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Recent studies have implicated that an inadequate host biomaterial response, driven 

predominately by pro-inflammatory (M1) macrophages and downstream formation of fibrotic 

capsule, is a major cause of the severe surgical mesh-related complications in pelvic prolapsed 

woman. We have hypothesized that shifting this macrophage response towards an anti-

inflammatory (M2) phenotype will lead to a better implant integration into the host tissue. A 

coating for local and transient delivery of interleukin-4 (IL-4, an M2 cytokine) was developed, 

using layer-by-layer (LbL) deposition of chitosan and dermatan sulfate. Implantation studies 

revealed that the released IL-4 promoted a predominant M2-like macrophage response, 

associated to decreased fibrotic capsule deposition and changes in collagen composition, 

suggesting improved mesh integration into the host tissue and potential for reduction in 

downstream complications. 

Immunosenescence, dysregulated macrophage function, and delayed resolution of the immune 

response against pathogens have been demonstrated in aged individuals. We have sought to 

elucidate the impacts of aging upon the host response to polypropylene mesh in aged versus 

young mice. The host response in aged mice resulted in delayed cell recruitment, significant 

differences in macrophage marker expression and a highly shifted pro-inflammatory (M1) 
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response at early stages, associated with an unresolved host response in the long-term, compared 

to young mice. 

A sequential delivery of MCP-1 (macrophage chemoattractant protein-1) and IL-4 has been 

developed to restore the delayed cell recruitment and reverse the inflammatory macrophage 

response in old mice, respectively. The host response to single and sequential delivery regimens 

was well distinct in old versus young implanted mice. While single delivery of IL-4 was not 

enough to counteract the high inflammatory response in old mice, the sequential delivery of 

MCP-1 and IL-4 was capable of restoring recruitment and M2-like macrophage response, 

associated to decreased capsule deposition in the long term. Contrarily, the sequential delivery 

regimen in young mice was not as effective as IL-4 alone promoting an M2-like response, but 

still capable of reducing inflammatory macrophages and capsule deposition. These results 

demonstrate that a proper understanding of biological context has the potential to improve the 

performance of biomaterials-based approaches in aged individuals. 
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1.0  HOST RESPONSE AGAINST SURGICAL MESH FOR PELVIC ORGAN 

PROLAPSE 

The host response against biomaterials, also known as foreign body reaction, is an 

adverse process initiated by the innate immune system and ubiquitous to all implanted 

biomaterials, that results in chronic inflammation and fibrotic scarring around the implant, 

negatively impacting the performance of biomaterials and integrity of the host tissue. Recently, 

macrophages have been recognized as intrinsic drivers of the dysregulated events that follow 

material implantation, and hence restoring balanced macrophage regulation by 

immunomodulation will be explored. The present dissertation is focused on the controversial use 

of surgical mesh for pelvic organ prolapse, as the implantation of these devices is highly 

associated to severe complications, in which an exacerbated and persistent inflammatory host 

response against the mesh biomaterial is suggested as a major cause. However, the results of this 

work can potentially be applied to multiple other biomaterials, medical devices and tissue 

engineering approaches for improved integration into the host tissue.  
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1.1 PELVIC ORGAN PROLAPSE 

Pelvic organ prolapse (POP) is a gynecologic condition commonly observed in women of 

advance age and who have undergone vaginal childbirth [1-6], with significant negative impact 

on quality of life. POP occurs when loss of support to the vagina causes the organs supported by 

it, to descend or fall out of their normal position in the pelvis into the vaginal canal. The vagina 

is supported by a series of connective tissues (often referred to as ligaments), striated muscle 

(levator ani muscles) and dysfunction of one or more of these structures can lead to reduced 

pelvic support and subsequent pelvic organ prolapse [1, 5, 7-9]. POP is also highly associated to 

urinary incontinence [5]. The anterior wall of the vagina is the most common tissue structure to 

prolapse, usually involving the descent of the bladder, also called cystocoele. Other types of 

prolapse include enterocoele (small intestine), colon (sigmoidocoele) and rectocoele (rectum) 

[6]. It is now widely accepted that POP can be considered physiological with aging when 

prolapse is both asymptomatic and situated in levels above the hymen [5, 6, 10].  

Women with more clinically relevant vaginal prolapse can experience one or more 

symptoms, including but not limited to bulging sensation, vaginal pressure, urinary incontinence 

and dyspareunia [5, 6]. Table 1 list the symptoms in women with advanced POP. 

 
 
 

Table 1. Symptoms in women with clinically relevant Pelvic Organ Prolapse [5, 6]. 

Vaginal Urinary Gastrointestinal Sexual 

Bulging Incontinence Incontinence Dyspareunia 

Pressure Frequency, urgency 

or hesitancy 

Feeling of incomplete 

emptying 
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Table 1 (continued). 

Heaviness Weak or prolonged 

urinary stream 

Straining during 

defecation 

 

 Feeling of incomplete 

emptying 

Urgency  

 Manual assistance to 

start or complete 

voiding 

Assisted evacuation 

to start or complete 

defecation 

 

  Feeling obstruction 

during defecation 

 

 
 
 

1.2 EPIDEMIOLOGY 

Pelvic floor disorders have a disproportionate effect upon women’s healthcare and its associated 

costs. As many as one third of premenopausal to a half of postmenopausal women are affected 

by pelvic floor disorders, with increased incidence in women over the age of 50, who have 

experience vaginal birth and/or obesity [11, 12]. 

More than 300,000 women per year in the United States alone will undergo surgery for 

pelvic organ prolapse, with direct costs totaling more than $1 billion per year, and estimated to 

increase a 46% in the next decades due to the increasingly aging population [13, 14]. Native 

tissue repair has a recurrence rate exceeding 30% in the following 2 years after surgery; 
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therefore, mechanical reinforcement of tissues using synthetic mesh materials became 

extensively used, accounting for a third of the total surgical procedures performed [11, 12]. It is 

projected that by the year 2050, 4.9 million women will be affected with prolapse in the U.S. 

alone [11, 15]. In 2010, approximately 100,000 surgeries were performed for prolapse using 

synthetic mesh [13, 15]. 

1.3 TREATMENTS FOR PELVIC ORGAN PROLAPSE 

Treatment depends largely on the severity of the symptoms, including pelvic-floor muscle 

training, pessaries and surgery. While pelvic-floor muscle training has been shown to be an 

effective treatment of urinary incontinence, the effects on pelvic organ prolapse are not clear, 

with only a few studies suggesting it can slow its progression [5, 6]. 

The use of pessary is the only non-surgical treatment available, and reserved for patients 

that are poor surgery candidates or declined surgery [5, 6]. These devices are inserted inside of 

the vaginal cavity to provide mechanical support and relieve pressure on pelvic organs. 

Currently, there are 20 different types of pessaries available in the market, made of plastic or 

silicone. The most common types of pessaries include the ring, the Gelhorn and donut, all 

available in different sizes. The ring (with or without support) is a good first choice and the most 

commonly used, because it is easy to insert and remove. Manufacturers recommend that these 

patients do follow-up visits every 4 to 6 weeks. The most common side-effects of pessaries are 

vaginal discharge and odor, while other serious complications have been reported due to 

negligent use.  
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Surgery is the option for women who fail or decline pessary treatments and present 

advanced prolapse. Reconstructive surgery aims to correct the prolapsed vagina while preserving 

sexual function. Surgery techniques are classified by transabdominal and transvaginal routes 

(Table 2), and frequently augmented with surgical mesh implantation [5, 6, 10]. A combination 

of these procedures may also be performed. In the particular case of anterior wall prolapse 

(cystocele), the most frequent type of transabdominal procedure is the sacral colpopexy, mainly 

done by an open incision or keyhole incision using laparoscopic and robot approaches 

implantation [5, 6, 10]. On the other hand, the most common transvaginal procedure is the 

colporrhaphy, which in combination with synthetic mesh offers improved reproducibility and 

low rates of prolapse recurrence; however, highly associated to complications [10, 16-18]. For 

this reason, sacral colpopexy is the preferred method of surgical repair, but not exempt of mesh-

related complications, and if present the severity may be greater [5, 6, 10]. 

 
 
 

Table 2. Rate Transabdominal and transvaginal surgery procedures for pelvic organ prolapse [5, 6]. 

Transabdominal procedures Transvaginal procedures 

Hysterectomy Hysterectomy 

Sacral colpopexy Colporrhaphy 

Paravaginal repair McCall culdoplasty 

Vault suspending and uterosacral 

ligament plication 

Manchester repair (cervix amputation 

and uterus suspension to cardinal 

ligaments) 

Enterocele ligation Prespinous and sacrospinous colpopexy 
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Table 2 (continued). 

Posterior vaginal wall repair Enterocele ligation 

 Paravaginal repair 

 Le Fortes procedure 

 Perineal reconstruction 

 
 
 

1.4 SURGICAL MESH AND RELATED COMPLICATIONS 

Given the high recurrence rates observed (>30% in 2 years) following native tissue repairs, 

synthetic surgical meshes have been increasingly used to restore mechanical and anatomical 

support to the vagina and pelvic organs [10, 19, 20]. Surgical meshes used in POP repair were 

originally designed for use in the reinforcement of hernia repairs; however, companies were able 

to remarket these products as 510K devices for use in prolapse. This also meant that surgical 

meshes for POP were released into the market without consideration of the specific biological 

and mechanical properties of the vagina. In contrast to abdominal tissues, the vagina has been 

shown to be more prone to inflammation, given the existence of an epithelium and different 

tissue architecture [7, 8, 21, 22]. In addition, the smooth muscle found in the vagina and its 

supportive connective tissues are more flexible, capable of being under continuous tensile and 

compressive forces, in contrast to the stiffer but also more fibrous skeletal muscle [7, 8]. Thus, 

there may be a mismatch between the properties of currently available mesh materials and 

vaginal tissue. 
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Not surprisingly, mesh use in POP surgeries have been shown to be associated higher 

complication rates (10-20%) than when mesh is used in other tissues [10, 16-18, 23]. The most 

common complications include pain and mesh exposure, which occurs when the mesh erodes 

through the vaginal tissues and becomes exposed through the vaginal epithelium, also known as 

mesh erosion or protrusion. Other complications include infection, organ perforation, 

incontinence, severe dyspareunia, scarring, neuro-muscular damage, bleeding and autoimmune 

problems (Table 3) [9, 24, 25]. Some studies suggest that the transvaginal route results in higher 

rates of mesh-related complications compared to the transabdominal route [10, 16]. 

In 2008, due to the high number of reported complications, the FDA issued a public 

health notification regarding the use of mesh in POP, which resulted in a 5-fold increase of 

reports in the 3 years following [26]. Also, most recently (January 2016) FDA upgraded the 

classification of surgical mesh for transvaginal repair procedures from class II (moderate risk) to 

class III (high risk), with significant clinical monitoring and reporting requirements for those 

companies which manufacture and sell mesh for this application [10, 16]. Currently, most mesh 

companies are under litigation and some of them have discontinued manufacturing these devices 

as a result of litigation fees. 

 
 
 

Table 3. Rate of mesh-related complications in patients with Pelvic Organ Prolapse after surgical implantation [9, 

11-13, 24, 25] 

Mesh-related complication % based on case reports % based on clinical trials 

Mesh exposure 1 - 18.8 5 - 19 

Organ perforation 5.8 3.5 

Severe pain 2.9 - 18.3 0 - 10 
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Table 3 (continued). 

Dyspareunia 2.2 - 15 8 - 27.8 

Overall 10 15 - 20 

 
 
 

1.5 PATHOGENESIS OF MESH-RELATED COMPLICATIONS 

The pathogenesis of these complications and poor mesh performance are still not clearly defined. 

A few studies have suggested a closed relationship between stress shielding (biomechanical 

mismatch between mesh and tissue) and an inflammatory host response against the mesh 

biomaterial with mesh complications [21, 22, 27-30]. Is it also recognized that other factors are 

contributing, including implantation route (transvaginal vs transabdominal), surgical technique 

and health of the patient (e.g. obesity, diabetes and tobacco use) [10, 16]. 

Significant attention has been placed on the structural properties of the mesh, revealing 

that the high stiffness of meshes shields the implanted tissue from physiological mechanical 

performance (stress shielding), resulting in loss of collagen, elastin and atrophy of smooth 

muscle [27, 28]. Stiffness has been previously linked to weight, porosity, pore size and knit 

pattern of the mesh; showing direct impact on the host response against the implanted mesh, 

leading to chronic inflammation, bridging fibrosis (capsule of two or more mesh fibers that fuse 

together) and poor tissue integration, which may ultimately result in mesh-related complications 

[28, 31]. In general, these studies have shown that meshes with higher density and pore 

diameters less than 1 mm were associated with poor tissue-ingrowth, higher inflammatory 
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response and subsequent fibrotic encapsulation [27, 29, 31]. Mesh shrinkage was also observed 

in these type of meshes, and highly associated with mesh-related complications [22, 27, 28]. 

1.6 FOREIGN BODY REACTION AGAINST SURGICAL MESH 

The inflammatory host response against implanted biomaterials is also known as foreign body 

reaction (FBR). Once medical devices are implanted, the foreign body reaction begins with an 

immediate nonspecific adsorption of proteins at the bare surface of the biomaterial and 

development of a thrombus that will serve as a transient provisional matrix. The concentration, 

type and conformation of chemo-attractants, cytokines and growth factors are dependent on the 

surface properties of the biomaterial, and will dictate the recruitment, adhesion and activation of 

inflammatory cells [30]. Following transient matrix formation, the acute inflammatory phase 

initiates with neutrophil infiltration, followed by cytokine-mediated recruitment of macrophages. 

The assembly of macrophages at the tissue-biomaterial interface leads to further secretion of 

inflammatory cytokines, that promotes exacerbated and persistent recruitment of more 

macrophages [21, 22, 30]. In the long-term, the permanency of the implant leads to chronic 

inflammation, frustrated phagocytosis and the fusion of macrophages to generate foreign body 

giant cells with subsequent tissue degradation and/or formation of a stiff fibrotic capsule 

surrounding the implant, both of which may result in failure of the mesh to function as intended 

[21, 22, 30]. 

It is now increasingly recognized that macrophages are key mediators of tissue-

biomaterial interactions and can play both positive and negative roles following the implantation 

of biomaterials, being critical determinants of the success of a biomaterial in-vivo [32-34]. 
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Recent studies and claims against mesh manufacturers have implicated the foreign body reaction 

in mesh complications [21, 22, 28]. Macrophages represent a key cell type in determining the 

progression and outcome of the foreign body reaction. 

1.7 MACROPHAGES IN THE HOST RESPONSE AGAINST BIOMATERIALS 

It has been recently demonstrated that macrophages have an important regulatory role in the host 

response against biomaterials, determining the success of biomaterials in the long-term. Shortly 

after the initial infiltration of neutrophils a few hours after implantation, monocyte-derived 

macrophages are also recruited in response to inflammatory cytokines and damage associated 

molecular patterns (DAMPS) [34]. Monocytes are cells that express chemokine receptors and 

adhesion molecules that facilitate extravasation and migration from the bone marrow and blood 

to injured sites where they differentiate into macrophages [21, 30, 34]. In addition, each tissue 

has its own pool of tissue-resident macrophages, however, the relative contribution of circulating 

versus tissue-resident macrophage subsets in the host immune response and tissue remodeling 

remains mostly unknown [34]. 

To perform multiple regulatory functions, macrophages adopt distinct phenotypes along a 

continuum spectrum contained between two extremes - pro-inflammatory (M1) and anti-

inflammatory/regulatory (M2) macrophages [32, 34-36]. In the host response against 

biomaterials, these macrophages initially adopt a predominant M1 phenotype in response to 

necrotic cellular debris and pro-inflammatory cytokines (e.g. IFN- γ, TNF-α). M1 macrophages 

are important part of the host response and other regenerative processes as they secrete pro-
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inflammatory cytokines, proteases and reactive oxygen-species for pathogen control, removal of 

cell/tissue debris and angiogenesis [30].  

In case of non-degradable biomaterials, such as polypropylene mesh, the permanency of 

the implant and persistent inflammatory stimuli cause chronic inflammation and failed transition 

to the regenerative phase, where M2 macrophages predominate [34]. In normal regenerative 

processes, M2 macrophages secrete anti-inflammatory cytokines (e.g. IL-10, IL-13) and growth 

factors (e.g. VEGF, PDGF-β, and TGF-β) facilitating the resolution of inflammation and 

promoting tissue repair, by recruitment of fibroblasts and deposition of new extracellular matrix 

(ECM) [32-34, 37]. Of note, a unique event in the host response against non-degradable 

biomaterials is the formation of multinucleated foreign-body giant cells, a result of frustrated 

phagocytosis of macrophages that instead fuse at the surface of the biomaterial, further 

exacerbating the inflammatory response [30]. Failure to resolve the inflammatory phase results 

in foreign body reaction, that leads to the formation of fibrotic scar tissue, that encapsulates the 

implant and prevents its integration into the host tissue [21, 22, 30, 34].  

All these events have been shown to be closely related to the structural properties and 

mechanical performance of surgical meshes [27, 28]. In particular, the predominant M1 response 

against light-weight and higher porosity polypropylene mesh was found to be attenuated 

compared to the heavier and less porous surgical meshes [28, 31]. When comparing the response 

to single fibers versus knots in the mesh, a denser inflammatory response was observed in knots, 

but the percentage of either M1 or M2 macrophages remained similar, suggesting that the host 

response is proportional to the area of material in contact with the host tissue [21, 22]. 

In addition, M2:M1 ratios have been shown to be a predictor of the success of a 

biomaterial, in which higher ratios are associated to more beneficial remodeling outcomes [32, 
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38]. For example, multiple studies using ECM-derived materials have shown to facilitate timely 

transition from an M1 to an M2 phenotype, associated to better remodeling outcomes and signs 

of functional recovery [33, 34, 37]. 

1.8 CURRENT APPROACHES 

Initially, the immune host response against biomaterials was perceived as a negative event that 

led to the development of “immune-inert” biomaterials. In the particular case of mesh implants, 

plastic-based (mostly polypropylene and polytetrafluoroethylene) biomaterials are still under use 

because many other well-known biocompatible materials have not shown superior mechanical 

performance. Both degradable and biologic (ECM-derived) surgical meshes have not been 

conclusive showing lower rates of mesh-related complications, and recurrence is similar to 

native tissue repairs [39-41]. As a consequence, a wide range of surface modification and 

coatings have been developed in order to reduce protein adsorption, cell adhesion, inflammatory 

cytokine secretion and FBGC formation at the tissue-biomaterial interface. Surface modification 

was performed to change hydrophilicity, charge and crystallinity of the biomaterial [42-45]. 

Several coating materials have been also used and include collagen, synthetic-hydrogels, and 

chitosan [46-51]. Even though these coatings have suggested reduction of the inflammatory host 

response in animal models, they have shown to perform similar or even worse than conventional 

meshes in clinical trials. For example, chitosan coated mesh was shown to perform similar to a 

polypropylene-polydioxane composite mesh [52], while transvaginal implantation of collagen-

coated mesh was shown to have increased risk of mesh erosion [53]. 
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Additionally, functional biomaterials that deliver immunosuppressant and anti-

inflammatory agents have been developed though surface functionalization or drug-eluting 

coatings to mitigate the host response against the biomaterial [54, 55]. Studies using immobilized 

alpha-MSH, an anti-inflammatory peptide, on the surface of neural electrodes has shown to 

inhibit the expression of inflammatory cytokines on microglia (a brain tissue-resident 

macrophage) [54]. In general, eluting mesh implants with immunosuppressant agents such as 

hydrocortisone have shown to reduce the inflammatory host reaction and reduce encapsulation of 

the implant in the long term; however, presenting a negative impact on angiogenesis [55]. Other 

studies using titanium rod eluting coatings for the release of 7ND protein, a mutant of the 

macrophage chemoattractant protein-1 (MCP-1), was shown to reduce macrophage migration 

towards MCP-1 in a femoral rod implantation model [56], and later on showed decreased 

implant wear particle-induced osteolysis in a mouse calvarial model [57]. Interestingly, other 

studies using coatings that release nitric oxide (NO), were capable of enhancing angiogenesis of 

implanted biomaterials, as well as reduced inflammation and diminished capsule formation [58, 

59]. 

Surface topography has also been recognized as an important cue influencing the host 

response against biomaterials. One study has shown that nano-scale topographical changes in the 

surface of poly(ε-caprolactone) (PCL), poly(lactic acid) (PLA) and poly(dimethyl siloxane) 

(PDMS) affected the adhesiveness, cell fusion and cytokine secretion in RAW 264.6 cells in 

vitro [60]. In particular, this study showed that diameter, surface roughness and geometry of 

electrospun fibers influenced macrophage activation and formation of FBGC, which is consistent 

studies done on the host response to surgical mesh with different architecture [21, 27, 31]. 

Multiple other studies on titanium implants have shown consistently that nanostructured implant 
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surfaces restricted macrophage migration and diminished secretion of pro-inflammatory 

cytokines [61, 62]. 

However, none of these approaches have considered both the acute inflammation and the 

regenerative phase as necessary elements of the host response to promote functional integration 

of implanted biomaterials. Recent studies on ECM coated meshes have shown a reduction in M1 

macrophages and foreign body giant cells, but no changes in the number of M2 macrophages, 

resulting in less dense collagen tissue at 35 days post-implantation [38, 63, 64]. However, these 

studies introduced to this application the concept of M2/M1 macrophage ratios as predictor of 

the success of biomaterials, being increased ratios associated with better remodeling outcomes. 

Since then, latest biomaterial-based approaches are increasingly studying macrophage 

polarization and shown consistently that the most successful biomaterials are associated with 

higher M2/M1 ratios [34, 37]. Thus, a few novel approaches have emerged to purposely shift 

macrophage modulation using pro-M2 cytokines. Hydrogels containing IL-4 were shown to 

polarize macrophages to an M2 phenotype and enhance regeneration in a nerve gap injury model 

[65]. Another study used continuous pump infusion of IL-4 on coated rods with ND7 protein 

(MCP-1 inhibitor), showing increased bone formation and enhanced bone geometry, even 

compared to ND7 coated rods alone, suggesting that macrophage modulation is a superior 

strategy than reducing macrophage recruitment and inflammation [66]. Another interesting study 

uses sequential delivery of IFN-γ (M1 cytokine) followed by IL-4 (M2 cytokine) in a scaffold to 

promote angiogenesis and bone regeneration, and shown to have improved outcomes compared 

to IL-4 alone [67], suggesting that the functions of both M1 and M2 macrophages and optimal 

M1 to M2 transition are essential to obtain functional remodeling outcomes. 
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1.9 HYPOTHESIS, APPROACH AND SPECIFIC AIMS 

Thus, these previous results led us to hypothesize that polarization of macrophages at the tissue-

implant interface towards an anti-inflammatory/regulatory (M2) phenotype would promote 

integration of the implant into the host tissue; therefore, mitigating the foreign body reaction and 

potential mesh-related complications. To address this hypothesis, we developed a cytokine 

eluting coating for surgical mesh implants that enables localized, controlled delivery of IL-4, an 

M2 polarizing cytokine. 

Immunosenescence, dysregulation of macrophage function, and delayed resolution of the 

immune response in aged individuals have all been demonstrated [68-70], suggesting that the 

host response against biomaterials in aged individuals may differ from those in younger 

individuals. However, only a few studies examining the effects of aging upon the host response 

have been performed, which is relevant as medical devices are often intended to treat elderly 

patients. Therefore, we have sought to elucidate the impacts of aging upon the host response to 

polypropylene mesh implanted into aged mice versus young adult mice. The results of this study 

will be used towards the development of contextual delivery regimens to improve the integration 

of surgical mesh implants on elderly patients. 

To accomplish this study, we have developed a research plan consisting of three aims: 1) 

Development of a conformal cytokine eluting coating for surgical mesh implants, 2) Early-stage 

and downstream effects of IL-4 eluting coatings on the host response against surgical mesh, and 

3) Elucidate the effects of aging in the host response against biomaterials to design a contextual 

delivery regimen. 
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2.0  AIM I: DEVELOPMENT OF A CONFORMAL CYTOKINE ELUTING 

COATING FOR SURGICAL MESH IMPLANTS 

2.1 INTRODUCTION 

Currently, lightweight, large pore polypropylene mesh is the gold standard for implants in both 

POP and hernia repair [12]. These materials are associated with a reduction in complications as 

well as a reduction in both tissue degradation and inflammation observed in animal testing. A 

number of studies investigating the use of alternative polymers [71], coatings (collagen, 

chitosan) [51, 63, 72] and surface modification [73, 74] have been performed; however, 

performance in preclinical studies has not improved, and in some cases has been worse than 

polypropylene alone. Other groups and companies are trying to increase biocompatibility by 

using biologically derived surgical meshes (e.g. materials composed of crosslinked and non-

crosslinked extracellular matrix (ECM) from dermis, urinary bladder and small intestinal 

submucosa) [75-77]; however, studies done in hernia repair have not been conclusive and led to 

mesh companies to unsupported claims of superiority and safety, but also high recurrence rates 

likely due to the suboptimal mechanical performance and the non-permanency of the mesh over 

time [77, 78]. A small number of studies are underway using biologic meshes for POP, but few 

results regarding the efficacy of these methods are currently available. Thus, currently, there is 

no surgical repair (or treatment) for pelvic organ prolapse that is not either associated with 
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complications or with high rates of recurrence (in the case of native tissue repair); therefore, 

there is an urgent need for a device that has better tissue integration and fewer complications. 

We aim to test the hypothesis that shifting the macrophage response towards an anti-

inflammatory (M2) phenotype will lead to a better implant integration into the host tissue. To 

accomplish this study, a nanometer thickness coating with the ability to provide local and 

transient delivery of IL-4 (an in vitro M2 polarizing cytokine) has been developed, preserving 

the complex architecture and structural properties of the implant. This coating is based on the 

layer by layer (LbL) technique [79, 80], consisting of an alternate cyclic deposition of multiple 

polyelectrolyte layers mediated by opposite electrostatic charges on the surface of a charged 

substrate. This method has previously been shown to produce a tunable, uniform and conformal 

coating of nanometer thickness for controlled release of proteins [56, 79-85]. Therefore, the 

number and sequence of layers can be easily modified in order to provide the desired amount and 

release time of IL-4. Also, nanometer thickness of this coating was desired to preserve the 

architecture and pore space of the mesh, which is commonly thought to be important for 

adequate tissue ingrowth and mechanical performance in clinical settings [71, 86]. 

2.2 METHODS 

2.2.1 Materials 

A polypropylene mesh, Gynemesh® PS (Ethicon, Somerville, NJ) was used. Maleic anhydride, 

chondroitin sulfate B, chitosan (low molecular weight, deacetylation degree 85%), 

chondroitinase ABC, chitosanase, bovine serum albumin (BSA) and histologic staining materials 
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were purchased from Sigma Aldrich (St. Louis, MO). Murine IL-4, anti-murine IL-4 antibody, 

murine IL-4 ELISA detection kit were purchased from Peprotech (Rocky Hill, NJ). Mouse 

arginase-1 antibody (rabbit), anti-rabbit Alexa-fluor 488 (donkey) and anti-rabbit Alexa-fluor 

594 (donkey) were purchased from Abcam (Cambridge, MA). Anti-rabbit Alexa-fluor 488 

(donkey) was purchased from Thermo Fisher (Pittsburgh, PA). 

2.2.2 Plasma treatment of polypropylene meshes 

Polypropylene (PP) meshes were cleaned using a 1:1 acetone:isopropanol mixture and then air 

dried prior to irradiation with 15 seconds of argon plasma at 600W, an argon gas flow of 35 

mL/min and a steady state pressure of 250 mTorr (50 mTorr initial pressure) using an Ion 40 Gas 

Plasma System (PVA Tepla America, Inc). 

An adapted radio frequency glow discharge (RFGD) based on a previously developed 

microwave plasma procedure was used to obtain a negatively charged surface [87]. Briefly, 

maleic anhydride powder (1.5 gr) was placed into a glass plate inside of the machine chamber. 1 

cm2 pieces of PP mesh were then placed around the plate to a distance of 8.5 cm. After an initial 

pressure of 50 mTorr was reached, 30 seconds of maleic anhydride plasma treatment was 

performed at 600W, an argon gas flow of 35 mL/min and a steady state pressure of 250 mTorr. 

Finally, in order to remove the physisorbed maleic anhydride and to hydrolyze the anhydrides 

and produce carboxylic acid groups (negatively charged at physiological pH), PP meshes were 

rinsed for 30 minutes with milli-Q water and then boiled for 20 minutes in fresh milli-Q water. 
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2.2.3 Layer by layer coating of charged polypropylene meshes 

In order to deposit a conformal coating of nanometer thickness onto the surface of negatively 

charged PP meshes, a Layer by Layer (LbL) procedure was performed (Figure 1). Chitosan was 

chosen as polycation and dermatan sulfate (chondroitin sulfate B) as polyanion. Chitosan was 

dissolved in 0.5 % acetic acid and dermatan sulfate in milli-Q water. Both polyelectrolites were 

prepared at a concentration of 2 mg/mL. First, meshes were dipped in chitosan for 10 minutes at 

room temperature, then meshes were washed 3 times (10, 20 and 30 seconds) in milli-Q water 

and air dried (pressurized clean air). Next, meshes were dipped in a dermatan sulfate solution for 

10 minutes at room temperature. Meshes were washed again in milli-Q water and air-dried. This 

cycle was repeated until a core coating of 10 bilayers (PP-[CH/DS]10) was achieved. After 

coating, meshes were lyophilized and stored at 4°C. 

 
 
 

 

Figure 1. Schematic of layer by layer coating procedure performed on polypropylene surgical meshes 
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2.2.4 IL-4 loading of coated polypropylene meshes 

Prior to IL-4 loading onto the meshes, an IL-4 (1.5 µg/mL) - dermatan sulfate (2 mg/mL) 

mixture was made and incubated overnight at 4°C in order to complex IL-4 into the polyanion. 

Then, polypropylene meshes with a 10-bilayer core coating were further coated with 20, 40 and 

60 bilayers containing IL-4 (PP-[CH/DS]10[CH/DSIL-4]x, where x stands for number of bilayers, 

and DSIL-4 stands for dermatan sulfate bound IL-4). After coating, IL-4 loaded meshes were 

lyophilized and stored at -20°C. Coated (no IL-4) meshes were used as controls, using the same 

numbers of bilayers used for IL-4 loaded meshes.  All mesh materials were then terminally 

sterilized using ethylene oxide. 

2.2.5 Coating characterization 

An Alcian blue staining was performed on whole samples to stain the GAG components and 

reveal the coating. A 1% Alcian blue solution was made in 3% acetic acid and adjusted to pH 

2.5. Coated meshes and controls were re-hydrated in distilled water and then immersed into the 

Alcian blue solution for 30 minutes at RT. Then meshes were washed in running tap water for 5 

minutes and rinsed 5 minutes in distilled water. Images were taken using a standard optical 

camera. 

Additionally, elemental composition of the coated meshes was performed using an X-ray 

photoelectron spectroscopy (XPS), using an ESCALAB 250Xi, Thermo Scientific (Pittsburgh, 

PA). To identify the elements in the coating/surface of the meshes, an initial survey of 10 scans 

was obtained and for detailed elemental information, spectra of 25 scans were obtained for 
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Carbon, Oxygen, Nitrogen and Sulfur. Spectra data was analyzed using Avantage software, 

Thermo Scientific. 

Finally, meshes were analyzed under Fourier transform infrared spectroscopy with 

attenuated total reflectance (ATR-FTIR) using a Bruker Vertex 70 (Billerica, MA) equipped with 

a germanium ATR crystal at a resolution of 1 cm-1, 2 mm of aperture, 32 scans and processed by 

OPUS software to adjust the baseline, to smooth spectra and to remove H2O and CO2 peaks due 

to environmental noise. 

2.2.6 IL-4 loading and release assays 

Immunolabeling was used to qualitatively demonstrate the loading and distribution of IL-4 

throughout the coating. IL-4 loaded, coated (no IL-4) and pristine meshes were immersed in a 

1% BSA solution to block non-specific adsorption of antibodies (1h, RT). Washing was 

performed in between each step by dipping the meshes 4 times in 0.05% Tween 20. Then meshes 

were immersed and incubated in a solution of anti-murine IL-4 (from rabbit) as primary antibody 

(1:100 in 0.1% BSA, 2 hours, RT). Meshes were then immersed in a solution of anti-rabbit-

Alexa Fluor 546 as a secondary antibody (1:100 in 0.1% BSA, 30 min, RT). Mesh fluorescence 

was observed under confocal microscopy (Leica DMI4000 B, Buffalo Grove, IL), in which an 

excitation/emission of 480/520 nm was used to observe the mesh autofluorescence (green) and 

561/572 nm to observe the specific fluorescence due to the loaded IL-4 (red). 

Loading efficiency and release assays were performed following manufacturer 

instructions of the Peprotech IL-4 ELISA kit. First, 1 cm2 pieces of IL-4 loaded (20, 40 and 60 

bilayers) and coated (no IL-4) meshes were immersed into 400 µL of a solution 0.05 units/mL 

chondroitinase ABC and 0.05 units/mL chitosanase in 1X PBS. Incubation was performed to 
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multiple time points at 37°C, after which 400 µL of solution were aliquoted and stored at -80°C 

until the end of the experiment. After collection, replacement with fresh solution was performed 

to continue the release assay. To perform the ELISA assays, 100 µL aliquots were used from 

each sample (N = 9) at each time point. 

To determine release profile kinetics; correlation and curve fitting analyses were 

performed using the data from cumulative release versus time, until the first-time point where the 

release reaches a plateau, which corresponds to the total release. To corroborate power law 

dependence, besides direct curve fitting tests, a linear trend was corroborated using a LOG 

(cumulative release) versus LOG (time) curve. 

2.2.7 In vitro macrophage culture assay 

An in vitro macrophage culture assay was performed in order to demonstrate preservation of 

bioactivity of IL-4 released from the coated meshes. Bone-marrow mononuclear cells were 

obtained from murine bone marrow as previously described [88], then these cells were seeded in 

plates and differentiated to macrophages with DMEM, 10% FBS, 10% L929 supernatant, 1% 

HEPES, 2% MEM NEAA, 0.1% β-2-mercaptoethanol (Sigma Aldrich, St. Louis, MO) for 7 

days. 5 x 105 cells were plated into 24-well plates with α-MEM, 10% FBS, 0.05 units/mL of both 

chondroitinase ABC and chitosanase. Macrophages were exposed to 1 cm2 pieces of pristine, 

coated (no IL-4) and IL-4 loaded (40 bilayers) meshes. Immunolabeling isotype (rabbit IgG) and 

soluble IL-4 (20 ng/mL) were used as negative and positive controls, respectively. Cells were 

incubated at 37°C and 5% CO2 for 72 hours. After incubation, cells were fixed with 2% PFA and 

then blocked with 2 % horse serum, 1% BSA, 0.1% triton X-100, 0.1% tween-20 for 1 hour at 

RT. Immunolabeling was performed using anti arginase-1 as primary antibody (1:200, overnight 
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at 4°C) and Alexa Fluor-488 (1:300, 1 hour at RT) as secondary. A 500 nM DAPI solution was 

used stain nuclei. Images were taken in an array of 3 x 3 images per each well using a Carl Zeiss 

Observer.Z1 microscope and then the intensity of arginase-1 staining was analyzed using Cell 

Profiler Image Analysis Software (Broad Institute, Cambridge, MA) using the same number of 

cells for all tested conditions. 

2.2.8 Uniaxial testing of LbL coated meshes 

Pristine and coated mesh samples (15 x 3 cm) were attached to a custom set of clamps to form a 

clamp–mesh–clamp construct. To ensure consistence, clamp to clamp distances were adjusted so 

meshes were tested with 9 cm long and 3 cm wide, to keep an aspect ratio of three for all 

samples. The clamp-mesh-clamp construct was then installed in an Instron TM 4502 (Instron, 

Norwood, MA, USA) screw driven testing apparatus, as previously described [89]. A preload of 

0.1 N was applied using an elongation rate of 10 mm/min, which removes all slack within the 

sample to measure clamp to clamp distance. Samples were loaded to failure along the 

longitudinal axis at a rate of 50 mm/min. The load at failure in newtons and the elongation in 

millimeters were obtained. The relative elongation of the samples was calculated by dividing the 

elongation by the initial clamp to clamp distance. 

Cyclic testing was performed to test structural properties of mesh and permanent 

elongation under the assumption that prolapse mesh will undergo repetitive loading as 

consequence of intra- abdominal tensile forces during early post- operative period. Briefly, 

samples were preloaded to 0.1 N at a rate of 10 mm/min. Clamp to clamp distance was 

measured, then cycled from 0.5 to 5 N (C1), 0.5–15 N (C2), and finally 0.5–5 N (C3), each for 
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ten cycles. Elongation was determined after each cycle (C1 to C3) under a preload of 0.1 N, then 

permanent deformation was measured as percentage of the initial length of the mesh. 

2.2.9 Statistical analysis 

Comparisons of means were performed by either one-way or two-way analysis of variance 

(ANOVA), using at least p < 0.05 as statistical significance criteria followed by Tukey’s test to 

compare groups and Sidak’s test to compare time points. Shapiro-Wilk was used to test 

normality. All statistical tests were performed on GraphPad Prism V7 (La Jolla California, 

USA). 

2.3 RESULTS AND DISCUSSION 

2.3.1 Surgical mesh plasma irradiation, LbL coating and characterization 

An adapted radio frequency glow discharge (RFGD) method [87] was used to form a consistent 

and durable negative charge on the surface of polypropylene (PP) mesh in order to facilitate the 

desired LbL coating. The presence of a negatively charged surface was confirmed by the 

appearance of two peaks at 284 eV (C-C) and 288 eV (O-C=O) on the carbon spectrum and a 

peak at 532 eV on the oxygen spectrum, while pristine mesh only had a peak at 284 eV (C-C) 

when evaluated by X-ray photoelectron spectroscopy (XPS) (Figure 2a). RFGD treated meshes 

were then LbL coated using chitosan as a polycation and dermatan sulfate as a polyanion. 

Chitosan was chosen for its known biocompatibility, antimicrobial activity, and as activated 
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macrophages highly express chitinase-like proteins (chitin and chitosan degrading enzymes) [90-

92]. Dermatan sulfate (also known as chondroitin sulfate B) was chosen for its key role in 

extracellular matrix (ECM) regulation and its described ability to enhance IL-4 bioactivity in-

vivo [93]. Thus, a chitosan-dermatan sulfate LbL complex has the potential to provide enhanced 

release and bioactivity of IL-4 in the context of macrophage mediated host-implant interactions. 

 
 
 

 

Figure 2. (a) X-ray photoelectron spectroscopy spectra (XPS) of LbL coated (green), RFGD treated 

(orange) and pristine (blue) mesh. (b) Images of alcian blue stained 1 cm2 pieces of pristine (i), RFGD treated (ii) 

and LbL coated meshes (iii) 

 
 
 
A coating of 10 bilayers was performed as core coating prior to IL-4 loading. Alcian blue 

staining was used to visualize the chitosan and dermatan sulfate components of the coating. Blue 

coloration and absence of precipitates along the mesh surface suggested the presence of a 
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conformal and uniform coating on LbL coated meshes (Figure 2b). Electron microscopy (Figure 

3) was used to confirm the conformal nature of the coating and showed no apparent changes in 

surface topography, porosity and thickness between LbL coated, RFGD treated and pristine 

meshes. The presence of chitosan in the LbL coating was corroborated by the appearance of two 

peaks at 399 eV (C-N) and 401 eV (O-C-N) in the nitrogen spectrum and the presence of 

dermatan sulfate by the appearance of a peak at 168 eV (C-S-O) in the sulfur spectrum when 

evaluated by XPS (Figure 2a), in addition to the presence of peaks at 288 eV (O-C=O) and 286 

eV (C-O) in the carbon spectrum, confirming the presence of both polyelectrolyte chains. These 

measurements were performed at different points on the surface of the PP mesh and spectra were 

identical throughout the mesh surface. These findings were consistent with ATR-FTIR 

measurements (Figure 4). 

 
 
 

 

Figure 3. Scanning electron microscopy images at 40X (a-d) and 150X (e-h) of pristine (a, e), RFGD 

treated (b, f), LbL coated (c, g) and IL-4 loaded [40B] (d, h) meshes. Scale bars represent 200 µm 
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Figure 4. Attenuated total reflectance – Fourier transform infrared (ATR-FTIR) spectra of pristine (blue), 

RFGD treated (red) and LbL coated (green) meshes 

 
 
 

2.3.2 Loading and release assessments of IL-4 

Mesh coated with a 10-bilayer core coating was then coated with 20, 40 and 60 additional 

bilayers containing IL-4. IL-4 was pre-incubated with dermatan sulfate prior to LbL coating, 

promoting the loading of the cytokine due to the high affinity of IL-4 (net positive charge, given 

its isoelectric point of 9.17) for sulfated glycosaminoglycans (negatively charged). Confocal 

microscopy demonstrated positive IL-4 labeling distributed throughout the entire surface of IL-4 

loaded meshes in contrast to the absence of positive labeling on coated (no IL-4) mesh and 

pristine mesh (Figure 5a). ELISA assays were performed to quantify IL-4 release over time. 

Results showed that both the amount of IL-4 and the length of release are dependent on the 

number of bilayers containing IL-4 in the LbL coating (Figure 5b). In particular, the in vitro 

release of IL-4 was observed up to 14, 22 and 30 days for coatings of 20, 40 and 60 bilayers, 

respectively. The release profile for all IL-4 loaded meshes followed a power law dependence, 
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regardless of the number of coating bilayers (Figure 5c). These findings are consistent with other 

studies done on LbL films as a platform to study protein release [81, 82, 85]. Based upon these 

results, meshes coated with 40 bilayers containing IL-4 were selected for further in-vitro and in-

vivo assays, since the coating released about 90% of IL-4 only at early stages of the host 

response (up to 14 days). All further assays included coated (40 additional bilayers with no IL-4) 

and pristine mesh groups as control groups. Of note, the total amount of released IL-4 may not 

necessarily correlate with the total amount of IL-4 loaded into the coating, this latter being 

difficult to obtain due to an order of difference in the amount of IL-4 in the coating solution 

versus the mesh (µg versus ng), but also poor reliability due to variations in the concentration of 

the coating solutions by dipping substrates. 

 
 
 

 

Figure 5. (a) Confocal microscopy images of IL-4 immunolabeled (red) polypropylene fibers (green) of 

pristine (i), coated [no IL-4] (ii) and IL-4 loaded [40B] (iii) mesh. Scale bars represent 100 µm. (b) Cumulative 

release of IL-4 (nanograms) versus time (days) from 1 cm2 pieces of IL-4 loaded mesh (20, 40 and 60 bilayers). 

Coated (no IL-4) mesh was used as a control. Power law dependence curves are y = 0.363x0.262 (r2 = 0.995), y = 

0.718x0.437 (r2 = 0.997) and y = 1.078x0.412 (r2 = 0.983) for 20, 40 and 60 bilayers, respectively. (c) Log - log linear 

fittings of IL-4 cumulative release versus time. Linear equations are y = 0.242x - 0.440 (r2 = 0.995), y = 0.347x - 

0.144 (r2 = 0.997), y = 0.412x + 0.033 (r2 = 0.983) for 20, 40 and 60 bilayers, respectively. Points represent the 

mean ± SEM 
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2.3.3 Bioactivity assessment of released IL-4 

In order to show that IL-4 bioactivity remained after the coating procedure and terminal 

sterilization by ethylene oxide, an in-vitro macrophage polarization assay was performed using 

mouse bone marrow-derived macrophages. Macrophages exposed to IL-4 loaded meshes for 72 

hours were fixed and immunolabeled against arginase-1, an M2 macrophage specific marker. 

Image analysis (CellProfiler, Broad Institute, Cambridge, MA) of arginase-1 positive cells 

revealed that the IL-4 released from the IL-4 loaded mesh remained bioactive and able to 

polarize macrophages towards an M2 phenotype (Figure 6). No significant increase of arginase-1 

was observed for coated mesh compared to pristine mesh. Of note, the pattern of arginase-1 

expression following exposure to IL-4 coated meshes was similar to the IL-4 positive control (20 

ng/mL) despite the lower levels of IL-4 (2.25 ng/mL) released from the mesh surface at 72h 

(Figure 6d), suggesting that the coating components may enhance IL-4 bioactivity or that IL-4 is 

protected by the coating and released gradually. 
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Figure 6. (a) CellProfiler image analysis from arginase-1 immunolabeled murine macrophages in an in-

vitro culture exposed to 1 cm2 pieces of pristine (yellow), coated [no IL-4] (green) and IL-4 loaded [40B] (blue) 

mesh. Isotype (gray) and IL-4 [20 ng/mL] (red) were used as negative and positive controls, respectively. (b) 

Number of arginase-1 positive macrophages determined from the CellProfiler analysis. Bars represent the mean ± 

SEM. Statistical significance as (**) p < 0.01 and (***) p < 0.001, using one-way ANOVA with Tukey’s test. (ns) 

Non-significant. (c) Arginase-1 immunolabelled bone marrow-derived macrophage cultures exposed to 1 cm2 pieces 

of pristine, coated (no IL-4) and IL-4 loaded (40B) meshes for 72 hrs. IL-4 (20 ng/mL) was used as positive control. 

Scale bars represent 100 µm. (d) Concentration of IL-4 released by IL-4 loaded meshes (40 bilayers) for 72 hours. 

Bar represents the mean ± SEM 
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2.3.4 Uniaxial testing of LbL coated meshes 

To demonstrate that the nanometer thickness coating does not alter the structural properties of 

the mesh, we have performed uniaxial tests to determine the stiffness of coated and pristine mesh 

under tensile forces to failure, or under cyclic tensile forces. In a load to failure testing, load 

versus relative elongation was plotted and analyzed for both coated and pristine mesh (Figure 7). 

Two distinct regions in the curve where identified as low and high stiffness, separated by the 

point of inflection (intercept where the two tangent lines fit) and defined by their maximum slope 

over the second 30% interval of relative elongation. Results reveal that both load (N) and 

percentage of elongation at failure of the coated meshed were similar to those of pristine meshes. 

However, coated meshes presented an increased stiffness under low tensile forces, compared to 

pristine mesh, then present similar stiffness under high tensile forces. 

 
 
 

 
Figure 7. Load to failure test. Load (N) versus relative percentage of elongation curves of pristine (blue) 

and coated (red) surgical meshes (Gynemesh), load and % elongation at failure, as well as low and high stiffness. 

Bars represent the mean ± SEM. Statistical significance as (*) p < 0.05, using two-tailed t-tests. All other differences 

are non-significant 
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Cyclic testing was done to determine the permanent elongation under the assumption that 

prolapse mesh will undergo repetitive loading as consequence of intra- abdominal tensile forces 

during early post- operative period. Results show that under cyclic tensile forces, the 

deformation of both coated and pristine meshes after each cycle are similar (Figure 8), although 

there is a more consistent behavior on coated meshes, opposed to the high variability of pristine 

mesh. Therefore, both mechanical tests have demonstrated that the presence of the layer by layer 

coating has not altered the mechanical properties of the surgical meshes. 
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Figure 8. Cyclic testing. Load (N) versus relative percentage of elongation curves of pristine (blue) and 

coated (red) surgical meshes (Gynemesh) under three consecutive cycles of tensile forces (C1: 0.5-5N, C2: 0.5-10N, 

C3: 0.5-5N). Percent of permanent deformation is shown on the graphs in the bottom after each cycle. Bars represent 

the mean ± SEM. Statistical significance as (*) p < 0.05, using two-tailed t-tests. All other differences are non-

significant 

 
 
 
These results suggest that more than changes in structural properties, the coating provides 

friction at the surface of the mesh fibers, making more difficult for these fibers to rotate when 

deforming, opposing to movement and deformation. Once fibers are reoriented, stiffness of the 

mesh is the similar to pristine mesh. This is also consistent to cyclic testing, as mesh deformation 

of coated after the first cycle is slightly increased (but not significantly), likely due to the coating 
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impeding mesh fibers to rotate and come back to their original length. Then meshes behave 

similarly after subsequent cycles. 

2.4 CONCLUSIONS 

The presence of a uniform and conformal coating composed of both chitosan and 

dermatan sulfate is demonstrated. This coating can be loaded with IL-4 in a uniform manner 

through the entire surface of the mesh, and the amount and length of release can be tuned by 

simply changing the number and sequence of coating bilayers. The released IL-4 from LbL 

coated meshes is bioactive and can promote macrophage polarization towards an M2 phenotype 

in-vitro. Finally, the presence of the nanometer thickness coating preserved both the architecture 

and mechanical properties of the polypropylene surgical mesh, which is important to maintain 

the functionality of the implant as intended. 
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3.0  AIM II: EARLY-STAGE AND DOWNSTREAM EFFECTS OF IL-4 ELUTING 

COATINGS ON THE HOST RESPONSE AGAINST SURGICAL MESH 

3.1 INTRODUCTION 

The host response to implanted materials begins immediately upon introduction of the material 

into the host tissue and encompasses multiple overlapping phases including injury, protein 

adsorption, acute inflammation, chronic inflammation, foreign body reaction, granulation tissue 

formation and eventual encapsulation [30]. It is well recognized that the early interactions which 

occur at the material-tissue interface represent the initiating events which drive subsequent 

paracrine and autocrine processes of the host response and subsequent tissue remodeling with 

significant implications for downstream performance. Recently, macrophage-implant 

interactions in particular have received considerable attention as a primary determinant of the 

outcome of biomaterials placement [33, 37, 94-97]. A spectrum of macrophage phenotypes 

contained between two extremes has been identified, ranging from pro-inflammatory (M1) to 

anti-inflammatory/regulatory (M2) phenotypes, with significant implications in disease, tissue 

remodeling following injury, and biomaterial performance [33-36, 98, 99]. 

The findings of studies in multiple tissue and organ systems have now demonstrated that 

materials which elicit improved or regenerative remodeling outcomes are often associated with a 

shift from an initially M1 to a more M2-like profile during the early stages of the inflammatory 
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response which follows implantation [32, 100-104]. However, many of these studies have been 

performed as retrospective analyses of macrophage phenotypes associated with successful 

biomaterials. As a consequence, recent studies have now begun to evaluate improvements in 

regenerative outcomes following purposeful modulation of macrophage polarization induced by 

cytokine delivery from degradable materials [65, 67, 105]. These studies have demonstrated that 

outcomes are improved when M2-polarizing cytokines (IL-4, IL-10) are delivered and that, 

conversely, outcomes are negatively affected by the delivery of M1-polarizing cytokines (IFN-γ) 

[65, 67, 106]. A recent study, however, showed that sequential delivery of an M1 (IFN-γ) and 

then an M2 (IL-4) polarizing cytokine enhanced the vascularity and subsequent healing response 

associated with the implantation of degradable bone scaffolds [67], demonstrating the 

importance of both the M1 and M2 responses in the remodeling process. Others have 

demonstrated that the host macrophage response is also important to the performance of 

permanent implants. For example, it has been demonstrated that wear particle-induced 

polarization of macrophages towards an M1 phenotype is associated with periprosthetic 

osteolysis, possibly resulting in the need for surgical revision following total joint replacement 

[107-110]. Subsequent studies demonstrated that methods including the delivery of inhibitors of 

macrophage recruitment, inhibitors of M1 polarization, and promoters of M2 polarization have 

the ability to mitigate wear particle induced osteolysis, potentially improving the long-term 

performance of total joint replacements [56, 66, 106, 111]. 

The present study sought to examine the effects of surface-localized cytokine delivery in 

the early macrophage response upon the integration of a non-degradable polypropylene mesh 

material commonly utilized in the repair of pelvic organ prolapse. These materials have recently 

been shown to elicit a predominantly M1 type response which is associated with the potential for 
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tissue degradation and downstream complications when unresolved [21, 22]. Macrophage 

modulation only in early-stages of the host response, but also localized to the tissue-implant 

interface was sought in the present study, representing an advantage over strategies promoting 

non-local and/or extended shifts in the host response as it limits the potential for adverse long-

term interactions and exacerbation of conditions which may exist at distant sites. 

3.2 METHODS 

3.2.1 Materials 

A polypropylene mesh, Gynemesh® PS (Ethicon, Somerville, NJ) was used. Maleic anhydride, 

chondroitin sulfate B, chitosan (low molecular weight, deacetylation degree 85%), 

chondroitinase ABC, chitosanase, bovine serum albumin (BSA) and histologic staining materials 

were purchased from Sigma Aldrich (St. Louis, MO). Murine IL-4, anti-murine IL-4 antibody, 

murine IL-4 ELISA detection kit were purchased from Peprotech (Rocky Hill, NJ). Mouse 

arginase-1 antibody (rabbit), anti-rabbit Alexa-fluor 488 (donkey) and anti-rabbit Alexa-fluor 

594 (donkey) were purchased from Abcam (Cambridge, MA). Mouse iNOS antibody (rabbit) 

was purchased from Santa Cruz (Dallas, TX). Mouse F4/80 antibody (rat) was purchased from 

AbD Serotec/Bio Rad (Raleigh, NC). Anti-rat Alexa-fluor 488 (donkey) and anti-rabbit Alexa-

fluor 546 (donkey) were purchased from Thermo Fisher (Pittsburgh, PA). 
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3.2.2 In-vivo mouse mesh implantation 

An implantation model using C57BL/6J female mice, 8 – 10 weeks old was used, following 

proper housing and treatment procedures approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of Pittsburgh and the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. A power analysis was performed to determine that 

7 animals per group was required to maintain a statistical power of 80 %. 

Briefly, a midline incision was made and a subcutaneous pocket was created in the 

abdomen of each mouse in order to implant a 1 cm2 piece of pristine, coated (no IL-4) and IL-4 

loaded (40 bilayers) meshes. PCL sutures were used to close the incision, then 0.5 mg/kg of 

Baytril and 0.2 mg/kg of Buprenex were administered for 3 days as antibiotic and analgesic, 

respectively. Buprenorphine (Buprenex), an opioid analgesic, has been studied and shown not to 

exert any effects nor alterations in the immunological response, both acutely and chronically 

administered [112, 113]. After 7, 14 or 90 days, mice were euthanized and skin/mesh/muscle 

tissue complex were harvested and fixed for 72 hours in neutral buffered formalin. Finally, fixed 

tissues were paraffin embedded and cross-sections of 7 µm were used for histological studies. 

3.2.3 Immunolabeling of histological sections 

Paraffin embedded tissue sections were deparaffinized and hydrated in a series of 

xylene/alcohol/water. Incubation with proteinase K (1X) for 10 minutes at 37ºC was performed 

to retrieve antigens. After 3 washes in water, samples were incubated at 37ºC in 50 mM of 

CuSO4 in 10 mM NH4Ac buffer pH = 5, to reduce tissue background fluorescence. Slides were 

washed twice in TBST (25 mM Tris buffer + 0.1% tween 20). Then, a 5% donkey serum + 2% 
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BSA + 0.1% tween 20 + 0.1% triton X-100 solution was used as blocking agent (2 hours, RT). 

To immunolabel M2 macrophages, arginase-1 (1:100) and F4/80 (1:50) primary antibodies were 

used (overnight at 4°C), followed by anti-rabbit Alexa Fluor 594 (1:200) and anti-rat Alexa Fluor 

488 (1:100) secondary antibodies (40 min at RT) in blocking buffer. To immunolabel M1 

macrophages, iNOS (1:100) and F4/80 (1:50) primary antibodies were used (overnight at 4°C), 

followed by anti-rabbit Alexa Fluor 594 (1:100) and anti-rat Alexa Fluor 488 (1:100) secondary 

antibodies (40 min at RT) in blocking buffer. Vectashield with DAPI mounting media (Vector 

laboratories, Burlingame, CA) was used to stain nuclei and mount. Images of centered single 

fibers (3 different single fibers per sample, N = 8 each group) were taken on a Nikon Eclipse 

E600 microscope equipped with epi-fluorescence at 40X and cell counts were analyzed using 

ImageJ (version 1.51a, NIH). 

Image analysis algorithms were used to quantify the results obtained by imaging of 

histological tissue sections. First, a custom-designed algorithm (Wolfram Mathematica, version 

10.0. Champaign, IL) was used to quantify both arginase-1 and iNOS expression at 7 and 14 

days by means of arginase-1/DAPI and iNOS/DAPI pixel ratio versus the distance from the 

surface of single centered mesh fiber (3 different single fibers, N = 8 each group) images taken 

from histological tissue sections per sample. Next image analysis was performed using ImageJ 

(version 1.51a, NIH) in order to quantify the number of pro-inflammatory (iNOS, M1) and 

regulatory (arginase-1, M2) macrophages (F4/80) surrounding single mesh fibers in each group. 

3.2.4 Histological stainings 

Paraffin embedded tissue cross-sections were used for H&E, Masson’s trichrome and Picro 

Sirius Red staining. H&E and Masson’s trichrome stained tissue sections were imaged on a 
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Nikon Eclipse E600 microscope (Tokyo, Japan) at 10X and 20X, respectively. Picro Sirius Red 

stained tissue sections were imaged at 20X on a Nikon Eclipse TE2000-E (Tokyo, Japan), 

equipped with circularly polarized light. 

ImageJ (version 1.51a, NIH) equipped with a color deconvolution plug-in (version 1.5) 

was used to quantify the area and mean thickness (calculated as the mean of apical, basal, and 

lateral measurements taken perpendicular to the surface of the mesh fiber, Figure 9) of capsule 

surrounding mesh fibers at 90 days (3 different single fibers per sample, N = 8 each group) in 

images taken from histological tissue sections stained with Masson’s Trichrome. 

 
 
 

 

Figure 9. Quantification of the mean thickness (calculated as the mean of apical, basal, and lateral 

measurements taken perpendicular to the surface of the mesh fiber) of capsule surrounding mesh fibers at 90 days (3 

different single fibers per sample, N = 8 each group) in images taken from histological tissue sections stained with 

Masson’s Trichrome 

 
 
 
A custom-designed algorithm (Mathworks MathLab, version R2015a. Natick, MA) was 

used to evaluate quantitatively the distribution of collagen fiber sizes surrounding mesh fibers at 

90 days (3 different single fibers per sample, N = 8 each group) in images taken from 

histological tissue sections stained with Picro Sirius Red. 
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3.2.5 Gene expression analysis 

Transient inflammatory tissue from mesh explants was isolated to extract RNA using Qiagen 

RNeasy MiniPrep RNA Isolation Columns following standard kit protocol. RNA was quantified 

using a NanoDrop Spectrophotometer. cDNA templates were created using Invitrogen High 

Capacity RNA-to-cDNA kits. Taqman Gene Expression Assays were performed for the 

following markers: Arg-1, IL-10, YM-1, Fizz-1, iNOS, IL-6, TNF-α, IL-12β, TGF-β1, IL-1β, 

MCP-1, PPARγ, MMP-9, MMP-10, MMP-13, Col1A1, CTGF, VEGFα and PDGFα, using B2M 

as endogenous control. Gene expression was normalized against the SHAM group. 

3.2.6 Statistical analysis 

Comparisons of means were performed by either one-way or two-way analysis of variance 

(ANOVA), using at least p < 0.05 as statistical significance criteria followed by Tukey’s test to 

compare groups and Sidak’s test to compare time points. Shapiro-Wilk was used to test 

normality. All statistical tests were performed on GraphPad Prism V7 (La Jolla California, 

USA). 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Studies on macrophage polarization and the early-stage host response against 

implanted meshes 

A mouse implantation model was used to test the ability of IL-4 loaded mesh to promote an early 

shift (7 and 14 days) in the polarization of macrophages towards an M2 phenotype in-vivo and to 

examine the effects of such shifts in macrophage polarization upon downstream tissue 

remodeling (90 days). 1 cm2 of pristine mesh, coated (no IL-4) mesh and IL-4 loaded mesh 

(40B) were implanted into a subcutaneous pocket in the abdomen of 8-10 week old female 

C57BL/6J mice. Mesh and surrounding tissue (muscle and skin) were then harvested at 7 and 14 

days post-implantation and used to study macrophage polarization. Sham surgeries (no mesh 

implantation) were also performed. In sham animals, a normal wound healing process observed 

(Figure 10, top panel) and was characterized by a transient inflammatory response including 

significant immune cell infiltration at 7 days which was largely resolved by 14 days post-

inflammation with restoration of normal tissue architecture resembling healthy tissue controls. 

The histologic appearance in mice implanted with mesh was also characterized by the presence 

of inflammatory cell infiltration in the surgical site at 7 days; however, this reaction was not 

resolved at 14 days and was largely localized to the area surrounding mesh fibers, regardless of 

mesh type (Figure 10, bottom panel), thereafter. The presence of foreign body giant cells was 

noted beginning at 14 days post implantation and at the 90 day time point, regardless of mesh 

type. While the number and distribution of foreign body giant cells was qualitatively similar 

across all groups, no attempt was made in the present study to quantify the number of foreign 

body giant cells. 
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Figure 10. H&E stained tissue sections at 10X from mice implanted with a 1 cm2 piece of pristine, coated 

(no IL-4) and IL-4 loaded (40B) mesh at 7 days (top panel) and 14 days (bottom panel). Healthy and SHAM (no 

mesh surgery) were used as controls. Scale bars represent 200 µm 

 
 
 
Immunolabeling of F4/80 (pan macrophage marker), arginase-1 (an M2 marker) and 

inducible nitric oxide synthase (iNOS, an M1 marker) was performed to assess the number, 

location, and phenotypic profiles of the macrophages within the site of implantation at 7 and 14 

days (Figure 11 a, c). In all mesh groups, the number of both arginase-1 and iNOS positive cells 

was observed to peak within the first 50 µm from the mesh surface (Figure 11 b, d). Therefore, 

this distance was considered as the tissue-biomaterial interface, where the most important 

interactions of the biomaterial with the surrounding tissue occur and determine the implant 

success in the long term. 

 
 
 



 44 

 

Figure 11. Fluorescence microscopy images of (a) Arginase-1 (red) and F4/80 (green) co-immunolabeling, 

and (c) iNOS (red) and F4/80 (green) co-immunolabeling at a single mesh fiber of tissue cross sections of mice 

implanted with a 1 cm2 piece of pristine, coated (no IL-4) and IL-4 loaded (40B) mesh for 7 days (top panel) and 14 

days (bottom panel). DAPI was used to stain cell nuclei. Scale bars represent 50 µm. (b) Arginase-1/DAPI pixel 

ratio and (d) iNOS/DAPI pixel ratio versus distance of arginase-1 and iNOS immunolabeled tissue sections at 7 

days, respectively. Points represent the mean ± SEM (N = 8) 

 
 
 
Total cell infiltration around single mesh fibers was assessed by DAPI staining, revealing 

no differences between groups at 7 or 14 days (Figure 12a). However, the small increases in the 

number of cells within the remodeling site were observed from 7 to 14 days in the pristine and 

IL-4 loaded mesh implantation groups. Analysis of F4/80+ macrophage populations revealed a 
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significantly higher presence of F4/80+ cells as a percentage of the total cell population in mice 

implanted with pristine mesh, compared to both coated (no IL-4) and IL-4 loaded mesh groups at 

7 days (Figure 12b). At 14 days, the percentage of F4/80+ cells in the pristine mesh group was 

significantly reduced and was similar to levels similar to those found in both coated (no IL-4) 

and IL-4 loaded meshes. The percentage of F4/80+ cells in the implantation site of IL-4 loaded 

meshes were also significantly decreased compared to 7 days, but these decreases were smaller 

than those observed for the pristine mesh group. There were no differences in the percentage of 

F4/80+ cells between coated (no IL-4) and IL-4 loaded mesh groups at 7 or 14 days. These results 

suggest that the coating may have had an inhibitory effect upon the recruitment of macrophages 

into the implantation site at early time points. 
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Figure 12. Image analysis of (a) total cells (DAPI) and (b) F4/80+ cells as percentages of total cells (DAPI) 

surrounding single mesh fibers of tissue cross sections of mice implanted with a 1 cm2 piece of pristine, coated (no 

IL-4) and IL-4 loaded (40B) mesh for 7 days and 14 days. Image analysis of (c) Arg-1+ F4/80+ cells and (d) iNOS+ 

F4/80+ cells as percentages of total F4/80+ cells surrounding single mesh fibers of tissue cross sections of mice 

implanted with a 1 cm2 piece of pristine, coated (no IL-4) and IL-4 loaded (40B) mesh for 7 days and 14 days. Bars 

and points represent the mean ± SEM (N = 8). Statistical significance as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 

and (****) p < 0.0001, using two-way ANOVA with Tukey’s (groups) and Sidak’s (days) tests. All other 

differences are non-significant 

 
 
 
Additional co-labeling was performed for arginase-1 and iNOS to assess the M1/M2 

polarization profile of the cells within the implantation site. Results at 7 days post-implantation 

revealed that mice implanted with IL-4 loaded mesh were associated with an increased 

percentage of Arg-1+ macrophages (F4/80+) as compared to both coated mesh and pristine mesh 
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groups (Figure 12c). The difference in arginase-1 labeling in the IL-4 loaded mesh group was 

greatest in the first 40 to 50 µm from the mesh surface (Figure 11b) as compared to both coated 

and pristine mesh, suggesting that the effects of IL-4 released from the LbL coating are limited 

to distances up to 50 µm from the surface of the implanted mesh. Coated mesh did not elicit an 

increase in Arg-1+ macrophages as compared to pristine mesh (Figure 12c). These results are 

consistent with the in-vitro findings showing significant increases in M2 macrophage 

polarization only in the IL-4 loaded mesh group (Figure 6). Results at 7 days post-implantation 

also showed a reduction of iNOS+ macrophages in mice implanted with IL-4 loaded meshes 

compared to mice implanted with pristine meshes (Figure 12d). Mice implanted with coated 

mesh also showed a reduction in iNOS+ macrophages compared to the pristine mesh implanted 

group; however, no significant differences were observed between the coated mesh and IL-4 

loaded groups (Figure 12d). These results suggest that the coating material may have impacted 

the polarization of macrophages towards an M1 profile. Differences in iNOS labeling were 

observed to peak at 25 µm from the mesh surface of the pristine mesh implanted group at 7 days 

(Figure 11d), again suggesting that the effects of the coating were limited to the first 50 µm from 

the mesh surface. 

Results at 14 days post-implantation revealed a decrease in Arg-1+ macrophages in mice 

implanted with IL-4 mesh as compared to the 7 day time point; however, the percentage of Arg-

1+ macrophages was still higher than both coated (no IL-4) and pristine mesh groups (Figure 

12c). The percentage of iNOS+ macrophages at 14 days was found to decline in mice implanted 

with pristine mesh as compared to 7 days; however, there were no significant differences 

observed between any groups at the 14 day time point (Figure 12d). When the effects of IL-4 

coating upon the percentage of Arg-1+ macrophages at 7 and 14 days were compared (Figure 



 48 

12c) it can be appreciated that arginase-1 expression in the IL-4 coated group at 14 days returned 

to levels similar to those observed for pristine mesh at both 7 and 14 days. This suggests that the 

length of IL-4 release from the LbL coated meshes occurs mostly at early stages of the host 

response (< 14 days) and that its effects on macrophage polarization in-vivo are declining by 14 

days. Figure 13 shows the percentage of total cells expressing Arg-1 and iNOS co-labeled with 

F4/80. 

 
 
 

 

Figure 13. Image analysis of (a) Arg-1+ F4/80+ cells and (b) iNOS+ F4/80+ cells as percentages of total cells 

(DAPI) surrounding single mesh fibers of tissue cross sections of mice implanted with a 1 cm2 piece of pristine, 

coated (no IL-4) and IL-4 loaded (40B) mesh for 7 days and 14 days. Bars represent the mean ± SEM (N = 8). 

Statistical significance as (*) p < 0.05 and (****) p < 0.0001, using two-way ANOVA with Tukey’s (groups) and 

Sidak’s (days) tests. All other differences are non-significant 

 
 
 
While increases in the M2 macrophage population can likely be attributed to the release 

of IL-4 from loaded mesh as demonstrated in vitro, there are two potential rationales for the 

observed reduction in the number of iNOS+ macrophages in the IL-4 loaded mesh group. First, 
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iNOS expression may be reduced as a consequence of the polarization of the macrophages at the 

tissue implant interface towards an M2 phenotype, given the known competitive nature of 

pathways leading to iNOS and arginase-1 expression in mice [114-116]. Second, decreased 

percentage of iNOS+ macrophages may be due to the effects of the coating components and/or 

surface plasma treatment upon macrophage polarization. This second mechanism is supported by 

the significant reduction in the percentage of iNOS+ macrophages (Figure 12d) but also a 

reduction in F4/80+ cells (Figure 12b) observed in the coated mesh group at 7 days. Therefore, 

the coating components and/or modified mesh surface themselves appear to have effects in the 

reduction of M1 macrophages but not in promoting M2 macrophage polarization. Thus, the 

observed results are likely a combination of mechanisms driving the reduction of M1 

macrophages with IL-4 mediated increases in the M2 population. 

3.3.2 Effects of IL-4 and components of the coating in multiple macrophage populations 

We noted that some Arg-1+ and iNOS+ cells did not express F4/80 (Figure 14). This suggests that 

cells other than macrophages may produce Arg-1 and iNOS in the area of implantation, or that 

one or more populations of macrophages which express other markers such as CD11b or CD68 

but not F4/80 are present within the remodeling site. It is also unknown what other effects both 

IL-4 and coating components drive in other macrophage populations. To answer these questions, 

Arg-1 and iNOS were used in co-labeling with CD68 and CD11b. CD68 (Cluster of 

Differentiation 68) is a protein highly expressed by cells in the monocyte lineage (e.g., 

monocytic phagocytes, osteoclasts), circulating macrophages and tissue resident macrophages 

(e.g., Kupffer cells, microglia) [117-119]. CD68 is also known as ED1 in rats, the most 

commonly used “pan-macrophage” marker. CD11b is expressed on the surface of many 



 50 

leukocytes including monocytes, neutrophils, natural killer cells, granulocytes and macrophages, 

as well as on 8% of spleen cells and 44% of bone marrow cells [120]. Functionally, CD11b 

regulates leukocyte adhesion and migration to mediate the inflammatory response. 

 
 
 

 

Figure 14. Image analysis of (a) Arg-1+ cells and (b) iNOS+ cells as percentages of total cells (DAPI) 

surrounding single mesh fibers of tissue cross sections of mice implanted with a 1 cm2 piece of pristine, coated (no 

IL-4) and IL-4 loaded (40B) mesh for 7 days and 14 days. Bars represent the mean ± SEM (N = 8). Statistical 

significance as (*) p < 0.05 and (****) p < 0.0001, using two-way ANOVA with Tukey’s (groups) and Sidak’s 

(days) tests. All other differences are non-significant 

 
 
 
Co-labeling of Arg-1 with these three macrophage populations (F4/80, CD68 and 

CD11b) was done at 7 days post-implantation to identify and quantify M2 macrophages is shown 

in Figure 15. Of note, 7 days was chosen due to the higher expression of macrophage markers 

compared to all other time-points. Results revealed that mice implanted with coated (no IL-4) 

and IL-4 eluting mesh were associated to a reduction in F4/80+ macrophages, compared to the 

pristine mesh group. On the other hand, there were no differences in the percentage of cells for 
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both CD68 and CD11b in any of the implanted groups. Therefore, these results suggest that the 

coating may prevent any recruitment effects on F4/80+ macrophages mediated by interactions of 

the microenvironment with the polypropylene surface, or that one or more components of the 

coating may exert distinct effects in the F4/80+ macrophage population but not in the CD68 and 

CD11b populations, in particular to recruitment activity. 

 
 
 

 

Figure 15. Image analysis of F4/80+, CD68+ and CD11b+ macrophages as percentages of total cells (DAPI) 

surrounding single mesh fibers of tissue cross sections of mice implanted with a 1 cm2 piece of pristine, coated (no 

IL-4) and IL-4 loaded (40B) mesh for 7 days. Bars represent the mean ± SEM (N = 6). Statistical significance as (*) 

p < 0.05 and (****) p < 0.0001, using two-way ANOVA with Tukey’s test. All other differences are non-significant 

 
 
 
The percentage of M2 macrophages on each of these populations has also been 

quantified, revealing that mice implanted with IL-4 eluting mesh presented a consistent higher 

percentage of M2 macrophages in all macrophage populations, compared to all other groups 

(Figure 16). The percentage of M2 macrophages in both coated (no-IL4) mesh and pristine 

groups was similar in all groups, which is consistent to previous results demonstrating that the 

observed shift towards an M2 phenotype is due to local delivery of IL-4. 
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Figure 16. Image analysis of F4/80+, CD68+ and CD11b+ macrophages co-labeled with Arg-1 (M2 

macrophages), as percentages of total cells (DAPI) surrounding single mesh fibers of tissue cross sections of mice 

implanted with a 1 cm2 piece of pristine, coated (no IL-4) and IL-4 loaded (40B) mesh for 7 days. Bars represent the 

mean ± SEM (N = 6). Statistical significance as (*) p < 0.05 and (****) p < 0.0001, using two-way ANOVA with 

Tukey’s test. All other differences are non-significant 

 
 
 
Similarly, the percentage of M1 macrophages has been quantified by iNOS co-labeling in 

all F4/80, CD68 and CD11b macrophage populations. Results show that both coated (no IL-4) 

and IL-4 mesh groups presented diminished percentages of M1 macrophages in the F4/80+ and 

CD68+ populations, compared to the pristine mesh group (Figure 17). There were no differences 

among groups in the CD11b population, that could be also consequence of the low co-

localization degree between iNOS and CD11b. These results suggest that the components of the 

coating reduce the polarization of M1 macrophages or that the coating hides the surface of 

polypropylene, interrupting the interactions with F4/80+, CD68+ macrophages and subsequent 

M1 polarization. 
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Figure 17. Image analysis of F4/80+, CD68+ and CD11b+ macrophages co-labeled with iNOS (M1 

macrophages), as percentages of total cells (DAPI) surrounding single mesh fibers of tissue cross sections of mice 

implanted with a 1 cm2 piece of pristine, coated (no IL-4) and IL-4 loaded (40B) mesh for 7 days. Bars represent the 

mean ± SEM (N = 6). Statistical significance as (*) p < 0.05 and (****) p < 0.0001, using two-way ANOVA with 

Tukey’s test. All other differences are non-significant 

 
 
 

3.3.3 Gene expression analysis of the host response to IL-4 eluting meshes 

Results revealed that mice implanted with IL-4 eluting mesh were associated to upregulation of 

M2-like macrophage genes such as Arg-1 (7 days), IL-10 (14 days) and YM-1 (7 and 14 days), 

compared to both coated (no IL-4) and pristine meshes (Figure 18). However, a downregulation 

in Fizz-1 (7 days) was observed in both IL-4 and coated (no IL-4) groups. IL-4 eluting mesh 

group was also associated to downregulation of M1-like macrophage genes such as IL-6 (7 days) 

and IL-12β (7 and 14 days), compared to both coated (no IL-4) and pristine mesh groups. In 

addition, upregulation of MMP-9, MMP-10 and MMP-13 was found in the IL-4 mesh group 
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compared to all other groups. Downregulation in CTGF was observed for both IL-4 and coated 

(no IL-4) mesh groups. These results are consistent with surface marker expression and 

demonstrate that the presence of IL-4 promotes an M2-like macrophage response, upregulating 

M2-macrophage genes such as Arg-1, IL-10, and YM-1; increasing MMP activity, but 

downregulating M1-macrophage genes IL-6 and IL-12β. Downregulation in Fizz-1 and CTGF in 

both IL-4 and coated (no-IL4) mesh groups suggests that downregulation in these genes are 

mediated by the effects of the components of the coating. Of note, it can be observed some 

differences in the level of gene expression between 7 and 14 days for each of the genes 

evaluated, which is related to the sequence and mechanisms in which these genes are activated to 

perform multiple biological processes involved in the host response against biomaterials. 

Additional time points will be studied at both early stages and in the long-term to reveal this 

information. 
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Figure 18. Taqman gene expression heat map assessing the expression of gene targets relevant to early 

stages of the host response against biomaterials (7 and 14 days), using tissue extracted from explanted meshes. 

SHAM group was used to normalize gene expression levels. Significant differences in upregulated or downregulated 

genes are shown separate graphs below. Bars represent the mean ± SEM (N = 6). Statistical significance as (*) p < 

0.05, (**) p < 0.01 and (****) p < 0.0001, using two-way ANOVA with Tukey’s test. All other differences are non-

significant 
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3.3.4 Downstream effects in the host response upon macrophage polarization promoted 

by implanted meshes 

Mesh and the surrounding tissue complex were harvested at 90 days post-implantation to 

evaluate the effects of mesh coating and IL-4 loading upon long-term tissue remodeling 

outcomes. Image analysis of Masson’s trichrome stained histological sections was performed to 

identify and quantify capsule formation. Results revealed capsule formation around mesh fibers 

for all groups (Figure 19a); however, IL-4 loaded mesh elicited reduced capsule area and 

thickness compared to the prominent and dense capsules surrounding fibers of both coated and 

pristine meshes (Figure 19 b, c). Subsequent analysis of collagen fiber distribution in picrosirius 

red stained sections was performed using a custom-designed algorithm (Mathworks MatLab 

R2015a). Circularly polarized light microscopy was able to reveal the relative thickness of the 

collagen fibers as a function of the color hue from thin green fibers to increasingly thick yellow, 

orange and red fibers [121]. Results revealed that mice implanted with IL-4 loaded meshes had 

reduced content of both thick orange and thicker red collagen fibers, compared to both pristine 

and coated meshes (Figure 20). A concurrent increase in thin yellow and thinner green collagen 

fibers was found for IL-4 loaded mesh compared to both pristine and coated mesh. While we 

note that the tissue remodeling process is incomplete at the 90 day time point, these outcomes 

indicate a change in the quantity and type of the collagen fibers composing the fibrotic capsule. 

These findings may be relevant to potential improvements in mechanical performance of the 

implanted mesh in-vivo, and are the subject of future studies. 
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Figure 19. (a) Masson’s Trichrome stained tissue sections of mice implanted with a 1 cm2 piece of pristine, 

coated (no IL-4) and IL-4 loaded (40B) mesh at 90 days. Arrowheads indicate the capsule surrounding single mesh 

fibers. Scale bars represent 200 µm. (b) Image analysis of capsule deposition (area %) and (c) Mean thickness 

surrounding mesh fibers (3 images of a single fiber at 20X per sample, N = 8 samples). Bars represent the mean ± 

SEM. Statistical significance as (**) p < 0.01 and (****) p < 0.0001, using two-way ANOVA with Tukey’s test. All 

other differences are non-significant 
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Figure 20. (a) Picro Sirius Red stained tissue sections (20X) of mice implanted with a 1 cm2 piece of 

pristine, coated (no IL-4) and IL-4 loaded (40B) mesh at 90 days. Arrowheads indicate the capsule surrounding 

single mesh fibers. Scale bars represent 100 µm. (b) Image analysis of collagen capsule quality, surrounding mesh 

fibers (3 images of a single fiber at 20X per sample, N = 8). Bars represent the mean ± SEM. Statistical significance 

as (**) p < 0.01, (***) p < 0.001 and (****) p < 0.0001, using two-way ANOVA with Tukey’s test. All other 

differences are non-significant 

 
 
 
The results of the present study demonstrate that the release of IL-4 from LbL coated 

mesh promotes shifts in early-stage macrophage polarization that are associated with positive 

long-term effects such as minimized capsule formation and improved tissue quality and 

composition compared to coated and pristine meshes. These results also suggest that long-term 

positive outcomes are due to an early-stage increase in the proportion of M2 macrophages, rather 

than a decrease in the presence of M1 macrophages or total F4/80+ macrophages, given that 

coated meshes were also capable of significantly decreasing the proportion of M1 macrophages 

and F4/80+ macrophages (Figure 12[b, d], 13b, 14b, 15, 17) as compared with pristine mesh, but 
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were not associated with improved tissue remodeling outcomes (Figure 19, 20). The present 

study also clearly demonstrates that it is possible to transiently shift the early phases of the host 

response to implants which otherwise elicit a chronic pro-inflammatory response with significant 

impact upon the tissue remodeling outcome downstream while leaving key implant 

characteristics such as material properties and porosity intact. 

It has been previously suggested that excessive long-term polarization towards either an 

M1 or an M2 phenotypes may have negative effects on remodeling outcomes [32, 33, 122]. 

Additionally, an increasing number studies have described pathologies associated with an 

imbalance and long-term presence of M1 or M2 macrophages, including but not limited to 

cancer, diabetes and atherosclerosis [99, 123, 124]. Therefore, localized and temporal delivery of 

bioactive agents represents an advantage over strategies promoting systemic and or permanent 

shifts in the host response as it limits the potential for adverse long-term interactions and 

exacerbation of conditions which may exist at distant sites. Similarly, promoting transient shifts 

in macrophage polarization in the early host response represents an improved approach as 

compared to strategies which seek to evade the host immune response. Previous studies using 

surface modification of biomaterials and coatings to escape the innate immune system have 

shown only modest improvements at early stages of the host response against biomaterials and 

few improvements in long-term performance [51, 73, 125-127]. Finally, the present delivery 

system represents an advantage over previous delivery approaches, given that significant effects 

on macrophage polarization are observed at lower, controllable and safer doses (picograms to 

nanograms), compared to the high doses (nanograms to micrograms) of IL-4 used in previous 

studies [65, 67, 106]. The systemic release of larger amounts IL-4 may lead to effects upon distal 
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tissues and/or exacerbated and contradictory outcomes associated with a fibrotic process or 

potential enhancement of the foreign body reaction [43, 128]. 

At present, the stability of the coating and release profile of IL-4 in vivo is unknown. 

Alcian blue labeling, which as used to identify the coating in vitro, was used to attempt to 

identify the coating in histologic sections. The presence of the coating was indistinguishable at 

any time point which we evaluated in the present study. The lack of Alcian Blue staining around 

the fibers, however, does not necessarily indicate that the coating is degraded. As the coating is 

on the nanometer scale, it may not be possible to distinguish the staining using routine histologic 

methods. In-vivo, both the chitosan and dermatan sulfate components of the coating are mostly 

degraded by macrophages and other cells participating in the host response. Layer by layer films 

have shown multiple release mechanism, depending the nature of the polyelectrolytes composing 

the films, being surface degradation the most predominant mechanism that gradually releases the 

entrapped bioactive agents by degradation of the most external layer films, followed by more 

internal layers [129, 130]. Therefore, IL-4 is most likely released by gradual surface degradation 

of the coating multilayers, mainly triggered by macrophages and other cells of the immune 

system with enzymatic capacity. However, release by diffusion of IL-4 may also occur to a lesser 

extent. Additional follow up studies should be performed to specifically address in-vivo release 

profiles. 

There were several limitations to the present study. First, while the present study 

demonstrated positive results from the use of IL-4 as a macrophage polarizing molecule, it 

should be noted that multiple IL-4 isoforms do exist with potentially different functional effects 

[131, 132]. The IL-4δ2 isoform of IL-4, for example, has been shown to promote the expression 

of multiple pro-inflammatory cytokines and the chemotaxis of T and B cells [132]. Thus, careful 
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consideration of the exact formulation and potential adverse effects of the IL-4 containing 

coating is necessary. Further, it is well known that these pathways and others, including IL-4, are 

regulated differently in humans and mice [131, 133, 134]. Thus, additional testing must be 

performed to demonstrate potential relevance to human conditions. The LbL method described in 

the present manuscript is amenable to the use of other macrophage polarization inducing 

molecules and alternative molecules can likely be substituted for IL-4 if needed for further 

development. 

Second, further investigation is needed to clearly define the resultant phenotype and the 

potential paracrine mechanisms by which the observed shifts in macrophage phenotype affect the 

remodeling process. Increases in total cellularity were observed between the 7 and 14 day time 

points. While these increases were moderate, they were often also accompanied by a decrease in 

the F4/80+ cell population, suggesting a replacement of the macrophages by other cells. These 

changes could be associated with recruitment of fibroblasts and other cells involved in late 

phases of the host response. 

Studies in both the biomaterials and wound healing literature have shown complex and 

reciprocal cell-cell crosstalk between macrophages and fibroblasts during the processes of 

healing and fibrosis [135-138]. In the context of the foreign body reaction, these interactions 

have been shown to result in increased expression of MCP-1 (a potent recruiter of macrophages 

and a mitogen for fibroblasts), the inhibition of macrophage secretion of cytokines, and the 

promotion of fibroblast production of cytokines, among others [137]. Thus, the potential effects 

of IL-4 upon fibroblasts and subsequent effects upon macrophages and other immune cells are 

important and should also be considered. Further, it has been shown that macrophages can also 

drive fibroblasts to form multinucleated cells in-vitro, resembling some characteristics of the 
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foreign body giant cells [138]. The exact implications of such findings and their role in the 

present study are unknown, but warrant further examination to determine the specific effects of 

IL-4 coatings upon both macrophages and other cells participating in the remodeling process.  

Third, in the present study, the evaluation of macrophage phenotype was performed in 

the area of single fibers in order to simplify quantification of macrophage numbers as well as 

downstream histologic outcomes around a complex shape. However, we note that recent 

published studies have demonstrated that density of the mesh is a local driver of the host 

macrophage response, where increased local mesh density is associated with an increased local 

pro-inflammatory response [21, 22]. While investigation of the differences in the host response 

between fibers and knots was beyond the scope of the present study, it will be important to 

evaluate the effects of IL-4 coated mesh knots in order to illustrate the effects in the host 

response of the released IL-4 and the coating in the presence of high density and complex 

geometry of the implant. 

Fourth, the host inflammatory response is also known to be variable by tissue location 

and context. Of particular relevance to the present study, the host response to polypropylene 

mesh in the vagina has been reported to be significantly different than that in the abdominal wall 

musculature [21, 139]. Thus, testing of the present strategy in more relevant model systems must 

be performed to demonstrate utility in these applications. Additionally, the present study used 

only one concentration of IL-4 and only investigated 40 bilayers of IL-4 loaded coating. Further 

studies will be necessary to determine the ideal number of coating layers and optimal time of 

release in vivo. Ideally, the smallest dose of IL-4 and shortest time of release should be identified 

to reduce the potential for systemic effects of IL-4 release. 
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Finally, the mechanism by which shifts in macrophage phenotype drives improved 

implant integration have yet to be identified. While it is logical that the presence of a chronically 

activated M1 macrophage population at the tissue-implant interface would lead to tissue 

degradation or encapsulation in the long term, it is unclear how M2 macrophages affect the tissue 

remodeling process and whether M1 macrophages play any essential role in the early remodeling 

phase (i.e. phagocytosis, activation of local cell populations, production of chemotactic signals). 

It is likely that both M1 and M2 macrophages play important roles in tissue remodeling, and that 

the timing of the phenotypic switch will prove an essential factor in determining the degree of 

success. 

3.4 CONCLUSIONS 

The released IL-4 from LbL coated meshes can promote macrophage polarization towards an M2 

phenotype in-vivo. In addition, the effects of the local released IL-4 from LbL coated meshes on 

macrophage polarization extend up to 50 µm of distance from the mesh surface. Interestingly, 

the assessment of different macrophage subpopulations showed distinct susceptibility to IL-4 and 

components of the coating. Gene expression analyses using tissues from explanted meshes 

showed that the IL-4 eluting mesh group was associated with higher expression of M2 

macrophage-related genes and MMPs, but lower expression in M1 macrophage-related genes 

and CTGF, compared to other groups. Shifting the macrophage response towards an M2-like 

phenotype led to decreased fibrotic capsule deposition surrounding mesh fibers but also changes 

in collagen composition, suggesting improved mesh integration into the host tissue and the 

potential for reduction in downstream complications. Finally, these results are strong evidence to 
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support our hypothesis that early-stage macrophage polarization at the tissue-implant interface 

towards an M2 phenotype would mitigate the foreign body reaction and hence promote better 

integration of non-degradable biomaterials into the host tissue in the long term. While the present 

study focused only upon polypropylene mesh commonly used for soft tissue reconstruction, the 

methods and findings presented can likely be extended to include other material types and 

applications. 



 65 

4.0  AIM III: ELUCIDATE THE EFFECTS OF AGING IN THE HOST RESPONSE 

AGAINST BIOMATERIALS TO DESIGN A CONTEXTUAL DELIVERY REGIMEN 

4.1 INTRODUCTION 

While temporal and spatial control of macrophage polarization towards an M1 or M2 phenotype 

can now be achieved in multiple ways [140-142], the ability to effectively promote the desired 

phenotypic profile is likely predicated upon an in-depth, context- and tissue-dependent 

understanding of how host factors affect the response to biomaterials. A number of recent studies 

have highlighted the importance of the implantation site and/or the pathologic state of the tissue 

into which a biomaterial is implanted. For example, polyether–polyurethane sponge implants 

evoked distinct responses when placed in intraperitoneal versus subcutaneous locations [143] 

and polypropylene mesh implanted abdominally was shown to evoke a reduced inflammatory 

response compared to those implanted vaginally [139], demonstrating differences in immune cell 

activity based upon implant location.  Intraperitoneal implants in diabetic rats were associated 

with increases in inflammatory factors as compared to non-diabetic animals [144] and increased 

fibrosis was observed in lupus-prone mouse models [145], demonstrating the effects of 

underlying pathology on the host response. Another recent study showed differences in the host 

response to adhesive materials in animal models of colitis and colon cancer [146], demonstrating 

that the observed host response was not only due to implant material composition, but also the 
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pre-implantation state and cellular composition of the tissue of interest. Of note, the authors were 

able to use the information gleaned from these studies to create improved context- and disease-

dependent materials for these applications. Thus, it has been suggested that the ideas of 

“biocompatibility,” the host macrophage reaction, and ideal material requirements and 

modification strategies may need to be revisited on a disease, tissue, and even patient-by-patient 

basis [147]. 

Aging is an unavoidable process known to affect multiple aspects of the immune system 

in both humans and animals [148]. While the effects of aging upon the adaptive immune system 

are increasingly well described, the phenotypic and functional changes within the innate immune 

system with aging are less clear. However, immunosenescence, dysregulation of macrophage 

function and polarization, and delayed resolution of acute immune responses in aged individuals 

have all been reported [68-70]. Therefore, it is logical that aging would also have effects upon 

the host response to implantable materials. However, studies examining the effects of aging upon 

the host response to implants and the implications of this response for long-term integration and 

function have not been performed. Thus, there is a clear need to elucidate the impacts of aging 

upon the host response in order to develop implantable materials which more effectively address 

the needs of an increasingly aged population. 

By 2050, the number of individuals over the age of 65 is expected to increase by 71% to 

nearly 2 billion worldwide, with the number of US citizens over the age of 65 surpassing 20% by 

2030 [149]. As a result, there is an increasing demand for implantable medical devices intended 

to treat age-related disorders. Despite the increasing usage of implantable medical devices in 

aged patient populations, the impacts of aging upon the host response have never been 

investigated in-depth. The literature which does exist on the topic largely hypothesizes the 
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potential impacts of aging upon the host response [150] based upon the known effects of aging 

on the immune system and upon wound healing, though a small number of relevant studies have 

recently been performed [151-154]. In one study, Sicari et al. demonstrated that increased source 

animal age of tissue derived biomaterials, such as decellularized ECM constructs, reduced the 

number of M2 polarized macrophages and lead to a poor outcome of tissue remodeling compared 

to young host-derived biomaterials [151]. Olivares-Navarrette et al. showed that titanium 

implants with varying roughness and surface energy yielded lower bone-to-implant contact, 

neovascularization, and bone formation in aged rats [152]. Finally, in vitro analyses of senescent 

macrophages induced by extended culture demonstrated deficits in phagocytosis and cytokine 

release in response to titanium dioxide particles and polystyrene materials, suggesting 

macrophage function may be compromised in the aged host response [153, 154]. 

The purpose of the present study is two-fold. We first aimed to evaluate the early host 

macrophage response and downstream integration following placement of polypropylene mesh 

in young (8-week-old) versus aged (18-month-old) mice. The host response against 

polypropylene mesh in aged mice resulted in delayed cell recruitment, significant differences in 

macrophage surface marker expression and a highly shifted pro-inflammatory (M1) response at 

early stages, associated with an unresolved host response in the long-term, compared to young 

adult mice. Therefore, the second part of the study contemplates the development of a sequential 

delivery regimen to restore the delayed recruitment and shift the highly inflammatory response 

of macrophages in old mice towards an M2-like phenotype, using MCP-1 and IL-4, respectively. 
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4.2 METHODS 

4.2.1 Materials 

C57BL/6 female mice, 8 – 10 weeks old and 18 months old were obtained from the National 

Institute on Aging Mouse Colony.  A polypropylene mesh, Gynemesh® PS (Ethicon, 

Somerville, NJ) was used. Bovine serum albumin (BSA) and histologic staining materials were 

purchased from Sigma Aldrich (St. Louis, MO). Rabbit anti-mouse arginase (Arg-1), inducible 

nitric oxide synthase (iNOS), CD68 and anti-rabbit, anti-rat, anti-goat Alexa-fluor (donkey) 

secondary antibodies were purchased from Abcam (Cambridge, MA). Rabbit anti-mouse iNOS, 

CD68, CD11b and goat anti-mouse CD68 were purchased from Santa Cruz (Dallas, TX). Rabbit 

anti-mouse iNOS (ab3523) and Rabbit anti-mouse Arginase (ab91279) were purchased from 

Abcam (Cambridge, MA). Rat anti-mouse F4/80 was purchased from ABD Serotec (Raleigh, 

NC). Anti-rat Alexa-fluor 488 (donkey) and anti-rabbit Alexa-fluor 488 (donkey) were 

purchased from Thermo Fisher, Invitrogen (Pittsburgh, PA). DAPI was purchased from Thermo 

Fisher Scientific (Pittsburgh, PA). Qiagen RNEasy Mini Prep Kits were purchased from Fisher 

Scientific (Pittsburgh, PA). High Capacity RNA-to-cDNA kits, Taqman gene expression assays, 

and Taqman Gene Expression Master Mix was purchased from Thermo Fisher, Invitrogen 

(Pittsburgh, PA). Vybrant Phagocytosis Kit was purchased from Thermo Fisher, Invitrogen 

(Pittsburgh, PA). Sulfanilamide, phosphoric acid and N-1-napthylethylenediamine were 

purchased from Sigma-Aldrich (St. Louis, MO). 
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4.2.2 Mouse implantation model 

An implantation model using C57BL/6 female mice, 8 – 10 weeks old and 18 months were used 

following proper housing and treatment procedures approved by the Institutional Animal Care 

and Use Committee (IACUC) of the University of Pittsburgh.  NIH guidelines for the care and 

use of laboratory animals (NIH Publication #85-23 Rev. 1985) were observed. A power analysis 

was performed to determine that 5 animals per group was required to maintain a statistical power 

of at least 80%, based on previous studies using the same model [155]. 

A midline incision was made and a subcutaneous pocket was created in the abdomen of 

each mouse in order to implant a 1 cm2 piece of polypropylene mesh. 3-0 polycaprolactone 

sutures were used to close the incision, then 0.5 mg/kg of Baytril and 0.2 mg/kg of Buprenex 

were administered for 3 days as antibiotic and analgesic, respectively. Buprenorphine 

(Buprenex), an opioid analgesic, has been studied and shown not to exert any effects nor 

alterations in the immunological response, both acutely and chronically administered [112, 113]. 

After 3, 7, 14 or 90 days, mice were euthanized and skin/mesh/muscle complex tissues were 

harvested and fixed for 72 hours in neutral buffered formalin. Finally, fixed tissues were paraffin 

embedded and cross-sections of 7 µm were used for histological studies. 

4.2.3 Histologic staining and evaluation 

Paraffin embedded tissue cross-sections were used for H&E, Alcian Blue, Masson’s Trichrome 

and Picro Sirius Red staining. H&E, Alcian Blue and Masson’s Trichrome stained tissue sections 

were imaged on a Nikon Eclipse E600 microscope (Tokyo, Japan) at 10X, 20X, and 40X 
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respectively. Picro Sirius Red stained tissue sections were imaged at 20X on a Nikon Eclipse 

TE2000-E (Tokyo, Japan), equipped with circularly polarized light. 

ImageJ (version 1.48, NIH) equipped with a color deconvolution plug-in (version 1.5) 

was used to quantify glycosaminoglycans and collagen capsule surrounding mesh fibers at 3, 7, 

14 and 90 days (3 different single fibers per sample, N = 7 each group) in images taken from 

histological tissue sections stained with Alcian Blue and Masson’s Trichrome, respectively. In 

addition, the mean capsule thickness (including both the cellular reaction at the immediate 

implant surface and the surrounding collagen capsule) was calculated as the mean of apical, 

basal, and lateral measurements taken perpendicular to the surface of the mesh fiber in Masson’s 

Trichrome stained tissue sections. 

A custom-designed algorithm (Mathworks MathLab, version R2015a. Natick, MA) was 

used to evaluate quantitatively the distribution of collagen fiber sizes surrounding mesh fibers at 

90 days (3 different single fibers per sample, N = 7 each group) in images taken from 

histological tissue sections stained with Picro Sirius Red. 

4.2.4 Immunolabeling and evaluation of macrophage populations 

Paraffin embedded tissue sections were deparaffinized and hydrated in a series of 

xylene/alcohol/water. Incubation with proteinase K (1X) for 10 minutes at 37ºC and/or boiling in 

citric acid buffer (pH=6) for 20 minutes were performed to retrieve antigens. Slides were washed 

twice in TBST (25 mM Tris buffer + 0.1% tween 20). Then, a 5% donkey serum + 2% BSA + 

0.1% tween 20 + 0.1% triton X-100 solution was used as blocking agent (2 hours, RT). Table 4 

lists the antibodies and concentrations used in the present study. 
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Table 4. Primary and secondary antibody combinations and dilutions used to perform fluorescent co-

immunolabeling on tissue cross sections of 8-week and 18-month mice implanted with polypropylene mesh for 3, 7 

and 14 days. 

Labeling 1ºAb 1ºAb 2ºAb Alexa 594 2ºAb Alexa 
(488) 

F4/80+ CD68+ 1:50 (rat F4/80) 1:150 (rabbit 
CD68) 

1:100 (anti-rat) 1:200 (anti-
rabbit) 

F4/80+ CD11b+ 1:50 (rat F4/80) 1:100 (goat 
CD11b) 

1:200 (anti-
goat) 

1:100 (anti-rat) 

CD11b+ CD68+ 1:150 (goat 
CD11b) 

1:150 (rabbit 
CD68) 

1:200 (anti-
goat) 

1:200 (anti-
rabbit) 

iNOS+ CD68+ 1:100 (rabbit 
iNOS) 

1:150 (goat 
CD68) 

1:200 (anti-
rabbit) 

1:200 (anti-
goat) 

Arg-1+ CD68+ 1:150 (rabbit 
Arg-1) 

1:150 (goat 
CD68) 

1:400 (anti-
goat) 

1:200 (anti-
goat) 

 
 
 

All primary antibodies were incubated overnight at 4ºC in blocking buffer. Secondary 

antibodies were incubated for 40 minutes at RT. Vectashield with DAPI mounting media (Vector 

laboratories, Burlingame, CA) was used to stain nuclei and mount. Images of centered single 

fibers were taken on a Nikon Eclipse E600 microscope equipped with epi-fluorescence at 40X. 

Cell counting using ImageJ (version 1.48, NIH) was performed to identify and quantify 

macrophage populations from cells surrounding single centered mesh fibers (3 different single 

fibers, N = 7 each group). 

4.2.5 Harvest, culture and polarization of bone marrow-derived macrophages 

Bone marrow-derived macrophages were harvested from 8-10 week and 18-month-old C57BL/6 

mice. Briefly, femur and tibiae were harvested and separated from muscle and connective tissue.  

Bones were cut at either end to expose bone marrow. Sterile syringe and needles were used to 

flush out bone marrow using macrophage differentiation media (DMEM, 10% FBS, 10% L-929 
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Supernatant, 1% PenStrep, 2% NEAA, 1% HEPES, 0.2% β-2 mercaptoethanol). Bone marrow 

lysate was reconstituted in media and filtered through a sterile cell filter. Cells were cultured for 

7 days in media to differentiate them into macrophages. Following 7 days of differentiation 

culture, macrophages were treated polarizing regimens. Naïve macrophage (M0) controls were 

treated with basal media for 24 hours. M1 (20 ng/mL IFN-γ and 100 ng/mL LPS) and M2 (20 

ng/mL IL-4) polarizing cytokines were used to create pro-inflammatory and anti-

inflammatory/regulatory macrophages respectively. 

4.2.6 Immunolabeling analysis 

Cells were fixed with 2% paraformaldehyde (PFA) for 30 minutes then washed in 1X PBS. Cells 

were blocked using 2% donkey serum, 1% bovine serum albumin (BSA), 0.1% Triton X-100, 

0.1% Tween-20 for 1 hour at room temperature. Primary antibodies were diluted in this blocking 

buffer as follows and incubated overnight at 4 °C. Cells were washed in 1X PBS then incubated 

in fluorescently-labeled secondary antibodies for 1 hour at room temperature. Cell nuclei were 

counterstained with DAPI. Table 5 lists the antibodies and concentrations used in the present 

study. Images were taken in an array of 3 × 3 images per each well using a Carl Zeiss 

Observer.Z1 microscope and then the intensity of staining was analyzed using Cell Profiler 

Image Analysis Software (Broad Institute, Cambridge, MA) using the same number of cells for 

all tested conditions. 
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Table 5. Primary and secondary antibody dilutions used to perform indirect fluorescent antibody labeling of in vitro 

bone marrow-derived macrophage cultures. 

Labeling 1º Antibody 2º Antibody 

iNOS 1:100 (rabbit iNOS) 1:200 (donkey anti-rabbit) 

Arginase-1 1:200 (rabbit arginase) 1:200 (donkey anti-rabbit) 

 
 
 

4.2.7 Gene expression analysis 

Following treatments, macrophages were harvested for RNA using Qiagen RNEasy MiniPrep 

RNA Isolation Columns following standard protocol. RNA was quantified using a NanoDrop 

Spectrophotometer. cDNA templates were created using Invitrogen High Capacity RNA-to-

cDNA kits. Taqman Gene Expression Assays were performed for the following markers: iNOS, 

IL-1β, IL-12β, TNF-α, IL-10, Arg, Fizz1, MRC1, PPARγ. 

4.2.8 Nitric oxide assay 

Following treatments, supernatant from macrophages were collected. Nitric oxide content was 

assayed using a Greiss Reagent system. Sulfanilamide (1% in 5% phosphoric acid) was added to 

supernatants for 10 minutes. Then, 0.1% N-1-napthylethylenediamine in water was added to the 

mixture for an additional 10 minutes. The absorbance at 540 nm was measured using a 

spectrophotometer. 
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4.2.9 Phagocytosis assay 

Following treatments, cells were assayed for phagocytic ability using Vybrant Phagocytosis 

Assay Kit. Cells were incubated in FITC-labeled dead e. coli particles for 2 hours in the cell 

culture incubator. Following thorough washing, the cells were fixed with 2% PFA for 30 minutes 

then washed with 1X PBS. Cell nuclei were counterstained with DAPI. Images were taken in an 

array of 3 × 3 images per each well using a Carl Zeiss Observer.Z1 microscope and then the 

FITC fluorescence intensity of staining was analyzed using Cell Profiler Image Analysis 

Software using the same number of cells for all tested conditions. 

4.2.10 Plasma treatment and Layer by Layer coating of polypropylene meshes 

Polypropylene (PP) meshes were cleaned using a 1:1 acetone:isopropanol mixture and then air 

dried prior to irradiation with 15 seconds of argon plasma at 600W, an argon gas flow of 35 

mL/min and a steady state pressure of 250 mTorr (50 mTorr initial pressure) using an Ion 40 Gas 

Plasma System (PVA Tepla America, Inc). Maleic anhydride powder (1.5 gr) was placed into a 

glass plate inside of the machine chamber. 1 cm2 pieces of PP mesh were then placed around the 

plate to a distance of 8.5 cm. After an initial pressure of 50 mTorr was reached, 30 seconds of 

maleic anhydride plasma treatment was performed at 600W, an argon gas flow of 35 mL/min 

and a steady state pressure of 250 mTorr. Finally, PP meshes were rinsed for 30 minutes with 

milli-Q water and then boiled for 20 minutes in fresh milli-Q water. 

Coating was adapted to a customized automated dipping instrument (8-position SILAR 

coating system, PTL-SC-6A. MTI Corporation, Richmond, CA). Mesh coating was equivalent, 

only requiring longer washing times to remove the polymer excess, due to the absence of air 
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drying. Meshes were dipped in chitosan (2 mg/mL in 0.5% acetic acid) for 10 minutes at RT, 

then washed 3 times (1-minute each) in milli-Q water. Next, meshes were dipped in a dermatan 

sulfate solution (2mg/mL in water) for 10 minutes at room temperature. Meshes were washed 

again in milli-Q water and air-dried. This cycle was repeated until a core coating of 10 bilayers 

(PP-[CH/DS]10) was achieved. After coating, meshes were lyophilized and stored at 4°C. 

4.2.11 MCP-1 and IL-4 loading and release assays 

Similarly to IL-4, dermatan sulfate (2 mg/mL) was incubated overnight at 4ºC to MCP-1 (0.75 

and 1.5 µg/mL) prior coating. For sequential regimens, both MCP-1 (0.75 µg/mL) and IL-4 (1.5 

µg/mL) were added to dermatan sulfate (2 mg/mL) and incubated overnight at 4ºC. Then, 

polypropylene meshes with a 10-bilayer core coating were further coated with 20 bilayers 

containing MCP-1. For sequential delivery, core-coated meshes were further coated with 20 

bilayers containing IL-4 and then coated with 20 additional bilayers containing both MCP-1 and 

IL-4. After coating, IL-4 loaded meshes were lyophilized and stored at -20°C. All mesh materials 

were then terminally sterilized using ethylene oxide. 

Immunolabeling was used to qualitatively demonstrate the loading and distribution of 

MCP-1 throughout the coating. MCP-1 eluting meshes and controls were immersed in a 1% BSA 

solution to block non-specific adsorption of antibodies (1h, RT). Washing was performed in 

between each step by dipping the meshes 4 times in 0.05% Tween 20. Then meshes were 

immersed and incubated in a solution of anti-murine MCP-1 (from rabbit) as primary antibody 

(1:100 in 0.1% BSA, 2 hours, RT). Meshes were then immersed in a solution of anti-rabbit-

Alexa Fluor 546 as a secondary antibody (1:100 in 0.1% BSA, 30 min, RT). Mesh fluorescence 

was observed under confocal microscopy (Leica DMI4000 B, Buffalo Grove, IL), in which an 
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excitation/emission of 480/520 nm was used to observe the mesh autofluorescence (green) and 

561/572 nm to observe the specific fluorescence due to the loaded MCP-1 (red). 

Loading efficiency and release assays were performed following manufacturer 

instructions of the Peprotech MCP-1 ELISA kit. First, 1 cm2 pieces of MCP-1 eluting (20 

bilayers) and coated (no cytokine) meshes were immersed into 400 µL of a solution 0.05 

units/mL chondroitinase ABC and 0.05 units/mL chitosanase in 1X PBS. Incubation was 

performed to multiple time points at 37°C, after which 400 µL of solution were aliquoted and 

stored at -80°C until the end of the experiment. After collection, replacement with fresh solution 

was performed to continue the release assay. To perform the ELISA assays, 100 µL aliquots 

were used from each sample at each time point. 

4.2.12 Statistical analysis 

Comparisons of means were performed by either unpaired t-test (two-tailed), one-way or two-

way analysis of variance (ANOVA), using at least p < 0.05 as statistical significance criteria 

followed by Tukey’s test to compare groups and Sidak’s test to compare time points. Shapiro-

Wilk was used to test normality. All statistical tests were performed on GraphPad Prism V7 (La 

Jolla California, USA). 



 77 

4.3 RESULTS AND DISCUSSION 

4.3.1 Histomorphologic evaluation of the early host response 

The overall histomorphologic appearance of the early host response to the implanted mesh 

materials in H&E stained sections was largely similar in 8-week-old and 18-month-old mice 

(Figure 21); however, the results suggested slower migration of mononuclear cells to the mesh 

surface in the 18-month-old group. Briefly, at 3 days, the site of remodeling was characterized by 

provisional matrix deposition and early invasion of the site by predominantly mononuclear cells 

with a small number of neutrophils remaining. Of note, though the number of cells within the site 

of remodeling was found to be quantitatively similar at the 3 day time point, there was an 

increased proportion of cells closer to the implant surface in the 8-week-old group as compared 

to the 18-month-old group. However, fewer cells were observed at the surface of the implant 

than were observed in the area distant from the immediate surface in either group. By 7 days, 

additional neomatrix deposition with little to no organization was observed accompanied by 

angiogenesis in the peri-implant area. The response at 7 days was predominated by mononuclear 

cells in the area immediately surrounding the mesh, with spindle shaped cells observed more 

distantly within the newly deposited matrix. The distribution of cells within the 20X images were 

similar for both 8-week and 18-month-old mice, though both a qualitative and quantitative 

decrease in cell density were noted for the 18-month-old group as compared to the 8-week-old 

group. The formation of multinucleated giant cells at the mesh surface was observed in both 

groups at the 7 day time point and persisted throughout the remainder of the study. By 14 days, 

additional matrix deposition was observed, with a small degree of organization of the newly 

deposited matrix around the apical and basal aspects of the individual fibers. The number of 
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vessels within the site of remodeling was observed to decrease, though the remaining vessels 

were more mature than was observed at 7 days. The response immediately surrounding the mesh 

was predominated by mononuclear cells with an increased proportion of spindle shaped cells 

observed within remodeling site as compared to the 7 day time point. The qualitative and 

quantitative distribution of cells within the site of remodeling was similar for both groups at the 

14 day time point. 

 
 
 

 

Figure 21. (a) Images of H&E stained tissue cross sections at 10X and (b) total cell counts (DAPI) 

surrounding single mesh fibers in 40X images at 3, 7 and 14 days. Scale bars represent 200 µm. Bars represent the 

mean ± SEM. Statistical significance as (***) p < 0.001 and (****) p < 0.0001. All other differences are non-

significant. N = 7 

 
 
 

4.3.2 Characterization of macrophage populations in the early host response 

Macrophages and newly recruited monocytes were detected at the implanted mesh surface by 

immunostaining with commonly described surface markers: F4/80, CD68, and CD11b (Figure 
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22a). The number of F4/80+ single-positive cells peaked at 7 days in both the 8 and 18-month-

old mice, consistent with cell recruitment, however there were significantly fewer F4/80+ cells 

present in the 18-month-old mice at 3 days (Figure 22b). The number of CD68+ cells remained 

consistent in the 8-week-old mice, but peaked at 7 days in the 18-month-old mice. In addition, 

there were significantly fewer CD68+ cells present in the 18-month-old mice at 3 and 14 days. 

Very few cells expressed CD11b at the 3 day time point, however the CD11b+ cells peaked in 

both the 8 and 18-month-old mice at 7 days. 
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Figure 22. (a) Fluorescence microscopy images of F4/80 CD68, F4/80 CD11b and CD68 CD11b co-

immunolabeled tissue cross sections at a single mesh fiber at 7 days. DAPI was used to stain cell nuclei. Scale bars 

represent 50 µm. Cell counts of (b) F4/80+, CD68+ and CD11b+ cells and (c) F4/80+ CD68+, F4/80+ CD11b+ and 

CD68+ CD11b+ cells surrounding single mesh fibers at 3, 7 and 14 days. Bars represent the mean ± SEM. Statistical 

significance as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 and (****) p < 0.0001. All other differences are non-

significant. N = 7 

 
 
 
Few differences were observed between the two age groups in the double-labeled 

macrophages (Figure 22c). The number of F4/80+ CD68+ cells peaked at 7 days in both groups, 
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and represented the greatest co-expression of macrophage markers at all time points, while very 

little co-expression was observed in the other groups. The number of F4/80+ CD11b+ cells 

increased at 7 days in 8-week-old mice, but was unchanged in the 18-month-old mice. The 

number of CD68+ CD11b+ macrophages was significantly decreased in 18-month-old animals 

compared to 8-week-old mice at 3 days. While the number of CD68+ CD11b+ macrophages did 

not change in 8-week-old animals, there was a decrease in the 18-month-old from 7 to 14 days. 

Distinct macrophage populations identified as tissue-resident versus circulating with 

unique phenotypes and functions are widely identified in the literature. Each of these populations 

likely plays a distinct role in tissue homeostasis and the response to injury and pathogen on a 

tissue by tissue basis. In the liver, several studies have identified differential roles for CD68+ 

tissue-resident Kupffer cells and CD11b+ infiltrating bone marrow derived macrophages in 

pathogen clearance and tumor cell destruction, respectively [156-158]. A number of recent 

studies have now described shifts in the proportions of tissue-resident versus circulating cells 

occurring within individual tissues with age and with important implications for the host 

response and outcomes following injury. For example, aging of cardiac muscle leads to 

progressive replacement of embryonic macrophages with bone marrow derived macrophages 

[157]. The infiltrating macrophages were found to have a pro-fibrotic gene signature, leading to 

impaired tissue regeneration that could be reversed by inhibiting monocyte recruitment [159-

161]. 

In the present study, CD68+ cells remained unchanged temporally in the 8-week-old 

mice, suggesting the possibility of a local cell origin as opposed to recruitment from bone 

marrow. Furthermore, this CD68+ population co-localized with arginase-1 and was significantly 

decreased at the earliest time point in the 18-month-old animals. While the exact origin of these 



 82 

cells remains unclear, the recruitment and polarization of this population likely represents a key 

event which drives the downstream host response. A recent study showed that a reservoir of 

peritoneal cavity macrophages exists which can rapidly infiltrate injured organs in response to 

cell death signals [162]. This infiltration was found to occur rapidly (2-3 days post-injury) across 

the mesothelial lining of the peritoneum and into deeper tissue locations. Of significant interest, 

this population also assumed an alternatively activated M2-like phenotype upon arrival at the 

injury site. While the full set of mechanisms by which these cells are able to rapidly infiltrate 

tissues outside of the peritoneal cavity is unknown, the study demonstrated that the migration 

was dependent upon CD44, the receptor for hyaluronan. While the role of changes in the local 

tissue microenvironment were not investigated in depth in the present study, a reduction in the 

presence or production of glycosaminoglycan constituents, including hyaluronan, at early time 

points in the host response could have led to a reduction in the recruitment of early responding 

cells and/or changes in their polarization profile. 

4.3.3 In vitro assessment of macrophage polarization and function 

In order to determine whether there were inherent genetic or functional differences in the ability 

of macrophages to polarize in aged mice, bone marrow-derived macrophages were harvested 

from 8-week-old and 18-month-old C57BL/6 mice. Bone marrow derived macrophages were 

treated using protocols for M1 (IFN-γ/LPS) and M2 (IL-4) as described above to determine their 

ability to polarize to these established phenotypes. Macrophage phenotype was assessed using 

indirect fluorescent antibody labeling for classical M1 (iNOS) and M2 (Arg-1) markers. 

Labeling showed that IFN-γ/LPS treatment resulted in significant increases in iNOS labeling in 

both 8-week-old and 18-month-old macrophages compared to both M0 (naïve, untreated) and 
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M2 controls (Figure 23a). There was a significant increase in iNOS staining in macrophages 

harvested from 18-month-old as compared to 8-week-old mice in the IFN-γ/LPS treatment 

group. There were no differences in iNOS expression in M0 baseline or M2 treated macrophages 

from 8-week-old and 18-month-old sources. IL-4 treatment resulted in a significant increase in 

Arg-1 labeling while IFN-γ/LPS treatment resulted in no significant difference (Figure 23b). 

There were no significant differences in Arg-1 labeling between 8-week-old and 18-month-old 

macrophages with any treatment regimen. 
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Figure 23. Image analysis of (a) iNOS and (b) Arginase-1 of macrophages treated with media (M0), IFN-

y/LPS (M1) or IL-4 (M2) for 24 hours, isolated from 8-week and 18-month old C57BL/6 mice. Representative 

images are shown in Figure S5. (c) Phagocytosis function using Vybrant FITC-labeled E. Coli particles incubated on 

treated macrophages for 2 hours. Representative images are shown in Figure S5. (d) Nitric oxide production using 

Greiss reagent system on supernatants from treated macrophages. (e) Taqman gene expression assays assessing the 

gene expression of pro- and anti-inflammatory gene targets. Bars represent the mean ± SEM. Statistical significance 

as (*) p < 0.05 and (**) p < 0.01. All other differences are non-significant. N = 5 

 
 
 
Macrophage functionality was assessed using phagocytosis assays and nitric oxide 

production as these are classical markers of macrophage activation. Phagocytosis was assessed 

using Vybrant FITC-labeled e. coli particles and subsequent mean fluorescent intensity 

determination as an approximation of the amount of particles phagocytosed (Figure 23c). Results 

showed that IFN-γ/LPS treatment in both 8-week-old and 18-month-old macrophages resulted in 

a significant increase in phagocytic particle uptake compared to M0 and M2 controls. There was 
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no significant difference between 8-week-old and 18-month-old macrophage phagocytosis 

following any of the treatment regiments, suggesting that there are no intrinsic deficiencies in 

phagocytic functionality with aging. Nitric oxide production was assessed using the Greiss 

reagent system on supernatants following treatment (Figure 23d). Assays showed that 8-week-

old and 18-month-old macrophages exhibited a significant increase in supernatant nitrite 

concentration with IFN-γ/LPS treatment compared to M0 and M2 treatment groups. There was 

also a significant increase in nitric oxide production from 8-week-old to 18-month-old 

macrophages in the IFN-γ/LPS treatment group. However, both the 8-week-old and 18-month-

old macrophage retained the ability to produce nitric oxide in response to inflammatory signals.  

Macrophage gene expression was determined using Taqman gene expression assays on 

common genes involved in the murine inflammatory process (iNOS, IL-1b, IL-12b, TNFa, IL-

10, Arg-1, Fizz1, Mrc1, and PPARγ). Gene expression analysis showed that treatment of 8-

week-old and 18-month-old bone marrow-derived macrophages with IFN-γ/LPS or IL-4 resulted 

in gene expression patterns which are indicative of M1 and M2 polarization, respectively (Figure 

23e). No differences in gene expression were observed between macrophages harvested from 8-

week-old and 18-month-old mice following either IFN-γ/LPS or IL-4 treatment. These findings 

illustrate that the ability of both 8-week-old and 18-month-old macrophages to polarize towards 

M1 and M2 phenotypes remain intact, complementing previously published literature in the field 

[70]. 

4.3.4 In vivo macrophage polarization profile in the early host response 

Macrophage polarization to an M1 or M2 state was evaluated in vivo using inducible nitric oxide 

synthase (iNOS) or arginase-1 (Arg-1) expression respectively (Figure 24a). Arg-1 expression 
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was induced significantly at 7 days in the 8-week-old mice, but remained unchanged in 18-

month-old mice, suggesting a deficit in M2 polarization in aged mice (Figure 24b).  At 14 days 

post-implantation, Arg-1 expression in the 8-week-old group returned to basal levels similar to 

the 18-month-old mice. Interestingly, co-labeling Arg-1 with CD68 revealed that CD68+ cells 

accounted for the vast majority of Arg-1 expressing cells at all time points. On the other hand, 

iNOS expression was induced significantly at 7 days in the 18-month-old mice, but remained 

unchanged in the 8-week-old mice (Figure 24c, d), demonstrating an M1 profile in the aged cells. 

While both 8-week and 18-month-old mice showed reduced iNOS expression at 14 days, the 18-

month-old cells retained a higher iNOS expression compared to 8-week-old. Co-labeling of 

iNOS with CD68 accounted for very few of the iNOS+ cells, suggesting that another cell type is 

responsible for iNOS expression. The total cell percentage of M1/M2 macrophage polarization is 

included in Figure 25. 
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Figure 24. Fluorescence microscopy images of (a) Arginase-1 (red) CD68 (green) co-immunolabeling, and 

(b) iNOS (red) CD68 (green) co-immunolabeling at a single mesh fiber at 3, 7 and 14 days. DAPI was used to stain 

cell nuclei. Scale bars represent 50 µm. Cell count image analysis of (c) Arg-1+, Arg-1+ CD68+ cells and (d) iNOS+, 

iNOS+ CD68+ cells at 3, 7 and 14 days. Bars represent the mean ± SEM. Statistical significance as (*) p < 0.05, (**) 

p < 0.01, (***) p < 0.001 and (****) p < 0.0001. All other differences are non-significant. N = 7 
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Figure 25. Percentage of (a) Arg-1+, Arg-1+ CD68+ cells and (b) iNOS+, iNOS+ CD68+ cells surrounding 

single mesh fibers of tissue cross sections from 8-week and 18-month mice implanted with a 1 cm2 piece of 

polypropylene mesh for 3, 7 and 14 days. Bars represent the mean ± SEM. Statistical significance as (*) p < 0.05, 

(**) p < 0.01, (***) p < 0.001 and (****) p < 0.0001, using two-way ANOVA with Tukey’s (groups) and Sidak’s 

(days) tests. All other differences are non-significant. N = 7 

 
 
 
In the present study, bone marrow derived macrophages harvested from 8-week-old and 

18-month-old mice were subjected to standard M1 and M2 polarization regimes. The results 

demonstrate that both 8-week-old and 18-month-old macrophages retained the ability to polarize 

towards M1 and M2 phenotypes, and were functionally intact. Few differences between 

polarized macrophages harvested from the bone marrow of 8-week-old and 18-month-old mice 

were noted; however, the expression of iNOS and production of NO were found to be higher in 

18-month-old mice as compared to 8-week-old mice. These results correlate well with the 

finding of larger numbers of recruited iNOS+ cells present within the remodeling site of implants 
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in 18-month-old animals.  This cell population was found to be largely separate from the Arg-1 

expressing CD68+ population in both 8-week-old and 18-month-old mice, suggesting the 

possibility of multiple, distinct macrophage populations participating in the host response. 

4.3.5 In vivo effects of the aged microenvironment upon the host response 

As the above results suggest that local tissue cues could have effects on the profile and 

functionality of macrophages in the host response, the glycosaminoglycan (GAG) composition of 

the local microenvironment was evaluated by means of an Alcian Blue histological staining. 

GAG composition was evaluated in the present study as GAGs represent an important structural 

component of the tissue extracellular matrix, with key roles in regulating macrophage 

polarization both acting as a substrate for early infiltrating macrophage populations and by 

sequestering signaling molecules [93, 162]. The presence of GAGs (blue) was detected in both 

implanted mice groups (Figure 26a, b), with no differences observed at 3, 14, and 90 days. 

Interestingly, at 7 days, the 18-month-old group had significantly less GAG deposition, 

corresponding temporally with the observed changes in macrophage recruitment and 

polarization. 
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Figure 26. (a) Images of Alcian Blue stained tissue cross sections (GAGs in blue) and (b) image analysis of 

GAG deposition as percentage of total inflammatory tissue area (excluding skin and muscle) surrounding single 

mesh fibers at 20X of tissue cross sections from 8-week and 18-month mice implanted with a 1 cm2 piece of 

polypropylene mesh for 3, 7, 14 and 90 days. Scale bars represent 100 µm. Bars represent the mean ± SEM. 

Statistical significance as (*) p < 0.05. All other differences are non-significant. N = 7 

 
 
 

4.3.6 Long-term in vivo evaluation of fibrotic capsule deposition 

Fibrotic capsule deposition and composition were used as metrics to determine the impact of 

aging on the host response against polypropylene mesh in the long term (90 days). The capsule 

was defined as the distance between the implant surface and the outer aspect of the dense 

collagenous matrix surrounding the mesh fibers (Figure 27a, black arrow), inclusive of the cell 

layer adjacent to the surface and within the capsule (Figure 27a, green arrow). Quantitative 

analysis revealed no difference in the area or thickness of the collagenous portion between the 8-

week and 18-month-old implanted mice (Figure 27b, c). Further assessment of the composition 

of the fibrotic capsule revealed no differences in the capsule composition between the two age 

groups (Figure 27e, f). However, 18-month-old mice were observed to have a significant 



 91 

increase in both the thickness of the cell layer and total number of cells at the mesh fiber surface 

at 90 days (Figure 27c, d), suggesting an unresolved host response to the implanted mesh. 

 
 
 

 

Figure 27. (a) Masson’s Trichrome stained tissue sections of 8-week and 18-month mice at 90 days. Black 

and green arrowheads indicate the collagenous portion of the capsule and cellular reaction surrounding single mesh 

fibers, respectively. Scale bars represent 200 µm. (b) Image analysis of capsule deposition as percentage from the 

area of inflammatory tissue (excluding skin and muscle), (c) Thickness of capsule, inner cells and total thickness; 

and (d) total number of cells, surrounding single mesh fibers. (e) Picro Sirius Red stained tissue sections of 8-week 

and 18-month mice at 90 days. White arrowheads indicate the capsule surrounding single mesh fibers. (f) Image 

analysis of collagen capsule composition surrounding single mesh fibers, of samples stained with Picro Sirius Red. 

Scale bars represent 100 µm. Bars represent the mean ± SEM. Statistical significance as (**) p < 0.01 and (****) p 

< 0.0001. All other differences are non-significant. N = 7 

 
 
 
The findings of delayed, dysregulated, and unresolved host responses in the present study 

correlate well with observations of dysregulated inflammation and delayed resolution of 

inflammatory responses to pathogen and in wound healing [148]. For example, a study of punch 

biopsies from healthy human subjects between the ages of 19-96 years old post wounding 
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showed that the macrophage response in aged subjects peaked at 84 days as opposed to 7 days in 

younger subjects [163]. The delayed infiltration of macrophages in wound healing has been 

associated with poor re-epithelialization, reduced angiogenesis, deficits in collagen deposition, 

and decreased wound strength  [164]. Altered immune responses to wounding or pathogens in 

aged individuals have largely been attributed to altered function of the adaptive immune system, 

however multiple studies have noted the impacts of aging upon the innate immune compartment 

[68-70]. The studies which have observed immune dysfunction in aged macrophage populations 

have largely been performed using tissue-derived macrophages while the function of 

macrophages derived from the bone marrow has been shown to remain largely intact in multiple 

studies [69, 70], suggesting that age-related changes in the local tissue microenvironment may 

play a role in the observed dysfunction [165, 166]. 

In summary, the findings of the present study suggest that the host macrophage response 

to polypropylene mesh implants is delayed, dysregulated, and unresolved in aged animals as 

compared to young. Specifically, it was observed that there was a deficit in early responding 

macrophage populations in 18-month-old mice as compared to 8-week-old at 3 days and retarded 

recruitment of additional macrophage populations at 7 days. The population which was present at 

the 7 day time point was found to express significantly less Arg-1 and significantly more iNOS 

in 18-month-old animals as compared to 8-week-old, suggesting a more M1-like pro-

inflammatory profile. Our studies and others have shown the 7-14 day post implantation time 

frame to be significantly predictive of downstream outcomes, with higher numbers of M2 

polarized cells and higher ratios of M2:M1 cells as indicators of improved integration and 

remodeling [32, 67, 100, 155]. Thus, this finding indicates the potential for poor downstream 

integration and remodeling in 18-month-old animals. Similarly, shifting the response towards an 
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M2 phenotype via IL-4 delivery may present limitations in aged subject due to the delayed 

recruitment of macrophages, as the release of IL-4 was designed to be taken up by macrophages 

in the first two weeks, not being able to reverse the highly inflammatory M1 response, or lead to 

unexpected effects due to other cells taking up the IL-4. Therefore, we have developed a 

sequential delivery regimen for old mice that restores the delayed macrophage recruitment and 

reverses the highly inflammatory macrophage response towards an M2-like phenotype, using 

MCP-1 and IL-4, respectively. To do so, we have first done a study to evaluate the loading, 

release profile and bioactivity of MCP-1, and then explore the sequential delivery capabilities of 

the multilayered coating. 

4.3.7 MCP-1 bioactivity, dosing and release assays 

As similar to IL-4 loading, MCP-1 can be incorporated into the mesh coating by previous 

incubation with Dermatan Sulfate, and that the length of release and amount of MCP-1 is also 

dependent on the number of coating bilayers. To increase initial cell recruitment, a release no 

longer than a week was intended for MCP-1. We have estimated that the same 20-bilayers used 

to obtain up to a week of release of IL-4, will also be similar to MCP-1. Release assays 

confirmed that the release of MCP-1 using 20-bilayers (coating solution containing 1.5 µg/mL of 

MCP-1) of coating was consistent to approximately 8 days of release (Figure 28c), but higher 

amounts of cytokine than 20-bilayers of IL-4 (Figure 5). Confocal microscopy confirms that 

MCP-1 is uniformly distributed through the entire surface of the mesh (Figure 28a). 
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Figure 28. (a) Confocal microscopy images of MCP-1 immunolabeled (red) polypropylene fibers (green) 

of pristine (i), coated [no cytokine] (ii) and MCP-1 loaded [20B] (iii) mesh. Scale bars represent 100 µm. (b) H&E 

stained tissue sections at 10X from mice implanted with a 1 cm2 piece of pristine, coated (no cytokine), MCP-1 

(0.75 and 1.5 µg/mL in coating solutions, 20B) at 3 days post-implantation. Scale bars represent 200 µm. (c) 

Cumulative release of MCP-1 (nanograms) versus time (days) from 1 cm2 pieces of coated mesh loaded with 0.75 

and 1.5 µg/mL of MCP-1 (20B). Coated (no cytokine) mesh was used as a control. Points represent the mean ± 

SEM. (d) Image analysis of total cells (DAPI) surrounding single mesh fibers of tissue cross sections of mice 

implanted with MCP-1 eluting meshes and controls, 3 days post-implantation. Bars represent the mean ± SEM. 

Statistical significance as (*) p < 0.05, (***) p < 0.001 and (****) p < 0.0001, using two-way ANOVA with 

Tukey’s tests. All other differences are non-significant 

 
 
 
When MCP-1 (20B) eluting meshes were implanted subcutaneously into young adult 

mice, histological assessment three days post-implantation showed a highly exacerbated and 

localized cell recruitment but also signs of inflammation and mesh erosion in H&E stained tissue 

cross sections, confirming that MCP-1 is bioactive after loading and mesh sterilization (Figure 

28b, d). Dose of MCP-1 was adjusted by decreasing the amount of MCP-1 in the coating solution 
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to 0.75 µg/mL (a half), and release assays confirmed that the dose of MCP-1 was reduced nearly 

a half, and preserving the same length of release (Figure 28c). This suggests that the released 

amount of MCP-1 is proportional to the amount of MCP-1 in the coating solution. Implantation 

of meshes containing half the amount of MCP-1 were also capable of increasing cell recruitment 

compared to coated (no cytokine) and pristine meshes, but also lower than the eluting mesh 

containing higher amount of MCP-1, with no signs of mesh erosion (Figure 28b, d). Therefore, 

the following studies will use MCP-1 meshes with 20 bilayers where the coating solutions 

contain 0.75 µg/mL of MCP-1. 

4.3.8 Sequential release of MCP-1 and IL-4 

A sequential delivery regimen of MCP-1 and IL-4 will be used in old mice to restore the delayed 

macrophage recruitment and shift the highly inflammatory response towards an M2 phenotype, 

respectively. The multilayered nature of the coating was used to provide first concomitant release 

of both MCP-1 and IL-4 in the 20 external layers, then followed by single release of IL-4 in the 

20 internal layers of the coating (excluding core coating). ELISA assays corroborated that the 

release profile of IL-4 was similar when released from both single IL-4 and sequential IL-

4/MCP-1 eluting meshes (Figure 29a). Similarly, MCP-1 release profile in both single MCP-1 

and sequential IL-4/MCP-1 eluting meshes were not significantly different (Figure 29b). 

Sequential released was then observed by an initial concomitant release of MCP-1 and IL-4 but 

followed by release of IL-4 only (Figure 29c), releasing nearly 80% of the total dose of MCP-1 

in eight days, and 80% of IL-4 by approximately 12 days (Figure 29d). 
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Figure 29. (a) Cumulative release of IL-4 (nanograms) versus time (days) from eluting meshes containing 

40 bilayers of IL-4 (black curve) and 20 bilayers of MCP-1/IL-4 plus 20 bilayers of IL-4 (gray curve). (b) 

Cumulative release of MCP-1 (nanograms) versus time (days) from eluting meshes containing 20 bilayers of MCP-1 

(black curve) and 20 bilayers of MCP-1/IL-4 plus 20 bilayers of IL-4 (gray curve). (c) Cumulative release of MCP-1 

(gray curve) and IL-4 (black curve) versus time (days) from eluting meshes containing 20 bilayers of MCP-1/IL-4 

plus 20 bilayers of IL-4. (d) Ratio of released MCP-1 and IL-4 (nanograms) versus time (days) from eluting meshes 

containing 20 bilayers of MCP-1/IL-4 plus 20 bilayers of IL-4. Points represent the mean ± SEM 

 
 
 

4.3.9 Mesh implantation studies of single and sequential delivery regimens in aged and 

young mice 

Efficacies of single and sequential delivery regimens of IL-4 and MCP-1 were evaluated by 

implanting eluting meshes containing each or both cytokines in aged (18 month-old) and young 

adult (8 week-old) mice. Histological assessments by H&E staining and DAPI cell counting 
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analysis (Figure 30) at 3 days post-implantation showed increased cell recruitment in all eluting 

meshes containing MCP-1 in both young and aged mice, with the exception of coated (no 

cytokine) mesh in old mice that resulted in a highly exacerbated recruitment of cells highly 

localized around the mesh fibers (Figure 30a). 

 
 
 

 

Figure 30. Images of H&E stained tissue cross sections (10X) and total cell counts (DAPI) surrounding 

single mesh fibers (40X) at 3 and 7 days from (a) old and (b) young mice implanted with a 1 cm2 piece of pristine, 

coated (no cytokine), single and sequential MCP-1 and IL-4 eluting meshes. Scale bars represent 200 µm. Bars 

represent the mean ± SEM. Statistical significance as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 and (****) p < 

0.0001, using two-way ANOVA with Tukey’s tests. All other differences are non-significant 

 
 
 
At 7 days, cell recruitment was similar in all aged mouse groups, but still increased for 

young mice, suggesting that the effects of MCP-1 last longer in younger mice.  Of note, the 

exacerbated cell infiltration observed in the coated (no cytokine) aged mice group diminished to 

similar levels observed in other groups. Interestingly, the degree of cell recruitment observed in 
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any of the eluting meshes containing MCP-1 was not that extensive as the one observed in the 

coating containing no cytokines, suggesting that cells other than macrophages and the aged 

microenvironment play an important role in this response. A study performed by Lohmann et al. 

[167], has shown that glycosaminoglycan-based hydrogels sequester inflammatory chemokines 

such as MCP-1, IL-8 and MIP-1β, from chronic wounds fluids. It may be possible that the 

coating also captures the inflammatory chemokines from the aged microenvironment, but instead 

of sequestering and diluting the cytokines in the hydrogel bulk, the coating concentrates all the 

inflammatory cytokines in the surface of the mesh biomaterial, enhancing cell infiltration. This 

would also be consistent with results at 7 days, where the coating has been mostly degraded and 

therefore both cytokine sequestering and cell recruitment have diminished. This would not be the 

case for young mice, where the microenvironment is not as inflammatory as in aged mice. 

4.3.10 Effects of single and sequential delivery regimens on macrophage polarization at the 

early-stages of the host response 

Co-immunolabeling of histological tissue sections was performed to assess the effects of each 

single and sequential delivery regimens on macrophage (F4/80+) recruitment and polarization 

towards M2 (Arg-1+ F4/80+, Figure 31) and M1 (iNOS+ F4/80+, Figure 32) macrophages. 

Quantification revealed that all eluting coated meshes containing MCP-1 were capable of 

initially increasing F4/80+ macrophage recruitment in both aged and young adult mice, but 

persisted in aged mice by 7 days, while increased macrophage recruitment in young mice was no 

longer present (Figure 33). Even though coated (no cytokine) mesh elicited a highly exacerbated 

recruitment of cells, this was not correlated to F4/80+ macrophage recruitment, suggesting that 
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cells other than F4/80+ macrophages participate in this response influenced by the aged 

microenvironment. 

 
 
 

 

Figure 31. Fluorescence microscopy images of arginase-1 (red) and F4/80 (green) co-immunolabelled 

tissue sections from (a) old and (b) young mice implanted with a 1 cm2 piece of pristine, coated (no cytokine), single 

and sequential MCP-1 and IL-4 eluting meshes, 3 and 7 days post-implantation. DAPI was used to stain cell nuclei. 

Scale bars represent 50 µm 
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Figure 32. Fluorescence microscopy images of iNOS (red) and F4/80 (green) co-immunolabelled tissue 

sections from (a) old and (b) young mice implanted with a 1 cm2 piece of pristine, coated (no cytokine), single and 

sequential MCP-1 and IL-4 eluting meshes, 3 and 7 days post-implantation. DAPI was used to stain cell nuclei. 

Scale bars represent 50 µm 
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Figure 33. Image analysis of F4/80+ macrophages as percentages of total cells (a, b) and number (c, d) 

surrounding single mesh fibers of tissue cross sections from (a, c) old and (b, d) young mice implanted with a 1 cm2 

piece of pristine, coated (no cytokine), single and sequential MCP-1 and IL-4 eluting meshes, 3 and 7 days post-

implantation. Bars represent the mean ± SEM (N = 8). Statistical significance as (*) p < 0.05, (**) p < 0.01, (***) p 

< 0.001 and (****) p < 0.0001, using two-way ANOVA with Tukey’s (groups) and Sidak’s (days) tests. All other 

differences are non-significant 

 
 
 
On the other hand, the host response to IL-4, sequential delivery of IL-4/MCP-1 and 

coating components was well distinct in aged versus young implanted mice. To reveal and 

quantify M2 macrophages, F4/80+ macrophages have been evaluated in co-labeling with Arg-1. 

Results have shown that old mice implanted with IL-4 eluting coatings did not have a significant 

higher percent of M2 (Arg-1+ F4/80+) macrophages, compared to the pristine mesh group. 

However, the percentage of M2 macrophages in the sequential MCP-1/IL-4 group was 

significantly increased and consistently increased for both 3 and 7 days, compared to all groups 

with no IL-4 (Figure 34). Therefore, while single delivery of IL-4 was not enough to counteract 

the high inflammatory response present in old mice, the sequential delivery regimen of IL-4 and 
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MCP-1 was capable of restoring recruitment and shift the macrophage response towards an M2-

like phenotype. Contrarily, sequential delivery regimens in young mice were not as effective as 

IL-4 alone promoting an M2-like response. Young mice implanted with MCP-1/IL-4 eluting 

mesh showed an initial increase in the percentage of M2 macrophages at 3 days, but dramatically 

decreased to similarly low percentages found in all groups other than IL-4 at 7 days. Therefore, 

IL-4 eluting mesh was the most effective regimen shifting the response towards an M2 

phenotype, in young mice. 

 
 
 

 

Figure 34. Image analysis of Arg-1+ F4/80+ macrophages as percentages of (a, d) total cells and (b, e) 

F4/80+ macrophages, as well as (c, f) total percentage of Arg-1+cells, surrounding single mesh fibers of tissue cross 

sections from (a - c) old and (d - f) young mice implanted with a 1 cm2 piece of pristine, coated (no cytokine), single 

and sequential MCP-1 and IL-4 eluting meshes, 3 and 7 days post-implantation. Bars represent the mean ± SEM (N 

= 8). Statistical significance as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 and (****) p < 0.0001, using two-way 

ANOVA with Tukey’s (groups) and Sidak’s (days) tests. All other differences are non-significant 
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To reveal and quantify M1 macrophages, F4/80+ macrophages have been evaluated in co-

labeling with iNOS. Results also reveal some differences between old and young animals. In old 

animals, mice implanted with both pristine or MCP-1 eluting meshes presented the highest 

percentages of M1 (iNOS+ F4/80+) macrophages compared to all other groups (Figure 35). 

Percentage of M1 macrophages in these two groups was similar in both 3 and 7 days. In young 

mice, the percentage of M1 macrophages was similar for all groups at 3 days, and then at 7 days 

the pristine mesh group presented the highest percentage of M1 macrophages, in contrast to mice 

implanted with MCP-1, that did not elicit higher percentages of M1 macrophages. This suggest 

that MCP-1 only affects macrophage recruitment, but does not have effects on macrophage 

polarization, and it is consistent with other studies done on MCP-1. Polarization towards M1 

macrophages is mainly due to an inflammatory response against the polypropylene biomaterial, 

and increased percentage of M1 macrophages found in old mice implanted with MCP-1 are 

likely a consequence of the high percentage of F4/80+ macrophages recruited to the surface of 

the biomaterial, that become M1 macrophages due to the highly inflammatory environment of 

aged mice. 
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Figure 35. Image analysis of iNOS+ F4/80+ macrophages as percentages of (a, d) total cells and (b, e) 

F4/80+ macrophages, as well as (c, f) total percentage of iNOS+cells, surrounding single mesh fibers of tissue cross 

sections from (a - c) old and (d - f) young mice implanted with a 1 cm2 piece of pristine, coated (no cytokine), single 

and sequential MCP-1 and IL-4 eluting meshes, 3 and 7 days post-implantation. Bars represent the mean ± SEM (N 

= 8). Statistical significance as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 and (****) p < 0.0001, using two-way 

ANOVA with Tukey’s (groups) and Sidak’s (days) tests. All other differences are non-significant 

 
 
 

4.3.11 Effects of single and sequential delivery regimens in the host response in the long-

term 

The effects of macrophage recruitment and polarization via single and sequential delivery 

regimens in the long term have been evaluated by means of capsule deposition assessment 90 

days post-implantation. Histological tissue sections have been stained with Masson’s Trichrome 

to reveal the presence, morphology and distribution of the fibrotic capsule surrounding the 

surgical mesh implant. First of all, all mice implanted with MCP-1 meshes showed higher 
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capsule density than all other groups, but similar capsule area to mice implanted with pristine 

meshes (Figure 36). 

 
 
 

 

Figure 36. (a) Masson’s Trichrome stained tissue sections of old and young mice implanted with a 1 cm2 

piece of pristine, coated (no cytokine), single and sequential MCP-1 and IL-4 eluting meshes, 90 days post-

implantation. (b) Image analysis of capsule density (area %; b, e), capsule area (µm2; c, f) and total cell number (d, 

g) on single mesh fibers (20X) from aged (b – d) and young (e - g) mice. Bars represent the mean ± SEM. Statistical 

significance as (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 and (****) p < 0.0001, using two-way ANOVA with 

Tukey’s test. All other differences are non-significant 
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In old mice, implantation of IL-4 eluting mesh was not associated with a reduction in 

collagen density, but presented diminished capsule area, compared to all other groups. On the 

other hand, MCP-1/IL-4 group showed less dense capsules compared to all other mesh groups, 

but no significant differences in capsule area. In young mice, only mice implanted with IL-4 

eluting mesh exhibited both decreased density and thickness of the capsule, while the sequential 

regimen of MCP-1 and IL-4 was capable of decreasing capsule thickness.  

In previous studies, it has been suggested that the host response to polypropylene mesh in 

aged animals is still not resolved by 90 days, revealed by the significantly higher number of cells 

surrounding the implant (Figure 27d). To evaluate if this response is still unresolved in the 

presence of single and sequential delivery regimens, we have quantified the number of cells and 

compared to young mice as well. Results show that mice implanted with MCP-1 eluting mesh 

have similar cell numbers to the pristine mesh groups in both old and young mice (Figure 36d, 

g). In aged mice, only IL-4 presented a significant reduction in the number of cells, compared to 

the pristine mesh group. A reduction in the number of cells was also observed in young mice 

implanted with both IL-4 and MCP-1/IL-4 eluting meshes, compared to pristine meshes. 

4.4 CONCLUSIONS 

Taken together, the results of the present work suggest that there are significant differences 

between the host response to materials in young and aged animals. These differences could not 

be accounted for by age-related accumulation of cell-intrinsic defects alone, and it is likely that 

the local tissue microenvironment also plays a large role in dictating the host response regardless 

of material composition. The present study used only a limited set of surface markers and makes 
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inferences about the origin of cells based upon these markers. Further study is necessary to 

determine the specific origin of the cells which participate in the host response in young and old 

animals as well as to clearly determine their in vivo phenotype and functional profile. However, 

it is clear that there are differences in the host response between young and aged animals, and 

that a better understanding of these differences will help to design materials and strategies which 

that more effectively modulate the host immune response in aged individuals. 

It has been demonstrated that the multilayered nature of layer by layer coatings can be 

used to provide both concomitant and sequential delivery of MCP-1 and IL-4. The concentration 

of cytokine in the coating solution is proportional to the amount released in vitro, while the 

number of layers influences both the amount and length of release. In vivo implantation of 

eluting meshes revealed that the effects of MCP-1 promoting cell and macrophage recruitment 

are preserved in both old and young animals, restoring the delayed recruitment in the host 

response of aged mice. However, the host response in presence of IL-4, sequential delivery of 

IL-4/MCP-1 and coating components was well distinct in old versus young implanted mice. 

While single delivery of IL-4 was not enough to counteract the high inflammatory response 

present in old mice, the sequential delivery regimen of IL-4 and MCP-1 was capable of restoring 

recruitment and shift the macrophage response towards an M2-like phenotype, associated to 

decreased capsule deposition in the long term. Contrarily, sequential delivery regimens in young 

mice were not as effective as IL-4 alone promoting an M2-like response, but still capable of 

reducing inflammatory macrophages and capsule deposition. In addition, the exacerbated cell 

recruitment in aged mice implanted with coated (no cytokine) mesh was not correlated to an 

increase in recruited F4/80+ macrophages nor effects on polarization, suggesting that other cells 

influenced by the aged microenvironment may play an important role promoting this response. 
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These results raise important questions about the design and performance of biomaterials-based 

therapies and devices often intended to treat elderly patients and demonstrates that a proper 

understanding of patient- and context-dependent biological responses have the potential to 

improve outcomes in aged individuals. 
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5.0  DISSERTATION SYNOPSIS 

The work presented in this dissertation exploits macrophage modulation as an approach to 

mitigate the foreign body reaction and promote better integration of implanted biomaterials into 

the host tissue, using a multilayered eluting coating for single and sequential delivery of 

cytokines that preserve the architecture and functionality of surgical mesh implants. Modulation 

of macrophage are mainly focused to facilitate an M1 to M2 transition, or modify macrophage 

recruitment. This strategy is innovative and has the potential to outperform current approaches, 

as it is focused on the positive aspects of the immune system, instead of avoiding the immune 

response. In addition, the impact of aging on the host response against biomaterials was 

elucidated and used to develop improved and contextual delivery regimens, exploiting the 

sequential delivery capabilities of the coating to deliver multiple cytokines. The major findings 

for each aim are outlined below. 

5.1 MAJOR FINDINGS 

5.1.1 Aim I 

To develop a conformal eluting coating for localized and transient delivery of IL-4 that preserves 

both the architecture and structural properties of polypropylene surgical mesh implants. 
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- Surface characterization confirmed that a uniform and conformal coating was done, 

containing both Chitosan and Dermatan Sulfate. 

- The coating can be uniformly loaded with IL-4 through the entire surface of the mesh. 

- Release assays showed that the amount of IL-4 and length of release are dependent on the 

number of coating bilayers containing IL-4. 

- The coating procedure and ETO sterilization did not alter the bioactivity of IL-4, being 

capable of polarizing bone marrow-derived macrophages in vitro. 

- The mesh coating seems to enhance and/or protect the bioactivity of IL-4. 

- The coating preserved both the architecture and structural properties of the surgical 

meshes.  

5.1.2 Aim II 

To study the effects of the released IL-4 and the coating components on the host response at 

early stages and in the long term, in a murine implantation model. The host response was studied 

using histological assessments, macrophage characterization and gene expression analysis. 

- The release of IL-4 in mesh implanted mice increased polarization of macrophages 

towards an M2 phenotype in all macrophage populations evaluated. 

- The effects of the released IL-4 were localized up to 50 µm of distance from the mesh 

surface. 

- F4/80+, CD68+ and CD11b+ macrophages showed distinct susceptibility to IL-4 and 

components of the coating. 

- The coating components were associated to a decrease in F4/80+ macrophages and a 

reduction in M1 macrophages in both F4/80+ and CD68+ macrophage populations. 
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- Mice implanted with IL-4 mesh presented upregulation in M2-like macrophage genes, 

downregulation in M1-like macrophage genes and increased MMP activity. 

- Shifts towards an M2-like macrophage response in the IL-4 group were associated to 

decreased thickness and deposition of fibrotic capsule. Also, changes in capsule 

composition were observed, in which the thinnest collagen fibers predominated, 

compared to all other groups. 

- Even though the presence of the coating was associated to diminished percentage of M1 

macrophages, it was not capable of shifting the macrophage response towards an M2 

phenotype, and was not associated to changes in capsule deposition and composition. 

5.1.3 Aim III 

To determine the impact of aging in the host response against biomaterials, regarding cellular 

response, macrophage regulation and implant integration into the host tissue. 

- The host response against polypropylene mesh in old animals presented delayed 

recruitment of cells and macrophages, compared to young animals. 

- Old mice presented changes in surface marker expression of macrophages participating in 

the host response. 

- The macrophage response in old animals was found to be highly shifted to an M1 

phenotype, compared to young animals. 

- In the long term (90 days), old mice presented unresolved inflammation, but no changes 

in deposition and composition of fibrotic capsule. 

- The differences observed between young and old mice could not be accounted for by age-

related accumulation of cell-intrinsic defects alone, suggesting that the local tissue 
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microenvironment also plays a large role in dictating the host response regardless of 

material composition. 

5.1.4 Sub-Aim III 

To develop a sequential delivery regimen of MCP-1 and IL-4, to restore the delayed macrophage 

recruitment and reverse the highly inflammatory M1 response found in old animals, respectively. 

Single and sequential delivery regiments were evaluated in both old and young mice regarding 

cellular response, macrophage regulation and implant integration into the host tissue. 

- MCP-1 was uniformly loaded through the entire surface of the mesh, and released in 

bioactive form to increase cell recruitment in vivo. 

- The multilayered nature of the layer by layer coating can be used to provide both 

concomitant and sequential delivery of MCP-1 and IL-4. 

- The changes in the concentration of cytokine in the coating solutions are directly 

proportional to the amount released in vitro, with no changes in length of release. 

- Implantation of eluting meshes revealed that the effects of MCP-1 promoting cell and 

macrophage recruitment are preserved in both old and young animals, restoring the 

delayed recruitment in the host response of aged mice. 

- The host response to single and sequential delivery regimens was well distinct in old 

versus young animals: 

1) While single delivery of IL-4 was not enough to counteract the high inflammatory 

response present in old mice, the sequential delivery regimen of IL-4 and MCP-1 was 

capable of restoring recruitment and shift the macrophage response towards an M2-

like phenotype, associated to decreased capsule deposition in the long term. 
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2) Sequential delivery regimens of MCP-1 and IL-4 in young mice were not as effective 

as IL-4 alone promoting an M2-like macrophage response, but still capable of 

reducing pro-inflammatory M1 macrophages and capsule deposition. 

- The exacerbated cell recruitment in aged mice implanted with coated (no cytokine) mesh 

was not correlated to an increase in recruited F4/80+ macrophages nor effects on 

polarization, suggesting that other cells influenced by the aged microenvironment may 

play an important role promoting this response. 

5.2 LIMITATIONS AND FUTURE DIRECTIONS 

Release assays were used to study the release of cytokines in vitro and as an estimate for release 

in vivo; however, it is currently unknown whether coating degradation and release of MCP-1 and 

IL-4 in vivo occurs in a similar manner. The implantation studies and results regarding the 

effects of cytokines at early stages of the host response seem to suggest that the length of 

cytokine release is shorter - with IL-4 lasting less than 14 days and MCP-1 less than 7 days, in 

which the effects of these cytokines are not present. Further studies will be performed using 

fluorescently tagged cytokines on live imaging systems to determine the release of cytokines in 

vivo. Similarly, we have investigated the effects of only 40 bilayers of IL-4 (2 ng/cm2 of mesh) 

and 20 bilayers of MCP-1 (1 - 2 ng/cm2 of mesh) on the host response against mesh, so further 

regimens will be evaluated based on in vivo release studies.  

To evaluate the feasibility of our approach, we have performed a subcutaneous 

implantation of surgical mesh in a mouse model, due to the immunological similarities with 

human, but also robustness and reliability of the surgical procedure. However, it presents limited 
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clinical relevance compared to transabdominal and transvaginal surgeries performed for pelvic 

organ prolapse. These surgical procedures are more complex and use bigger pieces of mesh, 

which are sutured in multiple tissue structures to hold the implant in place, being able to stand 

uniaxial tensile forces in the vaginal cavity. This mechanical component is not present in our 

model, as small pieces of mesh are lying flat in the abdomen after subcutaneous implantation, so 

the only factor playing a major role in our study is the host response against the mesh 

biomaterial. It is also likely that our subcutaneous procedure does not recapitulate entirely the 

biological structure and properties of the vaginal tissue, as the host response to polypropylene 

mesh in the vagina has been reported to be significantly different than that in the abdominal wall 

musculature [21, 139]. Consequently, a more clinically relevant model is currently under study 

using an abdominal sacrocolpopexy surgical procedure in rabbits. 

Study of macrophage populations was limited to the use of three common markers - 

F4/80, CD68 and CD11b. Similarly, the identification of M1 and M2 macrophages was limited 

to the use of iNOS and Arg-1, respectively. Although results were clear and conclusive 

suggesting shifts in macrophage polarization, additional macrophage characterization of cells 

from explanted tissues are currently being performed using flow cytometry analysis, capable of 

identifying multiple surface markers in a single cell. Gene expression assays were performed to 

evaluate more exhaustively the early phenotypic changes promoted by IL-4 and the coating 

components. Further protein studies will be performed in future studies to reveal the downstream 

activation cascades of these genes, as the expression of some genes are not necessarily correlated 

with protein expression.  

Quantification through image analysis to study the host response and macrophage 

characterization was often performed in the area of single fibers rather than knots, in order to 
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normalize the host response to the same surface area of mesh in our analysis. Surface area 

normalization in mesh knots is difficult due to the complex variety of shapes, including but not 

limited to number of fibers, distance between fibers and fused fibers. Recent published studies 

have demonstrated that density (and hence area) of the mesh is a local driver of the host 

macrophage response, where increased mesh density is associated with a denser cellular response 

[21, 22]. While investigation of the differences in the host response between fibers and knots was 

beyond the scope of the present study, it will be important to evaluate the effects of the cytokine 

eluting meshes in knots to illustrate cytokine effects in the presence of high density and complex 

geometry of the implant. 

Deposition, thickness and composition of the capsule, as well as total cell number were 

the only assessments done to study the long-term outcomes of the host response against eluting 

mesh. A few foreign body giant cells (FBGC) were observed at the tissue-biomaterial interface 

on each group; however, quantification and comparison are not reliable due to the reduced 

number of FBGC on each image field (from zero to three cells per field). Presence of mesh 

shrinking is another common parameter evaluated in surgical mesh implantation studies, which 

is a reduction in size of the implant and believed to be a consequence of scar tissue formation 

around the mesh implant due to stress shielding. We are unable to perform this assessment due to 

the reduced size of the implant, and because the mesh is implanted in a flat subcutaneous pocket 

with no sutures, and hence the mechanical contribution to this response is minimal and well 

distinct to the tensile forces experienced in the vaginal cavity. In abdominal and transvaginal 

implantation of mesh, sutures are placed to hold the mesh in position, where mainly uniaxial 

tensile forces are exerted into mesh and playing a more important role in the host response 

against mesh. 
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5.3 CONCLUSIONS 

The results of this study have shown that modulation of macrophage recruitment and polarization 

is a promising approach to improve implant integration into the host tissue, rather than only 

mitigating the foreign body reaction. The present work demonstrates in a similar way to previous 

studies that an increased M2 to M1 ratio is associated with better remodeling outcomes, and in 

this particular case to an improved resolution of the host response against biomaterials.  

In addition, implantation studies on aged animals have shown that the impact of aging in 

the host response against biomaterials is significant, resulting in delayed recruitment, 

macrophage imbalances and impaired resolution of the host response in the long term. The 

improved performance of our contextual and sequential delivery regimen in old animals 

demonstrates that a proper understanding of the biological context is instrumental for the clinical 

success of biomaterial-based approaches in aged individuals. The well distinct host response to 

single and sequential delivery regimens in old versus young animals suggests that the aged 

microenvironment is playing an important role in these altered responses. 

Finally, the multilayered eluting coating technology has demonstrated to be an ideal 

platform to provide localized, controlled and sequential delivery of proteins, preserving the 

architecture and functionality of implanted biomaterials. While the present study focused on 

polypropylene mesh commonly used for pelvic organ prolapse, the methods and findings 

presented can likely be extended to include other material types and applications. 
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