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CONNECTIVITY OF THE ORISKANY SANDSTONE WITH THE MARCELLUS 
SHALE: EFFECTS ON SHALE GAS OPERATIONS IN NORTH CENTRAL 

PENNSYLVANIA 

Emily V. Glick, MS 

University of Pittsburgh, 2017

Marcellus Shale flowback and produced waters from lateral wells in North Central 

Pennsylvania have higher overall total dissolved solids and lower overall gas production than 

other areas of the Appalachian Basin.  Marcellus Shale development in North Central 

Pennsylvania is unique in that it is the only area developed where historic vertical well gas fields 

exist in the Oriskany Sandstone, approximately 7-26 meters below the Marcellus Shale.  This 

research explores potential effects on Marcellus Shale lateral well operations and production due 

to hydraulic connections between the Oriskany Sandstone and the Marcellus Shale.  This 

connectivity is thought to adversely affect Marcellus Shale production operations in North 

Central Pennsylvania, but thus far, mechanistic clarification of production in North Central 

Pennsylvania has not been formalized and/or reported.  The stratigraphic and structural review of 

the study area within North Central Pennsylvania identifies which Marcellus Shale lateral well 

pads are most likely to be connected with the Oriskany.  The data reveals that the presence of the 

Oriskany Sandstone does not significantly affect formation breakdown pressures during the 

completion of the Marcellus laterals, nor percent fluid recovered during flowback, nor the 

volume of gas and water, nor the produced water geochemistry.  The δ18O and δ2H isotopic 

composition of produced waters from the study area suggest possible mixing between waters 

characteristic of Oriskany and Marcellus Formations.  A structural complexity calculator was  
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developed to analyze if the structural profile of a lateral well (presence of faults, extreme bed dips, 

etc.) affects the completion or production of the laterals.  The structural complexity calculations 

reveal that Marcellus Shale lateral well formation breakdown pressure, gas and water production 

volumes, and produced water geochemistry are affected by pre-existing structural features that the 

lateral wells intercept.  This research identifies important interactions among lateral wells, 

historic gas fields, and structure. Clarification of these interactions will allow more efficient 

future Marcellus Shale lateral wells in North Central Pennsylvania. 
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PREFACE 

I began this endeavor in 2012.  I knew that it would be a slow, steady process, but I was 

committed.  At the time, I had already been working as a geoscientist in environmental consulting 

for four years.  I was married and our first son was a year and a half old.  One year into my studies 

I was delighted to begin a new job as an operations geologist with EQT Production.  I took a six 

month hiatus from my studies to learn my new job.  I resumed class in the summer of 2014. 

Meanwhile I was expecting our second son and also studying for the Pennsylvania Professional 

Geologists examination.  I successfully passed the PG exam, just 11 days before our second son 

was born.  Again, I took nearly a year hiatus from my academic studies, all the while mothering 

two young boys and honing my skills as an operations geologist.  When I resumed classes and 

defined my thesis project in 2015/2016, it was time to get things done!  As I complete this thesis, 

my husband and I are eagerly awaiting for the arrival of our third son in just five weeks’ 

time.  Looking back, it has certainly been a long journey and I have learned so much.  I thank my 

parents for teaching me to not give up. 

Of course, none of this would have been possible without the perpetual support and 

encouragement from my husband, Matthew.  My extended family has also played a key role in 

helping us keep our home running smoothly.  At the start, Jeff, Kelly and all my friends at Tetra 

Tech helped me believe that I should pursue this degree.  Ashley, Joe, Luke, Chris, Craig and all 

my friends at EQT Production were instrumental in making this research possible.  Finally, my 

boys – Liam, Miles, and little man – bring so much joy to my life.  I dedicate this work to them.   

Thank you all very, very much. 
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1.0  INTRODUCTION 

Marcellus Shale drilling activities peaked in the North Central Pennsylvania (Figure 1-1) counties 

of Clarion, Forest, Elk, Cameron, Clearfield and Jefferson in 2011 and again in 2015, when the 

Henry Hub Natural Gas Spot Price in the previous year had averaged $4.38 per million BTU 

(EDWIN, 2016 and EIA, 2017).  Since November 2014, the monthly Henry Hub Natural Gas Spot 

Price has averaged $2.69.  In the current price environment, Marcellus Shale development has 

shifted from North Central Pennsylvania to other areas in the Appalachian Basin, such as 

southwestern and northeastern Pennsylvania where natural gas drilling and extraction is more 

economically viable.  When the price of natural gas rises again, Marcellus Shale lateral well 

drilling activities will likely increase in North Central Pennsylvania.  Using data collected from 

previously drilled wells, the opportunity exists to improve future development in North Central 

Pennsylvania.   This research reviews geologic context, lateral completions data, and gas and water 

production data from lateral Marcellus Shale wells in North Central Pennsylvania to determine 

factors influencing gas production in North Central Pennsylvania.    

 In 2015, EQT Production (my employer) observed that Marcellus Shale flowback and 

produced waters from lateral wells in North Central Pennsylvania have higher overall total 

dissolved solids (TDS) and lower overall gas production than other areas of the Appalachian Basin 

(A. Douds, pers. comm.).  Many of EQT’s Marcellus Shale lateral wells in North Central 

Pennsylvania are underlain by  the  Oriskany  Sandstone,  the  target  of  previous  vertical  gas 
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drilling  (Figure 1-2a).   EQT’s Marcellus Shale lateral wells also often encounter a significant 

amount of structure, such as faulting and significant bed dip changes, over short distances in North 

Central Pennsylvania.  These observations lead to an overarching hypothesis that Marcellus Shale 

lateral wells in North Central Pennsylvania are hydraulically connected to the deeper Oriskany 

Sandstone reservoir and vertical Oriskany wells due to an existing fracture network and pressure 

gradient (Figure 1-2b).   
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Figure 1-1.  Index map of North America. North Central Pennsylvania is denoted by 

orange circle (Maps of the World, 2016) 
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Figure 1-2. Conceptual model of formation response to unconventional gas extraction in 

North Central Pennsylvania 
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 The drilling and hydraulic fracturing of the Marcellus Shale may enhance the connection 

of the Marcellus laterals with the deeper Oriskany Sandstone in North Central Pennsylvania 

(Figure 1-2b).  This leads to two hypotheses: 1) The Marcellus Shale laterals are hydraulically 

connected with the Oriskany Sandstone via existing fractures, faults, or legacy vertical wells in the 

North Central Pennsylvania region; and 2) Connection to the Oriskany Sandstone diffuses 

stimulation energy during hydraulic fracturing (via flow through the existing fractures or faults) 

and therefore the Marcellus Shale reservoir is ineffectively propped and gas production is 

diminished.  These questions will be examined using multiple lines of evidence throughout this 

thesis.  Specifically, formation breakdown pressure data collected during hydraulic fracturing, 

percent of fluid recovered during flowback, and gas and water production data together provide 

insight into connections between the Marcellus Shale and Oriskany Sandstone.  The synthesis of 

produced gas and water volume, chemistry, and produced water and gas isotope data with 

structural complexity (derived from geosteering data) provide insight into variability in well 

performance. 

 This thesis provides information that can contribute to development of methods to 

maximize hydrocarbon recovery and minimize brine water recovery in North Central 

Pennsylvania.  When wells are drilled efficiently, as to produce the greatest amount of hydrocarbon 

and minimize brine water recovery, operators’ net income will increase and more importantly, 

environmental impacts will be reduced. 
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1.1 GEOLOGIC FRAMEWORK 

1.1.1 History of Oil & Gas in North Central Pennsylvania 

Drilling activities came to North Central Pennsylvania in the 1940’s, most notably in the Leidy 

field in Clinton County (Figure 1-3).  In 1951, the Driftwood gas field was discovered in 

southwestern Cameron County (Fettke, 1953).  By 1954, the Driftwood gas field had been renamed 

to the Benezette-Driftwood gas field and was extended into southeastern Elk County (Fettke, 

1955).  In 1955, the Rockton Field was discovered southwest of the Benezette-Driftwood Field in 

northwestern Clearfield County (Fettke, 1956).  The occurrence of gas in the Oriskany in North 

Central Pennsylvania is due to structurally controlled fracture-type porosity (Fettke, 1955).  

Between 1946 and 1990, it is estimated that over 650 vertical wells were drilled and producing 

from the Oriskany Sandstone (EDWIN, 2016).  The locations of the main Oriskany Sandstone gas 

fields are shown in Figure 1-3.   
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Figure 1-3. Location of vertical Oriskany Sandstone gas fields 

 

In 1955, the completion method “hydrafracing” came into use in the Oriskany Sandstone 

vertical well fields.  Hydrafracing, or what we know today as hydraulic fracturing, used pressurized 

water to fracture not only the Oriskany Sandstone, but also the Helderberg Limestone below the 

Oriskany Sandstone and the Onondaga Chert above the Oriskany Sandstone.  Hydrafracing was 

determined to be more effective than ‘shooting’ (the previous preferred completions method that 

involved dropping explosives into the wellbore) (Fettke, 1956).  Vertical Oriskany Sandstone wells 

were also often completed with acid because the acid etching would prevent complete fractures 

closure and further increased productivity.   

The production of vertical Oriskany Sandstone wells is maintained through activities like 

swabbing, i.e., the use of a small rig to remove fluids from the well.  As fluids in the well increase, 

bottom hole water pressure inhibits gas flow to the surface.  Recompletion is another way to 
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maintain a well’s production.  Once these maintenance activities no longer enhance natural gas 

production, a well will be abandoned. 

The first lateral Marcellus Shale well was drilled and completed in North Central 

Pennsylvania in Elk County by EOG Resources (API #3704723983) in the fall of 2007 (EDWIN, 

2016).  Since then, over 300 lateral Marcellus Shale wells have been drilled in North Central 

Pennsylvania in Clarion, Forest, Elk, Cameron, Clearfield, and Jefferson Counties. 

 Lateral, or horizontal, drilling begins by drilling vertically to some depth above the 

Marcellus Shale.  The point at which the well changes from being vertical to deviated is called the 

kick-off point.  For the driller to begin to drill at an angle other than vertical the lower portion of 

the drill string, the bottom hole assembly, is replaced with a bottom hole assembly that includes 

directional, measurement-while-drilling, and logging-while-drilling tools (Schlumberger, 1998).  

Directional tools commonly use a downhole steerable motor with a bend near the bit which points 

the bit in a direction different from the axis of the wellbore, enabling the well to intentionally 

deviate from the relatively straight path it would naturally take.  Measurement-while-drilling tools 

evaluate the physical properties of a wellbore, including pressure, temperature, and wellbore 

trajectory in three-dimensional space.  Logging-while-drilling tools measure formation parameters 

such as the gamma ray readings of the rock encountered.  Measurement-while-drilling and 

logging-while-drilling measurements are made downhole, generally 9 – 18 meters behind the drill 

bit.  The measurements are stored in solid-state memory and are generally transmitted to the 

surface once for every 18 – 27 meters of rock drilled.  Data transmission usually involves digitally 

encoding data and transmitting to the surface as pressure pulses in the mud system.  Reports 

including the directional surveys, or location of the wellbore in 3-dimensional space, and the 

gamma measurements recorded while drilling are generated from the data transmissions.   
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Using measurement-while-drilling readings, directional drillers control the left/right 

direction of the path of the wellbore.  Generally, horizontal well paths are planned on a preferred 

azimuth.  This preferred azimuth varies across the Appalachian Basin, but is usually parallel to the 

local minimum horizontal stress (Zinn, 2011).  Drilling parallel to the minimum horizontal stress 

enables induced hydraulic fractures to grow in the direction of the maximum horizontal stress and 

therefore maximize gas flow into the wellbore.    

In the Marcellus Shale, measurement-while-drilling and logging-while-drilling gamma ray 

readings are used to guide the up/down direction of a well by a method called geosteering.  

Marcellus Shale lateral wells target a portion of the Marcellus formation where modeled clay 

content is expected to be low and where modeled gas concentrations are predicted to be high.  This 

target interval will have a distinct ‘gamma’ signature, which is a measurement of the radioactivity 

of the rock.  Marcellus black shale contains radioactive isotopes of U, K and Th in higher 

concentrations than those of less-organic rich grey shales, limestone, or sandstone.  This is because 

U preferentially bonds to organic matter and K and Th preferentially bond to clays, which compose 

most of the sediment at the paleo-ocean floor.  Ultimately, black shales, like the Marcellus, contain 

more organic matter and clay and therefore are more radioactive than other shales or sedimentary 

rocks (Perry, 2011).   

Geosteering is done by correlating the gamma ray readings collected in the horizontal well 

to gamma ray readings previously collected in a vertical pilot hole well (Pitcher, 2012).  As shown 

in Figure 1-4, the horizontal well gamma ray readings (blue line) are correlated to the pilot hole 

gamma ray curve (black line).  The correlation is composed of several small segments (colored 

lines) because each segment of horizontal well gamma ray readings was stretched or squeezed in 

a unique way to fit the pilot hole gamma ray curve.  Geosteering software uses the manipulation 
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of horizontal gamma ray readings to fit the pilot hole gamma ray readings to generate a bed dip 

and horizon.  The bed dips and horizons interpret the location of the wellbore relative to a target 

interval.  The directional drillers then use this geosteering interpretation to guide the up/down 

direction of the horizontal path of the wellbore.  Additionally, the wellbore, kick-off point, 

formation horizons, target interval, gamma curves, and bed dips are labeled in the geosteering 

profile shown in Figure 1-4  When the driller has finished drilling the well it is said that the well 

reached ‘total depth’, or TD. 

 

 

Figure 1-4. Example of geosteering.  Software shown is StarSteer by Rogii 
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1.1.2 Stratigraphy of North Central Pennsylvania Study Area 

The study area of this research is defined as the black rectangle shown in Figure 1-5.  It ranges 

from EQT’s Monarch Pad in Jefferson County in the northwest to the Turkey Pad in Clearfield 

County in the south and from the Frano Pad in Jefferson County in the west to the Whippoorwill 

Pad in Cameron County in the east (Figure 1-5).  The study area contains two subdivisions: a 

southern portion where the Oriskany sand is present and a northern portion where the Oriskany 

sand is absent. 

The Oriskany is a Lower Devonian sandstone separated from the underlying Lower 

Devonian Helderberg Limestone and the overlying Middle Devonian Huntersville Chert by 

unconformities (Figure 1-6).  The use of the name Oriskany Sandstone has been extended 

throughout the basin, although the presence of the unconformities above and below the Oriskany 

suggests several erosional events that resulted in deposition of local sandstones in the approximate 

stratigraphic position of the Oriskany (Patchen, 1996).  In the “no-sand area”, the Oriskany is thin 

or absent due to erosion or non-deposition (Diecchio, 1985).  Local sandstones include the 

Sylvania Sandstone in Ohio, the Springvale Sandstone in New York, and the Ridgeley Sandstone 

in Pennsylvania.  The Oriskany Sandstone is generally thought to have been deposited in a shallow-

marine environment (Dresel and Rose, 2010). 
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 Figure 1-5. Location of study area. Black rectangle represents the study area.  Blue dots represent Oriskany vertical wells that 

contain brine (EDWIN, 2016)
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Figure 1-6. Generalized stratigraphic column of Pennsylvania (PA DCNR, 2003) 
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1.1.3 Mineralogy of the Oriskany Sandstone 

The Oriskany Sandstone in the Elk Run Pool of Jefferson County, PA has been described as very 

fine to coarse-grained, calcerous, poorly sorted, quartoze sandstone composed of mainly 

subrounded, frosted grains (Heyman, 1969).  It is light grey in a clean sample and light orange in 

outcrop.   

 Across the Appalachian Basin, most of the sandstone is silica cemented, but there are 

highly calcareous areas (Krynine, 1941).  The average composition reported by Rosenfeld (1953) 

for Ridgeley quartz sandstone is as follows: detrital silicates, 77.7 percent; authigenic silica, 9.5 

percent; clastic carbonate, 7.1 percent; fixed crystalline carbonate, 3.8 percent; other clastics, 1.4 

percent; and other cements and matrices, 0.5 percent.  Detrital silicates reported by Rosenfeld 

(1953) include about 1 percent feldspar and 0.2 percent heavy minerals.  The authigenic silica is 

mainly clear quartz overgrowths, but locally consists of microcrystalline quartz or quartz having 

flamboyant radiation extinction.  The clastic carbonates are fossil fragments, whereas the fixed 

crystalline carbonate includes sparry calcite, and small rhombs of siderite or ankerite.   

 Welsh (1984) reported fractures in the Oriskany Sandstone healed by calcite, whereas 

Basilone and others (1984) noted quartz and ferroan calcite fracture fillings.  Other clastics include 

rare biotite chlorite, and muscovite.  Interstital limonite is commonly present, and one section had 

barite or celestine cement.  Stow (1938) reported zircon, tourmaline, rutile, leuoxene, chlorite, and 

limonite as the Oriskany heavy minerals in Pennsylvania. 
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1.1.4 Porosity of the Oriskany Sandstone 

Porosity occurs in the upper two-thirds of the sandstone.  The existence of a limited fracture 

network in the Oriskany may have enhanced the overall quality of the reservoir (Heyman, 1969).  

The data indicate that intergranular and fracture porosity exist within the Oriskany, and overlying 

thick low-permeability zones within the Appalachian Basin provide the potential for vertical 

containment (Diecchio, et al., 1984; Gupta et al., 2005).  Rosenfeld (1953) reported mean effective 

porosity of 7.6%, whereas Skeen (2010) reported a mean effective porosity of 8.08%. 

1.1.5 Water Occurrence in the Oriskany Sandstone 

The completion reports of 104 wells document that the Oriskany sandstone contains brine 

(EDWIN, 2016).  The location of the Oriskany wells containing brine are indicated by the blue 

circles in Figure 1-5.   

1.1.6 Pressure of the Oriskany Sandstone 

Within the study area the Oriskany Sandstone is considered to be overpressured (as high as 31,026 

kPa) because of initial open flow pressures in some areas of the basin, (Wickstrom et al., 2005).  

However, across the Appalachian Basin the Oriskany is generally underpressured with an average 

pressure gradient of 6.8 kPa/m of depth, compared to a hydrostatic freshwater gradient of 9.74 

kPa/m for freshwater and approximately 10.71 kPa/m for brine.  Final shut-in pressure in the 

Oriskany Sandstone within the study area ranges from 20 to 25 kPa (Skeen, 2010).  Russel (1972) 

suggested that, on, average, the Oriskany Sandstone is not an overpressured reservoir, and that 
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overpressuring is more common in areas of intense deformation.  One example of overpressuring 

in the Oriskany Sandstone within the study area is from completion report of well API 

#3702320025 (EDWIN, 2016).  The report records that the well was drilled to the Oriskany 

sandstone in the Driftwood Quadrangle of Cameron County, and that after drilling ceased, the 

water level in the well rose 36 m in 23 days.   

1.1.7 Structure of North Central Pennsylvania Study Area 

The gas reservoirs of the Oriskany Sandstone in North Central Pennsylvania occur within 

structural traps.  These structural traps occur along a northeast trending belt, which actually 

extends from Fayette County on the southwest to Potter and Tioga Counties on the northeast 

(Wagner, 1973).  A cross-section of the Leidy gas field illustrates the faults and anticline that 

create the structural trap (Figure 1-7).  In the Oriskany Sandstone two gas fields are separated by 

faults; the Leidy pool and the Tamarack pool.  Due to the faulting, the main gas trap, the Leidy 

pool, lies on the northwest side of the anticline near the crest, rather than on it.  The Tamarack 

pool, a trap containing less gas, is in one of the faulted sections at the crest.  The structure of the 

Leidy gas field is typical of the belt from Potter to Fayette Counties where gentle anticlines at the 

surface are faulted in the subsurface, resulting in entrapment of gas primarily on the flanks instead 

of the crest of the anticlines (Wagner, 1973). 
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Figure 1-7. Cross section of Leidy gas field. Entrapment of gas in folded and faulted 

anticline. Note that faults in the Oriskany Sandstone and Tully Limestone do not propagate to the 

surface (Wagner, 1973) 

1.2 NORTH CENTRAL PENNSYLVANIA VERTICAL GAS FIELDS RELATIVE TO 

THE APPALACHIAN BASIN 

Marcellus Shale lateral well development in North Central Pennsylvania is one of the only areas 

of the Appalachian Basin where Marcellus Shale laterals have been developed over the historic 

Oriskany gas fields (Figure 1-8).  Well completion reports indicate that Anadarko drilled and 
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completed several wells over an unnamed Oriskany Field in Clinton County between 2010-2011 

(EDWIN, 2016). 

 

 

Figure 1-8. Pennsylvania deep gas fields in relation to Marcellus Shale development in the 

Appalachian Basin, as of August 2017.  Black rectangle represents the study area. Red shapes 

delineate the deep gas fields. Green shapes delineate locations of Marcellus Shale lateral wells 
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1.3 CONCEPTUAL MODEL 

The conceptual model relates vertical Oriskany wells and complex structure, such as faults and 

fractures, which existed in the study area prior to the drilling of Marcellus Shale laterals, to the 

producing rock volume of Marcellus Shale laterals (Figure 1-2).  The model represents the 

Oriskany as a structural play within the study area.  After the drilling, completion, and production 

of Marcellus Shale laterals by EQT Production, it is expected that some Marcellus Shale laterals 

in the study area may be connected with the Oriskany Sandstone.  Therefore, the producing rock 

volume of the Marcellus Shale laterals also increases and extends into the Oriskany Sandstone 

through faults.  Natural fractures and faults that developed after deposition of the Marcellus Shale 

created voids and secondary permeability.  Hydraulic fracturing of Oriskany Sandstone vertical 

wells and Marcellus Shale laterals also generates permeability.  Secondary permeability enhances 

the ability for rock to transmit fluids and increases the hydraulic conductivity.  In turn, the flow 

pathways created by secondary permeability are also zones are where solutes collect and secondary 

minerals form over time.     
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2.0  METHODOLOGY 

2.1 STRUCTURE AND STRATIGRAPHY 

2.1.1 Structure 

I generated a structural contour map of the subsea elevation (depth measured below zero elevation) 

of the Onondaga Limestone surface in GeoGraphix.  First, in SeisVision, faults were identified in 

the seismic data.  Then the Tully Limestone and Onondaga Limestone horizons were delineated.  

Next, the fault heave calculator tool was used to calculate fault offset.  Then, where possible, the 

major faults were named and correlated across multiple 2D seismic lines and 3D surveys.  Next, 

wells that had Tully and Onondaga formation tops picked were referenced to the Tully and 

Onondaga seismic data and seismic velocities were referenced to depth.  At this point, a time map 

was generated, and then a velocity gradient map.  The Onondaga velocity gradient map was 

converted to depth.  This depth map was then brought into GeoAtlas and additional Onondaga 

depth points were added from geosteering data. 

2.1.2 Stratigraphy 

Using Geographix XSection, cross-sections of geophysical logs from the study area were 

interpreted (Figure 2-1).  Using the density, gamma, photoelectric, and resistivity curves, I 

delineated the Marcellus Shale, Onondaga Limestone, Huntersville Chert, Oriskany Sandstone, 

and Helderberg Limestone horizons.  As standard, the top of a formation serves as the base of the 
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overlying formation.  I also delineated the base of the Oriskany ‘pay zone’, which is defined as an 

interval within the Oriskany having a density of less than 2.55 g/cm3.  (This interval of low density 

sandstone is referred to as ‘pay zone’ because it contains the greatest pore space where 

hydrocarbons preferentially gather.)  In total, over 170 well logs were reviewed and the intervals 

were delineated and saved as formation records in Geographix Wellbase.  Using Geographix 

Isomap, Oriskany Sandstone Thickness, Oriskany Sandstone Net Pay, and Distance from 

Marcellus Shale to Oriskany Sandstone maps were generated. 
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Figure 2-1. Example of stratigraphic interpretation in Geographix XSection. Cross-section taken along strike in study area
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2.2 WATER AND GAS DATA COLLECTION 

2.2.1 Water 

2.2.1.1 Published Water Data Oriskany Sandstone produced water chemistry data were 

compiled from published datasets.  Table 2-1 summarizes well location and construction details of 

the published data.  The published data set includes water analyses from three Oriskany wells in 

the Rockton Field located in Clearfield County (Poth, 1962) and water analyses from 23 Oriskany 

wells across Jefferson, Clearfield, Cameron, and Elk Counties (Kelley et. al., 1973).  The published 

data sets listed above were previously compiled in an Oriskany brine geochemical data set of over 

220 analyses from throughout the Appalachian Basin (Skeen, 2010).   

Additionally, published Oriskany produced water oxygen and hydrogen isotope analyses 

of three Oriskany wells located in Somerset County, PA (Dresel, 1985) were included in the 

dataset.  While these samples are from wells located approximately 120 kilometers south of the 

study area, the analyses were included as there are very few isotope analyses of Oriskany waters 

to date. 

 

2.2.1.2 Previous Water Collection by EQT  In January 2013, a well tender collected 

flowback water samples from two different Marcellus Shale laterals on the Frano pad (Figure 2-

2).  The first day of flowback for these two wells was October 4, 2012.  These water samples were 

analyzed by Multi-Chem Laboratories for total dissolved solids, pH, chloride, sulfate, Ca, Fe, K, 

Mg, Na, and Sr.  
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Table 2-1. Record of wells sampled 
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Table 2-1. (continued) 
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Table 2-1. (continued) 
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Table 2-1. (continued) 
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Figure 2-2. Water and gas sample location map 

 



29 

An EQT engineer collected six samples of the water to be used for hydraulic fracturing on 

the Horizon Pad over a three-day period in October 2014 (Figure 2-2).   Multi-Chem Laboratories 

analyzed the water to be used for hydraulic fracturing for total dissolved solids, pH, alkalinity, 

density, chloride, sulfate, Ba, Ca, Fe, K, Mg, Mn, Na, Pb, Sr, and Zn.  After hydraulic fracturing, 

flowback water sampling was performed on the Horizon Pad. On the first day of flowback, a well 

tender collected 19 flowback water samples from three different Marcellus Shale laterals on the 

Horizon Pad over an 11-day period in December 2014.  Fairway Laboratories analyzed the 

flowback water for total dissolved solids, specific gravity, pH, alkalinity, specific conductance, 

bromide, chloride, sulfate, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn.   

The produced water of six Oriskany Sandstone wells was collected by a well tender in July 

2015 (Figure 2-2).  These water samples were analyzed by Fairway Laboratories for total dissolved 

solids, specific gravity, pH, alkalinity, specific conductance, bromide, chloride, sulfate, Ba, Ca, 

Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn.   These six Oriskany wells are located in Elk and 

Clearfield Counties, 16-32 kilometers from EQT’s Horizon Pad in Jefferson County.  The 

completion reports of the Oriskany wells indicate that the Marcellus Shale formation base is, on 

average, 16 meters above the top of the Oriskany Sandstone formation (Table 2-1) (EDWIN, 

2016). 

 

2.2.1.3 2016-2017 Produced Water Sample Collection In September of 2016, and January 

and February of 2017, with the help of well tenders, I collected water samples from producing 

wells in North Central Pennsylvania (Figure 2-2).  Well completion information is included in 

Table 2-1.  Whether a sample was taken from a separator, production tank, or a drip-tank, the well 

tender, filled a clean, non-preserved sampling bottle, which was used to fill the remaining bottles.  



30 

For each produced water sample collected, four bottles were filled for chemical analysis.  This 

included two 250 mL unpreserved high-density polyethylene (HDPE) bottles (specific gravity, pH, 

alkalinity, specific conductance, bromide, chloride, and sulfate), one 250 mL 1% nitric acid 

preserved HDPE bottle (metals: Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn), and one 500 

mL unpreserved HDPE bottle (TDS). The bottles for chemical analysis were held on ice and were 

delivered to Test America, Inc., located in RIDC Park in Pittsburgh.  One 100 mL unpreserved 

HDPE bottle was filled for isotopic analysis and delivered to Gas Analytical in Washington, 

Pennsylvania.  Gas Analytical packed the bottles as hazardous material and shipped them to 

Isotech Laboratories in Champaign, Illinois. 

On September 12 through 14, 2016, water was collected from ten Marcellus Shale laterals 

and one Oriskany vertical well (all owned by EQT).  Water was taken from the Marcellus laterals 

at the separator, with the exception of the Wedekind Pad, well 590389, where samples had to be 

taken from a valve on the bottom of the production tank.  The Wedekind pad is in a wet gas area, 

and the production tank contained condensate in addition to water.  I attempted to collect water 

from eight vertical Oriskany Sandstone wells, however these wells were constructed in the 1950’s-

70’s, are not currently producing, and have not been swabbed for many years.  I collected water 

from the drip tank of one Oriskany well (Ross Guy 1 – 591059).  To collect the sample, the well 

tender slowly opened the drip tank pipe until the pressure rose in the pipe, causing water to spurt 

out.  The drip tank is an underground pipe with a diameter of 0.2 -0.3 meters with ends welded 

onto it to catch free fluids when gas flow enters the larger diameter production casing and loses 

velocity.  After this ‘Oriskany’ produced water sample had been collected and analyzed by the lab, 

I discovered that the Ross Guy 1 - 591059 well was originally an Oriskany well that had been 

reworked in 1999 so that only the Bradford formation and shallower sands are the producing 
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intervals.  Therefore, this sample is omitted from subsequent analysis, but the data for this sample 

remains in the analytical results tables, as it is interesting to compare the water chemistry, and 

water and gas isotopes.   

To expand my Oriskany Sandstone produced water dataset, on January 24, 2017, water 

was collected from the production tanks of four additional Oriskany wells that are owned by 

Energy Corporation of America (ECA): COP-1, COP-3, COP-4, and COP-10.  The ECA well 

tender stated that the wells had been shut in for a year or more.  The production tank for wells 

COP-1, COP-3, and COP-4 were 2270-liter vertical plastic storage tanks.  The tank of well COP-

3 did not have a lid over the approximately 45 cm diameter hatch and was open to the environment.  

The ECA well tender sampled water from the tanks of COP-1, COP-3, and COP-4 by slowly 

dropping a stainless steel sampling bomb, or in the instance of COP-1 the water level was very 

low and a plastic bucket was slowly lowered, to the bottom of the tank.  He pulled the water out 

and then I filled the sample bottles.  The production tank for well COP-10 was roughly a 3 m tall, 

22,712-liter fiberglass tank.  Three 10 cm diameter vents on the top of this tank were open to the 

environment.  A sample was collected from the COP-10 production tank by opening the valve 

located on the bottom of the tank.   

The last round of sampling was performed on February 22, 2017.  I returned to ECA’s 

operating area to sample two of their lateral Marcellus Shale wells: Coldstream 3 and Coldstream 

B 5 wells.  This sampling grew from the previous sampling trip, when the ECA well tender had 

mentioned that they had suspected the Coldstream 3 lateral well was connected with the Oriskany 

Sandstone.  Similar to the COP-10 Oriskany well, the production tanks were roughly 3 m tall, 

23,000-liter fiberglass tanks.  Three 10 cm diameter vents on the top of the tanks were open to the 

environment.  Water was collected from Coldstream B 5 by opening the valve located on the 
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bottom of the tank.  We could not access the valve at the bottom of the Coldstream 3 tank because 

a transducer was in place.  The well tender sampled this tank by climbing a ladder to the top of the 

tank and slowly dropping a plastic bucket into the tank.  He pulled the water out and I then filled 

the sample bottles. 

 

2.2.1.4  Water Chemistry Analysis  Produced water samples were received by Test 

America at <3.8˚ C.  The samples were analyzed for bromide, chloride, and sulfate using ion 

chromatography method 300.0.  Metals (Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) were 

analyzed using ICP method 200.7 Rev 4.4.  Specific gravity and bulk density were analyzed using 

method D5057-90. Alkalinity was analyzed using method SM 2320B.  Conductivity and specific 

conductance were analyzed using method SM2510B.  TDS was analyzed using method SM 2540C.  

Finally, pH was analyzed by method SM4500 H+ B. 

 The produced water chemical concentrations of the 7 EQT Marcellus laterals with 

Oriskany were compared to the 3 EQT Marcellus laterals without Oriskany.  Also, the produced 

water chemical concentrations of the 10 EQT Marcellus laterals were compared to each of the four 

structural complexity characteristics for the same lateral using step-wise calculations in R Studio.   

 

2.2.1.5  Water Isotope Analysis Isotech Laboratories, Inc. analyzed the produced water 

samples for isotopic analysis of hydrogen and oxygen.  Isotech utilized a Thermo GasBench II 

coupled to a Thermo Delta V Plus IRMS for δD CF-IRMS analysis of water.  A preparatory 

cryogenic, vacuum distillation was performed to remove as many contaminants as possible from 

the sample prior to analysis.  Samples were then analyzed using the technique described in the 

Finnigan GasBench II Operating Manual (Thermo Electron Corporation, 2004).  A flushing gas 
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was introduced to a vial containing the water sample and after a period of time isotopic equilibrium 

was reached between the gas in the headspace and the liquid.  For isotopic analysis of oxygen, the 

flushing gas was a mixture of He and CO2 and the equilibrium time was a minimum of 18 hours.  

For isotopic analysis of hydrogen, the water sample was loaded into the vial along with a platinum 

catalyst stick.  The flushing gas was 2% H2 gas in helium to result in a signal height of 9 V, and 

the equilibrium time was a minimum of 40 minutes at room temperature.  Once equilibrated, a 

pure helium carrier gas carried the headspace gas to a sample loop via a pure helium gas, which 

allowed multiple aliquots of the sample to be measured in each analytical run.  The oxygen and 

hydrogen isotopic results were reported relative to Vienna Standard Mean Ocean Water 

(VSMOW). 

The produced water isotopic concentrations of the 7 EQT Marcellus laterals with Oriskany 

were compared to the 3 EQT Marcellus laterals without Oriskany.  Also, the produced water 

isotopic concentrations of the 10 EQT Marcellus laterals were compared to each of the four 

structural complexity characteristics for the same lateral using step-wise calculations in R Studio 

(RStudio Team, 2015).   

2.2.2 Gas 

2.2.2.1 Produced Gas Sample Collection Produced gas samples were collected on two 

difference occasions.  First, ten Marcellus laterals and eight Oriskany vertical wells were sampled 

between September 12 and 14, 2016 (Figure 2-2).  At the Marcellus laterals, gas was collected at 

the wellhead, except for one well (Horizon 591549) where the water would not bleed off at the 
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wellhead and the gas sample had to be collected after the separator.  At the Oriskany wells, gas 

was collected at the wellhead or from a line leading off the wellhead.   

On February 22, 2017, I collected produced gas from five ECA wells.  One sample was 

collected from a vertical Oriskany well, one sample was collected from a vertical Marcellus well, 

and one sample was collected from three different Marcellus laterals.  All gas samples from ECA 

wells were collected at the wellhead. 

The gas was collected using single-use Isotubes and an Isotube wellhead sampling device.  

The Isotube wellhead sampling device comprises a filter, inlet and outlet gauge, a 3-way value 

handle, and chuck.  The sampling device was threaded into a clean port with a control valve by a 

well operator.  The Isotube was then inserted into the sampler by pushing it into the chuck.  With 

the 3-way sampler valve in the shut position, the control value was opened at the sampling port.  

The 3-way value was then turned to ‘shut’ and ‘open’ for 10 cycles to alternately pressurize and 

vent the Isotube.  After filled for the last time, the 3-way valve was left open and the sleeve of the 

chuck was slid down and the Isotube was pulled off quickly.  End caps were screwed onto the 

Isotube and a label was affixed.  The Isotubes were shipped to Isotech in Champaign, Illinois by 

Gas Analytical.   

 

2.2.2.2  Gas Compositional Analysis & Isotopic Analysis  The gas was analyzed via gas 

chromatography for helium, argon, oxygen, nitrogen, carbon dioxide, methane, ethane, propane, 

Iso-butane, N-butane, Iso-pentane, N-pentane, and hexanes.  Methane, ethane, and propane were 

analyzed for hydrogen and carbon isotopic composition.  Isotopic composition of hydrogen is 
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relative to VSMOW.  Isotopic composition of carbon is relative to Vienna Pee Dee Belemnite 

(VPDB).  BTU and specific gravity were calculated per ASTM method D3588 (ASTM, 2017). 

 

2.3 STRUCTURAL COMPLEXITY CALCULATION 

Marcellus Shale laterals in the Appalachian Basin are geosteered using gamma ray logs and wells 

surveys (Section 1.1.1 and Figure 1-4).  Geosteering using gamma ray is by far the preferred 

method used to ensure that laterals are drilled in the shale intervals that are modeled to have the 

most gas and hydrocarbon in place.  Geosteering is so popular, that the structural profiles generated 

while geosteering are likely the largest and most comprehensive dataset for all lateral wells drilled 

in the Appalachian Basin, yet not much analysis is done on geosteering data and the resulting 

structural profiles.   

 The structural profile derived from geosteering is unique for every lateral.   Often, laterals 

that are drilled offsetting each other will share the same general trends in structure.  Geosteered 

profiles can range from very simple to very complex.  An example of a simple profile would be if 

the formation horizons were completely flat, or dipping at a constant inclination.  Complex profiles 

may include rolling, or even faulted formation horizons.   

I designed a calculator in Microsoft Excel to quantify what I call the ‘structural complexity’ 

of a geosteered lateral.  The input to the structural complexity calculator includes three parameters; 

the measured depth (MD) along the wellbore, the interpreted bed dips, and the Onondaga total 

vertical depth (TVD) horizon from the interpreted geosteering profile.  The data in the geosteering 

export file generally has a one-foot resolution (Figure 1-4).  Because structural complexity will be 
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compared to completions and production data, the input data began at the top perforation and ended 

at the bottom perforation, this interval will be referred to as ‘lateral length’.  I designed the 

structural complexity calculator to quantify four characteristics of the geosteered lateral export 

file.  The characteristics or outputs are; the maximum slope from within the completed portion of 

the wellbore [(maximum Onondaga TVD-minimum Onondaga TVD)/(MD at maximum 

Onondaga TVD-MD of minimum Onondaga TVD)], the overall range in bed dips in the lateral 

(maximum bed dip-minimum bed dip), a summation of all bed dips changes that are greater than 

a 0.5 degree change over a 30.5 cm interval normalized to the lateral length (summation of bed 

dips changes whose absolute value is greater than 0.5 degree), and finally a summation of all faults 

that have a TVD change greater than 61 cm over a 30.5 cm interval normalized to lateral length 

(summation of TVD changes whose absolute value is greater than 61 cm).  The calculation tab of 

the structural complexity calculator is shown in Table 2-2.  Geosteering export data (lateral MD, 

dip, and TVD of the Onondaga horizon) is input to the calculator.  Blue cells are input cells.  

Yellow cells are output cells.  The completed structural complexity summary tab for Turkey well 

591240 is shown in Table 2-3 and the geosteering profile for Turkey well 591240 is shown in 

Figure 2-3.   
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Table 2-2. Structural complexity calculator, calculation tab. 

 

 

Table 2-3. Structural complexity calculator, summary tab for Turkey well 591240. 
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Figure 2-3. Geosteering profile of Turkey well 591240. 

2.4 FORMATION BREAKDOWN PRESSURE 

During completion activities, formation breakdown pressure of each stage was recorded.  

Formation breakdown pressure is the pressure at which the rock matrix of an exposed formation 

(exposed by perforation of the wellbore) fractures and allows fluids to be injected.  Figure 2-4 

provides an example of pressure data that EQT collects while completing stages.  The graph shows 

that the formation was fractured at 40,955 kPa. 
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Figure 2-4. Example of pressure graph during well completion (Oil and Gas, 2015) 

 

The raw formation breakdown pressure of each stage was plotted with the geosteering 

profile to determine correlations between formation breakdown pressure and features, such as 

faults, identified in the geosteering profile (Figure 2-5).  The green boxes represent formation 

breakdown pressure of each completion stage.  Note that formation breakdown pressure is greatest 

at the well toe and decreases toward the heel. 
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Figure 2-5. Geosteering profile of Whippoorwill well 590876.  The green boxes along the 

wellbore represent each completion stage.  The height of the boxes are proportional to formation 

breakdown pressure.  The nearly vertical black lines represent interpreted faults and the number 

below the vertical lines represent the offset of the fault.  The grey shaded interval represents the 

target interval within the Marcellus Shale 

 

I averaged the formation breakdown pressure of each stage completed in a lateral to 

determine the average formation breakdown pressure for each lateral.  Formation breakdown 

pressure is influenced by depth (Figure 2-6), so the average formation breakdown pressure of a 

lateral was normalized by dividing the average formation breakdown pressure by the average depth 

of the lateral.   

The depth normalized average formation breakdown pressure for 31 Marcellus laterals was 

then compared to the four structural complexity characteristics for the same lateral using step-wise 

calculations in R Studio.   
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Figure 2-6. Average lateral total vertical depth versus average lateral formation breakdown 

pressure 

2.5 PERCENT OF FLUID RECOVERED DURING FLOWBACK 

Percent fluid or load recovered is a comparison of how much fluid flows back to the surface after 

hydraulically fracturing the well compared to the total volume of fluid used in the completion job.  

Load recoveries ranged from just 2.38% on Turkey well 590983 to 15.8% on Whippoorwill well 

590878.  The length of time of flowback is different for every well, and for this dataset the 

flowback period ranged from 59 to 370 hours.  (The flowback period lasts until the volume of 

water coming out of the well decreases and when sand and plug parts stop flowing out of the well.)  
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Percent load recovered of 31 laterals was compared to the four structural complexity characteristics 

for the same lateral using step-wise calculations in R Studio.  

2.6 MARCELLUS SHALE LATERAL WELL GAS AND WATER PRODUCTION 

VOLUMES 

Gas and water production data were reviewed for 24 Marcellus lateral wells within the study area, 

and nine additional Marcellus laterals located within 60 kilometers of the study area.  (Four wells 

on the Longhorn C Pad were flowed back, but not produced.)  Gas and water production data were 

reviewed for 274 Marcellus lateral wells located in Greene County, PA, as a point of comparison.  

It should be noted that gas volumes are measured continuously.  In contrast, water volumes are 

determined from sporadic water truck hauler receipts.   

 Gas and water volumes were summed over months 2 through 7 of a well’s production and 

were normalized to lateral length.  A gas-to-water ratio was also calculated for each well over 

months 2 through 7 of production.  (This avoided production data from month one, and potential 

errors from wells being that started producing partway through the month.)  The lateral length 

normalized gas production, lateral length normalized water production, and the gas-to-water ratios 

of 27 laterals were compared to each of the four structural complexity characteristics for the same 

lateral using step-wise calculations in R Studio.   
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3.0  RESULTS 

3.1 REGIONAL STRUCTURE AND STRATIGRAPHY 

The structure contour map of the top of the Onondaga Limestone reveals that the strike of structure 

is orientated on a northeast-southwest trend, and beds are dipping toward the southeast (Figure 3-

1).  Two anticlines and two synclines are apparent.  The anticline running from just north of 

Whippoorwill to Frano is the Sabinsville anticline, and the southernmost anticline is the Chestnut 

Ridge Anticline.  The historic Oriskany sandstone vertical gas fields are denoted by pink shading. 
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Figure 3-1. Structural map of the top of the Onondaga Limestone.  Well pads are labeled.  

Study area is denoted by black rectangle.  Contour interval is 15 meters 
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The Oriskany sandstone exists at depths of 2000 to 2400 m below the ground surface within 

the study area (Figure 3-2).  The depth to the Oriskany increases to the southeast.  This map shows 

one syncline and one anticline trending to the northeast within the study area. 

Figure 3-2. Depth to the top of the Oriskany Sandstone.  Red circles represent data points 

used to create the map.  Study area is defined by black rectangle.  Contour interval is 25 meters 
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In areas within the study area where the Oriskany sand is present, the Oriskany net 

thickness as interpreted in well logs ranges from 10 to 30 meters thick (Figure 3-3).   

Figure 3-3. Map of thickness from Oriskany top to Oriskany base.  Red circles represent 

data points used to create the map.  Study area is defined by black rectangle.  Contour interval is 

5 meters 
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Oriskany ‘pay zone’ thickness, defined as having density of <2.55 g/cm3, ranges from zero 

to 7 m thick across the study area (Figure 3-4).  Within the study area, there are two areas where 

the Oriskany pay thickness is at least 6 m, west of the Turkey Pad and near the Whippoorwill Pad. 

Figure 3-4. Oriskany Sandstone thickness with density of less than 2.55 g/cm3.  Red circles 

represent data points used to create the map.  Study area is defined by the black rectangle.  Contour 

interval is 1 meter. 



48 

The Oriskany Sandstone lies below the Marcellus Shale at depths ranging from 7 to 25 

meters within the study area (Figure 3-5).  The distance separating the Marcellus Shale from the 

Oriskany Sandstone decreases to the northeast.  The formations separating the Marcellus Shale 

from the Oriskany Sandstone are the Onondaga Limestone and the Huntersville Chert.  The 

Marcellus Shale lateral well pad with the shortest distance from the Marcellus Shale Base to the 

Oriskany Sandstone Top within the study area is Whippoorwill Pad (12 meters).  The Horizon and 

Frano Marcellus pads have the greatest distance from the Marcellus Shale Base to the Oriskany 

Sandstone Top within the study area (25.5 meters). 
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Figure 3-5. Distance from base of Marcellus Shale to the top of the Oriskany Sandstone. 

Yellow circles represent data points used to create the map.  Study area is defined by the black 

rectangle.  Contour interval is 1 meter. 
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3.2 WATER ISOTOPES 

Water isotopic compositions were measured in Marcellus and Oriskany produced water grab 

samples collected from the study area (Figure 3-6 and Table 3-1).  Grab samples of Marcellus 

produced waters from three wells located in the ‘no sand area’ plot in a tight grouping, as shown 

by the light blue circles, with δ18O ranging from -2.45 to -2.60 and a δ2H ranging from -50.8 

to -53.2.  Grab samples of Marcellus produced waters from eight wells that are underlain by the 

Oriskany have δ18O ranging from -0.97 to -3.60 and a δ2H ranging from -49.2 to -53.8.    

The results were compared with isotopic values of three Ridgley Sandstone water samples 

from Somerset County, PA that were published by Dresel and Rose (2010).    The isotopic values 

of produced water collected from production tanks of three Oriskany vertical wells collected in 

January 2017 are also included in Figure 3-6.  The water in the production tanks of two of the 

Oriskany wells may be contaminated with meteoric water, as the O isotope ratios trend toward the 

meteoric water line.  When considering the Dresel (1985) samples, the Oriskany produced water 

isotopes range from a δ18O of 2 to -0.5 and a δ2H ranging from -34 to -42.  The Dresel and Rose 

sample ED-82-38 is potentially an outlier, with a δ18O of -1.7 and a δ2H of -51.  However, very 

little information is available regarding the method in which the sample was collected.  While the 

Oriskany produced water dataset is small, it suggests that water from the Oriskany is enriched in 

δ18O and δ2H relative to the Marcellus produced water. 

In addition, an annual average surface water isotopic value for the location of the Longhorn 

C Pad was pulled from the Online Isotopes in Precipitation Calculator (Bowen, 2017, Bowen and 

Revenaugh, 2003, IAEA/WMO, 2015, and Welker, 2000) and is plotted on Figure 3-6.  This 

calculated surface water isotopic value should approximately represent the isotopic composition 

of the freshwater used in hydraulically fracturing Marcellus Shale laterals in the study area. 
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Table 3-1. Results of produced water isotopic analysis 

Sample Sample Analysis δD H2O δ18O H2O Vacuum 
Name Date Date ‰ ‰ Distilled? (1) 

HORIZONTAL WELLS 
Horizon_591970 9/12/2016 10/23/2016 -50.3 -2.13 Yes 
Horizon_591668 9/12/2016 10/23/2016 -53.8 -3.60 Yes 
Horizon_591549 9/12/2016 10/23/2016 -50.2 -2.12 Yes 
Frano_590515 9/12/2016 10/23/2016 -49.2 -1.63 Yes 
Frano_590516 9/12/2016 10/23/2016 -52.6 -2.67 Yes 
Turkey_590983 9/13/2016 10/23/2016 -51.9 -2.55 Yes 
Whippoorwill_590876 9/13/2016 10/23/2016 -52.3 -0.97 Yes 
Monarch_591155 9/12/2016 10/23/2016 -53.2 -2.60 Yes 
Wedekind_590389 9/12/2016 10/23/2016 -50.8 -2.54 Yes 
Red Bank_590370 9/12/2016 10/23/2016 -52.6 -2.45 Yes 
Oriskany_591059 9/14/2016 10/23/2016 -120.7 -11.23 Yes 
ECA-CS-3 2/22/2017 3/28/2017 -53.8 -1.82 Yes 
VERTICAL WELLS 
ECA-COP1 1/24/2017 2/15/2017 -33.9 0.74 Yes 
ECA-COP4 1/24/2017 2/15/2017 -32.9 -2.93 Yes 
ECA-COP10 1/24/2017 2/15/2017 -37.4 -3.25 Yes 

PUBLISHED VERTICAL WELLS (2) 
ED-82-37 ~9/1982 unk -41 -0.5 unk 
ED-82-38 ~9/1982 unk -51 -1.7 unk 
ED-82-40 ~9/1982 unk -42 2 unk 

(1) Indicates if vacuum distillation was utilized for hydrogen and oxygen isotopic analysis of 
water. 
(2) From Dresel, 1985. 
unk = unknown 
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Figure 3-6. Plot of 18O and 2H composition of Marcellus and Oriskany produced waters. 
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3.3 WATER CHEMISTRY 

Water chemistry was analyzed in both Marcellus and Oriskany produced water grab samples 

collected from the study area, as well as flowback waters from the Horizon Pad.  These data were 

compared with published analyses of Oriskany produced water from Jefferson, Elk, Clearfield, 

and Cameron Counties (Tully, 1973 and Poth, 1962) (Table 3-2).  The calcium and chloride 

concentrations of produced water from Marcellus laterals are similar to or greater than published 

and recently sampled produced water concentrations from Oriskany vertical wells (Figures 3-7 and 

3-8). 
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Table 3-2. Results of produced water geochemistry analysis 
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Table 3-2. (continued) 
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Table 3-2. (continued) 
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Table 3-2. (continued) 
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Table 3-2. (continued) 
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Table 3-2. (continued) 
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Table 3-2. (continued) 
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Table 3-2. (continued) 
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Figure 3-7. Calcium Time Series in Oriskany vertical wells and Marcellus laterals 

Figure 3-8. Chloride Time Series in Oriskany vertical wells and Marcellus laterals 
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The time series plots indicate that the chemistry of produced water from Marcellus laterals 

that are underlain by the Oriskany and from Marcellus laterals that are not underlain by the 

Oriskany are not clearly different, as the concentrations in the Monarch, Redbank, and Wedekind 

samples reach similar levels as Marcellus Shale laterals that are underlain by the Oriskany 

Sandstone.  The small sample size of Marcellus and Oriskany produced waters may obscure any 

differences in the median concentrations of Ca and Cl in each formation, but there is clearly 

substantial overlap.  In addition to the seven samples collected in the fall of 2016, the group 

‘Marcellus with Oriskany’ contains a Horizon flowback average concentration, two early 

production samples from the Frano Pad, and two produced water samples from ECA wells.   

To assess the effect of the Oriskany Sandstone on Marcellus Shale produced water 

chemistry, I compared the ratios of the average concentrations of a range of elements in the two 

produced fluids (Table 3-3). 
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Table 3-3. Ratio of average Marcellus Shale produced water chemistry 

ANALYTE 

Average 2016 
Marcellus with 
Oriskany 
Produced 
Water Result 
(n=7) 

Average 2016 
Marcellus no 
Oriskany 
Produced 
Water Result 
(n=3) 

Ratio of Marcellus 
with Oriskany to 
Marcellus no 
Oriskany 
Produced Waters 

Error 
Associated 
with Ratio 

Barium (mg/l) 5886 1412 4.17 3.84 
Bromide (mg/l) 1571 1733 0.91 0.28 
Calcium (mg/l) 27714 34333 0.81 0.22 
Chloride (mg/l) 161429 166667 0.97 0.14 
Copper (mg/l) 0 ND - - 
Iron (mg/l) 143 99 1.44 0.48 
Lead (mg/l) ND ND - - 
Lithium (mg/l) 196 180 1.09 0.21 
Magnesium (mg/l) 2143 2800 0.77 0.15 
Manganese (mg/l) 11 11 0.97 0.45 
p H 5 5 1.02 0.09 
Potassium (mg/l) 893 823 1.08 0.47 
Sodium (mg/l) 55000 53000 1.04 0.08 
Strontium (mg/l) 6600 7333 0.90 0.21 
Sulfate (mg/l) 370 320 1.16 0.22 
TDS (mg/l) 291429 306667 0.95 0.13 
Total Alkalinity (MgCaCO3/l) 99 86 1.15 0.41 
Zinc (mg/l) 1.22 2.62 0.47 0.49 

After averaging the concentrations of each analyte of the seven Marcellus laterals with 

Oriskany and averaging the concentrations of each analyte of the three Marcellus laterals without 

Oriskany, a ratio of the averages was calculated to compare effects of the presence/absence of the 

Oriskany on water chemistry.  The ratios show that five out of the 18 analytes are noticeably 

different when the Oriskany underlies the Marcellus Shale.  Produced water from Marcellus 

laterals underlain by the Oriskany contain lower concentrations of calcium, magnesium, and zinc 

(highlighted in green, Table 3-3), than produced water from Marcellus laterals that are not 

underlain by the Oriskany.  The ratios indicate that produced water from Marcellus laterals 
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underlain by the Oriskany contain greater concentrations of barium and iron (highlighted in 

yellow, Table 3-3), than produced water from Marcellus laterals that are not underlain by the 

Oriskany.  However, errors were propagated for these ratios and the uncertainties suggest that there 

may not actually be any difference in the produced water chemistry of Marcellus laterals with 

Oriskany and Marcellus laterals without Oriskany. 

The water chemistry data set is small with only seven data points in the ‘Marcellus laterals 

underlain by the Oriskany’ group and three data points in the Marcellus laterals not underlain by 

the Oriskany’ group.  Box plots were generated to better illustrate the distribution and variability 

of the water chemistry data (Figures 3-9 through 3-41). 

Figure 3-9. Barium in Marcellus 

laterals underlain by Oriskany 

Figure 3-10. Barium in Marcellus 

laterals not underlain by Oriskany 
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Figure 3-11. Bromide in Marcellus 

laterals underlain by Oriskany 

Figure 3-12. Bromide in Marcellus 

laterals not underlain by Oriskany 

Figure 3-13. Calcium in Marcellus 

laterals underlain by Oriskany 

Figure 3-14. Calcium in Marcellus 

laterals not underlain by Oriskany 
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Figure 3-15. Chloride in Marcellus 

laterals underlain by Oriskany 

Figure 3-16. Chloride in Marcellus 

laterals not underlain by Oriskany

Figure 3-17. Iron in Marcellus laterals 

underlain by Oriskany 

Figure 3-18. Iron in Marcellus laterals 

not underlain by Oriskany 
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Figure 3-19. Lithium in Marcellus 

laterals underlain by Oriskany 

Figure 3-20. Lithium in Marcellus 

laterals not underlain by Oriskany 

Figure 3-21. Magnesium in Marcellus 

laterals underlain by Oriskany 

Figure 3-22. Magnesium in Marcellus 

laterals not underlain by Oriskany 
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Figure 3-23. Manganese in Marcellus 

laterals underlain by Oriskany 

Figure 3-24. Manganese in Marcellus 

laterals not underlain by Oriskany 

Figure 3-25. pH in Marcellus laterals 

underlain by Oriskany 

Figure 3-26. pH in Marcellus laterals 

not underlain by Oriskany 
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Figure 3-27. Potassium in Marcellus 

laterals underlain by Oriskany 

Figure 3-28. Potassium in Marcellus 

laterals not underlain by Oriskany 

Figure 3-29. Sodium in Marcellus 

laterals underlain by Oriskany 

Figure 3-30. Sodium in Marcellus 

laterals not underlain by Oriskany 



71 

Figure 3-31. Specific conductance in 

Marcellus laterals underlain by Oriskany 

Figure 3-32. Specific conductance in 

Marcellus laterals not underlain by Oriskany 

Figure 3-33. Specific gravity in 

Marcellus laterals underlain by Oriskany 

Figure 3-34. Specific gravity in 

Marcellus laterals not underlain by Oriskany 
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Figure 3-35. Strontium in Marcellus 

laterals underlain by Oriskany 

Figure 3-36. Strontium in Marcellus 

laterals not underlain by Oriskany 

Figure 3-37. Total Alkalinity in 

Marcellus laterals underlain by Oriskany 

Figure 3-38. Total Alkalinity in 

Marcellus laterals not underlain by Oriskany 
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Figure 3-39. TDS in Marcellus 

laterals underlain by Oriskany 

Figure 3-40. TDS in Marcellus 

laterals not underlain by Oriskany 

Figure 3-41. Zinc in Marcellus 

laterals underlain by Oriskany
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3.4 STRUCTURAL COMPLEXITY USING GEOSTEERING DATA 

Within the study area, EQT has drilled 28 Marcellus laterals.  The structural complexity 

characteristics of these 28 wells, along with another three wells located just outside of the study 

area (Redbank and Wedekind Pads), were calculated and included in the structural complexity 

dataset (Table 3-4).   

Of the Marcellus lateral well pads that are underlain by the Oriskany Sandstone, structural 

complexity is greatest at the Longhorn C Pad, followed by the Whippoorwill Pad, then Turkey Pad 

and lowest at the Horizon and Frano Pads.  Of the Marcellus lateral well pads where the Oriskany 

Sandstone is absent, structural complexity is greatest at the Monarch Pad, followed by the Redbank 

Pad, and then Wedekind Pad.  Laterals with the greatest structural complexity include Longhorn 

C laterals590846, 590845, 590842, followed by Whippoorwill lateral 590876, and finally Monarch 

laterals 591763 and 591762.  Longhorn C lateral 590846 has an unusually high normalized total 

relief value of 46.73.  This is due to a TVD change of 140 feet that occurs over a three-foot interval 

due to a fault. 
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Table 3-4. Summary of completions, production, and structural complexity results 
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3.5 FORMATION BREAKDOWN PRESSURE 

The average formation breakdown pressures ranged from 32,254 kPa in Wedekind lateral 590389 

to 47,422 kPa in Turkey lateral 590983 (Table 3-4).  Formation breakdown pressure is affected by 

depth (Figure 2-6).  The depth normalized average of the average formation breakdown pressures 

from Marcellus laterals where the Oriskany is present is 20.13 kPa/m, n = 23.  The depth 

normalized average of the average formation breakdown pressures from Marcellus laterals where 

the Oriskany is not present is 20.03 kPa/m, n = 8).  This difference is not statistically significant 

(two-tailed t-test, p = 0.80).  When comparing the Marcellus laterals with Oriskany to Marcellus 

laterals without Oriskany, the ratio of the depth normalized average of the average formation 

breakdown pressures is 1.005.    

3.6 PERCENT FLUID RECOVERED DURING FLOWBACK 

The percentage of fluid recovered during flowback ranges from 2.38% in well 590983 on the 

Turkey pad to 15.76% on lateral 590878 on the Whippoorwill Pad (Table 3-4).  The average 

percent fluid recovered from Marcellus laterals where the Oriskany is present is 5.54%, n =23.  

The average percent fluid recovered from Marcellus laterals where the Oriskany is not present is 

4.48%, n = 8.  When comparing the Marcellus laterals with Oriskany to Marcellus laterals without 

Oriskany, the ratio of the average percentage of fluid recovered is 1.24.  However, the averages 

are not significantly different, (two-tailed t-test, p = 0.15).  However, given the small sample size 
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and the variability in these measurements, this difference may become significant with a larger 

sample.  

3.7 MARCELLUS SHALE LATERAL WELL GAS AND WATER PRODUCTION 

In the study area, Marcellus laterals completed in areas underlain with Oriskany (n = 19) produce 

an average of 1.25 times more gas and 1.04 times more water compared to Marcellus laterals that 

are not underlain by the Oriskany (n = 14) (Table 3-4, Figures 3-42 and 3-43).  As a point of 

reference, EQT’s Marcellus laterals completed in North Central Pennsylvania (n = 27) produce on 

average 0.22 times less gas and 1.25 times more water compared to EQT’s Marcellus laterals 

completed in Greene County, PA (n = 274).  Production data in figures 3-42 and 3-43 have been 

normalized to the values in the “North Central Pennsylvania w/ Oriskany” group. 

Marcellus laterals completed in areas underlain with Oriskany produced an average of 

203.0 mmcf of gas per lateral meter over months 2-7 of production, whereas Marcellus laterals 

completed in areas that are not underlain with the Oriskany produced an average of 161.9 mmcf 

of gas per lateral meter over months 2-7 of production.  This difference is not significant (two-

tailed t-test, p = 0.35).  The average mmcf of gas produced per lateral meter over months 2-7 of 

production for Greene County, PA is 840.8, which is significantly different than the average mmcf 

of gas produced per lateral meter over months 2-7 of production of 185.6 for all Marcellus laterals 

in North Central Pennsylvania (two-tailed t-test, p = 9.2 x 10-42).   

Marcellus laterals completed in areas underlain with Oriskany produced an average of 13.4 

barrels of water per lateral meter over months 2-7 of production, whereas Marcellus laterals 

completed in areas that are not underlain with the Oriskany produced an average of 12.5 barrels of 
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water per lateral meter over months 2-7 of production.  This difference is not significant (two-

tailed t-test, p = 0.66).  The average barrels of water produced per lateral meter over months 2-7 

of production for Greene County, PA is 10.37, which is significantly different than the average 

barrels of water produced per lateral meter over months 2-7 of production of 13.0 for all Marcellus 

laterals in North Central Pennsylvania (two-tailed t-test, p = 0.016).   

A gas to water ratio was also calculated.  The average gas to water ratio over months 2-7 

of production for the “North Central Pennsylvania w/ Oriskany” group is 18.1, the average ratio 

over months 2-7 of production for the “North Central Pennsylvania w/out Oriskany” group is 17.3 

(Table 3-4 and Figure 3-44).  This difference is not significant (two-tailed t- test, p = 0.89).  The 

gas to water ratio over months 2-7 of production for Greene County, PA is 121.6, which is 

significantly different than the average ratio over months 2-7 of production of 17.75 for all 

Marcellus laterals in North Central Pennsylvania (two-tailed t-test, p = 4.2 x 10-14).   
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Figure 3-42. Gas production total volumes, 
normalized to NCPA w/ Oriskany group  

Figure 3-43. Water production total 
volumes, normalized to NCPA w/ Oriskany 
group  

Figure 3-44. Gas-to-water production ratios 
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3.8 STRUCTURAL COMPLEXITY VERSUS WELL CHARACTERISTICS 

The step-wise regression of the four length normalized measurements of structural 

complexity mentioned in Section 2.3 (total relief, bed dip range, sum of inflections points of at 

least 0.5 degrees or more, and sum of faults of at least 2 feet or greater) was determined based on 

27 well characteristics ranging from completions data, to production data, to water chemistry 

and isotopes.  The model for some of the well characteristics worked best with only one 

measurement of structural complexity, while other models used two, three, or even all four 

structural complexity measurements (Table 3-5).  Total relief most frequently explained the 

greatest amount of variability, followed by bed dip range, then sum of inflection points, and 

finally sum of faults. 
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Table 3-5. Step-wise regression modeling of structural complexity 
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3.8.1 Structural Complexity versus Depth Normalized Formation Breakdown Pressure 

Of the four structural complexity characteristics, a laterals’ length normalized dip range is most 

strongly associated with the depth normalized average formation breakdown pressures (Figure 3-

45).  Depth normalized average formation breakdown pressure increases as structural complexity 

increases in both laterals underlain by the Oriskany and laterals not underlain by the Oriskany.  

The Akaike information criterion, R-squared, p-value, and equation of this model are listed in 

Table 3-5.   
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Figure 3-45.  Depth normalized average formation breakdown pressure during 

completions versus structural complexity 

 

3.8.2 Structural Complexity versus Percent Fluid Recovered 

A laterals’ percent fluid recovered was not associated with any of the four structural complexity 

characteristics.  This suggests that structural complexity of a lateral does not influence the 

proportion of fluid recovered in a lateral. 
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3.8.3 Structural Complexity versus Gas and Water Production 

Of the four structural complexity characteristics, a laterals’ length normalized sum of inflections 

is most strongly associated with the laterals’ length normalized total gas and total water production 

over months 2-7 (Figures 3-46 and 3-47).  The length normalized total gas production over months 

2-7 decreases as structural complexity increases in both laterals underlain by the Oriskany and 

laterals not underlain by the Oriskany.  However, the length normalized total water production 

over months 2-7 increases as structural complexity increases.  The Akaike information criterion, 

R-squared, p-value, and equation of these models are listed in Table 3-5.   

 

 

Figure 3-46. Length normalized 6 month gas production versus length-normalized sum of 

inflections 
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Figure 3-47. Length normalized 6 month water production versus length-normalized sum 

of inflections 

I also used step-wise regression modeling to compare each lateral’s structural complexity 

characteristics with expected gas production normalized to lateral length.  A laterals’ total relief 

and the length-normalized sum of inflections best explain the variability in a lateral’s expected gas 

production normalized to lateral length.  The Akaike information criterion, R-squared, p-value, 

and equation of this model (labeled as EUR Model) are listed in Table 3-5.   

3.8.4 Structural Complexity Correlated with Produced Water Chemistry 

Next, using step-wise regression modeling Marcellus lateral produced water chemical 

concentrations were compared to each of the four structural complexity characteristics (Figures 3-

48 through 3-53).  The model for some produced water chemical concentration data worked best 
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with only one measurement of structural complexity, while other models used two, three, or even 

all four structural complexity measurements to best explain variability in produced water chemical 

concentrations.  The Akaike information criterion, R-squared, p-value, and equation of these 

model are listed in Table 3-5.   

Produced water concentrations of all of the analytes, except for pH and sodium, increase 

as structural complexity increases.  The step-wise regression model was unable to model potassium 

and hydrogen isotopes.  Not enough data was available for sulfate, copper, or lead to run the model 

(due to non-detect results). 

 

      

Figure 3-48. pH versus length-

normalized total relief 

 

Figure 3-49. Sodium versus length-

normalized dip range 
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Figure 3-50. Magnesium versus 

length-normalized dip range 

Figure 3-51. Chloride versus length-

normalized total relief 

 

Figure 3-52. Strontium versus 

length-normalized sum of faults 

Figure 3-53. Lithium versus length-

normalized total relief 

 

 



88 

It is possible that solute concentrations increase with greater structural complexity because 

structural complexity implies that a wellbore may be exposed to a greater degree of mineralized 

fractures and faults.  It could be possible that these fractures or faults may even be capable of 

transmitting fluids.  For example, historic manganese levels in Oriskany water in North Central 

Pennsylvania are not available.  However, a USGS report by Force and Cox (1991) details elevated 

manganese in the Ridgeley and Helderberg in Northwest Virginia, where the Ridgeley outcrops 

and manganese mines are common. 
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4.0  DISCUSSION 

4.1 SAMPLE LIMITATIONS FOR MARCELLUS SHALE LATERAL WELLS IN 

THE PRESENCE/ABSENCE OF THE ORISKANY SANDSTONE IN NORTH 

CENTRAL PENNSYLVANIA 

Marcellus laterals in North Central Pennsylvania have higher overall TDS in flowback and 

produced waters and lower overall gas production than other areas of the Appalachian Basin (A. 

Douds, pers. comm., 2015), particularly Southwestern Pennsylvania.  Many of EQT’s Marcellus 

lateral wells in North Central Pennsylvania are underlain by the Oriskany Sandstone, the historical 

target of vertical gas drilling.  EQT’s Marcellus lateral wells in North Central Pennsylvania also 

often encounter a significant amount of structure, such as faulting and significant bed dips changes 

over short distances.  This leads to the underlying question in this research, does drilling and 

hydraulic fracturing of Marcellus laterals in North Central Pennsylvania create or enhance 

connections between Marcellus laterals the deeper Oriskany Sandstone?  This research 

identified characteristics of completions activities and/or production that can be used to 

maximize hydrocarbon recovery and minimize brine recovery from future Marcellus lateral wells 

drilled in North Central Pennsylvania.  

In the North Central Pennsylvania study area, EQT has drilled 23 Marcellus laterals that 

are underlain by the Oriskany Sandstone and five Marcellus laterals that are not underlain by the 

Oriskany sandstone.  Four of the 23 Marcellus laterals that are underlain by the Oriskany sandstone 

are not producing, so production data and water samples were not available for this well pad 

(Longhorn C).  Additional data were added by including laterals outside of the study area, and 
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published water chemistry data.  The resulting datasets remained relatively small (i.e., 3-31 data 

points in most sets).  This relatively small sample size raises the challenges of statistics of small 

samples, and limits statistical inference.  For example, significance tests often failed (i.e. p-values 

were greater than an alpha of 5%).   However, the nature of gas production and the remaining 

uncertainty in this new frontier in hydrocarbon production limits our ability to build datasets that 

adequately sample the realm of possibilities.  The analytical framework developed here provide a 

means to continue examination of these questions as additional wells are developed and data are 

collected. 

4.2 ORISKANY SANDSTONE PRESENCE AND MARCELLUS SHALE LATERAL 

WELL CHARACTERISTICS 

4.2.1 Well Completions 

Formation breakdown pressures and percent of fluid recovered during flowback were examined to 

determine the influence of the presence/absence of the Oriskany Sandstone  (generally within 7-

26 meters by depth) of the Marcellus Shale laterals  on lateral well completions.  I would expect 

that the presence of the Oriskany Sandstone under the Marcellus laterals might cause formation 

breakdown pressure to be lower overall and that the percent of fluid recovered during flowback 

would be greater than in Marcellus laterals that are not underlain by the Oriskany.  However, the 

depth normalized average formation breakdown pressures generated when hydraulically fracturing 

and the percent of fluid recovered after hydraulically fracturing are not statistically different in 

Marcellus laterals completed where the Oriskany Sandstone is present compared to laterals 
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completed where the Oriskany is absent.  The formation breakdown pressures confirm that these 

pressures clearly correlate with depth below the ground surface (Figure 2-6), but no trends could 

be attributed to the Oriskany Sandstone.  The formation breakdown pressures and percent of fluid 

recovered data do not support the hypothesis that Marcellus laterals in the study area are influenced 

by hydraulic connection with the Oriskany Sandstone. 

4.2.2 Production Volumes 

Gas and water production data were examined to evaluate effect of the Oriskany sandstone on 

lateral well production.  Because gas production from Marcellus laterals in North Central 

Pennsylvania is lower than gas production from Marcellus laterals in  Southwestern Pennsylvania 

I was expecting that the presence of the historic Oriskany vertical wells in North Central 

Pennsylvania might be affecting gas and water production volumes.  Production data reveal that 

1.25 times more gas and 1.04 times more water (when normalized by lateral distance) is produced 

from Marcellus laterals that are underlain by the Oriskany Sandstone than by Marcellus laterals 

that are not underlain by the Oriskany Sandstone.  Statistical testing of the difference in these data 

sets indicates that the differences are not significant.  However the 25% excess in the gas 

production from Marcellus laterals that are underlain by the Oriskany compared to Marcellus 

laterals in areas without the Oriskany is substantial.  More production data from Marcellus laterals 

near the study area would be useful to further constrain the uncertainties and determine effects of 

the Oriskany Sandstone on production volumes.  For comparison, production data did clarify that 

North Central Pennsylvania Marcellus laterals produce 0.22 times less gas and 1.25 times more 

water than Greene County Pennsylvania Marcellus laterals, both of which are statistically 

significant.  Overall, differences in production volumes between Marcellus laterals underlain with 
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the Oriskany Sandstone and Marcellus laterals where the Oriskany Sandstone is absent do not 

provide conclusive evidence that the Marcellus laterals are hydraulically connected with the 

Oriskany Sandstone. 

4.2.3 Produced Water Chemistry 

Produced water chemical data was also examined to identify influences of the Oriskany Sandstone 

on Marcellus laterals.  The oxygen and hydrogen isotopes of produced Marcellus water from 

laterals that are not underlain by the Oriskany Sandstone vary over a relatively small range.  The 

oxygen and hydrogen isotopes of produced Marcellus water from laterals that are underlain by the 

Oriskany Sandstone plot over a wider range, and may indicate mixing with Oriskany produced 

water, which is more enriched in the heavier isotopes of oxygen and hydrogen.  If mixing is indeed 

happening, this would be clear evidence that the Marcellus laterals are hydraulically connected 

with the Oriskany Sandstone.  A major limitation at this time is that it is difficult to collect 

Oriskany produced water (e.g. note the length taken in this project, Section 2.2.1.3) and there is 

very limited published isotopic analysis of Oriskany produced waters. 

There is some variation in the produced water chemistry from Marcellus laterals underlain 

by Oriskany and Marcellus laterals not underlain by the Oriskany (Table 3-3).  The concentrations 

of barium and iron are greater and the concentrations of calcium, magnesium, and zinc are reduced 

in production water from Marcellus lateral wells underlain by the Oriskany Sandstone relative to 

production water from Marcellus lateral wells not underlain by the Oriskany Sandstone.  These 

differences in the produced water chemistry from Marcellus laterals may be attributed to some of 

the Marcellus produced water originating in the Oriskany Sandstone.  Characterizing produced 



water chemistry on a regional basis may be helpful in optimizing well production equipment and 

produced water treatment and disposal. 

Together, the water isotope and water chemistry data sets suggest that there are some 

differences in the produced water from Marcellus laterals underlain by the Oriskany Sandstone, 

produced water from Marcellus laterals not underlain by the Oriskany Sandstone, and produced 

water from the Oriskany Sandstone.  However, due to the small data sets and the uncertainty in 

determining the end members of each formation, it is difficult to demonstrate statistically, 

particularly given the error associated with most samples can nearly as large as the difference 

between mean behavior in the sample sets.  Regardless, if we assume that the data reflect actual 

differences, water (and gas) from the Oriskany Sandstone may be migrating to Marcellus 

laterals.  This would imply that the Marcellus Shale is hydraulically connected with the Oriskany 

Sandstone in North Central Pennsylvania.  In areas of high structural complexity, like North 

Central Pennsylvania, the Onondaga Limestone may not be an effective seal from deeper 

formations such as the Oriskany Sandstone. 

4.3 STRUCTURAL COMPLEXITY AND MARCELLUS SHALE LATERAL WELL 

CHARACTERISTICS IN NORTH CENTRAL PENNSYLVANIA 

While the findings of the evaluation of the presence/absence of the Oriskany Sandstone remains 

somewhat ambiguous, the systematic evaluation of structural complexity revealed important 

connections between geologic structure and well behavior. I defined the ‘structural complexity’ 

index to capture a suite of characteristics encountered during lateral drilling.  Quantitatively 

defining the degree of structural complexity that a lateral encounters is important as it can be used 
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to infer processes influencing the production of the well and the chemistry of the produced water. 

The regional structure in North Central Pennsylvania is highly variable (e.g., geosteering 

profiles and the top of the Onondaga Limestone structural map (Figures 2-3, 2-5, and 3-1)).  

Step-wise regression models indicate that the length-normalized sum of inflection points best 

explains gas and water production volumes (Table 3-5).  In contrast, length-normalized dip 

range is most strongly associated with depth normalized average formation breakdown 

pressures.  A combination of length-normalized total relief and inflections explains the 

variability in expected normalized gas production.  The normalized dip range, or variability of 

bed dips throughout a lateral may suggest a significant difference exists between the orientation 

of the wellbore and the dip of the formation, as this would increase formation breakdown 

pressure.  Likewise, normalized sum of inflection points and normalized total relief may 

indicate the presence of fractures that are not normally detected without image logging, 

which is rarely performed in Marcellus lateral wells, as these fractures would certainly effect 

on gas and water production volumes. 

All four measures of structural complexity explain produced water chemistry 

from Marcellus lateral wells, however, the importance of these measures varies: Length-

normalized total relief > length-normalized dip range > length-normalized sum of inflection 

points ~length-normalized sum of faults.  Because large faults are easily detected when 

geosteering, I had expected that length-normalized sum of faults would have a greater influence 

on water chemistry. However, using the data available from the comparison of areas with 

and without Oriskany Sandstone, we cannot assume that faults in North Central Pennsylvania 

are able to transmit gas or water.  One potential explanation as to why length normalized total 

relief is having the greatest influence on produced water chemistry is that changes in the relief 

of formation horizons imply that a significant amount of stress and  deformation  has  occurred 
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across an interval of rock, that may have created a high frequency of fractures.  Therefore 

mineralization and/or movement of solute laden fluids may occur in or across the fractures.  

The greater the length-normalized relief, the greater likelihood of fractures that are not detected 

by geosteering interpretations.  A lateral that has a significant about of fracturing could 

indicate an increase in hydraulic connectivity, causing the formation to act like a sump and 

increasing the influence on produced water chemistry.  These results remain preliminary, but 

warrant continued examination as data sets grow with future extraction efforts. 

The step-wise regression models explain the variability in the chemical concentration of 

13 out of 17 solutes analyzed in Marcellus produced water chemistry (p-values range from 0.55 to 

0.002 and R-squares range from 0.47 to 0.92 (Table 3-5).  The decrease of both pH and 

total alkalinity with increasing structural complexity may mean that more flushing is occurring 

through the Marcellus Shale by a relatively fresher water.  Furthermore, the decrease in 

sodium would indicate that the Marcellus produced water becomes diluted with increasing 

structural complexity, and the increased water flux.  Ultimately, these influences likely 

require additional data on potential source waters (i.e., more Oriskany brine chemistry data) 

to clarify the influence of structural complexity on produced water chemistry. 
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5.0  CONCLUSION 

The presence or absence of the Oriskany Sandstone seems to have relatively minimal effects on 

Marcellus lateral well characteristics in North Central Pennsylvania.  Small sample sets were a 

challenge in the analyses.  Continued analysis of future data collection may clarify effects. 

However, the systematic comparison of structural complexity with lateral well completion, 

production, and water chemistry is a fruitful framework.  There is a systematic variation between 

structural complexity and both Marcellus lateral completion parameters and well production in 

North Central Pennsylvania.  As structural complexity increases, the depth normalized average 

formation breakdown pressures increase slightly.  As structural complexity increases, produced 

gas volumes decrease and produced water volumes increase.  As structural complexity increases, 

solute concentrations of Marcellus produced water frequently increase, although the 

concentrations of a few analytes (pH, sodium, and total alkalinity) decrease with structural 

complexity.  Observed structural complexity as quantified from the geosteering data of laterals 

may reflect the degree at which the formation, in this case the Marcellus Shale, is hydraulically 

connected to other formations.
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APPENDIX A 

GAS ISOTOPE RESULTS 

Gas isotopic compositions were measured in Marcellus Shale and Oriskany Sandstone produced 

water grab samples collected in the study area (Table A1).   
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Table A 1. Results of natural gas samples 
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Table A 1. (continued) 
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The δ13C and δ2H of methane (C1) reveal that all of the Marcellus and Oriskany produced 

gas samples fall within the thermogenic gas range when comparing the δ13C and the δ2H of 

methane (C1) (Schoell, 1980).  The δ13C and δ2H of methane (C1) reveal that gas samples from 

Marcellus laterals underlain by the Oriskany (green circles) cluster and the samples from Oriskany 

verticals blue triangles) cluster, while samples from Marcellus laterals not underlain by the 

Oriskany (red circles) plot over a wide range (Figure A1). 

 

 

Figure A 1. C and H isotopes of C1 produced gas 
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Figure A 2. C isotopes of C1 and C2 produced gas 
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The produced gas collected showed trends of thermal maturity (Figure A3).  As thermal 

maturity of the gas increases, the portion of methane in the produced hydrocarbon increases. 

 

 

Figure A 3. Carbon isotope ratio of methane and hydrocarbon composition related to 

thermal maturity 
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The produced gas from Monarch, Redbank, and Wedekind all have a joules value of 

1,107,810 or greater (Figures A4 and A5).  Isotopic reversal occurs in dry gas stage and takes place 

when gas wetness decreases below 2% (Figure A4) (Qu, 2016).  The isotope of ethane becomes 

more negative with increasing maturities.  As a consequence δ13C2 rollover takes place with 

respect to the maturity trend (Figure A5) (Qu, 2016). 

Figure A 4. The carbon isotope reversal Figure A 5. The carbon isotope rollover
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