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Busra Tugce Susam, M.S.

University of Pittsburgh, 2017

Objective and automated pain detection has been one of the key concerns of clinical rese-

arches for many years. The modern techniques for automated pain detection are based on

machine learning methods that distinguish pain condition from no-pain condition mainly re-

lying on the information extracted from heart rate, electromyography, blood volume pressure

and recorded video. Moreover, recent studies based on the statistical analyses of the elec-

trodermal activity (EDA) showed that EDA carry salient information about different pain

phases in patients. This is mainly due to the fact that EDA signals contain rich information

about autonomic nerves system that can identify different stress levels in patients induced

due to varying pain levels. Due to noninvasiveness and portability of EDA measurement

systems, a pain detection method based on EDA is highly valuable for clinical settings to

quickly, accurately and objectively identify the pain levels of patients. In this thesis, we

present a novel and highly accurate pain level detection algorithm based on EDA. Specifi-

cally, with the aim of distinguishing pain from pain-free conditions with EDA signals, we

develop a comprehensive machine learning framework. In this framework, we employ times-

cale decomposition (TSD) to extract salient statistical features from EDA signal associated

with pain. TSD uniquely disintegrates a signal in time domain to capture short and long-

term changes over the signal. We characterize these changes in the EDA signals through

the computation of mean, variance and entropy over all the decomposed segments of the

EDA. We use these statistical and information theoretic identities to form feature vectors

from the EDA. The dimensions of the feature vectors are then reduced through principle
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component analysis. In order to develop a pain detection method, these reduced features

are then used in three different classifiers, linear discriminant analysis (LDA) and support

vector machines (SVMs) with linear and radial basis function (RBF) based kernels. We test

our algorithm using a dataset which is obtained through our collaboration with University

of California San Diego Medical School. The EDA data in this dataset are measured from

children who had undergone a laparoscopic appendectomy. Particularly, we aim to identify

two phases of pain including acute and ongoing pain. Ongoing pain is as the name sug-

gests in pain which is continuous in a period of time after the surgery while acute pain is

defined as the pain induced as a result of a press in the surgical area by the research staff.

Our results show that, using linear SVM, acute pain is differentiable with an accuracy of

83.33% (sensitivity=86.67%, specificity=80%) while ongoing pain is distinguishable with an

accuracy of 87.5% (sensitivity=87.5%, specificity=87.5%) using LDA. Requiring less setup

complexity than the existing methods, these results are comparable to the state-of-the-art

pain detection methods.

Keywords: machine learning, electrodermal activity signals, timescale decomposition, on-

going pain assessment, acute pain assessment.
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1.0 INTRODUCTION

Electrodermal activity(EDA) is the general term to define autonomic changes in the electri-

cal properties of skin. EDA is a measurement of the activity in eccrine sweat glands, which

are innervated by sudomotor nerves [1] [2]. As the sudomotor nerves prompt the production

of sweat, the conductivity measured on the skin surface changes [3]. The EDA has two com-

ponents: tonic and phasic. Tonic EDA is represented by the skin conductance level(SCL)

which indicates slow changes on skin conductance. Phasic EDA reflects skin conductance

changes(SCR) in skin conductance. The SCR arises within a pre-defined response window

(15s) after stimulus onset and satisfying a minimum amplitude criterion (0.05 µS) [4]. In

particular, EDA signals are widely used in neuroscience research, including information pro-

cessing, emotional and cognitive processes, and clinical researches because the EDA signals

provide valuable information about the autonomic nerves system response to a broad range

of external stimuli [5] [6] [7] [8]. Another reason of its popularity is the ease of obtaining

a distinct electrodermal response [3].There are three standard methodologies to record the

EDA. The first one is called endosomatic measurement which consists in measuring the po-

tential difference between two skin sites. Although the endosomatic measurement does not

require specific amplifiers and circuitry, it is rarely used due to change in external affects,

such as the change of the ionic potential in the sweat ducts [3]. The other two methods con-

sists on an exosomatic approach in which a small external current is injected into the skin.

In exomatic approaches, two different methods exist; the direct current method(DC) and the

alternating current method(AC). DC procedures are the most used method in exosomatic

approaches, although AC methods allow measuring capacity changes in the electrodermal

responses [9]. In spite of the variety of EDA recording devices which use different measure-

ment techniques(e.g., endosomatic and exosomatic measurement approches), the EDA has a
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great potential in ecological scenario if monitoring is done sequentially. As a matter of fact,

wearable sensors have become more prominent due to their wireless communication ability,

comfort and portability. Although there are several proposed body locations to measure EDA

, van Dooren et al. [10] investigated 16 different body locations to measure the EDA response

respect to emotional film frames. Findings illustrates that fingers, foot and shoulders are

most responsive areas whereas arm, back , armpit and thighbone are less responsive areas.

Despite the variety of EDA analysis methods, the conventional and model-based approaches

will be described in following sections.

1.0.1 Conventional Approaches:

The goal of conventional approaches is to extract features from EDA signal. A conventional

data analysis algorithm can be defined in a sequential way. Data filtering is performed to

reduce the observation noise. EDA signals are segmented to capture the peaks that stimuli-

evoke. Then, defining the threshold to determine which EDA peaks cannot be considered

significant. After the identification of peaks, feature extraction can be performed. These

features are usually qualitative and semi-quantitative models [2]. Generally, time-domain

features of EDA used to define the overall ANS activity which (i.e.,the sudomotor activity

)causes SCRs. According to the knowledge of SCRs arrise within 1-5s after the stimulus,

features are usually calculated into time window of 5s. [2] [4] [11].In spite of extracted feature

variabilities within the time response windows of 5s, most common features are the number

of significant SCRs , maximum value of the tonic curve, mean value or standard deviation

of the tonic or phasic components. In frequency domain, Power Spectral Density(PSD) of

the EDA signal has been proposed to assess ANS by Posada-Quintero [12]. The aim of this

work is to analyze if a similar relationship of low frequency component response(LF, 0.045-

0.15 Hz) of heart rate variability (HVR) to sympathetic function exist with EDA signal. In

cardiovascular research, the prevalent way to asses the ANS is to examine the PSD of the

HRV [13]. The HRV spectrum consists of three components: low-frequency bandwidth (LF,

0.045-0.15 Hz) that is effected by sympathetic and parasympathetic nervous system activity

, high-frequency bandwidth(HF, 0.15- 0.4 Hz) which is influenced by parasympathetic ner-
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vous system, and very low frequency bandwidth(VRF, 0.0033-0.04 Hz). To assess the ANS

balance, the ratio between LF and HF was generally used. However, LF band contains also

parasympathetic dynamic, that leads a question of how accurate to use the ratio between

LF and HF. the PSD of the EDA was used to investigate the assumption that if EDA can

indicate the cardiac and sympathetic nervous system activity in LF , since EDA is directly

controlled by sympathetic system. In their study, a main interest was tonic stress responses;

therefore ,the two components of EDA signal was considered; the tonic(SCL) and non-specific

SCRs (NsSCRs) which is considered a tonic measure. These time-domain features SCL and

the NsSCRs are explicitly related to sympathetic nervous system, but highly variable be-

tween subjects [2]. Therefore, the PSD of EDA was calculated. After three experimental

paradigms, they concluded the sympathetic nervous system activities in EDA signal can be

found in the low frequency band by the range of 0.045 - 0.25 Hz. Moreover, they stated the

frequency domain analysis of EDA can lead less inter-subject variability as compared to the

time domain features. Overall, the PSD analyses of EDA signal revealed that EDA provides

a quantitative functional measurement of ANS as compared with the LF power of HVR.

1.0.2 Model-Based Approaches:

The model-based approaches describes the relationship between observable variable(e.g.,

skin conductance) and unobservable processes (e.g., sympathetic arousal) using mathema-

tical equations that formulate psycho-physiological assumptions [14].Therefore, the model

indicates the SC time series, and the independent variable consists of unobservable psy-

chological status (e.g., sudomotor nerve activity).In the analysis of experimental data , the

observed SC data (i.e. EDA data) is known but not central state, and we try to estimate

the time series of the central state that generated these SC data. In the literature, several

model-based approaches have been proposed to explain how ANS activity (in particular

the sudomotor activity) causes SCRs using decomposition the phasic signal into individuals

SCRs associated with each stimuli. Alexandar et al. [15] proposed the first LTI model for

EDA analysis. In their model, SC is the result of a convolution between discrete bursting

incidents of the sudomotor nerve activity (SMNA) and a biexponential impulse response
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function (IRF) assumed to be known a priori and time invariant In general, the relationship

can be formulated by

SC = SMNA ∗ IRF (1.1)

where SC is skin conductance, SMNA is sudomotor nerve activity,* is the convolution ope-

rator , and IRF is a skin conductance impulse response function [2]. Through Alexandar’s

assumption,the SC time series in only influenced by SMNA not by other confounding fac-

tors(i.g. noise).To improve the realibity of the model, Benedek and Kaernbach developed

two new models to modify the LTI assumption taking into account the variability in SCR

shape. These models are known as the non-negative deconvolution model [4] and the conti-

nuous deconvolution model [16]. Both models divide the SMNA into two parts; describing

the actual phasic activity and representing EDA variations of different origins (e.g., noise).

They adopted a biexponential IRF, called the Bateman function. They estimate a noisy

SMNA and then recover a filtered phasic component using a low-pass filter and a subsequent

heuristic and prefixed peak-detection scheme. The Bateman function is described by

b(t) = e
−t
τ2 + e

−t
τ1 (1.2)

where τ1 and τ2 are parameters that define the shape of function. The Bateman function

is characterized by a steep onset followed by a slow recovery period, controlled by τ1 and

τ2 [4]. There have been several softwares that use the Bateman equations due to its minimal

computational cost , and these softwares are capable of determining the location of SCRs.

For instance, Bach et al. [17] displayed the SCRalyze toolbox.Broadly, SCRalyze algorithms

use optimization methods to estimate the model input (SMNA) or paramaters that best

explain the observed SC data [2]. Another well-known EDA analysis software is Ledalab

which is very similar to SCRalyze. Both models use the Bateman equations as an impulse

response to locate the SCRs. Whereas SCralzye model was derived by curve-fitting to a large

number of data sets, the Ledalab model uses two approaches to invert the peripheral model;

Discrete Deconvolution Analysis and Continuous Deconvolution Analysis. [4] [16]. Morever,

the SCRalyze requires event labels but the Ledalab does not require event labels , and the

Ledalab is computationally expensive due to its optimization process [18]. Recently, Groce

et al. [19] proposed method called CvxEDA to estimate SMNA using a convex optimization
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approach. The model consists on Bayesian statistics and the observed SC as the sum of

components; a slow tonic component;the output of the convolution between an IRF and a

compact non-negative SMNA phasic driver; and an additive noise term. This procedure aims

to distinguish peaks by convex optimization, maximum a posterior probability and sparsity.

This model also uses the Bateman functions and the parameter set of IRF (i.e, τ1 and τ2)

was optimized though the minimization of cost function given by the sum of the number of

points of the phasic components of EDA signal [2] [19].

Overall, EDA signals is used in a wide range of experimental setups because it is easy

to measure and providing rich information about autonomic nerves system(ANS) correspon-

ding to a broad range of external stimuli. Specifically, EDA signals are commonly used to

determine the levels of arousal related to emotional and cognitive processes [2] [20] [21] [22].

Moreover, there has been growing interest in EDA signals for pain detection. Many studies

have been proposed to the use of EDA signal for pain detection non invasiveness and portabi-

lity of EDA measurement systems [23] [24]. In literature, various face-recognition approaches

have been proposed to identify the pain and pain-free phase [25] [26] [27]. Although the high

accuracy of pain detection was achieved by those approaches, several researches have used

pixel based methods for representation of pain features which can get influenced by sca-

ling, rotation and illumination [28]. To improve the detection of pain and reduce the high

computational complexity, our contributions are listed below;

1. Since most of the face-recognition approaches are sensitive to external factors(e.g, heads

movement, illumination), and have high computational complexity, EDA signals are used

to distinguish pain from pain-free condition to reduce the high computational complexity

through pattern recognition approaches.

2. We proposed timescale decomposition (TSD) technique to extract the statistical features

from EDA signals. This approach uniquely decomposes a signal in time domain to capture

short and long term changes over the signal. Additionally, the graphical representation

of TSD allows users to see the possible changes over the signal. That can also reduce the

computational time of analysis by defining the interest area over the signal.

5



2.0 FEATURE EXTRACTION

The fundamental concepts explained in this section include a novel technique for feature ex-

traction called timescale decomposition(TSD), and the framework of TSD, feature extraction

on TSD, and the implementation of TSD on EDA signals.

2.1 TIMESCALE DECOMPOSITION

The primary goal of feature extraction methods is to provide comprehensive information

about signals. These methods can be defined either as time, frequency or time-frequency

domain algorithms. The aim of time-frequency approaches is to explore the energy con-

centration along the frequency axis at given time instant. Ideally, time-frequency domain

approaches would reveal concealed information about the frequency components occurring in

at any given time [29]. Most current approaches in time-frequency domain are wavelets and

Short-time Fourier transform (STFT). As wavelet analysis uses basis functions called mother

wavelet by windows of variable length to assess the power spectrum in shorter and longer

window, STFT uses a constant sliding window to identify frequency components at each

time instant. STFT is very simple to implement and wavelet analysis provides better time-

frequency resolution. However, such techniques have limitations to analyze the intensive

longitudinal data (i.e., time series). An analysis of data generally depends on the timescale

in which data assessed. To illustrate, if trying to examine an exercise intervention increases

heart rate, statistical analysis of 10 milliseconds (i.e, shorter than 1 heart beat) is unlikely to

provide accurate answer because the timescale is shorter than the process of changes. On the

contrary, one week of heart rate data might be more likely uninformative neither, because
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the long-term timescale can occult short-term changes. The plausible timescale to assess

the process of interest is somewhere in-between. Thus, flexibility of window length is cru-

cial to capture short and long-term changes on the intensive longitudinal data. STFT uses

constant window length and that causes lower time-frequency resolution, Although wavelet

analyses might provide better time-frequency resolution using windows of variable length,

that depends a basis function [30]. Therefore, STFT with constant window length and wa-

velet analyses with a challenging basis functions may not be desirable techniques to examine

time series. The main objective of timescale decomposition is to capture characteristics of

the temporal behavior of time series across all possible time scales and starting positions of

intervals based on a user-chosen statistical measure. TSD can also be used for multivariate

and univariate analyses, such that mean, standard deviation and correlation.

2.1.1 Timescale Decomposition Work Scheme

TSD is a method designed to simultaneously measure short and long-term changes in time

series data. The procedure is a simple extension of the sliding window method, which seg-

ments time series data into consecutive, overlapping, fixed length windows, and calculates

a given metric (e.g., mean, standard deviation) on each segment. The sliding window pro-

cedures result in a continuous measure of change over time based on the given metric and

window length. Whereas a sliding windowed approach results in a single vector from a single

window length, TSD iterates this procedure, calculating the given metric in all possible win-

dow lengths at all possible starting points, and systematically organizes results into a single

matrix (see Figure 2.1). The resulting triangular matrix is organized such that consecutive

rows differ by a window length of 1, with progressively increasing window lengths. Thus,

each row constitutes a continuous sliding windowed analysis of the data, with the top row

using the shortest window length, and the bottom row using a single window length equal to

the length of the data (i.e., this cell is an aggregate of the complete data set). Consecutive

columns differ in their starting position by 1, progressively shifting the starting point of the

windows to the next time point. Thus, all windows in a given column have the same starting

point, but progressively later ending points. The first cell in a column is an aggregate of the
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Figure 2.1: The framework of Timescale Decomposition

shortest window length from the given starting point, whereas the last cell in each column is

an aggregate of the data from the given starting point to the end of the data. The resulting

matrix is therefore a complete decomposition of the data, organized by starting time (left

to right) and timescale (top to bottom). To illustrate, we performed TSD on the EDA data

using standard deviation (SD) as the metric. First, we took a normalized EDA signal (see

Figure 2.2 top ), and computed a TSD , then used a heat map to plot the resulting matrix

(see Figure 2.2 bottom). Note that the TSD plot shows how the SD changes depending on

the timescale (window length) and starting point. Heat maps are graphical techniques that

hierarchically represent values in a matrix with colors, allowing simple visual inspection of

large amounts of data [31]. Thus, graphical representations of TSD support users in the

discovery of a wide range of potentially hidden patterns by taking advantage of the human

ability to visually detect such patterns
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Figure 2.2: The heat-map of Timescale decomposition.

2.1.2 Feature Extraction on Timescale Decomposition

The necessity of having a reasonable amount of informative features requires a feature ex-

traction algorithm on TSD output matrices for machine learning implementations. The

feature extraction on TSD output matrix can be performed in two ways; column and row

extraction. As a column of TSD output matrix illustrates the calculation of desired metric

(e.g., mean, standard deviation and correlation) in all timescales from the given location

forward, a row of TSD output matrix indicates the desired statistical measurement of the

signal at given timescale. First we extract the desired event times on TSD output matrix.

To define statistical characteristic of each row or column of TSD, the basic statistical mea-

surements are used; mean, standard deviation and entropy [32]. For row extraction on TSD

output matrix, we calculate the mean , standard deviation(std) and entropy of each row,
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and then each mean, std and entropy column matrices is transposed into final feature matrix

(See Figure 2.3 ). Same algorithm is performed on each column of TSD output matrix (See

Figure 2.4 ).

Figure 2.3: The row feature extraction on TSD
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Figure 2.4: The column feature extraction on TSD
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2.1.3 Timescale Decomposition implementation on EDA signals

This subsection is dedicated to fully understand the advantages of TSD. To check the fea-

sibility of TSD for pain detection, it was applied to EDA signals obtained to study the role

of visual connection in dyads’ synchrony of heterosexual couples. PCA and RBF SVM were

used for feature reduction and classification respectively.

2.1.3.1 Data set and Experimental setup: A total number of 18 heterosexual couples

between the ages of 18 and 22 years (males mean = 19.53, females mean = 18.87) completed

the study. Due to a technical issue, data from two trials was excluded, and leaving data

from 16 couples available for analysis. Couples reported knowing each other for an average

of 3.89 years (SD = 3.62). For the trials, each couple was brought into a quiet room and

had physiological sensors, a J&J Engineering I-330-C2+, 12-channel biofeedback unit at a

sampling rate of 10 hertz (Hz), to simultaneously measure each partners EDA. Couples were

asked to remain quiet for the trials. Participants were seated back-to-back (BB) in separate

chairs for the first 17-minutes. The first two minutes was considered an acclimation phase,

followed by the BB phase. Following this phase, a tone sounded to alert participants to turn

their chairs to face each other. Participants then sat face-to face(FF) in silence for another

15 minutes. A set of 16 random dyads were then generated by pairing the data from a male

participant with the data from a random female participant from a different dyad, while

controlling for duplicate pairings. The following hypotheses were tested:

1. Correlations between romantic couples’ EDA during the BB phase are classifiably diffe-

rent than the FF phase.

2. Correlations between romantic couples’ EDA during the BB phase are classifiably diffe-

rent than random dyads.

3. Correlations between romantic couples’ EDA during the FF phase are classifiably diffe-

rent than random dyads.
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2.1.3.2 Methodology: Each EDA time series was smoothed using a 0.35 Hz low pass

filter. This filter setting was designed to remove high frequency components associated with

artifacts such as movement, while maintaining all other signal components up to the fastest

(∼3 seconds) components of an electrodermal response [21]. After filtering, data was down

sampled from 10 Hz to 1 Hz to reduce analysis time and simplify interpretability of the

TSD. Finally, EDA data was normalized to have a mean of 0 using z-score normalization.

Normalization is particularly important with EDA data, as level is impacted by individual

attributes such as skin thickness and density of sweat glands at the recording site [21]. A

complete TSD of the correlation between male and female EDA was then calculated for

each couple. For each TSD, the starting point,shortest window length, was set to 2 and

correlation was calculated in each increasing window until the length of the EDA signal (N

= 1,920). Each TSD was then plotted using a heat map, such that positive correlations show

Figure 2.5: The heat map of TSD using correlation in each window

as dark red and negative correlations show as dark blue. As the correlation approaches zero,

colors fade to light gray (see Figure 2.5). EDA data was plotted above each heat map and

time aligned to the first row of the TSD. To segment areas of the plots exclusive to each

condition, we added exclusion onset and offset lines for each condition. All data within the

exclusion borders are specific to the given condition, BB phase and FF phase respectively.

After, we completed TSD using correlation on each good quality, normalized, filtered, down

sampled EDA signal from each participants’ EDA signal. We then extracted features from

each TSD matrix for use in machine learning classification. First, we separated the segment
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areas from the BB and FF phases of each couple’s TSD of correlation. This lead to two

complete TSDs of correlation for each of the 16 couples, one specific to the BB phase, and

one specific to the FF phase, for a total of 32 TSDs. We then calculated the mean, SD,

and entropy of each row and each column of each TSD. There are three feature matrices

were generated from these data, one specific to row features, one specific to column features,

and one combining all features from rows and columns see section 2.1.2. For instance, for

couple-1, we first separated the TSD of the complete trial into the data exclusive to the BB

and FF phases. For the BB-TSD, we calculated the mean correlation of each row. This

results in a single column in which each row equals the mean correlation for the given row

of the TSD. This column was then entered into the row features matrix, and the complete

features matrix. We then calculated the mean correlation in each column of the BB-TSD

for couple-1, resulting in a single row in which each column equals the mean correlation for

the given column of the TSD. This row was then transposed and entered into the column

features matrix and the complete features matrix. We repeated these steps on the BB-TSD

calculating SD, then entropy of all rows and columns, and the same procedures were then

performed on the FF-TSD. All steps were repeated for each 16 couple’s TSD. Note that the

mean of a row indicates the average correlation between a couple’s EDA when correlations

are calculated at the given timescale, whereas the mean of a column indicates the average

correlation across all timescales from the given location forward. The SD of the rows is an

estimate of variability in correlations at each timescale, whereas the SD within a column

reflects the variability in correlations as timescale increases from the given starting point

forward. Entropy is a measure of data structure, such that higher entropy indicates greater

randomness, whereas lower entropy indicates greater structure. Therefore, the entropy of

rows can be interpreted as a measure of how structured the correlations are over time within

a given timescale, whereas the entropy of columns indicates how structured the correlations

are across timescales from the given point forward.

A two-class classification scheme was then used to optimize differentiation between fea-

tures from the BB and FF conditions. This procedure begins with feature reduction, which

diminishes the computational complexity of the classification, and leads to a more robust

result with lower classification error. Feature reduction was performed using principal compo-
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nent analysis (PCA), a well-known and extensively used data reduction technique employing

eigenvalues and eigenvectors to transform data into a lower dimensional space [33]. The va-

lues of each eigenvector represent a direction, while the corresponding eigenvalue represents

the variance of the data along that direction. To keep of most of the variation in the data

is crucial and the decision on how many principal components is challenging. Therefore,

a threshold was set so that between 90 % and 99% of the original variance remained in

the feature matrix [34]. This procedure was repeated with each feature matrix. Finally,

classification scheme was completed using Support Vector Machines(SVMs). SVMs, a po-

pular machine learning technique, was used to determine if the two experimental phases, i.e.

BB vs FF, could be successfully classified. To determine the class, in our case either BB

or FF, SVM attempts to find a hyperplane that can be used to separate the data specific

to each class [35]. SVMs offer additional appeals to find the hyperplane; such that, basis

function(RBF), polynomial kernels and sigmoid kernels. In this work, RBF SVMs was em-

ployed. To avoid overfitting with RBF SVM, leave one out cross validation(LOO) which is

a machine learning technique to leave one samples for testing phase, and train the classifier

with rest of samples until all samples are used in training set [36]. After the features where

extracted and then reduced with PCA LOO removes a single trail which will be used later

for testing. The rest of the 31 trails then go into the training phase. During the training

phase, a range of box constraints and sigma values were tested to determine the pair that

gives the best accuracy. Both parameters were ranged between .001 and 100 initially and

then the interval was reduced in secondary runs to optimize the classification. To deter-

mine the optimal parameter pair, each combination of parameters was tested using a LOO

scheme. To complete the analysis of one parameter pair first a single trail was removed

for validation and then training was completed on the remaining 30 trails to determine the

decision boundary. The validation point was then tested and the trails class determined.

This training and validation was then repeated, keeping the same parameter pair, so that

each of the 31 test points were removed and used for validation. Finally, the accuracy for

those 31 tests was calculated for the given parameter pair. This procedure was then run for

each parameter pair combination resulting in a testing accuracy specific to each pair. The

parameter pair that resulted in the best accuracy was then used in the testing phase to train
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and find a decision boundary and determine the class of the initial test point. See Figure 2.6

for a visualization of this process. This process, training and test phase, was then repeated

31 times so each point was used as the training trail.

Figure 2.6: The classification scheme of couples’ EDA data

These steps were repeated in order to determine whether true couples were classifiably

different from random dyads. We first tested the accuracy of differentiating true couples and

random dyads using data from the BB phase. Next, we tested the accuracy of differentiating

true couples and random dyads using data from the FF phase. Finally, we tested the

accuracy of classifying the random dyads’ BB and FF phases. To assess whether temporally

decomposed data added information beyond a single timescale, we repeated the classification

procedures described above using features from individual timescales. As prior research in

this area has used windowed correlations in 15-second windows [37], as well as correlations

from complete trials [38], we used machine learning approaches to classify the BB and FF

periods using features from a 15-second windowed correlation, and again using the overall

correlation from each condition.
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2.1.3.3 Results: In order to identify couples’ EDA would differ by condition, dyad-level

features within (rows) and across(column) timescales were extracted to classify the data as

originating from BB or FF phase. These features are categorized into three feature matrices,

such that row extraction, column extraction and combination of row and column extraction

of TSD output matrices in BB and FF phase. After PCA implementation, followed by SVMs

classification. Results by row extraction of TSDs indicated an accuracy of 75%, with a sen-

sitivity of 81% and specificity of 50%. Results by column extraction of TSDs illustrated an

accuracy of 66%, with a sensitivity of 50% and a specificity of 81%. Finally, the combi-

nation of row extracted features and column extracted features’ classification demonstrated

an accuracy of 66% , with a sensitivity of 56% and a specificity of 75%. Overall, these

findings indicate that within timescale (row extraction of TSDs) structures perform better

in differentiation of BB and FF phase in true couples. To fully understand the advantages

of a proposed method TSD, we ran these procedure by using a single timescale. First, we

completed using window lengths of 15 seconds and, then using window length of 15 minutes,

both of which was proposed by [37] and [38]. As a result, using 15 seconds window lengths

in same classification procedure show poor accuracy (50%) with a sensitivity of 75% and

a specificity of 25%. Similarly, the 15 windows length had a low accuracy of 50%, with a

sensitivity of 63% and specificity of 38%.

Further analyses were conducted to identify whether the correlation structure were uni-

que to defined condition or the given couples, we ran the same classification on differentiation

between random dyads and true dyads in the given conditions. First, we tested the perfor-

mance of differentiation between random couples and true couples in BB phase. The row

extractions of TSD output matrices indicated an accuracy of 63%, with a sensitivity of

44% and a specificity of 75%. Results by the column extraction of TSD matrices demon-

strated an accuracy of 91%, with a sensitivity of 88% and a specificity of 94%. Finally,

the combination of row and column extraction of TSD matrices illustrated an accuracy of

63%, with a sensitivity of 50% and a specificity of 75%. For FF phase, the row extraction

on TSD output matrices led to an accuracy of 53% (sensitivity=63%; specificity=44%),

the column extraction resulted in 94% accuracy (sensitivity=88%; specificity=100%) and

the combination of row and column features led to an accuracy of 72% (sensitivity=69%;
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specificity=75%). Remarkably, these findings demonstrate that cross-timescale(the column

extraction on TSDs) was highly accurate in differentiating between true couples and random

dyads in both phases. Finally, we attempt to differentiate the defined conditions (BB and FF

phase) in random dyads. This led to an accuracy of 63% (sensitivity=75%; specificity=56%)

when the combination of rows and columns on TSD was used, an accuracy of 69% (sensi-

tivity=63%; specificity=75%) when only features were considered, and an accuracy of 66%

(sensitivity=75%; specificity=56%) when only row feature extraction was used.

2.1.3.4 Discussion and Conclusion: Timescale decomposition was used to decompose

time series data in time domain to provide underlying comprehensive information about data

set by assessing the all possible time intervals. As timescale can play an important role in the

outcome of many analyses and aggregating the data at any one timescale could be misleading,

TSD uses all possible time intervals to assess the data by implementing any statistical metric.

For example accuracy was poor (50%) in two attempts to classify true couples condition (BB

or FF phase) using a correlation from a single timescale (15second and 15 minutes window).

On the other hand, the accuracy was increased to 75% when row feature extraction of TSD

was used in differentiation of the given conditions (BB and FF phase). Similarly, for both

conditions(BB and FF phase), true dyads were differentiated from random couples by using

the column extraction of TSD was used with the accuracy of 91% in BB phase and the

accuracy of 94% in FF phase. In both conditions, the correlation structures in true couples

EDA were different from the random dyads, indicating that correlations between individuals

EDA are sufficient to differentiate between people who were together, and people who were

under the same conditions with someone else at a different time. Overall, these results

suggest that interpersonal physiological relationships develop between partners quietly sitting

together, and that synchrony patterns can be used to differentiate between times when

they are facing toward and away from each other. In addition, as the current approach

generated relatively equal differentiation between true couples and random dyads in both

phases whereas prior results did not [39], findings suggests that important information is

contained in the temporal structure of the data. Despite the numerous advantages of TSD,

several limitations exist in current approach. Due to the number of iterations inherit in TSD

18



framework, the computational cost of TSD is high. One built-in solution is the adaptation

of optimization techniques to reduce the computational cost. In addition, if the data is

longer than 30 minutes, the visualization of TSD can be improved to provide more feasible

changes over the signal. To solve that problem, changing the scale or color scheme of a TSD

heat-map can lead to substantial differences in the appearance of the plots.

Overall, Timescale decomposition was designed to expose temporal structures in univa-

riate and multivariate time series data. The procedure can be used to generate interpretable

visualizations, and resulting decomposed data made available for statistical analysis. The

simulated and motivating examples presented herein indicate that temporal information can

be exposed through TSD. Moreover, TSD greatly improved classification results, suggesting

useful information can be obtained by decomposing the time domain with extending sliding

window approach. Though additional work is needed to further develop these procedures,

their flexibility, simplicity, and interpretability potentiate their future utility.
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3.0 PAIN DETECTION WITH EDA SIGNALS THROUGH MACHINE

LEARNING ALGORITHMS

This section will provide information about the use of EDA signal in pain assessment through

pattern recognition algorithms, beginning with an overview for pain assessment.

3.1 EDA FOR PAIN ANALYSES

3.1.1 Introduction

The meaning of pain has been a widely discussed and debated issue in many research areas.

In 1900, Charles Sherington was one of the first to bring attention to the definition of pain.

In his critique of pain, Sherrington stated pain as ”the psychical adjunct of a protective

reflex which arbitrates the reflexive retraction of a body part that saves it from injury [40].”

However, Sherington’s definition of pain has an enormous caveat in existence of the pain

of disease because the psychical adjunct of a protective reflex only describes the good pain.

Several experts have expressed doubt about Sherington’s definition of pain. Contrary to

Sherrighton’s pain definition, John Locke has claimed pain is ”a behavioral drive triggered

by excessive stimulation of any sense of organ [41].” In addition, MacKenzie in 1909 has

claimed that pain is a subjective personal experience and can be assessed through communi-

cation [42]. MacKenzie’s statement also called into question how to measure pain. Therefore,

this pain enigma has divided researches into two concepts of pain; the psychical adjunct of

a protective reflex and a behavioral drive triggered by excessive stimulation of any sense

organ. Afterward, John Bonica , the founder of modern pain medicine, explained the diffe-
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rence between protective pain and the dreadful pathological pain [41]. According to Bonica,

”acute symptomatic pain serves as the useful purpose of warning, whereas chronic pain is a

malefic force which causes severe physical, emotional and economic stress on the patient.”

Another immense contribution of John Bonica’s was the establishment of the International

Association for the Study of Pain (IASP) to advise professionals from many disciplines to

communicate effectively in terms of the analyses of pain. Until the 1960s, pain was defined

by IASP as ”an unpleasant sensory and emotional experience associated with actual or po-

tential tissue damage that is always stated to be always subjective and to be best assessed

by self-report [43].” In recent years, great advances have occurred in the study of pain. The

role of external factors on the patient’s body have been investigated such as the effect of

past experiences, anxiety, genetic differences and expectations. Hence, pain can be described

by four broad categories; nociception, perception of pain, suffering and pain behaviors [44].

Nociception pain is ”the detection of tissue damage that leads to pain ” while perception of

pain can be described by ” a noxious stimulus.” Suffering is a negative response induced by

pain, fear, and other psychological states, whereas pain behaviors can be ”ascribed to the

presence of tissue damage.” Moreover, the types of pain can be divided into three categories;

transient pain, acute pain and chronic pain. Transient pain is ”elicited by the activation

of nociceptive transducers on tissues in the absence of any tissue damage.” Acute pain is

”evoked by substantial injury of body tissue and activation of nociceptive transducers at

the site of local tissue damage” and chronic pain is ”the type of pain when the injury ex-

ceeds the body’s capability for healing [44].” Since the best way to assess pain is self-report,

there have been many attempts to accurately measure whether the person is in pain and

how much pain he or she feels. The results have been disappointing because most of the

attempts revealed that pain threshold and tolerance could be measured rather than absolute

pain sensation [41]. Preliminary work on the pain scaling system was conducted by Hardy

and Wolff. They generated the pain scaling system based on thresholds of volunteers using

radiant heat stimuli generated by a dolorimeter. The ten-point pain scale was measured in

units called Dols with 0 meaning no pain at all and 10 meaning the maximum pain imagina-

ble [45]. However, the main weakness in the study is that the proposed pain scaling system

offers no explanation for measuring clinically relevant pain. Nevertheless, several attempts
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at quantifying human pain lead to a common pain scaling method, the visual analogue scale

(VAS) or the numerical rating scale (NRS) [46]. The VAS is a coherent outgrowth of the

Dol scale proposed by Hardy and Wollf. It is also based on a ten-point scale to rate pain,

but it does not require sophisticated equipment. The VAS has been widely used in many

research areas due to its ease of use and reliability [47], however, this pain quantification

method requires certain basic cognitive and motor skills which specific individuals can be

lack of these skills. Therefore, several researchers have worked on accurate pain measure-

ment in these populations; preverbal children, elderly patients with motor difficulties, and

individuals with dementia [48] [49] [50]. An increasing number of pain-related studies have

found that pain stimuli increases the activation of sympathetic nervous system, which leads

to increased heart rate and skin conductance [46] [51] [52] [53]. As mentioned in Section 1,

the EDA signals can be used in the pain assessment analyses due to its connection to the

sympathetic nervous system.

Several groups have worked on pain detection through statistical analyses. A brief sum-

mary of statistical methods proposed for pain detection is presented in Table 3.1. It is clear

from table that there is a positive correlation between sudomotor activity and noxious sti-

muli. Similarly, noxious stimulation elicited higher heart rate. For instance, Schectatsy et

al. [23] has studied the correlation between heat pain perception and skin conductance. In

the study, various thermal stimuli protocols (i.e., three different levels of heat stimulus; light

warm, high warm, and maximum warm) were conducted in 22 healthy volunteers and sudo-

motor activity was recorded. Sympathetic skin responses and the mean level of EDA were

measured. EDA was analyzed using the VAS scaling pain quantifications. After three diffe-

rent levels of heat stimulus, there was a positive correlation between changes in sudomotor

activity and temperature perception. Moreover, the mean EDA was drastically higher during

the pain phase when comparing pre-perception warmth to post-perception warmth. Most

of the researchers also have worked on the correlation between pain intensity measurements

and biomedical signals. As mentioned before, the validity of pain intensity measurements de-

pends on the population. Inspired by the association between noxious stimuli and sudomotor

activity, EDA signals can be used for pain detection
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Recently, machine learning applications were used for pain detection. As it can be seen

from Table 3.2, high accuracy achieved by face recognition algorithms. However, most of

researchers have used pixel methods which may distorted by external factors; rotation, scaling

and illumination. Additionally, the fusion of biomedical signals were used for pain detection

through machine learning applications. For instance, Gruss et al. [54] has worked on the

detection of pain induced by heat stimulation. In the study, the fusion of EDA, EMG and

EEG signals was used. Next, forward selection algorithm was used for feature selection, and

RBF SVM classifier was employed in classification procedure. The accuracy of 79.29% was

obtained through the classification of pain threshold versus baseline. Due to noninvasiveness

and portability of EDA measurement systems, EDA signals are used to classify the pain

by using the proposed feature extraction method (i.e., Timescale decomposition) followed

by the advantage of machine learning applications in our study. The assessment of pain is

divided into two types of pain, acute pain which is generated by evoked-pressure stimuli and

ongoing pain which could be defined as post-operative pain without evoked-stimuli. The

objective of this study is to identify pain by using the EDA signals. Acute and ongoing pain

is analyzed with pattern recognition algorithms, as well as the role of pain score.
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3.1.2 Data set and Experimental setup

Data set for our experiment was obtained from University of California San Diego Medical

School. Sixty-one neurotypical youths, aged 5-17 years, who had undergone a laparoscopic

appendectomy at a pediatric tertiary care center provided assent, along with one parent

who provided informed consent to participate in a study examining automated assessment

of childrens post-operative pain using video and body sensors. Subjects underwent three

study visits during which they were assessed for pain across the recovery period following

laparoscopic appendectomy from within 24 hours following surgery (inpatient) to up to 42

days later (outpatient). For the acceptability part of this study, only participating youth

and their parents attending the final study visit (N=54) were given the opportunity to

provide data. Prior to the last study visit, two youth discontinued participation in the

study. Demographics of youth who dropped-out did not statistically significantly differ from

the main cohort (p>0.20 for age, sex, and racial comparisons). Children and their parents

were approached for participation after undergoing surgery. Children and their parents

provided written informed assent and consent, respectively, for participation in this study,

as approved by the local institutional review board (IRB). The consent process reviewed the

fact that research participants would not personally or directly benefit from participation

in the research. One hundred dollars was given to the parent for the child and parents

participation; the level of compensation was based on prior work and with approval of the

local IRB in context of other studies compensation rates. For the main study, electrodermal

activity via wrist/hand sensors were collected to assess physiological and behavioral reactions

arising from spontaneous ongoing pain when at rest and instigated pain when pressure was

experimentally applied to the surgical incision site. Manual pressure was applied on the

abdomen adjacent to the surgical incision site for two, 10-second intervals. Then, youths

were asked to score their pain from 0 to 10 for ongoing pain assessment and instigated pain

assessment.
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3.1.3 Methodology

EDA data quality was visually assessed by a doctoral level researcher with expertise in EDA

who was blind to condition. As data were collected from two sensors during each trial, com-

parisons of both signals (e.g., left hand sensor and right-hand sensor data plotted together)

were used to confirm the quality of each signal. Data were removed if the signal did not ma-

tch with standard expectations for electrodermal activity based on recommendations from

Dawson [21]. If data from multiple sensors was deemed good quality, one signal was randomly

chosen to be used in the analyses. Selected good quality data was then smoothed using a

0.35 Hz low pass filter. This filter setting was designed to remove high frequency components

associated with artifacts such as movement, while maintaining all other signal components

up to the fastest (∼3 seconds) components of an electrodermal response [21]. After filte-

ring, data was down sampled to 1 Hz to reduce analysis time and simplify interpretation of

results. Finally, to account for baseline differences in EDA levels, the data was normalized

to have a mean of 0 using z-score normalization. This is an important step, as EDA levels

can be inconsistent over time within and between individuals, so change in EDA is more

interpretable than raw level. Before feature extraction step, EDA signals were trimmed to

a fixed length of thirty seconds in acute pain assessment and a fixed length of 5 minutes in

ongoing pain assessment. Then, feature extraction began with timescale decomposition of

each EDA signals as mentioned in Section 2.1.1. To capture characteristics of the temporal

behavior of EDA, we performed TSD on the EDA data using standard deviation (SD) as the

metric. We then extracted features from each TSD matrix for use in machine learning clas-

sification. To generate these features, we first computed the mean, standard deviation, and

entropy of each row of each TSD and entered them into a single feature matrix as mentioned

in Section 2.1.2. This feature matrix was then reduced using principal component analyses

(PCA). PCA is a widely used dimensionality reduction technique designed to help achieve

optimum parsimony [35]. Features were normalized before PCA implementation. PCA was

set to select data which maintained over the 90 % of the variance in the data, and remove all

other data. To avoid overfitting, the PCA was applied to training set, then testing feature

vector was projected on principal components.These results were used to generate a reduced
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feature matrix. Next, we used three widely used classifiers on the reduced feature matrix;

radial basis support vector machines (RBF SVM), linear support vector machines (Linear

SVM) and linear discriminant analysis(LDA). Finally leave one participant out cross valida-

tion (LOPO) was used in training phase, followed by the testing phase to avoid overfitting.

Support Vector Machines(SVM) are extensively used in data classification. SVM is techni-

que which transforms the data set to a hyperplane in which data set is separable [56]. A

classification task commonly involves separating data into training and testing test. Every

single instance in training set includes one target value, class label. The objective of SVMs

is to produce a model which is based on the training data set to predict the target values of

the test data given only the test data attributes [57] [35].

s(v) = sign

[
L∑
i=1

αiyiK(vi, v) + b

]
(3.1)

where vi ∈ Rn, yi ∈ −1, 1 αi is the Lagrange multiplier of the dual optimization problem , b

is bias and K(vi, vj) is a kernel which provides variability to a classifier to differentiate the

data in different forms. In practice several kernel are used and we adopted the most popular

kernels; linear and radial basis kernel (RBF). RBF kernel is given by

KRBF (vi, vj) = exp

(
||vi − vj||2

2σ2

)
(3.2)

where is σ is the scaling factor and RBF SVM also requires parameter optimization. However,

Linear SVMs does not require parameter optimization and the kernel for linear classification

is given by

KLinear(vi, vj) = vTi vj (3.3)

where vi is the training vector. Linear Discriminant Analysis (LDA) is another commonly

used machine learning algorithm that consists in finding the projection a hyperplane that

minimizes the interclass variance and maximizes the distance between the projected means

of the classes [58]. Let x1, . . . xn ∈ Rm be a set of n data samples belonging to two different

class sets. For each class, A and B, sample means can be defined :

x̃A =
1

NA

∑
x∈A

x, x̃B =
1

NB

∑
x∈B

x (3.4)
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where NA, NB are the number of samples in each class, respectively. Then, the scatter

matrices, positive semidefinite, for each class can be described by equations:

SA =
∑
x∈A

(x− x̃A)(x− x̃A)T , SB =
∑
x∈B

(x− x̃B)(x− x̃B)T (3.5)

where SA, SB is the sample variability in each class. Exquisitely, we want to find a hyperplane,

defined by the vector φ, in which data samples’ variances would be minimal. That can be

defined as:

min
φ

(φTSAφ+ φTSBφ) = min
φ
φT (SA + SB)φ = min

φ
φTSφ (3.6)

where S = SA + SB, and the scatter matrix between the classes is given by

SAB = (x̃A − x̃B)(x̃A − x̃B)T (3.7)

Finally, we maximize the distance between the projected means of classes and minimize the

interclass variance to find a hyperplane in which classes are separable. That can be described

by maximization of Fisher’s criterion:

max
φ

F (φ) = max
φ

φTSABφ

φTSφ
(3.8)

Detailed classification procedures for each analyses will be described in following sections
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3.1.3.1 Acute Pain Analyses Classification Scheme: As mentioned before, filtered,

downsampled and normalized signals were entered into TSD. Next, row extraction on TSD

matrices was conducted and leave one participant out cross validation was employed. Then,

the PCA was applied to training set, and test feature vector was projected on principal

components to avoid overfitting. In radial basis support vector machines classifier, leave

one out cross validation was used in training phase, followed by the testing phase used to

determine the optimal sigma and box constrain. Both parameters were ranged between

0.001 and 100 for the training phase, see Figure 3.1. In linear support vector machines

and linear discriminant analyses, TSD was implemented on processed signals, followed by

the row extraction on TSD matrices. LOPO was used to avoid overfitting and then PCA

was implemented to reduce features (see Figure 3.2). To differentiate the pain from pain-

free condition, three scenarios were employed. First, same participants in initial visit and

final visit were used to assess the role of pain score the regardless of pain score (N=21).

Second, those participants were grouped based on their pain scores during initial manual

press to identify which pain score threshold is significant to distinguish pain from pain-free

condition. To verify whether pain or environment was classified, additional three scenarios

were employed. Preliminary, 22 subjects whose pain score is equal and greater than four

during the initial manual press was chosen from initial visit, then randomly 22 participants

out of 37 whose pain score is less than four during the initial manual press were selected from

final visit session. These data then was used to train the classifier. To create a testing set, 9

participants whose pain score is equal and greater than four during the initial manual press

was used from middle visit, then randomly 9 participants whose pain score is less than four

during the initial manual press was chosen from middle visit. In this scenario, the classifier

was trained by the data set from different environments, and was tested on middle visit.

Secondly, all available data from initial visit (N=34) and from final visit (N=37) was used

to train the classifier. Then, the classifier was tested on all available data set (N=27) from

middle visit. Finally, 10 fold- cross validation was employed on all data set.
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10 fold cross validation is a technique to enhance the accuracy and overcome the over-

fitting problem. Basically, randomly chosen 10 fold was left out, the classifier was training

on the rest of the data, and tested on those 10 folds. Hence, 10 fold-cross validation uses

randomly chosen 10 fold, Monte Carlo simulation was employed with 100 runs, and results

were averaged.

3.1.3.2 Ongoing Pain Analyses Classification Scheme: Proceed EDA signals were

entered into TSD , followed by the row extraction on TSD matrices as aforementioned above.

Once, LOPO was conducted, the PCA was implemented to reduce the features. Similar

to Acute pain classification, RBF support vector machines was performed on the reduced

feature set (see Figure 3.1). For LDA and Linear SVM, please see the classification scheme

shown in Figure 3.2. In order to distinguish pain from pain-free condition, three schemes are

applied. Initially, same subjects were chosen from initial and final visit to analyze the role of

pain score without consideration of their pain scores (N=20). Secondly, those subjects were

sorted by their pain score during the resting time. Finally, further analyses were conducted

to validate whether pain or environment was classified. First strategy was employed to verify

whether pain or environment is classifiable. To create a training set, 13 subjects whose pain

score is equal and greater than four during the resting time was selected from initial visit

session, then randomly 13 participants out of 36 whose pain score is less than four during

the resting time were chosen from final visit session. For testing set, 10 participants whose

pain score is equal and greater than four during the resting time was used from middle visit,

then randomly 10 participants out of 21 whose pain score is less than four during the resting

time was chosen from middle visit. In this scenario, the classifier was trained by the data

set from different environments, and was tested on middle visit. Second, all available data

from initial visit (N=35) and from final visit (N=36) was used to train the classifier. Then,

the classifier was tested on all available data set (N=31) from middle visit. Finally, 10 fold-

cross validation was employed on all data set. Similarly, randomly chosen 10 fold was left

out, the classifier was training on the rest of the data, and tested on those 10 folds. After

that, Monte Carlo simulation was employed with 100 runs, and results were averaged.
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Figure 3.1: The implementation of RBF support vector machines

Figure 3.2: The implementation of Linear Discriminant Analysis
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3.1.4 Results

In order to identify whether pain would be differ than pain-free condition though EDA

signals, proposed feature extraction method TSD was applied to capture the sort and long

terms on EDA signals. After that, machine learning algorithms were conducted (see Section

3.1.3.1 and 3.1.3.2). In our procedure, acute pain and ongoing pain was analyzed through

proposed feature extraction method and pattern recognition approaches. We also analyzed

the role of pain score. Despite of the variety of applied pattern recognition methods , the

best results will be illustrated , as follows.

Acute Pain: The first set of analysis investigated whether pain condition would be

differ than pain-free condition without the consideration of pain score. Same participants’

EDA signals during initial manual press time were assessed from initial visit and finial visit.

In spite of the variety of machine learning implementations, linear SVM has performed

better by the accuracy of 66.67% with a sensitivity of 61.90% and a specificity of 71.43%.

To determine the role of pain score, those participants were grouped by their pain score

report. For instance, if pain score threshold is four, the participants whose pain score is

equal and greater than four in initial visit, and less than four in final visit were chosen.

Figure 3.3 indicates the performance of linear SVM by pain score thresholding criteria as

mentioned above. In this analysis, all possible pain score thresholds were considered. The

best pain score threshold is four by the accuracy of 83.33%, with a sensitivity 86.67% and a

specificity of 80%. Significantly, these findings indicates that when the pain score threshold

was considered, the accuracy was enhanced compared to first analyses on the same data set.

Therefore pain score threshold was settled to be four in further analyses. Remarkably, these

findings also demonstrate that the data set can be generalized since LOOP was applied.

To validate whether pain or environmental changes were distinguishable, three strategies

were employed. Namely, a classifier was trained and test by the data set from different

environments (i.e., initial visit at home, and finial visit at hospital) to check how well the

classifier performs in different environment (i.e, middle visit at hospital). First , we look

at the affect of randomization on data set to assess the pain from pain-free condition by

the consideration of possible environmental changes (e.g., home or hospital), a classifier was
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trained and tested by taking a consideration of environmental changes. Results by LDA

indicated an accuracy of 72.22% with a sensitivity of 88.89% and a specificity of 55.56%.

After that, a classifier was trained by all data set from initial and final visit, and then tested

on all the data set from middle visit session. As the data set is unbalanced, it is crucial to beat

the chance level which is 66.66%. LDA led to an accuracy of 70.37% (sensitivity=11% and

specificity=100%). Although performance is not ideal, we still beat the chance level. Finally,

10-fold cross validation with Monte Carlo simulation was employed on the all available data

set. Average results by LDA classifier demonstrated an accuracy of 67.40% with a sensitivity

3.03% and a specificity of 97.18%. Overall, the question regarding to environmental changes

are eliminated by the use of randomization affects on the data set. Although, other findings

depicted a significant accuracy with a inadequate sensitivity, there is certainly room for

improvement.

Figure 3.3: Linear SVM performance on acute pain assessment though pain score threshol-

ding
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Ongoing Pain: In order to distinguish pain from pain-free condition, same participants

during the five minutes resting time were used from initial visit and final visit. Firstly, pain

was analyzed without the consideration of pain score report as mention in Section 3.1.3.2.

Results by LDA classifier illustrated an accuracy of 72.5% with a sensitivity of 75% and a

specificity of 70%. To understand the role of pain score report, same participants were sorted

by their pain scores as mentioned above. Then, data set was aligned based on pain score

thresholds. This analysis also led to the best threshold being four by implementation of

LDA classifier (see Figure 3.4). By pain score threshold four, LDA classifier led an accuracy

of 87.5% (sensitivity=87.5% and specificity=87.5%). Therefore, this findings indicated that

pain score thresholding approach enhanced the correctly identified pain rate. Additionally,

this finding also proved that pain classification can be generalized with the advantage of

LOOP cross validation. However, three strategies was applied to a possible issue of environ-

mental changes on pain classification. First of all , data set was balanced using randomly

chosen samples. EDA signals during the five minutes resting time was analyzed from ini-

tial visit(i.g, signals were recored at hospital) and final visit (i.e., signals were recorded at

home). These signals were used in training set, and then EDA signals from middle visit was

used to test the classifier. LDA classifier resulted an accuracy of 70% (sensitivity=70% and

specificity=70%). After that , all data samples from initial and final visit was used to train

a classifier, followed by the use of all data set from middle visit to test the classifier. Hence,

data set are unbalanced with a chance level of 67.74%, the Linear SVM provided a best re-

sult with an accuracy of 70.97% (sensitivity=30% and specificity=90.48%). Finally, 10-fold

cross validation was employed to all data set with Monte Carlo simulation, and results were

averaged. Result by Linear SVM depicted an accuracy of 73.52% with a sensitivity of 7.35%

and a specificity of 92.78%. Although Linear SVM classifier surpassed the chance level, it

did not perform well to classify true positives
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Figure 3.4: LDA performance on ongoing pain assessment though pain score thresholding

3.1.5 Discussion and Conclusion

In this study, pain assessment has been conducted though EDA signals because EDA signals

are easy to obtain, and are connected to autonomic nerves system. Despite of the various

conventional approaches for EDA analyses, we used our previous feature extraction method

Timescale decomposition which exposes EDA signal in time domain to provide comprehensive

information about data set by assessing the signal with all possible time intervals. Hence

TSD provides more flexibility to seize long and short term changes over the signal with an

option of any statistical metric to be assessed, the characteristic of EDA signals in pain phase

can be captured adequately. Moreover, the graphical representation of TSD allows users to

detect changes over the signal conveniently, therefore, the time of analysis can be reduced. To

our knowledge, TSD is the first feature extraction algorithm to investigate the characteristic

of EDA signals in given condition with all possible time intervals. As pain detection is
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the key concern in many research areas, there are many proposed algorithms to understand

the characteristic of pain , intensity of pain and the role of pain scoring systems (e.g, VAS,

PIPP). Therefore, we first investigated whether acute pain was distinguishable from pain-free

condition by the consideration of pain score report. The most remarkable result to emerge

from acute pain investigation is that pain can be differentiable from pain-free condition

by an 83.33 % (sensitivity=86.67%, specificity=80%) when pain score was considered. To

confirm that hypothesis, all data set was used without the consideration of pain score. As a

result, the accuracy of pain detection is lower(66.67%) than the consideration of pain score

report scenario(83.33%). This findings illustrated that the accuracy of pain detection was

improved by the consideration of pain score report. Similarly, ongoing pain assessment was

conducted to investigate whether ongoing pain is differentiable from pain-free condition. The

accuracy by the consideration of pain score report is higher (87.5%) than regardless of pain

score report scenario (72.5%). This findings confirm the usefulness of pain score report.

As the focus of the study was pain detection, there is a possibility that environmental

changes have impact on classification procedure. To solve that problem, further analyses

were conducted in ongoing and acute pain assessment. When all possible environmental

changes were considered, the randomization effect on the data set in acute pain assessment

indicated that acute pain still can be distinguishable from pain-free condition in different

environments by an accuracy of 72.22%, with a sensitivity of 88.89% and a specificity of

55.56%. Furthermore, the randomization effect on the data set in ongoing pain assessment

led to an accuracy of 70%, with a sensitivity of 70% and a specificity 70%. Despite the fact

that there was environmental change effects on the data set, pain still can be distinguishable

from pain-free condition.
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4.0 CONCLUSIONS

In this thesis, EDA signals were used to identify the characteristic of pain due to fact the EDA

signals provides salient information about autonomic nerves system, and are easy to obtain.

Despite the variety of EDA analysis methods, we have proposed timescale decomposition.

This method uniquely decomposes a signal in time domain to capture short and long-term

changes over the signal with all possible time intervals. To check the feasibility of TSD

for pain detection, it was applied to EDA signals obtained to study the role of visual con-

nection in dyads’ synchrony of heterosexual couples. Then, PCA and RBF SVMs were used

for feature reduction and classification respectively. Consequently, it was found that TSD

improved the classification accuracy when using incremental window compared to moving

window by 25% accuracy. Inspired by such significant accuracy improvement, we perform

TSD to extract informative statistical features form EDA signal associated with pain. We

then characterize these changes in EDA signals through the computation of mean, standard

deviation and entropy. These statistical and information identities are used to form feature

vectors from the EDA , followed by implementation of PCA to reduce the dimension of these

features. To develop a pain detection method, these reduced features are then used in three

different classifiers: LDA, RBF SVMs, and linear SVMs. Particularly, the pain classification

is divided into two main categories: ongoing pain assessment and acute pain assessment. In

the analysis of acute pain, the role of pain score report was analyzed . As a result, acute pain

was differentiable by an accuracy of 83.33% (sensitivity=86.67%, specificity=80%) using li-

near SVM when data set was sorted by pain score threshold. To validate the importance

of pain score report, available data set was used without the consideration of pain score.

Result by linear SVM classifier indicated acute pain was differentiable by an accuracy of

66.67% (sensitivity=61.90%, specificity=71.43%), this result shows that the consideration of
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pain score improved the accuracy of acute pain identification. Despite the fact that there is

a limitation due to environmental changes on pain classification, we proposed a technique in

which a classifier was trained by the data set from first visit and final visit, and tested on the

data set from middle visit to overcome the possibility of classifying environmental changes

besides of the pain classification. Randomization affect on the data set led to an accuracy of

72.22% (sensitivity=88.89%, specificity=55.56%). This result also demonstrates that acute

pain is still differentiable than pain-free condition in spite of the environmental differences.

Similarly, ongoing pain assessment was conducted by the effect of pain score report. When

pain score report was considered , ongoing pain was differentiable from pain-free condition

with an accuracy of 87.50% (sensitivity=87.50%, specificity=87.50%) using LDA. In order

to check the importance of pain score report, all data set was used regardless of pain score

report. Results by LDA classifier indicated an accuracy of 72.50% , with a sensitivity of

75.00% and a specificity of 70%. This finding shows that the consideration of pain enhanced

the identification of ongoing pain. In order to overcome the issue of environmental diffe-

rences in pain classification, same machine learning framework was applied to ongoing pain

assessment. Results by the randomization effect led an accuracy of 70% , with a sensitivity of

70% and a specificity of 70% using LDA classifier. Therefore, ongoing pain is differentiated

from pain-free condition. Additionally, we can state that pain can be differentiable, since

LOPO was used in machine learning framework. Namely, a classifier was trained by different

participants , and tested on another participant in the implementation of LOPO.

In conclusion, different pain phases can be identified through electrodermal activity sig-

nals by the advantage of novel feature extraction method (i.e., timescale decomposition)

and pattern recognition algorithms. Although, ongoing and acute pain are classified from

pain-free condition, there is a room for improvement of environmental differences issue. This

study is first step towards enhancing our understanding of the role of EDA signals in au-

tomated pain assessment. Future work will concentrate on whether frequency analyses of

EDA signals improve the classification of pain. Additionally, the identification of different

pain levels will be considered. To further our research, we plan to use the fusion of EDA

signals with video signal as a input of classification procedures to reinforce the accuracy of

pain identification.
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S. Charleston-Villalobos, and K. H. Chon, “Power spectral density analysis of electro-
dermal activity for sympathetic function assessment,” Annals of biomedical engineering,
vol. 44, no. 10, pp. 3124–3135, 2016.

[13] A. Bauer, M. Malik, G. Schmidt, P. Barthel, H. Bonnemeier, I. Cygankiewicz, P. Guzik,
F. Lombardi, A. Müller, A. Oto et al., “Heart rate turbulence: standards of measure-
ment, physiological interpretation, and clinical use: International society for holter and
noninvasive electrophysiology consensus,” Journal of the American College of Cardio-
logy, vol. 52, no. 17, pp. 1353–1365, 2008.

[14] D. R. Bach and K. J. Friston, “Model-based analysis of skin conductance responses:
Towards causal models in psychophysiology,” Psychophysiology, vol. 50, no. 1, pp. 15–
22, 2013.

[15] D. M. Alexander, C. Trengove, P. Johnston, T. Cooper, J. August, and E. Gordon,
“Separating individual skin conductance responses in a short interstimulus-interval pa-
radigm,” Journal of neuroscience methods, vol. 146, no. 1, pp. 116–123, 2005.

[16] M. Benedek and C. Kaernbach, “A continuous measure of phasic electrodermal activity,”
Journal of neuroscience methods, vol. 190, no. 1, pp. 80–91, 2010.

[17] D. R. Bach, “A head-to-head comparison of scralyze and ledalab, two model-based
methods for skin conductance analysis,” Biological psychology, vol. 103, pp. 63–68, 2014.

[18] M. Kelsey, M. Akcakaya, I. R. Kleckner, R. V. Palumbo, L. F. Barrett, K. S. Quigley,
and M. S. Goodwin, “Applications of sparse recovery and dictionary learning to enhance
analysis of ambulatory electrodermal activity data,” Biomedical Signal Processing and
Control, vol. 40, pp. 58–70, 2018.

[19] A. Greco, G. Valenza, A. Lanata, E. P. Scilingo, and L. Citi, “cvxeda: A convex optimi-
zation approach to electrodermal activity processing,” IEEE Transactions on Biomedical
Engineering, vol. 63, no. 4, pp. 797–804, 2016.
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