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In this study, the elastic properties of the additive manufactured and the traditional manufactured 

standard sample of stainless steel – grade 420 (SS420) before and after the electrochemical 

corrosion will be characterized by using the line-focused ultrasonic transducer system. The 

calculation was based on the measurement of the surface Rayleigh wave’s velocity. The result 

showed that the velocity of the surface wave and Young’s modulus had a negative correlation 

with the degree of corrosion, which means as the degree of the corrosion became severer, the 

velocity of the surface wave and Young’s modulus decreased. A galvanic cell to simulate the 

electrochemical corrosion in this test was established and a concave transducer with a motorized 

stage was used to emit and detect the ultrasonic waves which could be used in surface wave’s 

calculation. 

This thesis research includes four parts: 1) theoretical consideration of the surface wave 

propagating and the elastic constants in an isotropic material; 2) basic principles and procedures 

of the measurement regarding the surface Rayleigh wave and the corrosion evaluation; 3) data 

processing and the result of Young’s modulus variation with regards to the corrosion; 4) the 

conclusions about this experiment and some future expectations. 
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1.0  INTRODUCTION 

In the recent decades, additive manufacturing represented by 3-D printing industry has swept 

across the world. It makes the metalworking no longer be restricted to conventional processing 

and manufacturing methods (e.g., casting, forging, etc.) and gives more imagination to modern 

fabrication. During the fabrication, most metallic additive manufactured alloys experience 

repeated solid-state phase transformations, which gives them some unparalleled properties that 

conventional fabricated parts can never have [1]. 

Nevertheless, corrosion exists obstinately for all metal alloys no matter they are 

manufactured by traditional subtractive means or by additive manufacturing methods. The failure 

to monitor the seriousness of corrosion can cause a catastrophic accident. Compared with other 

Non-Destructive Testing methods, the method of ultrasonic surface wave testing has a lot of 

advantages including portability, efficiency, and un-contamination etc. [2]. This makes it a quite 

promising method to evaluate or monitor electrochemical corrosion, which is generally initiated 

at the surface of metal alloys in practical applications. 

1.1 CURRENT VESSEL CORROSION TEST METHOD 

One of the most widely used corrosion evaluating area is ship hulls’ corrosion monitoring. In-

service continuous ultrasonic thickness monitoring of ship hulls, conducted in the pulse-echo 
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mode from inside the ships, has the potential to reduce maintenance and service costs. This 

technique can also help to mitigate significant inaccuracy in estimating wall thickness associated 

with surface corrosion while the ship is in service [3].  

However, the ultrasonic transducer operating in this method is through the pulse echo 

mode, which works like a sonar. It can only detect the variation of the vessel hulls’ thickness by 

launching and receiving the echoes. By observing the reflected echo waves on the oscilloscope, 

the thickness change can be calculated so that the corrosion degree will be estimated. In this 

method, the corrosion degree is evaluated through only one dimension – thickness, which is not 

accurate enough to assess the corrosion of a vessel. 

1.2 MOTIVATION 

To improve and expand the methods for the evaluation of the corrosion, we propose to apply the 

surface Rayleigh wave onto the corrosion degree evaluation to replace merely using the echo 

mode. Furthermore, the application of surface Rayleigh wave in corrosion evaluation can not 

only provide the information of the thickness of the ship hulls but also some other information 

that could be dug behind these datum, such as the variation of the elastic properties. With more 

dimension in assessing the corrosion degree of the hulls, it is possible to use this technique in 

wider practical field. For example, by providing the corrosion evaluation and elastic properties of 

the vessel hulls, it can be used in helping choose a salvage scheme and make a decision in 

sunken vessel salvage. 



 3 

2.0  THEORETICAL CONSIDERATION 

As mentioned in the previous section, most of the current vessel corrosion test methods rely on 

the echoes propagating between the interfaces of the sample to be tested, which can only provide 

the information about the thickness variation. To improve the corrosion measurement and 

monitoring, we consider using the surface acoustic waves to obtain more information, such as the 

elastic properties, to evaluate the degree of the corrosion without destroying the specimen. 

2.1 DIFFERENCE BETWEEN BULK WAVES AND SURFACE WAVES 

In physics, a wave is an oscillation accompanied by a transfer of energy. Mechanical waves are 

waves which propagate through a material medium, e.g. solid, liquid and gas, at some speed 

which depends on the elastic and inertial properties of that medium.[4] Different wave has 

different oscillation resulting from its unique particles’ movement. In general, bulk waves are 

elastic waves propagating in solids. They are categorized into a longitudinal wave (or primary 

wave), and a transverse wave (or shear wave); surface waves include Rayleigh wave, Love wave, 

Lamb wave and etc. Since the Rayleigh wave was the wave we chose to observe in this study, let 

us put emphasis on the principle of the Rayleigh wave and the comparison between the Rayleigh 

wave and other bulk waves in the following article. 
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2.1.1 Longitudinal wave 

From the illustration of the longitudinal wave’s propagation as shown in figure below, we 

can see that each particle oscillates back and forth around its equilibrium position at its own pace 

so that they shape the compression or rarefaction area together. After changing the status of 

between the compression and rarefaction in turns, the wave’s propagation in a specific direction 

will be formed. It is worth to notice that in this period, the particles do not spread with the 

propagation of the wave. It seems like the particles transit accompanied by the wave motion. 

However, these particles only pass the energy along the propagation of the wave as a medium. 

 

Figure 1. Particles displacement of the longitudinal wave 

In a word, a traveling wave that causes the particles to oscillate in the direction in parallel 

with the propagation of the wave is called a longitudinal wave. The distance between two 

contiguous compressions (or rarefaction) equals a wavelength – λ. 

2.1.2 Transverse wave 

Compared to the longitudinal wave, the particles’ movement in transverse wave has some 

common places. For example, the oscillation of each particle also has an equilibrium position; 
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and the particles do not move along with the wave either. A significant difference is that the 

particle moves perpendicular to the propagation of the wave. In the figure shown below, we can 

see that the particles oscillate in vertical direction up and down around its original position while 

the wave moves in horizontal direction. Another difference distinguished from the longitudinal 

wave is that transverse wave does not present any compression or rarefaction area. It has crests 

and troughs instead. 

 

Figure 2. Particles displacement of the transverse wave 

To summarize, a traveling wave that causes the particles of the medium to oscillate in the 

direction orthogonal to the wave motion is called a transverse wave or shear wave. The distance 

between two contiguous crests (or troughs) equals a wavelength. 

2.1.3 Rayleigh wave 

As the longitudinal wave and the transverse wave mentioned before, the particles’ 

displacement of the Rayleigh wave can be treated as a combination of both longitudinal and 

transverse motions in some degree. Let us imagine that an individual particle of the medium in 

Rayleigh wave has to oscillate not only in vertical direction but also in horizontal direction, 
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which means it can be perturbed back and forth while it vibrates up and down. Thus, the net 

motion of each individual particle is like an ellipse as show in the following figure. 

 

Figure 3. Particles displacement of the Rayleigh wave 

From the late 19th century, the waves that can be propagated over the plane boundary 

between an elastic half-space and a sufficiently rarefied medium are named after the English 

scientist Lord Rayleigh (J. Strutt) to memorize his historical contribution. The Rayleigh waves 

involved the principal type of earthquake wave observed at that time in earth tremors. [5] As we 

can see in the above figure, the motion of the particles near the surface is severer than it beneath 

the surface, which can be told from the sizes of the oval motion trails. The maximum energy of a 

surface wave, therefore, is concentrated on the surface where the waves are generated. Compared 

with other types of earthquake waves, such as primary wave (longitudinal wave) and secondary 

wave (transverse wave), the destructiveness of the surface wave is tremendous. That is the reason 

why the surface waves have been studied deeply and widely in seismology. 

Besides researches in the seismology field, the Rayleigh surface wave in the ultrasonic 

range has found considerable application. Since it is sensitive to the surficial condition, it can be 

used to detect the state of the surface layer of a sample, i.e., in the inspection of surface and near-

surface defects in materials, such as metals, alloys, glasses etc. In this study, we consider how to 
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use some characters of the Rayleigh wave to derive the relationship between the material’s 

elastic properties and the propagation velocities instead of using the Rayleigh wave to inspect the 

flaws of the material directly. 

2.2 ELASTIC CONSTANTS AND SURFACE WAVE 

2.2.1 Propagation at an interface between isotropic solid and liquid 

Let us consider the propagation of surface waves at the boundary between two half-space 

– a solid and a liquid. As shown in the figure below, the direction of the wave motion is 

coincident with the x-axis. 

 

Figure 4. Coordinate definition at a two half-space boundary 

We denote the potentials of the longitudinal and transverse wave by 𝜑  and 𝜓 

respectively. It must satisfy the following wave equations: 

 
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑧2
+ 𝑘𝑙

2𝜑 = 0 (2.2.1-1) 

 
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑧2
+ 𝑘𝑡

2𝜓 = 0 (2.2.1-2) 
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In these two expressions,  𝑘𝑙 = 𝜔√𝜌 (𝜆 + 2𝜇)⁄  and 𝑘𝑡 = 𝜔√𝜌 𝜇⁄  are the wave numbers 

for longitudinal and transverse modes respectively, where 𝜔 is the circular frequency, 𝜆 and 𝜇 

are the elastic Lamè constants, and 𝜌 is the density of the medium. [6] 

In the meantime, the expression for the potential 𝜑𝐿𝑞  in the liquid must satisfy the 

analogous equation as following: 

 
𝜕2𝜑𝐿𝑞

𝜕𝑥2
+
𝜕2𝜑𝐿𝑞

𝜕𝑧2
+ 𝑘𝐿𝑞

2 𝜑𝐿𝑞 = 0 (2.2.1-3) 

Similar to previous wave equations, 𝑘𝐿𝑞 also represents the wave numbers in the liquid, 

which equals 𝜔 𝑐𝐿𝑞⁄ , where 𝑐𝐿𝑞  is the velocity in the liquid. We only need to consider the 

longitudinal situation here, since there is no shear modulus in the state of liquid. 

Let us denote the components of the particle displacement along the x and z-axes by 𝑈 

and 𝑊 respectively, that can be written in terms of 𝜑 and 𝜓 as the following equations: 

 𝑈 =
𝜕𝜑

𝜕𝑥
−
𝜕𝜓

𝜕𝑧
 (2.2.1-4) 

 𝑊 =
𝜕𝜑

𝜕𝑧
+
𝜕𝜓

𝜕𝑥
 (2.2.1-5) 

Then the stress components may also be represented in terms of 𝜑 and 𝜓 according to 

the equstions:  

 𝜎𝑥𝑥 = 𝜆 (
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑧2
) + 2𝜇 (

𝜕2𝜑

𝜕𝑥2
−

𝜕2𝜓

𝜕𝑥𝜕𝑧
) (2.2.1-6) 

 𝜎𝑧𝑧 = 𝜆 (
𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑧2
) + 2𝜇 (

𝜕2𝜑

𝜕𝑧2
+

𝜕2𝜓

𝜕𝑥𝜕𝑧
) (2.2.1-7) 

 𝜎𝑥𝑧 = 𝜇 (
𝜕𝑈

𝜕𝑧
+
𝜕𝑊

𝜕𝑥
) = 𝜇 (2

𝜕2𝜑

𝜕𝑥𝜕𝑧
−
𝜕2𝜓

𝜕𝑧2
+
𝜕2𝜓

𝜕𝑥2
) (2.2.1-8) 

 

Due to a plane harmonic wave propagating in the positive x-direction, we can assume 

that the potential 𝜑 and 𝜓 have forms like these: 
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 𝜑 = 𝐹(𝑧)𝑒𝑖(𝑘𝑥−𝜔𝑡) (2.2.1-9) 

 𝜓 = 𝐺(𝑧)𝑒𝑖(𝑘𝑥−𝜔𝑡) (2.2.1-10) 

Where 𝑘 is the surface wave number, and 𝜔 is the circular frequency. 

Substituting them into eq. (2.2.1-1) & eq. (2.2.1-2), we can have: 

 
𝑑2𝐹(𝑧)

𝑑𝑧2
− (𝑘2 − 𝑘𝑙

2)𝐹(𝑧) = 0 (2.2.1-11) 

 
𝑑2𝐺(𝑧)

𝑑𝑧2
− (𝑘2 − 𝑘𝑡

2)𝐺(𝑧) = 0 (2.2.1-12) 

By eliminating 𝑒𝑖(𝑘𝑥−𝜔𝑡) from both sides of each equation. 

Obviously, these two homogeneous-linear differential equations have two linearly 

independent solutions: 

 𝐹(𝑧) = ±𝐴𝑒
−(√𝑘2−𝑘𝑙

2)∙𝑧
 (2.2.1-13) 

 𝐺(𝑧) = ±𝐵𝑒
−(√𝑘2−𝑘𝑡

2)∙𝑧
 (2.2.1-14) 

Where 𝐴 and 𝐵 are arbitrary constants. Here, negative powers were chosen because as the 

depth z increased, the potentials were expected to exhibit corresponding exponentially decay. 

So far, our assuming expression of 𝜑 and 𝜓 should be: 

 𝜑 = 𝐴𝑒−𝛼∙𝑧𝑒𝑖(𝑘𝑥−𝜔𝑡) (2.2.1-15) 

 𝜓 = 𝐵𝑒−𝛽∙𝑧𝑒𝑖(𝑘𝑥−𝜔𝑡) (2.2.1-16) 

Where 𝛼2 = 𝑘2 − 𝑘𝑙
2 and 𝛽2 = 𝑘2 − 𝑘𝑡

2 

Since we seek a surface wave solution, the potentials 𝜑 and 𝜓 in the solid must describe 

longitudinal and transverse inhomogeneous waves propagating in the x direction and decaying in 

the z direction. The conditions of the problem demand that the stresses 𝜎𝑧𝑧 and 𝜎𝑥𝑧 go to zero at 

the position 𝑧 = 0. As a result, we finally obtain the expression for 𝜑 and 𝜓: 
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 𝜑 = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)−𝛼∙𝑧 (2.2.1-17) 

 𝜓 = −𝑖𝐴
2𝑘𝛼

𝑘2+𝛽2
𝑒𝑖(𝑘𝑥−𝜔𝑡)−𝛽∙𝑧 (2.2.1-18) 

Then the particle displacement along x- and z- axes of solid part can be written by 

substituting 𝜑 and 𝜓 expressions into eq. (2.2.1-4) & eq. (2.2.1-5): 

 𝑈 = 𝐴𝑘 (𝑒−𝛼𝑧 −
2𝛼𝛽

𝑘2+𝛽2
𝑒−𝛽𝑧) 𝑒𝑖(𝑘𝑥−𝜔𝑡+

𝜋

2
)
 (2.2.1-19) 

 𝑊 = −𝐴𝛼 (𝑒−𝛼𝑧 −
2𝑘2

𝑘2+𝛽2
𝑒−𝛽𝑧) 𝑒𝑖(𝑘𝑥−𝜔𝑡) (2.2.1-20) 

Now let us consider the wave propagating in the liquid. It must pursue a path along the x-

axis with a velocity equal to the phase velocity of the aforementioned inhomogeneous waves. 

This means that the wave in the liquid has to satisfy the boundary condition as it in the solid, the 

longitudinal stress in the liquid and solid should be identical, and the tangential stress should be 

zero. 

In a similar way, we are able to obtain the components of the displacements along the x- 

and z- axes in the liquid: 

 𝑈𝐿𝑞 = −𝐴𝑘
𝛼𝑘𝑡

2

√𝑘𝐿𝑞
2 −𝑘2(𝑘2+𝛽2)

𝑒
𝑖[𝑘𝑥−𝜔𝑡−(√𝑘𝐿𝑞

2 −𝑘2)∙𝑧]
 (2.2.1-21) 

 𝑊𝐿𝑞 = 𝐴𝑘𝑡
𝛼𝑘𝑡

(𝑘2+𝛽2)
𝑒
𝑖[𝑘𝑥−𝜔𝑡−(√𝑘𝐿𝑞

2 −𝑘2)∙𝑧]
 (2.2.1-22) 

Again, 𝑘 is the surface wave number, and 𝐴 is an arbitrary constant. The characteristic 

equation determining the wave number 𝑘 has the form: [6] 

 4𝑘2𝛼𝛽 − (𝑘2 + 𝛽2)2 − 𝑖
𝜌𝐿𝑞

𝜌
∙
𝛼𝑘𝑡

4

𝛾
= 0 (2.2.1-23) 

Where = √𝑘2 − 𝑘𝑙
2 , 𝛽 = √𝑘2 − 𝑘𝑡

2, and 𝛾 = √𝑘𝐿𝑞
2 − 𝑘2. 
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2.2.2 Elastic Constants 

As we know, the Hooke’s Law can be written as 𝜎 = 𝑐𝜀, where 𝑐 is an elastic constant. 

In a solid, the deformation caused by the wave propagation is very small. Therefore, we can treat 

the internal stresses and strains have a linear relationship as described in Hooke’s Law. A 

generalized form is: 

 𝜎𝑖𝑗 = ∑ 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙𝑘𝑙  (2.2.2-1) 

The subscripts 𝑖𝑗𝑘𝑙 count from 1 through 3 to represent the orthogonal axes’ direction in 

a three-dimensional space. And the coefficients 𝑐𝑖𝑗𝑘𝑙  are components of the stiffness tensor. 

According to the knowledge of permutation and combination, we can easily figure out that there 

are 34 = 81 of the coefficients 𝑐𝑖𝑗𝑘𝑙 . Fortunately, the tensors 𝜎𝑖𝑗   and 𝜀𝑘𝑙   are symmetric, the 

coefficient makes no difference if the first two or last two subscripts are interchanged. That 

means: 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 and 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘. Due to this benefit, the number of the elastic coefficients 

reduce from 81 to 36. Indeed, a pair of unordered indices (𝑖, 𝑗) can give only six independent 

values.  

Thus, we are able to denote them in a different way called Voigt Notation1. Let us take a 

look at the elastic constant matrix: 

 

(

  
 

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

𝑐14 𝑐15 𝑐16
𝑐24 𝑐25 𝑐26
𝑐34 𝑐35 𝑐36

𝑐41 𝑐42 𝑐43
𝑐51 𝑐52 𝑐53
𝑐61 𝑐62 𝑐63

𝑐44 𝑐45 𝑐46
𝑐54 𝑐55 𝑐56
𝑐64 𝑐65 𝑐66)

  
 

 (2.2.2-2) 

                                                 

1 For details, see the Appendix A 
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According to symmetry, 𝑐12 = 𝑐21, etc., we can reduce the independent coefficients from 

36 to 21. This matrix is called TRICLINIC in crystals of the triclinic system, and it is the lowest 

symmetry crystal. 

For the ORTHORHOMBIC crystal, there are three mutually perpendicular two-fold 

rotation axes and three mutually perpendicular mirror planes. Let us image that 𝑥1, 𝑥2 and 𝑥3 are 

coincident with those three two-fold rotation axes. This means that any 𝑐𝑖𝑗𝑘𝑙  for which any 

subscript, 1, 2, or 3, appears an odd number of times must be zero. [8] Applying this condition 

systematically to the 𝑐𝑖𝑗𝑘𝑙 leads to the orthorhombic elastic constant matrix as follow: 

 

(

 
 
 

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑐44 0 0
0 𝑐55 0
0 0 𝑐66)

 
 
 

 (2.2.2-3) 

Now the independent coefficients reduce to 9. Based on this principle, we can easily 

derive the CUBIC crystal’s elastic constant matrix from orthorhombic one by noting that the 𝑥𝑖 

axes are all equivalent for cubic symmetry. Thus, 𝑐12 = 𝑐1122 = 𝑐1133 = 𝑐13, etc. 

 

(

 
 
 

𝑐11 𝑐12 𝑐12
𝑐12 𝑐11 𝑐12
𝑐12 𝑐12 𝑐11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑐44 0 0
0 𝑐44 0
0 0 𝑐44)

 
 
 

 (2.2.2-4) 

So far, we have 3 independent elastic constants in cubic symmetry element. Obviously, 

an isotropic material has all of these symmetry characters as mentioned before. Therefore, it has 

these three elastic constants - 𝑐11, 𝑐12, 𝑐44  at least. Furthermore, if we rotate the cubic 𝑐1111 

about the 𝑥3 axis by an arbitrary angle 𝜃, we can obtain a relationship between these three elastic 

constants. The four-rank tensor transformation formula is given by [9]: 
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 𝑐′𝑖𝑗𝑘𝑙 = ∑ 𝑎𝑖𝑚𝑎𝑗𝑛𝑎𝑘𝑜𝑎𝑙𝑝𝑚𝑛𝑜𝑝 𝑐𝑚𝑛𝑜𝑝  (2.2.2-5) 

Where 𝑎𝑖𝑚 is a direction cosine where the first subscript refers to the 𝑥′𝑖 axis while the 

second refers to the 𝑥𝑚 axis. This transformation rule gives: 

 𝑐1111 → 𝑐1111(cos
4 𝜃 + sin4 𝜃) + 2𝑐1122 cos

2 𝜃 sin2 𝜃 + 4𝑐2323 cos
2 𝜃 sin2 𝜃   (2.2.2-6) 

Requiring the right-hand side of expression (2.2.2-6) to equal  𝑐1111 and apply the Voigt 

Notation gives: 

 𝑐11 = 𝑐11(cos
4 𝜃 + sin4 𝜃) + 2𝑐12 cos

2 𝜃 sin2 𝜃 + 4𝑐44 cos
2 𝜃 sin2 𝜃  

4𝑐44 = (
cos2 𝜃 + sin2 𝜃 − cos4 𝜃 − sin4 𝜃

cos2 𝜃 sin2 𝜃
) 𝑐11 − 2𝑐12 

4𝑐44 = (
1

sin2 𝜃
−
cos2 𝜃

sin2 𝜃
+

1

cos2 𝜃
−
sin2 𝜃

cos2 𝜃
) 𝑐11 − 2𝑐12 

 𝑐44 =
1

2
(𝑐11 − 𝑐12) (2.2.2-7)  

To express the elastic parameters in terms of the elastic constants 𝑐𝑚𝑛 , one of these 

elastic parameters called Bulk Modulus will be addressed at first. Let us take a look at an 

infinitesimal cube in the solid as shown below. The length of each side equals 𝑎. After the 

stresses are applied at each face, the elongations along each axis are ∆𝑥, ∆𝑦, and ∆𝑧, respectively. 

Thus, the volume of this cube after deformation is ∆𝑉 = ∆𝑥 ∙ ∆𝑦 ∙ ∆𝑧. Since the deformation is 

very tiny, we can assume that the volume change is: 

 
∆𝑉

𝑉
≈
∆𝑥

𝑎
+
∆𝑦

𝑎
+
∆𝑧

𝑎
= 𝜀1 + 𝜀2 + 𝜀3 (2.2.2-8) 
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Figure 5. Deformation of a cubic element 

Recalling from the eq. (B-9), we can derive a compliance matrix which is similar to the 

elastic constant matrix: 

 

(

  
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6)

  
 
=

(

  
 

𝑠11 𝑠12 𝑠13
𝑠21 𝑠22 𝑠23
𝑠31 𝑠32 𝑠33

𝑠14 𝑠15 𝑠16
𝑠24 𝑠25 𝑠26
𝑠34 𝑠35 𝑠36

𝑠41 𝑠42 𝑠43
𝑠51 𝑠52 𝑠53
𝑠61 𝑠62 𝑠63

𝑠44 𝑠45 𝑠46
𝑠54 𝑠55 𝑠56
𝑠64 𝑠65 𝑠66)

  
 

(

  
 

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6)

  
 

 (2.2.2-9) 

Besides, the definition of the bulk modulus is 

 𝐵 = −𝑉
𝑑𝑃

𝑑𝑉
≅ −

∆𝑃

∆𝑉/𝑉
 (2.2.2-10) 

Solving these three equations simultaneously with the hydrostatic conditions: 𝜎1 = 𝜎2 =

𝜎3 = −∆𝑃, and 𝜎4 = 𝜎5 = 𝜎6 = 0. 

{

𝜀1 = −∆𝑃(𝑠11 + 𝑠12 + 𝑠13)

𝜀2 = −∆𝑃(𝑠12 + 𝑠22 + 𝑠23)

𝜀3 = −∆𝑃(𝑠13 + 𝑠23 + 𝑠33)
 

 ∴   𝐵 =
1

𝑠11+𝑠22+𝑠33+2(𝑠12+𝑠23+𝑠13)
 (2.2.2-11) 

According to the cubic symmetry, we have 𝑠11 = 𝑠22 = 𝑠33 and 𝑠12 = 𝑠23 = 𝑠13. Hence, 

the bulk modulus becomes: 
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 𝐵𝑐𝑢𝑏𝑖𝑐 =
1

3(𝑠11+2𝑠12)
 (2.2.2-12) 

From the cubic elastic constant matrix, we can easily write the following equations: 

{

𝜎1 = 𝑐11𝜀1 + 𝑐12(𝜀2 + 𝜀3)

𝜎2 = 𝑐11𝜀2 + 𝑐12(𝜀3 + 𝜀1)

𝜎3 = 𝑐11𝜀3 + 𝑐12(𝜀1 + 𝜀2)
   and   {

𝜎4 = 𝑐44𝜀4
𝜎5 = 𝑐44𝜀5
𝜎6 = 𝑐44𝜀6

 

For the previous equation set, combining the second and third equations, we can obtain: 

 𝜎2 + 𝜎3 = 𝑐11(𝜀2 + 𝜀3) + 𝑐12(2𝜀1 + 𝜀2 + 𝜀3) (2.2.2-13) 

Solve with the first equation by eliminating the "𝜀2 + 𝜀3" term, we have: 

 (𝑐11
2 + 𝑐11𝑐12 − 2𝑐12

2 )𝜀1 = (𝑐11 + 𝑐12)𝜎1 − 𝑐12𝜎2 − 𝑐12𝜎3 (2.2.2-14) 

In the similar way, we can express 𝜀2 and 𝜀3 in terms of 𝑐11, 𝑐12, 𝜎1, 𝜎2, and 𝜎3. 

Thus, we express the strains in terms of the stresses, and get the cubic compliance matrix 

in terms of the elastic constants: 

 

(

  
 

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6)

  
 
=

(

 
 
 
 
 
 

𝑐11+𝑐12

𝑁
−
𝑐12

𝑁
−
𝑐12

𝑁

−
𝑐12

𝑁

𝑐11+𝑐12

𝑁
−
𝑐12

𝑁

−
𝑐12

𝑁
−
𝑐12

𝑁

𝑐11+𝑐12

𝑁

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1
𝑐44⁄ 0 0

0 1
𝑐44⁄ 0

0 0 1
𝑐44⁄ )

 
 
 
 
 
 

(

  
 

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6)

  
 

 (2.2.2-15) 

Where 𝑁 = 𝑐11
2 + 𝑐11𝑐12 − 2𝑐12

2 . 

Then 𝐵𝑐𝑢𝑏𝑖𝑐 can be written in terms of the elastic constants 

 𝐵𝑐𝑢𝑏𝑖𝑐 =
𝑐11+2𝑐12

3
 (2.2.2-16) 

And Young’s modulus can also be expressed in terms of the elastic constants: 

 𝐸1 =
1

𝑠1
=
𝑐11
2 +𝑐11𝑐12−2𝑐12

2

𝑐11+𝑐12
 (2.2.2-17) 
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The index 1 indicates that this Young’s modulus represents the linear relationship 

between the tensile stress and the corresponding strain along the 𝑥1 axis. The same results can be 

derived for the other two directions because of the cubic symmetry. 

Recalling for the eq. (2.2.2-7), we can easily obtain the Young’s modulus for the 

isotropic material in terms of the elastic constants by applying the relation 𝑐12 = 𝑐11 − 2𝑐44 : 

 𝐸 =
3𝑐11𝑐44−4𝑐44

2

𝑐11−𝑐44
 (2.2.2-18) 

2.2.3 Acoustic waves in solids 

Now let us take a look at an infinitesimal cube in the solid as shown below.  

 

Figure 6. A pair of normal stress illustration of a cubic element 

The force applied in x-direction should be equal to: 

 𝐹𝑥11 = 𝜎11 ∙ ∆𝑦∆𝑧 = (
𝜕𝜎11

𝜕𝑥
∆𝑥)∆𝑦∆𝑧 (2.2.3-1) 

In the similar way, we can obtain the relationship between the force and the shear stress 

in the same direction. One pair of shear stress 𝜎12 is illustrated in the figure shown below. It is 
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worthy to notice that the shear stress 𝜎𝑖𝑗 is the stress which is applied at 𝑗 face (the plane which 

is perpendicular to the 𝑗  axis, here we use 1,2,3 to represent the 𝑥, 𝑦, 𝑧, respectively, to better 

match the notation mentioned in the previous sections) pointing to 𝑖 direction. 

 

Figure 7. A pair of shear stress illustration of a cubic element 

Reference to Figure 7 shows 

 𝐹𝑥12 = 𝜎12 ∙ ∆𝑥∆𝑧 = (
𝜕𝜎12

𝜕𝑦
∆𝑦)∆𝑥∆𝑧 (2.2.3-2) 

Similarly, we can have 

 𝐹𝑥13 = 𝜎13 ∙ ∆𝑥∆𝑦 = (
𝜕𝜎13

𝜕𝑧
∆𝑧)∆𝑥∆𝑦 (2.2.3-3) 

Apply the Newton’s Second Law and summarize these three equations together, we can 

get the net force acting to x-direction: 

𝐹𝑥 = 𝑚𝑎𝑥 

(
𝜕𝜎11
𝜕𝑥

+
𝜕𝜎12
𝜕𝑦

+
𝜕𝜎13
𝜕𝑧
)∆𝑥∆𝑦∆𝑧 = 𝜌∆𝑉 ∙

𝜕2𝑢1
𝜕𝑡2

 

 (
𝜕𝜎11

𝜕𝑥
+
𝜕𝜎12

𝜕𝑦
+
𝜕𝜎13

𝜕𝑧
) = 𝜌

𝜕2𝑢1

𝜕𝑡2
 (2.2.3-4) 
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Eq. (2.2.3-4) is obtained by eliminating ∆𝑉 = ∆𝑥∆𝑦∆𝑧 from both sides of the equation; 

𝑢1 is the deformation of the cube in x direction. 

Consequently, we can rewrite the Eq. (2.2.3-4) in a general form: 

 ∑
𝜕𝜎𝑖𝑗

𝜕𝑥𝑖

3
𝑗 = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2
 (2.2.3-5) 

In the meanwhile, 𝑖 runs from 1 to 3 to represent the 𝑥, 𝑦, and 𝑧 axis respectively. 

Recall the eq. (2.2.2-1) and make an exchange of virtual subscripts within a sum 

produces, 

 ∑
𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
𝑗 = ∑ 𝑐𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑥𝑗𝜕𝑥𝑙
𝑗𝑘𝑙  (2.2.3-6) 

Then we have 

 ∑ 𝑐𝑖𝑗𝑘𝑙
𝜕2𝑢𝑘

𝜕𝑥𝑗𝜕𝑥𝑙
𝑗𝑘𝑙 = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2
 (2.2.3-7) 

Similar to Eq. (2.2.1-9), let us assume the plane wave solution is: 

 𝑢𝑖 = 𝑢𝑖
𝑜𝑒𝑖(𝐾⃗⃗ ∙𝑟 −𝜔𝑡) (2.2.3-8) 

Where 𝐾⃗⃗  is the wave vector (|𝐾⃗⃗ | = 𝐾 = 2𝜋/𝜆, with 𝐾 being the wave numbers and 𝜆 

being the wave length towards the 𝐾⃗⃗  direction), 𝜔  is the angular frequency, and the index 𝑖 

ranges from 1 to 3 to represent the three directions. Note that 𝐾⃗⃗ ∙ 𝑟 = ∑ 𝐾𝑙𝑥𝑙𝑙 . We can obtain the 

following expression by substituting the eq. (2.2.3-8) into the eq. (2.2.3-7) and carrying out some 

simple computation: 

 ∑ (𝑐𝑖𝑗𝑘𝑙𝐾𝑗𝐾𝑙 − 𝜌𝜔
2𝛿𝑖𝑘)𝑢𝑘

𝑜 = 0𝑗𝑘𝑙  (2.2.3-9) 

Now define 𝐾𝑗 = 𝐾 cos(𝜃𝑗) = 𝐾𝑛𝑗, where 𝑛𝑗  is the cosine of the angle between  𝐾⃗⃗  and 

the 𝑥𝑗 axis; moreover, 𝑛⃗  is the unit vector along the 𝐾⃗⃗  direction, which means 𝑛1
2 + 𝑛2

2 + 𝑛3
2 = 1. 

Thus, substituting this definition into the eq. (2.2.3-9) gives: 
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 ∑ (𝑐𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙 ∙ 𝐾
2 − 𝜌𝜔2𝛿𝑖𝑘)𝑢𝑘

𝑜 = 0𝑗𝑘𝑙  (2.2.3-10) 

By recalling some basic concepts of waves, we can derive that 

 
𝜔

𝐾
=
2𝜋 𝑇⁄

2𝜋 𝜆⁄
=
𝜆

𝑇
= 𝑣 (2.2.3-11) 

Diving the eq. (2.2.3-10) by 𝐾2, we have 

 ∑ (𝑐𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙 − 𝜌𝑣
2𝛿𝑖𝑘)𝑢𝑘

𝑜 = 0𝑗𝑘𝑙  (2.2.3-12) 

Then the wave equation for plane wave solutions has become a set of linear equations.  

If we note the term 𝑐𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙 as 𝛤𝑖𝑘, we can rewrite eq. (2.2.3-12) like: 

 (

𝛤11 − 𝜌𝑣
2 𝛤12 𝛤13

𝛤12 𝛤22 − 𝜌𝑣
2 𝛤23

𝛤13 𝛤23 𝛤33 − 𝜌𝑣
2

)(

𝑢1
𝑜

𝑢2
𝑜

𝑢3
𝑜
) = 0 (2.2.3-13) 

The condition for a nontrivial solution for this equation is that the determinant of the 

coefficient of the 𝑢𝑘
𝑜 should be zero, which gives: 

 |

𝛤11 − 𝜌𝑣
2 𝛤12 𝛤13

𝛤12 𝛤22 − 𝜌𝑣
2 𝛤23

𝛤13 𝛤23 𝛤33 − 𝜌𝑣
2

| = 0 (2.2.3-14) 

Now let us look back to the section 2.2.2. If we take the elastic constant matrix of a cubic 

crystal into account, the Christoffel equation for cubic symmetry becomes [10]: 

(

𝑛1
2𝑐11 + (𝑛2

2 + 𝑛3
2)𝑐44 − 𝜌𝑣

2 𝑛1𝑛2(𝑐12 + 𝑐44) 𝑛1𝑛3(𝑐12 + 𝑐44)

𝑛2𝑛1(𝑐12 + 𝑐44) 𝑛2
2𝑐11 + (𝑛3

2 + 𝑛1
2)𝑐44 − 𝜌𝑣

2 𝑛2𝑛3(𝑐12 + 𝑐44)

𝑛3𝑛1(𝑐12 + 𝑐44) 𝑛3𝑛2(𝑐12 + 𝑐44) 𝑛3
2𝑐11 + (𝑛1

2 + 𝑛2
2)𝑐44 − 𝜌𝑣

2

)(

𝑢1
𝑜

𝑢2
𝑜

𝑢3
𝑜
) = 0 

(2.2.3-15) 

For isotropic case, we can just take a simple example of the propagation along the 𝑥1 

direction, which means 𝑛1 = 1 and 𝑛2 = 𝑛3 = 0. Then we substitute these conditions into the 

previous equation and let the determinant of the coefficient of the 𝑢𝑘
𝑜 equals 0: 
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 |

𝑐11 − 𝜌𝑣
2 0 0

0 𝑐44 − 𝜌𝑣
2 0

0 0 𝑐44 − 𝜌𝑣
2

| = 0 (2.2.3-16) 

We will get three eigenvalues for this equation: 𝑐11 = 𝜌𝑣
2, 𝑐44(1) = 𝜌𝑣

2, 𝑐44(2) = 𝜌𝑣
2. 

Let us take a look at it deeply: 

[8] For the first eigenvalue, 𝑐11 = 𝜌𝑣
2. If we substitute it back into eq. (2.2.3-15), we 

will find that 

 {

0𝑢1
𝑜 = 0

(𝑐44 − 𝑐11)𝑢2
𝑜 = 0

(𝑐44 − 𝑐11)𝑢3
𝑜 = 0

 (2.2.3-17) 

Resulting in 𝑢2
𝑜 = 𝑢3

𝑜 = 0 with no restriction on 𝑢1
𝑜. The direction of particle motion is along the 

𝑥1 axis as is the direction of travel of the wave, so this is a longitudinal wave with speed  

 𝑣𝑙 = √
𝑐11

𝜌
 (2.2.3-18) 

 For the second and third eigenvalues, 𝑐44 = 𝜌𝑣
2. Just similar to the previous analysis, it 

gives 𝑢1
𝑜 = 0 with no restrictions on  𝑢2

𝑜 or 𝑢3
𝑜. The displacements of 𝑢2

𝑜 and 𝑢3
𝑜 are normal to the 

direction of the wave propagation, and thus represent transverse waves along the 𝑥2 or 𝑥3 axis 

with speed 

 𝑣𝑡 = √
𝑐44

𝜌
 (2.2.3-19) 

Due to the isotropic character, this result is pervasive to the isotropic material. Recalling 

from the conclusion (eq. (2.2.2-18)) we drew in the last section, we can obtain a very useful 

formula that can be used to reveal the relationship between the Young’s modulus of the isotropic 

material and the velocities of waves propagating through it: 

 𝐸 = 𝜌𝑣𝑡
2 3𝑣𝑙

2−4𝑣𝑡
2

𝑣𝑙
2−𝑣𝑡

2  (2.2.3-19) 
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With this equation, we have an opportunity to evaluate the Young’s modulus of an 

isotropic material by testing the velocities of the longitudinal and transverse waves applied on it.  

 

2.2.4 Ratio of the velocity of Rayleigh wave and transverse wave 

From the previous section, we can see that if we can measure the sample’s density, the 

velocity of the longitudinal and transverse wave at the same time, we are able to easily calculate 

the Young’s modulus and other elastic properties of the sample. However, we cannot measure 

the velocity of the transverse wave directly by using only one transducer. Therefore, we need to 

find other ways to figure out the transverse wave’s speed by measuring the velocity of the 

Rayleigh wave and building a relationship between them. 

Fortunately, Viktorov [6] established a relationship among the velocity of the surface 

Rayleigh wave, the longitudinal wave, and the transverse wave, so that we can derive any one of 

them from the other two. 

Recalling from the eq. (2.2.1-23), if we let the real and imaginary part be equal to zero, it 

reduces to the form: 

 (
𝑣𝑅

𝑣𝑡
)
6

− 8(
𝑣𝑅

𝑣𝑡
)
4

+ 8 [3 − 2 (
𝑣𝑡

𝑣𝑙
)
2

] (
𝑣𝑅

𝑣𝑡
)
2

− 16 [1 − (
𝑣𝑡

𝑣𝑙
)
2

] = 0 (2.2.4-1) 

If we define (
𝑣𝑅

𝑣𝑡
)
2

as 𝑅 , then we can rewrite this equation in another form, which is 

sometimes called the Rayleigh equation to memorize Lord Rayleigh in 1885: 

 𝑅3 − 8(𝑅 − 1)(𝑅 − 1 − 𝑐12 𝑐11⁄ ) = 0 (2.2.4-2) 

As we know that 𝑐12 𝑐11⁄  can be treated as the Poisson’s ratio ν , which is ranging 

between 0 and 0.5 for most materials. If we plot the two functions: 𝑓1(𝑅) = 𝑅
3 8⁄  and  𝑓2(𝑅) =
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(𝑅 − 1)(𝑅 − 1 − 𝑐12 𝑐11⁄ ) in Matlab2, and changing the range of 𝑐12 𝑐11⁄  from 0 to 0.5. We will 

find out that the positive real root locates between 0.764 and 0.869. Therefore, the ratio 
𝑣𝑅

𝑣𝑡
= √𝑅 

ranges from 0.874 to 0.9325. This ratio’s range is a very important judgement criterion in our 

following measurement to exclude the extraneous roots of the transverse wave’s velocity. 

2.3 RESEARCH HISTORY 

In 1970s, lots of researchers devoted themselves on expanding the application fields of ultrasonic 

transducer systems based on the development of a mechanically scanned acoustic microscope 

[11]. It was found in 1977 that the curve V(z), which represented the output of a piezoelectric 

transducer, varied significantly with the distance between the acoustic probe and the surface of 

the sample [12]. After that, the relationship between the intervals in V(z) and the velocity of the 

Rayleigh surface wave was revealed by Parmon and Bertoni [13] in 1979.  

Although this great achievement made it possible to measure the acoustic properties 

quantitatively, the principle of the point-focus system (using a spherical lens with which a plane 

wave radiating from the transducer is circularly focused into a point) had a disadvantage to 

excite leaky surface acoustic wave propagating in all directions [14]. In order to detect the 

acoustic properties of both isotropic and anisotropic materials, a linearly focused acoustic beam 

was proposed by Kushibiki et al. in 1981 [15]. Subsequently, the following studies were based 

on this design of transducers. 

                                                 

2 For details, see the Appendix B 
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The design of the transducer system in this study also refers to this type. A linearly 

focused lens-less polyvinylidene fluoride (PVDF) transducer which offers 10 MHz central 

frequency is chosen from the comparison of the previous works. 

2.4 PRINCIPLE OF MEASUREMENT 

2.4.1 Snell’s Law and critical angle 

Since we want to use the Rayleigh wave to help characterize the elastic properties, we have to 

learn how to excite the Rayleigh wave at first. As we know, when a wave comes across an 

interface of two different material, part of it reflects and part of it refract at its own unique angle. 

It is worth to notice that the refraction takes place between two materials with the different 

acoustic velocities. [2] When a wave encounters the interface of two different kinds of materials, 

a portion of it will propagate at a different speed other than it in the previous material. 

Consequently, this reason changes the direction of the wave’s propagation so that it looks like 

“bent”.  

As we can see from the figure below, let us notate the incident angle as 𝜃𝑖  and the 

refraction angle as 𝜃𝑟. According to the Snell’s Law, we have: 

 
sin𝜃𝑖

𝑣𝑖
=
sin𝜃𝑟

𝑣𝑟
 (2.4.1-1) 
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Figure 8. The wave’s refraction 

It is worth noting that the incident or refraction angle is proportional to the velocity of the 

propagating at its side since the sinusoidal function possesses monotonicity in the range from 0 

to 𝜋 2⁄ . Another detail that deserves to be taking care of is that only when the refraction takes 

place from the material with lower propagating velocity to the material with higher velocity, we 

have an opportunity to let the refraction angle become 𝜋 2⁄  before the incident angle turns to 

𝜋 2⁄ . 

Because the transverse wave does not propagate as faster as the longitudinal wave, it does 

also not refract as much as the longitudinal wave does. In the meantime, the ultrasonic we used 

in the experiment is usually combined with both transverse wave and longitudinal wave. As a 

result, we have two different refraction angles for the longitudinal wave and the transverse wave 

respectively. When a combined wave propagates from a slower to a faster material, there is an 

incident angle letting the refraction angle of the longitudinal wave become 𝜋 2⁄  (At this time, the 

refraction angle of the transverse wave is less than 𝜋 2⁄  due to the slower traveling velocity); as 

the incident angle increases, at some moment, there is another incident angle that makes the 

angle of the transverse wave’s refraction to become 𝜋 2⁄  as well. The former is called “the first 

critical angle”. And the latter is called “the second critical angle”. As we introduced before, the 

surface Rayleigh wave can be treated as a combination of a longitudinal wave and a transverse 
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wave. Therefore, the Rayleigh wave can only be generated slightly beyond the second critical 

angle. 

In conclusion, the concave probe of the PVDF transducer we used in the following 

measurement covers almost 110°, which is greater than the second critical angle, so that the 

surface wave can be excited. 

2.4.2 Time-resolved Defocusing Method 

As mentioned before, a bunch of measurements taking advantages of the relationship between 

the dip interval and Rayleigh wave velocity were conducted after the significance discovered by 

Permon et al. These techniques, however, required a strict mechanical precision of the driving 

system that might reflect on the scanning of an acoustic lens or sample. It was difficult to apply 

this technique in which rapidity and easy-manipulation were required [16]. 

To eliminate this restriction, Yamanaka proposed a more direct way to measure the 

Rayleigh wave velocity without z scanning called time-resolved defocusing method [16]. In this 

method, he utilized the difference of traveling time between the axial wave and leaky surface 

wave, which were easily observed from the output signal, to calculate the velocity of Rayleigh 

wave -𝑣𝑅. 
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Figure 9. Working principle of concave transducer [16] 

The principle of the measurement is shown in Figure 8. The axial wave propagates along 

the path EO’E, while the surface Rayleigh wave excited at angle θR goes through the path 

ABO’CD. Therefore, the traveling time of the axial wave is: 

 𝑇𝐴 =
2(𝑓−𝑧)

𝑣𝑤
 (2.4.2-1) 

where 𝑣𝑤 is the velocity of the wave propagating in the water as coupler. 

And the traveling time of the Rayleigh wave is: 

 𝑇𝑅 =
2(𝑓−

𝑧

cos𝜃𝑅
)

𝑣𝑤
+
2(tan𝜃𝑅)∙𝑧

𝑣𝑅
 (2.4.2-2) 

where 𝑣𝑅 is the velocity of the Rayleigh wave on the sample surface. 

    Solving the eq. (2.4.2-1) and (2.4.2-2) simultaneously, we can have 

 t =  𝑇𝑅 − 𝑇𝐴 =
2𝑧(1−cos𝜃𝑅)

𝑣𝑤
  (2.4.2-3) 

by eliminating  𝑣𝑅 with the relation 

 
𝑣𝑤

𝑣𝑅
=

sin𝜃𝑅

sin 90°
 (2.4.2-4) 
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From the eq. (2.4.2-3) we can find that the distance z and the time interval t are linearly 

dependent, since cos 𝜃𝑅 and 𝑣𝑤 are both established constant. The linear relationship between the 

distance z and the time interval t can be described as follows: 

 
𝑑𝑧

𝑑𝑡
=

𝑣𝑤

2(1−cos𝜃𝑅)
 (2.4.2-5) 

In the meanwhile, we can derive from the Snell’s Law that 

 𝑣𝑅 =
𝑣𝑤

sin𝜃𝑅
=

𝑣𝑤

√1−cos2 𝜃𝑅
       (2.4.2-6) 

Eliminate cos 𝜃𝑅 by substituting eq. (2.4.2-5), then we get 

 𝑣𝑅 = [
1

𝑣𝑤(
𝑑𝑧

𝑑𝑡
)
−

1

4(
𝑑𝑧

𝑑𝑡
)
2]

−1 2⁄

 (2.4.2-7) 

where  𝑣𝑤 = 1480 𝑚 𝑠⁄ , the velocity of the acoustic wave in distilled water. 

From the above, it can be concluded that the velocity of the Rayleigh surface wave is able 

to be calculated using the Eq. (2.4.2-7) by measuring the slope regarding the time interval t and 

the corresponding defocusing position z. 

 

2.4.3 Chemical Corrosion 

As we know, there are many kinds of metallic corrosion existing in our daily life and industry. 

But the commonest one is electrochemical corrosion which is under the conditions of galvanic 

cell (including an anode and a cathode), electrolyte and closed circuit. For example, when a 

metal is placed in the moist atmosphere, it forms a water film on the surface which includes a 

small quantity of hydrogen ions, hydroxyl ions, and dissolved oxygen. As a result, this moisture 

film works like the electrolyte. Combining with the metal itself and the impurity elements (e.g. 
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carbon or other nobler element) in this metal, it becomes numerous tiny galvanic cells on the 

surface of the metal. In each galvanic cell, active metal works as the anode where the oxidation 

reaction takes place; inert element works as the cathode at which the reduction reaction happens. 

 

Figure 10. Electrochemical Corrosion in Active Metal [17] 

The electrons transfer in this process accelerates the reduction-oxidation reaction, that is 

the reason why the electrochemical corrosion is faster and severer than the general chemical 

corrosion. The corrosion can be separated into two parts according to whether it gets electrons or 

not. As shown in Fig. 2, the relatively active metal (Fe in this example) which loses negative 

charges in the oxidizing process becomes ferrous ion. The reaction equation at the anode is: 

 𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− (2.4.3-1) 

Then the metal ions dissolve in the moisture film and the electrons migrate to the cathode 

where they are taken up by a depolarizer [17] : 

Hydrogen evolution corrosion: 

 2𝐻+ + 2𝑒− → 𝐻2 (𝑔) (2.4.3-2) 

Oxygen absorption corrosion: 
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 𝑂2 + 2𝐻2𝑂 + 4𝑒
− → 4𝑂𝐻− (2.4.3-3) 

Other nobler metal: 

 𝑀𝑛+ + 𝑛𝑒− → 𝑀 (𝑠) (2.4.3-4) 

Because oxygen exists almost anywhere in the atmosphere and it can be lightly dissolved 

in a thin film of adsorbed moisture, the oxygen absorption corrosion is more commonly seen 

than the hydrogen evolution corrosion. Moreover, the oxygen absorption corrosion could happen 

in faintly acidic, neutral or alkaline environment. Thus, the large amounts of electrochemical 

corrosion in the air are oxygen absorption corrosion. The total reaction equation of it is (taking 

iron for example): 

 4𝐹𝑒 + 3𝑂2 + 6𝐻2𝑂 → 4𝐹𝑒(𝑂𝐻)3 (2.4.3-5) 

Since the corrosion reaction changes the component and its molecular structure on the 

surface of the metal, which can be sensitively detected by the Rayleigh surface wave, we can 

estimate the elastic property by measuring the variation of the Rayleigh wave’s velocity. 
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3.0  EXPERIMENTAL PROCEDURE 

From the previous theoretical analysis, we are clear now that the objective of this 

experiment is to measure the density of the sample and the defocus-length with regards to 

traveling time so that we can calculate the velocity of the Rayleigh wave. After that, we will 

estimate the velocity of the longitudinal wave by measuring the thickness of the sample and the 

round-trip traveling time of the longitudinal wave’s propagation. Finally, we can solve the elastic 

property – Young’s modulus, by means of deriving the velocity of the transverse wave from the 

velocities we indirectly measured in this experiment. 

3.1 EQUIPMENT SET-UP 

As mentioned in the last chapter, the design of the transducer system mainly refers to the work of 

Yamanaka [16] and D. Xiang [18]. 

In this measurement, a PVDF thin film is attached to a cylindrical concave surface as the 

testing probe at the terminal of the stage. The concave’s focal distance is 35mm and its aperture 

half angle is 50 degrees. The interior of the concave is filled up with tungsten powder and epoxy 

with a weight ratio of 2:1 as high impedance backing material. The stage is controlled by a 

programmed stepping motor (SURUGA SEIKI CO., LTD, Shizuoka, Japan) so that the defocus 

process of the PVDF probe can be precisely controlled. Connected to the pulser/receiver 



 31 

(5072PR, OLYMPUS), the PVDF transducer can emit and receive the ultrasonic signal through 

the couplant – distilled water and convert it into an electric signal, which can be easily analyzed. 

The received signal is sent to an oscilloscope (4034A, AGILENT TECHNOLOGIES) where we 

can observe and record the variation of the waveform. The schematic diagram of the Line-Focus 

Ultrasonic Testing System used in this test is shown in Figure 10. 

 

Figure 11. Schematic diagram of the Ultrasonic Testing System 

 

3.2 PREPARATION OF SAMPLES 

In this test, we choose the standard stainless steel and additive manufactured steel SS420 as 

samples. Connecting with copper, the samples are immersed in the electrolyte solution for 10 

days, and 30 days respectively. To aggravate the chemical attack, we pump air and add nitric 

acid into the solution. 

One comparison of the samples before and after the process is shown in Figure 12 and 

13. And Figure 14 shows the galvanic corrosion in process. 
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Figure 12. Samples before corrosion 

 

Figure 13. Samples after corrosion 

 

Figure 14. The process of the corrosion 
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3.3 MEASUREMENT OF THE DENSITY 

Since the samples we used in this experiment are standard samples, which means we can look up 

for its original density directly on the internet. For example, the density of the annealed SS 420 

product from McMaster-Carr is 𝜌 = 7750 𝑘𝑔 𝑚3⁄  and the density of the additive manufactured 

sample from ExOne™ M-Flex is 𝜌 = 7860 𝑘𝑔 𝑚3⁄  [19]. 

As the experiment carries on, the corrosion will change not only the components beneath 

the surface of the sample but also the whole mass of the sample due to the rust formation and the 

eroded material’s detachment. Especially for the additive manufactured sample, the variation of 

the density is conspicuous because the chemical binder is vulnerable during the corrosion. Thus, 

we need to measure the density of the additive manufactured material after the artificial 

corrosion process. 

 

Figure 15. Measurement of the sample’s volume by drainage method 
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We used the drainage method to estimate the volume of the sample once it got dried from 

the electrolytic bath. As the figure shown above, the volume of the drained water is 84.4 ml. 

After we measured the mass of the corroded sample, we can calculate the density of the sample 

after corrosion by using the formula: 𝜌 = 𝑚/𝑉. 

3.4 DATA RECORDING DURING TIME-RESOLVED DEFOCUSING 

At the beginning of the measurement, we need to adjust the stage to find out the focal position 

where the amplitude of the output voltage is largest. During this calibration, ensure the surface of 

the sample remaining horizontal as much as possible so that the energy of the signals reflecting 

from the sample can be strong enough to be received by the transducer. The waveform at the 

focal position is shown in the figure below. 

 

Figure 16. Waveform at the focal position 
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From the figure above, we can see that the largest crest is the wave reflected from the 

surface of the sample directly. Since the energy is very concentrated, the crest of this wave at the 

focal position is extremely high. The second very tiny crest on this figure indicates that there is a 

wave reflecting from the bottom of the sample. Due to the energy consumption in many times 

propagation between different materials, the crest of this wave we can obverse on the 

oscilloscope is not that obvious. At this focal position, we denote it as the original position of z, 

that is, 𝑧 = 0. 

As the transducer gets close to the sample, the waves begin to separate from each other 

progressively. In the figure shown below, we can see that the first crest still represents the axial 

wave reflecting from the surface of the sample; the second wave (which separates from the first 

one slower than the wave on its right side) is the Rayleigh wave (highlighted by the pink color 

arrow); the distance between the crest of the first wave and the crest of the last tiny wave 

(highlighted by the blue color arrows) has not changed since the thickness of the sample is the 

same. 
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Figure 17. Waveform during the defocus process 

As the defocusing keeps going, we can record the corresponding time difference between 

the peak of the axial wave and the peak of the Rayleigh wave at each step. Recording about 10 

sets of data, we can draw them on a diagram. After using a linear trendline to fit these divergent 

points, we can have a relationship of position z with regards to traveling time t. 
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4.0  DATA PROCESSING AND RESULTS 

Once the testing system was set up, we could calibrate the stage to the focal position where the 

amplitude of the output voltage we observed on the oscilloscope was the largest. Subsequently, 

we defocused the motorized stage 0.2mm per step in z-direction. Then we recorded the position 

value z and the corresponding traveling time of the axial waves and the Rayleigh wave at each 

step. After that, we could depict points on the Cartesian coordinate and use a linear trendline to 

fit them, so that the slope of the trendline was the value 𝑑𝑧 𝑑𝑡⁄  that we would need in Rayleigh 

wave’s speed calculation. 

4.1 RESULTS OF THE STANDARD SAMPLE 

 

Figure 18. Defocus-length with respect to traveling time of standard samples 
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From the figure above, we can see that the values of 𝑑𝑧 𝑑𝑡⁄  (the slope of the trendline) for the 

uncorroded, 10 days corroded, and 30 days corroded status are 6.1216, 4.9696, and 4.7391 

respectively. Based on these values, we can begin calculating the velocity of the Rayleigh wave 

and deriving the other parameters and elastic properties as listed below. 

Table 1. Parameters and Elastic Properties’ Calculation of Standard Samples 

 dz/dt *𝑣𝑤(m/s) *𝑣𝑅 (m/s) *𝑣𝑙 (m/s) *𝑣𝑡 (m/s) ρ(kg/m3) E(Gpa) 

intact 6.1216 1480 3105.285 5403.509 3417.719 7750 211.214 

10d-corroded 4.9696 - 2818.982 4791.667 3128.002 7612 168.128 

30d-corroded 4.7391 - 2758.232 4618.182 3082.175 7584 158.274 

 

As we can see from Table 1, the velocity of the Rayleigh wave, which can be calculated 

according to the eq. (2.4.2-7), becomes smaller after the sample is corroded. Then, the 

longitudinal wave can be obtained by using formula 𝑣𝑙 = 2𝛿 𝑡⁄ , where δ is the thickness of the 

sample and t is the traveling time in the sample back and forth. 

Referring to the equation proposed by D. Royer and E. Dieulesaint [20], we can calculate 

the shear wave’s velocity by solve the cubic equation as follows: 

 (
𝑣𝑡

𝑣𝑅
)
3

− (
𝑣𝑡

𝑣𝑅
)
2

− 0.718 (
𝑣𝑙

𝑣𝑅
)
2

(
𝑣𝑡

𝑣𝑅
) +

3

4
(
𝑣𝑙

𝑣𝑅
)
2

= 0 (4.0-1) 

Obviously, there are three roots after solving a cubic equation. We can easily exclude the 

negative root because it is not in accord with the common sense. Recalling from the criterion we 

drew in section 2.2.4, we can exclude another root that is out of the range - 𝑣𝑅 𝑣𝑡⁄  is between 

0.874 and 0.9325. The remaining root is the solution of the transverse wave we are seeking for in 

this experiment. 
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Therefore, the change of the elastic properties can be calculated based on the variation of 

the surface, longitudinal and shear wave’s speed [2]. Using the drainage method, we can measure 

the density of the sample. Finally, by recalling the formula Eq. (2.2.3-19), we can characterize 

the Young’s modulus of the standard SS 420 sample under different corrosion conditions. 

Compared to the official material data in table 2, we can figure out that the uncorroded 

sample’s elastic property measured by the line-focused ultrasonic transducer quite match its 

original data. 

Table 2. Stainless Steel Grade 420 Typical Material Properties 

Material Properties Value 

Constituent (%) 

Carbon 0.15 – 0.46 

Iron 82.1 –87.15 

Manganese 0.40 – 1.00 

Phosphorus 0 – 0.04 

Sulfur 0 – 0.03 

Chromium 12.00 – 14.00 

Density (kg/m3) 7750 

Elastic Modulus (GPa) 200 

 

4.2 RESULTS OF THE ADDITIVE MANUFACTURED SAMPLE 

For the additive manufactured sample, the analysis is similar. We are able to draw a diagram 

about 𝑑𝑧 𝑑𝑡⁄  like the previous sample. Unfortunately, the waveform of the sample under 30 days 
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corrosion is too weak to distinguish the Rayleigh wave from other surface waves, which will be 

discussed in the following section. In figure 19, we can obtain the value of 𝑑𝑧 𝑑𝑡⁄  which can be 

used in velocity of transverse wave calculation. 

 

Figure 19. Defocus-length with respect to traveling time of additive manufactured samples 

From table 3, we can also conclude that the velocity of the Rayleigh wave becomes 

smaller after the sample is corroded. Accordingly, the velocities of the longitudinal and 

transverse waves decrease as well. 
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 dz/dt *𝑣𝑤(m/s) *𝑣𝑅 (m/s) *𝑣𝑙 (m/s) *𝑣𝑡 (m/s) ρ(kg/m3) E(Gpa) 

uncorroded 4.9401 1480 2811.278 5342.593 3039.401 7860 183.086 

10d-corroded 4.4255 1480 2673.443 4803.279 2918.747 6933.3 142.619 
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5.0  DISCUSSION AND CONCLUSION 

From the previous analysis, it can be concluded that as the corrosion becomes severer the 

velocity of the Rayleigh wave we detect becomes slower. What’s more, the Young’s modulus we 

calculated based on the measurement becomes smaller as well. If we compare the corroded 

standard samples’ elastic properties with the data given by D. Chicot et al. [21], we will notice 

that they are close to the mechanical property of magnetite (Fe3O4). The result coincides well 

with the color of the corroded layer we observed from figure 13 because the magnetite (also 

known as ferrous-ferric oxide) is black or brownish-black. 

For the additive manufactured sample case, similar conclusion can be drawn. The 

velocity of the Rayleigh wave and Young’s modulus decrease at some degree after getting 

corroded. This phenomenon can be explained by the reduction of the stiffness constants. 

However, the sample after 30 days corrosion can hardly be tested, since the surface roughness 

becomes too large. A longer wavelength ultrasonic wave would be suggested to apply into the 

future measurement. 

In conclusion, characterization of the additive manufacture metal alloys’ corrosion by 

PVDF line focused ultrasonic transducer system was conducted in this study. Compared to the 

additive manufactured stainless steel, the corrosion evaluation of the traditional manufactured 

sample is more feasible and practical. 
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6.0  EXPERIMENT IMPROVEMENT AND FUTURE WORK 

6.1 THE VULNERABLE STEEL TYPE 

The steel type used in this experiment is stainless steel grade 420. As a kind of stainless steel, it 

usually contains 10-20% chromium which is the main element for resistance to corrosion. With 

over 11% chromium, steel is about 200 times more resistant to corrosion than general mild 

steel.[22] Thus, in our future improvement, we can consider to use some mild steel containing 

less chromium elements instead of using the stainless steel so that we were able to obtain a 

thorough corrosion and the corrosion could be accelerated. 

6.2 THE PATTERNS OF CORROSION 

Through our samples preparation and the whole experiment, the samples underwent mostly the 

uniform corrosion with low amounts of roughness. However, in the real situation, the corrosions 

happened on the surface of the marine vessels are pitting corrosion in most cases. The most 

challenging thing is that the non-uniform corrosion with high surface roughness raise a higher 

requirement to feasibility and reliability of the ultrasonic measurement since the roughness of the 

surface might cause an effect to the precise of the measurement results. 



 43 

6.3 THE PORTABILITY OF THE LINE-FOCUSED TRANSDUCER SYSTEM 

To eliminate the limitation of the line-focused transducer system operating in laboratory 

environment, it is worthful to attempt to build a chamber with the PVDF probes. Then the 

chamber is filled up with the coupling medium, such as distilled water, silicone oil, and etc. If 

this idea is able to be realized, it could be a promising way to expand the applications of this 

transducer system to a more practical field. And the measurement will become easier to take due 

to the improvement in portability and integrity of this system. 



 44 

APPENDIX A 

VOIGT NOTATION 

The generalized form of Hooke’s Law is: 

 𝜎𝑖𝑗 = ∑ 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙𝑘𝑙  (A-1) 

The index 𝑖𝑗𝑘𝑙 count from 1 through 3 to represent three directions in a true space. And 

the coefficients 𝑐𝑖𝑗𝑘𝑙  are components of the stiffness tensor. According to the knowledge of 

permutation and combination, we can easily figure out that there are 34 = 81 of the coefficient 

𝑐𝑖𝑗𝑘𝑙. Fortunately, even in the most general case, there are many symmetry relations among the 

𝑐𝑖𝑗𝑘𝑙 reducing the number of independent 𝑐𝑖𝑗𝑘𝑙 considerably, since the tensors 𝜎𝑖𝑗  and 𝜀𝑘𝑙  are 

symmetric so that the coefficient makes no difference if the first two or last two subscripts are 

interchanged. That means: 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 and 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘. This symmetry under the interchange of 

indices make possible a considerable simplification with the change in notation, often known as 

the Voigt Notation. 

So we can notate them in a different way: [7] 

 (1,1) ↔ 1   (2,2) ↔ 2   (3,3) ↔ 3   (A-2) 

(2,3) = (3,2) ↔ 4   (1,3) = (3,1) ↔ 5   (1,2) = (2,1) ↔ 6 

For examples, 
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 𝑐14 = 𝑐1123 = 𝑐1132 (A-3) 

𝑐45 = 𝑐2313 = 𝑐2331 = 𝑐3213 = 𝑐3231 

This Voigt Notation can be extended to the stresses and strains so that Eq. (A-1) becomes: 

 𝜎𝑚 = ∑ 𝑐𝑚𝑛𝜀𝑛
6
𝑛=1  (A-4) 

It is supposed to be noticed that for stresses tensor, 𝜎𝑚 ↔ 𝜎𝑖𝑗 as the notation of the elastic 

coefficient; however, for strains tensor, the situation becomes more complicated. The notation of 

strains should be defined as: 

 𝜀1 ↔ 𝜀11   𝜀2 ↔ 𝜀22   𝜀3 ↔ 𝜀33   (A-5) 

𝜀4 ↔ 2𝜀23   𝜀5 ↔ 2𝜀13   𝜀6 ↔ 2𝜀13 

With the results, the expansion for 𝜎11 may be written as: 

 𝜎1 = 𝑐11𝜀1 + 𝑐12𝜀2 + 𝑐13𝜀3 + 𝑐14𝜀4 + 𝑐15𝜀5 + 𝑐16𝜀6 (A-6) 

Whose original expression should be: 

 𝜎11 = 𝑐1111𝜀11 + 𝑐1122𝜀22 + 𝑐1133𝜀33 + 2𝑐1123𝜀23 + 2𝑐1131𝜀31 + 2𝑐1112𝜀12 (A-7) 

Hooke’s Law can also be written inversely to express the strains in terms of stresses: 

 𝜀𝑖𝑗 = ∑ 𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙𝑘𝑙  (A-8) 

Similarly, it can be expressed in this term: 

 𝜀𝑚 = ∑ 𝑠𝑚𝑛𝜎𝑛
6
𝑛=1  (A-9) 

However, because of the factor 2 of 𝜀, the notation of 𝑠𝑚𝑛 becomes further complicated. 

For example, for the expression of 𝜀23: 

 𝜀23 = 𝑠2311𝜎11 + 𝑠2322𝜎22 + 𝑠2333𝜎33 + 2𝑠2323𝜎23 + 2𝑠2331𝜎31 + 2𝑠2312𝜎12 (A-10) 

When we apply the Matrix Notation, we should also take 𝜀4 ↔ 2𝜀23 into consideration. 

Thus, we have: 

 𝜀4 = 𝑠41𝜎11 + 𝑠42𝜎22 + 𝑠43𝜎33 + 𝑠44𝜎23 + 𝑠45𝜎31 + 𝑠46𝜎12 (A-11) 
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Where  

 𝑠41 = 2𝑠2311, 𝑠42 = 2𝑠2322, 𝑠43 = 2𝑠2333,  (A-12) 

 𝑠44 = 4𝑠2323, 𝑠45 = 4𝑠2331, 𝑠46 = 4𝑠2312 

In general, if 𝑝 is the amount of subscripts greater than 3 in the pair (𝑚, 𝑛), then 

 𝑠𝑚𝑛 = 2
𝑝𝑠𝑖𝑗𝑘𝑙 (A-13) 
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APPENDIX B 

RATIO OF VR/VS ANALYSIS IN MATLAB 

Recalling the Rayleigh equation, we have: 

 𝑅3 − 8(𝑅 − 1)(𝑅 − 1 − 𝑐12 𝑐11⁄ ) = 0 (B-1) 

As we know that 𝑐12 𝑐11⁄  can be treated as the Poisson’s ratio ν, which is ranging between 0 and 

0.5 for most materials. Let us assume that 𝑓1(𝑅) = 𝑅
3 8⁄  and  𝑓2(𝑅) = (𝑅 − 1)(𝑅 − 1 −

𝑐12 𝑐11⁄ ), where the range of 𝑐12 𝑐11⁄  is from 0 to 0.5. If we let these two functions be equivalent, 

the points of intersection of these two functions should be the solution to eq. (B-1). 

The MATLAB code and the corresponding figure are shown as follows: 
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Figure 20. Code for solving intersection problem 

 

Figure 21. Plot for solving the Eq. (B-1) 
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 As we can see from figure 21, when 𝑐12 𝑐11⁄  running from 0 to 0.5, the curve of this 

function 𝑓2(𝑅) switches from the red curve (light solid curve) to the orange one (bold solid 

curve). The intersection between these curves and the blue dash curve is dynamic, moving from 

𝑅1 to  𝑅2 accordingly. Thus, we can conclude that the positive real root of eq. (B-1) locates 

between 0.764 and 0.869, which means the ratio 
𝑣𝑅

𝑣𝑡
= √𝑅  ranges from 0.874 to 0.9325 

correspondingly. 
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