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HYDRAULIC FRACTURE DRIVEN BY TURBULENT FLOW

Navid Zolfaghari Moheb, PhD

University of Pittsburgh, 2017

High flow rate, water-driven hydraulic fractures are increasingly popular in the oil and gas indus-

try. The high injection rate and low fluid viscosity associated with these treatments leads to high

Reynolds numbers. While there is some recent recognition of the growing need to extend the clas-

sical hydraulic fracture models beyond the laminar flow regime, there is little understanding of the

impact of turbulent flow on hydraulic fracture growth nor are there existing solutions for simplified

geometries that can provide benchmarks for numerical simulators and means for rapid estimation

of hydraulic fracture dimensions.

Thus motivated, the goal of this research is to quantify the impact of replacing laminar flow

with turbulent flow in HF by developing a benchmark solutions for classical HF crack propagation

geometries. This study therefore is comprised of 3 main parts, each associated with a particular

geometry (plane strain, blade-shaped, and radial). Each geometry brings its own challenges and a

need to adopt a solution method suited to these challenges.

The noteworthy contributions of this work begin with providing a complete suite of bench-

marks for simplified but practically-relevant geometries that can be used to estimate fracture di-

mensions and to benchmark more general numerical simulators. Secondly, this study provides a

new numerical approach to HF simulation including laminar, turbulent, and laminar-turbulent tran-

sition regimes. Thirdly, this investigation demonstrates the evolution of turbulent-laminar regime

in a radial HF, which has implications also for the overall behavior and evolution in more gen-

eral planar fracture growth geometries. Fourthly, this study has identified that the transition range

of fluid regime from turbulent-to-laminar fluid flow is relatively small and practically, it will of-

ten suffice to approximate the HF growth using the asymptotic solutions obtained from either the

laminar or turbulent solution.
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I. INTRODUCTION

A. BACKGROUND

Fluid pressure-driven cracks are widely observed and utilized in different fields of science and en-

gineering and have thus attracted wide ranging contributions. A notable example of fluid-driven

fracture in nature is magma intruding into rocks by driving dyke and sill formation (see e.g. the re-

view of Rivalta et al., 2015). Another example is rapid sub-glacial drainage of the melted water in

ice sheets via fluid-driven fractures (Tsai and Rice, 2010). Fluid pressure-driven fractures are not

only limited to natural events, but also carried out in industry. A classic example of fluid-driven

crack propagation is hydraulic fracturing (HF) to increase the productivity of oil and gas wells.

Here, the fluid is used to break the rock to create high permeability pathway for hydrocarbon

transport back to the well (King, 2010). Moreover, increasing hydraulic conductivity of enhanced

geothermal systems (e.g. Matsunaga and Yamaguchi, 1992; Gérard et al., 2006), preconditioning

rock masses for effective block cave mining (e.g. Van As and Jeffrey, 2000), and measuring un-

derground in-situ stresses (e.g. Cornet and Valette, 1984; Zoback et al., 1982) are all examples

of hydraulic fracture applications. For additional discussion see the review of Adams and Rowe

(2013).

Of these, the major application of HF is in well stimulation to increase oil and gas production.

In the global oil and gas industry, hydraulic fracture (HF) has played a vital role, particularly in

“unconventional” gas reservoirs. And the changes experienced by this industry over the past two

decades are indeed astounding. As estimated by Montgomery and Smith (2010), more than 60%

of wells are stimulated through hydraulic fracturing, and essentially all wells completed in shale

formations are stimulated using HF. With the growth of water, as opposed to higher viscosity gels,

as the main driving fluid for HF in the petroleum industry in 1990s-2000s, fluid-driven induced
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fracture has become less expensive, more effective in certain formations, and hence even more

widespread. What is important to also realize is that the governing physics of the problem has

changed due to this transition to higher rate pumping of lower viscosity fluids. Most notably, the

fluid flow regime is much more often turbulent or in the laminar-turbulent transition. Failure to rec-

ognizing this shift and continuing to inappropriately use an assumption of laminar flow can lead

to predictions that underestimate fluid pressure and hence propensity for failure growth that pen-

etrates neighbouring layers. Laminar simulations also overestimate HF length and underestimate

HF aperture (“opening” or “width”, see Ames and Bunger (2015)).

Early examples of research into HF including the turbulent flow regime back to the seminal

work of Perkins and Kern (1961), who provide a model for both vertically confined HF growth

(blade-shaped geometry), and horizontal HF growth (radial geometry). For a vertically confined

HF, they obtained a solution for both the laminar and turbulent regimes. For turbulent fluid flow,

Perkins and Kern (1961) considered a constant Fanning friction factor of 0.0125 for the fracture

that corresponds to a relative roughness (ratio of roughness scale to characteristic HF width) of

0.02. They then solved the problem to find the crack opening, again, limiting consideration to a

vertical HF.

Moreover, a series of research conducted by Nilson (1981, 1988) considered plane strain (and

extended to radial flow), gas-driven hydraulic fractures under a constant pressure inlet boundary

condition. Nilson (1981) modeled an isothermal ideal gas flow in a plane strain geometry and

identified three self-similar solutions associating with laminar, turbulent, and inviscid regimes.

Hence, Nilson (1981) explained that by having these three solutions, we can grasp an overall

behavior of the fluid flow. Following from this work, Nilson (1988) provides an extension to a

more general form of multi-phase flow, again for the plane strain geometry.

Other important works that consider turbulent flow include Emerman et al. (1986), who obtain

similarity solutions for a plane-strain HF with constant inlet flow. Anthonyrajah et al. (2013) follow

the turbulent model from Emerman et al. (1986) to solve for blade-shape HF with generalized inlet

boundary conditions, and demonstrate a numerical solution method for general injection bound-

ary conditions. Additionally, Newman (2016) extends the model presented by Anthonyrajah et al.

(2013) for the PKN problem with general boundary condition using Prandtl’s mixing length model.
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More recently, Zia and Lecampion (2016, 2017) develop a semi-analytical model and numer-

ical simulation to model a height contained HF. Specifically, Zia and Lecampion (2017) solve the

problem numerically using the drag reduction approach from Yang and Dou (2010) to estimate the

friction factor. Also, they find an asymptotic solution by considering that the crack is fully turbulent

and under a rough-walled condition, and/or the crack is fully turbulent and under a smooth-walled

condition (the latter case conforms to the Blasius approximation Blasius (1913)).

Furthermore, Dontsov (2016) studies the crack tip transition of the fluid regime, from turbu-

lent to laminar flow in plane-strain geometry. Dontsov (2016) used the Churchill approximation

Churchill (1977) to estimate the friction factor in the HF. He also derives an asymptotic solution

to fully turbulent HF and, at the end, Dontsov (2016) studies the transition regime at the crack

tip. Also, Kano et al. (2015) solved the fully turbulent rough-walled HF for large leakoff using

Gauckler-Manning-Strickler (GMS) approach Manning (1891); Strickler (1923, 1981).

However, in spite of these past contributions and the growing importance of the turbulent and

laminar-turbulent flow regimes in HF modeling, there is at least two major gaps in the literature

that will be addressed by this research. The first is that there are no benchmark solutions that

demonstrate the behavior in the limit of fully-rough-walled turbulent flow for the classical simpli-

fied geometries (plane strain, radial, and blade-shaped). As a result, the growing body of simu-

lators that incorporate turbulent flow cannot be appropriately validated. The second issue is that

the importance of the transition regime and the conditions for applicability of the fully turbulent

solution(s) are unknown. Hence, it is not understood the range of nominal Reynold’s numbers for

which each model should be used.

B. PROJECT GOAL AND SCOPE

The goal of this research is to quantify the impact of replacing laminar flow with turbulent flow

in HF by developing benchmark solutions for classical HF crack propagation geometries. This

research is divided into the following sections:

• Modeling the effect of turbulent fluid flow on the blade-shaped (PKN) geometry:

This component of the research is described in Chapter 2 and consists of:
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I. Introducing a mathematical model to predict the opening, length, and fluid pressure of the

HF by considering turbulent flow for blade-shaped (PKN) geometry.

II. Solving the resulting system of equations to provide a closed form semi-analytical bench-

mark solution.

III. Comparing the results from the classical laminar flow model with the new turbulent model.

IV. Developing a rigorous method to define the transition criteria from laminar to turbulent

flow within HFs.

• Solving the plane strain (KGD) model with turbulent fluid flow:

This component of the research is described in Chapter 3 and consists of:

I. Introducing a mathematical model to predict the opening, length, and fluid pressure of the

HF by considering turbulent flow for plane-strain geometry.

II. Solving the resulting system of equations to provide a closed form semi-analytical bench-

mark solution.

III. Comparing the results from the classical laminar flow model with the new turbulent model.

IV. Discern the useful range of the fully turbulent solution through collaboration allowing

comparison to simulations that account for the laminar-turbulent transition.

• Modeling radial HF with fully turbulent rough-walled approximation:

This component of the research is described in Chapter 4 and consists of:

I. Introducing a mathematical model to predict the opening, length, and fluid pressure of the

HF by considering turbulent flow for penny-shaped (radial) geometry.

II. Solving the resulting system of equations to provide a closed form semi-analytical bench-

mark solution.

III. Comparing the results from the classical laminar flow model with the new turbulent model.

IV. Discern the useful range of the fully turbulent solution by comparison to results obtained

from a numerical simulation developed as a part of this research.

• Solving the radial model accounting for simultaneous presence of turbulent and laminar

regions:

This component of the research is described in Chapter 5 and consists of:

I. Develop a numerical solution for radial crack growth, including finding the turbulent,

laminar, and transition sections along a growing HF.
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II. Demonstrate the evolution of flow regime within the HF as it grows.

III. Compare the results from laminar and turbulent limiting solutions with the new model.,

and distinguishing the differences and clarifying the conditions of validity for the limiting

solutions.

This study is therefore comprised of 3 main parts, each associated with a particular geome-

try (plane strain, PKN, radial). Each geometry brings its own challenges and the need to adopt a

solution method suited to these challenges. Since this research examines the emerging role of tur-

bulent flow in the context of fluid-driven crack propagation; therefore, for each geometry the work

is divided into three themed subsections. 1) developing the solution.2) defining the laminar to tur-

bulent transition, and 3) demonstrating conditions under which the turbulent regime is appropriate

and consequences of inappropriate use of models that assume laminar flow.

C. IMPACT OF THE RESULTS

Importing classical models aimed at laminar flow of gelled fluids in order to model high rate water

driven HF treatments without examining the consequences of the accompanying higher range of

Reynolds number has resulted in a preponderance of issues, recognized by industry but not typi-

cally seen as tied to the physics of fluid flow. These issues include underestimation of fluid pressure

and width, and overestimation of length. All of these have important impacts on practice. One of

the most important aspects of successful HF design is aimed at ensuring the HF grows in the de-

sired layers. Underestimation of pressure will lead to incorrect modeling of height growth across

subsurface strata. This can lead to designs resulting in growth into unwanted zones. Typically the

main problem with unwanted height growth is stimulation of water inflow, creating a costly issue

of disposal and exacerbating the potential for environmental impacts due to accidental surface re-

lease of produced water, ineffective treatment of flow-back waters that are highly saline and which

often contain substantial levels of naturally occurring radioactive materials, and induced seismic-

ity associated with subsurface injection of waste water. In shallow reservoirs, especially shallow

conventional gas/oil as well as coal seam methane reservoirs, unwanted height growth can lead

to direct contamination of nearby underground drinking and irrigation water sources. Hence, one
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outcome of this project is to inspire wider inclusion of turbulent and transition fluid in models used

to predict HF height growth. By not only inspiring these advances but also providing necessary

benchmarks to ensure the simulators accurately compute the correct behavior in simple geome-

tries and limiting regimes, this work can lead to better fracture height prediction and decreased

environmental risk.

Secondly, miscalculation of the crack opening will lead to a wrong choice of proppant size

and/ or scheduling such errors can in turn cause other problems, like reducing the conductivity of

the reservoir and/or increasing the risk of premature screen-out. Both of these issues lead to failure

or otherwise ineffective treatments. Also, overestimation of length can lead to inappropriate well

spacing and inefficient development of the resource.

Multiplied across 104 new wells per year, inefficiencies costing on the order of 105 dollars per

well (a few percent of the total cost of developing a typical unconventional oil/gas well) would

be expected to have billions of dollars of economic impact. Reducing these substantial inefficien-

cies through improved design enabled by more appropriate HF models can therefore contribute

significantly to enabling economically-feasible production even at depressed oil/gas prices.

And finally, because of this emergence of the importance of the turbulent flow regime, it is

anticipated that the future will bring an increasing number of numerical simulators accounting for

the turbulent regime. The research presented in this thesis is aimed at impacting these advances by

providing a basic understanding of the fluid flow regimes present in an ever-evolving HF. The solu-

tions developed here also enable benchmarking this new generation of HF simulators to analytical

or semi-analytical solutions as a part of their development.

D. BACKGROUND KNOWLEDGE

Throughout this dissertation, some assumptions and terminologies are relied upon from the HF

literature. While some of these are well-established, the justification can be technically involved.

Those with the most relevance to this thesis are presented here.
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1. Incompressible Fluid

The first assumption is the use of an incompressible fluid. The fluid compressibility appears in

the continuity equation in the form of wcf∂p/∂t, where w and p are the crack opening and fluid

pressure respectively and cf is the fluid compressibility. Lecampion et al. (2017) explained in

detail that this compressibility term is almost always negligible compared to the other terms in the

continuity equation. While there are in some cases nuances to this assumption, for the purpose of

this study it suffices to limit consideration to incompressible fluids.

2. Fluid Flow Equation

In this thesis, the fluid flow equation is defined through Darcy-Weisbach equation as

q =

(
−4w3

ρf

∂p

∂x

)1/2

(I.1)

where q is the fluid flow inside the crack, w is the crack opening, p is the fluid pressure inside the

crack, ρ is the fluid density, and fp is the Darcy-Weisbach friction factor. It is important to note

that the linear momentum law for the fluid is satisfied implicitly by using Equation I.1. Therefore,

there is no need to explicitly satisfy the linear momentum for the fluid flow. This equation is

basically defined through dimensional analysis and is explained in section III.D. To supplement

this dimensional analysis, here the derivation of this equation through Navier-Stokes equations is

provided in order to show its compatibility with linear momentum balance.

First we start by considering the fluid flow between two parallel plates as in Figure I.1. There-

fore, the linear momentum balance in the x-direction for a fluid element gives

−∂p
∂x
wbdx− 2τwbdx = ρbwdx

Dvx
Dt

where ρ is fluid density, τw is the shear stress at the wall, and the operator D/Dt refers to the

material derivative and is defined as

D

Dt
=

∂

∂t
+ vvv · ∇ =

∂

∂t
+ vx

d

dx
+ vy

d

dy
+ vz

d

dz
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Figure I.1: A free body diagram of an infinitesimal fluid element.

Note that vx is the velocity of the element in x-direction. After simplifying we can obtain

−∂p
∂x
− 2

τw
w

= ρ

(
dvx
dt

+ vx
dvx
dx

)
(I.2)

Now, we develop the time average of Equation I.2. In order to do that, we can find the term by

term time-average of Equation I.2, whereby for the first term

1

2∆t

∫ t+∆t

t−∆t

∂p

∂x
dt′ =

∂

∂x

1

2∆t

∫ t+∆t

t−∆t

pdt′ =
∂p

∂x

For the second term on the left hand side of Equation I.2

1

2∆t

∫ t+∆t

t−∆t

τwdt
′ = τw

And for the right hand side, we find

1

2∆t

∫ t+∆t

t−∆t

dvx
dt
dt′ =

dvx
dt

and
1

2∆t

∫ t+∆t

t−∆t

vx
dvx
dx

dt′ =
1

2∆t

∫ t+∆t

t−∆t

(vx + v′x)
d(vx + v′x)

dx
dt′ = vx

dvx
dx

+ v′x
dv′x
dx

where v′x is the fluctuation part and vx is the time averaged part of vx. For more details about

derivation of the time average parameters, refer to Whitaker (1968). Also, it can be obtain that (see

again Whitaker, 1968)

v′x
dv′x
dx

=
dv′2x
dx
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Combining all the time averaged equations, the resulting equation will simplify as

−∂p
∂x
− 2

τw
w

= ρ

(
dvx
dt

+ vx
dvx
dx

+
dv′2x
dx

)
(I.3)

Then, by considering that the time-averaged acceleration is steady state, or

Dv

Dt
= 0→ dvx

dt
+ vx

dvx
dx

+
dv′2x
dx

= 0

Thus, Equation I.3 will change to

2
τw
w

= −∂p
∂x

(I.4)

On the other hand, we can define the friction factor as (Whitaker, 1968)

f =
FD
AKE

where A is the characteristic area, KE is the characteristic kinetic energy per unit volume, and

FD is the drag force applied by the fluid on the solid. After simplification we can obtain (again

following Whitaker, 1968)

f =
8τw
ρvx

2 (I.5)

Hence, putting Equation I.5 into I.4 yields

vx =

(
−4w

ρf

∂p

∂x

)1/2

(I.6)

Then, considering that q = vxw, we find

q =

(
−4w3

ρf

∂p

∂x

)1/2

(I.7)

It is apparent that Equation I.7 is the Darcy-Weisbach equation, obtained here through the combina-

tion of a friction factor, defined semi-empirically based on experiments and dimensional analysis,

with a Navier-Stokes equations for time-averaged 1D flow. Hence we see that by using Darcy-

Weisbach equation, we have already satisfied the linear momentum law in fluid flow and there is

no need for explicit consideration of Navier-Stokes equations in the subsequent model.
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3. Zero-Toughness

All asymptotic solutions provided in this thesis are derived for the zero-toughness asymptotic limit.

In this limit, the propagation velocity is determined from the coupled fluid flow and elasticity

equations, and is independent of the fracture toughness. While this concept of a zero-toughness

crack can be conceptually challenging, it is very well established through asymptotic analysis

Desroches et al. (1994); Garagash and Detournay (2000), laboratory experiments Bunger and De-

tournay (2008); Xing et al. (2017), and numerical simulations (e.g. Lecampion et al., 2013). The

unfamiliar reader is encouraged to examine these prior works. Here a brief overview is provided.

Based on conservation of energy in HF problems, the external energy provided to the system

should be equivalent to the energy stored internally in the system plus the energy used in system

due to work done by the system. In HF, the external energy is supplied to the system by fluid

injection, it stored in the system by opening the crack, and it is predominantly dissipated through

three different mechanisms: 1) fracturing the rock and making new surfaces (toughness dissipa-

tion), 2) lost through friction in the fluid (viscous dissipation), 3) fluid loss to the surrounding

domain. The fracture propagation is mainly determined through the governing energy dissipation

process. In this thesis, the fluid leakoff is considered to be zero. Therefore, the energy dissi-

pation is controlled by toughness dissipation and viscosity dissipation. If the energy dissipation

through toughness is much bigger than viscosity dissipation, the HF problem is categorized as

small-viscosity (large-toughness) problem, and if the toughness dissipation is negligible in com-

pare with viscosity dissipation, the HF problem is considered as small-toughness (large-viscosity)

problem. Thus, small-toughness problem does not necessarily means that the fracture toughness

of the rock is small, but it infers that most of the energy is dissipated through viscosity rather than

crack propagation and the group of parameter that contains toughness is small. Zero-toughness

is a limiting case of small-toughness HF that let us develop semi-analytical solution that captures

some behavior of small-toughness problem. The case of HF growth between two plates with no

bounding is an example of zero-toughness problem.

In zero-toughness problem the tip singularity is weaker than the LEFM singularity (Carbonell,

1996; Desroches et al., 1994). In order to have zero-toughness problem, the fracture intensity factor

should be equal to zero. The zero-toughness criterion is explained in terms of stress intensity factor

as (slightly different for various geometries)
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∫ `

0

p(r, t)√
`2 − x2

dx = 0 (KGD), or
∫ R

0

rp(r, t)√
R2 − r2

dr = 0 (Radial) (I.8)

Mathematically speaking, in both cases in Equation I.8, the weight function is always positive, so

the pressure profile along the crack should change sign to be able to maintain zero integral which

means that at some region inside the crack the net pressure is negative.

In this investigation the fluid leakoff is zero, so according to conservation of mass, the amount

of fluid pumped in is equal to the amount of fluid fill the entire volume of the crack (no fluid lag at

crack tip). Therefore, the crack cannot excessively grow since it needs to have sufficient amount

of the fluid inside it. Also in zero-toughness HF, the crack tip singularity is dominated by the

fluid pressure singularity rather than the singularity in the solid domain (LEFM). And therefore

the crack tip opening is in the form that follows fluid pressure singularity which implies that the

crack can grow only if the crack tip follows a proper profile. The crack tip shape is a function of

the crack velocity which is function of fluid pumping. So the crack cannot grow unstably under

predefined fluid pumping.
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II. BLADE-SHAPED (PKN) HYDRAULIC FRACTURE DRIVEN BY A TURBULENT

FLUID IN AN IMPERMEABLE ROCK

A. PREAMBLE

This chapter constitutes a preprint of Zolfaghari et al. (2017). Its main focus is derivation of a

semi-analytical asymptotic solution for the blade-like HF (PKN) geometry for rough-walled fully

turbulent fluid regime. The result is contrasted with laminar fluid regime solution provided by

Nordgren (1972). The tip asymptotic solution is also developed as a part of the solution and a

method to obtain the solution for the laminar-turbulent transition regime is suggested.

B. ABSTRACT

High flow rate, water-driven hydraulic fractures are more common now than ever in the oil and gas

industry. Although the fractures are small, the high injection rate and low viscosity of the water,

lead to high Reynolds numbers and potentially turbulence in the fracture. Here we present a semi-

analytical solution for a blade-shaped (PKN) geometry hydraulic fracture driven by a turbulent

fluid in the limit of zero fluid leak-off to the formation. We model the turbulence in the PKN

fracture using the Gaukler-Manning-Strickler parametrization, which relates the the flow rate of

the water to the pressure gradient along the fracture. We consider the fully tubulent limit with no

transition region any where at any time, and we do not consider the effect of the fracture toughness

on the crack propagation. The key parameter in this relation is the Darcy-Weisbach friction factor

for the roughness of the crack wall. Coupling this turbulence parametrization with conservation of

mass allows us to write a nonlinear pde for the crack width as a function of space and time. By
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way of a similarity ansatz, we obtain a semi-analytical solution using an orthogonal polynomial

series. Embedding the asymptotic behavior near the fracture tip into the polynomial series, we find

very rapid convergence: a suitably accurate solution is obtained with two terms of the series. This

closed-form solution facilitates clear comparisons between the results and parameters for laminar

and turbulent hydraulic fractures. In particular, it resolves one of the well known problems whereby

calibration of models to data has difficulty simultaneously matching the hydraulic fracture length

and wellbore pressure.

C. INTRODUCTION

Hydraulic fracturing is a method of stimulating relatively impermeable subsurface reservoir rocks

to extract oil and gas. In the past two decades, there has been a transition from using high viscosity

gels to the use of water in hydraulic fracturing (King, 2010). Associated with this change is a 2 to

3 orders of magnitude increase in the characteristic Reynolds number Re∗, which we define as

Re∗ =
ρqin
Hµ

, (II.1)

where ρ is the fluid density, qin is the volumetric injection rate, H is the hydraulic fracture

height H , and µ is the fluid viscosity (Tsai and Rice, 2010). Table II.1 shows that a shift from

typical gel-based fluids to water leads to an increase from Re∗ ≈ 0.01 −10 to Re∗ ≈ 102 − 104,

respectively. While a local Reynolds number will vary along the fracture and decrease rapidly near

the tip, the Reynolds number defined in Equation (II.1) is a constant set by external parameters.

In this paper, we describe parameter regimes where Re is large enough for turbulence to exist

throughout the hydraulic fracture save the very tip.

The emerging importance of the turbulent flow regimes will likely increase the number of hy-

draulic fracture numerical simulations that incorporate turbulence. In order to benchmark these

numerical simulations, analytical or semi-analytical solutions are required. One example of ana-

lytical solution is the large leakoff limit for a PKN hydraulic fracture with rough-walled turbulent

flow (Kano et al., 2015). Otherwise, the analytical/semi-analytical solutions, necessary for bench-

marking numerical simulations do not yet exist for turbulent flow. This is in contrast to a large
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Table II.1: Typical Reynolds numbers for water and gel working fluids with flow rate qin = 0.05−

0.2 m3 s−1 and fracture height H = 50− 200 m.

Fluid Density ρ (kg m−3) Viscosity µ (Pa·s) Reynolds Number Re∗

Water 1000 10−3 102-104

Gel 1200 0.5-1 0.01-10

body of benchmark solutions for the laminar regime (e.g. Geertsma and De Klerk (1969); Nord-

gren (1972); Savitski and Detournay (2002)).

The tractability of the problem for analytical and semi-analytical solutions requires simple ge-

ometries such as plane strain (Geertsma and De Klerk, 1969), radial (e.g. Savitski and Detournay

(2002)), and blade-shaped (after Perkins and Kern (1961), and Nordgren (1972)). While all have

usefulness as approximations under particular conditions, the blade-shaped geometry is of practi-

cal importance. The minimum stress in most reservoirs is horizontally-directed, so it is easier for

the crack to open in the horizontal direction which leads to vertically-oriented hydraulic fractures.

Furthermore, reservoir layers are often bounded by layers that serve to block upward and down-

ward growth of hydraulic fracture, meaning that the horizontal propagation velocity far exceeds the

vertical propagation velocity. A large body of field data indicates the resulting blade-like geometry

occurs in a wide-range of reservoirs, probably comprising the idealization of the most common

fracture geometry (e.g. De Pater (2015)). The limiting end-member of zero vertical (e.g. height)

growth corresponds to the geometry of Perkins and Kern (1961) which was revisited by Nordgren

(1972), and this so-called “PKN” geometry is used in the present study (see Figure II.1).

The need to consider the turbulent regime for water-driven hydraulic fractures was recognized

by Perkins and Kern (1961). A small number of papers have since considered the turbulent regime

of hydraulic fracturing, and some hydraulic fracturing design models (e.g. Meyer 1989) incor-

porate ability to simulate flow under turbulent conditions. Nilson (1981, 1988) considered plane

strain, gas-driven hydraulic fractures under a constant pressure inlet boundary condition. Nilson

showed the system evolving among laminar, turbulent, and inviscid regimes and solved the self-
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similar problems associated with each of these limits of the system. Similarly Emerman et al.

(1986) examined the problem of a plane strain fluid-driven crack, but instead assuming a constant

influx boundary condition. These authors presented an approximate solution, arguing for its prac-

tical suitability for modeling magmatic intrusions and natural hydrothermal injections. Turbulent

flow is also considered in other geosciences-inspired models. These include the model of drainage

of glacial lakes via subglacial fluid-driven cracks developed by Tsai and Rice (2010), as well as the

model of dyke ascent and propagation developed by Lister (1990) and Lister and Kerr (1991). Tsai

and Rice (2010) used Gaukler-Manning-Strickler (GMS) (Gauckler, 1867; Manning, 1891; Strick-

ler, 1923) approximation in order to model turbulent flow for glacial and sub-surface HF. Also Tsai

and Rice (2012) used GMS approach to model near surface hydraulic fracture, motivated by the

phenomenon of rapid subglacial drainage. Expanding to account for time-dependent deformation

of ice, Rice et al. (2015) used creep flow with GMS to model the rapid glacial lake drainage. These

contributions provide a useful background for the fluid flow model, but the boundary conditions

and elasticity formulation are specific to their problem and not applicable to industrial HFs.

More recently Anthonyrajah et al. (2013) considered turbulent flow for hydraulic fractures with

blade-shaped geometry with a generalized inlet condition. These authors present analytical solu-

tions for the particular (arguably non-physically motivated) cases of constant fracture speed and

volume, and demonstrate a numerical solution method for general injection boundary conditions.

The specific case of constant injection rate for a blade-shaped hydraulic fracture was subsequently

considered by Zia and Lecampion (2016), who point out that many practical cases will consist of

flow in the transition between laminar and turbulent flow. For rough-walled fractures, this work

numerically demonstrates departure from the laminar solution of about 10-20% forRe = 2500 and

30-50% for Re = 105, as well as complete convergence to a fully turbulent asymptotic solution

for Re = 10000 (though the details of the asymptotic solution are not presented). Dontsov (2016),

then, points out the necessity in many practical cases to consider that flow can be in the laminar

regime near the tip of the hydraulic fracture and turbulent regime away from the tip. This work

is mainly motivated by development of numerical simulations for generalized geometries wherein

the behavior near the fracture tip must be properly treated. The solution presented is therefore

specified to the moving tip region, allowing the length of the laminar region to be determined and

appropriate tip conditions to be imposed in simulations.
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In this paper, we present a solution for a PKN-geometry hydraulic fracture driven by a tur-

bulent fluid through an impermeable rock. Although turbulent flows in general remain difficult

to describe mathematically, many parameterizations have been developed to describe turbulence

through channels and narrow slits. Here we use the solution begins with a generalized expres-

sion of the Darcy-Weisbach friction factor, after Gaukler-Manning-Strickler (GMS) (Gauckler,

1867; Manning, 1891; Strickler, 1923) approximation for rough-walled turbulence in channel flow.

While our solution remains general enough to capture future advances in modeling turbulent flow

within hydraulic fractures, provided these can be captured by a power-law relationship between

the friction factor and the scale of the fracture roughness.

The solution presented here is semi-analytical, derived using a Jacobi polynomial series. It

follows in the spirit of previous semi-analytical solutions that obtain very rapid series convergence

by constructing the family of polynomials so as to embed the appropriate asymptotic behavior

near the leading edge (Adachi and Detournay, 2002; Savitski and Detournay, 2002; Bunger and

Detournay, 2007). For this reason, our solution method begins with derivation of the near-tip

behavior, after which the form of the Jacobi polynomial series is specified. Coefficients of the

series are then selected to minimize an objective function that embodies the error of the solution.

A convergence study shows that a practically-useful solution is by first two terms of the series. This

rapid convergence of the solution justifies the approach, allowing the solution to be written down

once for all cases rather than requiring computation for each individual combination of parameters,

as is the case for numerical simulations. Finally, the paper concludes with an exploration of the

sensitivity to the particulars of the expression for the Darcy-Weisbach friction factor (Weisbach,

1855; Darcy, 1857) and with a comparison between solutions resulting from models that impose

laminar versus turbulent flow.

D. MATHEMATICAL MODEL

This study considers the propagation of a rough-walled crack driven by fully turbulent fluid flow.

The fluid regime is modeled as turbulent along the entirety of the crack and we do not model the

potential relaminarization of the flow near the tip (see Dontsov (2016) and Dontsov and Peirce
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(2016)). The conclusions about the validity of the transition to laminar flow close to the tip (see

discussion around Figs. II.8 and II.9) have to be seen in this context as because we impose that the

model can not autonomously transition to laminar flow near the tip. For the case of low viscosity,

and high flowrate (i.e. supercritical CO2) the Reynolds number is very large and this relaminariza-

tion region will be quite small. Yet when the Reynolds number is closer to the value for transition

to turbulence, our conclusions about the flow near the tip will not be correct and a model that

incorporates relaminarization would be required.

We also consider the local elasticity approximation associated with the PKN model. The van-

ishing tip boundary condition used for the PKN model (as is used here) precludes the incorporation

of the effect of fracture toughness into the model. Thus conclusions about the behavior of the solu-

tion within a distance of ∼ H of the tip where H is the fracture height, are likely to be inaccurate.

We note that assuming turbulent flow throughout the fracture, as is done in our model, likely over

estimates the effective viscosity of the fluid near the tip. Therefore transition to laminar flow close

to the tip may bring toughness in to play, which is not accounted for in this model. Although a

way forward could be provided by a recently published toughness correction to the PKN model

(Dontsov and Peirce (2016))

As a final caveat related to the assumption that the fluid is fully turbulent everywhere, we note

that, the fracture width and the fluid velocity both decrease as one approaches the two containment

interfaces at the stress barriers (Figure II.1). In these regions the flow will certainly transition to

the laminar regime. This transition is not accounted for in our model.

Having clarified these limitations, let us now outline the model. We consider a reservoir layer

of uniform thickness H contained at the top and bottom by two, higher stress layers assumed

to be effective barriers to upward and/or downward hydraulic fracture (HF) growth (Perkins and

Kern, 1961). A sketch of this geometry is given by Figure II.1. Provided the HF length is sev-

eral times greater than the thickness H , we assume a uniformly-pressurized HF cross section and

slowly-varying HF width (opening) with respect to coordinate x (Perkins and Kern, 1961; Adachi

and Peirce, 2008). These assumptions allow us to derive an expression for the opening W of an

elliptical crack in an elastic rock (Nordgren, 1972), which is given by

W (x, z, t) =
1− ν
G

(H2 − 4z2)1/2(p(x, t)− σ), (II.2)
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Figure II.1: PKN fracture geometry

where G is the shear modulus of elasticity, ν is the Poisson’s ratio, H is the height of the HF. The

fluid pressure p(x, t) is taken as uniform in each vertical cross section, and σ is the uniform in-situ

stress in the reservoir opposing the HF opening.

Mass conservation for the incompressible fluid flow in the crack is

∂A

∂t
+
∂q

∂x
= 0, (II.3)

where A = πω(x, t)H/4 is the area of the elliptical crack and ω(x, t) is the maximum opening

in the cross section ω(x, t) = W (x, 0, t). Instead of using the Poiseuille equation for laminar

flow (Nordgren, 1972), we model the turbulent flow in the crack using the Gaukler-Manning-

Strickler (Gauckler, 1867; Manning, 1891; Strickler, 1923) parametrization

q2D =

(
−4W 3

ρfp

∂p

∂x

)1/2

, (II.4)

where fp is the Darcy-Weisbach friction factor which can be expressed as

fp = m

(
k

W

)α
, (II.5)
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where k is surface roughness, and α and m are constants with typical values α = 1/3 and m =

0.143 gioia2006,tsai2010model and we explore the effect of varying these parameters later in the

paper. The subscript “2D” in Equation II.4 indicates that the flux is through two-dimensional,

horizontal slices at every height z. The total flux q is given by the integral over the height of the

crack as

q =

∫ H/2

−H/2
q2Ddz, (II.6)

where the details of this integration are given in the Appendix A.A. The result for the total flux is

q = ΛΥω2ϕ

(
−∂ω
∂x

)1/2

,

Λ =

(
4

m

)1/2

B

(
1

2
, ϕ+ 1

)
,

Υ =

√
GH

4ρkα(1− ν)
,

ϕ =
3 + α

4
,

(II.7)

where B is the Beta function (see Equation A.8, or Abramowitz and Stegun (1972)), and Λ and Υ

are parameters of geometry and material properties, respectively. We note that Υ depends on rock

properties and reservoir geometry while Λ depends only on the parameters of the friction factor α

and m, which gives a typical value of Λ = 7.406.

We now substitute the total flux, Equation II.7, into the continuity Equation II.3 and define

Ξ =
4ΛΥ

πH
. (II.8)

Thus, we find the non-linear partial differential equation governing the maximum opening ω(x, t),

which is given by
∂ω

∂t
= −Ξ

∂

∂x

[
ω2ϕ

(
−∂ω
∂x

) 1
2

]
. (II.9)

In Equation II.9, the gradient of opening follows by negative sign (−∂w/∂x) that comes through

fluid flow equation (II.7). In Equation II.9, the gradient of opening should be a negative value,

otherwise the square root will produce a complex number. This can be explained by the fact that,

the fluid always flow from high pressure to lower pressure and not the other way. Therefore, the
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gradient of pressure, which in this case is directly proportional to gradient of width with positive

coefficient, is always negative. Hence,
∂w

∂x
< 0

We then specify three boundary conditions and an initial condition. The third boundary condition

is necessary as the total length of the crack `(t) is unknown a priori and must be determined as part

of the analysis. We apply a zero opening initial condition at t = 0 and by the following boundary

conditions:

I. No opening at the crack tip:

x = ` ⇒ ω(`, t) = 0.

II. No fluid loss through the crack tip:

x = ` ⇒ q(`, t) = 0.

III. Constant volume rate of flow at the inlet:

x = 0 ⇒ q(0, t) = qin.

where qin is half of the total fluid injection in the case of symmetric (bi-wing) growth.

Alternatively, qin can be the entire injection rate if HF propagation is biased in one direction

so as to form a single-wing geometry as observed in analysis of some field data such

as Cotton Valley (Rutledge and Phillips, 2003), west Texas (Fischer et al., 2008), east

Texas (Mayerhofer et al., 2000), Mound site in Oklahoma (Warpinski et al., 1999), the

Lost hill field (Emanuele et al., 1998), and in Barnett shale (Maxwell et al., 2002) and also

discussed in (Wright et al., 1999; Murdoch and Slack, 2002).
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E. SCALING

We now look for a similarity solution to Equation II.9. An alternative method of scaling, in the

spirit of Savitski and Detournay (2002), is detailed in the Appendix A.E. This nonlinear pde re-

sembles the equations for viscous gravity currents (Huppert, 1982) and bouyant hydraulic fractures

(Lister, 1990) and, therefore, we look for a similarity solution of the first kind (Barenblatt, 1996).

We start by writing the inlet flux as

qin = ΛΥ

[
w2ϕ

(
−∂w
∂x

)1/2
]
x=0

. (II.10)

Thus, we can scale the pde, Equation (II.9), and inlet flux conditions as

w

t
∼ Ξ

w2ϕ+1/2

x3/2
,

qin
ΛΥ
≡ Q ∼ w2ϕ+1/2

x1/2
,

(II.11)

where we define the scaled flux Q as the ratio of the flux in qin divided by ΛΥ. Combining these

two scalings allows us to define the similarity variables

ξ =
x

Q−2 (Q3Ξt)(4ϕ+1)/(4ϕ+2) λ
, (II.12)

and

w =
(
Q3Ξt

)1/(4ϕ+2)
Ω(ξ), (II.13)

We define the length of the crack `(t) such that ξ = 1 coincides with the fracture tip, therefore, we

have that

`(t) =
[
Q−2

(
Q3Ξt

)(4ϕ+1)/(4ϕ+2)
]
λ, (II.14)

where λ is dimensionless length (for more detail about the scaling see Appendix A.E). We can

insert the similarity formulation into the governing pde and find

Ω− (4ϕ+ 1)ξΩ′ = −(4ϕ+ 2)
[
Ω2ϕ (−Ω′)

1/2
]′
, (II.15)
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The boundary conditions to Equation (II.15) are

Ω(ξ = 1) = 0,[
Ω2ϕ (−Ω′)

1/2
]
ξ=1

= 0,[
Ω2ϕ (−Ω′)

1/2
]
ξ=0

= 1.

(II.16)

This ode can be integrated once by replacing ξΩ′ by (ξΩ)′ − Ω, which gives∫ 1

ξ

Ωdζ − 4ϕ+ 1

4ϕ+ 2
[ζΩ]1ξ = −

[
Ω2ϕ (−Ω′)

1/2
]1

ξ
. (II.17)

Using the tip boundary conditions, we find∫ 1

ξ

Ω dζ +
4ϕ+ 1

4ϕ+ 2
ξΩ = Ω2ϕ (−Ω′)

1/2
. (II.18)

To solve this equation, we will use an orthogonal polynomial series method to obtain a semi-

analytical solution to Equation II.18. The opening width changes most rapidly near the tip and,

therefore, by embedding the asymptotic solution near the tip, we can derive a rapidly-converging

series (Savitski and Detournay, 2002). Near the fracture tip, we expect the fracture width Ω to be

small but changing rapidly. Thus, we expect a dominant balance between the second two terms

in Equation (II.15), which is equivalent to saying that the integral over the fracture width in the

integrated ode, Equation (II.18), is very small. Thus, to leading order, the near tip behavior is

characterized by the ODE
4ϕ+ 1

4ϕ+ 2
Ω = Ω2ϕ (−Ω′)

1/2
. (II.19)

Simplifying and separating, we find

−
∫ 1

ξ

Ω4ϕ−2 dΩ =

(
4ϕ+ 1

4ϕ+ 2

)2

(1− ξ) . (II.20)

Thus, the solution for the width near the tip is

Ω =

[√
4ϕ− 1

(
4ϕ+ 1

4ϕ+ 2

)]2/(4ϕ−1)

(1− ξ)1/(4ϕ−1) . (II.21)

We analyze the tip region later in the paper and show that, although, there is relaminarization in

a small boundary layer near the tip it is a sufficiently small region that the turbulent expression

derived in Equation II.21 still holds.
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Embedding this asymptotic solution into the polynomial series allows us to approximate the

series using only a few terms which clearly shows the dependence upon the parameters and can be

readily adopted for benchmarking purposes. Numerical solutions, although certainly feasible with

existing methods, would not provide the insights or usability of a semi-analytical solution.

F. SOLUTION

1. Overview of the Method

To solve Equation II.18, we construct an orthogonal polynomial series (Savitski and Detournay,

2002). Orthogonal polynomials are sets of functions that follow∫ b

a

R(x)Bm(x)Bn(x)dx = 0, (II.22)

for all m 6= n (where R(x) is the weight function) and∫ b

a

R(x)Bn(x)2dx = hn, (II.23)

if m = n (Abramowitz and Stegun, 1972). The proposed solution is thus in the form of infinite

series using basis functions Ω̂k

Ω =
∞∑
i=0

AiΩ̂i, (II.24)

where Ai are coefficients selected so that the solution satisfies the governing equations. The base

functions Ω̂i must be orthogonal, therefore∫ 1

0

Ω̂iΩ̂jdx = δij, (II.25)

where δij is the Kronecker delta function.

Rapid convergence of the series is promoted by selecting the base functions so as to embed the

near-tip behavior (Savitski and Detournay, 2002), which we found to be of the form Ω ∼ X (1−ξ)B

where X and B are

X =

[√
4ϕ− 1

(
4ϕ+ 1

4ϕ+ 2

)]2/(4ϕ−1)

and B =
1

4ϕ− 1
. (II.26)
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The base functions will then be constructed so that

Ω̂i = Difi(ξ)X (1− ξ)B, (II.27)

where Di are constants chosen so as to satisfy the orthogonality relationship, Equation II.25. Upon

substitution ∫ 1

0

(DiDj)X 2(1− ξ)2Bfi(ξ)fj(ξ)dξ = δij. (II.28)

A convenient choice for the functions fi are the Jacobi polynomials, which have the following

orthogonality relationship (Abramowitz and Stegun, 1972)∫ 1

0

(1− ξ)c−eξe−1Gi(c, e, ξ)Gj(c, e, ξ)dξ = hi(c, e)δij, (II.29)

where Gi(c, e, ξ) is the ith order Jacobi polynomial, expressible as

Gi(c, e, ξ) =
Γ(e+ i)

Γ(c+ 2i)

i∑
j=0

(−1)j
(
i

j

)
Γ(c+ 2i− j)
Γ(e+ i− j)

ξi−j, (II.30)

where Γ(i) is the Gamma function (Abramowitz and Stegun, 1972) and hi(c, e) is the norm of

Gi(c, e, ξ) and given by

hi(c, e) =
i!Γ(i+ e)Γ(i+ c)Γ(i+ c− e+ 1)

(2i+ c)Γ2(2i+ c)
. (II.31)

Setting e = 1, c = 2B + 1 and rearranging Equation II.29 we have∫ 1

0

(
1

hi (2B + 1, 1)

)
(1− ξ)2BGi (2B + 1, 1, ξ)Gj (2B + 1, 1, ξ) dξ = δij. (II.32)

Now comparing Equation II.32 with Equation II.28 leads to the conditions

Di =
1

Xh1/2
i (2B + 1, 1)

,

fi(ξ) = Gi (2B + 1, 1, ξ) .

(II.33)

As a result, the base functions are given by

Ω̂i =
(1− ξ)B

h
1/2
i (2B + 1, 1)

Gi (2B + 1, 1, ξ) . (II.34)

Using the asymptotic near-tip solution, the form of the orthogonal base functions is therefore given

by

Ω̂i =
(1− ξ)1/(4ϕ−1)√
hi

(
4ϕ+1
4ϕ−1

, 1
)Gi

(
4ϕ+ 1

4ϕ− 1
, 1, ξ

)
, (II.35)

where hi is the norm of the basis.
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2. Calculating Coefficients of the Series

Given the basis functions in Equation II.35, we can now calculate the coefficients Ai of the series

in Equation II.24. The approach is to designate equally spaced control points on 0 < ξ < 1 (we

typically used 10 control points) and retain the first n terms of the polynomial series.

Now, it is possible to construct a residual function in terms of Ai and minimize that function.

The chosen residual function embodies the sum of the squares of the mismatch between the left

and right hand sides Equation II.18 at each control point (Savitski and Detournay, 2002). Its formal

expression is given by

∆(A1, · · · ,An) =
Q∑
i=1

(
∆L(ξi,A1, · · · ,An)

∆R(ξi,A1, · · · ,An)
− 1

)2

, (II.36)

where ∆L(ξi, A1, · · · , An) is the left side of Equation II.18 for specific value of ξi, and

∆R(ξi, A1, · · · , An) is similarly the right side of Equation II.18 with the solution paramet-

ric in the flow law parameter ϕ. By minimizing ∆(A1, · · · ,An), we can find the value of each

unknown variable Ai.

3. Length

Now we express evolution of the crack length with respect to time. Recalling Equation II.14,

`(t) = Q−2
(
Q3Ξt

)(4ϕ+1)/(4ϕ+2)
λ.

the crack length evolves with time with power of (4ϕ+ 1)/(4ϕ+ 2). For illustration, if we con-

sider values α = 1/3 and m = 0.143 for the Darcy-Weisbach friction factor (Tsai and Rice, 2010),

from Equation II.7 the value of ϕ will be 5/6. Therefore, the value of the power in Equation II.14

for turbulent flow is
4ϕ+ 1

4ϕ+ 2
=

13

16
, (II.37)

while for laminar flow this value is 4/5 (see Equation II.45, recall from Nordgren (1972) solution

for no-leakoff case). By comparing the value of the power of the time in length formula for laminar

and turbulent flow, we can see that the power in laminar flow is within 1% of turbulent flow and

they are very close to each other.
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4. Pressure

In order to find the distribution of pressure along the HF, we invoke elasticity (Equation A.2). The

net pressure inside the crack is therefore expressed in terms of the maximum opening at each cross

section, the height of the crack H , and material properties of the rock according to

p(x, t)− σ ≡ pnet(x, t) =
G

1− ν
w(x, t)

H
. (II.38)

Thus, by replacing the opening from Equation II.13 into Equation II.38

pnet(x, t) =
G

1− ν
1

H

(
Q3Ξt

)1/(4ϕ+2)
Ω(ξ). (II.39)

Now by combining Equation II.39 and Equation II.24

pnet(x, t) =
G

1− ν
1

H

(
Q3Ξt

)1/(4ϕ+2)
∞∑
i=0

AiΩ̂i(ξ(x, t)). (II.40)

Hence, given the solution for the series coefficientsAi, Equation II.35, and the equation for length

scale parameter ξ = x/`(t), the pressure is readily computed.

And finally, in order to ensure that the solution solves the original problem, we can substi-

tute the results back to Equation II.9, bringing everything to one side, and comparing the result

with zero. Figure II.2 indicates that the solution obtained accurately solves the original governing

equations.
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Figure II.2: Substituting back the solution and confirming it solves the problem. The time is

100 sec and other material properties are given in Table II.3
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different value of α.
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Figure II.4: Scaled opening along the hydraulic fracturing. Noting that using just one term is a very

good approximation and n ≥ 2 gives solutions that are indistinguishable. Dashed line correspond

to tip asymptotic solution (look Appendix A.D).

G. RESULTS

The dimensionless opening depends only on the exponent α from the Darcy-Weisbach friction

factor through ϕ (refer to Equation II.7). Figure II.3 shows the sensitivity of the dimensionless

opening Ω with respect to α. It is clear from these results the sensitivity of the dimensionless

opening, Ω, to α is relatively small. However, the actual opening and length will be strongly

affected via the dependence of the scaling quantities on α (see Equation II.13 and II.14).

Here we consider the particular values α = 1/3 and m = 0.143 for the parameters of the

Darcy-Weisbach friction factor. We truncate the Jacobi polynomial series at four terms and the

coefficients are given in Table II.2. From Figure II.4, we can firstly confirm that there is an

excellent match between the tip asymptotic solution and the complete solution over the whole

fracture length. This is because in the PKN problem the average fluid velocity in the fracture is ap-

proximately uniform (Economides and Nolte (2000), see also Kovalyshen and Detournay (2010)).

Moreover, it can be seen that after the second term (n = 2) the solution is indistinguishable with

additional terms. This shows the very rapid convergence enabled by embedding the tip asymptotic

behavior in the form of the base functions. The truncated solution for n = 2 terms for opening is

given as
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Table II.2: Coefficients for Jacobi polynomial series for n = 1, 2, 3, 4 with α = 1/3.

n 1 2 3 4

A1 8.616× 10−1 8.517× 10−1 8.515× 10−1 8.515× 10−1

A2 - 1.115× 10−2 1.124× 10−2 1.124× 10−2

A3 - - 2.904× 10−4 2.954× 10−4

A4 - - - 6.156× 10−6

Ω = (1− ξ)
3
7 (1.1387 + 0.0626ξ),

λ = 1.0874.
(II.41)

The truncated solution in dimensional variables can be obtained from similarity scaling, Equa-

tion II.41, which gives
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(II.42)

We can also write this truncated solution for general form of Ω as

Ω = (1− ξ)
1

2+α [C1(α) + C2(α)ξ] , (II.43)

where C1(α) and C2(α) are constants that vary with the value of α as shown in Figure II.5.
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Figure II.5: Constants Ci and Mi in Equations. II.43 and II.44 as functions of α.

The rapid convergence of the polynomial series motivates us to derive a second order asymp-

totic solution near the tip (see Appendix A.D for derivation of this solution). The asymptotic

solution has the same structure as the truncated solution and is given by

Ωtip = (1− ξ)
1

2+α [M1(α) +M2(α)ξ] ,

M1(α) = (α + 2)−
α+1
α+2

(
α + 4

α + 5

)2/(α+2)(
1 + α +

(α + 2)(α + 5)

(α + 3)(α + 4)

)
,

M2(α) = (α + 2)−
α+1
α+2

(
α + 4

α + 5

)2/(α+2)(
1− (α + 2)(α + 5)

(α + 3)(α + 4)

)
.

(II.44)

A comparison between the coefficients of the asymptotic solution and the truncated solution is

given in Figure II.5

1. Applications

We now present a few examples illustrating the practical relevance of the newly-derived solution.

The purpose is:

I. To provide a comparison between laminar and turbulent flow solutions for an example high-

rate water-driven HF to show that the difference is significant and therefore use of the laminar

model in instances where Reynolds number is large can lead to substantial errors.
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II. To compare the expected Reynolds numbers for different fluid families (refer to the Appendix

A.C.1) in order to clarify conditions under which the turbulent and laminar models are expected

to be relevant.

III. To show the size of the near-tip laminar zone relative to the fracture as a whole, thereby clari-

fying conditions under which the majority of the HF is in turbulent regime.

Here we compare the turbulent solution with the laminar solution of Nordgren (1972), where

the opening, net pressure, and length are given by

wN(0, t) = 2.5

[
µq2

in

H

(1− ν)

G

] 1
5

t
1
5 ,
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[
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in

µH4

G
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] 1
5

t
4
5 ,
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[
µq2

in

H6

G4

(1− ν)4

] 1
5

t
1
5 .

(II.45)

The parameter values used in the example case are given in Table II.3 and the characteristic

Reynolds number is Re∗ = 104. At this Reynolds number, the flow is turbulent for all values of

roughness and, therefore, the Nordgren (1972) solution does not apply. Hence, this comparison

illustrates the magnitude of the error associated with inappropriately choosing the laminar model

instead.

Figure II.6 shows that the crack opening profile for the turbulent solution is similar to the

Nordgren (1972) solution for laminar flow when the opening is normalized by the opening at the

wellbore. However, the magnitude of the opening, shown in Figure II.7a, is over 50% greater for

the turbulent model. This greater opening is caused by a larger fluid net pressure in the turbulent

case (Figure II.7b). Finally, because the total volume is the same in both cases, the laminar model

overpredicts the length by over 40% (Figure II.7c). Hence, the turbulent model shows that high

Reynolds number treatments will result in higher pressure, greater widths, and shorter lengths than

predicted by incorrectly-applied laminar models. This result is also consistent with comparisons

for the large leak-off PKN-type solution presented by Kano et al. (2015) and discussed based on

scaling arguments by Ames and Bunger (2015).
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Table II.3: Material properties and physical constants for illustration.

Parameter Value

qin 0.2 m3 s−1

ν 0.25

µ 0.001 Pa·s

ρ 1000 kg m−3

k 0.3 mm

m 0.143

H 20 m

G 30 GPa

α 1/3
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Figure II.6: Normalized variation of maximum fracture width in different cross sections for laminar

and turbulent flow.
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Figure II.7: Comparison between laminar and turbulent solutions for the parameters given in Ta-

ble II.3. (a) Maximum fracture width at x = 0, (b) Predicted fluid net pressure at the wellbore, (c)

Fracture length.

It is therefore shown that substantial errors in predictions can arise due to misuse of the laminar

or turbulent models. Instead, the choice should be made based on a calculated value of Reynolds

number characterizing the regime for a given case.

To address the second objective of this section, comparing the expected Reynolds numbers

for different fluid families, we examine four fluids. To see the effect of changing the fluid on the

value of the characteristic Reynolds number, we assume the flux qin and height H are constant

and use the values given in Table II.3. Referring to Table II.4, the value of µ/ρ for different

fluids is given. The biggest number in the table corresponds to cross-linked gel and is equal to

41.67 × 10−5 m2 s−1. The smallest value is associated with CO2 (8.34 × 10−8 m2 s−1). Hence,

the ratio of characteristic Reynolds number for those two cases is equivalent to the ratio of density

over viscosity for those two fluids, namely around 5000. This contrast of Reynolds number can be

large enough to change the flow regime from laminar to turbulent. We now examine the role of

geometry and pumping rate. Typical heights of HFs fall in the range 20 m < H < 200 m (Fisher

and Warpinski, 2012). We will take the range of injection rates from 0.01 m3 s−1 < qin < 0.2

m3 s−1. Hence the ratio is 5 × 10−5 m2 s−1 < qin/H < 0.01 m2 s−1. Typical Reynolds numbers

for the 4 fluids and their densities and viscosities are listed in Table II.4. Based on open channel
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Table II.4: Different fracturing fluids and their rheology.

Fluid
Density Viscosity Kinematic Viscosity

ρ (kg m−3) µ (Pa·s) µ
ρ

(m2 s−1)

Water 1000 0.001 10−6

X-linked Gel 1200 0.5 41.67× 10−5

CO2 (Supercritical CO2) 600 5× 10−5 8.34× 10−8

Linear Gel 1200 0.05 41.67× 10−6

problems (Henderson, 1966; Munson et al., 2002), the corresponding range Reynolds number for

the laminar regime Re < 500, while Re > 12500 is considered as turbulent regime. The values

in between are thus considered to occupy a transition from laminar to turbulent flow. Accordingly,

fracturing with CO2 will be mostly turbulent flow. The flow regime of the water in most cases is

in transition between laminar and turbulent and in the most field relevant cases is closer to, and

therefore better approximated by, the turbulent regime. The other two fluids lead to laminar flow

(for more details, refer to to the Appendix A.C.1).

The suggested Reynolds numbers are experimentally determined and may change based on

geometric details for open channel problems. For most of the practical cases, Reynolds number

less than 500 is laminar. However, there is no definitive upper limit defining the transition to

turbulent flow (Te Chow, 1959; Munson et al., 2002; Gioia and Chakraborty, 2006). In open

channel problems an upper limit for the transition depends on other parameters like the channel

geometry. Therefore, we discuss two alternative methods for estimating an appropriateRe to define

transition to turbulent flow in order to select an appropriate fluid flow law. First, we compare the

characteristic fluid pressure associated with laminar flow Plaminar to the characteristic pressure

associated with turbulent flow Pturb. In this approach we define Plaminar > Pturb as the laminar

regime and Plaminar < Pturb as the turbulent regime. Although the transition Re depends on the

fluid properties (see the Appendix A.C.2 for details), a typical transition value is aroundRe = 500.
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With this definition and the proposed ranges for different parameters, CO2 is always turbulent and

water is turbulent for nearly all relevant cases (see Appendix A.C.2 for more details).

Returning (briefly) to the definition of GMS, to develop the friction factor, the hydraulic radius

is used. Hydraulic radius (Rh) is a characteristic length that helps to calculate the effect of different

cross sections. Originally, this parameter is introduced so that the pipe flow equations can be

expanded to other non-circular conduits. Mathematically, the hydraulic radius is the ratio of cross

section of the fluid flow over the wetted perimeter (Rh = A/P). For elliptical cracks, the area is

A = πωH/4, and if the eccentricity of the ellipse defined as e =
√

1− (ω/H)2 ≈ 1 its perimeter

is defined as

P = πH

[
1−

∞∑
i=1

(2i)!2

(2i.i!)4

e2i

2i− 1

]
≈ 2H, (II.46)

so the value of hydraulic radius is πω/8. In the PKN model, the cross section is ellipse, so the

average value of the opening in one cross section is (Zia and Lecampion, 2016)

ω =
1

H

∫ H/2

−H/2
W (x, z, t)dz =

π

4
ω, (II.47)

thus, hydraulic radius is half the average value of the opening of the crack at a specific cross section

(Rh = ω/2).

The Moody diagram can be used to determine the transition Re for the purpose of selecting

a fluid flow model (see the Appendix A.B for more details). The premise of this argument is

that for most cases in HF the scaled value of the fracture roughness is in order of 0.05 or higher

(k/w > 0.05). According to the Moody diagram (Appendix A.B), for such a roughness, the fully

turbulent regime occurrs at Re > 104 and the transition from the laminar regime starts around

Re > 2000. We further note that the friction factor in this transition regime is for the most part

closely enough approximated by the turbulent GMS model that it is a viable selection from a

practical perspective.

Finally, the Reynolds number discussed so far is determined by the fluid flow only in the

neighborhood of the injection point. This Reynolds number, however, may not represent the flow

near the fracture tip, where there is a switch from a Reynolds number dominated by the fracture

depth H to a local Reynolds number where the small width of the fracture dominates. As a result,

there is a transition along the crack where the flow regime switches from turbulent flow to laminar
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flow. Thus, we would like to know the ratio of the length of the turbulent regime over the laminar

region. Due to the fact that q is independent of H and only depends on time through x/`(t),

the quantity HRe is a unique function of x/`(t) for a given fluid. This relationship is shown in

Figure II.8. Comparing the values presented in Figure II.8 shows that the value of Reynolds number

near the crack tip where the value of x/`(t) approaches to 1 is close to zero and the behavior of

the fluid in that region is thus laminar. Moreover, Figure II.8 indicates that there is a similarity

between all the graphs; indeed the only thing that changes from one plot to the other is the value

of the kinematic viscosity µ/ρ. Combining, then, Equation II.42 and the definition of Reynolds

numbers gives

Re = Re∗F(ξ),

Re∗ =
ρqin
µH

,

F(ξ) = (1− ξ)
3
7 (1 + 0.05497ξ)

5
3 (1 + 0.21005ξ)

1
2 .

(II.48)

The change of F(ξ), which determines the variation of Re for different values of ξ is presented in

Figure II.9. In order to change the order of magnitude of Re compared to Re∗, the value of F(ξ)

should drop at least one order of magnitude which occurs for ξ > 0.9970. Similarly, a two order

of magnitude drop corresponds to ξ > 0.999986.

With the variation of Re along the fracture in mind, consider the example of water as an

injecting fluid (µ = 0.001 Pa·s and ρ = 1000 kg m−3). The characteristic Reynolds number is

Re∗ = 106qin/H . If the height is 20 m and the injecting fluid flow is 0.2 m3 s−1, then Re∗ is 104.

Thus the fluid flow regime based on the characteristic Reynolds number is turbulent. However, as

discussed, Re decreases along the fracture, reaching a transition value of Re ≈ 2000 at around

x/`(t) > 0.98. This indicates that about 98% of the HF length is either in transition or turbulent

regime. Thus, the GMS approximation is accurate enough for practical purposes in the transition

regime. Due to the fact that HFs have a relatively large roughness scale compared to the fracture

opening, in this case a valid global approximate solution can be obtained neglecting the laminar

region near the tip. In other words, this example would correspond to a valid application of the

present model. In contrast, if fluid flow is 0.2 m3 s−1 and the height of the crack is 70 m, then

Re∗ ≈ 2900, which is in transition to turbulent regime. In this case, Reynolds number drops to

less than 2000 at about x/`(t) > 0.68. In this case, then, 68% of the HF is either in transition or is
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Figure II.8: Reynolds number variation along the crack. By knowing the height of the barrier H ,

it is possible to find the Reynolds number at any points inside the crack. The time dependence is

embedded in length of the crack which can be seen in x/`(t). Note that this graph still depends on

pumping rate qin.

37



0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure II.9: Change of F(ξ) versus ξ.

in turbulent regime which shows that around 1/3 of the crack is still in the laminar regime. In this

latter example an approach considering the presence of both a turbulent and laminar region within

the HF would be required.

H. CONCLUSIONS

The flow regime for some HF treatments is turbulent over the vast majority of the HF length. In

particular, high-rate, water-driven HFs, as well as CO2 driven fractures, tend to this regime. This

is in contrast to the lower-rate, gel-driven fractures which comprised the main interest during the

development of many HF solutions based on laminar flow models. With these limitations in mind

the scope of this study was limited to consider fully turbulent flow throughout the fracture, ignoring

the effect of the transition of the fluid regime from turbulent to laminar flow at crack tip or in the

boundary at top and bottom of the reservoir. Also, considering this limiting regime, the solution

ignores the effect of fracture toughness.

Here we have presented a model for a blade-shaped (PKN) geometry HF growing in an im-

permeable rock and driven by a turbulent fluid. We derive a semi-analytical solution which: (a)

embeds all rock, fluid, and geometric parameters in a scaling so that the resulting ode can be
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solved once for all cases, and (b) provides an accurate solution keeping only 2 terms of a polyno-

mial series solution. The rapid convergence is enabled by embedding the near-tip behavior, also

solved here in the course of the solution method, in the form of orthogonal polynomials. Failure

to recognize the appropriate flow regime will lead to erroneous application of models based on

laminar flow. Incorrect models are estimated to over predict the fracture length and under predict

the fracture width and pressure by 40-50%. As such, this model not only provides a benchmark

solution for numerical simulation and a means for rapid estimation of fracture dimensions. It also

provides impetus for ongoing research including experimental studies to find the most appropriate

values of parameters m and α for turbulent flow within a rough-walled deformable slot such as is

encountered in HF applications.

Here we show that using laminar flow instead of turbulent flow under conditions where most

of the HF has Re > 2500 can lead to enormous errors in calculating the fracture opening (i.e.

more than 100% at 1000 seconds of injection). And also a sizable error (>50% as shown in Fig-

ure II.7) is induced on the crack length and fluid pressure estimation. Ongoing efforts are aimed

at expanding the ability of the model to consider the turbulent regime when it is appropriate to

use a different form other than the generalized GMS equation. It is expected this will be partic-

ularly necessary under conditions where proppant transport and the use of rheological-modifying

additives are considered.
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III. SOLUTION FOR A PLANE STRAIN ROUGH-WALLED HYDRAULIC

FRACTURE DRIVEN BY TURBULENT FLUID THROUGH IMPERMEABLE ROCK

A. PREAMBLE

The content of this chapter comprises a preprint of Zolfaghari et al. (2017). It presents the asymp-

totic semi-analytical solution for plane strain HF driven by fluid with flow in the rough-walled

fully turbulent regime. The solution is generated using a method inspired by Adachi (2001a) for

the laminar regime. The tip asymptotic solution is developed for a crack filled with fully-turbulent

fluid. The solution is compared with the numerical model provided by collaborator, Dr. Egor

Dontsov. The comparisons between the numerical simulations and the semi-analytical solutions

indicates a good agreement, and further it shows that the laminar-turbulent transition region is rel-

atively small. This means that an accurate solution can typically be obtained by either the laminar

or turbulent solution, without need for numerical simulation, choosing the solution corresponding

to the larger pressure, larger opening, and shorter length.

B. ABSTRACT

The impact of turbulent flow on plane-strain fluid-driven crack propagation is an important, but

still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic

fracturing has experienced over the past decade, especially in the area of fracturing fluids, have

played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Mo-

tivated by the increasing preponderance of high rate, water-driven hydraulic fractures with high

Reynolds number, we present a semi-analytical solution for the propagation of a plane-strain hy-
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draulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses

a power law relationship between the Darcy-Weisbach friction factor and the scale of the frac-

ture roughness, where one specific manifestation of this generalized friction factor is the classical

Gaukler-Manning-Strickler approximation for turbulent flow in a rough walled channel. Conser-

vation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a

semi-analytical solution using an orthogonal polynomial series. An approximate closed form solu-

tion is enabled by a choice of orthogonal polynomials embedding the near-tip asymptotic behavior

and thus giving very rapid convergence; a precise solution is obtained with two terms of the series.

By comparison to numerical simulations we show that the transition region between the laminar

and turbulent regime can be relatively small so that full solutions can often be well-approximated

by either a fully laminar or fully turbulent solution.

C. INTRODUCTION

Hydraulic Fracturing is one of the major tools used to stimulate extraction of oil and gas from

subsurface reservoir rocks. In this method fluid is used to drive crack propagation. The research to

date has tended to use laminar flow models to describe fluid movement within hydraulic fractures

Khristianovic and Zheltov (1955); Geertsma and De Klerk (1969); Nordgren (1972); Adachi and

Detournay (2002); Garagash and Detournay (2000); Garagash (2006). Apart from high flow rate

and relatively small crack opening, the recently increasing tendency to use water as a fracturing

fluid instead of highly viscous gels King (2010) can significantly increase the Reynolds number.

Therefore, the flow regime for hydraulic fracturing applications that have emerged over the past

two decades is not strictly laminar, but instead can be in transition and even fully turbulent flow

regimes. As an illustration, in a typical hydraulic fracture (HF), the injection flow rate is usually

0.05−0.2 (m3/s), and the reservoir thickness is 50−200 (m). A typical way to illustrate Reynolds

number Reynolds (1883) is through ρ〈v〉Dh/µ, where 〈v〉 is the average fluid velocity andDh is the

hydraulic diameter of the flow distribution. Here the hydraulic diameter is defined as Dh = 4A/P

where A is the cross section of the fluid flow and P is the perimeter of the wet region and for

plane-strain geometry is Dh ' 2w. For a plane-strain HF, the parameter Q0 is defined as the ratio
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of total volumetric injection rate over the heigth of the reservoir. It can thus be expressed as the

average fluid velocity (〈v〉) over the crack width multiply the crack width (Q0/2 = 〈v〉w), both

taken at the inlet. We can then express a characteristic value of the classical Reynolds number as

Re∗ = ρQ0/µ,

where ρ and µ are the fluid density and viscosity, respectively, and Q0 is the fluid flow rate per

unit length that has a dimension of (m2/s). If water is used as a fracturing fluid, the density and

viscosity will be 1000 (kg/m3) and 0.001 (Pa.s), respectively. If gel is being used, the density

and viscosity will be 1200 (kg/m3) and 0.5− 1 (Pa.s). Thus, for water Re∗ = 102 − 104 and for

gel Re∗ = 0.01 − 10. This indicates that by changing the fracturing fluid from gel to water, we

expect 2 to 3 orders of magnitude increase of Reynolds number.

Note that here, and throughout this paper, we use water and slickwater as a fluids for com-

parison purposes. Many “water” hydraulic fractures have friction reducing additives, leading to

the name “slickwater”. Here we do not address important rheological differences between wa-

ter and slickwater except to use µ = 0.001 Pa.s for water and µ = 0.003 Pa.s for slickwater.

Also note that it is a common practice to express Reynolds number for non-circular cross-sections

using hydraulic diameter. However, it has been proven experimentally that keeping Reynolds

number constant with hydraulic diameter and changing the aspect ratio, the friction factor will

change. Therefore, there is an ongoing discussion that the definition of Reynolds number through

hydraulic diameter is not accurate Jones (1976). According to Jones (1976) the modified Reynolds

number for plane strain geometry is 2/3 of characteristic value of the classical Reynolds number

(asRe = 2
3
ρ〈v〉Dh
µ

). Thus the characteristic Reynolds number is reduced with constant factor of 2/3

(Re = 2ρ〈v〉Dh/3µ = 2ρQ0/3µ = 2/3Re∗). In this manuscript, for the sake of comparison ev-

erything is defined in terms of characteristic Reynolds number. However, in order to do numerical

modeling, one should use the modified Reynolds number.

Hydraulic fracture models, by and large, account for four physical couplings: 1) solid deforma-

tion due to fluid pressure, 2) fluid flow inside the crack, 3) crack propagation, and 4) leak-off of the

fluid into the rock matrix. Each of these coupled processes is accompanied by its own character-

istic time and length scales. Consideration of turbulent flow introduces transition time and length
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scales from laminar to turbulent regime. This transition is unique to fluid-driven crack propaga-

tion because of the coupling with elastic deformation and crack propagation. From an industrial

point of view, consideration of turbulent flow will change the calculation of crack geometry, fluid

pressure, and rate of crack propagation. Miscalculation of these quantities can lead to problems

like wrong choice of proppant size and scheduling and unwanted crack growth into non-productive

zones. Hence, furthering the understanding the impact of turbulent flow is both challenging and

important.

In order to obtain semianalytical solutions, which are desireable for rapid estimation of fracture

dimensions and for benchmarking numerical simulations, simple geometries are required. One of

the classical models to describe a two dimensional HF is the plane-strain geometry Geertsma and

De Klerk (1969). Its origins are tied to the fact that, in most of the HF treatments, the horizontal

confining stresses are smaller than the vertical overburden stress which will cause the crack growth

to orient in vertical direction. Also the reservoirs in most cases are bounded by barrier layers,

usually with higher stresses, that limit the vertical growth of HFs. At early time, when the length

of the crack is much smaller than the height of the barrier (less than three times the height), yet

much longer than wellbore diameter, the plane-strain estimation is a useful estimate model (Figure

III.1a).

Awareness of the turbulent regime in hydraulic fracturing is not recent, having been recognized

in the seminal work of Perkins and Kern (1961). The subsequent literature has emphasized the

importance of considering turbulent flow (e.g. Ames and Bunger (2015)) especially if the fluid is

a gas Settari et al. (2002); Wei and Economides (2005); Martin and Economides (2010).

For HF, Nilson (1981, 1988) considered unidirectional flow for gas-driven HFs in a high inertia

regime for constant pressure inlet boundary condition. In a similar way, Emerman et al. (1986) in-

vestigated the plane-strain problem for gas-driven fractures with constant inlet flow boundary con-

dition. In another study Siriwardane and Layne (1991) modeled the plane-strain growth of multiple

HFs. In this model there is a constant inlet flux boundary condition and the fluid flow equations are

obtained from analogy to agitated pipe flow. Among the other models that incorporate turbulent

flow, Hayashi and Taniguchi (1999) used the Manning-Strickler channel flow equation with loga-

rithmic friction factor to model radial HF growth, but without expressing the opening and length

of the crack, and hence the answer provides only an estimation for the pressure. In addition, some
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numerical models to simulate HF that considered the turbulent regime have been developed Nilson

and Griffiths (1983); Nilson (1986); Li et al. (2012, 2013). And, indeed there are design models

which incorporate turbulent regime capability (e.g. Meyer (1989)).

The study of the effect of turbulent flow in fluid driven crack growth is not just limited to

industrial hydraulic fracturing. A few investigations consider either constant pressure injection or

buoyancy-driven propagation, appropriate to the geosciences Perkins and Kern (1961); Huang et al.

(1990); Lister (1990); Lister and Kerr (1991); Tsai and Rice (2010); Anthonyrajah et al. (2013).

Tsai and Rice (2010) modeled a very fast drainage of a glacial lake through a sub-glacial fluid

driven crack. They used the Gauckler-Manning-Strickler (GMS) Manning (1891); Strickler (1923,

1981) to model the fluid flow in the rough-walled turbulent regime. This contribution provides a

useful background for the fluid flow model, but the boundary conditions and elasticity formulation

are specific to their problem and not applicable to industrial HFs. Also,Lister (1990) and Lister

and Kerr (1991) solved the problem of dyke propagation by considering turbulent flow.

In recent years, there has been a slowly increasing amount of literature on turbulent flow in

hydraulic fracturing. Kano et al. (2015) published a solution for the large leakoff limit for a blade-

shapped (PKN) HF with rough-walled turbulent flow. Zolfaghari et al. (2017) developed a PKN

HF soultion considering turbulent flow in an impermeable rock, using a general form of the GMS

model to develop their semi-analytical solution. Dontsov (2016) derived a solution for the near-

tip region of a plane-strain HF driven by a turbulent fluid that captures transition from laminar

near the tip to turbulent away from the tip. And, most recently, Zia and Lecampion (2016, 2017)

considered the PKN model with constant injection inlet flux boundary condition for the transition

from laminar to turbulent flow.

The goal of this research is to develop benchmark solutions that can be used to estimate fracture

dimensions and fluid pressure for a plain strain HF driven by a turbulent fluid through impermeable

rock. Because of the open question of the best turbulent flow model for HF, we employ the general

form of Gaukler-Manning-Strickler, thereby capturing a range of behaviors that can be tested in

future experimentation. In order to derive the solution, we use a Gegenbauer series which follows

by the spirit of Adachi and Detournay (2002), and Garagash (2006). This solution provides rapid

convergence due to embedding of the crack tip singularity in the polynomials. This approach is

similar to the more classical case of Chebyshev polynomial series to solve crack problems Erdogan
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et al. (1973). At the end, we provide a discusion of the transition from laminar to turbulent flow,

clarifying the Reynolds number associated with this transition by comparison to numerical sim-

ulations and showing, by way of these comparisons, that the transition region is relatively small.

In other words, the numerical simulations show that a full solution to the problem can often be

usefully approximated by either a fully laminar or fully turbulent asymptotic solution, with the

appropriate choice of solution depending upon the Reynold’s number and the fracture roughness.

D. METHOD

The plane-strain HF refers to the geometry wherein the height of the crack, H , is very large with

respect to the crack half length, `(t) (see Figure III.1). It was originally considered by Khris-

tianovic and Zheltov (1955) and Geertsma and De Klerk (1969), hence it is often called the KGD

HF geometry. The length of the crack, `(t) is also considerably larger than the well diameter such

that the mechanical influence of the wellbore is ignored and the fluid is considered to be injected

from a point source at x = 0. The plane strain fluid injection from the wellbore is considered to

be Q0 = Qin/H where H is the height of the reservoir and Qin is the volumetric injection rate.

The width of the crack, the fluid flux, and the pressure at any time and location is given by w(x, t),

q(x, t), and p(x, t), respectively (see Figure III.1b). Note q = 〈v〉w, where 〈v〉 is the mean veloc-

ity across the fracture width. The conservation of momentum for incompressible fluid flow in the

crack for Newtonian fluid in the plane strain geometry is

−∂p
∂x
− 2τw

w
= ρ

(
∂ū

∂t
+ ū

∂ū

∂x

)
(III.1)

where τw is the shear stress on the wall due to fluid flow, ū is the time averaged fluid velocity in

the direction of the crack propagation. The shear stress in the turbulent regime is

τ = µ
dū

dy
− ρu′v′

which consists of two parts, the laminar shear stress and the turbulent shear stress (see Streeter

(1961a); Munson et al. (2002)). In this model, the fluid velocity has two components, u is the

velocity in the direction of the crack propagation (x direction), and v the other component of the
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fluid velocity is perpendicular to crack walls (y direction). Therefore, each components of the

velocity consists of a time averaged part (ū and v̄), and fluctuation with respect to time (u′ and v′).

Thus, the shear stress is a quantity that is time averaged, which means it can be treated as a steady-

state value. Therefore, the inertia part of the Equation III.1 is negligible (see Zia and Lecampion

(2016, 2017)) and the pressure drop in the crack is

∆p = f(v, w,∆x, k, µ, ρ).

After dimensional analysis (using Π-theorem Barenblatt (1996)), the scaled pressure drop is (see

Munson et al. (2002) for more detail)

∆p

1/2ρv2
=

∆x

w
f(
ρvw

µ
,
k

w
).

Consistent with this dimensional analysis and classical experimental results, fluid flow is modeled

via the Gaukler-Manning-Strickler Gauckler (1867); Manning (1891); Strickler (1923) relationship

q =

(
−4w3

ρfp

∂p

∂x

)1/2

, (III.2)

where fp is the Darcy-Weisbach friction factor and can be calculated as

fp = m

(
k

w

)α
. (III.3)

Here k is the crack surface roughness, and α and m are constants. For the sake of generality, they

are kept variable. Typically in hydraulic fracturing the values for α and m are taken as α = 1/3

and m = 0.143 Gioia and Chakraborty (2006); Tsai and Rice (2010).

For the plane-strain problem in an impermeable rock, conservation of mass is defined as

∂w

∂t
+
∂q

∂x
= 0, (III.4)

where q is the fluid flux and defined through Equation III.2. We can then replace the turbulent

flow (Equations III.2 and III.3) in the continuity equation (Equation III.4) to eliminate q from the

equations. Also by letting

β′ =
2√
ρmkα

, E ′ =
E

1− ν2
, K ′ =

8√
2π
KIC
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(a)

(b)

Figure III.1: Plane strain geometry.(a) Three dimensional. (b) Two dimensional view.

the continuity equation will be given by

∂w

∂t
= −β′ ∂

∂x

[(
−∂p
∂x

)1/2

w
3+α

2

]
(III.5)

In addition to fluid flow, the width, pressure, and length are related by an elasticity equation (based

on dislocation theory Hills et al. (1996)), given by

p(x, t) = pf (x, t)− σ0 = −E
′

4π

∫ `

−`

∂w

∂s

ds

s− x
(III.6)

where p is a net pressure, given by the difference between the fluid pressure and a uniform far field

stress σ0. Also, from linear elastic fracture mechanics, crack propagation proceeds when the stress

intensity factor KI equals a material strength parameter, the fracture toughness (KIC). For the

plane strain case Irwin (1957)

KI = 2

√
`

π

∫ l

0

p(x, t)√
`2 − x2

dx

KI = KIC

(III.7)
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Finally, the boundary conditions and initial condition are Detournay and Peirce (2014)

x = ±`⇒ w = 0, q = 0

q(0+, t) =
Q0

2
, q(0−, t) = −Q0

2

t = 0⇒ w = 0, ` = 0, p = 0

(III.8)

These embody conditions of: 1) zero opening at the fracture tip, 2) zero flux at the fracture tip,

which ensures the fluid and fracture advance together, 3) fluid flux at the inlet balance the influx

from the wellbore, and 4) the fracture has zero initial width, length, and net pressure.

E. SCALING

We define the dimensionless opening Ω, pressure Π, fluid flow rate Ψ, and crack length γ as a

function of time and coordinate ξ as (after Detournay (2004))

w = εLΩ(ξ, t), p = εE ′Π(ξ, t), ` = Lγ(t), q = Q0Ψ(ξ, t), ξ =
x

l
(III.9)

Here ε(t) and L(t) are scaling factors yet to be determined. By considering the total mass balance

(integral of Equation III.4 over the crack), we obtain:

Q0t

εL2
= 2γ

∫ 1

0

Ω(ζ, t)dζ (III.10)

Since we want to preserve the conservation of the mass throughout the analysis, we can choose

ε(t) in a way that simplify our calculations, so

Q0t

εL2
= 1⇒ ε =

Q0t

L2
(III.11)
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Now by inserting the scaling parameters from Equation III.9 and Equation III.11 into the continuity

equation (III.4), elasticity equation (III.6), fluid flux (III.2), and crack propagation (III.7), we can

obtain: (
1− L̇t

L

)
Ω+Ω̇t− ξ

(
γ̇t

γ
+
L̇t

L

)
∂Ω

∂ξ
=

− β′E ′1/2Q
1+α/2
0 t2+α/2

L3+α/2γ3/2

∂

∂ξ

[
Ω

3+α
2

(
−∂Π

∂ξ

) 1
2

] (III.12a)

Π = − 1

4πγ

∫ 1

−1

∂Ω

∂ζ

dζ

ζ − ξ
(III.12b)

Ψ =
β′E ′

1
2Q

1+α
2

0 t2+α
2

L3+α
2 γ1/2

(
−∂Π

∂ξ

)1/2

Ω
3+α

2 (III.12c)

K ′L3/2

Q0tE ′
=

27/2√γ
π

∫ 1

0

Π√
1− ζ2

dζ (III.12d)

where two dimensionless groups can be defined

GT =
L3+α/2

β′E ′1/2Q
1+α/2
0 t2+α/2

, Gk =
K ′L3/2

Q0tE ′
(III.13)

The accompanying boundary and initial conditions are

Ω(±1, t) = 0 , Ω(3+α)/2

(
−∂Π

∂ξ

) 1
2
∣∣∣∣
ξ=±1

= 0 (III.14a)

Ψ(0+, t) =
1

2
, Ψ(0−, t) = −1

2
(III.14b)

γ(0) = 0 , Ω(ξ, 0) = 0 , Π(ξ, 0) = 0 (III.14c)

After scaling the problem, the system of partial differential equations can be solved analytically/

semi-analytically for two limiting cases. One limit is when the fracture toughness is vanishingly

small (Gk → 0) and the other case is for when the fluid friction is vanishingly small (GT → 0).

The fluid friction scaling factor GT is defined in a way that it multiplies the left hand side

of Equation III.12a. Hence, for the case of zero fluid friction (GT → 0), the left side of Equation

III.12a will become insignificant and the problem reduces to the case of crack growth with uniform

internal pressure. This zero-fluid friction (similar to zero-viscosity in laminar flow) limit for HFs

has already been solved Adachi (2001b). However, for zero toughness the problem remains to
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be solved. Thus for the case of negligible toughness, choosing the characteristic scales L so that

GT = 1 leads to (for ε see Equation III.11)

ε =
(
β′2E ′Q

(α−2)/2
0

)− 2
α+6

t−
α+2
α+6

L =
(
β′E ′1/2Q

(α+2)/2
0

) 2
α+6

t
α+4
α+6

(III.15)

Prior to commencing the solution, we should replace this scaling into Equation III.12. After sub-

stitution, we simplify the equations with following changes of variables

γ4/(2+α)Ω̄ = Ω, γ(2−α)/(2+α)Π̄ = Π, γ(6+α)/(2+α)Ψ̄ = Ψ. (III.16)

Once the equation is simplified it becomes independent from the dimensionless parameter γ.

Hence, we can take the integral of both sides of Equation III.12a from ζ to 1, making use also

of the boundary conditions. The governing equations and boundary conditions for Ω̄, Π̄, and Ψ̄ are

then given by ∫ 1

ξ

Ω̄dζ = −α + 4

α + 6
ξΩ̄ + Ω̄

3+α
2

(
−dΠ̄

dξ

)1/2

(III.17a)

Π̄ = − 1

4π

∫ 1

−1

dΩ̄

dζ

dζ

ζ − ξ
(III.17b)∫ 1

0

Π̄√
1− ζ2

dζ = 0 (III.17c)

Ψ̄ =

(
−∂Π̄

∂ξ

)1/2

Ω̄
3+α

2 (III.17d)

Ω̄(±1) = 0 (III.17e)

Ω̄
3+α

2

(
−dΠ̄

dξ

)1/2 ∣∣∣∣
ξ=±1

= 0 (III.17f)

2γ
α+6
α+2

∫ 1

0

Ω̄dζ = 1 (III.17g)

From the scaled equations, we can see that the coupled integro-differential equations (IDE) for

Ω̄ and Π̄ are described with homogeneous boundary conditions (these are given by the equations,

III.17a, III.17b, III.17c, III.17e, and III.17f). Hence, the IDE has been decoupled from γ, and is

only a function of the coordinate ξ and the constant α. Once this system of IDEs solved, we can

come back to Equation III.17g and solve for the scaled length γ. Moreover, when we define the
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fluid flow law, the value of the α will be assigned, i.e. for GMS, α = 1/3. Thus, by assigning a

value for α, the problem will only be function of spatial coordinate ξ.

We will solve this problem using an orthogonal polynomial series. In order to promote rapid

convergence, we construct the polynomial series embedding the near-tip behavior. The near-tip

behavior for crack propagation in plane strain conditions in an impermeable rock is obtained from

semi-infinite crack propagation with constant velocity. The near-tip solution was prepared ac-

cording to the procedure used by Adachi (2001b) (see also Desroches et al. (1994), Garagash and

Detournay (2000)). Therefore, the solution for crack tip is given as follows.

Ω̄tip = Ξ(1− ξ2)ϕ (III.18a)

Π̄tip = χ(1− ξ2)ϕ−1 (III.18b)

where

Ξ =

[(
2 + α

2

)(
α + 4

α + 6

)√
2

α
tan(

απ

2 + α
)

] 2
2+α

(III.18c)

χ =
cot( 2π

2+α
)

4 + 2α

[(
2 + α

2

)(
α + 4

α + 6

)√
2

α
tan(

απ

2 + α
)

] 2
2+α

(III.18d)

ϕ =
2

2 + α
(III.18e)

The details of this solution are provided in Appendix B.B.

F. SOLUTION

Inspired by the approach of Adachi (2001b) and Savitski and Detournay (2002), the scaled crack

opening Ω̄, scaled fluid net pressure Π̄, and scaled fluid flow Ψ̄ are presented as linear superposi-

tions of general and particular solutions. That is

Ω̄ = Ω̄∗ + BΩ̄∗∗ (III.19a)

Π̄ = Π̄∗ + BΠ̄∗∗ (III.19b)

Ψ̄ = Ψ̄∗ + BΨ̄∗∗ (III.19c)
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where Ω̄∗, Π̄∗, and Ψ̄∗ are general solutions that satisfy the field equations including the pres-

sure singularity at the crack tip, and Ω̄∗∗, Π̄∗∗, and Ψ̄∗∗ are particular solutions that satisfy the

inlet boundary conditions. We will construct the general solution, and after that we can find the

particular solution.

1. General Solution

We will start by introducing the polynomial series built with the base function Ω̂∗ as

Ω̄∗ =
∞∑
i=0

AiΩ̂i (III.20)

where Ai are the unknown coefficients that need to be determined. Since we want to promote the

rapid convergence of the series (with only a few terms), the near-tip solution should be embeded

in the base function. Following Adachi (2001b), the base functions will then be constructed as

Ω̂∗i = X (1− ζ)ϕfi(ζ), where X (1− ζ)ϕ embeds Equation III.18a.

Now the attention turns to finding the proper set of functions, fi. A convenient choice is the

Ultraspherical polynomials (Gegenbauer) similar to Adachi (2001b), which have the following

orthogonality relationship (see Abramowitz and Stegun (1972))∫ 1

−1

(1− r2)a−1/2C
(a)
i (r)C

(a)
j (r)dr = h

(a)
i δij (III.21)

where C(a)
i (r) is the ith order Gegenbauer polynomial, expressible as

C
(a)
i (r) =

Γ(a+ 1
2
)Γ(2a+ i)

Γ(2a)Γ(a+ i+ 1
2
)
P
a− 1

2
,a− 1

2
i (r), (a 6= 0, a > −1/2) (III.22)

Here Γ(i) is the Gamma function, P (m,n)
i (r) is the Jacobi polynomial (see Abramowitz and Stegun

(1972)), and h(a)
i is the norm of C(a)

i (r) given by

h
(a)
i =

π21−2aΓ(i+ 2a)

2!(i+ a)Γ2(a)
(III.23)

As a result, the base functions are given by (see in Appendix B.E for details)

Ω̂0 = (1− ξ2)ϕ

Ω̂j = (1− ξ2)ϕ+1C
ϕ+ 1

2
2j−2(ξ) , j > 0

(III.24)
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Note that A0 is thus given through Equation III.18. Similarly, for the pressure, we can construct

the polynomials as

Π̂0 =
ϕ

2π
β(

1

2
, ϕ)2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
Π̂1 =

ϕ(ϕ+ 1)

(2ϕ+ 1)π
β(

1

2
, ϕ)2F1

(
−1

2
− ϕ, 1;

1

2
; ξ2

)
Π̂j =

2j − 1

2π
β(ϕ+ j,

1

2
− j)

[
ξ2(ϕ+ 1)2F1

(
3

2
− j − ϕ, j; 3

2
; ξ2

)
−1

2
2F1

(
1

2
− j − ϕ, j − 1;

1

2
; ξ2

)]
, j ≥ 2

(III.25)

where 2F1(a, b; c; d) is Gauss’ hypergeometric function. As detailed in Appendix B.E, these poly-

nomials are constructed such that the elasticity Equation III.17b is satisfied for any solution with

the form

Ω̄ =
∞∑
i=0

AiΩ̂∗i + BΩ̄∗∗ , Π̄ =
∞∑
i=0

AiΠ̂∗i + BΠ̄∗∗,

that is, with Ai and B coefficient, in both series solutions for Ω̄ and Π̄.

2. Particular Solution

We also must find the particular solution that satisfies the inlet boundary conditions. These are

given by (for details see Appendix B.C)

Ω̄∗∗ = 4
√

1− ξ2 + 2ξ2ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣ (III.26)

Π̄∗∗ = 2− π|ξ| (III.27)
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3. Complete Solution

Upon superposition of the general and particular solution,

Ω̄ = A0Ξ(1− ξ2)ϕ +
∞∑
j=1

Aj(1− ξ2)ϕ+1C
(ϕ+ 1

2
)

2j−2 (ξ)

+ B

[
4
√

1− ξ2 + 2ξ2ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣
]

Π̄ = A0Ξ
ϕ

2π
β(

1

2
, ϕ)2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
+A1

ϕ(ϕ+ 1)

(2ϕ+ 1)π
β(

1

2
, ϕ)2F1

(
−1

2
− ϕ, 1;

1

2
; ξ2

)
+
∞∑
j=2

Aj
(2j − 1)

2π
β(ϕ+ j,

1

2
− j)

[
ξ2(ϕ+ 1)2F1

(
3

2
− j − ϕ, j; 3

2
; ξ2

)
−1

2
2F1

(
1

2
− j − ϕ, j − 1;

1

2
; ξ2

)]

(III.28)

In the above equations, β is the beta function Abramowitz and Stegun (1972). The only un-

knowns here are the value of the constants Ai,B that need to be evaluated, noting again that the

coefficientsAi are the same for both the series for Ω̄ and Π̄ because Equation III.25 is constructed

so as to automatically satisfy elasticity as long as the two series use the same coefficients.

4. Calculating Coefficients of the Series

After designating an appropriate orthonormal set of base functions, we can find the value of the

coefficients Ai and B. We will set Q equally spaced control points on −1 < ζ < 1 – accurate

results were possible withQ = 20 control points – and a truncation order whereby the first n terms

of the polynomial series are retained. Now, it is possible to construct a residual function in terms

of Ai and B, minimizing that function over the coefficient values. The chosen residual function

embodies the sum of the squares of the mismatch between the fluid flow calculated directly from

the scaled form of Equation III.2, and by integration of the scaled continuity Equation III.4 at each

control point. Its formal expression is given by

∆(B,A1, · · · ,An) =
Q∑
i=1


(
−dΠ̄

dξ

) 1
2

Ω̄
1
ϕ

+ 1
2

∣∣∣∣
ξ=ξi

Ψ̄(ξi)
− 1


2

(III.29)
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where Ψ̄ is

Ψ̄ = Ψγ−
6+α
2+α .

Thus from the definition of the continuity Equations III.3 and III.4, and using the scaling parameter

and the relation that is given above between Ψ̄ and Ψ (see Equation III.16) is

Ψ̄ =

(
−dΠ̄

dξ

) 1
2

Ω̄
1
ϕ

+ 1
2 , (III.30)

So, from Equation III.17a

Ψ̄ =

∫ 1

ξ

Ω̄dζ +
α + 4

α + 6
ξΩ̄ (III.31)

The value of
∫ 1

ξ
Ω̄dζ for the opening given in Equation III.28 is thus (see Appendix B.D for details)

∫ 1

ξ

Ω̄dη = A0Ξ

[
β(1 + ϕ, 1

2
)

2
− ξ 2F1

(
1

2
,−ϕ;

3

2
; ξ2

)]
+A1

[
β(2 + ϕ, 1

2
)

2
− ξ 2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)]
+A2

(
1 + 2ϕ

4

)[
−2β(2 + ϕ,

3

2
) +

2(3 + 2ϕ)

(5 + 2ϕ)
ξ(1− ξ2)2+ϕ

+
4

5 + 2ϕ
ξ 2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)]
+

(2ϕ+ 1)(2ϕ+ 3)

2

(
1− ξ2

)ϕ+2
∞∑
j=3

Aj
(4j + 2ϕ− 3)

× C
ϕ+ 5

2
2j−3(ξ)

(j − 1)(2j + 2ϕ+ 1)
−

C
ϕ+ 5

2
2j−5(ξ)

(j − 2)(2j + 2ϕ− 1)


+

2B
3

[
−ξ3ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣+ 2
[
arccos(ξ)− 2ξ

√
1− ξ2

]]

(III.32)
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As a result, the scaled flux is

Ψ̄ = A0Ξ

[
β(1 + ϕ, 1

2
)

2
− ξ 2F1

(
1

2
,−ϕ;

3

2
; ξ2

)
+

1 + ϕ

1 + 2ϕ
ξ
(
1− ξ2

)ϕ]
+A1

[
β(2 + ϕ, 1

2
)

2
− ξ 2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)
+

1 + ϕ

1 + 2ϕ
ξ
(
1− ξ2

)ϕ+1
]

+A2

(
1 + 2ϕ

4

)[
−2β(2 + ϕ,

3

2
) +

2(3 + 2ϕ)

(5 + 2ϕ)
ξ(1− ξ2)2+ϕ

+
4ξ

5 + 2ϕ
2F1

(
1

2
,−1− ϕ;

3

2
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(2ϕ+ 1)(2ϕ+ 3)
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2
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C
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2
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+
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3(1 + 2ϕ)

[
2(1− ϕ)ξ

√
1− ξ2 + (2 + ϕ)ξ3ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2
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+2(1 + 2ϕ) arccos(ξ)] +

1 + ϕ

1 + 2ϕ
ξ(1− ξ2)ϕ+1

∞∑
j=3

AjC
(ϕ+ 1

2
)

2j (ξ)
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Minimizing ∆(B,A1, · · · ,An) leads to a solution for the value of each unknown variable Ai
and B. These are given, for the various truncation orders, in Table III.1, which shows that even

after n = 0, the error value (residual function ∆, see Equation III.29) is small and we obtain

excellent accuracy with just n = 1.

The result for the unknown quantities in table III.1 is valid for the GMS model with any value

of material properties. For different values of α and m from these used in the GMS model we can

use the constants developed in next section (III.G.1).

And finally, in order to ensure that the solution solves the original problem, we can substitute

the results back to Equation III.5 and bring everything into one side, comparing the result to zero.

Figure III.2 indicates that the error is very small and hence the solution obtained is accurate.
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Table III.1: Numerical coefficient and the cost function with 20 control points for series given in

Equation III.33 for α = 1/3.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

A0A0A0 · 10−1 8.0713 9.0139 9.1858 9.4415 9.4515 9.5869 9.5439

A1A1A1 · 10−1 — −2.2352 −2.3760 −2.9232 −2.9353 −3.1958 −3.1323

A2A2A2 · 10−3 — — −4.3260 −14.2971 −14.7491 −21.5904 −19.3527

A3A3A3 · 10−3 — — — −2.6314 −2.7701 −5.4676 −4.5752

A4A4A4 · 10−5 — — — — −3.6924 −92.6891 −56.0962

A5A5A5 · 10−4 — — — — — −2.2782 −1.0473

A6A6A6 · 10−5 — — — — — — −3.0192

BBB · 10−2 6.2160 9.4108 9.6593 9.5281 9.5176 9.6158 9.6370

∆∆∆ 1.09·10−1 2.40·10−3 1.49·10−3 7.98·10−5 7.90·10−5 1.10·10−5 8.73·10−6

γγγ · 10−1 8.1926 8.0910 8.0810 8.0691 8.0687 8.0636 8.0651

10 20 30 40 50 60

-0.00001

-5.×10-6

0

5.×10-6

0.00001

Figure III.2: Substituting back the solution and confirming it solves the problem. The figure is for

t = 100 sec and the rest of the material properties are given in Table III.3 .
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G. RESULTS

1. Behavior of the Solution

The truncated solutions for two terms (n = 1) for the dimensionless opening and pressure are

given as

Ω̄ = A0Ξ(1− ξ2)ϕ +A1(1− ξ2)ϕ+1 + 4B
√

1− ξ2

+ 2Bξ2 ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣,
Π̄ = A0Ξ

ϕ

2π
β

(
1

2
, ϕ

)
2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
+A1

ϕ(ϕ+ 1)

(2ϕ+ 1)π
β

(
1

2
, ϕ

)
2F1

(
−1

2
− ϕ, 1;

1

2
; ξ2

)
+ B(2− π |ξ|).

ϕ =
2

2 + α

(III.34)

Equation III.34 thus shows the general form of the dimensionless opening and pressure for

different values of α. The corresponding values for A0, A1, and B for different values of α are

obtained by the solution method and presented in Figure III.5.

One important observation from Equation III.28 is that the dimensionless opening and pressure

are dependent on the exponent ϕ, which in turn depends on α from the Darcy-Weisbach friction

factor. We wish first to explore if this exponent has a substantial impact on the scaled solution, or

if its main influence is accounted for by the scaling factors (Equation III.15). Figure III.3 shows

the change of the dimensionless opening Ω̄, and pressure Π̄ versus scaled coordinate ξ by changing

the variable α. It is clear from these results the sensitivity of the dimensionless opening, Ω̄, and

pressure Π̄, to α is sufficient only to generate variation of about 30% over the entire possible range

of α. While this is not necessarily “small”, it does demonstrate that the main variation is still

captured via the scaling (Equation III.15).

Next we will examine the convergence of the solution in terms of number of terms (n) retained

in the series solution. To find the values for the constants for this comparison, we used the values

α = 1/3 and m = 0.143, corresponding to the parameters of the GMS. The coefficients are given

in Table III.1 for up to six terms of the Gegenbauer Polynomial series. Figure III.4 indicates that
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Figure III.3: Variation of scaled opening with change of dimensionless length ξ for different value

of α.

Table III.2: Relative values of the solution for increasing numbers of terms in the series.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

γγγ
∣∣
n=i−1

γγγ
∣∣
n=i

1.01256 1.00123 1.00148 1.00005 1.00063 0.999813

ΩΩΩ(0)
∣∣
n=i−1

ΩΩΩ(0)
∣∣
n=i

0.979822 0.9977 0.997308 0.999907 0.998812 1.00035

ΠΠΠ(0)
∣∣
n=i−1

ΠΠΠ(0)
∣∣
n=i

0.980313 0.999533 0.997991 0.999974 0.999286 1.00013

ΨΨΨ(0.5)
∣∣
n=i−1

ΨΨΨ(0.5)
∣∣
n=i

0.955812 0.996164 0.99522 0.999839 0.997991 1.0006
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essentially after n = 1 the solution is unchanged by inclusion of more terms. It is also possible

to see this rapid convergence of the series by comparing the value of scaled length, fluid flux at

middle of the crack, as well as the opening and pressure at the borehole for different values of n.

In doing so, it is clear that the n = 1 solution represents about a 2% change in the predicted length,

width, and pressure compared with the n = 0 solution. Additional terms (n ≥ 2) impact the

solution by only a fraction of a percent (see Table III.2). This proves the very rapid convergence

of the polynomial series due to embedding the tip asymptotic solution in the base functions. Note

that special care should be taken about how the pressure solution compares with the tip asymptotic

solution. From the opening shown in Figure III.4 we can see that at the crack tip the asymptotic

solution and the polynomial series are starting from one point with same shape. As we go further,

the asymptotic solution deviates from the polynomial solution, as expected. However, for the

pressure in Figure III.4, we do not see the same trend. The reason is because at the crack tip the

pressure is going to infinity, which indicates the singularity of the fluid pressure at the crack tip. We

can see that the behavior of the pressure at crack tip and the asymptotic are both going to infinity

with the same trend. The difference is a constant shift that accurs because we needed to satisfy the

inlet condition. This shifting parameter can be found in Appendix B.E (Equation B.76).

2. Dimensional Expressions

Solutions for w, p, and ` are obtained by inverting the scaling procedure explained in the previous

sections. The crack width (w) considering two terms of the series as (n = 1) is

w(x, t) =

(
Q2

0

β′E ′1/2

) 2
α+6
[
A0Ξβ

(
1

2
,
4 + α

2 + α

)
+A1β

(
1

2
,
6 + 2α

2 + α

)
+

4πB
3

] −4
6+α [
A0Ξ

(
1− ξ2

) 2
2+α +A1

(
1− ξ2

) 4+α
2+α + 4B

√
1− ξ2

+2Bξ2 ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣
]
t

2
α+6

(III.35)
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Figure III.4: Scaled opening along the hydraulic fracturing. Noting that using just one term is

a very good approximation and n ≥ 2 gives solutions that are indistinguishable. Dashed line

correspond to tip asymptotic solution. Refer to Table III.1 for the values of error function (Equation

III.29) that associate with different n
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Figure III.5: Constants Ai and B in Equation III.34 for different values of α.

where from Table III.1, A0 = 0.90139, A1 = −0.22352, and B = 0.094108. Similarly, the two

term (n = 1) solution for the pressure is given by

p(x, t) =
β
(

1
2
, 2

2+α

)
(2 + α)π

E ′
(
E ′β′2Q

α−2
2

0

) −2
α+6

[
A0Ξβ

(
1

2
,
4 + α

2 + α

)
+

4πB
3

+A1β

(
1

2
,
6 + 2α

2 + α

)]− 2−α
6+α
[
A0Ξ 2F1

(
α− 2

2(2 + α)
, 1;

1

2
; ξ2

)
+2A1

(
4 + α

6 + α

)
2F1

(
− α + 6

2(2 + α)
, 1;

1

2
; ξ2

)
+
B(2 + α)π

β
(

1
2
, 2

2+α

) (2− π|ξ|)

]
t−

α+2
α+6

(III.36)

Finally, evolution of the crack length is found firstly by recalling Equation (III.17g), then using

Equation III.32 we arrive to

γ =

[
A0Ξβ

(
1

2
, 1 + ϕ

)
+A1β

(
1

2
, 2 + ϕ

)
−A2(2ϕ+ 1)β(

3

2
, 2 + ϕ) +

4πB
3

]−α+2
α+6

.
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Therefore, by combining Equations III.15 and III.9 with the scaled length

` =
(
β′E ′1/2Q

(α+2)/2
0

) 2
α+6

t
α+4
α+6×[

A0Ξβ

(
1

2
, 1 + ϕ

)
+A1β

(
1

2
, 2 + ϕ

)
−A2(2ϕ+ 1)β(

3

2
, 2 + ϕ) +

4πB
3

]−α+2
α+6

(III.37)

The crack length thus evolves with time with power of (ϕ+ 1)/(2ϕ+ 1). For illustration, if we

consider values α = 1/3 and m = 0.143 for the Darcy-Weisbach friction factor Tsai and Rice

(2010), from Equation III.18 the value of ϕ will be 6/7. Therefore, the value of the power in

Equation III.37 for turbulent flow is 13/19 (≈ 0.68).

Now we can go back the same path that we took to derive the equations and solve for different

parameters. The truncated solution in dimensional variables for the specific case of GMS with

α = 1/3 can be obtained from similarity scaling, Equation III.34, which gives

w(x, t) =0.6955

(
Q2

0

β′
√
E ′

) 6
19

t
6
19

[
1.1709

(
1− x2

`2

) 6
7

+ 0.3764

√
1− x2

`2

−0.2235

(
1− x2

`2

) 13
7

+ 0.1882
x2

`2
ln

∣∣∣∣∣∣1−
√

1−
(
x
`

)2

1 +
√

1−
(
x
`

)2

∣∣∣∣∣∣


`(t) =0.8091
(
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√
E ′Q

7
6
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) 6
19

t
13
19 ,

p(x, t) =0.2581E ′
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19
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(III.38)
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Table III.3: Material properties and physical constants for illustration, corresponding to supercrit-

ical CO2 as the fracturing fluid and Barnett Shale as the rock.

Parameter Value

Q0 0.001 m2 s−1

ν 0.2

µ 5× 10−5 Pa·s

ρ 600 kg m−3

k 0.1 mm

m 0.143

E 25 GPa

α 1/3

3. Comparison Between Turbulent and Laminar Solution

Here we compare the solution for turbulent flow to the laminar flow solution Adachi (2001b) (see

also Appendix B.A). For comparison we use parameters intended to be relevant to field-scale

treatments (Table III.3, which correspond to a characteristic Reynolds number of 12000). It is

also important to note that the compressibility of gas has more effect on the crack propagation at

early stage. However, for intermediate/long time, the compressibility has negligible impact on the

solution (see Lecampion et al. (2017)).

The first comparison between laminar and turbulent flow is for the normalized opening. Figure

III.6 illustrates the difference between normalized opening along the crack is relatively subtle;

the scaled turbulent crack width is just slightly narrower. However, this similarity is due to the

normalization. The greater difference is for the opening, pressure, and fluid flow along the crack

for specified time (in this case t = 1000 sec). As we can see in Figure III.7 , there is a more

substantial difference between the solutions in their dimensional forms, around 10% - 30% for this

example.
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Figure III.6: Scaled opening profiles.
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Figure III.7: Opening, pressure, and fluid flow changes along the crack for two cases of laminar

flow and turbulent flow at t = 1000 sec and characteristic Reynolds number of 12000.
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The last comparison is the evolution of crack opening, pressure and length, shown in Figure

III.8. This comparison shows again a difference of 10% - 30% . For example, at t = 600 sec the

crack opening for the laminar solution is 25% greater than the turbulent regime solution.

To generalize these observations, consider the ratios of the turbulent solution compared to the

laminar solution (Equations III.38 and B.1). The ratios of wturb/wlam, `turb/`lam, and pturb/plam

are thus given by

wturb(0, t)

wlam(0, t)
= 0.4832

(
t∗

t

) 1
57

`turb(t)

`lam(t)
= 2.2253

(
t

t∗

) 1
57

pturb(0, t)

plam(0, t)
= 0.2467

(
t∗

t

) 2
57

t∗ =
Q

15
2

0 ρ9k3E ′
1
2

µ′
19
2

= Re19/2 ×
(

k3E ′1/2

1219/2Q2
0ρ

1/2

)
(III.39)

where Re is the characteristic Reynolds number. If we consider the cases that are physically fea-

sible (check Table III.4), the extended range of the parameters for the different fracturing fluids is

shown in Table III.5. These ratios indicate several properties of the turbulent and laminar solu-

tions. Firstly, their ratio is determined not only by the Reynold’s number, but also by the roughness

scale, k, which enters via the GMS equation (Equation III.3). Secondly, the power of time is very

small; −1/57, 1/57, and −2/57 for the ratio of width, length, and pressure, respectively. This

means that the ratios will be relatively constant with time. Finally, the range of these ratios is de-

termined by the range of t∗. In its extreme value for cross-linked gel – a fully laminar case (Table

III.4), t∗ = 2.95× 10−18 and the ratios evolve, with very weak dependence upon time, as shown in

Figure III.9. This comparison essentially shows that inappropriate choice of the turbulent solution

for a case which is actually laminar can result in underestimation of the width by a factor of 10, un-

derestimation of the wellbore pressure by a factor of nearly 70, and overestimation of the length by

a factor of 9. However, in the other extreme, corresponding to supercritical CO2, t∗ = 1.04× 1038.

In this extreme, the ratios shown in Figure III.9 indicate inappropriate use of the laminar solution

instead of the turbulent solution will result in underestimation of the width by a factor of about 3.6,

underestimation of the wellbore pressure by a factor of nearly 14, and overestimation of the length

by a factor of about 3.
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Figure III.8: Opening, pressure, and length of the crack changes by changing the time. For opening

and pressure are the opening and pressure at wellbore when x = 0 and characteristic Reynolds

number of 12000

Table III.4: Range of parameters used in Equation III.39. The maximum value for fluid flow is

overestimated from real field data to capture wider range of parameters.

Parameter Minimum Maximum

Q0 2.5× 10−4 m2/s 0.01 m2/s

k 0.01 mm 2 mm

ν 0.15 0.35

E 5 GPa 100 GPa
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Table III.5: Different fracturing fluids and their physical properties.

Fluid
Density Viscosity Kinematic Viscosity Reynolds (Re∗)

ρ (kg m−3) µ (Pa·s) µ
ρ

(m2 s−1) Min Max

CO2 (Supercritical CO2) 600 5× 10−5 8.34× 10−8 2997.6 119904

Slick-water 1000 0.003 3× 10−6 83.34 3333.34

Linear Gel 1000 0.05 5× 10−5 5 200

X-linked Gel 1000 0.5 5× 10−4 0.5 20
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Figure III.9: The ratio of opening, pressure, and length of the crack for the at inlet by changing the

time for turbulent over laminar. In each plot, we compare the value if, t∗ is minimum or maximum.
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4. Laminar-to-Turbulent Transition of the Solution

The main conclusion from the previous section is that selection of the appropriate solution, laminar

or turbulent, is critically important. It is also clear that arguably the most practically-relevant cases

for water/slickwater are near the transition between laminar and turbulent regimes. Hence, it is im-

portant to clarify the Reynolds number at which the transition occurs and the error associated with

both the laminar and turbulent solutions when the regime is actually in transition. To address this

issue, we present comparison with a numerical solution for a plane strain hydraulic fracture. The

numerical scheme is similar to that used in Dontsov Dontsov (2017), but utilizes a friction factor

that captures the effect of turbulent flow. Two versions of the friction factor are used: Churchill’s

friction factor Churchill (1977) and “virtual Nikuradse” Yang and Joseph (2009), where the latter

is an approximation fitted to Nikuradse’s pipe data Nikuradse (1954). Both friction factors are

originally derived for circular pipes. In order to adapt them to hydraulic fractures, the concept of

hydraulic diameter is used within the fully turbulent zone and the value of the friction factor in the

laminar zone is adjusted to precisely capture the laminar solution between two parallel plates; see

e.g. Dontsov (2016) for such a modification for Churchill’s friction factor.

Figure III.10 shows the variation of the Churchill’s friction factor, virtual Nikuradse approxi-

mation, Gauckler-Manning-Strickler (GMS) friction factor [III.3], and Nikuradse’s pipe data Niku-

radse (1954) versus Reynolds number for different values of roughness. Firstly, one can observe

that the GMS friction factor coincides with the predictions of the Churchill’s formula and virtual

Nikuradse only for large values of Reynolds number and for rough fractures. In addition, there is

a noticeable discrepancy between the virtual Nikuradse and the Churchill’s equation. This is due

to the fact that Churchill developed an approximation to the Moody diagram Moody (1944), while

“virtual Nikuradse” is an approximation that is fitted to the Nikuradse’s data Nikuradse (1954).

The Moody diagram is constructed based on the experiments in naturally rough pipes (see e.g. a

recent study Wang et al. (2014) where the observed friction factor is accurately captured by the

results from Moody diagram), while Nikuradse used pipes with artificially fabricated roughness.

As a result, the observed difference may be related to the details of the roughness profile. Indeed,

structured roughness may preclude early development of turbulence since the latter is a chaotic

phenomenon that requires an instability trigger. Regarding hydraulic fractures in rocks, it is not
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Figure III.10: Variation of the friction factor versus Reynolds number; including Nikuradse’s pipe

data Nikuradse (1954), the Gauckler-Manning-Strickler (GMS) friction factor (Equation III.3), and

approximations of Churchill Churchill (1977) and Yang and Joseph’s virtual Nikuradse approxi-

mation Yang and Joseph (2009).

exactly clear whether the friction factors measured for circular pipes can be directly applied, espe-

cially if there is a manufactured distribution of roughness.

It should also be noted that both friction factors are fitted for the relative roughness not ex-

ceeding a few percent. As a result, care must be taken when using them for very rough fractures,

for which extrapolation of the results is necessary. Note, for example, that the virtual Nikuradse

formula for relative roughness of 0.06, predicts the laminar to turbulent transition at Re ≈ 104,

which is clearly an unphysical behavior. The Churchill’s friction factor, on the other hand, pro-

vides a visually more realistic estimate. To ensure that the friction factors are not used beyond their

applicability regions, the relative roughness is bounded by 0.033 for the virtual Nikuradse and by

0.1 for Churchill. Results for both Churchill and virtual Nikuradse friction factors are presented

for completeness.

Figure III.11 presents the fracture length, wellbore width, and wellbore pressure versus Re

number that is calculated using the numerical solution with Churchill’s friction factor, the laminar

approximation (Equation B.1), and the developed turbulent solution. All the results are normalized
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Figure III.11: Variation of the fracture length (left), wellbore width (middle), and wellbore pressure

(right) versus Reynolds number. Points A, B, and C are referenced by Figure III.13.

by the laminar solution, and the numerical solution is calculated using the parameters summarized

in Table III.3. The results are compared at t = 1000 s. The fluid viscosity was adjusted in order to

achieve the desired variation in Reynolds number. The numerical simulations show a transition of

the solution from the laminar asymptote to the turbulent asymptote. For this sample the transition

occurs at Re ≈ 2000 for the width and pressure, while the transition Re value is slightly higher for

the fracture length (Re ≈ 5000). It should be noted here that these results depend on roughness.

Figure III.12 shows similar results, but the numerical solution is calculated using virtual Nikuradse

friction factor.

From the data in Figure III.11, it is apparent that as the roughness increases, the solution re-

mains close to the laminar and turbulent assymptotics. In hydraulic fracturing, since the roughness

of the rock is usually on the order of at least 0.1 mm, it is often reasonable to assume that the tran-

sition region is small and propagation can be approximated with the turbulent asymptotic solution

for Reynolds number of around 2000 ∼ 3000. This shows that for rougher fractures the error as-

sociated with approximating the transition regime using either the laminar or turbulent solutions is

smaller than for smoother fractures. This observation is consistent with the Moody diagram, (Fig-

ure III.10) which shows that for decreasing roughness of the rock, the fully rough turbulent region
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Figure III.12: Variation of the fracture length (left), wellbore width (middle), and wellbore pressure

(right) versus Reynolds number that are generated based on virtual Nikuradse approximation Yang

and Joseph (2009).

happens at higher Reynolds number and the transition region is larger. Results in Figures III.11

and III.12 demonstrate that the choice of the friction factor may influence the result, in its details

especially for rough fractures, while the results for less rough fractures are essentially unchanged.

In all cases the qualitative behavior is unchanged by the choice of friction factor, the fully turbulent

solution is thus able to define the location of the transition region and to capture the global trend of

the solution even for both Churchill and virtual Nikuradse friction factors. Note, however, that the

relative roughness is bounded in the numerical solution due to the limits of the original pipe flow

experiments, and so, the value of the friction factor may be underestimated for the large roughness

cases. This effectively reduces the fluid friction in the numerical solution, which in turn makes

the fracture longer in the numerical solution and contributes to a discrepancy with the limiting

solution.

To further examine the applicability of turbulent solution, Figure III.13 compares the fracture

widths and pressures for Re = {2000; 4000; 10000} when k = 0.1 mm; the latter points are

indicated by the points A, B, and C in Figure III.11. These three points correspond to the laminar,

transition, and turbulent regimes respectively. Figure III.13 shows that, as expected, the numerical
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solution coincides with the laminar solution for the first case, does not coincide with either laminar

or turbulent solutions for the second case, and coincides with the turbulent solution for the third

case.

It is also interesting to observe the transition from laminar to turbulent fluid flow within the

fracture in Figure III.13, which is characterized by a noticeable change in the pressure behavior.

In particular, for the Re = 104 case, such a transition occurs near the tip and effectively does not

affect the global solution, where the latter coincides with the fully turbulent solution. On the other

hand, the laminar-to-turbulent transition occurs in the middle of the fracture for the Re = 4000

case. Here pressure solution follows the turbulent solution from the wellbore to the middle of the

fracture and then abruptly switches to the laminar solution from the middle of the fracture to the

tip. Consequently, the “zones” of the laminar and turbulent solutions are comparable and therefore

neither of the limiting solutions apply.

Taken together, this comparison between the asymptotic and numerical solutions leads to a

striking conclusion that the error associated with the asymptotic solutions can be relatively small

even when the regime is, in transition, especially when there is large roughness. Hence, for prac-

tical purposes, it will very often suffice to compute both the laminar and turbulent solutions, and

then choose the approximation that corresponds to the larger width, larger pressure, and shorter

length.

H. CONCLUSIONS

The use of low viscosity fracturing fluids at high flow rates has become increasingly important

in HF applications over the past two decades. This trend drives an increasing tendency for the

relevant flow regime to be turbulent. The goal of this study is to implement the general form of

the Gaukler-Manning-Strickler (GMS) friction factor into a plane strain HF benchmark solution.

A semi-analytical solution is thus derived, embedding the relevant near-tip HF behavior into a

Gegenbauer polynomials used to construct the series solution. This approach leads to rapid con-

vergence, with accurate results using just two terms of the polynomial series.
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Figure III.13: Spatial variation of the fracture width (left) and the fluid pressure (right) for three

different values of Re = {2000; 4000; 10000} (from top to bottom) and k = 0.1 mm. These

correspond to points A, B, and C in figure III.11. The red solid lines show the numerical solution

(with Churchill’s friction factor), the dashed black lines show the laminar solutions, and the solid

black lines indicate the turbulent solutions.
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The main use of this solution is as a benchmark, necessary as simulators are increasingly devel-

oped to hand non-laminar flow in more complicated geometries. The present solution enables the

important task of benchmarking the limit where flow is fully rough-walled turbulent, the geometry

is a straight plane strain crack, and the rock is impermeable. Of course this benchmark, like any

simulator that relies upon the GMS equation, bears the limitation that experimental data is not yet

available relevant to the geometry of a narrow, rough, flexible walled, closed channel as encounted

in an HF.

While the limitations of regime and uncertainties with regards to the fluid friction factor are

important caveats, comparison with numerical solutions considering the full laminar to turbulent

transition reveal a somewhat surprising utility of the asymptotic solutions. Namely, the transition

between the range of Reynolds number where the solution is well-approximated by the laminar

solution to the range of Reynolds number where the solution is well-approximated by the turbulent

solution is so abrupt that for most plane-strain (2D) cases, estimation of the length, width, and

pressure can be obtained within a few percent by simply computing both the laminar and turbu-

lent solutions and selecting the solution that corresponds to the largest wellbore pressure, largest

opening, and shorted hydraulic fracture length.
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IV. SEMI-ANALYTICAL SOLUTION FOR A PENNY-SHAPED ROUGH-WALLED

HYDRAULIC FRACTURE DRIVEN BY TURBULENT FLUID IN AN IMPERMEABLE

ROCK

A. PREAMBLE

The content of this chapter comprises a preprint of Zolfaghari and Bunger (Submitted A). It shows

the asymptotic semi-analytical solution for radial geometry with rough-walled fully turbulent fluid

regime HF. The solution is developed using Jacobi orthogonal polynomial series and the result is

contrasted with the solution for laminar HF (Savitski and Detournay, 2002). The tip asymptotic

solution is developed and a proper inlet solution that satisfies the boundary conditions is suggested

as a part of the solution. The solution is compared with the numerical model that has been devel-

oped in Chapter V. The results from numerical simulation and semi-analytical solutions indicates

a good agreement for larger Reynolds number, and the numerical simulations provide practical

bounds on the range over which the asymptotic solution is sufficiently accurate.

B. ABSTRACT

The popularity of high injection rate hydraulic fracturing treatments using low viscosity fluids

is driving a need to consider the turbulent and laminar-turbulent transition regimes of fluid flow

in hydraulic fracture simulators. The radial model is one of the most important geometries both

for benchmarking and as a starter solution for 3D and Planar 3D models. Here we provide a

semi-analytical, orthogonal polynomial series solution for a rough-walled radial (penny-shaped)

hydraulic fracture driven by a fully turbulent fluid. Embedding the appropriate pressure singular-
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ities in a family of orthogonal polynomials used for derivation of the solution leads to very rapid

convergence of the series, requiring just two terms for an accurate result. We conclude with an

investigation of the occurrence of this limiting regime by comparison with numerical simulations,

illustrating that the fully turbulent regime is typically not encountered for the radial geometry,

although the present solution remains necessary as a starter solution and benchmark for the numer-

ical simulators that are required to capture the laminar-turbulent transition. By comparison with

numerical simulations that consider the laminar-turbulent transition, we find that such an estimate

is expected to be sufficient for practical purposes when the inlet opening predicted by the turbulent

solution exceeds the inlet opening predicted by the laminar solution.

C. INTRODUCTION

Growing popularity of high rate fluid injection accompanied with using low viscosity fluids such as

water is one of the key characteristics of modern hydraulic fracturing (HF) King (2010). As a result,

there are an increasing number of practically-relevant cases where the laminar flow assumption

used in many HF models is not satisfied, at least over some non-negligible portion of the fracture.

While most HF models continue to embed a laminar flow assumption (see the review of Adachi

et al. (2007)), which is indeed sometimes valid, the need to consider the turbulent regime dates

back at least as far as the seminal early work of Perkins and Kern (1961), who developed a laminar

and turbulent flow equations for vertically oriented HF and only the laminar flow equation for

radial flow. Later contributions include Nilson (1981, 1988), which investigate the influence of

turbulent flow on plane strain and radial HF with constant pressure inlet boundary condition. Also,

Emerman et al. (1986) and Siriwardane and Layne (1991) have studied the plane-strain HF with

constant inlet fluid flow for laminar and turbulent regime.

More recently there is a growing recognition of the relevance of turbulent flow for HF growth.

For example, Ames and Bunger (2015) demonstrate the potential for incorrect assumption of lam-

inar flow to lead to poor predictions of HF length and pressure. There has also been a deepen-

ing appreciation for not only the importance, but also for the subtleties and complexities of the

mathematical problem and physical phenomena associated with turbulent and/or laminar-turbulent

77



transition fluid flow in HF propagation. The complicated multi-scale structure of a turbulent HF is

explored by Dontsov (2016), who analyzed the near-tip transition of HF from turbulent to laminar

flow using the Churchill approximation to find the friction factor and the Darcy-Weisbach equation

to find an asymptotic solution for a fully turbulent HF. Moreover, Zia and Lecampion (2016, 2017)

investigate the effect of turbulent flow on height contained HF. They develop a semi-analytical

solution for fully rough and smooth flow in a contained (fixed-height) HF. Furthermore, they ap-

plied a drag reduction method from Yang and Dou (2010) to numerically model the transition from

laminar to turbulent regimes, again for a contained HF. We note that one of the benefits of using

the drag reduction method is the ability of it to get extend to model the effect of proppant and drag

reducers in the HF, which Zia and Lecampion (2017) also considered.

Along with these recent studies focusing on a more general modeling framework for HF growth

in turbulent and transition regimes, several contributions comprise an expanding family of semi-

analytical solutions for benchmarking numerical simulators and rapidly computing fracture dimen-

sions in certain simple geometries. These include:

• Kano et al. (2015) develop an analytical solution for large leak-off PKN model using Gauckler-

Manning-Strickler (GMS) solution for rough walled open channel.

• Zolfaghari et al. (2017) provides a semi-analytical solution for the blade-shaped (PKN) geom-

etry in an impermeable rock (no leak-off) using a general form of GMS model. This work

uses a truncated polynomial series to derive a solution for fully turbulent HF, showing also the

crack tip behavior and providing an alternative method to describe the transition from laminar

to turbulent flow.

• Zolfaghari et al. (2017) derive a semi-analytical solution for the plane-strain geometry with no

leak-off, providing an asymptotic solution for a zero-toughness plane-strain HF in the rough-

walled fully turbulent regime. They also compared their result with a numerical solution that

uses the Churchill approximation.

In this study, we present a semi-analytical solution for a rough-walled, fully turbulent, radial

HF. We use a general form of GMS to model fluid flow within the HF. Then following the approach

taken by Savitski and Detournay (2002), we use a Jacobi polynomial series to solve the problem.

The tip solution is embedded in the polynomial series to enable rapid convergence. This extension
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of the approaches of Savitski and Detournay (2002) and Zolfaghari et al. (2017) is non-trivial be-

cause the nature of the radial solution leads to some unique challenges. Most notably, the pressure

singularity at the inlet is much stronger in the turbulent regime than in the laminar regime, with

the consequence of the need to mitigate unbounded values of the crack opening at the center of

the HF in the turbulent regime, whereas the opening is always finite in the laminar regime. Also

the form of the pressure and opening singularity at the leading edge of the HF is also different

from the laminar regime; in order to obtain rapid convergence our solution must account for this

unique near-tip behavior. Finally, because the fluid flux for radial flow decays as one moves away

from the inlet – in contrast to linear flow encountered in the plane strain and PKN models – the

flow regime is much more prone to transitioning flow regime at a scale that cannot be assumed

small relative to the total size of the fracture. To this latter point, we present here comparison to

numerical results from our companion paper, Zolfaghari and Bunger (Submitted B), in which we

develop a numerical solution to analyze the transition of turbulent flow to laminar flow in a radial

HF.

The results in this paper indicate that for a radial, rough-walled HF driven by a fully turbulent

fluid described by the GMS model, the width, pressure, and radius are given by
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(IV.1)

where Q0 is the fluid flow, t is time, r is the coordinate (see Figure IV.1), and β′ and E ′ are given

in Equation IV.5. This solution comprises the first two terms of the orthogonal polynomial series,

which we demonstrate to be sufficiently accurate for most benchmarking and estimation purposes.

In what follows, we will describe the mathematical model, solution method, and range of validity

of this semi-analytical solution.
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Figure IV.1: Radial hydraulic fracture geometry.

D. METHOD

The purpose of this paper is to model the effect of turbulent flow on penny shaped (radial) hydraulic

fracture, where the radius of the crack is defined as R(t) (see Figure IV.1). In this model the radius

of the wellbore is negligible with respect to crack radius, and hence the fluid is taken to be supplied

from a point source at the center of the HF (Figure IV.1) with constant flow rate, Q0. In this model

the width, pressure, and fluid flux at any time and at any location, r, is given by w(r, t), p(r, t),

and q(r, t), respectively. Considering the GMS model Gauckler (1867); Manning (1891); Strickler

(1981), the fluid flux is given by

q =

(
−4w3

ρfp

∂p

∂r

) 1
2

(IV.2)

where ρ is the fluid density and fp is the Darcy-Weisbach friction factor and can be expressed as a

general form of

fp = m

(
k

w

)α
(IV.3)

where k is the crack surface roughness, and m and α are constants. In this study, m and α are

kept variable to maintain the generality of the problem. In the particular case of the GMS model,

m = 0.143 and α = 1/3 Tsai and Rice (2010); Gioia and Chakraborty (2006). Note that we have
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defined the flux as q = 〈v〉w, where 〈v〉 is the mean velocity taken across the fracture opening,

perpendicular to the flow direction. With this definition, for radial flow the fluid mass balance

equation is

∂w

∂t
+

1

r

∂

∂r
(rq) = 0 (IV.4)

By letting

β′ =
2√
ρmkα

, E ′ =
E

1− ν2
, K ′ =

8√
2π
KIC (IV.5)

it is possible to express the Reynolds equation as the combination of Equations IV.2, IV.3, and

IV.4,
∂w

∂t
+
β′

r

∂

∂r

(
rw
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2

(
−∂p
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) 1
2

)
= 0 (IV.6)

We then take the HF opening to be described by elasticity equation in radial geometry

w =
8R

πE ′

∫ 1

0

G(ξ, η)p(ηR, t)ηdη (IV.7)

where the kernel of the integral is
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(IV.8)

Following linear elastic fracture mechanics (LEFM), the crack will propagate if the stress intensity

factor (KI) becomes equal to fracture toughness (KIC). In the penny-shaped geometry the fracture

intensity factor is Rice (1968)

KI =
2√
πR

∫ R

0

pr√
R2 − r2

dr (IV.9)

The system of equations is completed by the boundary and initial conditions. At the crack tip, the

fluid flow is zero and the opening is zero. There is no lag between the fluid and crack tip. In the

radial geometry the fluid is pumped into the crack through the wellbore (see Figure IV.1), thus the

boundary conditions effective on the radial problem are

2π lim
r→0

rq = Q0

w(R, t) = 0 , q(R, t) = 0

w(r, 0) = 0 , q(r, 0) = 0

(IV.10)
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E. SCALING

The following scaling is introduced

w = ε(t)L(t)Ω(ξ, t) , p = ε(t)E ′Π(ξ, t) , R = L(t)γ(t)

q = Q0Ψ(ξ, t) , ξ =
r

R

(IV.11)

where ε(t), and L(t) are scaling factors and need to be appropriately chosen. Also, we can simplify

the equations by using the following change of variables:

Ω = γ
4

2+α Ω̄ , Π = γ
2−α
2+α Π̄ , Ψ = γ

6+α
2+α Ψ̄ (IV.12)

Following the global continuity, using scaling parameters from Equation IV.11, and the fact that

the total mass is conserved, we can choose ε(t) such a way that

γ
2(α+4)
α+2

∫ 1

0

Ω̄(s, t)sds =
Q0t

2πεL3
⇒ ε =

Q0t

2πL3
(IV.13)

After introducing the scaling parameters and using the change of variables from Equation IV.12,

we can obtain the mass balance (IV.6), elasticity (IV.7), fluid flow (IV.2 and IV.3), and crack

propagation (IV.9) as
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(IV.14)

where the scaling groups are defined as

GT =
L1−α/2

βtE ′1/2ε1+α/2
, Gk =

K ′

εE ′L1/2
(IV.15)

82



Scaled boundary conditions and initial conditions are then given by

lim
ξ→0

ξΩ̄
3+α

2
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) 1
2
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GT

2πγ
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Ω̄(1, t) = 0 , Ψ̄(1, t) = 0

Ω̄(ξ, 0) = 0 , Ψ̄(ξ, 0) = 0

(IV.16)

Hence, the resulting system of equations is a function of two parameter groups, GT and GK . We

can solve the problem for limiting cases in terms of the extreme values of these groups. On the one

hand, letting GT → 0 results in the governing equations for a crack with constant fluid pressure.

On the other hands GK → 0 corresponds to the case of zero-toughness. The first limit (GT → 0)

has already been solved Tada et al. (2000). Therefore, the focus of this paper is on the solution for

zero-toughness (GK → 0). We then define the characteristic scale L in a way that lets GT = 1 and

subsequently find ε based on Equation IV.13, hence

ε =
(
βE ′
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(IV.17)

It is interesting to note that time appears in L and ε with opposite powers of equal magnitude and

opposite sign. As a result the crack opening, which scales like the product of these factors (see

Equation IV.11), is independent of time and in this limit of a fully turbulent, rough crack.

The partial differential equations that define the scaling relationships can then be solved for

vanishing fracture toughness (GK → 0). Moreover, by considering that the shear stress defined

for the turbulent regime is time averaged will enable treating the problem as quasi-steady-state and

hence ignoring the inertia (see Zia and Lecampion (2016, 2017); Zolfaghari et al. (2017)). Now,

replacing back Equation IV.17 into Equation IV.13, IV.14, and IV.16 gives
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Equations IV.18a, IV.18b, IV.18c, and IV.18f define a complete system of non-linear ordinary

differential equations (ODE). It will also be useful to integrate Equation IV.18a subject to boundary

conditions (IV.18f) to obtain the global volume balance expression

γ
2(α+4)
α+2

∫ 1

0

Ω̄(s, t)sds =
1

2π
(IV.19)

One of the interesting properties of this set of equations is that the change of variables defined

by Equation IV.12 decoupled Equations IV.18a-IV.18d from the normalized crack length, γ. So,

after solving the system of ODEs given by Equations IV.18a-IV.18d for Ω and Π, we can use

Equation IV.18e to solve for γ.

An orthogonal polynomial series is used to solve the problem. Prior to constructing the or-

thogonal series, the problem is solved for near-tip asymptotic in order to use this result in the form

of the polynomials, thus promoting rapid convergence of the series solution. The near-tip behavior

is obtained through perturbation analysis and the solution that is given by Desroches et al. (1994)

(see Appendix C.A)

Ω̄tip = a0(1− ξ)ϕ

Π̄tip = b0(1− ξ)ϕ−1
(IV.20)
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where

ϕ =
2

2 + α

a0 =

[(
α + 2

2

)√
2

α
tan

απ

α + 2

] 2
2+α

b0 =
cot 2π

α+2

2α + 4

[(
α + 2

2

)√
2

α
tan

απ

α + 2

] 2
2+α

(IV.21)

F. SOLUTION

Following the same approach that has been taken by Savitski and Detournay (2002), we can de-

fine the scaled opening and pressure as the superposition of: 1) the orthogonal polynomials that

define the general solution and constructed based on tip solution, and 2) a particular solution that

incorporates the strong singularity at the crack opening. That is

Ω̄ =
∞∑
i=1

AiΩ̂i + BΩ̄∗

Π̄ =
∞∑
i=1

CiΠ̂i + BΠ̄∗
(IV.22)

where Ω̂ and Π̂ are the general solutions that contains the tip behavior, Ω̄∗ and Π̄∗ are the particular

solution, and Ai, Ci, and B are the constants that need to be calculated. In order to solve the

problem we: 1) derive the general solution, 2) solve for the particular solution, 3) define a relation

between constants, and 4) solve for the constants.
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1. General Solution

We define the general solution of the problem in the form of superposition of orthogonal polyno-

mial series. To promote rapid convergence of the solution, we embed the tip asymptotic in the

general solution. Hence, following Adachi (2001b) and Savitski and Detournay (2002), the base

functions are defined in the form of Ω̂i = a0(1 − ξ)ϕfi(ξ) and Π̃i = b0(1 − ξ)ϕ−1gi(ξ), where

fi(ξ) and gi(ξ) are the functions that need to be chosen. Bear in mind that Π̂i(ξ) = ωi − Π̃i(ξ),

where ωi is the adjustment parameter that ensures the pressure satisfies the propagation criteria

(Equation IV.18c) and will be calculated later. So, we can define the orthogonality of the functions

comprising the solution as∫ 1

0

Ω̂i(η)Ω̂j(η)ηdη = δij ⇒
∫ 1

0

a2
0(1− η)2ϕfi(η)fj(η)ηdη = δij,∫ 1

0

Π̃i(η)Π̃j(η)ηdη = δij ⇒
∫ 1

0

b2
0(1− η)2ϕ−2gi(η)gj(η)ηdη = δij,

(IV.23)

Note that the orthogonality is defined between Ω̂i(η), Ω̂j(η), and η; the Ω̂i(η) functions alone

are not orthogonal, and the reason is to help the construction of the elasticity function which in

the radial solution has the form ηΩ̂i(η). The functions for fi(ξ) and gi(ξ) that satisfy the above

orthogonality equation are the Jacobi polynomials (Gi(a, b, ξ), similar to the function used by

Savitski and Detournay (2002) for laminar flow), which have a norm of hi(a, b) and can be obtained

as ∫ 1

0

(1− η)a−bηb−1Gi(a, b, η)Gj(a, b, η)dη = hi(a, b)δij,

Gi(a, b, ξ) =
Γ(b+ i)

Γ(a+ 2i)

i∑
j=0

(−1)j
(
i

j

)
Γ(a+ 2i− j)
Γ(b+ i− j)

ξi−j,

hi(a, b) =
i!Γ(i+ b)Γ(i+ a)Γ(i+ a− b+ 1)

(2i+ a)Γ2(2i+ a)
.

(IV.24)

Thus, the general solution for scaled fracture opening and fluid pressure are

Ω̂i(ξ) =
(1− ξ)ϕ

h
1
2
i−1(2ϕ+ 2, 2)

Gi−1(2ϕ+ 2, 2, ξ),

Π̃i(ξ) =
(1− ξ)ϕ−1

h
1
2
i−1(2ϕ, 2)

Gi−1(2ϕ, 2, ξ)

(IV.25)
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The adjustment parameter ωi is then defined in a way that Π̂i(ξ) satisfies the propagation condition

(zero toughness), therefore

ωi =
1

h
1
2
i−1(2ϕ, 2)

Γ(i+ 1)Γ(ϕ− 1
2
)

Γ(2ϕ+ 2i− 2)

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(2ϕ+ 2i− j − 2)

Γ(ϕ+ i− j + 1
2
)
×

2F1(
1

2
, i− j + 1;ϕ+ i− j +

1

2
;−1)

(IV.26)

where 2F1(a, b; c; d) is Gauss’ hypergeometric function.

2. Particular Solution

The next step is to find a particular solution that satisfies the inlet boundary condition. According

to fluid flow equation (Equation IV.18e) near the inlet source,

Ω̄
3+α

2

(
−dΠ̄

dξ

) 1
2

∝ 1

ξ
.

Also, because we do not want to have a singularity in the fracture opening, the fluid pressure

will be strongly singular close to inlet, Π̄ ∝ 1
ξ
. On the other hand, as soon as fluid pressure

becomes singular in the form of 1
ξ
, the opening will also become singular through the elasticity

equation (Ω̄ ∝ ln 1/ξ). Hence, the total singularity of the fluid flow will change from 1/ξ to

1/ξ ln(1/ξ). To capture the most appropriate singularity for the crack opening, we choose Π̄ ∝ 1
ξκ

,

and we then find the optimal value for κ that gives the best solution in terms of minimizing a

cost function embodying the mismatch between terms which must be equated according to the

governing equations. It is important to interpret cautiously because choosing the singularity in the

form of Π̄ ∝ 1
ξκ

is not an exact solution to the problem. It is only a proposed method to satisfy the

governing equations, although it is likely that the exact solution behaves similarly.

Building on this proposed form of the particular solution, to also satisfy the crack propagation

condition (Equation IV.18c), the appropriate exact form of scaled pressure is

Π̄∗(ξ) =
1

ξκ
− 1

2

(√
πΓ(1− κ/2)

Γ(3/2− κ/2)

)
(IV.27)

87



Also, from the elasticity equation, the exact form of the crack opening is

Ω̄∗(ξ) =


4β( 1

2
,1−κ

2
)

π

[
Γ(κ−1

2 )
2

(
√
πξ1−κ

Γ(κ2 )
− 2F1( 1

2
,κ−1

2
;κ+1

2
;ξ2)

Γ( 1+κ
2 )

)
−
√

1− ξ2

]
, κ 6= 1

4 ln

(
1+
√

1−ξ2

ξ

)
− 4
√

1− ξ2. κ = 1

(IV.28)

where β(a, b), and Γ(x) are the Beta-function, and Gamma-function respectively Abramowitz and

Stegun (1972). To find the proper value of κ, we will solve the rest of the problem and will choose

κ so as to obtain the most accurate solution.

3. Calculating Coefficients of the Series

Before finding the values of the constants, we need to obtain the relation between Ai and Ci that

satisfies the elasticity equation. If we consider a finite number of terms in the series, we can find

that

Ai =

nΠ∑
j=1

CjLij (IV.29)

where nΠ is the number of terms in the polynomial expansion that defines the pressure. Similarly,

we have nΩ that defines the number of terms for the opening of the crack. Based on substitution of
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Equation IV.29 into Equation IV.18b we obtain (see Appendix C.B)

Lij =
8

π

ωiNi + Pi,j
h

1
2
i−1(2ϕ+ 2, 2)

Ni =

∫ 1

0

η(1− η)ϕGi−1(2ϕ+ 2, 2, η)

(
1 +

ρ

2
ln

(
4(1− η)

1 + η

))
dη

+

∫ 1

0

H(η)η(1− η)ϕGi−1(2ϕ+ 2, 2, η)dη

Pi,j =

∫ 1

0

Mj(η)η(1− η)ϕGi−1(2ϕ+ 2, 2, η)dη

− 1

h
1
2
j−1(2ϕ, 2)

∫ 1

0

η(1− η)2ϕ−1Gi−1(2ϕ+ 2, 2, η)×

Gj−1(2ϕ, 2, η)

(
1 +

ρ

2
ln

(
4(1− η)

1 + η

))
dη

H(ξ) =

∫ ξ

0

[
η

ξ
F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)
− 1

2
ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)]
dη

Mj(ξ) =

∫ 1

ξ

(1− ξ)ϕ−1Gj−1(2ϕ, 2, ξ)− (1− η)ϕ−1Gj−1(2ϕ, 2, η)

h
1
2
j−1(2ϕ, 2)

×
F

(
arcsin

√
1− η2

1− ξ2
,
ξ2

η2

)
dη − 1

h
1
2
j−1(2ϕ, 2)

×

∫ ξ

0

[
η(1− η)ϕ−1Gj−1(2ϕ, 2, η)

ξ
F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)

−(1− ξ)ϕ−1Gj−1(2ϕ, 2, ξ)

2
ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)]
dη

(IV.30)

where F(Λ, k) is the incomplete elliptical integral of first kind Abramowitz and Stegun (1972).

So far this section focuses on finding a connection betweenAi and Ci that ensures the elasticity

equations is satisfied. In the following, we will discuss how to find values for the Ai, B, and Ci
constants. Taking the integral of both sides of Equation IV.18a leads to

ξ2Ω̄(ξ)

2
+

∫ 1

ξ

ηΩ̄(η)dη = ξΩ̄(ξ)
3+α

2

(
−d

¯Π(ξ)

dξ

) 1
2

(IV.31)

Once we substitute the polynomial series, the problem will be dependent on the value of κ

and the coefficients (Ai,B, Ci) that construct the polynomial series. In order to find the unknown

constants, we use a numerical method to minimize the error between the right hand side and left
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hand side of the integrated Reynolds equation (Equation IV.31). Therefore, choosing Q equally

spaced control points on 0 < ξ < 1, we can construct the residual function ∆, which is a function

of the constants (Ai,B, Ci) and the parameter κ that define the inlet singularity. In this method, the

polynomial series are truncated with n number of terms.

∆(κ;B, C1, · · · , Cn) =
Q∑
i=1

(
∆Left(κ;B, C1, · · · , Cn)

∆Right(κ;B, C1, · · · , Cn)
− 1

)2

(IV.32)

Knowing the value of κ is enough to solve the problem and find the residual function. Thus, we

can find the residual function for different value of κ, as shown in Figure IV.2a, and for different

numbers of terms retained in the polynomial series. Thus, from the results provided in Figure

IV.2a, we can generate Figure IV.2b that provides the value of κ associated with the minimum

value of residual function for different numbers of terms and different values of the fluid parameter

α.

Figure IV.2a shows that by increasing the number of terms in polynomial, it is possible to get

increasingly accurate results. However most importantly, we see that choosing an optimal value of

κ gives us nearly the same accuracy even with one term.

Now that we have obtained the optimal value of κ, we can minimize ∆(B, C1, · · · , Cn) to find

the constants. The value of constants B, Ai, and Ci are given in Table IV.1 with the residual value

related to them. We can confirm that an acceptable level of accuracy is obtained from just two

terms of the series (for more detail see also Table IV.2).

Turning now to the convergence of solution for opening and fluid pressure, the number of terms

involved in polynomial series also may have an impact on the final solution.

Figure IV.3 is plotted for GMS parameter (m = 0.143 and α = 1/3) and it again shows that

the solution is accurate to the third digit or so even with just 1 − 2 terms in the series. Table IV.2

also shows the convergence of the solution by using just two terms in series. Recall this rapid

convergence is enabled by embedding the tip asymptotic solution in the polynomial terms.

A note of caution is due here since there is a strong singularity in the pressure, and it can thus

be proven that the only value for κ that strictly satisfies the inlet boundary condition is κ = 1, that

is, when pressure has the form of 1/ξ near the wellbore. For κ < 1 the opening is not singular

and for κ = 1 the opening will also become singular, as previously discussed , and thus in either

case the inlet boundary will not be strongly satisfied. However, for the optimal value of κ the left
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Figure IV.2: (a) Comparison of the residual function for different values of κ and different number

of polynomial terms. (b) Optimum value of κ for different α and number of terms in polynomial.
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Table IV.1: Numerical coefficients, length scale, inlet fluid pressure singularity power, and error

function for 50 control points for the series given in Equation IV.32 for the GMS case (α = 1/3)

n = 1 n = 2 n = 3 n = 4

κκκ 0.69 0.71 0.76 0.765

A1A1A1 3.9414 · 10−1 3.9485 · 10−1 3.9998 · 10−1 4.0049 · 10−1

A2A2A2 5.2468 · 10−2 4.8370 · 10−2 4.6615 · 10−2 4.5774 · 10−2

A3A3A3 — 1.9387 · 10−3 1.8216 · 10−3 1.6676 · 10−3

A4A4A4 — — 1.5714 · 10−3 1.4031 · 10−3

A5A5A5 — — — 2.9025 · 10−4

BBB 1.0818 · 10−1 9.4882 · 10−2 7.7027 · 10−2 7.4377 · 10−2

C1C1C1 7.7713 · 10−1 7.3044 · 10−1 7.3246 · 10−1 7.1507 · 10−1

C2C2C2 — 1.1543 · 10−2 1.4329 · 10−2 1.8262 · 10−2

C3C3C3 — — −2.1549 · 10−3 −1.5130 · 10−3

C4C4C4 — — — 8.0187 · 10−4

∆∆∆ 4.39 · 10−3 2.39 · 10−3 2.34 · 10−4 1.16 · 10−4

γγγ 8.5397 · 10−1 8.5660 · 10−1 8.5673 · 10−1 8.5725 · 10−1

92



Table IV.2: Convergence of the solution with change of the number of terms in the polynomial

series.

i = 2 i = 3 i = 4
γγγ
∣∣
n=i−1

γγγ
∣∣
n=i

0.99692 0.99986 0.99939

ΩΩΩ(0)
∣∣
n=i−1

ΩΩΩ(0)
∣∣
n=i

0.98348 0.96452 0.99459

ΠΠΠ(0.5)
∣∣
n=i−1

ΠΠΠ(0.5)
∣∣
n=i

1.00468 1.00186 1.00149

ΨΨΨ(0.5)
∣∣
n=i−1

ΨΨΨ(0.5)
∣∣
n=i

1.00616 0.99863 1.00388
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Figure IV.3: Comparison of scaled opening and pressure with the crack tip estimation with different

number of terms in the polynomial series.
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Figure IV.4: Comparison of the left and right hand side of the continuity Equation IV.31 for four

terms of the polynomial series.

and right hand side of the Equation (IV.32) are in a very good agreement. Figure IV.4 illustrates

this agreement with the only appreciable error occurring near the inlet. Accuracy will be further

demonstrated in this paper as we compare the semi-analytical solution with a numerical solution.

And finally, in order to ensure that the solution solves the problem, we can substitute the

results back to Equation IV.6 and check if the value of it is negligible. Figure IV.5 indicates that

the solution obtained is accurate.
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Figure IV.5: Substituting back the solution and confirming it solves the problem. The figure is for

t = 100 sec and the rest of the material properties are given in Table IV.3.

G. RESULTS

1. General Solution

Gathering all the calculations together, we can present the opening and pressure for the radial crack

with two terms of the polynomial series as

Ω̄ = A1
(1− ξ)ϕ

h
1
2
0 (2ϕ+ 2, 2)

G0(2ϕ+ 2, 2, ξ) +A2
(1− ξ)ϕ

h
1
2
1 (2ϕ+ 2, 2)

G1(2ϕ+ 2, 2, ξ)

+ B
4β(1

2
, 1− κ

2
)

π

[
Γ
(
κ−1

2

)
2

(√
πξ1−κ

Γ
(
κ
2

) − 2F1(1
2
, κ−1

2
; κ+1

2
; ξ2)

Γ
(

1+κ
2

) )
−
√

1− ξ2

]

Π̄ = C1

[
ω1 −

(1− ξ)ϕ−1

h
1
2
0 (2ϕ, 2)

G0(2ϕ, 2, ξ)

]
+ B

[
1

ξκ
− 1

2

(√
πΓ(1− κ/2)

Γ(3/2− κ/2)

)] (IV.33)

Moreover, it is straightforward to show that that the following holds for the Jacobi polynomials

∫ 1

0

s(1− s)ϕGi−1(2ϕ+ 2, 2, s)ds =
Γ(i+ 1)Γ(ϕ+ 1)

Γ(2i+ 2ϕ)

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(2i+ 2ϕ− j)

Γ(i+ ϕ− j + 2)
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and using this identity and Equation IV.19 combined with Equation IV.33 leads to an expression

of the crack radius as

γ =

 ∞∑
i=1

Ai
h

1
2
i−1(2ϕ+ 2, 2)

(
Γ(i+ 1)Γ(ϕ+ 1)

Γ(2i+ 2ϕ)

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(2i+ 2ϕ− j)

Γ(i+ ϕ− j + 2)

)

+B 4κ

3π(3− κ)
β(

1

2
, 1− κ

2
)

] α+2
−2(α+4)

(IV.34)

For the GMS parameters, this reduces to

γ =

 ∞∑
i=1

Ai
h

1
2
i−1(26

7
, 2)

(
Γ(i+ 1)Γ(13

7
)

Γ(2i+ 12
7

)

i−1∑
j=0

(−1)j
(
i− 1

j

)
Γ(2i− j + 12

7
)

Γ(i− j + 20
7

)

)

+B 4κ

3π(3− κ)
β(

1

2
, 1− κ

2
)

]−7
26

where A1(α), A2(α), A3(α), B(α), C1(α), and C2(α) are the general form of the constants that

depends on the value of α and are given via Figure IV.6.

As Equation IV.33 shows, in the case of rough-walled fully turbulent fluid flow, the crack

opening and fluid pressure are not only functions of the coordinate parameter (ξ), but also functions

of ϕ which in turn directly depends on Darcy-Weisbach friction factor. Therefore, the nest step is

to study the sensitivity of the scaled solution to α (or ϕ). Figure IV.7 shows the impact of parameter

α on the opening and pressure. This comparison indicates that the opening can differ by 30% when

changing the value of α from 0 to 1. So we see that variation of α has an effect on the opening and

pressure but this effect is relatively small.
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Figure IV.6: The values of the constants in Equation IV.33–IV.34 as function of Darcy-Weisbach

friction factor parameter α.
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Figure IV.7: Effect of Darcy-Weisbach friction factor parameter (α) on the solution.
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2. Dimensional Solution

Using Equations IV.11, IV.12, IV.17, and IV.33, we can obtain the crack opening and fluid pres-

sure in dimensional form as

w =

(
Q0

β
√
E ′

) 2
4+α

γ
4

2+α×{[
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(IV.35)

Moreover, using Equations IV.11, IV.17, and IV.34 will provide the crack radius as

R =
(
βE ′

1
2Q

1+α
2

0

) 1
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(IV.36)

And finally, combining Equations IV.11, IV.12, and IV.18d will lead to the fluid flux as

q =Q0γ
6+α
2+α

(
βE ′

1
2Q

1+α
2

0

) −1
4+α

t
−1
2 Ω̄

3+α
2

(
−dΠ̄

dξ

) 1
2

(IV.37)

Substituting m = 0.143 and α = 1/3 (GMS parameters), we obtain the solution present in Equa-

tion IV.1.
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Table IV.3: Material properties and physical constants that are used in this paper for comparison

with laminar solution and numerical models.

Figures
Parameters

Q0
ν

µ ρ k
m

E
α(m3 s−1) (cP) (kg m−3) (mm) (GPa)

Figure IV.14 0.05 0.2 —

600

—

0.143 25 1/3

Figure IV.15a 0.05 0.2 0.126 0.01

Figure IV.15b 0.05 0.2 0.032 0.01

Figures IV.5, IV.15c 0.05 0.2 0.01 0.01

Figures IV.8-IV.12 0.1 0.2 0.01 0.1

3. Laminar Versus Rough-Walled Fully Turbulent Solutions

Here we compare the solution obtained from the rough-walled fully turbulent model with the zero-

toughness solution for laminar fluid flow provided by Savitski and Detournay (2002). In order

to make the comparison, we use the GMS model parameters and the physical parameters that are

defined in Table IV.3.

The first comparison is related to normalized opening, which is defined as the ratio of the crack

opening at some location inside the crack divided by the crack opening at the inlet (see Figure IV.8).

This comparison shows a stronger gradient of the opening near the inlet for the turbulent solution,

as expected due to the stronger singularity in the near-inlet fluid pressure.

In the next step, we compare the crack opening, the fluid pressure, and fluid flow along the

crack between laminar and turbulent flow, as shown in Figure IV.9. Also, in Figure IV.10, we

show the change of crack opening and fluid pressure at wellbore and crack length versus change

of time. This comparison shows that the turbulent regime leads to prediction of larger pressure,

larger opening, and shorter length hydraulic fractures when compared to the laminar regime.
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Figure IV.8: Comparison of normalized opening for laminar and turbulent flow at t = 1000 sec.

It is also useful to examine the evolution of the solution comparison, which is aided by first

defining

Rturb(t)

Rlam(t)
= 1.8089

(
t

t∗

) 1
18

t∗ =
Q

15
13
0 ρ27/13k9/13

E ′
1
13µ′2

(IV.38)

Since opening and pressure are not only function of time but also of position, we can make a similar

comparison graphically via Figure IV.11. Here we give a plot for all values of time by multiplying

the ratio of the turbulent to laminar solution by an appropriate power of t/t∗. Namely, we obtain

from the scaling that wturb(ξ, t)/wlam(ξ, t) ∝ (t∗/t)1/9, and pturb(ξ, t)/plam(ξ, t) ∝ (t∗/t)1/6.

Also, from Figure IV.11, we can see that at crack tip, the ratio of the opening from turbulent over

laminar is zero. This is to be expected because Equation IV.20 shows that at crack tip for the

turbulent case w ∼ ξ6/7 while for laminar flow w ∼ ξ2/3. Since, the power of the turbulent flow

is larger, when we get closer to the crack tip, the crack opening for turbulent flow can goes to zero

faster and make the ratio tend to zero.
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Figure IV.9: Comparison of fracture opening, fluid pressure, and fluid flow along the crack for two

different cases of laminar and turbulent regime.
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Figure IV.10: Comparison of inlet fracture opening, crack length, and fluid pressure at 1/10 of the

radius versus time for two cases of laminar and fully turbulent assumptions.
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Figure IV.11: Difference of fracture opening and fluid pressure along the crack at any time.
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Figure IV.12: Difference of fracture opening, crack length, and fluid pressure versus time for two

contrasting limits of t∗min and t∗max (see Table IV.4 ).
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Table IV.4: Different limits of parameters used to generate Figure IV.12.

Parameter Minimum Maximum

Q0 2.5 m3/s 0.05 m3/s

k 0.01 mm 2 mm

ν 0.15 0.35

E 5 GPa 100 GPa

4. Laminar to Turbulent Transition Solution

Based on the comparison provided in Figures IV.9 and IV.10, it is clear that selecting a solution

corresponding to the correct fluid flow regime is vital for accurate predictions. In this section,

we compare: 1) the asymptotic solution provided for GMS, 2) the laminar asymptotic given by

Savitski and Detournay (2002), and 3) a numerical solution. The numerical solution is described in

detail by Zolfaghari and Bunger (Submitted B). To obtain the friction factor for laminar, turbulent,

and transition regimes, we used the formula given by Yang and Dou (2010). Following this model

to predict the friction factor, we can recreate the Nikurase’s graph, as shown in Figure IV.13.

Figure IV.13 clearly indicates how well this model captures the behavior for laminar, turbulent,

and transition regimes. It also shows that the GMS approximation for a rough-walled channel is

captured by considering this numerical approach.

One of the important parameters in this model is Reynold’s number (Re). Here, we define the

characteristic Reynold’s number (Re∗) as

Re∗ =
ρQ0

µR

where R is the crack radius. Figure IV.14 indicates the variation of fracture length, fracture open-

ing, and fluid pressure versus this characteristic Reynolds number. Note that:

• In order to be consistent, we computed the characteristic Reynolds number for laminar, turbu-

lent, and numerical solution with using the laminar crack radius as the length scale in definition

of Reynolds number.
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Figure IV.13: Variation of Darcy-Weisbach friction factor versus pipe roughness and Reynolds

number. The experimental Nikuradse’s data are obtained from Nikuradse (1954) from Table 2-7

of the reference.

• The numerical simulation is based on the data given in Table IV.3.

• In order to capture the changes of Reynolds number, we kept all the parameters constant except

the value of the viscosity.

• Figure IV.14 and IV.15 are made after 1000 seconds of injection.

• Because of the strong singularity at inlet, the opening and pressure at wellbore are infinity from

Equation IV.1, so the opening and pressure are made for the r = 50 m.

In order to better show the transition from turbulent to laminar flow, we choose three instants

that represent the laminar, transition, and turbulent regime as in Figure IV.15. Here it is interesting

to note that the applied inlet solution is in a very good agreement with numerical solution, thus

confirming the validity of the approach defined in Equations IV.27 and IV.28 to approximate the

inlet pressure singularity in the solution method.

We further observe in Figure IV.15 that as the crack develops, the inlet opening in the turbulent

regime stays constant while in laminar regime the opening increases. This observation confirms

that the opening at inlet is indeed independent of time for the fully turbulent rough-walled regime,

as predicted by the scaling.

Observing the comparison in Figure IV.15 also shows that the laminar solution corresponding

to each time increases until it surpasses the turbulent solution, with the numerical solution matching
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Figure IV.14: Study the change of fracture radius, fracture opening and fluid pressure at r = 50 m.

reasonably well to whichever of the two asymptotic solutions (laminar or turbulent) corresponds

to the larger value of the inlet opening. This behavior suggests that we can estimate the fracture

parameters with an often acceptable precision by only using the asymptotic solutions. Furthermore,

the exceeding of the predicted inlet opening for the turbulent regime by the predicted inlet opening

for the laminar regime can be considered as criteria that indicates the convergence of solution to

the laminar regime after this point.

H. CONCLUSIONS

The main outcome of this work is an asymptotic solution to estimate crack length, fracture open-

ing, fluid flux, and fluid pressure for a rough-walled, radial hydraulic fracture driven by a fully

turbulent fluid. For the specific case of GMS fluid flow model, the asymptotic solution retaining

two terms in the polynomial series is given by Equation IV.1. This solution is indeed shown to

be accurate with only two terms of an orthogonal polynomial series, with such rapid convergence

enabled by embedding appropriate crack tip and inlet singularities in the structure of the family

of Jacobi polynomials used in the solution method. The solution is intended for benchmarking

3D and Planar3D simulators in the limit of the rough-walled fully turbulent regime, as well as
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Figure IV.15: Comparison of fracture opening and fluid pressure with numerical model for three

different cases of, a) laminar fluid flow, b) transition, and c) turbulent regime corresponding to

points A, B, and C from Figure IV.14, respectively. These plots are for the instance of 1000 sec,

and the Reynolds number is regularized with the radius of the crack defined with laminar flow.
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to provide rapid estimation of fracture dimensions in cases where the turbulent regime provides

a more appropriate estimate than the laminar regime. By comparison with numerical simulations

that consider the laminar-turbulent transition, we find that such an estimate is expected to be suffi-

cient for practical purposes when the inlet opening predicted by the turbulent solution exceeds the

inlet opening predicted by the laminar solution.
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V. NUMERICAL MODEL FOR A PENNY-SHAPED HYDRAULIC FRACTURE

DRIVEN BY LAMINAR/TURBULENT FLUID IN AN IMPERMEABLE ROCK

A. PREAMBLE

This chapter comprises a preprint of Zolfaghari and Bunger (Submitted B). In this chapter a nu-

merical simulator is developed to model HF growth driven by fluid across the laminar-turbulent

transition. The numerical results are compared with the laminar asymptotic solution (Savitski and

Detournay, 2002) and rough-walled fully turbulent asymptotic solution (Zolfaghari and Bunger,

Submitted A). This comparison indicates good agreement with the relevant asymptotic limits and

thus confirms the accuracy of the numerical approach proposed here. The evolution of the fluid

regime along the crack is also examined.

B. ABSTRACT

As hydraulic fracturing at high injection rates with low viscosity fluids grows in popularity, so

also there is a growing need to include not only the more common laminar fluid flow, but also

turbulent and transition flow regimes in numerical simulators. One common scenario is embodied

in the behavior of a radial (penny-shaped) hydraulic fracture where flow is turbulent near the inlet,

laminar near the tip, and in transition somewhere between. The main goal of this paper is to

investigate the impact of this transition on hydraulic fracture growth through development and use

of a numerical simulator for penny-shaped hydraulic fractures using the so-called drag reduction

method to estimate the friction factor inside the crack for all relevant flow regimes. Upon solving

this problem numerically for the case of zero toughness, comparing the results with fully laminar
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and fully turbulent asymptotic solutions shows that the early time behavior of radial hydraulic

fractures is predominantly turbulent while large time behavior if predominantly laminar. The time

scale associated with this transition determines the relevance of either limiting regime to practical

cases, i.e. when the transition takes place in a small fraction of the total treatment time it suffices

to approximate growth using the laminar asymptotic solution and when the transition requires are

large time compared to the treatment time it suffices to approximate growth using the turbulent

asymptotic solution.

C. INTRODUCTION

High injection fluid flow with low viscosity fluids are growing in popularity in hydraulic frac-

ture (HF) stimulation of oil and gas wells. As a result, the fluid regime often deviates from the

typically-assumed laminar conditions, and this divergence from the laminar assumption can lead

to inaccurate predictions (Ames and Bunger, 2015). Recognition of the turbulent flow in HF backs

to seminal works of Perkins and Kern (1961), who modeled the vertically confined HF geome-

try using both laminar and turbulent assumptions, while also modeling radial HF growth in the

laminar fluid flow regime. Thereafter, Nilson (1981, 1988) modeled plane-strain and radial HF

growth using a constant inlet fluid pressure condition. On the other hand, Emerman et al. (1986),

and Siriwardane and Layne (1991) used inlet fluid influx boundary condition in their model for a

plane-strain HF in both the laminar and turbulent regimes. Recently, Anthonyrajah et al. (2013)

numerically modeled blade-like (PKN) HF growth using a general inlet boundary condition. Tur-

bulent flow-driven crack propagation also received attention from other fields, for example investi-

gating the influence of turbulent flow in magma transport and natural geothermal injections Lister

(1990); Lister and Kerr (1991). Moreover, turbulent flow-driven crack propagation is considered

in subglacial drainage Tsai and Rice (2010).

Recently, a growing body of literature aims at investing the influence of turbulent flow in HF

growth. Dontsov (2016) provides an asymptotic solution for a laminar-turbulent HF in plane strain

geometry using the Churchill approximation for the friction factor. Dontsov (2016) also explores

the near-tip transition of fluid flow to laminar regime and compares his results with numerical
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simulations. Also, Zia and Lecampion (2017) use a drag reduction method to estimate the fric-

tion factor by employing the approach proposed by Yang and Dou (2010). Besides that, Zia and

Lecampion (2016, 2017) developed a semi-analytical solution to rough-walled and smooth-walled

HF including the impact on height growth HF.

To date, several studies have focused on developing semi-analytical solutions for rapid calcu-

lations and providing asymptotic benchmarking solution for HF with turbulent flow. These have

addressed:

• Blade-shaped (PKN) geometry, large leakoff, and zero toughness with fully turbulent flow in a

rough-walled hydraulic fracture (Kano et al., 2015).

• Blade-shaped (PKN) geometry, zero leakoff (impermeable rock), and zero toughness with fully

turbulent flow in a rough-walled hydraulic fracture (Zolfaghari et al., 2017).

• Plane strain geometry, zero leakoff, and zero toughness with fully turbulent flow in a rough-

walled hydraulic fracture (Zolfaghari et al., 2017).

• Radial geometry, zero leakoff, and zero toughness with fully turbulent flow in a rough-walled

hydraulic fracture (Zolfaghari and Bunger, Submitted A).

• Smooth-walled HF, and rough-walled HF with fully turbulent regime (Zia and Lecampion,

2017).

The main goal of this study is to numerically simulate rough-walled HF growth in the radial

geometry for fluid flow in the laminar, transition, and/or turbulent regimes. To accomplish this, we

use the drag reduction (DR) model from Yang and Dou (2010) to predict the friction factor. We

tailored the DR method to the radial HF problem by adding adjusting parameters and using the

hydraulic diameter to extend the solution from pipe flow. We then use a moving mesh method to

discretize the crack into constant number of elements in each propagation step by stretching the

elements. This problem is formulated with fixed-length scale stepping and an implicit solution is

used to step through the time domain. Within this scheme, an iterative approach is applied to solve

the coupled fluid flow-elasticity equations. At the end, the results are compared with laminar and

GMS semi-analytical approximations.
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Figure V.1: Radial crack geometry.

D. GOVERNING EQUATIONS

Radial or penny-shaped hydraulic fracture geometry refers to axis-symmetric growth that is not

(yet) bounded with fracture height restricting barriers from top and bottom Perkins and Kern

(1961). The quantities corresponding the solution are crack width (w(r, t)), fluid pressure (p(r, t)),

and fluid flux (q(r, t)) for any specified time (t) and radius (r) (see Figure V.1) as well as the crack

radius (R(t)). The main goal of this paper is to provide a numerical solution for all these quantities

in the laminar, turbulent, and/or transition from laminar to turbulent fluid flow regimes. Note that

the analytical solution for fully turbulent rough-walled radial HF is developed by Zolfaghari and

Bunger (Submitted A). However, in the radial geometry there will often be a turbulent region near

the inlet, laminar near the tip, and transition in between. Hence, we will herein seek a solution

capturing this transition.

We begin, then, with the Darcy-Weisbach equation, which gives a relation between pres-

sure drop and fluid flux for circular pipes. Using the hydraulic diameter, one can extend Darcy-

Weisbach equation so that it becomes suitable for non-circular conduits, that is Streeter (1961b)

∂p

∂r
= −fp

ρ

2

V 2

Dh

where ρ is the fluid density, V is the average fluid velocity along the width of the crack, fp is

the Darcy-Weisbach friction factor, and Dh is the hydraulic diameter of the cross-section and is
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Figure V.2: Effect of Darcy-Weisbach friction factor parameter (α) on the obtained solution.

defined as Dh = 4A/P where A is the area of the fluid flow cross-section and P is the perimeter

of the wetted area. Later in this section, we will show that in DR model, fp ∝ u∗/V , where u∗ is

the shear velocity (see Equation V.2). After manipulating the Darcy-Weisbach equation for radial

flow, we obtain

q =

(
−4w3

ρfp

∂p

∂r

) 1
2

(V.1)

where q = V w is the fluid flux classically used in HF modeling. It remains to describe the friction

factor fp, typically considered to be a function of Reynold’s number and the surface roughness.

In this paper, we will use the fluid flow model based on drag reduction (DR) (see Yang and Dou,

2010). The main reason to choose the DR model is that it can predict the friction factor for the

laminar, transition, and fully rough turbulent regimes very well. Figure V.2 indicates the accuracy

of the DR model and shows the confirmation with Nikuradse’s experimental data Nikuradse (1954).

In this section, at first we will explain the DR model, and then we expand that model for HF

problem.
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1. DR Model

Fluid flow in a pipe produces fluid friction. But, by inclusion of additives, the fluid turbulent

friction can reduce and the term “drag reduction” refers to this phenomenon. Before going further,

it is necessary here to clarify some additional terminology and definitions.

The first term to introduce is the shear velocity, u∗, that is, a velocity that defines the shear

between layers in the flow stream. In fact, shear velocity is not really a velocity, per se, but rather

it is shear stress that has been defined in the units of velocity using a scaling involving the fluid

density, ρ. Normally, the shear velocity is defined as
√
τw/ρ where τw is the wall shear stress

(Streeter, 1961b). Also, the definition of friction factor (Darcy-Weisbach) is

fp = 8
(u∗
V

)2

. (V.2)

The other important terminology in this section is the definition of Reynolds number. In this

model, Yang and Dou (2010) use various definition of Reynolds number classified into three cate-

gories:

I. Shear Reynolds number (Re+), or the Reynolds number for shear velocity, which is defined as

Re+ = ϑ
ρu∗Rh

µ
(V.3)

where µ is the fluid viscosity, and ϑ is an adjusting constant that makes Equation V.3 usable

for a crack geometry instead of a circular cross section.

II. The roughness Reynolds number, that is defined as

Re∗ =
ρu∗δ

µ
(V.4)

where δ is the roughness of the rock.

III. The characteristic Reynolds number which is expressed as

Re =
ρV Dh

µ
(V.5)

114



Note, there are relationships between different Reynolds numbers that connect them together.

For example, the roughness Reynolds number and shear Reynolds number are related as

Re∗ = Re+ δ

ϑRh

(V.6)

Also, we can show that
V

u∗
= ϑ

Re

4Re+
(V.7)

The DR model uses these quantities to first define

rl(Re
+) =


1 , Re+ < Re+

c(
Re+

c

Re+

)2

e

(
Re+c
Re+

)2

−1
, Re+ ≥ Re+

c

(V.8)

where Re+
c is the critical value of the shear Reynolds number and is the limiting value that after

that the turbulent burst starts to appear, rl(Re+) is the probability of the laminar occurrence, and

rt(Re
+) is the probability of the turbulent occurrence. Note that rl + rt = 1. So based on the DR

approach, for Re∗ ≤ Re∗c (that is, the fluid flow is not wholly turbulent yet in another words, the

surface roughness is not dominant over the laminar sub-layer)

V

u∗
=
rl
m
Re+ + rt

[
2.5 lnRe+ − 66.69

(
Re+

)−0.72
+ 1.8− C1(Re∗)

]
(V.9)

and

C1(Re∗) =2.5 ln

(
1 + αcRe∗

5

1 + αcβcRe∗
5

)
+ 0.282

( αcRe∗

1 + αcRe∗
5

)2

−

(
αcβcRe∗

1 + αcβcRe∗
5

)2
+

0.5αcRe∗(1− βc)(
1 + αcRe∗

5

) (
1 + αcβcRe∗

5

)

θc =



0 , Re∗ ≤ Re∗l

π

 ln
(
Re∗
Re∗l

)
ln
(
Re∗c
Re∗l

)
 , Re∗l < Re∗ ≤ Re∗c

π , Re∗ > Re∗c

αc =
1− cos θc

2

βc =1− 0.4465

(
αc +

θc
π

)

(V.10)
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where Re∗l and Re∗c are the critical Reynolds numbers that define the angle of separation behind

the roughness particles (see Yang and Dou (2010) for more details). Note that when Re∗ ≤ Re∗l,

θc and αc are 0, and βc = 1, thus C1(Re∗) = 0. After comparing the DR approach with Nikuradse’s

data, the value of Re∗l and Re∗c are found to be 1.25 and 100, respectively Yang and Dou (2010).

According to the experimental data, when the Reynolds number increases, for very large values of

Re, the friction factor will be independent of Re and will only be function of roughness (the rough-

walled pipes, following the Gauckler-Manning-Strickler (GMS) model). Therefore, for Re∗ >

Re∗c, in order to capture Nikuradse’s plot, we need to consider that the Reynolds number is no

longer increasing and remains the constant value of Re∗c. From Equation V.6, DR model gives the

relation between Re∗ and Re+. Thus, for the case of Re∗ > Re∗c, the Reynolds number Re∗ will

not increase anymore and stays constant as Re∗c, so if we call Re+
T = ϑRh

δ
Re∗c, from Equation

V.9, DR model gives

V

u∗
=
rl
m
Re+

T + rt

[
2.5 lnRe+

T − 66.69
(
Re+

T

)−0.72
+ 1.8− C1(Re∗c)

]
.

Equation V.9 modifies the equation originally provided by Yang and Dou (2010). The biggest

difference is the introducing of variable m in order to adjust the DR model to non-circular pipes,

i.e. crack-like geometry. A close look at Equation V.9 shows that the first part of the equation

handles the laminar regime and the second part is to take care of turbulent flow and the transition

from laminar to turbulent. In general the friction factor in laminar regime is defined as fp = g/Re

(see Munson et al. (2002)), where for circular pipes g = 64 while for parallel plates g = 96. This

shows that we cannot use the same laminar equation for both geometries. The other difference

between Equation V.9 relative to the original equation from Yang and Dou (2010) is related to the

fact that we considered the DR parameters (defined as D∗ and D∗0 in original paper) to be equal to

one because we do not consider any polymer in our fluid.

So far, only two parameters remain to set the value of the friction factor: the adjustment pa-

rameter m in Equation V.9 and the critical Reynolds number (Re+
c ) from Equation V.8. We start

with finding the value of m. If we consider the case that fluid regime is fully laminar (Re+ ≤ Re+
c ,

or rl = 1), from Equation V.9, we can obtain that V/u∗ = Re+/m. By combining this relation

with Equation V.7, we can solve for Re+ as function of m

Re+ =

√
mϑRe

4
(V.11)
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Also from one side, the friction factor for fully laminar flow is defined as g/Re, and from the other

side it defines as in Equation V.2. Thus, by equating these two definitions of friction factor and

replacing the value of Re+ from Equation V.11, we can show that

m =
gϑ

32
(V.12)

So, for circular conduits (pipes), m = 4 (the same value as in original equations of Yang and Dou

(2010)) and ϑ = 2 while for two parallel plates the value of m is 3ϑ.

Now we can move forward to find the value of Re+
c . Now going back to Equation V.11 for the

critical case we can read that (the fully laminar condition is still valid)

Re+
c =

√
ϑm

4
Rec

where Rec is the critical characteristic Reynolds number that is defined through Equation V.5.

Following from pipe flow, the critical characteristic Reynolds number is Rec ≈ 2300 after that the

fluid is no longer laminar. Therefore for the crack geometry (m = 3ϑ), we argue that

Re+
c = 5

√
69ϑ.

Moreover, we modified the equation for calculating V/u∗ for non-circular pipes by adding

the parameter m. This adjustment will only affect the laminar portion of the equation and will

not effect the turbulent part. This use of turbulent flow from the pipe model will add some error

to this approach. Namely, for the turbulent and transition regimes, it is common to define the

Reynolds number (Re) for non-circular conduits through the hydraulic diameter. Nevertheless,

there is some evidence to suggest that keeping the friction factor depends on the aspect ratio of

the cross-section of the flow. This implies that hydraulic diameter is not the only factor that can

effect the value of friction factor. Following Jones (1976), the corrected Reynolds number is 2/3

of the calculated Re by using hydraulic diameter. In this study we do not attempt a correction

because: 1) an appropriate aspect ratio correction is not calculable; all the calculations are based

on hydraulic diameter only, and 2) we introduced some other parameters like ϑ that can at least

partially mediate the miscalculation due to only using of hydraulic diameter. Resolution of this

issue for the hydraulic fracture geometry remains an issue of open research.
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2. DR Model for Radial Flow

Now we will specify the DR model to the current boundary value problem. The fluid flux from

Darcy-Weisbach friction factor is given by Equation V.1, which we modify to avoid imaginary

values when ∂p/∂r > 0.

q = − sgn

(
∂p

∂r

) ∣∣∣∣4w3

ρfp

∂p

∂r

∣∣∣∣1/2, (V.13)

For the radial crack the hydraulic diameter is Dh = 2w(x, t), so

Re = 2
ρV w

µ
δ

Rh

=
2δ

w

(V.14)

where Rh is the hydraulic radius (Rh = Dh/4), and δ is the roughness of the crack. Now, if we

combine Equation V.13 with V.2 and use Equation V.12 for parallel plates (g = 96), and replace

the result in Equation V.14 for Reynolds number, and finally using Equation V.7, we can show

Re+ = 3ϑ

∣∣∣∣2ρw3

µ′2
∂p

∂r

∣∣∣∣1/2 (V.15)

where µ′ = 12µ. Now by knowing the shear Reynolds number Re+, we can find rt and rl through

Equation V.8, and from there we can find R∗ and C1. Then by knowing V/u∗ we can finally find

fp (Equation V.2) and calculate fluid flux (Equation V.13).

According to the DR method we can find the friction factor, and after that by using Equation

V.13 we can find the proper fluid flow. Therefore, based on the discussion given section V.D.1,

the fluid flow will fall into one the following conditions:

I. Laminar: Re∗ ≤ Re∗l and Re+ < Re+
c . In this case, based on Equation V.10, C1(Re∗) = 0,

and from Equation V.8, rl=1 and rt = 0. Note that Re∗ is connected to Re+ through Equation

V.6.

II. Smooth-walled: Re∗ ≤ Re∗l butRe+ ≥ Re+
c . In this case, based on Equation V.10, C1(Re∗) =

0, and from Equation V.8, rt 6= 0 and we have rl + rt = 1. Also, Re∗ is connected to Re+

through Equation V.6.

III. Laminar: Re∗l < Re∗ ≤ Re∗c and Re+ < Re+
c . In this case, based on Equation V.10,

C1(Re∗) 6= 0, and from Equation V.8, rl=1 and rt = 0. Also, Re∗ is connected to Re+ through

Equation V.6.
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IV. Transition-Turbulent: Re∗l < Re∗ ≤ Re∗c and Re+ ≥ Re+
c . In this case, based on Equation

V.10, C1(Re∗) 6= 0, and from Equation V.8, rt 6= 0 and we have rl + rt = 1. Also, Re∗ is

connected to Re+ through Equation V.6.

V. Laminar: Re∗ > Re∗c and Re+ < Re+
c . In this case, based on Equation V.10, C1(Re∗) =

C1(Re∗c) and will remain constant. It is important to bear in mind that sequence of applying the

limits is very important in this case and case VI. Since Re∗ will stay constant, from Equation

V.6, we should redefine Re+ as Re∗cϑw/2δ. It is radially confirmed that because Re+ < Re+
c ,

we have rl = 1 and rt = 0, which means that the value of C1(Re∗) is irrelevant because it will

multiply to zero. This simplification is correct as long as we understand that the value of Re+

is redefined in its use for this.

VI. Rough-walled fully turbulent: Re∗ > Re∗c and Re+ ≥ Re+
c . In this case, based on Equation

V.10, C1(Re∗) = C1(Re∗c) and will stay constant. As in case V the value ofRe+ will redefined

as Re∗cϑw/2δ and remains constant unless w changes.

Note we always have Re∗c ≥ Re+
c > Re∗l, so basically case I and III can be combined to one case

of Re+ 2δ
θw
≤ Re∗c with Re+ < Re+

c . Therefore, the fluid flow is categorize into five groups. The

summary of the previous discussion is provided in Figure V.3

3. Governing Equations for a Radial Hydraulic Fracture

Having established the fluid flow equations, the model is completed using a classical HF formula-

tion, very similar to Savitski and Detournay (2002) in its details. From elasticity for radial cracks,

we can relate pressure and the opening as

−R
2

E ′
p(r, t) =

∫ R

0

G(
r

R
,
s

R
)w(s, t)ds (V.16)

where R is the radius of the crack as shown Figure V.1, and G(r, s) is the kernel of the elasticity

integral Sneddon and Lowengrub (1969) where

G(ξ, η) =


1
ξ
F
(

arcsin
√

1−ξ2

1−η2 ,
η2

ξ2

)
, ξ > η

1
η
F
(

arcsin
√

1−η2

1−ξ2 ,
ξ2

η2

)
, ξ < η

(V.17)
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Figure V.3: Flow graph.

There is also different methods to represent the kernel of the elasticity integral. For the purpose

of the numerical modeling, we will use the kernel that is developed by displacement discontinuity

model Hills et al. (1996); Korsunsky (1994). To make the equations simpler let us define

E ′ =
E

1− ν2
, K ′ =

8√
2π
KIC (V.18)

From conservation of mass for an in-compressible fluid flowing in a radial crack, we can obtain

the fluid continuity equation
∂w

∂t
+

1

r

∂

∂r
(rq) = 0 (V.19)

For the purpose of crack propagation criteria, based on the LEFM, the crack will propagate if the

crack intensity factor (KI) becomes equal or greater than fracture toughness (KIC) of the material

(or KI = KIC for stable crack growth). The stress intensity factor for the radial crack geometry is

defined as Rice (1968)

KI =
2√
πR

∫ R

0

pr√
R2 − r2

dr (V.20)

It has been known that because of multiscale nature of the crack tip in hydraulic fracture, the strain

energy release rate in crack tip is either dominated by the singularity induced from fluid continuity,
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Figure V.4: Universal crack tip solution for no leakoff case Garagash et al. (2011), with permission.

or from the elasticity equation Desroches et al. (1994). Garagash et al. (2011) introduced a uni-

versal crack tip solution for hydraulic fracture. Following the solution provided by Garagash et al.

(2011) for universal crack tip solution for no-leakoff case (mk-edge), if we have

`k =

(
K ′

E ′

)2

, `m = V
µ′

E ′
, `mk =

`3
k

`2
m

wmk =
`2
k

`m
, pmk = E ′

`m
`k

(V.21)

where V is the crack propagation velocity, and

And finally the initial conditions and boundary conditions are:

2π lim
r→0

rq = Q0

w(R, t) = 0 , q(R, t) = 0

w(r, 0) = 0 , q(r, 0) = 0

(V.22)

It will also be convenient to integrate V.19 subject to V.22 to obtain the global mass balance,

expressed as

Q0t = 2π

∫ R

0

wrdr (V.23)

121



E. SCALING

In order to non-dimensionalize and eventually simplify the problem, we used the following scaling

w = εLΩ(ξ, t) , p = εE ′Π(ξ, t) , R = Lγ(t)

q = Q0Ψ(ξ, t) , ξ =
r

R
, t = τT

(V.24)

where ε, L, and T are the scaling parameters that will be chosen later. To make the equations

simpler we can consider Ω = γ1/2Ω, and Π = γ−1/2Π. Moreover, if we consider Ψ̃ = ξΨ, we we

can find the scaled governing equations as:

I. Continuity equation:

Ω̇ +
γ̇

2γ
Ω− ξ γ̇

γ

∂Ω

∂ξ
= −TQ0

ξεL2

1

γ3/2

∂

∂ξ
(Ψ̃) (V.25)

where ( ˙ ) is defined as derivative with respect to τ . Also we can define global mass balance

as:

τ =
2πεL3

Q0T
γ5/2

∫ 1

0

Ωζdζ (V.26)

II. Elasticity Equation:

Π = −
∫ 1

0

G(ξ, ζ)Ωdζ (V.27)

III. Initial and boundary conditions

lim
ξ→0

Ψ̃ =
1

2πLγ

Ω(1, τ) = 0 , Ψ̃(1, τ) = 0

(V.28)

From scaled equations we find the following non-dimensional groups:

Gv =
Q0T

2πεL3
, Gk =

K ′

εE ′
√
L

, GT =
L

Tε

(
2ρ

E ′

) 1
2

, Gm =
µ′

TE ′ε3
. (V.29)
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Since we added three unknowns (ε, L, T ), we can define three conditions. So, by considering

Gv = GT = Gm = 1, we obtain

ε = µ′
(

π√
2Q0ρ3/2E ′1/2

) 1
2

L =
Q0ρ

πµ′

T = 23/4 Q
3/2
0 ρ9/4

π3/2µ′2E ′1/4

Gk =
21/4ρ1/4K ′

µ′1/2E ′3/4

(V.30)

Also, by scaling the DR model, we can define

Rt =
ρ1/4Q

1/2
0

25/4
√
πδE ′1/4

,

so that

Re+ = 3ϑ

∣∣∣∣−Ω
3∂Π

∂ξ

∣∣∣∣1/2
Re∗l

ϑw

2δ
= ϑRe∗lRtγ

1/2Ω

Re∗c
ϑw

2δ
= ϑRe∗cRtγ

1/2Ω

(V.31)

Here we can re-write all the governing equations (V.25 - V.28 ) as

I. Continuity equation:

Ω̇ +
γ̇

2γ
Ω− ξ γ̇

γ

∂Ω

∂ξ
= −1

ξ

1

γ3/2

∂

∂ξ

Q0T

εL2
Ψ̃ (V.32)

Also we can define global mass balance as:

τ = γ5/2

∫ 1

0

Ωζdζ (V.33)

II. Elasticity Equation:

Π = −
∫ 1

0

G(ξ, ζ)Ωdζ (V.34)

III. Initial and boundary conditions

lim
ξ→0

Q0T

εL2
Ψ̃ =

1

γ

Ω(1, τ) = 0 , Ψ̃(1, τ) = 0

(V.35)
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Figure V.5: Discretized crack.

F. NUMERICAL METHOD

The numerical analysis is based on the conceptual framework proposed by Lecampion and Detour-

nay (2007); Bunger (2005). Wherein: 1) An implicit crack length-stepping approach is adopted

and the governing equations are discretized using moving mesh algorithm. 2) Fluid flow equations

are solved using a finite difference method, and 3) the elasticity equation is discretized using the

displacement discontinuity method (DDM, Crouch et al. (1983)). In the DDM, we consider that

the crack is discretized to n equidistant elements. Because we are working on the scaled coor-

dinate, the distribution of elements are from 0 < ξ < 1, as in Figure V.5. Once the elements

are established, the opening and fluid pressure are assumed to be uniform for each element. We

represent the ith element’s location by its middle point with ξi.

Hence, Ω
τ

i and Π
τ

i are the opening and pressure of the ith element at time τ , respectively, and

γτ is the crack length at time τ . Therefore, if we define

S =
2∆τ

∆γ
√
γτ (∆ξ)2

the discretized governing equations become (for more detail see Appendix D.A)

I. Continuity equation

for i = 1 (first element):

(
1 +

γτ

∆γ

)
∆Ω

τ

1 −
1

2
∆Ω

τ

2 =
1

2
Ω
τ−∆τ

2 − Ω
τ−∆τ

1 +
S
γτ
− SQ0T

εL2
Ψ̃τ

3
2

(V.36)
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which incorporates inlet boundary condition applied at the first node whereby

Q0T

εL2
Ψ̃τ

1
2

=
1

γτ
(V.37)

for i = 2, · · · , n− 1:(
1 +

2γτ

∆γ

)
∆Ω

τ

i −
(
i− 1

2

)
∆Ω

τ

i+1 +

(
i− 1

2

)
∆Ω

τ

i−1 =(
i− 1

2

)
Ω
τ−∆τ

i+1 −
(
i− 1

2

)
Ω
τ−∆τ

i−1 − Ω
τ−∆τ

i

+
S

i− 1
2

[
Q0T

εL2
Ψ̃τ
i− 1

2
− Q0T

εL2
Ψ̃τ
i+ 1

2

] (V.38)

and for i = n (tip element):(
2γτ

∆γ
+ n+

1

2

)
∆Ω

τ

n +

(
n− 1

2

)
∆Ω

τ

n−1 = −
(
n+

1

2

)
∆Ω

τ−∆τ

n

−
(
n− 1

2

)
∆Ω

τ−∆τ

n−1 +
S

n− 1
2

Q0T

εL2
Ψ̃τ
n− 1

2

(V.39)

which incorporates the zero flux condition at the tip whereby

Ψ̃τ
n+ 1

2
= 0 (V.40)

Note that the algorithm will also make use of global mass balance

τ = γτ 5/2 (∆ξ)2
n∑
j=1

Ω
τ

j

(
j − 1

2

)
(V.41)

II. Elasticity Equation: The DDM representation of the elasticity equation is given by

Π
τ

Π
τ

Π
τ

= −MMMΩ
τ

Ω
τ

Ω
τ
, or Π

τ

i = −
n∑
j=1

MijΩ
τ

j (V.42)

where the influence matrix is defined as

Mij = g(ξi, ξj + ∆ξ/2)− g(ξi, ξj −∆ξ/2)

with

g(ξ, η) = −1
1

4η
J̄101(

ξ

η
, 0)

and wherein J̄mnp(x, y) is the Lifshitz-Hankel integral (for more details see Appendix D.A.1).

Hence, In the elasticity equation the n × n influence matrix MMM connects the opening at the

center of the elements (ΩΩΩτ ) at time step τ to the fluid pressure at the center of elements (ΠΠΠτ ). T
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III. Fluid flow:

Based on the scheme illustrated in Figure V.3 and detailed in Equation D.18, the discretized

form of the DR fluid flow law is (for more detail see Appendix D.A.5)

• F1 (Laminar): If Eτ
1,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
1,i+ 1

2

< Eτ
3,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ4,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ4,i
n∑
j=1

Hi,j∆Ω
τ

j (V.43a)

• F2 (Smooth-walled): If Eτ
3,i+ 1

2

≤ Eτ
1,i+ 1

2

≤ Eτ
4,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ1,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ1,i
n∑
j=1

Hi,j∆Ω
τ

j (V.43b)

• F3 (Transition-Turbulent): If Eτ
4,i+ 1

2

< Eτ
1,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
3,i+ 1

2

≤ Eτ
1,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ5,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ5,i
n∑
j=1

Hi,j∆Ω
τ

j (V.43c)

• F4 (Laminar): If Eτ
2,i+ 1

2

< Eτ
3,i+ 1

2

and Eτ
2,i+ 1

2

< Eτ
1,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ3,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ3,i
n∑
j=1

Hi,j∆Ω
τ

j (V.43d)

• F5 (Rough-walled fully turbulent): If Eτ
3,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
2,i+ 1

2

< Eτ
1,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ2,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ2,i
n∑
j=1

Hi,j∆Ω
τ

j (V.43e)

In order to make the fluid flow equation less symbolically intensive here, we defined the quan-

tities (Hi,j, T τi,j, Eτi,j) which are long expressions relegated to Appendix D.A.5, Equations

D.22, D.21, and D.19, respectively.
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IV. Tip criterion:

The accuracy of the numerical solution is strongly dependant on appropriate handling of the

near crack tip behavior using a suitable crack tip solution. In order to achieve the solution

using LEFM, we would need to use many elements and specially when the fluid regime is

more turbulent the laminar region at crack tip will be very small and it will get to the point

that the numerical model will not be computationally efficient or even feasible to carry out in

a practically relevant time-frame Lecampion et al. (2013). Therefore, we instead achieve the

crack tip solution from analytical models. In this paper, recall that, we focused on modeling the

zero toughness solution. Therefore, following the m-vertex solution the crack tip Desroches

et al. (1994); Garagash et al. (2011)

w = 21/3 × 35/6

(
µ′ṘR2

E ′

)1/3 (
1− r

R

)2/3

+O

[(
1− r

R

)5/3
]

and integrating the volume of the crack tip, we obtain that

V = 2π

∫ R

rd

ηw(η, t)dη =
311/6π

25/3 × 5

(
µ′ṘR8

E ′

)1/3 (
3 + 5

rd
R

)(
1− rd

R

)5/3

After scaling, the tip volume becomes

∫ 1

ξd

ηΩ(η, τ)dη =
311/6

28/3 × 5
γ1/6γ̇1/3 (3 + 5ξd) (1− ξd)5/3

Anticipating that this equation will be used to govern the advance of the crack tip. For better

stability, we use the last ml number of elements instead of only the last element to find the

volume of the crack tip. So if ξd = rd/R, the discretized form of the crack tip volume is

∆τ =
311/2

28 × 53

γτ 1/2∆γ [(3 + 5(n−ml)∆ξ]
3 [1− (n−ml)∆ξ]

5

∆ξ3
(∑n

j=n−ml+1 ξjΩj

)3 (V.44)

127



Bringing together the elasticity equation to eliminate the pressure in the local continuity equations

can be expressed as (see Appendix D.A.6)

Ξ(∆Ωτ )Ξ(∆Ωτ )Ξ(∆Ωτ )×∆Ωτ∆Ωτ∆Ωτ =H(Ωτ−∆τ )H(Ωτ−∆τ )H(Ωτ−∆τ ) (V.45)

where bold notations refer to matrix form and under tilde refers to vector formats. The algorithm

to solve the problem consists of an iterative method to solve for change of opening ∆Ωτ according

to Equation V.45 corresponding to each fixed length step ∆γ and according time-step given by

∆τ .

The numerical method that we use to solve the problem is following the bellow steps:

I. Define initial opening from GMS solution, Savitski’s solution, or an estimate between these

two asymptotic (∆Ωτ ).

II. Choose ∆Ω
τ,1

to be zero, and set an initial value for ∆τ i, i.e. 10−6.

III. Advanced the scaled crack length by ∆γ.

IV. Solve Equation V.44 to find the iterative value of change of opening (∆Ωτ,κ−1) for the given

values of ∆τ i, and ∆γ. Therefore, we change the local continuity to

Ξ(∆Ωτ,κ−1)Ξ(∆Ωτ,κ−1)Ξ(∆Ωτ,κ−1)×∆Ωτ∆Ωτ∆Ωτ =H(Ωτ−∆τ )H(Ωτ−∆τ )H(Ωτ−∆τ ) (V.46)

where ∆Ωτ,κ−1 means the change of opening at time τ from previous iteration.

V. Compute the residual value from the comparison of the value of the iterative change of opening

with the previous iteration as

δΩ =

∑n
j=1

(
∆Ω

τ,κ

j −∆Ω
τ,κ−1

j

)2

∑n
j=1

(
∆Ω

τ,κ

j

)2 .

If the value of δΩ is less than a tolerance, the solution is converged. If convergence criterion is

satisfied, go to next step; otherwise, repeat step V.

VI. Find the time step (∆τ ) from Equation V.44 and construct a residual value as

δτ =
|∆τ −∆τ i|

∆τ

If the value of δτ is smaller than a provided tolerance, go to next step. If it does not satisfy the

convergence criteria for the time step, consider ∆τ i = ∆τ and go back to step IV.
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VII. If the crack length is less than the expected value, go to step II. If the crack length is equal to

the expected value, stop the numerical modeling.

G. RESULTS

Discussion of the results of the numerical simulations will include:

• Checking for the convergence of the numerical solution and its stability,

• Benchmarking of the numerical simulation with laminar/rough-walled asymptotic solutions,

and

• Discussion about the effect of the transition/turbulent regime on HF growth.

Unless otherwise stated, parameters used for these benchmarking and parametric study activities
are given by Table V.1.

Table V.1: Material properties and physical constants that are used for each run in numerical model.

Figures
Parameters

Q0 ν
µ ρ k

m
E

α
(m3 s−1) (cP) (kg m−3) (mm) (GPa)

V.6 - V.10 0.05

0.2

0.1 600 0.01

0.143

25

1/3

V.11a 0.1 10 600 0.01 25

V.11b 0.1 0.1 600 0.01 25

V.11c 0.1 0.001 600 0.01 25

V.12,V.13 (Red line) 2.5 0.1 1000 0.001 5

V.12,V.13 (Blue line) 0.005 0.1 600 0.01 100

V.16 2.5 0.1 1000 0.001 5

V.14, V.15 0.005 0.1 600 0.01 100
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Figure V.6: Study of the effect of various initial conditions, χ, on the numerical code

1. Convergence

To verify independence of the solution from the initial conditions, we solved a model with the

properties explained in Table V.1 and studied the effect of the initial condition on the convergence

of the solution. Figure V.6 indicates that after only few steps the result will converge to a solution

that is insensitive to the details of the initial solution of the starting time. In Figure V.6, we vary the

imitial condition by linearly interpolating between the laminar and turbulent assymptotic solutions,

given in Appendix D.C and D.B, respectively. At first, we vary just the initial condition on the

opening using

wini = (1− χ)wlaminar + χwGMS. (V.47)

Thus, if χ = 1, the initial case is fully turbulent and if χ = 0 the initial case is fully laminar.

Figure V.6 demonstrates that there is very little variation in the results of the numerical model due

to different value of the interpolating parameter χ.

Next, we studied the sensitivity of the solution to different values of the initial length. Figure

V.7 shows that the initial length impacts only the solution over the first few time steps, after which

the solution converges to a result that is insensitive to the initial length.
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Figure V.7: Study the effect of initial length on the solution

In spite of this apparent insensitivity of the solution to the initial conditions, sometimes it is

useful to reduce initial inaccuracy associated with the solution. This is helpful, for example, when

multiple runs are used to track growth over a wide range of time. A primary iterative scheme can

reduce this inaccuracies using the following steps:

I. Choose a starting opening (Ωinitial) for the initiation from Equation V.47 (it is better to guess

a proper χ that is sensibly close).

II. Solve numerically for only one step. Assume that the crack is advanced by ∆γ.

III. Find the opening for the next step (call it Ωinitial
2 ) but do not advance the length for the next

step. Compare the opening with initial opening and construct a residual value as

δinitialΩ =

∑n
j=1

(
Ω
initial

j − Ω
initial,2

j

)2

∑n
j=1

(
Ω
initial

j

)2 .

If the value of δinitialΩ is smaller than a provided tolerance, terminate the running and choose

the value of opening as more accurate initial guess for the problem. If it does not satisfy the

convergence criteria for the opening, consider Ωinitial = Ωinitial
2 and repeat step II.

Using the iterative solving approach at the first time step results in more stable numerical conver-

gence at early time. Figure V.8 illustrates the effect of correcting the initial guess and solving the

problem for different starting length (compare it with Figure V.7).

131



10 2

6

8

10

12
14
16

10 2

10 2

10 2

10 -2

Figure V.8: Study the effect of initial length on the solution with using corrected initial guess.

Having established sufficient insensitivity of the solution to initial conditions, next we investi-

gate the sensitivity of the solution to the number of the elements. This step is important, because it

will help us understand if the solution is mesh dependant. Figure V.9 indicates the relative differ-

ence of the scaled crack opening, fluid pressure, and crack length for various numbers of elements

to the solution obtained with the finest mesh division (800 elements). Also, we examine how well

the solution satisfies global volume balance by showing the percentage error of the crack volume

relative to the amount of fluid pumped. Based on Figure V.9, when using 400 elements the rela-

tive error is less than 10−4 (0.01%) for the crack volume, and the relative difference compared to

simulations with 800 elements is 0.02 (2%) for the inlet crack opening, about 0.01 (1%) for pres-

sure (checked here at 54 m after 100 sec), and at most 0.01 (1%) for the crack length. Hence, the

solution can be considered to have converged with 400 elements. Even with only 60 elements, the

error on the volume is only about 0.002 (0.2%), with relative differences of inlet opening, pressure,

and length around 10 %, 1 %, and 0.01− 1 %, respectively.

It is important to realize that considering the inlet opening comprises a worst case location. Fig-

ure V.10 demonstrates the change of crack opening and fluid pressure along the crack by changing

132



60 80 100 120 140 160 180
t (sec)

2

4

6

8
10

|Ω
8
0
0
−
Ω

N

Ω
8
0
0

|
×

1
0
0

60 80 100 120 140 160 180
t (sec)

10-2

10-1

|Q
0
t−

V
N t

Q
0
t

|
×

1
0
0

60 80 100 120 140 160 180
t (sec)

100

|Π
8
0
0
−
Π

N

Π
8
0
0

|
×

1
0
0

60 80 100 120 140 160 180
t (sec)

10-2

100

|γ
8
0
0
−
γ
N

γ
8
0
0

|
×

1
0
0

N = 60, N = 100, N = 200, N = 300, N = 400, N = 800

Figure V.9: Percentage error for wellbore scaled opening, fluid pressure at 54 m, crack volume,

and crack length.

the number of the elements. Here, we can see that away from the inlet, the error on the opening is

∼ 1% for the case with 60 elements.

2. Benchmarking

Having established the convergence of the model, in this part we focus on benchmarking by com-

paring numerical simulations with relevant semi-analytical solutions. In broad terms, this bench-

mark entails ensuring that the numerical solution attains the laminar asymptote (Appendix D.C)

for small Reynolds number and the turbulent asymptote (Appendix D.B) for large Reynolds num-

ber, while smoothly transitioning between these limits for intermediate Reynolds numbers. Pur-

suant to this goal, Figure V.11 contrast the fracture opening and fluid pressure for three different

cases: 1) fully laminar regime, 2) intermediate case with transition from turbulent regime to lam-

inar regime, and 3) fully turbulent regime. From the previous discussion (Section V.D.1), recall

that the Reynolds number will change along the HF. Therefore, it is not possible to define a unique
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Figure V.10: Study the effect of number of elements on the results for different value of numbers

of elements at t = 150 sec.

value for the Reynolds number that characterizes the fluid regime. However, inspired from the

global definition of a characteristic Reynolds number in the plane-strain problem Tsai and Rice

(2010); Zolfaghari et al. (2017), we can suggest a characteristic Reynolds number for the radial

crack given by

Reoc =
ρQ0

µR
. (V.48)

All the Reynolds numbers reported in Figure V.11 are defined using this characteristic Reynolds

number (Reoc), where R is computed based on the radius from the laminar solution.

Next, we investigate the behavior of the crack at small and large time. Based upon the form

of their respective asymptotic solutions (See Appendices D.C and D.B), it will be useful to scale

the dimensionless length γ by τ−1/2 and τ−4/9. In doing this, we obtain a constant value of this

scaled quantity at large and small time, respectively, provided that the numerical solution for γ

is coming from and approaching the correct asymptotics, namely the turbulent solution at small

time and laminar solution at large time (we will discuss this transition in detail in Section V.G.3).

These scaled results are shown in Figure V.12, which includes results for two different values of the

dimensionless inverse roughness parameter, namely, Rt = 14.6 and Rt = 7851.1, as described as

practical limits via Table V.2. As expected, the roughness impacts the solution only at early time,

where the solution is predominantly turbulent. From this examination, it is confirmed that the
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Figure V.11: Comparison of fracture opening and fluid pressure with numerical model for three

different cases of laminar, turbulent, and transition.
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Figure V.12: The fluid flow convergence at short and long time

solution indeed attains the appropriate behavior from the laminar asymptote at large time (Figure

V.12) and, after a brief period of adjustment from the initial solution, it behaves at small time in a

manner consistent with the turbulent asymptote (Figure V.12).

3. Discussion

Having established satisfactory convergence of the solution to appropriate benchmarks, as well

as demonstrating suitable insensitivity to the initial solution and the mesh density, we now turn

attention to a few characteristics of the solution . Namely we examine:

• Evolution of the HF,

• Parameters defining the HF regime and influencing the solution,

• Crack opening at the inlet as independent of time in the fully turbulent regime.

The first topic that we will study is the evolution of the HF. As previously discussed by

Zolfaghari and Bunger (Submitted A), there is a strong pressure singularity at inlet that can impact
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Table V.2: Practical limits of parameters involved in scaled inverse roughness parameterRt.

Parameter Minimum Maximum

Q0 2.5 m3/s 0.05 m3/s

δ 0.001 mm 0.1 mm

ρ 600 kg/m3 1000 kg/m3

E ′ 5 GPa 100 GPa

Rt 7850 14

the solution especially near the inlet and at early time. In the radial geometry, initially the crack

radius is small but the fluid pressure gradient and accompanying fluid flux are large. Therefore,

the fluid regime is predominately turbulent. Then, by growing of the HF, the flux decreases with

the distance from the inlet. As a result, the turbulent regime will be constrained to a region near

the inlet. The size of this turbulent region decreases relative to the HF length as time progresses.

Meanwhile, the near tip laminar region (discussed by Dontsov (2016)) grows relative to the HF

length. This trend will continue until the turbulent regime is negligible and the crack behavior is

defined through laminar fluid flow. Figure V.13 shows this evolution of the crack from turbulent

asymptote to laminar asymptote via the behavior of the crack length. As explained previously, the

effect of the fracture roughness on turbulent regime will appears via Rt. Recall that from Table

V.2, we can estimate the maximum and minimum values ofRt to be 7850 and 14, respectively. Fig-

ure V.13 shows two limits of the Rt and demonstrates that both solutions converge to the laminar

asymptote at large time. Recall a similar result in Figure V.12, which also indicates the growth of

the crack at small and large time and the fact that at the beginning it scales with turbulent solution

and at the large time it scales with laminar solution.

Continuing demonstration of the evolution from the predominantly turbulent to predominantly

laminar regime, Figure V.14a portrays the growth of the HF and compares the opening at different

instances with a HF of the same length obtained from the laminar and fully turbulent solutions.
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Figure V.13: Scaled length versus scale time

Observe that at early time the numerical solution matches the fully turbulent solution. As the

HF grows, the laminar solution increases until eventually the numerical solution merges to the

laminar asymptote. Similarly, Figure V.14b shows the pressure profile evolution along the crack.

As expected, there is a strong pressure singularity at the inlet and crack tip and a similar evolution

from the turbulent to laminar solution.

Furthermore, in Figure V.14a, we confirm the inlet opening of the HF is constant with time

during the predominately turbulent period of growth, as predicted by the scaling (see Zolfaghari

and Bunger (Submitted A)). This behavior shows itself better when we re-scale the radial coordi-

nate (r)) by the radius as in Figure V.15. Here, we can see that all the turbulent solution collapse

to one line, thus showing self similarity of the early time solution up to a rescaling of the radial

coordinate by the HF radius.

Let us now return to make one more important observation from Figure V.14 regarding the way

that the limiting regimes gain dominance. As discussed, the turbulent solution for opening is inde-

pendent of time. However, the laminar opening is increasing as time increases. At the beginning,

the predicted opening of the laminar HF is much smaller than the turbulent solution (see Figure

V.14a and V.15). As time progresses and the crack grows, the laminar solution grows and even-

tually surpasses the turbulent solution. After this change occurs, the numerical solution evolves

so as to match the laminar solution. One inference from this observation is that after the opening
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Figure V.14: Crack opening evolution and changes of fluid pressure with comparison to laminar

and rough-walled turbulent solutions. In this example Rt = 14.6, tmin = 0.04 sec and tmax =

3170 sec
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Figure V.15: Crack propagation at different times.

predicted by laminar solution surpasses the turbulent solution, the HF behavior is approximated by

the laminar solution. Before this transition, the solution follows the turbulent solution. Therefore,

it is useful to clarify a time scale that governs the transition from fully turbulent to fully laminar

behavior.

The relevant timescale can be obtained from Zolfaghari and Bunger (Submitted A), who found

the ratio of the wellbore crack opening from the fully turbulent solution to laminar solution as

lim
ξ→0

wturb(ξ, t)

wlam(ξ, t)
= 0.5168(t∗/t)1/9 (V.49)

where t∗ is the transition timescale given by

t∗ =
Q

15
13
0 ρ27/13δ9/13

E ′
1
13µ′2

For the case of wturb(0, t) = wlam(0, t), we solve for, the transition time as

ttrans = 0.0026
Q

15
13
0 ρ27/13δ9/13

E ′
1
13µ′2

We see, then, that the turbulent dominated period persists for a greater time for larger injection

rate, larger density, larger roughness, smaller viscosity, and smaller plane strain elastic modulus.
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This final dependence is tied to the relationship between opening and stiffness; for smaller E ′ the

opening is larger and turbulent conditions persist for a longer period of time.

Also, considering the time scaling method given in Equation V.24 and using the scaling pa-

rameter derived for the numerical model from Equation V.30, we can obtain that

τtrans = 0.00322R−9/13
t

This definition also adds another meaning to Rt: It is a parameter that determines, in terms of

dimensionless time τ , when the inlet opening of the laminar solution and hence the predominant

regime transitions from turbulent to laminar.

As a final illustration of the evolving flow regime with times, Figure V.16 shows the HF at

different times with color corresponding to the flow regime at each point within the HF. Initially,

we can see that almost all of the HF is in the turbulent regime and the inlet is in the fully turbu-

lent rough-walled regime. Then, the smooth-walled turbulent condition grows, close to the crack

tip and occupying an increasing portion of the HF. After that, the laminar solution will start to

dominate the tip region, from where subsequently expands to eventually comprise the entire HF.

H. CONCLUSION

The radial (penny-shaped) hydraulic fracture geometry, while relatively simple compared to gen-

eral planar or fully 3D geometries, provides a useful context for the exploration of the impact of

the laminar to turbulent transition on hydraulic fracture growth. The main goal of this article is to

explore the impact of this generalized fluid flow consideration using a newly-developed implicit

numerical solution to model the turbulent/transition HF in an impermeable, linear-elastic rock with

injection from a negligibly-small wellbore. By using the drag reduction model to describe fluid

flow, this model gives a tool to capture wide range of the friction factor for various roughness

and Reynolds numbers. After scaling, the problem is discretized by using moving mesh algorithm

and an iterative approach is employed to solve the sets of coupled non-linear partial differential

equations.
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Figure V.16: Evolution of fluid regimes inside the HF, where Reoc is given by Equation V.48.
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After confirming independence of the solution from the details of the mesh density and/or the

initial (starter) solution, as well as convergence to appropriate benchmark solution, we explore in

detail the behavior wherein flow is turbulent near the inlet, laminar near the tip, and in transition

somewhere between. These results further show that predominance of the region that is in tur-

bulent flow is a characteristic of the small time behavior. During this period, as predicted by the

scaling, the inlet opening is independent of time and the solution is essentially self-similar up to

a rescaling of the radial coordinate by the growing HF radius. As time progresses, the average

fluid flux reduces driving the system toward predominant laminar flow, with the laminar region

beginning at the tip and growing to comprise the majority of the HF at sufficiently large time. The

characteristic time scale associated with this turbulent to laminar transition increases, intuitively,

with increasing injection rate, increasing fracture roughness, increasing fluid density, decreasing

fluid viscosity, and decreasing stiffness of the rock. This time scale is important because it deter-

mines the relevance of either limiting regime to practical cases, i.e. when the transition takes place

in a small fraction of the total treatment time it suffices to approximate growth using the laminar

asymptotic solution and when the transition requires are large time compared to the treatment time

it suffices to approximate growth using the turbulent asymptotic solution.
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VI. CONCLUSIONS

This dissertation research was carried out to explain and quantify the effect of turbulent fluid flow

on HF growth. The noteworthy contributions of this work begin with providing a complete suite of

benchmarks for simplified but practically-relevant geometries that can be used to estimate fracture

dimensions and to benchmark more general numerical simulators. This research results in semi-

analytical similarity solutions for a fully turbulent rough-walled hydraulic fracture growth in three

different classical models: plane strain model, blade-shape model, and radial model. In all three

cases solutions are presented in for the limit of zero toughness and an impermeable rock. All

the presented solutions come along with an appropriate near tip asymptote for fully turbulent HF

growth, and a suitable inlet conditions.

Secondly, this study provides a new numerical approach to HF simulation including laminar,

turbulent, and laminar-turbulent transition regimes. An implicit moving mesh algorithm is devel-

oped to capture the change of fluid regime in HF via drag reduction method to estimate friction

factor.

Thirdly, this investigation demonstrates the evolution of turbulent-laminar regime in a radial

HF, which has implications also for the overall behavior and evolution in more general planar

fracture growth geometries. Analyzing the results from the numerical model illustrates a striking

turbulent-to-laminar transition inside the crack. For an illustration, as a result of the numerical

model it has been noticed that at the early time of the crack propagation, the fluid regime is turbu-

lent, and thus the opening of the crack remains constant with time in accordance with the prediction

based on the turbulent regime scaling. During this time the solution is nearly self-similar up to a

re-scaling of the radial coordinate by the HF radius. This turbulent regime persists for a while, but

eventually the region of laminar flow grows from the tip and dominates the majority of the HF. In

the end the wellbore opening of the HF obtained from the laminar approximation becomes larger
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than the solution for the fully turbulent regime. And after that the crack propagation behaves like

laminar regime.

Fourthly, this study has identified that the transition range of fluid regime from turbulent-to-

laminar fluid flow is relatively small and practically, it will often suffice to approximate the HF

growth using the asymptotic solutions obtained from either the laminar or turbulent solution. The

choice of which asymptote provides a suitable approximation to the full solution requires simply

selecting the solution that gives the largest pressure or opening.

It is interesting to observe that for the radial HF there is an intermediate regime in which most

of the fluid inside the HF is in the smooth-walled turbulent condition. Future investigation should

firstly be directed at deriving a solution for this intermediate asymptotic and investigating the

range of its applicability. Further natural extensions to this work include designing and performing

laboratory experiments to study the influence of turbulent flow on HF growth. Besides providing

a useful benchmark data, a well designed experiment is needed to assess several aspects of the

appropriateness of the model and to characterize quantities that impact the solution. For example,

the Reynolds number corresponding to laminar-to-transition and transition-to-turbulent regimes is

one of the main parameters that needs to be defined. However, existing experiments are limited to

flow in circular channels (pipe flow). Also, finding the values of the constants in the general GMS

method, specifically α and m defined in the Darcy-Weisbach equation (III.3). Another possible

area of future work is to investigate the singularity in the inlet for radial geometry using detailed

3D numerical simulations or via laboratory experiments is needed to clarify how the mathematical

singularity in the opening is mitigated in real systems.

Finally, investigating the effect of proppant on HF growth and the impact of laminar-turbulent

transition in prppant transport is important for expanding the use of simulations to engineering

practice. One of the benefits of using the drag reduction (DR) model in the numerical model

presented here is an ability of it to extend to incorporate proppant by activating terms in DR model

that are switched off in the current model.

In summary, the research comprising this dissertation shows both the qualitative and quantita-

tive impacts of turbulent flow on all classical HF growth geometries and provides a useful numeri-

cal algorithm to simulate the HF or developing benchmark solutions for laboratory experiments.
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APPENDIX A

APPENDICES FOR “BLADE-SHAPED HYDRAULIC FRACTURE DRIVEN BY A

TURBULENT FLUID IN AN IMPERMEABLE ROCK”

A. APPENDIX. INTEGRATED FLUID FLOW EQUATION

From elasticity and by assuming that the cross section of the crack is elliptical, it is possible to say

that Nordgren (1972)

W (x, z, t) =
1− ν
G

(H2 − 4z2)1/2(p− σ). (A.1)

At z = 0 the maximum opening is given as

W (x, 0, t) = ω(x, t) =
1− ν
G

H (p(x, t)− σ) . (A.2)

Thus, the pressure gradient is
∂p

∂x
=

G

1− ν
1

H

∂ω(x, t)

∂x
. (A.3)

Inserting the crack opening expression Equation A.1 into the GMS parametrization Equation II.4

gives

q2D =

 4

ρmkα
ω3+α

(
1−

(
2z

H

)2
) 3+α

2 (
−∂p
∂x

)1/2

, (A.4)

which is the two-dimensional flow at every height z, viz. Figure A1. We can find the total flow

rate by integrating q2D over the height of the fracture, which gives

q =

∫ H/2

−H/2
q2Ddz =

(
4

ρmkα
G

1− ν
1

H

)1/2(
−ω3+α∂ω

∂x

)1/2 ∫ H/2

−H/2

[
1−

(
2z

H

)2
] (3+α)

4

dz. (A.5)
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Figure A1: Representation of two dimensional element in three dimensional crack. The integration

of infinitesimal elements over the height of the crack will give the flow through a given cross section

at location x.

Now letting ϕ = (3 + α)/4 and making the change of variable sin θ = 2z/H we have

q =

(
4

ρmkα
G

1− ν
1

H

)1/2

ω2ϕ

(
−∂ω
∂x

)1/2
H

2

∫ π/2

−π/2
(cos θ)2ϕ+1dθ. (A.6)

Thus, we can write the total flux q in terms of the Beta function β(x, y) as

q =
H

2

(
4

ρmkα
G

1− ν
1

H

)1/2

ω2ϕ

(
−∂ω
∂x

)1/2

β

(
1

2
, ϕ+ 1

)
, (A.7)

where the Beta function is defined as Abramowitz and Stegun (1972)

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, (A.8)

or

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (A.9)

for R(x) > 0 and R(y) > 0 and Γ(x) is the Gamma function Abramowitz and Stegun (1972).
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B. TURBULENT FLOW

A better understanding of the physics of turbulent flows would allow for the determination of

the pressure drop in a turbulent flow through a crack. This section uses dimensional analysis to

make an analogy between flow through a crack and flow through a pipe. Most studies of HF with

turbulent flow have only been carried out with either pipe flow assumption or channel flow, which

fails to resolve the contradiction that crack growth cannot be categorized as either pipe flow, nor

channel flow assumptions. This study is unable to encompass the entire discussion about turbulent

flow; however, using dimensional analysis to obtain flow equation for turbulent regime can enhance

the clarity of this method. The fluid pressure drop inside the pipe depends on different parameters

and can be described as ∆P = F(V,D, l, k, µ, ρ) where V is the mean velocity of the fluid, D is

the pipe diameter, l is the pipe length, k is the pipe roughness, µ is the fluid viscosity, and ρ is the

fluid density. The Buckingham-Π theorem gives that

∂P

∂x
= ρV 2 1

D
F(Re,

k

D
), (A.10)

by replacing the mean velocity V with q/D and re-arranging the equation, we find that

q =

(
−D

3

ρF
∂P

∂x

)1/2

, (A.11)

where F depends on Reynolds number and roughness of the crack. This equation is the same as

for GMS (eqn 4 in the paper) where F is assumed to be independent of Reynolds number and a

power law in roughness given by:

fp = m

(
k

W

)α
. (A.12)

This is clearly shown in the Moody diagram, Fig. A2. For Reynolds numbers greater than about

105, the friction factor is nearly independent of Reynolds number. Additional roughness, however,

affects the friction considerably and the inset to Fig. A2 shows that the friction varies as a power

law in roughness.

No-slip condition on the contact boundary of fluid with solid will cause a viscous layer to form.

In this viscous layer, the shear force is mainly described based on viscosity of the fluid. On the

other hand, the thickness of viscous layer has inverse relation to the value of Reynolds number.
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Figure A2: Moody diagram for pipe flow Gioia and Chakraborty (2006), with permission.

When the Reynolds number is very large, the viscous sublayer is very thin and the shear stress

is mostly defined by Reynolds stress. In such a cases the shear stress is more in the format of

KρV 2/2 where K is a parameter that depends on roughness of the wall (see Munson et al. (2002)

for more detail). Therefor, by increasing the Reynolds number, in contrast to laminar flow, the

shear force is more dependent on fluid density and crack roughness rather than fluid viscosity. And

that is why in turbulent equations like in Equation A.11 and A.12, the fluid density will appear but

in Poiseuille equation, the viscosity will appear instead. This phenomena is also explainable based

on the Moody diagram.

In general, the Moody diagram is mainly developed to calculate the friction factor in the cir-

cular pipes. However, by introducing hydraulic radius, it is possible to connect non-circular cross

sections and channels to the friction factor. For the laminar part of the Moody diagram, there is

one unique line that explains the friction factor which confirms the fact that friction factor is only

function of Reynolds number. However, by increasing Reynolds number, as was pointed out above,

the viscous sublayer will become smaller. As this trend continuous, the height of the viscous sub-

layer will reduce until the length of the surface roughness is comparable with the height of the
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sublayer. Therefore, the friction factor will become function of two parameters: surface roughness

and Reynolds number. In fact, these two parameters are acting as a counterbalance against each

other. As an illustration, if Reynolds increases, the viscous sublayer will become smaller and fric-

tion factor reduces. On the other hand, the effect of surface roughness will become more important

which will cause the friction factor to increase. Hence, the final value of friction factor is the com-

bination of the effect of this two values. This phenomena is illustrated in the Moody digram very

well. After the laminar region, since the friction factor is function of two variables, it will not be

possible to explain it with one plot and that is why there is several branches for different values

of surface roughness. Besides, in Moody diagram, as Reynolds increase, the friction factor will

decrease. And as surface roughness, increase, the friction factor will increase. So the increase of

friction factor is due to either decreasing Reynolds number or increasing surface roughness.

For very large Reynolds numbers, the value of laminar sublayer diminishes so much that the

fracture toughness will become dominant and the effect of Reynolds number is eliminated. In such

a cases, the friction factor will be only a function of the surface roughness f(ε/D), in contrast to

laminar flow which was only function of Reynolds number f(Re). When the flow is just function

of surface roughness, the fluid flow is called wholly turbulent flow. Looking at Moody diagram

for turbulent flow, you can observe that first of all, as much as the surface roughness increases, the

plot will become more flat, which means that for large span of Reynolds numbers and fixed value

of surface roughness, the changes of friction factor will become smaller. That is, friction factor

will become independent to Reynolds number and become more linked to surface roughness which

indicate that wholly turbulent flow is happening. Also, for larger Reynolds numbers, the plot will

again become flat, again indicating occurance of a wholly turbulent regime.

In hydraulic fracturing, usually the surface roughness is large when compared to the fracture

opening. For example, the ratio of roughness height to fracture opening is in more than 0.1 (ε/W >

0.1). So according to the Moody diagram, the friction factor plot is almost horizontal line and is

mostly in wholly turbulent region. And that is why mainly in GMS equation, the friction factor is

only function of scaled roughness rather than Reynolds number.
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C. LAMINAR TO TURBULENT TRANSITION MODEL

1. Regime Transition for Different Fluids Based on General Open Channel Fluid Mechanics

We define a characteristic Reynolds number that depends on parameters such as the fluid density

ρ, viscosity µ, pumping rate qin, and the layer thickness H , which combine into

Re =
ρqin
Hµ

.

The fluid flow is assumed to be laminar for Reynolds number less than 500 and fully-developed

turbulence for Reynolds numbers greater than 12500. From 500 to 12500 is the transition between

laminar to turbulent flow. Typical heights of HFs fall in the range 20 m < H < 200 m Fisher and

Warpinski (2012) and ρ, µ are material properties of the fluid. We will consider injection rates

between 0.01 m3 s−1 < qin < 0.2 m3 s−1. Thus, the ratio of injection rate to layer thickness falls

in the range 5× 10−5 m3 s−1 < qin/H < 0.01 m3 s−1.

The summary of the change of Reynolds number for different fluids is shown in Fig. A3. For

example, we can compute the Reynolds number for water pumped at qin = 0.2 m3 s−1 into a

layer with height H = 50 m. First, we mark point A at H = 50, then we draw a horizontal line

from point A until it hits the curve for qin = 0.2 m3 s−1, which we call point B. We then draw

a vertical line from point B until it hits the line for water and we call it point C. Finally, we can

draw a horizontal line from point C to the left y-axis to read the value of log(Re) (point D). The

background color at point C indicates the regime and practical fluxes fall in the range qin = 0.05

m3 s−1 to qin = 0.2 m3 s−1. Thus, for all practical applications the flow regime for cross-linked

and linear gel is laminar. Water, however, falls in the transition zone and CO2 is transitional or

fully-developed turbulence depending on qin/H .
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Figure A3: Variation of fluid flow regime by changing the fluid properties.

152



2. Regime Transition for Different Fluids Based on General Open Channel Fluid Mechan-

ics, Pressure Approach

By increasing the Reynolds number above 500, turbulent bursts begin to occur inside the flow

Emmons (1951). When the Reynolds number increases beyond a critical value, the whole flow is

fully-developed turbulence. The transition to turbulent flow is depending on parameters like rough-

ness and channel geometry. As a general case, some texts offer 12500 as the limit for Reynolds

number. However, they also note that this number is an estimation and is not well defined number

for all cases (e.g. Munson et al. (2002)). Moreover, Reynolds numbers above 500 have turbulent

behavior but the frequency of this turbulent behavior will increase as Reynolds number increase.

Hence, the transition remains imprecisely defined. Recalling the Nordgren and turbulent flow so-

lution for pressure:

pNnet(0, t) = 2.5

[
µq2

in

H6

G4

(1− ν)4

] 1
5

t
1
5 (A.13a)

pTnet(x, t) = 0.8122

(
kq9

inρ
3

H22

(
G

1− ν

)13
) 1

16

t
3
16

(
1− x

`(t)

) 3
7
(

1 + 0.05497
x

`(t)

)
(A.13b)

An alternative method for defining transition is by looking at the condition that fluid pressure from

the laminar solution equates with the pressure found from our turbulent solution. Specifically,

letting Plaminar = PN
net(0, t) (Equation A.13a) and letting Pturb = P T

net(0, t) (Equation A.13b),

we define Plaminar > Pturb as the laminar regime and Plaminar < Pturb as the turbulent regime.

Finding the transition point entails solution to

PnetN (0, t)

∣∣∣∣
Equation A.13a

= Pnet(0, t)

∣∣∣∣
Equation A.13b

,

which simplifies to

log
(qin
H

)
= 3.005 +

1

13
log

[
µ16Ht

ρ15k5

(
1− ν
G

)]
(A.14)

Here we can see the transition point depends not only on qin/H but also on µ,H, t, ρ, k, ν, and

G. Thus, we cannot define the transition based exclusively on Re∗. Still, for ranges of these

parameters we can define transitions specifically for each of the 4 fluids. The result is shown in

Fig. A4 (for range of different parameters see Table A1). Again the relevant range is between the
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qin = 0.05 m3 s−1 and qin = 0.2 m3 s−1 curves and note that the transition region is here defined

as the range in which different choices from the typical ranges of parameters can result in either

Plaminar > Pturb or vice versa. Within this range, by the definition of Equation A.14, CO2 is

always turbulent and water is turbulent for nearly all relevant cases.

D. NEAR-TIP ASYMPTOTICS

Here we start with the equation

−Ω +
4ϕ+ 1

4ϕ+ 2
(ξΩ)′ =

[
Ω2ϕ (−Ω′)

1/2
]′
. (A.15)

We know that Ω will be small so we scale it with power series solution as

Ω = εaf + εa+γg + . . . and a, γ > 0.

The distance to the fracture tip is scaled as

ξ = 1− εbζ + . . . and b > 0,

Derivatives with respect to ξ become derivatives with respect to ζ through

d

dξ
= −ε−b d

dζ
,

which says that the derivative is large near the fracture tip, as expected.
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1. First Order Analysis

We start by examining the leading order equations. Thus, we can rewrite Equation (A.15) as

−εaf − 4ϕ+ 1

4ϕ+ 2
ε−b
[
(1− εbζ)εaf

]′
= −ε−b

[
(εaf)2ϕ (εa−bf ′)1/2

]′
, (A.16)

where the primes now indicate derivatives with respect to ζ . Combining terms we find

−εaf − 4ϕ+ 1

4ϕ+ 2
εa−bf ′ +

4ϕ+ 1

4ϕ+ 2
εa [ζf ]′ = −ε(2ϕ+ 1

2)a− 3
2
b
[
f 2ϕ (f ′)

1/2
]′
, (A.17)

We can see that the first and third terms scale as εa and are smaller than the second and fourth

terms. Therefore, we equate the powers of the second and fourth terms and find

b = (4ϕ− 1) a,

which is true for any positive a so long as ϕ > 1/4. In general GMS equation, ϕ = (3 +α)/4, and

considering ϕ > 1/4 will lead to α > −2 which is always true; for example, in Manning equation

α = 1/3 > −2 which satisfy ϕ > 1/4. Now we need to choose a positive value for a. Thus, if we

choose a = 1, our dominant balance will become

4ϕ+ 1

4ϕ+ 2
f ′ =

[
f 2ϕ (f ′)

1/2
]′
. (A.18)

This is the same equation as derived heuristically before, but the dependent variable u = (1−ξ)/εb.

The boundary conditions are flipped and therefore,

f(ζ = 0) = 0,
[
f 2ϕ(f ′)1/2

]
ζ=0

= 0.

Integrating Equation (A.18) and solving for it will direct us to

f =

[√
4ϕ− 1

(
4ϕ+ 1

4ϕ+ 2

)]2/(4ϕ−1)

ζ1/(4ϕ−1).

We can reinsert ζ = (1− ξ)/εb and find

Ω = εaf = εb/(4ϕ−1)f =

[√
4ϕ− 1

(
4ϕ+ 1

4ϕ+ 2

)]2/(4ϕ−1)

(1− ξ)1/(4ϕ−1) ,

which is the result we derived previously.

156



2. Second Order Analysis

Now that we have found f as a function of ζ , we look to the next order in ε to find the function

g(ζ) i.e.

Ω = εf + ε1+γg + . . . and γ > 0.

where γ is an unknown exponent. The coordinate ζ is still scaled as

ξ = 1− εbζ,

where b = 4ϕ− 1 and ϕ > 1/4.

We can insert these scalings into the full ode for Ω, Equation (A.15), to find

−εf − ε1+γg − 4ϕ+ 1

4ϕ+ 2
ε−b
[(

1− εbζ
) (
εf + ε1+γg

)]′
= −ε−b

[(
εf + ε1+γg

)2ϕ (
ε1−bf ′ + ε1+γ−bg′

)1/2
]′
. (A.19)

Expanding out the left side we find that

−εb+1f − ε1+γ+bg − 4ϕ+ 1

4ϕ+ 2

(
εf ′ + ε1+γg′

)
+

4ϕ+ 1

4ϕ+ 2
εb+1 [ζ (f + εγg)]′

= −
[(
εf + ε1+γg

)2ϕ (
ε1−bf ′ + ε1+γ−bg′

)1/2
]′
. (A.20)

We now expand the right side as

−εb+1f − ε1+γ+bg − 4ϕ+ 1

4ϕ+ 2

(
εf ′ + ε1+γg′

)
+

4ϕ+ 1

4ϕ+ 2
εb+1 [ζ (f + εγg)]′

= −
[
εf 2ϕ (f ′)

1/2

(
1 + 2ϕεγ

g

f

)(
1 +

εγ

2

g′

f ′

)]′
, (A.21)

Now the terms that are linear in ε group as

−4ϕ+ 1

4ϕ+ 2
f ′ = −

[
f 2ϕ (f ′)

1/2
]′
,

which is the same equation that we solved in the earlier section. The terms that are a slight depar-

ture from linear in ε

−εb+1f − 4ϕ+ 1

4ϕ+ 2
ε1+γg′ +

4ϕ+ 1

4ϕ+ 2
εb+1 [ζf ]′ = −ε1+γ

[
f 2ϕ (f ′)

1/2

(
2ϕ

g

f
+

1

2

g′

f ′

)]′
.
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Thus, we set γ = b and cross out the term εb+1 from both side of equation. For simplicity, we also

do the following change of variables

κ =

[√
4ϕ− 1

(
4ϕ+ 1

4ϕ+ 2

)]2/(4ϕ−1)

and c =
4ϕ+ 1

4ϕ+ 2
,

which help us to define f(ζ) = κζ1/b. This gives the equation

−κζ1/b − cg′ + c [ζf ]′ = −
[
f 2ϕ (f ′)

1/2

(
2ϕ

g

f
+

1

2

g′

f ′

)]′
.

After calculating derivations for f and replacing them back into the equation, our equation reduces

to

−κζ1/b − cg′ + cκ

b
(1 + b)ζ1/b = − κb/2

2b1/2
(g′ + b[ζg]′′) .

Parameter κ, that has been defined earlier, can also be explained as

κb/2 = b1/2c,

thus, we can divide by c and find

κ

c
ζ1/b +

1

2
g′ − b

2
[ζg]′′ =

κ

b
(1 + b)ζ1/b.

This is an equidimensional equation, thus, we try for a solution of the form

g = Aζλ,

which gives
κ

c
ζ1/b +

λ

2
Aζλ−1 − b

2
Aλ(λ+ 1)ζλ−1 =

κ

b
(1 + b)ζ1/b.

To match powers on each side, we must have that λ = (b+ 1)/b. Thus, we can solve for A from

b+ 1

b
A− b+ 1

b
A (2b+ 1) =

2κ

b
(1 + b)− 2κ

c
,

which gives

A =
κ

c(1 + b)
− κ

b
,

This solution satisfies the boundary conditions

g(0) = 0 and g2ϕg′(0) = 0,
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and, therefore, we have

g(ζ) = κ

(
1

c(1 + b)
− 1

b

)
ζ(b+1)/b.

From g(ζ) we can determine Ω as

Ω = εκζ1/b + ε1+bAζ(b+1)/b.

Using the similarity variable ξ = 1− εbζ , we find that

Ω = κ (1− ξ)1/b + ε1+bA

(
1− ξ
εb

)(b+1)/b

.

Thus, the powers of epsilon cancel in all terms and we find

Ω =
κ

b
(1− ξ)1/b

[
b− 1 +

b

c(b+ 1)
+

(
1− b

c(b+ 1)

)
ξ

]
.

We now convert back to α. We know that ϕ = (3 + α)/4 and b = 4ϕ− 1 = α+ 2. The pre-factor

κ is calculated as

κ =

[√
4ϕ− 1

(
4ϕ+ 1

4ϕ+ 2

)]2/(4ϕ−1)

=

[√
α + 2

(
α + 4

α + 5

)]2/(2+α)

Thus,

Ω = (α + 2)−
α+1
α+2

[
α + 4

α + 5

]2/(α+2)

(1− ξ)1/(α+2)

(
1 + α +

(α + 2)(α + 5)

(α + 3)(α + 4)

+

(
1− (α + 2)(α + 5)

(α + 3)(α + 4)

)
ξ

]
.

A typical value for α is α = 1/3. This gives that

Ω = (1− ξ)3/7 (1.132 + 0.0714 ξ) .
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E. ALTERNATIVE SCALING APPROACH

In this section an alternative approach to scale the problem is presented. This method is following

in the spirit of previous scaling approach done by prior authors including (Adachi and Detournay,

2002; Savitski and Detournay, 2002; Bunger and Detournay, 2007). As was pointed out in the pa-

per, non-linear partial differential equation governing the maximum opening ω(x, t) and boundary

conditions, which are given by

∂ω

∂t
= −Ξ

∂

∂x

[
ω2ϕ

(
−∂ω
∂x

) 1
2

]
x = ` ⇒ ω(`, t) = 0

x = ` ⇒ q(`, t) = 0

x = 0 ⇒ q(0, t) = qin

(A.22)

The scaling begins with introduction of dimensionless opening Ω̃(ξ, t) and length γ(t), as well as

a scaled coordinate ξ, according to

ω(x, t) =W(t)Ω̃(ξ, t)

`(t) = L(t)γ(t)

ξ =
x

`(t)

(A.23)

where W and L represent characteristic HF width and length, to be specified later. Substitut-

ing Equation A.23 into Equation A.22 and the accompanying boundary conditions leads to (see

Section A.E.1 for details)

−ξt
L
∂L
∂t

∂Ω̃

∂ξ
+

t

W
∂W
∂t

Ω̃ = −Ξ
W2ϕ− 1

2 t

L 3
2

1

γ
3
2

∂

∂ξ

Ω̃2ϕ

(
−∂Ω̃

∂ξ

) 1
2


πHΞW2ϕ

4qin

(
W
L

) 1
2 Ω̃2ϕ

γ
1
2

(
−∂Ω̃

∂ξ

) 1
2 ∣∣∣∣

ξ=0

= 1

W2ϕ

(
W
L

) 1
2 Ω̃2ϕ

γ
1
2

(
−∂Ω̃

∂ξ

) 1
2 ∣∣∣∣

ξ=1

= 0

Ω̃(1, t) = 0

(A.24)
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Observing Equation A.24, three dimensionless groups can be defined:

G1 = Ξ
W2ϕ− 1

2 t

L 3
2

G2 =W2ϕ

(
W
L

) 1
2

G3 =
πHΞ

4qin

(A.25)

Choosing the characteristic scales L andW so that G1 = 1 and G2 = 1 leads to

W(t) = (Ξt)
1

4ϕ+2

L(t) = (Ξt)
4ϕ+1
4ϕ+2

(A.26)

Now by replacing the result from Equation A.26 into Equation A.24 and considering the changes

of variables γ
3

4ϕ−1 Ω = Ω̃ and γ(t) = λ(t)/%, where % =
(
πHΞ
4qin

) 4ϕ−1
4ϕ+2

, leads to the final form of the

scaled governing equations (compare with Equation 15 in the paper)

−ξ 4ϕ+ 1

4ϕ+ 2

dΩ

dξ
+

Ω

4ϕ+ 2
= − d

dξ

[
Ω2ϕ

(
−dΩ

dξ

) 1
2

]
(A.27a)

Ω2ϕ

(
−dΩ

dξ

) 1
2
∣∣∣∣
ξ=1

= 0 (A.27b)

Ω(1) = 0 (A.27c)

λ
4ϕ+2
4ϕ−1 Ω2ϕ

(
−dΩ

dξ

) 1
2
∣∣∣∣
ξ=0

= 1 (A.27d)

The scaling has therefore resulted in an ordinary differential equation (ODE) for Ω, Equation A.27a.

There are two homogeneous boundary conditions (flux at tip, Equation A.27c, and crack width at

tip, Equation A.27c), and one inhomogeneous boundary condition (flux at source, Equation A.27d).

Importantly, this ODE depends on only the scaled coordinate ξ and the parameter ϕ. It does not

depend upon the scaled length, λ, which only enters via the now-decoupled inlet condition (Equa-

tion A.27d). Hence, a solution can be obtained firstly for Ω and then can be substituted into

Equation A.27d to obtain λ. Furthermore, the parameter ϕ is determined based on an a priori

choice of fluid flow law, for example upon specification to GMS, ϕ = 5/6. In other words, the

dependence upon input parameters such as reservoir height, rock/fluid properties, and injection

rate is all accounted for by the scaling.

161



Finally, by taking the integral from both sides of the equation from ξ to 1 and imposing the

boundary conditions, a convenient form of the ODE for Ω (Equation A.27) is given by

∫ 1

ξ

Ωdη = −ξ 4ϕ+ 1

4ϕ+ 2
Ω + Ω2ϕ

(
−dΩ

dξ

) 1
2

Ω(1) = 0 , Ω2ϕ

(
−dΩ

dξ

) 1
2
∣∣∣∣
ξ=1

= 0

λ
4ϕ+2
4ϕ−1 Ω2ϕ

(
−dΩ

dξ

) 1
2
∣∣∣∣
ξ=0

= 1

(A.28)

1. Deriving Dimensionless Form of the Equations

After introducing the scaling in Equation A.23, from application of the chain rule

∂

∂x
=

1

l

∂

∂ξ
=

1

Lγ
∂

∂ξ
(A.29)

These two variables, ξ and t, represent location and time, respectively. Furthermore, while t is an

independent variable, ξ depends implicitly on time because of the time-dependence of `(t). Hence

the complete time derivative is expressed by

d

dt
=

∂

∂t
+
∂ξ

∂t

∂

∂ξ
. (A.30)

Applying to Equation A.23, Equation A.22, and the boundary conditions gives

t

W
d(WΩ̃)

dt
= −Ξ

W2µ− 1
2 t

L 3
2

1

γ
3
2

∂

∂ξ

Ω̃2µ

(
−∂Ω̃

∂ξ

) 1
2


πHΞW2ϕ

4qin

(
W
L

) 1
2 Ω̃2ϕ

γ
1
2

(
−∂Ω̃

∂ξ

) 1
2 ∣∣∣∣

ξ=0

= 1

W2ϕ

(
W
L

) 1
2 Ω̃2ϕ

γ
1
2

(
−∂Ω̃

∂ξ

) 1
2 ∣∣∣∣

ξ=1

= 0

Ω̃(1, t) = 0

(A.31)
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Note we multiplied both sides by t/W to non-dimensionalize the equations. From the product rule

and the definition of the complete time derivative

d(WΩ̃)

dt
=

(
Ω̃
dW
dt

)
+

(
W dΩ̃

dt

)
=

(
Ω̃
dW
dt

)
+

(
W

[
∂Ω̃

∂t
+
∂Ω̃

∂ξ

∂ξ

∂t

])
(A.32)

Then using ∂ξ
∂t

= − ξ
L
∂L
∂t
− ξ

γ
∂γ
∂t

leads to

t

W
d(WΩ̃)

dt
= t

∂Ω̃

∂t
− ξt

L
∂L
∂t

∂Ω̃

∂ξ
− ξt

γ

∂γ

∂t

∂Ω̃

∂ξ
+

t

W
Ω̃
dW
dt

(A.33)

It is now important to realize there are no evolution parameters appearing explicitly in the problem.

This would be different if, for example, we were to consider fluid leakoff; an additional term would

appear in Equation A.31 containing both a leak-off coefficient and time. However, in this limit of

an impermeable rock, ∂Ω̃/∂t = 0 and dγ/dt = 0. Hence

t

W
d(WΩ̃)

dt
= −ξt
L
∂L
∂t

∂Ω̃

∂ξ
+

t

W
Ω̃
dW
dt

(A.34)

Combining Equation A.34 and Equation A.31 we arrive to Equation A.24.

Table A1: Limit of variables in Equation A.14

Parameter Minimum Maximum

H 20 m 200 m

t 0.001 s 1000 s

k 0.5 mm 50 mm

ν 0 0.5

G 1 GPa 100 GPa
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APPENDIX B

APPENDICES FOR “SOLUTION FOR A PLANE STRAIN ROUGH-WALLED

HYDRAULIC FRACTURE DRIVEN BY TURBULENT FLUID THROUGH

IMPERMEABLE ROCK”

A. SOLUTION FOR LAMINAR FLOW

For the laminar solution, we will use the equations provided by Adachi (2001b), that is

w(x, t) = 0.6162

(
µ′Q3

0

E ′

)1/6

t1/3
[√

3(1− x2

`2
)2/3 +M(1− x2

`2
)5/3

+N

4

√
1− x2

`2
+ 2

x2

`2
ln

∣∣∣∣∣∣
1−

√
1− x2

`2

1 +
√

1− x2

`2

∣∣∣∣∣∣


p(x, t) =

(
µ′E ′2

t

)1/3 [
1

3π
β(

1

2
,
2

3
)

(√
3 2F1

(
−1

6
, 1;

1

2
;
x2

`2

)
+

10

7
M 2F1

(
−7

6
, 1;

1

2
;
x2

`2

))
+N

(
2− π

∣∣∣x
`

∣∣∣)]
q(x, t) = 0.3797Q0

[
2

7

(√
3 +

10M
13

)
β(

1

2
,
2

3
)−
√

3
(x
`

)
2F1

(
1

2
,−2

3
;
3

2
;
x2

`2

)
+

2√
3

(x
`

)
(1− x2

`2
)2/3 −M

(x
`

)
2F1

(
1

2
,−5

3
;
3

2
;
x2

`2

)

+
2M

3

(x
`

)
(1− x2

`2
)5/3 +

4N
3

arccos
(x
`

)
+
x3

2`3
ln

∣∣∣∣∣∣
1−

√
1− x2

`2

1 +
√

1− x2

`2

∣∣∣∣∣∣


`(t) = 0.6162

(
E ′Q3

0

µ′

)1/6

t2/3

(B.1)
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whereM = −0.15601,N = 0.066322, 2F1(a, b; c; d) is Gauss’ hypergeometric function, and β is

the beta function Abramowitz and Stegun (1972).

B. CRACK-TIP SOLUTION

Initially, Tsai and Rice (2010) derived the tip asymptotic solution for GMS approach. Tsai and Rice

demonstrated that the pressure gradient and crack tip velocity relation is analogous to the problem

of power-law viscous fluid. Hence, they adapted the zero toughness solution of Desroches et al.

(1994) for the crack tip. In this manuscript, we are following the solution developed by Adachi

(2001b) for laminar fluid flow.

Obtaining the correct relationship between pressure and opening requires the elasticity equa-

tion and continuity to be solved simultaneously. We expect that due to the singularity, close to

crack tip the opening of the crack be small but the crack opening changes rapidly and the pressure

becomes very large. Therefore, we anticipate to capture the singularity in our solution by solving

for it. The coupling between the elasticity equation and continuity that we talked about should

be also hold at crack tip. It is possible to say that the singularity at crack tip for elasticity should

match with the singularity of the continuity equation at crack tip (after Desroches et al. (1994);

Detournay (2004)). So we propose the Ansatz solution for the pressure

p = δ cos(bπ)(`− x)b−1 (B.2)

where δ and b are constants that need to be calculated. From Equation B.2, the width Ansatz should

be of the form

w =
4δ

E ′b
sin(bπ)(`− x)b (B.3)

Therefore, defining the scaling

w = εLΩ(ξ, t), p = εE ′Π(ξ, t), ` = Lγ(t), q = Q0Ψ(ξ, t), ξ =
x

`
,

and also the change of variables

γ4/(2+α)Ω̄ = Ω , γ(2−α)/(2+α)Π̄ = Π
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we obtain

Ω̄ =
4δ

E ′bε
Lb−1γb−4/(2+α) sin(bπ)(1− ξ)b = AΩ(1− ξ)b

Π̄ =
δ

εE ′
Lb−1γb−4/(2+α) cos(bπ)(1− ξ)b−1 = BΠ(1− ξ)b−1

(B.4)

Here, the constants AΩ and BΠ are related through the following equation

BΠ =
bAΩ

4
cot(πb) (B.5)

Now we can substitute Equation B.4 into the scaled continuity Equation III.17a.

−AΩ

b+ 1
(1− ξ)b+1 = −α + 4

α + 6
ξAΩ(1− ξ)b + A

3+α
2

Ω B
1/2
Π (1− ξ)2b+αb

2
−1 (b− 1)1/2 (B.6)

We know that when we approach the crack tip, the value of opening will rapidly decrease. Also,

by approaching the crack tip, a variable we will call ε, where ε = lim
ξ→1

(1 − ξ), becomes very

small. Therefore, since on the left hand side of the Equation B.6, we have εb+1, we can neglect it

compared with terms having a smaller exponent. To avoid a trivial solution the two terms on the

left hand side should be of the same order of magnitude, so

b = 2b+
αb

2
− 1 ⇒ b =

2

2 + α
(B.7)

From the rest of the equation we can then say that

α + 4

α + 6
= A

1+α
2

Ω B
1/2
Π (b− 1)1/2 , ξ → 1 (B.8)

Also, using Equation B.5 combined with Equations B.8 and B.7

AΩ =

[
(2 + α)

(
α + 4

α + 6

)√
2

α
tan(

απ

2 + α
)

] 2
2+α

BΠ =
cot( 2π

2+α
)

4 + 2α

[
(2 + α)

(
α + 4

α + 6

)√
2

α
tan(

απ

2 + α
)

] 2
2+α

(B.9)

Because of the symmetry of the plane strain problem about the y axis, we should have the same

solution when we get closer to the other tip of the crack. So if ξ → −1, the solution should be

Ω̄ = AΩ(1 + ξ)b

Π̄ = BΠ(1 + ξ)b−1.
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Hence, near the crack tip, the behavior of the solution is

Ω̄ = A′Ω(1− ξ2)b

Π̄ = B′Π(1− ξ2)b−1.

We should find the value of A′Ω and B′Π in a way that guarantees the same behavior near the ends

of the crack, so

lim
ξ→±1

A′Ω(1− ξ2)b = lim
ξ→±1

AΩ(1− ξ)b

lim
ξ→±1

B′Π(1− ξ2)b−1 = lim
ξ→±1

BΠ(1− ξ)b−1.

These considerations lead to

A′Ω =

[(
2 + α

2

)(
α + 4

α + 6

)√
2

α
tan(

απ

2 + α
)

] 2
2+α

B′Π =
cot( 2π

2+α
)

4 + 2α

[(
2 + α

2

)(
α + 4

α + 6

)√
2

α
tan(

απ

2 + α
)

] 2
2+α

(B.10)

which in turn gives the solution presented in Equations III.18.

C. PARTICULAR SOLUTION

The general solution for opening and pressure satisfies the tip solution. But we should check it for

the injection point, too. From fluid flow (Equation III.2), we know that the crack opening is always

positive (W > 0). Thus, if the flow is to be defined at the inlet, the gradient of the pressure should

be negative, viz.
dΠ̄

dξ
< 0.

However at ξ = 0, the derivative of the general solution is zero. So we should construct a particular

solution that satisfies the continuity and elasticity equations at the inlet. The simplest solution is to

consider that the pressure gradient at the inlet is a constant negative number (if a > 0)

dΠ̄

dξ
= −a , ξ → 0.
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So after taking the integral of both sides we obtain

Π̄ = −a|ξ|+ %,

where % is also a constant. From LEFM (Equation III.17c)∫ 1

0

−a|ζ|+ %√
1− ζ2

dζ = −a+
π

2
%.

Thus if the LEFM is to hold, we should have a = π/2%. So without loss of any generality, we can

assign % = 2, and so

Π̄ = 2− π|ξ| (B.11)

Next, we should find an appropriate solution for the opening that satisfies the elasticity equa-

tion based on the calculated pressure. The inverse of the elasticity Equation III.6 is Sneddon and

Lowengrub (1969)

w(x, t) = − 4

πE ′

∫ l

0

p(s, t)ln

∣∣∣∣√l2 − x2 +
√
l2 − s2

√
l2 − x2 −

√
l2 − s2

∣∣∣∣ ds (B.12)

After the scaling given in Equations III.9 and III.15, and the change of variables γ4/(2+α)Ω̄ = Ω

and γ(2−α)/(2+α)Π̄ = Π (Equation III.16), this becomes

Ω̄ = − 4

π

∫ 1

0

Π̄ln

∣∣∣∣∣
√

1− ξ2 +
√

1− η2√
1− ξ2 −

√
1− η2

∣∣∣∣∣ dη (B.13)

So after substitution of Equation B.11 into Equation B.13

Ω̄ = − 4

π

∫ 1

0

(2− π|ξ|)ln

∣∣∣∣∣
√

1− ξ2 +
√

1− η2√
1− ξ2 −

√
1− η2

∣∣∣∣∣ dη.
Taking the integral we arrive to

Ω̄ = 4
√

1− ξ2 + 2ξ2ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣ (B.14)

Taken together, Equations B.11 and B.14 give the particular solutions used in Equations III.26 and

III.27
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D. INTEGRAL OF THE OPENING

The opening is given as (Equation III.28)

Ω̄ = A0Ξ(1− ξ2)ϕ +
∞∑
j=1

Aj(1− ξ2)ϕ+1C
(ϕ+ 1

2
)

2j−2 (ξ)

+ B

[
4
√

1− ξ2 + 2ξ2ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣
]

In this section we want to calculate
∫ 1

ξ
Ω̄dζ . But before going further we need to develop an

equation that helps on finding the integral.

Lemma 1. If Cm
n is a Gegenbauer funtion, then

d

dx

[(
1− x2

)a+2
Cm
n (x)

]
=
(
1− x2

)a+1 [−(n+ 2a+ 4)xCm
n (x) + (n+ 2m− 1)Cm

n−1(x)
]

Proof. Expanding, the left hand side derivation, gives (using Equation B.41 in Appendix B.E)

d

dx

[(
1− x2

)a+2
Cm
n (x)

]
= −2(a+ 2)x

(
1− x2

)a+1
Cm
n + 2m

(
1− x2

)a+2
Cm+1
n−1

(B.15)

Also, for the Gegenbauer function

Cm
n (x) =

m

n+m

(
Cm+1
n (x)− Cm+1

n−2 (x)
)

(B.16a)

Cm+1
n (x) =

(n+ 2m)(n+ 2m+ 1)Cm
n (x)− (n+ 1)(n+ 2)Cm

n+2(x)

4m(n+m+ 1)(1− x2)
(B.16b)

so by replacing n with n− 1 in Equation B.16b and replacing back into Equation B.15

d

dx

[(
1− x2

)a+2
Cm
n (x)

]
=
(
1− x2

)a+1 × [−(2a+ 4)xCm
n (x)

+
(n+ 2m− 1)(n+ 2m)Cm

n−1(x)− n(n+ 1)Cm
n+1(x)

2(n+m)

] (B.17)

Also from Equation B.42 in Appendix B.E

(n+ 1)Cm
n+1(x) = 2x(n+m)Cm

n (x)− (n+ 2m− 1)Cm
n−1(x) (B.18)

Thus combining Equations B.18 and B.17 and after simplification,

d

dx

[(
1− x2

)a+2
Cm
n (x)

]
=
(
1− x2

)a+1 × [−(n+ 2a+ 4)xCm
n (x)

+(n+ 2m− 1)Cm
n−1(x)

] (B.19)
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Now in Lemma 1, if we substitute m with λ+ 1, a with λ− 3/2, and n with k − 1, then

d

dx

[(
1− x2

)λ+1/2
Cλ+1
k−1 (x)

]
=(k + 2λ)

(
1− x2

)λ−1/2 [−xCλ+1
k−1 (x) + Cλ+1

k−2 (x)
]

(B.20)

Also by using Equation B.42 in Appendix B.E with some simplification,

xCλ+1
k−1 (x) =

k

2(k + λ)
Cλ+1
k (x) +

k + 2λ

2(k + λ)
Cλ+1
k−2 (x).

Combining this result with Equation B.20 leads to

d

dx

[(
1− x2

)λ+1/2
Cλ+1
k−1 (x)

]
=
k(k + 2λ)

2(k + λ)

(
1− x2

)λ−1/2 [−Cλ+1
k (x) + Cλ+1

k−2

]
(B.21)

Now by using Equation B.16

Cλ
k (x) =

λ

k + λ

(
Cλ+1
k (x)− Cλ+1

k−2 (x)
)
,

so that

d

dx

[(
1− x2

)λ+1/2
Cλ+1
k−1 (x)

]
=
−k(k + 2λ)

2λ

(
1− x2

)λ−1/2
Cλ
k

(B.22)

We can then take the integral on both sides of Equation B.22 from 0 to ξ, knowing: 1) that if k is

an even number, k − 1 is always an odd number, and 2) the value of Cn
m(0) is zero when m is an

odd number. Thus, if k is an even number, Cn
k−1(0) = 0. So

∫ ξ

0

(
1− η2

)λ−1/2
Cλ
k dη =

−2λ

k(k + 2λ)

(
1− ξ2

)λ+1/2
Cλ+1
k−1 (ξ) (B.23)

Now imagine that we want to find the integral of the form∫ ξ

0

(
1− η2

)λ
C
λ− 1

2
k dη

So again by using Equation B.16,

C
λ− 1

2
k (x) =

λ− 1
2

k + λ− 1
2

(
C
λ+ 1

2
k (x)− Cλ+ 1

2
k−2 (x)

)
,
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so that ∫ ξ

0

(
1− η2

)λ
C
λ− 1

2
k dη =

λ− 1
2

k + λ− 1
2

∫ ξ

0

(
1− η2

)λ
C
λ+ 1

2
k (x)dη−

λ− 1
2

k + λ− 1
2

∫ ξ

0

(
1− η2

)λ
C
λ+ 1

2
k−2 (x)dη

Now using Equation B.23∫ ξ

0

(
1− η2

)λ
C
λ+ 1

2
k dη =

−2λ− 1

k(k + 2λ+ 1)

(
1− ξ2

)λ+1
C
λ+ 3

2
k−1 (ξ)∫ ξ

0

(
1− η2

)λ
C
λ+ 1

2
k−2 dη =

−2λ− 1

(k − 2)(k + 2λ− 1)

(
1− ξ2

)λ+1
C
λ+ 3

2
k−3 (ξ)

and so ∫ ξ

0

(
1− η2

)λ
C
λ− 1

2
k (η)dη = − 4λ2 − 1

2k + 2λ− 1

(
1− ξ2

)λ+1× C
λ+ 3

2
k−1 (ξ)

k(k + 2λ+ 1)
−

C
λ+ 3

2
k−3 (ξ)

(k − 2)(k + 2λ− 1)

 (B.24)

We are now ready to calculate
∫ 1

ξ
Ω̄dζ . Firstly we split the integral as

∫ 1

ξ

Ω̄dζ =

∫ 1

0

Ω̄dζ −
∫ ξ

0

Ω̄dζ

Looking at Equation III.28, in the interval 0 and 1, Ω̂ is only singular at ξ = 1. Using Equation

III.28 ∫ ξ

0

Ω̄dη =

∫ ξ

0

A0Ξ(1− η2)ϕdη +
∞∑
j=1

Aj
∫ ξ

0

(1− η2)ϕ+1C
(ϕ+ 1

2
)

2j−2 (η)dη

+ B

[
4

∫ ξ

0

√
1− η2dη + 2

∫ ξ

0

η2ln

∣∣∣∣∣1−
√

1− η2

1 +
√

1− η2

∣∣∣∣∣ dη
] (B.25)

From Equation B.24, by considering λ = ϕ+ 1, and k = 2j − 2,∫ ξ

0

(
1− η2

)ϕ+1
C
ϕ+ 1

2
2j−2(η)dη = −4(ϕ+ 1)2 − 1

4j + 2ϕ− 3

(
1− ξ2

)ϕ+2× C
ϕ+ 5

2
2j−3(ξ)

(2j − 2)(2j + 2ϕ+ 1)
−

C
ϕ+ 5

2
2j−5(ξ)

(2j − 4)(2j + 2ϕ− 1)

 (B.26)
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for j > 2, because we want to be able to define Cϕ+5/2
2j−5 . We know that Cλ

2 (ξ) = −λ+2λ(1+λ)ξ2.

So for j = 2 ∫ ξ

0

(
1− η2

)ϕ+1
C
ϕ+ 1

2
2 (η)dη =

(ϕ+
1

2
)

∫ ξ

0

(
1− η2

)ϕ+1 (
(2ϕ+ 3)η2 − 1

)
dη =

2ϕ+ 1

(2ϕ+ 3)(2ϕ+ 5)ξ

×
[

(1− ξ2)2+ϕ

2
(2− (3 + 2ϕ)2ξ2)− 2F1

(
−1

2
,−1− ϕ;

1

2
; ξ2

)] (B.27)

and for j = 1, since Cm
0 (ξ) = 1,∫ ξ

0

(
1− η2

)ϕ+1
dη = ξ 2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)
(B.28)

By knowing that Cn
m(0) = 0 for all odd value of m,∫ 1

0

(
1− η2

)ϕ+1
dη =

√
πΓ(2 + ϕ)

2Γ(5
2

+ ϕ)
,

∫ 1

0

(
1− η2

)ϕ+1
C
ϕ+ 1

2
2 (η)dη = −

√
π(1 + 2ϕ)Γ(2 + ϕ)

4Γ(7
2

+ ϕ)
,

and ∫ 1

0

(
1− η2

)ϕ+1
C
ϕ+ 1

2
2j (η)dη = 0 , j > 2

so

∞∑
i=1

Ai
∫ 1

0

(1− η2)ϕ+1C
(ϕ+ 1

2
)

2j−2 (η)dη =

√
πΓ(2 + ϕ)

2Γ(5
2

+ ϕ)

[
A1 −A2

(
1 + 2ϕ

5 + 2ϕ

)]
(B.29)

Or, based on the beta function Abramowitz and Stegun (1972)

∞∑
i=1

Ai
∫ 1

0

(1− η2)ϕ+1C
(ϕ+ 1

2
)

2j−2 (η)dη =
1

2
β(

1

2
, 2 + ϕ)

[
A1 −A2

(
1 + 2ϕ

5 + 2ϕ

)]
(B.30)

Also ∫ 1

ξ

A0Ξ(1− η2)ϕdη = A0Ξ

√
πΓ(1 + ϕ)

2Γ(3
2

+ ϕ)
−A0Ξξ 2F1

(
1

2
,−ϕ;

3

2
; ξ2

)
(B.31)

and ∫ 1

ξ

√
1− η2dη =

1

2

(
−ξ
√

1− ξ2 + arccos(ξ)
)

(B.32)
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The last integral is then given by ∫ ξ

0

η2ln

∣∣∣∣∣1−
√

1− η2

1 +
√

1− η2

∣∣∣∣∣ dη.
This integral has singularity at its boundary. So we need to find the Cauchy principal value of this

integral: ∫ 1

0

η2ln

∣∣∣∣∣1−
√

1− η2

1 +
√

1− η2

∣∣∣∣∣ dη = −π
6

(B.33)

For the regular part we can use integration by parts
∫
udv = uv −

∫
vdu, where

u = ln

∣∣∣∣∣1−
√

1− η2

1 +
√

1− η2

∣∣∣∣∣ , dv = η2dη (B.34)

and

du =
2

η
√

1− η2
dη , v =

η3

3
(B.35)

The singularity of the integral is at ξ = 0, and using a series expansion

lim
ξ→0+

uv = lim
ξ→0+

ξ3

3
ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣ = 0 , lim
ξ→1

uv = 0 (B.36)

Thus ∫ ξ

0

η2ln

∣∣∣∣∣1−
√

1− η2

1 +
√

1− η2

∣∣∣∣∣ dη = −2

3

∫ ξ

0

η2√
1− η2

dη =

ξ3

3
ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣− 1

3

[
−ξ
√

1− ξ2 + arcsin(ξ)
] (B.37)

and ∫ 1

ξ

η2ln

∣∣∣∣∣1−
√

1− η2

1 +
√

1− η2

∣∣∣∣∣ dη =− π

6
− ξ3

3
ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣
+

1

3

[
−ξ
√

1− ξ2 + arcsin(ξ)
] (B.38)

Then, by knowing that

2F1

(
−1

2
,−1− ϕ;

1

2
; ξ2

)
− (1− ξ2)2+ϕ = (3 + 2ϕ)ξ2

2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)
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∫ 1

ξ

Ω̄dη = A0Ξ

[
β(1 + ϕ, 1

2
)

2
− ξ 2F1

(
1

2
,−ϕ;

3

2
; ξ2

)]
+A1

[
β(2 + ϕ, 1

2
)

2
− ξ 2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)]
+A2

(
1 + 2ϕ

4

)[
−2β(2 + ϕ,

3

2
) +

2(3 + 2ϕ)

(5 + 2ϕ)
ξ(1− ξ2)2+ϕ

+
4

5 + 2ϕ
ξ 2F1

(
1

2
,−1− ϕ;

3

2
; ξ2

)]
+

(2ϕ+ 1)(2ϕ+ 3)

2

(
1− ξ2

)ϕ+2
∞∑
j=3

Aj
(4j + 2ϕ− 3)

× C
ϕ+ 5

2
2j−3(ξ)

(j − 1)(2j + 2ϕ+ 1)
−

C
ϕ+ 5

2
2j−5(ξ)

(j − 2)(2j + 2ϕ− 1)


+

2B
3

[
−ξ3ln

∣∣∣∣∣1−
√

1− ξ2

1 +
√

1− ξ2

∣∣∣∣∣+ 2
[
arccos(ξ)− 2ξ

√
1− ξ2

]]

(B.39)

Finally, since there is no time dependent parameter:∫ 1

ξ

˙̄Ωdη = 0 (B.40)

Which leaves Equation III.32.

E. DERIVING DIMENSIONLESS EQUATIONS

Prior to undertaking the derivations, some necessary definitions are:

I. The derivating of the in Gegenbauer is defined as Szeg (1975)

d

dξ
Cλ
n(ξ) = 2λCλ+1

n−1(ξ) (B.41)

II. The recurrence relation of the Gegenbauer function over its subscript is defined as Abramowitz

and Stegun (1972)

nCλ
n(ξ) = 2ξ(n+ λ− 1)Cλ

n−1(ξ)− (n+ 2λ− 2)Cλ
n−2(ξ) (B.42)
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III. The recurrence relation over the superscript is

(2λ+ n)(2λ+ n+ 1)

2λ
Cλ
n(ξ) =

[
2λ− 2(ξ2 − 1)(λ+ n+ 1) + 1

]
Cλ+1
n (ξ)−

2(λ+ 1)(ξ2 − 1)Cλ+2
n (ξ)

(B.43)

IV. From the recurrence relation for Gegenbauer polynomials Abramowitz and Stegun (1972), we

have

Cλ
1 (ξ) = 2λξ (B.44)

V. From complex variables we have the following identities:

e∓
iπ
2 = ∓i , e∓iπ = −1 , e±

i
2
π(−2r) = (−1)r

e±
i
2
π(1−2r) = ±(−1)ri , e∓

i
2
π(2r+1) = ∓(−1)ri , e∓irπ = (−1)r

(B.45)

VI. For the Gamma function Abramowitz and Stegun (1972)

Γ(x+ 1) = xΓ(x) (B.46)

VII. The beta function is defined as Abramowitz and Stegun (1972)

β(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
(B.47)

We also require some theorems:

Theorem 1. If β ≤ k and for Real(λ) > −1/2 (look at Gradshteyn and Ryzhik Gradshteyn and

Ryzhik (2014)):∫ 1

−1

ζβ(1− ζ2)λ−1/2Cλ
k (ζ)

ζ − ξ
dζ = −23/2−λ√π

Γ(λ)
ξβ(ξ2 − 1)λ/2−1/4e−(λ−1/2)πiQ

λ−1/2
k+λ−1/2(ξ)

where Qλ
m(ξ) is the Legendre function Abramowitz and Stegun (1972).

Also the following identity is valid for Legendre functions when (|ξ|2 < 1) Abramowitz and

Stegun (1972)

e−µπiQµ
ν (ξ) =

√
π2µ(ξ2 − 1)−

µ
2×[

Γ(1
2

+ ν
2

+ µ
2
)

2Γ(1 + ν
2
− µ

2
)
e±

i
2
π(µ−ν−1)

2F1

(
−ν

2
− µ

2
,
ν

2
+

1

2
− µ

2
;
1

2
; ξ2

)
+

ξΓ(1 + ν
2

+ µ
2
)

Γ(1
2

+ ν
2
− µ

2
)
e±

i
2
π(µ−ν)

2F1

(
1

2
− ν

2
− µ

2
, 1 +

ν

2
− µ

2
;
3

2
; ξ2

)] (B.48)
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Theorem 2. A Cauchy-type integral is defined as

Φ(z) =

∫
C

ϕ(x)

x− z
dx,

where C is a simple closed curve in the complex plane and function ϕ(x) is analytic on and inside

the region surounded by curve C (see Arfken and Weber (2005)). The Sokhotski-Plemelj Plemelj

(1908); Sokhotskii (1873) theorem for the real line states that the principle value of the Cauchy

integral over an interval C on the real line is Muskhelishvili (1953)

P.V.

∫
C

ϕ(x)

x− z
dx =

1

2
(L+ + L−),

where

L±(z) = lim
ε→0+

∫
C

ϕ(x)

x− (z ± iε)
dx, and i =

√
(−1).

1. Solution

We mentioned that the solution for the opening is in the form of polynomial series with base

function Ω̂ as

Ω̄∗ =
∞∑
i=0

AiΩ̂i

Our goal is to construct the pressure, also in the form of the polynomial series, that satisfies the

elasticity equation as well and be in the form of

Π̄∗ =
∞∑
i=0

AiΠ̂i

So at first we propose the solution for the opening to be in the form of Gegenbauer polynomial

because the given tip asymptotic is in the form of (1− ξ2)ϕ. So the proposed solution will be

Ω̂0 = (1− ξ2)ϕ

Ω̂j = (1− ξ2)ϕ+1Cn
m(ξ) , j > 0

(B.49)

The Gegenbauer function (Cn
m(ξ)) is an odd function when m is odd and it is an even function

when m is even. Also, because of symmetry of the crack growth around the well bore, which
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implies that Ω̂j is an even function, the Cn
m(ξ) should be an even function. Thus m should an even

number like m = 2r so

Ω̂j = (1− ξ2)ϕ+1Cn
2r(ξ).

then, from elasticity

Π̂j = − 1

4π

∫ 1

−1

dΩ̂j

dη

dη

η − ξ
(B.50)

By considering Equation B.50, we can find the appropriate solution for the pressure along the

crack. Using also Equations B.41 and B.49, we obtain

dΩ̂0

dη
= −2ϕη(1− η2)ϕ−1

dΩ̂j

dη
= −2η(ϕ+ 1)(1− η2)ϕCn

2r(η) + 2n(1− η2)ϕ+1Cn+1
2r−1(η).

So the elasticity equation will become

Π̂0 =
ϕ

2π

∫ 1

−1

η(1− η2)ϕ−1 dη

η − ξ

Π̂j =
(ϕ+ 1)

2π

∫ 1

−1

η(1− η2)ϕCn
2r(η)dη

η − ξ
− n

2π

∫ 1

−1

(1− η2)ϕ+1Cn+1
2r−1(η)dη

η − ξ
, j > 0

(B.51)

In order to solve for the pressure, we need to find three integrals:

L1 =
ϕ

2π

∫ 1

−1

η(1− η2)ϕ−1

η − ξ
dη

L2 = − n

2π

∫ 1

−1

(1− η2)ϕ+1Cn+1
2r−1(η)

η − ξ
dη

L3 =
(ϕ+ 1)

2π

∫ 1

−1

η(1− η2)ϕCn
2r(η)

η − ξ
dη

(B.52)

For the first integral, using Equation B.44,

L1 =
ϕ

2π

∫ 1

−1

η(1− η2)ϕ−1

η − ξ
dη =

ϕ

2(2ϕ− 1)π

∫ 1

−1

(1− η2)ϕ−1C
ϕ−1/2
1 (η)

η − ξ
dη (B.53)

Now from theorem 1, choosing β = 0, λ = ϕ− 1/2, and k = 1:

∫ 1

−1

(1− η2)ϕ−1C
ϕ−1/2
1 (η)

η − ξ
dη = − 22−ϕ√π

Γ(ϕ− 1/2)
(ξ2 − 1)

ϕ−1
2 e−(ϕ−1)πiQϕ−1

ϕ (ξ) (B.54)
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So by comparing Equations B.53 and B.54

L1 = − ϕ

2(2ϕ− 1)π

22−ϕ√π
Γ(ϕ− 1/2)

(ξ2 − 1)ϕ/2−1/2e−(ϕ−1)πiQϕ−1
ϕ (ξ) (B.55)

Also from Equation B.48, and knowing that

2F1

(
1− ϕ, 3

2
;
3

2
; ξ2

)
= (1− ξ2)ϕ−1,

we obtain

e−(ϕ−1)πiQϕ−1
ϕ (ξ) =

√
π2ϕ−1(ξ2 − 1)−

ϕ−1
2 ×[

−Γ(ϕ)√
π

2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
∓ i

ξΓ(1
2

+ ϕ)

(1− ξ2)1−ϕ

] (B.56)

Now by replacing the Equation B.56 into Equation B.55 (for Gamma and Beta function see Equa-

tions B.46 and B.47)

L1 =
ϕ

2

[
β(1

2
, ϕ)

π
2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
± iξ

(1− ξ2)1−ϕ

]
(B.57)

In order to find the principal value of this integral on the real line, theorem 2 leads to

Π̂0 =
1

2
(L+

1 + L−1 ) =
ϕ

2π
β(

1

2
, ϕ)2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
(B.58)

with the condition that Real(ϕ) ≥ 0.

Now we want to solve for L2. Since we are constructing a solution that solves our coupling

problem, we have freedom to choose parameters as long as they support all the boundary conditions

and governing equations. Until now there is no limitation on the value of n. But, if we choose

n = ϕ + 1/2, we can take the integral easily. Also in order to use theorem 1, we choose β = 0,

λ = ϕ+ 3/2, and k = 2r − 1. So from theorem 1 we have:∫ 1

−1

(1− ζ2)ϕ+1C
ϕ+3/2
2r−1 (ζ)

ζ − ξ
dζ = − 2−ϕ

√
π

Γ(ϕ+ 3/2)
(ξ2 − 1)

ϕ+1
2 e−(ϕ+1)πiQϕ+1

2r+ϕ(ξ) (B.59)

And also from Equation B.48, (see also Equation B.45):

e−(ϕ+1)πiQϕ+1
2r+ϕ(ξ) =

√
π2ϕ+1(ξ2 − 1)−

ϕ+1
2 (−1)r×[

Γ(1 + r + ϕ)

2Γ(r + 1
2
)

2F1

(
−r − ϕ− 1

2
, r;

1

2
; ξ2

)
± i

ξΓ(r + ϕ+ 3
2
)

Γ(r)
2F1

(
−r − ϕ, r +

1

2
;
3

2
; ξ2

)] (B.60)
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thus by combining Equation B.60, B.59, and B.52

L2 = (−1)r
[

1

2β(ϕ+ 1/2, r + 1
2
)

2F1

(
−r − ϕ− 1

2
, r;

1

2
; ξ2

)
±i

ξ(r + ϕ+ 1
2
)

β(ϕ+ 1/2, r)
2F1

(
−r − ϕ, r +

1

2
;
3

2
; ξ2

)] (B.61)

Again by using theorem 2, the principal value of L2 is called J2 and is equal to

J2 =
1

2
(L+

2 + L−2 ) =
(−1)r

2β(ϕ+ 1/2, r + 1
2
)

2F1

(
−r − ϕ− 1

2
, r;

1

2
; ξ2

)
(B.62)

With the conditions r ≥ 0.5 and ϕ > −2.

And finally, for the third integral, we can consider that β = 1, λ = ϕ + 1/2, k = 2r, so from

theorem 1, we have:

∫ 1

−1

ζ(1− ζ2)ϕC
ϕ+1/2
2r (ζ)

ζ − ξ
dζ = − 21−ϕ√π

Γ(ϕ+ 1
2
)
ξ(ξ2 − 1)ϕ/2e−(ϕ)πiQϕ

2r+ϕ(ξ) (B.63)

and from Equation B.48 (see also Equation B.45):

e−ϕπiQϕ
2r+ϕ(ξ) =

√
π2ϕ(ξ2 − 1)−

ϕ
2 (−1)r×[

∓i
Γ(1

2
+ r + ϕ)

2Γ(1 + r)
2F1

(
−r − ϕ, r +

1

2
;
1

2
; ξ2

)
+
ξΓ(1 + r + ϕ)

Γ(1
2

+ r)
2F1

(
1

2
− r − ϕ, 1 + r;

3

2
; ξ2

)]
(B.64)

So, by replacing Equation B.64 into Equation B.63 and then following Equation B.52

L3 =− (ϕ+ 1)ξ(−1)r×[
∓i 1

2rβ(ϕ+ 1
2
, r)

2F1

(
−r − ϕ, r +

1

2
;
1

2
; ξ2

)
+

ξ

β(ϕ+ 1
2
, 1

2
+ r)

2F1

(
1

2
− r − ϕ, 1 + r;

3

2
; ξ2

)] (B.65)

The principal value of integral L3 is thus called J3 and is equal to

J3 =
1

2
(L+

3 + L−3 ) =
−(−1)rξ2(ϕ+ 1)

β(ϕ+ 1
2
, 1

2
+ r)

2F1

(
1

2
− r − ϕ, 1 + r;

3

2
; ξ2

)
(B.66)
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with the condition that r ≥ 0.5 and ϕ > −1. Thus the pressure integral Equation B.51 for j > 0 is

Π̂j =
(−1)r

β(ϕ+ 1/2, r + 1
2
)

[
1

2
2F1

(
−r − ϕ− 1

2
, r;

1

2
; ξ2

)
−ξ2(ϕ+ 1)2F1

(
1

2
− r − ϕ, 1 + r;

3

2
; ξ2

)] (B.67)

Since r ≥ 0.5 and it is an integer, and also j is an integer such that j > 0, so we can say that r = j.

Thus

Ω̂0 = (1− ξ2)ϕ

Ω̂j = (1− ξ2)ϕ+1C
ϕ+ 1

2
2j (ξ) , j > 0

(B.68)

and

Π̂0 =
ϕ

2π
β(

1

2
, ϕ)2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
Π̂j =

(−1)j

β(ϕ+ 1/2, j + 1
2
)

[
1

2
2F1

(
−j − ϕ− 1

2
, j;

1

2
; ξ2

)
−ξ2(ϕ+ 1)2F1

(
1

2
− j − ϕ, 1 + j;

3

2
; ξ2

)] (B.69)

On the other hand, letting r = j − 1, which will help with accuracy of the results, because Ω̂1 =

(1− ξ2)ϕ+1 is the second order solution for the crack tip. In the case of r=j-1,

Ω̂0 = (1− ξ2)ϕ

Ω̂j = (1− ξ2)ϕ+1C
ϕ+ 1

2
2j−2(ξ) , j > 0

(B.70)

and

Π̂0 =
ϕ

2π
β(

1

2
, ϕ)2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
Π̂1 =

ϕ(ϕ+ 1)

(2ϕ+ 1)π
β(

1

2
, ϕ)2F1

(
−1

2
− ϕ, 1;

1

2
; ξ2

)
Π̂j =

2j − 1

2π
β(ϕ+ j,

1

2
− j)

[
ξ2(ϕ+ 1)2F1

(
3

2
− j − ϕ, j; 3

2
; ξ2

)
−1

2
2F1

(
1

2
− j − ϕ, j − 1;

1

2
; ξ2

)]
(B.71)
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Using identities for Hypergeometric functions

2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
=

Γ(1
2
)Γ(ϕ− 1)

Γ(ϕ)Γ(−1
2
)

2F1

(
1

2
− ϕ, 1; 2− ϕ; 1− ξ2

)
+(1− ξ2)ϕ−1 Γ(1

2
)Γ(1− ϕ)

Γ(1
2
− ϕ)

2F1

(
ϕ,−1

2
;ϕ; 1− ξ2

) (B.72)

2F1

(
ϕ,−1

2
;ϕ; 1− ξ2

)
= |ξ| (B.73)

Then, knowing that

Γ(1
2
)

−Γ(1
2
)

= −1

2
, Γ(z)Γ(1− z) =

π

sin(πz)
,

we can say

1

2
√
π

Γ(ϕ+ 1)

Γ(ϕ+ 1
2
)

2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
=

ϕ cot(πϕ)

2
|ξ|(1− ξ2)ϕ−1 − ϕ

4
√
π

Γ(ϕ− 1)

Γ(ϕ+ 1
2
)

2F1

(
1

2
− ϕ, 1; 2− ϕ; 1− ξ2

) (B.74)

Thus, Π̂0 from Equation B.69 (or B.71) is expressed as

Π̂0 =
1

2
√
π

Γ(ϕ+ 1)

Γ(1
2

+ ϕ)
2F1

(
1

2
− ϕ, 1;

1

2
; ξ2

)
=

ϕ cot(πϕ)

2
|ξ|(1− ξ2)ϕ−1 − ϕ

4
√
π

Γ(ϕ− 1)

Γ(ϕ+ 1
2
)

2F1

(
1

2
− ϕ, 1; 2− ϕ; 1− ξ2

) (B.75)

Now to find the value of the opening at crack tip, let ξ → ±1 so that

Π̂tip = A0Ξ lim
ξ→±1

Π̂0 = A0Ξ
ϕ cot(πϕ)

2
(1− ξ2)ϕ−1 −A0Ξ

ϕ

4
√
π

Γ(ϕ− 1)

Γ(ϕ+ 1
2
)

(B.76)

Also,

Π̄tip ∼ A0
ϕ cot(ϕπ)

2
Ξ(1− ξ2)ϕ−1

So we can see that the solution embeds the tip solution for the pressure.
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APPENDIX C

APPENDICES FOR “SEMI-ANALYTICAL SOLUTION FOR A PENNY-SHAPED

ROUGH-WALLED HYDRAULIC FRACTURE DRIVEN BY TURBULENT FLUID IN

AN IMPERMEABLE ROCK”

A. CRACK-TIP SOLUTION

Close to the tip the crack opening is decreasing to zero and the pressure is singular. We can define

the δ as distance from crack tip (δ = 1 − ξ). Therefore, using a perturbation approach, we seek a

power series as

Ω̄tip =
∞∑
i=0

aiδ
mi

Π̄tip =
∞∑
i=0

biδ
ri

(C.1)

where ai, bi, mi, and ri are unknowns that need to be found and we know that for 0 < i, we have

0 ≤ mi < mi+1 and ri < ri+1. Also, following the solution provided by Garagash and Detournay

(2000), the fluid pressure and crack opening are connected through the following equations:

r0 = m0 − 1

b0 =
m0a0

4
cot (πm0)

(C.2)
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Close to the crack tip, the continuity equation (IV.18a) can be simplified to

dΩ̄

dξ
= 2

d

dξ

(
Ω̄

3+α
2

(
−dΠ̄

dξ

) 1
2

)

Substituting Equation C.1 into the continuity equation, and knowing the fact that in the limiting

case

(1 + δ)m ∼= 1 +mδ + ...

we find that

−
∞∑
i=0

miaiδ
mi−1 = −2a

3+α
2

0

√
r0b0

[
3m0 + αm0 + r0 − 1

2
δ

3m0+αm0+r0−3
2

+
3 + α

2

∞∑
i=1

ai
a0

(
m0 + αm0 + r0 − 1

2
+mi

)
δ

3m0+αm0+r0−3
2

+mi−m0

+
∞∑
i=1

ribi
2r0b0

(
3m0 + αm0 + r0 − 1

2
+ ri − r0

)
δ

3m0+αm0+r0−3
2

+ri−r0

+
3 + α

2

d

dδ

∞∑
i=1

∞∑
j=1

ribi
2r0b0

δ
3m0+αm0+r0−1

2
+ri−r0 aj

a0

δmj−m0

]
(C.3)

Also, we know that a power series solution will become satisfied if the coefficient of both sides

of the equation becomes equal term by term. The smallest power of the δ on the left side of the

equation is m0 − 1, and for the right hand side since mi − m0 and ri − r0 are always positive,

the smallest power of δ therefore is (3m0 + αm0 + r0 − 3)/2. Hence, by forcing the power and

coefficient be equal in both side of the equation for the first term (first order calculation), we can

obtain

m0 − 1 =
3m0 + αm0 + r0 − 3

2

−m0a0 = −2a
3+α

2
0

√
r0b0 ×

3m0 + αm0 + r0 − 1

2

(C.4)

Using Equation C.2, we solve the system of unknown equations to find a0, b0, m0, and r0 where

the first order solution for the crack tip is

Ω̄tip = a0(1− ξ)m0

Π̄tip = b0(1− ξ)r0
(C.5)
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which yields

m0 =
2

2 + α

r0 =
−α

2 + α

a0 =

[(
α + 2

2

)√
2

α
tan

απ

α + 2

] 2
2+α

b0 =
cot 2π

α+2

2α + 4

[(
α + 2

2

)√
2

α
tan

απ

α + 2

] 2
2+α

(C.6)

B. RELATION BETWEEN PRESSURE AND OPENING CONSTANTS

In this section, we are following the method of Savitski and Detournay (2002) to find the relation

between constants of the crack opening and fluid pressure. From Equation IV.22, and IV.18b, we

have
∞∑
i=1

AiΩ̂i(ξ) =
8

π

∞∑
i=1

Ci
∫ 1

0

G(ξ, η)Π̂i(η)ηdη.

Note that Ω̄∗ and Π̄∗ are already related through the elasticity equation and can be simplified on

both sides of the equation. To do this, we multiply both sides of the equation by ξΩ̂k(ξ) and take

the integral over ξ from 0 to 1, thus

∞∑
i=1

Ai
∫ 1

0

Ω̂i(ξ)Ω̂k(ξ)ξdξ =
8

π

∞∑
i=1

Ci
∫ 1

0

Ω̂k(ξ)ξ

∫ 1

0

G(ξ, η)Π̂i(η)ηdηdξ.

From the orthogonality condition that we defined for Ω̂i(ξ) and Π̂i(ξ) (Equation IV.23) we can

obtain that

Ak =
8

π

∞∑
i=1

Ci
∫ 1

0

Ω̂k(ξ)ξ

∫ 1

0

G(ξ, η)Π̂i(η)ηdηdξ.

or (compare with Equation IV.29)

Ak =
∞∑
i=1

CiLki =
∞∑
i=1

Ci
[

8

π

∫ 1

0

Ω̂k(ξ)ξ

∫ 1

0

G(ξ, η)Π̂i(η)ηdηdξ

]
In another words

Lki =
8

π

∫ 1

0

Ω̂k(ξ)Ii(ξ)ξdξ (C.7)
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where

Ii(ξ) =

∫ 1

0

G(ξ, η)Π̂i(η)ηdη (C.8)

After using Equation IV.8 to expand Equation C.8

Ii(ξ) =

∫ ξ

0

η

ξ
F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)
Π̂i(η)dη +

∫ 1

ξ

F

(
arcsin

√
1− η2

1− ξ2
,
ξ2

η2

)
Π̂i(η)dη

(C.9)

The integrals in Equation C.9 are singular and require regularization. To do this, we separate the

singular parts from the integrals and treat them separately. Before continuing, we need to mention

that the expansion of the incomplete elliptical integral F when both defining parameters of it goes

to 1 can be defined as (see Savitski and Detournay (2002))F
(

arcsin
√

1−ξ2

1−η2 ,
η2

ξ2

)
∼= 1

2
ln
(

1−ξ
1+ξ

16ξ2

ξ2−η2

)
, ξ → η

F
(

arcsin
√

1−η2

1−ξ2 ,
ξ2

η2

)
∼= 1

2
ln
(

1−η
1+η

16ξ2

η2−ξ2

)
, η → ξ

(C.10)

Also we know that ∫ 1

ξ

F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)
= 1− ξ

and ∫ ξ

0

ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)
dη = ξ

[
2 + ln

4(1− ξ)
1 + ξ

]
Thus by adding and subtracting the singular parts in the integral, using the above relations, and

re-ordering the equations, we will have
(

Π̂i(ξ) = ωi − Π̃i(ξ)
)

Ii(ξ) =
ωi
ξ

∫ ξ

0

[
ηF

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)
− ξ

2
ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)]
dη

+
1

h
1/2
i−1(2ϕ, 2)

∫ ξ

0

[
(1− ξ)ϕ−1Gi−1(2ϕ, 2, ξ)

2
ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)

−η(1− η)ϕ−1

ξ
Gi−1(2ϕ, 2, η)F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)]
dη

+
1

h
1/2
i−1(2ϕ, 2)

∫ 1

ξ

F

(
arcsin

√
1− η2

1− ξ2
,
ξ2

η2

)
×

[
(1− ξ)ϕ−1Gi−1(2ϕ, 2, ξ)− (1− η)ϕ−1Gi−1(2ϕ, 2, η)

]
dη(

ωi −
(1− ξ)ϕ−1

h
1/2
i−1(2ϕ, 2)

Gi−1(2ϕ, 2, ξ)

)(
1 +

ξ

2
ln

(
4(1− ξ)

1 + ξ

))

(C.11)
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So if we define

H(ξ) =

∫ ξ

0

[
η

ξ
F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)
− 1

2
ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)]
dη

Mi(ξ) =

∫ 1

ξ

(1− ξ)ϕ−1Gi−1(2ϕ, 2, ξ)− (1− η)ϕ−1Gi−1(2ϕ, 2, η)

h
1
2
i−1(2ϕ, 2)

×
F

(
arcsin

√
1− η2

1− ξ2
,
ξ2

η2

)
dη − 1

h
1
2
i−1(2ϕ, 2)

×

∫ ξ

0

[
η(1− η)ϕ−1Gi−1(2ϕ, 2, η)

ξ
F

(
arcsin

√
1− ξ2

1− η2
,
η2

ξ2

)

−(1− ξ)ϕ−1Gi−1(2ϕ, 2, ξ)

2
ln

(
1− ξ
1 + ξ

16ξ2

ξ2 − η2

)]
dη

(C.12)

we can re-write Equation C.11 as

Ii(ξ) = ωiH(ξ) +Mi(ξ)+

(
ωi −

(1− ξ)ϕ−1

h
1/2
i−1(2ϕ, 2)

Gi−1(2ϕ, 2, ξ)

)
×(

1 +
ξ

2
ln

(
4(1− ξ)

1 + ξ

)) (C.13)

Therefore, Equation C.7 will change to

Lki =
8

π

1

h
1
2
k−1(2ϕ+ 2, 2)

∫ 1

0

ξ(1− ξ)ϕGk−1(2ϕ+ 2, 2, ξ) [ωiH(ξ) +Mi(ξ)

+

(
ωi −

(1− ξ)ϕ−1

h
1/2
i−1(2ϕ, 2)

Gi−1(2ϕ, 2, ξ)

)(
1 +

ξ

2
ln

(
4(1− ξ)

1 + ξ

))]
dξ

(C.14)

and if we define

Nk =

∫ 1

0

ξ(1− ξ)ϕGk−1(2ϕ+ 2, 2, ξ)

(
1 +

ξ

2
ln

(
4(1− ξ)

1 + ξ

))
dη

+

∫ 1

0

H(ξ)ξ(1− ξ)ϕGk−1(2ϕ+ 2, 2, ξ)dη

Pk,i =

∫ 1

0

Mi(ξ)ξ(1− ξ)ϕGk−1(2ϕ+ 2, 2, ξ)dξ

− 1

h
1
2
i−1(2ϕ, 2)

∫ 1

0

ξ(1− ξ)2ϕ−1Gk−1(2ϕ+ 2, 2, ξ)×

Gi−1(2ϕ, 2, ξ)

(
1 +

ξ

2
ln

(
4(1− ξ)

1 + ξ

))
dξ

(C.15)
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we can find that

Lki =
8

π

ωiNk + Pk,i
h

1
2
k−1(2ϕ+ 2, 2)

(C.16)

Since calculating the integrals are cumbersome and time consuming, we visualize the answer of

the integrals in Figure C1.
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Figure C1: Behavior of the integrals that have been introduced in Equation IV.30.
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APPENDIX D

APPENDICES FOR “NUMERICAL MODEL FOR A PENNY-SHAPED HYDRAULIC

FRACTURE DRIVEN BY LAMINAR/TURBULENT FLUID IN AN IMPERMEABLE

ROCK”

A. NUMERICAL METHOD

Before deriving the equations, we need to explain notation as indicated in Figure V.5, whereby

ξi = (i− 1

2
)∆ξ

∆Ω
τ

i = Ω
τ

i − Ω
τ−∆τ

i

∆Π
τ

i = Π
τ

i − Π
τ−∆τ

i

∆γτ = γτ − γτ−∆τ

(D.1)

with ∆Ω
τ

i , ∆Π
τ

i , and ∆γτ giving the change of opening, pressure, and length respectively at

element ith and at time τ . We know that all the parameters are defined at the middle of the element.

However, we also know that the boundary conditions, like the fluid injection and the opening at the

tip of the crack, are not defined at the middle of the elements. These values are defined at one edge

of certain elements. On the other hand, the fluid flux has the derivative of the pressure inside it and

we can use a central difference method to define the derivative at the center of elements. Thus, in

order to collaborate the effect of boundary conditions at nodes, we define the fluid flux at the edges

rather than at the center of the elements (see Figure D1)
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Figure D1: Discretization scheme for half radial hydraulic fracture.

Since, all the equations are presented at the center of the elements, we can transfer the flow

from the nodes to the center using linear interpolation, thus

∂

∂ξ

Q0T

εL2
Ψ̃ =

Q0T
εL2 Ψ̃i+ 1

2
− Q0T

εL2 Ψ̃i− 1
2

∆ξ
(D.2)

1. Elasticity Equation

In order to discretize the elasticity equation, we follow the approach taken by Zhang et al. (2002);

Bunger (2005). The elasticity equation is given in Equation V.34. We can break the integral over

each elements as

Πi = −
∫ 1

0

G(ξi, ζ)Ωdζ = −
n∑
j=1

∫ ξj+∆ξ/2

ξj−∆ξ/2

G(ξi, ζ)Ωdζ (D.3)

Since for each element the value of the opening and pressure are uniform, so

Πi = −
n∑
j=1

Ωj

∫ ξj+∆ξ/2

ξj−∆ξ/2

G(ξi, ζ)dζ (D.4)

where the kernel is given by Zhang et al. (2002)

G(ρ, ξ) =
∂

∂ξ
g(ρ, ξ) (D.5)
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where

g(ξ, η) = − 1

4η
J101(

ξ

η
, 0) (D.6)

and Jmnp(x, y) is the Lifshitz-Hankel (also known as Lipshitz-Hankel) integral Eason et al. (1955).

Using the complete elliptical integrals to express Lifshitz-Hankel integral, one can find that Eason

et al. (1955)

J101(ξ, η) =
k3(1− ξ2 − η2)

8πk′2ξ3/2
EEE(k) +

k

2πρ1/2
KKK(k) (D.7)

whereEEE(k) and KKK(k) are the complete elliptical integrals Abramowitz and Stegun (1972)

EEE(k) =

∫ π/2

0

√
1− k2 sin2 ζdζ

KKK(k) =

∫ π/2

0

1√
1− k2 sin2 ζ

dζ

(D.8)

Here, k and k′ are

k(ξ, η) =

√
4ξ

(1 + ξ)2 + η2

k′(ξ, η) =

√
(1− ξ)2 + η2

(1 + ξ)2 + η2

(D.9)

If we consider Mij = g(ξi, ξj + ∆ξ/2)− g(ξi, ξj −∆ξ/2), we can simplify Equation D.4 to

Πi = −
n∑
j=1

MijΩj (D.10)

or in tensor notation as

ΠΠΠ = −MMMΩΩΩ (D.11)

Therefore, the influence matrix (MMMn×n) relates the opening of the crack to the fluid pressure and

being used in the elasticity equations (see Equation V.42),
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2. Global Continuity

The global continuity equation is given from Equation V.33 by expanding over the elements and

considering that the opening is uniform over each elements. In this way we can show

τ = γτ 5/2
n∑
j=1

Ωj

∫ ξj+∆ξ/2

ξj−∆ξ/2

ζdζ (D.12)

then combining Equation D.12 with Equation D.1,

τ = γτ 5/2 (∆ξ)2
n∑
j=1

Ωj

(
j − 1

2

)
(D.13)

3. Continuity Equation

The continuity equation is given from Equation V.32 by taking the derivative over time for γ and

Ω
τ

i using Equation D.1, leading to

γ̇ =
γτ − γτ−∆τ

∆τ
=

∆γ

∆τ
, Ω̇

τ

i =
Ω
τ

i − Ω
τ−∆τ

i

∆τ
=

∆Ω
τ

i

∆τ
(D.14)

Also in order to obtain the derivative at the center of the element, we have

∂Ω

∂ξ

∣∣∣∣
1<i<n

=
Ω
τ

i+ 1
2
− Ω

τ

i− 1
2

∆ξ
=

Ω
τ−∆τ

i+1 + ∆Ω
τ

i+1 − Ω
τ−∆τ

i−1 −∆Ω
τ

i−1

2∆ξ

∂Ω

∂ξ

∣∣∣∣
i=1

=
Ω
τ
3
2
− Ω

τ
1
2

∆ξ
=

Ω
τ−∆τ

2 + ∆Ω
τ

2 − Ω
τ−∆τ

1 −∆Ω
τ

1

∆ξ

∂Ω

∂ξ

∣∣∣∣
i=n

=
Ω
τ

n+ 1
2
− Ω

τ

n− 1
2

∆ξ
=
−Ω

τ−∆τ

n −∆Ω
τ

n − Ω
τ−∆τ

n−1 −∆Ω
τ

n−1

2∆ξ

(D.15)
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In Equation D.15, index i ± 1/2 refers to the value at the node. Combining Equations D.14

and D.15 with D.1 and the discretized form of Equation V.32 over element i yields

1 < i < n :(
1 +

2γτ

∆γ

)
∆Ω

τ

i −
(
i− 1

2

)
∆Ω

τ

i+1 +

(
i− 1

2

)
∆Ω

τ

i−1 =(
i− 1

2

)
Ω
τ−∆τ

i+1 − Ω
τ−∆τ

i −
(
i− 1

2

)
Ω
τ−∆τ

i−1

− 2∆τ

∆γ
√
γτ (i− 1

2
)(∆ξ)2

(
Q0T

εL2
Ψ̃τ
i+ 1

2
− Q0T

εL2
Ψ̃τ
i− 1

2

) (D.16a)

i = 1 : (
1 +

γτ

∆γ

)
∆Ω

τ

1 −
1

2
∆Ω

τ

2 =
1

2
Ω
τ−∆τ

2 − Ω
τ−∆τ

1

− 2∆τ

∆γ
√
γτ (∆ξ)2

(
Q0T

εL2
Ψ̃τ

3
2
− Q0T

εL2
Ψ̃τ

1
2

) (D.16b)

i = n : (
2γτ

∆γ
+ n+

1

2

)
∆Ω

τ

n +

(
n− 1

2

)
∆Ω

τ

n−1 = −
(
n+

1

2

)
Ω
τ−∆τ

n

−
(
n− 1

2

)
Ω
τ−∆τ

n−1 +
2∆τ

∆γ

Q0T
εL2 Ψ̃τ

n− 1
2√

γτ (n− 1
2
)(∆ξ)2

(D.16c)

where Ω
τ

i = ∆Ω
τ

i + Ω
τ−∆τ

i and Π
τ

i = Π
τ−∆τ

i + ∆Π
τ

i

4. Initial and Boundary Conditions

One of the crucial steps in any numerical modeling is the correct definition of initial and boundary

conditions. From this case, we go back to Equation V.35 to define these conditions in discretized

form as

Q0T

εL2
Ψ̃τ

1
2

=
1

γτ

Q0T

εL2
Ψ̃τ
n+ 1

2
= 0

(D.17)

These conditions are incorporated via Equation D.16a.
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5. Fluid Flow

Based on Equations V.13 and V.2, the fluid flux is

q = − sgn

(
∂p

∂r

)∣∣∣∣ Vu∗
∣∣∣∣∣∣∣∣w3

2ρ

∂p

∂r

∣∣∣∣ 1
2

Therefore, following Figure V.3, we obtain that

• F1 (Laminar): Re+ ≤ ϑw
2δ
Re∗c and Re+ < Re+

c

q = − sgn

(
∂p

∂r

)∣∣∣∣w3

µ′
∂p

∂r

∣∣∣∣ (D.18a)

This is also known as Poiseuille equation.

• F2 (Smooth-walled): Re+
c ≤ Re+ ≤ ϑw

2δ
Re∗l

q =− sgn

(
∂p

∂r

) ∣∣∣∣∣∣∣
 Re+

c
2

9ϑ2

∣∣∣2ρw3

µ′2
∂p
∂r

∣∣∣ 1
2

 e

Re+c
2

9ϑ2
∣∣∣∣ 2ρw3

µ′2
∂p
∂r

∣∣∣∣ 1
2

−1

+

1−

 Re+
c

2

9ϑ2

∣∣∣2ρw3

µ′2
∂p
∂r

∣∣∣ 1
2

 e

Re+c
2

9ϑ2
∣∣∣∣ 2ρw3

µ′2
∂p
∂r

∣∣∣∣ 1
2

−1
×

[
2.5 ln

∣∣∣∣18ϑ2ρw3

µ′2
∂p

∂r

∣∣∣∣ 1
2

− 66.69

(Re+)0.72
+ 1.8

]∣∣∣∣∣
∣∣∣∣w3

2ρ

∂p

∂r

∣∣∣∣ 1
2

(D.18b)

• F3 (Transition-Turbulent): ϑw
2δ
Re∗l < Re+ ≤ ϑw

2δ
Re∗c and Re+

c ≤ Re+

q =− sgn

(
∂p

∂r

) ∣∣∣∣∣∣∣
 Re+

c
2

9ϑ2

∣∣∣2ρw3

µ′2
∂p
∂r

∣∣∣ 1
2

 e

Re+c
2

9ϑ2
∣∣∣∣ 2ρw3

µ′2
∂p
∂r

∣∣∣∣ 1
2

−1

+

1−

 Re+
c

2

9ϑ2

∣∣∣2ρw3

µ′2
∂p
∂r

∣∣∣ 1
2

 e

Re+c
2

9ϑ2
∣∣∣∣ 2ρw3

µ′2
∂p
∂r

∣∣∣∣ 1
2

−1
[2.5 ln

∣∣∣∣18ϑ2ρw3

µ′2
∂p

∂r

∣∣∣∣ 1
2

− 66.69

(Re+)0.72
+ 1.8− C1

(
2δ

w

∣∣∣∣18ϑ2ρw3

µ′2
∂p

∂r

∣∣∣∣ 1
2

)]∣∣∣∣∣
∣∣∣∣w3

2ρ

∂p

∂r

∣∣∣∣ 1
2

(D.18c)
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• F4 (Laminar): Re+
T = ϑw

2δ
Re∗c < Re+

c and ϑw
2δ
Re∗c < Re+

q = − sgn

(
∂p

∂r

)∣∣∣∣∣ Re∗cw

3× 2
3
2
δρ

1
2

∣∣∣∣∣
∣∣∣∣w3∂p

∂r

∣∣∣∣ 1
2

(D.18d)

• F5 (Rough-walled fully turbulent): Re+
T = ϑw

2δ
Re∗c ≥ Re+

c and ϑw
2δ
Re∗c < Re+

q =− sgn

(
∂p

∂r

) ∣∣∣∣∣
(

2δRe+
c

2

3ϑ2wRe∗c

)
e

(
Re+c

ϑw
2δ

Re∗c

)2

−1

+

1−

(
Re+

c
ϑw
2δ
Re∗c

)2

e

(
Re+c

ϑw
2δ

Re∗c

)2

−1

[2.5 ln
ϑw

2δ
Re∗c

− 66.69(
ϑw
2δ
Re∗c

)0.72 + 1.8− C1(Re∗c)

]∣∣∣∣∣
∣∣∣∣w3

2ρ

∂p

∂r

∣∣∣∣ 1
2

(D.18e)

Now if we use the scaling parameters from Equations V.24 and V.30, we find the scaled form

of the fluid flow. But before going forward, we can re-define the scaled form of the conditions

determining regimes of fluid flow as:

E1 =
Re+

ϑ
= 3

∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣
1
2

E2 =
w

2δ
Re∗c = RtRe∗c

√
γΩ

E3 =
Re+

c

ϑ

E4 =
w

2δ
Re∗l = RtRe∗l

√
γΩ

(D.19)

Thus if we want to continue the scaling for the rest of the fluid flow equations, we can obtain

• F1 (Laminar): E1 ≤ E2 and E1 < E3

TQ0

εL2
Ψ̃ = − sgn

(
∂Π

∂ξ

)
ξ

∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣
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• F2 (Smooth-walled): E3 ≤ E1 ≤ E4

TQ0

εL2
Ψ̃ = − sgn

(
∂Π

∂ξ

)
ξ

∣∣∣∣∣∣∣∣∣
 Re+

c
2

9ϑ2

∣∣∣Ω3 ∂Π
∂ξ

∣∣∣ 1
2

 e

 Re+c
2

9ϑ2|Ω3 ∂Π
∂ξ |

1
2

−1

+

1−

 Re+
c

2

9ϑ2

∣∣∣Ω3 ∂Π
∂ξ

∣∣∣ 1
2

 e

 Re+c
2

9ϑ2|Ω3 ∂Π
∂ξ |

1
2

−1


[

2.5 ln

∣∣∣∣9ϑ2Ω
3∂Π

∂ξ

∣∣∣∣
1
2

− 66.69∣∣∣9ϑ2Ω
3 ∂Π
∂ξ

∣∣∣0.36 + 1.8


∣∣∣∣∣∣∣
∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣
1
2

• F3 (Transition-Turbulent): E4 < E1 ≤ E2 and E3 ≤ E1

TQ0

εL2
Ψ̃ = − sgn

(
∂Π

∂ξ

)
ξ

∣∣∣∣∣∣∣∣∣
 Re+

c
2

9ϑ2

∣∣∣Ω3 ∂Π
∂ξ

∣∣∣ 1
2

 e

 Re+c
2

9ϑ2|Ω3 ∂Π
∂ξ |

1
2

−1

+

1−

 Re+
c

2

9ϑ2

∣∣∣Ω3 ∂Π
∂ξ

∣∣∣ 1
2

 e

 Re+c
2

9ϑ2|Ω3 ∂Π
∂ξ |

1
2

−1


[

2.5 ln

∣∣∣∣9ϑ2Ω
3∂Π

∂ξ

∣∣∣∣
1
2

− 66.69∣∣∣9ϑ2Ω
3 ∂Π
∂ξ

∣∣∣0.36 + 1.8− C1

(
3

√
γRt

∣∣∣∣Ω∂Π

∂ξ

∣∣∣∣
1
2

)
∣∣∣∣∣∣∣
∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣
1
2

• F4: (Laminar) E2 < E3 and E2 < E1

TQ0

εL2
Ψ̃ = −sign

(
∂Π

∂ξ

)
RtRe∗c

√
γ

3
ξ

∣∣∣∣Ω5∂Π

∂ξ

∣∣∣∣
1
2

• F5: (Rough-walled Fully turbulent) E2 ≥ E3 and E2 < E1

TQ0

εL2
Ψ̃ = − sgn

(
∂Π

∂ξ

)
ξ

∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣
1
2

∣∣∣∣∣
(

Re+
c

2

3ϑ2Rt
√
γΩRe∗c

)
e

(
Re+c

ϑRt
√
γΩRe∗c

)2

−1

+

1−

(
Re+

c

ϑRt
√
γΩRe∗c

)2

e

(
Re+c

ϑRt
√
γΩRe∗c

)2

−1

[2.5 ln (ϑRt
√
γΩRe∗c)

− 66.69(
ϑRt
√
γΩRe∗c

)0.72 + 1.8− C1(Re∗c)

]∣∣∣∣∣
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After scaling we discretize the equations that represent the fluid flow. We emphasize that the flow

is written on the nodes rather than middle points of the elements. So, we need to make sure that,

using Equation D.1 for the coordinate,

Ωi+ 1
2

=
Ωi+1 + Ωi

2

ξi+ 1
2

= ξi +
∆ξ

2
= i∆ξ(

∂Π

∂ξ

)
i+ 1

2

=
Πi+1 − Πi

∆ξ
=

1

∆ξ

n∑
j=1

(
Mij −M(i+1)j

)
Ωj

Before moving forward we can define:

I1,i =

∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣ = Ω
3
∣∣∣∣∂Π

∂ξ

∣∣∣∣⇒ − sgn

(
∂Π

∂ξ

)
I1,i = Ω

3∂Π

∂ξ

So after discretizing

− sgn

(
∂Π

∂ξ

)
I1,i =

1

∆ξ

(
Ω
τ−∆τ

i+1 + ∆Ω
τ

i+1 + Ω
τ−∆τ

i + ∆Ω
τ

i

2

)3

×

n∑
j=1

(
M(i+1)j −Mij

)
(Ω

τ−∆τ

j + ∆Ω
τ

j )

(D.20a)

I2,i =
√
γΩ =

√
γ

(
Ω
τ−∆τ

i+1 + ∆Ω
τ

i+1 + Ω
τ−∆τ

i + ∆Ω
τ

i

2

)
(D.20b)

Also,

√
I1,i =

∣∣∣∣Ω3∂Π

∂ξ

∣∣∣∣
1
2

=
1√
∆ξ

(
Ω
τ−∆τ

i+1 + ∆Ω
τ

i+1 + Ω
τ−∆τ
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τ

i

2

)3/2

×

∣∣∣∣∣
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(
M(i+1)j −Mij

)
(Ω

τ−∆τ

j + ∆Ω
τ

j )

∣∣∣∣∣
1
2

and therefore

− sgn

(
∂Π

∂ξ

)√
I1,i =

1√
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(
Ω
τ−∆τ
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τ
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(
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)
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j + ∆Ω
τ

j )
×

n∑
j=1

(
M(i+1)j −Mij

)
(Ω

τ−∆τ

j + ∆Ω
τ

j )
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Now, in order to simplify the representation of the equations, we will use the following change of

variables

Wτ
i =

(
Ω
τ−∆τ

i+1 ∆Ω
τ

i+1 + Ω
τ−∆τ

i + ∆Ω
τ

i

2

)3

J τ
i =

√√√√ Wτ
i

∆ξ
∑n

j=1Hi,j

(
Ω
τ−∆τ

j + ∆Ω
τ

j

) , Hi,j = M(i+1),j −Mi,j

Iτ1,i =

∣∣∣∣∣Wτ
i

∆ξ

n∑
j=1

Hi,j

(
Ω
τ−∆τ

i + ∆Ω
τ

i

)∣∣∣∣∣ , Iτ2,i = (γτ )1/2|Wτ
i |

1/3

Mτ
i =

(
Re+2

c

9ϑ2(Iτ1,i)1/2

)
e

Re+2
c

9ϑ2Iτ
1,i
−1

N τ
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(
Re+2

c

3ϑ2RtIτ2,iRe∗c

)
e

(
Re+c

ϑRtIτ2,iRe∗c

)2

−1

N τ
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(
Re+

c

ϑRtIτ2,iRe∗c

)2

e

(
Re+c

ϑRtIτ2,iRe∗c

)2

−1

Lτ1,i = 2.5 ln
(
3ϑ(Iτ1,i)1/2

)
− 66.69(

3ϑ(Iτ1,i)1/2
)0.72 + 1.8

Lτ2,i = 2.5 ln
(
ϑRtIτ2,iRe∗c

)
− 66.69(

ϑRtIτ2,iRe∗c
)0.72 + 1.8
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so that

− sgn

(
∂Π

∂ξ

)√
Iτ1,i = J τ

i

n∑
j=1

Hi,jΩ
τ−∆τ

j + J τ
i

n∑
j=1

Hi,j∆Ω
τ

j ,

−∆ξ sgn

(
∂Π

∂ξ

)
Iτ1,i =Wτ

i

n∑
j=1

Hi,jΩ
τ−∆τ

j +Wτ
i

n∑
j=1

Hi,j∆Ω
τ

j ,

and

Iτ2,i =
√
γ|Wτ

i |
1
3

Introducing

S =
2∆τ

∆γ
√
γ(∆ξ)2
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and also choosing

T τ1,i = Si∆ξJ τ
i

∣∣∣∣Mτ
i +

(
1− Mτ

i

(Iτ1,i)1/2

)
Lτ1,i
∣∣∣∣

T τ2,i = Si∆ξJ τ
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∣∣N τ
1,i + (1−N τ

2,i)(Lτ2,i − C1(Re∗c))
∣∣
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3
Iτ2,iJ τ

i , T τ4,i = SiWτ
i

T τ5,i = Si∆ξJ τ
i

∣∣∣∣∣Mτ
i +

(
1− M

τ
i√
Iτ1,i

)[
Lτ1,i − C1

(
3
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(Iτ1,i)1/2

Iτ2,i
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(D.22)

For the limits, by assigning that

Eτ
1,i+ 1

2
= 3
√
Wτ

i Iτ1,i , Eτ
3,i+ 1

2
=
Re+

c

ϑ

Eτ
2,i+ 1

2
= RtRe∗c

√
γτ

(
Ω
τ−∆τ

i+1 ∆Ω
τ

i+1 + Ω
τ−∆τ

i + ∆Ω
τ

i

2

)

Eτ
4,i+ 1

2
= RtRe∗l

√
γτ

(
Ω
τ−∆τ

i+1 ∆Ω
τ

i+1 + Ω
τ−∆τ

i + ∆Ω
τ

i

2
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we can find:

• F1: (Laminar) If Eτ
1,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
1,i+ 1

2

< Eτ
3,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ4,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ4,i
n∑
j=1

Hi,j∆Ω
τ

j (D.24a)

• F2: (Smooth-Walled) If Eτ
3,i+ 1

2

≤ Eτ
1,i+ 1

2

≤ Eτ
4,i+ 1

2

SQ0T

εL2
Ψ̃τ
i+ 1

2
= T τ1,i

n∑
j=1

Hi,jΩ
τ−∆τ

j + T τ1,i
n∑
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Hi,j∆Ω
τ

j (D.24b)

• F3: (Transition-Turbulent) If Eτ
4,i+ 1

2

< Eτ
1,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
3,i+ 1

2

≤ Eτ
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2

SQ0T

εL2
Ψ̃τ
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j (D.24c)

• F4: (Laminar) If Eτ
2,i+ 1

2

< Eτ
3,i+ 1

2

and Eτ
2,i+ 1

2

< Eτ
1,i+ 1

2

SQ0T
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Ψ̃τ
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2
= T τ3,i

n∑
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Hi,jΩ
τ−∆τ

j + T τ3,i
n∑
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Hi,j∆Ω
τ

j (D.24d)

• F5: (Rough-walled fuly turbulent) If Eτ
3,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
2,i+ 1

2

< Eτ
1,i+ 1

2

SQ0T

εL2
Ψ̃τ
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2
= T τ2,i

n∑
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Hi,j∆Ω
τ

j (D.24e)

which are the conditions given in Equation V.43.
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6. Local Continuity

Now we can re-order the equation of local continuity as (combining Equations V.36-V.39 and fluid

flow from Appendix D.A.5):(
1 +

γτ

∆γ

)
∆Ω

τ

1 −
1

2
∆Ω

τ

2 + T τλ,1
n∑
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=
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2
Ω
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2 − Ω
τ−∆τ

1 +
S
γτ
− T τλ,1

n∑
j=1

H1,jΩ
τ−∆τ

j

(D.25)

for i = 2, · · · , n− 1:(
1 +

2γτ
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)
∆Ω

τ

i −
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2

)
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i

+
1

i− 1
2

[
T τλ,i−1

n∑
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Hi−1,jΩ
τ−∆τ

j − T τλ′,i
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Hi,jΩ
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and for i = n: (
2γτ

∆γ
+ n+

1

2

)
∆Ω

τ

n +

(
n− 1

2

)
∆Ω

τ

n−1 −
T τλ,n−1

n− 1
2

n∑
j=1

H1,j∆Ω
τ
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=−
(
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1

2

)
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(
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2
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+
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where λ, and λ′ are the index of T that depends on the flow regime according to:

• If Eτ
1,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
1,i+ 1

2

< Eτ
3,i+ 1

2

λ = 4 (D.28a)

• If Eτ
3,i+ 1

2

≤ Eτ
1,i+ 1

2

≤ Eτ
4,i+ 1

2

λ = 1 (D.28b)
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• If Eτ
4,i+ 1

2

< Eτ
1,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
3,i+ 1

2

≤ Eτ
1,i+ 1

2

λ = 5 (D.28c)

• If Eτ
2,i+ 1

2

< Eτ
3,i+ 1

2

and Eτ
2,i+ 1

2

< Eτ
1,i+ 1

2

λ = 3 (D.28d)

• If Eτ
3,i+ 1

2

≤ Eτ
2,i+ 1

2

and Eτ
2,i+ 1

2

< Eτ
1,i+ 1

2

λ = 2 (D.28e)

Hence, if we are dealing with the first element, i = 1, and we will find λ for first node. If i = n,

the value of λ is according to node n− 1/2. And if 1 < i < n, λ is based on node i− 1/2 and λ′

is based on node i+ 1/2.

Using this discretization, we can finally linearize the continuity equation and construct a matrix

equation in the form of

Ξ(∆Ωτ )Ξ(∆Ωτ )Ξ(∆Ωτ )×∆Ωτ∆Ωτ∆Ωτ =H(Ωτ−∆τ )H(Ωτ−∆τ )H(Ωτ−∆τ )

which is the relationship presented in Equation V.45 in the main body of the paper.

B. GMS APPROACH

According to the solution provided by Zolfaghari and Bunger (Submitted A), the solution for fully

turbulent rough-wall HF for GMS condition, zero toughness hydraulic fracture in an impermeable

rock is given by

w =
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0.694 + 0.6148

r

R

)(
1− r

R

) 6
7 − 0.275

√
1−

( r
R

)2

−0.6798
( r
R

)0.31

+ 0.8873 2F1

(
1

2
,−0.155; 0.845;

( r
R

)2
)](

Q0

β′
√
E ′

) 6
13

p =

[
1.0452− 0.7683

(1− r/R)
1
7

+ 0.0967
( r
R

)−0.69
](

E ′17Q5
0

β′18

) 1
26

t
−1
2

R = 0.854
(
β′E ′

1
2Q

7
6
0

) 3
13

t
1
2

q = β′w
5
3

(
−∂p
∂r

) 1
2

(D.29)

201



C. LAMINAR SOLUTION

According to the solution given by Savitski and Detournay (2002), the asymptotic solution for a

zero toughness, penny-shaped hydraulic fracture with zero leakoff is

w = 0.6955

[
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