually, resulting in approximately 96 million cases with apparent clinical 

manifestations and 15,000 deaths (21). These recent estimates have dramatically raised the 

profile of the disease. According to recent United Nations world estimates, the current world 

population is 7.6 billion (24). Therefore, using the estimates above, approximately 50% of the 

global human population is at risk of contracting DENV. As globalization, tourism and 

commerce are progressively increasing in our modern world, coupled with poor surveillance 

systems in many inaccessible and underdeveloped parts of the globe, this projection is likely an 
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underestimate. WHO has currently labeled dengue as one of the fastest-growing viral threats 

worldwide. 

1.1.4 Current approaches for dengue prevention and control 

Currently, the cornerstone of dengue prevention remains Aedes aegypti mosquito vector control 

and avoidance of mosquito bites, due to lack of specific prophylactic or antiviral treatment 

options and effective dengue vaccines (23). Environment management is a classical but still up-

to-date vector control approach that aims at preventing or minimizing vector propagation and 

reducing human-vector-pathogen contact through changing a natural environment to suppress 

stages in mosquito life cycle and using mosquito repellents. Insecticides are restricted for use as 

an emergency vector control method during outbreaks. Unfortunately, vector control approaches 

are limited in number and not as safe or efficacious as needed (25). Misuse of insecticides can 

mediate resistance in mosquitoes and environmental toxicity (26). Biological control measures 

offer more tools for vector control without chemical contamination of the environment. These 

controls constitute anti-DENV interventions based on the introduction of living organisms that 

will prey upon, parasitize, compete with, or otherwise reduce the abundance of the mosquito. 

Previously, the copepod strategy, using water fleas to prey on newly hatched larvae, has been 

successfully implemented in Vietnam (27, 28). However, the application comes with limitations 

as it requires a persistence copepod population in known breeding sites and is only employed 

against an immature stage of the mosquito life cycle. An effect is thus delayed as reduction of the 

mosquito larval population takes time to have a significant impact on adult mosquitoes. Also, the 

results do not always correspond to reduction in disease transmission, making it an unsuitable 

method especially during dengue outbreaks. 
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Recently, attempts have been made to develop a new set of biocontrols that could be a solution 

for a global control of dengue, including Wolbachia-based technology (29). Wolbachia pipientis 

are maternally inherited, intracellular bacteria that are known to live in and manipulate the 

reproduction of many insect species in order to enhance their own, resulting in a shorter lifespan 

of their hosts. This life-shortening phenotype has led to an idea that the bacteria can be used to 

invade Aedes mosquito populations to suppress DENV transmission. Under controlled 

conditions, a dramatic 3-log reduction in virus replication, measured as the DENV genome copy, 

was observed in Aedes aegypti infected with W. pipientis when compared to uninfected controls, 

indicating that the impact of bacterial infection is not only limited to host longevity, but also 

vector competence (30, 31). Small-scale field tests suggest that W. pipientis was able to invade 

the wild mosquito with close to a 100% maternal transmission rate (31, 32). Presumably, such 

rapid bacterial invasion among mosquitoes would greatly decrease the transmission rate of 

DENV in human populations. While this genetically-modifying mosquito strategy is promising, 

it remains largely experimental and requires answers to many questions regarding 

implementation in the field. 

 

Whereas genetically engineering mosquitoes appears encouraging to reduce infectious mosquito 

populations, dengue vaccine development efforts are facing disturbing news from an approved 

dengue vaccine. In 2015, Sanofi Pasteur’s Dengvaxia® became the first dengue vaccine to be 

licensed for use in individuals aged between 9-45 years old in dengue endemic countries, mostly 

in Asia and Latin America (33). The Philippines was the first country to grant the use of the 

vaccine which was introduced in public school-based immunization program in April 2016, 

targeting more than 730,000 school children. The vaccine has also been used in other countries, 
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including Brazil. Shortly thereafter, Sanofi Pasteur made a public announcement in November 

2017 about new analysis from the vaccine trial and attempts to update product label. The 

findings suggested that the vaccine provided a long-term safety and efficacy only to those who 

had previously been infected with DENV. DENV-naïve vaccine recipients, however, were at risk 

for severe dengue disease after vaccination upon a subsequent dengue infection. Despite these 

safety data, the company claimed that there have been no reported deaths that were related to 

dengue vaccination. To date, over one million individuals have received at least one dose of 

vaccine. The vaccine program in the Philippines is now entirely suspended and the FDA has 

halted the sale of the vaccine. In Brazil, the dengue vaccination effort is still ongoing with the 

usage restriction to provide vaccine only to those previously infected with DENV. The WHO has 

supported the decision of the Philippine government to suspend the vaccine program and has 

recommended a restriction based on the company’s data. 

 

In fact, the possibility of these safety issues whereby the dengue vaccine sets up dengue-naïve 

recipients for severe illness has been shown in a clinical trial of CYD-TDV (referring to 

Dengvaxia®), a live attenuated tetravalent vaccine based on a recombinant virus constructed 

from yellow fever. It was able to show an efficacy of over 90% in preventing severe dengue in 

children 9 years and older who were hospitalized in year 3 of a phase III clinical trial conducted 

in over 35,000 schoolchildren aged 2-16 years in 10 endemic countries (34, 35). However, the 

hospitalization rate for severe dengue among seronegative children ages 5 years or younger was 

five-fold higher than placebo control. The hospitalized risk increased 1.6-fold in vaccinated 

children younger than 9 years old (36).  It was this reason that Dengvaxia® was recommended to 

recipients 9-45 years old. Recent studies have suggested that the overall efficacy of Dengvaxia® 
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is dictated by immune status, not age (37). Given recent observations, many dengue experts 

voiced concerns that CYD vaccination induced low levels of DENV-specific antibodies in 

seronegative individuals, resulting in development of severe disease upon primary DENV 

infection through Ab-mediated enhancement (ADE), and argued for further explicit 

investigations on this issue (38-40). 

 

As dengue will continue to be a global threat in the oncoming years, it is clear that there are no 

effective dengue vaccines available for therapeutic options. Nevertheless, a number of dengue 

vaccines are in various stages of development and some have shown promising results. For 

example, it has been shown in the recent 18-month phase II randomized, controlled trial that 

Takeda’s live attenuated dengue vaccine candidate (TAK-003) provided a complete protection 

against all four DENV strains regardless of prior virus exposure and immunization schedule (41, 

42). It is now being tested in a large-scale phase III clinical trial which is expected to be 

completed in 2018. 

1.2 DENGUE VIRUS 

1.2.1 Virus classification 

DENV is a non-segmented, positive-sense, single-stranded RNA virus in the genus flavivirus, 

family Flaviviridae (43). DENV is related to other mosquito-borne flaviviruses such as yellow 

fever virus, Zika virus (ZIKV), Japanese encephalitis virus, West Nile virus (WNV) and St. 

Louis encephalitis virus. There are four genetically distinct serotypes; designated as DENV-1, 
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DENV-2, DENV-3, and DENV-4, which can be distinguished by serological and molecular 

methods. Molecular studies on the nucleotide sequences of DENV genomes allow identification 

of the agent into genotypes (44).  

1.2.2 Virus structure 

Dengue viruses have a spherical shape and are approximately 45-50 nm in size (45). The basic 

structural organization of virus particles can be divided into four components (from the inner 

core to the outer shell): DENV genome, nucleocapsid, envelope and membrane glycoproteins. 

1.2.2.1 DENV genome 

The DENV RNA genome is a linear, single strand which spans approximately 11-kb (46). The 

RNA bears a type I cap structure, m7GpppAmp, at its 5’ end and lacks a 3’-polyadenylated tail. 

The uninterrupted, long open reading frame encoding a large viral polyprotein is flanked in 5’ 

and 3’ by untranslated regions (UTRs). Both ends carry a number of cis-acting signals such as 

stem loops and conserved sequences required for viral replication and translation. There are 

complementary sequences in UTRs that induce the cyclization of the genome (47). Genome 

cyclization is the formation of specific secondary RNA structures formed by the interactions 

between two ends of the complimentary cyclization sequences of the viral genomic RNA that 

regulate different viral processes together with host and viral factors (48). It is a potential 

conserved mechanism among Flaviviruses to ensure that the viral replication is confined to only 

undamaged, full-length genomes. 



 13 

1.2.2.2 Nucleocapsid 

The inner core contains an icosahedral nucleocapsid about 30 nm in diameter. It is a single 

molecule of the dengue RNA genome formed in complex with multiple copies of the capsid (C) 

protein. Capsid proteins act as multifunctional RNA chaperones as they promote correct folding 

of RNA molecules by either preventing or resolving their misfolding. Efficient genome 

packaging by capsids also protects the RNA from contact with host immune sensors, or any 

environmental hazards in the infected cell. The capsid-RNA interaction in DENV has been 

shown to have high affinity but low specificity (49), suggesting that the nucleocapsid assembly 

in the endoplasmic reticulum (ER) is likely non-specific and mainly driven by electrostatic 

forces. The capsid protein has been shown to bind to membranes (49), suggesting that DENV 

capsids may translocate the genome into host cells through a receptor-independent interaction 

with the viral envelope, which enhances the infection process. 

1.2.2.3 Envelope and membrane glycoproteins 

The nucleocapsid is sheathed in a membrane called the envelope which is a lipid bilayer acquired 

from the host. The viral envelope is embedded by envelope (E) and membrane (M) 

glycoproteins. These proteins form a protective layer that control the viral entry into host cells. 

The E protein is the dominant surface protein of the mature virus. The E protein has two N-

linked glycosylation sites and structurally can be divided into three domains: The N-terminal 

central domain I, the elongated dimerization domain II, and the Ig-like domain III. The E protein 

functions as a fusion molecule because of the fusion peptide located at the distal end of domain 

II. Domain III serves as the receptor attachment domain. Due to its high proportion on the virus 

particle, the E protein contributes to most of the antigenic sites and is also the target for 
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therapeutic monoclonal antibodies (50, 51). The M protein is a product from the precursor prM 

processing during virus maturation. 

 

DENV goes through substantial conformational and translational movements of viral structural 

proteins during the virus life cycle, suggesting that the particles have substantial dynamic 

capabilities (52). The immature virus is converted into an infectious mature form by the cleavage 

and release of the prM protein. Prior to cleavage, prM on the immature virion is arranged with 

the E protein in a 1:1 manner. The prM moiety covers the hydrophobic fusion peptide at the end 

of domain II. This trimeric prM-E configuration is thus believed to be inefficient in infection as 

fusion of virion particles to host membranes is blocked. It also makes immature virus particles 

appear with spikes. On the other hand, the surface of the mature virion is relatively smooth as the 

E protein lays parallel to the viral membrane. In this conformation, domain III protrudes from the 

surface of the E protein and thus many of the Ab neutralizing epitopes are exposed. These 

epitopes permit the recognition of virions by Ab. Dynamic properties of E protein play an 

important role in the immune control of virus infection (45). 

1.2.3 Virus life cycle: entry, replication and secretion 

1.2.3.1 Entry 

Infection begins with attachment of DENV particles to putative host molecules such as heparan 

sulfate (53, 54). Envelope protein is mainly responsible for interactions with receptors for virus 

attachment and entry. After binding to the receptor, the virus can be invaginated into the 

cytoplasm using cellular components called clathrin-coated vesicles, or it directly enters the 

cytoplasm via the fusion of the viral and host membrane. Following internalization, a low-pH 
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dependent fusion of the envelope of DENV and the host endosomal membranes leads to the 

release of the nucleocapsid into the cytoplasm of the infected cell. The viral genome is then 

released from the nucleocapsid by an unknown mechanism. A study showed that this step 

involved the ubiquitination-dependent degradation of capsid proteins (55). Viral proteins 

released following the uncoating step have been found to play a role in modulating host innate 

immune response (56). 

1.2.3.2 Replication 

In positive-stranded viruses, the genomic RNA serves as a template for translation and 

replication (46). When the genome is released into the cytoplasm it is presented to the ER where 

translation and processing immediately occur. The genome encodes a polyprotein in the 

following order: (N-terminal)-C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5-(C-terminal). 

This polyprotein is processed into ten individual polypeptides of varying length by proteases 

present in the ER lumen of host cells, called signalase and furin, as well as nonstructural proteins 

(NS3/NS2B). There are three structural proteins: capsid, and two transmembrane linked 

glycoproteins, precursor membrane protein (prM), and envelope protein (E). The seven 

nonstructural (NS) proteins: NS1, NS2a, NS2b, NS3, NS4a, NS4b, and NS5 have a variety role 

in viral genome replication and subversion of the host cell response for facilitating the 

production of virus progeny (57). 

 

It is generally accepted that the cytoplasm is where RNA replication and nucleocapsid formation 

occurs. However, the replication stages are complex and do not occur freely in the cytoplasmic 

region (58). The process requires extensive reorganization and morphological changes of the 

cellular membrane environment induced by DENV (44). DENV genome replication is carried 
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out by a viral replication complex (RC) which is assembled on the cytoplasmic side of the 

invaginated perinuclear ER membrane, called the vesicle packets (VP). Although the exact 

component of the RC remains unclear, it has been shown that it is a highly organized complex 

associated with all types of viral NS proteins, viral genomic RNA, and host-derived proteins and 

lipids (44), resulting in bulging membranes into the lumen (VP). VP represent replication niches 

for DENV in the cytoplasm. The RC associated with the virus-induced VP is a great architecture 

for efficient virus production for many reasons. Host-derived membranes sequestrate the viral 

factor and genome from the immune detection. This modified structure facilitates viral 

replication by accumulating essential components in place and allowing rapid transport of viral 

proteins or host factors between interconnected compartments. Besides VP, the virus induces the 

formation of other intracellular structures that are continuous with the ER, known as convoluted 

membranes (CM), which appear to be the site of translation and polyprotein processing (59). 

 

A prerequisite for DENV genome replication is the negative sense RNA template because an 

open reading frame in the positive viral genome is amplified through a negative strand (47). The 

synthesis of the negative strands is initiated when viral polymerase (NS5 RdRp) within the RC 

binds to the 5’ end at the stem loop A, next to the 5’ cap, and the RC aggregates on the 3’ end of 

the positive sense template. During replication, the negative sense remains bound to the genomic 

RNA, forming a double stranded replicative form (RF). These RF then serve as the template to 

produce new positive-sense RNA. In each round of synthesis, a single nascent positive strand is 

copied from the negative strand within the RF. The replication occurs through an asymmetrical 

semiconservative mechanism, resulting in multiple copies of positive strand RNA being 

synthesized. While the new positive strand is synthesized, it remains bound to the negative strand 
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and displaces the pre-existing positive strand, creating the replicative intermediate (RI). These 

displaced positive RNA progenies are either used as templates for further synthesis of negative 

strands and generation of RI recycling, or as mRNA for translation of viral proteins, or as 

replication products ready to be capped and methylated by NS3 and NS5, preparing the positive 

strand genomic RNA for packaging into virus particles. 

1.2.3.3 Secretion 

Following RNA replication and protein translation, the newly synthesized genomic RNA is 

encapsidated by virus-encoded capsid protein, creating nucleocapsid formation. The virus 

particles assemble on the surface of the ER adjacent to the sites of replication as nucleocapsids 

bud through the ER lumen to obtain an envelope membrane. The recruitment of E and prM 

proteins deposited on the opposite side of the ER lumen completes an assembly of immature 

virions. Nascent virions in the ER need to be transported from the ER to Golgi apparatus, and 

then transported to the plasma membrane before they are released outside the cells. 

 

During the traffic through the Golgi and trans-Golgi network, prM protein is cleaved by cellular 

furin protease due to acidification, creating pr and M (52). M protein remains on the particle to 

form a heterodimer with E protein, whereas soluble pr protein is released from the mature virion 

when the virus egresses. A prM region provides resistance to acidic environments and prevents 

the premature fusion of E protein. Following prM cleavage, E protein undergoes a major 

conformational change which allows the 180 envelope copies in the virion to form 90 head to tail 

dimers which are arranged in an icosahedral symmetry, resulting in a smooth appearance of the 

mature virion. Theoretically, virus particles exit the infected cells in a mature and infectious 

form. However, cleavage of prM is often incomplete, resulting in the release of a variety of 
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intermediate virus forms. Levels of prM cleavage indicate an acquisition of infectivity because 

the pr region mechanically prevents the receptor-binding E glycoprotein from undergoing 

membrane fusion. Thus, the conformation of virions secreted from infected cells ranges from 

fully cleaved (infectious, mature particles) to partially cleaved prM (intermediate particle with 

somewhat infectious), to non-cleaved prM (non-infectious, immature particles). prM-containing 

immature particles account for 30% of virions secreted from cells infected with DENV (60). 

1.2.4 Transmission 

DENV is transmitted by Aedes species of mosquito. While the virus cannot spread directly from 

person to person, a viremic individual can infect Aedes aegypti species (61). DENV can also be 

transmitted by Aedes albopictus. The virus is maintained in two ecologically and evolutionary 

distinct transmission cycles: a sylvatic cycle and a domestic cycle (62). 

1.2.4.1 The main vector: Aedes aegypti mosquito 

Aedes aegypti is a mosquito species of the subgenus Stegomyia. It is believed to have an origin 

in Africa, where both sylvatic and domestic forms occur (63). Because this species transmitted 

urban yellow fever for centuries, it is, thus far, commonly known as the “yellow fever 

mosquito”. Aedes aegypti is distributed in tropical and subtropical regions around the globe (64). 

The invasions occur most during the warm weather season and the populations do not survive the 

winter. Aedes aegypti is adapted to live in close proximity with human dwellings. It is essentially 

an urban mosquito. This characteristic extensively complicates its control.  
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1.2.4.2 Transmission through a blood meal 

The successful transmission of DENV relies mainly on three factors: host, mosquito, and virus. 

A susceptible mosquito needs to feast on any DENV-infected individual with a sufficiently high 

viremia. A study showed that the titer of virus in human blood influences the infection in 

mosquitoes (65). A higher titer of virus takes a shorter incubation period of about 12 days in a 

mosquito, whereas it takes mosquitoes up to 3 weeks to transmit the virus when feeding on 

individuals with a lower virus titer. People with asymptomatic infections have been shown to 

have a lower viremia level than those who are in a period prior to an onset of symptoms or with 

symptomatic infections. Viremia levels vary throughout the course of infection. In those who 

develop symptoms, it has been observed that the titer of virus is highest during day 1 to 4 of 

illness.  

 

In mosquitoes acquiring a DENV infection, it is critical for DENV to infect the mosquito 

salivary gland to be delivered together with saliva into host skin (66). After a blood meal is 

taken, viremic blood first arrives into the mosquito midgut. The virus must successfully infect 

the midgut epithelium to replicate to a higher levels and spread into a hemocoel, which is a body 

cavity between the organs in which blood or hemolymph flows and bathes the tissue and organs. 

This function of the cavity inadvertently helps disseminate the virus to several mosquito tissues 

including the salivary glands. Sufficient virus replication in the salivary gland ensures infectious 

levels of virus that will likely be transmitted to a new vertebrate host for the next feeding time. 

The titer of virus transmitted by an infected mosquitoes transmit is highly variable, ranging from 

103 to 107 plaque forming units (PFU) (67). The number of virions needed to productively infect 

humans is unknown.  
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Only female mosquitoes, which need a rich source of pre-digested blood to nurture their eggs, 

have the modified physiology necessary for taking blood from warm-blooded creatures, 

particularly humans in a case of Aedes aegypti. The proboscis is the female’s mouth part that is 

adapted for pain-free penetration of the skin of hosts, and is used for probing and cannulating a 

blood vessel, and for aspiring blood. The proboscis is a long six-needlelike system encased in a 

sheath called a labium which makes the needles look like a single tube (68). In fact, a proboscis 

includes two sharp maxilla for anchoring mouthparts while drilling the skin, two mandibles for 

holding the skin apart, a bendable labrum for finding and piercing a blood vessel and sucking 

blood, and a hypopharynx for injecting saliva and sometimes incidentally delivering virus 

particles (69). Skin is thus the first organ that encounters DENV in the human host.  

1.3 DENGUE DISEASE AND PATHOGENESIS 

1.3.1 Dengue case classification and levels of severity 

DENV infection results in a broad range of clinical features from asymptomatic infection to 

dengue fever (DF) to a severe form of disease called dengue hemorrhagic fever (DHF) that can 

progress to a life-threatening dengue shock syndrome (DSS). The latest classification system 

views dengue as one disease entity with different clinical presentations, often with unpredictable 

clinical evolution and outcome (70). Patients are classified depending on their overall levels of 

disease severity into two groups, as having dengue (with or without warning signs) or severe 

dengue. The basic dengue case definition involves patients with fever and two of the following 

criteria: nausea/vomiting, rash, aches and pains, leukopenia, and tourniquet test positive. Most 
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cases present with a self-limiting non-severe illness followed by recovery without complications. 

However, approximately 10% of reported cases progress to severe dengue, mostly characterized 

by vascular leakage with or without hemorrhage, and shock. A major concern has been that 

individuals progressing to severe disease are difficult to define when notable features present 

together.  

1.3.2 The course of dengue illness: febrile – critical – recovery phases 

Following bites from an infected mosquito, there is an incubation period that lasts 4-7 days 

(minimum 3 days, maximum 14 days), and the individual may abruptly develop symptoms 

afterwards. The illness usually follows three phases: febrile, critical, and recovery (70, 71). 

1.3.2.1 Febrile phase 

Patients typically experiences sudden onset of high-grade fever (39-40◦C). This phase commonly 

persists for 3-7 days and terminates abruptly; most patients recover without serious 

complications after the temperature settles. These patients are classified as having non-severe 

dengue. Mild hemorrhagic manifestations such as skin petechiae or bleeding from any organs are 

uncommon, but sometimes present. Enlarged liver is often noted. After the febrile phase, patients 

with a reduction of leukocytes (leukopenia), but no increase in capillary permeability, will 

mostly improve, whereas those showing signs of plasma leakage tend to progress to worse 

conditions.  
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1.3.2.2 Critical phase (leakage phase) 

A number of systemic problems may develop around day 3-6 of dengue illness when the 

temperature decreases to 37.5-38◦C or less. The most serious manifestation is an increase in 

capillary permeability which can occur in any age group, but it is predominantly recognized in 

children and young adults. Once this occurs, it defines the timing of onset of the critical phase 

lasting for 24-72 hours, and results in profound loss of plasma volume, increasing hematocrit 

levels, and subsequent potentially fatal hypovolemic shock that is the hallmark of DSS. The 

increased capillary permeability often occurs in conjunction with hemorrhagic manifestations 

and abnormal hemostasis. Skin petechiae or easy bruising are the most frequent hemorrhagic 

manifestations during this phase. Changes in total white blood cell count are consistent with 

early suppression of platelet production in bone marrow as well as leukopenia, all reaching a 

nadir during the critical phase before gradually increasing to normal levels over a few days. 

Evidence suggests that the severity of hematologic abnormalities has a strong correlation with 

the severity of the plasma leakage (72).  

1.3.2.3 Recovery phase 

The plasma leakage and abnormal blood counts during the critical phase are usually transient. On 

day 6-8 of illness, a gradual reabsorption of extravascular compartment fluid begins in the 48-72 

hours following the onset of recovery phase. The clinical outcome in patients receiving prior 

careful management is commonly good in a short-term period. Most patients develop skin rash 

during the transition from critical to recovery phases. The rashes vary ranging from a mild 

maculopapular rash to a new skin rash called “islands of white in the sea of red” (73, 74).  
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1.3.3 Risk factors responsible for the severity of dengue 

Dengue pathogenesis remains poorly understood, as the nature of dengue fever and severe 

dengue is complex and varied, with the involvement of multiple organs and intricate virus-host 

interactions. The multifaceted clinical presentation and diagnostic challenges of dengue clearly 

indicate that no single variable should be considered as a sole mechanistic cause of the clinical 

outcome. Alternatively, many factors are concomitantly involved in the expression of dengue 

phenotypes. These risk factors are virus, host, vector and others such as environment, socio-

economic status and race (75). Understanding how factors determine the dynamics of dengue is 

important for discovering, developing, and implementing methods to prevent infection and 

improve patient outcomes. 

1.3.3.1 Viral factors 

The risk of developing severe disease after infection by one of the four DENV serotypes may 

differ depending on the serotype of the infecting virus. All four DENV serotypes have the 

potential to cause severe and fatal disease in humans (76). Studies in the Kingdom of Tonga and 

Thailand have shown DENV-1 and DENV-3 to cause more severe outcomes in the absence of 

previous DENV infection than DENV-2 or DENV-4 (77). While primary DENV-2 infection is 

rarely linked to severe disease, many epidemiologic studies in various regions including 

Thailand, Nicaragua, Cuba, Colombia, and Burma, have demonstrated that secondary DENV-2 

infections are most frequently associated with DHF and shock as compared to the other serotypes 

(78-81). However, exceptions have been documented in different locations; DENV-3 infection in 

Brazil were more likely to show an association with shock, abdominal pain and exanthema as 

compared to DENV-2 and DENV-1 (82).  
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It is difficult to draw solid conclusions for serotype-specific differences in disease severity 

because most previous studies did not take differences among genotypes and strains within each 

serotype into account. It has been suggested that some genotypes of DENV-2 are more virulent 

due to their within-host fitness. It is believed that the virus with genetic variants showing faster 

replication and higher viral loads tend to produce more severe disease. Studies have shown that 

the Southeast Asian genotype of DENV-2 associated with dengue disease severity is able to 

replicate more efficiently in vitro than the American genotype of a similar serotype (83). This 

high fitness feature provides the Asian strain the potential to displace strains with lower relative 

replicative ability when co-circulation occurs as it has been observed in the America prior to 

1981 (84) (refer to ‘History’ section). Only a few cases of severe manifestations associated with 

DENV-2 were documented in Latin America and the Caribbean during the time when the 

American genotype of DENV-2 circulated. The introduction of the virulent Asian DENV-2 stain 

into the region corresponded with the first DHF/DSS epidemic in Cuba (20). The replacement of 

the Native American DENV-2 with an invading DENV-2 genotype of Asian origin resulted in 

more severe cases observed. This epidemiologic event also support a positive relationship 

between within-host fitness and virulence in dengue virus (85).  

1.3.3.2 Human host factors 

Individual susceptibility seems to influence the occurrence of severe dengue. Studies have shown 

that severe dengue was found more frequently among children than in adults (86). With an 

estimation of half a million cases of severe dengue occurring each year, more than 90% of those 

cases required hospitalization and were children under the age of 15. In a study in Vietnam, it 

was reported that children between age 1-5 years had four times higher odds of dying from 

dengue than children between age 11-15 years, even though the incidence of DSS was found to 
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be highest in a group between the ages of 6 and 10 (87). These findings are consistent with 

physiological observations that younger children inherently have more penetrable blood 

endothelium and are more likely to suffer from plasma leak, shock and poor clinical outcome 

(87). The risk of developing severe dengue is also high in the infants (0-12 month), especially 

those who are born to DENV-immune mothers (88). It has been hypothesized that maternal Ab 

may play a role in symptomatic or severe dengue in infants (88). 

 

The association between host genetic background and dengue disease severity was indirectly 

suggested in 1906 by Agramonte’s statement that “black people seem to have a remarkable 

degree of resistance to dengue disease” (89). In support of the observation, epidemiological 

studies in multiracial areas such as Cuba and Haiti suggest that individuals of African descent 

have a lower risk of developing severe disease, as compared to those of European descent (19, 

90). One explanation for these differences in dengue has been shown to be variation in T-cell 

response among White and Black Cuban population (91). More recently, a genome-wide 

association study identified genetic polymorphisms that protect people with an African ancestry 

from dengue hemorrhagic manifestations. These candidate genes such as OSBPL10 and RXRA 

are known to play a role in virus replication and immune function (92). However a limited 

number of studies, mainly the epidemiological observations, examining dengue across ethnic 

groups have been conducted. Further studies are certainly required to understand the biology 

behind this variation. Addressing these knowledge gaps is important because it would help 

provide a basis to move towards specialized and effective therapeutic strategies. Other host 

genetic determinants such as HLA alleles and variants in cytokine genes have also been 

suggested to influence disease outcomes (93). 
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1.3.3.3 Immune pathogenesis 

The temporal mismatch between the viral loads and the course of dengue illness indicates that 

the pathologic symptoms of dengue are not exclusively caused by the virus (70). During the 

critical phase, the characteristic capillary permeability of severe dengue manifests relatively 

slowly when the viral burden is in sharp decline or is no longer detectable in blood. This suggests 

that virus-host interactions occur early and trigger protective antiviral responses to control and 

eliminate the virus, which may inevitably aggravate dengue pathogenesis through highly 

activated responses even after rapid clearance of virus. Evidence suggests that the host immune 

response plays an important role in causing many clinical complications associated with severe 

disease (94, 95). Malnourished children have been shown to have a lower risk of developing 

DHF/DSS than obese children due to their suppressed immune response (96). Although DENV 

infection infrequently leads to death, any patients have a potential to develop to severe dengue 

and die of progressive shock and multi-organ impairment (70). There is a correlation between the 

progress into shock and the switch from a Th1 to a Th2 response, together with an increase in 

Th2-type cytokines (97), supporting that an abnormal and exaggerated host immune response 

modulates dengue progression. 

 

The immune pathogenesis hypothesis is supported by the observation that many severe dengue 

complications occur in serologically confirmed patients with previous history of dengue (19, 78, 

98). It is suggested that, during the secondary challenge of a different (heterotypic) virus 

serotype, the immune system preferentially activates the cross-reactive response from memory to 

the primary challenge, rather than constructing a new response from naïve cells. This process is 

termed original antigenic sin which refers to the predominance of the original antigen, cross-
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reactive antibodies or T-cell responses to the prior DENV during the secondary infection (99). 

Halstead has proposed that previously infected individuals, children or adults, have an immune 

risk factor, DENV-reactive IgG antibodies (Ab) which can enhance sequential DENV infections 

in Fcγ-receptors (FcR) bearing cells when the presence of Ab is at sub-neutralization 

concentrations. This phenomenon is called Ab-dependent enhancement or ADE (100). 

Generally, Ab responses defend the body from viral infection in a number of ways including the 

binding of Ab to virions that may interfere with virion adhesion to cellular receptors, block 

fusion with host membranes, cause aggregation of virus, or direct the lysis of viruses. However, 

Ab can opsonize virus and the Fc portion of Ab crosslink the virus to membranes of Fc receptor-

expressing effector cells such as phagocytes, activating the phagocytosis and intracellular 

disposal. This Fc-mediated uptake process appears to be a double-edged sword in the case of 

dengue as it also serves as an underlying mechanism of ADE (101). 

 

A cohort study using dengue patients’ blood samples has demonstrated that cross-reactive Ab 

have a 100-1000-fold lower avidity for the subsequently infecting virus (102). At the stage of 

DENV transmission, pre-existing Ab generated to the primary infecting virus will not have a 

sufficient avidity or titer to neutralize the secondary infecting virus, impairing virus clearance. 

Instead, low avidity Ab opsonize the virus, form immune complexes and lead to targeting of Fcγ-

receptor expressing cells, resulting in increased internalization and viral replication. More severe 

clinical manifestations are associated with greater virus burden in the body (103, 104). 

 

The ADE phenomenon provides a rational explanation to the severe dengue in infants born to 

DENV-immune mothers (105). In this case, the mother passively transfers Ab, including IgG 
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specific for her previous DENV serotype, to her unborn baby through placenta during the last 

trimester of pregnancy. Maternal IgG is thus implicated as a risk factor for developing disease in 

infants who later become infected with DENV for the first time. Severe dengue occurs during 

primary infection typically in babies between 4 and 11 months, a period when levels of 

maternally acquired Ab to DENV wane, supposedly to a point where Ab are no longer sufficient 

to neutralize infection. That, in turn, exacerbates the primary infection by ADE, resulting in 

severe dengue (106). The exact mechanism of ADE of DENV infection in infants is not well 

understood, whether it resembles or differs from those occurring in older children and adults. 

Nevertheless, it has been speculated that ADE in infants is facilitated similarly to in vitro 

observations as the neonatal and adult monocytes display similar expression of FcγRIa or 

FcγRIIa (101).  

 

Another hypothesis in support of the immune pathogenesis of severe dengue is original antigenic 

sin of T cell responses (107). It has been believed that cross-reactive T cells constructed against 

the original infecting serotype during secondary infection may also play a role in progression to 

severe dengue. The amino acid variations among four DENV serotypes can result in many 

variant peptide sequences with slight differences of amino acid. As T cell epitope recognition 

requires only short peptide fragments derived from replicating dengue for being T cell 

determinants, it is likely that the different infecting serotypes may lead to a complexity of T cell 

response to variant peptides that potentially offers cross-reactivity during secondary infection 

(108).  
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Analysis of T cell lines and clones often shows highly variable levels of cytokine production and 

cytotoxicity when stimulated with titrations of different peptides (109). Importantly, the 

phenotype and magnitude of both CD4 and CD8 T cell responses has been shown to strongly 

correlate with the severity of dengue disease; T cells in DHF produced more cytokines and 

showed lower levels of degranulation while those observed in DF produced much higher 

degranulation in an absence of cytokines (110). Paradoxically, studies have demonstrated that 

many T cells showed a high affinity for previously infecting serotypes, but had a relatively low 

affinity for secondary infecting serotype (109, 111), which was also reflected by comparatively 

poor T cell responses to secondary infection. These data suggest a potential of original antigenic 

sin of T cell responses in which a cross-reactive response can be rapidly raised from memory T 

cells, but appears to be pathogenic with low affinity to current infections (112). Activated T cells 

have been shown to produce a plethora of inflammatory cytokines such as TNF-α, IFN-γ, IL-1, 

IL-6, IL-8, IL-18, MCP-1, and CXCL chemokines. Many of these factors are detected in the 

blood of individuals undergoing the onset of severe dengue (113). However, further 

investigations are needed to show the direct role of the T cell response in development of severe 

dengue, especially because this hypothesis remains in conflict with the protective role of T cells 

that has been widely demonstrated in animal and human studies (114, 115). Furthermore, the 

cross-reactive T cell response cannot explain the ADE of infection in infants because T cells do 

not directly pass through the placenta, suggesting that requirements for promoting ADE in adults 

may also not include T cell responses. 

 

In all proposed hypotheses, the core mechanistic concept of immune-pathogenesis has been the 

production of pro-inflammatory cytokines during DENV infection that is thought to cause 
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detrimental effects on endothelium and tissues, leading to tissue damage and life-threatening 

clinical outcome. This process of a cytokine storm mediating capillary permeability is 

compelling because it helps consolidate the higher virus burden from ADE of infection with the 

magnitude of immune activation in affecting innate immune cells as well as T cells. 

1.4 SKIN 

A wide variety of dengue clinical manifestations ranging from mild illness to fatal disease 

suggest that there are many factors influencing clinical outcome, and the virus has the potential 

to affect all human organ systems. That, in turn, results in varying degrees of disease in 

individual patients. The purpose of the dissertation is to understand an early event of DENV 

infection in human skin. This section focuses on the integumentary system and its importance in 

the context of dengue. 

1.4.1 Dengue symptoms referable in skin 

Studies have shown that skin irregularities are the most common clinical manifestation of 

laboratory-confirmed dengue cases, affecting approximately 65% of all patients (116). The 

confirmation rate of dengue is up to 100% in patients presenting with concomitant skin rash, 

itching, and petechiae (117). This suggests that recognition of skin rash helps with an early 

diagnosis for dengue fever. The link between the presence of dengue rash and the development 

of severe dengue disease is inconclusive based on a limited number of studies. A meta-analysis 
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study has suggested skin rash as one of the predictive signs associated with the progression of 

severe dengue (118).  

 

Dengue rash can be categorized into two types by the onset and appearance linked to a particular 

phase during the course of illness. The initial dengue rash occurs within the first 24-48 hours, 

coinciding with or shortly after the onset of fever and lasting for several days (119). The rash 

involves a prominent flushing erythema of the skin on the face, neck, and chest that may be seen 

in around 20% of dengue patients (120). It is believed to be the result of capillary dilation. A 

diffuse maculopapular rash, first appearing on the trunk and later spreading to the face and 

extremities, has also been described in about 30% of patients in the first few days of illness (121-

123). 

 

The second type of dengue rash develops during convalescence when fever is subsiding 

(defervescence). It thus can be called recovery rash. As noted earlier, this rash has been 

described as “white islands in the sea of red”. It is characterized by a generalized eruption of 

intense red erythema and dense petechiae scattered with multiple small round of normal skin 

(117). Typically, it is marked by pruritus and prominently presents on the lower limbs, although 

the arms and trunk may be affected in some adults. This characteristic commonly persists in 

dengue recovery patients for over 1-2 weeks before fading gradually with skin peeling 

(desquamation). It is likely that patients make a full skin recovery after the improvement in other 

symptoms. With its distinct presentation, this recovery rash is one of the specific clinical signs 

associated with DENV infection. The mechanism for dengue rash remains ill-defined, but is 

thought to represent damage in small blood vessels under the skin. However, it is not known 
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whether the damage is due to the direct effect from virus, or the inflammatory response of blood 

vessels which is induced by the interaction between virus and skin cells. 

1.4.2 Biology of human skin 

The skin is the central organ in the integumentary system, which also includes other accessory 

structures such as hair, nails and certain glands. The term “integumentary” originates from a 

Latin word ‘tegere’ that means ‘to cover’. As the terminology suggests, the skin continuously 

covers the entire external surface of the body, and is continuous with the mucous membranes 

lining various body openings.  It accounts for about 12-15% of total adult body weight, with a 

surface area of 1-2 meters. Indisputably, the skin is the largest organ of the human body and 

provides a natural barrier. Alterations in the skin invariably affect the overall wellbeing of an 

individual. 

 

The skin not only provides a mechanical covering for internal structures, it is in fact a specialized 

complex organ consisting of several distinct layers: the epidermis and dermis, which are the 

main structural layers, and a closely associated underlying layer of subcutaneous tissue (the 

hypodermis). Each layer is composed of its own structures and components, but all layers work 

together as a single structure to perform unique and critical functions including self-repair when 

breached, protection against invading agents, thermoregulation, excretion, homeostasis and 

sensory perception.  

 

The epidermis is the outermost layer of the skin and is highly cellular, consisting primarily of 

keratinized, stratified squamous epithelium. The epidermis houses a number of skin cell 
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populations including keratinocytes, Langerhans cells, Merkel cells, and melanocytes. Among 

these cell types, keratinocytes comprise the majority of the cells in the epidermis. They produce 

and store the protein keratin, which is an intracellular fibrous protein that gives skin the water-

resistant property. The epidermis is a continuously self-renewing epithelium layer and can be 

sub-categorized into multiple layers or strata according to the morphology and position of 

keratinocytes as they differentiate and move upward. The average epidermal thickness of is 0.1 

mm. 

 

The dermis comprises a bulk of the skin with thickness ranging between 1-3 mm in different 

parts of the body and according to sex and age. The dermis is relatively acellular, and the major 

component of dermis is collagen which represents 70% of the skin’s dry weight. Collagen fibers 

provide structure and tensile strength and are capable of retaining water to keep the skin 

hydrated. Elastic fibers provide elasticity and resilience to the skin, enabling movement, but have 

little role in stress-resistance. The dermis is largely supplied with a vascular system involving 

arteries, veins and lymphatics. These microcirculatory vessels are smaller branches from 

underlying large vessels of the muscles that ascend the fat tissue, enter the deep dermis and 

vertically penetrate to the upper dermis, but do not extend into the epidermis. Given the fact that 

only the dermis and hypodermis are vascularized and the epidermis contains no blood vessels, 

another function of the dermis is to regulate normal body temperature and to support and nourish 

the epidermis with vital nutrients and oxygen.  
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1.4.3 Immune function of the skin/ skin response to infection (an integrated view) 

Skin is a versatile organ that fulfils many functions for a particular purpose to secure the integrity 

of the body. One of its important functions is to elicit a robust immune reaction against an 

endless variety of external dangers ranging from allergy, fungal growth, bacterial, viral and 

parasitic infections; these may come from agents which reach the skin from outside such as 

insect bites or injury, from the blood, or from an inherent instability of the skin cells present 

since birth or acquired later in life. In the meantime, the skin has to finely tune an appropriate 

balance of such reactions between protection from pathogens and prevention against innocuous 

substances including self-antigens or commensal microbiota. Dysfunction of the immunologic 

barrier leads to infection, skin hypersensitivity, skin cancer, inflammatory skin conditions and 

allergy, which could plausibly result in harmful consequences in other organ systems and death. 

 

Skin can be defined as a dynamic, responsive immune organ (124). The skin immunologic 

barrier is built on a network of structural, cellular and molecular components (125). Intact skin 

provides physical and chemical barriers including structural integrity, slightly acidic pH, 

secretion of antimicrobial chemicals and water-resistant lipids, making skin relatively resistant to 

most extraneous matters. Also, the epidermal cell shedding reduces the chance of organisms 

colonizing or infecting the epidermis. Typically, microorganisms must breach the skin to gain 

entry into the body. As an interface organ, the skin contains a large population of resident 

immune cells that are key for tissue homeostasis and immune surveillance (126). Immune 

responses originating in the skin are mounted and carried out by these resident or infiltrated cells 

in the skin. Such cell populations are main players in either innate or adaptive immune systems. 

Innate immunity is commonly immediate, non-specific, diverse response that protects against a 
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wide range of invading pathogens, but does not exhibit memory (127). On the other hand, the 

adaptive response has a high degree of specificity as well as memory, but develops slower than 

the innate response. In favorable circumstances, innate and adaptive responses effectively 

cooperate and influence each other to mount a robust, specific immune response against insults.  

Collectively, the complexity and interactions of cells and molecules in skin constitute a first line 

of defense on the interface between the internal milieu and the external world. 

1.4.3.1 Innate immune response in the skin 

Human skin is home to a diverse population of cells including keratinocytes and Langerhans 

cells (LC) in the epidermis as well as dermal dendritic cells (DC) and skin-resident macrophages 

(Mϕ) in the dermis. Keratinocytes are the most abundant cells of the skin and are important for 

skin immune responses (128). They are likely the first cells that any skin-invading pathogens 

will encounter as they penetrate the epithelial barrier. Keratinocytes are the primary cells that 

express, store and release constitutive and inducible antimicrobial peptides (AMP), forming an 

innate chemical shield in the epithelial layers. AMP are evolutionarily conserved, predominantly 

small cationic proteins that directly bind and form pores on anionic cell walls and membranes of 

many bacteria, fungi and viral envelopes, resulting in microbial killing (129). The most 

important keratinocyte-derived AMP in human skin are human β-defensins1, 2, and 3, RNase 7 

and the cathelicidin LL-37 (130). In addition to the direct antimicrobial activity, some AMP 

function as early warning signals to trigger a host response. LL-37 has chemotactic effects on 

mast cells, neutrophils and T cells, and stimulates endothelial cell proliferation (131). LL-37 was 

observed to activate G-protein-coupled receptor P2X7, inducing IL-1β processing and release 

from lipopolysaccharide-primed monocytes (132). Human β-defensins recruit immature DC and 

memory T cells through chemokine receptor 6 (133). This suggests that the presence of AMP in 
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the skin offers many non-specific functions to modify the local inflammatory responses and 

activate innate immune mechanisms of host cells in response to infection. 

 

An essential function of the innate immune system is sensing invading microorganisms (134). 

The human skin is equipped with a variety of germ line-encoded pattern recognition receptors 

(PRR) which are expressed by both keratinocytes and resident immune cells in the skin. These 

receptors are responsible for recognizing specific pathogen components, known as pathogen-

associated molecular patterns (PAMP). PAMP are highly conserved molecules that are present 

and widely shared by many pathogens, but are not expressed in host cells. They are 

indispensable for the survival or infectivity of the pathogen and are thus not subjected to 

selective pressure. There are four different subsets of PRR including Toll-like receptors (TLR), 

Retinoic acid-inducible gene (RIG)-I-like receptors (RLR), NOD-like receptors, and C-type 

lectin receptors. Recognition of PAMP with multiple families of PRR provides the host multiple 

mechanisms to sense and rapidly respond to a diverse range of infectious agents. This sensing 

strategy of the innate immune system also helps activate the specific part of the adaptive immune 

system, which sequentially mounting downstream cascades of immune response commensurate 

with the microbial invasion. The host innate immune response detects and responds to microbial 

stimuli mainly through recognition of the TLR family. A number of TLR recognize PAMP 

molecules on the cell surface such as lipopolysaccharides, flagellin, and yeast mannans (135). 

Multiple TLR including TLR-3, 7, 8, play a role in sensing intracellular viral nucleic acids and 

have been implicated in DENV invasion (136). TLR-3 recognizes dsRNA which is commonly 

generated during the replication cycle of DENV (137).  
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In human skin, there are many cell types that express functional TLR including keratinocytes, 

Langerhans cells, monocytes/macrophages, DC and lymphocytes (138). Each of these cell 

populations has distinct expression patterns of TLR. For example, keratinocytes constitutively 

express most TLR (139); basal keratinocytes express TLR-2/4 mRNA and suprabasal 

keratinocytes express TLR 1-5, TLR-7, and TLR-10 mRNA, suggesting that keratinocytes in 

different layer of epidermis express different type of TLR. The TLR family is responsible for the 

recognition of pathogens in the extracellular and endosomal compartments. The RLR family 

including RIG-I and MDA-5 monitors the cytoplasm for the presence of RNA viruses. It is a 

critical element of the anti-viral defense status in many cell types including keratinocytes, 

fibroblasts, and DC. Recognition of DENV occurs through a combination of both RIG-I and 

MDA-5 (140). Engagement of PRR with PAMP triggers a series of signaling pathways that 

activate transcription factors such as NF-kB and AP-1, resulting in the production of AMP, 

proinflammatory cytokines such as tumor necrosis factor α (TNFα), Interleukin-1 (IL-1) and IL-

6, chemokines, type I interferons (IFN) and induction of immune responses necessary to 

eliminate the pathogens. 

 

In response to virus infection, viral genetic elements (viral PAMP) trigger the activation of type I 

interferon cascade, leading to the production and secretion of type 1 IFN, including IFN-α and 

IFN-β, by infected cells (141). Secreted type 1 IFNs are potent antiviral cytokines that can bind 

to the IFN-α/β receptors in the same cell or adjacent cells as an alert. This triggers a signaling 

cascade via Jak/STAT phosphorylation and subsequent induction of IFN-stimulated genes 

containing IFN-stimulated response elements that exert antiviral functions. The expression of 

multiple IFN-stimulated genes mediates the restriction of viral infection in various pathways. For 
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example, protein kinase R suppresses the proliferation of virus-infected cells and 2′5′- 

oligoadenylate synthase activates RNase L, which inhibit virus replication by cleaving viral 

RNA. The oligoadenylate-RNase L pathway has been shown to reduce DENV infection in 

human cells. DENV has developed a variety of mechanisms to counteract the type I IFN system 

whether it inhibits type I IFN production or antagonizes type I IFN signaling, therefore affecting 

the induction of functional IFN-stimulated genes (136). The ability of DENV to interfere with 

STAT2 is one of the most striking immune evasion strategies observed in DENV infection (142). 

As STAT2 is essential for controlling the transcription of IFN-stimulated genes, DENV NS5 

forms a complex with host STAT2, resulting in STAT2 targeted to the host proteasome 

machinery for degradation (143). This is one of the main mechanisms that allows DENV to 

establish infection in humans and potentially affects the induction of effective adaptive immune 

responses. 

1.4.3.2 Adaptive immune response in the skin 

Adaptive immunity consists of cell-mediated and humoral responses, elicited by T cells and B 

cells (134). These T- and B- lymphocytes employ a diverse repertoire of antigen specific 

receptors that are not encoded in germ line but are generated de novo corresponding to each 

stimulation, providing vertebrate hosts with a highly flexible, broad range of specific responses 

to pathogens. They also have an ability to generate and retain memory of past immunologic 

challenges, which can persist for decades and produce more rapid and strong responses to 

successive exposure to the re-challenged antigen. Besides keratinocytes and other innate immune 

cells, skin is also populated by resident lymphocytes. Normal skin contains about 20 billion T 

cells, which is twice as many T cells as the whole blood volume, indicating that the immune 

defense at the skin interface is a high priority (144). These resident cells from both innate and 
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adaptive immunity act as the immune-surveillance system in the skin under normal conditions. 

This setting would help overcome the logistic problems when the skin comes in contact with 

pathogens as it readily allows the access of a number of T cells to antigen-presenting cells, and 

subsequently expedites the initiation and activation of adaptive immune response.  

 

Innate mechanisms determine the effective development of adaptive immune responses. Innate 

immunity defines the type and the strength of responses to facilitate T cell development and 

entry into tissues. Any inappropriate induction of local responses could modulate T-cell and 

innate immune effector cells entering the tissues without actual stimuli or existing pathogens in 

the system. These could turn the effective immune clearance of pathogens into the associations 

for skin inflammatory diseases such as dengue. 

1.4.4 Skin cells and their role in early DENV infection 

1.4.4.1 Keratinocytes 

Keratinocytes represents the major cell population in skin as they are present throughout the 

epidermis from the outermost skin layer to the deeper epidermis. Keratinocytes not only provide 

the keratin structure of the skin but also function as innate immune sentinels with the detection 

and control of pathogens via the expression of PRR (145). In the steady state, inflammatory 

mediators are rarely detectable in keratinocytes, whereas upon stimulation, keratinocytes 

increase the production of pro-inflammatory and immunomodulatory cytokines, including IL-1α, 

IL-1β, IL-6,-10,-12,-17, and IL-18, TNF, and chemokines (CC-chemokine ligand (CCL) and 

CXC-chemokine ligand (CXCL) (128, 146). This activation can lead to multiple consequences. 

For example, the expression of CCL20 in activated keratinocytes activates and recruits 
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Langerhans cells and attracts T-cells to the skin (147, 148). The fact that keratinocytes express 

sensing receptors and abundantly produce mediators clearly demonstrates that keratinocytes have 

an active role in initiating and regulating host defense. In the context of dengue, these cells are 

likely to be the first to encounter the virus-containing saliva being inoculated into the skin (149). 

However, little has been explored about the role of keratinocytes during DENV infection. A 

study has reported that DENV infection of primary keratinocytes stimulates the transcriptional 

activation of intracellular RNA virus sensor, type I IFN genes and antimicrobial proteins, 

indicating the initiation of antiviral innate immunity against DENV (150). 

1.4.4.2 Langerhans cells 

Langerhans cells (LC) are a distinct subset of DC present in the mid-epidermis (151). The highly 

specialized antigen-presenting LC are equipped with PRR to detect, ingest, and process antigens 

present in the skin. After taking up pathogens and becoming activated, LC increase their 

expression of MHC class II and co-stimulatory molecules and migrate out of skin to T cell areas 

in draining lymph nodes, where they secrete chemokines that allow the attraction of naïve T cells 

and induce the proliferation and differentiation of antigen-specific T cells. Whether migratory 

LC carry antigens to skin-resident DC in skin or blood-derived DC in draining lymph nodes is 

questionable. The migration of LC to draining lymph nodes also occurs at a much lower rate in 

steady state. Although the homeostasis of LC to repopulate cells in the epidermis remains 

elusive, studies have shown that CCR2-expressing monocytes are direct LC precursors (152). In 

addition to their classic dendritic appearance, the unique feature of LC is the presence of tennis 

racket-shaped Birbeck granules, a part of the endosomal recycling compartment (153). LC 

express the c-type lectin receptor langerin (CD207), the lipid-presenting molecule CD1a and Fc 

receptors (154). While langerin has recently been observed in dermal CD103+ DC and lymph 
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node resident CD8+ DC (151, 155), it remains a useful and reliable marker for identifying LC in 

tissues. Because of their role in T cell stimulation, it is believed that LC plays a role in eliciting 

immune responses to protect the host following pathogen uptake (156). In support of this notion, 

studies have reported that langerin functions as an antiviral receptor in HIV infection by binding 

and leading to degradation of this virus. However, the protective role of LC has been challenged 

by studies of certain skin-invading pathogens; LC in skin-draining lymph nodes do not present 

antigen derived from herpes simplex virus-1 (157, 158). During Leishmania infection, LC 

induces regulatory T cells which leads to reduced effector T cell responses (159). The study of 

LC in DENV infection is limited. Epidermal LC have been indicated as the first target cells of 

DENV infection based on their infection in a skin biopsy obtained from the recipient of a live 

attenuated tetravalent DENV vaccine (160). A study using isolated cells from human skin 

explants has reported that LC did not support ADE of DENV infection, while DC and Mɸ did in 

the same study (50). The contribution of LC to DENV infection remains largely unknown. 

1.4.4.3 Dermal dendritic cells 

Dermal DC that reside in the dermis are myeloid or conventional DC. These cells are the key 

antigen presenting cells linking innate and adaptive immune responses in humans and other 

mammals. In the steady state, DC typically have an immature phenotype that display high levels 

of phagocytic activity; these cells sample their skin surroundings, picking up antigens from 

damaged cells, pathogens, or a commensal microorganism. Upon pathogen recognition and PRR 

engagement, DC become activated, produce inflammatory cytokines and chemokines, and switch 

chemokine receptor expression, facilitating their migration out of skin and into lymphatics which 

take them to the draining lymph nodes. This activation is generally termed DC maturation. DC 

are a heterogeneous group of cells that can express moderate to high basal levels of MHC class 
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II, which is increased during maturation. This facilitates a switch from antigen capture by 

immature DC in skin, to antigen presentation to lymphocytes in lymph nodes by mature DC. 

There are several distinct DC subsets in the epidermis and dermis but the defined myeloid DC 

population encompasses the CD141+ DC and CD1c+ DC (161). Dermal DC can be best 

identified in situ by expression of CD1c because CD1c+ DC are the major population of human 

myeloid DC in blood and tissues, whereas the number of CD141+ DC is relatively small, 

approximately 10% of human myeloid DC (162), and expression of CD141 is observed on other 

cell types such as endothelial cells. Both DC types are good at migrating and presenting antigen 

to T cells in the draining lymph node. While CD141+ DC have a superior capacity in cross-

presenting exogenous antigens to CD8 T cells (163), which are abundant in the epidermis, 

CD1c+ DC are better at stimulating naïve CD4 T helper cells in the dermis. The CD1c+ DC can 

produce a broad range of cytokines that fine-tune the T cell immune response in the skin (162). 

The dengue field has widely recognized the importance DC in DENV pathogenesis. DC-SIGN 

molecules were shown to mediate DENV attachment to DC cell surface (164). DC are among the 

first cells to be infected with DENV and can support robust DENV replication, resulting in high 

level production of virions and of inflammatory mediators (165-167). The infiltration of 

monocytes generates DC which serve as additional targets for DENV infection (168). The 

migration of DENV-infected DC into draining lymph nodes leads to systemic dissemination of 

DENV and infection of blood monocytes, which can become the dominant cell type infected by 

DENV. Although the direct contribution of DC on the outcome of ADE remains unclear, studies 

indicated that DC are one of the main cell types supporting immune complex infection (169). 

The effect of mosquito saliva during ADE infection involves an increase in migration of DC to 

skin-draining lymph nodes (170). 
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1.4.4.4 Dermal macrophages 

Macrophages (Mɸ) are present throughout the dermis as resident cells or monocyte derived cells 

that infiltrate into the skin in response to inflammation (171). Mɸ are long-lived, biosynthetically 

active cells with potent endocytic and phagocytic functions, which play a role in maintaining 

tissue homeostasis and resolution of inflammation through the clearance of apoptotic cells and 

cell debris (172). Mɸ are endowed with a variety of PRR, lectins, and scavenger receptors, 

suggesting the role of immune surveillance to protect the host through innate immunity. In 

addition to surface receptors, a number of evolutionary conserved reactions including the release 

of calcium and hydrogen peroxide by damaged cells lead to an immediate activation of Mɸ. Mɸ 

are able to modulate their properties upon contact with different insults, different cell types and 

extracellular matrix. During inflammation, activated Mɸ are a critical local source of 

chemokines, matrix metalloproteinase (MMPs), cytokines such as IL-1β and TNF-α, inducible 

nitric oxide synthase and other free radicals, and other secreted factors that produce and 

coordinate cascades of the inflammatory response. Despite low expression of MHC class II, 

these cells can exert antigen-presenting activity and direct T and B-cell differentiation, thus 

influencing adaptive immune responses. These versatile abilities allow Mɸ to rapidly recognize 

and respond to pathogens that successfully invade the skin (173). CD163 expression can be used 

to identify dermal Mɸ. CD163 is a receptor for hemoglobin-haptoglobin complex-binding 

scavenger receptor (174). Besides CD163, dermal Mɸ phenotype includes mannose receptor 

(CD206) and DC-SIGN (CD209) (175, 176). Mɸ have long been recognized as the principal 

cells to replicate DENV (165, 177, 178). DENV binding and internalization in Mɸ have been 

identified to occur through mannose receptors and CLEC5A or a cooperative interaction between 

these two receptors, whereas DC-SIGN expression renders resistance to the infection (175, 179). 
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Studies have reported that DENV-infected Mɸ release high amounts of pro-inflammatory 

cytokines and infectious viral particles (180). However, it remains unclear whether the 

inflammatory function Mɸ is favoring the virus or the host. 

1.4.4.5 Fibroblasts 

Fibroblasts are the most prevalent cell in human dermis. These cells are traditionally recognized 

for their role in synthesis, remodeling and degradation of the extracellular matrix and connective 

tissue proteins such as collagen which play an important role in injury repair. Beyond their role 

in structural support, fibroblasts are able to secret and respond to PAMP, as well as to pro-

inflammatory factors, chemokines, and growth factors (181).  This suggests that activated 

fibroblasts have the ability to participate in the maintenance of induced inflammatory responses 

via the expression of these factors (182). Fibroblasts can also interact with other resident cell 

types, particularly Mɸ, as suggested by cardiovascular disease studies (183, 184). However, few 

studies have examined DENV infection in fibroblasts. In vitro studies have demonstrated that 

primary fibroblasts from human skin were highly susceptible to DENV infection, leading to the 

production of type I IFN, GM-CSF and IL-6 (185, 186). Whether fibroblasts play a role in 

facilitating viral dissemination or inducing antiviral responses is unclear. 

1.4.4.6 Mast cells 

Mast cells are found in body interfaces that are in close contact with the external environment 

such as skin. However, the number of mast cells in skin is relatively small when compared to 

other resident cell types abundantly present in the skin such as keratinocytes and fibroblast. The 

main function of mast cells is the rapid release of pre-stored immune mediators such as 

histamine and the proteases (tryptase and chymase) (187). These vasoactive mediators can 
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increase vascular permeability and are responsible for immediate-type hypersensitivity reactions 

in the skin. The activation of mast cells occurs through the stimulation of the high-affinity 

immunoglobulin (Ig) E receptors (FcεRI). Mast cells also express other Fc receptors that bind 

IgG and therefore can respond to opsonized pathogens. Like other immune cells of the skin, mast 

cells express a variety of PRR including TLR and NLR, release reactive oxygen species, and can 

phagocytose organisms (188). Furthermore, mast cells can produce chemotactic factors such as 

CXCL-8 and TNF-α (189), known to recruit natural killer cells and neutrophils (190). While 

mast cells in skin biopsies fed with DENV-infected mosquitoes support DENV replication, the 

role of mast cells in cell recruiting has been shown to protect against DENV infection (191). 

DENV-infected mast cell–deficient mice had an increased viral burden within draining lymph 

nodes due to the lack of recruitment of natural killer and T cells to the site of infection (192). The 

accumulation of DENV has been shown in subcellular granules of mast cells, a compartment that 

can be released without degranulation, and travel intact through lymph (193). This has been 

proposed as an alternative mechanism of DENV spread, in addition to the immune cell 

migration. 
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2.0  CHAPTER TWO: HYPOTHESIS AND SPECIFIC AIMS 

The skin is the initial and main site of early DENV replication following the bite of an infected 

mosquito. While LC, DC and Mϕ have been implicated as the primary target cell for DENV 

infection, the relative contribution of individual cell types within skin to infection remains 

controversial. To facilitate its spread in the skin and distal organs, DENV must develop strategies 

to subvert or exploit skin immune responses, which could dictate if the disease outcome is a mild 

febrile illness or a life-threatening condition. Thus, understanding the complex dynamics of 

DENV infection in skin is an essential basis for developing therapeutic options. Nevertheless, 

much of the current knowledge about skin involvement in DENV infection is based on 

conclusions drawn from findings in permissive cell lines and immune-deficient mice. Whether 

these findings predict the nature of DENV infection in humans is unclear. In this study, I will 

investigate dynamics of DENV infection and host immune responses to the virus in ex vivo 

human skin explants. The approach of using the skin model of DENV infection, coupled with 

quantitative in situ imaging and dissolvable microneedle arrays (MNA), will allow the 

quantitative analysis of early cellular events following DENV infection with the manipulation of 

skin biological processes. 
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My overall hypothesis is that DENV infects and exploits skin cells and host immune processes to 

facilitate its local replication and spread in human skin.  To address this hypothesis, I propose the 

following specific aims: 

 

Aim 1:  Define the cellular targets of DENV infection and determine the relative 

importance of each target cell in human skin.  Using immunohistochemistry (IHC), I will 

determine the dynamics of DENV infection, characterized by DENV non-structural protein 3 

staining, in the epidermis and the dermis in skin explants during the first 48 hours following 

DENV inoculation. To further characterize skin cell types, I will incorporate specific cell 

markers into the system to determine the target cells of DENV and quantify the contribution of 

each target cell to the overall infection in skin. Two strains of DENV-2: the lab-adapted 16681 

and the clinical isolate K0049, will be used for this aim for the comparison of cell types infected 

and the generalizability of data. I will also study the expression of IFN-α during the course of 

productive DENV infection to evaluate the counteracting effect between the virus and the host. 

 

Aim 2:  Delineate the mechanism underlying DENV spread in human skin.  Changes in the 

number of skin-resident cells in response to the infection will be evaluated by IHC. To predict 

DENV spread beyond the skin, I will count emigrant cells in culture media and identify cell 

types by flow cytometry analysis. Using quantitative RT-PCR, I will determine the expression of 

pro-inflammatory cytokines and chemokines known to influence cell recruitment and infiltration 

in skin samples. The up-regulation of genes will be confirmed in skin as well as the 

characterization of skin cell types responsible for the production of the candidate genes. MNA 

delivery of neutralizing Ab to candidate cytokines and/or chemokines will allow for 
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determination of whether the upregulation of the factors influences the infection and recruitment 

of target cells. 

 

Aim 3:  Determine whether skin-resident macrophages participate in the antibody-

dependent enhancement of DENV and ZIKV infection, and elucidate the role of Fcγ 

receptors (FcγRs) in facilitating the enhanced infection. The delivery of immune serum 

containing monotypic Ab to DENV-3 to skin will allow the ADE investigation of DENV-2 and 

ZIKV infection. Focusing on Mϕ responses, I will use anti-human CD163 and DENV NS3 to 

characterize Mϕ infected with DENV or ZIKV. The assessment of ADE phenomenon will be 

measured by an increase in the number of Mϕ as well as the percentage infected of Mϕ. I will 

also elucidate the impact of mosquito salivary gland extraction on primary DENV infection and 

ADE of DENV infection. If the enhancing serum shows a significant impact on Mϕ infection, I 

will further investigate the involvement of FcγRI and FcγRII in facilitating ADE infection 

through the blockade of the receptors by neutralizing Ab. 
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3.0  CHAPTER THREE:  INTERPLAY BETWEEN KERATINOCYTES AND 

MYELOID CELLS DRIVES DENGUE VIRUS SPREAD IN HUMAN SKIN 

3.1 PREFACE 
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3.2 ABSTRACT 

The skin is the site of DENV transmission following the bite of an infected mosquito, but the 

contribution of individual cell types within skin to infection is unknown.  We studied the 

dynamics of DENV infection in human skin explants using quantitative in situ imaging. DENV 

replicated primarily in the epidermis and induced a transient IFN-α response. DENV infected a 

wide range of cells, including LC, Mϕ, dermal DC, mast cells, fibroblasts and lymphatic 

endothelium, but keratinocytes were the earliest targets of infection and made up 60% of infected 

cells over time. Virus inoculation led to recruitment and infection of LC, Mϕ and dermal DC, 

and these cells emigrated from skin in increased numbers as a result of infection. DENV induced 

expression of pro-inflammatory cytokines and chemokines by infected keratinocytes. Blocking 

keratinocyte-derived IL-1β alone reduced infection of LC, Mϕ and dermal DC by 75-90% and 

reduced the overall number of infected cells in dermis by 65%. These data show that the innate 

response of infected keratinocytes attracts virus-permissive myeloid cells that inadvertently 

spread DENV infection. Our findings highlight a previously undescribed role for keratinocytes 

and their interplay with myeloid cells in dengue. 

3.3 INTRODUCTION 

Dengue is the most common mosquito-borne virus infection worldwide, with clinically apparent 

cases estimated to approach 100 million per year (21). DENV replicates in skin following the bite of 
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an infected mosquito, but the biology of DENV infection in human skin remains ill-defined. DENV 

uses a range of receptors to bind to and infect host cells, including heparan sulfate, mannose 

receptor and DC-SIGN (164, 194, 195), and accordingly a wide range of skin cell types is 

permissive to DENV infection. Emphasis has been placed on the importance of myeloid cells, 

including LC, Mϕ and dermal DC in both human and murine models of skin infection (168, 196, 

197). DENV also replicates in dermal fibroblasts, and mast cells have been shown to contribute to 

DENV infection in skin (198-200). DENV evades the antiviral type I IFN response and suppresses 

type I IFN production by DC in vitro (201), but the impact of infection on IFN production in 

human tissue is not known. 

 

Relatively little is understood about the role of keratinocytes, the most abundant cell in skin, in 

DENV infection. Keratinocytes are emerging as important immune sentinels and initiators of skin 

inflammation and produce cytokines and chemokines that influence the traffic of immune cells into 

skin (202). DENV and the closely related ZIKV replicate in isolated human keratinocytes (203, 204) 

and studies with human skin explants are suggestive of DENV replication in keratinocytes in the 

basal layer of the epidermis (205). The interplay between keratinocytes and immune cells that are 

also targets of DENV infection has not been studied and may be important in the biology of DENV 

at the point of entry.   

 

In this study, we developed an ex vivo model of DENV infection in human skin explants to quantify 

infection in different skin cell populations and define the early events following virus inoculation. 

We demonstrate that at least seven different cell types contribute to DENV replication in skin, but 

that keratinocytes alone make up 60% of all infected cells. We show that the innate response of 
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infected keratinocytes leads to recruitment and infection of Langerhans cells, macrophages and 

dermal DC, which then emigrate out of skin in increased numbers. Our findings show that blocking 

keratinocyte-derived factors, particularly IL-1β, markedly reduces the overall number of virus-

infected cells in skin. The data indicate that DENV exploits the innate response of keratinocytes to 

attract and infect virus-permissive myeloid cells, aiding in the spread of virus. 

3.4 RESULTS 

3.4.1 DENV replicates primarily in epidermis and induces transient IFN-α production 

To establish the ex vivo human skin model, we obtained discarded anonymized abdominal and 

breast skin from healthy individuals undergoing elective surgery. DENV was inoculated into a 1-

square-inch area in the center of a 4-square-inch area of full-thickness skin. This large area was 

used to allow recruitment of cells into sites of inoculation. A bifurcated needle was used to 

repeatedly puncture the skin surface through a 50-µl bubble of media containing virus; 

preliminary experiments showed that this method resulted in approximately 10 µl of virus 

suspension being delivered into the skin. We used a relatively high-dose inoculum of the 

prototype DENV serotype 2 (DENV-2) strain 16681 (6.4 x 106 plaque-forming units (pfu)/10 µl 

delivered virus) for these initial experiments. Excess virus was removed at 2 h and skin was 

harvested at intervals after inoculation and stained with Ab to DENV nonstructural protein NS3, 

which is expressed during virus replication. DENV replication was first evident in cells at the 

base of the epidermis at 6 hours, and by 12 hours and 48 hours, replicating virus was detected in 

much of the basal layer of epidermis and the sparsely cellular dermis (Figure 1a). Using 
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quantitative image analysis, we found that the majority of virus replication took place in the 

epidermis, which contained approximately six times more infected cells than dermis at 48 hours 

(Figure 1b). To identify the earliest targets of virus infection at 6 hours, we stained sections with 

Ab to NS3 and to the major cell subsets in the epidermis, using AE1 to label cytokeratin in 

keratinocytes and CD207 to identify Langerhans cells. Virus replication took place largely in 

basal keratinocytes and was rarely detected in Langerhans cells (Figure 1c). In focal areas of 

infection at 6 h about 10% of keratinocytes were infected relative to 1% of Langerhans cells 

(Figure 1d). In addition, we found that IFN-α was transiently expressed in both epidermis and 

dermis, peaking from 2 to 8 hours post infection and returning to near baseline levels at 12 hours 

(Figure 1e, 1f). 
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Figure 1. DENV replicates primarily in the epidermis and induces transient IFN-α expression. 

(a) NS3 (green) expression in skin at intervals after DENV-2 16681 infection. Scale bar = 100 µm. (b) 

Quantification of infection over time. (c) Immunofluorescence with Ab to AE1 (keratinocytes [KC], red) 

or CD207 (Langerhans cells, red) and NS3 (green) at 6 hours. Arrows indicate infected KC. Scale bar = 

25 µm. (d) Proportion of infected KC and Langerhans cells (LC) at 6 hours. Each symbol represents one 

individual and horizontal lines indicate means. (e) IFN-α (red) expression before and after infection. Scale 

bar = 100 µm. (f) Quantification of IFN-α-expressing cells. (b, f) Data expressed as mean + standard error 

of mean (SEM) from four individuals. Blue staining in images represents nuclei and dotted lines indicate 

epidermal-dermal junction. *P < 0.05 relative to mock infection. 
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3.4.2  DENV replicates widely in skin cells but infection is most abundant in keratinocytes 

We next used a panel of cell-specific markers to quantify infected cell subsets in skin at intervals 

after inoculation. We focused on resident skin cell subsets considered to be permissive for 

DENV infection in vitro. We used both the 16681 prototype virus and the limited passage 

DENV-2 clinical isolate K0049, which was inoculated at a titer around 3 logs lower than the 

prototype virus (8.6 x 103 pfu/10 µl delivered virus). At 48 hours post-infection with either, 

isolate NS3 was readily detected in keratinocytes and Langerhans cells in epidermis (Figure 2a). 

In dermis at 48 hours after infection with either high-dose 16681 or low-dose K0049 strains, 

productive DENV infection was seen in macrophages and dermal DC, identified by expression 

of CD163 and CD1c, respectively (Nestle et al., 2009), as well as mast cells (defined by co-

expression of CD117 and FcεRI) and fibroblasts (defined by the fibroblast-specific Ab TE7) 

(Figure 2b). Infection was also observed in VEGFR3+ lymphatic endothelial cells, although this 

was less frequently observed than infection of other cell types and was not consistent between 

specimens (Fig. 2b). Quantitative image analysis revealed that between 30% and 75% of 

keratinocytes, Langerhans cells, macrophages, dermal DC, fibroblasts and mast cells were 

DENV+ at 24 to 48 hours post infection. However, overall keratinocytes alone made up roughly 

60% of all the DENV+ cells from 8 to 48 hours post infection (Figure 2c). 
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Figure 2. DENV replicates in a wide range of cells with keratinocytes, the major contributor to 
infection. 

 
Staining with antibodies to specific cell markers (red) and NS3 (green) in epidermis (a) and dermis (b) at 

48 h post infection with DENV-2 16681 or K0049 strains. Arrows indicate infected cells. Scale bar = 25 

µm. (c) Proportion of each cell type infected (left), area of infection attributed to each cell type (middle), 

and infection as a percent of all infected cells (right). Symbols represent keratinocytes (KC), Langerhans 

cells (LC), macrophages (MØ), dermal DC (dDC), fibroblasts (FB) and mast cells (MC). Data expressed 

as mean ± standard error of mean from four individuals. *P < 0.05, **P < 0.01; ***P < .001; ****P <. 

0001 comparing KC with other cell types. 
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3.4.3 DENV infection drives recruitment of myeloid cells that become infected 

It was apparent from these experiments that the presence of DENV resulted in greater numbers 

of DC and macrophages in skin, suggesting that these cells were attracted to the site of virus 

replication. To quantify this, we counted Langerhans cells in epidermis and macrophages, dermal 

DC and mast cells in dermis over time in the presence and absence of DENV. There was a 5-fold 

increase in the density of Langerhans cells at 12 and 24 hours post infection relative to mock-

infected skin, and a similar but slightly delayed increase in the number of macrophages. Both 

cell subsets underwent a modest decline in number at 48 hours (Figure 3a and 3b). Dermal DC 

increased 10-fold at 24 hours in the presence of DENV, but returned to baseline density by 48 

hours. Mast cell numbers increased in a more delayed fashion, being statistically significant at 24 

and 48 hours relative to mock-infected skin (Figure 3a and b). The number of fibroblasts did not 

vary over time with DENV infection (data not shown). There was a strong positive relationship 

between the number of Langerhans cells, macrophages and dermal DC and their infection with 

DENV, but no such relationship with mast cells (Figure 3c). These data suggest that DENV 

infection results in production of factors that attract myeloid cells that in turn become infected 

with virus.  
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Figure 3. DENV infection in skin causes influx and infection of myeloid cells. 

(a) Immunofluorescence with antibodies to individual cell markers (red) at intervals after infection with 

DENV-2 16681 or mock infection. Scale bar = 100 µm. (b) Density of Langerhans cells (LC), 

macrophages (MØ), dermal DC (dDC) and mast cells (MC) in mock- and DENV-infected skin. Data 

expressed as mean ± standard error of mean for four individuals. *P < 0.05; **P < 0.01 comparing mock 

and infected skin. (c) Relationship between cell density and DENV infection for each cell type. 
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3.4.4 DENV infection increases emigration of myeloid cells out of skin 

The decline in the density of Langerhans cells in epidermis and macrophages and dermal DC in 

dermis at 48 hours post infection suggests that these populations leave the skin after their 

recruitment to the site of infection. In support of this notion, we observed large cords of 

Langerhans cells present within dermis at 48 hours after DENV but not mock infection, 

suggesting that DENV had promoted Langerhans cell movement from epidermis to dermis (Fig. 

4a). In addition, the total number of cells in media normalized to skin area increased 3-fold at 24 

hours and 5-fold at 48 hours after DENV inoculation (Fig. 4b). We did flow cytometric analysis 

of these migrated cells, staining for CD1a; CD1c; and CD163 to identify Langerhans cells; 

dermal DC; and macrophages, respectively. The proportion of each of these cell types increased 

in media following DENV infection (Fig 4c). This was accompanied by statistically significant 

increases in the frequency of each of these cell subsets in media at both 24 and 48 hours after 

DENV infection relative to mock infection (Fig. 4d). These findings confirm that DENV 

infection ultimately promotes myeloid cell exodus from skin. 
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Figure 4. DENV infection promotes myeloid cell emigration from skin. 

(a) Staining with antibodies to CD207 (red) to identify Langerhans cells in dermis at 48 hours post 

infection with DENV-2 16681 or mock infection. Scale bar = 100 µm. (b) Number of migrated cells 

collected from media per square inch of skin at 24 and 48 hours after DENV or mock infection. (c) 

Representative flow cytometry plots of migrated cells stained with indicated antibodies to identify 

Langerhans cells (LC), macrophages (MØ) and dermal DC (dDC) at 24 hours. SSC, side scatter. (d) 

Quantification of migrated cells. Each symbol represents a different individual. *P < 0.05 relative to 

mock infection. 
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3.4.5 DENV-infected keratinocytes express pro-inflammatory cytokines and chemokines 

To begin to determine the mechanism for the observed recruitment and emigration of myeloid 

cells, we did real-time quantitative PCR analysis for gene expression of a panel of 10 cytokines 

and chemokines that are identified in skin during inflammation. Of these 10 factors, expression 

of IL-1α, IL-1ß, CCL20 and IL-10 was significantly increased in whole digests of skin at 48 

hours as a consequence of DENV infection (Figure 5a). To determine which cells were 

expressing cytokines/chemokines and the relationship to DENV infection, we performed in situ 

immunofluorescence staining for cell markers, viral NS3 and select cytokines/chemokines. IL-1β 

and CCL20 were abundantly expressed primarily in the epidermis after infection with DENV 

strain 16681, and triple labeling indicated that the majority of each of these cytokines was 

expressed by infected keratinocytes. CXCL8 was also primarily expressed in the epidermis at 48 

hours post infection by both virus-infected keratinocytes and uninfected cells lacking expression 

of AE1, likely Langerhans cells (Figure 5b). Similar findings for IL-1β and CXCL8 were noted 

when skin was inoculated with the lower titer of K0049 strain (Figure 5b).  
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Figure 5. Expression of cytokines/chemokines by DENV-infected keratinocytes in skin. 

(a) Change in expression of genes in skin in the presence or absence of DENV-2 16681 at 48 hours 

relative to 0 hours.  Each line represents one individual. *P < 0.05. (b) Immunofluorescence in skin at 48 

hours post infection with DENV-2 16681 (top) or K0049 (bottom) labeled with antibodies to AE1 

(keratinocytes, red), NS3 (green), and the specific cytokine or chemokine (white). Arrows indicate 

expression of cytokine/chemokine in infected-keratinocytes; arrowheads indicate cytokine expression in 

cells other than infected keratinocytes. Scale bar = 25 µm. 
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3.4.6 Blocking IL-1 and CCL20 markedly reduces myeloid cell recruitment and infection 

To directly test the role of cytokines and chemokines produced in skin during infection to the 

recruitment of myeloid cells, we delivered neutralizing Ab to IL-1α, IL-1β, CCL20 and/or 

CXCL8 to skin 2 hours after DENV inoculation. We used Ab formulated into dissolvable 

microneedle arrays (MNAs) for these experiments, which penetrate the stratum corneum and 

deliver small volumes of Ab over a defined area of epidermis and dermis (206). MNA containing 

Ab to IL-1α or IL-1β or a cocktail of all four Ab significantly reduced both the total number of 

Langerhans cells and the number of infected Langerhans cells in the epidermis relative to isotype 

control Ab (Figure 6a). Within the dermis, Ab to IL-1β or CCL20 profoundly reduced both the 

number and infection of macrophages and dermal DC. Neutralizing Ab to CXCL8 had minimal 

effect on recruitment or infection of these cells (Figure 6a). In the case of IL-1β, infection of 

Langerhans cells, macrophages and dermal DC was reduced by 75-90%, resulting in a reduction 

in the total number of DENV-infected cells in the epidermis by 33% and in the dermis by 65% 

(Figure 6a, 6b). In situ immunofluorescence illustrated that anti-IL-1β reduced infection of 

Langerhans cells without impacting infection of keratinocytes in epidermis and substantially 

reduced the number and infection of macrophages and dermal DC (Figure 6c). These findings 

support the conclusion that proinflammatory cytokines and chemokines, in particular IL-1β, 

produced by infected keratinocytes mediate recruitment and infection of Langerhans cells, 

macrophages and dermal DC during DENV infection of skin.   
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Figure 6. Blocking IL-1 or CXCL20 prevents recruitment and infection of myeloid cells in skin. 

(a) (Left) Density of Langerhans cells (LC), macrophages (MØ) and dermal DC (dDC) in uninfected skin 

(UI) at 0 hours and mock-infected skin at 24 hours, and in dengue virus (DENV)-infected skin at 24 hours 

after exposure to different blocking antibodies or isotype control antibodies in dissolvable microneedle 

arrays. (Right) Number of DENV-infected cells of each cell type after exposure to different antibodies. 

(b) Total number of DENV-infected cells in epidermis and dermis 24 hours after exposure to isotype 

control antibodies or antibodies to IL-1β. Each symbol represents a different individual. *P < 0.05; **P < 

0.01. (c) Immunofluorescence with antibodies to individual cell markers and NS3 at 24 hours after DENV 

infection and exposure to isotype control antibodies or antibodies to IL-1β. Arrows indicate co-

localization of NS3 with specific cell marker. Scale bar = 100 µm. 
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3.5 DISCUSSION 

Both hematopoietic and non-hematopoietic skin cells support DENV replication, but the relative 

contribution of each to DENV infection and spread in situ is not known. We addressed this issue 

by inoculating virus into large-area human skin explants and quantifying the effect of DENV 

infection on different susceptible cell populations. Our data reveal that DENV infects at least 

seven different resident skin cell populations within epidermis and dermis, with efficiencies 

between 30 and 60% at 24 h, similar to findings in vitro (197, 198, 200, 203). However, the most 

abundant cell infected from a quantitative standpoint is the keratinocyte, which is the earliest 

target and makes up 60% of all infected cells over time. This is a function both of the high 

density of keratinocytes within skin and their relatively high susceptibility to infection in situ. 

Our findings indicate that keratinocytes play a central role in infection and spread of DENV 

through production of factors that draw virus-susceptible myeloid cells to the site of virus 

inoculation and promote their subsequent migration out of skin.  

 

Our findings are consistent with earlier reports of keratinocyte infection in human skin explants 

(205) and with data from wild-type mice showing keratinocyte infection following intradermal 

inoculation with West Nile virus, a related flavivirus (207). A recent study showed that while 20 

to 40% of Langerhans cells, macrophages and CD1c+ dermal DC isolated from collagenase-

treated human skin were productively infected upon DENV inoculation, there was negligible 

involvement of keratinocytes in this process (196). This discrepancy could arise from the method 
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of cell isolation, as collagenase treatment would favor recovery of cells from dermis but not the 

collagen-free epidermis.  

 

It is well described that type I IFN restricts DENV replication in human skin cells, including 

fibroblasts, DC and macrophages (196, 208). We found remarkably transient production of IFN-

α by cells in epidermis and dermis following DENV infection, with peak expression at 2-8 h 

after virus inoculation. In contrast, DENV replication in isolated human keratinocytes and 

fibroblasts leads to type I IFN production that appears relatively sustained, out to at least 48 h 

(198, 203). Our data suggest that rapid blockade of type I IFN production by DENV as noted in 

DC in vitro (201) also occurs in infected skin cells in the context of the skin microenvironment. 

This blockade facilitates virus replication and spread within tissue, as well as emigration of 

infected cells out of skin to distal sites. Similarly, studies in IFN-α/β receptor-deficient mice 

showed that monocyte-derived DC are recruited to the dermis and become infected after 

intradermal DENV inoculation (168). 

 

Our data show that in human skin, pro-inflammatory factors, most notably IL-1β, derived largely 

from infected keratinocytes, mediate recruitment of virus-susceptible myeloid cells. IL-1β is 

chemotactic for macrophages (209) and activates DC in skin explants, promoting T cell-

stimulating function (210). CCL20 mediates recruitment of DC into inflamed skin (211) and is 

itself induced by IL-1β. Importantly, IL-1β in concert with TNF-α ultimately drives Langerhans 

cell and dermal DC exodus from skin to draining lymph nodes (212), consistent with our 

findings of an increase in these cell types and macrophages in media following DENV infection. 

Thus, myeloid cells that are brought into skin in response to keratinocytes would become 
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infected and then traffic to lymph nodes, initiating an adaptive immune response but also 

disseminating infection. Keratinocytes are an important source of IL-1 in other infections as 

well, but with different outcomes. In intradermal herpes simplex virus-1 infection of mice, 

keratinocyte-derived IL-1α mediates leukocyte recruitment to skin that serves to contain virus 

spread (213). In percutaneous infection of mice with Schistosome larvae, epidermal 

keratinocytes promote skin inflammation and wound healing, in part through release of IL-1α 

and IL-1β (214).  

 

It is notable that increased circulating levels of IL-1β in dengue patients correlates with severity 

of disease (215). IL-1β expression by infected platelets increases vascular permeability which is 

a hallmark of severe forms of dengue (216). DENV antigen can be detected in the erythematous 

macules and papules that constitute the dengue rash seen in acute illness (197), and it is 

conceivable that infected keratinocytes in these lesions are an unidentified source of IL-1β and 

may therefore be a factor in disease pathogenesis. 

 

A central question is how mosquito bites themselves may affect the events of DENV infection in 

human skin. Aedes mosquitoes inoculate between 103.6 and 104.7 pfu of West Nile virus when 

feeding on live mice (217), similar to the dose we used of the DENV isolate K0049 in our 

studies. Notably, the vast majority of West Nile virus injected by infected mosquitoes remains at 

the site of inoculation as opposed to being delivered directly into the circulation following 

cannulation of capillaries (217). Studies with other arboviruses show that mosquito bites cause 

edema, retention of virus in skin and recruitment of neutrophils that are a source of IL-1β. The 

resulting inflammatory response leads to an influx of virus-permissive myeloid cells that spread 
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virus infection (218). Mosquito salivary gland components and mosquito bites enhance DENV 

dissemination and disease in murine models (219-222). Moreover, Aedes aegypti saliva directly 

enhances DENV infection of isolated primary human keratinocytes (223, 224). These findings 

suggest that keratinocyte infection and subsequent recruitment and infection of myeloid cells in 

human skin after DENV infection may be exacerbated in the setting of mosquito bite inoculation.  

 

In summary, we have identified a novel relationship between keratinocytes and myeloid cells 

that serves to promote DENV infection in human skin and is predicted to lead to greater 

dissemination of virus in the infected host. The data highlight a previously unidentified role for 

keratinocytes in DENV infection and indicate that disrupting the innate response of keratinocytes 

may limit DENV infection in vivo.  
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3.6 MATERIALS AND METHODS 

3.6.1 Dengue virus 

The prototype DENV-2 strain 16681 was provided by Jared Evans at the University of 

Pittsburgh. The low-passage DENV-2 strain K0049 was isolated in 1995 from an individual in 

Thailand with dengue hemorrhagic fever (83) and was obtained from BEI Resources. Viruses 

were propagated in C6/36 insect cells (ATCC). Tissue culture supernatant was pooled at days 5, 

10 and 15 of culture and then concentrated using standard methods. Virus titers were determined 

by a modified focus forming unit immunoperoxidase assay using Vero cells as described 

previously (225).  

3.6.2 Skin processing and virus inoculation  

Large blocks of anonymized skin that were being discarded following elective abdominoplasty 

or mammoplasty at the University of Pittsburgh were used. Identifiable private information 

regarding skin donors was not provided and no interaction or intervention with donors was 

possible and as such the project did not constitute human subjects research as per the University 

of Pittsburgh Institutional Review Board. Residual fat was removed and skin trimmed into 25 

cm2 pieces. A volume of 50 ul virus suspension containing 3.2 x 107 pfu 16681 or 4.3 x 104 pfu 

K0049 was placed in a 4 cm2 area that was demarcated in the center of the skin. A bifurcated 

allergy skin testing needle (Precision Medical Product Inc., Denver, PA) was used to repeatedly 
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puncture the skin through the liquid suspension and deliver virus into the epidermis and dermis. 

Inoculated explants were incubated at 37˚C (5% CO2) for 2 h, then the skin surface was washed 

with PBS and wiped with sterile gauze pads to remove excess virus. By weighing skin before 

virus inoculation, immediately after adding virus and immediately after removal of excess virus, 

we determined that 10 ul virus was delivered into the tissue using this method. Tissue was placed 

dermis-side down on mesh grids or on filter paper in 60 x15 mm culture dishes and incubated at 

the liquid-air interface in complete media (RPMI 1640 media containing 10 % FBS, 100U/ml 

penicillin/streptomycin, 2 mM L-glutamine, 0.1 mM sodium pyruvate). Explants were collected 

at various intervals and the virus-inoculated central region was isolated, submerged in 30% 

sucrose overnight at 4˚C, and then frozen for subsequent RNA isolation and 

immunohistochemistry. At 24 and 48 hours, media were collected to harvest cells, which were 

treated with DNase, counted, and stained with Ab for flow cytometric analysis.  

3.6.3 Microneedle arrays and blocking Ab 

Neutralizing Ab to human IL-1α, IL-1β, CXCL8 or CXCL20, either alone or together, or isotype 

control Ab (R&D Systems) were formulated into tip-loaded dissolvable carboxymethyl 

cellulose/trehalose MNA as previously described (206). MNA contained 57.5 ng of Ab to IL-1α, 

IL-1β or CXCL8, or 230 ng of Ab to CXCL20, or a combination of all of these. The 

concentration of Ab was twice the 50% neutralization dose as provided by the manufacturer 

multiplied by a factor of 2.3 to account for dilution following dispersal within skin. Control 

MNA contained 575 ng each of IgG1 and IgG2a Ab. MNA were manually applied to explants 

immediately after removal of excess virus inoculum at 2 h. MNA were removed after 15 min 

leaving the dissolved needle tips in the skin explant.   
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3.6.4 Immunohistochemistry  

Six µm frozen sections of skin on microscope slides were rehydrated with PBS and fixed in cold 

acetone for 5 min at 4˚C. Slides were incubated with blocking solution containing 5% goat and 

donkey serum (Thermo Fisher Scientific) overnight at 4˚C before being stained with polyclonal 

rabbit anti-DENV NS3 Ab (kindly provided by Sujan Shresta, La Jolla Institute for Allergy and 

Immunology) and mouse anti-human Ab directed against specific cell and/or cytokine markers 

overnight at 4˚C. Slides were washed and incubated for 45 min with donkey anti-rabbit IgG 

H&L Alexa Flour 488, goat-anti-mouse IgG1 Alexa Flour 546, and/or goat-anti-mouse IgG2a/2b 

Alexa Flour 647 (Invitrogen), depending on the combination of Ab used. Slides were stained 

with Hoechst dye (Thermo Fisher Scientific) for nuclear visualization. Images were viewed on 

an Olympus Fluoview 1000 confocal microscope. The following human primary Ab were used: 

keratin low molecular weight Ab-1 (AE1, Thermo Fisher Scientific), langerin/CD207 (DCGM4, 

Beckman Coulter), CD1a (NA1/34HL, AbD serotec), CD163 (5C6FAT, Acris Antibodies 

GmbH), CD1c (L161, AbD serotec), fibroblast (TE7, Chemicon), VEGFR3 (FLT4, R&D 

Systems), CD117 (104D2, Thermo Fisher Scientific), FcεRI (9E1, Novus Biologics), IL-1ß 

(6E10, Novus Biologics), CXCL20 (319F6.06, Novus Biologics) and CXCL8 (B2, Santa Cruz 

Biotechnology). Specificity of labeling was determined using relevant isotype-matched control 

Ab. 

3.6.5 Quantitative image analysis 

Nikon NIS elements AR 4.40 software was used to convert images into measurable data in a 

manner similar to that described previously (226). Slides were imaged at 40X magnification to 
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allow visualization of the full thickness of epidermis and approximately 500 um depth of dermis. 

Briefly, a region of epidermis or dermis or both was circumscribed and thresholds for red, green 

and blue fluorescence (representing staining of the specific cell marker or cytokine/chemokine, 

viral NS3 and nucleus, respectively) were established. The overlapping area of different colors 

specified different aspects of data, for example the intersection of red and blue thresholds 

showed a specific cell population, the intersection of green and blue showed infected cells, 

whereas the intersection of red, green and blue showed a specific cell population infected with 

DENV. Data for each individual skin specimen were collected from a minimum of 10 confocal 

images taken from 3 skin sections collected from different sites of virus-inoculated skin. Means 

from each individual were presented as an individual data point, and data are presented from 4 

individuals.  

3.6.6 Flow cytometric analysis 

Antibodies to CD1a (SK9; BD Biosciences, San Jose, CA), CD1c (L161; Biolegend, San Diego, 

CA), and CD163 (GHI/61; Biolegend) along with matched isotype control Ab were used to stain 

cells collected from media prior to analysis by flow cytometry.  Dead cells were excluded using 

a Live/Dead viability stain and singlets were defined using side scatter height and area. Samples 

were run on a BD LSR II flow cytometer using BD FACSDiva software (Becton, Dickinson, 

Franklin Lackes, NJ). Analysis was performed using FlowJo software, version 10.3 (Tree Star, 

Inc., Ashland, OR). 
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3.6.7 RNA isolation and quantitative real-time PCR 

Total RNA was extracted from homogenized skin tissues and purified using RNeasy mini kit 

(Qiagen, Valencia, CA) and cDNA synthesis was done using standard approaches. Primers were 

synthesized by Integrated DNA Technologies (Caralville, IA) and are given in Table 1. The 

amplification of cytokine and reference genes was performed using a duplex format 

containing primed cDNA, each primer pair, and Platinum SYBR green qPCR Supermix-UDG 

(Invitrogen, Carlsbad, CA). Quantitative RT-PCR was performed using a 7900HT Fast Real-

time PCR system machine (Applied Biosystems, Carlsbad, CA). Quantities of all cytokine 

targets were normalized to the corresponding 18S ribosomal RNA levels in the skin tissues.  

3.6.8 Statistical analyses 

Statistical analyses were performed using STATA, version 13 (StataCorp, College Station, TX) 

and SPSS software (IBM Corp, Armonk, NY). A paired t test or Mann-Whitney U test was used 

for two-group comparisons. A one-way analysis of variance followed by Bonferroni’s multiple 

comparisons test was done for multigroup comparisons. The strength of linear associations was 

assessed by the Pearson’s product-moment correlation. P values <0.05 were considered 

significant.  
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Table 1. Primer sequences used in the study 
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4.0  CHAPTER FOUR: ANTIBODY-DEPENDENT ENHANCEMENT OF DENGUE 

VIRUS INFECTION OF MACROPHAGES IN HUMAN SKIN 

4.1 PREFACE 

Data in this chapter fulfils aim 3 and will be incorporated into a manuscript for future 

publication. 

4.2 ABSTRACT 

Dengue is the most important mosquito-borne virus infection worldwide. During a bite or blood 

feeding, an Aedes aegypti, the primary vector mosquito, injects saliva containing any of four 

serotypes of DENV into the skin. Individuals who have been previously exposed to DENV 

infection are predisposed to severe dengue in subsequent infections with different serotypes of 

DENV or related flaviviruses such as ZIKV. This phenomenon is called antibody-dependent 

enhancement (ADE), and has been described in epidemiological and in vitro studies. Using an ex 

vivo skin model of DENV infection, we demonstrate in situ ADE in resident Mϕ, one of major 

targets of DENV infection. We show that the pre-existence of DENV-3 immune serum enhances 

heterotypic infection with DENV-2 and ZIKV in a dose-dependent fashion. At the peak 

enhancement, we observe a 6-fold increase in density of total Mϕ as well as infected Mϕ and up 
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to 8-fold increase in the proportion of Mϕ infected, resulting in 50-70% of total Mϕ being 

infected. ADE of DENV infection induced a 3-fold increase in cell emigration out of the skin, 

reflecting its impact beyond the skin. We also show that mosquito salivary gland extracts had no 

effect on DENV infection in the absence or presence of enhancing immune serum. Our results 

indicate that FcγRIa (CD64) and FcγRIIa (CD32) both facilitated the entry of infecting virus into 

cells as a blockade of these FcγRs together strikingly diminished the amount of Mϕ infected in 

skin and limited the spread of cell out of the skin, resulting in a reduction of the overall infection 

in dermis by 70%. Our data show that the Ab-mediated infection of Mϕ contributes to 

enhancement of infection in human skin and increased dissemination of virus.  
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4.3 INTRODUCTION 

Dengue is the most important mosquito-borne disease caused by infections with any of four 

serotypes of DENV (23). The dengue serotypes (DENV-1,-2,-3,-4) are genetically related but are 

antigenically distinct viruses (227). Following the primary infection, a person develops a life-

long immunity to the original DENV serotype, but only partial cross-protection against the other 

three serotypes (228). The co-circulation of multiple serotypes commonly occurs in dengue 

hyperendemic areas, rendering a high risk of infections with different serotypes (229). While 

primary DENV infections typically result in a non-lethal, self-limiting illness, secondary 

infections with different DENV serotypes increase the likelihood of severe dengue. The severe 

form of dengue commonly being referred to as dengue hemorrhagic fever/dengue shock 

syndrome (DHF/DSS) (2). It remains debatable why only a proportion of dengue patients 

(estimated 500,000 people/year) progresses into life-threatening complications characterized by 

critical plasma leakage with hemorrhaging (227). 

 

One widely accepted theory to explain the severity of dengue is a phenomenon called ADE, a 

mechanism involving the host Ab that enhance infection of host cells (230, 231). ADE is 

supported by epidemiologic evidence that show the strong association between severe dengue 

disease and primary infection of infants with waning maternal-derived dengue Ab (88, 232, 233). 

A variety of neutralizing Ab to DENV can drive ADE in vitro when used at sub-neutralizing 

concentrations (234-236). In support of the role of cross-reactive Ab in ADE occurring in adults, 

undiluted sera obtained from patients with secondary DENV infection have been shown to 

enhance the infection of cell lines with the specific DENV serotype isolated from the same 

patients. No enhancement of DENV was detected when sera from patients with primary DENV 
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infection were used (237). High viral burden is frequently present early in the course of 

secondary dengue illness in patients with DHF; 100- to 1000- fold higher in maximum viremia 

titers were observed in severe dengue patients than levels in patients with dengue fever (103, 

104). These findings suggest that sub-neutralizing levels of cross-reactive Ab causing high viral 

loads during an early stage of infection are important in severity of dengue. 

 

ADE is not only limited to DENV serotypes but also occurs with other closely related 

flaviviruses such as ZIKV. Considering that DENV and ZIKV share similar ecological 

distributions and a mosquito transmission mode, the emergence of ZIKV occurs in areas with 

high rates of DENV prevalence, which could result in DENV-ZIKV sequential infections. 

DENV-immune plasma collected from recovering dengue patients or monoclonal Ab to the 

dengue virus envelope have been shown to enhance ZIKV infection in vitro (238, 239). Studies 

with murine models passively transferred with human DENV immune sera demonstrated ADE of 

ZIKV infection in vivo (240). However, studies suggested that most DENV immunity in 

individuals previously exposed to DENV do not induce high-level cross-neutralizing Ab against 

a secondary ZIKV infection (241). It is currently not clear whether ADE caused by DENV Ab 

worsens clinical outcomes of ZIKV infections (242). More biological and clinical investigations 

are required to decipher if prior flavivirus exposure is a key factor for ADE of ZIKV infection. 

 

The key mechanisms of ADE of DENV infection involve FcR (243). At some point, pre-existing 

Ab that were generated following a primary infection with DENV will wane, resulting in 

insufficient avidity or concentration to neutralize other infecting DENV serotypes. However, 

sub-neutralizing levels of these cross-reactive Ab can still bind the virus and form immune 
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complexes.  An ability of immune complexes to increase binding and internalization 

predominantly occurs through engagement of surface FcγR, leading to an uptake and infection of 

opsonized virus (100, 244). There are three classes of FcγR in humans: FcγRI (CD64), FcγRII 

(CD32), and FcγRIII (CD16). Each receptor type can be further classified in two sub-class 

specificity: a and b (245). Only FcγRIa and FcγRIIa have been shown to enhance DENV 

infectivity in human monocyte cell lines (244, 246-248), whereas FcγRIII has low impact on 

ADE (249). FcγRIa requires a γ-chain subunit to initiate signaling following engagement of the 

Fc domain on immune complexes, whereas FcγRIIa directly transmits an activating signal 

through an immune receptor tyrosine-based activation motif in its cytoplasmic domain (245). 

The removal of γ-chain subunit in FcγRIa or the activation motif in FcγRIIa resulted in reduced 

infectivity of Ab-opsonized DENV (246, 247), indicating the significant role of FcγR in 

modulating enhancement of DENV infection. 

 

FcγR, particularly FcγRIa and FcγRIIa, are abundantly expressed on human monocytes, Mϕ, and 

DC (250, 251), which have been shown to serve as major reservoir cells for DENV infection and 

replication (165, 252, 253). ADE in these DENV-permissive cell subsets promotes high viral 

loads, aberrant immune responses and tissue damage (254). Nevertheless, the ability of 

opsonized virus to affect early DENV infection events likely relies on a variety of FcγR-related 

parameters including the class of FcγR expressed, expression levels of FcγR per cell, affinity to 

monomeric or complexed forms of Ab, and frequency and distribution of FcγR-expressing cell 

types in tissue. Among these three major FcγR-expressing cell types, monocytes are mainly in 

circulation in a steady state, whereas tissue-residing Mϕ and DC can be found in the circulation 

as well as tissues. Most of the previous reports primarily used FcγR-expressing cell lines or 
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primary human monocytes isolated from blood to investigate the enhancement of infection (248, 

255). However, once generated, Ab are also distributed and located within tissues at various Ab 

concentrations to protect the body from re-infections. In the case of mosquito-borne virus 

infection, immunoglobulins generated from the first exposure are more likely to distribute highly 

in skin as it is a site of transmission. A better understanding of ADE in tissues, particularly skin, 

will advance the dengue field and the development of vaccines. 

 

As a portal of DENV transmission, skin encounters physical damage to the epidermis and 

vasculature with the simultaneous introduction of the virus and mosquito saliva. The saliva 

contains numerous bioactive proteins that prevent host blood coagulation, promote vasodilation, 

and modulate inflammatory responses to facilitate blood-feeding and virus transmission (256, 

257).The immune modulatory role of mosquito saliva compromises host defenses, providing an 

opportunistic environment for productive DENV infections. This can be achieved in many ways 

such as suppression of type I IFN production, modulation of inflammatory responses, and 

induction of viral attachment and cell migration (258-261). As a result of these functions, 

mosquito saliva has been shown to enhance the replication, alter dissemination of DENV and 

other arboviruses, and increase disease severity in mouse models (262, 263). In addition to 

primary infections, a recent study has shown that mosquito salivary gland extracts (SGE) further 

boost the effect of ADE of DENV infection in mouse skin and result in systemically severe 

outcomes (221). While observations in human models have yet to be reported, these findings 

implicate a role of ADE and SGE in driving DENV pathogenesis in humans. 
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In this study, we have established an ex vivo model of DENV infection to investigate ADE of 

infection in human skin. We show that ADE in human skin occurs mainly in cells in the dermis. 

Focusing on skin-resident Mϕ, we show that DENV-3 immune serum enhances the infection of 

DENV-2 and ZIKV. The highest enhancing activity leads to a 6-fold increase of both total Mϕ or 

infected Mϕ density, and a 2- to 8- fold increase of the proportion of Mϕ infected, to the levels in 

which 50-70% of total Mϕ are infected. We demonstrate that the in situ ADE results in a massive 

DENV production from a number of cell clusters, which contain mainly Mϕ. Surprisingly, Aedes 

aegypti mosquito SGE has no effects on DENV infection in absence or presence of ADE 

infection. In our system, ADE occurs mainly through the FcγR pathway co-mediated by FcγRIa 

and FcγRIIa. Blocking these two FcγRs strikingly diminishes amounts of Mϕ infected in skin 

and cells spreading out of the skin, resulting in a reduction of ADE infection in cells in dermis by 

70%. 
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4.4 RESULTS 

4.4.1 Antibody-dependent enhancement of DENV-2 and ZIKV infection occurs primarily 

in cells in the dermis of human skin primed with DENV-3 immune serum. 

To investigate ADE of DENV-2 or ZIKV infection in human skin, we introduced immune serum 

containing Ab to DENV-3. The DENV-3 immune serum was pooled from 7 different patients 

who were confirmed to have DENV-3 monotypic immunity by a plaque reduction neutralization 

test (PRNT) assay in a prospective cohort study in Brazil (255). The ADE assay in human skin 

was performed following steps depicted in Figure 1A. DENV-3 immune serum was prepared 

into 3 dilutions, 1/4000, 1/400, and 1/40, which were separately fabricated into MNA. The 

similar concentration of human AB serum was used as a negative control. To test effects of Ab to 

DENV-3 in enhancing viral infection, we manually applied MNA to skin before the virus 

inoculation. Following removal of MNAs, a low-dose inoculum (103 plaque-forming units/10 µl 

delivered virus) of 3 viruses, DENV serotype 2 strain 16681, DENV serotype 2 strain K0049, 

and ZIKV strain PE243 were separately inoculated into skin where the MNA were applied. Skin 

was harvested at 24 hours post inoculation and stained with an antibody to DENV NS3. 

Although skin was inoculated by a low titer of virus, it resulted in viral replication, characterized 

by NS3 production, detected in cells in the epidermis and the dermis (Figure 7B). A non-specific 

increase in the NS3+ cells in the epidermis was (Figure 7B, top). Preliminary data has shown that 

DENV-3 immune serum did not enhance infection of Langerhans cells in epidermis as % 

Langerhans cell infected ranged between 45-55% in the absence and presence of test serum (data 

not shown). In contrast, a significant enhancement of infection in dermis was seen with all 3 

viruses, only when a 1/40 dilution was delivered. (Figure 7B, bottom). 
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Figure 7. Antibody-dependent enhancement of DENV-2 and ZIKV infection occurs primarily in the 
dermis of human skin primed with DENV-3 immune serum. 

 
(A.) A sequence of steps performing an antibody-dependent enhancement assay in human skin explants. 

(B.) Quantification of DENV infection in the epidermis (top) and the dermis (bottom) of human skin. 

Skin explants were MNA-loaded with 3 dilutions (1/4000, 1/400, and 1/40) of DENV-3 immune serum or 

human AB serum as a control, then were infected with a low-dose inoculum of 3 viruses: DENV-2 (strain 

16681) (n=4), or DENV-2 (strain K0049) (n=3), or ZIKV (strain PE243) (n=5), for 24 hours. Skin 

sections were stained with pan-anti-NS3 and Hoechst dye. Each symbol represents one individual and red 

horizontal lines indicate means. *P < 0.05 comparing the number of NS3-expressing cells in the virus 

infection with DENV-3 immune serum at 1/40 dilution and the control at same dilutions. 
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4.4.2 DENV immune serum increases the recruitment and infection of dermal Mϕ. 

As FcγR-bearing cells such as Mϕ have been suggested to facilitate ADE, we further investigated 

the enhancing effect of DENV-3 immune serum on Mϕ in dermis, characterized by CD163 

expression. Quantitative data from in situ imaging showed that inoculation of DENV alone 

increased Mϕ density despite the low titer of virus used. In the presence of DENV-3 immune 

serum, infection of DENV-2 (strain 16681), but not the strain K0049, remarkably brought in a 

significant number of Mϕ close to the site of virus inoculation. These effects of the serum were 

observed in dose-dependent manner; the density of Mϕ was observed to increase 5- to 6- fold 

when the DENV-3 serum was used at 1/40 dilution. On the other hand, ZIKV infection, did not 

cause the recruitment of Mϕ with or without DENV-3 immune serum (Figure 8A). We 

previously have shown a relationship between cell recruitment and infection in which cells are 

recruited by the virus to serve as its additional targets (264). Corresponding to those findings, 

here we found that a 6-fold increase of infected Mϕ was observed following DENV-2 16681 

infection with 1/40 immune serum. The highest serum dilution tested (1/4000) also induced an 

increase of infected cells but with a much lower magnitude (Figure 8B). Our data has shown that 

DENV-3 immune serum acted in a dose-dependent manner, and all 3 serum dilutions markedly 

increased the percent of Mϕ infected with DENV-2 (16681) (Figure 8C). The highest enhancing 

serum activity at 1/40 dilution led to the infection in ~50% of total Mϕ which was increased from 

~20% in the infection with the presence of 1/40 control serum dilution. Similarly, ZIKV 

infection with DENV-3 serum was enhanced in the same manner with 1/40 dilution of test serum 

increasing the % Mϕ infection from 5-10% to ~25%. Unlike the 16681 strain and ZIKV, all 3 

dilutions of DENV-3 serum increased similar levels of % Mϕ infected with DENV-2 (K0049), 

which were from 20-30% to 40%. Overall, the 1/40 diluted serum mediated-enhancement 
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resulted in a possible 2- to 8-, or 2, or 1.5- to 4-fold increase of the % Mϕ infected with DENV-2 

(16681), DENV-2 (K0049), or ZIKV (PE243), respectively, when calculated from each 

individual. (Figure 8D). DENV-2 (K0049). The enhancing activity of DENV-3 serum caused a 

substantial number of Mϕ recruiting nearby areas of inoculation and the enhancement of Mϕ 

infection. These ADE phenomena in skin were frequently seen in situ as NS3 abundantly 

produced by infected cell clusters including infected Mϕ and other infected cell types (Figure 

8E). 
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Figure 8. DENV-3 immune serum facilitates the enhancement of dermal macrophage infection. 

Skin explants were MNA-loaded with 3 dilutions (1/4000, 1/400, and 1/40) of DENV-3 immune serum or 

human AB serum as a control, then were infected with a low-dose inoculum of 3 viruses: DENV-2 (strain 

16681) (n=4), or DENV-2 (strain K0049) (n=3), or ZIKV (strain PE243) (n=5), for 24 hours. Skin 

sections were stained with anti-pan DENV NS3, anti-human CD163 and Hoechst dye. (A-C) Quantitative 

data of macrophage infection in dermis at 24 hours: (A) Density of macrophages (B) Density of infected 

macrophages (C) Percent of macrophages infected. Each symbol represents one individual and red 

horizontal lines indicate means. *P < 0.05, **P < 0.01, ***P < 0.0001 comparing the infection with 

DENV-3 immune serum and the control at the similar dilution. (E.) Representative images showing Ab-

mediated enhancement of DENV-2 infection of dermal macrophages. Infection of cells in skin containing 
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1/40 dilution of human AB serum (left) or skin containing 1/40 dilution of DENV-3 immune serum 

(right). Colors represent marker staining; red indicates CD163/scavenger receptors on dermal 

macrophages, green stains DENV NS3, and blue represents nuclear staining. Dotted lines signify a 

junction between the epidermis and the dermis. 

 

4.4.3 Female Aedes aegypti mosquito salivary gland extracts do not exacerbate DENV-2 

infection or DENV-ADE infection of macrophages, or enhance cell migration. 

The serum dilution at 1/40 clearly exhibited the highest enhancing activity on Mϕ density and 

infection. This serum dilution was chosen for further investigations. We sought to decipher the 

impact of Aedes aegypti mosquito SGE on DENV-2 infection as well as the ADE infection of 

Mϕ. To elucidate the effect of mosquito saliva on DENV infection and spread in human skin, we 

performed an ex vivo SGE-mediated enhancement assay on our human skin model of DENV 

infection following steps depicted in Figure 9A: For ADE-induced conditions, MNAs containing 

1/40 dilution of DENV-3 immune serum or human AB serum were applied to the surface of skin 

specimen and were removed after 15 minutes of MNA application. The MNA steps were 

followed by an inoculation of DENV alone or mixed with SGE equivalent to one mosquito (a 

pair of salivary glands). For direct infection, SGE or PBS (used as a control) was mixed with a 

low-dose inoculum of virus (103 PFU), and together inoculated into skin. Following 24 hours 

post inoculation, skin and migrated cells in culture media were harvested. We have shown that 

SGE alone did not increase the recruitment of Mϕ and the number of infected Mϕ (Figure 9B-C). 

DENV infection at a low titer significantly induced the 2-fold recruitment of Mϕ. In the presence 

of DENV-3 serum in skin, the recruitment of Mϕ was strongly augmented with a 3-fold increase 

compared to amounts observed in DENV infection with the control serum. When SGE was 
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added into the system, we found a negligible increase of the number of Mϕ as well as infected 

Mϕ in a non-ADE condition, compared to corresponding conditions without SGE, suggesting 

that SGE had no effects on the recruitment of Mϕ in ADE condition (Figure 9B). A 5- to 7-fold 

increase of the number of infected Mϕ was observed in DENV-ADE infection. With SGE mixed 

with the virus, the quantity of infected Mϕ was highly increased in the ADE infection and the 

increased level was as comparable as those observed without SGE, indicating that these changes 

were mediated solely by DENV-3 immune serum effects (Figure 9C). The proportion of Mϕ 

infected (infected Mϕ/total Mϕ) is a direct indicator for the ADE of Mϕ infection. An 

approximately 20% of Mϕ became infected in DENV infection; the percent increased to ̴ 30% 

with SGE added and is substantially enhanced to ̴ 60% when DENV-3 serum alone was in the 

system. DENV-ADE infection with SGE led to ̴ 55% of Mϕ infected which was comparable to 

the ADE infection without SGE, suggesting non-significant effects caused by the SGE (Figure 

9D). In addition to the enhancement of DENV infection in skin, we observed that the 

dissemination of DENV or ZIKAV, characterized by cell emigration out of the skin, was 

markedly augmented by DENV-3 serum, but not the SGE (Figure 9E). 
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Figure 9. Female Aedes aegypti mosquito salivary gland extracts did not exacerbate DENV-2 
infection or DENV-ADE infection of macrophages, or enhance dissemination of the virus. 

 
(A.) steps in experiments performed to investigate effects of Aedes aegypti mosquito saliva extracts using 

human skin model of DENV or ZIKV infection. (B.-D.) Quantitative data of macrophage infection in 

dermis at 24 hours: (B.) Density of macrophages (C.) Density of infected macrophages (D.) Percent of 

macrophages infected. (E.) Total number of migrated cells collected at 24 hours in skin culture media 

normalized to skin area. Each symbol represents a different donor and horizontal lines indicate means. *P 

< 0.05, **P < 0.01, ***P < 0.0001 comparing test conditions with DENV-2 serum with the controls with 

human AB serum. 
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4.4.4 Blocking FcγRIa or FcγRIIa substantially inhibits DENV-ADE infection of 

macrophages, cell spread out of the skin, and substantially reduces overall ADE infection 

in dermis. 

To test the role of Fc receptors in ADE-induced infection of Mϕ in human skin, we delivered 

neutralizing antibodies to FcγRIa (CD64) and/or FcγRIIa (CD32) to skin loaded with or without 

1/40 dilution of DENV-3 immune serum prior to DENV-2 inoculation using dissolvable MNAs 

(Figure 10A). The recruitment of Mϕ in ADE-induced skin was confirmed in this experiment as 

a 5-fold increase of the total number of Mϕ as well as the number of Mϕ infected were observed 

following the inoculation of DENV-2 to skin loaded with DENV-3 immune serum (Figure 10B-

C).  In skin with the presence of DENV-3 immune serum, MNA containing FcγRIa or FcγRIIa 

alone had no significant effects on the total number of Mϕ in the dermis relative to the isotype 

control Ab. However, a combination of neutralizing Ab to FcγRIa and FcγRIIa significantly 

decreased the recruitment of Mϕ as well as the infection of these cell type (Figure 10B-D). The 

synergistic blockage from a FcγRIa/FcγRIIa cocktail resulted in a 2-fold decrease of the total 

number of Mϕ, and a 6-fold decreased of Mϕ infected. These accounted for 10% infected of total 

Mϕ, comparable to levels observed in skin without DENV-3 serum (Figure 10D).  The effect of 

FcγRIa or FcγRIIa alone also significantly reduce the ADE-infected infection of Mϕ; blocking 

FcγRIIa alone led to approximately 3-fold decrease of amount of Mϕ infected which accounted 

for 25% Mϕ infection. Likewise, when using neutralizing Ab to FcγRIa the number of Mϕ 

infected observed in skin was half the levels observed in the isotype control Ab, which accounted 

for 20% Mϕ infection. These indicated that either FcγRIa or FcγRIIa interventions had an impact 

on ADE infection of Mϕ, but were not as effective as when both were used together (Figure 10C-

D). A significant reduction of the number of cell emigration out of skin in the presence of 
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DENV-3 serum was found only when neutralizing Ab to FcγRIa and FcγRIIa were delivered 

(Figure 10E). A combination of neutralizing antibodies to FcγRIa and FcγRIIa had an impact 

only on the ADE in dermis, but not in epidermis, resulting in a reduction in the total number of 

DENV-infected cells in the dermis by 70%. The overall infection in the dermis was comparable 

to observations in skin delivered with the control Ab (Figure 10F).    
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Figure 10. Blocking FcγRIa and FcγRIIa averts ADE infection of macrophage in skin  
and cell spread out of the skin. 

 
(A.) steps in experiments performed to investigate the role of CD32 and CD64 in ADE infection using 

human skin model of DENV infection. (B.-D.) Quantitative data of macrophage infection in dermis at 24 

hours: (B.) Density of macrophages (C.) Density of infected macrophages (D.) Percent of macrophages 

infected. (E.) Total number of migrated cells collected at 24 hours in skin culture media normalized to 

skin area. (F) Total number of DENV-infected cells in epidermis and dermis 24 hours after exposure to 

isotype control antibodies or antibodies to CD32 or CD64 or both in skin with the presence of DENV-3 

immune serum. Each symbol represents a different donor and horizontal lines indicate means. *P < 0.05, 

**P < 0.01. 
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4.5 DISCUSSION 

Antibody-dependent enhancement is known to occur in experimental conditions using cell lines 

or animal models of DENV infection, but little is known about this phenomenon in tissues. This 

is particularly true in human skin which serves as a site of transmission and viral replication. Our 

data show that pre-existing immunity to DENV-3 in an ex vivo human skin model induces 

enhancement of skin-resident Mϕ infection with a low-titer DENV-2. This is consistent with 

findings showing monocytes and Mϕ support ADE in vitro (265). Severe dengue occurs when 

neutralizing Ab titers against the original infecting strain are more than 1:100, which was 

consistent with the Ab range between 1:21-1:80 that has been reported to increase the likelihood 

of ADE in children in a long-term cohort study (266, 267). In our study, DENV-3 immune serum 

used was pooled from 7 sera confirmed to be homotypic DENV-3 immune, with Ab titer range 

of 1:340-1:1320. The mean Ab titer of the pooled serum was 1:786. All 3 dilutions (1/4000, 

1/400, and 1/40) were found to significantly enhance the infection of DENV-2 in a dose-

dependent manner. The highest enhancement of infection was observed when the 1/40 dilution of 

immune serum was used.  

 

In the presence of DENV-3 serum, the percent of Mϕ infected increases to 50-70%, which is 

similar to the infection level yielded in our skin model infected with a 3-log higher DENV titer 

(106 PFU). This can be speculated that the peak enhancement may yield up to a 1000-fold 

increase of progeny virions produced. Similar observations have been made in FcγR-bearing cell 

lines and the blood of severe dengue patients that maximum peak viremia titers are found to 

increase up to 1000-fold (103, 104, 268). We found that DENV infection in the presence of Ab 

promotes a 2- to 3-fold increase in the number of cells emigrating out of the skin relative to virus 
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alone. The link between the increase in viremia titer or cell migration to skin-draining lymph 

nodes and disease severity has been described before (104, 168). Our results further strengthen 

the notion that under ADE conditions, skin cell emigration is a key process in the spread of 

infection and the determination of disease outcomes. 

 

Two distinct pathways, extrinsic and intrinsic, have been proposed to mediate ADE (178). An 

extrinsic model for ADE is mediated by an increase in internalization of immune complexes, 

while an intrinsic ADE of infection pathway involve various intracellular mechanisms including 

the suppression of type I IFN system or an increase in viral fusion activity. Although the results 

shown in our study cannot determine which pathway the antibody promotes ADE, our data 

indicate that the significant increase in viral output in Mϕ, characterized by NS3 expression, 

occurs in conjunction with a substantial recruitment of Mϕ in the presence of immune serum. In 

line with previous ADE hypothesis (269), the in situ immunofluorescence reveals that ADE of 

infection in skin leads to a large infected cell mass that contains several cell types including Mϕ 

observed in clusters, and increased virus production (burst size). Close proximity of cells within 

the cluster may promote concentration and targeting of immune complexes to FcR-bearing cell’s 

surface. A study revealed that Ab-DENV complexes activate extensive actin ruffle formation of 

the Mϕ membrane which facilitates the uptake of opsonized DENV into the cells during ADE 

(270). It can be speculated that ADE of DENV infection of Mϕ may be more driven by an 

extrinsic pathway. This finding indicates that trafficking of antibody-opsonized DENV into 

cellular compartments likely differs from DENV infection without effects of ADE. Furthermore, 

we have previously shown that type I IFN responses were suppresses in the absence of immune 

serum within 12 hours post DENV inoculation (264). This suggests that the intrinsic ADE of 
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DENV infection in Mϕ is also possible. Nevertheless, molecular mechanisms of ADE pathways 

in which FcγRs aid in DENV entry remain to be revealed. Further investigations are needed to 

characterize cell entry or closely investigate type I IFN expression within the early course of 

ADE infection. 

 

It is well-known that flaviviruses are closely related; DENV and ZIKV share a high degree of 

amino acid sequence overlap with one another, between 55.1-56.3% (271). Ab to these viruses 

are thus highly cross-reactive; for example Ab to the fusion loop epitope on both virus particles 

induce poorly neutralizing but strongly enhance infection (236, 239, 268). Our data show that 

pre-existing DENV immune serum enhances ZIKV infection in Mϕ in skin, which is in 

agreement with several in vitro studies using FcγRIIa-expressing K562 cell lines or immune-

deficient mouse models (240, 272, 273). Using a similar ZIKV stock and enhancing Ab, the 

ADE observed in human skin for ZIKV was 1.5 fold lower than the observation in vitro. In 

contrast, studies using monkeys confirmed that DENV-immune serum induces in vitro ADE of 

ZIKV infection, but did not enhance the severity of disease in animals (274). Similarly, a recent 

cohort study revealed that ADE of ZIKV infection did not occur in DENV-immune individuals 

who were subsequently exposed to ZIKV infections (275, 276). These findings indicate 

discrepancies observed between experimental studies and real-world incidence of ADE of ZIKV 

infection. In contrast to DENV infection, only a relatively low quantity of total Mϕ as well as 

ZIKV-infected Mϕ are observed in skin in the absence or presence of the serum. No differences 

to the number of Mϕ are observed between mock infection or ZIKV infection with or without the 

DENV-3 enhancing serum. This suggests low inflammatory responses induced by ZIKV 

inoculation. In line with our observations, ZIKV infected patients who had or had not 
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experienced a previous DENV infection were presented with comparable low-level cytokine 

profiles including IFN-γ, IL-1β, IL-6, and IL-8 (275).  Our data show that inoculation with ZIKV 

into skin in the presence of DENV immune serum facilitates more cell spreading out of the skin 

by a 2-fold increase, compared to normal ZIKV infection. Currently, the ADE of ZIKV infection 

induced by DENV or other flaviviruses is not well understood. Our results highlight the 

possibility of the enhancement of ZIKV infection occurring in humans. However, compared to 

DENV or DENV-ADE infections, it may be less likely to render a large clinical impact. Further 

epidemiologic evidence in humans would be important to understand the impact of DENV 

immunity for ZIKV induced disease and sequelae. 

 

Previous studies that examined whether mosquito-derived factors directly modulate DENV 

infection are controversial. Some have demonstrated that certain identified components from 

Aedes aegypti show blocking activities against DENV infection or target cell binding in vitro and 

in vivo (277), while others suggest that mosquito saliva augments infection of DENV as well as 

other arboviruses (261, 263). Currently, it remains unknown which of these mosquito factor 

contributes most to enhancing infection. Since mosquito saliva is a complex mixture of diversely 

functioned elements, it is likely that reactions to saliva vary between studies or individuals. In 

our ex vivo skin model, SGE has no significant effects in enhancing the primary infection of Mϕ, 

consistent with recent findings in mice, that exacerbated dengue outcomes are observed only in 

the presence of enhancing antibodies, but not in the first virus exposure (221). In contrast, our 

data suggest that SGE does not further boost the enhancement of Mϕ infection with DENV-2 

even though serotype cross-reactive Ab to DENV-3 is delivered into the skin. We previously 

have shown that, following DENV-2 inoculation, activated keratinocyte-derived IL-1β drives 
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recruitment of myeloid cells and spread of virus out of human skin (264). In murine models of 

infection with other arboviruses including Semliki Forest virus, mosquito bites have been shown 

to induce multi-steps of cell recruitment beginning with mast cell degranulation, which recruits 

neutrophils that express high levels of IL-1β. Neutrophil-derived IL-1β subsequently plays a role 

in coordinating host responses to mosquito bites by promoting an influx and infection of 

additional myeloid cells such as monocytes and skin-resident Mϕ, leading to enhanced disease 

severity (218). Although the function of neutrophils during DENV infection in skin is poorly 

defined, it has been shown in studies with a related West Nile virus (WNV) that early neutrophil 

influx contributes to WNV replication and spread and worsen the outcome of infection (278). 

Mosquito feeding induces the release of histamine from mast cells, and the infiltration of 

neutrophils into the dermis. Both events are known to mediate vascular leakage, suggesting the 

contribution of mast cells and neutrophils in mosquito-mediated enhancement (279, 280). It has 

been speculated that vascular leak would allow more access to cross-reactive Ab into tissues. 

However, there was no need for more accessibility of Ab in our system as a sufficient 

concentration is controllably delivered into skin by MNA. Furthermore, lack of neutrophils and 

monocytes infiltrating from the blood into skin explants may also explain the undetectable effect 

of SGE to further promote the outcome of DENV infection despite of the presence of enhancing 

DENV immune serum. 

 

Opsonized DENV gains entry into cells by exploiting Ab-dependent cellular phagocytosis, which 

are triggered by the localized clustering of cell membrane Fc receptors (FcR) through binding to 

the Fc portion of Ab-coated (opsonized) DENV (281). However, ADE of DENV infection of Mϕ 

can occur independent of FcγR-mediated internalization, but through enhanced fusion activity 
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per cell, resulting in augmented infectious viral particle production (282). Our data show that in 

human skin, ADE of DENV infection in Mϕ is mediated through the FcγR pathway, notably by 

FcγRIa (CD64) and FcγRIIa (CD32). FcγRIa is a high affinity receptor capable of binding 

human IgG in monomeric form, whereas FcγRIIa are low-affinity receptors which bind IgG in 

complexed or aggregated form. Both FcγRIa and FcγRIIa can enable ADE in vitro, but ADE is 

more efficiently triggered through Ab engagement of FcγRIIa (246, 283). The higher 

permissiveness to DENV ADE of FcγRIIa is believed to depend on its relatively higher affinity 

to opsonized viruses (101). In contrast to in vitro studies, the presence of high levels of 

neutralizing Ab to either FcγRIa or FcγRIIa alone significantly reduces the infection of Mϕ, with 

a comparable impact, but not the cell migration. However, a simultaneous blockage of FcγRIa 

and FcγRIIa efficiently diminishes infection and migration of Mϕ in the skin, as well as cells 

spreading out of the skin. They were observed to be reduced to the level observed in non-ADE 

induced infection. These findings indicate that ADE of DENV infection of Mϕ in skin is 

dominantly mediated by FcγRIa and FcγRIIa. Among these activating FcℽRs, FcγRIa is present 

only on mononuclear phagocytes, but FcγRIIa is expressed on a much broader range of cell 

populations including monocytes/ Mϕ, granulocytes, platelets and B cells (284). Human Mϕ 

constitutively express high levels of FcγRIIa, whereas FcγRIa is highly upregulated during cell 

activation (245). Importantly, the activation of Mϕ by immune complexes induces FcγR-

dependent caspase-1 and inflammasome activation, resulting in the release of functional IL-1β 

(285). IL-1β is a chemotactic factor for myeloid cells and is known to be abundantly produced, 

mainly by infected keratinocytes in response to primary DENV infections (264). In the presence 

of DENV-3 immune serum, DENV infection of keratinocytes also occurs but without 

enhancement. This occurs despite an ability to express functional FcℽRs (286). The enhancement 
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of Mϕ infection would promote further IL-1β production at the inoculation site, which in turn 

brings in additional target cells and facilitates dissemination of DENV-infected cells out of the 

skin. Our data show the implication of the FcγRIa/IIa-dependent ADE functions in impacting the 

initial events in DENV transmission and dissemination in skin. These findings lay the 

groundwork for further mechanistic studies in human skin. 

 

It would be interesting to know whether other FcγR -bearing cell types in skin such as LC and 

DC actively support ADE. It is well-defined that DENV infects LC and DC, and that these cells 

can rapidly spread the virus to other tissues and circulation due to their highly migratory ability 

(160, 166, 287).  An ADE study by Xu et al. demonstrated that a specific antibody to the DENV 

fusion loop successfully enhanced DENV-2 infection of human skin isolated DC and Mϕ, but no 

enhancement was observed in LC, which is similar to our preliminary data on LC in skin 

explants (288). DC-SIGN, a dengue receptor that is predominantly expressed by DC, mediates 

internalization of the virus in an absence of immune sera (164, 289).  However, high expression 

of DC-SIGN overrides FcγIIa-mediated enhancement of infection in the presence of enhancing 

immune sera (169). This explains why only mature DC which have downed-regulated surface 

molecules including DC-SIGN in response to maturation stimuli can undergo ADE infection, 

whereas immature DC do not exhibit ADE in vitro (290, 291).  DENV exploits mannose 

receptors on Mϕ to facilitate its entry (176). In contrast to DC, Mϕ’s expressing DC-SIGN are 

resistant to DENV replication (175). Furthermore, expression of mannose receptors does not 

only interfere with antibody-mediated entry of DENV but also amplifies the ADE of infection in 

Mϕ, resulting in impaired type I IFN and increased viral load (176, 178, 282, 292).  Because the 

ADE phenomenon in DC is limited by several determinants such as activation and expression of 
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DENV entry receptors, these findings suggest that monocyte/ Mϕ are likely main contributors to 

ADE of DENV infection. 

 

In conclusion, our study introduces an ex vivo human skin model to study in situ ADE infection 

in tissues. Focusing on Mϕ, we show that this cell type plays a crucial role in increasing viral 

production in the dermis when pre-existing DENV immunity is locally present. Our results 

provide valuable clues that the pre-existence of immunity to different serotypes of DENV does 

not only enhance the DENV infection in cells, but also induces the recruitment and spread of 

cells from human skin to culture media. The enhancement occurs through the combination of 

FcγRI and FcγRIIa receptors. The impact of mosquito saliva does not worsen the outcome of 

ADE infection in Mϕ. In addition, DENV-immune serum boosts the infectivity of ZIKV 

infection in Mϕ, suggesting the likelihood of ADE incidence following ZIKV infection in 

DENV-immune populations. Results from our work demonstrated that the ADE phenomenon in 

humans can locally occur in skin where a primary route of viral replication and dengue vaccine 

administration is, and may have an impact beyond the site of inoculation as reflected by the cell 

emigration out of the skin. Our data highlight the importance of skin in initiating and supporting 

ADE of DENV infection, a major risk factor for severe dengue form, and highlights the necessity 

of further studies on the role of skin cells in augmenting dengue disease severity. 
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4.6 MATERIALS AND METHODS 

4.6.1 Viruses 

The prototype DENV-2 strain 16681 was provided by Dr. Jared Evans at the University of 

Pittsburgh. The low-passage DENV-2 strain K0049 was isolated in 1995 from an individual in 

Thailand diagnosed with dengue hemorrhagic fever (83), and was obtained from BEI Resources 

(Manassas, VA). The low-passage Zika virus strain PE243 was isolated in 2015 from a Zika-

infected patient in Recife, Brazil and was obtained from FIOCRUZ. DENV was cultured and 

propagated in C6/36 insect cells (ATCC, Manassas, VA). C6/36 cells were routinely grown in 

Dulbecco’s modified eagle medium, supplemented with 10% heat-inactivated fetal bovine serum 

(FBS) and 1% of the following: penicillin/streptomycin, L-glutamine and sodium pyruvate 

solution. Tissue culture supernatant was pooled at day 5, 10, and 15 of culture (when cytopathic 

effect was evident), clarified of cell debris by centrifugation, and concentrated using standard 

methods. Virus titers were determined by a modified focus forming unit immunoperoxidase 

assays using Vero cells as described previously (225). 

4.6.2 Skin processing and virus inoculation 

Large blocks of anonymized full-thickness skin that were being donated following elective 

aesthetic abdominoplasty or mammoplasty at the University of Pittsburgh were used. Identifiable 

private information regarding skin donors was not provided and no interaction or intervention 

with donors was possible. The research did not constitute human subject research as per the 

University of Pittsburgh Institutional Review Board. Any residual adipose tissue was trimmed 
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from the underside of the skin explant before virus inoculation. A volume of 50 μl of RPMI 1640 

media containing 5 x 103 plaque-forming units purified virus was placed in a 4 square-inch that 

was demarcated in the center of the surface of the skin explant. Bifurcated allergy skin testing 

needles (Precision Medical Product Inc., Denver, PA) were used to repeatedly puncture the skin 

surface through the 50-μl virus inoculum and deliver virus into the epidermis and dermis. Our 

preliminary experiments indicated that this inoculation method delivered approximately 10 μl of 

virus suspension (or 103 plaque-forming units virus) into the skin. Inoculated explants were 

incubated at 37˚C for 2 hours, then the skin surface was washed with phosphate buffer saline and 

wiped with sterile gauze pads to remove any remaining virus. Tissue was placed dermis-side 

down onto mesh grids in 60 x 15 mm culture dishes, and continued incubating at the liquid-air 

interface in RPMI 1640 complete media. Explants were collected at 24 hours after virus 

inoculation and the virus-delivered central region was isolated. The samples were immediately 

submerged in 30% sucrose overnight at 4˚C, and then frozen for subsequent 

immunohistochemistry. At the time skin was harvested, media was also collected to harvest and 

count the number of migratory cells. 

4.6.3 ADE assay 

Seven sera from a study by Castanha et al. (255) were aliquoted, pooled and used in our study as 

DENV-3 immune serum. These samples were collected from DENV immune pregnant women 

and identified by a PRNT50 assay to have DENV-3 monotypic immunity. Ab titers to DENV-3 

from all sera range between 380-1320 (the mean Ab titer 1:786), with low serotype-specific 

neutralizing Ab response to DENV-1, -2, and -4 (Ab titer < 20).  Pooled DENV-3 immune serum 

was diluted to 1/40, 1/400 and 1/4000 with phosphate buffer saline, and then formulated into tip-



 104 

loaded dissolvable 3:2 carboxymethyl cellulose/trehalose MNA as described previously (206). 

Human serum off clot sterile type AB (MP Biomedicals, USA) was diluted to 3 similar dilutions 

as tested serum, and was fabricated into MNAs as the control serum, which was designated in 

our study as human AB serum. For ADE assay, MNAs were manually applied to skin explants 

for at least 15 minutes until needle tips dissolved, leaving loading reagents in the skin. Following 

the removal of MNA patches, virus inoculation was performed immediately at the region of 

MNA application on the skin surface. A low-dose inoculum of virus, DENV-2 strain 16681 or 

DENV-2 strain K0049, or Zika virus, was used at 1 x103 plaque-forming units per 10 µl 

delivered virus. Tissue culturing was performed as described above. Skin was collected at 24 

hours after virus inoculation and the MNA-applied region was isolated, submerged in 30% 

sucrose overnight at 4˚C, and then frozen for immunohistochemistry. 

4.6.4 Female Aedes aegypti mosquito SGE-mediated enhancement of virus infection assay 

SGE from naïve female Aedes aegypti mosquitoes was provided Dr. Nikos Vasilakis at the 

University of Texas, Galveston. Briefly, SGE was prepared by dissecting the heads and thoraces 

from mosquitoes for the appearance of salivary glands. A pair of salivary glands were removed 

from a mosquito and were immediately transferred to PBS on ice. 50 salivary glands were 

collected, pooled in 450 μl sterile PBS and sonicated. The supernatant was then collected and 

used as SGE. A. aegypti mosquitoes inject a small volume of saliva (< 5 μl) during blood probing 

and feeding (293). In our study, 18 μl SGE which is equivalent to a pair of salivary gland per a 

mosquito, was used. Given the efficiency of a volume delivered into the skin by bifurcated 

needle method is 20-27%, using 18 μl SGE as a starting volume would lead to a delivery of an 

estimated volume an infected mosquito inoculates during the natural transmission to humans. We 
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mixed SGE with the infecting virus in a micro-centrifuge tube and placed a mixed inoculum on 

the skin surface. Bifurcated needles were used to puncture through a bubble of inoculum, 

delivering the virus and SGE into the skin. Tissue culture was performed as described above. 

Skin was collected at 24 hours after virus inoculation and the MNA-applied region was isolated, 

submerged in 30% sucrose overnight at 4˚C, and then frozen for immunohistochemistry. Media 

was also collected at 24 hours post infection to harvest and count the number of migratory cells. 

4.6.5 FcR blocking assay 

Neutralizing Ab to human CD32 (IV.3, Stemcell Technologies, Seattle, WA), or CD64 (10.1; 

Biolegend), either alone or together, or isotype control Ab were formulated into tip-loaded 

dissolvable 3:2 carboxymethyl cellulose/trehalose MNA as described previously (206). MNA 

contained 10 μg of Ab to CD32 or CD64 or the combination of these 2 Ab. The concentration of 

these Fc receptors blocking antibodies was 2- to 3- times more than the concentration shown in 

in vitro studies to neutralize surface expression of CD32 and to saturate all surface CD64 

molecules (247, 294). In MNA preparation, the Ab concentration was multiplied by a factor of 

2.3 to compensate for dilution following dispersal within skin. Control MNAs contained 10 μg 

each of mouse isotype control IgG1 (MAB002; R&D systems, Minneapolis, MN) and IgG2b Ab 

(MPC11; Stemcell Technologies, Seattle, WA). MNAs were manually applied to skin explants 

for 15 minutes prior to inoculation of virus. 
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4.6.6 Immunohistochemistry 

Six-µm frozen skin sections on microscope slides were rehydrated with phosphate buffer saline 

and fixed in cold acetone for 5 minutes at 4˚C. Slides were stained with polyclonal rabbit anti-

pan DENV NS3 Ab (provided by Sujan Shresta, La Jolla Institute for Allergy and Immunology) 

and monoclonal mouse anti-human Ab directed against specific cell surface anti-CD163 

(5C6FAT; Acris Antibodies GmbH) overnight at 4˚C, then incubated with relevant secondary Ab 

for 30-45 minutes. Slides were stained with Hoechst dye (prepared by the CBI, University of 

Pittsburgh) for nuclear visualization. Antibody specificity was determined by replacing the 

primary antibody with an isotype-matched control. Cover slips were attached with Gelvatol 

mounting medium. Images were on an Olympus Fluoview 1000 confocal microscope (Olympus, 

Tokyo, Japan). 

4.6.7 Quantitative image analysis 

Nikon NIS elements AR 4.40 software was used to convert imaging observations in skin into 

measurable data, which was performed in a similar manner to that previously described (295). A 

region of epidermis or dermis or both was circumscribed. Thresholds for red, green, and blue 

fluorescence (representing staining of specific cell surface marker or cytokine, viral NS3 and 

nucleus, respectively) were set up corresponding to fluorescent detection in confocal 

microscopy. Data for each individual skin specimen were calculated from a minimum of 12 

confocal images taken from 3 skin sections collected from different sites of virus-inoculated 

region. Means from each individual were presented as an individual data point. Data are 

presented from 3-4 individuals per experiment. 
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4.6.8 Statistical analyses 

Statistical analyses were performed using GraphPad Prism, version 7 (GraphPad Software, La 

Jolla, CA). A paired t test was used for two-group comparisons. P values < 0.05 were considered 

significant. 
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5.0  CHAPTER FIVE: FIRST DEMONSTRATION OF ETHNIC DIFFERENCES IN 

SKIN IMMUNITY TO DENGUE VIRUS 

5.1 PREFACE 

This chapter aims to use the human skin model and microneedle array technology described 

previously to expand the knowledge of differences in innate skin immunity to dengue virus 

between Caucasian and African American populations. Data herein will be incorporated into a 

manuscript for future publication 
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5.2 ABSTRACT 

Every year an estimated 100 million individuals worldwide become infected with DENV but 

only a small proportion develop severe disease. Ethnic background is one of the host factors 

believed to determine a patient’s risk in developing severe dengue. African ancestry has been 

well reported to exert a strong protective effect on DENV infection when observed in admixed 

populations. However, current evidence of ethnic differences was gathered solely from empirical 

and genetic variation research; thereby the mechanisms of protection against DENV infection 

remain poorly understood. Here we studied the dynamics of DENV infection in the skin of 

healthy, DENV-naïve Caucasians (CA) and African American (AA) donors using quantitative in 

situ imaging techniques. DENV established the infection in AA skin at a significantly lower 

degree than that in CA skin. Low-level infection in AA led to less recruitment and infection of 

DENV-permissive target cells including LC and Mϕ, which subsequently promoted decreased 

amounts of emigrated cells out of skin. Viral infection in AA skin induced a delayed but 

sustained production of IFN-α between 24-48 hours, whereas the IFN-α induction in CA skin 

was prompt by 2 hours but then rapidly inhibited within 8 hours. Infection of epidermis 

stimulated the expression of IL-1β in both skin types but the level observed in AA skin was 

significant lower than in CA skin. Macrophages from AA skin show resistance to the effect of 

enhancing serum, indicating a less likelihood of antibody-dependent enhancement of DENV 

infection in AA skin. These data demonstrated for the first time that innate immune response 

restricts DENV infection in AA skin and may point to the skin as an important determinant of 

African-ancestry protection against severe dengue. 
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5.3 INTRODUCTION 

Dengue is the most important mosquito-borne viral disease affecting humans worldwide; 50-100 

million dengue infections are estimated to occur each year. Currently, half of the world’s 

population is at risk of contracting DENV because the disease is endemic in at least 125 

countries, mainly in the tropics (296). WHO reported that the Americas, South-East Asia and 

Western Pacific regions, but not Africa, are the most seriously affected (WHO). Although 

estimates from a recent model by Bhatt et al. have suggested that a likelihood of dengue burden 

in Africa (16%) equals that of the Americas (14%) (21), in fact, little has been known or reported 

about dengue situations in Africa, where almost the entire continent is located geographically 

within the tropical region. Of 54 African countries, dengue is endemic in 34 countries with 

multiple virus serotypes circulating simultaneously and the presence of a year-round survival of 

Aedes aegypti mosquitoes; locally acquired dengue cases have only been documented in 22 of 

these countries, whereas confirmed cases of dengue in the remaining 12 countries were all travel-

related (8, 296). In addition to low-level local dengue transmission, dramatic outbreaks of 

DHF/DSS to date have not been reported in Africa. It has been suggested that the limited 

recognition of dengue in Africa was due to a lack of an on-site laboratory-based surveillance 

system, which could result in a misdiagnosis with malaria. Also, there were other hypotheses 

suggested to explain the low occurrence of dengue in Africa including host genetic factors, 

dengue transmission inefficiency, and cross protection from other flaviviruses. 

 

The earliest observation of ethnic differences in dengue infection outcomes was a study during 

DENV-2 epidemics in Cuba; black Cubans were hospitalized with severe dengue states of 

DHF/DSS at a significantly lower frequency (a risk ratio at 1 to 5.5) than whites (19). A similar 
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finding was confirmed at later times by several epidemiological studies of dengue in countries of 

highly admixed populations such as Brazil, Colombia, Cuba, Haiti and Trinidad (89, 90, 297-

299); all show that African descendant populations have a strong protective effect against severe 

dengue disease. A study has shown that the presence of human serum with Ab to DENV-1 did 

not enhance the DENV-2 infection of blood monocytes isolated from black Cubans, whereas an 

increased viral multiplication was exhibited in cells from white Cubans (300). This indicates that 

antibody-dependent enhancement of dengue infection, a phenomenon suspected to be a key 

driver of a person’s risk of developing severe dengue, may be less likely to occur in blacks when 

compared to whites. These findings support the notion that African ancestry may influence 

disease severity. Recently, evidence from a genome-wide association (GWA) study has indicated 

that the parameter of innate immune cells, but not adaptive immune cells, is preferentially driven 

by genetic factors (301). Using the same technology, a study has identified retinoid X receptors 

(RXR) as an African dengue resistance gene that confers a protection against severe dengue (92). 

However, mechanisms of the resistance against dengue have not yet been understood. RXR 

function as transcription factors binding to specific sequences in the promoter of target genes and 

regulating signaling pathways including NF-kappa B (302). Thus, RXR are likely to regulate 

innate immune genes such as the human leukocyte antigen (HLA), FcγRIIa (CD32), IL-1RA and 

CD209. Regardless of race, the polymorphism (alleles or SNPs) of such genes have been 

suggested by genetic variation studies for their potential association with severe dengue (303). 

An in vitro study of dengue infection showed that the expression of RXR suppresses the 

induction of type I IFN response (304), suggesting the regulatory role RXR play in modulating 

innate immunity. Their regulation occurs through a LXR/RXR pathway in macrophages (305), 

one of major DENV-infected cell populations which long-lasting reside in large quantities in 
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almost all tissues and organs including skin. These findings support that the mechanisms of 

dengue resistance in Africans may be the result of altered early innate antiviral response. 

 

Because the natural mode of dengue transmission to humans requires mosquitoes, skin is a 

primary site that plays an important role in protection from dengue-mediated pathology. In 

addition to offering the first-line defense to hosts, skin is also a site for disease manifestation as 

dengue patients are often presented with skin rash (2). Skin employs various defense 

mechanisms including physiology, chemicals and host immunity; all are important in 

determining the fate of DENV as well as disease outcomes in affected individuals. Biological 

differences in ethnic skin types are evident and not only limited to visible skin colors. Black skin 

appears to have a stronger barrier function than white skin due to its greater thickness, lipid 

levels and water retaining contents (306, 307). Stratum corneum from pigmented skin contains 

more cell layers and require a greater number of tape stripping to remove than the layer of white 

skin (308), suggesting epidermis of black skin has an increased intercellular cohesivity and 

resistance to stripping. In comparison to whites, a decreased rate of irritation or allergic contact 

dermatitis as well as a significantly lower percutaneous penetration of testing cosmetics were 

reported in black volunteers (307). These robust characteristics apparently provide black skin a 

great potential to withstand various physical and chemical stimuli, but are likely to be 

insufficient for establishing a full protection against dengue. DENV is delivered into the skin 

during mosquito’s blood meal, a process involving piercing the skin and probing for blood. It is 

plausible that the virus surpasses the stratum corneum, the core protective layer of epidermis. 

Therefore, effective skin defense mechanisms against dengue require host immunity, particularly 

from cells conferring skin immune surveillance for rapid responses. Innate immunity constitutes 
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a large part of skin immune surveillance system and primarily contributes to early defenses 

against DENV (57, 134). Previously, we showed that interplay between skin-resident cells and 

innate immunity promotes DENV spread in Caucasian skin and presumably renders hosts 

susceptible to DENV infection (264). The study highlights the significant role innate immune 

responses play in dictating dynamics of DENV infection. Even though many clinical case 

observations have strongly suggested overall dengue protective outcomes in African ancestry 

(19, 89, 90, 298, 299), together with the relevance of identified African innate immune genes in 

dengue resistance (92), there have not been experimental studies that aim to understand the 

mechanism host immune responses use to control the DENV infection in black individuals. 

 

In this study, we used an ex vivo model of DENV infection in human skin explants to study 

infection and innate immune responses of Caucasian (CA) and African American (AA) skin to 

dengue. We demonstrated that inoculation of DENV in AA skin results in a low degree of 

DENV replication, sustained type I antiviral responses, and reduced production of inflammation 

mediators, leading to less infection and recruitment of cell targets, which then emigrate out of the 

skin in low quantities. We show that AA skin is resistant to the effect of ADE of DENV 

infection. Our findings give an insight into the role innate immune responses plays in controlling 

the dynamic and spread of DENV infection in AA skin. This is the first report that shows 

differences of dengue infection between ethnic groups in skin.  
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5.4 RESULTS 

5.4.1 DENV replicates at relatively lower levels in African American skin 

To investigate DENV replication in African American (AA) skin, we obtained abdominal skin 

from healthy African American individuals undergoing plastic surgery. Using a procedure where 

we have established for Caucasian (CA) skin, a high-titer DENV serotype 2 strain 16681 (6.4 

x106 plaque-forming units/10 µl delivered virus) was introduced into the skin by a bifurcated 

needle. Skin was harvested at 24 and 48 hours after inoculation and stained with antibody to 

DENV NS3. Inoculation of DENV into skin of African American donors resulted in productive 

infection in cells in epidermis and dermis (Figure 11A). NS3 expression was detected in a large 

number of cells in epidermis, suggesting that keratinocytes from AA skin were largely 

susceptible to DENV infection. Quantitative image analysis showed that replicating virus was 

detected in a significantly increased number of epidermal cells in CA skin at a 24-h interval, but 

no difference in virus-infected cell number was observed at 24 and 48 hours in AA skin (Figure 

11B, left). The increase in viral replication in CA skin resulted in a significant difference 

between CA and AA epidermis at 48 hours; the number of infected cells in CA epidermis was 

shown to be approximately 3-4 times greater than that in AA epidermis. In dermis, AA skin 

contained a significantly lower number of NS3-expressing cells within 24-48 hours post 

infection than CA skin inoculated with a similar dose of DENV (Figure 11B, right). These 

findings suggested that DENV was able to invade and replicate in skin cells from both 

ethnicities, but the skin from AA appeared to support virus replication to a much smaller degree. 
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Figure 11. DENV replicates at relatively lower levels in African American skin. 

(A.) NS3 (green) expression in African American skin at 48 hours after DENV-2 16681 infection. Blue 

staining in images represents nuclei and dotted lines indicate epidermal-dermal junction. (B.) 

Quantification of DENV infection in Caucasian (CA) skin (n=4) or African American (AA) skin (n=3) at 

24 and 48 hours in epidermis (left) and dermis (right). Each symbol represents one individual and 

horizontal lines indicate means. *P < 0.05 comparing CA with AA skin, or comparing a degree of 

infections at different time points. 



 116 

5.4.2 DENV fails to induce recruitment of myeloid target cells in African American skin 

It has been shown in previous experiments using CA skin that DENV infects myeloid cells and 

promotes influx of these cells to be cellular targets (see chapter 2). To investigate this process in 

AA skin, we stained sections with antibody to NS3 and to certain myeloid cell subsets in skin, 

CD207/Langerin for Langerhans cells (LC) in the epidermis and CD163 for dermal macrophages 

(Mϕ) in the dermis. While a substantial increase in numbers of LC or dermal Mϕ was observed 

in the presence of virus infection, we found no significant differences in these cell populations 

between the skins infected with DENV as compared to mock infection, suggesting that infection 

with DENV in AA skin did not drive the recruitment of LC and dermal Mϕ close to the site of 

inoculation (Figure 12A-D, left). In addition to less recruitment, DENV infection of LC and 

dermal Mϕ in AA skin was significantly lower than the infection in CA skin within 48 hours; 

about a half of LC or dermal Mϕ from CA skin was succumb to viral replication, whereas only 

30% of LC and 20% of dermal Mϕ became DENV-infected (Figure 12B&12D, right). A strong 

correlation between the number of LC and dermal Mϕ and their infection with DENV was 

observed in skin from both racial groups (data not shown), suggesting that DENV spread is 

dependent on an amount of target cells available in skin microenvironment reachable for the 

virus regardless of skin types. 
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Figure 12. DENV infection promotes myeloid cell recruitment in Caucasian skin, but not in 
African American skin. 

 
(A, B) Density and infection of Langerhans cells (LC) in epidermis at 24 (A.) and 48 hours (B.) in CA 

and AA skin. (C, D) Density and infection of dermal macrophages (Mϕ) in dermis at 24 (C.) and 48 hours 

(D.) in CA and AA skin. Each symbol represents a different donor and horizontal lines indicate means. *P 

< 0.05 comparing CA with AA skin, or comparing mock and DENV-infected skin from the same race. 
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5.4.3 DENV infection in AA skin triggers relatively less IL-1β production in epidermis 

and inefficiently facilitates emigration of cells out of AA skin. 

We next sought to investigate the mechanistic basis of this low-level response to DENV 

infection in AA skin relative to CA skin. Our previous findings in CA skin suggest that DENV 

spread is mediated mainly by keratinocyte-derived IL-1β within 48 hours. To elucidate ethnic 

differences on DENV infection with respect to this proposed mechanism, we quantified the 

induction of IL-1β in epidermis between 0-48 hours after DENV inoculation in CA and AA skin. 

Our results showed that DENV induced the production of IL-1β in skin when compared to 

baseline levels in uninfected or mock infected skin; no differences in IL-1β levels were observed 

in different ethnic skin types from 2 to 12 hours post infection. There was a 6-fold increase in IL-

1β expression of epidermal cells in infected CA skin at 24 hours post infection, and these 

increased levels continued for at least 48 hours. In contrast, IL-1β levels in the presence of 

DENV infection did not vary over time in AA skin, indicating that the virus appeared to have no 

impact on IL-1β-mediated inflammation in AA skin. Importantly, IL-1β expression of cells in 

epidermis was significantly higher (a 2-3-fold) in CA skin with DENV infection during 24 to 48 

hours (Figure 13A). This was accompanied by the emigration of cells out of the skin. DENV 

infection caused a large number of cells, identified to be myeloid cells such as LC, dermal 

dendritic cells (DC), and dermal Mϕ (264), to migrate out of CA skin at 24 and 48 hours, 

whereas the virus as well as mock infection promoted only a low quantity of cells out of AA skin 

(Figure 13B). These findings clearly indicated the importance of DENV-induced IL-1β 

regulation in the spreading of DENV cell targets, which resulted in distinctively poor responses 

against DENV infection, reflecting on the low-grade inflammation and reduced cell emigration, 

observed in AA, but not CA skin. 
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Figure 13. DENV stimulates less production of IL-1β in cells in epidermis of AA skin, and 
promotes inefficient levels of cell migrated out of the skin. 

 
(A.) Expression of IL-1β in epidermis of CA and AA skin in an absence and presence of DENV infection. 

Data expressed as mean ± standard error of mean from four CA individuals and three AA individuals. *P 

< 0.05 comparing CA with AA skin with DENV infection. (B.) Total number of migrated cells collected 

within 24 and 48 hours in skin culture media normalized to skin area in an absence and presence of 

DENV infection. Each symbol represents a different donor and horizontal lines indicate means. *P < 0.05 

comparing CA with AA skin with DENV infection, or comparing mock with DENV infection in the race. 
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5.4.4 Infection with DENV induces a striking difference of the IFN-α response between 

CA and AA skin 

Our findings apparently show the distinct dynamics of skin response to DENV in skin from 

different ethnic groups in terms of degrees of productive infection, cytokine production and virus 

dissemination. These provide strong evidence for the involvement of a preferential immune 

mechanism in AA skin, which may consequently confer resistance to the effect of DENV 

infection among African descents. To determine the protective immune response in skin for 

differential observations of DENV infection, we did in situ immunofluorescence staining for 

IFN-α. Represent images illustrated that cells from epidermis and dermis were both responsible 

for the source of IFN-α in CA and AA skin (Figure 14A). There was a distinct temporal 

difference in the DENV-mediated induction of the IFN-α response observed in CA and AA skin. 

In CA skin, IFN-α expression peaked at 2-8 hours and then rapidly returned to baseline levels 

within 12 hours. Conversely, DENV induced a delayed response of IFN-α in AA skin, which 

was evident after 12 hours. An induction of IFN-α was steadily increased and sustained to 48 

hours. As DENV infection had no effect on IFN-α in CA skin at 24-48 hours when the IFN-α 

response persisted at relatively high levels in AA skin. This resulted in a significance difference 

of IFN-α expression during 24 and 48 hours in CA and AA skin (Figure 14B). It has been 

demonstrated in previous reports that certain MHC class II alleles served as a protective allele 

for preventing progress to severe dengue. Using our skin model, we observed a significant 

increase of HLA-DR expression in cells in the dermis of AA skin infected with DENV. 

However, no difference in HLA-DR induction was found in cells from epidermis (Figure 14C). 
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Figure 14. Differential expression of IFN-α in CA and AA skin following DENV infection and 
MHC class II expression in AA skin. 

 
(A.) Expression of IFN-α at 0 hour, 2 hours and 48 hours post infection in CA (top) and AA skin 

(bottom). Blue staining in images represents nuclei and dotted lines indicate epidermal-dermal junction. 

(B.) Quantification of IFN-α-expressing cells in CA and AA skin in an absence and presence of DENV 

infection. Data expressed as mean ± standard error of mean from four CA individuals and three AA 

individuals. *P < 0.05 comparing CA and AA skin in the presence of DENV infection. (C.) 

Quantification of HLA-DR-expressing cells in AA skin in an absence and presence of DENV infection at 

24 and 48 hours. Each symbol represents a different skin donor and horizontal lines indicate mean. *P < 

0.05 comparing an area of marker expression in mock and DENV infection. 
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5.4.5 Evidence that AA skin may resist ADE of DENV infection 

It has long been a concern that the ADE of DENV infection is a key factor in driving severe 

dengue outcome. The phenomenon has been well reported in many in vitro and animal studies. 

However, clinical observations and experimental studies in humans remain limited. To modify 

our human skin model for the ADE of DENV infection study, we delivered 1/40 dilution of 

DENV-3 immune serum to skin using dissolvable microneedle arrays (MNAs). This 

concentration of the immune sera was demonstrated to promote the highest enhancement levels 

of dermal Mϕ infection in previous experiments (data shown in chapter 3). Following 15-25 

minutes after MNA application, skin was inoculated with a low-dose inoculum of DENV 

serotype 2 (strain 16681) at a titer of 103 plaque-forming units for 10 µl delivered virus. Skin 

was harvested at 24 hours after virus inoculation (Figure 15A). Skin sections were stained with 

an antibody (Ab) to DENV NS3 together with Ab to CD163 to identify and assess DENV 

infection of macrophages in dermis. The presence of DENV-3 immune sera in CA skin induced a 

significant higher number of dermal Mϕ in relative to those detected in DENV infection with 

human AB serum added (Figure 15B, left). Similarly, a potential of dermal Mϕ recruitment was 

likely to occur at a much lesser level in AA skin. Importantly, we found that the pre-existing 

DENV-3 immune sera substantially enhanced the infection of dermal Mϕ. The enhancement 

activity of DENV-3 immune sera in CA skin was exhibited by a significantly larger number of 

NS3-expressing dermal Mϕ and a higher percentage of infected dermal Mϕ, compared to CA 

skin infected with DENV in the presence of control serum. We showed that DENV infection of 

dermal Mϕ was increased from approximately 25% to 50%, which was a similar proportion of 

dermal Mϕ infection observed in skin infected with a 3-log higher titer of the same virus (264). 

In contrast to CA skin, no enhancement effect was observed with the infection with immune sera 
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delivered in AA skin. Although more dermal Mϕ were recruited, there were no apparent changes 

in numbers or percentage of infected dermal Mϕ when the DENV-3 immune serum was added. 

Only 15% of dermal Mϕ proportion were found to be infected in DENV infection with DENV-3 

immune or control serum (Figure 15B, middle-right).  We next investigate the influence of the 

enhancing Ab on emigration of cells out of skin. While an increased number of cells were driven 

out of CA skin with an effect of immune sera, cells from AA skin appeared to be unaffected as 

numbers of migrated cells were not different across skin with or without DENV infection or 

DENV-3 immune serum (Figure 15C). Due to a short supply of AA skin, we were able to 

perform ADE experiments on skin from an AA individual. Nevertheless, observations between 

CA and AA skin were strikingly different. Further investigations on ADE effect in AA skin are 

certainly needed for valid comparisons. 
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Figure 15. Primed AA skin did not exhibit characteristics of antibody-dependent enhancement of 
DENV infection. 

 
(A.) A simple schematic showing fundamental steps in an antibody-dependent enhancement assay in 

human skin model. (B.) Density of dermal Mϕ (left), density of DENV-infected dermal Mϕ (middle), and 

infection of dermal Mϕ (right) in dermis at 24 hours in DENV- infected CA or AA skin in the presence of 

either control or DENV-3 immune serum. *P < 0.05, **P < 0.01 comparing the effect of control serum 

with the effect of DENV-3 immune serum added to CA skin in the presence of DENV infection. (C.) 

Total number of migrated cells collected within 24 hours in skin culture media normalized to skin area in 

an absence and presence of DENV infection, which contained either control or DENV-3 immune serum. 

Each symbol represents a different donor and horizontal lines indicate means. *P < 0.05 comparing the 

effect of control serum with the effect of DENV-3 immune serum added to CA skin in the presence of 

DENV infection. 
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5.5 DISCUSSION 

Our study demonstrates for the first time that a difference in ancestry substantially influences 

different characteristics of DENV infection and dissemination in human skin. In AA skin, the 

degree of viral replication in epidermis and dermis is significantly less than that in CA skin. A 

low-level infection in AA skin is associated with reduced recruitment and infection of 

Langerhans cells (LC) in epidermis and macrophages in dermis. This is consistent to findings in 

murine models that show the recruitment of monocytes, closely related myeloid cells to dermal 

Mϕ, is of great importance to supply new cellular targets for DENV which results in an increase 

viral replication (168). Unlike CA skin, no increase in cell emigration out of AA skin, indicating 

that less dissemination of the virus and infected cells from skin to other tissues. Due to a natural 

mode of dengue transmission, skin is a major site for initial viral replication. An Aedes mosquito 

delivers a majority of virus extravascular, leaving more than 99% of mosquito-delivered virus in 

the skin (149).  High viral loads in multiple visceral organs such as spleen, liver and 

gastrointestinal tracts have been shown to strongly associate with dengue disease severity in 

murine studies; immune deficient mice receiving higher dose of virus rapidly developed vascular 

leakage and thrombocytopenia, which is a clinical hallmark of severe dengue, and die (309). 

Therefore, viral dissemination of virus is a critical process in dengue pathogenesis for achieving 

high virus titer throughout the body. Taken together, the lower viral burden and less active 

responses to DENV infection in AA skin in relative to white skin suggest the benefit in dengue 

clinical outcomes for African ancestry. Our data strongly support the findings from 

epidemiological studies in countries with highly mixed ancestry populations such as Brazil, 

Haiti, Colombia, Trinidad and Cuba (19, 90, 297-299). 
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Our data show that overall DENV infection in AA skin is significant lower than CA skin. This in 

part can be correlated to differences in skin physical properties. Evidence show that the 

epidermis of black skin is notably much stronger than that of white skin due to its increased 

thickness, reduced resistance and percutaneous penetration (306, 307). These features possibly 

compromise an efficiency to deliver the virus into AA skin. However, it is not always the case 

that having a strong composition of dark pigmented skin would directly provide a protection 

against DENV infection as increasing prevalence and high incidence of dengue have been 

evident in Sri Lanka (310-312), where most of its population share similar ranges of skin 

pigment with African Americans (313). Instead, a protective effect on DENV infection is 

profoundly linked to the influence of African heritage. The Colombian cohort study showed that 

the chance of severe dengue escalated 44-fold when African ancestry was reduced from 100% to 

0% (298). These findings give an explanation to a high number of infections in Sri Lanka. The 

people of Sri Lankans are likely to have a close genetic connection with South Indians (314, 

315), whereas African Americans are predominantly the people of African descents with the 

73.2% of African ancestry in the genome (316). A resistance to dengue virus in African ancestry 

has been suggested to be an attribute to ancestral origins of endemic yellow fever or other closely 

related flaviviruses throughout Africa. Yellow fever is a disease with high mortality rate (50-

89%), however, several historical field surveillances observed a relatively low death rate in 

African descendants (317, 318); of all deaths during YF endemic in Memphis, USA prior to a YF 

mass vaccination era, only 7% of blacks died in contrast to 75% of whites (319). From an 

evolutionary standpoint, native African ancestors plausibly evolved to better respond to the 

special needs imposed by their YF-endemic environments. Those who able to survive are 
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believed to passed on racial genotypes or immunity of a kind that confer an innate protection 

from other flaviviruses such as DENV in subsequent generations. 

 

Our data show a significantly lower number of IL-1β-expressing cells in epidermis of AA skin 

when compared to observations in CA skin. In the skin from CA donors, infected keratinocytes 

are the main source of many pro-inflammatory cytokines including IL-1β which largely mediates 

recruitment and infection of LC, dermal Mϕ and DC (264). High levels of DENV infection in 

Mϕ promote the release TNFα (320), which subsequently induces a cascade production of 

inflammatory cytokines such as IL-6, or acts in conjunction with IL-1β to drive maturation and 

migration of dendritic cell subsets to skin draining lymph nodes (212). These findings suggest 

that a decrease in recruitment and infection of LC and dermal Mϕ as well as cell emigration in 

AA skin were the result from the low production of IL-1β in keratinocytes. The additive effect of 

TNF-α and IL-1β actions has been reported to play a role in driving inflammation in several 

skin-related diseases such as psoriasis (321). In the context of DENV infection, these 

inflammation-driven mediators can be speculated to induce a cycle of increasing infection rates, 

which results in abundant viral loads. The critical role of TNF-α on causing endothelium damage 

has been demonstrated in a mouse model and its relationship with DHF and DSS has been well 

recognized (322-324). IL-1β recently stands out as an underrated but extremely potent mediator 

found at elevated levels in serum cytokine or gene expression profiles of severe dengue patients 

(325). IL-1β increases vascular permeability, especially when acts in concert with TNFα and 

IFN-γ (326). A recent mouse study of severe dengue suggested the use of antagonists for IL-1ß 

and caspase-1, or genetic knockout of caspase-1 and NLRP3 protect animals from developing 

disease (327). High serum levels of IL-1β is clinically correlated with plasma leakage in severe 
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dengue patients compared to dengue fever patients (328-331). These findings support that the 

increased level of IL-1β-derived keratinocytes generated in response to the infection in CA skin 

is related to the severity of dengue. The low-level production of IL-1β in AA skin is thus a host 

immunological process for DENV control through limiting infection rates and dissemination of 

target cells, which contribute to a better clinical outcome among African ancestry. 

 

It is well reported that DENV infection effectively stimulates a production of type I IFN in 

infected skin cells such as keratinocytes, dendritic cells, and fibroblasts (150, 185, 186, 332). Our 

data reveal the similar findings that IFN-α expression is induced in cells in epidermis and dermis 

following DENV infection in skin from ethnic groups. However, ethnic differences display in a 

pattern of IFN-α expression. In CA skin, IFNα expression is remarkably induced within 2 hours 

but rapidly suppressed within 12 hours. As suggested by the findings of type I IFN blockade in 

many in vitro studies, DENV is able to expand its productive infection between 24-48 hours 

because of the ability to antagonize IFN-α (333). Previously, we showed that keratinocytes are 

accounted for approximately 60% of total infection in CA skin. In in vitro studies, DENV 

infection in primary human keratinocytes and fibroblasts leads to type I IFN production which 

lasts for 48 hours (150, 185). This is consistent with our data in AA skin; the IFN-α induction is 

slowed but sustained out to 48 hours. Previous studies showed that IFN treatment after the 

infection does not block viral replication, indicating that DENV infection bypasses the IFN 

actions (208). In contrast, our data suggest that a delayed but strong induction of IFN-α is 

associated with much lower levels of viral replication, compared to the levels without highly 

induced IFN-α in CA skin, suggesting an essential role IFN-α plays in keeping DENV infection 

under control in AA skin. The importance of type I IFN system for recapitulating dengue 
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outcomes of humans is well described in murine models. Immunocompetent mice do not develop 

dengue disease, whereas characteristics of dengue disease can display only in mice lacking 

several components of type I IFN system or humanized mice that are reconstituted with human 

hematopoietic cells (334). Mice lacking the IFN receptor only on CD11c-expressing dendritic 

cells and LysM-expressing macrophages succumbed completely to DENV infection (332), 

indicating that IFN responses in skin are crucial for the resolution of dengue. Genome wide 

studies suggest that suppression of type I interferon stimulating genes is associated with dengue 

hemorrhagic fever (331, 335). Thus, a striking difference in IFNα expression kinetics between 

CA and AA skin following DENV infection would affect viral replication and subsequent 

cellular processes which contribute to differences in clinical outcomes.  

 

It is well described that DENV undergoes ADE in response to cross-reactive, sub neutralizing 

concentrations of heterologous anti-DENV Ab. A short assay window to observe the 

enhancement of infection was suggested in previous studies using cell lines. In our human skin 

model of infection, we use a low-dose DENV-2 at 103 PFU and a 1/40 dilution of anti-DENV3 

serum, and can observe the enhancing activity of anti-DENV-3 serum in CA skin at 24 hours 

post infection, which is a same detection time in other studies using ADE sensitive cell lines 

such as murine macrophages P388D1 and K562 (273, 336). In CA skin, the presence of anti-

DENV3 serum doubles the number of recruiting macrophages and enhances the DENV-2 

infectivity in macrophages, resulting in an 8-fold increase in the quantity of infected 

macrophages and a 2- to 4- fold enhancement of % infected of macrophages. This enhancement 

results in a proportion of macrophage infected observed when a 3-log higher virus titer is used in 

the same model. Similar observations have been shown in primary human monocytes or 
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macrophages under ADE condition showed a 2- to 7-fold increase in cell infection rate 

associated with a 2-log increase in production of viral RNA and virions (337). It is strongly 

suggested that the presence of enhancing antibodies correlates with increased DENV viremia and 

disease severity (104, 231, 233). The activated cellular process, characterized by cell recruitment 

and spread out of skin, and the increased quantity of cells infected in CA skin would 

consequently drive the patient to develop deteriorating clinical outcomes. On the contrary, no 

differences in the quantity of the number of macrophages infected and the percentage of 

macrophages infected are detected between skin under ADE or non-ADE (direct infection) 

conditions. This indicates that cells in AA skin are resistant to the effect of serum enhancing 

activity and would contribute to a diminished severity of dengue disease in the people of African 

ancestry, as evidenced by epidemiologic studies (19, 90, 297-300, 316). 

 

Though the cause of severe form of dengue has been primarily identified to be ADE, the 

development of severe dengue in individuals is a complex multifactorial process in which the 

presence of pre-existing heterologous antibodies poses an initial risk. A study showed that ADE 

of DENV-2 16681 infection leads to an increased IL-1β secretion in primary human monocytes 

(338-340). Together with an abundance of IL-1β produced in epidermis following the infection 

without serum effect (264), these findings support a significant higher number of macrophages or 

cells emigrated out of skin in response to the ADE-induced infection in CA skin. Furthermore, 

DENV ADE has been shown to manifest in conjunction with suppression of antiviral states in 

infected cells induced by type I IFN system (282). Studies show that DENV-ADE infection 

inhibits activation of STAT-1/2 and expression of IRF-3, which results in a decrease in 

production of Nitric Oxide species, potent inhibitors of DENV replication, in THP-1 cells (341). 
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Taken together, these results suggest the complexity of ADE infection and the involvement of 

host innate immune responses including IL-1β and IFNα in directing the progression and the 

severity of dengue. Correspondingly, differences in skin innate immunity against DENV 

infection shown in our data, in which IL-1β-mediated inflammation favoring DENV replication 

and spread in CA skin, and antiviral responses of IFN-α favoring DENV control and clearance in 

AA skin, contribute to ancestry-related differential clinical outcomes. However, whether ethnic 

differences in type I IFNs response and IL-1β production in skin play a role under influence of 

ADE remains to be confirmed. 

 

Further investigations are needed to understand mechanisms underlying these differences across 

ethnicities that influence DENV infection and the disease outcome. To date, RXRα and 

OSBPL10 are the only two genes that have been recently identified as African protective genes 

conferring African ancestry protection against DHF (92). Although these genes share the 

LXR/RXR activation pathway, OSBPL10 mainly functions in a cholesterol/lipid metabolism, 

whereas RXRα acing as a transcriptional regulator exerts multiple effects in skin biology, 

particularly keratinocytes in epidermis, and the control of cytokine production in myeloid cells, 

mainly macrophages (302, 305). A faster control of RXRα expression has been speculated to 

provide protection against severe dengue in Africans, indicating a relationship of RXRα and fast-

acting innate immune responses (92). Following DENV infection, murine models control 

optimal levels of IFN expression by down-regulation of RXRα expression in an IRF-3-dependent 

manner, whereas ligand activation of RXRα inhibits IFN and increases susceptibility to infection 

when over-expression (342). RXRα directly regulates the transcription of chemokines in 

macrophages such as CCL6 and CCL9 that facilitate the recruitment of leukocytes into inflamed 
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tissues (343). Exposure to IL-1β remarkably suppresses nuclear levels of RXRα within 30 

minutes, which leads to a reduced RXRα heterodimer binding to DNA in nucleus and inhibition 

of RXRα functions (344). It is important to investigate the interplay between IL-1β and RXRα 

expression following DENV infection in skin as it has potential to be one of the key mechanisms 

for African ancestry protection against severe dengue. Regardless of races, RXRα heterodimers 

are involved with the control of factors governed by genetic polymorphism effects such as 

vitamin D receptors or MHC molecules (345). Certain variations in these genes may protect or 

predispose individuals to severe dengue (346). 

5.6 MATERIALS AND METHODS 

5.6.1 Dengue virus 

A prototypical strain of dengue virus serotype 2 (16681) was provided by Jared Evans at the 

University of Pittsburgh. DENV was cultured and propagated in C6/36 insect cells (ATCC, 

Manassas, VA). C6/36 cells were routinely grown in Dulbecco’s modified eagle medium, 

supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 1% of the following: 

penicillin/streptomycin, L-glutamine and sodium pyruvate solution. Tissue culture supernatant 

was pooled at day 5, 10, and 15 of culture (when cytopathic effect was evident), clarified of cell 

debris by centrifugation, and concentrated using standard methods. Virus titers were determined 

by a modified focus forming unit immunoperoxidase assays using Vero cells as described 

previously (225). 
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5.6.2 Skin processing and virus inoculation 

Large blocks of anonymized full-thickness skin that were being discarded following elective 

aesthetic abdominoplasty or mammoplasty at the University of Pittsburgh were used. Ethnicity 

of donors was evaluated by skin colors and confirmed by a coordinator. Identifiable private 

information regarding skin donors was not provided and no interaction or intervention with 

donors was possible. As such, the research did not constitute human subject research as per the 

University of Pittsburgh Institutional Review Board. Any residual adipose tissue was trimmed 

from the underside of the skin explant before virus inoculation. A volume of 50 μl of media 

containing 3.2 x 107 or 5 x 103 plaque-forming units purified DENV 16681 was placed in a 4 

square-inch that was demarcated in the center of the surface of the skin explant. Bifurcated 

allergy skin testing needles (Precision Medical Product Inc., Denver, PA) were used to repeated 

puncture the skin surface through the 50-μl virus inoculum and deliver virus into the epidermis 

and dermis; our preliminary experiments indicated that this inoculation method delivered 

approximately 10 μl of virus suspension into the skin. Inoculated explants were incubated at 

37˚C for 2 hours, then the skin surface was washed with phosphate buffer saline and wiped with 

sterile gauze pads to remove a remaining virus. Tissue was placed dermis-side down onto mesh 

grids in 60 x 15 mm culture dishes and were continued incubating at the liquid-air interface in 

RPMI 1640 complete media. Explants were collected at 24 and 48 hours after virus inoculation 

and the virus-delivered central region was isolated, immediately submerged in 30% sucrose 

overnight at 4˚C, and then frozen for subsequent immunohistochemistry. At same intervals, 

media were collected to harvest migratory cells, which were treated with DNase, counted and 

frozen for further flow cytometric analysis. 
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5.6.3 Antibody-dependent enhancement assay 

Seven sera from a study by Castanha et al. (255) were aliquoted, pooled and used in our study as 

DENV-3 immune serum. These samples were collected from DENV immune pregnant women 

and identified by a PRNT50 assay to have DENV-3 monotypic immunity, Ab titer ranging 

between 1:380-1320 (the mean Ab titer is 1:786), with low serotype-specific neutralizing Ab 

response to DENV-1, -2, and -4 (Ab titer < 20).  Pooled DENV-3 immune serum was diluted by 

1:40 with phosphate buffer saline and then formulated into tip-loaded dissolvable 3:2 

carboxymethyl cellulose/trehalose MNA as described previously (206). Control MNAs contain 

1/40 dilution of human AB serum (Fisher Scientific, USA). For antibody-dependent 

enhancement, MNAs were manually applied to skin explants for at least 15 minutes until needle 

tips dissolved in the skin, and then were removed. Virus inoculation was performed immediately 

at the region of MNA application on the skin surface. A low-dose inoculum of DENV was used 

at 1 x106 plaque-forming units per 10 µl delivered virus. Tissue culture was performed as 

described above. Skin was collected at 24 hours after virus inoculation and the MNA-applied 

region was isolated, submerged in 30% sucrose overnight at 4˚C, and then frozen for subsequent 

immunohistochemistry. Media were collected to harvest migratory cells, which were treated with 

DNase, counted and frozen for further flow cytometric analysis. 

5.6.4 Immunohistochemistry 

Six micron frozen skin sections on microscope slides were rehydrated with phosphate buffer 

saline and fixed in cold acetone for 5 minutes at 4˚C. Slides were stained with polyclonal rabbit 

anti-pan DENV NS3 Ab (provided by Sujan Shresta, La Jolla Institute for Allergy and 
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Immunology) and monoclonal mouse anti-human Ab directed against specific cell surface or 

cytokine markers: anti-Langerin/CD207 (DCGM4; Beckman Coulter), anti-CD163 (5C6FAT; 

Acris Antibodies GmbH), IL-1ß (6E10; Novus Biologics) and IFN-α (MMHA-2; PBL Assay 

Science, Piscataway Township, NJ), overnight at 4˚C, then incubated with relevant secondary Ab 

for 30-45 minutes. Slides were stained with Hoechst dye (prepared by CBI, the University of 

Pittsburgh) for nuclear visualization. Antibody specificity was determined by replacing the 

primary antibody with an isotype-matched control. Cover slips were attached with Gelvatol 

mounting medium. Images were on an Olympus Fluoview 1000 confocal microscope (Olympus, 

Tokyo, Japan). 

5.6.5 Quantitative image analysis 

Nikon NIS elements AR 4.40 software was used to convert imaging observations in skin into 

measurable data, which was performed in a similar manner to that previously described (295). A 

region of epidermis or dermis or both was circumscribed. Thresholds for red, green, and blue 

fluorescence (representing staining of specific cell surface marker or cytokine, viral NS3 and 

nucleus, respectively) were set up corresponding to fluorescent detection in confocal 

microscopy. Data for each individual skin specimen were calculated from a minimum of 12 

confocal images taken from 3 skin sections collected from different sites of virus-inoculated 

region. Means from each individual were presented as an individual data point. Data are 

presented from 5-7 Caucasian and African American individuals per experiment. 
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5.6.6 Statistical analyses 

Statistical analyses were performed using GraphPad Prism, version 7 (GraphPad Software, La 

Jolla, CA). A paired t test or Mann-Whitney U test was used for two-group comparisons. P 

values < 0.05 were considered significant. 
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6.0  CHAPTER SIX: OVERALL DISCUSSION 

6.1 AN EX VIVO HUMAN SKIN MODEL OF DENV INFECTION  

An infected Aedes aegypti mosquito transmits DENV to humans as it probes and feeds on blood 

under the skin. Although skin blood vessels are target sites for the mosquito, only a small amount 

of virus is directly delivered into the blood and more than 99% of the virus is deposited in the 

skin, based on studies with WNV (149). The skin is a specialized microenvironment that 

contains different cell types working together dynamically to protect the host. Because many 

skin cells are targets of DENV infection, it is hypothesized that the initial replication of the virus 

in skin leads to subsequent migration of infected cells out to draining lymph nodes. This results 

in bloodstream dissemination. Evidence in support of this hypothesis includes the presence of 

DENV in skin and lymph nodes of infected monkeys, in human cadaveric skin explants, and in 

skin biopsies from skin rashes in individuals receiving a live attenuated experimental dengue 

vaccine (160, 205, 347). Autopsy reports of children who have died after DHF have described a 

high expression of non-structural DENV antigens in dendritic-appearing macrophages, a 

prominent morphology of dermal Mϕ in skin, within lymph nodes and spleen (348). Skin is not 

only a primary site for DENV transmission but also a site for dengue pathology. Skin 

manifestations include a maculopapular rash that occurs in a large population of dengue patients 

(50-82%), and a hemorrhagic petechiae which is commonly seen in patients with severe dengue 
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but more rarely in patients with dengue fever (73). The complete comprehension of DENV 

pathogenesis requires a better understanding of the dynamics of an early event of DENV 

infection in human skin. 

 

To date, much understanding of DENV biology regarding infection of skin cells is shaped 

through the use of permissive cell lines in vitro or genetically modified animal models. Studies 

using primary cells isolated from human skin explants require disassembling the tissue to obtain 

comprehensive analyses, with methods consisting of subjecting isolated skin cells to enzymatic 

digestion. Thus, this raises questions about the biological relevance of these models to the in 

vivo dynamics of early infection. We developed an ex vivo human skin model of DENV 

infection using microneedle arrays (MNA)-based delivery to control and manipulate infection 

processes in skin, coupled with digital imaging analyses for in situ quantification. The goal was 

to obtain high-resolution observations on viral infection, while maintaining the skin 

microenvironment to preserve skin biological complexity, connectivity of cells and crucial 

contextual responses. The resulting technology enables visualization and robust measurement of 

the degree and dynamics of DENV infection. It also allows for insight into DENV-induced 

immune responses as well as a characteristic ADE phenomenon in human skin. 

 

The natural mammalian hosts for DENV are humans and nonhuman primates. Exposing intact 

human skin to the virus provides the closest laboratory model attainable to the in vivo 

environment where the host’s natural defense takes place. Typically, the host immune response 

towards infectious agents is a key element of infection biology. In the case of DENV, the innate 

immunity, particularly antiviral type I IFN, impedes the development of immune competent 
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murine models of DENV infection (349). DENV counteracts STAT2, a requisite factor involving 

in type I IFN signaling, by degradation that consequently allows the virus to establish infection 

efficiently. However, the ability of DENV to mediate STAT2 degradation is species specific due 

to distinct N-terminal STAT2 sequences. DENV NS5 binds and degrades STAT2 in humans, but 

not in mice, resulting in the higher sensitivity of DENV to antiviral activity of IFN in murine 

cells than in human cells (350). Mice are not permissive to DENV infection, in particular with 

human clinical isolates, unless they have deficiencies in the IFN system. Use of mouse strains 

lacking IFN receptors such as the AG129 mouse strain renders a complete susceptibility to 

DENV infection (351). Without modifications of the model, our study shows that IFNα is a 

critical determinant of the infection outcome. As a result, a degree of productive DENV infection 

is observed with a reverse correlation with expression of IFNα. Furthermore, expression of IFNα 

in Caucasian skin is detected as early as 2 hours, prior to the initial viral replication at 6 hours, 

indicating that counteracting mechanisms rapidly occur in the skin. Differentially regulated type 

I IFN responses can influence contextual differences that the virus primarily encounters and thus 

determine outcome of infections. Lack of an intact IFN system in mice may profoundly alter host 

responses to infection with DENV, resulting in a poor predictive power of murine models. In 

addition to the IFN system, physiological differences in FcγR expression between human and 

mouse complicate interpretation of murine studies. Our data indicate that both FcγRI and FcγRII 

facilitate antibody-dependent enhancement of DENV infection. While human macrophages 

express all types of FcγR, mice do not express FcγRII (245, 352). Although it has been suggested 

that mouse FcγRIII is an orthologous receptor for human FcγRIIa, they may not retain identical 

functions, as the mouse FcγRIII does not contain its own ITAM motif (353). These are critical 
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differences between mouse and humans that suggest limitations of translating ADE research 

from mice to humans. 

 

Not only would the use of intact human skin tissues lead to a better translation into DENV 

behaviors in natural host settings than that of in vitro or animal models, but it also allows us to 

look at differences in susceptibility to DENV infection across ethnic groups. These differences 

have never been experimentally investigated beyond the genetic level before (354). All skin 

specimens were speculated to be dengue naïve because the sample procurement was exclusively 

from heathy individuals undergoing surgeries in Pittsburgh, Pennsylvania, a region with no 

reports of locally-acquired dengue cases nor active distributions of the vector (64, 355). 

Therefore, no serological tests were performed to screen the immune status of samples obtained. 

A small sample size dictated by the limited access to patient specimens, particularly from 

African Americans, presents one of the limitations in our study. 

 

One of the challenges in the investigation of dengue tropism is the identification of DENV 

replication. Entry of DENV into host cells occurs through receptor mediated-endocytosis or 

FcγR-mediated internalization in the presence of heterotypic Ab (356). However, following an 

introduction of the virus, non-infectious forms of DENV such as degraded virions, dispersed 

viral proteins, or non-engulfed immune complexes, or the remnant virus may also present with 

infectious virions on skin structures or cell surfaces despite no involvement of an active 

infection. Previously, the main method of DENV detection has been focused on the use of 

antibodies to DENV structural proteins such as envelope or pre-membrane proteins (160, 164, 

357), which may confound findings on host cells or tissues that actively support the viral 
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replication. For this study, our technique to identify DENV infected cells includes 

immunohistochemistry by using a panel of specific Ab against cell-identity markers together 

with an Ab to pan DENV-NS3 antigen. The detection of NS3 expression defines the actively 

synthesized DENV inside the target cells which is truly an indicative of a site of DENV 

replication. This system overcomes challenges in addressing a definite site of DENV replication 

in cells as well as tissues in previous dengue works. Furthermore, the similarities of amino acid 

sequences between DENV and ZIKV provides advantages in using to developed system to detect 

ZIKV replication in skin cells (271). Our findings confirm the previous hypothesis that skin is 

the primary site of DENV and ZIKV replication. 

 

During mosquito probing, local tissues in the epidermis and the dermis are being physically 

damaged while mandibles and maxillae, parts of the proboscis, are sawing through the skin. It 

may be possible that the piercing primarily damages the dermis because of blood vessel 

locations, whereas needle stabs are likely to cause more damage to the epidermis. Bifurcated 

needles can pick up a 1-2 μl drop of the virus suspension between their two prongs. This ensures 

a consistent administration of the virus to skin when multiple punctures are applied on an area of 

1x1 square inches, and thus reduces variations in imaging observations on a frozen tissue sample. 

It is unclear whether a mosquito deposits the virus into the epidermis, the dermis or both. 

Although we did not inoculate a dye or fluorescent-conjugated beads to monitor the penetration 

depth at the inoculation site, a bifurcated needle is expected to deliver most of the virus into the 

papillary (upper) dermis due to the length of two prongs (1-3 mm). The amount of the virus 

inoculum being delivered into the full-thickness skin is approximately 12.5 μl out of the total 50 

μl, which has been determined by subtracting it from the gross skin weight before and after the 
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inoculation. Though the delivery efficiency is only 25%, the virus delivery dose is controlled to 

support the purpose of experiments. For example, a low-dose virus (103 PFU /10 μl) was used to 

investigate the effect of mosquito-related factors or patients’ immune serum, according to the 

fact that mosquitoes inoculate 1 X 103- 1x 105 infectious particles of WNV per bite (149, 263). 

 

It is important to note that data collection and image analysis are confined to a specific area 

covering the epidermis, the epidermis-dermis junction, and the 500-micron depth of the dermis 

(the upper third of the reticular dermis). While this region does not include the whole depth of 

dermis, it is justifiable considering a number of reasons. First, the virus on the needle is expected 

to reach the upper dermis, indicating the likelihood of an establishment of infection in such areas 

or above. Second, our research deliberately focuses on early events following virus inoculation 

such as the first target of DENV infection and corresponding host responses. Lastly, skin explant 

samples, solely consisting of epidermis and dermis, lack additional cells infiltrating from blood 

supply, resulting in a constant or decreased number of cells observed in total. Any cellular 

dynamics driven by the virus and/or other procedures involving changes in cell density must be 

measured within a specific skin region. Our results suggest that dynamics in the tissue samples 

occur near the delivery site where the driving force (virus, SGE, Ab, or serum) are most 

concentrated, in relation to the whole system. 

 

It is critical to recognize that the deposition of the virus by a bifurcated needle to skin might 

bypass significant interactions between the host and the mosquito, or the impact of mosquito-

related factors on skin environment. Studies have shown that mosquito bites worsened disease 

outcomes in mice infected with the pathogens such as malaria, WNV, Chikungunya virus and 
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DENV, when compared to needle infections (263, 358, 359). The exact mechanisms of mosquito 

bite-driven increases in disease severity remain unknown, but current findings suggest the 

involvement of polarization toward Th2 responses and subversion of IFN-γ stimulated antiviral 

mechanisms (360). This suggests that DENV under the influence of the mosquito would 

encounter a permissive skin setting for viral infection, rather than the antiviral (Th1 response) 

environment induced by a needle inoculation alone. To replicate these mosquito-related effects 

for the investigation, it is clear that the bite of an intact, infectious mosquito provides the closest 

natural transmission in laboratory settings as it incorporates physical damage (due to bites, blood 

probing, or other unknown blood-feeding biomechanics), the release of saliva and its 

components, and the virus. However, this approach leads to difficulties in calculating the 

absolute quantity of the viral inoculum delivered by the vector. Also, the technique requires a 

local mosquito research facility to maintain and supply infectious mosquitoes in their foraging 

period. Alternatively, studies using a related WNV have shown that SGE or mosquito saliva 

enhanced viremia of a mouse model in a dose-dependent manner, and their effects were localized 

and potent as a single mosquito bite (equivalent to 0.01 μg of SGE) was sufficient for enhancing 

activity (361). These factors make attractive alternatives as they offer a more convenient tool for 

implementing in our skin model, more quantitative control over the viral inoculum as well as the 

amount and concentration of whole saliva or SGE, and an ability to analyze and compare data 

with previous findings as the method of inoculation remains the same . In our study, we were 

unable to demonstrate an effect of SGE when co-inoculated with DENV. However, the finding 

remains preliminary due to several potential limitations. We did not incorporate collected 

mosquito saliva or salivary proteins of known functions to the system. Among factors released 

from an intact mosquito, saliva represents the closest natural route of exposure as it is subjected 
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to less process of collection as well as less possibility of bioactive molecules to degrade or 

modify when compared to SGE or proteins. Co-incubation of DENV with SGE and saliva would 

thus lead to more specificity of immune response modulation (362). Furthermore, purified 

salivary protein, or a mixture of proteins, shown to enhance dengue disease severity should be 

added as a positive control along with saliva/SGE to validate whether the effects of mosquito-

related factors are detectable in our model. 

6.2 KERATINOCYTES: THE PARADIGM SHIFT OF EARLY DENV INFECTION 

IN SKIN  

Although it is well known that DENV enters the body through the skin, the study of the earliest 

stage of DENV infection in this organ has been largely unexplored in humans. This is mainly 

because the onset of dengue symptoms starts with fever within 4-7 days after a bite of an 

infected mosquito. At this phase, the virus is no longer detectable or is in a decline in the blood 

and presumably in the skin (23). Accordingly, the study on samples collected from hospitalized 

patients will likely preclude initial interactions between the virus and host cells in situ. Based on 

limited data from human skin tissue staining, DENV infection initiates at the site of inoculation 

in skin LC, Mϕ and DC (160, 205, 363). Among these myeloid cells, epidermal LC have been 

indicated as the first target cells of DENV infection based on their infection in a skin biopsy 

obtained from the recipient of a live attenuated tetravalent DENV vaccine (160). Thus, it remains 

unclear whether LC infection occurs during natural DENV infection. The selectivity of DENV in 

these myeloid cells has been supported by loss of virus spread in immune compromised mice 

when infection in hematopoietic cell populations was restricted (253). Furthermore, intracellular 
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DENV RNA copies detected in patients’ PBMCs during the acute phase of infection have 

suggested the spread of actively replicating virus to the blood by immune cells following 

infection in the skin (364). Because T and B cells are less permissive to DENV infection than 

monocytes when examined together, mononuclear phagocytes are thought to be the principal cell 

types supporting DENV replication in vivo (252, 365). While it is unknown precisely how the 

infection in skin causes systemic infection, it is largely believed that the migratory myeloid cells 

spread virus to regional lymph nodes as well as other organs via the lymphatic and circulatory 

systems. 

 

DENV has been shown to utilize multiple attachment factors and receptors to enter host cells, 

including heparan sulfate (356). Heparan sulfate, which are highly sulfated glycosaminoglycan 

molecules (GAGs), are ubiquitously expressed on the surface of many cell types. These 

molecules render a diverse range of cells permissive to DENV entry by mediating an 

electrostatic attraction between a dengue E glycoprotein and the negatively charged carbohydrate 

moieties present in GAGs (53, 54). Factors mediating more specific cell entry for DENV has 

been identified in DC and Mϕ. These cells bear putative DENV receptors including DC-SIGN, 

mannose receptor and CLEC5A (164, 175, 289, 366). DC-SIGN is the calcium-dependent lectin 

that are expressed on DC and Mϕ. While the receptor facilitates DENV infection in DC, Mϕ 

expressing DC-SIGN have been shown to be resistant to the infection (367). Whether DC-SIGN 

is the only receptor responsible for DENV entry or replication in DC is largely unknown. 

Infection of human Mϕ occurs through other lectins, including mannose receptor and CLEC5A. 

Besides DENV entry, CLEC5A participates in the release of IL-1β (179, 368), one of pro-
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inflammatory mediators important in the pathogenesis of severe forms of dengue, indicating the 

importance of Mϕ in dengue disease progression. 

 

Although cells of hematopoietic origins are shown to be a requirement for DENV replication 

(253), non-hematopoietic cell types including endothelial cells, fibroblasts, and epithelial cells 

have been shown during the natural infection (in an absence of enhancing antibodies) (150, 185, 

369, 370). However, infection of endothelial cells detected in mice and humans remain 

questionable because autopsy reports have described undetectable levels of viral RNA in 

endothelial cells in response to natural infection of DENV (363). In vitro DENV is able to infect 

a number of epithelial cell lines and epithelial cells from tissues including human lung 

epithelium or primary human keratinocytes (150, 371). While keratinocytes have been identified 

in animal and human skin models as cell targets for other mosquito-borne viruses such as ZIKV 

and WNV, DENV infection of keratinocytes has only been described in vitro studies (150, 372, 

373). The detection of DENV-infected cells in the basal layer of epidermis of human skin 

explants cultured for 5 days have been described as rare events (205). Based on the location and 

morphology of infected cells, the authors speculated that keratinocytes were infected and 

underwent apoptosis following DENV inoculation. Overall, DENV infection of keratinocytes has 

been perceived in the past as making a relatively small contribution to dengue pathogenesis. 

 

While the current hypothesis has suggested that myeloid cells such as monocytes/Mϕ and DC are 

implicated as predominant reservoirs for DENV replication (165, 374), it remains unclear which 

cell populations primarily permit DENV replication in vivo and are responsible for virus spread. 

This is largely because previous research has focused on investigating each cell target of DENV 
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separately. Though these prior findings are very useful in establishing the basis of DENV 

biology, significant knowledge gaps remain. Because skin contains the majority of cell 

populations known to support DENV replication (177), we have used a quantitative in situ 

imaging approach to examine the relative importance of cell targets in DENV infection in intact 

human skin. We found that DENV infection in seven distinct skin cell populations, including 

keratinocytes, LC, dermal DC, Mϕ, fibroblasts, mast cells and lymphatic endothelial cells, which 

account for the majority of infected cells in human skin (75-85% of total infection). 

Nevertheless, infection of keratinocytes alone made up 60% of all infected cells. Keratinocytes 

not only principally support DENV infection in the skin, they are also the first cell type infected 

by the virus. Our findings highlight the dual role of keratinocytes as the portal of entry and the 

main supporter for DENV infection in humans. Furthermore, the infection of keratinocytes has 

been notably observed in all conditions tested in the skin (across the ethnicity, the absence or 

presence of enhancing serum, and the use of a low or high titer of the virus), indicating the 

central role these cells play in DENV infection. 

 

The delivery of virus by the mosquito probing for blood vessels or by the bifurcated needle 

clearly reaches to the upper dermis, which may account for why infection of keratinocytes occurs 

primarily in the suprabasal and basal layer of epidermis. These basal cells move down and form 

ridges along with the dermal papillae valleys containing capillaries, end arterioles and veins that 

nourish the epidermis via diffusion. The homeostasis of continuously renewing basal cells of 

epidermis is likely to assist the virus replication (375). Keratinocytes have not been reported to 

be infected with DENV in murine models, although keratinocytes are primary targets of infection 

with the related WNV in mice (207). It is possible that differences in skin properties between 
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human and mice may impact the extent of keratinocyte infection in intact skin between the two 

species. Despite the similar structural organization, the epidermis of rodent skin consists of only 

a total of two to three layers with turnover rate at every 8-10 days, indicating a much thinner skin 

with a 4-times faster differentiation process than that of the human epidermis (376-378). The 

human dermis is highly vascularized with both a rich papillary network and a deep dermal 

network, whereas rodent dermis is poorly vascularized and ridge formation at epidermis-dermis 

junctions is present only in footpads. Although the impact of skin properties on DENV infection 

has never been explored, these morphological differences between mouse and human skin are 

worthwhile noting when interpreting murine studies of DENV infection. 

 

Keratinocytes are equipped with a diverse array of innate pathogen recognition receptors and 

defense mechanisms including induction of inflammatory responses (128). In our study, DENV 

infection significantly modulated the expression of keratinocyte-produced cytokines including 

IL-1, CCL20 and CXCL8, known to be involved in the pathogenesis of inflammatory skin-

related diseases, including psoriasis. Some of these keratinocyte-derived proteins have been 

suggested to be predictors for severe dengue due to their increased presence in blood of patients 

(328). However, because of limited pathological data on tissues, these pro-inflammatory 

cytokines and chemokines have never been linked to the initiator role of keratinocytes in the 

skin. Our study for the first time highlights the importance of keratinocytes both in establishing 

DENV infection and in recruiting virus-permissive myeloid cells into inflamed skin, as well as 

driving them out of the skin. Altogether, our in-situ findings have shifted the paradigm of the 

earliest events in DENV infection to include a fundamental role of the keratinocytes. 
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6.3 IL-1Β AS A KEY MEDIATOR IN DENV INFECTION AND SPREAD 

Among keratinocyte-induced cytokines during DENV infection, IL-1β alone exerts an effect on 

the recruitment and infection of all three myeloid cell subsets studies, LC, DC, and Mϕ. IL-1β 

was as strong as all potential mediators combined (IL-1α, IL-1β, CCL20 and CXCL8). This 

suggests that IL-1β is a key mediator in DENV infection. The recruitment of myeloid cells to the 

superficial dermis is an important characteristic of DENV infection as it brings in additional 

target cells to the site of virus inoculation. Studies in mice lacking the IFN-α/β receptor have 

suggested that DENV infection in dermis occurs in two phases: initial infection of resident DC 

and Mϕ, followed by infection of CCR2-expressing monocytes recruited from the blood within 

48 hours of viral inoculation. Some of these monocytes differentiate into monocyte-derived DC, 

providing additional cellular targets for the virus (168). Our data show that the infection of IL-

1β-recruited LC, DC and Mϕ occurs within 12-24 hours of infection, consistent with the interval 

of the first infection phase reported in mice. Although an absence of the influx of blood cells in 

human skin explants make it impractical to investigate whether DENV-induced IL-1β activity 

recruits monocytes, previous studies have shown that IL-1α/β expression promotes the 

accumulation of monocytes at the inflamed site. Furthermore, it has been shown that mosquito 

saliva-induced IL-1β expression resulted in the early recruitment of neutrophils, which can 

promote monocyte recruitment (218, 358). Biopsies obtained from skin rashes of patients with 

severe dengue showed that infected Mϕ were more frequent around the blood vessel wall in 

dermal papillae (379), indicating the recruitment skin-resident Mϕ and the infiltration of  

monocytes, which later can differentiate into dermal Mϕ, into the site of virus inoculation. 

Disrupting IL-1β significantly reduced the infection in epidermis and dermis. These findings 

together highlight the previously unidentified role of IL-1β in mediating the spread of DENV in 
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skin through the recruitment of myeloid cells from deeper layers of the dermis, and presumably 

from the blood. The substantial increase in number of newly virus-permissive myeloid cells at 

the site of virus introduction further supports and amplifies DENV replication, resulting in higher 

viral loads in the skin. 

 

Because many cell types that support DENV replication including LC and Mϕ can produce IL-1β 

(380, 381), it is possible that keratinocytes are not the exclusive source of IL-1β throughout the 

course of infection. Following DENV infection in our explant model, the expression of IL-1β 

was mainly in the epidermis. While the triple labeling of IL-1β with AE-1 and NS3 staining 

strongly indicated that infected keratinocytes were the major IL-1β producer, it is unclear 

whether LC were also involved in the IL-1β production. Nevertheless, the release of IL-1β at the 

earliest stage of DENV infection in the skin is mainly from infected keratinocytes, given their 

large quantity in the epidermis and their role as the first responder to the virus. In dermis, the 

production of IL-1β has been well described in monocytes and Mϕ (382), which are also known 

to respond to IL-1β, creating a positive feedforward loop. IL-1β induces monocytes to 

differentiate into DC-SIGN-expressing Mϕ (383), and these cells are known to resist to DENV 

infection, at least in vitro (367), suggesting that monocytes recruited to the skin are less likely to 

become infected and release IL-1β. Elevated levels of IL-1β in primary monocytes have been 

demonstrated during ADE of DENV infection (339). In our model, Mϕ-expression of IL-1β may 

occur in the presence of immune serum. Compared to DENV infection without immune serum, 

the increased infection of Mϕ in the presence of enhancing serum suggests that these infected 

Mϕ may upregulate IL-1β as well as other unidentified mediators in response to ADE-induced 

infection. Taken together, our results suggest that IL-1β expression following primary DENV 
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infection is mainly from keratinocytes, whereas IL-1β or other factors released from highly 

activated Mϕ in ADE of infection is likely to magnify the actions of DENV-infected 

keratinocytes-derived IL-1β. 

 

The abundant release of biologically active IL-1β from DENV-infected keratinocytes indicates 

that these cells may undergo programmed cell death processes such as apoptosis and pyroptosis 

(384). Both types of cell death have been observed after DENV infection in previous studies (95, 

385). Unlike IL-1α, the cytokine IL-1β is an inducible protein that requires proteolytic cleavage 

to become active (382). Although it is not clear how IL-1β is secreted from cells , it is well 

described that the activation and secretion of IL-1β by UVB (ultraviolet B)-irradiated human 

keratinocytes require caspase-1 activity (386), which is activated by incorporation into the 

NLRP3 inflammasome complex (387). Caspase 1 is a key driver of pyroptosis, and it is therefore 

likely that caspase-1-driven IL-1β secretion by keratinocytes following DENV infection leads to 

pyroptosis. This notion is supported by a recent study of ZIKV using patient sera and mice, 

which has shown that the virus infection promoted the assembly of NLRP3 inflammasome and 

the secretion of IL-1β (388). Correspondingly, the presence of increased IL-1β levels has been 

reported in cytokine profiles of patients infected with ZIKV during acute and recovery phases 

compared to levels observed in healthy individuals (389). This is consistent with significantly 

elevated serum levels of IL-1β observed in dengue patients during acute to defervescence phases 

or patients present with severe dengue (328, 390). 

 

The mechanism of pyroptosis involving pore formation at the plasma membrane causes rapid 

loss of plasma membrane integrity and may lead to cell lysis (391). These pyroptosis pores allow 
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the release of active IL-1β from the cytosol (392). Following DENV infection, the IL-1β–

mediated recruitment of myeloid cells would occur through IL-1β acting on IL-1 receptors type 1 

(IL-1R1) present on the cell to initiate cell movement toward cytokine gradients to the upper 

dermis. However, it is possible that the virus-mediated pyroptosis facilitates the release of other 

intracellular contents such as pro-inflammatory mediators or senescent cells and debris. This 

would attract more myeloid cells with phagocytic activity to the site of infection, and further 

promote efficient DENV replication and sustain abundant viral loads in the skin prior to the 

systemic spread. High levels of apoptosis have been reported in DC and hepatocytes that were 

infected in vitro with DENV (393, 394). However, apoptosis has generally been defined by the 

terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay 

(205), but this assay does not accurately discriminate between apoptosis and pyroptosis. The 

importance of NLRP3 inflammasome and IL-1β in DENV infection encourages further studies 

on cell death in response to the infection. 

 

The counter-regulation of IL-1 and type I IFN-mediates inflammatory responses have been 

described in autoimmune diseases and infections with various types of pathogen including 

viruses (395, 396). Although our study did not demonstrate the direct cross talk between two 

system responses, the IL-1β production has been found to inversely relate to the IFN-α induction 

in the epidermis in the course of DENV infection. The potential counteracting mechanism was 

further confirmed by significant differences of DENV replication in two ethnic groups; the 

relatively low DENV replication observed in African American (AA) skin has been observed in 

conjunction with the lessened IL-1β production and the sustained expression of IFN-α. 

Interestingly, not only AA skin was maintained, but were also increased to the higher levels than 
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the maximal IFNα induced in Caucasian American (CA) skin. This indicates the protective effect 

of African ancestry on DENV infection, as consistent to many previous studies that have 

established a beneficial effect for type I IFN signaling in response to DENV infection including 

the inhibition of IL-1 production. In addition to the role of recruiting cells to inflamed tissues, 

IL-1β is a highly potent pro-inflammatory mediator that induces vasodilation (397). Failure of 

type I IFN induction in controlling the magnitude and function of IL-1β during DENV infection 

will likely increase the severity of dengue through vascular leakage. Although DENV has 

developed many strategies to evade type I IFN signaling (136), such mechanisms with the 

involvement of IL-1β have yet to be explored. Altogether, our study suggests that the IL-1β plays 

a key role in driving dynamics of virus infection in human skin through the recruitment of 

myeloid cell targets, which sustains and spreads the virus. The existence of a complex interplay 

between IL-1β and type I IFN responses determine the regulation of the response to DENV 

infection, whether a skin environment that DENV will encounter favors early viral replication 

(IL-1β influence) or contributes to anti-viral responses (IFN-α influence). 

6.4 PROPOSED MECHANISMS OF DENV SPREAD IN HUMAN SKIN 

Our findings in an ex vivo human skin model of DENV infection reveal for the first time, that 

DENV-infected keratinocytes drive virus spread by orchestrating the release of pro-inflammatory 

chemokines and cytokines, most critically IL-1β, that attract virus-permissive myeloid cells 

which subsequently disseminate virus. The protective effect on DENV infection in African 

ancestry has supported counteracting interactions between IL-1β and type I IFN responses, 
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represented by IFN-α in our study. Overall, our findings in intact human skin has led to the new 

mechanism of early DENV infection illustrated in figure 16. 

 

 

Figure 16. The proposed mechanism of DENV infection in human skin from two ethnic groups. 
 

DENV infection in Caucasian skin induces inflammatory responses by infected keratinocytes and IFN 

blockade to promote virus replication and spread via infected myeloid cells (black arrows). In contrast, 

DENV infection in African American skin appears to favor antiviral responses that limit infection and 

spread (red arrows). 

 

 

Together with previously related findings in murine models (168, 218, 358), it is possible that the 

success invasion of DENV human skin occurs in multiple stages (illustrated in figure 17): (1) in 

epidermis, DENV initially establishes its infection in keratinocytes, which leads to the 

production and release of pro-inflammatory chemokines and cytokines, including IL-1β. 

Mosquito bites and saliva components induce the infiltration of neutrophils into the dermis. (2) 
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DENV infects resident myeloid cells such as LC, DC, and Mϕ, resulting in LC migration from 

epidermis into dermis, and subsequent emigration of myeloid target cells out of the skin to lymph 

nodes. These infected cells are likely to play a role in inducing pro-inflammatory mediators, 

which would act synergistically with IL-1β-derived keratinocytes and neutrophils to attract 

addition resident myeloid cells from a deeper dermis and circulating monocytes from the blood 

into the upper dermis. DENV infection also occurs in other skin cell populations including mast 

cells and fibroblasts. (3) Proportion of infiltrating monocytes will differentiate into monocytes-

derived DC or Mϕ. Together with newly recruited resident myeloid cells, these cells become new 

cellular targets for DENV, leading to enhanced viral loads in the skin and more cell emigration 

to skin-draining lymph nodes. Migrating cells carrying replicating virus would have potentially 

effects on spreading the virus to the circulation and other organs such as brain, liver, lungs, and 

spleens. 
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Figure 17. The 3-stage process of DENV infection in human skin. 

(Top) First stage is the infection and release of IL-1β by keratinocytes and the recruitment of neutrophils 

by effects of mosquito bites and saliva. (Middle) Second stage involves subsequent DENV infection in 

skin-resident myeloid cells and multiple steps of cell recruitments that become infected. DENV infection 

drives viral spread through cell emigration out of the skin. (Bottom) The final stage includes monocyte 

differentiation to DC and Mϕ that can become targets for virus replication. 
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In addition to the primary DENV infection, our study has shown that the presence of immune 

serum in the skin enhanced DENV infection in Mϕ, indicating the occurrence of ADE 

phenomenon. The blockade of FcγRI and FcγRII significantly reduced the enhancement of 

infection in the dermis as well as the number of emigrant cells out of the skin. Here we proposed 

the mechanism of ADE of DENV infection in the skin (Figure 18).  

 

 

 

Figure 18. The proposed mechanism for ADE of DENV infection in human skin. 

Immune serum enhances the recruitment and infection of cells expressing FcγRI and FcγRII including 

Mϕ, DC, and monocytes. In situ ADE of DENV infection displays clustering of the immune cell in the 

upper dermis. The spread of a large amount of the infected cells out of the skin facilitates high viral loads 

present in the blood and organs of dengue patients. 
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In vitro ADE infection has shown to reduce type I IFN responses. Consistent with the 

suppression of IFN-α which corresponds with the progressive replication of DENV in our 

previous results, it is likely that ADE of DENV infection in skin also inhibits type I IFN systems. 

Although no enhancement of infection occurs in keratinocytes and LC, DENV infection in 

keratinocytes and resulting pro-inflammatory cytokines and chemokines would promote the 

infection and recruitment of myeloid cells including LC, and the spread of the cell into the 

media. The immune serum has the significant impact on cells in dermis, particularly Mϕ. FcγRI 

and FcγRII facilitate the ADE of Mϕ infection, resulting in the increase in the number of infected 

Mϕ, and the substantial elevation of the percentage of Mϕ infected from 20-30% to 50-70%. Mϕ, 

infected and uninfected cells, are accumulating in large numbers in response to the enhancing 

activity, together with other cell populations that are also infected. As a result, ADE infection 

displays clustering of infected cells located in the upper dermis, which has confirmed the 

increase of infected cell mass suggested in the current ADE hypothesis. Together with the drastic 

reduction of ADE infection in dermis through the simultaneous inhibition of FcγRI and FcγRII,  

our findings suggest that other cell populations bearing these FcRs (including DC and infiltrating 

monocytes) are likely to participate in the ADE phenomenon in skin. Altogether, the ADE of 

DENV infection in skin would drive the virus replication in the cell in dermis, particularly Mϕ, 

to a much higher levels. Consequently, a large amount of these highly infected cells migrates to 

lymph nodes and distributes the virus to other organs. High viral loads present in the blood and 

organs of dengue patients are one of the major risk for developing severe dengue. 
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6.5 THE INFLUENCE OF SKIN ON DENGUE DISEASE PROGRESSION 

Since DHF and DSS were first identified in the 1950s, the pathogenic mechanism to explain 

severe and fatal dengue remains elusive. The presence of increased plasma leakage, the hallmark 

of DHF, occurs late during the transition from acute infection to defervescence, which is 

coincident with the clearance of virus (23, 398). Together with the strong association of severe 

dengue with heterologous secondary infections and high cytokine levels, evidence have led to a 

compelling view that severe dengue is primarily mediated by immunological responses (94, 

399). On the other hand, the virulence hypothesis suggests that the innate properties of different 

genotypes or strain of DENV profoundly control the outcome of disease. It is clearly that this 

hypothesis cannot fully explain how severe dengue develops when considering that dengue 

pathogenesis is complex and can be affected by many host factors (400). Although the 

involvement of virus in dengue pathogenesis has not been widely appreciated in the field, many 

studies have reported that dengue patients with more severe symptoms had higher viremia levels 

and slower viral clearance in the first days of illness (103, 104). Furthermore, viral loads during 

defervescence can predict progression to DHF (401). These findings suggest the importance of 

early DENV infection as well as the initial interplay between the virus and the host response in 

determining dengue disease severity. 

 

In addition to immune risk factors, race is also a determinant for disease severity (89). Consistent 

with the epidemiological observation in mixed-ancestry populations (19, 90, 298, 299, 316), our 

findings clearly demonstrate that ethnic differences result in the differential host response and 

outcome of infection in the skin; protective effects of African ancestry lead to a lesser extent of 

viral replication, lower levels of IL-1β, and higher and sustained antiviral type I IFN responses. 
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These strongly suggest that the establishment of DENV infection in skin, the first anatomical site 

of DENV transmission, plays a critical role in dictating the disease progression. 

 

DENV infection in skin leads to the abundant production of pro-inflammatory cytokines and 

chemokines including IL-1α, IL-1β, CCL20, and CXCL8 (328, 402, 403). Among these factors, 

IL-1β provides the strongest effect on increasing the recruitment and infection of myeloid cells in 

the skin site of infection. Importantly, the elevation of IL-1β plasma levels has been reported in 

DHF patients and can be used to predict the progression to severe disease. Additionally, an 

increased level of IL-1β is well known in Chikungunya virus infection and rheumatoid arthritis 

as well as other diseases caused by systemic inflammation (404-406). Considering the vasoactive 

function of IL-1β (407), this suggests that the production and release of IL-1β from the skin to 

the bloodstream may potentially lead to physiologic abnormalities of the endothelial lining of 

blood vessels in multiple organs, resulting in vascular leak. 

 

It is well known that in vitro DENV-immune complex infection of monocytes/Mɸ boosts DENV 

replication approximately 100-fold in association with the suppression of type I IFN (178, 282, 

290, 408). In support of the ADE hypothesis, our findings have demonstrated that the immune 

serum significantly enhanced DENV replication in skin-resident Mɸ and possibly DC. This 

results in much higher viral loads in the dermis and the larger number of target cells 

disseminating out of the skin, compared to the infection without the enhancement. In support of 

our proposed mechanism of ADE infection in skin, a previous study found that caspase-1 

mediated IL-1β secretion by DENV-infected primary monocytes was elevated during ADE (339, 

340), suggesting its association with the severity of dengue. Taken together, the ADE 
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phenomenon originating in the dermis of the skin and high virus loads and IL-1β produced by 

keratinocytes have potential to contribute to an early magnitude of viremia, reported to drive the 

serious dengue complications. 

 

Consistent with our cell emigration findings, the skin biopsy report of patients during the first 24 

hours of DSS has reported the significant decrease of migratory skin-resident CD1a+ dermal DC 

compared to healthy skin controls (409), indicating the association of skin cell dissemination and 

dengue severity. The emigration of myeloid cells out of skin could play a key role in promoting 

severe dengue in several ways. First, these myeloid cells, particularly monocytes/Mɸ, become 

activated following DENV infection and release large quantities of cytokines and chemokines 

(such as IL-1β, TNF-α, IL-8 and IL-6), histamines, and reactive oxygen species (180, 340). 

These secreted proteins can induce alterations of the vascular endothelium. Second, one of the 

main function of these migratory immune cells is to activate T cells, either locally in the skin or 

after migrating to the draining lymph nodes. In secondary infection cases, activation of T cells is 

may occur rapidly in skin because of the pre-existing of cross-reactive, DENV-specific skin-

resident T cells (TRM) from the primary infection.  TRM have reduced cytotoxic activities without 

diminishing cytokine production and expansion predominantly during DENV infection (410-

412). The activation of skin CD8+ T cells in DSS suggests that aberrant interactions of TRM cells 

and innate cells in the skin can promote pathogenic responses of cross-reacting, low-affinity T 

cells, which is known as original antigenic sin (409). Along with the potent inflammatory effect 

of IL-1β from keratinocytes and activated myeloid cells, these selectively defective T cell 

responses can lead to a plethora of cytokines and chemokines (cytokine storm) that together 

cause damage to endothelial cells and lead to vascular leak in DHF/DSS (113, 399). Lastly, the 
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emigrant cells carry actively replicating virus out of the skin supposedly spread the virus in the 

circulation and tissues. Although the critical phase of DENV infection (plasma leak) typically 

occurs at the time when the viremia titer is declining or undetectable, some clinical observations 

reported that plasma DENV loads in DHF, but not DF patients, remained at high levels during 

fever and defervescence (413). Furthermore, a study using autopsy tissues from dengue fatal 

cases (DHF/DSS) has reported DENV replication, characterized by anti-NS3 staining, in Kupffer 

cells and hepatocytes in liver, mononuclear phagocytes in spleens and lymph nodes (348). This 

provides a strong evidence for the viral spread from the skin and the viral replication continuing 

in dengue affected tissues despite of the viral clearance in the blood. Due to high serum levels of 

IL-1β, it is possible that DENV constitutes the local infection in various tissues through 

exploiting existing cellular processes such as cell death mechanisms, which involve the release 

of IL-1β (285, 328). As DENV was able to infect lymphatic endothelial cells in the skin model, 

once the virus enters specific tissues, the infection of endothelial cells may occur readily and 

cause vascular leakage. 

 

In summary, several features of DENV infection in skin can influence dengue disease severity 

including the high viral load induced by ADE infection, the production of potent cytokines and 

chemokines, the aberrant activation of T cell responses, and the spread of myeloid target cells to 

other tissues. 
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7.0  CHAPTER SEVEN: PUBLIC HEALTH SIGNIFICANCE 

Dengue has emerged as an increasingly worrisome mosquito-borne viral disease, with 2.5 billion 

people currently living in areas at risk of disease, and countless others exposed through travel. 

There is currently no effective vector control or vaccines. Thus, there is thus an urgent need to 

understand the biology of DENV, the mechanisms underlying the interaction between DENV 

and immune responses to explain factors mediating fatal complications and support the 

development of efficient therapeutic and preventive approaches. 

7.1 TISSUE-ASSOCIATED EVIDENCE OF AN EARLY DENV INFECTION 

The findings of this study will redound to the benefit of dengue research field considering that 

skin is the primary site of DENV transmission and replication. Previously, there has been an 

incomplete understanding of cellular mechanisms that DENV exploits to invade skin. Much of 

the knowledge of cellular tropism of DENV has shaped through the use of primary human cell 

lines and immune-deficient mouse models. Together with access issues to human specimens, the 

understanding of tissue-associate pathophysiology of dengue fever and severe dengue is limited. 

While certain immune cell types such as LC and DC have been implicated as the main targets of 

DENV infection (160, 166), the relative contribution of skin target cells to DENV infection is 

one of the most intriguing questions in the field, as studies remain in conflict. Our study 



 164 

deciphers an early infection following DENV transmission into skin, and demonstrates that the 

contribution of keratinocytes to DENV infection accounts for 60% of overall viral burden in 

human skin. We show that DENV exploits the production of pro-inflammatory cytokines and 

chemokines by activated keratinocytes to recruit additional myeloid cells for replication, which 

leads to higher viral loads in skin. Our findings highlight the previously unidentified role of 

keratinocytes during DENV infection, and greatly advance the understanding of early dynamics 

of DENV infection in human skin.  Also, the study lays the groundwork for the use of an 

established ex vivo human skin model as a system for studying DENV infection of cells as well 

as host innate immune responses, with an advantage of manipulating and controlling biological 

processes through MNA delivery system. 

7.2 IL-1Β AS A PROMISING THERAPEUTIC TARGET OF DENGUE 

We demonstrated that DENV infects at least 7 different cell populations in the epidermis and the 

dermis shown in our skin model. The ability of DENV to infect a wide range of cell types 

suggests difficulties in using an appropriate dose of direct-acting antiviral agents alone to 

effectively combat with high viral burden. However, this could be one of the reasons to explain 

the preclinical failure of multiple anti-DENV agents under development (414). Alternatively, the 

compact 11 kb genome of DENV forces DENV to primarily rely on existing cellular factors and 

interactions for its replication. This viral characteristic can be exploited in attempts to arrest viral 

replication at some point in the viral life cycle through deprivation of these required host factors. 

Our findings have identified that the release of IL-1β from the DENV-infected cell is a 

dependent host factor for DENV spread in human skin. Blocking keratinocyte-derived IL-1β 
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reduced the overall infection of major skin-resident myeloid cells by 75-90%, and reduced the 

total number of infected cells in epidermis and dermis by 33% and 65%, respectively. 

 

The use of IL-1β inhibitors to interfere with DENV infection will likely reduce DENV 

transmission locally in skin and limit the spread of DENV beyond the skin, resulting in low 

viremia levels and reduced risks of severe dengue. In fact, targeting IL-1 or IL-1β therapeutics 

have long been used in other chronic inflammatory diseases such as rheumatoid arthritis and type 

2 diabetes mellitus (415, 416). This ensures safety and efficacy in individuals. The characteristics 

of IL-1β antagonists available in the market, including a short half-life (ranging from days to <1 

month) and a subcutaneous route of administration, are suitable for acute care beyond the earliest 

hours of DENV infection (417, 418). Therefore, IL-1β is not only a conceptually promising host 

target for anti-DENV activity, but it also comes with opportunities for rapid investigations and 

fast-track approvals in the search for safe and effective therapeutics against dengue. Clearly, 

effects of IL-1β inhibitors would only intervene with mechanisms of DENV transmission, but 

not with the virus. In practical terms, the agent may be used in association with other antivirals 

and/or by early treatment to strengthen the overall treatment. 

7.3 IMPLICATIONS FOR DENGUE VACCINES 

While the DENV-ADE hypothesis has been proposed for decades and the phenomenon can be 

readily demonstrated in vitro (100, 231). Whether sub-neutralizing levels of the pre-existing Ab 

from previous infections truly intensify the subsequent DENV infection in severe dengue cases 

remains questionable. This is because not all individuals develop severe dengue in the secondary 
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or subsequent infections. Although there is still no definitive proof of ADE of DENV infection in 

humans, dengue experts have raised concerns that the only licensed dengue vaccine produced by 

Sanofi Pasteur may be triggering ADE and increase the risk of DHF/DSS in dengue naive 

recipients (419). Currently, the vaccine has been suspended in some countries following the 

company’s official announcement that its vaccine could worsen the disease in dengue naïve 

recipients. Given the current scenario, with no specific treatments available for dengue and the 

low-efficacy dengue vaccine, the field of dengue is in need of rigorous ADE investigations in 

humans. ADE, while it is still a theory, could lead to life-threatening complications. Our study in 

human skin explants has demonstrated that the presence of immune serum strongly enhanced the 

DENV infection and recruitment of Mϕ, one of the cell types known to play a key role in ADE, 

and induced more cells spreading out of the skin. Although the skin model of infection does not 

fully represent the in vivo system of humans, the new finding supports that Ab can enhance 

DENV infection at least in human skin and drive more target cells out of the skin to contribute to 

systemic dengue pathogenesis. Our study necessitates evaluations of enhancing Ab or other 

possible ADE-driven potentials when developing and implementing vaccines or therapeutics 

against dengue. 

7.4 IMPLICATIONS FOR DENGUE PREVENTION AND CONTROL IN ETHNIC 

GROUPS 

Our study is the first demonstration for ethnic differences in DENV infection and spread in 

human skin. Consistent with epidemiological evidence in various regions with highly admixed 

populations (19, 90, 298, 316), our findings have experimentally provided a proof of concept in 
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human skin and should serve as a basis for future investigations in skin. This could be further 

implemented in other organs to reveal the mechanisms behind the protection against severe 

dengue in African ancestry. Whether these important differences are driven by biological or 

genetic causes or both, they will open new avenues for the development of novel strategies in the 

prevention and treatment of dengue diseases. This could be a major turning point in the fight 

against severe dengue infections. This will also allow for creation or support of effective 

evidence-based decisions to maximize dengue interventions and immunization programs for 

people of different ethnic backgrounds. 
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