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HYDRAULIC FRACTURE DRIVEN BY TURBULENT FLOW
Navid Zolfaghari Moheb, PhD

University of Pittsburgh, 2017

High flow rate, water-driven hydraulic fractures are increasingly popular in the oil and gas indus-
try. The high injection rate and low fluid viscosity associated with these treatments leads to high
Reynolds numbers. While there is some recent recognition of the growing need to extend the clas-
sical hydraulic fracture models beyond the laminar flow regime, there is little understanding of the
impact of turbulent flow on hydraulic fracture growth nor are there existing solutions for simplified
geometries that can provide benchmarks for numerical simulators and means for rapid estimation
of hydraulic fracture dimensions.

Thus motivated, the goal of this research is to quantify the impact of replacing laminar flow
with turbulent flow in HF by developing a benchmark solutions for classical HF crack propagation
geometries. This study therefore is comprised of 3 main parts, each associated with a particular
geometry (plane strain, blade-shaped, and radial). Each geometry brings its own challenges and a
need to adopt a solution method suited to these challenges.

The noteworthy contributions of this work begin with providing a complete suite of bench-
marks for simplified but practically-relevant geometries that can be used to estimate fracture di-
mensions and to benchmark more general numerical simulators. Secondly, this study provides a
new numerical approach to HF simulation including laminar, turbulent, and laminar-turbulent tran-
sition regimes. Thirdly, this investigation demonstrates the evolution of turbulent-laminar regime
in a radial HF, which has implications also for the overall behavior and evolution in more gen-
eral planar fracture growth geometries. Fourthly, this study has identified that the transition range
of fluid regime from turbulent-to-laminar fluid flow is relatively small and practically, it will of-
ten suffice to approximate the HF growth using the asymptotic solutions obtained from either the

laminar or turbulent solution.
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I. INTRODUCTION

A. BACKGROUND

Fluid pressure-driven cracks are widely observed and utilized in different fields of science and en-
gineering and have thus attracted wide ranging contributions. A notable example of fluid-driven
fracture in nature is magma intruding into rocks by driving dyke and sill formation (see e.g. the re-
view of Rivalta et al., 2015). Another example is rapid sub-glacial drainage of the melted water in
ice sheets via fluid-driven fractures (Tsai and Rice, 2010). Fluid pressure-driven fractures are not
only limited to natural events, but also carried out in industry. A classic example of fluid-driven
crack propagation is hydraulic fracturing (HF) to increase the productivity of oil and gas wells.
Here, the fluid is used to break the rock to create high permeability pathway for hydrocarbon
transport back to the well (King, 2010). Moreover, increasing hydraulic conductivity of enhanced
geothermal systems (e.g. Matsunaga and Yamaguchi, 1992; Gérard et al., 2006), preconditioning
rock masses for effective block cave mining (e.g. Van As and Jeffrey, 2000), and measuring un-
derground in-situ stresses (e.g. Cornet and Valette, 1984; Zoback et al., 1982) are all examples
of hydraulic fracture applications. For additional discussion see the review of Adams and Rowe
(2013).

Of these, the major application of HF is in well stimulation to increase oil and gas production.
In the global oil and gas industry, hydraulic fracture (HF) has played a vital role, particularly in
“unconventional” gas reservoirs. And the changes experienced by this industry over the past two
decades are indeed astounding. As estimated by Montgomery and Smith (2010), more than 60%
of wells are stimulated through hydraulic fracturing, and essentially all wells completed in shale
formations are stimulated using HF. With the growth of water, as opposed to higher viscosity gels,

as the main driving fluid for HF in the petroleum industry in 1990s-2000s, fluid-driven induced



fracture has become less expensive, more effective in certain formations, and hence even more
widespread. What is important to also realize is that the governing physics of the problem has
changed due to this transition to higher rate pumping of lower viscosity fluids. Most notably, the
fluid flow regime is much more often turbulent or in the laminar-turbulent transition. Failure to rec-
ognizing this shift and continuing to inappropriately use an assumption of laminar flow can lead
to predictions that underestimate fluid pressure and hence propensity for failure growth that pen-
etrates neighbouring layers. Laminar simulations also overestimate HF length and underestimate

HF aperture (“opening” or “width”, see Ames and Bunger (2015)).

Early examples of research into HF including the turbulent flow regime back to the seminal
work of Perkins and Kern (1961), who provide a model for both vertically confined HF growth
(blade-shaped geometry), and horizontal HF growth (radial geometry). For a vertically confined
HF, they obtained a solution for both the laminar and turbulent regimes. For turbulent fluid flow,
Perkins and Kern (1961) considered a constant Fanning friction factor of 0.0125 for the fracture
that corresponds to a relative roughness (ratio of roughness scale to characteristic HF width) of
0.02. They then solved the problem to find the crack opening, again, limiting consideration to a

vertical HF.

Moreover, a series of research conducted by Nilson (1981, 1988) considered plane strain (and
extended to radial flow), gas-driven hydraulic fractures under a constant pressure inlet boundary
condition. Nilson (1981) modeled an isothermal ideal gas flow in a plane strain geometry and
identified three self-similar solutions associating with laminar, turbulent, and inviscid regimes.
Hence, Nilson (1981) explained that by having these three solutions, we can grasp an overall
behavior of the fluid flow. Following from this work, Nilson (1988) provides an extension to a

more general form of multi-phase flow, again for the plane strain geometry.

Other important works that consider turbulent flow include Emerman et al. (1986), who obtain
similarity solutions for a plane-strain HF with constant inlet flow. Anthonyrajah et al. (2013) follow
the turbulent model from Emerman et al. (1986) to solve for blade-shape HF with generalized inlet
boundary conditions, and demonstrate a numerical solution method for general injection bound-
ary conditions. Additionally, Newman (2016) extends the model presented by Anthonyrajah et al.

(2013) for the PKN problem with general boundary condition using Prandtl’s mixing length model.



More recently, Zia and Lecampion (2016, 2017) develop a semi-analytical model and numer-
ical simulation to model a height contained HF. Specifically, Zia and Lecampion (2017) solve the
problem numerically using the drag reduction approach from Yang and Dou (2010) to estimate the
friction factor. Also, they find an asymptotic solution by considering that the crack is fully turbulent
and under a rough-walled condition, and/or the crack is fully turbulent and under a smooth-walled
condition (the latter case conforms to the Blasius approximation Blasius (1913)).

Furthermore, Dontsov (2016) studies the crack tip transition of the fluid regime, from turbu-
lent to laminar flow in plane-strain geometry. Dontsov (2016) used the Churchill approximation
Churchill (1977) to estimate the friction factor in the HF. He also derives an asymptotic solution
to fully turbulent HF and, at the end, Dontsov (2016) studies the transition regime at the crack
tip. Also, Kano et al. (2015) solved the fully turbulent rough-walled HF for large leakoff using
Gauckler-Manning-Strickler (GMS) approach Manning (1891); Strickler (1923, 1981).

However, in spite of these past contributions and the growing importance of the turbulent and
laminar-turbulent flow regimes in HF modeling, there is at least two major gaps in the literature
that will be addressed by this research. The first is that there are no benchmark solutions that
demonstrate the behavior in the limit of fully-rough-walled turbulent flow for the classical simpli-
fied geometries (plane strain, radial, and blade-shaped). As a result, the growing body of simu-
lators that incorporate turbulent flow cannot be appropriately validated. The second issue is that
the importance of the transition regime and the conditions for applicability of the fully turbulent
solution(s) are unknown. Hence, it is not understood the range of nominal Reynold’s numbers for

which each model should be used.

B. PROJECT GOAL AND SCOPE

The goal of this research is to quantify the impact of replacing laminar flow with turbulent flow
in HF by developing benchmark solutions for classical HF crack propagation geometries. This

research is divided into the following sections:

e Modeling the effect of turbulent fluid flow on the blade-shaped (PKN) geometry:

This component of the research is described in Chapter 2 and consists of:



II.

I1I.
IV.

. Introducing a mathematical model to predict the opening, length, and fluid pressure of the

HF by considering turbulent flow for blade-shaped (PKN) geometry.

Solving the resulting system of equations to provide a closed form semi-analytical bench-
mark solution.

Comparing the results from the classical laminar flow model with the new turbulent model.
Developing a rigorous method to define the transition criteria from laminar to turbulent

flow within HFs.

Solving the plane strain (KGD) model with turbulent fluid flow:

This component of the research is described in Chapter 3 and consists of:

L

II.

III.
IV.

Introducing a mathematical model to predict the opening, length, and fluid pressure of the
HF by considering turbulent flow for plane-strain geometry.

Solving the resulting system of equations to provide a closed form semi-analytical bench-
mark solution.

Comparing the results from the classical laminar flow model with the new turbulent model.
Discern the useful range of the fully turbulent solution through collaboration allowing

comparison to simulations that account for the laminar-turbulent transition.

Modeling radial HF with fully turbulent rough-walled approximation:

This component of the research is described in Chapter 4 and consists of:

L

II.

I1I.
IV.

Introducing a mathematical model to predict the opening, length, and fluid pressure of the
HF by considering turbulent flow for penny-shaped (radial) geometry.

Solving the resulting system of equations to provide a closed form semi-analytical bench-
mark solution.

Comparing the results from the classical laminar flow model with the new turbulent model.
Discern the useful range of the fully turbulent solution by comparison to results obtained

from a numerical simulation developed as a part of this research.

Solving the radial model accounting for simultaneous presence of turbulent and laminar

regions:

This component of the research is described in Chapter 5 and consists of:

L

Develop a numerical solution for radial crack growth, including finding the turbulent,

laminar, and transition sections along a growing HF.



II. Demonstrate the evolution of flow regime within the HF as it grows.
III. Compare the results from laminar and turbulent limiting solutions with the new model.,
and distinguishing the differences and clarifying the conditions of validity for the limiting

solutions.

This study is therefore comprised of 3 main parts, each associated with a particular geome-
try (plane strain, PKN, radial). Each geometry brings its own challenges and the need to adopt a
solution method suited to these challenges. Since this research examines the emerging role of tur-
bulent flow in the context of fluid-driven crack propagation; therefore, for each geometry the work
is divided into three themed subsections. 1) developing the solution.2) defining the laminar to tur-
bulent transition, and 3) demonstrating conditions under which the turbulent regime is appropriate

and consequences of inappropriate use of models that assume laminar flow.

C. IMPACT OF THE RESULTS

Importing classical models aimed at laminar flow of gelled fluids in order to model high rate water
driven HF treatments without examining the consequences of the accompanying higher range of
Reynolds number has resulted in a preponderance of issues, recognized by industry but not typi-
cally seen as tied to the physics of fluid flow. These issues include underestimation of fluid pressure
and width, and overestimation of length. All of these have important impacts on practice. One of
the most important aspects of successful HF design is aimed at ensuring the HF grows in the de-
sired layers. Underestimation of pressure will lead to incorrect modeling of height growth across
subsurface strata. This can lead to designs resulting in growth into unwanted zones. Typically the
main problem with unwanted height growth is stimulation of water inflow, creating a costly issue
of disposal and exacerbating the potential for environmental impacts due to accidental surface re-
lease of produced water, ineffective treatment of flow-back waters that are highly saline and which
often contain substantial levels of naturally occurring radioactive materials, and induced seismic-
ity associated with subsurface injection of waste water. In shallow reservoirs, especially shallow
conventional gas/oil as well as coal seam methane reservoirs, unwanted height growth can lead

to direct contamination of nearby underground drinking and irrigation water sources. Hence, one



outcome of this project is to inspire wider inclusion of turbulent and transition fluid in models used
to predict HF height growth. By not only inspiring these advances but also providing necessary
benchmarks to ensure the simulators accurately compute the correct behavior in simple geome-
tries and limiting regimes, this work can lead to better fracture height prediction and decreased

environmental risk.

Secondly, miscalculation of the crack opening will lead to a wrong choice of proppant size
and/ or scheduling such errors can in turn cause other problems, like reducing the conductivity of
the reservoir and/or increasing the risk of premature screen-out. Both of these issues lead to failure
or otherwise ineffective treatments. Also, overestimation of length can lead to inappropriate well

spacing and inefficient development of the resource.

Multiplied across 10* new wells per year, inefficiencies costing on the order of 10° dollars per
well (a few percent of the total cost of developing a typical unconventional oil/gas well) would
be expected to have billions of dollars of economic impact. Reducing these substantial inefficien-
cies through improved design enabled by more appropriate HF models can therefore contribute

significantly to enabling economically-feasible production even at depressed oil/gas prices.

And finally, because of this emergence of the importance of the turbulent flow regime, it is
anticipated that the future will bring an increasing number of numerical simulators accounting for
the turbulent regime. The research presented in this thesis is aimed at impacting these advances by
providing a basic understanding of the fluid flow regimes present in an ever-evolving HF. The solu-
tions developed here also enable benchmarking this new generation of HF simulators to analytical

or semi-analytical solutions as a part of their development.

D. BACKGROUND KNOWLEDGE

Throughout this dissertation, some assumptions and terminologies are relied upon from the HF
literature. While some of these are well-established, the justification can be technically involved.

Those with the most relevance to this thesis are presented here.



1. Incompressible Fluid

The first assumption is the use of an incompressible fluid. The fluid compressibility appears in
the continuity equation in the form of wc;0p/0t, where w and p are the crack opening and fluid
pressure respectively and c; is the fluid compressibility. Lecampion et al. (2017) explained in
detail that this compressibility term is almost always negligible compared to the other terms in the
continuity equation. While there are in some cases nuances to this assumption, for the purpose of

this study it suffices to limit consideration to incompressible fluids.

2. Fluid Flow Equation

In this thesis, the fluid flow equation is defined through Darcy-Weisbach equation as

4w 9p\

where ¢ is the fluid flow inside the crack, w is the crack opening, p is the fluid pressure inside the
crack, p is the fluid density, and f, is the Darcy-Weisbach friction factor. It is important to note
that the linear momentum law for the fluid is satisfied implicitly by using Equation I.1. Therefore,
there is no need to explicitly satisfy the linear momentum for the fluid flow. This equation is
basically defined through dimensional analysis and is explained in section III.D. To supplement
this dimensional analysis, here the derivation of this equation through Navier-Stokes equations is
provided in order to show its compatibility with linear momentum balance.
First we start by considering the fluid flow between two parallel plates as in Figure I.1. There-
fore, the linear momentum balance in the x-direction for a fluid element gives
Ip

D
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where p is fluid density, 7,, is the shear stress at the wall, and the operator D/ Dt refers to the
material derivative and is defined as
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Figure I.1: A free body diagram of an infinitesimal fluid element.

Note that v, is the velocity of the element in z-direction. After simplifying we can obtain

dp Tw dv, dv,

Now, we develop the time average of Equation I.2. In order to do that, we can find the term by

term time-average of Equation 1.2, whereby for the first term
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For the second term on the left hand side of Equation 1.2
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And for the right hand side, we find
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where v/, is the fluctuation part and 7, is the time averaged part of v,. For more details about
derivation of the time average parameters, refer to Whitaker (1968). Also, it can be obtain that (see

again Whitaker, 1968)
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Combining all the time averaged equations, the resulting equation will simplify as
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Then, by considering that the time-averaged acceleration is steady state, or
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Thus, Equation 1.3 will change to
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On the other hand, we can define the friction factor as (Whitaker, 1968)

 AKE

f

where A is the characteristic area, K F is the characteristic kinetic energy per unit volume, and
Fp is the drag force applied by the fluid on the solid. After simplification we can obtain (again
following Whitaker, 1968)

fm L5)
Hence, putting Equation L.5 into 1.4 yields
Then, considering that ¢ = v,w, we find

It is apparent that Equation 1.7 is the Darcy-Weisbach equation, obtained here through the combina-
tion of a friction factor, defined semi-empirically based on experiments and dimensional analysis,
with a Navier-Stokes equations for time-averaged 1D flow. Hence we see that by using Darcy-
Weisbach equation, we have already satisfied the linear momentum law in fluid flow and there is

no need for explicit consideration of Navier-Stokes equations in the subsequent model.



3. Zero-Toughness

All asymptotic solutions provided in this thesis are derived for the zero-toughness asymptotic limit.
In this limit, the propagation velocity is determined from the coupled fluid flow and elasticity
equations, and is independent of the fracture toughness. While this concept of a zero-toughness
crack can be conceptually challenging, it is very well established through asymptotic analysis
Desroches et al. (1994); Garagash and Detournay (2000), laboratory experiments Bunger and De-
tournay (2008); Xing et al. (2017), and numerical simulations (e.g. Lecampion et al., 2013). The
unfamiliar reader is encouraged to examine these prior works. Here a brief overview is provided.

Based on conservation of energy in HF problems, the external energy provided to the system
should be equivalent to the energy stored internally in the system plus the energy used in system
due to work done by the system. In HF, the external energy is supplied to the system by fluid
injection, it stored in the system by opening the crack, and it is predominantly dissipated through
three different mechanisms: 1) fracturing the rock and making new surfaces (toughness dissipa-
tion), 2) lost through friction in the fluid (viscous dissipation), 3) fluid loss to the surrounding
domain. The fracture propagation is mainly determined through the governing energy dissipation
process. In this thesis, the fluid leakoff is considered to be zero. Therefore, the energy dissi-
pation is controlled by toughness dissipation and viscosity dissipation. If the energy dissipation
through toughness is much bigger than viscosity dissipation, the HF problem is categorized as
small-viscosity (large-toughness) problem, and if the toughness dissipation is negligible in com-
pare with viscosity dissipation, the HF problem is considered as small-toughness (large-viscosity)
problem. Thus, small-toughness problem does not necessarily means that the fracture toughness
of the rock is small, but it infers that most of the energy is dissipated through viscosity rather than
crack propagation and the group of parameter that contains toughness is small. Zero-toughness
is a limiting case of small-toughness HF that let us develop semi-analytical solution that captures
some behavior of small-toughness problem. The case of HF growth between two plates with no
bounding is an example of zero-toughness problem.

In zero-toughness problem the tip singularity is weaker than the LEFM singularity (Carbonell,
1996; Desroches et al., 1994). In order to have zero-toughness problem, the fracture intensity factor
should be equal to zero. The zero-toughness criterion is explained in terms of stress intensity factor

as (slightly different for various geometries)
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Mathematically speaking, in both cases in Equation 1.8, the weight function is always positive, so

dr =0 (Radial) 1.8)

the pressure profile along the crack should change sign to be able to maintain zero integral which
means that at some region inside the crack the net pressure is negative.

In this investigation the fluid leakoff is zero, so according to conservation of mass, the amount
of fluid pumped in is equal to the amount of fluid fill the entire volume of the crack (no fluid lag at
crack tip). Therefore, the crack cannot excessively grow since it needs to have sufficient amount
of the fluid inside it. Also in zero-toughness HF, the crack tip singularity is dominated by the
fluid pressure singularity rather than the singularity in the solid domain (LEFM). And therefore
the crack tip opening is in the form that follows fluid pressure singularity which implies that the
crack can grow only if the crack tip follows a proper profile. The crack tip shape is a function of
the crack velocity which is function of fluid pumping. So the crack cannot grow unstably under

predefined fluid pumping.
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II. BLADE-SHAPED (PKN) HYDRAULIC FRACTURE DRIVEN BY A TURBULENT
FLUID IN AN IMPERMEABLE ROCK

A. PREAMBLE

This chapter constitutes a preprint of Zolfaghari et al. (2017). Its main focus is derivation of a
semi-analytical asymptotic solution for the blade-like HF (PKN) geometry for rough-walled fully
turbulent fluid regime. The result is contrasted with laminar fluid regime solution provided by
Nordgren (1972). The tip asymptotic solution is also developed as a part of the solution and a

method to obtain the solution for the laminar-turbulent transition regime is suggested.

B. ABSTRACT

High flow rate, water-driven hydraulic fractures are more common now than ever in the oil and gas
industry. Although the fractures are small, the high injection rate and low viscosity of the water,
lead to high Reynolds numbers and potentially turbulence in the fracture. Here we present a semi-
analytical solution for a blade-shaped (PKN) geometry hydraulic fracture driven by a turbulent
fluid in the limit of zero fluid leak-off to the formation. We model the turbulence in the PKN
fracture using the Gaukler-Manning-Strickler parametrization, which relates the the flow rate of
the water to the pressure gradient along the fracture. We consider the fully tubulent limit with no
transition region any where at any time, and we do not consider the effect of the fracture toughness
on the crack propagation. The key parameter in this relation is the Darcy-Weisbach friction factor
for the roughness of the crack wall. Coupling this turbulence parametrization with conservation of

mass allows us to write a nonlinear pde for the crack width as a function of space and time. By
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way of a similarity ansatz, we obtain a semi-analytical solution using an orthogonal polynomial
series. Embedding the asymptotic behavior near the fracture tip into the polynomial series, we find
very rapid convergence: a suitably accurate solution is obtained with two terms of the series. This
closed-form solution facilitates clear comparisons between the results and parameters for laminar
and turbulent hydraulic fractures. In particular, it resolves one of the well known problems whereby
calibration of models to data has difficulty simultaneously matching the hydraulic fracture length

and wellbore pressure.

C. INTRODUCTION

Hydraulic fracturing is a method of stimulating relatively impermeable subsurface reservoir rocks
to extract oil and gas. In the past two decades, there has been a transition from using high viscosity
gels to the use of water in hydraulic fracturing (King, 2010). Associated with this change is a 2 to

3 orders of magnitude increase in the characteristic Reynolds number Re*, which we define as

Re™ = II.1
e Hy (IL.1)

where p is the fluid density, ¢;,, is the volumetric injection rate, H is the hydraulic fracture
height A, and p is the fluid viscosity (Tsai and Rice, 2010). Table II.1 shows that a shift from
typical gel-based fluids to water leads to an increase from Re* ~ 0.01 —10 to Re* ~ 102 — 104,
respectively. While a local Reynolds number will vary along the fracture and decrease rapidly near
the tip, the Reynolds number defined in Equation (II.1) is a constant set by external parameters.
In this paper, we describe parameter regimes where Re is large enough for turbulence to exist
throughout the hydraulic fracture save the very tip.

The emerging importance of the turbulent flow regimes will likely increase the number of hy-
draulic fracture numerical simulations that incorporate turbulence. In order to benchmark these
numerical simulations, analytical or semi-analytical solutions are required. One example of ana-
lytical solution is the large leakoff limit for a PKN hydraulic fracture with rough-walled turbulent
flow (Kano et al., 2015). Otherwise, the analytical/semi-analytical solutions, necessary for bench-

marking numerical simulations do not yet exist for turbulent flow. This is in contrast to a large

13



Table II.1: Typical Reynolds numbers for water and gel working fluids with flow rate ¢;, = 0.05 —
0.2 m? s~! and fracture height H = 50 — 200 m.

Fluid Density p (kg m—3) Viscosity x4 (Pa-s) Reynolds Number Re*
Water 1000 1073 10%-104
Gel 1200 0.5-1 0.01-10

body of benchmark solutions for the laminar regime (e.g. Geertsma and De Klerk (1969); Nord-
gren (1972); Savitski and Detournay (2002)).

The tractability of the problem for analytical and semi-analytical solutions requires simple ge-
ometries such as plane strain (Geertsma and De Klerk, 1969), radial (e.g. Savitski and Detournay
(2002)), and blade-shaped (after Perkins and Kern (1961), and Nordgren (1972)). While all have
usefulness as approximations under particular conditions, the blade-shaped geometry is of practi-
cal importance. The minimum stress in most reservoirs is horizontally-directed, so it is easier for
the crack to open in the horizontal direction which leads to vertically-oriented hydraulic fractures.
Furthermore, reservoir layers are often bounded by layers that serve to block upward and down-
ward growth of hydraulic fracture, meaning that the horizontal propagation velocity far exceeds the
vertical propagation velocity. A large body of field data indicates the resulting blade-like geometry
occurs in a wide-range of reservoirs, probably comprising the idealization of the most common
fracture geometry (e.g. De Pater (2015)). The limiting end-member of zero vertical (e.g. height)
growth corresponds to the geometry of Perkins and Kern (1961) which was revisited by Nordgren

(1972), and this so-called “PKN” geometry is used in the present study (see Figure II.1).

The need to consider the turbulent regime for water-driven hydraulic fractures was recognized
by Perkins and Kern (1961). A small number of papers have since considered the turbulent regime
of hydraulic fracturing, and some hydraulic fracturing design models (e.g. Meyer 1989) incor-
porate ability to simulate flow under turbulent conditions. Nilson (1981, 1988) considered plane
strain, gas-driven hydraulic fractures under a constant pressure inlet boundary condition. Nilson

showed the system evolving among laminar, turbulent, and inviscid regimes and solved the self-
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similar problems associated with each of these limits of the system. Similarly Emerman et al.
(1986) examined the problem of a plane strain fluid-driven crack, but instead assuming a constant
influx boundary condition. These authors presented an approximate solution, arguing for its prac-
tical suitability for modeling magmatic intrusions and natural hydrothermal injections. Turbulent
flow is also considered in other geosciences-inspired models. These include the model of drainage
of glacial lakes via subglacial fluid-driven cracks developed by Tsai and Rice (2010), as well as the
model of dyke ascent and propagation developed by Lister (1990) and Lister and Kerr (1991). Tsai
and Rice (2010) used Gaukler-Manning-Strickler (GMS) (Gauckler, 1867; Manning, 1891; Strick-
ler, 1923) approximation in order to model turbulent flow for glacial and sub-surface HF. Also Tsai
and Rice (2012) used GMS approach to model near surface hydraulic fracture, motivated by the
phenomenon of rapid subglacial drainage. Expanding to account for time-dependent deformation
of ice, Rice et al. (2015) used creep flow with GMS to model the rapid glacial lake drainage. These
contributions provide a useful background for the fluid flow model, but the boundary conditions

and elasticity formulation are specific to their problem and not applicable to industrial HFs.

More recently Anthonyrajah et al. (2013) considered turbulent flow for hydraulic fractures with
blade-shaped geometry with a generalized inlet condition. These authors present analytical solu-
tions for the particular (arguably non-physically motivated) cases of constant fracture speed and
volume, and demonstrate a numerical solution method for general injection boundary conditions.
The specific case of constant injection rate for a blade-shaped hydraulic fracture was subsequently
considered by Zia and Lecampion (2016), who point out that many practical cases will consist of
flow in the transition between laminar and turbulent flow. For rough-walled fractures, this work
numerically demonstrates departure from the laminar solution of about 10-20% for Re = 2500 and
30-50% for Re = 10°, as well as complete convergence to a fully turbulent asymptotic solution
for Re = 10000 (though the details of the asymptotic solution are not presented). Dontsov (2016),
then, points out the necessity in many practical cases to consider that flow can be in the laminar
regime near the tip of the hydraulic fracture and turbulent regime away from the tip. This work
is mainly motivated by development of numerical simulations for generalized geometries wherein
the behavior near the fracture tip must be properly treated. The solution presented is therefore
specified to the moving tip region, allowing the length of the laminar region to be determined and

appropriate tip conditions to be imposed in simulations.
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In this paper, we present a solution for a PKN-geometry hydraulic fracture driven by a tur-
bulent fluid through an impermeable rock. Although turbulent flows in general remain difficult
to describe mathematically, many parameterizations have been developed to describe turbulence
through channels and narrow slits. Here we use the solution begins with a generalized expres-
sion of the Darcy-Weisbach friction factor, after Gaukler-Manning-Strickler (GMS) (Gauckler,
1867; Manning, 1891; Strickler, 1923) approximation for rough-walled turbulence in channel flow.
While our solution remains general enough to capture future advances in modeling turbulent flow
within hydraulic fractures, provided these can be captured by a power-law relationship between
the friction factor and the scale of the fracture roughness.

The solution presented here is semi-analytical, derived using a Jacobi polynomial series. It
follows in the spirit of previous semi-analytical solutions that obtain very rapid series convergence
by constructing the family of polynomials so as to embed the appropriate asymptotic behavior
near the leading edge (Adachi and Detournay, 2002; Savitski and Detournay, 2002; Bunger and
Detournay, 2007). For this reason, our solution method begins with derivation of the near-tip
behavior, after which the form of the Jacobi polynomial series is specified. Coefficients of the
series are then selected to minimize an objective function that embodies the error of the solution.
A convergence study shows that a practically-useful solution is by first two terms of the series. This
rapid convergence of the solution justifies the approach, allowing the solution to be written down
once for all cases rather than requiring computation for each individual combination of parameters,
as is the case for numerical simulations. Finally, the paper concludes with an exploration of the
sensitivity to the particulars of the expression for the Darcy-Weisbach friction factor (Weisbach,
1855; Darcy, 1857) and with a comparison between solutions resulting from models that impose

laminar versus turbulent flow.

D. MATHEMATICAL MODEL

This study considers the propagation of a rough-walled crack driven by fully turbulent fluid flow.
The fluid regime is modeled as turbulent along the entirety of the crack and we do not model the

potential relaminarization of the flow near the tip (see Dontsov (2016) and Dontsov and Peirce
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(2016)). The conclusions about the validity of the transition to laminar flow close to the tip (see
discussion around Figs. 1.8 and I1.9) have to be seen in this context as because we impose that the
model can not autonomously transition to laminar flow near the tip. For the case of low viscosity,
and high flowrate (i.e. supercritical CO5) the Reynolds number is very large and this relaminariza-
tion region will be quite small. Yet when the Reynolds number is closer to the value for transition
to turbulence, our conclusions about the flow near the tip will not be correct and a model that
incorporates relaminarization would be required.

We also consider the local elasticity approximation associated with the PKN model. The van-
ishing tip boundary condition used for the PKN model (as is used here) precludes the incorporation
of the effect of fracture toughness into the model. Thus conclusions about the behavior of the solu-
tion within a distance of ~ H of the tip where H is the fracture height, are likely to be inaccurate.
We note that assuming turbulent flow throughout the fracture, as is done in our model, likely over
estimates the effective viscosity of the fluid near the tip. Therefore transition to laminar flow close
to the tip may bring toughness in to play, which is not accounted for in this model. Although a
way forward could be provided by a recently published toughness correction to the PKN model
(Dontsov and Peirce (2016))

As a final caveat related to the assumption that the fluid is fully turbulent everywhere, we note
that, the fracture width and the fluid velocity both decrease as one approaches the two containment
interfaces at the stress barriers (Figure II.1). In these regions the flow will certainly transition to
the laminar regime. This transition is not accounted for in our model.

Having clarified these limitations, let us now outline the model. We consider a reservoir layer
of uniform thickness H contained at the top and bottom by two, higher stress layers assumed
to be effective barriers to upward and/or downward hydraulic fracture (HF) growth (Perkins and
Kern, 1961). A sketch of this geometry is given by Figure II.1. Provided the HF length is sev-
eral times greater than the thickness H, we assume a uniformly-pressurized HF cross section and
slowly-varying HF width (opening) with respect to coordinate = (Perkins and Kern, 1961; Adachi
and Peirce, 2008). These assumptions allow us to derive an expression for the opening W of an

elliptical crack in an elastic rock (Nordgren, 1972), which is given by

1—v

g (H = 42°) 2 (p(z,t) — 0), (I1.2)

Wz, z,t) =
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Figure II.1: PKN fracture geometry

where G is the shear modulus of elasticity, v is the Poisson’s ratio, H is the height of the HF. The
fluid pressure p(x, t) is taken as uniform in each vertical cross section, and ¢ is the uniform in-situ
stress in the reservoir opposing the HF opening.

Mass conservation for the incompressible fluid flow in the crack is

oA 9 _,
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where A = 7w(x,t)H/4 is the area of the elliptical crack and w(z,t) is the maximum opening
in the cross section w(z,t) = W (z,0,t). Instead of using the Poiseuille equation for laminar
flow (Nordgren, 1972), we model the turbulent flow in the crack using the Gaukler-Manning-
Strickler (Gauckler, 1867; Manning, 1891; Strickler, 1923) parametrization

AW3 op\ /?
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where f, is the Darcy-Weisbach friction factor which can be expressed as
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where k is surface roughness, and o and m are constants with typical values &« = 1/3 and m =
0.143 gi0ia2006,tsai2010model and we explore the effect of varying these parameters later in the
paper. The subscript “2D” in Equation I1.4 indicates that the flux is through two-dimensional,
horizontal slices at every height 2. The total flux ¢ is given by the integral over the height of the

crack as

H/2
q= / q2pdz, (IL.6)
—H/2

where the details of this integration are given in the Appendix A.A. The result for the total flux is
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where B is the Beta function (see Equation A.8, or Abramowitz and Stegun (1972)), and A and T
are parameters of geometry and material properties, respectively. We note that T depends on rock
properties and reservoir geometry while A depends only on the parameters of the friction factor a
and m, which gives a typical value of A = 7.406.

We now substitute the total flux, Equation II.7, into the continuity Equation I1.3 and define

AT
- gH'
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(I1.8)

Thus, we find the non-linear partial differential equation governing the maximum opening w(z, t),

aw_ :g 2¢ _8_w :
E——uax [w ( 81:) ] (I1.9)

In Equation I1.9, the gradient of opening follows by negative sign (—0w/0x) that comes through

which is given by

fluid flow equation (II.7). In Equation II.9, the gradient of opening should be a negative value,
otherwise the square root will produce a complex number. This can be explained by the fact that,

the fluid always flow from high pressure to lower pressure and not the other way. Therefore, the
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gradient of pressure, which in this case is directly proportional to gradient of width with positive

coefficient, is always negative. Hence,
ow
— <0
ox
We then specify three boundary conditions and an initial condition. The third boundary condition
is necessary as the total length of the crack ¢(¢) is unknown a priori and must be determined as part
of the analysis. We apply a zero opening initial condition at ¢ = 0 and by the following boundary

conditions:

I. No opening at the crack tip:

r=0 = w((t)=0.

II. No fluid loss through the crack tip:

r=0 = q((t)=0.

III. Constant volume rate of flow at the inlet:

r=0 = ¢q(0,t) = .

where ¢;,, is half of the total fluid injection in the case of symmetric (bi-wing) growth.
Alternatively, g;, can be the entire injection rate if HF propagation is biased in one direction
so as to form a single-wing geometry as observed in analysis of some field data such
as Cotton Valley (Rutledge and Phillips, 2003), west Texas (Fischer et al., 2008), east
Texas (Mayerhofer et al., 2000), Mound site in Oklahoma (Warpinski et al., 1999), the
Lost hill field (Emanuele et al., 1998), and in Barnett shale (Maxwell et al., 2002) and also
discussed in (Wright et al., 1999; Murdoch and Slack, 2002).
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E. SCALING

We now look for a similarity solution to Equation 1I.9. An alternative method of scaling, in the
spirit of Savitski and Detournay (2002), is detailed in the Appendix A.E. This nonlinear pde re-
sembles the equations for viscous gravity currents (Huppert, 1982) and bouyant hydraulic fractures
(Lister, 1990) and, therefore, we look for a similarity solution of the first kind (Barenblatt, 1996).

We start by writing the inlet flux as

1/2
w? <_8_w> ] . (I1.10)
ox

z=0

Thus, we can scale the pde, Equation (I1.9), and inlet flux conditions as

w w2 t+1/2

T ST Er
. T (IL11)
AY © @~ /2

where we define the scaled flux () as the ratio of the flux in ¢;,, divided by AT. Combining these
two scalings allows us to define the similarity variables
x

&= Q-2 (Qggt)(4¢+1)/(4¢+2) \ (II.12)

and

w = (Q2t) /P q¢), (IL.13)

We define the length of the crack ¢(¢) such that £ = 1 coincides with the fracture tip, therefore, we
have that
o) = @2 (=) e ), (IL14)

where ) is dimensionless length (for more detail about the scaling see Appendix A.E). We can

insert the similarity formulation into the governing pde and find

0 (dp+ 1DEY = —(4p+2) [02¢ (-)?] B (IL15)
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The boundary conditions to Equation (II.15) are

aE=1) =0,
20 (_\1/2 _

[Q“’( ) L_l_o, (IL16)
20 ( n1/2 .

[Q‘P( ) L:O_l.

This ode can be integrated once by replacing £€)’ by (£Q2)" — €2, which gives

' dp+1 i Tz oni2]t
/EQdC—4¢+2[§Q]€_—[Q¢(—Q) L. (IL17)

Using the tip boundary conditions, we find

! dp+1 1/2
Qd¢ + Q= Q% (—NHY?, .18
| edr =0 ) awg)

To solve this equation, we will use an orthogonal polynomial series method to obtain a semi-
analytical solution to Equation 1I.18. The opening width changes most rapidly near the tip and,
therefore, by embedding the asymptotic solution near the tip, we can derive a rapidly-converging
series (Savitski and Detournay, 2002). Near the fracture tip, we expect the fracture width € to be
small but changing rapidly. Thus, we expect a dominant balance between the second two terms
in Equation (II.15), which is equivalent to saying that the integral over the fracture width in the

integrated ode, Equation (II.18), is very small. Thus, to leading order, the near tip behavior is

characterized by the ODE
4o +1

o S =0 (—)'2 . (IL.19)
Simplifying and separating, we find
! 4o +1\°
—/ Q2 4O = (4i i 2) (1—¢). (I.20)
3

Thus, the solution for the width near the tip is

2/(4p-1)
0= [\/4@ 1 (4‘p + 1)] (1— )/t (11.21)

4o 42

We analyze the tip region later in the paper and show that, although, there is relaminarization in
a small boundary layer near the tip it is a sufficiently small region that the turbulent expression

derived in Equation I1.21 still holds.
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Embedding this asymptotic solution into the polynomial series allows us to approximate the
series using only a few terms which clearly shows the dependence upon the parameters and can be
readily adopted for benchmarking purposes. Numerical solutions, although certainly feasible with

existing methods, would not provide the insights or usability of a semi-analytical solution.

F. SOLUTION

1. Overview of the Method

To solve Equation I1.18, we construct an orthogonal polynomial series (Savitski and Detournay,

2002). Orthogonal polynomials are sets of functions that follow
b
/ R(z)By,(x)B,(x)dx = 0, (I.22)
for all m # n (where R(x) is the weight function) and

b
/ R(2)B,(z)*dx = h,, (I1.23)

if m = n (Abramowitz and Stegun, 1972). The proposed solution is thus in the form of infinite

series using basis functions €2

0= A, (11.24)
1=0

where A; are coefficients selected so that the solution satisfies the governing equations. The base

functions Q,- must be orthogonal, therefore
l A A
0

where J;; is the Kronecker delta function.

Rapid convergence of the series is promoted by selecting the base functions so as to embed the
near-tip behavior (Savitski and Detournay, 2002), which we found to be of the form Q ~ X' (1—¢)P
where X and B are

4 1 2/(4p—1) 1
X = {\/4¢—1( L ﬂ and B=_——. (11.26)
¢_

4o + 2
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The base functions will then be constructed so that
Q; = D:5:(6)X(1 — €)B, (11.27)

where ®; are constants chosen so as to satisfy the orthogonality relationship, Equation 11.25. Upon
substitution X

/0 (D:0;)X%(1 — &)®5,(6)f;(£)de = by (11.28)
A convenient choice for the functions f; are the Jacobi polynomials, which have the following

orthogonality relationship (Abramowitz and Stegun, 1972)

1
/ (1 - g)c_ege_lGi(C’ €, g)Gj(Ca €, g)dg = h’i(ca 6)5’ij7 (1129)
0
where G;(c, e, €) is the i" order Jacobi polynomial, expressible as
P(e+i) (T (c+2i—j)
Gilere ) = Ry jz%( ) (j) Tletij)o ({L30)

where I'(7) is the Gamma function (Abramowitz and Stegun, 1972) and h;(c, e) is the norm of
Gi(c, e, &) and given by
Cil(i 4 )T+ )l (i + ¢ — e+ 1)

hi(c,e) = : : .31
(c,e) (20 4+ c)['2(2i + ¢) ( )
Setting e = 1, ¢ = 2B + 1 and rearranging Equation II.29 we have
! 1
— ) (1=-8%G,2B+1,1,8G;(2B+1,1 = 0;;. 11.32
Now comparing Equation I1.32 with Equation I1.28 leads to the conditions
1
P P s
i 2B+11) (IL.33)
fi(§) = G (2B+1,1,6).

As a result, the base functions are given by

A 1—&)8

Q; = (1-¢) Gi(2B+1,1,¢). (I1.34)

R eB+1,1)

Using the asymptotic near-tip solution, the form of the orthogonal base functions is therefore given

by

R 1 — &)/ @e—1) 4 1
Q, = (1-¢ G, (49”1,1, ) (IL.35)
do+1 2
m(ig51)

where h; is the norm of the basis.
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2. Calculating Coefficients of the Series

Given the basis functions in Equation II.35, we can now calculate the coefficients .A; of the series
in Equation I1.24. The approach is to designate equally spaced control points on 0 < £ < 1 (we
typically used 10 control points) and retain the first n terms of the polynomial series.

Now, it is possible to construct a residual function in terms of .4; and minimize that function.
The chosen residual function embodies the sum of the squares of the mismatch between the left
and right hand sides Equation II.18 at each control point (Savitski and Detournay, 2002). Its formal

expression is given by

AN Ay, A, ?
A(Ay, - Z( g’;& 733—1), (11.36)

where AL(&, Ay, -+, A,) is the left side of Equation II.18 for specific value of &;, and
AR Ay, -+, A,) is similarly the right side of Equation I1.18 with the solution paramet-
ric in the flow law parameter ¢. By minimizing A(A;,--- ,.A,), we can find the value of each

unknown variable A,;.

3. Length

Now we express evolution of the crack length with respect to time. Recalling Equation I1.14,
e(t) — Q—Q ( 3Et) (4p+1)/(4p+2) AL

the crack length evolves with time with power of (4¢ + 1)/(4¢ + 2). For illustration, if we con-
sider values & = 1/3 and m = 0.143 for the Darcy-Weisbach friction factor (Tsai and Rice, 2010),
from Equation II.7 the value of ¢ will be 5/6. Therefore, the value of the power in Equation II.14

for turbulent flow is
dp+1 13
4o +2 16

(I1.37)

while for laminar flow this value is 4/5 (see Equation I1.45, recall from Nordgren (1972) solution
for no-leakoff case). By comparing the value of the power of the time in length formula for laminar
and turbulent flow, we can see that the power in laminar flow is within 1% of turbulent flow and

they are very close to each other.
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4. Pressure

In order to find the distribution of pressure along the HF, we invoke elasticity (Equation A.2). The
net pressure inside the crack is therefore expressed in terms of the maximum opening at each cross

section, the height of the crack H, and material properties of the rock according to

G w(x,t

p(z,t) — 0 = pret(, t) T (H ) (I1.38)

Thus, by replacing the opening from Equation II.13 into Equation 11.38

G 1 s \1/(p+2)
et (7, 1) = ——— (Q3=t Q(¢). 11.39
puet(@, 1) = 7= 77 (Q’EH) 9 (11.39)
Now by combining Equation I1.39 and Equation II.24
G 1 =\ 1/(40+2) -

net(7,1) = ——— (Q°=t) 11.40
Prer(t,1) = 775 ( > AQ (I1.40)

=0

Hence, given the solution for the series coefficients .A;, Equation 11.35, and the equation for length
scale parameter £ = x/{(t), the pressure is readily computed.

And finally, in order to ensure that the solution solves the original problem, we can substi-
tute the results back to Equation I1.9, bringing everything to one side, and comparing the result
with zero. Figure 11.2 indicates that the solution obtained accurately solves the original governing

equations.
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n=1
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Figure I1.2: Substituting back the solution and confirming it solves the problem. The time is

100 sec and other material properties are given in Table I1.3

——a=0
------ a=02
-———-a=04
----- a=0.6
—a=0.8
——a=1

Figure I1.3: Variation of scaled opening with respect to change of dimensionless length & for

different value of a.
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Q(f) \ — n=1
A o n=2
o n=3
A n=14

--- Tip Asymptotic

02 04 06 08 1.0 )

Figure I1.4: Scaled opening along the hydraulic fracturing. Noting that using just one term is a very
good approximation and n > 2 gives solutions that are indistinguishable. Dashed line correspond

to tip asymptotic solution (look Appendix A.D).

G. RESULTS

The dimensionless opening depends only on the exponent o from the Darcy-Weisbach friction
factor through ¢ (refer to Equation I1.7). Figure I1.3 shows the sensitivity of the dimensionless
opening {2 with respect to «. It is clear from these results the sensitivity of the dimensionless
opening, (), to « is relatively small. However, the actual opening and length will be strongly

affected via the dependence of the scaling quantities on « (see Equation 11.13 and II.14).

Here we consider the particular values & = 1/3 and m = 0.143 for the parameters of the
Darcy-Weisbach friction factor. We truncate the Jacobi polynomial series at four terms and the
coefficients are given in Table II.2. From Figure 1.4, we can firstly confirm that there is an
excellent match between the tip asymptotic solution and the complete solution over the whole
fracture length. This is because in the PKN problem the average fluid velocity in the fracture is ap-
proximately uniform (Economides and Nolte (2000), see also Kovalyshen and Detournay (2010)).
Moreover, it can be seen that after the second term (n = 2) the solution is indistinguishable with
additional terms. This shows the very rapid convergence enabled by embedding the tip asymptotic
behavior in the form of the base functions. The truncated solution for n = 2 terms for opening is

given as
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Table I1.2: Coefficients for Jacobi polynomial series for n = 1,2, 3,4 with o = 1/3.

n 1 2 3 4

Ay 8.616 x 1071 8.517 x 1071 8.515 x 1071 8.515 x 1071
As . 1.115 x 1072 1.124 x 1072 1.124 x 1072
Az - - 2.904 x 1074 2.954 x 1074
Ay - - - 6.156 x 107°

Q= (1—£)7(1.1387 4 0.0626¢),
(IL41)

A = 1.0874.

The truncated solution in dimensional variables can be obtained from similarity scaling, Equa-

tion 11.41, which gives

~|w

3
N A x
w(x,t):0.8122( TR ) t1s <1_@) 0

3
B Qin H? G \' 1
N (11.42)

k’q p G 13\ 16 T T
Pret(,1) = 0.8122 ( e (1_V) ) ¢ <1— M) (1+0.05497—>,

)
4= G (1 . %)g (1 +0.05497 gf—t)f <1 +0.21005 ;—t))l .

We can also write this truncated solution for general form of € as

<1 +0.05497 i) ,

o
BN

Q= (1- €77 [Ci(a) + Ca(a)e]. (IL43)

where C; («) and Cy(«v) are constants that vary with the value of « as shown in Figure IL5.
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Solution , = ---—----- Tip Asymptotic (Second Order)

cl(a) ’ Ml(a) Cg(a!) , Mg(a) Ci(a) +Cy(a)

Mi(a) + My(a)

1.20f

1.05(/

02 04 06 08 1.0

Figure I1.5: Constants C; and M, in Equations. 11.43 and I1.44 as functions of «.

The rapid convergence of the polynomial series motivates us to derive a second order asymp-
totic solution near the tip (see Appendix A.D for derivation of this solution). The asymptotic

solution has the same structure as the truncated solution and is given by

Qup = (1 — &) 7= [My(a) + My(a)]

M) = (275 (35 o (ot gern) me
o=y () (1- SR

A comparison between the coefficients of the asymptotic solution and the truncated solution is

given in Figure 1.5

1. Applications

We now present a few examples illustrating the practical relevance of the newly-derived solution.

The purpose is:

I. To provide a comparison between laminar and turbulent flow solutions for an example high-
rate water-driven HF to show that the difference is significant and therefore use of the laminar

model in instances where Reynolds number is large can lead to substantial errors.
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II. To compare the expected Reynolds numbers for different fluid families (refer to the Appendix
A.C.1) in order to clarify conditions under which the turbulent and laminar models are expected

to be relevant.

III. To show the size of the near-tip laminar zone relative to the fracture as a whole, thereby clari-

fying conditions under which the majority of the HF is in turbulent regime.

Here we compare the turbulent solution with the laminar solution of Nordgren (1972), where

the opening, net pressure, and length are given by

9 1
B pg, (1 —v)]5 1
wN(O,t)—Q.S{ TR ] £5
3 1
_ Gn G |7 s (I1.45)
In(t) = 0.68 LH“ = V)} t5,
2 4 1
Prety (0,1) = 2.5 [—HG T WJ £5.

The parameter values used in the example case are given in Table I1.3 and the characteristic
Reynolds number is Re* = 10%. At this Reynolds number, the flow is turbulent for all values of
roughness and, therefore, the Nordgren (1972) solution does not apply. Hence, this comparison
illustrates the magnitude of the error associated with inappropriately choosing the laminar model
instead.

Figure I1.6 shows that the crack opening profile for the turbulent solution is similar to the
Nordgren (1972) solution for laminar flow when the opening is normalized by the opening at the
wellbore. However, the magnitude of the opening, shown in Figure 11.7a, is over 50% greater for
the turbulent model. This greater opening is caused by a larger fluid net pressure in the turbulent
case (Figure I1.7b). Finally, because the total volume is the same in both cases, the laminar model
overpredicts the length by over 40% (Figure 11.7c). Hence, the turbulent model shows that high
Reynolds number treatments will result in higher pressure, greater widths, and shorter lengths than
predicted by incorrectly-applied laminar models. This result is also consistent with comparisons
for the large leak-off PKN-type solution presented by Kano et al. (2015) and discussed based on
scaling arguments by Ames and Bunger (2015).
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Table II.3: Material properties and physical constants for illustration.

Parameter Value
din 0.2m3 s 1
v 0.25
H 0.001 Pa-s
p 1000 kg m~3
k 0.3 mm
m 0.143
H 20m
G 30 GPa
« 1/3

—— Nordgren
----- Turbulent

Figure I1.6: Normalized variation of maximum fracture width in different cross sections for laminar

and turbulent flow.
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Figure I1.7: Comparison between laminar and turbulent solutions for the parameters given in Ta-
ble I1.3. (a) Maximum fracture width at x = 0, (b) Predicted fluid net pressure at the wellbore, (c)

Fracture length.

It is therefore shown that substantial errors in predictions can arise due to misuse of the laminar
or turbulent models. Instead, the choice should be made based on a calculated value of Reynolds
number characterizing the regime for a given case.

To address the second objective of this section, comparing the expected Reynolds numbers
for different fluid families, we examine four fluids. To see the effect of changing the fluid on the
value of the characteristic Reynolds number, we assume the flux ¢;, and height A are constant
and use the values given in Table II.3. Referring to Table I1.4, the value of p/p for different
fluids is given. The biggest number in the table corresponds to cross-linked gel and is equal to
41.67 x 107> m? s~!. The smallest value is associated with CO, (8.34 x 1078 m? s~!). Hence,
the ratio of characteristic Reynolds number for those two cases is equivalent to the ratio of density
over viscosity for those two fluids, namely around 5000. This contrast of Reynolds number can be
large enough to change the flow regime from laminar to turbulent. We now examine the role of
geometry and pumping rate. Typical heights of HFs fall in the range 20 m < H < 200 m (Fisher
and Warpinski, 2012). We will take the range of injection rates from 0.01 m3 s=! < ¢;,, < 0.2
m? s~!. Hence the ratio is 5 x 107° m? s™! < ¢;,/H < 0.01 m? s~!. Typical Reynolds numbers

for the 4 fluids and their densities and viscosities are listed in Table I1.4. Based on open channel
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Table I1.4: Different fracturing fluids and their rheology.

) Density Viscosity Kinematic Viscosity
Fluid
p (kg m™?) p (Pa:s) 5 (m*s7h)
Water 1000 0.001 1076
X-linked Gel 1200 0.5 41.67 x 1075
CO; (Supercritical COy) 600 5x 107° 8.34 x 1078
Linear Gel 1200 0.05 41.67 x 107

problems (Henderson, 1966; Munson et al., 2002), the corresponding range Reynolds number for
the laminar regime Re < 500, while Re > 12500 is considered as turbulent regime. The values
in between are thus considered to occupy a transition from laminar to turbulent flow. Accordingly,
fracturing with CO, will be mostly turbulent flow. The flow regime of the water in most cases is
in transition between laminar and turbulent and in the most field relevant cases is closer to, and
therefore better approximated by, the turbulent regime. The other two fluids lead to laminar flow

(for more details, refer to to the Appendix A.C.1).

The suggested Reynolds numbers are experimentally determined and may change based on
geometric details for open channel problems. For most of the practical cases, Reynolds number
less than 500 is laminar. However, there is no definitive upper limit defining the transition to
turbulent flow (Te Chow, 1959; Munson et al., 2002; Gioia and Chakraborty, 2006). In open
channel problems an upper limit for the transition depends on other parameters like the channel
geometry. Therefore, we discuss two alternative methods for estimating an appropriate Re to define
transition to turbulent flow in order to select an appropriate fluid flow law. First, we compare the
characteristic fluid pressure associated with laminar flow P4 to the characteristic pressure
associated with turbulent flow P,,,;. In this approach we define Pjminar > Prurp as the laminar
regime and Pl inar < Prurp as the turbulent regime. Although the transition Re depends on the

fluid properties (see the Appendix A.C.2 for details), a typical transition value is around Re = 500.
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With this definition and the proposed ranges for different parameters, CO, is always turbulent and
water is turbulent for nearly all relevant cases (see Appendix A.C.2 for more details).

Returning (briefly) to the definition of GMS, to develop the friction factor, the hydraulic radius
is used. Hydraulic radius (1) is a characteristic length that helps to calculate the effect of different
cross sections. Originally, this parameter is introduced so that the pipe flow equations can be
expanded to other non-circular conduits. Mathematically, the hydraulic radius is the ratio of cross

section of the fluid flow over the wetted perimeter (R, = A/B). For elliptical cracks, the area is

A = mwH /4, and if the eccentricity of the ellipse defined as e = /1 — (w/H)? & 1 its perimeter
is defined as
= (20)12 e
=7H |1— —— | " 2H 1.4
B=n [ z:: (20012 — 1 ’ (I146)

so the value of hydraulic radius is 7w/8. In the PKN model, the cross section is ellipse, so the
average value of the opening in one cross section is (Zia and Lecampion, 2016)
H/2

7
= Wz, z,t)d —w, I1.47)
H _H)2 4

gl

thus, hydraulic radius is half the average value of the opening of the crack at a specific cross section
(Ry, =w/2).

The Moody diagram can be used to determine the transition [Ze for the purpose of selecting
a fluid flow model (see the Appendix A.B for more details). The premise of this argument is
that for most cases in HF the scaled value of the fracture roughness is in order of 0.05 or higher
(k/w > 0.05). According to the Moody diagram (Appendix A.B), for such a roughness, the fully
turbulent regime occurrs at Re > 10* and the transition from the laminar regime starts around
Re > 2000. We further note that the friction factor in this transition regime is for the most part
closely enough approximated by the turbulent GMS model that it is a viable selection from a
practical perspective.

Finally, the Reynolds number discussed so far is determined by the fluid flow only in the
neighborhood of the injection point. This Reynolds number, however, may not represent the flow
near the fracture tip, where there is a switch from a Reynolds number dominated by the fracture
depth H to a local Reynolds number where the small width of the fracture dominates. As a result,

there is a transition along the crack where the flow regime switches from turbulent flow to laminar
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flow. Thus, we would like to know the ratio of the length of the turbulent regime over the laminar
region. Due to the fact that ¢ is independent of H and only depends on time through z//(t),
the quantity H Re is a unique function of z/¢(t) for a given fluid. This relationship is shown in
Figure I1.8. Comparing the values presented in Figure I1.8 shows that the value of Reynolds number
near the crack tip where the value of x/¢(t) approaches to 1 is close to zero and the behavior of
the fluid in that region is thus laminar. Moreover, Figure I1.8 indicates that there is a similarity
between all the graphs; indeed the only thing that changes from one plot to the other is the value
of the kinematic viscosity p/p. Combining, then, Equation I1.42 and the definition of Reynolds

numbers gives

Re = Re* F(§),
Ret =8, (I1.48)
F(E) = (1— )7 (1+0.05497€)53 (1 + 0.21005¢)7 .

The change of F (&), which determines the variation of Re for different values of ¢ is presented in
Figure I1.9. In order to change the order of magnitude of Re compared to Re*, the value of F(§)
should drop at least one order of magnitude which occurs for £ > 0.9970. Similarly, a two order
of magnitude drop corresponds to £ > 0.999986.

With the variation of Re along the fracture in mind, consider the example of water as an
injecting fluid (¢ = 0.001 Pa-s and p = 1000 kg m~3). The characteristic Reynolds number is
Re* = 10%g;,,/H. If the height is 20 m and the injecting fluid flow is 0.2 m® s™!, then Re* is 10%.
Thus the fluid flow regime based on the characteristic Reynolds number is turbulent. However, as
discussed, Re decreases along the fracture, reaching a transition value of Re ~ 2000 at around
x/(t) > 0.98. This indicates that about 98% of the HF length is either in transition or turbulent
regime. Thus, the GMS approximation is accurate enough for practical purposes in the transition
regime. Due to the fact that HFs have a relatively large roughness scale compared to the fracture
opening, in this case a valid global approximate solution can be obtained neglecting the laminar
region near the tip. In other words, this example would correspond to a valid application of the
present model. In contrast, if fluid flow is 0.2 m® s~! and the height of the crack is 70 m, then
Re* ~ 2900, which is in transition to turbulent regime. In this case, Reynolds number drops to

less than 2000 at about z/¢(t) > 0.68. In this case, then, 68% of the HF is either in transition or is
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Figure II.8: Reynolds number variation along the crack. By knowing the height of the barrier f,
it is possible to find the Reynolds number at any points inside the crack. The time dependence is
embedded in length of the crack which can be seen in z/¢(t). Note that this graph still depends on

pumping rate g;,,.
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Figure I1.9: Change of F (&) versus &.

in turbulent regime which shows that around 1/3 of the crack is still in the laminar regime. In this
latter example an approach considering the presence of both a turbulent and laminar region within

the HF would be required.

H. CONCLUSIONS

The flow regime for some HF treatments is turbulent over the vast majority of the HF length. In
particular, high-rate, water-driven HFs, as well as CO, driven fractures, tend to this regime. This
is in contrast to the lower-rate, gel-driven fractures which comprised the main interest during the
development of many HF solutions based on laminar flow models. With these limitations in mind
the scope of this study was limited to consider fully turbulent flow throughout the fracture, ignoring
the effect of the transition of the fluid regime from turbulent to laminar flow at crack tip or in the
boundary at top and bottom of the reservoir. Also, considering this limiting regime, the solution
ignores the effect of fracture toughness.

Here we have presented a model for a blade-shaped (PKN) geometry HF growing in an im-
permeable rock and driven by a turbulent fluid. We derive a semi-analytical solution which: (a)

embeds all rock, fluid, and geometric parameters in a scaling so that the resulting ode can be
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solved once for all cases, and (b) provides an accurate solution keeping only 2 terms of a polyno-
mial series solution. The rapid convergence is enabled by embedding the near-tip behavior, also
solved here in the course of the solution method, in the form of orthogonal polynomials. Failure
to recognize the appropriate flow regime will lead to erroneous application of models based on
laminar flow. Incorrect models are estimated to over predict the fracture length and under predict
the fracture width and pressure by 40-50%. As such, this model not only provides a benchmark
solution for numerical simulation and a means for rapid estimation of fracture dimensions. It also
provides impetus for ongoing research including experimental studies to find the most appropriate
values of parameters m and « for turbulent flow within a rough-walled deformable slot such as is
encountered in HF applications.

Here we show that using laminar flow instead of turbulent flow under conditions where most
of the HF has Re > 2500 can lead to enormous errors in calculating the fracture opening (i.e.
more than 100% at 1000 seconds of injection). And also a sizable error (>50% as shown in Fig-
ure I1.7) is induced on the crack length and fluid pressure estimation. Ongoing efforts are aimed
at expanding the ability of the model to consider the turbulent regime when it is appropriate to
use a different form other than the generalized GMS equation. It is expected this will be partic-
ularly necessary under conditions where proppant transport and the use of rheological-modifying

additives are considered.
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III.  SOLUTION FOR A PLANE STRAIN ROUGH-WALLED HYDRAULIC
FRACTURE DRIVEN BY TURBULENT FLUID THROUGH IMPERMEABLE ROCK

A. PREAMBLE

The content of this chapter comprises a preprint of Zolfaghari et al. (2017). It presents the asymp-
totic semi-analytical solution for plane strain HF driven by fluid with flow in the rough-walled
fully turbulent regime. The solution is generated using a method inspired by Adachi (2001a) for
the laminar regime. The tip asymptotic solution is developed for a crack filled with fully-turbulent
fluid. The solution is compared with the numerical model provided by collaborator, Dr. Egor
Dontsov. The comparisons between the numerical simulations and the semi-analytical solutions
indicates a good agreement, and further it shows that the laminar-turbulent transition region is rel-
atively small. This means that an accurate solution can typically be obtained by either the laminar
or turbulent solution, without need for numerical simulation, choosing the solution corresponding

to the larger pressure, larger opening, and shorter length.

B. ABSTRACT

The impact of turbulent flow on plane-strain fluid-driven crack propagation is an important, but
still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic
fracturing has experienced over the past decade, especially in the area of fracturing fluids, have
played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Mo-
tivated by the increasing preponderance of high rate, water-driven hydraulic fractures with high

Reynolds number, we present a semi-analytical solution for the propagation of a plane-strain hy-
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draulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses
a power law relationship between the Darcy-Weisbach friction factor and the scale of the frac-
ture roughness, where one specific manifestation of this generalized friction factor is the classical
Gaukler-Manning-Strickler approximation for turbulent flow in a rough walled channel. Conser-
vation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a
semi-analytical solution using an orthogonal polynomial series. An approximate closed form solu-
tion is enabled by a choice of orthogonal polynomials embedding the near-tip asymptotic behavior
and thus giving very rapid convergence; a precise solution is obtained with two terms of the series.
By comparison to numerical simulations we show that the transition region between the laminar
and turbulent regime can be relatively small so that full solutions can often be well-approximated

by either a fully laminar or fully turbulent solution.

C. INTRODUCTION

Hydraulic Fracturing is one of the major tools used to stimulate extraction of oil and gas from
subsurface reservoir rocks. In this method fluid is used to drive crack propagation. The research to
date has tended to use laminar flow models to describe fluid movement within hydraulic fractures
Khristianovic and Zheltov (1955); Geertsma and De Klerk (1969); Nordgren (1972); Adachi and
Detournay (2002); Garagash and Detournay (2000); Garagash (2006). Apart from high flow rate
and relatively small crack opening, the recently increasing tendency to use water as a fracturing
fluid instead of highly viscous gels King (2010) can significantly increase the Reynolds number.
Therefore, the flow regime for hydraulic fracturing applications that have emerged over the past
two decades is not strictly laminar, but instead can be in transition and even fully turbulent flow
regimes. As an illustration, in a typical hydraulic fracture (HF), the injection flow rate is usually
0.05—0.2 (m?/s), and the reservoir thickness is 50 —200 (m). A typical way to illustrate Reynolds
number Reynolds (1883) is through p(v) Dy, /11, where (v) is the average fluid velocity and Dj, is the
hydraulic diameter of the flow distribution. Here the hydraulic diameter is defined as D), = 4A/P
where A is the cross section of the fluid flow and P is the perimeter of the wet region and for

plane-strain geometry is D, ~ 2w. For a plane-strain HF, the parameter () is defined as the ratio
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of total volumetric injection rate over the heigth of the reservoir. It can thus be expressed as the
average fluid velocity ((v)) over the crack width multiply the crack width (Qy/2 = (v)w), both

taken at the inlet. We can then express a characteristic value of the classical Reynolds number as

Re* = pQo/p,

where p and p are the fluid density and viscosity, respectively, and () is the fluid flow rate per
unit length that has a dimension of (m?/s). If water is used as a fracturing fluid, the density and
viscosity will be 1000 (kg/m?) and 0.001 (Pa.s), respectively. If gel is being used, the density
and viscosity will be 1200 (kg/m?) and 0.5 — 1 (Pa.s). Thus, for water Re* = 10? — 10* and for
gel Re* = 0.01 — 10. This indicates that by changing the fracturing fluid from gel to water, we
expect 2 to 3 orders of magnitude increase of Reynolds number.

Note that here, and throughout this paper, we use water and slickwater as a fluids for com-
parison purposes. Many “water” hydraulic fractures have friction reducing additives, leading to
the name “‘slickwater”. Here we do not address important rheological differences between wa-
ter and slickwater except to use ;1 = 0.001 Pa.s for water and p = 0.003 Pa.s for slickwater.
Also note that it is a common practice to express Reynolds number for non-circular cross-sections
using hydraulic diameter. However, it has been proven experimentally that keeping Reynolds
number constant with hydraulic diameter and changing the aspect ratio, the friction factor will
change. Therefore, there is an ongoing discussion that the definition of Reynolds number through
hydraulic diameter is not accurate Jones (1976). According to Jones (1976) the modified Reynolds
number for plane strain geometry is 2/3 of characteristic value of the classical Reynolds number
(as Re = %%). Thus the characteristic Reynolds number is reduced with constant factor of 2/3
(Re = 2p(v) Dy /31 = 2pQo/31 = 2/3Re*). In this manuscript, for the sake of comparison ev-
erything is defined in terms of characteristic Reynolds number. However, in order to do numerical
modeling, one should use the modified Reynolds number.

Hydraulic fracture models, by and large, account for four physical couplings: 1) solid deforma-
tion due to fluid pressure, 2) fluid flow inside the crack, 3) crack propagation, and 4) leak-off of the
fluid into the rock matrix. Each of these coupled processes is accompanied by its own character-

istic time and length scales. Consideration of turbulent flow introduces transition time and length
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scales from laminar to turbulent regime. This transition is unique to fluid-driven crack propaga-
tion because of the coupling with elastic deformation and crack propagation. From an industrial
point of view, consideration of turbulent flow will change the calculation of crack geometry, fluid
pressure, and rate of crack propagation. Miscalculation of these quantities can lead to problems
like wrong choice of proppant size and scheduling and unwanted crack growth into non-productive
zones. Hence, furthering the understanding the impact of turbulent flow is both challenging and

important.

In order to obtain semianalytical solutions, which are desireable for rapid estimation of fracture
dimensions and for benchmarking numerical simulations, simple geometries are required. One of
the classical models to describe a two dimensional HF is the plane-strain geometry Geertsma and
De Klerk (1969). Its origins are tied to the fact that, in most of the HF treatments, the horizontal
confining stresses are smaller than the vertical overburden stress which will cause the crack growth
to orient in vertical direction. Also the reservoirs in most cases are bounded by barrier layers,
usually with higher stresses, that limit the vertical growth of HFs. At early time, when the length
of the crack is much smaller than the height of the barrier (less than three times the height), yet
much longer than wellbore diameter, the plane-strain estimation is a useful estimate model (Figure

I 1a).

Awareness of the turbulent regime in hydraulic fracturing is not recent, having been recognized
in the seminal work of Perkins and Kern (1961). The subsequent literature has emphasized the
importance of considering turbulent flow (e.g. Ames and Bunger (2015)) especially if the fluid is

a gas Settari et al. (2002); Wei and Economides (2005); Martin and Economides (2010).

For HF, Nilson (1981, 1988) considered unidirectional flow for gas-driven HFs in a high inertia
regime for constant pressure inlet boundary condition. In a similar way, Emerman et al. (1986) in-
vestigated the plane-strain problem for gas-driven fractures with constant inlet flow boundary con-
dition. In another study Siriwardane and Layne (1991) modeled the plane-strain growth of multiple
HFs. In this model there is a constant inlet flux boundary condition and the fluid flow equations are
obtained from analogy to agitated pipe flow. Among the other models that incorporate turbulent
flow, Hayashi and Taniguchi (1999) used the Manning-Strickler channel flow equation with loga-
rithmic friction factor to model radial HF growth, but without expressing the opening and length

of the crack, and hence the answer provides only an estimation for the pressure. In addition, some

43



numerical models to simulate HF that considered the turbulent regime have been developed Nilson
and Griffiths (1983); Nilson (1986); Li et al. (2012, 2013). And, indeed there are design models

which incorporate turbulent regime capability (e.g. Meyer (1989)).

The study of the effect of turbulent flow in fluid driven crack growth is not just limited to
industrial hydraulic fracturing. A few investigations consider either constant pressure injection or
buoyancy-driven propagation, appropriate to the geosciences Perkins and Kern (1961); Huang et al.
(1990); Lister (1990); Lister and Kerr (1991); Tsai and Rice (2010); Anthonyrajah et al. (2013).
Tsai and Rice (2010) modeled a very fast drainage of a glacial lake through a sub-glacial fluid
driven crack. They used the Gauckler-Manning-Strickler (GMS) Manning (1891); Strickler (1923,
1981) to model the fluid flow in the rough-walled turbulent regime. This contribution provides a
useful background for the fluid flow model, but the boundary conditions and elasticity formulation
are specific to their problem and not applicable to industrial HFs. Also,Lister (1990) and Lister

and Kerr (1991) solved the problem of dyke propagation by considering turbulent flow.

In recent years, there has been a slowly increasing amount of literature on turbulent flow in
hydraulic fracturing. Kano et al. (2015) published a solution for the large leakoff limit for a blade-
shapped (PKN) HF with rough-walled turbulent flow. Zolfaghari et al. (2017) developed a PKN
HF soultion considering turbulent flow in an impermeable rock, using a general form of the GMS
model to develop their semi-analytical solution. Dontsov (2016) derived a solution for the near-
tip region of a plane-strain HF driven by a turbulent fluid that captures transition from laminar
near the tip to turbulent away from the tip. And, most recently, Zia and Lecampion (2016, 2017)
considered the PKN model with constant injection inlet flux boundary condition for the transition

from laminar to turbulent flow.

The goal of this research is to develop benchmark solutions that can be used to estimate fracture
dimensions and fluid pressure for a plain strain HF driven by a turbulent fluid through impermeable
rock. Because of the open question of the best turbulent flow model for HE, we employ the general
form of Gaukler-Manning-Strickler, thereby capturing a range of behaviors that can be tested in
future experimentation. In order to derive the solution, we use a Gegenbauer series which follows
by the spirit of Adachi and Detournay (2002), and Garagash (2006). This solution provides rapid
convergence due to embedding of the crack tip singularity in the polynomials. This approach is

similar to the more classical case of Chebyshev polynomial series to solve crack problems Erdogan
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et al. (1973). At the end, we provide a discusion of the transition from laminar to turbulent flow,
clarifying the Reynolds number associated with this transition by comparison to numerical sim-
ulations and showing, by way of these comparisons, that the transition region is relatively small.
In other words, the numerical simulations show that a full solution to the problem can often be
usefully approximated by either a fully laminar or fully turbulent asymptotic solution, with the

appropriate choice of solution depending upon the Reynold’s number and the fracture roughness.

D. METHOD

The plane-strain HF refers to the geometry wherein the height of the crack, H, is very large with
respect to the crack half length, ¢(¢) (see Figure III.1). It was originally considered by Khris-
tianovic and Zheltov (1955) and Geertsma and De Klerk (1969), hence it is often called the KGD
HF geometry. The length of the crack, ¢(t) is also considerably larger than the well diameter such
that the mechanical influence of the wellbore is ignored and the fluid is considered to be injected
from a point source at z = 0. The plane strain fluid injection from the wellbore is considered to
be Qo = Qin/H where H is the height of the reservoir and @), is the volumetric injection rate.
The width of the crack, the fluid flux, and the pressure at any time and location is given by w(x, t),
q(z,t), and p(z,t), respectively (see Figure III.1b). Note ¢ = (v)w, where (v) is the mean veloc-
ity across the fracture width. The conservation of momentum for incompressible fluid flow in the

crack for Newtonian fluid in the plane strain geometry is

ou _ou

2Ty =+ a— 1.1
ox  w ' < ot * uf)x) (LD

where 7, is the shear stress on the wall due to fluid flow, « is the time averaged fluid velocity in

the direction of the crack propagation. The shear stress in the turbulent regime is

L
Hay =P

which consists of two parts, the laminar shear stress and the turbulent shear stress (see Streeter
(1961a); Munson et al. (2002)). In this model, the fluid velocity has two components, wu is the

velocity in the direction of the crack propagation (x direction), and v the other component of the
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fluid velocity is perpendicular to crack walls (y direction). Therefore, each components of the
velocity consists of a time averaged part (z and v), and fluctuation with respect to time (v’ and v").
Thus, the shear stress is a quantity that is time averaged, which means it can be treated as a steady-
state value. Therefore, the inertia part of the Equation III.1 is negligible (see Zia and Lecampion

(2016, 2017)) and the pressure drop in the crack is
Ap = f(v,w, Az, k, u, p).

After dimensional analysis (using II-theorem Barenblatt (1996)), the scaled pressure drop is (see

Munson et al. (2002) for more detail)

Ap Ax , pvw

=

k
1/2p02 w 1 ’E>

Consistent with this dimensional analysis and classical experimental results, fluid flow is modeled

via the Gaukler-Manning-Strickler Gauckler (1867); Manning (1891); Strickler (1923) relationship

4w’ 8p) 1/2
g= (- s 7 (II1.2)
( pfp Ox
where f, is the Darcy-Weisbach friction factor and can be calculated as
k (0%
fp=m (—) . (1IL.3)
w

Here £ is the crack surface roughness, and o and m are constants. For the sake of generality, they
are kept variable. Typically in hydraulic fracturing the values for o and m are taken as o = 1/3
and m = 0.143 Gioia and Chakraborty (2006); Tsai and Rice (2010).

For the plane-strain problem in an impermeable rock, conservation of mass is defined as

ow  0Jq

4+ 2 _9 1.4
o Tow (L
where ¢ is the fluid flux and defined through Equation III.2. We can then replace the turbulent
flow (Equations III.2 and III.3) in the continuity equation (Equation III.4) to eliminate ¢ from the

equations. Also by letting
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Figure III.1: Plane strain geometry.(a) Three dimensional. (b) Two dimensional view.

the continuity equation will be given by

a a 1/2 3+«
5; -85 [(—a—i) wﬁ] (I11.5)

In addition to fluid flow, the width, pressure, and length are related by an elasticity equation (based

on dislocation theory Hills et al. (1996)), given by

Cow ds
Adm J_, 0s s —x

px,t) = ps(a,t) — oo (111.6)

where p is a net pressure, given by the difference between the fluid pressure and a uniform far field
stress 0. Also, from linear elastic fracture mechanics, crack propagation proceeds when the stress
intensity factor K; equals a material strength parameter, the fracture toughness (K¢). For the

plane strain case Irwin (1957)

oL [ 22
! - x2 (I11.7)
Kr = Kic
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Finally, the boundary conditions and initial condition are Detournay and Peirce (2014)

r=dl=w=0, ¢g=0

q(0%,1) = % q(07,t) = —% (111.8)

t=0=w=0, (=0, p=0

These embody conditions of: 1) zero opening at the fracture tip, 2) zero flux at the fracture tip,
which ensures the fluid and fracture advance together, 3) fluid flux at the inlet balance the influx

from the wellbore, and 4) the fracture has zero initial width, length, and net pressure.

E. SCALING

We define the dimensionless opening 2, pressure II, fluid flow rate W, and crack length v as a

function of time and coordinate ¢ as (after Detournay (2004))

w=eLQEt), p=cET(E L), (=Ly(t), q=QuU(E1t), €= % (I11.9)

Here <(t) and L(t) are scaling factors yet to be determined. By considering the total mass balance

(integral of Equation III.4 over the crack), we obtain:

Qot

1
o =2y /0 Q(C, t)dc (I11.10)

Since we want to preserve the conservation of the mass throughout the analysis, we can choose

e(t) in a way that simplify our calculations, so

t t
@ zliezQ—o

5 = (IL11)
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Now by inserting the scaling parameters from Equation II1.9 and Equation III.11 into the continuity

equation (II1.4), elasticity equation (II1.6), fluid flux (II1.2), and crack propagation (III.7), we can

Lt At Lt o9
(1—I)Q+Qt—g(7+3>8—g—

obtain:

s ) (II1.12a)
6/E/1/2Q te/242+4a/2 o e oI\ 2
L3+a/23/2 35 _6_5
1 [1oQ d

me L [ 9% dc (I11.12b)
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v = L3+%71/2 3§ Q 2 (IIT.12¢)
KL 27/2f / (IIL12d)

QotE'’ /1 — Cz

where two dimensionless groups can be defined
_ L+e) g _ KL (IIL.13)
T pE Qe Parar T 7T QutE |
The accompanying boundary and initial conditions are
oI\ 2
Q(£1,t)=0 , QB2 (—-) =0 (I1.14a)
3 g=+1
1 1

V(0T t) = 5 (0 ,t) = —3 (II1.14b)
¥0)=0 . QE0)=0 , T(0)=0 (IIL 14c)

After scaling the problem, the system of partial differential equations can be solved analytically/
semi-analytically for two limiting cases. One limit is when the fracture toughness is vanishingly
small (G — 0) and the other case is for when the fluid friction is vanishingly small (G — 0).
The fluid friction scaling factor G is defined in a way that it multiplies the left hand side
of Equation III.12a. Hence, for the case of zero fluid friction (G — 0), the left side of Equation
III.12a will become insignificant and the problem reduces to the case of crack growth with uniform
internal pressure. This zero-fluid friction (similar to zero-viscosity in laminar flow) limit for HFs

has already been solved Adachi (2001b). However, for zero toughness the problem remains to
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be solved. Thus for the case of negligible toughness, choosing the characteristic scales L so that

Gr = 1 leads to (for € see Equation II1.11)
c = <ﬁ/2ElQéa_2)/2>_ai6 t_%
(II.15)
L — </8/E/1/2Q(()a+2)/2> ﬁ t%

Prior to commencing the solution, we should replace this scaling into Equation I11.12. After sub-

stitution, we simplify the equations with following changes of variables
74/(24—&)(2 —_ Q7 7(2—&)/(24—0&)]?[ — H7 7(64—0&)/(24—&)@ — . (11116)

Once the equation is simplified it becomes independent from the dimensionless parameter +.
Hence, we can take the integral of both sides of Equation III.12a from ( to 1, making use also
of the boundary conditions. The governing equations and boundary conditions for {2, II, and U are

then given by

1 — 4 — — 3+a 1:[ 1/2
/ Qd¢ — —Z i 60+ 0 (—(2—5) (I 17a)
13
_ 1 [1dQ d¢
n=-— [ & % (I1L.17b)
dm )4 dCC—=§
7
1|
——d(=0 IL17c
o Vi—C R
_ O\ " - s1a
v=(-22) o 1IL.17d
< a&) (L
Q(£1) = (I1.17¢)
=\ 1/2
g5 (A =0 (IIL.17f)
dg ¢==+1
S|
9y ats / Qd¢ = (IL.17g)
0

From the scaled equations, we can see that the coupled integro-differential equations (IDE) for
Q) and II are described with homogeneous boundary conditions (these are given by the equations,
III.17a, I1.17b, III.17c, 1I1.17e, and I11.17f). Hence, the IDE has been decoupled from +, and is
only a function of the coordinate ¢ and the constant a. Once this system of IDEs solved, we can

come back to Equation III.17g and solve for the scaled length . Moreover, when we define the
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fluid flow law, the value of the a will be assigned, i.e. for GMS, o = 1/3. Thus, by assigning a

value for «, the problem will only be function of spatial coordinate .

We will solve this problem using an orthogonal polynomial series. In order to promote rapid

convergence, we construct the polynomial series embedding the near-tip behavior. The near-tip

behavior for crack propagation in plane strain conditions in an impermeable rock is obtained from

semi-infinite crack propagation with constant velocity. The near-tip solution was prepared ac-

cording to the procedure used by Adachi (2001b) (see also Desroches et al. (1994), Garagash and

Detournay (2000)). Therefore, the solution for crack tip is given as follows.

where

Qtip =E(1- 52)¢

ﬁtip = X(l - 52)@_1

(1]

2+« o+ 4 2 le%i8
— tan( )
2 o+ 6 o 2+«
cot(;r—“a)
44 2«
2

:2—|—a

2

The details of this solution are provided in Appendix B.B.

F. SOLUTION

(111.18a)

(II1.18b)

(I11.18c¢)

(IIL.18d)

(I11.18e)

Inspired by the approach of Adachi (2001b) and Savitski and Detournay (2002), the scaled crack

opening (2, scaled fluid net pressure II, and scaled fluid flow U are presented as linear superposi-

tions of general and particular solutions. That is

Q=0+ BO™
Il = I1* + BII*
U =" + BY*
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where Q*, I1*, and U* are general solutions that satisfy the field equations including the pres-
sure singularity at the crack tip, and Q**, II**, and U** are particular solutions that satisfy the
inlet boundary conditions. We will construct the general solution, and after that we can find the

particular solution.

1. General Solution

We will start by introducing the polynomial series built with the base function O* as
=" A, (I11.20)
i=0

where A; are the unknown coefficients that need to be determined. Since we want to promote the
rapid convergence of the series (with only a few terms), the near-tip solution should be embeded
in the base function. Following Adachi (2001b), the base functions will then be constructed as
Qr = X(1 — O)%}:(¢), where X (1 — ¢)? embeds Equation I11.18a.

Now the attention turns to finding the proper set of functions, f;. A convenient choice is the
Ultraspherical polynomials (Gegenbauer) similar to Adachi (2001b), which have the following
orthogonality relationship (see Abramowitz and Stegun (1972))

1
/ (1 —2) 720 (r) O3 (r)dr = h5 (II1.21)

1

where C’i(a) (1) is the i'" order Gegenbauer polynomial, expressible as

E ﬁ)a . ?Pf%”(r), (@#0,a>-1/2 @2

Here T'(i) is the Gamma function, Pi(m’")

(1972)), and h\") is the norm of C'*(r) given by

(r) is the Jacobi polynomial (see Abramowitz and Stegun

7217297 (4 4 2a)

R@ _ 111.23
© T G @) () (IL.23)
As a result, the base functions are given by (see in Appendix B.E for details)
Qo = (1-&)7
(111.24)

Q= (1-)71C0T3(E) , >0
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Note that A is thus given through Equation II1.18. Similarly, for the pressure, we can construct

the polynomials as

~ o 1 1 1 5
0 o (2790)2 1(2 P, a2a€
~ (gp—i—l) 1 ( 1 I
1 5(—, )2F1 —=—p,1;5:¢
20+ 1 2 2 2
;¢T) 1 ; ; (I11.25)
I, = = m¢+%§—ﬁ[§w+ibﬂ(§—1—%ﬁ§£ﬁ
1 1 1
N 1. g2 P> 9
52 1(2 J—¢,] ,2,§>] ; J =z

where o Fi(a, b; ¢; d) is Gauss’ hypergeometric function. As detailed in Appendix B.E, these poly-
nomials are constructed such that the elasticity Equation III.17b is satisfied for any solution with

the form

Q- i A+ B = i AT 4 BIT™,
=0 =0

that is, with .A; and B coefficient, in both series solutions for 2 and I1.

2. Particular Solution

We also must find the particular solution that satisfies the inlet boundary conditions. These are

given by (for details see Appendix B.C)

= 41—+ 2 \/%g (111.26)
I =2 — 7| (I11.27)
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3. Complete Solution

Upon superposition of the general and particular solution,

Q= A=(1 - 37 + ZA Dlane iy

- Jite
4\/1—§2+2§ln \/1_752

_ 1 1 1
I = AOE%E(—, ©)2F1 (— =155 52)

+B

212 2 2’ (I11.28)
plet+l) o1 LN Gy
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1 ZAj%ﬂ(gpjtj, % —J) {52(90—1- 1)2F (5 —J = ¢ 5;52)
i=2
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_§2F1 (5_]_907 7 a£2):|

In the above equations, (3 is the beta function Abramowitz and Stegun (1972). The only un-
knowns here are the value of the constants A;, B that need to be evaluated, noting again that the
coefficients.A; are the same for both the series for {2 and II because Equation II1.25 is constructed

so as to automatically satisfy elasticity as long as the two series use the same coefficients.

4. Calculating Coefficients of the Series

After designating an appropriate orthonormal set of base functions, we can find the value of the
coefficients A; and B. We will set Q equally spaced control points on —1 < ( < 1 — accurate
results were possible with Q = 20 control points — and a truncation order whereby the first n terms
of the polynomial series are retained. Now, it is possible to construct a residual function in terms
of A; and B, minimizing that function over the coefficient values. The chosen residual function
embodies the sum of the squares of the mismatch between the fluid flow calculated directly from
the scaled form of Equation III.2, and by integration of the scaled continuity Equation II1.4 at each

control point. Its formal expression is given by

=6 (111.29)

Q
AB A A) =D
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where VU is

6+

U = Uy 2+a,

Thus from the definition of the continuity Equations I11.3 and III.4, and using the scaling parameter

and the relation that is given above between ¥ and ¥ (see Equation I11.16) is

_ 1
— dIl 2 _ 4
U= [——) Q¢'2 I11.30
(-9%) o (11 30)
So, from Equation II1.17a
1
_ _ 4 _
U= / Qd¢ + L7260 (IL31)
¢ o+ 6

The value of | ; Qd( for the opening given in Equation II1.28 is thus (see Appendix B.D for details)

2 2’ }
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As a result, the scaled flux is

d — B(l_‘_@vl)
-Gt
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Minimizing A(B, Ay, --- ,.A,,) leads to a solution for the value of each unknown variable .4;

and B. These are given, for the various truncation orders, in Table III.1, which shows that even
after n = 0, the error value (residual function A, see Equation II1.29) is small and we obtain
excellent accuracy with just n = 1.

The result for the unknown quantities in table III.1 is valid for the GMS model with any value
of material properties. For different values of o and m from these used in the GMS model we can
use the constants developed in next section (III.G.1).

And finally, in order to ensure that the solution solves the original problem, we can substitute
the results back to Equation II1.5 and bring everything into one side, comparing the result to zero.

Figure I11.2 indicates that the error is very small and hence the solution obtained is accurate.
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Table III.1: Numerical coefficient and the cost function with 20 control points for series given in

Equation I11.33 for o = 1/3.

Ay 1071 8.0713 9.0139 9.1858 9.4415 9.4515 9.5869 9.5439

Ap- 1071 — —2.2352  —2.3760 —2.9232 —2.9353 —3.1958  —3.1323
Az- 1073 — — —4.3260 —14.2971 —14.7491 —21.5904 —19.3527
As- 1073 — — — —2.6314  —2.7701  —5.4676  —4.5752
Ag-107° — — — — —3.6924  —92.6891 —56.0962
As- 1074 — — — — — —2.2782  —1.0473
Ag- 1077 — — — — — — —3.0192

B 1072 6.2160 9.4108 9.6593 9.5281 9.5176 9.6158 9.6370

A 1.09-1071  2.40-10~% 1.49-1073 7.98-10~° 7.90-107° 1.10-10~° 8.73-10°F

- 1071 8.1926 8.0910 8.0810 8.0691 8.0687 8.0636 8.0651

0.00001

5.x10°6}

-5.x10"6

-0.00001*

Figure II1.2: Substituting back the solution and confirming it solves the problem. The figure is for

t = 100 sec and the rest of the material properties are given in Table I11.3 .
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G. RESULTS

1. Behavior of the Solution

The truncated solutions for two terms (n = 1) for the dimensionless opening and pressure are

given as

Q= A= - )+ A(1 - +4B/1 - &2

/1 €2
_1_2552111&7
1+ 4/1-¢&
T a=fs(1 1 11l 11134
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Equation II1.34 thus shows the general form of the dimensionless opening and pressure for
different values of «. The corresponding values for A, .A;, and B for different values of « are
obtained by the solution method and presented in Figure IIL.5.

One important observation from Equation II1.28 is that the dimensionless opening and pressure
are dependent on the exponent ¢, which in turn depends on « from the Darcy-Weisbach friction
factor. We wish first to explore if this exponent has a substantial impact on the scaled solution, or
if its main influence is accounted for by the scaling factors (Equation III.15). Figure I11.3 shows
the change of the dimensionless opening €2, and pressure I versus scaled coordinate ¢ by changing
the variable o It is clear from these results the sensitivity of the dimensionless opening, €2, and
pressure I1, to « is sufficient only to generate variation of about 30% over the entire possible range
of a. While this is not necessarily “small”, it does demonstrate that the main variation is still
captured via the scaling (Equation III.15).

Next we will examine the convergence of the solution in terms of number of terms () retained
in the series solution. To find the values for the constants for this comparison, we used the values
a = 1/3 and m = 0.143, corresponding to the parameters of the GMS. The coefficients are given

in Table III.1 for up to six terms of the Gegenbauer Polynomial series. Figure I11.4 indicates that
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1)

Figure II1.3: Variation of scaled opening with change of dimensionless length £ for different value

of .

Table II1.2: Relative values of the solution for increasing numbers of terms in the series.

i=1 i=2 i=3 i=4 i=5 i=6
’Y’T‘il 1.01256 1.00123 1.00148 1.00005 1.00063 0.999813
24 n=t
Q(0 )
(()(LLTM 0.979822 0.9977 0.997308 0.999907 0.998812 1.00035
T(0)|

—==t 0.980313  0.999533 0.997991 0.999974 0.999286  1.00013

L‘”l 0.955812  0.996164  0.99522  0.999839  0.997991 1.0006
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essentially after n = 1 the solution is unchanged by inclusion of more terms. It is also possible
to see this rapid convergence of the series by comparing the value of scaled length, fluid flux at
middle of the crack, as well as the opening and pressure at the borehole for different values of n.
In doing so, it is clear that the n = 1 solution represents about a 2% change in the predicted length,
width, and pressure compared with the n = 0 solution. Additional terms (n > 2) impact the
solution by only a fraction of a percent (see Table I11.2). This proves the very rapid convergence
of the polynomial series due to embedding the tip asymptotic solution in the base functions. Note
that special care should be taken about how the pressure solution compares with the tip asymptotic
solution. From the opening shown in Figure III.4 we can see that at the crack tip the asymptotic
solution and the polynomial series are starting from one point with same shape. As we go further,
the asymptotic solution deviates from the polynomial solution, as expected. However, for the
pressure in Figure II1.4, we do not see the same trend. The reason is because at the crack tip the
pressure is going to infinity, which indicates the singularity of the fluid pressure at the crack tip. We
can see that the behavior of the pressure at crack tip and the asymptotic are both going to infinity
with the same trend. The difference is a constant shift that accurs because we needed to satisfy the

inlet condition. This shifting parameter can be found in Appendix B.E (Equation B.76).

2. Dimensional Expressions

Solutions for w, p, and ¢ are obtained by inverting the scaling procedure explained in the previous

sections. The crack width (w) considering two terms of the series as (n = 1) is

1 44+« 1 6+ 2«
i (5m) [ (3:355) wa (5.55%)

+@]M[ 0Z (1 - )75 4 A (1- )5 14By/1- & (L-35)

3 =

+2B¢* In
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—n=0
n=1
n=2
n=3
n=4
n=>5
n==6
--- TipAsymptotics

. > @ » o O

0.38
0.18 0.19 0.2 0.21 0.22

-~
~~

Figure 1I1.4: Scaled opening along the hydraulic fracturing. Noting that using just one term is
a very good approximation and n > 2 gives solutions that are indistinguishable. Dashed line
correspond to tip asymptotic solution. Refer to Table III.1 for the values of error function (Equation

II1.29) that associate with different n
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Figure I11.5: Constants .4; and B in Equation I11.34 for different values of a.

where from Table III.1, Ay = 0.90139, A; = —0.22352, and B = 0.094108. Similarly, the two

term (n = 1) solution for the pressure is given by

- B(%’H%) / 1 22 25 ) 6 - 1 4+

16+2 e[ a-2 1

4+ a a+6 1 L\ B2+a)r at2
+2A4, (6+a) 2 I (—2<2—+a),1, ;& > (% T) (2— |f|)] t

Finally, evolution of the crack length is found firstly by recalling Equation (III.17g), then using

Equation I11.32 we arrive to

_at2
4B | ate
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Therefore, by combining Equations III.15 and II1.9 with the scaled length

0= (BB QL") T

+2 111.37
4B | ot6 ( )

lA0~5 (— 1+90) +A15( 2+s0) —A2(2¢+1)ﬁ(2 2+“0)+T

The crack length thus evolves with time with power of (¢ 4+ 1)/(2¢ + 1). For illustration, if we
consider values « = 1/3 and m = 0.143 for the Darcy-Weisbach friction factor Tsai and Rice
(2010), from Equation III1.18 the value of ¢ will be 6/7. Therefore, the value of the power in
Equation I11.37 for turbulent flow is 13/19 (= 0.68).

Now we can go back the same path that we took to derive the equations and solve for different
parameters. The truncated solution in dimensional variables for the specific case of GMS with

a = 1/3 can be obtained from similarity scaling, Equation II1.34, which gives
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Table II1.3: Material properties and physical constants for illustration, corresponding to supercrit-

ical C'Oy as the fracturing fluid and Barnett Shale as the rock.

Parameter Value
Qo 0.001 m?s~*
v 0.2
1% 5 x 107° Pa-s
p 600 kg m—3
k 0.1 mm
m 0.143
E 25 GPa
o 1/3

3. Comparison Between Turbulent and Laminar Solution

Here we compare the solution for turbulent flow to the laminar flow solution Adachi (2001b) (see
also Appendix B.A). For comparison we use parameters intended to be relevant to field-scale
treatments (Table I11.3, which correspond to a characteristic Reynolds number of 12000). It is
also important to note that the compressibility of gas has more effect on the crack propagation at
early stage. However, for intermediate/long time, the compressibility has negligible impact on the

solution (see Lecampion et al. (2017)).

The first comparison between laminar and turbulent flow is for the normalized opening. Figure
II1.6 illustrates the difference between normalized opening along the crack is relatively subtle;
the scaled turbulent crack width is just slightly narrower. However, this similarity is due to the
normalization. The greater difference is for the opening, pressure, and fluid flow along the crack
for specified time (in this case ¢ = 1000 sec). As we can see in Figure III.7 , there is a more
substantial difference between the solutions in their dimensional forms, around 10% - 30% for this

example.
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Figure II1.6: Scaled opening profiles.
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Figure II1.7: Opening, pressure, and fluid flow changes along the crack for two cases of laminar

flow and turbulent flow at ¢ = 1000 sec and characteristic Reynolds number of 12000.
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The last comparison is the evolution of crack opening, pressure and length, shown in Figure
II1.8. This comparison shows again a difference of 10% - 30% . For example, at ¢ = 600 sec the
crack opening for the laminar solution is 25% greater than the turbulent regime solution.

To generalize these observations, consider the ratios of the turbulent solution compared to the
laminar solution (Equations I11.38 and B.1). The ratios of Wb/ Wiams Ceurt/Ciams and Diwrb/Piam

are thus given by

1
Wt 0:1) _ 4 yg39 ()7
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where Re is the characteristic Reynolds number. If we consider the cases that are physically fea-
sible (check Table I11.4), the extended range of the parameters for the different fracturing fluids is
shown in Table III.5. These ratios indicate several properties of the turbulent and laminar solu-
tions. Firstly, their ratio is determined not only by the Reynold’s number, but also by the roughness
scale, k, which enters via the GMS equation (Equation III.3). Secondly, the power of time is very
small; —1/57, 1/57, and —2/57 for the ratio of width, length, and pressure, respectively. This
means that the ratios will be relatively constant with time. Finally, the range of these ratios is de-
termined by the range of ¢*. In its extreme value for cross-linked gel — a fully laminar case (Table
I11.4), t* = 2.95 x 10718 and the ratios evolve, with very weak dependence upon time, as shown in
Figure II1.9. This comparison essentially shows that inappropriate choice of the turbulent solution
for a case which is actually laminar can result in underestimation of the width by a factor of 10, un-
derestimation of the wellbore pressure by a factor of nearly 70, and overestimation of the length by
a factor of 9. However, in the other extreme, corresponding to supercritical COs, t* = 1.04 x 1038,
In this extreme, the ratios shown in Figure I11.9 indicate inappropriate use of the laminar solution
instead of the turbulent solution will result in underestimation of the width by a factor of about 3.6,
underestimation of the wellbore pressure by a factor of nearly 14, and overestimation of the length

by a factor of about 3.
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Figure II1.8: Opening, pressure, and length of the crack changes by changing the time. For opening
and pressure are the opening and pressure at wellbore when x = 0 and characteristic Reynolds

number of 12000

Table III.4: Range of parameters used in Equation I11.39. The maximum value for fluid flow is

overestimated from real field data to capture wider range of parameters.

Parameter Minimum Maximum
Qo 2.5 x 107" m?/s 0.01 m?/s
k 0.01 mm 2 mm
v 0.15 0.35
E 5 GPa 100 GPa
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Table I11.5: Different fracturing fluids and their physical properties.

Fluid Density Viscosity  Kinematic Viscosity | Reynolds (RZe*)
ul
p(kgm™) pu(Pas) % (m*s™1) Min Max
CO; (Supercritical CO,) 600 5x 107° 8.34 x 1078 2997.6 | 119904
Slick-water 1000 0.003 3x 1076 83.34 | 3333.34
Linear Gel 1000 0.05 5x 1075 5 200
X-linked Gel 1000 0.5 5x 1074 0.5 20
wturb(O)t)
wlam(O, t)
5¢ =t
4.
_____ t*= t:m'n
3.
o 1.9097
1 -
0.2025
0.
-1 . . . . . ¢ (sec)
2000 4000 6000 8000 10000
eturb(t) pturb(Oy t)
g‘llaowf(t) plazns(_oa t)
8} 15F
of 5.3102
- 10
: st 3.8544
0.5631 o 0.04334
0.
2 oo0 4000 5000 8000 To0un >0 02000 4000 6000 8000 10080°%")

Figure II1.9: The ratio of opening, pressure, and length of the crack for the at inlet by changing the

time for turbulent over laminar. In each plot, we compare the value if, t* is minimum or maximum.
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4. Laminar-to-Turbulent Transition of the Solution

The main conclusion from the previous section is that selection of the appropriate solution, laminar
or turbulent, is critically important. It is also clear that arguably the most practically-relevant cases
for water/slickwater are near the transition between laminar and turbulent regimes. Hence, it is im-
portant to clarify the Reynolds number at which the transition occurs and the error associated with
both the laminar and turbulent solutions when the regime is actually in transition. To address this
issue, we present comparison with a numerical solution for a plane strain hydraulic fracture. The
numerical scheme is similar to that used in Dontsov Dontsov (2017), but utilizes a friction factor
that captures the effect of turbulent flow. Two versions of the friction factor are used: Churchill’s
friction factor Churchill (1977) and “virtual Nikuradse” Yang and Joseph (2009), where the latter
is an approximation fitted to Nikuradse’s pipe data Nikuradse (1954). Both friction factors are
originally derived for circular pipes. In order to adapt them to hydraulic fractures, the concept of
hydraulic diameter is used within the fully turbulent zone and the value of the friction factor in the
laminar zone is adjusted to precisely capture the laminar solution between two parallel plates; see

e.g. Dontsov (2016) for such a modification for Churchill’s friction factor.

Figure I11.10 shows the variation of the Churchill’s friction factor, virtual Nikuradse approxi-
mation, Gauckler-Manning-Strickler (GMS) friction factor [III.3], and Nikuradse’s pipe data Niku-
radse (1954) versus Reynolds number for different values of roughness. Firstly, one can observe
that the GMS friction factor coincides with the predictions of the Churchill’s formula and virtual
Nikuradse only for large values of Reynolds number and for rough fractures. In addition, there is
a noticeable discrepancy between the virtual Nikuradse and the Churchill’s equation. This is due
to the fact that Churchill developed an approximation to the Moody diagram Moody (1944), while
“virtual Nikuradse” is an approximation that is fitted to the Nikuradse’s data Nikuradse (1954).
The Moody diagram is constructed based on the experiments in naturally rough pipes (see e.g. a
recent study Wang et al. (2014) where the observed friction factor is accurately captured by the
results from Moody diagram), while Nikuradse used pipes with artificially fabricated roughness.
As a result, the observed difference may be related to the details of the roughness profile. Indeed,
structured roughness may preclude early development of turbulence since the latter is a chaotic

phenomenon that requires an instability trigger. Regarding hydraulic fractures in rocks, it is not
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Figure II1.10: Variation of the friction factor versus Reynolds number; including Nikuradse’s pipe
data Nikuradse (1954), the Gauckler-Manning-Strickler (GMS) friction factor (Equation I11.3), and
approximations of Churchill Churchill (1977) and Yang and Joseph’s virtual Nikuradse approxi-
mation Yang and Joseph (2009).

exactly clear whether the friction factors measured for circular pipes can be directly applied, espe-

cially if there is a manufactured distribution of roughness.

It should also be noted that both friction factors are fitted for the relative roughness not ex-
ceeding a few percent. As a result, care must be taken when using them for very rough fractures,
for which extrapolation of the results is necessary. Note, for example, that the virtual Nikuradse
formula for relative roughness of 0.06, predicts the laminar to turbulent transition at Re ~ 10%,
which is clearly an unphysical behavior. The Churchill’s friction factor, on the other hand, pro-
vides a visually more realistic estimate. To ensure that the friction factors are not used beyond their
applicability regions, the relative roughness is bounded by 0.033 for the virtual Nikuradse and by
0.1 for Churchill. Results for both Churchill and virtual Nikuradse friction factors are presented

for completeness.

Figure III.11 presents the fracture length, wellbore width, and wellbore pressure versus Re
number that is calculated using the numerical solution with Churchill’s friction factor, the laminar

approximation (Equation B.1), and the developed turbulent solution. All the results are normalized
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Numerical, Turbulent, — — — - Laminar : k = 0.1mm

Numerical, — -eeeees Turbulent, : k = 0.01 mm

Numerical, — -—-eer Turbulent, : k = 0.001 mm

Figure II1.11: Variation of the fracture length (left), wellbore width (middle), and wellbore pressure

(right) versus Reynolds number. Points A, B, and C are referenced by Figure III.13.

by the laminar solution, and the numerical solution is calculated using the parameters summarized
in Table IIL.3. The results are compared at ¢ = 1000 s. The fluid viscosity was adjusted in order to
achieve the desired variation in Reynolds number. The numerical simulations show a transition of
the solution from the laminar asymptote to the turbulent asymptote. For this sample the transition
occurs at Re ~ 2000 for the width and pressure, while the transition Re value is slightly higher for
the fracture length (Re ~ 5000). It should be noted here that these results depend on roughness.
Figure III.12 shows similar results, but the numerical solution is calculated using virtual Nikuradse

friction factor.

From the data in Figure III.11, it is apparent that as the roughness increases, the solution re-
mains close to the laminar and turbulent assymptotics. In hydraulic fracturing, since the roughness
of the rock is usually on the order of at least 0.1 mm, it is often reasonable to assume that the tran-
sition region is small and propagation can be approximated with the turbulent asymptotic solution
for Reynolds number of around 2000 ~ 3000. This shows that for rougher fractures the error as-
sociated with approximating the transition regime using either the laminar or turbulent solutions is
smaller than for smoother fractures. This observation is consistent with the Moody diagram, (Fig-

ure II1.10) which shows that for decreasing roughness of the rock, the fully rough turbulent region
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Numerical, — -eeeees Turbulent, : k = 0.01 mm

Numerical, — -—-eer Turbulent, : k = 0.001 mm

Figure II1.12: Variation of the fracture length (left), wellbore width (middle), and wellbore pressure
(right) versus Reynolds number that are generated based on virtual Nikuradse approximation Yang

and Joseph (2009).

happens at higher Reynolds number and the transition region is larger. Results in Figures III.11
and III.12 demonstrate that the choice of the friction factor may influence the result, in its details
especially for rough fractures, while the results for less rough fractures are essentially unchanged.
In all cases the qualitative behavior is unchanged by the choice of friction factor, the fully turbulent
solution is thus able to define the location of the transition region and to capture the global trend of
the solution even for both Churchill and virtual Nikuradse friction factors. Note, however, that the
relative roughness is bounded in the numerical solution due to the limits of the original pipe flow
experiments, and so, the value of the friction factor may be underestimated for the large roughness
cases. This effectively reduces the fluid friction in the numerical solution, which in turn makes
the fracture longer in the numerical solution and contributes to a discrepancy with the limiting

solution.

To further examine the applicability of turbulent solution, Figure III.13 compares the fracture
widths and pressures for Re = {2000;4000; 10000} when & = 0.1 mm; the latter points are
indicated by the points A, B, and C in Figure III.11. These three points correspond to the laminar,

transition, and turbulent regimes respectively. Figure II1.13 shows that, as expected, the numerical
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solution coincides with the laminar solution for the first case, does not coincide with either laminar
or turbulent solutions for the second case, and coincides with the turbulent solution for the third
case.

It is also interesting to observe the transition from laminar to turbulent fluid flow within the
fracture in Figure I11.13, which is characterized by a noticeable change in the pressure behavior.
In particular, for the Re = 10? case, such a transition occurs near the tip and effectively does not
affect the global solution, where the latter coincides with the fully turbulent solution. On the other
hand, the laminar-to-turbulent transition occurs in the middle of the fracture for the Re = 4000
case. Here pressure solution follows the turbulent solution from the wellbore to the middle of the
fracture and then abruptly switches to the laminar solution from the middle of the fracture to the
tip. Consequently, the “zones” of the laminar and turbulent solutions are comparable and therefore
neither of the limiting solutions apply.

Taken together, this comparison between the asymptotic and numerical solutions leads to a
striking conclusion that the error associated with the asymptotic solutions can be relatively small
even when the regime is, in transition, especially when there is large roughness. Hence, for prac-
tical purposes, it will very often suffice to compute both the laminar and turbulent solutions, and
then choose the approximation that corresponds to the larger width, larger pressure, and shorter

length.

H. CONCLUSIONS

The use of low viscosity fracturing fluids at high flow rates has become increasingly important
in HF applications over the past two decades. This trend drives an increasing tendency for the
relevant flow regime to be turbulent. The goal of this study is to implement the general form of
the Gaukler-Manning-Strickler (GMS) friction factor into a plane strain HF benchmark solution.
A semi-analytical solution is thus derived, embedding the relevant near-tip HF behavior into a
Gegenbauer polynomials used to construct the series solution. This approach leads to rapid con-

vergence, with accurate results using just two terms of the polynomial series.
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Figure II1.13: Spatial variation of the fracture width (left) and the fluid pressure (right) for three
different values of Re = {2000;4000; 10000} (from top to bottom) and k¥ = 0.1 mm. These
correspond to points A, B, and C in figure III.11. The red solid lines show the numerical solution
(with Churchill’s friction factor), the dashed black lines show the laminar solutions, and the solid

black lines indicate the turbulent solutions.
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The main use of this solution is as a benchmark, necessary as simulators are increasingly devel-
oped to hand non-laminar flow in more complicated geometries. The present solution enables the
important task of benchmarking the limit where flow is fully rough-walled turbulent, the geometry
is a straight plane strain crack, and the rock is impermeable. Of course this benchmark, like any
simulator that relies upon the GMS equation, bears the limitation that experimental data is not yet
available relevant to the geometry of a narrow, rough, flexible walled, closed channel as encounted
in an HE.

While the limitations of regime and uncertainties with regards to the fluid friction factor are
important caveats, comparison with numerical solutions considering the full laminar to turbulent
transition reveal a somewhat surprising utility of the asymptotic solutions. Namely, the transition
between the range of Reynolds number where the solution is well-approximated by the laminar
solution to the range of Reynolds number where the solution is well-approximated by the turbulent
solution is so abrupt that for most plane-strain (2D) cases, estimation of the length, width, and
pressure can be obtained within a few percent by simply computing both the laminar and turbu-
lent solutions and selecting the solution that corresponds to the largest wellbore pressure, largest

opening, and shorted hydraulic fracture length.
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IV. SEMI-ANALYTICAL SOLUTION FOR A PENNY-SHAPED ROUGH-WALLED
HYDRAULIC FRACTURE DRIVEN BY TURBULENT FLUID IN AN IMPERMEABLE
ROCK

A. PREAMBLE

The content of this chapter comprises a preprint of Zolfaghari and Bunger (Submitted A). It shows
the asymptotic semi-analytical solution for radial geometry with rough-walled fully turbulent fluid
regime HF. The solution is developed using Jacobi orthogonal polynomial series and the result is
contrasted with the solution for laminar HF (Savitski and Detournay, 2002). The tip asymptotic
solution is developed and a proper inlet solution that satisfies the boundary conditions is suggested
as a part of the solution. The solution is compared with the numerical model that has been devel-
oped in Chapter V. The results from numerical simulation and semi-analytical solutions indicates
a good agreement for larger Reynolds number, and the numerical simulations provide practical

bounds on the range over which the asymptotic solution is sufficiently accurate.

B. ABSTRACT

The popularity of high injection rate hydraulic fracturing treatments using low viscosity fluids
is driving a need to consider the turbulent and laminar-turbulent transition regimes of fluid flow
in hydraulic fracture simulators. The radial model is one of the most important geometries both
for benchmarking and as a starter solution for 3D and Planar 3D models. Here we provide a
semi-analytical, orthogonal polynomial series solution for a rough-walled radial (penny-shaped)

hydraulic fracture driven by a fully turbulent fluid. Embedding the appropriate pressure singular-
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ities in a family of orthogonal polynomials used for derivation of the solution leads to very rapid
convergence of the series, requiring just two terms for an accurate result. We conclude with an
investigation of the occurrence of this limiting regime by comparison with numerical simulations,
illustrating that the fully turbulent regime is typically not encountered for the radial geometry,
although the present solution remains necessary as a starter solution and benchmark for the numer-
ical simulators that are required to capture the laminar-turbulent transition. By comparison with
numerical simulations that consider the laminar-turbulent transition, we find that such an estimate
is expected to be sufficient for practical purposes when the inlet opening predicted by the turbulent

solution exceeds the inlet opening predicted by the laminar solution.

C. INTRODUCTION

Growing popularity of high rate fluid injection accompanied with using low viscosity fluids such as
water is one of the key characteristics of modern hydraulic fracturing (HF) King (2010). As aresult,
there are an increasing number of practically-relevant cases where the laminar flow assumption
used in many HF models is not satisfied, at least over some non-negligible portion of the fracture.
While most HF models continue to embed a laminar flow assumption (see the review of Adachi
et al. (2007)), which is indeed sometimes valid, the need to consider the turbulent regime dates
back at least as far as the seminal early work of Perkins and Kern (1961), who developed a laminar
and turbulent flow equations for vertically oriented HF and only the laminar flow equation for
radial flow. Later contributions include Nilson (1981, 1988), which investigate the influence of
turbulent flow on plane strain and radial HF with constant pressure inlet boundary condition. Also,
Emerman et al. (1986) and Siriwardane and Layne (1991) have studied the plane-strain HF with
constant inlet fluid flow for laminar and turbulent regime.

More recently there is a growing recognition of the relevance of turbulent flow for HF growth.
For example, Ames and Bunger (2015) demonstrate the potential for incorrect assumption of lam-
inar flow to lead to poor predictions of HF length and pressure. There has also been a deepen-
ing appreciation for not only the importance, but also for the subtleties and complexities of the

mathematical problem and physical phenomena associated with turbulent and/or laminar-turbulent
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transition fluid flow in HF propagation. The complicated multi-scale structure of a turbulent HF is
explored by Dontsov (2016), who analyzed the near-tip transition of HF from turbulent to laminar
flow using the Churchill approximation to find the friction factor and the Darcy-Weisbach equation
to find an asymptotic solution for a fully turbulent HE. Moreover, Zia and Lecampion (2016, 2017)
investigate the effect of turbulent flow on height contained HF. They develop a semi-analytical
solution for fully rough and smooth flow in a contained (fixed-height) HE. Furthermore, they ap-
plied a drag reduction method from Yang and Dou (2010) to numerically model the transition from
laminar to turbulent regimes, again for a contained HF. We note that one of the benefits of using
the drag reduction method is the ability of it to get extend to model the effect of proppant and drag
reducers in the HF, which Zia and Lecampion (2017) also considered.

Along with these recent studies focusing on a more general modeling framework for HF growth
in turbulent and transition regimes, several contributions comprise an expanding family of semi-
analytical solutions for benchmarking numerical simulators and rapidly computing fracture dimen-

sions in certain simple geometries. These include:

e Kano et al. (2015) develop an analytical solution for large leak-off PKN model using Gauckler-

Manning-Strickler (GMS) solution for rough walled open channel.

e Zolfaghari et al. (2017) provides a semi-analytical solution for the blade-shaped (PKN) geom-
etry in an impermeable rock (no leak-off) using a general form of GMS model. This work
uses a truncated polynomial series to derive a solution for fully turbulent HF, showing also the
crack tip behavior and providing an alternative method to describe the transition from laminar

to turbulent flow.

e Zolfaghari et al. (2017) derive a semi-analytical solution for the plane-strain geometry with no
leak-off, providing an asymptotic solution for a zero-toughness plane-strain HF in the rough-
walled fully turbulent regime. They also compared their result with a numerical solution that

uses the Churchill approximation.

In this study, we present a semi-analytical solution for a rough-walled, fully turbulent, radial
HFE. We use a general form of GMS to model fluid flow within the HF. Then following the approach
taken by Savitski and Detournay (2002), we use a Jacobi polynomial series to solve the problem.

The tip solution is embedded in the polynomial series to enable rapid convergence. This extension
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of the approaches of Savitski and Detournay (2002) and Zolfaghari et al. (2017) is non-trivial be-
cause the nature of the radial solution leads to some unique challenges. Most notably, the pressure
singularity at the inlet is much stronger in the turbulent regime than in the laminar regime, with
the consequence of the need to mitigate unbounded values of the crack opening at the center of
the HF in the turbulent regime, whereas the opening is always finite in the laminar regime. Also
the form of the pressure and opening singularity at the leading edge of the HF is also different
from the laminar regime; in order to obtain rapid convergence our solution must account for this
unique near-tip behavior. Finally, because the fluid flux for radial flow decays as one moves away
from the inlet — in contrast to linear flow encountered in the plane strain and PKN models — the
flow regime is much more prone to transitioning flow regime at a scale that cannot be assumed
small relative to the total size of the fracture. To this latter point, we present here comparison to
numerical results from our companion paper, Zolfaghari and Bunger (Submitted B), in which we
develop a numerical solution to analyze the transition of turbulent flow to laminar flow in a radial
HF.

The results in this paper indicate that for a radial, rough-walled HF driven by a fully turbulent

fluid described by the GMS model, the width, pressure, and radius are given by
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where @) is the fluid flow, ¢ is time, r is the coordinate (see Figure IV.1), and 5’ and E’ are given
in Equation IV.5. This solution comprises the first two terms of the orthogonal polynomial series,
which we demonstrate to be sufficiently accurate for most benchmarking and estimation purposes.
In what follows, we will describe the mathematical model, solution method, and range of validity

of this semi-analytical solution.
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Figure IV.1: Radial hydraulic fracture geometry.

D. METHOD

The purpose of this paper is to model the effect of turbulent flow on penny shaped (radial) hydraulic
fracture, where the radius of the crack is defined as R(t) (see Figure IV.1). In this model the radius
of the wellbore is negligible with respect to crack radius, and hence the fluid is taken to be supplied
from a point source at the center of the HF (Figure IV.1) with constant flow rate, )y. In this model
the width, pressure, and fluid flux at any time and at any location, r, is given by w(r,t), p(r,t),
and ¢(r, t), respectively. Considering the GMS model Gauckler (1867); Manning (1891); Strickler
(1981), the fluid flux is given by

4w? 8p> 2
= === Iv.2)
4 ( pfp Or

where p is the fluid density and f,, is the Darcy-Weisbach friction factor and can be expressed as a

general form of

fo=m (fy (IV.3)

w
where £ is the crack surface roughness, and m and « are constants. In this study, m and « are

kept variable to maintain the generality of the problem. In the particular case of the GMS model,

m = 0.143 and o = 1/3 Tsai and Rice (2010); Gioia and Chakraborty (2006). Note that we have
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defined the flux as ¢ = (v)w, where (v) is the mean velocity taken across the fracture opening,
perpendicular to the flow direction. With this definition, for radial flow the fluid mass balance

equation is

ow 10
L —0 V.4
ot * ror (rq) ( )
By letting
2 E 8
' 5 K = —K V.5

it is possible to express the Reynolds equation as the combination of Equations 1V.2, IV.3, and

V.4, !
ow p 0 sta [ Op\2)

We then take the HF opening to be described by elasticity equation in radial geometry

SR

w _—
o

1
/0 G(& mp(nR, t)ndn (Iv.7)

where the kernel of the integral is

1 . 17&2 ,,72
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Following linear elastic fracture mechanics (LEFM), the crack will propagate if the stress intensity

Iv.8)

V]

3

factor (K1) becomes equal to fracture toughness (/). In the penny-shaped geometry the fracture

intensity factor is Rice (1968)

K

_ 2 /R g (IV.9)
ViR, Ve '

The system of equations is completed by the boundary and initial conditions. At the crack tip, the
fluid flow is zero and the opening is zero. There is no lag between the fluid and crack tip. In the
radial geometry the fluid is pumped into the crack through the wellbore (see Figure IV.1), thus the

boundary conditions effective on the radial problem are
2r limrq = Qg
r—0
w(Rt) =0, q(Rt) =0 (IV.10)

w(r,0) =0, ¢(r,0) =0
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E. SCALING

The following scaling is introduced

w=WLWOE D) . p==(WETIED , R=LEn(0)
q:QO\P(€7t) ) 52}_%

av.11)

where €(t), and L(t) are scaling factors and need to be appropriately chosen. Also, we can simplify

the equations by using the following change of variables:

6+ta —

Q=~2aQ .,  I=~%all , U=~V (IV.12)

Following the global continuity, using scaling parameters from Equation IV.11, and the fact that

the total mass is conserved, we can choose &(t) such a way that

e Qot Qot
s O(s, t)sds = _ V.13
o / (s:t)sds = 5 5 = €= 5 73 (IV.13)

After introducing the scaling parameters and using the change of variables from Equation IV.12,
we can obtain the mass balance (IV.6), elasticity (IV.7), fluid flow (IV.2 and IV.3), and crack

propagation (IV.9) as

P Lt 4 At Lt At
Qt+Q[1-2=— S| =4+ L
+ ( L+2+owy> €<L+fy>

m V1— g2
Iv.14)
where the scaling groups are defined as
Ll—a/Q K’
Gr = BtE"/2g1ta/2 Ok = cE L2 (IV.15)
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Scaled boundary conditions and initial conditions are then given by

(Iv.16)

Hence, the resulting system of equations is a function of two parameter groups, Gr and Gx. We
can solve the problem for limiting cases in terms of the extreme values of these groups. On the one
hand, letting Gr — 0 results in the governing equations for a crack with constant fluid pressure.
On the other hands G — 0 corresponds to the case of zero-toughness. The first limit (G — 0)
has already been solved Tada et al. (2000). Therefore, the focus of this paper is on the solution for
zero-toughness (Gx — 0). We then define the characteristic scale L in a way that lets G = 1 and

subsequently find ¢ based on Equation I'V.13, hence

3

(pE) ™ Qi
L= (pEioi )l

€
av.17)

It is interesting to note that time appears in L and ¢ with opposite powers of equal magnitude and
opposite sign. As a result the crack opening, which scales like the product of these factors (see
Equation I'V.11), is independent of time and in this limit of a fully turbulent, rough crack.

The partial differential equations that define the scaling relationships can then be solved for
vanishing fracture toughness (Gx — 0). Moreover, by considering that the shear stress defined
for the turbulent regime is time averaged will enable treating the problem as quasi-steady-state and
hence ignoring the inertia (see Zia and Lecampion (2016, 2017); Zolfaghari et al. (2017)). Now,
replacing back Equation IV.17 into Equation IV.13, IV.14, and IV.16 gives
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Equations IV.18a, IV.18b, IV.18c, and IV.18f define a complete system of non-linear ordinary
differential equations (ODE). It will also be useful to integrate Equation I'V.18a subject to boundary

conditions (I'V.18f) to obtain the global volume balance expression

™

1
. § 1
S / (s, t)sds = o (IV.19)
0

One of the interesting properties of this set of equations is that the change of variables defined
by Equation I'V.12 decoupled Equations 1V.18a-1V.18d from the normalized crack length, v. So,
after solving the system of ODEs given by Equations IV.18a-1V.18d for  and II, we can use
Equation I'V.18e to solve for 7.

An orthogonal polynomial series is used to solve the problem. Prior to constructing the or-
thogonal series, the problem is solved for near-tip asymptotic in order to use this result in the form
of the polynomials, thus promoting rapid convergence of the series solution. The near-tip behavior
is obtained through perturbation analysis and the solution that is given by Desroches et al. (1994)

(see Appendix C.A)

Qtip = ao(l - g)s@
gy = bo(1 — )* "

(Iv.20)
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where

2
80_2—1—04
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F. SOLUTION

Following the same approach that has been taken by Savitski and Detournay (2002), we can de-
fine the scaled opening and pressure as the superposition of: 1) the orthogonal polynomials that
define the general solution and constructed based on tip solution, and 2) a particular solution that

incorporates the strong singularity at the crack opening. That is

Q=>" AQ: +BY
1;1 (IV.22)
M= Gl + B’

i=1

where 2 and I are the general solutions that contains the tip behavior, Q* and I1* are the particular
solution, and A;, C;, and B are the constants that need to be calculated. In order to solve the
problem we: 1) derive the general solution, 2) solve for the particular solution, 3) define a relation

between constants, and 4) solve for the constants.
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1. General Solution

We define the general solution of the problem in the form of superposition of orthogonal polyno-
mial series. To promote rapid convergence of the solution, we embed the tip asymptotic in the
general solution. Hence, following Adachi (2001b) and Savitski and Detournay (2002), the base
functions are defined in the form of Q; = ag(1 — €)#;(¢) and II; = bo(1 — £)? g (€), where
f,(€) and g;(€) are the functions that need to be chosen. Bear in mind that II;(€) = w; — IL;(€),
where w; is the adjustment parameter that ensures the pressure satisfies the propagation criteria
(Equation I'V.18c) and will be calculated later. So, we can define the orthogonality of the functions

comprising the solution as

/ Gu (), (nyndn = 5,5 = / WP (nn = B
(Iv.23)
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Note that the orthogonality is defined between €, (1), Qj (n), and 7; the Q;(n) functions alone
are not orthogonal, and the reason is to help the construction of the elasticity function which in
the radial solution has the form 77@(77). The functions for f;(£) and g,;(¢) that satisfy the above
orthogonality equation are the Jacobi polynomials (G;(a, b, &), similar to the function used by
Savitski and Detournay (2002) for laminar flow), which have a norm of h;(a, b) and can be obtained

as

1
/ (1 - n)aibnbilGi(C% ba n)G]<a7 b7 W)dn = hi(au b>5lj7
0

i

I'(b+i (\D(a+2i—j)
Gi(a,b, &) = —F((a - 23) ;0(—1)ﬂ (;) —F((H — jj))f , (IV.24)
AT+ b))+ a)l(i+a—b+1)
hila,b) = (2i + a)['2(2i + a) '

Thus, the general solution for scaled fracture opening and fluid pressure are

Qi(€) = ; 1=oF Gio1(20+2,2,6),
o
Hz(g) = —Gifl(Q()Ou 27 5)

1
h?—l (2907 2)
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The adjustment parameter w; is then defined in a way that ﬁz(f ) satisfies the propagation condition

(zero toughness), therefore

Ww; =

1 TE+1)D(p— 1) & (z’— 1) T'(2p+2i — j —2)
1 . _1 J . . .
h2 (2¢,2) ['(2p + 20 — 2) Z( ) J Fle+i—j+1) 8 (IV.26)

1. . o1
2F1(§,Z—J+1;90+Z—J+§;—1)

where o F' (a, b; ¢; d) is Gauss’ hypergeometric function.

2. Particular Solution

The next step is to find a particular solution that satisfies the inlet boundary condition. According

to fluid flow equation (Equation IV.18e) near the inlet source,

—~ 3+a dﬁ % 1
o (<) <3
dg §

Also, because we do not want to have a singularity in the fracture opening, the fluid pressure

will be strongly singular close to inlet, IT o % On the other hand, as soon as fluid pressure

becomes singular in the form of %, the opening will also become singular through the elasticity

equation (2 oc In1/£). Hence, the total singularity of the fluid flow will change from 1/¢ to

1
é'_r@’

and we then find the optimal value for x that gives the best solution in terms of minimizing a

1/€1n(1/€). To capture the most appropriate singularity for the crack opening, we choose IT

cost function embodying the mismatch between terms which must be equated according to the
governing equations. It is important to interpret cautiously because choosing the singularity in the
form of IT g% is not an exact solution to the problem. It is only a proposed method to satisfy the
governing equations, although it is likely that the exact solution behaves similarly.

Building on this proposed form of the particular solution, to also satisfy the crack propagation

condition (Equation I'V.18c), the appropriate exact form of scaled pressure is

_ 1 1 /a0l —k/2)
I1(§) :g—ﬁ—i(r(g/z_ﬁm) av.27)
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Also, from the elasticity equation, the exact form of the crack opening is

48(L1—5) | (52 —el—r Fy(L asl e
Ga-p) | 105 ({f) — - I(QF(% a3 )> —\/1—752], K#1

(€)= : (IV.28)
4111(1+ 1‘5>—4 1— ¢ k=1

where f3(a, b), and T'(z) are the Beta-function, and Gamma-function respectively Abramowitz and
Stegun (1972). To find the proper value of x, we will solve the rest of the problem and will choose

K SO as to obtain the most accurate solution.

3. Calculating Coefficients of the Series

Before finding the values of the constants, we need to obtain the relation between A; and C; that
satisfies the elasticity equation. If we consider a finite number of terms in the series, we can find

that

Ai =) CiLy (IV.29)
j=1

where np; is the number of terms in the polynomial expansion that defines the pressure. Similarly,

we have ng, that defines the number of terms for the opening of the crack. Based on substitution of
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Equation I'V.29 into Equation I'V.18b we obtain (see Appendix C.B)
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X

where F (A, k) is the incomplete elliptical integral of first kind Abramowitz and Stegun (1972).

So far this section focuses on finding a connection between .4; and C; that ensures the elasticity
equations is satisfied. In the following, we will discuss how to find values for the A;, 13, and C;
constants. Taking the integral of both sides of Equation IV.18a leads to

£0 | / )iy = €9 (- C”jléf)) V.31

Once we substitute the polynomial series, the problem will be dependent on the value of «
and the coefficients (A;, B, C;) that construct the polynomial series. In order to find the unknown

constants, we use a numerical method to minimize the error between the right hand side and left
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hand side of the integrated Reynolds equation (Equation IV.31). Therefore, choosing Q equally
spaced control points on 0 < £ < 1, we can construct the residual function A, which is a function
of the constants (A;, B, C;) and the parameter « that define the inlet singularity. In this method, the

polynomial series are truncated with n number of terms.

Q Left(,.. R 2
(A (1 B,Cy, -+ ,Cn) _1) (IV.32)

A(r;B,Cy, -+ ,Cp) = Z ARight (1 B.Cy, - ,Cp)

i=1
Knowing the value of x is enough to solve the problem and find the residual function. Thus, we
can find the residual function for different value of «, as shown in Figure IV.2a, and for different
numbers of terms retained in the polynomial series. Thus, from the results provided in Figure
IV.2a, we can generate Figure IV.2b that provides the value of x associated with the minimum
value of residual function for different numbers of terms and different values of the fluid parameter
.

Figure I'V.2a shows that by increasing the number of terms in polynomial, it is possible to get
increasingly accurate results. However most importantly, we see that choosing an optimal value of
r gives us nearly the same accuracy even with one term.

Now that we have obtained the optimal value of x, we can minimize A(B,Cy,--- ,C,) to find
the constants. The value of constants B, A;, and C; are given in Table IV.1 with the residual value
related to them. We can confirm that an acceptable level of accuracy is obtained from just two
terms of the series (for more detail see also Table 1V.2).

Turning now to the convergence of solution for opening and fluid pressure, the number of terms
involved in polynomial series also may have an impact on the final solution.

Figure IV.3 is plotted for GMS parameter (m = 0.143 and v = 1/3) and it again shows that
the solution is accurate to the third digit or so even with just 1 — 2 terms in the series. Table IV.2
also shows the convergence of the solution by using just two terms in series. Recall this rapid
convergence is enabled by embedding the tip asymptotic solution in the polynomial terms.

A note of caution is due here since there is a strong singularity in the pressure, and it can thus
be proven that the only value for « that strictly satisfies the inlet boundary condition is x = 1, that
is, when pressure has the form of 1/£ near the wellbore. For k < 1 the opening is not singular
and for k = 1 the opening will also become singular, as previously discussed , and thus in either

case the inlet boundary will not be strongly satisfied. However, for the optimal value of « the left
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Figure IV.2: (a) Comparison of the residual function for different values of « and different number

of polynomial terms. (b) Optimum value of x for different o and number of terms in polynomial.
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Table IV.1: Numerical coefficients, length scale, inlet fluid pressure singularity power, and error

function for 50 control points for the series given in Equation IV.32 for the GMS case (o = 1/3)

n=1 n=2 n=3 n=4
K 0.69 0.71 0.76 0.765
Ay 3.9414- 101 3.9485- 107!  3.9998- 10~'  4.0049- 107!
Az 5.2468 - 1072 4.8370- 1072  4.6615- 1072  4.5774- 1072
A3 - 1.9387- 1072  1.8216- 1072  1.6676- 1073
Ay — — 1.5714- 1073 1.4031- 1073
As — — — 2.9025- 1074
B 1.0818- 107! 9.4882- 1072  7.7027- 1072  7.4377- 1072
G 7.7713- 1071 7.3044- 107! 7.3246- 10°'  7.1507- 107!
C2 — 1.1543- 1072 1.4329- 1072 1.8262- 1072
Cs — — —2.1549- 1073 —1.5130- 1073
Cs — — — 8.0187- 1074
A 4.39-1073 2.39-1073 2.34-1074 1.16-107*
Y 8.5397-1071  8.5660-10"'  8.5673-10"'  8.5725-10"!
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Table IV.2: Convergence of the

series.

Figure IV.3: Comparison of scaled opening and pressure with the crack tip estimation with different

solution with change of the number of terms in the polynomial

i = 2 i = 3 i = 4
USSR 0.99692 0.99986 0.99939
vy n=i
Q)|
£ )’”7’ ! 0.98348 0.96452 0.99459
2(0)
I1(0.5
( )‘ =t 1.00468 1.00186 1.00149
1(0.5)|
W(0.5)|
£ )}":1_1 1.00616 0.99863 1.00388
T(05)]
ﬁ({) o n=1
2.0 o n=2
A4 n=3
e n=4
--- Tip Asymptotics
T T A

number of terms in the polynomial series.
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Figure IV.4: Comparison of the left and right hand side of the continuity Equation 1V.31 for four

terms of the polynomial series.

and right hand side of the Equation (IV.32) are in a very good agreement. Figure IV.4 illustrates
this agreement with the only appreciable error occurring near the inlet. Accuracy will be further

demonstrated in this paper as we compare the semi-analytical solution with a numerical solution.

And finally, in order to ensure that the solution solves the problem, we can substitute the
results back to Equation IV.6 and check if the value of it is negligible. Figure IV.5 indicates that

the solution obtained is accurate.
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Figure IV.5: Substituting back the solution and confirming it solves the problem. The figure is for

t = 100 sec and the rest of the material properties are given in Table I'V.3.

G. RESULTS

1. General Solution

Gathering all the calculations together, we can present the opening and pressure for the radial crack

with two terms of the polynomial series as

Q:Allu_gv G@¢+z2®+A2lﬂ §° G129+ 2,2,¢)
he (20 + 2,2 h?(2¢ +2,2)
1L 1_&k [ § —K 1 k=1, k41, ¢2
—|—B4B(271 2) [F( 2 ) (\/7_7-’1 . 2F1<27 21’52 75 )) N m] (IV33)
r 2\ Ty 5

(oo

Moreover, it is straightforward to show that that the following holds for the Jacobi polynomials

1:[ = Cl [wl — u;iHGO(2gpa 275)
hg (2, 2)

/-\

! T(i+1)T 1Z1 T(2i 4 20 —
/ $(1 = $)?Gi—1(2¢0 + 2,2, 5)ds = (Zl:l_2 ;0+ ( . )F ( ' 80, J)
0 (2i +2¢) FO (i+e—37+2)

M
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and using this identity and Equation IV.19 combined with Equation IV.33 leads to an expression

of the crack radius as

>0 A (i +1)0 —, . T'(2i 4 2p — j)
V= Zhé o+ 99 < 22+2g0 Z ( ' )F(H‘P—J”FQ)
i1 h2 (20 +2,2) =0 (IV.34)
4k 1 K 72<a+4>
—i—Bmﬂ(Ea 1- 5)}

For the GMS parameters, this reduces to

i=1 h?—l(??
4K 1 K
g I
Brm G

where A;(a), As(a), As(a), B(a), Ci(a), and Cy(cv) are the general form of the constants that
depends on the value of « and are given via Figure IV.6.

As Equation V.33 shows, in the case of rough-walled fully turbulent fluid flow, the crack
opening and fluid pressure are not only functions of the coordinate parameter (), but also functions
of ¢ which in turn directly depends on Darcy-Weisbach friction factor. Therefore, the nest step is
to study the sensitivity of the scaled solution to « (or ). Figure IV.7 shows the impact of parameter
« on the opening and pressure. This comparison indicates that the opening can differ by 30% when
changing the value of o from 0 to 1. So we see that variation of « has an effect on the opening and

pressure but this effect is relatively small.
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Figure IV.6: The values of the constants in Equation IV.33-1V.34 as function of Darcy-Weisbach

friction factor parameter o.
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Figure IV.7: Effect of Darcy-Weisbach friction factor parameter (o) on the solution.
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2. Dimensional Solution

Using Equations IV.11, IV.12, IV.17, and IV.33, we can obtain the crack opening and fluid pres-

sure in dimensional form as

w:( Qo )‘*iavﬁax
BVE'

([ocsves et (25| Ve
48(3,1—5) | (52 e N
e ™ [ (2 )<r\@ <E>
oy (5, 5L L (1)) 2 (IV.35)
B r(%g)( ) >" - () }

p= B (pE4) ™ Q1
€1 (w1 = V20 =D = r/R)*)
(@3 (e

Moreover, using Equations IV.11, IV.17, and V.34 will provide the crack radius as

a\ 1ia = ; I'(i+ 1) 1
R:<6E,%Q(l)+2>4+ t% Z ] A ( (Z—|— ) (904- )X
i=1 hi (20 +2,2) F(2i+2¢)

<, .(i— 1\ T(2i+20—j) (IV.36)
( U( )r(¢+w—j+2))

+B———f(z,1— o)

a+2
4K 1 K. | ~2(+9
3r(3—k) "2 2 ]

And finally, combining Equations IV.11, IV.12, and IV.18d will lead to the fluid flux as

= _ 1
g =Qoy*a (BE’%QE)W) R NoE (_@) ’ (IV.37)

Substituting m = 0.143 and o = 1/3 (GMS parameters), we obtain the solution present in Equa-
tion IV.1.
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Table IV.3: Material properties and physical constants that are used in this paper for comparison

with laminar solution and numerical models.

Parameters
Figures Qo 7’ P k E
m?s | Y| P | kgm™) | mm) | | (GPa) | ¥

Figure IV.14 0.05 0.2 — -

Figure IV.15a 0.05 0.2 | 0.126 0.01

Figure IV.15b 0.05 | 02 |0.032]| 600 001 |0143| 25 |1/3
Figures IV.5, IV.15¢ 0.05 0.2 | 0.01 0.01
Figures IV.8-1V.12 0.1 0.2 | 0.01 0.1

3. Laminar Versus Rough-Walled Fully Turbulent Solutions

Here we compare the solution obtained from the rough-walled fully turbulent model with the zero-
toughness solution for laminar fluid flow provided by Savitski and Detournay (2002). In order
to make the comparison, we use the GMS model parameters and the physical parameters that are
defined in Table IV.3.

The first comparison is related to normalized opening, which is defined as the ratio of the crack
opening at some location inside the crack divided by the crack opening at the inlet (see Figure I'V.8).
This comparison shows a stronger gradient of the opening near the inlet for the turbulent solution,
as expected due to the stronger singularity in the near-inlet fluid pressure.

In the next step, we compare the crack opening, the fluid pressure, and fluid flow along the
crack between laminar and turbulent flow, as shown in Figure IV.9. Also, in Figure IV.10, we
show the change of crack opening and fluid pressure at wellbore and crack length versus change
of time. This comparison shows that the turbulent regime leads to prediction of larger pressure,

larger opening, and shorter length hydraulic fractures when compared to the laminar regime.
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Figure IV.8: Comparison of normalized opening for laminar and turbulent flow at ¢ = 1000 sec.

It is also useful to examine the evolution of the solution comparison, which is aided by first

defining

1
Buunnll) _ 1 089 (3) )

Rlam<t> t*
13 27/137.9/13 (IV.38)
13 k
t* _ QO p/ .
E EMIZ

Since opening and pressure are not only function of time but also of position, we can make a similar
comparison graphically via Figure IV.11. Here we give a plot for all values of time by multiplying
the ratio of the turbulent to laminar solution by an appropriate power of ¢/t*. Namely, we obtain
from the scaling that Wy, (€, 1) /Wiam(&,1) o< (¢*/1)Y°, and pus(&,1) /Diam (€, 1) o (t°/1)16.
Also, from Figure IV.11, we can see that at crack tip, the ratio of the opening from turbulent over
laminar is zero. This is to be expected because Equation V.20 shows that at crack tip for the
turbulent case w ~ £9/7 while for laminar flow w ~ £%/3. Since, the power of the turbulent flow
is larger, when we get closer to the crack tip, the crack opening for turbulent flow can goes to zero

faster and make the ratio tend to zero.
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Figure IV.9: Comparison of fracture opening, fluid pressure, and fluid flow along the crack for two

different cases of laminar and turbulent regime.
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Figure IV.10: Comparison of inlet fracture opening, crack length, and fluid pressure at 1/10 of the

radius versus time for two cases of laminar and fully turbulent assumptions.
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Figure IV.11: Difference of fracture opening and fluid pressure along the crack at any time.
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Figure IV.12: Difference of fracture opening, crack length, and fluid pressure versus time for two

contrasting limits of ¢ . and ¢*  (see Table IV.4).
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Table IV.4: Different limits of parameters used to generate Figure IV.12.

Parameter Minimum Maximum
Qo 2.5m3/s 0.05 m?/s
k 0.01 mm 2 mm
v 0.15 0.35
E 5 GPa 100 GPa

4. Laminar to Turbulent Transition Solution

Based on the comparison provided in Figures IV.9 and IV.10, it is clear that selecting a solution
corresponding to the correct fluid flow regime is vital for accurate predictions. In this section,
we compare: 1) the asymptotic solution provided for GMS, 2) the laminar asymptotic given by
Savitski and Detournay (2002), and 3) a numerical solution. The numerical solution is described in
detail by Zolfaghari and Bunger (Submitted B). To obtain the friction factor for laminar, turbulent,
and transition regimes, we used the formula given by Yang and Dou (2010). Following this model
to predict the friction factor, we can recreate the Nikurase’s graph, as shown in Figure IV.13.
Figure 1V.13 clearly indicates how well this model captures the behavior for laminar, turbulent,
and transition regimes. It also shows that the GMS approximation for a rough-walled channel is
captured by considering this numerical approach.

One of the important parameters in this model is Reynold’s number (Re). Here, we define the

characteristic Reynold’s number (Re*) as

* pQO
Rer = PO
e ,uR

where R is the crack radius. Figure IV.14 indicates the variation of fracture length, fracture open-

ing, and fluid pressure versus this characteristic Reynolds number. Note that:

e In order to be consistent, we computed the characteristic Reynolds number for laminar, turbu-
lent, and numerical solution with using the laminar crack radius as the length scale in definition

of Reynolds number.
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Figure IV.13: Variation of Darcy-Weisbach friction factor versus pipe roughness and Reynolds
number. The experimental Nikuradse’s data are obtained from Nikuradse (1954) from Table 2-7

of the reference.

The numerical simulation is based on the data given in Table IV.3.

In order to capture the changes of Reynolds number, we kept all the parameters constant except

the value of the viscosity.

Figure IV.14 and IV.15 are made after 1000 seconds of injection.

Because of the strong singularity at inlet, the opening and pressure at wellbore are infinity from

Equation IV.1, so the opening and pressure are made for the » = 50 m.

In order to better show the transition from turbulent to laminar flow, we choose three instants
that represent the laminar, transition, and turbulent regime as in Figure IV.15. Here it is interesting
to note that the applied inlet solution is in a very good agreement with numerical solution, thus
confirming the validity of the approach defined in Equations IV.27 and IV.28 to approximate the
inlet pressure singularity in the solution method.

We further observe in Figure IV.15 that as the crack develops, the inlet opening in the turbulent
regime stays constant while in laminar regime the opening increases. This observation confirms
that the opening at inlet is indeed independent of time for the fully turbulent rough-walled regime,
as predicted by the scaling.

Observing the comparison in Figure IV.15 also shows that the laminar solution corresponding

to each time increases until it surpasses the turbulent solution, with the numerical solution matching

105



p/plmn

Figure IV.14: Study the change of fracture radius, fracture opening and fluid pressure at r = 50 m.

reasonably well to whichever of the two asymptotic solutions (laminar or turbulent) corresponds
to the larger value of the inlet opening. This behavior suggests that we can estimate the fracture
parameters with an often acceptable precision by only using the asymptotic solutions. Furthermore,
the exceeding of the predicted inlet opening for the turbulent regime by the predicted inlet opening
for the laminar regime can be considered as criteria that indicates the convergence of solution to

the laminar regime after this point.

H. CONCLUSIONS

The main outcome of this work is an asymptotic solution to estimate crack length, fracture open-
ing, fluid flux, and fluid pressure for a rough-walled, radial hydraulic fracture driven by a fully
turbulent fluid. For the specific case of GMS fluid flow model, the asymptotic solution retaining
two terms in the polynomial series is given by Equation IV.1. This solution is indeed shown to
be accurate with only two terms of an orthogonal polynomial series, with such rapid convergence
enabled by embedding appropriate crack tip and inlet singularities in the structure of the family
of Jacobi polynomials used in the solution method. The solution is intended for benchmarking

3D and Planar3D simulators in the limit of the rough-walled fully turbulent regime, as well as
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Figure IV.15: Comparison of fracture opening and fluid pressure with numerical model for three
different cases of, a) laminar fluid flow, b) transition, and ¢) turbulent regime corresponding to
points A, B, and C' from Figure V.14, respectively. These plots are for the instance of 1000 sec,

and the Reynolds number is regularized with the radius of the crack defined with laminar flow.
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to provide rapid estimation of fracture dimensions in cases where the turbulent regime provides
a more appropriate estimate than the laminar regime. By comparison with numerical simulations
that consider the laminar-turbulent transition, we find that such an estimate is expected to be suffi-
cient for practical purposes when the inlet opening predicted by the turbulent solution exceeds the

inlet opening predicted by the laminar solution.
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V. NUMERICAL MODEL FOR A PENNY-SHAPED HYDRAULIC FRACTURE
DRIVEN BY LAMINAR/TURBULENT FLUID IN AN IMPERMEABLE ROCK

A. PREAMBLE

This chapter comprises a preprint of Zolfaghari and Bunger (Submitted B). In this chapter a nu-
merical simulator is developed to model HF growth driven by fluid across the laminar-turbulent
transition. The numerical results are compared with the laminar asymptotic solution (Savitski and
Detournay, 2002) and rough-walled fully turbulent asymptotic solution (Zolfaghari and Bunger,
Submitted A). This comparison indicates good agreement with the relevant asymptotic limits and
thus confirms the accuracy of the numerical approach proposed here. The evolution of the fluid

regime along the crack is also examined.

B. ABSTRACT

As hydraulic fracturing at high injection rates with low viscosity fluids grows in popularity, so
also there is a growing need to include not only the more common laminar fluid flow, but also
turbulent and transition flow regimes in numerical simulators. One common scenario is embodied
in the behavior of a radial (penny-shaped) hydraulic fracture where flow is turbulent near the inlet,
laminar near the tip, and in transition somewhere between. The main goal of this paper is to
investigate the impact of this transition on hydraulic fracture growth through development and use
of a numerical simulator for penny-shaped hydraulic fractures using the so-called drag reduction
method to estimate the friction factor inside the crack for all relevant flow regimes. Upon solving

this problem numerically for the case of zero toughness, comparing the results with fully laminar
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and fully turbulent asymptotic solutions shows that the early time behavior of radial hydraulic
fractures is predominantly turbulent while large time behavior if predominantly laminar. The time
scale associated with this transition determines the relevance of either limiting regime to practical
cases, i.e. when the transition takes place in a small fraction of the total treatment time it suffices
to approximate growth using the laminar asymptotic solution and when the transition requires are
large time compared to the treatment time it suffices to approximate growth using the turbulent

asymptotic solution.

C. INTRODUCTION

High injection fluid flow with low viscosity fluids are growing in popularity in hydraulic frac-
ture (HF) stimulation of oil and gas wells. As a result, the fluid regime often deviates from the
typically-assumed laminar conditions, and this divergence from the laminar assumption can lead
to inaccurate predictions (Ames and Bunger, 2015). Recognition of the turbulent flow in HF backs
to seminal works of Perkins and Kern (1961), who modeled the vertically confined HF geome-
try using both laminar and turbulent assumptions, while also modeling radial HF growth in the
laminar fluid flow regime. Thereafter, Nilson (1981, 1988) modeled plane-strain and radial HF
growth using a constant inlet fluid pressure condition. On the other hand, Emerman et al. (1986),
and Siriwardane and Layne (1991) used inlet fluid influx boundary condition in their model for a
plane-strain HF in both the laminar and turbulent regimes. Recently, Anthonyrajah et al. (2013)
numerically modeled blade-like (PKN) HF growth using a general inlet boundary condition. Tur-
bulent flow-driven crack propagation also received attention from other fields, for example investi-
gating the influence of turbulent flow in magma transport and natural geothermal injections Lister
(1990); Lister and Kerr (1991). Moreover, turbulent flow-driven crack propagation is considered
in subglacial drainage Tsai and Rice (2010).

Recently, a growing body of literature aims at investing the influence of turbulent flow in HF
growth. Dontsov (2016) provides an asymptotic solution for a laminar-turbulent HF in plane strain
geometry using the Churchill approximation for the friction factor. Dontsov (2016) also explores

the near-tip transition of fluid flow to laminar regime and compares his results with numerical
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simulations. Also, Zia and Lecampion (2017) use a drag reduction method to estimate the fric-
tion factor by employing the approach proposed by Yang and Dou (2010). Besides that, Zia and
Lecampion (2016, 2017) developed a semi-analytical solution to rough-walled and smooth-walled

HF including the impact on height growth HF.

To date, several studies have focused on developing semi-analytical solutions for rapid calcu-
lations and providing asymptotic benchmarking solution for HF with turbulent flow. These have

addressed:

e Blade-shaped (PKN) geometry, large leakoff, and zero toughness with fully turbulent flow in a

rough-walled hydraulic fracture (Kano et al., 2015).

e Blade-shaped (PKN) geometry, zero leakoff (impermeable rock), and zero toughness with fully

turbulent flow in a rough-walled hydraulic fracture (Zolfaghari et al., 2017).

e Plane strain geometry, zero leakoff, and zero toughness with fully turbulent flow in a rough-

walled hydraulic fracture (Zolfaghari et al., 2017).

e Radial geometry, zero leakoff, and zero toughness with fully turbulent flow in a rough-walled

hydraulic fracture (Zolfaghari and Bunger, Submitted A).

e Smooth-walled HF, and rough-walled HF with fully turbulent regime (Zia and Lecampion,
2017).

The main goal of this study is to numerically simulate rough-walled HF growth in the radial
geometry for fluid flow in the laminar, transition, and/or turbulent regimes. To accomplish this, we
use the drag reduction (DR) model from Yang and Dou (2010) to predict the friction factor. We
tailored the DR method to the radial HF problem by adding adjusting parameters and using the
hydraulic diameter to extend the solution from pipe flow. We then use a moving mesh method to
discretize the crack into constant number of elements in each propagation step by stretching the
elements. This problem is formulated with fixed-length scale stepping and an implicit solution is
used to step through the time domain. Within this scheme, an iterative approach is applied to solve
the coupled fluid flow-elasticity equations. At the end, the results are compared with laminar and

GMS semi-analytical approximations.
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Figure V.1: Radial crack geometry.

D. GOVERNING EQUATIONS

Radial or penny-shaped hydraulic fracture geometry refers to axis-symmetric growth that is not
(yet) bounded with fracture height restricting barriers from top and bottom Perkins and Kern
(1961). The quantities corresponding the solution are crack width (w(r, t)), fluid pressure (p(r, t)),
and fluid flux (¢(r, t)) for any specified time (¢) and radius (r) (see Figure V.1) as well as the crack
radius (R(t)). The main goal of this paper is to provide a numerical solution for all these quantities
in the laminar, turbulent, and/or transition from laminar to turbulent fluid flow regimes. Note that
the analytical solution for fully turbulent rough-walled radial HF is developed by Zolfaghari and
Bunger (Submitted A). However, in the radial geometry there will often be a turbulent region near
the inlet, laminar near the tip, and transition in between. Hence, we will herein seek a solution
capturing this transition.

We begin, then, with the Darcy-Weisbach equation, which gives a relation between pres-
sure drop and fluid flux for circular pipes. Using the hydraulic diameter, one can extend Darcy-
Weisbach equation so that it becomes suitable for non-circular conduits, that is Streeter (1961b)

o _ _,pV°
or  'P2D,
where p is the fluid density, V' is the average fluid velocity along the width of the crack, f, is

the Darcy-Weisbach friction factor, and D, is the hydraulic diameter of the cross-section and is
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Figure V.2: Effect of Darcy-Weisbach friction factor parameter («) on the obtained solution.

defined as D;, = 4A/P where A is the area of the fluid flow cross-section and P is the perimeter
of the wetted area. Later in this section, we will show that in DR model, f, « w,/V, where u, is
the shear velocity (see Equation V.2). After manipulating the Darcy-Weisbach equation for radial

flow, we obtain

(4wt op 2
= (‘TM) VD

where ¢ = Vw is the fluid flux classically used in HF modeling. It remains to describe the friction
factor f,, typically considered to be a function of Reynold’s number and the surface roughness.
In this paper, we will use the fluid flow model based on drag reduction (DR) (see Yang and Dou,
2010). The main reason to choose the DR model is that it can predict the friction factor for the
laminar, transition, and fully rough turbulent regimes very well. Figure V.2 indicates the accuracy

of the DR model and shows the confirmation with Nikuradse’s experimental data Nikuradse (1954).

In this section, at first we will explain the DR model, and then we expand that model for HF

problem.
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1. DR Model

Fluid flow in a pipe produces fluid friction. But, by inclusion of additives, the fluid turbulent
friction can reduce and the term “drag reduction” refers to this phenomenon. Before going further,
it is necessary here to clarify some additional terminology and definitions.

The first term to introduce is the shear velocity, w,, that is, a velocity that defines the shear
between layers in the flow stream. In fact, shear velocity is not really a velocity, per se, but rather
it is shear stress that has been defined in the units of velocity using a scaling involving the fluid
density, p. Normally, the shear velocity is defined as m where 7, is the wall shear stress
(Streeter, 1961b). Also, the definition of friction factor (Darcy-Weisbach) is

f,=8 (—)2. (V.2)

The other important terminology in this section is the definition of Reynolds number. In this
model, Yang and Dou (2010) use various definition of Reynolds number classified into three cate-

gories:

L. Shear Reynolds number (Re™), or the Reynolds number for shear velocity, which is defined as

Ret = ﬁW*TRh (V.3)

where o is the fluid viscosity, and ¢ is an adjusting constant that makes Equation V.3 usable
for a crack geometry instead of a circular cross section.
II. The roughness Reynolds number, that is defined as
«0
Re, = P2*° (V.4)
L
where 0 is the roughness of the rock.

III. The characteristic Reynolds number which is expressed as

. pVDh
v

Re

(V.5)
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Note, there are relationships between different Reynolds numbers that connect them together.

For example, the roughness Reynolds number and shear Reynolds number are related as

4]
Re, = Ret——— V.6
e SR (V.6)
Also, we can show that
V Re
— = V.7
Uy 4Ret V.7)
The DR model uses these quantities to first define
1 ,  Re™ < Ref
TZ<R€+) = +\ 2 [ Ret 2_ (V.8)
Rec e(Re+) 1 ’ Ret > Re™t
Re*t -

where Re! is the critical value of the shear Reynolds number and is the limiting value that after
that the turbulent burst starts to appear, r;(Re™) is the probability of the laminar occurrence, and
ri(Re™) is the probability of the turbulent occurrence. Note that r; + r, = 1. So based on the DR
approach, for Re, < Re,. (that is, the fluid flow is not wholly turbulent yet in another words, the

surface roughness is not dominant over the laminar sub-layer)

v _
= = ZLRet 41, |25 Ret —66.69 (Re*) ™ 4 1.8 — i (Re.)| (V.9)

Uy m

and

2
1 4 Qeftex a.Re
Ci(Re,) =2.5In | —