Machine Learning of Hazard Model Simulations for use in Probabilistic Risk Assessments

by
Clarence Worrell
B.S. in Fire Protection Engineering, University of Maryland, 2001

M.S. in Fire Protection Engineering, University of Maryland, 2002

Submitted to the Graduate Faculty of
Swanson School of Engineering in partial fulfillment
of the requirements for the degree of

Master of Science

University of Pittsburgh

2017

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented by

Clarence Worrell

It was defended on
November 6, 2017
and approved by
Joel Haight, Ph.D., Associate Professor, Industrial Engineering
Thomas Congedo, Ph.D., Adjunct Professor and Director of Nuclear Engineering Program

Thesis Director: Louis Luangkesorn, Ph.D., Assistant Professor, Industrial Engineering

Copyright © by Clarence Worrell

2017

Machine Learning of Hazard Model Simulations for use in Probabilistic Risk
Assessments
Clarence Worrell, M.S.

University of Pittsburgh, 2017

This study explored the use of machine learning to generate metamodel approximations of a
physics-based fire hazard model called Consolidated Fire and Smoke Transport (CFAST). The
motivation to generate accurate and efficient metamodels is to improve modeling realism in
probabilistic risk assessments where computational burden has prevented broader application of
high fidelity codes. The process involved scenario definition, generating training data by
iteratively running the hazard model over a range of input space, exploratory data analysis and
feature selection, an initial testing of a broad set of metamodel types, and finally metamodel
selection and tuning.

The study identified several factors that should be considered when metamodeling a
physics-based computer code. First, the input space should be limited to a manageable scale and
number of parameters; otherwise generating sufficient training data becomes infeasible. Second,
there is a relationship between the physics being characterized and the metamodel types that will
successfully mimic those physics. Finally, metamodel accuracy and efficiency must be balanced
against initial development costs. Once developed, trained metamodels are portable and can be

applied by many users over a range of modeling conditions.

The Idaho National Laboratory software called RAVEN was used to facilitate the
analysis. Twenty five (25) metamodel types were investigated for their potential to mimic
CFAST-calculated maximum upper layer temperature and its timing. Linear metamodels
struggled to predict with accuracy because the physics of fire are non-linear.

k-nearest neighbor (kNN) model tuning generated a k =4 model that fit the vast majority
of CFAST calculations within £10% for both maximum upper layer temperature and its timing.
This model showed good generalization with use of 10-fold cross validation.

The resulting KNN model was compared to algebraic models typically used in fire
probabilistic risk assessments. The algebraic models were generally conservative relative to
CFAST; whereas the KNN model closely mimicked CFAST. This illustrates the potential of
metamodels to improve modeling realism over the simpler models often selected for
computational feasibility. While the KNN metamodel is a simplification of the higher fidelity
CFAST code, the error introduced is quantifiable and can be explicitly considered in applications

of the metamodel.

TABLE OF CONTENTS

PREFAQCE ettt sttt b et e e s bt e bt eabe e e abeesaeeanbeennee s X1l
1.0 INTRODUCTIONttt ettt nan e 1
2.0 LITERATURE REVIEW.......oo e)
2.1 METAMODELING PROCESSccooi ittt)

2.2 FIRE HAZARD MODELS ...t 9

2.3 RAVEN SOFTWARE OVERVIEW.........ccooiiiii e 14

24 PREVIOUS APPLICATIONS OF RAVEN.......ccccoiiiiiieeee e 15

2.5 REDUCED ORDER MODELS AVAILABLE IN RAVENcccccooeiinnne. 19
2.5.1 N-Dimensional SPIINEcccooiiiiiiiiiieee e 19

2.5.2 Gaussian Polynomial FItting..........ccooviiiiiiiiiieieseieseee e 19

2.5.3 High Dimensionality Model Representation (HDMR)........c.ccccccvcinininine 20

254 IMISR e 20

2.5.5 N-Dimensional Inverse Distance Weighting..........cccccoovvviniiieninenininns 20

2.5.6 LiNEAr MOAEIScoiuiiiiiiiiiee e 21

2.5.7 Support Vector Machings (SVM).......ccuiiiiiiiiiienisesieee e 21

2.5.8 MUILIECIASS ..ottt neenee e 22

2.5.9 NAIVE BAYES ... 22

Vi

3.0

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

2.5.10 INEIGNDOKS ..ot s e e 22

2.5.11 Tree-BaSdcooiiiiiiiiieie e 23
2.5.12 GAUSSIAN PrOCESSoiuieiieiitiiiesie sttt sttt sbe bbb ane s 23
2.5.13 Auto-Regressive Moving Average (ARMA) ... 24
PREVIOUS APPLICATIONS OF REDUCED ORDER MODELS TO
APPROXIMATE NUCLEAR POWER PLANT HAZARDSccoovvvvviinnrrrinnn, 24
2.6.1 The Ohio State UNIVersity StUAY.........ccooviiiiiiiiiie e 25
2.6.2 University of California Los Angeles Studyccooovviiieiiiiiiiiiinenns 26
METHODOLOGY ...ttt sttt st sbe e bt nne e nae e 28
FIRE MODEL SELECTIONoiiiiiiie e 28
FIRE SCENARIO DEFINITION ...cooiiiiiiiie e 33
3.2.1 Characteristics of High Risk Fire SCenariosc.ccocuvviiieiincienininnnns 34
3.2.2 Validated Range of Fire Model INput SPace.........ccccvvvivieieienc i 39
3.2.3 Fire Scenario Definition for RAVEN Application...........cccoconininininnnns 41
RAVEN-CFAST MODEL SETUPccoiiiii e 47
INPUT AND OUTPUT PARAMETERS OF INTERESTccccooiiiiiiiiiee 48
FULL GRID SAMPLING OF THE INPUT SPACEccccooiiiiiiieniec 49
SIMULATION RESULTS ... 55
DATA PREPARATION FOR METAMODELING.........cccoiiiiiiiieiece 63
3.7.1 Consolidating the DAta...........cccoeeiiiiiiiiiieesie e 63
3.7.2 Feature SEIECTION.........cviiiiie e 65
3.7.3 Centering and SCAINGccoeiiiiiiiiiiee e 69
3.7.4 Initial Training and Testing: Linear Modelscccccovvviiiiincnienininns 71

vii

3.7.5 Initial Training and Testing: Tree-Based Modelscccccoiiniiinnnins 78

3.7.6 Initial Training and Testing: Neighbor-Based Models...............cc.ccccevinnne 79

3.7.7 Initial Training and Testing: Support Vector Machine...........c.cccccoevvnnne 80

3.7.8 Initial Training and Testing: SUMMAIYcccoceiiieiiereniieneee e 81

3.8 METAMODEL SELECTION AND TUNINGcccoiiiiiiiiee e 81
3.8.1 DECISION Tree REQIESSOKceivieiiiiiiiieeitieeesee sttt 82

3.8.2 k-Nearest Neighbor (KNN) RegreSSIiON........cccooiiiiininiiieieie e 87

3.8.3 SUPPOrt VECtOr MaChINg........cciiiiiiiiieeieese e 91

3.9 COMPARISON TO ALGEBRAIC FIRE MODELS..........cccciiiiiiiiiee 94

3.10 ACCURACY-EFFICIENCY TRADEOFF ... 99

3.11 LIMITATIONS . ..ot 104

3.12 FUTURE RESEARCH ... 107

4.0 CONCLUSIONS ...ttt nte e nne e 110
APPEND X A bbb neeas 114
BIBLIOGRAPHY ..ottt ettt bbb e et esbe e s nbe e beeente e 192

viii

LIST OF TABLES

Table 1. Experimental Designs included in RAVEN ... 8
Table 2. Additional RAVEN-Related Technical REfErencesccccvvvvviierenieniene e 17
Table 3. Fire Model Validation Results from NUREG-1934 (McGrattan et al., 2012) 31

Table 4. Fire Scenarios Contributing most to Core Damage Frequency for Sample of Plants 35

Table 5. Cabinet Fire Peak Heat Release Rate Gamma Distributions per NUREG-2178 (USNRC

& EPRI, 2015) ittt ens 37
Table 6. Summary of Input Space Defined by High Risk Fires at Three Sampled Plants 39
Table 7. Full-Scale Fire Tests used for Fire Model Verification and Validation 40
Table 8. Fire Model Validated Ranges per NUREG-1934 (McGrattan et al., 2012) 41
Table 9. Fire Scenario Input Space over which RAVEN will be Exercised...........cccccccvvverrnnnnne. 42
Table 10. Summary of Input and Output Parameters of INterest..........cccovovevviieieeie e 49

Table 11. Full Grid Sampling Plan to Create Population of Data against which to Test RAVEN
ROM Capabilitiesccueeivieieiiecie ettt e e e e srnesaeeee s 50

Table 12. Subdivision of Full Grid into Batches using the Heat Release Rate Parameter 51

Table 13. Description of each Column in the Consolidated .csv File used for Metamodel Training

LA [0 I = 4o SRR 64
Table 14. Comparison of Computer Run Time and Accuracy across Several Modeling Options
.. 103
Table 15. Input Parameter Space used for K-Nearest Neighbor Model Trainingcc.cc..... 111

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Figure 16

LIST OF FIGURES

Compartment Fire BENAVIOKcooiiiiiiiiiisiee e 9
Example CFAST MOGELooii s 12
Example CFD Fire MOGENcooiiieie s 13
Fire Model Bias Factors for Predicted QUaNTItieS...........cccocvererieeieeiesienie e see e 32
Range of Fire Heat Release Rate Profiles to be executed by RAVENcc.coovnnne. 45
Postulated Fire Scenario: Electrical Cabinet Fire..........ccccooviiiiiniciiinec e 46
CFAST Rendering of Range of Compartment Shapes to be Evaluated by RAVEN 47
Grid Sampled Fire Scenario INPUt SPACEccovieeieiirieere e 52
Histograms of the Factors upon which the Heat Release Rate Profiles are Based........ 53
. llustration of the Two Models over which Machine Learning is Exercised 54
. Prescribed versus Realized Heat Release Ratesccoeviiinininiiiciec e 56
. Upper Layer Temperature Profiles Calculated by CFASTcccccevviieviviieniereen 57
. Lower Layer Temperature Profiles Calculated by CFASTccccovvviiviiiieviecee 58
. Upper Layer Height Profiles Calculated by CFASTcccovviieiieeseene e 59
. Compartment Pressure Profiles Calculated by CFAST ... 60
. Upper Layer Optical Density Profiles Calculated by CFASTcccccceviviieiiereennnn, 61

Figure 17.
Figure 18.
Figure 19.

Figure 20.

Flame Height Profiles Calculated by CFAST ..o 62
Response Variable HiStOgrams..........cocooiiiiiiiiieiiciese e 63
Correlation Plot between all Predictor and Response Variables............cccccocvvninene. 67

Example Comparison of Raw Parameter Values to their Centered and Scaled Values

.. 70
Figure 21. Initial Fitting of Linear Metamodels (1-4)ccoiiiiiiiiciereiee e 72
Figure 22. Initial Fitting of Linear Metamodels (5-8)cooviieiiiiiiieieeee 73
Figure 23. Initial Fitting of Linear Metamodels (9-12) ..o 74
Figure 24. Initial Fitting of Linear Metamodels (13-16)cccooereriiiieienisieeee e 75
Figure 25. Initial Fitting of Linear Metamodels (17-20)ccooeieiiniiiniiiseeeeee e 76
Figure 26. Initial Fitting of Tree-Based Metamodels ... 79
Figure 27. Initial Fitting of Neighbor-Based Metamodels.............ccooviiiniiiiniciiie e 80
Figure 28. Support Vector Regression Metamodels...........ccooviviiiiiiiiinineseeee e 81
Figure 29. Regression Tree Coefficient of Determination (R?) as a Function of Number of Splits

.. 84
Figure 30. Regression Tree for Maximum Upper Layer Temperatureccocevererenesesennnnn 85
Figure 31. Regression Tree Predicted versus CFAST EStimatedccocoevvvivneneinicncneennnn 86
Figure 32. kNN Root Mean Squared Error as a Function of Number of Neighbors 89
Figure 33. K-Nearest Neighbor Predicted versus CFAST Estimated............cccocvvreinvnencnnnne. 90
Figure 34. Ratio of KNN Predicted to CFAST Calculated............cccovviiiininiiiecceee 91
Figure 35. Support Vector Machine Root Mean Squared Error as a Function of Complexity

PaIAMELETo 93
Figure 36. Support Vector Machine Predicted versus CFAST Estimated..........ccccocvveneieniennnne 94
Figure 37. Comparison of CFAST to KNN and Algebraic Models............cccooovcvnirciinincnnne 98

Xi

Figure 38. kNN Predicted vs. CFAST Calculated over Range of Training Sample Sizes

Figure 39. kNN Root Mean Squared Error vs. Training Sample Size

xii

PREFACE

This work is dedicated to my friends at Westinghouse Electric Company.

Xiii

1.0 INTRODUCTION

The United States Department of Energy explains in the Light Water Reactor Sustainability
Integrated Program Plan (Idaho National Laboratory, 2017) that:

Nuclear power has safely, reliably, and economically contributed approximately
20% of electrical generation in the United States over the past two decades. It remains
the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric
power generation in the United States.

Domestic demand for electrical energy is expected to grow by about 24% from
2015 to 2040. At the same time, most of the currently operating nuclear power plants will
begin reaching the end of their initial 20-year extension to their original 40-year
operating license, for a total of 60 years of operation (the oldest commercial plants in the
United States reached their 40th anniversary in 2009)...

...Operation of the existing fleet of plants to 60 years, extending the operating
lifetimes of those plants beyond 60 years and, where practical, making further
improvements in their productivity are essential to support the nation’s energy needs.

The program defines sustainability as “...the ability to maintain safe and economic operation of
the existing fleet of nuclear power plants for as long as possible and practical” (Idaho National

Laboratory, 2017). Four pathways are identified to meet this objective: 1) Materials Aging and

Degradation, 2) Risk-Informed Safety Margin Characterization (RISMC), 3) Advanced
Instrumentation, Information, and Control Systems Technologies, and 4) Reactor Safety
Technologies.

The RISMC pathway aims to develop a framework of methods and tools to quantitatively
and accurately characterize safety margin. Understanding safety margin is particularly important
during extended operation, where plant structures, systems, and components may be more
susceptible to age-related failures. The RISMC framework is intended to help plant operators and
regulators more cost-effectively manage safety margin during extended plant operation by
focusing resources on areas with low safety margin, while reducing unnecessary burden in areas
where excess margin exists.

In support of RISMC, the Idaho National Laboratory (INL) is developing software called
RAVEN (Cristian Rabiti et al., 2017), an acronym for Risk Analysis and Virtual Control
ENvironment. RAVEN at its heart is a statistical analysis platform capable of interfacing with
complex system codes, for example thermal-hydraulic models of plant response under accident
conditions.

In the RAVEN process, the input space is first stochastically defined. Input space refers
to the plant design (mitigating systems and components whose reliabilities are characterized
statistically), as well as the collection of hazards (fire, flood, seismicity, high winds, random
failures internal to the plant, etc.) that can give rise to initiating events. RAVEN is then coupled
with thermal-hydraulic plant response models (for example MAAP and RELAP) that are run
many times to evaluate a comprehensive sampling of the input space.

One key difference between RAVEN and the current risk assessment framework is that

the thermal-hydraulic models are typically run only a few times in the current framework, for

2

example to characterize plant response to a subset of important sequences using either bounding
or best-estimate values. In the RAVEN-based framework, the thermal-hydraulic models are run
many times on a probabilistic sampling basis. The great computational expense of running
thermal-hydraulic models has, until recent strides in computing power, prevented using these
codes on a sampling basis. In addition to leveraging computing power, such as parallel
processing on large LINUX clusters, RAVEN also incorporates machine learning methods (for
example Gaussian process models an support vector machines) that are trained by initial thermal-
hydraulic model runs, and that eventually can replace the thermal-hydraulic model to accelerate
the overall simulation.

This thesis explores the following specific RAVEN capabilities:

¢+ Defining a stochastic input space

% Sampling execution of a hazard model over range of uncertain input space
%+ Machine learning of the resulting hazard model input/output relationships

Fire is the selected hazard for this study because fire has been shown to be a dominant
risk contributor to nuclear power plants, and few of the past RAVEN studies have explored fire.
Previous and current RAVEN studies have focused instead on accidents initiated by plant
equipment failures, seismicity, and external flooding.

One fire scenario is selected for development in RAVEN. The characteristics and
boundary conditions for risk significant nuclear power plant fire scenarios are examined to
define a meaningful range of input space over which the RAVEN framework is exercised. The

input space is defined to be sufficiently broad that it encompasses the most meaningful potential

future applications of this work.

The fire modeling software selected for this application is called Consolidated Fire and
Smoke Transport (CFAST) Version 6 (R. Peacock, Jones, Reneke, & Forney, 2008), which is
publically available and developed by the National Institute of Standards and Technology.
CFAST is selected over simpler fire models, which tend to be conservative, as well as more
complex models like computational fluid dynamics, which tend to be computationally
demanding.

A qualitative review of metamodels available within RAVEN is first performed. Then, a
RAVEN model is developed to execute CFAST over a range of input space. An initial fitting of
twenty five (25) metamodels to a population of RAVEN-generated fire scenario training data is
performed, and the following three metamodel types are selected for further exploration and
model tuning:

= Tree-Based Regression
= k-Nearest Neighbor Regression
= Support Vector Machines Regression

The goal of this research is to understand the potential for ROMs to reliably estimate
fire-generated conditions. The success of each ROM can be measured in terms of accuracy (for
example root mean squared error) and speed (for example CPU-hours required to train and run
the ROM). Accurate and efficient ROMs could improve modeling realism in fire probabilistic
risk assessments where computational burden has prevented the broader application of fire

modeling codes.

2.0 LITERATURE REVIEW

Chapter 2 summarizes a literature review of the metamodeling process, fire hazard models,
RAVEN software and its previous applications, reduced order modeling methods available
within RAVEN, and finally previous applications of metamodeling to approximate hazard

modeling within the nuclear power industry.

2.1 METAMODELING PROCESS

The term metamodeling refers to the development of models that approximate more complex
computer models. The primary motivation of metamodeling is improved computational
efficiency over the computer models being approximated. For example, a well-trained and
efficient metamodel might be used for uncertainty quantification over many varying parameters;
whereas it may be infeasible to quantify the full computer model the hundreds or thousands of
times required for uncertainty quantification. Computational fluid dynamics and finite element
analysis are example models with often great computational burden where metamodeling may be
of value. The metamodeling process can also generate insights into the input/output relationships

of the more complex model, and with careful oversight metamodeling can be used for prediction.

(Barton, 2015) provides a tutorial of the metamodeling process, including simplified
examples in the field of discrete event simulation. Barton explains the process with the following
steps:

1) Define purpose of the proposed metamodeling

2) Identify input and output parameters of interest

3) Choose metamodel type

4) Choose experimental design

5) Fit the metamodel using full model runs specified by the experimental design
6) Validate the metamodel

7) Use metamodel for intended purposes

There are many potential metamodeling purposes. (Barton, 2015) discusses examples
with discrete event simulation. (Cohn, Denning, Aldemir, Sezen, & Hur, 2016) exercise
metamodels with RAVEN to approximate “stick” computer models of how components and
structures respond under seismic excitation. Finally, this thesis explores metamodel
approximation of fire hazard models used in probabilistic risk assessments of nuclear power
plants.

Selecting the input (predictor) and output (response) parameters of interest defines the
metamodeling problem and is generally application-specific. Input selection might be informed
by analyst knowledge or suspicions of which phenomena most govern the system. Input
parameters that the end-user desires to manipulate in order to observe the resulting system
response might also be selected. The selected output (response) parameter is the variable that the
metamodel will attempt to predict. Generally a single output is selected, and the metamodel

function that relates the selected inputs to the output is referred to as a response surface.

6

Metamodel complexity and training requirements increase as parameters are added, and this
leads to a tradeoff between model fidelity and computational burden.

Many metamodel types and software implementations are available. The INL RAVEN
framework (Cristian Rabiti et al., 2017) provides several variations of the following metamodel
types, which are geared toward applicability to the nuclear power industry analyses: spline,
Gaussian polynomial fitting, high dimensional model representation, MSR, inverse distance
weighting, support vector machines, multi-class algorithms, naive Bayes, tree-based algorithms,
Gaussian process models, and auto-regressive moving average. This thesis focuses on
metamodeling of fire hazard simulation, which tends to be temporal, and therefore the
metamodels available within RAVEN and capable of time series analysis are of most interest. In
particular Gaussian process modeling has been used extensively for time series analysis
(Williams & Rasmussen, 2006) and has some potential for fire hazard emulation.

The term “experimental design” in this context refers to defining a set of simulation runs
whose input and output are used for metamodel training. Given the great computational expense
of many simulation codes, the training runs need to be defined strategically to minimize the
number of needed runs.

(Sanchez, 2011) and (Barton, 2010) provide overviews of simulation experimental
design. Variables are first identified, with primary focus on the independent (input) and
dependent (output) variables. Independent variables that are varied in the design of experiment
simulations to understand their effects on output are called factors. Intermediate and nuisance
variables are also identified. Next each of the selected variables is plotted, and processed through
statistical analyses, to understand their ranges and types of relationship (strong, weak, positive,

negative, linear, non-linear) with the dependent variable.

7

There are numerous experimental design approaches, including full factorial, fractional
factorial, Latin hypercube, random, sequential screening, and optimization-based methods. The
number and type of factors, as well as the response characteristics, influence the selected design.
(Sanchez, 2011) provides a chart comparing the strengths and weaknesses of experimental
designs relative to the factor and response characteristics. Table 1 identifies the experimental

designs available within RAVEN (Cristian Rabiti et al., 2017).

Table 1. Experimental Designs included in RAVEN

Class Algorithm

Response surface method | Box-Behnken

Central composite

Factorial General full factorial

2-Level fractional factorial

Plackett-Burman

Next the simulation runs defined by the design of experiments are executed, and the
resulting data are used to train the selected metamodel. The model can be validated using error
metrics such as mean squared error (MSE) and coefficient of determination (R?). Model
performance should be assessed not only on the training data, but also on a test set of data for
which the model has not been trained. The acceptable level of model performance is application-
specific, and in the case of performing uncertainty analysis for nuclear power plant hazards, it is

likely that a relatively high accuracy is required.

2.2 FIRE HAZARD MODELS

(Igbal, Salley, & Weerakkody, 2004) and (McGrattan et al., 2012) provide basic overviews of
fire behavior as well as guidance on using publically available fire modeling tools to estimate
fire effects such as flame irradiation, plume temperature, ceiling jet temperature, and hot gas
layer temperature. These guidance documents are primarily directed towards fire safety
applications within the commercial nuclear power industry. Figure 1 illustrates the basic

elements of compartment fire behavior.

Ceiling Jet

v

Hot Gas Layer

Figure 1. Compartment Fire Behavior

Once ignited, a luminous flame forms above the fuel package. This flame radiates energy
down to the fuel, causing gasification of the fuel, which flows upward into the flame region. The

actual flame occurs at a thin interface where the gaseous fuel meets sufficient oxygen to support

9

combustion. Within the flame envelope is a region of hot, gasified fuel which has not yet
combusted. The flame height is related to the rate of gasification, and how far vertically fuel
must travel before it encounters sufficient oxygen to combust. The location of the fuel package
against a wall or near a corner (for example, a wall-mounted electrical cabinet) can increase the
flame height because the wall reduces on one or two sides the entrainment of oxygen toward the
flame, and therefore fuel must travel higher vertically before it combusts.

A plume of hot gases (combustion products) flows vertically above the flame. The
temperatures of the flame and plume are equivalent at flame tip. The plume temperature
decreases as it travels upward and entrains cooler air. This entrainment causes the plume volume
to expand as it travels upward, resulting in an inverted cone shape. The entrainment also causes
an axial plume temperature profile that is hottest at its center and coolest at the plume boundary.

Once the plume encounters the ceiling, it is redirected and flows radially outward, away
from the plume centerline, underneath the ceiling. This region is called the ceiling jet, and its
depth is generally about 10% the height of the room, as a rule of thumb. The ceiling jet cools as
it expands radially outward, again as a result of entrainment.

When the ceiling jet encounters the compartment walls, hot gases begin accumulating in
the upper portion of the room volume. This region is called the hot gas layer, and it descends as
the fire continues to burn and gases accumulate. The hot gas layer descends until it reaches a
vent, for example an open door, where gases begin flowing out of the vent. At this point a steady
state condition can be reached where cool air flows in through the lower portion of the vent and
is drawn into the fire to support combustion, and the resulting combustion products are pumped
into the hot gas layer and back out the upper portion of the vent. Some simplified fire models

that estimate hot gas layer temperature are based on evaluating this steady state condition.

10

There are three general classes of fire modeling tools:

= Algebraic Models
= Two-Zone Models
= Computational Fluid Dynamics Models

(Igbal et al., 2004) provides an overview of algebraic models used to estimate fire
generated conditions, such as flame height, plume temperature, ceiling jet temperature, hot gas
layer temperature, and thermal radiation. (McGrattan et al., 2012) provides guidance for the
application of fire modeling tools to nuclear power plant analyses.

The algebraic models are straightforward to implement, but they generally yield
conservative results. These models are also limited in their ability to estimate the evolution of
fire-generated conditions as a function of time.

Two-zone models divide the analysis space into two zones, one representing a hot upper
layer where energy released by the fire accumulates, and the other representing a relatively cool
lower layer. The model solves the conservation of energy and mass equations across these two
layers as a function of time. Two-zone models generally provide more realistic results relative to
algebraic models, and they also estimate conditions as a function of time; however, these
improvements come at some computational expense. CFAST (R. Peacock et al., 2008) is an
example of a publically available two-zone model, which was developed by the National
Institute of Standards and Technology and is widely used by the fire protection community.
Typical CFAST models have a runtime of a few minutes, and some effort is required to set up

the model. Figure 2 depicts an example CFAST model.

11

imokevies Test (3318) - Oct 27 2011 - 13:29:27 %_rn‘g

150
13?'

125

12
99.6
g6.49
74.3
B1.7

<// 491

385

234

Figure 2. Example CFAST Model

Finally, computational fluid dynamics models subdivide the analysis space into a mesh,
commonly involving tens or hundreds of thousands of cells. The analysis timeline is also
discretized into time steps. The conservation of energy, mass, and momentum equations are
solved across each cell surface for each time step throughout the simulation. These models can
produce highly resolute and generally accurate estimations of fire-generated conditions
(temperature, heat flux, flow, visibility, etc.) throughout the scenario; however, these models
come at great computational expense. Relatively basic fire scenarios can require many hours of
computer runtime, and several days of runtime is not uncommon for complex scenarios. Figure 3

depicts an example CFD fire model.

12

imokeview Test (9318) - Oct 27 2011 - 13:29:27 Slice

temp
370
335 l
300
/ {]\ 265
I 230
|] | 195

| 160

125

D a0.0

"55 550

_ h) 200

Figure 3. Example CFD Fire Model

NUREG-1824 (Hill et al., 2007) provides a systematic verification and validation of the
algebraic, two-zone, and computational fluid dynamics fire modeling tools described in (Igbal et
al., 2004) and NUREG-1934 (McGrattan et al., 2012). This study compared fire modeling results
against a series of full-scale fire test experiments for parameters such as flame height, plume
temperature, ceiling jet temperature, and hot gas layer temperature. The conclusion included a
qualitative ranking of each model for each of the parameters to be estimated, which at a high
level indicated that the computational fluid dynamics model was generally most accurate, the
simplified algebraic models tended to be conservative, and the two-zone models tended to be

somewhere in between.

13

NUREG-1824 (Hill et al., 2007) also noted that it is important for the models to be used
within their capabilities and ranges of applicability. The subsequent NUREG-1934 (McGrattan et
al., 2012) provides criteria for determining whether any particular scenario is within the range of
applicability of various fire modeling tools. Guidance is also provided to characterize the

uncertainty associated with fire model output.

2.3 RAVEN SOFTWARE OVERVIEW

RAVEN is currently under development by the Idaho National Laboratory. An open-source and
periodically updated version of the software is available at their ‘github’ (ldaho National
Laboratory, n.d.). An extensive user manual (Cristian Rabiti et al., 2017) and a theory (Andrea
Alfonsi et al., 2017) describe the technical methods implemented by RAVEN and how to install,
set up, and run the software.

RAVEN can be installed on Linux, OSX, and Microsoft Windows computing platforms.
The code uses a mix of the XML, C++, C, and Python programming languages, and the
installation is relatively large, including a variety of dependencies. The central input file is
written in XML and can be created and modified with any text file editor. The XML input file
has blocks where the inputs, models, outputs, and overall calculation flow are defined.

Models are available in couple forms. Some existing models are available directly within
RAVEN and have associated XML input file commands. User-defined models can be written in
a separate Python (.py) file and called from the XML input file at the desired point in the

calculation flow. RAVEN also includes a process for executing external models, such as the

14

CFAST fire model to be used in this analysis, or the MAAP and RELAP thermal-hydraulic plant
response models.

A variety of post-processing techniques are available within RAVEN. The MatPlotLib
library (Hunter, 2007) is available for constructing high quality plots and visualizations. Basic
summary statistics and limit surfaces can be calculated, and a data mining tool called knowledge

discovery in databases (KDD) is available.

24 PREVIOUS APPLICATIONS OF RAVEN

One of the first major analyses using RAVEN was performed by the developers at Idaho
National Laboratory as a demonstration case and is summarized in (Smith et al., 2014) and
(Diego Mandelli, Prescott, et al., 2015). The case study was highly relevant in the wake of the
Fukushima Dai-ichi nuclear accident (Miller et al., 2011) and examined response of a
pressurized water reactor design to station blackout, seismic-induced station blackout, and
tsunami. The study also examined the effect of power uprate on plant response to the progression
and timing of the postulated accidents. The model was used to assess the potential risk benefit of
physical plant modifications, such as installation of wave protection walls and moving or
otherwise bunkering the emergency diesel generators, and revisions to emergency operating
procedures such as crediting flexible coping strategies to restore emergency power. A
predecessor study (D Mandelli et al., 2014) similarly examined response of a boiling water

reactor design to station blackout.

15

(Szilard et al., 2015) document an early demonstration of using the RISMC framework to
manage safety margin under a proposed federal rulemaking that would revise the acceptance
criteria for plant response to postulated large break loss of coolant accidents. These reports
consider using RAVEN to integrate and manage the overall analysis from sampling the uncertain
input parameters, executing the thermal-hydraulic plant response model (RELAP5-3D in this
case), and post-processing the results by for example using limit surface searching algorithms to
bisect regions of success and failure.

Table 2 identifies national laboratory reports and conference papers that summarize
software development progress at various milestones and include a significant amount of
technical background. The RAVEN user guide (Cristian Rabiti et al., 2017) and a theory manual
(Andrea Alfonsi et al., 2017) summarize the final product, and the below references can be

consulted for historical background or as supplemental technical content.

16

Table 2. Additional RAVEN-Related Technical References

Reference Topic

(Cristian Rabiti, Alfonsi, Cogliati, Mandelli, & Kinoshita, 2012) General / overview
(Cristian Rabiti, Alfonsi, Mandelli, Cogliati, & Kinoshita, 2014)
(A Alfonsi, Rabiti, Mandelli, Cogliati, & Kinoshita, 2013)
(Andrea Alfonsi, Rabiti, Mandelli, Cogliati, & Kinoshita, 2013a)
(Diego Mandelli et al., 2013)

(A Alfonsi et al., 2013)

(Andrea Alfonsi, Cristian, et al., 2014)

(C Rabiti, Alfonsi, Mandelli, Cogliati, & Martineau, 2012)

(Rabitia, Alfonsi, Cogliati, Mandelli, & Kinoshita, 2014)

(Christian Rabiti et al., 2013) Demonstration cases
(Diego Mandelli, Smith, Ma, et al., 2014)

(Diego Mandelli, Smith, Alfonsi, & Rabiti, 2014)

(Andrea Alfonsi, Rabiti, Mandelli, Cogliati, & Kinoshita, 2013b) Dynamic Event Tree
(Andrea Alfonsi, Rabiti, Mandelli, Cogliati, & Kinoshita, 2014b)
(A. Alfonsi et al., 2014)
(A Alfonsi et al., 2013)

(Andrea Alfonsi, Rabiti, Mandelli, Cogliati, & Kinoshita, 2014a)

(Cristian Rabiti et al., 2015) Reduced order
(Manselli et al., 2013) models

(Diego Mandelli, Rabiti, & Alfonsi, 2012)

17

Table 2 (Continued).

Reference

Topic

(Sen, Maljovec, Alfonsi, & Rabiti, 2015)

Data mining

(Cristian Rabiti, Talbot, Alfonsi, Mandelli, & Cogliati, 2013)
(Swiler, Laura, Mandelli, Diego, Rabiti, Crisitan, Alfonsi, 2013)
(Diego Mandelli, Smith, Alfonsi, Rabiti, & Cogliati, 2015)

(A. Alfonsi et al., 2015)

Math and algorithms

(Guler et al., 2014)

Modeling aging

18

2.5 REDUCED ORDER MODELS AVAILABLE IN RAVEN

RAVEN includes many regression and classification ROM types, including the library of models
associated with the Python SciKitLearn library. This section briefly reviews each of the ROM
types currently available in RAVEN according to its user guide (Cristian Rabiti et al., 2017).
(Kuhn & Johnson, 2016) provides a practical overview of many of the machine-learning methods
available within RAVEN, and (Hastie, Tibshirani, & Friedman, 2016) provides a more

comprehensive examination including mathematical foundations.

2.5.1 N-Dimensional Spline

Spline methods are a type of interpolation where the data space is discretized into intervals, and a
function (or “spline”) is defined to fit the data within each interval. The final fitted model is

comprised of the collection of splines over each interval. This is a piecewise fitting procedure.

2.5.2 Gaussian Polynomial Fitting

This reduced order model is also referred to as generalized polynomial chaos expansion and is
used for regression. (Cristian Rabiti et al., 2013) describes implementation of this approach in
RAVEN, including an example evaluation of a pressurized water reactor under station blackout

conditions.

19

2.5.3 High Dimensionality Model Representation (HDMR)

(Li, Rosenthal, & Rabitz, 2001) provides an overview of the HDMR approach and a few
example applications from the chemical industry. At a high level, HDMR attempts to represent
high dimensionality systems (those with a large number of input parameters) using a relatively
small number of input parameters. In addition to reduced order modeling, HDMR is useful for

identifying important input-output relationships in high dimensionality systems.

254 MSR

According to the RAVEN user manual (Cristian Rabiti et al., 2017), MSR decomposes the data
into monotonic regions and performs fitting within those regions. It appears to be similar to

spline-based approaches and can be used for both regression and classification.

2.5.5 N-Dimensional Inverse Distance Weighting

Inverse distance weighting is a form of interpolation where the interpolated value is an average
of surrounding data points weighted by the Euclidian distance to those points. The inverse
weighting assigns less weight to more distant points and conversely more weight to nearby

points.

20

2.5.6 Linear Models

RAVEN includes numerous linear models such as ordinary least squares regression, logistic
regression, ridge regression, lasso, perceptron, and elastic net. Linear models take the following
general form:
y=p+tBX+e

In this form y is the vector of response variable values, 3, is the intercept, g is the vector
of coefficients in the linear model, X is the matrix of predictor variable values (with dimensions
of the number of variables by the number of observations), and e is the vector of errors. Each of
the linear model methods attempts to find coefficient values, B, that minimize the sum of the
squared errors associated with the model. Each of the methods differ in the biases and variances
they produce in the resulting model, and therefore the selected method should be application-
specific and based on user-preferred attributes of the final model.

A linear model is likely not a good surrogate for representing fire hazard model output

since the underlying physics of fire behavior are non-linear.

2.5.7 Support Vector Machines (SVM)

(Steinwart & Christmann, 2008) provides a comprehensive examination of SVM methods for
classification and regression problems, both linear and non-linear. For classification problems
where no clear linear separation exists between the two classes to be predicted, SVM formulates
an optimization that creates a curved hyperplane separating the two classes to the greatest extent

possible. The SVM classification approach is not probabilistic, and data that fall on either side of

21

the hyperplane are classified accordingly. SVM can be used for both binary and multi-class

problems, as well as for regression.

2.5.8 Multi-Class

Multi-class algorithms are used for classification problems with more than two potential
outcomes. One example is an image recognition problem where the model attempts to classify
images as either containing a dog, cat, or fish. Multi-class algorithms will likely not be relevant

to the emulation of fire hazard model output, which tends to be numeric and continuous.

2.5.9 Naive Bayes

(Kuhn & Johnson, 2016) provides a practical overview of naive Bayes as a non-linear
classification model. Naive Bayes estimates the probability that an observation belongs to a
particular class given (conditional upon) observed data. The naive portion of this model assumes
that all predictors are independent of each other, which, although not realistic for many

applications, simplifies the computation.

2.5.10 Neighbors

Neighbor-based approaches include both supervised and unsupervised algorithms and can be
used for classification or regression. In the k-nearest neighbor approach, the user defines the
number of clusters, k, and the algorithm recursively processes the data to assign each point to a

cluster. In the first pass, k cluster centroids are arbitrarily defined, and each data point is assigned

22

to a cluster based on its Euclidean distance to each centroid. In the second iteration, the centroids
are re-calculated based on the initial assignment, and each point is then re-assigned to a cluster
based on their Euclidean distance to the new centroids. The process repeats itself until the cluster
definitions converge. This approach is an example of an unsupervised neighbor-based

classification model. Other neighbor-based approaches exist for regression problems as well.

2.5.11 Tree-Based

Tree-based algorithms sequentially partition the data, forming a tree of user-specified depth
where each branch represents a data partition. Tree models can be visualized and are easy to
interpret. They can handle mixed numerical and categorical data. Tree structure can be sensitive
to the training data, and slight variations in the training data can create differing tree structures
by changing the partitioning criteria. To mitigate this sensitivity, ensemble methods such as
random forest create many trees, and the resulting classifications are based on a voting scheme.

There are tree-based approaches for both classification and regression problems.

2.5.12 Gaussian Process

(Williams & Rasmussen, 2006) present a thorough framework, example applications, and
software implementation of Gaussian process modeling in the context of machine learning.
Gaussian process modeling, also known as kriging, is a type of supervised learning suitable for
both regression and classification problems. The approach is Bayesian and starts with a Gaussian

prior distribution of functions (i.e., the random variable of the distribution is a function), where

23

each possible function is a representation of how the system response varies with the predictor
variables. The prior distribution is selected by the user, based on knowledge of the system, for
example whether the response is monotonic, increasing, decreasing, or cyclical. The Gaussian
posterior distribution is then calculated with Bayes’ rule, where the prior is updated with the
training data. Gaussian process models have been used extensively for time series analysis and
are therefore a potentially natural fit for reduced order approximation of fire hazard models,

which estimate environmental conditions as a function of time.

2.5.13 Auto-Regressive Moving Average (ARMA)

ARMA is a forecasting technique used with time-series data. The model is defined by a user-
specified weighted combination of auto-regression (p) and moving average (q) models. The auto-
regression portion regresses previous data points to predict the next data point, while the moving

average portion uses an average of previous data point values to predict the next data point.

2.6 PREVIOUS APPLICATIONS OF REDUCED ORDER MODELS TO

APPROXIMATE NUCLEAR POWER PLANT HAZARDS

A literature review identified two studies where ROMs have been explored for their potential to
emulate hazard models used in nuclear power plant probabilistic risk analyses, which typically
include fire, flooding, seismicity, and high winds. The first study, referred to as The Ohio State

University study, examined surrogate model approximation of a seismic hazard, and the second

24

study by the University of California, Los Angeles explores response surface approximation of a

fire hazard model.

2.6.1 The Ohio State University Study

(Cohn et al., 2016) explores the use of surrogate models to approximate the response of “stick
models”, which estimate the acceleration at various locations throughout a structure that is
exposed to ground-level motion during an earthquake. The authors tested the following
classification and regression models for estimating component failure probability, which is a
function of seismic-induced acceleration: k-nearest neighbor regressor, k-nearest neighbor
classifier, inverse distance weighting, linear support vector classifier, and C-support vector
classifier.

Distributions were assigned to the uncertain input space, which included floor mass and
stiffness in their study. The study used a Latin hypercube sampler to ensure the full input space
was assessed. Two training sets were tested, one low-fidelity set using 500 runs of the stick
model, and one high-fidelity set using 20,000 runs of the stick model.

Surrogate model errors ranged from about 2% to 65%. In this study, the k-nearest
neighbor regressor performed well, while support vector machine performed poorly. The authors
attributed the poor support vector machine performance to its attempting to subdivide the input
space into clear regions of success and failure, which in this application did not exist due to high
non-linearity in the underling physics. That is, the relationship between the floor mass and

stiffness input parameters and the acceleration estimated by the stick model is highly non-linear.

25

The study also found that, in its particular application, the prediction error between
models trained on 500 runs and 20,000 runs was similar (within about 5%). Finally, the authors
observed that the input parameters with the greatest natural ranges, in this case floor stiffness,
most influenced the surrogate models. It is possible that this could be alleviated by training the

surrogate models on centered and scaled versions of the input data.

2.6.2 University of California Los Angeles Study

(Brandyberry & Apostolakis, 1990) explored response surface approximation of a computer
model called COMPBRN, which was used at that time to estimate fire-generated conditions in
support of probabilistic risk assessments. COMPBRN (Ho, Siu, Apostolakis, & Flanagan, 1986)
is a predecessor to the more current CFAST code. The goal of the study was to generate a
response surface that could not only be used for uncertainty quantification, but also as a general
analytical tool that could potentially be used in place of COMPBRN under certain conditions.
The motivation was not to mitigate computer run time, as the authors noted COMPBRN executes
efficiently in a mainframe environment; instead their motivation was to mitigate the tedious
model setup required for each run (for example creating a Fortran NAMELIST with more than
60 variables that is not carried forward from run to run).

The UCLA study focused on estimation of cable temperature, as a function of time, when
exposed to the fire environments of postulated nuclear power plant fire scenarios. Fifteen
predictor variables characterizing thermophysical properties, combustion properties, heat transfer
characteristics, and room geometry were examined. The analysis used a central composite

experimental design, which is an extension of factorial design.

26

One of the study challenges was that the cable temperature response variable was
temporal, evolving with the fire and the compartment heat transfer characteristics throughout the
fire duration. To incorporate the time dimension, the authors examined the general shape of the
time-temperature profiles estimated by COMPBRN and fit a non-linear regression to that shape.
The equation had four constant terms, and a response surface relating each term to the predictor
variables was developed. The final model was therefore a combination of the non-linear
regression and four fitted response surfaces.

The study then examined implications of the resulting model, which was statistically
fitted, and found many of its features comported intuitively with fire behavior. For example, the
coefficient values and exponential order of each term indicated that cable tray temperature is
controlled primarily by the thermal environment and not its composition. Other model
parameters were not easily interpreted, especially those added solely for tuning the regression.
This exercise in part was a validation of the fitted model, but it also yielded insights as to the
COMPBRN input/output relationships, as well as general insights into fire behavior that may not
self-reveal when simply running the computer code.

Finally, the study exercised the surrogate model to predict cable tray time-temperature
profiles measured during a series of fire tests performed for Sandia National Laboratories. The
surrogate model matched the experimental data reasonably well (which is primarily a validation
of COMPBRN), and it matched the COMPBRN estimations very well (which is a validation of

the surrogate model).

27

3.0 METHODOLOGY

3.1 FIRE MODEL SELECTION

The fire modeling software selected for this application is called Consolidated Fire and Smoke
Transport (CFAST) Version 6 (R. Peacock et al., 2008), which is publically available and
developed by the National Institute of Standards and Technology. CFAST is selected over
simpler fire models, which tend to be conservative, as well as more complex models like CFD,
which tend to be computationally demanding. The following paragraphs discuss how this
selection was made.

(Sargent, 2008) summarizes the process of systematically verifying and validating
simulation models. Verification ensures a given model is translated correctly into the computer
program, and validation ensures the model accurately represents the phenomena of interest.

For example, the verification of a finite element analysis model representing heat
conduction through a metal plate might focus on how the governing heat transfer equations are
implemented via coding (what programing language is used, how input data are imported and
declared, how the routines are structured, and how the output is processed, etc.). Meanwhile,
validation might focus on whether the selected heat transfer equations represent the conditions
over which the model is intended to be applied (whether the correct temporal forms of the

equations are used when timing is important, whether empirical constants are appropriate for the

28

materials under consideration, and whether the model dimensionality is consistent with the
intended applications, etc.).

Verification of the fire models under consideration has been performed by the
developers. (R. D. Peacock, Forney, & Reneke, 2017) includes a systematic verification of the
CFAST model, using a standardized set of test cases designed to exercise the model
implementation of the governing energy balance, mass balance, and heat transfer equations.
(McGrattan et al., 2017) provides an extensive verification of the CFD fire model called Fire
Dynamics Simulator (FDS), and verification of the simpler algebraic fire models can be found
throughout the fire protection literature.

Regarding validation, (Sargent, 2008) discusses that validation cost is usually significant,
increasing exponentially with the level of model confidence required. The fire models considered
herein are used to assess and manage fire risk at nuclear power plants, and high model
confidence is therefore required due to the potential consequences of a nuclear accident. In that
context the U.S. Nuclear Regulatory Commission funded a significant fire model verification and
validation effort involving the model developers (National Institute of Standards and
Technology), fire behavior and modeling experts from academia, regulators, and end-users. This
program is documented in NUREG-1824 (Hill et al., 2007), and it applied the ASTM E 1355
Standard Guide for Evaluating the Predictive Capability of Deterministic Fire Models
(American Society for Testing Materials International, 2012). The subsequent NUREG-1934
(McGrattan et al., 2012) provides guidance on how to apply the verified and validated fire
models to nuclear power plant fire scenarios.

(Sargent, 2008) identifies a number of validation techniques, several of which were

implemented in NUREG-1824 (Hill et al., 2007), including predictive validation, comparison to

29

other models, and even animation. The predictive validation was performed by comparing fire
model predictions to the results of several full-scale fire tests representative of nuclear power
plant scenarios. Several models (FDT, CFAST, and FDS) were assessed, and predictions were
not only compared to the experimental data, but also to the predictions from each of the other
models. Finally, and while this was not a focus of the study, two of the models (CFAST and
FDS) provide animated representations of the fire model output. FDS in particular provides a
very detailed three-dimensional visualization of the fire and smoke flow. These animations
highlight well-established fire behaviors, such as a “V-shaped” fire plume and the accumulation
of hot gases near the ceiling, which provides some qualitative validation of the models, even for
those without modeling expertise.

One outcome of this project is exercising the selected model over a large range of input
space. Some of the model runs will likely represent extreme cases, in particular at the input
distribution tails, and examining model performance for these cases may add to the overall
validation.

NUREG-1934 (McGrattan et al., 2012) Table 4-1 summarizes a validation comparison of
full-scale fire test experiments against model performance, selected to represent typical nuclear
power plant scenarios, and this information is reproduced below as Table 3. Note that the FDT is
a set of algebraic fire models, CFAST is a two-zone fire model, and FDS is a computational fluid
dynamics fire model. The term &'is a calculated bias factor representing the degree to which the
model over-predicted or under-predicted experimental data, the term &,, is a measure of model
uncertainty, and the term &5 is a measure of experimental uncertainty. 6 >0 means the model

over-predicted the observations, and 4, < 6z means that the model uncertainty is within

30

experimental uncertainty. Refer to the source document (McGrattan et al., 2012) for additional

information.

Table 3. Fire Model Validation Results from NUREG-1934 (McGrattan et al., 2012)

FDT CFAST FDS Experiment
Model Output S Ou S Ou S Oy g
HGL Temp. 144 |1 025 | 1.06 | 0.12 | 1.03 | 0.07 0.07
HGL Depth N/A 1.04 | 0.14 | 0.99 | 0.07 0.07
Ceiling Jet Temp. N/A 1.15 | 0.24 | 1.04 | 0.08 0.08
Plume Temp. 073 | 024 | 125 | 028 | 1.15 | 0.11 0.07
Oxygen Conc. N/A 091 | 0.15 | 1.08 | 0.14 0.05
Smoke Conc. N/A 2.65 | 0.63 | 2.70 | 0.55 0.17
Room Pressure N/A 113 | 0.37 | 0.95 | 0.51 0.20
Target Temp. N/A 1.00 | 0.27 | 1.02 | 0.13 0.07
Radiant Heat Flux | 2.02 | 0.59 | 1.32 | 0.54 | 1.10 | 0.17 0.10
Total Heat Flux N/A 0.81 | 047 | 0.85 | 0.22 0.10
Wall Temp. N/A 125 | 048 | 1.13 | 0.20 0.07
Wall Heat Flux N/A 1.05 | 043 | 1.04 | 0.21 0.10

The FDT algebraic models are eliminated from consideration due to their validated
outputs being limited to hot gas layer temperature, plume temperature, and radiant heat flux.
While these are important quantities, hot gas layer depth, ceiling jet temperature, radiant heat
flux, and in particular target temperature are useful for probabilistic fire risk assessments.

Figure 4 plots the CFAST and FDS bias factors for each predicted quantity. The CFAST
and FDS bias factors are within 10% of each other for all quantities, except radiant heat flux,
room pressure, and oxygen concentration. Room pressure is not of interest here because it does
not impact target failure probability. While the CFAST bias factor for radiant heat flux is about
20% higher than the FDS bias factor, both models conservatively over-predicted the

experimental data (6 = 1.32 for CFAST and 6 = 1.1 for FDS). For oxygen concentration,
31

CFAST under-predicted (o = 0.91) the experimental data, while FDS over-predicted the data
(6= 1.08). In this context under-predicting oxygen concentration would be non-conservative if

flame extinction is modeled due to inadequate oxygen.

Fire Model Bias Factors (8) for Predicted Quantities

m CFAST mFDS
3.0

2.5

2.0

15

1.0

05

0.0
Smoke Radiant Plume Wall Ceiling Room HGL WallHeat HGL Target Oxygen Total
Conc. HeatFlux Temp. Temp. Jet Temp. Pressure Temp. Flux Depth Temp. Conc. Heat Flux

Figure 4. Fire Model Bias Factors for Predicted Quantities

Figure 4 also indicates that CFAST was conservatively biased, with respect to the
experimental data examined, for all parameters except oxygen concentration and total heat flux.
FDS also tended to be conservative with the exception of under-predicting total heat flux. Both

CFAST and FDS significantly over-predicted smoke concentration. Finally, while both models

32

were generally conservative, FDS tended to be slightly more realistic than CFAST with biases
closer to 1.0.

In this application, the improved realism of FDS does not outweigh its significantly
higher computational expense relative to CFAST. FDS models can require many hours, or days,
to run, while similar CFAST models run in a few minutes at most. Given the number and range
of uncertain input parameters, developing an accurate metamodel will likely require hundreds or
thousands of runs, in which case it would be infeasible to apply FDS.

CFAST is therefore selected for this analysis. Attention is required when using CFAST to
predict oxygen concentration (for example if flame extinction is modeled) and heat flux (for
example as a target failure mechanism) due to non-conservative model bias. Similarly, care is
required when predicting smoke concentration, for example as a visibility impact to plant

operators, because CFAST is very conservatively biased for this parameter.

3.2 FIRE SCENARIO DEFINITION

For the purposes of metamodel development and uncertainty quantification, the “fire scenario”
represents a range of potential conditions characterized by probability density functions. For
example, a scenario might have a lognormal occurrence frequency with a 1E-04 /yr mean value,
the peak heat release rate might be gamma-distributed with a mean value of 200 kW, and even
typically fixed parameters such as room dimensions and ventilation rates may vary. The benefit

of varying fixed parameters is to maximize the potential applicability of the trained metamodel.

33

The following two approaches will be used to define the fire scenario under consideration:
1) Identify the characteristics of high risk fire scenarios per nuclear power plant
probabilistic risk assessments.
2) ldentify the range of input space over which the CFAST fire model has been validated.
The first approach ensures the metamodel training data encompass relevant scenarios, and the

second approach ensures the metamodel applicability is as broad as the model being emulated.

3.2.1 Characteristics of High Risk Fire Scenarios

Many U.S. nuclear power plants have converted their fire protection programs to the risk-
informed methodology outlined in NFPA 805 (National Fire Protection Association, 2001). This
methodology is a risk-informed alternative to the generally prescriptive, rule-based requirements
to which plants were initially licensed. Transitioning to NFPA 805 involves submitting a
comprehensive license amendment request to the regulator, part of which summarizes the
dominant fire risk locations and contributors for the plant. Table 4 summarizes a review of
publically available NFPA 805 license amendment requests to identify the highest risk fire

scenarios.

34

Table 4. Fire Scenarios Contributing most to Core Damage Frequency for Sample of Plants

Plant

Design

Top 5 Fire Scenarios

Cooper
(Nebraska Public
Power District, 2012)

General Electric Type 4
boiling water reactor with
wet containment

Diesel generator fire

Transient fire in turbine building
corridor

Bus duct fault in switchgear room
Station battery charger fire
Station battery fire

Arkansas Nuclear One

Babcock & Wilcox

Switchgear room fire

(Entergy Operations, | pressurized water reactor Main control room abandonment
2014) with large dry Radwaste processing area fire
containment Pipe chase fire
Containment fire
McGuire Westinghouse four-loop Auxiliary relay rack fire

(Duke Energy, 2013)

pressurized water reactor
with ice condenser
containment

Main control board fire
Switchgear 1ETB fire
Switchgear 1ETA fire
Switchgear 1TC fire

The following paragraphs characterize each of the above fire scenario types, with the
purpose of defining the input space over which the metamodel will be trained. Note that nuclear
power plant layout and architectural drawings are typically not available publically due to
security concerns. General compartment characteristics, for example range of room dimensions,
are therefore assembled based on judgment and discussion with industry experts. The goal is not
to represent any specific plant or scenario, but instead for the input space to encompass a broad

range of relevant scenarios. Metamodel training on a broad input space will maximize potential

applications of the resulting metamodel.

Diesel generator fires can be severe due to a large volume of diesel fuel and lubricating

oil. For this reason, each diesel generator is typically located in its own dedicated compartment.

35

The compartments are rectangular to accommodate the shape of the diesel generator, with
estimated dimensions on the order of ~15-20 meters long, ~5-10 meters wide, and ~5-8 meters
tall. A large volume diesel fuel oil or lubricating oil fire is so severe that all targets in the
compartment would likely be damaged, and therefore fire modeling generally provides little
benefit. This scenario is therefore excluded from consideration in defining the scenario input
space.

Transient fires are those which initiate on temporary combustible packages and can occur
at almost any location. An example might be a plastic cart containing tools and parts required for
equipment maintenance. NUREG/CR-6850 (Electric Power Research Institute & U.S. Nuclear
Regulatory Commission, 2005) characterizes their potential heat release rate as gamma-
distributed with «=1.8, # = 57.4, and at 98" percentile value of 317 kW. Corridor
configurations fall outside the range of applicability for CFAST, due to its model assumption
that heat accumulates homogeneously and instantaneously across the ceiling. This assumption
does not apply to corridors, where there can be a non-negligible delay time for smoke transport
from one end of the corridor to the other. Corridor configurations are therefore excluded from the
scenario input space; however, the range of transient fire heat release rates is included in the
input space.

All three sampled plants identified switchgear room fires as significant. The primary fire
sources in switchgear rooms are electrical cabinets. These electrical cabinets can include medium
voltage switchgear, motor control centers, low voltage panels, and battery chargers. Note that the
bus duct fault identified by the Cooper plant is an explosive electrical event that is not modeled
by CFAST, or any other traditional fire model. NUREG-2178 (USNRC & EPRI, 2015) evaluated
a series of full scale electrical cabinet fire tests and developed heat release rate probability

36

density functions based on the type of cabinet, fuel load, and ventilation configuration. The
resulting distributions are reproduced here as Table 5, and they have a 98" percentile peak heat
release rate range of 45-1,000 kW. Switchgear rooms are generally square or rectangular, with an
estimated floor area on the order of ~500-1,000 m” and a height on the order of ~5-8 meters.
NUREG-1934 (McGrattan et al., 2012) includes an example switchgear room with dimensions
26.5 meters long, 18.5 meters wide, and 6.1 meters tall. The example scenario also has a
mechanical ventilation system with three 0.5 by 0.6 meter supply ducts, each supplying 0.47 m%/s

ventilation, and three 0.5 by 0.6 meter return ducts.

Table 5. Cabinet Fire Peak Heat Release Rate Gamma Distributions per NUREG-2178 (USNRC & EPRI, 2015)

Default Low Very Low
Cabinet Type Ventilation Fuel Type Fuel Load | Fuel Load | Fuel Load
a | plalplalsp
Switchgear and Closed TS, QTP,SIS | 0.32 | 79
Load Centers Closed TP 099 | 44
Motor Control Closed TS, QTP,SIS | 0.36 | 57
Centers and Closed TP N/A
Battery Chargers 121) 30
Power Inverters Closed TS, QTP, SIS | 0.23 | 111
Closed TP 052 | 73
Large Enclosures Closed TS, QTP,SIS | 0.23 | 223 | 0.23 | 111 | 0.38 | 32
Closed TP 052 | 145 | 052 | 73 | 0.88 | 21
Open TS, QTP, SIS | 0.26 | 365 | 0.26 | 182 | 0.38 | 32
Open TP 0.38 | 428 | 0.38 | 214 | 0.88 | 21
Medium Closed TS,QTP,SIS | 0.23 | 111 | 0.27 | 51 | 0.88 | 12
Enclosures Closed TP 052 | 73 | 052 | 36 | 0.88 | 12
Open TS, QTP,SIS | 0.23 | 182 | 0.19 | 92 | 0.88 | 12
Open TP 051 | 119 | 0.30 | 72 | 0.88 | 12
Small Enclosures N/A All 0.88 | 12 N/A

37

The station batteries are usually located in dedicated compartments due to their personnel
safety hazard as well as the risk of hydrogen accumulation during charging. NUREG/CR-6850
(Electric Power Research Institute & U.S. Nuclear Regulatory Commission, 2005) describes the
peak heat release rate of station battery fires as gamma-distributed with « =2.0 and g =11.7.
Battery room dimensions are estimated to be generally square with a floor area on the order of
~50 m?,

Main control room fires can be particularly challenging for two reasons. First, they can
force operators to abandon the control room due to lost tenability. Visibility (smoke obscuration)
and heat flux are therefore important CFAST output parameters for main control room fire
modeling. It was noted in the validation that CFAST tends to significantly over-predict smoke
concentration and under-predict heat flux. Second, fire in the control room can damage control
and instrumentation for important plant equipment required for accident mitigation. The primary
ignition sources include electrical cabinets and transient fires, and their heat release rates are
characterized in the preceding paragraphs. Control rooms can vary greatly in size, depending on
whether they support one or two reactor units. They are estimated to be generally square ranging
from ~15-40 meters wide/long and ~5-8 meters tall. NUREG-1934 (McGrattan et al., 2012)
includes an example control room with dimensions 24.6 meters long, 16.2 meters wide, and 5.2
meters tall. The example scenario also has a mechanical ventilation system capable of 25 air
changes per hour with supply equally distributed over six vents and return over two vents.

The radwaste building and pipe chase fires identified for Arkansas Nuclear One are
excluded from further consideration due to lack of information. These locations are likely

significant due to a very plant-specific configuration. The radwaste building typically does not

38

contain many safety-related components or cables, and pipe chases usually do not contain many
ignition sources.

In summary, the range of input space characterized by examining the most risk-
significant fire scenarios at three U.S. nuclear power plants of differing design is provided in

Table 6.

Table 6. Summary of Input Space Defined by High Risk Fires at Three Sampled Plants

Parameter Range
Peak Fire Heat Release Rate | 0 - 1,000 kW
Compartment Length 15 - 40 meters
Compartment Width 5 - 40 meters
Compartment Height 5 - 8 meters
Ventilation Rate 0.6 - 1.4 m°/s

3.2.2 Validated Range of Fire Model Input Space

The NUREG-1824 (Hill et al., 2007) fire model validation was performed against a specific set

of full-scale fire tests, which are summarized in Table 7.

39

Table 7. Full-Scale Fire Tests used for Fire Model Verification and Validation

Fire Test Series

Description

Reference

Sandia National
Laboratory

Test series intended to simulate fire in the main
control room. Enclosure was a single room of
dimensions 18.3 x 12.2 x 6.1 meters with forced
mechanical ventilation. The fire source was
propylene gas-fired for the tests used by the
validation effort.

NUREG/CR-4681
(USNRC & Sandia
National Laboratories,
1987)
NUREG/CR-5384
(USNRC & Sandia
National Laboratories,

1989)
National Bureau of | Setup consisted of two relatively small rooms | NBSIR 88-3752
Standards connected by a corridor. Various configurations | (NIST, 1988)

of doors open and closed were tested. Fire source
was a gas burner located in one of the rooms,
with fire sizes of 100, 300, and 500 kW.

International
Collaborative Fire
Model Project
(ICFMP)
Benchmark
Exercise

One series used a relatively large 27 x 14 x 19
meter enclosure. Fire source in each test was a
heptane pool fire ranging from 2,000 to 4,000
kW.

Second series was in a 21.7 x 7.15 x 3.7 meter
room. The room was mechanically ventilated, and
ventilation conditions were varied between the
tests. Fire sizes included 350 kW, 1,000 kw, and
2,000 kW.

Third series involved a relatively large fire in a
relatively small concrete room.

Fourth series involved the same relatively small
concrete enclosure but also contained cable trays.

See NUREG-1824
(Hill et al., 2007) and
supporting references

NUREG-1934 (McGrattan et al., 2012) defines validated ranges of applicability using
non-dimensional parameters that characterize important aspects of the fire scenario, such as fire
size, compartment size and aspect ratio, ventilation conditions, and target location relative to fire

location. The non-dimensional parameters were calculated for each of the fire tests used in the

40

validation, and they provide one mechanism to assess whether a particular scenario of interest is

sufficiently similar to the tested configurations. The validated ranges are reproduced here in

Table 8, and the variable definitions are provided in NUREG-1934.

Table 8. Fire Model Validated Ranges per NUREG-1934 (McGrattan et al., 2012)

Non-Dimensional Definition Description Validated

Parameter Range
Froude Number o 0 Measure of the buoyant 0.4-2.4

= PoCy T D2 gD strength of the fire plume
Flame Length Hy + Lg Measure of the flame height 0.2-1.0
Ratio H, relative to the ceiling height
L .
Ef =3.70"*° - 1.02
Ceiling Jet Tej Characterizes the location of 1.2-1.7
Distance Ratio H.— H; interest within the ceiling jet
relative to the plume height
Equivalence Ratio 0 Measure of the fuel pyrolysis 0.04-0.6
Q= m rate relative to the oxygen
2 vz supply (ventilation) rate
Mo, = 0'23AZ—°JH_° (Natural)
1y, = 0.23pV (Forced)
Compartment L w Characterizes the extent to 0.6-5.7
Aspect Ratio H,° H, which the compartment
deviates from a cube

Radial Distance Trad Characterizes the target radial 2.2-5.7
Ratio D proximity to the fire relative

to the fire diameter, where
flame radiation is the damage
mechanism of concern.

3.2.3 Fire Scenario Definition for RAVEN Application

This section defines the fire scenario parameter space over which RAVEN will be exercised. The

input space surrounds fire occurring in a switchgear room of a nuclear power facility. The

41

switchgear room is selected because of its risk significance to currently operating plants, which

rely heavily on electric power for accident mitigation.

Table 9 summarizes the resulting fire scenario definition. Note that while the input space

is defined surrounding a switchgear room, the analysis can be considered generic: it is applicable

to any fire scenario that falls within the defined input space. For example, this analysis might be

applicable to a couch fire whose heat release rate profile and room dimensions are within the

defined input space. Or, the analysis might be applicable to an electrical cabinet fire originating

in a non-nuclear facility.

Table 9. Fire Scenario Input Space over which RAVEN will be Exercised

(Selected to Encompass Typical Switchgear Room Fire Scenarios)

Parameter | Description Definition Notes
Compartment Characteristics

L Compartment U(a=10, b=35) N/A
length (m)

W Compartment U(a=10, b=35) N/A
width (m)

H. Ceiling U(a=5, b=10) N/A
height (m)

14 Ventilation U(a=0.00047, b=0.00189) | Review of typical switchgear forced
rate (m*/s per ventilation rates per room volume
cubic meter identifies a range of 1-4 cfm/m® (or
of room 1.7-6.8 room changes per hour),
volume) which translates to 0.0047-0.00189

m*/s per cubic meter of room
volume. This parameter is scaled by
room volume because the total heat
load of the operating -electrical
equipment is estimated to roughly
scale by room volume.

42

Table 9 (Continued).

Parameter | Description Definition Notes

A, Ventilation 4x%x0.05=0.2 Small natural leakage area specified
opening area to represent leakage underneath
(m?) doors and other small leaks that may

H, Distance 0.0125 be present along the compartment
from floor to boundaries. This leakage area is
center of specified at floor level and divided
ventilation evenly to each of the four walls.
opening (m) Note that specifying at least some

leakage is important for numerical
stability of the CFAST calculation.

Too Ambient U(a=297, b=311) Estimated temperature range of 297
temperature K (75 °F) to 303 K (85 °F) for a
(K) switchgear room.

Poo Ambient air Poo(Teo) Air density is a function of sampled
densit ambient temperature. This value is
(kg/m?) calculated internally by CFAST.

Cp Ambient air cp(To) Air specific heat is a function of
specific heat sampled ambient temperature. This
(kJ/kg-K) value is calculated internally by

CFAST.

k., Thermal 1.75 CFAST default value for normal
conductivity weight concrete. Consistent with
of wall (SFPE & NFPA, 2002).
material
(W/m-K)

Pw Density of 2,200 CFAST default value for normal
wall material weight concrete. Consistent with
(kg/m®) (SFPE & NFPA, 2002).

Cw Specific heat 1.0 CFAST default value for normal
of wall weight concrete. Consistent with
material (SFPE & NFPA, 2002).

(kJ/kg-K)
tw Wall 0.15 Six inch thick wall

thickness (m)

43

Table 9 (Continued).

Parameter | Description Definition Notes
Fire Characteristics
Hs Height of fire | U(a = 0,b = 0.9) Height of fire above floor level
above floor x Compartment Height | ranging uniformly between 0% and
(m) 90% of ceiling height
Qp Peak fire heat | Uniformly distributed over | Encompasses range of electrical

release rate
(kw)

range depicted in Figure 5

cabinet fire heat release rate profiles,
including contribution from
secondary burning of overhead cable

trays.
D¢ Fire diameter 0 2/5 | Fire diameter estimated based on
(m) D = (—) mid-point of validated Froude
Q*PexCpToo/g number range (Q* = 1.0), using the
scenario peak heat release rate, and
with the nominal values:
Poo = 1.2 kg/m3
¢, =1.05k//(kg - K)
T = 304 K
g = 9.81m/s?
This diameter term is used to
calculate the fire surface area in
CFAST, which varies as a function
of time and heat release rate. Note
that 0.01 m? is used as a lower
bound, since CFAST does not allow
fire objects with no surface area,
even when their heat release rate is
temporarily zero (0) kW.
Constants
g Acceleration 9.81 N/A
of gravity
(m/s?)
AH,, Energy 13,100 Point estimate per (SFPE & NFPA,
generated per 2002)
oxygen
consumed
(kJ/kg)

44

Figure 5 depicts the range of postulated electrical cabinet fire heat release rate profiles,
including contribution from secondary burning of overhead cable trays. These profiles were
developed to be consistent with scenarios that might be found in typical switchgear room fire

probabilistic risk assessments.

Prescribed Heat Release Rate (CFAST Input)

N
(V)]
S
(e}

2000
1500
1000

500

Heat Release Rate (kW)

(=]

10 20 30 40 50 60
Time (min)

o

Figure 5. Range of Fire Heat Release Rate Profiles to be executed by RAVEN

Note that the heat release rate profile for a given fire scenario is not a fundamental
parameter; it instead is a function of the cabinet characteristics, the number and configuration of
overhead cable trays to which the fire may propagate, and the number of adjacent cabinets to
which the fire may propagate. Figure 6 depicts the postulated electrical cabinet fire scenario with

overhead cable trays and adjacent cabinets.

45

— Cable Trays

Electrical
Cabinets

Figure 6. Postulated Fire Scenario: Electrical Cabinet Fire

Propagating to Overhead Cable Trays and Adjacent Electrical Cabinets

Figure 7 is a CFAST rendering of the range of compartment sizes that will be exercised
by RAVEN. Per Table 9, compartment length will range between 10 and 35 meters,
compartment width will range between 10 and 35 meters, and compartment height will range
between 5 and 10 meters. The compartment dimensions will randomly vary within these ranges
for each sample used to train the metamodel. Other parameters, such as fire heat release rate, will

also be varied over their credible ranges in accordance with Table 9.

46

Figure 7. CFAST Rendering of Range of Compartment Shapes to be Evaluated by RAVEN

3.3 RAVEN-CFAST MODEL SETUP

The RAVEN analysis is defined and coordinated by a base XML file. This file defines the input
distributions, samples those distributions, calls a Python interface to execute CFAST for each
sample, and assembles the input/output results for each sample. The XML file also coordinates
post-processing functions such as summary statistics, visualizations, and ROM development.
The Python interface between RAVEN and CFAST generates a text-based CFAST input file

using the sampled parameters, and it returns a command line that runs CFAST with the generated

47

input file. Appendix A provides an annotated version of the XML and Python code comprising

the RAVEN-CFAST model

3.4 INPUT AND OUTPUT PARAMETERS OF INTEREST

The input (predictor) parameters of interest include all variable inputs whose values are sampled
during the RAVEN calculation. These include, for example, fire heat release rate and
compartment dimensions. Note that the heat release rate input parameter varies with time
throughout the simulation, and it is a function of several more fundamental parameters including
the cabinet type, number and configuration of overhead cable trays, and the number of
immediately adjacent cabinets.

The output (response) parameters of interest could include any calculated outputs of the
CFAST model, for example upper layer temperature, upper layer height, smoke density, or the
heat flux to particular target locations. Note that these parameters all vary with time. The
maximum upper layer temperature and the time at which the maximum upper layer temperature
is achieved are the primary output parameters of interest. Table 10 summarizes the input and

output parameters of interest for this analysis.

48

Table 10. Summary of Input and Output Parameters of Interest

Input (Predictor) Parameters

Output (Response) Parameter

Fire Heat Release Rate

(varies with time and is a
function of the overhead cable
tray configuration and number
of adjacent cabinets)

Compartment Length

Compartment Width

Compartment Height

Maximum Upper Layer
Temperature

Time at which Maximum Upper
Layer Temperature is Achieved

Ambient Temperature
Ventilation Rate
Height of Fire above Floor

3.5 FULL GRID SAMPLING OF THE INPUT SPACE

Table 11 summarizes an arbitrarily large full grid sampling plan to generate a population of data
against which the reduced order models available in RAVEN can be tested in the fire modeling
context. A full grid sampler is selected, as opposed to random samplers such as Monte Carlo and
Latin Hypercube, to ensure the entire input space including its boundaries is considered.

Note that a full grid is quite inefficient and not what this thesis ultimately recommends
for metamodel development, especially for applications where computational expense of
generating the data is high. In such cases a more intelligent sampling, such as adaptive, would be
recommended. In addition, it is later discussed that sufficient metamodel accuracy was achieved

with 50,000 - 100,000 samples, as opposed to 675,000 samples generated by the full grid. The

49

full grid was simply used as an initial step to generate a large population of data to support

experimenting with the various reduced order model types available in RAVEN.

Table 11. Full Grid Sampling Plan to Create Population of Data against which to Test RAVEN ROM Capabilities

Parameter Range Discretization
Length 10-35 meters 10 points, 9 breakpoints, increments of 2.5 meters
Width 10-35 meters 10 points, 9 breakpoints, increments of 2.5 meters
Height 5-10 meters 5 points, 4 breakpoints, increments of 1 meter
Fire Heat Release | 30 unique profiles | 30 points, 29 breakpoints, all heat release rate
Rate Profile profiles used
Ambient 297-311 Kelvin | 3 points, 2 breakpoints, increments of 4.7 Kelvin
Temperature
Fire Height 0-90% of room | 5 points, 4 breakpoints, increments of 0.18 meters
height
Ventilation Rate per | 0.00047-0.00189 | 3 points, 2 breakpoints, increments of 0.000473
Room Volume (m*/s perm®of | m*s per m* of room volume
room volume)

The sample plan was divided into 15 batches of 45,000 CFAST runs such that the results
could be monitored and any problems identified as the calculation progressed. The heat release
rate parameter was selected to facilitate this sample plan subdivision. A total of 30 unique heat
release rate profiles were included in the full sample plan. Each batch therefore evaluated two
heat release rate profiles and the full grid of all other parameters. Note that in the first batch,
three profiles were attempted, but two were ultimately selected for each due to computational

(disk space and run time) limitations.

50

Table 12. Subdivision of Full Grid into Batches using the Heat Release Rate Parameter

Run Covered RAVEN Syntax for HRR Grid Definition

Batch | HRR Indices
1 1,2,3 <grid construction="equal" steps="2" type="CDF">0.000 0.067</grid>
2 4,5 <grid construction="equal" steps="1" type="CDF">0.101 0.165</grid>
3 6, 7 <grid construction="equal" steps="1" type="CDF">0.170 0.230</grid>
4 8,9 <grid construction="equal" steps="1" type="CDF">0.25 0.29</grid>
5 10, 11 <grid construction="equal" steps="1" type="CDF">0.32 0.35</grid>
6 12,13 <grid construction="equal" steps="1" type="CDF">0.38 0.42</grid>
7 14,15 <grid construction="equal" steps="1" type="CDF">0.45 0.48</grid>
8 16, 17 <grid construction="equal" steps="1" type="CDF">0.52 0.55</grid>
9 18, 19 <grid construction="equal" steps="1" type="CDF">0.58 0.62</grid>
10 20, 21 <grid construction="equal" steps="1" type="CDF">0.65 0.68</grid>
11 22,23 <grid construction="equal" steps="1" type="CDF">0.72 0.75</grid>
12 24, 25 <grid construction="equal" steps="1" type="CDF">0.78 0.82</grid>
13 26, 27 <grid construction="equal" steps="1" type="CDF">0.85 0.88</grid>
14 28, 29 <grid construction="equal" steps="1" type="CDF">0.92 0.95</grid>
15 30 <grid construction="equal" steps="1" type="CDF">0.98 0.99</grid>

The RAVEN analysis was run on a Hewlett Packard Z640 engineering workstation with

the following specifications:

= Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz 2.20 GHz (2 processors)

= 64 GB Memory

= 64-bit Windows 7 Enterprise operating system

The full grid sampling generated 675,000 unique CFAST runs across the input space.

These runs were divided into 15 batches, which in total took approximately 15 days of computer

run time (using two processors) and generated nine (9) terabytes of CFAST input/output files.

RAVEN consolidated the data of interest into 15 HDF5 databases totaling 30 gigabytes. Each

batch of 45,000 runs reliably took 24 hours (using two processors) of computation time. The

51

input/output files generated, including the results data consolidation into HDF5 databases, were

consistent in terms of disk space consumption (usually to the kilobyte).

Figure 8 illustrates full grid sampled fire scenario input space, consistent with the sample design

in Table 11.

s x10* x10*

8
6 6
4 4
2 2
0 0
0 15 20 25 30 35 10 15 20 25 30 3

S

Count
Count

Room Length (m) Room Width (m)

s s
2SXIO 2SXIO

2 2
215 15
H
(S 1
05 05
0 0
1 15 2

300 305 310 315 0 0.5
Ambient Temperature (K) Vent Rate per Room Vol (m*/s-m?) x 107

x10*
6
£
54
]
2
0

0 5 10 15 20 25 30
Heat Release Rate Index

Count

Figure 8. Grid Sampled Fire Scenario Input Space

Count

Count

4
15 x 10

5 6 7 8 9 10
Room Height (m)

0 0.2 0.4 0.6 0.8 1
Fire Height (Fraction)

Note that the heat release rate indices each refer to a unique heat release rate profile that

varies with time (see Figure 5 for the heat release rate profiles). Each of these profiles is a

function of the number of cabinets adjacent to the originating cabinet, as well as the number and

configuration of overhead cable trays, to which fire can propagate. Figure 9 provides histograms

of these factors that influence the heat release rate profiles.

52

Count

6x|05

4L

2

. N

120 140 160 180 200
Cabinet Peak Heat Release Rate

s
4><I()

220

3

Count

2

1
0
0 0.5 1 1.5
Num Tray Elev 3

o

-0.5 0 0.5 1 1.5 2
Num Tray Elev 6

25

3

Count

0 0.5 1 1.5
Num Adjacent Cabinets

0.5

1
Num Tray Elev 2

1.5

Num Tray Elev 5

Figure 9. Histograms of the Factors upon which the Heat Release Rate Profiles are Based

Figure 9 illustrates that while the heat release rate profiles were uniformly sampled, the
physical and geometric factors that comprise the heat release rate profiles are not uniformly
distributed. The heat release rate profiles were selected to be representative of actual plant

configurations, and the non-uniformity of the underlying physical and geometric factors is

reflective of typical plant design and layout.

The benefit of including these parameters is that they are scalar, whereas the heat release

rate profiles are time series. A reduced order model based on scalar quantities is easier to

implement than one relying upon time series.

This also highlights a benefit of machine learning in that it can emulate relationships

quantified across multiple individual models. Figure 10 illustrates that this application of

53

machine learning involves emulating two fire modes: 1) a spreadsheet-based model that
estimates a heat release rate profile given an electrical cabinet fire, with overhead cable trays and
adjacent cabinets to which the fire can propagate, and 2) a CFAST fire model that estimates

upper layer temperature based on the heat release rate profile and compartment characteristics.

1L] [

Predictor Variables:

Overhead Cable Trays
Adjacent Cabinets

Fire Height

Compartment Dimensions
Ventilation Rate
Ambient Temperature

1C] [

— Cable Travs

Model: Translation of Cabinet and
Tray Configuration to Heat Release
Rate Profile

2500 Prescribed Heat Release Rate (CFAST Input)
15 T T T T T

2000 e,
1500
1000

=
=
=

Heat Release Rate (kW)

=)

—

=

("N

=
-

=

-

=

50 60

Model: CFAST Estimation of Upper
Layer Temperature given Heat Release
Rate Profile and Cabinet Characteristics

T Response Variables:

* Max. UpperLayer
Temperature

* Time to Max. Upper
Layer Temperature

Figure 10. lllustration of the Two Models over which Machine Learning is Exercised

54

3.6 SIMULATION RESULTS

The following figures summarize various aspects of the CFAST simulation results. These figures
were generated using 500 random samples (representing 500 unique CFAST runs) of the 675,000
case population generated in Section 3.5.

Figure 11 compares the prescribed (CFAST input) against the realized (CFAST output)
heat release rate profiles. Discrepancies between the prescribed and realized profiles represent
sampled configurations where the room volume and ventilation conditions provide insufficient
oxygen to support the full heat release rate. In these cases, the heat release rate typically grows,
reaches its peak value, and burns at a steady state until oxygen required to support combustion is
consumed or the upper layer descends below the fire elevation, at which point the heat release
rate drops below its prescribed profile. The fire does not fully extinguish, since the ventilation

provided by leakage (for example under the doors) is sufficient to support some level of burning.

55

g 5500 Prescribed Heat Release Rate (CFAST Input)

é T T T T T

o 2000 -

~

<

& 1500 -

P]

s

S 1000 1

S

& 500]

)

o] =

Q 0 ——

=0 10 20 30 40 50 60
Time (min)

< Realized Heat Release Rate (CFAST Output)

2 2500 , : . : .

<

o 2000 -

N

<

& 1500 | -

% ‘TZTZ,LA T:‘;

& 500 LI HEESSR 4

N = < ——— =

: e

e 0 10 20 30 40 50 60
Time (min)

Figure 11. Prescribed versus Realized Heat Release Rates

Figure 12 and Figure 13 depict the upper and lower layer, respectively, temperature
profiles calculated by CFAST for each RAVEN-generated sample of the input space. The
maximum upper layer temperature achieved in this 500 run simulation is about 200 °C, and the
maximum lower layer temperature is about 100 °C. Both the upper and lower layers follow
similar temperature profiles, characterized by an initial growth period (generally about 20
minutes consistent with the heat release rate profiles), followed by steady state burning, and
generally a gradual decay back toward ambient temperature. Sometimes the temperature decay is
abrupt, and this is due to either oxygen consumption or the upper layer enveloping the flame

such that its full heat release rate is no longer supported.

56

400 Upper Layer Temperature vs. Time (500 Runs)

350

(%)
[l
(e}
T
1

[\
W
(e}
T
]

[\
(=l
S

—
W
(e}

—_
(=3
S

Upper Layer Temperature (C)

50

Time (min)

Figure 12. Upper Layer Temperature Profiles Calculated by CFAST

57

400 Lower Layer Temperature vs. Time (500 Runs)

350

T
|

W
=l
=
T
1

N
A
(=]
T
I

—_
W
o
T
1

Lower Layer Temperature (C)
> S
S S

Figure 13. Lower Layer Temperature Profiles Calculated by CFAST

Figure 14 shows the calculated upper layer heights as a function of time. All upper layer heights
initially start at the ceiling, and the variation in starting heights shown in the figure is due to
variation in sampled compartment heights. The upper layer height then descends for the first
approximately 20 minutes of burning, consistent with when the prescribed heat release rate
profiles reach their peaks. At that point the upper layer height tends to stabilize through the

remainder of the simulation.

58

Upper Layer Height (m)

Time (min)

Figure 14. Upper Layer Height Profiles Calculated by CFAST

Figure 15 illustrates the compartment pressure profiles for 500 randomly sampled
CFAST runs. During the fire growth period, generally from zero (0) to 20 minutes, compartment
pressure increases as the fire deposits energy into the compartment. Compartment pressure
becomes negative as the fire decays and room temperature decreases. The abrupt negative

pressure spikes occur when the fire nearly extinguishes due to oxygen consumption or the upper

layer descending below the fire elevation.

59

5o Compartment Pressure vs. Time (500 Runs)

100

50

-50

-100

-150 | .

Compartment Pressure (Pa)

-200 | .

_250 1 1 | | |
0 10 20 30 40 50 60

Time (min)

Figure 15. Compartment Pressure Profiles Calculated by CFAST

Figure 16 illustrates the calculated optical density profiles. Optical density is a measure
of light obscuration due to smoke. The figure shows that optical density tends to increase along
with the heat release rate profile until a peak is reached, generally at about 20 minutes, at which

point it stabilizes through the remainder of the simulation.

60

[
(e}

Optical Density vs. Time (500 Runs)

N
V)
T
1

N
S
T
1

W
(9]

(O8]
S

—_ [N}
W =)

Upper Layer Optical Denisty (1/m)
— [\S]
(e} ()

Time (min)

Figure 16. Upper Layer Optical Density Profiles Calculated by CFAST

Figure 17 shows the flame height profile for each of the 500 sampled cases. Consistent
with other calculated parameters, flame height closely follows the heat release rate profile. Flame

height is proportional, although non-linearly, to fire heat release rate.

61

Flame Height vs. Time (500 Runs)

T

[}

05—

N>

[
T
e
1

I

:I:
é’"‘

—_—
(9}
T

1

Flame Height (m)
[\

0 10 20 30 40 50 60
Time (min)

Figure 17. Flame Height Profiles Calculated by CFAST

Figure 18 provides histograms of the two primary response variables: maximum upper
layer temperature and time to maximum upper layer temperature. These histograms include all
675,000 samples from the population generated in Section 3.5. It is curious that the time to
maximum upper layer temperature does not follow the same distribution shape as the maximum
upper layer temperature itself. The time to maximum upper layer temperature histogram also
includes some apparent discontinuities. This timing is strongly related to the heat release rate
timing, and because the selected 30 unique heat release rate profiles are not uniformly distributed
(they represent actual plant design and layout), it is reasonable that the time to reach maximum

upper layer temperature histogram has some texture. The histogram for maximum upper layer

62

temperature is “smoother” because there is less variation in the HRR profile maximum values
compared to the HRR profile timing.

5
3 X 10 T T T T T
- 2r B
=
=
=)
S i
O = |
0 50 100 150 200 250 300
Max Upper Layer Temperature (C)
x 10°
2 T T T T T T

Count

10 15

20 25 30 35 40 45
Time (min) to Max Upper Layer Temperature

Figure 18. Response Variable Histograms

3.7 DATA PREPARATION FOR METAMODELING

3.7.1 Consolidating the Data

The full grid sampling described in Section 3.5 executed 675,000 runs of the CFAST fire model,

with each run modeling a unique sample of the uncertain input space. The input and output data

63

for all 675,000 runs were consolidated into a single comma separated variable (.csv) file, where

each row represents one run, and the columns represent corresponding predictor and response

variable values. Table 13 describes each column in the consolidated .csv. Refer to Section 3.5 for

parameter ranges and histograms of predictor and response variables.

Table 13. Description of each Column in the Consolidated .csv File used for Metamodel Training and Testing

Column Name

Predictor or
Response?

Description

hrr

predictor

Value sampled from uniform distribution ranging between
0.5 and 30.5.

hrrindex

predictor

‘hrr’ sampled value rounded to nearest integer, resulting in a
range of 1 to 30. Each ‘hrrindex’ represents a unique heat
release rate profile.

hrrPDF

predictor

‘hrrPDF’ takes on one of three values: 130, 170, and 211.
Each value represents the peak heat release rate to which the
originating cabinet fire grows.

hrrAdj

predictor

‘hrrAdj’ takes one of three values: 0, 1, 2. Each value
represents the number of adjacent cabinets

hrrTrayl

predictor

‘hrrTray1’ includes the following range of values: 0, 1, 2, 3.
It represents the number of cable trays at the first elevation in
the overhead tray matrix (see Figure 6).

hrrTray2

predictor

‘hrrTray2’ includes the following range of values: 0, 1, 2. It
represents the number of cable trays at the second elevation
in the overhead tray matrix (see Figure 6).

hrrTray3

predictor

‘hrrTray3’ includes the following range of values: 0, 1, 2. It
represents the number of cable trays at the third elevation in
the overhead tray matrix (see Figure 6).

hrrTray4

predictor

‘hrrTray4’ includes the following range of values: 0, 1, 2, 3,
4. It represents the number of cable trays at the fourth
elevation in the overhead tray matrix (see Figure 6).

hrrTrayb

predictor

‘hrr'Tray5’ includes the following range of values: 0, 1, 2. It
represents the number of cable trays at the fifth elevation in
the overhead tray matrix (see Figure 6).

hrrTray6

predictor

‘hrrTray6’ includes the following range of values: 0, 1, 2, 3.
It represents the number of cable trays at the sixth elevation
in the overhead tray matrix (see Figure 6).

length

predictor

Compartment length taking one of ten evenly distributed
values between 10 and 35 meters.

64

Table 13 (Continued).

Column Name | Predictor or Description
Response?

width predictor Compartment width taking one of ten evenly distributed
values between 10 and 35 meters.

height predictor Compartment width taking one of five evenly distributed
values between 5 and 10 meters.

floorArea predictor Compartment floor area calculated as product of length and
width.

fireHeightFract predictor Fraction of compartment height at which the fire is located,
taking one of five evenly distributed values between 0.0 and
0.9.

fireHeight predictor Elevation of the base of the fire, calculated as the
‘fireHeightFract” multiplied by compartment ‘height’.

ventPerVol predictor Compartment ventilation rate per room volume (m>/s per m>
of room volume) taking one of three values: 0.000473,
0.00118, 0.00189. The ventilation rate used by CFAST is
calculated as the product of the ‘ventPerVol’, compartment
‘length’, compartment ‘width’, and compartment ‘height’
terms.

tempAmb predictor Compartment ambient temperature (Kelvin) at the beginning
of the simulation, taking on one of three values: 297, 304,
311.

maxULT response CFAST-estimated maximum upper layer temperature
(Celsius).

timeToMaxULT response CFAST-estimated time to achieve maximum upper layer

temperature (Celsius).

3.7.2 Feature Selection

Several predictor variables are eliminated from the metamodeling exercise because they have

significant overlap with other, more fundamental parameters. The primary benefit of eliminating

redundant parameters is improved efficiency in the training, testing, and ultimately application of

the resulting metamodel.

65

‘hrr’ and ‘hrrIndex’ are index parameters that identify which of the 30 unique heat release
rate profiles to include in a given CFAST run. The top panel in Figure 11 depicts each heat
release rate profile available for the simulation. However, each profile is actually the result of a
spreadsheet-based model that combines the heat release rates of the originating cabinet,
propagation to any immediately adjacent cabinets, and propagation through the overhead cable
tray configuration. This is the step depicted between the first and second panels in Figure 10. The
‘hrr’ and ‘hrrindex’ are therefore eliminated as they are redundant with the following more
fundamental predictor variables: ‘hrrPDF’, ‘hrrAdj’, ‘hrrTrayl’, ‘hrrTray2’, ‘hrrTray3’,
‘hrrTray4’, ‘hrrTray5’, and ‘hrr'Tray6’.

‘floorArea’ is calculated as the product of compartment ‘length’ and ‘width’. The ‘floor
area’ parameter is not used directly by the RAVEN-CFAST simulation. However, because
CFAST models the upper layer as homogeneous, the estimated upper layer temperature is a
function of the floor area and is independent of the compartment aspect ratio. The ‘length’ and
‘width’ parameters are therefore eliminated, and the ‘floorArea’ parameter is retained.

‘fireHeightFract’ is a random variable taking values between 0.0 and 0.9, and it
represents the fraction of compartment height at which the fire is located. The ‘fireHeight’
parameter is the product of ‘fireHeightFract’ and the compartment ‘height’. Note that
‘fireHeightFract’ was included in the RAVEN model only as a sampling convenience, as an
intermediate variable to generate sampled fire heights. In this exercise the ‘fireHeightFract’
parameter is eliminated, and ‘fireHeight’ is retained as it may be a more intuitive parameter for
future applications of metamodels resulting from this work.

Figure 19 depicts the correlation between all selected predictor and response variables.

Note that the two response variables are ‘maxULT’ and ‘timeToMaxULT’, and the remainder of

66

the plotted parameters are predictor variables that have been retained for the metamodeling

analysis.

—
|
)
H e o E
= @ -
O, ® QHLOYT =T AUETY
SEQITEDIBEE —FFL
Lo g4 E-EE 2 g E
o EotEE @tk EEE @
—C CoCcCc EcEccscc® =
fireHeight @ 1
height | = @ 0.8
hrrPDF o o
0.6
floorArea 9
hrrAdj & ® 0.4
hrrTray6 @
0.2
maxULT T
hriTray5 *9ee 0
hriTray3 *000 ® 00
hrrTray4 o000 A
timeToMaxULT 'Y 0.4
hrrTray1 9
0.6
hrrTray?2) @
tempAmb ® 0.8
ventPerVol 1

Figure 19. Correlation Plot between all Predictor and Response Variables

There is strong negative correlation between the ‘hrrAdj’ and ‘hrrPDF’ parameters. The
‘hrrAdj’ parameter represents the number of cabinets immediately adjacent to the originating
cabinet, taking discrete values of zero (0), one (1), and two (2). The ‘hrrPDF’ parameter
represents the peak fire heat release rate that the originating cabinet achieves, taking discrete
values of 130, 170, and 211 kW. Both factors are functions of cabinet type and design. Their
negative correlation simply indicates that larger cabinets tend to be located in isolation, whereas
smaller cabinets tend to be grouped together. This strong correlation suggests one of the two

parameters could be removed from the model without losing predictive accuracy; however, both

67

are retained because this correlation could be unique to the particular plant to which the models
are trained, and it is possible that the correlation may not be as strong for other plant designs or
vintages. Retaining both parameters therefore broadens applicability of the resulting model.

There is moderate negative correlation between ‘floorArea’ and the response parameter
‘maxULT’. The ‘floorArea’ is directly proportional to the upper layer volume available to
dissipate fire-generated heat. Fixing all other parameter values, larger values of ‘floorArea’ lead
to larger upper layer volumes, and lower average upper layer temperatures. The ‘floorArea’ term
is not perfectly correlated because upper layer volume is also affected by sampled compartment
‘height’.

There is moderate negative correlation between ‘fireHeight” and the response parameter
‘timeToMaxULT’. The CFAST model suppresses the fire heat release rate if the upper layer
descends to and encompasses the fire. Since the upper layer is composed largely of products of
combustion, its reduced oxygen concentration may not support the prescribed fire heat release
rate. The negative correlation indicates that fires located higher within the compartment are often
affected by upper layer descent, resulting in suppression of the heat release rate, at which point
the upper layer has likely reached its maximum temperature for the scenario (unless the layer
ascends, for example if a door were to be opened, which is not postulated in this analysis).
Because the time scale of upper layer descent is shorter than that of the heat release rate profile,
the time to maximum upper layer temperature tends to be shorter for cases where the upper layer
envelops the fire.

There are moderate positive correlations between parameters characterizing the overhead
cable tray configuration (‘hrrTrayl’, ‘hrrTray2’, ‘hrrTray3’, ‘hrrTray4’, ‘hrrTray5’, and
‘hrrTray6’). These parameters represent the number of cable trays at each elevation above the

68

ignition source (see Figure 6). Their correlation is sensible and relates to how cable trays tend to
be designed and routed in symmetric stacks.

Finally, there is moderate positive correlation between the overhead cable tray
configuration and the response parameters ‘maxULT’ and ‘timeToMaxULT’. This correlation is
sensible and indicates that larger numbers of overhead cable trays available for fire propagation
lead to larger upper layer temperatures, and also to longer times to reach maximum temperature

because the fire growth profile is extended by the fire propagation.

3.7.3 Centering and Scaling

The input parameter histograms in Figure 8 and Figure 9 illustrate a range of magnitudes
between parameters. For example, the number of cable tray parameters take integer values
between 0 and 3, the room dimensions range between 10 and 35, and the ventilation rates range
between 0.00047 and 0.001809.

Many metamodels are sensitive to scale variance between predictors, and RAVEN
therefore first centers and scales all predictor and response parameters to a mean zero and unit

standard deviation prior to metamodel training, using the following formula:

69

Where,
x; cs 1S the centered and scaled i™ value of the parameter x
x; is the i raw value of the parameter x
x is the parameter x sample mean

sy IS the parameter standard deviation

Figure 20 is an example comparison using the ‘length’ parameter between the raw and

centered/scaled values.

% 10" % 10°

Count
Count

(3]

10 15 20 25 30 35 -2 -1 0 1
Room Length (m) Room Length (Centered & Scaled)

[

Figure 20. Example Comparison of Raw Parameter Values to their Centered and Scaled Values

When the trained model is used for predicting, RAVEN centers and scales the input data
as required, runs the metamodel, and transforms the prediction back to the original center and
scale. The metamodel prediction is therefore in the correct units (degrees Celsius and minutes) in

this application.

70

3.7.4 Initial Training and Testing: Linear Models

Twenty five (25) reduced order models are tested. The initial metamodel training data consist of
50,000 random samples drawn from the 675,000 sample population. One thousand (1,000)
random samples, independent from the training data, are reserved for testing the trained
metamodels. It was not computationally feasible to use the entire population of data due to the
computer run time required for training and testing 25 reduced order models.

The linear models tested were generally unable to predict maximum ULT, or time to
maximum ULT, with reasonable accuracy. Figure 21 through Figure 25 plot for each of the two
response parameters the “observed” (CFAST calculated) versus predicted values using the

trained metamodels.

71

Predicted

Predicted

Predicted

Predicted

Elastic Net
350 ‘ . . ‘

300
250
200

150

o

100

50

0

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

Elastic Net (CV)
350 ‘ . : :

300
250
200
150
100

50

0
0 50 100 150 200 250 300 350

CFAST Max. Upper Layer Temp. (°C)

50 Multi-Task Elastic Net

300
250
200

150

& o

100
50

0

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

Lasso
350 . :

300

250

200

150

100

50

0

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

Elastic Net

Predicted
[5*] [7%) £ wn (=N}
[=] = =2 (=] =
it 1)

=4

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Elastic Net (CV)

Predicted
[5*] {53 e
[=] =] (=]

QD

=

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

w0 Multi-Task Elastic Net

50
40

30 g

20

Predicted

10

0
0 10 20 30 40 50 60

CFAST Time (min.) to Max. Upper Layer Temp.

Lasso
60 :

50

40

30

Predicted

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Figure 21. Initial Fitting of Linear Metamodels (1-4)

72

Predicted

Predicted

Predicted

Predicted
o

50 ‘ La;so (CV) .

300

250

200

150

3 o

100

50

0

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

Multi-Task Lasso
350 : : : ;

300

250

200

150

100

50

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

Lasso fit with LAR
350 : . X ‘

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350

CFAST Max. Upper Layer Temp. (°C)

150 Lasso fit with LAR (CV)

300

250

200

150

100

50

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

" Lassq (CV)

50
40 ¢
30 g

201

Predicted

10

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

" Multi-Task Lasso

50

40 ¢

30

(T

Predicted

201

10 |

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

" Lasso fit with LAR

50

40 -

30

Predicted

20 ¢

10

0
0 10 20 30 40 50 60

CFAST Time (min.) to Max. Upper Layer Temp.
Lasso fit with LAR (CV)

50
40 ¢
30+ @

20+

Predicted

10|

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Figure 22. Initial Fitting of Linear Metamodels (5-8)

73

Predicted

Predicted

Predicted

Predicted

35%,:1ss0 fit with LAR using BIC / AIC

300
250

100
50

350
300
250
200

15

5

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

200

150

0

0 50

100
CFAST Max. Upper Layer Temp. (°C)

150 200 250 300

Least Angle

0
100

0

0 50 100
CFAST Max. Upper Layer Temp. (°C)

Least Angle (CV)

0 50

100
CFAST Max.

150 200 250 300 330
Upper Layer Temp. (°C)

MSR

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

350

150 200 250 300 350

6ldlasso fit with LAR using BIC / AIC

50

40 ¢

D

30

Predicted

201

10

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Least Angle
60 : ‘ ‘

50
40 ¢
30 g

201

Predicted

10 |

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

" Least Angle (CV)

50
= 40}
< d
=1
=30+
5
Il
& gl

10 -

0
0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.
MSR

60 T T

50 -

40 © :
T o
L5
3 &£
= 30+ 8
@
ey
Bt

10} ol

.0
0 L Q. L L L
0 10 20 30 40 50 60

CFAST Time (min.) to Max. Upper Layer Temp.

Figure 23. Initial Fitting of Linear Metamodels (9-12)

Predicted

Predicted

Predicted

Predicted

50 Ordinary Linear Regression

300
250
200
150
100

50

0 -
0 50 100 150 200 250 300 350

CFAST Max. Upper Layer Temp. (°C)

Orthogonal Matching Pursuit

300
250
200
150
100

50

0
0 50 100 150 200 250 300 350

CFAST Max. Upper Layer Temp. (°C)

350Orthogonal Matching Pursuit (CV)

300

250

200

150

100

50

0

0 50 100 150 200 250 300 330
CFAST Max. Upper Layer Temp. (°C)

Passive Aggressive Regression

300

250

200

150

100

50

0

0 ‘- 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

Ordinary Linear Regression

50
40 ¢
30 g

20 ¢

Predicted

10|

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Orthogonal Matching Pursuit

50
40 1

30 oo

Predicted

20 ¢

10 |

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

60Orthogonal Matching Pursuit (CV)

50
40 ¢

30+ g

20

Predicted

10|

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Passive Aggressive Regression

50
40 +

30+ 8 gg

20

Predicted

10 -

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

Figure 24. Initial Fitting of Linear Metamodels (13-16)

75

Predicted

Predicted

Predicted

Predicted

350

300

250

200

150

100

50

0

0 50

100
CFAST Max. Upper Layer Temp. (°C)

150 200 250 300 350

50 _Ridge (CV)

300

250

200

150

100

50

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

50 Baye;ian Ridgg
300
250
200
150
100

50

0

0 50

100
CFAST Max. Upper Layer Temp. (°C)

150 200 250 300 350

SGD Regression
350 — —

300

250

200

150

100

50

0 50 100 150 200 250 300 350
CFAST Max. Upper Layer Temp. (°C)

60 Ridge

50

40 ¢

D

30

Predicted

201

10

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

60 Ridge (CV)

50
40 ¢
30 g

201

Predicted

10 |

0

0 10 20 30 40 50 60
CFAST Time (min.) to Max. Upper Layer Temp.

" Bayesian Ridge

50|
= 40 F
z g
=1
=30t
5
Il
& ol

i

0

0 10 20 30 40 50 60

CFAST Time (min.) to Max. Upper Layer Temp.

" SGD Regression

50|
= 40t
< g
o
530t
@
ey
Boagt

10t

0 ‘ ‘ ‘ ‘ ‘

0 100 20 30 40 50 60

CFAST Time (min.) to Max. Upper Layer Temp.

Figure 25. Initial Fitting of Linear Metamodels (17-20)

76

The poor fit of linear models is fundamentally because the physics of fire growth and
compartment energy balance are non-linear.

Fire growth follows an exponential profile from ignition until reaching peak heat release
rate, as illustrated in Figure 5. This exponential profile has been found to be so reliably
representative that it is commonly prescribed for fire protection design applications.

In addition, the conservation of energy equations solved by CFAST are highly non-linear.
To illustrate this non-linearity, the following equation is a simplified form of the conservation of
energy equation for compartment fires used commonly by the fire protection industry for quick

estimations (Karlssson & Quintiere, 1999):

Q-2 1/3
ATy, = 6.85 <A—o \/H_OhkAT)
Where,

ATheL = Hot gas layer temperature rise (°C)
Q = Fire heat release rate (kW)
Ao = Total ventilation opening area (m?)
Ho = Average height of ventilation opening (m)
hk = Convective heat transfer coefficient (kW/m?-K)
Ar = Total internal surface area of compartment boundaries excluding

ventilation openings (m?)

77

As previously discussed, the fire heat release rate profile itself is non-linear, and it enters
into the energy balance with a 2/3 power. The temperature rise scales inversely with the total
internal surface area of the compartment, which is a non-linear function of the compartment
dimensions. Finally, the temperature rise also scales non-linearly with opening area and its
location height. Numerical solution to the energy balance differential equations, which is what
CFAST performs, is similarly non-linear.

In conclusion, the linear-based reduced order models available within RAVEN are

excluded from further consideration for this application.

3.7.5 Initial Training and Testing: Tree-Based Models

The tree-based regression methods (decision tree and extra tree) showed good fits for both
response variables during their initial testing. Extra tree differs from decision tree in that, when
determining how to split the samples of a given node into two groups, extra tree selects the best
of several randomly drawn possibilities. However, as shown in Figure 26, the additional
complexity of the extra tree model does not significantly improve its accuracy, at least in the
CFAST fire modeling context.

The conventional decision tree is selected for additional analysis, and the extra tree is
eliminated from further consideration. Note that these initial tree-based models are likely highly
over-fit due to not specifying a maximum depth or group size. These factors will be explored in

subsequent model tuning.

78

Decision Tree

Decision Tree

350 60
300 50
250
£ 200 £
L= 3 30
£ 150 2
A~ & 9
100
50 10
0 : : : : . . 0 : : : : :
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60
CFAST Max. Upper Layer Temp. (°C) CFAST Time (min.) to Max. Upper Layer Temp.
Extra Tree Extra Tree
350 ‘ : : : 60 . . .
300 50
5
= 230 = 40
£ 200 £
L= = 30
2 150 2
A~ A 20
100
50 10
0 0
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60

CFAST Max. Upper Layer Temp. (°C) CFAST Time (min.) to Max. Upper Layer Temp.

Figure 26. Initial Fitting of Tree-Based Metamodels

3.7.6 Initial Training and Testing: Neighbor-Based Models

Figure 27 shows that the neighbor-based models (k-nearest neighbor and radius-based neighbor)
are able to resolve more of the response than the linear models, but there is still some scatter.

These models appear to hold some promise, and k-nearest neighbor is retained for further

consideration.

79

K-Nearest Neighbor K-Nearest Neighbor
350 ; : ‘ ‘ - - 60 - : : : :
300 50
250
= ~ 40
.{1_’ 200 50 i';_j
= o] 8 = 30
£ 150 2 o
& & 90
100
50 10
0 : : : : : : 0 : : : : :
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60

CFAST Max. Upper Layer Temp. (°C) CFAST Time (min.) to Max. Upper Layer Temp.
Radius-Based Neighbor Radius-Based Neighbor

60
300 50
250
= = 40
£ 200 o £ o
= o = 30
3 150 & 2
A~ A 20
100
50 10
0 0
0 50 100 150 200 250 300 350 0 10 20 30 40 50 &

CFAST Max. Upper Layer Temp. (°C) CFAST Time (min.) to Max. Upper Layer Temp.

Figure 27. Initial Fitting of Neighbor-Based Metamodels

3.7.7 Initial Training and Testing: Support Vector Machine

Similar to the neighbor-based models, Figure 28 shows that support vector machine is able to
resolve more of the response than the linear models. The fit for time to maximum upper layer
temperature appears slightly better than the fit for maximum upper layer temperature. Support

vector machine is retained for further study.

80

50 Support Vector Machine Support Vector Machine

=
=1

wn
=1

R W

=
<

e
S

Predicted
Predicted
3

[}
=1

W
=
<

0 0
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60
CFAST Max. Upper Layer Temp. (°C) CFAST Time (min.) to Max. Upper Layer Temp.

Figure 28. Support Vector Regression Metamodels

3.7.8 Initial Training and Testing: Summary

In summary, the following metamodel types are retained for further exploration:

= Decision Tree
= K-Nearest Neighbor

= Support Vector Machine

These metamodel types appear to have the most potential of those tested to efficiently

mimic CFAST estimations of maximum upper layer temperature, as well as time to maximum

upper layer temperature.

3.8 METAMODEL SELECTION AND TUNING

The reduced order model tuning and optimization features of RAVEN were under development
at the time of this thesis. After using RAVEN for the data generation and initial screening of

81

various reduced order model types, the selected models were tuned and validated with the R
software (R Core Team, 2016). Using an alternate platform for the final model tuning provides
some measure of validation and comparison against RAVEN and its underlying Python-based
algorithms.

The full dataset consists of 675,000 CFAST runs, with 80% (540,000 runs) used for final
model training, and 20% (135,000 runs) reserved for testing. The training and testing runs were

selected randomly.

3.8.1 Decision Tree Regressor

The caret (Kuhn, 2017) and partykit (Hothorn & Zeileis, 2015) packages of the R software
were used for final tuning of the decision tree reduced order model. The rpart.control
function enables control of several tuning parameters, of which the following are exercised for
this application:
* minsplit: minimum number of observations at a node for the algorithm to
attempt splitting.
* minbucket: minimum number of observations at any terminal (leaf) node.
» maxdepth: maximum depth of any node in the final tree. Note maximum value
is 30 for the rpart.control function.
= cp: complexity parameter. The algorithm stops when the next step would not
improve fit by a factor of the complexity parameter.
To first attempt a rather deep, and potentially over-fit tree, these parameters were set to
minsplit=1, minbucket=1, maxdepth=30, and cp=0.001), yielding the following output:

82

Regression tree:
rpart(formula = maxULT ~ ., data = trainMaxTempData, method = "anova",
control = treeControl)

variables actually used in tree construction:
[1] fireHeight floorArea height hrradj hrrpPDF hrrTray3
hrrTray4 hrrTray5 hrrTray6 tempAmb

Root node error: 681467353/540000 = 1262

n= 540000

CP nsplit rel error xerror xstd
1 0.3864657 0 1.00000 1.00000 0.00238375
2 0.1424653 1 0.61353 0.61354 0.00167808
3 0.0309442 2 0.47107 0.47108 0.00128597
4 0.0268769 3 0.44012 0.44014 0.00115187
5 0.0198330 4 0.41325 0.41326 0.00110675
6 0.0187160 6 0.37358 0.37360 0.00098649
7 0.0152718 7 0.35487 0.35489 0.00095466
8 0.0146581 8 0.33959 0.33965 0.00092796
9 0.0119471 9 0.32494 0.32499 0.00091234
10 0.0115245 10 0.31299 0.31452 0.00081545
11 0.0114741 11 0.30146 0.29951 0.00079119
12 0.0114024 12 0.28999 0.28700 0.00077498
13 0.0113709 13 0.27859 0.27357 0.00075073
14 0.0095782 16 0.24448 0.24459 0.00068694
15 0.0071252 19 0.21574 0.21586 0.00065793
16 0.0070957 20 0.20862 0.20991 0.00063890
17 0.0068717 21 0.20152 0.20164 0.00060157
18 0.0056783 24 0.18090 0.18102 0.00045518
19 0.0048261 25 0.17523 0.17527 0.00044112
20 0.0045721 26 0.17040 0.17049 0.00044211
21 0.0044519 27 0.16583 0.16638 0.00043956
22 0.0041076 28 0.16138 0.16193 0.00043100
23 0.0034041 29 0.15727 0.15748 0.00042400
24 0.0028606 30 0.15386 0.15408 0.00041947
25 0.0023971 31 0.15100 0.15119 0.00041689
26 0.0023934 32 0.14861 0.14917 0.00041328
27 0.0023859 33 0.14621 0.14775 0.00041130
28 0.0021540 34 0.14383 0.14454 0.00040670
29 0.0019941 35 0.14167 0.14104 0.00040168
30 0.0019153 36 0.13968 0.13984 0.00040064
31 0.0016980 37 0.13776 0.13793 0.00038725
32 0.0016593 38 0.13607 0.13595 0.00038627
33 0.0016252 39 0.13441 0.13479 0.00038213
34 0.0015952 40 0.13278 0.13361 0.00037982
35 0.0014524 41 0.13119 0.13137 0.00037718
36 0.0014121 42 0.12973 0.12966 0.00037512
37 0.0012624 43 0.12832 0.12793 0.00037045
38 0.0012520 44 0.12706 0.12674 0.00036885
39 0.0012384 45 0.12581 0.12579 0.00036679
40 0.0012121 46 0.12457 0.12489 0.00036519
41 0.0011227 47 0.12336 0.12339 0.00036339
42 0.0010858 48 0.12223 0.12217 0.00036148
43 0.0010387 49 (0.12115 0.12118 0.00036135
44 0.0010000 50 0.12011 0.12020 0.00036081

83

Fourty four (44) trees were generated, with the most complex tree having 50 splits and a
relative error of 12%. This error is relative to the least complex tree with only one split. Figure
29 depicts the coefficient of determiation (R?) versus number of tree splits, and the accuracy

appears to start leveling off near 35 splits.

1.0

— Apparent o
---= XRelative A A i

08
|

R-sguare
04

0.2
|

0.0

0 10 20 30 40 50

MNumber of Splits

Figure 29. Regression Tree Coefficient of Determination (R?) as a Function of Number of Splits

Figure 30 illustrates the regression tree for maximum upper layer temperature with 35
splits. Note that several parameters have been dropped from this pruned tree, most notably the
ventilation rate and room height do not appear important to the final model. Conversely, the

model retains floor area and factors affecting fire propagation (number of adjacent cabinets and

84

overhead cable trays) as these parameters are most important to the maximum achieved upper

layer temperature.

<05 05
@ floorArea
P8 <289 [[1]2313.7 <3L3g]
@ hrrTray3 6?:@ hrrAdj
> < > <
<05 > 0 5

hrrTrayS
215

l
> l
floorArea

>63¢ <6393

floorArea

2399.385
hrrTray6

hrrTrayG

Bak 215 = <639355 =15 <15 !!5

< >2531

<399.385.
floorArea

hrrTrayG
>25
hrrAdj

<05 205
hrrTray4 hrrTray6

hrvTrayS

2 <15

2 685 <222.685 59}
hrrAdj

l6o} Q6]
hrrTray4 @

215 <1

hrrTrayG

hrrTvayS

m
hrrTray6
> < 1 5

< =215

< 23005 < >2531
> <522.065 > <204.94 @

215
] Gﬂ:;)\ < >2531 < 2531

elﬂﬁ e 7Bi¢de 71 (3%

50 50 50 50 50 50 —p50 50 50 50 50 —p50 50 50 50 50 P50 —P50 50
50 50 50 50 50 50 :3{?50 %%50 %?50 50 50 50 %gSO %50 50 50 5:%50 50 %50 iSO %
50 150 150 150 150 {50 50 150 150 150 150 150 50 |50

250 50 50 50 50 50 50 50 50 50 50 50 50 50 50
150 50 50 50 50 50 50 50 50 Z150 50 50 50 50 50
50 150 0 150 -150 50 50

50 150 {50 50 150 150 {50 /50 150 150 750 150 150 150 150

Figure 30. Regression Tree for Maximum Upper Layer Temperature

This same process was applied to the response variable time to maximum upper layer

temperature, and Figure 31 illustrates the resulting regression tree predicted versus CFAST

estimated response parameters.

85

Decision Tree Decision Tree

300-

Predicted
Predicted

S

0 100 200 300]

40 60

2I[I
CFAST Max Upper Layer Temp. (C) CFAST Time to Max Upper Layer Temp. (minutes)

Figure 31. Regression Tree Predicted versus CFAST Estimated

The rpart pruned decision tree for maximum upper temperature appears well-centered
around the CFAST calculated results, however there is considerable variance. The decision tree
for time to maximum upper layer temperature is similarly centered around the CFAST calculated
results, however there is considerable variance, and that variance does not appear symmetric or
consistent.

This is in contrast to the RAVEN/Python-developed decision tree shown in Figure 26,
which appears highly accurate. Upon further investigation, while RAVEN allows specifying
some control parameters such as maximum tree depth, these parameters were not exercised in the
initial screening. In addition, the RAVEN implementation of decision tree regression does not
include a cross-validation option. This resulted in the initial model being very deep and over-fit.
Tuning the model with rpart to a reasonable depth and complexity, and using cross-validation,

resulted in the decision tree modestly fitting the CFAST parameters of interest.

86

3.8.2 k-Nearest Neighbor (kNN) Regression

The caret package (Kuhn, 2017) of the R software (R Core Team, 2016) was used for final
tuning of the KNN regression model. First, a tuning grid over a range of k-neighbors, using
10-fold cross-validation, was applied to a 10,000 sample random subset of the 540,000 samples
reserved for training. Computational burden prevented running this tuning grid over more than
10,000 samples. The data were centered and scaled prior to training, as is required by neighbor-

based approaches. This initial fitting yielded the following output:

87

k-Nearest Neighbors

10000 samples
13 predictor

Pre-processing: centered (13), scaled (13)

Resampling: Cross-validated (10 fold)

Summary of sample sizes: 9000, 9000, 9000, 9000, 9000, 9000,
Resampling results across tuning parameters:

k RMSE Rsquared MAE
1 13.37537 0.8593849 7.963614
2 12.07356 0.8824451 7.180628
3 11.86646 0.8866827 7.046577
4 11.81016 0.8884675 7.021705
5 11.86146 0.8881417 7.096210
6 11.91607 0.8876787 7.144894
7 11.91869 0.8879799 7.179175
8 11.95182 0.8877548 7.211671
9 11.95644 0.8882051 7.221465
10 12.01002 0.8875607 7.273300
11 12.04641 0.8871765 7.321889
12 12.08740 0.8867153 7.356246
13 12.15766 0.8856441 7.375611
14 12.24918 0.8840457 7.430219
15 12.32137 0.8828615 7.482220
16 12.36077 0.8824768 7.506818
17 12.42883 0.8814411 7.550267
18 12.50406 0.8801791 7.588733
19 12.60102 0.8783818 7.653825
20 12.68058 0.8770752 7.720678
21 12.77538 0.8752380 7.784058
22 12.85360 0.8739216 7.828273
23 12.94020 0.8722173 7.886573
24 13.02942 0.8705440 7.957689
25 13.11021 0.8690089 8.017898
26 13.18634 0.8675714 8.077936
27 13.25899 0.8660713 8.140844
28 13.33462 0.8646183 8.200422
29 13.42653 0.8627696 8.264695
30 13.50092 0.8613037 8.318028

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was k = 4.

The output confirms that 10,000 samples of 13 centered and scaled predictor variables
were used to fit 30 models, ranging from ke[1,30]. 10-fold cross validation was used with 9,000

training sample batches. Figure 32 plots the kNN error (RMSE) as a function of the number of

88

neighbors used by the algorithm. According to this plot and the R output, four (4) neighborhoods

appears optimal.

13.0 7

12.5

RMSE (Cross-Validation)

12.0

0 5 10 18 20 25 30
#Meighbors

Figure 32. KNN Root Mean Squared Error as a Function of Number of Neighbors

The convex shape of the Figure 32 error plot is caused by the use of cross-validation to
prevent over-fitting. When more neighbors are used, the accuracy improves relative to the
training set, but the generalized accuracy decreases when tested against the reserved datasets.

Next, a KNN model using four (4) neighbors was trained using 100,000 samples. This
same process was applied to the response variable time to maximum upper layer temperature,
which resulted in a model optimized at five (5) neighbors. Figure 33 illustrates the model

predicted versus CFAST estimated response parameters.

89

K-Nearest Neighbors K-Nearest Neighbors

Predicted
Predicted

o
|EIU Zdﬂ 3U‘U 0 20 4‘0 60
CFAST Max Upper Layer Temp. (C) CFAST Time to Max Upper Layer Temp. (minutes)

Figure 33. K-Nearest Neighbor Predicted versus CFAST Estimated

The scatter plots for both maximum upper layer temperature, and time to maximum upper
layer temperature, show good fits by k-nearest neighbors. The models show good generalization,
and they are not over-fit, due to the use of 10-fold cross validation, and testing on an independent
dataset that was not used for training.

Note that data density can be overstated in Figure 33 because it attempts to display all
135,000 test data points. Figure 34 depicts the ratio of predicted to observed for all 135,000 data
points. Values greater than 1.0 indicate over-prediction, and values less than 1.0 indicate under-

prediction. The histogram shows the vast majority of KNN model predictions are within +10% of

the CFAST calculated values.

90

Max. Upper Layer Temp. Time to Max. Upper Layer Temp.

40000 - Boooa |

30000 - 50000 -

20000 - 40000 -

Count
Count

10000 - 20000 -

0.8 1.0 12 0.8 1.0 1.2

Ratio of Predicted to Observed Ratio of Predicted to Observed

Figure 34. Ratio of KNN Predicted to CFAST Calculated

3.8.3 Support Vector Machine

The caret package (Kuhn, 2017) of the R software (R Core Team, 2016) was used for final
tuning of the support vector machine regression model. First, a tuning range of 14 complexity
parameter values, using 10-fold cross-validation, was applied to a 5,000 sample random subset of
the 540,000 samples reserved for training. Computational burden prevented running this tuning
grid over more than 5,000 samples. The data were centered and scaled prior to training, and this

initial fitting yielded the following output:

91

Support Vector Machines with Radial Basis Function Kernel

5000 samples
13 predictor

Pre-processing: centered (13), scaled (13)

Resampling: Cross-validated (10 fold)

Summary of sample sizes: 4499, 4500, 4500, 4500, 4500, 4500,
Resampling results across tuning parameters:

C RMSE
0.25 24.59553
0.50 20.24993

1.00 17.40660

2

4

8

squared MAE

.7038072 15.51496
.7774093 12.50497
.8189565 11.06145
.8293096 10.68497
.8324349 10.63159
.00 15.97615 .8331374 10.62822

R
0
0
0
.00 16.30502 O
0
0
16.00 15.97184 0.8333873 10.62777
0
0
0
0
0
0

.00 16.00320

32.00 15.97184 .8333873 10.62777
64.00 15.97184 .8333873 10.62777
128.00 15.97184 .8333873 10.62777
256.00 15.97184 .8333873 10.62777
512.00 15.97184 .8333873 10.62777
1024.00 15.97184 .8333873 10.62777
2048.00 15.97184 0.8333873 10.62777

Tuning parameter 'sigma' was held constant at a value of 0.05070748
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were sigma = 0.05070748 and C = 16.

The output confirms that 5,000 samples of 13 centered and scaled predictor variables
were used to fit 14 models, ranging in complexity parameter. 10-fold cross validation was used
with ~4,500 training sample batches. Figure 35 plots the support vector machine error (RMSE)
as a function of complexity parameter. According to this plot and the R output, an SVM model
with a complexity parameter of 16 appears optimal. A second model for the time to reach

maximum upper layer temperature response variable was similarly developed.

92

Ll
24 -
c
o
8 24 -
w
=
@
O 20 »
O
L
<
= 18 1 =
16 »
| | I | |
1] 500 1000 1500 2000
Cost

Figure 35. Support Vector Machine Root Mean Squared Error as a Function of Complexity Parameter

Note that the above model was developed using a radial basis kernel, and models were
similarly developed using a linear kernel. A polynomial kernel was attempted, but it was
extremely slow to train and therefore discarded.

Next, the selected support vector machine models for each response variable were used to
predict the CFAST output for the reserved 135,000 testing samples. Figure 36 illustrates the

model predicted versus CFAST estimated response parameters.

93

Support Vector Machine (Radial Basis Kernal)

300-

Predicted

300

|dﬂ 260
CFAST Max Upper Layer Temp. (C)

Support Vector Machine (Radial Basis Kernal)

Predicted

0

20 40
CFAST Time (min.) to Max. Upper Layer Temp.

Support Vector Machine (Linear Kernal)

Predicted

300

1EIU EEIU
CFAST Max Upper Layer Temp. (C)

Support Vector Machine (Linear Kernal)

Predicted

60 60

Zb 4IU
CFAST Time (min.) to Max. Upper Layer Temp.

Figure 36. Support Vector Machine Predicted versus CFAST Estimated

Support vector regression did not perform well in this application, and this could in part

be due to its complexity. The model was so slow to train that only 5,000 samples (<1% of the

data population) could be used for training, which may have limited its prediction accuracy.

Slow training also erodes the benefit of a reduced order model, especially for CFAST, which is a

relatively efficient code.

3.9

COMPARISON TO ALGEBRAIC FIRE MODELS

Typical nuclear power plant fire probabilistic risk assessments postulate on the order of 1,000

(often several thousand) fire scenarios. The fire PRA is performed iteratively, with increasing

94

levels of modeling realism commensurate with risk significance. At the end of the process, the
PRA includes conservative modeling of low risk fire scenarios, very detailed modeling (and
understanding) of the most risk-significant scenarios, and a sliding scale of modeling detail for
scenarios of intermediate risk significance. (Worrell & Rochon, 2016) provide an overview of
the fire probabilistic risk assessment process.

There are three general classes of fire modeling tools: algebraic models, two-zone models
like CFAST, and computational fluid dynamics models. The algebraic models are
straightforward to implement but generally yield conservative results. Two-zone models like
CFAST provide more realistic results but come at some expense, primarily in terms of model
setup time. Computational fluid dynamics models are the most accurate but involve great
computational expense.

Algebraic models are usually implemented for most of the fire probabilistic risk
assessment scenarios because they are fast and can be implemented by spreadsheet. CFAST is
generally only applied to a handful of scenarios, primarily due to the time it takes to setup, run,
and evaluate a scenario through the CFAST graphical user interface. CFAST can be automated,
but this requires setting up some infrastructure to manage the input data, batch run CFAST, and
extract the results.

There are two algebraic fire models typically used for fire probabilistic risk assessments.
The first model is referred to as MQH, which is applicable to naturally ventilated compartments,
for example a room with an open door or window. The second model is referred to as FPA,

which is applicable to mechanically ventilated compartments.

95

The MQH model of naturally ventilated compartments was developed by McCaffrey,

Quintiere, and Harkleroad and is specified by the following equation (Karlssson & Quintiere,

1999):
Q-2 1/3
ATy, = 6.85 <A—0 \/H_OhkA)

Where,

ATheL = Hot gas layer temperature rise (°C)

0 = Fire heat release rate (kW)

Ao = Total ventilation opening area (m?)

Ho = Average height of ventilation opening (m)

hk = Convective heat transfer coefficient (kW/m?K)

Ar = Total internal surface area of compartment boundaries excluding

ventilation openings (m?)

96

The FPA model of mechanically ventilated compartments was developed by Foote,

Pagni, and Alvares and is specified by the following equation (Igbal et al., 2004):

. 0.72 -0.36
s _ g (-0) (1)

T Mgy CpToo mycy,

Where,
ATheL = Hot gas layer temperature rise (K)
Ty = Ambient temperature (K)
0 = Fire heat release rate (kW)
my = Ventilation rate (kg/s)
Cp = Specific heat of air (kJ/kg-K)
hy = Convective heat transfer coefficient (kW/m?-K)
Ar = Total internal surface area of compartment boundaries excluding

ventilation openings (m?)

Figure 37 compares the maximum upper layer temperature estimation of the MQH and

FPA algebraic models, and the KNN metamodel developed in this thesis, to the CFAST

calculation for 135,000 randomly selected data points.

97

N w
(=] [~
o o

' '

Alternate Model

Max Upper Layer Temp. (°C)

o
'

0 100 200 300

CFAST Max Upper Layer Temp. (°C)

Figure 37. Comparison of CFAST to KNN and Algebraic Models

MQH is clearly very conservative relative to CFAST for this application. This is because
MQH was designed for naturally ventilated compartments, and the range of tested scenario
configurations are not naturally ventilated; they are mechanically ventilated. Assuming that
mechanical ventilation trips or is manually shut down early in the fire, the only natural
ventilation leakage path specified is a total of 0.2 m? through gaps underneath the doorways.
Examining the MQH equation, the ventilation opening area and height are both in the
denominator, and so very small values of either lead to high upper layer temperature estimations.
As the compartment becomes more naturally ventilated, for example if the fire brigade opens the
door(s), the MQH upper layer temperature predictions would move toward the CFAST
estimation.

The FPA model of mechanically ventilated compartments is more physically applicable
to the switchgear room fires under consideration (i.e., FPA is applicable to mechanically
ventilated rooms like the postulated switchgear room scenarios, and MQH is more relevant to

98

naturally ventilated rooms with open doors or windows). The FPA results are more centered
around the CFAST calculation; however, the variance is quite large. A significant portion of the
FPA results are conservative relative to CFAST, especially for the more severe fire conditions.
Furthermore, an appreciable portion of the FPA estimations, over most of the evaluated range, is
actually non-conservative relative to CFAST. Because of this apparent non-conservatism (nearly
50% in some cases) of FPA relative to CFAST in this example, it is possible a safety factor
would need to be applied if the model is to be used for certain design applications. FPA might
however still be a good choice for probabilistic risk assessment where it is desirable the mean
value be best estimate, and where model bias and uncertainty can be explicitly considered in the
probabilistic simulation.

As previously discussed, the k-nearest neighbors model performed well, with the vast

majority of kNN model predictions within £10% of the CFAST calculated values.

3.10 ACCURACY-EFFICIENCY TRADEOFF

Model selection in many applications involves a tradeoff between desired accuracy and
computational efficiency. In fire modeling, algebraic fire models take seconds to run, two-zone
models like CFAST take minutes, and CFD models take hours (often days) to run. While fast,
algebraic models tend to be conservative, and while very slow, CFD models can be more
realistic. Modeling realism of two-zone models falls in between the algebraic and CFD models.
Applications like uncertainty quantification and sensitivity analysis may require models

to be run hundreds, thousands, or even tens of thousands of times. Using CFD, and even CFAST,

99

for such studies is usually not feasible at present, even with high performance computing
systems.

While metamodels are simplifications of higher fidelity codes, and they therefore
introduce some error, metamodels provide opportunity to improve modeling realism over what
would be computationally feasible otherwise. For example, in the fire context, users are
generally limited to algebraic models for uncertainty quantification; however, using a CFAST
metamodel, while not as accurate as CFAST itself, can be more accurate than the algebraic
models.

Metamodels also have computational expense, primarily in their training. The k-nearest
neighbors model developed here required 100,000 CFAST runs. Figure 38 and Figure 39

illustrate how metamodel accuracy improves as a function of training sample size.

100

Predicted

Predicted

Predicted

Predicted

10 Training Points

100 Training Points

100 200

500 Training Points 1,000 Training Points

5,000 Training Points 10,000 Training Points

50,000 Training Points 100,000 Training Points

300 0 300

160 260
CFAST Max Upper Layer Temp. (C)

100 260
CFAST Max Upper Layer Temp. (C)

Figure 38. kNN Predicted vs. CFAST Calculated over Range of Training Sample Sizes

101

Model Accuracy vs. Training Sample Size

20-

d 25600 50600 ?5600 100|000
Training Sample Size

Figure 39. kNN Root Mean Squared Error vs. Training Sample Size

Metamodel accuracy generally improves with training sample size. The desired accuracy
and required training sample size (and computational expense) is specific to the intended model
application. Note in Figure 39 that the RMSE increases between the first (10 samples) and
second (100 samples) points. Ten (10) samples is clearly insufficient for CFAST metamodel
training, and it is likely the RMSE for models trained on so few points will vary significantly,
depending on which samples are randomly selected for the training.

Despite introducing some error, it is important to note that error can be quantified and
therefore explicitly treated in the model application. Metamodel error quantification is a standard
output of the training process.

Acknowledging that metamodel development requires computational expense to generate
training data, Table 14 summarizes a comparison of model speed and accuracy across several
modeling options. This comparison was performed assuming that 500 fire scenarios are to be

evaluated, and the peak heat release rate distribution for each scenario is discretized into 25

102

intervals, for a total of 12,500 runs required. The computation time estimates are based on

experience during this thesis using a Hewlett Packard Z640 engineering workstation with two

2.20 GHz processors, 64 GB memory, and a 64-bit Windows 7 operating system.

Table 14. Comparison of Computer Run Time and Accuracy across Several Modeling Options

Model

Computer Run
Time

Accuracy Relative to CFAST
(for Maximum Upper Layer
Temperature)

MQH (algebraic)

Negligible

Potentially very conservative if
applied to scenarios where natural
ventilation to/from the compartment
is limited, which is the case for many
postulated nuclear power plant fire
scenarios.

FPA (algebraic)

Negligible

RMSE = 34.0°C

Majority of FPA predictions were
within £50°C of the corresponding
CFAST predictions in this study.
Table 3 indicates a model bias factor
of 1.44 for the algebraic fire models.

KNN
(using CFAST training data
generated over 1 day of computer
run time)

1 day
(using 2 processors)

RMSE =7.4°C

KNN
(using CFAST training data
generated over 2 days of computer
run time)

2 days
(using 2 processors)

RMSE =5.3°C

kNN
(using CFAST training data
generated over 15 days of
computer run time)

15 days
(using 2 processors)

The KNN model in this study could
not be trained on greater than 100,000
samples due to computational
limitations. Generating 15 days of
training data would therefore not
improve KNN model accuracy.

CFAST

~1.5 days
(using 2 processors)

N/A. The model accuracies in this
comparison are relative to what
CFAST would calculate.

103

The comparison in Table 14 illustrates that developing and running an accurate kNN
metamodel would require a similar computing time as running CFAST for an application
requiring 12,500 model runs. If running these cases were a one-time operation, it would be
reasonable to run CFAST rather than a metamodel. However, if the analysis needed to be
repeated, for example to reflect updated heat release rate distributions or adjustments to the input
parameters, then use of the accurate KNN model could save significant computer run time (note
that once the kNN model is trained, it can be executed over thousands of scenarios in a few
seconds). Finally, a significant benefit of the kNN model is its portability; once trained, it can

easily be applied by many users over a range of conditions.

3.11 LIMITATIONS

Metamodels can only be, at their best, as good as the model(s) they mimic. As summarized in
Section 3.1, CFAST is a reasonably accurate predictor of hot gas layer temperature (bias factor,
o0, of 1.06 per Table 3) for the experimental fire tests considered by the NUREG-1824 (Hill et al.,
2007) verification and validation efforts. The KNN metamodel developed in this thesis introduces
some additional error, although small, because the metamodel is an approximation of what
CFAST calculates.

The CFAST validated ranges of applicability developed by NUREG-1934 (McGrattan et
al., 2012) and summarized in Table 8 are also applicable to any metamodel approximation of
CFAST. When developing metamodel training data through a sampling process, it is possible

that some sampled configurations could exceed the CFAST validated ranges of applicability.

104

This is not necessarily a problem, as it will simply result in training the metamodel to mimic
CFAST even in the more extreme configurations; however, it is important that application of the
metamodel be within the CFAST validated ranges of applicability, or otherwise be justified if the
ranges are exceeded.

Similarly, metamodel applicability is generally limited to the range of parameter space
over which it was trained. In this thesis, the parameter space consists of rectangular rooms
ranging from 10-35 meters long, 10-35 meters wide, 5-10 meters tall and other scenario
characteristics described in Table 9. Caution would be warranted when using the resulting
metamodel to extrapolate to fire scenarios exceeding these characteristics. Developing guidance
for how metamodels of physics-based codes could safely be used for extrapolation may be an
area for future research.

Metamodels are applicable only to the predicted quantities they are trained to predict. For
example in this thesis, the kNN metamodel of CFAST predicts maximum upper layer
temperature and its timing; whereas, CFAST itself calculates many other quantities such as lower
layer temperature, radiative heat flux, smoke optical density. Separate metamodels would need to
be developed if predicting these other quantities were required. One area of future research might
be development of metamodels that can predict multiple disparate quantities.

Finally, in the heavily regulated nuclear power industry, the regulator (Nuclear
Regulatory Commission in the United States) has not necessarily endorsed or considered
metamodeling. High-fidelity physics-based codes are typically run for a manageable number of
scenarios to support design and licensing applications.

However, the movement toward risk-informed regulation relies heavily on probabilistic

risk assessments. An important aspect of risk-informed decision-making is understanding

105

uncertainty, and metamodel approximations of physics-based codes provide a feasible means of
leveraging higher fidelity models during uncertainty quantification. For example, in the fire
context, users are generally limited to algebraic models for uncertainty quantification; however,
using a CFAST metamodel, while not as accurate as CFAST itself, can be more accurate than the
algebraic models.

Several industry-level initiatives might be required in order to gain regulatory
“endorsement” of, or some comfort level in, use of metamodels. First, a range of potentially
acceptable applications would need to be identified. For example, probabilistic applications such
as uncertainty analysis are good candidates; whereas certain design applications that require the
most accurate (or conservative) physics-based representations may not be good candidates for
metamodeling.

Ultimately, a consensus process for training, validating, and applying metamodels would
be required. Such an industry consensus process might include guidance on which metamodel
types are most appropriate for each of the physics-based models intended to be mimicked.
Minimum requirements might be established on the scale and range of training data, as well as
the use of cross validation. The process might impose limitations on the complexity (and
transparency) of metamodels. And of course some minimum level of accuracy would be
required, and the accuracy would need to be quantifiable so that it could be considered explicitly
by metamodel applications. Depending on stakeholder comfort level, the consensus process
could essentially be guidelines on development and use of metamodels, or if more control is
desired, consensus metamodels could be developed, verified, and validated similar to the fire
modeling validation efforts of NUREG-1824 (Hill et al., 2007) and NUREG-1934 (McGrattan et

al., 2012).

106

3.12 FUTURE RESEARCH

Section 3.11 discusses the potential development of an industry consensus process for training,
validating, and applying metamodels. Such a process would promote consistent and responsible
application of metamodels. The following paragraphs discuss some specific areas of future
research that could help generate interest and ultimately support an industry consensus process.

This thesis focused on metamodeling the physics of fire behavior, which primarily
involve heat transfer and fluid mechanics. There are many other hazard models used for
probabilistic risk assessments, such as modeling building response during an earthquake,
modeling the flow and accumulation of water throughout a plant due to flood events, and
modeling projectile motion of objects during high wind events. There are also a variety of
physics-based models to estimate plant response during accident conditions, calculating
quantities such as fuel cladding temperature as a function of time through an accident. Future
work could broadly review each of the computationally intensive models used by the nuclear
power industry for their potential to benefit from metamodeling.

The literature review performed for this thesis did not identify a significant body of
guidance for determining which metamodels might be most suited for various types of
applications. Consequently, this study followed a successive screening process where 25 of the
available metamodels were initially tested, three were selected for further analysis, and one was

ultimately successful. During this process, it became clear that certain metamodel types have

107

attributes making them more suited for some applications and less suited for others. For example,
the linear models struggled to accurately mimic the non-linear physics of upper layer
temperature development. Future work might develop guidance as to how to select promising
metamodel types based on the attributes of the application.

Section 3.10 explores a tradeoff between accuracy and efficiency, leading to the
following question: Under what circumstances does metamodeling become feasible and
attractive? When the higher fidelity code runs quickly, as is the case for CFAST, it is more
feasible to generate metamodel training data; however, the resulting metamodel can only
improve overall efficiency for applications where an extremely large number of model runs is
required. On the contrary, when the high fidelity model is computationally heavy, as is the case
for CFD, metamodels have potential to improve efficiency; however, generating the training data
becomes more difficult. Future research could explore these factors and develop guidance for
quickly assessing whether a particular application might benefit from the metamodeling process.

The kNN model developed here was trained over a parameter space surrounding
switchgear room fire scenarios, with the attributes defined in in Table 9. A natural question
might be: To what extent can the resulting model extrapolate to scenarios outside the training
parameter space? It is unclear at what point a metamodel becomes a generalized representation
of the computations performed by the high fidelity model, and to what extent the metamodel
accuracy is specific to the training space. Future research could develop designs of experiment
focused on how the high-fidelity model performs its computation, as opposed to focusing on a
particular scenario of interest, with the aim of developing generalized metamodels accurate over

the full validation range of the high-fidelity model.

108

The predictor variables in this thesis are scalar quantities (maximum upper layer
temperature, and time to reach maximum upper layer temperature). Many nuclear power plant
accident analyses estimate the temporal and spatial evolution of quantities. In addition to
introducing additional dimensionality, temporal and spatial evolution introduces correlation
between parameters. For example, the upper layer temperature at one time step is highly
correlated to the temperature at the previous time step. Future work could explore metamodel
development for temporally and spatially evolving systems.

Finally, while metamodels are generally benchmarked against the models they attempt to
mimic, future work might compare trained metamodel against higher fidelity models or even
physical experiments. These exercises could be an important part of convincing regulatory
bodies and standards organizations that metamodels can accurately represent the physical

realities of interest.

109

40 CONCLUSIONS

This study explored the use of machine learning to generate metamodel approximations of a
physics-based fire hazard model. The process involved scenario definition, design of experiment,
generating training data by iteratively running the hazard model over a range of input space,
exploratory data analysis and feature selection, initial testing and screening of a broad set of
metamodel types, and finally metamodel selection and tuning.

The study identified several key factors that should be considered when metamodeling a
physics-based computer code. First, the input space should be limited to a manageable scale and
number of parameters; otherwise generating sufficient training data becomes infeasible. Second,
there is a relationship between the physics being characterized and the metamodel types that will
successfully mimic those physics. Heat transfer and fluid flow are highly non-linear, and
therefore the linear-based metamodels struggle to emulate those phenomena. Finally, despite
initial development costs, it is possible for the resulting metamodel to accurately mimic the
physics-based code, and to run at a fraction of the computational expense. Once developed, the
trained metamodel is portable and can easily be applied by many users over a range of modeling
conditions.

A well-fitting k-nearest neighbor approximation of the computer fire model called

CFAST was generated. The specific parameters predicted were compartment fire-generated

110

maximum upper layer temperature, and time to reach maximum upper layer temperature, over a
range of input space typical of postulated nuclear power plant fire scenarios. The model centers
on switchgear room fires, which have consistently been identified by probabilistic risk
assessments as risk-significant. The resulting metamodel is applicable to other scenarios to the
extent they are within the input space used for model training.

The Idaho National Laboratory software called RAVEN, which is open-source and
available at their ‘github’ (Idaho National Laboratory, n.d.), was used to run a CFAST fire model
675,000 times over a full grid-sampled input space of seven (7) uncertain parameters described

in Table 15.

Table 15. Input Parameter Space used for K-Nearest Neighbor Model Training

Parameter Range
Compartment Length 10-35 meters
Compartment Width 10-35 meters
Compartment Height 5-10 meters

Fire Heat Release Rate 30 unique profiles
Ambient Temperature 297-311 Kelvin

Fire Height 0-90% of room height

Ventilation Rate per 0.00047-0.00189
Room Volume (m®/s per m® of room volume)

The input heat release rate profiles were decomposed into field-observable factors, such
as the type of originating electrical cabinet, number of adjacent cabinets, and overhead cable tray
configuration. In this sense the resulting k-nearest neighbors metamodel is actually an aggregate
representation of two models (the translation of field-observable factors into heat release rate

profiles, and the CFAST estimation of maximum upper layer temperature and its timing).

111

Twenty five (25) reduced order model types available within RAVEN were exercised
using 80% (540,000) of the CFAST runs for training and the remaining 20% (135,000 runs) for
model testing. The CFAST runs used for training and testing were selected randomly.

The linear models tested were generally unable to predict maximum upper layer
temperature and its timing with reasonable accuracy. Tested models include: variations of
ordinary linear regression, lasso, ridge, elastic net, least angle, orthogonal matching pursuit, and
others. The poor fit of linear models is fundamentally because the physics of fire growth and
compartment energy balance are non-linear. Fire growth follows an exponential profile, and the
conservation of energy equations solved by CFAST are highly non-linear.

Initial testing of tree-based, neighbor-based, and support vector machine models showed
promise and were selected for model tuning. Additional evaluation identified that the initially
good fit of the tree-based models was due to over-fitting, specifically by not limiting the tree
depth.

Support vector regression ultimately did not generate a reasonable fit, and this could in
part be due to its complexity. The model was so slow to train that only 5,000 samples (<1% of
the data population) could be used for training, which may have limited its prediction accuracy.
Slow training also erodes the benefit of a reduced order model, especially for CFAST, which is a
relatively efficient code.

k-nearest neighbor model tuning generated a k =4 model that fit the vast majority of
CFAST calculations within £10% for both maximum upper layer temperature and its timing.
This model shows good generalization due to the use of 10-fold cross validation, and testing on

an dataset that was not used for training.

112

The resulting KNN model predictions were compared to those made by the algebraic
models known as MQH and FPA. Both MQH and FPA were generally conservative relative to
CFAST; whereas the KNN model very closely mimicked CFAST over the full range of sampled
input space.

This comparison illustrated the potential of metamodels to improve modeling realism
over the simpler models often selected for computational feasibility. While the KNN metamodel
is a simplification of the higher fidelity CFAST code, the error introduced is quantifiable and can
be explicitly considered in applications of the metamodel.

Finally, it is acknowledged that metamodels do come with some computational expense,
particularly for training. Metamodel accuracy generally improves as a function of training
sample size, and in this case the KNN model required 100,000 training samples to achieve
sufficient accuracy. After this upfront training cost, the resulting trained metamodel is portable

and can easily be applied by many users over a range of modeling conditions.

113

APPENDIX A

CODING

Al XML CODE DEFINING THE RAVEN ANALYSIS

The <Simulation> block defines the RAVEN analysis, and verbosity is set to “debug”

to facilitate troubleshooting during code development.

<Simulation verbosity="debug">

</Simulation>

The <RunInfo> block defines the sequences of steps that RAVEN will execute.
<WorkingDir> defines the working directory name, and <batchSize> is set to 1 indicating

that computations will be performed serially (as opposed to with parallel processing).

114

<Simulation verbosity="debug">
<RunInfo>
<Sequence>SampleRunExport</Sequence>
<WorkingDir>RAVEN CFAST</WorkingDir>
<batchSize>1</batchSize>
</RunInfo>

The <Files> block defines identifies all files to be used in the RAVEN analysis.
"RAVEN CFAST.in" is the base CFAST input file (text format), and the “Fire*.o” files

define each of the CFAST fire objects.

<Files>
<Input name="RAVEN CFAST.in" type="">RAVEN CFAST.in</Input>
<Input name="Fire243.o0" type="">Fire243.o</Input>
<Input name="Fire244. type="">Fire244.0</Input>
<Input name="Fire245. type="">Fire245.0</Input>
<Input name="Fire246. type="">Fire246.o0</Input>
<Input name="Fire248. type="">Fire248.0</Input>
<Input name="Fire250. type="">Fire250.0</Input>
<Input name="Fire253. type="">Fire253.0</Input>
<Input name="Fire256. type="">Fire256.0</Input>
<Input name="Fire257. type="">Fire257.0</Input>
<Input name="Fire258. type="">Fire258.0</Input>
<Input name="Fire259. type="">Fire259.0</Input>
<Input name="Fire260. type="">Fire260.0</Input>
<Input name="Fire262. type="">Fire262.0</Input>
<Input name="Fire265. type="">Fire265.0</Input>
<Input name="Fire267. type="">Fire267.0o</Input>
<Input name="Fire31ll. type="">Fire31ll.o</Input>
<Input name="Fire314. type="">Fire31l4.0</Input>
<Input name="Fire317. type="">Fire31l7.0</Input>
<Input name="Fire31l9. type="">Fire319.0</Input>
<Input name="Fire320. type="">Fire320.0</Input>
<Input name="Fire321l. type="">Fire321l.o0</Input>
<Input name="Fire323. type="">Fire323.0</Input>
<Input name="Fire330. type="">Fire330.0</Input>
<Input name="Fire335. type="">Fire335.0</Input>
<Input name="Fire336. type="">Fire336.0</Input>
<Input name="Fire337. type="">Fire337.0</Input>
<Input name="Fire341. type="">Fire341l.0</Input>
<Input name="Fire343. type="">Fire343.0</Input>
<Input name="Fire354. type="">Fire354.0</Input>
</Files>

O O0OO0OO0OO0OOOOOOOOOOOOOOOOOOOOOOODO

115

The <Databases> block defines the .H5 database to which the RAVEN input and
output results are stored. This .H5 database is a hierarchical (as opposed to relational) HDF5

format, which is later post-processed using MATLAB.

<Databases>
<HDF5 name="results db" readMode="overwrite"/>
</Databases>

The <Models> block defines each of the external models that will be exercised by
RAVEN, which in this case is CFAST. The executable file and command line arguments are
specified so that CFAST can be run from the MSYS64 command line. This block is used by the

RAVEN-CFAST interface written in Python.

<Models>
<Code name="CFAST" subType="CFASTinterface">
<executable>"C:\Program Files (x86)\CFAST6\CFAST"</executable>
<clargs arg="emd ///c" type="prepend"/>
<clargs extension=".in" type="input"/>
</Code>
</Models>

The <Functions> block declares user-defined functions, which are each defined in
stand-alone python files. In this analysis, the 'CalcFloorArea' function calculates the
compartment floor area based on sampled length and width, the 'CalcFireHeight ' function

determines the height of the fire above the floor based on a sampled fraction of the room height,

116

and the 'CalcHRRindex' function simply returns the nearest integer value of each heat

release rate sample (since the heat release rates are indexed).

<Functions>

<External name='FunFloorArea' file='FunFloorArea.py'>
<variable>length</variable>
<variable>width</variable>

</External>

<External name='FunFireHeight' file='FunFireHeight.py'>
<variable>height</variable>
<variable>fireHeightFract</variable>

</External>

<External name='FunHRRindex' file='FunHRRindex.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRpdf' file='FunHRRpdf.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRtrayl' file='FunHRRtrayl.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRtray2' file='FunHRRtray2.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRtray3' file='FunHRRtray3.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRtray4' file='FunHRRtray4.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRtray5' file='FunHRRtray5.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRtray6' file='FunHRRtray6.py'>
<variable>hrr</variable>

</External>

<External name='FunHRRadj' file='FunHRRadj.py'>
<variable>hrr</variable>

</External>

</Functions>

117

The <Distributions> block defines all input parameter distributions. Many

distribution types are available, such as Gaussian, Gamma, and Weibull.

<Distributions>

<Uniform name="lengthDist">
<lowerBound>10</lowerBound>
<upperBound>35</upperBound>

</Uniform>

<Uniform name="widthDist">
<lowerBound>10</lowerBound>
<upperBound>35</upperBound>

</Uniform>

<Uniform name="heightDist">
<lowerBound>5</lowerBound>
<upperBound>10</upperBound>

</Uniform>

<Uniform name="hrrDist">
<lowerBound>0.5</lowerBound>
<upperBound>30.5</upperBound>

</Uniform>

<Uniform name="tempAmbDist">
<lowerBound>297</lowerBound>
<upperBound>311</upperBound>

</Uniform>

<Uniform name="fireHeightFractDist">
<lowerBound>0.0</lowerBound>
<upperBound>0.9</upperBound>

</Uniform>

<Uniform name="ventPerVolDist">
<lowerBound>0.00047</lowerBound>
<upperBound>0.00189</upperBound>

</Uniform>

</Distributions>

The <samplers> block defines the sampler type to be used for each distribution. Many
sampler types are available, such as grid, Monte Carlo, and adaptive. This analysis uses a

uniform grid over each input parameter distribution.

118

<Samplers>
<Grid name="grid">
<variable name="length">
<distribution>lengthDist</distribution>
<grid construction="equal" steps="9" type="CDF">0 1</grid>
</variable>
<variable name="width">
<distribution>widthDist</distribution>
<grid construction="equal" steps="9" type="CDF">0 1</grid>
</variable>
<variable name="floorArea'">
<function>FunFloorArea</function>
</variable>
<variable name="height">
<distribution>heightDist</distribution>
<grid construction="equal" steps="4" type="CDF">0 1</grid>
</variable>
<variable name="hrr">
<distribution>hrrDist</distribution>
<grid construction="equal" steps="2" type="CDF">0 0.067</grid>
</variable>
<variable name="hrrIndex">
<function>FunHRRindex</function>
</variable>
<variable name="hrrPDF">
<function>FunHRRpdf</function>
</variable>
<variable name="hrrTrayl">
<function>FunHRRtrayl</function>
</variable>
<variable name="hrrTray2">
<function>FunHRRtray2</function>
</variable>
<variable name="hrrTray3">
<function>FunHRRtray3</function>
</variable>
<variable name="hrrTray4">
<function>FunHRRtray4</function>
</variable>
<variable name="hrrTray5">
<function>FunHRRtray5</function>
</variable>
<variable name="hrrTray6">
<function>FunHRRtray6</function>
</variable>
<variable name="hrrAdj">
<function>FunHRRadj</function>
</variable>
<variable name="tempAmb">
<distribution>tempAmbDist</distribution>
<grid construction="equal" steps="2" type="CDF">0 1</grid>
</variable>
<variable name="fireHeightFract">
<distribution>fireHeightFractDist</distribution>
<grid construction="equal" steps="4" type="CDF">0 1</grid>

119

</variable>

<variable name="fireHeight">
<function>FunFireHeight</function>

</variable>

<variable name="ventPerVol">
<distribution>ventPerVolDist</distribution>
<grid construction="equal" steps="2" type="CDF">0 1</grid>

</variable>

</Grid>
</Samplers>

The <Steps> block defines each of the steps that RAVEN will execute. The step called
“SampleRunExport” identifies the CFAST input files, the sampler to be used, the external

model (CFAST) to be run, and a “DataObject” to organize the sampled input parameters and

associated CFAST results.

<Steps>

<MultiRun name="SampleRunExport'">

<Input class="Files" type="">RAVEN CFAST.in</Input>
<Input class="Files" type="">Fire243.o0</Input>
<Input class="Files" type="">Fire244.o</Input>
<Input class="Files" type="">Fire245.0</Input>
<Input class="Files" type="">Fire246.0</Input>
<Input class="Files" type="">Fire248.o0</Input>
<Input class="Files" type="">Fire250.0</Input>
<Input class="Files" type="">Fire253.0</Input>
<Input class="Files" type="">Fire256.0</Input>
<Input class="Files" type="">Fire257.0</Input>
<Input class="Files" type="">Fire258.0</Input>
<Input class="Files" type="">Fire259.0</Input>
<Input class="Files" type="">Fire260.0</Input>
<Input class="Files" type="">Fire262.0</Input>
<Input class="Files" type="">Fire265.0</Input>
<Input class="Files" type="">Fire267.0</Input>
<Input class="Files" type="">Fire3ll.o</Input>
<Input class="Files" type="">Fire31l4.o</Input>
<Input class="Files" type="">Fire31l7.o</Input>
<Input class="Files" type="">Fire319.o</Input>
<Input class="Files" type="">Fire320.0</Input>
<Input class="Files" type="">Fire321l.o</Input>
<Input class="Files" type="">Fire323.o0</Input>
<Input class="Files" type="">Fire330.o0</Input>
<Input class="Files" type="">Fire335.0</Input>
<Input class="Files" type="">Fire336.0</Input>

120

<Input class="Files" type="">Fire337.o</Input>

<Input class="Files" type="">Fire341l.o</Input>

<Input class="Files" type="">Fire343.o</Input>

<Input class="Files" type="">Fire354.0</Input>

<Input class="Files" type="">Fire356.0</Input>

<Sampler class="Samplers" type="Grid">grid</Sampler>
<Model class="Models" type="Code">CFAST</Model>

<Output class="Databases" type="HDF5">results_db</Output>

</MultiRun>
</Steps>

A2 PYTHON INTERFACE BETWEEN RAVEN AND CFAST

The following .py file was developed as an interface between RAVEN and CFAST. This file
defines the CFASTinterface class, which has two methods: generateCommand and
createNewInput. The generateCommand method generates the MSYS64 command line
that executes CFAST with the specified input file. The createNewInput method generates a

CFAST input file for each sampled set of inputs generated by RAVEN.

from future import division, print function, unicode literals,
absolute import
from CodeInterfaceBaseClass import CodeInterfaceBase
import warnings
warnings.simplefilter('default',DeprecationWarning)
if not 'xrange' in dir(_builtins):
Xrange = range
import os
import sys

class CFASTinterface (CodeInterfaceBase):

def generateCommand(self,inputFiles,executable,clargs=None, fargs=None) :
todo = "'
todo += clargs|['pre']+' '
todo += executable
todo+=" RAVEN CFAST !
outfile = 'RAVEN CFAST zone'
returnCommand = [('parallel',todo)],outfile
print ('Execution Command: '#str(returnCommand[0]))
return returnCommand

121

from future import division, print function, unicode literals,
absolute import
from CodeInterfaceBaseClass import CodeInterfaceBase
import warnings
warnings.simplefilter('default',DeprecationWarning)
if not 'xrange' in dir(_ builtins_):
Xrange = range
import os
import sys

class CFASTinterface (CodeInterfaceBase):

def generateCommand(self,inputFiles,executable,clargs=None, fargs=None) :

todo = "'

todo += clargs|['pre']l+"' '

todo += executable

todo+="' RAVEN CFAST !

outfile = 'RAVEN CFAST zone'

returnCommand = [('parallel',todo)],outfile

print ('Execution Command: '+str(returnCommand[0]))
return returnCommand

def

createNewInput (self,currentInputFiles,origlnputFiles,samplerType, **Kwargs) :

modDict = Kwargs|['SampledvVars']
outfile=currentInputFiles[0]
outfile.open('w')
outfile.write('VERSN, 6,RAVEN CFAST\n'")

outfile.write('!!\n")
outfile.write('!!Environmental Keywords\n')
outfile.write('!!\n")

outfile.write('TIMES,3600,50,10,10,0\n")
outfile.write ('EAMB, ")

outfile.write(str (modDict.get ('tempAmb')))
outfile.write(',101325,30.48\n")
outfile.write('TAMB, ")

outfile.write(str (modDict.get ('tempAmb')))
outfile.write(',101325,30.48,50\n")
outfile.write('CJET,WALLS\n")
outfile.write ('CHEMI, 10,488\n")
outfile.write('WIND,0,10,0.16\n")

outfile.write('!!\n")
outfile.write('!!Compartment keywords\n')
outfile.write('!!\n")

outfile.write('COMPA, Compartmentl")
outfile.write(', ")
outfile.write(str(modDict.get ('length')))
outfile.write(', ")

outfile.write(str (modDict.get ('width')))
outfile.write(', ")
outfile.write(str(modDict.get ('height')))
outfile.write(', ")
outfile.writelines('0,0,0,CONCRETE, CONCRETE, CONCRETE\N")
outfile.write('!!\n")
outfile.write('!!vent keywords\n')

122

outfile.write('!!\n")
outfile.write('HVENT,1,2,1,2,0.025,0,1,")
outfile.write((str(modDict.get ('length')/2-1)))
outfile.write(',0,1,1\n")
outfile.write('HVENT,1,2,2,2,0.025,0,1,")
outfile.write((str(modDict.get ('width')/2-1)))
outfile.write(',0,2,1\n")
outfile.write('HVENT,1,2,3,2,0.025,0,1,")
outfile.write((str (modDict.get ('length')/2-1)))
outfile.write(',0,3,1\n")
outfile.write('HVENT,1,2,4,2,0.025,0,1,")
outfile.write((str (modDict.get ('width'")/2=-1)))
outfile.write(',0,4,1\n")
outfile.write('MVENT,1,2,1,V,")
outfile.write(str(0.75*modDict.get('height')))
outfile.write(',1.0,V,")
outfile.write(str(0.75*modDict.get('height')))
outfile.write(',1.0,")

outfile.write(str(modDict.get('ventPerVol')*modDict.get('length')*modDict.get
('width'")*modDict.get ('height')))

outfile.write(',200,300,1.0\n")

outfile.write('MVENT,2,1,2,V,")

outfile.write(str(0.75*modDict.get('height')))

outfile.write(',1.0,V,")

outfile.write(str(0.75*modDict.get('height')))

outfile.write(',1.0,")

outfile.write(str(modDict.get ('ventPerVol')*modDict.get('length')*modDict.get
('width'")*modDict.get ('height')))
outfile.write(',200,300,1.0\n")
outfile.write('EVENT,M,1,2,1,600,0,1\n")
outfile.write('EVENT,M,2,1,2,600,0,1\n")

outfile.write('!!\n")
outfile.write('!!fire keywords\n')
outfile.write('!!\n")

if modDict.get('hrrIindex')==1:
fireObject="Fire243"

if modDict.get('hrrIndex')==
fireObject='Fire244’

if modDict.get ('hrrIindex')==3:
fireObject="Fire245'

if modDict.get('hrrIndex')==
fireObject="Fire246"

if modDict.get('hrrIindex')==5:
fireObject='Fire248'

if modDict.get('hrrIindex')==
fireObject="'Fire250"

if modDict.get('hrrIindex')==
fireObject='Fire253"'

if modDict.get('hrrindex')==
fireObject="'Fire256"

if modDict.get('hrrIindex')==
fireObject="'Fire257"

if modDict.get('hrrindex')==10:

123

fireObject="'Fire258"

if modDict.get('hrrindex')==11:
fireObject="Fire259"

if modDict.get('hrrindex')==12:
fireObject="'Fire260"

if modDict.get('hrrIindex'")==13:
fireObject="Fire262'

if modDict.get('hrrindex')==14:
fireObject="Fire265'

if modDict.get('hrrIindex'")==15:
fireObject="'Fire267"

if modDict.get('hrrindex')==16:
fireObject="Fire311"

if modDict.get('hrrindex')==17:
fireObject="'Fire314"

if modDict.get('hrrindex')==18:
fireObject="Fire317"

if modDict.get('hrrIindex'")==19:
fireObject="Fire319'

if modDict.get('hrrindex')==20:
fireObject="Fire320"

if modDict.get('hrrIindex'")==21:
fireObject="Fire321"

if modDict.get('hrrIindex'")==22:
fireObject="Fire323"

if modDict.get('hrrindex')==23:
fireObject="Fire330"

if modDict.get('hrrIindex'")==24:
fireObject="Fire335"

if modDict.get('hrrindex')==25:
fireObject='Fire336'

if modDict.get('hrrindex'")==26:
fireObject="'Fire337"

if modDict.get('hrrindex'")==27:
fireObject='Fire341'

if modDict.get('hrrindex')==28:
fireObject="Fire343"

if modDict.get('hrrIindex'")==29:
fireObject="'Fire354"

if modDict.get('hrrindex')==30:
fireObject='Fire356'

outfile.write ('OBJECT, ")

outfile.write(fireObject)

outfile.write(',1,")

outfile.write(str(0.5*modDict.get('length')))

outfile.write(',")

outfile.write(str(0.5*modDict.get ('width')))

outfile.write(', ")

outfile.write(str(modDict.get('fireHeight')))

outfile.write(',1,1,0,0,0,1\n")

outfile.close()

return currentInputFiles

124

A3 USER-DEFINED PYTHON FUNCTIONS

The FunFireHeight.py user-defined function defines the fire elevation above floor level, which is

based on a sampled fraction, between zero (0) and 90%, of the room height.

def evaluate(self):
return self.height*self.fireHeightFract

The FunFloorArea.py user-defined function calculates the compartment floor area based

on its sampled length and width.

def evaluate(self):
return self.length*self.width

The FunHRRadj.py user-defined function extracts the number of adjacent cabinets from

the IgnitSourceData.csv data file.

import numpy as np
def evaluate(self):
data = np.loadtxt('IgnitSourceData.csv',delimiter="',")
data=np.array(data)
hrrIndex=int (round(self.hrr))
return datal[8,hrrIndex-1]

The FunHRRdata.py user-defined function extracts various heat release rate parameters
from the IgnitSourceData.csv data file.

125

import numpy as np
def evaluate(self):
data = np.loadtxt('IgnitSourcebData.csv',delimiter=",")
data=np.array(data)
hrrIndex=int (round(self.hrr))
return data[8,hrrIndex-1]

The FunHRRindex.py user-defined function simply rounds the sampled heat release rate

to the nearest integer, since the heat release rate profiles are indexed.

def evaluate(self):
return int (round(self.hrr))

The FunHRRpdf.py user-defined function extracts the heat release rate probability density

function identifier from the IgnitSourceData.csv data file.

import numpy as np
def evaluate(self):
data = np.loadtxt('IgnitSourceData.csv',delimiter=",")
data=np.array(data)
hrrIndex=int (round(self.hrr))
return datal[l,hrrIndex-1]

126

The FunHRRtray*.py user-defined functions extract the number of cable trays at each

elevation in the tray stack from the IgnitSourceData.csv data file.

import numpy as np
def evaluate(self):
data = np.loadtxt('IgnitSourceData.csv',delimiter=",")
data=np.array(data)
hrrIndex=int (round(self.hrr))
return data[2,hrrIndex-1]

A4 MODIFIED .CSV LOADER

The following lines in the Csv_loader.py file were modified to accommodate the CFAST-

generated .CSV output files, in which the first two rows contain header information, and the data

starts on the third row. These modifications were necessary because the base Csv_loader.py file

that comes with the RAVEN framework expects the data start on the second row.

def loadCsvFile(self,myFile):

open file

myFile.open (mode="rb'")

read the field names

#head = myFile.readline () .decode ()

lines=myFile.readlines () #MODIFICATION

head=lines[1] #MODIFICATION

self.allFieldNames = head.split(',"')

for index in range(len(self.allFieldNames)): self.allFieldNames[index]
self.allFieldNames[index].strip()

127

load the table data (from the csv file) into a numpy nd array

data =
np.loadtxt (myFile,dtype="float',delimiter="',"',ndmin=2,skiprows=2,usecols=(0,1
,2,3,4,5,6,7,8,9)) #MODIFICATION

close file

myFile.close()

return data

A5 MODIFIED H5 PYTHON INTERFACE

Line 269 of the h5py_interface_creator.py file was similarly modified to accommodate the
CFAST-generated .CSV output files, in which the first two rows contain header information, and
the data starts on the third row. This modification was necessary because the base
h5py_interface_creator.py file that comes with the RAVEN framework expects the data start on

the second row.

data =
np.loadtxt (f,dtype="'float',delimiter=", "' ,ndmin=2,skiprows=2,usecols=(0,1,2,3,
4,5,6,7,8,9,10,11,12)) #MODIFICATION

A6 MATLAB HDF5 PROCESSING SCRIPT

The following MATLAB script imports the HDF5 database of results generated by RAVEN and
creates various plots use in this report. Note that HDF5 is a hierarchical (versus relational)

database format that cannot be accessed by Microsoft Access or Excel.

$% FRONTMATTER
clc
clear all

128

close all

set (0, 'DefaultTextFontname', 'Times New Roman') ;
set (0, 'DefaultAxesFontname', 'Times New Roman') ;
set (0, 'defaultfigurecolor',[1 1 11);

%$Initialize

filename=strcat ('DatabaseStorage\',uigetfile('*.h5"));
$filename="'GoldStandardRun\run2 db.h5";
h5disp(filename) ;

fileinfo=hdf5info(filename) ;
toplevel=fileinfo.GroupHierarchy;
numSamples=length (toplevel.Groups.Groups) ;
numTimeSteps=360;

sampleIDs=cell (numSamples, 1) ;
ravenOUTdata=zeros (numTimeSteps, 13, numSamples) ;
$MATLAB2015b

ravenINdata=zeros (numSamples,length (eval (cell2mat ((h5readatt (filename, topleve
1.Groups.Groups (1) .Name, 'inputSpaceValues'))))))
$MATLAB2016b

$ravenINdata=zeros (numSamples, length ((hS5readatt (filename, toplevel.Groups.Grou
ps (1) .Name, 'inputSpaceValues'))));

$Import RAVEN Input Data from HDF5 into MATLAB Matrix
ravenINdataNames=h5readatt (filename,toplevel.Groups.Groups (1) .Name, 'inputSpac
eHeaders') ;
ravenINdataNames=transpose (ravenINdataNames) ;
for sample=l:numSamples

SMATLAB2015b

sampledInputValues=hSreadatt (filename,toplevel.Groups.Groups (sample) .Name, 'in
putSpaceValues'); S%$produces cell
sampledInputValues=eval (cellZmat (sampledInputValues)); %converts cell
to matrix
$MATLAB2016b

$sampledInputValues=h5readatt (filename, toplevel.Groups.Groups (sample) .Name, "1
nputSpaceValues') ;
ravenINdata (sample, :)=sampledInputValues;
sampleIDs{sample,l}=toplevel.Groups.Groups (sample) .Name;
end
clear sampledInputValues

%$Translate Cabinet HRR PDF Index to 98th Percentile Peak HRR
for sample=l:numSamples
if ravenINdata (sample,?)==
ravenINdata (sample,2)=211;
elseif ravenINdata (sample,?)==
ravenINdata (sample,2)=170;
elseif ravenINdata (sample,?2)==10
ravenINdata (sample,?2)=130;
end
end

129

$Import RAVEN Output Data from HDF5 into MATLAB Matrix
ravenOUTdataNames={'Time (s) ', 'ULT(C)"',"'LLT(C) ", "HGT (m) "', "PRS(Pa)"','ULOD(1/m)"
,"LLOD(1/m) ', "HRR (kW) ', '"FLHGT (m) ', 'FBASE (m) ', 'FAREA (m2) ', '"HVENT 1 (m2)','HVENT
_2(m2) "};
for sample=l:numSamples
tempDataSetName=toplevel.Groups.Groups (sample) .Datasets.Name;
tempDataSet = transpose(h5read(filename,tempDataSetName)) ;
ravenOUTdata (:,:,sample)=tempDataSet (1:360,:);
end
clear tempDataSet tempDataSetName

% Collect Predictor and Response Variables into one .CSV File for RAVEN
responseVars=zeros (numSamples, ?) ;
ravenROMdata=zeros (numSamples, 18+2) ;
for sample=l:numSamples

[M,I]=max (ravenOUTdata(:,”2,sample)) ;

responseVars (sample, 1)=M;

responseVars (sample,?)=ravenOUTdata(I,1,sample)./60;

ravenROMdata (sample,l1:18)=ravenINdata (sample,:);

ravenROMdata (sample, 19:20)=responseVars (sample, :);
end
ravenROMdata=array2table (ravenROMdata) ;
ravenROMdata.Properties.VariableNames = {'hrrIindex' 'hrrPDEF' 'tempAmb' 'hrr'
'floorArea' 'width' 'length' 'ventPerVol' 'fireHeightFract' 'fireHeight'
'hrrTray4' 'hrrTray5' 'hrrTray6' 'height' 'hrrAdj' 'hrrTrayl' 'hrrTray2'
'hrrTray3' 'maxULT' 'timeToMaxULT'};
runDescriptor=char (inputdlg('Type Run Desriptor for Results SavelAs
Filenames'));
writetable (ravenROMdata,strcat ('C:\msys64\home\worrelcl\raven\clarence\cfast\
RAVEN CFAST\GoldStandardRun\Run', runDescriptor,'ravenROMdata.csv'));
hist (ravenINdata(:,1))

A7 MATLAB FIGURES OF CFAST RESULTS

The following MATLAB script generates plots of various CFAST-calculated quantities such as

upper layer temperature, upper layer height, and compartment pressure as functions of time.

$% Initialize
clc; clear all; close all;
set (0, 'DefaultTextFontname', 'Times New Roman');

130

set (0, 'DefaultAxesFontname','Times New Roman') ;
set (0, 'defaultfigurecolor',[1 1 11);

cd ('C:\msys64\home\worrelcl\raven\clarence\CFAST\CFAST Output Figures');
filename="'MC500 results.h5';

h5disp(filename) ;

fileinfo=hdf5info(filename) ;
toplevel=fileinfo.GroupHierarchy;
numSamples=length (toplevel.Groups.Groups) ;
numTimeSteps=360;

sampleIDs=cell (numSamples, 1),
ravenOUTdata=zeros (numTimeSteps, 13, numSamples) ;
SMATLAB2015b

ravenINdata=zeros (numSamples,length (hSreadatt (filename,toplevel.Groups.Groups
(1) .Name, 'inputSpaceHeaders')));
$MATLAB2016b

$ravenINdata=zeros (numSamples, length ((h5readatt (filename, toplevel.Groups.Grou
ps (1) .Name, 'inputSpaceValues'))));

% Import RAVEN Input Data from HDF5 into MATLAB Matrix
ravenINdataNames=h5readatt (filename, toplevel.Groups.Groups(l) .Name, "'inputSpac
eHeaders') ;
ravenINdataNames=transpose (ravenINdataNames) ;
for sample=l:numSamples

$MATLAB2015b

sampledInputValues=hbSreadatt (filename,toplevel.Groups.Groups (sample) .Name, 'in
putSpaceValues'); S%$produces cell
sampledInputValues=eval (cell2mat (sampledInputValues)); Sconverts cell
to matrix
SMATLAB2016b

$sampledInputValues=h5readatt (filename, toplevel.Groups.Groups (sample) .Name, "1
nputSpaceValues');
ravenINdata (sample, :)=sampledInputValues;
sampleIDs{sample, ! }=toplevel.Groups.Groups (sample) .Name;
end
clear sampledInputValues

$Import RAVEN Output Data from HDF5 into MATLAB Matrix
ravenOUTdataNames={'Time (s) ', 'ULT(C) "', "LLT(C) ", "HGT (m) ", "PRS (Pa) ', 'ULOD (1/m)"
,'LLOD (1/m) ', "HRR (kW) ', '"FLHGT (m) ', 'FBASE (m) ', 'FAREA (m2) ', "HVENT 1 (m2)','HVENT
_2(m2) "};
for sample=l:numSamples
tempDataSetName=toplevel.Groups.Groups (sample) .Datasets.Name;
tempDataSet = transpose(hSread(filename,tempDataSetName)) ;
ravenOUTdata (:,:,sample)=tempDataSet (1:360,:);
end
clear tempDataSet tempDataSetName

%% PLOT CABINET FIRE HRR
figure

%Cabinet Fire HRR (Prescribed Input)

131

subplot(2,1,1)
hrrInputFile=strcat(pwd, '\figures.xlsx");
inputQ=xlsread(hrrInputFile, 'HRRdata', 'B18:XFD137");

[numRow,numCol]=size (inputQ) ;
for col=1:numCol

if mod(col,?2)==

plot (inputQ(:,col) ,inputQ(:,col+1)); hold on;

end
end
set(gca, 'fontweight', 'normal')
title('Prescribed Heat Release Rate (CFAST Input)','FontSize', 12); hold on;
xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Heat Release Rate (kW)', 'fontweight','bold', 'FontSize', 12); hold
onj;
x1im ([0 601); ylim([O 250071);

subplot(2,1,2) %Cabinet Fire HRR (RAVEN-CFAST Output)
for sample=l:numSamples

plot (ravenOUTdata(:,1,sample)./60,ravenOUTdata(:,8,sample)); hold on;
end
set(gca, 'fontweight', 'normal')
title('Realized Heat Release Rate (CFAST Output)','FontSize', 12); hold on;
xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Heat Release Rate (kW)', 'fontweight', 'bold', 'FontSize', 12); hold
on;
x1im ([0 60]1); ylim([O 25001);

clear col hrrInputFile sample col row numCol numRow

%% PLOT UPPER LAYER TEMPERATURE RESULTS (RAVEN-CFAST Output)
figure
for sample=l:numSamples
plot (ravenOUTdata(:,1,sample) ./60,ravenOUTdata(:,2,sample)); hold on;
end
set(gca, 'fontweight', 'normal')
title('Upper Layer Temperature vs. Time (500 Runs)','FontSize', 14); hold on;
xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Upper Layer Temperature (C)', 'fontweight','bold', 'FontSize', 12);
hold on;
x1im ([0 601),; ylim([O 4001);

clear sample

%% PLOT LOWER LAYER TEMPERATURE RESULTS (RAVEN-CFAST Output)
figure
for sample=l:numSamples
plot (ravenOUTdata(:,1,sample)./60,ravenOUTdata(:,3,sample)); hold on;
end
set(gca, 'fontweight', 'normal')
title('Lower Layer Temperature vs. Time (500 Runs)','FontSize', 14); hold on;
xlabel ('Time (s)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Lower Layer Temperature (C)', 'fontweight','bold', 'FontSize', 12);
hold on;
x1im ([0 601); ylim([O 40071);

132

clear sample

%% PLOT UPPER LAYER HEIGHT RESULTS (RAVEN-CFAST Output)
figure
for sample=l:numSamples
plot (ravenOUTdata(:,1,sample)./60,ravenOUTdata(:,4,sample)); hold on;
end
set(gca, 'fontweight', 'normal')
title('Upper Layer Height vs. Time (500 Runs)','FontSize', 14); hold on;
xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Upper Layer Height (m)', 'fontweight','bold', 'FontSize', 12); hold
on;
x1im ([0 601); ylim([O 101);

clear sample

%% PLOT COMPARTMENT PRESSURE RESULTS (RAVEN-CFAST Output)

figure

for sample=l:numSamples
plot(ravenOUTdata(:,1,sample)./60,ravenOUTdata(:,5,sample)); hold on;

end

set(gca, 'fontweight', 'normal')

title('Compartment Pressure vs. Time (500 Runs)','FontSize', 14); hold on;

xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;

ylabel ('Compartment Pressure (Pa)', 'fontweight','bold', 'FontSize', 12);

hold on;

x1im ([0 60]); Sylim ([0 107);

clear sample

%% PLOT UPPER LAYER OPTICAL DENSITY RESULTS (RAVEN-CFAST Output)

figure

for sample=l:numSamples
plot(ravenOUTdata(:,1,sample)./60,ravenOUTdata(:,6,sample)); hold on;

end

set(gca, 'fontweight', 'normal')

title('Optical Density vs. Time (500 Runs)','FontSize', 14); hold on;

xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;

ylabel ('Upper Layer Optical Denisty (1/m)', 'fontweight','bold', 'FontSize',

12); hold on;

x1im ([0 601); ylim([O 501);

clear sample

%% PLOT FLAME HEIGHT RESULTS (RAVEN-CFAST Output)
figure
for sample=l:numSamples
plot (ravenOUTdata(:,1,sample)./60,ravenOUTdata(:,9,sample)); hold on;
end
set(gca, 'fontweight', 'normal')
title('Flame Height vs. Time (500 Runs)','FontSize', 14); hold on;
xlabel ('Time (min)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Flame Height (m)', 'fontweight','bold', 'FontSize', 12); hold on;
x1im ([0 601); %ylim ([0 3]); clear sample

133

A8 ASSEMBLY OF RAVEN-CFAST OUTPUT FOR ROM TRAINING

The following MATLAB script assembles the input and output parameter values of the RAVEN-
CFAST simulation in preparation for ROM training and testing. This script also generates

histograms of the input parameters.

%% CONSOLIDATE RAVEN OUTPUT FILES INTO TRAINING AND TEST SETS

%% Initialize

clc; clear all; close all;

set (0, 'DefaultTextFontname', 'Times New Roman');

set (0, 'DefaultAxesFontname','Times New Roman');

set (0, 'defaultfigurecolor',[1 1 11);

cd ('C:\msys64\home\worrelcl\raven\clarence\CFAST\ROM\ROM Pre Process');
files = dir('Run*ravenROMdata.csv'");

%% Read header

fid = fopen(files (1) .name);

header = textscan(fid,'%s',20,'Delimiter',"', "),
header=header{1};

fclose(fid); clear fid ans;

%% Read all data into one table
allData = csvread(files(l) .name, 1) ;
for n = 2:numel (files)
temp = csvread(files(n) .name,l);
allData = vertcat(allData, temp);
end
clear files n temp

%% Center and scale all parameters
% Comment / uncomment as desired
for col=1l:length (header)

% allData(:,col)=(allData(:,col) -
mean (allData(:,col)))./std(allbata(:,col));
% end

% clear col

%% This code section added because it was discovered, after the
% GoldStandard run was completed, that the RAVEN-CFAST code was

134

o\

grabbing the assocated tray counts, cabinet hrr PDF, and a number of
adjacent cabinets incorrectly. These parameters are predictors, but

they were not actually needed directly for the CFAST calculations. The
CFAST data generated by RAVEN has been reviewed and is correct. The

code below replaces the affected parameters with the correct values,
using HRRindex as the key. Affected parameters include: hrrPDF, hrrTrayl,
hrrTray2, hrrTray3, hrrTray4, hrrTray5, hrrTray6, and hrrAdj. Also added
fireObject for clarification.

o° 0 o d° oP° o°

oo

ignitSourceData=csvread('IgnitSourceData.csv'");
%Note the column numbers of ignitSourceData correspond to HRRindex

numSamples=length (allData) ;

for row=l:numSamples
hrrIndex=allData (row, 1) ;
allData (row,2l)=ignitSourceData(l,hrrIndex); %$fireObject
allData (row,2)=ignitSourceData(?,hrrIndex); ShrrPDF
allData(row, l6)=ignitSourceData(3,hrrIndex); ShrrTrayl
allData(row,l7)=ignitSourceData(4,hrrIndex); ShrrTray?2
allData(row, 18)=ignitSourceData(5,hrrIndex); ShrrTray3
allData(row,ll)=ignitSourceData(6,hrrIndex); %hrrTray4
allData (row,l2)=ignitSourceData(7,hrrIndex); %hrrTray5
allData(row, 1 3)=ignitSourceData(8,hrrIndex); %hrrTray6
allData(row, 1 5)=ignitSourceData(9,hrrIndex); %ShrrAdj

end

header{21}="fireObject'

%$Translate Cabinet HRR PDF Index to 98th Percentile Peak HRR
for sample=l:numSamples
if allData(sample,?2)==
allData (sample,2)=211;
elseif allData(sample,2)==
allData (sample,2)=170;
elseif allData(sample,?2)==10
allData (sample,?2)=130;
end
end

clear col hrrIndex numSamples row sample

%% Split randomly into train and test data
numSamples=length(allData) ;
idx=randperm(numSamples) ;
trainData=allData(idx(1:0.8*numSamples),:);
testData=allData(idx (1 :0.2*numSamples),:);
clear idx numRecords

% Write training data to CSV file

fileID = fopen(' trainbata.csv','w');
fprintf (filelID, '%s, ',header{l:end-1,1});
fprintf (filelID, '%s\n',header{end, 1});
fclose(filelID) ;

dlmwrite(' trainbata.csv',trainData,'delimiter',',','-append');
clear fileID ans

% Write testing data to CSV file

135

fileID = fopen(' testData.csv','w');
fprintf(fileID, '%s, ' ,header{l:end-1,1});

fprintf (fileID, '$s\n',header{end, 1});

fclose(filelD);

dlmwrite(' testData.csv',testData,'delimiter',',','-append');
clear fileID ans

%% HISTOGRAMS OF INPUT PARAMETERS FOR ENTIRE DATA SET
figure

subplot(3,3,1) %Room Length

col=regexp (header, regexptranslate('wildcard','length*")); %$finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Room Length (m)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(2,3,2) %Room Width

col=regexp (header, regexptranslate('wildcard',6'width*")); %finds parameter
location, dealing with its trailing spaces
col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Room Width (m)','fontweight', ' 'bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,3) %Room Height

col=regexp (header, regexptranslate('wildcard', 'height*"')); %finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col),b)

set(gca, 'fontweight', 'normal')

xlabel ('Room Height (m)','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot (3,3,4) %Ambient Temperature

col=regexp (header, regexptranslate('wildcard','tempAmb*')); %finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Ambient Temperature (K)','fontweight','bold', 'FontSize', 12); hold
on;

ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,5) %Vent Rate per Room Volume

col=regexp (header, regexptranslate('wildcard',6'ventPerVol*')),; %finds
parameter location, dealing with its trailing spaces
col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Vent Rate per Room Vol (m"3/s-m"3)','fontweight','bold', 'FontSize',
12); hold on;

136

ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,6) %$Fire Height Fraction

col=regexp (header, regexptranslate('wildcard','fireHeightFract*")); %$finds
parameter location, dealing with its trailing spaces
col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allbData(:,col),b5)

set(gca, 'fontweight', 'normal')

xlabel ('Fire Height (Fraction)','fontweight','bold', 'FontSize', 12); hold
onj;

ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,7) %$Heat Release Rate Index

col=regexp (header, regexptranslate('wildcard',6 'hrrIindex*'"')); %$finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Heat Release Rate Index','fontweight', 'bold', 'FontSize', 12); hold
on;

ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

figure

subplot(3,3,1) %$Heat Release Rate PDF

col=regexp (header, regexptranslate('wildcard', '"hrrPDF*")); %finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Cabinet Peak Heat Release Rate ','fontweight','bold', 'FontSize',
12); hold on;

ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,2) %Trayl

col=regexp (header, regexptranslate('wildcard',6 'hrrTrayl*"')); %$finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Tray Elev 1','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,3) %Tray?2

col=regexp (header, regexptranslate('wildcard',6 'hrrTray2*"')); %$finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Tray Elev 2','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot (3,3,4) %Tray3
col=regexp (header, regexptranslate('wildcard', 'hrrTray3*')); %$finds parameter
location, dealing with its trailing spaces

137

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Tray Elev 3','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,5) %$Tray4

col=regexp (header, regexptranslate('wildcard',6 'hrrTray4*')); %finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Tray Elev 4','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,60) %$Trayb

col=regexp (header, regexptranslate('wildcard', 'hrrTray5*')); %finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Tray Elev 5','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot(3,3,7) %$Trayb6

col=regexp (header, regexptranslate('wildcard',6 'hrrTray6*')); %finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Tray Elev 6','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

subplot (3,3,8) %AdjCab

col=regexp (header, regexptranslate('wildcard',6 '"hrrAdj*')); $finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Num Adjacent Cabinets','fontweight','bold', 'FontSize', 12); hold on;
ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

%% HISTOGRAMS OF RESPONSE VARIABLES FOR ENTIRE DATA SET
figure

subplot(2,1,1) %$Max ULT

col=regexp (header, regexptranslate('wildcard', 'maxULT*')); %$finds parameter
location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Max Upper Layer Temperature (C)','fontweight','bold', 'FontSize',
12); hold on;

ylabel ('Count', 'fontweight','bold', 'FontSize', 12); hold on;

138

subplot(2,1,2) %Time to Max ULT
col=regexp (header, regexptranslate('wildcard','timeToMaxULT*")); %$finds
parameter location, dealing with its trailing spaces

col(cellfun('isempty',col))={0}; col = find([col{:}] == 1);
hist(allData(:,col))

set(gca, 'fontweight', 'normal')

xlabel ('Time (min) to Max Upper Layer Temperature','fontweight', 'bold',
'FontSize',); hold on;

ylabel ('Count', 'fontweight','bold', 'FontSize',); hold on;

A9 RAVEN REDUCED ORDER MODEL INITIAL TRAINING AND TESTING

The following RAVEN input file, written in XML, performs an initial training and testing of

twenty five (25) reduced order model types available within RAVEN.

<?xml version="1.0" ?>
<Simulation verbosity="debug">

<RunInfo>
<WorkingDir>ROM/ROM Post_ Process/InitialTesting(o£f26)</WorkingDir>
<Sequence>
read train data,
train_ ROMmsrA, test ROMmsrA,
tra1n ROMmsrB, test ROMmsrB,
train] ROMndInvDW test ROMndInvDW,
train ROMbayesRldge test .__ROMbayesRidge,
train ROMelasticNet,test ROMelasticNet,
train] ROMelastlcNetCV test ROMelasticNetCV,
train] ROMlars test ROMlars,
train] ROMlarsCV test ROMlarsCV,
train] ROMlasso test ROMlasso,
train] ROMlassoCV test ROMlassoCV,
traln_ROMlassoLars test_ROMlassoLars,
train_ROMlassolLarsCV,test ROMlassoLarsCV,
train ROMlassoLarsIC,test ROMlassoLarsIC,
train ROMlinearReg,test ROMlinearReq,
train ROMmultiTaskLasso,test ROMmultiTaskLasso,
train ROMmultiTaskElasticNet,test ROMmultiTaskElasticNet,
train_ ROMomp, test ROMomp,
train ROMompCV, test ROMompCV,
train ROMpassAggReg,test ROMpassAggRegq,
train ROMridge, test ROMridge,
train_ ROMridgeCV, test ROMridgeCV,
train_ROMsgdRegressor, test ROMsgdRegressor,
train ROMsvr,test ROMsvr,

139

train_ ROMknnReg, test ROMknnRegq,
train ROMradiusNeighReg,test ROMradiusNeighRegq,
train ROMdecTreeReg,test ROMdecTreeRegq,
train_ROMextraTreeReg, test_ROMextraTreeReg
</Sequence>
<batchSize>1</batchSize>
</RunInfo>

<Files>
<Input name="trainROM"> trainData.csv</Input>
<Input name="testROM"> testData.csv</Input>
</Files>

<Models>
<ROM name="ROMmsrA" subType="MSR">

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT</Target>
<simplification>0.0</simplification>
<persistence>difference</persistence>
<gradient>steepest</gradient>
<graph>beta skeleton</graph>
<beta>1l</beta>
<knn>8</knn>
<partitionPredictor>kde</partitionPredictor>
<kernel>gaussian</kernel>
<smooth/>
<bandwidth>0.2</bandwidth>
</ROM>
<ROM name="ROMmsrB" subType="MSR">

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>timeToMaxULT</Target>
<simplification>0.0</simplification>
<persistence>difference</persistence>
<gradient>steepest</gradient>
<graph>beta skeleton</graph>
<beta>1l</beta>
<knn>8</knn>
<partitionPredictor>kde</partitionPredictor>
<kernel>gaussian</kernel>
<smooth/>
<bandwidth>0.2</bandwidth>
</ROM>
<ROM name="ROMndInvDW" subType="NDinvDistWeight">

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAd]j, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<p>3</p>
</ROM>
<ROM name='ROMbayesRidge' subType='SciKitLearn'>

140

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model |BayesianRidge</SKLtype>
</ROM>
<ROM name='ROMelasticNet' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|ElasticNet</SKLtype>
</ROM>
<ROM name='ROMelasticNetCV' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2 ,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|ElasticNetCV</SKLtype>
</ROM>
<ROM name='ROMlars' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|Lars</SKLtype>
</ROM>
<ROM name='ROMlarsCV' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2 ,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|LarsCV</SKLtype>
</ROM>
<ROM name='ROMlasso' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|Lasso</SKLtype>
</ROM>
<ROM name='ROMlassoCV' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|LassoCV</SKLtype>
</ROM>
<ROM name='ROMlassolars' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 6 hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|LassoLars</SKLtype>
</ROM>
<ROM name='ROMlassoLarsCV' subType='SciKitLearn'>

141

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model |LassoLarsCV</SKLtype>
</ROM>
<ROM name='ROMlassoLarsIC' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 6 hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2 ,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|LassoLarsIC</SKLtype>
</ROM>
<ROM name='ROMlinearReg' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|LinearRegression</SKLtype>
<fit intercept>True</fit intercept>
<normalize>False</normalize>
</ROM>
<ROM name='ROMmultiTaskLasso' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2 ,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|MultiTaskLasso</SKLtype>
</ROM>
<ROM name='ROMmultiTaskElasticNet' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 6 hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>

<Target>maxULT, timeToMaxULT</Target>

<SKLtype>linear model|MultiTaskElasticNet</SKLtype>

</ROM>

<ROM name='ROMomp' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|OrthogonalMatchingPursuit</SKLtype>
</ROM>
<ROM name='ROMompCV' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 6 hrrTray5, hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2, hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|OrthogonalMatchingPursuitCV</SKLtype>
</ROM>
<ROM name='ROMpassAggReg' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5, hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>

142

<SKLtype>linear model |PassiveAggressiveRegressor</SKLtype>
</ROM>
<!--ROM name='ROMperceptron' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, hrrTray5, hr
rTray6,height, hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|Perceptron</SKLtype>
</ROM-->
<ROM name='ROMridge' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 6 hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model |Ridge</SKLtype>
</ROM>
<ROM name='ROMridgeCV' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2 ,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model|RidgeCV</SKLtype>
</ROM>
<ROM name='ROMsgdRegressor' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>linear model | SGDRegressor</SKLtype>
</ROM>
<ROM name='ROMsvr' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>svm|SVR</SKLtype>
</ROM>
<ROM name='ROMknnReg' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,hrrTray5,hr
rTray6,height,hrrAd]j, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>neighbors|KNeighborsRegressor</SKLtype>
</ROM>
<ROM name='ROMradiusNeighReg' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5, hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2, hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>neighbors|RadiusNeighborsRegressor</SKLtype>
</ROM>
<ROM name='ROMdecTreeReg' subType='SciKitLearn'>

<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj hrrTrayl, hrrTray2,hrrTray3</Features>

143

<Target>maxULT, timeToMaxULT</Target>
<SKLtype>tree|DecisionTreeRegressor</SKLtype>
</ROM>
<ROM name='ROMextraTreeReg' subType='SciKitLearn'>
<Features>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,6 hr
rTray6,height,hrrAdj, hrrTrayl, hrrTray2,hrrTray3</Features>
<Target>maxULT, timeToMaxULT</Target>
<SKLtype>tree|ExtraTreeRegressor</SKLtype>
</ROM>

</Models>
<Samplers>

<CustomSampler name="customSamplerFile">
<Source class="Files" type="">testROM</Source>

<variable
<variable
<variable

name="hrrIndex"/>
name="hrrPDF" />
name="tempAmb" />

<variable
<variable
<variable
<variable
<variable

name="hrr" />
name="floorArea" />
name="width" />
name="length" />
name="ventPerVol" />

<variable name="fireHeightFract"/>
<variable name="fireHeight"/>
<variable name="hrrTray4"/>
<variable name="hrrTray5"/>
<variable name="hrrTray6"/>
<variable name="height"/>
<variable name="hrrAdj"/>
<variable name="hrrTrayl"/>
<variable name="hrrTray2"/>
<variable name="hrrTray3"/>
<variable name="maxULT"/>
<variable name="timeToMaxULT"/>
</CustomSampler>
</Samplers>
<Steps>

<IOStep name="read train data">

<Input class="Files" type="">trainROM</Input>

<Output class="DataObjects" type="PointSet">trainROM pointset</Output>
</I0Step>

<RomTrainer name="train ROMmsrA">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMmsrA</Output>

</RomTrainer>

<RomTrainer name="train ROMmsrB">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMmsrB</Output>

</RomTrainer>

<RomTrainer name="train ROMndInvDW">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>

144

<Output class="Models" type="ROM">ROMndInvDW</Output>
</RomTrainer>
<RomTrainer name="train ROMbayesRidge">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM'">ROMbayesRidge</Output>
</RomTrainer>
<RomTrainer name="train ROMelasticNet'">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMelasticNet</Output>
</RomTrainer>
<RomTrainer name="train ROMelasticNetCv">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMelasticNetCV</Output>
</RomTrainer>
<RomTrainer name="train ROMlars">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlars</Output>
</RomTrainer>
<RomTrainer name="train ROMlarsCV">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlarsCV</Output>
</RomTrainer>
<RomTrainer name="train ROMlasso">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlasso</Output>
</RomTrainer>
<RomTrainer name="train ROMlassoCV'">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlassoCV</Output>
</RomTrainer>
<RomTrainer name="train ROMlassoLars'">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlassoLars</Output>
</RomTrainer>
<RomTrainer name="train ROMlassoLarsCV">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlassoLarsCV</Output>
</RomTrainer>
<RomTrainer name="train ROMlassoLarsIC">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlassoLarsIC</Output>
</RomTrainer>
<RomTrainer name="train ROMlinearReg">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMlinearReg</Output>
</RomTrainer>
<RomTrainer name="train ROMmultiTaskLasso">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMmultiTaskLasso</Output>
</RomTrainer>
<RomTrainer name="train ROMmultiTaskElasticNet">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMmultiTaskElasticNet</Output>
</RomTrainer>
<RomTrainer name="train ROMomp'">

145

<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMomp</Output>
</RomTrainer>
<RomTrainer name="train ROMompCV">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMompCV</Output>
</RomTrainer>
<RomTrainer name="train ROMpassAggReg">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM'">ROMpassAggReg</Output>
</RomTrainer>
<!--RomTrainer name="train ROMperceptron">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMperceptron</Output>
</RomTrainer-->
<RomTrainer name="train ROMridge">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMridge</Output>
</RomTrainer>
<RomTrainer name="train ROMridgeCV">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMridgeCV</Output>
</RomTrainer>
<RomTrainer name="train_ ROMsgdRegressor">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMsgdRegressor</Output>
</RomTrainer>
<RomTrainer name="train ROMsvr'">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMsvr</Output>
</RomTrainer>
<RomTrainer name="train ROMknnReg">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMknnReg</Output>
</RomTrainer>
<RomTrainer name="train ROMradiusNeighReg">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMradiusNeighReg</Output>
</RomTrainer>
<RomTrainer name="train ROMdecTreeReg">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM">ROMdecTreeReg</Output>
</RomTrainer>
<RomTrainer name="train ROMextraTreeReg">
<Input class="DataObjects" type="PointSet">trainROM pointset</Input>
<Output class="Models" type="ROM'">ROMextraTreeReg</Output>
</RomTrainer>

<MultiRun name="test_ ROMmsrA">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMmsrA</Model>
<Sampler class='Samplers' type =

'CustomSampler'>customSamplerFile</Sampler>

<Output class="DataObjects"

type="PointSet">testROMmsrA output pointset</Output>

146

<Output class="OutStreams" type="Print">ROMmsrA</Output>
</MultiRun>
<MultiRun name="test ROMmsrB">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMmsrB</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMmsrB_output_pointset</Output>
<Output class="OutStreams" type="Print">ROMmsrB</Output>
</MultiRun>
<MultiRun name="test ROMndInvDW">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMndInvDW</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMndInvDW output pointset</Output>
<Output class="OutStreams" type="Print">ROMndInvDW</Output>
</MultiRun>
<MultiRun name="test ROMbayesRidge">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMbayesRidge</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMbayesRidge output pointset</Output>
<Output class="OutStreams" type="Print">ROMbayesRidge</Output>
</MultiRun>
<MultiRun name="test ROMelasticNet">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMelasticNet</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMelasticNet output_pointset</Output>
<Output class="OutStreams" type="Print">ROMelasticNet</Output>
</MultiRun>
<MultiRun name="test_ROMelasticNetCV">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMelasticNetCV</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMelasticNetCV_output pointset</Output>
<Output class="OutStreams" type="Print">ROMelasticNetCV</Output>
</MultiRun>
<MultiRun name="test_ ROMlars">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlars</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlars_output_pointset</Output>
<Output class="OutStreams" type="Print">ROMlars</Output>

147

</MultiRun>
<MultiRun name="test ROMlarsCV">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlarsCV</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlarsCV_output pointset</Output>
<Output class="OutStreams" type="Print">ROMlarsCV</Output>
</MultiRun>
<MultiRun name="test ROMlasso">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlasso</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlasso output pointset</Output>
<Output class="OutStreams" type="Print">ROMlasso</Output>
</MultiRun>
<MultiRun name="test ROMlassoCV'">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlassoCV</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlassoCV_output pointset</Output>
<Output class="OutStreams" type="Print">ROMlassoCV</Output>
</MultiRun>
<MultiRun name="test_ROMlassolars">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlassoLars</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlassoLars_output pointset</Output>
<Output class="OutStreams" type="Print">ROMlassoLars</Output>
</MultiRun>
<MultiRun name="test_ROMlassoLarsCV">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlassoLarsCV</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type:"PointSet">testROMlassoLarsCV;putput_pointset</Output>
<Output class="OutStreams" type="Print">ROMlassoLarsCV</Output>
</MultiRun>
<MultiRun name="test_ ROMlassoLarsIC">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlassoLarsIC</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlassoLarsIC_output_pointset</Output>
<Output class="OutStreams" type="Print">ROMlassoLarsIC</Output>
</MultiRun>

148

<MultiRun name="test ROMlinearReg">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMlinearReg</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMlinearReg output pointset</Output>
<Output class="OutStreams" type="Print">ROMlinearReg</Output>
</MultiRun>
<MultiRun name="test ROMmultiTaskLasso">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMmultiTaskLasso</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMmultiTaskLasso_output_pointset</Output>
<Output class="OutStreams" type="Print">ROMmultiTaskLasso</Output>
</MultiRun>
<MultiRun name="test_ROMmultiTaskElasticNet">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMmultiTaskElasticNet</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMmultiTaskElasticNet output pointset</Output>
<Output class="OutStreams" type="Print">ROMmultiTaskElasticNet</Output>
</MultiRun>
<MultiRun name="test_ ROMomp">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM'">ROMomp</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMomp output_pointset</Output>
<Output class="OutStreams" type="Print">ROMomp</Output>
</MultiRun>
<MultiRun name="test_ROMompCV">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMompCV</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMompCV_output pointset</Output>
<Output class="OutStreams" type="Print">ROMompCV</Output>
</MultiRun>
<MultiRun name="test ROMpassAggReg">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMpassAggReg</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMpassAggReg output_pointset</Output>
<Output class="OutStreams" type="Print">ROMpassAggReg</Output>
</MultiRun>
<!--MultiRun name="test ROMperceptron">

149

<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMperceptron</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMperceptron output pointset</Output>
<Output class="OutStreams" type="Print">ROMperceptron</Output>
</MultiRun-->
<MultiRun name="test ROMridge">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMridge</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMridge output pointset</Output>
<Output class="OutStreams" type="Print">ROMridge</Output>
</MultiRun>
<MultiRun name="test_ROMridgeCV">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMridgeCV</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMridgeCV_output pointset</Output>
<Output class="OutStreams" type="Print">ROMridgeCV</Output>
</MultiRun>
<MultiRun name="test ROMsgdRegressor">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMsgdRegressor</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMsgdRegressor_output_pointset</Output>
<Output class="OutStreams" type="Print">ROMsgdRegressor</Output>
</MultiRun>
<MultiRun name="test ROMsvr">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMsvr</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type:"PointSet">testROMsvr_output_pointset</Output>
<Output class="OutStreams" type="Print">ROMsvr</Output>
</MultiRun>
<MultiRun name="test ROMknnReg">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMknnReg</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMknnReg output pointset</Output>
<Output class="OutStreams" type="Print">ROMknnReg</Output>
</MultiRun>
<MultiRun name="test_ ROMradiusNeighReg">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>

150

<Model class="Models" type="ROM">ROMradiusNeighReg</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMradiusNeighReg output_ pointset</Output>
<Output class="OutStreams" type="Print">ROMradiusNeighReg</Output>
</MultiRun>
<MultiRun name="test ROMdecTreeReg">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM'">ROMdecTreeReg</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMdecTreeReg output_pointset</Output>
<Output class="OutStreams" type="Print">ROMdecTreeReg</Output>
</MultiRun>
<MultiRun name="test ROMextraTreeReg">
<Input class="DataObjects" type="PointSet">testROM pointset</Input>
<Model class="Models" type="ROM">ROMextraTreeReg</Model>
<Sampler class='Samplers' type =
'CustomSampler'>customSamplerFile</Sampler>
<Output class="DataObjects"
type="PointSet">testROMextraTreeReg output pointset</Output>
<Output class="OutStreams" type="Print">ROMextraTreeReg</Output>
</MultiRun>
</Steps>

<DataObjects>
<PointSet name="trainROM pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 6 hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROM pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5, hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMmsrA output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT</Output>
</PointSet>
<PointSet name="testROMmsrB output_ pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl,hrrTray2, hrrTray3</Input>
<Output>timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMndInvDW_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, 6 hrrTray4,6 hrrTray5,hrrTr

151

ay6,height hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMbayesRidge output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height, hrrAdj,hrrTrayl,hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMelasticNet output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMelasticNetCV_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlars output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlarsCV_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlasso_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlassoCV_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlassoLars_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2 , hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlassoLarsCV_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height,hrrAdj,hrrTrayl,hrrTray2, hrrTray3</Input>

152

<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlassoLarsIC_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height hrrAdj,hrrTrayl hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMlinearReg output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMmultiTaskLasso_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight,6 hrrTray4, 6 hrrTray5, hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMmultiTaskElasticNet output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMomp output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight,6 hrrTray4, 6 hrrTray5,hrrTr
ay6,height hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMompCV_output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMpassAggReg output_ pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMperceptron output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMridge output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>

153

</PointSet>
<PointSet name="testROMridgeCV_output_ pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMsgdRegressor output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5,hrrTr
ay6,height hrrAdj,hrrTrayl hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMsvr_ output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4 , hrrTray5,hrrTr
ay6,height, hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMknnReg output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMradiusNeighReg output pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5,hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2, hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMdecTreeReg output_ pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4, 6 hrrTray5, hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
<PointSet name="testROMextraTreeReg output_pointset">

<Input>hrrPDF, tempAmb, floorArea,ventPerVol, fireHeight, hrrTray4,6 hrrTray5, hrrTr
ay6,height,hrrAdj,hrrTrayl, hrrTray2,hrrTray3</Input>
<Output>maxULT, timeToMaxULT</Output>
</PointSet>
</DataObjects>

<QutStreams>
<Print name="ROMmsrA">
<type>esv</type>
<source>testROMmsrA output_ pointset</source>
</Print>
<Print name="ROMmsrB">
<type>esv</type>
<source>testROMmsrB output_pointset</source>
</Print>
<Print name="ROMndInvDW">

154

<type>esv</type>
<source>testROMndInvDW output pointset</source>
</Print>
<Print name="ROMbayesRidge">
<type>esv</type>
<source>testROMbayesRidge output_ pointset</source>
</Print>
<Print name="ROMelasticNet">
<type>esv</type>
<source>testROMelasticNet output_ pointset</source>
</Print>
<Print name="ROMelasticNetCV">
<type>esv</type>
<source>testROMelasticNetCV_output_pointset</source>
</Print>
<Print name="ROMlars">

<type>ecsv</type>
<source>testROMlars output pointset</source>
</Print>
<Print name="ROMlarsCV">
<type>esv</type>

<source>testROMlarsCV_output pointset</source>
</Print>
<Print name="ROMlasso">
<type>ecsv</type>
<source>testROMlasso_output pointset</source>
</Print>
<Print name="ROMlassoCV">
<type>esv</type>
<source>testROMlassoCV_output_ pointset</source>
</Print>
<Print name="ROMlassoLars'">
<type>esv</type>
<source>testROMlassoLars_output_pointset</source>
</Print>
<Print name="ROMlassoLarsCV">
<type>esv</type>
<source>testROMlassoLarsCV_output pointset</source>
</Print>
<Print name="ROMlassoLarsIC">
<type>esv</type>
<source>testROMlassoLarsIC output pointset</source>
</Print>
<Print name="ROMlinearReg'">
<type>esv</type>
<source>testROMlinearReg output pointset</source>
</Print>
<Print name="ROMmultiTaskLasso">
<type>esv</type>
<source>testROMmultiTaskLasso_output_pointset</source>
</Print>
<Print name="ROMmultiTaskElasticNet">
<type>esv</type>
<source>testROMmultiTaskElasticNet output_pointset</source>
</Print>

155

<Print name="ROMomp">
<type>esv</type>
<source>testROMomp output_ pointset</source>
</Print>
<Print name="ROMompCV">
<type>esv</type>
<source>testROMompCV_output pointset</source>
</Print>
<Print name="ROMpassAggReg">
<type>esv</type>
<source>testROMpassAggReg output_ pointset</source>
</Print>
<Print name="ROMperceptron">
<type>esv</type>
<source>testROMperceptron_ output_ pointset</source>
</Print>
<Print name="ROMridge">
<type>esv</type>
<source>testROMridge output pointset</source>
</Print>
<Print name="ROMridgeCV">
<type>esv</type>
<source>testROMridgeCV_output pointset</source>
</Print>
<Print name="ROMsgdRegressor">
<type>ecsv</type>
<source>testROMsgdRegressor output pointset</source>
</Print>
<Print name="ROMsvr'">
<type>ecsv</type>
<source>testROMsvr output_pointset</source>
</Print>
<Print name="ROMknnReg">
<type>esv</type>
<source>testROMknnReg output pointset</source>
</Print>
<Print name="ROMradiusNeighReg">
<type>esv</type>
<source>testROMradiusNeighReg output pointset</source>
</Print>
<Print name="ROMdecTreeReg">
<type>esv</type>
<source>testROMdecTreeReg output_ pointset</source>
</Print>
<Print name="ROMextraTreeReg">
<type>esv</type>
<source>testROMextraTreeReg output_ pointset</source>
</Print>
</OutStreams>
</Simulation>

156

A.10 MATLAB PLOTTING OF INITIAL ROM TESTING

The following MATLAB script generates plots of observed versus predicted for the initial

reduced order model training and testing.

%% Initialize
clc; clear all; close all;

('C:\msys64\home\worrelcl\raven\clarence\CFAST\ROM\ROM Post Process\InitialTe
sting (of26) ') ;

files = dir('ROM*.csv');

set (0, 'DefaultTextFontname', 'Times New Roman');

set (0, 'DefaultAxesFontname','Times New Roman') ;

set (0, 'defaultfigurecolor',[1 1 11);

% Read and consolidate all predictions into two tables (predMaxULT and
% predTimetoMaxULT)
predMaxULT = readtable(' testData.csv');
predMaxULT = (predMaxULT(:, 'maxULT"));
predMaxULT.Properties.VariableNames{ ' 'maxULT'}="TestData';
for n = l:numel(files)
temp = readtable(files(n) .name) ;
if ismember ('maxULT',temp.Properties.VariableNames)==
ROM=strread(files(n) .name, '%ss','delimiter',"'."); ROM=ROM(1) ;
temp.Properties.VariableNames{ 'maxULT'} = ROM{1};
predMaxULT = horzcat (predMaxULT,temp(:,ROM{1}));
end
end
predTimeToMaxULT = readtable(' testData.csv');
predTimeToMaxULT = (predTimeToMaxULT(:,'timeToMaxULT")) ;
predTimeToMaxULT.Properties.VariableNames{'timeToMaxULT'}="'TestData';
for n = Il:numel(files)
temp = readtable(files(n) .name) ;
if ismember('timeToMaxULT',temp.Properties.VariableNames)==
ROM=strread(files(n) .name, '%s','delimiter',"'."); ROM=ROM(1) ;
temp.Properties.VariableNames{'timeToMaxULT"'} = ROM{1};
predTimeToMaxULT = horzcat (predTimeToMaxULT,temp(:,ROM{1})) ;
end
end
MTXpredMaxULT=tableZarray (predMaxULT) ;
MTXpredTimeToMaxULT=tableZarray (predTimeToMaxULT) ;
clear temp ROM n files

o\°

% Plots of LINEAR ROMs Actual vs. Predicted
% these are grouped for consistency with thesis documentatoin

fig=figure

157

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,4)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Elastic Net','fontweight', 'bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,4)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Elastic Net','fontweight', 'bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set (gca, 'box','on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,5)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Elastic Net (CV)','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:, 1) ,MTXpredTimeToMaxULT (:,5)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Elastic Net (CV)','fontweight','bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box','on")

hold off

print (fig, '-dpng')
fig=figure
subplot(2,2,1)

hold on
scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,17));

158

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Multi-Task Elastic Net','fontweight', 'bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,17)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Multi-Task Elastic Net','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,10));

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Lasso', 'fontweight', 'bold', 'FontSize', 14)

axis ([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,10)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.', 'fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Lasso', 'fontweight', 'bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on')

hold off

print(fig, '-dpng")
fig= figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:, 1) ,MTXpredMaxULT (:,11)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

159

title('Lasso (CV)','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,11)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Lasso (CV)','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,18));

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Multi-Task Lasso','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,18)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.', 'fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Multi-Task Lasso','fontweight','bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"'on")

hold off

print(fig, '-dpng')
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:, 1) ,MTXpredMaxULT (:,12)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Lasso fit with LAR','fontweight','bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

160

set(gca, 'box',"'on")
hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,12)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Lasso fit with LAR','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,13));

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Lasso fit with LAR (CV)','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,13)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)

title('Lasso fit with LAR (CV)','fontweight','bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on')

hold off

print(fig, '-dpng')
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,14));

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Lasso fit with LAR using BIC / AIC','fontweight','bold', 'FontSize'
14)

axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on')

hold off

161

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,14)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.', 'fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title('Lasso fit with LAR using BIC / AIC','fontweight','bold', 'FontSize',
14)

axis([0,60,0,601);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,8)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Least Angle','fontweight','bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set (gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,8)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Least Angle','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"'on")

hold off

print(fig, '-dpng')
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,9)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Least Angle (CV)','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,2)

162

hold on

scatter (MTXpredTimeToMaxULT (:, 1) ,MTXpredTimeToMaxULT (:,9)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title('Least Angle (CV)','fontweight','bold', 'FontSize',6 14)

axis ([0,60,0,601);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MIXpredMaxULT (:,16)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('MSR', 'fontweight', 'bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,16)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('MSR', 'fontweight','bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on')

hold off

print(fig, '-dpng')
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:, 1) ,MTXpredMaxULT (:,15)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Ordinary Linear Regression','fontweight','bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on')

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,15));

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',

163

'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title('Ordinary Linear Regression','fontweight','bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,20)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Orthogonal Matching Pursuit','fontweight', 'bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set (gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,20)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Orthogonal Matching Pursuit','fontweight', 'bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"'on")

hold off

print(fig, '-dpng')
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:, 1) ,MTXpredMaxULT (:,21)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Orthogonal Matching Pursuit (CV)','fontweight','bold', 'FontSize',
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,21)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.', 'fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)

title('Orthogonal Matching Pursuit (CV)','fontweight','bold', 'FontSize',

14)

11)

164

axis([0,60,0,601);
refline(1,0);
set(gca, 'box','on")
hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,22)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Passive Aggressive Regression','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,22)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title('Passive Aggressive Regression','fontweight', 'bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set (gca, 'box','on")

hold off

print(fig, '-dpng')
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,24)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Ridge', 'fontweight', 'bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,24)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.', 'fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title('Ridge', 'fontweight', 'bold', 'FontSize', 14)

axis([0,60,0,601);

refline(1,0);

set(gca, 'box','on")

165

hold off

subplot(2,2,3)

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,25)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Ridge (CV)','fontweight', 'bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:, 1) ,MTXpredTimeToMaxULT (:,25)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Ridge (CV)','fontweight', 'bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set (gca, 'box','on")

hold off

print(fig, '-dpng")
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,2)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Bayesian Ridge','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,2)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Bayesian Ridge','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,3)

166

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,26)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title('SGD Regression','fontweight','bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,26)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('SGD Regression','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on")

hold off

print (fig, '-dpng")

%% Plots of TREE-BASED ROMs Actual vs. Predicted
% these are grouped for consistency with thesis documentatoin

fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,3)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Decision Tree','fontweight','bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,3)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Decision Tree','fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,3)

167

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,6)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Extra Tree','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:, 1) ,MTXpredTimeToMaxULT (:,0)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Extra Tree','fontweight', 'bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on")

hold off

print (fig, '-dpng")

oe

% Thesis Plots of NEIGHBOR-BASED ROMs Actual vs. Predicted
% these are grouped for consistency with thesis documentatoin

fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,7)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold’,
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('K-Nearest Neighbor', 'fontweight','bold', 'FontSize', 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"'on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,7)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('K-Nearest Neighbor', 'fontweight','bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,3)

168

hold on

scatter (MTXpredMaxULT (:,1) ,MITXpredMaxULT (:,23)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Radius-Based Neighbor','fontweight', 'bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,4)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,23)) ;
xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Radius-Based Neighbor','fontweight', 'bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"on")

hold off

print (fig, '-dpng")
fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MIXpredMaxULT (:,19));

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)
title('Inverse Distance Weight','fontweight','bold', 'FontSize',6 14)
axis([0,350,0,3501);

refline(1,0);

set(gca, 'box',"on')

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,19));

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.', 'fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Inverse Distance Weight','fontweight', 'bold', 'FontSize',6 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box','on')

hold off

print (fig, '-dpng')

%% Plots of SUPPORT VECTOR MACHINE ROMs Actual vs. Predicted
% these are grouped for consistency with thesis documentatoin

169

fig=figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1) ,MIXpredMaxULT (:,27)) ;

xlabel ('CFAST Max. Upper Layer Temp. (\circC)','fontweight', 'bold"',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title('Support Vector Machine','fontweight','bold', 'FontSize', 14)
axis ([0,350,0,3501);

refline(1,0);

set(gca, 'box','on")

hold off

subplot(2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:, 1) ,MTXpredTimeToMaxULT (:,27)) ;

xlabel ('CFAST Time (min.) to Max. Upper Layer Temp.','fontweight', 'bold',
'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title ('Support Vector Machine','fontweight', 'bold', 'FontSize', 14)
axis([0,60,0,601);

refline(1,0);

set(gca, 'box',"'on")

hold off

print(fig, '-dpng")

oe

% Plot ROM Actual vs. Predicted for Max ULT
% this section plots all ROMs in their raw order from RAVEN
ROMnamesMax=predMaxULT.Properties.VariableNames;
ROMnamesMax=ROMnamesMax (2:length (ROMnamesMax)) ;
for n=1:length (ROMnamesMax)
switch ROMnamesMax{n}
case 'ROMbayesRidge'
ROMnamesMax{n}="'Bayesian Ridge';
case 'ROMdecTreeReg'
ROMnamesMax{n}="'Decision Tree';
case 'ROMelasticNet'
ROMnamesMax{n}='Elastic Net';
case 'ROMelasticNetCV'
ROMnamesMax{n}='Elastic Net (CV)';
case 'ROMextraTreeReg'
ROMnamesMax{n}="'Extra Tree';
case 'ROMknnReg'
ROMnamesMax{n}="'K-Nearest Neighbors Regressor';
case 'ROMlars'
ROMnamesMax{n}="'Least Angle';
case 'ROMlarsCV'
ROMnamesMax{n}="Least Angle (CV)';
case 'ROMlasso'
ROMnamesMax{n}="'Lasso';
case 'ROMlassoCV'
ROMnamesMax{n}="'Lasso (CV)';

A° d° 0@ 0° A O° OO A O A A A O A A° A° O A A A° ° o° o° o°

o

170

d° A @ O A A° A° A A A A A A A A° O A A A A A A A A A A A° A A A A° A O O A° A A o° J° o°

- oo

0° A0 A d° A o° o° d° o° o°

o\°

end

for

case 'ROMlassoLars'
ROMnamesMax{n}="'Lasso fit with LAR';
case 'ROMlassoLarsCV'
ROMnamesMax{n}="'Lasso fit with LAR (CV)';
case 'ROMlassoLarsIC'
ROMnamesMax{n}="'Lasso fit with LAR using BIC or AIC';
case 'ROMlinearReg'
ROMnamesMax{n}="'Ordinary Linear Regression';
case 'ROMmsrA'
ROMnamesMax{n}="MSR';
case 'ROMmultiTaskElasticNet'
ROMnamesMax{n}='Multi-Task Elastic Net';
case 'ROMmultiTaskLasso'
ROMnamesMax{n}='Multi-Task Lasso';
case 'ROMndInvDW'
ROMnamesMax{n}="'Inverse Distance Weighting';
case 'ROMomp'
ROMnamesMax{n}="'Orthogonal Mathching Pursuit';
case 'ROMompCV'
ROMnamesMax{n}="'0Orthogonal Mathching Pursuit (CV)';
case 'ROMpassAggReg'
ROMnamesMax{n}="'Passive Aggressive Regression';
case 'ROMradiusNeighReg'
ROMnamesMax{n}="'Radius Based Neighbor';
case 'ROMridge'
ROMnamesMax{n}="'Ridge';
case 'ROMridgeCV'
ROMnamesMax{n}="'Ridge (CV)';
case 'ROMsgdRegressor'
ROMnamesMax{n}="'SGD Regression';
case 'ROMsvr'
ROMnamesMax{n}="'Support Vector Regression';
end

n=1:6

figure

subplot(2,2,1)

hold on

scatter (MTXpredMaxULT (:,1),MTXpredMaxULT (:,2+4* (n-1)));

xlabel ('CFAST Max Upper Layer Temperature (C)','fontweight', 'bold’',

FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title (ROMnamesMax{1l+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)
axis ([0,350,0,3501);

refline (1,0);

set (gca, "box', 'on"')

hold off

subplot(2,2,2)

hold on

scatter (MTXpredMaxULT (:,1),MTXpredMaxULT (:, 3+4* (n-1)));

xlabel ('CFAST Max Upper Layer Temperature (C)', 'fontweight', 'bold',

'FontSize', 12)

o

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)

171

o\

title (ROMnamesMax{2+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)
axis([0,350,0,350]);

refline (1,0);

set (gca, "box', 'on")

hold off

o 0P d° oP° o°

o\

subplot (2,2, 3)

hold on

scatter (MTXpredMaxULT (:, 1) ,MTXpredMaxULT (:,4+4* (n-1))) ;

xlabel ('CFAST Max Upper Layer Temperature (C)', 'fontweight', 'bold',
FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title (ROMnamesMax{3+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)

axis([0,350,0,350]);

refline(1,0);

set (gca, 'box"',

hold off

0P oo

- oe

o° 0o oe

o\

oe

on')

o° oo

o

subplot(2,2,4)

hold on

scatter (MTXpredMaxULT (:,1),MTXpredMaxULT (:, 5+4* (n-1)));

xlabel ('CFAST Max Upper Layer Temperature (C)', 'fontweight', 'bold',
FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

title (ROMnamesMax{4+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)

axis ([0,350,0,350]);

refline (1,0);

set (gca, "box', 'on"')

hold off

o° oP

- go

0 d° o° o° o° o° o°

oe

clear n ROM
end

o° oo

o

figure

subplot (2,2,1)

hold on

scatter (MTXpredMaxULT (:, 1) ,MTXpredMaxULT (:,26)) ;

xlabel ('CFAST Max Upper Layer Temperature (C)', 'fontweight', 'bold',
FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)

title (ROMnamesMax {25}, 'fontweight', 'bold', 'FontSize',6 14)

axis([0,350,0,350]);

refline (1,0);

set (gca, "box', 'on"')

hold off

o oo oe

- go

A o° 0 o° d° o o

o\°

subplot(2,2,2)

hold on

scatter (MTXpredMaxULT (:,1) ,MTXpredMaxULT (:,27)) ;

xlabel ('CFAST Max Upper Layer Temperature (C)', 'fontweight', 'bold',
FontSize', 12)

ylabel ('Predicted', 'fontweight', '"bold', 'FontSize', 12)

title (ROMnamesMax{26}, 'fontweight', 'bold', 'FontSize',6 14)

axis ([0,350,0,3501);

refline (1,0);

o° oo

)

o e oe

o

172

o° o

A° O A A @ O° A A° A° A° IO A A A O A° O° O A A A A A O A A O A° A A O A O A A A° A° A A A A O A° A° A° A° A ° oP° o°

o\°

o oo

set (gca, '"box', 'on"')
hold off

%% Plot ROM Actual vs. Predicted for Time to Max ULT
ROMnamesTime=predTimeToMaxULT.Properties.VariableNames;
ROMnamesTime=ROMnamesTime (2:1length (ROMnamesTime)) ;
for n=1:1length (ROMnamesTime)
switch ROMnamesTime{n}
case 'ROMbayesRidge'
ROMnamesTime{n}="'Bayesian Ridge';
case 'ROMdecTreeReg'
ROMnamesTime{n}="'Decision Tree';
case 'ROMelasticNet'
ROMnamesTime{n}="'Elastic Net';
case 'ROMelasticNetCV'
ROMnamesTime{n}="Elastic Net (CV)';
case 'ROMextraTreeReg'
ROMnamesTime{n}="Extra Tree';
case 'ROMknnReg'
ROMnamesTime{n}="'K-Nearest Neighbors Regressor';
case 'ROMlars'
ROMnamesTime{n}="Least Angle';
case 'ROMlarsCV'
ROMnamesTime{n}="Least Angle (CV)';
case 'ROMlasso'
ROMnamesTime{n}="'Lasso';
case 'ROMlassoCV'
ROMnamesTime{n}="'Lasso (CV)';
case 'ROMlassoLars'
ROMnamesTime{n}='Lasso fit with LAR';
case 'ROMlassoLarsCV'
ROMnamesTime{n}="'Lasso fit with LAR (CV)';
case 'ROMlassoLarsIC'
ROMnamesTime{n}="Lasso fit with LAR using BIC or AIC';
case 'ROMlinearReg'
ROMnamesTime{n}='0Ordinary Linear Regression';
case 'ROMmsrB'
ROMnamesTime{n}="MSR';
case 'ROMmultiTaskElasticNet'
ROMnamesTime{n}="'Multi-Task Elastic Net';
case 'ROMmultiTaskLasso'
ROMnamesTime{n}="'Multi-Task Lasso';
case 'ROMndInvDW'
ROMnamesTime{n}='Inverse Distance Weighting';
case 'ROMomp'
ROMnamesTime{n}='0Orthogonal Mathching Pursuit';
case 'ROMompCV'
ROMnamesTime{n}="'Orthogonal Mathching Pursuit (CV)';
case 'ROMpassAggReg'
ROMnamesTime{n}="'Passive Aggressive Regression';
case 'ROMradiusNeighReg'
ROMnamesTime{n}="'Radius Based Neighbor';
case 'ROMridge'
ROMnamesTime{n}="'Ridge"';
case 'ROMridgeCV'

173

o\

ROMnamesTime{n}="'Ridge (CV)';
case 'ROMsgdRegressor'
ROMnamesTime{n}="'SGD Regression';
case 'ROMsvr'
ROMnamesTime{n}="'Support Vector Regression';

o d° o o°

o\

end
end

o° oo

o\

for n=1:6
figure
subplot(2,2,1)
hold on
scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,2+4* (n-1)));

o° oo oe

o\

% xlabel ('CFAST Time to Max Upper Layer Temperature
(minutes) ', 'fontweight', 'bold', 'FontSize', 12)

% ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)

% title (ROMnamesTime{1l+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)
% axis ([0,60,0,60]);

% refline (1,0);

% set (gca, 'box', 'on')

% hold off

% subplot(2,2,2)

% hold on

% scatter (MTXpredTimeToMaxULT (:,1) ,MIXpredTimeToMaxULT (:, 3+4* (n-1)));
% xlabel ('CFAST Time to Max Upper Layer Temperature
(minutes) ', 'fontweight', 'bold', 'FontSize', 12)

% ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)

o

title (ROMnamesTime{2+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)
axis ([0,60,0,60]);

refline(1,0);

set (gca, "box', 'on"')

hold off

d° d° o° o° oe

oe

subplot (2,2, 3)
hold on
scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,4+4* (n-1)));

oe

o

% xlabel ('CFAST Time to Max Upper Layer Temperature
(minutes) ', 'fontweight', 'bold', 'FontSize', 12)

% ylabel ('Predicted', 'fontweight', 'bold', 'FontSize',6 12)

% title (ROMnamesTime{3+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)
% axis ([0,60,0,60]);

% refline(1,0);

% set (gca, 'box', 'on')

% hold off

3 subplot (2,2,4)

% hold on

% scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:, 5+4* (n-1))) ;
% xlabel ('CFAST Time to Max Upper Layer Temperature
(minutes) ', 'fontweight', 'bold', 'FontSize', 12)

% ylabel ('Predicted', 'fontweight', '"bold', 'FontSize', 12)

o\°

title (ROMnamesTime{4+4* (n-1)}, 'fontweight', 'bold', 'FontSize',6 14)
axis([0,60,0,60]);
refline (1,0);

o\°

o

174

o° dO 0° o° o° o° d° o° o©°

o\

00 —~ oo

d° 0° o o° o° o° oo o°

o

o° —~ o°

o° d° o oe

oe

end

set (gca, '"box', 'on"')
hold off

clear n ROM

figure

subplot(2,2,1)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,26)) ;
xlabel ('"CFAST Time to Max Upper Layer Temperature

minutes) ', 'fontweight', 'bold', 'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title (ROMnamesTime {25}, 'fontweight', 'bold', 'FontSize',6 14)
axis ([0,60,0,60]);

refline(1,0);

set (gca, "box', 'on")

hold off

subplot (2,2,2)

hold on

scatter (MTXpredTimeToMaxULT (:,1) ,MTXpredTimeToMaxULT (:,27)) ;
xlabel ('CFAST Time to Max Upper Layer Temperature

minutes) ', 'fontweight', 'bold', 'FontSize', 12)

ylabel ('Predicted', 'fontweight', 'bold', 'FontSize', 12)
title (ROMnamesTime {26}, 'fontweight', 'bold', 'FontSize',6 14)
axis ([0,60,0,6071);

refline (1,0);

set (gca, "box', 'on"')

hold off

175

A.11 FINAL MODEL TUNING

The following ‘R’ script performs the final model tuning and results plotting for selected

metamodel types.

###Load Libraries

" {r eval=TRUE, message=FALSE, warning=FALSE}
library('AppliedPredictiveModeling')
library('caret')

library('corrplot')

library ('dplyr')

library('ggplot2"')

library('Lahman')

library('nnet")

library('partykit")

library('rpart')

library('stats')

library('tidyr")

###Inport Data, Drop Redundant Parameters:

""" {r eval=TRUE}

trainData<-read.table(" trainData.csv",header=TRUE, sep=",",dec=".")
testData<-read.table(" testData.csv'",header=TRUE, sep=",",dec=".")

drops <= c("hrrIndex","hrr","fireHeightFract","width","length")
trainData<-trainData[, !(names(trainData) %in% drops)]
testData<-testData[, !(names(testData) %in% drops)]

rm (drops)

trainMaxTempData<-as.data.frame(c(trainData[l:14],trainData[16]))
testMaxTempData<-as.data.frame(c(testData[l:14],testDatal[l6]))

trainTimeToMaxData<-

as.data.frame (c(trainData[l:13],trainData[l5], trainDatal[l16]))
testTimeToMaxData<-as.data.frame (c(testData[l:13],testData[l5], testDatal[l6]))
###Visualization

""" {r eval=TRUE}

corrplot (cor(trainData),order="hclust",tl.cex = 1.0,title="Correlation

between all Parameters",mar = c(0,0,2,0))

###Decision Tree (Max ULT)

" {r, message=FALSE, warning=FALSE}

treeControl = rpart.control(minsplit = 1, minbucket = 1,maxdepth = 30,cp =
0.001)

176

rpartTree<-rpart (maxULT
~.,data=trainMaxTempData,method="anova'", control=treeControl)

printcp (rpartTree)
par (mfrow=c(1,2)) # two plots on one page
rsq.rpart (rpartTree)

selectedFit<-prune (rpartTree, 0.002)
printcp(selectedFit)
plot(as.party(selectedFit))

predictl<-data.frame (testMaxTempDatal[l:13])
predictl$predicted<-(predict (selectedFit, testMaxTempData))
predictl$observed<-data.frame (testMaxTempData$maxULT)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom point (alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle("Decision Tree")+
x1im (0, 350)+
y1im (0, 35¢C
xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+

theme (axis.text = element text (face="bold"))+

theme (plot.title = element text(hjust = 0.5,face="bold",size =
rm(predictl)

###Decision Tree (Time to Max ULT)

" {r, message=FALSE, warning=FALSE}

treeControl = rpart.control (minsplit = 1, minbucket = 1,maxdepth
0.001)

rpartTree<-rpart (timeToMaxULT
~.,data=trainTimeToMaxData,method="anova",control=treeControl)

printcp(rpartTree)
par (mfrow=c(1,2)) # two plots on one page
rsq.rpart (rpartTree)

selectedFit<-prune(rpartTree, 0.002)
printcp(selectedFit)
plot(as.party(selectedFit))

predictl<-data.frame (testTimeToMaxDatal[l:13])
predictl$predicted<-(predict (selectedFit, testTimeToMaxData))
predictl$observed<-data.frame (testTimeToMaxData$timeToMaxULT)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom point(alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle("Decision Tree")+
x1im (0, 60)+
y1lim (0, 60)+
x1lab ("CFAST Time to Max Upper Layer Temp. (minutes)")+

20))

30, cp

177

ylab ("Predicted")+

theme (axis.title = element text (face="bold",size = 18))+

theme (axis.text = element text(face="bold"))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))
rm(predictl)

###K-Nearest Neighbors (Max ULT)
" {r eval=TRUE}

knn<-
train(x=trainMaxTempData[l:10000,1:13],y=trainMaxTempDatal[l:10000,14],method=
"knn",preProc=c("center","scale"),tuneGrid=data.frame(.k=1:30), trControl=trai

nControl (method="cv"))
print (knn)
plot (knn)

selectedFit<-
d="knn",preProc=c("center","scale"),tuneGrid=data.frame(.k=4),trControl=train
Control (method="cv"))

predictl<-data.frame (testMaxTempData[l:13])
predictl$predicted<-(predict (selectedFit, testMaxTempDatal,1:13]))
predictl$observed<-data.frame (testMaxTempData$maxULT)
predictl$ratio<-(predictl$predicted)/ (predictl$observed)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom point (alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle ("K-Nearest Neighbors")+
x1im (0, 350)+
ylim (0, 350)+
xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=ratio))+
geom_histogram()+
ggtitle("Max. Upper Layer Temp.'")+
x1im(0.7,71.3)+
xlab("Ratio of Predicted to Observed")+
ylab ("Count")+
theme (axis.title = element text(face="bold",size = 16))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 106))

###K-Nearest Neighbors (Time to Max ULT)

""" {r eval=TRUE}

knn<-
train(x=trainTimeToMaxData[l:10000,1:13],y=trainTimeToMaxData[l:10000,14],met
hod="knn", preProc=c("center","scale"), tuneGrid=data.frame(.k=1:30), trControl=
trainControl (method="cv"))

178

print (knn)
plot (knn)

selectedFit<-
train(x=trainTimeToMaxData[l:100000,1:13],y=trainTimeToMaxDatal[l:10(0,141, m
ethod="knn", preProc=c("center", "scale"), tuneGrid=data.frame (.k=5), trControl=t
rainControl (method="cv"))

predictl<-data.frame (testTimeToMaxDatal[l:13])
predictl$predicted<-(predict (selectedFit, testTimeToMaxDatal,1:13]))
predictl$observed<-data.frame (testTimeToMaxData$timeToMaxULT)
predictl$ratio<-(predictl$predicted)/ (predictl$observed)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom_point (alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle ("K-Nearest Neighbors")+
x1im (0, 60)+
ylim(0,60)+
xlab ("CFAST Time to Max Upper Layer Temp. (minutes)")+
ylab ("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=ratio))+
geom_histogram()+
ggtitle("Time to Max. Upper Layer Temp.")+
x1lim(O0.7,1.3)+
xlab("Ratio of Predicted to Observed")+
ylab ("Count")+

theme (axis.title = element text(face="bold",size = 160))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 10))

rm(predictl, knn, selectedFit)

###Support Vector Machine (Max ULT)

""" {r eval=TRUE}
svmRadial<-train(x=trainMaxTempDatal[l:5000,1:13],
y=trainMaxTempData[l:5000,14], method="svmRadial",
preProc=c ("center","scale"), tunelength=14,
trControl=trainControl (method="cv"))

svmRadial$finalModel
print (svmRadial)
plot (svmRadial)

selectedFit<-svmRadial

predictl<-data.frame (testMaxTempDatal[l:13])
predictl$predicted<-(predict(selectedFit, testMaxTempDatal,1:13]1))
predictl$observed<-data.frame (testMaxTempData$maxULT)
predictl$ratio<-(predictl$predicted)/ (predictl$observed)

179

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom_point (alpha=0.01)+
geom_abline(intercept = 0,slope = 1)+
ggtitle ("Support Vector Machine (Radial Basis Kernal)")+
x1im (0, 350)+
ylim (0, 350)+
xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab ("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+

theme (axis.text = element text (face="bold"))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))
svmLinear<-train(x=trainMaxTempDatal[l:5000,1:13],

y=trainMaxTempDatal[l:5000,14], method="svmLinear",
preProc=c("center","scale"), tunelength=14,
trControl=trainControl (method="cv"))

svmLinear$finalModel
print (svmLinear)
#plot (svmLinear)

selectedFit<-svmLinear

predictl<-data.frame (testMaxTempDatal[l:13])
predictl$predicted<-(predict (selectedFit, testMaxTempDatal,1:13]))
predictl$observed<-data.frame (testMaxTempData$maxULT)
predictl$ratio<-(predictl$predicted)/ (predictl$observed)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom point (alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle ("Support Vector Machine (Linear Kernal)")+
x1im (0, 350)+
ylim (0, 350)+
x1lab ("CFAST Max Upper Layer Temp. (C)")+
ylab("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

rm(predictl, selectedFit)

###Support Vector Machine (Time to Max ULT)

""" {r eval=TRUE}
svmRadial<-train(x=trainTimeToMaxData[l:5000,1:13],
y=trainTimeToMaxData[l:5000,14], method="svmRadial',
preProc=c ("center","scale"), tunelLength=14,
trControl=trainControl (method="cv"))

svmRadial$finalModel
print (svmRadial)
plot (svmRadial)

180

selectedFit<-svmRadial

predictl<-data.frame (testTimeToMaxDatal[l:13])
predictl$predicted<-(predict (selectedFit, testTimeToMaxDatal[,1:13]1))
predictl$observed<-data.frame (testTimeToMaxData$timeToMaxULT)
predictl$ratio<-(predictl$predicted)/ (predictl$observed)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom_point (alpha=0.01)+
geom_abline(intercept = 0,slope = 1)+
ggtitle("Support Vector Machine (Radial Basis Kernal)")+
x1im (0, 60)+
ylim (0, 60)+
xlab ("CFAST Time (min.) to Max. Upper Layer Temp.")+
ylab ("Predicted")+
theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))
svmLinear<-train(x=trainTimeToMaxDatal[l:5000,1:13],
y=trainTimeToMaxData[1:5000,14], method="svmLinear",

preProc=c("center","scale"), tunelength=14,
trControl=trainControl (method="cv"))

svmLinear$finalModel
print (svmLinear)
#plot (svmLinear)

selectedFit<-svmLinear

predictl<-data.frame (testTimeToMaxData[l:13])
predictl$predicted<-(predict (selectedFit, testTimeToMaxDatal[,1:13]1))
predictl$observed<-data.frame (testTimeToMaxData$timeToMaxULT)
predictl$ratio<-(predictl$predicted)/ (predictl$observed)

ggplot (data=predictl, aes(x=observed, y=predicted))+
geom point (alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle ("Support Vector Machine (Linear Kernal)")+
x1im (0, 60)+
ylim (0, 60)+
xlab ("CFAST Time (min.) to Max. Upper Layer Temp.")+
ylab("Predicted")+
theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

rm(predictl, selectedFit)

###Comparision of KNN against MQH for Max ULT

" {r eval=TRUE}

#Fit model and build KNN data frame

testData<-read.table(" testData.csv",header=TRUE, sep=",",dec=".") #reload
with all parameters

181

knnFit<-

train (x=trainMaxTempData[l:100000,1:13],y=trainMaxTempData[l:100000,14],metho
d="knn",preProc=c("center","scale"),tuneGrid=data.frame (.k=4), trControl=train
Control (method="cv"))

predictKNN<-data.frame (testMaxTempDatal[l:13])
predictKNN$length=testData["length"]
predictKNN$width=testData["width"]
predictKNN$fireObject<-testMaxTempData["fireObject"]
predictKNN$predicted<- (predict (knnFit, testMaxTempDatal, 1:13]))
predictKNN$observed<- (testMaxTempData$maxULT)
predictKNNS$ratio<- (predictKNNS$predicted) / (predictKNN$Sobserved)

#Add to predictKNN dataframe the parameters Qmax and Wall Area needed for MQH
maxHRR<-read.table ("MaxHRR.csv", header=TRUE, sep=",",dec=".")
predictKNN$maxHRR<-0
for (1 in 1:135000) {
predictKNN[i, "maxHRR"]=maxHRR[paste ("X",predictKNN[i, "fireObject"],sep="")1
}
predictKNN["AT"]=(2*predictKNN["floorArea"])+(2*predictKNN["length"]*predictK
NN["height"])+ (2*predictKNN["width"]*predictKNN["height"]=1.2)

#MQH Calculation
predictKNNSMQH=6.85% ((predictKNNSmaxHRR*2) / (0.2*%sqrt (0.0125)*0.0464*predictkN
NSAT))~ (1/3)

#FPA Calculation

predictKNN$ventKGS = predictKNN$ventPerVol * predictKNN$floorArea *
predictKNN$height * 1.18

predictKNNS$FPA = predictKNN$tempAmb *

((predictKNN$maxHRR/ (predictKNNS$ventKGS*1 .01l *predictKNN$tempAmb)) *0.72) *
(((0.0464%predictKNNSAT) / (predictKNNSventKGS*1.01))*=-0.36)

ggplot () +

geom point (data=predictKNN, aes(x=observed, y=MQH), color="red",
alpha=0.01)+

geom point (data=predictKNN, aes(x=observed, y=FPA), color="blue",
alpha=0.01)+

geom point (data=predictKNN, aes(x=observed, y=predicted), color="green'",
alpha=0.01)+

geom abline(intercept = 0,slope = 1)+

ggtitle("Comparsison of CFAST to Alternate Models")+

x1im (0, 350) +

ylim (0, 350)+

xlab ("CFAST Max Upper Layer Temp. (°C)")+

ylab("Alternate Model \n Max Upper Layer Temp. (°C)")+

theme (axis.title = element text(face="bold",size = 17))+

theme (axis.text = element text (face="bold"))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))+

annotate ("text",x=60,y=235, label="MOH", fontface=2,size=5)+

annotate ("text",x=125,y=190, label="FPA", fontface=2,size=5)+

annotate ("text",x=175,y=150,label="KNN", fontface=2, size=5)

###Accuracy-Efficiency

182

" {r eval=TRUE}

fitl0<-
train(x=trainMaxTempData[l:10,1:13],y=trainMaxTempData[l:10,14],method="knn",
preProc=c("center","scale"), tuneGrid=data.frame(.k=4),trControl=trainControl (
method="cv"))

£fit100<-

train(x=trainMaxTempDatall: ,1:13],y=trainMaxTempDatal[l: ,14],method="knn
", preProc=c("center","scale"), tuneGrid=data.frame(.k=4), trControl=trainContro
1 (method="cv"))

£it500<-

train (x=trainMaxTempDatal[l: ,1:13],y=trainMaxTempDatal[l: , 141, method="knn
", preProc=c("center","scale"),tuneGrid=data.frame(.k=4),trControl=trainContro
1 (method="cv'"))

fit1000<-

train(x=trainMaxTempDatal[l: ,1:13], y=trainMaxTempDatal[l: ,14],method="k
nn'",preProc=c("center","scale"), tuneGrid=data.frame(.k=4), trControl=trainCont
rol (method="cv'"))

£it5000<-

train(x=trainMaxTempDatal[l: ,1:13],y=trainMaxTempDatal[l: ,14],method="k
nn'",preProc=c("center","scale"), tuneGrid=data.frame(.k=4),trControl=trainCont
rol (method="cv'"))

£1it10000<-

train(x=trainMaxTempDatal[l: ,1:13],y=trainMaxTempDatal[l: ,14],method=
"knn",preProc=c("center","scale"),tuneGrid=data.frame(.k=4),trControl=trainCo
ntrol (method="cv"))

£1it50000<-

train(x=trainMaxTempDatal[l: ,1:13],y=trainMaxTempDatal[l: ,14],method=
"knn",preProc=c("center","scale"), tuneGrid=data.frame(.k=4), trControl=trainCo
ntrol (method="cv"))

£it100000<-

train(x=trainMaxTempDatal[l: ,1:13],y=trainMaxTempDatal[l: , 14],metho
d="knn",preProc=c("center","scale"), tuneGrid=data.frame(.k=4),trControl=train
Control (method="cv"))

predictl<-data.frame (testMaxTempDatal[l:13])
predictl$observed<-data.frame (testMaxTempData$maxULT)
predictl$predictedl0<-(predict (fitl0, testMaxTempDatal, 1:131))
predictl$predictedl00<-(predict (fit100, testMaxTempDatal[, 1:13]
predictl$predicted500<-(predict (fit500, testMaxTempDatal, 1
predictl$predictedl1000<-(predict (fit1000, testMaxTempDatal,
predictl$predicted5000<-(predict (fit5000, testMaxTempDatal,
predictl$predictedl10000<-(predict (£fit10000, testMaxTempDatal,
predictl$predicted50000<-(predict (fit50000, testMaxTempDatal,
predictl$predictedl00000<-(predict (fit100000, testMaxTempDatal,

fit<-data.frame(1:8)
fit$RMSE=c (fit1l08results$SRMSE, fit1008results$RMSE, fit5008results$RMSE, £it1000
Sresults$RMSE, £it50008results$RMSE, £it100008results$RMSE, £it500008results$RMS

183

E, fithOOOO$results$RMSE)
flt$numSamples c(10 0,500,1000,5000,10000,50000,100000)

ggplot (data=fit, aes(x=numSamples, y=RMSE))+
geom point()+
geom line()+
ggtitle("Model Accuracy vs. Training Sample Size")+
xlab("Training Sample Size')+
ylab ("RMSE") +

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predictedl0))+
geom_point (alpha=0.01)+

geom_abllne(lntercept = 0,slope = 1)+
ggtitle("10 Training Points'")+
x1im (0, 350)+

ylim (0, 350)+

xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab ("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element_text(face=”bold”))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predictedl00))+

geom point (alpha=0.01)+

geom abline(intercept = 0,slope = 1)+
ggtltle(”IOO Training P01nts”)+
x1im (0

yllm(u,
xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predicted500))+
geom point (alpha=0.01)+

geom abline(intercept = 0,slope = 1)+
ggtitle("500 Training Points")+
x1im(0, 35

ylim (O,
xlab(”CFAST Max Upper Layer Temp. (C)")+
ylab("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text(face—”bold”))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predictedl000))+
geom point(alpha=0.01)+
geom_abline (intercept = 0,slope = 1)+
ggtitle("1,000 Training Points'")+

x1im (0, 350)+
ylim (0, 350)+

184

xlab ("CFAST Max Upper Layer Temp. (C)")+

ylab ("Predicted")+

theme (axis.title = element text (face="bold",size = 18))+

theme (axis.text = element text(face="bold"))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predicted5000))+

geom_point (alpha=0.01)+
geom_abline(intercept = 0,slope = 1)+
ggtltle("5 000 Training P0lnts")+
x1im (0, 3

ylim (O, 3
xlab(”CFAST Max Upper Layer Temp. (C)")+
ylab ("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element_text(face=”bold”))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predictedl0000))+

geom point(alpha=0.01)+

geom abline(intercept = 0,slope = 1)+
ggtitle("10,000 Training Points'")+
x1im (0, 350)+

yllm(,,sJJ)+
xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab ("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text(face—”bold”))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predicted50000))+
geom point (alpha=0.01)+
geom abline(intercept = 0,slope = 1)+
ggtitle("50,000 Training Points')+
x1im (0, 350)+
ylim (0, 350)+
xlab ("CFAST Max Upper Layer Temp. (C)")+
ylab("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

ggplot (data=predictl, aes(x=observed, y=predictedl00000))+
geom point (alpha=0.01)+

geom abline(intercept = 0,slope = 1)+
ggtitle("100,000 Training Points")+
x1im (0, 350)+

ylim (0, 350)+
xlab ("CFAST Max Upper Layer Temp. (C)")+

ylab ("Predicted")+

theme (axis.title = element text(face="bold",size = 18))+
theme (axis.text = element_text(face=”bold”))+
theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

185

###Artificial Neural Network (Max ULT)

" "{r, message=FALSE, warning=FALSE}
preProcData <- preProcess(trainData, method = c("center", "scale'))
preProcData <- predict(preProcData, trainData)

set.seed()

inTrain<-createDataPartition (y=preProcData$maxULT, p=
training <- preProcData[inTrain,]

testing <- preProcDatal[-inTrain,]

remove (inTrain)

, 1ist=FALSE)

modell<-nnet(x = training][, 1, y=training[,19],size=2,decay= ,
maxit= , MaxNWts= ,linout=T, trace=FALSE)

model2<-nnet (x = trainingl[, 1, y=training[, 19],size=3,decay= ,
maxit= , MaxNWts= , linout=T, trace=FALSE)

model3<-nnet (x = trainingl[, 1, y=training[, 19],size=5,decay= ,
maxit= , MaxNWts= , linout=T, trace=FALSE)

model4<-nnet (x = trainingl[, 1, y=training[, 19],size="7,decay= ,
maxit= , MaxNWts= , linout=T, trace=FALSE)

model5<-nnet(x = trainingl, 1, y=training[,19],size=10,decay=
maxit= , MaxNWts= , linout=T, trace=FALSE)

predictl<-data.
predict2<-data.
predict3<-data.
predict4<-data.
predictb5<-data.

frame (testing[,
frame (testingl[,
frame (testingl[,
frame (testingl[,
frame (testing[,

—t et e e
~ N N

predictl$predicted<-(predict (modell, predictl))
predict2$predicted<-(predict (model2, predict2))
predict3$predicted<- (predict (model3, predict3))
predict4$predicted<- (predict (modeld, predictd))
predict5$predicted<- (predict (model5, predict5))

predictl$observed<-data.
predict2$observed<-data.
predict3$observed<-data.
predict4$observed<-data.
predict5$observed<-data.

frame (testing][
frame (testing|[
frame (testing|[
frame (testing|[
frame (testing][

[S I S [— Ry —-—'
N e

ObsFitl<-data.frame (predictl$observed, predictl$predicted)
names (ObsFitl) <= c("obs", "pred")
modelstats=defaultSummary (ObsFitl)

RMSEl=round (modelstats[1], 3)

Rsgl=round(modelstats[2], 3)

ObsFit2<-data.frame (predict2$observed, predict28predicted)
names (ObsFit2) <= c("obs", "pred")
modelstats=defaultSummary (ObsFit2)

RMSE2=round (modelstats[1], 3)

Rsg2=round (modelstats[2], 3)

ObsFit3<-data.frame (predict3$observed, predict3$predicted)
names (ObsFit3) <- c("obs", "pred")

186

modelstats=defaultSummary (ObsFit3)
RMSE3=round (modelstats[1], 3)
Rsg3=round (modelstats[2], 3)

ObsFit4<-data.frame (predict4$observed, predicti4$predicted)
names (ObsFit4) <= c("obs", "pred")
modelstats=defaultSummary (ObsFit4)

RMSE4=round (modelstats[1], 3)

Rsg4=round (modelstats[2], 3)

ObsFit5<-data.frame (predictd4$observed, predict58predicted)
names (ObsFitb) <- c("obs", "pred")
modelstats=defaultSummary (ObsFit5)

RMSES5=round (modelstats[1], 3)

RsgS=round (modelstats[2], 3)

pl=ggplot (data=0bsFitl, aes(x=obs,y=pred))+
geom point ()+
geom abline(intercept = 0,slope = 1)+
ggtitle("Neural Net (2 Layers)'")+
xlab ("Observed") +
ylab("Predicted")+
x1lim(=1,4)+
ylim(-1,4)+

annotate ("text", x = 0, y = 3, label = paste("RMSE =
",RMSEl),size=3,colour="red")+
annotate("text", x =0, y = 2.5, label = paste("R"2

=",Rsql),size=3,colour="red")+
theme (axis.title = element text(face="bold"))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5,face="bold"))

p2=ggplot (data=0bsFit2, aes(x=obs,y=pred))+
geom point()+
geom abline(intercept = 0,slope = 1)+
ggtitle("Neural Net (3 Layers)'")+
xlab ("Observed") +
ylab("Predicted")+
xlim(-1,4)+
ylim(-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
",RMSE2) ,size=3,colour="red")+
annotate("text", x =0, y = 2.5, label = paste("R"2

=",Rsg2),size=3,colour="red")+
theme (axis.title = element text(face="bold"))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold"))

p3=ggplot (data=0bsFit3, aes (x=obs,y=pred))+
geom point()+
geom abline(intercept = 0,slope = 1)+
ggtitle("Neural Net (5 Layers)'")+
xlab ("Observed") +
ylab ("Predicted")+
xlim(-1,4)+

187

ylim(=-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
", RMSE3),size=3,colour="red")+
annotate("text", x =0, y = 2.5, label = paste("R"2

=",Rsq3),size=3,colour="red")+
theme (axis.title = element text(face="bold"))+
theme (axis.text = element text(face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold"))

pd=ggplot (data=0bsFit5, aes (x=obs, y=pred))+
geom point ()+
geom_abline(intercept = 0,slope = 1)+
ggtitle("Neural Net (10 Layers)'")+
xlab ("Observed")+
ylab ("Predicted")+
xlim(-1,4)+
ylim(-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
", RMSE5) ,size=3,colour="red")+
annotate("text", x = 0, y = 2.5, label = paste("R"2

=",Rsgb5),size=3,colour="red")+
theme (axis.title = element text(face="bold"))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold"))

multiplot(pl,p3,p2,p4,cols=2)
R=c(0,Rsgl,Rsg2,Rsg3,Rsqg4,Rsgb)
L=c(0,1,3,5,7,10)
nnR2=data.frame (L, R)
ggplot (data=nnR2, aes(x=L,y=R))+
geom line(size=1.5)+
ggtitle("Neural Net R"2 vs. Depth")+
xlab ("Number of Layers")+
ylab ("R"2") +

ylim (O, 1)+

scale x continuous(breaks=c(0,1,2,3,4,5,6,7,8,9,10))+

annotate("text", x =4, y = 0.50, label = "Five Layers Appears
Optimal",size=6,colour="blue")+

theme (axis.title = element text(face="bold",size = 18))+

theme (axis.text = element text (face="bold",size = 5))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

###Artificial Neural Network (Time to Max ULT)

" {r, message=FALSE, warning=FALSE}

preProcData <- preProcess(trainData, method = c("center", "scale'™))
preProcData <- predict(preProcData, trainData)

set.seed(2064)

inTrain<-createDataPartition (y=preProcData$timeToMaxULT,p=0.80, 1ist=FALSE)
training <- preProcData[inTrain,]

testing <- preProcDatal[-inTrain,]

remove (inTrain)

modell<-nnet(x = training[,1:18], y=training[,20],size=2,decay=0.01,

188

maxit= , MaxNWts= , linout=T, trace=FALSE)
model2<-nnet(x = training[,1:18], y=training[,20],size=3,decay=
maxit= , MaxNWts= ,linout=T, trace=FALSE)
model3<-nnet(x = training[,1:18], y=training[,20],size=5,decay=
maxit= , MaxNWts= , linout=T, trace=FALSE)
model4<-nnet (x = trainingl[,1:18], y=trainingl[,20],size=7,decay=
maxit= , MaxNWts= ,linout=T, trace=FALSE)
model5<-nnet(x = training[,1:18], y=training[,20],size=10,decay=
maxit= , MaxNWts= ,linout=T, trace=FALSE)

predictl<-data.
predict2<-data.
predict3<-data.
predict4<-data.
predict5<-data.

frame (testing[,
frame (testing[,
frame (testing[,
frame (testing[,
frame (testing[,

—t e e e
N~ e

predictl$predicted<-(predict (modell, predictl))
predict2$predicted<-(predict (model2, predict2))
predict3$predicted<-(predict (model3, predict3))
predict4$predicted<-(predict (modeld, predictd))
predict5$predicted<-(predict (model5, predict5))

predictl$observed<-data.
predict2$observed<-data.
predict3$observed<-data.
predict4$observed<-data.
predict5$observed<-data.

frame (testing|[
frame (testing|[
frame (testing][
frame (testing][
frame (testing|[

— e e et
~— N N

ObsFitl<-data.frame (predictl$observed, predictl$predicted)
names (ObsFitl) <= c("obs", "pred")
modelstats=defaultSummary (ObsFitl)

RMSEl=round (modelstats[1], 3)

Rsgl=round(modelstats[2], 3)

ObsFit2<-data.frame (predict2$observed, predict28predicted)
names (ObsFit2) <- c("obs", "pred")
modelstats=defaultSummary (ObsFit2)

RMSE2=round (modelstats[1], 3)

Rsg2=round (modelstats[2], 3)

ObsFit3<-data.frame (predict3$observed, predict3$predicted)
names (ObsFit3) <- c("obs", "pred")
modelstats=defaultSummary (ObsFit3)

RMSE3=round (modelstats[1], 3)

Rsg3=round(modelstats[2], 3)

ObsFit4<-data.frame (predict4$observed, predicti4$predicted)
names (ObsFit4) <- c("obs", "pred")
modelstats=defaultSummary (ObsFit4)

RMSE4=round (modelstats[1], 3)

Rsg4=round (modelstats[2], 3)

ObsFit5<-data.frame (predict4$observed, predict58predicted)
names (ObsFit5) <= c("obs", "pred")
modelstats=defaultSummary (ObsFit5)

189

RMSES5=round (modelstats[1], 3)
Rsgb=round (modelstats[2], 3)

pl=ggplot (data=0bsFitl, aes (x=obs, y=pred))+
geom point()+
geom_abline(intercept = 0,slope = 1)+
ggtitle("Neural Net (2 Layers)'")+
xlab ("Observed")+
ylab ("Predicted")+
xlim(-1,4)+
ylim(=-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
", RMSE1l),size=3,colour="red")+
annotate("text", x = 0, y = 2.5, label = paste("R"2

=",Rsql),size=3,colour="red")+
theme (axis.title = element text(face="bold"))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold"))

p2=ggplot (data=0bsFit2, aes (x=obs, y=pred))+

geom point()+

geom abline(intercept = 0,slope = 1)+

ggtitle("Neural Net (3 Layers)'")+

xlab ("Observed") +

ylab ("Predicted")+

xlim(-1,4)+

ylim(-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
",RMSE2) ,size=3,colour="red")+

annotate("text", x = 0, y = 2.5, label = paste("R"2
=",Rsg2),size=3,colour="red")+

theme (axis.title = element text(face="bold"))+

theme (axis.text = element text (face="bold"))+

theme (plot.title = element text(hjust = 0.5, face="bold"))

p3=ggplot (data=0bsFit3, aes(x=obs, y=pred))+

geom point ()+

geom abline(intercept = 0,slope = 1)+

ggtitle("Neural Net (5 Layers)'")+

xlab ("Observed")+

ylab("Predicted")+

xlim(-1,4)+

ylim(-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
", RMSE3),size=3,colour="red")+

annotate("text", x = 0, y = 2.5, label = paste("R"2
=",Rsq3),size=3,colour="red")+

theme (axis.title = element text(face="bold"))+

theme (axis.text = element text (face="bold"))+

theme (plot.title = element text(hjust = 0.5,face="bold"))

pd4=ggplot (data=0bsFit5, aes (x=obs, y=pred))+
geom point ()+
geom_abline (intercept = 0,slope = 1)+
ggtitle("Neural Net (10 Layers)")+

190

xlab ("Observed") +
ylab ("Predicted")+
x1lim(-1,4)+
ylim(-1,4)+

annotate("text", x = 0, y = 3, label = paste("RMSE =
",RMSEb5),size=3,colour="red")+
annotate("text", x = 0, y = 2.5, label = paste("R"2

=",Rsgb5),size=3,colour="red")+
theme (axis.title = element text(face="bold"))+
theme (axis.text = element text (face="bold"))+
theme (plot.title = element text(hjust = 0.5, face="bold"))

multiplot(pl,p3,p2,p4,cols=2)
R=c(0,Rsqgl,Rsg2,Rsg3,Rsg4,Rsgb)
L=c(0,1,3,5,7,10)
nnR2=data. frame (L, R)
ggplot (data=nnR2, aes(x=L,y=R))+
geom line(size=1.5)+
ggtitle("Neural Net R”"2 vs. Depth")+
xlab ("Number of Layers")+
ylab ("R"2")+

y1lim (0, 1)+

scale x continuous(breaks=c(0,1,2,3,4,5,6,7,8,9,10))+

annotate("text", x =4, y = 0.50, label = "Five Layers Appears
Optimal",size=6,colour="blue")+

theme (axis.title = element text(face="bold",size = 18))+

theme (axis.text = element text (face="bold",size = 5))+

theme (plot.title = element text(hjust = 0.5, face="bold",size = 20))

191

BIBLIOGRAPHY

Alfonsi, A., Cristian, R., Manselli, D., Cogliati, J., Kinoshita, R., & Naviglio, A. (2014).
RAVEN and Dynamic Probabilistic Risk Assessment: Software Review (INL/CON-14-
31785). In ESREL 2014 European Safety and Reliability Conference. European Safety and
Reliability Association (ESRA).

Alfonsi, A., Rabiti, C., Cogliati, J., Mandelli, D., Sen, S., Kinoshita, R., ... Smith, C. (2014).
Light Water Reactor Sustainability Program Dynamic Event Tree Advancements and
Control Logic Improvements (INL/EXT-15-36758). Idaho Falls, ID.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J. J., & Kinoshita, R. A. (2013). Raven As a Tool
for Dynamic Probabilistic Risk Assessment: Software Overview. In International
Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013). American Nuclear Society.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J. J., Kinoshita, R. A., & Naviglio, A. (2013).
Dynamic Event Tree Analysis through RAVEN. In International Topical Meeting on
Probabilistic Safety Assessment and Analysis, ANS PSA 2013. American Nuclear Society.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., & Kinoshita, R. (2013a). Performing
Probabilistic Risk Assessment Through RAVEN (INL/CON-13-29472). In ANS Annual
Meeting. American Nuclear Society.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., & Kinoshita, R. (2013b). RAVEN : Dynamic
Event Tree Approach Level 111 Milestone RAVEN (INL/EXT-13-30332). Idaho Falls, ID.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., & Kinoshita, R. (2014a). Adaptive Dynamic
Event Tree in RAVEN Code (INL/CON-32595). In ANS Winter Meeting. American
Nuclear Society.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., & Kinoshita, R. (2014b). RAVEN: Development
of the Adaptive Dynamic Event Tree Approach (INL/MIS-14-33246 Rev. 1). Idaho Falls, ID.

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., Sen, S., & Smith, C. L. (2015). Light Water
Reactor Sustainability Program Improving Limit Surface Search Algorithms in RAVEN
Using Acceleration Schemes (INL/EXT-15-36100). Idaho Falls, ID.

192

Alfonsi, A., Rabiti, C., Mandelli, D., Cogliati, J., Wang, C., Talbot, P. W., ... Smith, C. (2017).
RAVEN Theory Manual and User Guide (INL/EXT-16-38178). Idaho Falls, ID.

American Society for Testing Materials International. (2012). Standard Guide for Evaluating the
Predictive Capability of Deterministic Fire Models (ASTM E1355-12). West
Conshohocken, PA. https://doi.org/10.1520/E1355-12.2

Barton, R. R. (2010). Simulation experimental design. In Proceedings of the 2010 Winter
Simulation Conference (pp. 75-86).

Barton, R. R. (2015). Tutorial: Simulation Metamodeling. In Proceedings of the 2015 Winter
Simulation Conference (pp. 1765-1779). https://doi.org/10.1109/WSC.2015.7408294

Brandyberry, M., & Apostolakis, G. (1990). Response Surface Approximation of a Fire Risk
Analysis Computer Code. Reliability Engineering and System Safety, 29, 153-184.

Cohn, B., Denning, R., Aldemir, T., Sezen, H., & Hur, J. (2016). Implementation of Surrogate
Models within RAVEN to Support SPRA Uncertainty Quantification. In Proceedings of
PSA2017. American Nuclear Society.

Duke Energy. (2013). Duke Energy Carolinas, LLC (Duke Energy) McGuire Nuclear Station,
Units 1 and 2 Docket Numbers 50-369 and 50-370 License Amendment Request (LAR) to
Adopt National Fire Protection Association (NFPA) 805 Performance-Based Standard for
Fire Protection for Li. Huntersville, NC.

Electric Power Research Institute, & U.S. Nuclear Regulatory Commission. (2005). EPRI / NRC-
RES Fire PRA Methodology for Nuclear Power Facilities (EPRI-1011989 and NUREG/CR-
6850) Volume 2 : Detailed Methodology. Washington, D.C.

Entergy Operations. (2014). License Amendment Request to Adopt NFPA 805 Performance-
Based Standard for Fire Protection for Light Water Reactor Generating Plants (2001
Edition) Arkansas Nuclear One — Unit 1 Docket No. 50-313 License No. DPR-51.
Russellville, AR.

Guler, A., Mandelli, D., Alfonsi, A., Cogliati, J., Rabiti, C., & Aldemir, T. (2014). Methodology
for the Incorporation of Passive Component Aging Modeling into the RAVEN / RELAP-7
Environment. In ANS Winter Meeting. Anaheim, CA: American Nuclear Society.

Hastie, T., Tibshirani, R., & Friedman, J. (2016). The Elements of Statistical Learning Data
Mining, Inference, and Prediction. Springer Series in Statistics (2nd ed.). New York, NY:
Springer. https://doi.org/10.1007/978-0-387-98135-2

Hill, K., Joglar, F., Najafi, B., KcGrattan, K., Peacock, R., & Hamins, A. (2007). Verification
and Validation of Selected Fire Models for Nuclear Power Plant Applications Volume 1:
Main Report, NUREG-1824. Washington, D.C.

193

Ho, V., Siu, N., Apostolakis, G., & Flanagan, G. (1986). COMPBRN III - A Computer Code for
Modeling Compartment Fires (NUREG/CR-4566). Washington, D.C.

Hothorn, T., & Zeileis, A. (2015). partykit: A Modular Toolkit for Recursive Partitioning in R.
Journal of Machine Learning Research, 16, 3905-3908. Retrieved from
http://jmlr.org/papers/v16/hothorn15a.html

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science and
Engineering, 9(3), 99-104. https://doi.org/10.1109/MCSE.2007.55

Idaho National Laboratory. (n.d.). RAVEN GitHub. Retrieved June 3, 2017, from
https://github.com/idaholab/raven

Idaho National Laboratory. (2017). Light Water Reactor Sustainability Program Integrated
Program Plan (INL/EXT-11-23452). INL/EXT-11-23452. Idaho Falls, ID.

Igbal, N., Salley, M. H., & Weerakkody, S. (2004). Fire Dynamics Tools (FDTs): Quantitative
Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection
Inspection Program. NUREG-1805. Washington, D.C.

Karlssson, B., & Quintiere, J. (1999). Enclosure Fire Dynamics (1st Edition). CRC Press.

Kuhn, M. (2017). caret: Classification and Regression Training. Retrieved from https://cran.r-
project.org/package=caret

Kuhn, M., & Johnson, K. (2016). Applied Predictive Modeling. New York, NY: Springer Nature.
https://doi.org/10.1007/978-1-4614-6849-3

Li, G., Rosenthal, C., & Rabitz, H. (2001). High Dimensional Model Representations. J. Phys.
Chem. A, 105(33), 7765-7777.

Mandelli, D., Prescott, S., Smith, C., Alfonsi, A., Rabiti, C., Cogliati, J., & Kinoshita, R. (2015).
A Flooding Induced Station Blackout Analysis for a Pressurized Water Reactor Using the
RISMC Toolkit. Science and Technology of Nuclear Installations, 2015.

Mandelli, D., Rabiti, C., & Alfonsi, A. (2012). Pre-Processing of Cross- Sections Using
Dimensionality Reduction Techniques (INL/CON-12-26342). In ANS Winter Meeting.
American Nuclear Society.

Mandelli, D., Smith, C., Alfonsi, A., & Rabiti, C. (2014). Analysis of the Space Propulsion
System Problem Using RAVEN. In Probabilistic Safety Assessment and Management
PSAM 12. Honolulu, HI.

Mandelli, D., Smith, C. L., Alfonsi, A., Rabiti, C., & Cogliati, J. (2015). Light Water Reactor

Sustainability Program Improved Sampling Algorithms in the Risk-Informed Safety Margin
Characterization Toolkit (INL/EXT-15-35933). Idaho Falls, ID.

194

Mandelli, D., Smith, C. L., Rabiti, C., Alfonsi, A., Cogliati, J., & Kinoshita, R. (2013). New
Methods and Tools to Perform Safety Analysis Within RISMC, INL/CON-13-29552. In
ANS Winter Meeting. American Nuclear Society.

Mandelli, D., Smith, C., Ma, Z., Riley, T., Nielsen, Alfonsi, A., ... Cogliati, J. (2014). Light
Water Reactor Sustainability Program Risk-Informed Safety Margin Characterization
Development Work (INL/EXT-14-33191). Idaho Falls, ID.

Mandelli, D., Smith, C., Riley, T., Nielsen, J., Schroeder, J., Rabiti, C., ... Maljovec, D. (2014).
Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case,
INL/CON-14-31571. Probabilistic Safety Assessment & Management Conference PSAM 12.

Manselli, D., Smith, C., Rabiti, C., Alfonsi, A., Youngblood, R., Pascucci, V., ... Zamalieva, D.
(2013). Dynamic PRA: An Overview of New Algorithms to Generate , Analyze and
Visualize Data (INL/CON-13-29508). In ANS Winter Meeting. American Nuclear Society.

McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K. (2017).
Fire Dynamics Simulator Technical Reference Guide Volume 2 : Verification (NIST Special
Publication 1018-2). Gaithersburg, MD.

McGrattan, K., Peacock, R., Milke, J., Wachowiak, R., Joglar, F., LeStrange, S., ... Zee, K.
(2012). Nuclear Power Plant Fire Modeling Application Guidelines (NPP FIRE MAG).
NUREG-1934. Washington, D.C.

Miller, C., Cubbage, A., Dorman, D., Grobe, J., Holahan, G., & Sanfilippo, N. (2011).
Recommendations for enhancing reactor safety in the 21th century. SECY-11-0093.
Washington, D.C.

National Fire Protection Association. (2001). Performance-Based Standard for Fire Protection
for Advanced Light Water Reactor Electric Generating Plants (NFPA-805). Quincy, MA.

Nebraska Public Power District. (2012). Nebraska Public Power District - Cooper Nuclear
Station Docket No. 50-298, License No. DPR-46 License Amendment Request to Revise the
Fire Protection Licensing Basis to NFPA 805 Per 10 CFR 50.48(c). Brownville, NE.

NIST. (1988). Experimental Data Set for the Accuracy Assessment of Room Fire Models (NBSIR
88-3752). Gaithersburg, MD.

Peacock, R. D., Forney, G. P., & Reneke, P. A. (2017). CFAST — Consolidated Fire And Smoke
Transport (Version 7) Volume 3: Verification and Validation Guide (NIST Technical Note
1889v3). Gaithersburg, MD.

Peacock, R., Jones, W., Reneke, P., & Forney, G. (2008). NIST Special Publication 1026 CFAST
— Consolidated Model of Fire Growth and Smoke Transport (Version 6) Technical
Reference Guide. NIST Special Publication 1041. Gaithersburg, MD.

195

Rabiti, C., Alfonsi, A., Cogliati, J., Mandelli, D., & Kinoshita, R. (2012). Reactor Analysis and
Virtual Control Environment (RAVEN) FY12 Report (INL/EXT-27351). Idaho Falls, ID.

Rabiti, C., Alfonsi, A., Cogliati, J., Mandelli, D., Kinoshita, R., Sen, S., ... Chen, J. (2017).
RAVEN User Manual (INL/EXT-15-34123). Idaho Falls, ID.

Rabiti, C., Alfonsi, A., Huang, D., Gleicher, F., Wang, B., Abdel-khalik, H. S., ... Smith, C. L.
(2015). Light Water Reactor Sustainability Program System Reliability Analysis Capability
and Surrogate Model Application in RAVEN (INL/EXT-16-37243). Idaho Falls, ID.

Rabiti, C., Alfonsi, A., Mandelli, D., Cogliati, J., & Kinoshita, R. (2014). Advanced Probabilistic
Risk Analysis Using RAVEN adn RELAP-7, INL/EXT-14-32491. Idaho Falls, ID.

Rabiti, C., Alfonsi, A., Mandelli, D., Cogliati, J., & Martineau, R. (2012). RAVEN as Control
Logic and Probabilistic Risk Assessment Driver for RELAP-7 (INL/CON-12-26352). In
2012 ANS Winter Meeting. American Nuclear Society.

Rabiti, C., Alfonsi, A., Mandelli, D., Cogliati, J., Martineau, R., & Smith, C. L. (2013).
Deployment and Overview of RAVEN Capabilities for a Probabilistic Risk Assessment
Demo for a PWR Station Blackout (INL/EXT-13-29510). Idaho Falls, ID.

Rabiti, C., Talbot, P. W., Alfonsi, A., Mandelli, D., & Cogliati, J. (2013). Implementation of
Stochastic Polynomials Approach in the RAVEN Code (INL/EXT-13-30611). Idaho Falls,
ID.

Rabitia, C., Alfonsi, A., Cogliati, J., Mandelli, D., & Kinoshita, R. (2014). RAVEN, a New
Software for Dynamic Risk Analysis (INL/CON-14-31610). In Probabilistic Safety
Assessment and Management PSAM 12. Honolulu, HI.

R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/

Sanchez, S. M. (2011). Better than a Petaflop: The Power of Efficeint Experimental Design. In
Proceedings of the 2011 Winter Simulation Conference (pp. 1441-1455). IEEE.

Sargent, R. G. (2008). Verification and Validation of Simulation Models. In Proceedings of the
2008 Winter Simulation Conference (pp. 157-169). IEEE.
https://doi.org/10.1109/WSC.2000.899697

Sen, S., Maljovec, D., Alfonsi, A., & Rabiti, C. (2015). Developing and Implementing the Data
Mining Algorithms in RAVEN (INL/EXT-15-36632). ldaho Falls, ID. Retrieved from
https://inldigitallibrary.inl.gov/sti/6799591.pdf

SFPE, & NFPA. (2002). SFPE Handbook of Fire Protection Engineering (3rd ed.). Quincy, MA:
National Fire Protection Association.

196

Smith, C., Mandelli, D., Prescott, S., Alfonsi, A., Rabiti, C., & Cogliati, J. (2014). Light Water
Reactor Sustainability Program Analysis of Pressurized Water Reactor Station Blackout
Caused by External Flooding Using the RISMC Toolkit (INL/EXT-14-32906). Idaho Falls,
ID.

Steinwart, 1., & Christmann, A. (2008). Support Vector Machines. Analytica Chimica Acta (Vol.
703). New York, NY: Springer. https://doi.org/10.1016/j.aca.2011.07.027

Swiler, Laura, Mandelli, Diego, Rabiti, Crisitan, Alfonsi, A. (2013). DAKOTA Reliability
Methods applied to RAVEN/RELAP-7 (SAND2013-8439). SAND2013-8439. Albuquerque,
NM.

Szilard, R. H., Frepoli, C., Yurko, J. P., Youngblood, R., Alfonsi, A., Zoino, A., ... Smith, C. L.
(2015). Light Water Reactor Sustainability Program Industry Application Emergency Core
Cooling System Cladding Acceptance Criteria Early Demonstration (INL/EXT-36541).
Idaho Falls, ID.

USNRC, & EPRI. (2015). Refining and Characterizing Heat Release Rates from Electrical
Enclosures During Fire (RACHELLE-FIRE) (NUREG-2178). Washington, D.C.

USNRC, & Sandia National Laboratories. (1987). Enclosure Environment Characterization
Testing for the Base Line Validation of Computer Fire Simulation Codes (NUREG/CR-
4681, SAND86-1296). Albuquerque, NM.

USNRC, & Sandia National Laboratories. (1989). A Summary of Nuclear Power Plant Fire
Safety Research at Sandia National Laboratories, 1975-1987 (NUREG/CR-5384, SAND89-
1359). Albuquerque, NM.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian Processes for Machine Learning.
Cambridge, MA: MIT Press.

Worrell, C., & Rochon, C. (2016). Fire Probabilistic Risk Assessment and its Applications in the
Nuclear Power Industry. Fire Technology, 52, 443-467.

197

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Experimental Designs included in RAVEN
	Table 2. Additional RAVEN-Related Technical References
	Table 3. Fire Model Validation Results from NUREG-1934 (McGrattan et al., 2012)
	Table 4. Fire Scenarios Contributing most to Core Damage Frequency for Sample of Plants
	Table 5. Cabinet Fire Peak Heat Release Rate Gamma Distributions per NUREG-2178 (USNRC & EPRI, 2015)
	Table 6. Summary of Input Space Defined by High Risk Fires at Three Sampled Plants
	Table 7. Full-Scale Fire Tests used for Fire Model Verification and Validation
	Table 8. Fire Model Validated Ranges per NUREG-1934 (McGrattan et al., 2012)
	Table 9. Fire Scenario Input Space over which RAVEN will be Exercised
	Table 10. Summary of Input and Output Parameters of Interest
	Table 11. Full Grid Sampling Plan to Create Population of Data against which to Test RAVEN ROM Capabilities
	Table 12. Subdivision of Full Grid into Batches using the Heat Release Rate Parameter
	Table 13. Description of each Column in the Consolidated .csv File used for Metamodel Training and Testing
	Table 14. Comparison of Computer Run Time and Accuracy across Several Modeling Options
	Table 15. Input Parameter Space used for K-Nearest Neighbor Model Training

	LIST OF FIGURES
	Figure 1. Compartment Fire Behavior
	Figure 2. Example CFAST Model
	Figure 3. Example CFD Fire Model
	Figure 4. Fire Model Bias Factors for Predicted Quantities
	Figure 5. Range of Fire Heat Release Rate Profiles to be executed by RAVEN
	Figure 6. Postulated Fire Scenario: Electrical Cabinet FirePropagating to Overhead Cable Trays and Adjacent Electrical Cabinets
	Figure 7. CFAST Rendering of Range of Compartment Shapes to be Evaluated by RAVEN
	Figure 8. Grid Sampled Fire Scenario Input Space
	Figure 9. Histograms of the Factors upon which the Heat Release Rate Profiles are Based
	Figure 10. Illustration of the Two Models over which Machine Learning is Exercised
	Figure 11. Prescribed versus Realized Heat Release Rates
	Figure 12. Upper Layer Temperature Profiles Calculated by CFAST
	Figure 13. Lower Layer Temperature Profiles Calculated by CFAST
	Figure 14. Upper Layer Height Profiles Calculated by CFAST
	Figure 15. Compartment Pressure Profiles Calculated by CFAST
	Figure 16. Upper Layer Optical Density Profiles Calculated by CFAST
	Figure 17. Flame Height Profiles Calculated by CFAST
	Figure 18. Response Variable Histograms
	Figure 19. Correlation Plot between all Predictor and Response Variables
	Figure 20. Example Comparison of Raw Parameter Values to their Centered and Scaled Values
	Figure 21. Initial Fitting of Linear Metamodels (1-4)
	Figure 22. Initial Fitting of Linear Metamodels (5-8)
	Figure 23. Initial Fitting of Linear Metamodels (9-12)
	Figure 24. Initial Fitting of Linear Metamodels (13-16)
	Figure 25. Initial Fitting of Linear Metamodels (17-20)
	Figure 26. Initial Fitting of Tree-Based Metamodels
	Figure 27. Initial Fitting of Neighbor-Based Metamodels
	Figure 28. Support Vector Regression Metamodels
	Figure 29. Regression Tree Coefficient of Determination (R2) as a Function of Number of Splits
	Figure 30. Regression Tree for Maximum Upper Layer Temperature
	Figure 31. Regression Tree Predicted versus CFAST Estimated
	Figure 32. kNN Root Mean Squared Error as a Function of Number of Neighbors
	Figure 33. K-Nearest Neighbor Predicted versus CFAST Estimated
	Figure 34. Ratio of kNN Predicted to CFAST Calculated
	Figure 35. Support Vector Machine Root Mean Squared Error as a Function of Complexity Parameter
	Figure 36. Support Vector Machine Predicted versus CFAST Estimated
	Figure 37. Comparison of CFAST to kNN and Algebraic Models
	Figure 38. kNN Predicted vs. CFAST Calculated over Range of Training Sample Sizes
	Figure 39. kNN Root Mean Squared Error vs. Training Sample Size

	PREFACE
	1.0 INTRODUCTION
	2.0 LITERATURE REVIEW
	2.1 METAMODELING PROCESS
	2.2 FIRE HAZARD MODELS
	2.3 RAVEN SOFTWARE OVERVIEW
	2.4 PREVIOUS APPLICATIONS OF RAVEN
	2.5 REDUCED ORDER MODELS AVAILABLE IN RAVEN
	2.5.1 N-Dimensional Spline
	2.5.2 Gaussian Polynomial Fitting
	2.5.3 High Dimensionality Model Representation (HDMR)
	2.5.4 MSR
	2.5.5 N-Dimensional Inverse Distance Weighting
	2.5.6 Linear Models
	2.5.7 Support Vector Machines (SVM)
	2.5.8 Multi-Class
	2.5.9 Naïve Bayes
	2.5.10 Neighbors
	2.5.11 Tree-Based
	2.5.12 Gaussian Process
	2.5.13 Auto-Regressive Moving Average (ARMA)

	2.6 PREVIOUS APPLICATIONS OF REDUCED ORDER MODELS TO APPROXIMATE NUCLEAR POWER PLANT HAZARDS
	2.6.1 The Ohio State University Study
	2.6.2 University of California Los Angeles Study

	3.0 METHODOLOGY
	3.1 FIRE MODEL SELECTION
	3.2 FIRE SCENARIO DEFINITION
	3.2.1 Characteristics of High Risk Fire Scenarios
	3.2.2 Validated Range of Fire Model Input Space
	3.2.3 Fire Scenario Definition for RAVEN Application

	3.3 RAVEN-CFAST MODEL SETUP
	3.4 INPUT AND OUTPUT PARAMETERS OF INTEREST
	3.5 FULL GRID SAMPLING OF THE INPUT SPACE
	3.6 SIMULATION RESULTS
	3.7 DATA PREPARATION FOR METAMODELING
	3.7.1 Consolidating the Data
	3.7.2 Feature Selection
	3.7.3 Centering and Scaling
	3.7.4 Initial Training and Testing: Linear Models
	3.7.5 Initial Training and Testing: Tree-Based Models
	3.7.6 Initial Training and Testing: Neighbor-Based Models
	3.7.7 Initial Training and Testing: Support Vector Machine
	3.7.8 Initial Training and Testing: Summary

	3.8 METAMODEL SELECTION AND TUNING
	3.8.1 Decision Tree Regressor
	3.8.2 k-Nearest Neighbor (kNN) Regression
	3.8.3 Support Vector Machine

	3.9 COMPARISON TO ALGEBRAIC FIRE MODELS
	3.10 ACCURACY-EFFICIENCY TRADEOFF
	3.11 LIMITATIONS
	3.12 FUTURE RESEARCH

	4.0 CONCLUSIONS
	APPENDIX A
	BIBLIOGRAPHY

