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With almost 38% of the adult population as obese, weight loss is a public health imperative. 

We cannot yet predict who will succeed in losing weight through dietary interventions, though 

reward sensitivity and executive functioning (EF) may influence weight loss. The present study 

examined whether neural reward network responsivity to visual food cues or EF prior to a dietary 

intervention predicted weight loss in an overweight and obese sample. It also examined the 

relationship between brain activity during the visual presentation of food items and measures of 

EF, and tested whether EF statistically mediated the relationship between neural reward network 

activation and weight loss.  

108 middle-aged, overweight and obese (mean BMI=30.93 + 3.59 kg/m2) adults completed 

functional neuroimaging and an EF assessment prior to a 12-month weight-loss intervention. 

Functional neuroimaging included a visual food cuing (VFC) task to examine neural responses to 

food stimuli that included high-caloric foods, low-caloric foods, and neutral images. The EF 

assessment included the Iowa Gambling Task (IGT) and Stroop task as metrics of strategic 

planning and inhibitory control, respectively. All analyses controlled for sex; analyses involving 

EF additionally controlled for years of education. 

Following the intervention, participants lost approximately 9% of initial body weight 

(9.06% + 6.86%); baseline weight was not associated with percentage of weight lost. During the 

visual food cue task, greater activation in the bilateral anterior cingulate cortex and less activation 

in the right caudate, dorsolateral prefrontal cortex, and orbitofrontal cortex was predictive of more 
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weight loss. Greater activation in the left nucleus accumbens and right caudate was also associated 

with better performance on the IGT. EF performance was not associated with weight loss. 

 Reduced neural sensitivity to visual food stimuli in reward regions and increased 

reactivity in areas associated with EF were predictive of greater success in a dietary weight-loss 

intervention in overweight and obese adults. Individuals who are less sensitive to rewarding food 

images and who do not need to inhibit impulsivity may be those who lose more weight. These 

individuals may be more effective at evaluating the consequences of their dietary choices to aid 

their successful weight loss.   
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1.0      INTRODUCTION 

1.1 OBESITY AND WEIGHT LOSS 

Obesity is a heterogeneous disease with various etiologies that may be organic (e.g., metabolic 

dysfunction) or related to an individual’s environment (Heindel, Newbold, & Schug, 2015; 

Kramer, Zinman, & Retnakaran, 2013). To meet criteria for obesity, individuals must have a body 

mass index (BMI), or a ratio of body weight to height (kilograms per meter squared; kg/m2), of 

30.0 kg/m2 or more. A BMI between 25.0-29.9 kg/m2 is categorized as overweight, while a BMI 

between 18.5-24.9 km/m2 is categorized as healthy (Panel, 1998). Obesity is highly prevalent, with 

approximately 38% of American adults meeting criteria (Flegal, Kruszon-Moran, Carroll, Fryar, 

& Ogden, 2016). Within the obese population, there is considerable variability in the cause and 

development of the condition (Heindel et al., 2015). The underlying factors that influence obesity 

risk may contribute to the ability and/or likelihood of successful weight loss.  

Dietary interventions often aim to meet the clinical recommendations of losing 10% of 

initial body weight (Goldstein, 1992). Meta-analyses showed that most successful weight loss 

interventions involve participants losing 5-9% of their body weight, though there is typically some 

regain of weight (between 2-3%) after the first six months of weight loss (Franz et al., 2007; Wu, 

Gao, Chen, & Van Dam, 2009); (Jakicic, Marcus, Lang, & Janney, 2008). However, it is rare that 

participants in weight loss interventions regain enough weight to return to baseline (Franz et al., 
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2007). Problematically, most of the past work using dietary plans has included only short-term 

interventions, i.e., up to 16 weeks (Franz et al., 2007; Miller, Koceja, & Hamilton, 1997; Wu et 

al., 2009), and evidence shows that individuals often lose the most weight at the six-month time 

point (Jakicic et al., 2008). Therefore, these shorter-term interventions may have been too brief for 

participants to appreciate the full effects of their dietary plans. 

Yet, not everyone is able to lose the recommended 10% of baseline body weight in an 

intervention, despite active participation (Jakicic et al., 2008). Obesity and weight loss can be 

influenced by a variety of demographic factors, including age, sex, race, and socioeconomic status 

(SES). These features are largely intrinsic, although some, like SES, affect obesity and weight loss 

in conjunction with environmental influences (Sobal & Stunkard, 1989; Wardle, Waller, & Jarvis, 

2002). Individuals living in areas of lower SES are more likely to be obese (Wardle et al., 2002), 

and there is evidence that having limited access to fresh food and safe forms of physical activity 

are risk factors for obesity (Morland, Roux, & Wing, 2006; Sallis & Glanz, 2009). While these 

environmental contributions are important, they may be difficult to quantify (McLaren, 2007; 

Stunkard & Sorensen, 1993). Thus, we can look to the intrinsic factors that contribute to the 

variability in weight loss across individuals seeking obesity treatment. 

The intrinsic factors that predict weight loss are not agreed upon in the literature and may 

be related to obesity risk and/or weight gain, such as age, race, or education (Bautista-Castano, 

Molina-Cabrillana, Montoya-Alonso, & Serra-Majem, 2004; Finkler, Heymsfield, & St-Onge, 

2012; Karlsen, Søhagen, & Hjelmesæth, 2013). These characteristics are also related to 

psychosocial and cognitive functioning (Agüera et al., 2015). Examination of these factors in 

laboratory settings may extend our understanding of how they are associated with weight. 
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1.2 EXECUTIVE FUNCTIONING AND WEIGHT LOSS 

The role of cognitive functioning in weight loss is not clear, as it may be one of many factors that 

can influence the success of a weight loss intervention (Espeland et al., 2014; Prickett, Brennan, 

& Stolwyk, 2015). For example, if someone is unable to contemplate future consequences, that 

person may not consider the differential health outcomes between eating an apple or a cookie. 

Another person with poor inhibitory control may find it difficult to stop eating snacks between 

meals because the food is readily available, despite knowing that this behavior hinders weight loss 

goals. These executive functions (e.g., planning, inhibition, impulsivity) are important cognitive 

components of the ability to adhere to a dietary intervention and lose weight. 

Executive functioning (EF) is a cognitive domain encompassing higher-order processes 

including impulsive decision-making, inhibitory control, working memory, and set-shifting to 

attain goals (Sharma, Markon, & Clark, 2014; Welsh & Pennington, 1988). Measuring these 

processes can be done with a variety of behavioral tests. Tasks such as the Iowa Gambling Task 

(IGT; (Bechara, Damasio, Damasio, & Anderson, 1994) and the Stroop task (Stroop, 1935) are 

commonly used to examine the ability to make decisions related to future goals and control 

behavioral responses to stimuli. Performance on, and brain activity during, these tasks vary as a 

function of age (Cauffman et al., 2010), sex (Bolla, Eldreth, Matochik, & Cadet, 2004; van den 

Bos, Homberg, & de Visser, 2013), education (Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 

2006), and weight (see Fitzpatrick, Gilbert, & Serpell, 2013 for review). There is sufficient 

evidence that obese individuals perform poorly on cognitive tasks across several domains, and 

these effects may be greatest for EF (Fitzpatrick et al., 2013; Gunstad et al., 2007; Smith, Hay, 

Campbell, & Trollor, 2011). Using these tasks to examine planning and inhibition may shed light 

on how EF can predict weight loss through adherence to a prescribed diet.  
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The IGT is frequently used to test impulsive decision-making and planning for future goals 

through the development of advantageous strategies during the task (Bechara et al., 1994). In the 

task, participants try to win money by selecting cards from one of four decks. Two of the decks 

are advantageous and allow the participant to win money, and two of the decks are disadvantageous 

and cause the participant to lose money. The participants are given a monetary credit at the 

beginning of the task that they must pay back; their net total score at the end of the task is an 

indicator of strategic decision-making, such that low or negative scores are related to making 

disadvantageous choices (Bechara, 2007). 

IGT performance correlates positively with performance on other EF tests (Toplak, Sorge, 

Benoit, West, & Stanovich, 2010), so it can serve as one metric for this domain of cognitive 

function. Compared with lean participants, obese participants perform worse on the IGT by 

selecting more cards from disadvantageous decks (Brogan, Hevey, & Pignatti, 2010; Davis, Patte, 

Curtis, & Reid, 2010; Pignatti et al., 2006). The failure to develop advantageous strategies to attain 

future goals, such as winning money, suggests that obese individuals may be less tactical in their 

decision-making across other facets of their lives, like losing weight (Davis et al., 2010). This 

could be a result of altered sensitivity in brain regions that would cause certain individuals to make 

maladaptive behavioral choices, such as discounting strategies to attain future rewards (Mathar, 

Horstmann, Plegar, Villringer, & Neumann, 2016). 

In addition to the IGT, the Stroop task can be used as a metric of EF since it measures an 

individual’s ability to control responses to visual color word cues (Stroop, 1935). Participants 

complete three task conditions (i.e., congruent, incongruent, and neutral) where the words 

presented on the screen match, do not match, or are not related to the color of the ink in which the 

words are written. The Stroop task elicits inhibitory control, or the ability to ignore stimuli that 



 5 

would distract from a target action, which is a component of impulsivity and a key executive 

function related to the achievement of goals (Sharma et al., 2014). 

The evidence surrounding performance differences between obese and healthy individuals 

on the Stroop task is mixed (Fitzpatrick et al., 2013). There is some evidence that obese individuals 

perform poorly on the Stroop task, such that they are less able to inhibit their responses during the 

incongruent condition (Fagundo et al., 2012; Maayan, Hoogendoorn, Sweat, & Convit, 2011; Xu 

et al., 2017). Yet, other studies have not shown differences in performance between obese and 

healthy participants (Balodis et al., 2013; Fitzpatrick et al., 2013). The conflicting evidence 

suggests that not enough work has been done to understand the complexity of the Stroop task in 

obese participants and that using only one metric of EF is not sufficient to determine the 

neurocognitive deficits associated with obesity. Using multiple tests to encapsulate the 

subcategories of EF may allow for the determination of how the relationship between EF and 

obesity contributes to weight loss.  

 Little work to date has examined the variability in EF within an entirely overweight and 

obese sample. Instead, most research has compared obese with lean participants to make claims 

about the risks associated with obesity. Between the two long-term weight loss studies that focus 

on obese populations [i.e., the Diabetes Prevention Program (D. P. P. D. R. Group, 2002) and the 

Look AHEAD trial (T. L. A. R. Group, 2003)], neither used cognition to understand or predict the 

trajectory of weight loss for their participants. An ancillary study from the Look AHEAD trial 

showed that a lifestyle intervention for weight loss was associated with improved cognitive 

functioning for overweight, but not obese, participants at an 8-year follow-up. However, this was 

one of the only studies to examine cognitive outcomes in a long-term weight loss intervention and 

it was unique to adults with Type 2 diabetes.  
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1.3 REWARD SENSITIVITY AND WEIGHT LOSS 

Unlike some of the psychosocial factors that may influence obesity and healthy eating habits, such 

as social cuing, the cognitive risk factors for obesity have a neural basis (e.g., reward sensitivity, 

EF) (Burger & Berner, 2014; Nummenmaa et al., 2012; Yokum, Ng, & Stice, 2011). The behaviors 

that arise from these risk factors, such as overeating, may be due to increased cue-related reactivity 

in the neural reward network (Castellanos et al., 2009). The variability in neural responses to 

rewards within an obese sample may provide insight of why some individuals successfully lose 

weight under restricted diets, but others under the same conditions do not.  

Reward sensitivity can be elicited through visual food cuing (VFC) – a type of behavioral 

task that utilizes images of high-caloric foods, low-caloric foods, and neutral objects. When 

presented with images of food, obese individuals attend to the images for a longer period of time 

than their lean counterparts and this attentional bias is not specific to high-caloric foods, but food 

in general (Castellanos et al., 2009; Yokum et al., 2011). This increased attention to food images 

may be due to intensified sensitivity to food rewards compared to other stimuli (Castellanos et al., 

2009; Yokum et al., 2011). Additionally, this heightened attention to food images may result in a 

greater desire to eat. For instance, one study found that compared with lean individuals, obese 

individuals experienced greater motivation to eat after being exposed to food cues (Ferriday & 

Brunstrom, 2011). Although this study did not show evidence that the heightened motivation to 

eat resulted in overeating, individuals with greater desire to eat and lower inhibitory control may 

be at the greatest risk for overeating in response to food stimuli. 

However, some studies of reward processing revealed no differences in neural activation 

between anticipation of food versus monetary rewards in obese participants (Opel et al., 2015; 

Stice & Yokum, 2016; Stice, Yokum, Burger, Epstein, & Small, 2011). This implies that the 
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heightened sensitivity to rewards may be general, and not specific to food cues, which could 

provide additional opportunities for researchers to study the variability of responses to rewards 

within an obese population. If certain individuals are more sensitive to rewarding stimuli 

regardless of the specific cue, it is possible that obesity is just one manifestation of their hyper-

sensitivity. In conjunction with poor EF, this hyper-sensitivity to rewarding stimuli may be used 

to predict future weight gain or loss (Demos, Heatherton, & Kelley, 2012; Lopez, Hofmann, 

Wagner, Kelley, & Heatherton, 2014; Murdaugh, Cox, Cook, & Weller, 2012; Nederkoorn, 

Houben, Hofmann, Roefs, & Jansen, 2010; Stice, Yokum, Bohon, Marti, & Smolen, 2010; Yokum, 

Gearhard, Harris, Brownell, & Stice, 2014; Yokum et al., 2011).  

1.4 NEURAL RESPONSIVITY AND WEIGHT LOSS 

Neuroimaging studies suggest alterations in brain structure and function in obese individuals 

relative to their healthy counterparts that may influence reward sensitivity and EF (Kishinevsky et 

al., 2012; Pannacciulli et al., 2006; Raji et al., 2010; Yokum, Ng, & Stice, 2012). Some of these 

studies used functional magnetic resonance imaging (fMRI) to detect subtle differences in blood 

oxygen level dependent (BOLD) activity as they related to a relevant behavioral task. The neural 

networks that control EF and reward processing involve multiple overlapping regions and 

structures, such as the striatum, prefrontal cortex (PFC), cingulate cortex, and others (Kenny, 2011; 

Marques-Iturria et al., 2015). The striatum – a subcortical forebrain structure that consists of the 

nucleus accumbens (NAcc), caudate, and putamen – is a key brain region for reward processing. 

The PFC is a cortical region associated with cognitive control and EF. These structures make up 

part of a corticostriatal circuit – a network responsible for integrating higher-order cognitive 
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processing with responses to reward (Kenny 2011). Projections between the PFC and the striatum 

have been implicated in anticipating reward and making goal-directed behavioral choices related 

to that anticipation (Balleine, Delgado, & Hikosaka, 2007; Rolls, 2000), making this piece of 

corticostriatal circuitry central to understanding the motivation to receive reward. 

There is a large literature on brain circuitry between reward and EF networks in both 

healthy and clinical populations. The regions involved in reward processing have been linked to 

numerous disorders, such as addiction and obesity (see Berridge, Ho, Richard, & DiFeliceantonio, 

2010; Stice & Yokum, 2016 for review). Obese participants show greater activation in reward 

regions (i.e., the striatum) and less activation in EF regions (i.e., the PFC) than their lean 

counterparts when viewing images of highly palatable foods (Castellanos et al., 2009; Cornier, 

Salzberg, Endly, Bessesen, & Tregellas, 2010; Rothemund et al., 2007; Stoeckel et al., 2009; 

Stoeckel et al., 2008). This heightened striatal sensitivity may put obese individuals at higher risk 

for future weight gain due to alterations in their responsivity to rewarding stimuli (Burger, 

Shearrer, & Sanders, 2015; Stice et al., 2011). One theory posits that the PFC can exert top-down 

control over reward sensitivity supported by the striatum so as to regulate decision-making by 

activating inhibitory control processes (Wallis, 2007). The PFC encodes rewarding stimuli as a 

foundation for behavioral learning about specific cues (Rolls 2000), and altered responsivity may 

make certain cues more salient than others. Lower PFC responsivity may reflect dysfunctional 

associations between visual cues and actions that lead to rewarding consequences (Maayan et al., 

2011; Wallis, 2007; Yokum et al., 2011). The connections between the PFC and striatum balance 

EF and response to reward, and disruptions in them may be detrimental to achieving goals 

(Marques-Iturria et al., 2015; Rothemund et al., 2007; Stice et al., 2010; Stoeckel et al., 2009). 
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The cognitive tasks described above have been related to this same corticostriatal circuit. 

For example, the IGT is related to both EF and reward processing brain regions in healthy and 

patient populations (Buelow & Suhr, 2009; Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; 

Lawrence, Jollant, O'Daly, Zelava, & Phillips, 2009; Li, Lu, D'Argembreau, Ng, & Bechara, 2010). 

Heightened activation in the orbitofrontal cortex (OFC), a region of the PFC, is found throughout 

the IGT, while heightened activation in the striatum is found when participants win money (Hsu 

et al., 2005; Lawrence et al., 2009; Li et al., 2010). Evidence suggests that performance on the IGT 

is related to the amount of activation in the PFC during the task, with better performance associated 

with greater activation (for review, see Buelow & Suhr, 2009). As the PFC is a crucial structure 

for decision-making processes, participants who show more activation in this region while 

selecting cards may choose more advantageous decks in the IGT. Studies show that patients who 

have brain lesions in the OFC perform poorly– they select more cards from the disadvantageous 

decks (Bechara, Damasio, Tranel, & Anderson, 1998; Buelow & Suhr, 2009). The brain regions 

linked to IGT performance in lesion patients are also those that are altered in obese populations 

(Appelhans, 2009; Brogan et al., 2010; Li et al., 2010). Individuals who cannot consider long-term 

consequences and are hyper-sensitive to rewards may be at highest risk for future weight gain, as 

the tendency to make disadvantageous choices may reflect the relationship between neural reward 

sensitivity and the propensity for weight loss.  

Across the lifespan, brain responses to the incongruent and congruent conditions of the 

Stroop task differ in location and intensity (Banich et al., 2000; Milham et al., 2002; Xu et al., 

2017). Often, regions associated with attention, inhibitory control, and impulsivity are those with 

the greatest differences in brain activity between conditions. These regions – namely, areas of the 

PFC, cingulate cortex, insular cortex, and striatum (Banich et al., 2000; Chen, Lei, Ding, Li, & 
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Chen, 2013; Kim, Chung, & Kim, 2010; Piai, Roelofs, Acheson, & Takashima, 2013; Verstynen, 

2013) – are among those that show altered responsivity in obese individuals in response to visual 

food stimuli, as described above (Lopez et al., 2014). In a study examining the neural substrates 

of inhibitory control, obese participants had greater activity in the middle frontal gyrus, insula, and 

cingulate gyrus during the incongruent compared to the congruent condition (Balodis et al., 2013). 

These results indicate that obese participants may recruit more neural resources to complete more 

difficult task conditions compared with their lean counterparts. However, most of this work has 

been cross-sectional and did not examine the associations between task performance and weight 

loss in obese samples. 

In fact, few studies have used EF to predict changes in weight over time. One study of 

adults in a supervised weight loss program found that better baseline set-shifting and faster 

response inhibition were associated with more weight loss at an 8-week follow-up (Galioto et al., 

2016). Another showed that only the interaction between inhibitory control and ratings of liking 

food predicted weight loss within 52 weeks of an intervention (Brockmeyer et al., 2016). Together, 

this suggests that EF may influence weight loss over time, but these researchers did not incorporate 

neuroimaging. In a study that combined Stroop task performance and neural responsivity during 

the task to examine weight loss in a 4-week intervention of overweight and obese adolescents, 

more weight loss was associated with increases in oxygenated hemoglobin levels in PFC regions 

related to the Stroop effect (Xu et al., 2017). These results indicate that EF and attentional control, 

both of which are engaged during the Stroop task, and the differences in neural responsivity that 

the task elicits may be related to the ability to lose weight. While these results are promising, only 

functional near infrared spectroscopy (fNIRS) was used to quantify changes in hemodynamic 
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response, which has a lower spatial resolution than fMRI. Thus, more work is needed to understand 

how EF and neural responsivity are related to weight loss. 

In addition to the IGT and Stroop task, VFC tasks can be used to evoke neural activation 

related to reward processing and EF. One study found that participants with greater activation in 

the NAcc while viewing food images correlated positively with subjective ratings of desire for 

food, higher likelihood to give into the temptation to eat, and eating larger quantities (Lopez et al., 

2014). The researchers also found that heightened activation in the inferior frontal gyrus (IFG), a 

region implicated in cognitive control, during a response inhibition task was associated with better 

control over the temptation to eat and eating less overall. However, this work was cross-sectional, 

so the temporal associations between brain activity and change in weight are impossible to discern.  

There have been several prospective studies that examined the relationship between reward 

and EF circuitry and weight change over time. FMRI work comparing obese with lean participants 

showed that heightened activation in regions supporting reward and attention processes was 

associated with future weight gain. Specifically, one study found that greater activation in the 

NAcc during a baseline session of viewing food stimuli correlated positively with increased BMI 

at a 6-month follow-up (Demos et al., 2012). Another study found heightened activation in the 

lateral OFC and ventrolateral PFC during an initial exposure to palatable food cues, and that this 

activation correlated positively with increases in BMI at a one-year follow-up (Yokum et al., 

2011). These studies provide evidence that neural reward and EF regions may be target predictors 

of weight gain in intervention research, as increased activation in these areas was associated with 

an increase in BMI. Although the mechanisms by which the weight was gained were not discussed 

in these studies, it is possible that the individuals who were more responsive to rewarding stimuli 
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made poorer food-consumption decisions and/or were less successful in controlling their impulses 

to eat. 

 To date, there have been two studies examining the predictive power of neural responsivity 

on weight loss. One 12-week dietary intervention found that higher baseline BOLD activation in 

the NAcc and other reward regions when viewing images of high-caloric foods was associated 

with less successful weight loss at a 9-month follow-up (Murdaugh et al., 2012). The same study 

also found that greater activation in areas of the PFC that are associated with attention while 

exposed to images of food was associated with a lack of success in the intervention (Murdaugh et 

al., 2012). These findings suggest that some individuals are more sensitive to hedonic rewards 

associated with food, and cues related to food may drive future consumption. Another study used 

fNIRS during the Stroop task to predict weight loss after a 4-week fitness intervention (Xu et al., 

2017). The authors found that better performance on the task and greater hemodynamic responses 

in the PFC were associated with more weight loss at the end of the intervention. Taken together, 

the evidence is not clear if heightened activation in PFC regions related to EF is associated with 

successful weight loss; however, increased activity in reward regions during exposure to food 

stimuli may predict weight loss in an intervention.   

1.5 PREDICTING WEIGHT LOSS 

Predicting future real-world outcomes based on brain regions of interest is becoming increasingly 

common in MRI research. In structural brain imaging research, responses to cancer treatment were 

predicted based on water motion within brain tumor tissue (Moffat et al., 2005). Other work in 

traumatic brain injury populations has shown that diffusion tensor imaging of white matter 
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integrity predicted Glasgow Coma Scale scores at 6-month follow-up (Yuh et al., 2014). In fMRI 

studies, obese individuals differ from lean individuals in relative activation of reward circuitry 

when exposed to food-related stimuli, and this variability predicts short-term changes in weight 

(Demos et al., 2012; Murdaugh et al., 2012; Stice, Burger, & Yokum, 2015; Yokum et al., 2014). 

However, there is limited research on the variability within an obese population, rather than 

examining differences between obese and lean participants. 

Variability in brain activity during reward-related tasks and EF task performance has not 

been definitively associated with weight loss (Burger & Berner, 2014; Burger & Stice, 2011; 

Cornier et al., 2010; Demos et al., 2012; Stice et al., 2015; Stoeckel et al., 2009; Yokum et al., 

2014). However, some obese individuals may be hyper-responsive to rewards, which impedes their 

ability to lose weight (Stice & Yokum, 2016). This may provide evidence for a subgroup of obese 

individuals who are especially reactive in the neural reward network and make impulsive, 

disadvantageous decisions that would enable overeating, and may not lose weight in an 

intervention. To date, only two studies have used brain imaging data to predict future weight loss 

using dietary changes, and these interventions were short (i.e., up to 12 weeks) and/or compared 

obese with lean participants (Murdaugh et al., 2012; Xu et al., 2017). To build on this limited 

literature, research within an entirely overweight and obese sample should use neural activation 

and EF task performance to predict weight loss after longer-term interventions. Combining this 

heightened sensitivity to rewarding stimuli with neurocognitive functioning may provide a fuller 

picture for why some individuals are not as effective at losing weight in a dietary intervention. 
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1.6 AIMS AND HYPOTHESES 

The primary aim of the current study was to predict weight loss following a 12-month dietary 

intervention within an overweight and obese sample using the variability in neural reward network 

activation during a VFC task at baseline. We hypothesized that heightened brain activity in areas 

supporting reward processing while viewing images of food would be associated with less weight 

lost after the intervention. The second aim was to explore the relationship between brain activation 

during the VFC task and measures of EF at baseline. We hypothesized that heightened activation 

in reward regions while viewing images of food would be associated with poorer performance on 

EF tasks. The third aim of the current study was to examine whether baseline EF was predictive 

of weight lost at the 12-month follow-up. We hypothesized that poorer performance on EF tasks 

would be associated with less successful weight loss after the intervention. Our fourth and final 

aim was to test if EF statistically mediated the relationship between reward sensitivity and the 

amount of weight lost after the intervention. We hypothesized that EF task performance would 

statistically mediate this relationship, such that individuals who showed heightened activation in 

reward regions in response to food cues would perform poorly on EF tasks, and in turn, lose less 

weight. These results would implicate EF as a factor to predict weight loss beyond the variance 

that could be predicted with neural responsivity to food cues. 
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2.0  METHODS 

 

2.1 PARTICIPANTS 

Participants were recruited from a parent study (PI: Jakicic) at the University of Pittsburgh 

examining cardiac changes following a year of a dietary, and for some participants, physical 

activity, intervention to take part in an ancillary neuroimaging study. Participants were informed 

of this ancillary study during a session of the parent study immediately after enrollment. All 

eligible participants were given time to decide if they were interested in the neuroimaging 

component and given contact information to express interest. Participants interested in the 

neuroimaging component were required to have enrolled in this ancillary study prior to beginning 

the intervention.  

Participants were eligible if they were between the ages of 18-55 and had a BMI between 

25.0-39.9 kg/m2. Exclusion criteria included:  Females who were pregnant, breastfeeding, or 

planning to become pregnant; history of bariatric surgery; current medical condition that could 

affect body weight (e.g., cancer, diabetes mellitus); current cardiac conditions that increase risk of 

a cardiac event (e.g., congestive heart failure); resting systolic blood pressure >160 mmHg or 

resting diastolic blood pressure >90 mmHg; an eating disorder that would contraindicate weight 

loss or physical activity; alcohol or substance abuse; current treatment for psychological disorders, 

taking psychotropic medication within the past 12 months, or hospitalization for depression within 
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the past five years; report of exercise for more than three days per week for more than 20 minutes 

per day in the last three months; report of weight loss greater than 5% or participation in a weight 

reduction diet in the past 3 months; inability to attend at least 80% of the scheduled intervention 

sessions; contraindication to MRI (e.g., pacemaker, claustrophobia); history or presence of 

neurological disorder (e.g., dementia, stroke); history of developmental pathologies or traumatic 

brain injury; and left-handedness. Individuals with a history of welding work or tattoos with metal 

filings were subject to additional safety screening prior to participation. All participants were 

required to provide informed consent, complete all baseline sessions and procedures, and be 

randomized to their intervention group prior to neuroimaging. 

2.2 PROCEDURES 

Participants came into the laboratory for multiple baseline assessment visits to:  1) obtain 

demographic information, have their weight and height measured by the intervention staff, and 

undergo a dual-energy X-ray absorptiometry (DXA) scan, and 2) complete the EF tasks and 

undergo neuroimaging. Throughout the 12-month intervention, all participants had weekly 

behavioral weight control sessions that are described in detail below. The initial weight assessment 

took place prior to the cognitive and neuroimaging components, as this was part of the initial 

randomization visit of the parent study. Since an objective weight assessment was conducted prior 

to the cognitive and neuroimaging sessions, participants self-reported their weight. Objective 

weight data were not available at the time of conducting the analyses for this thesis, so only this 

subjective weight report was used. Participants were also asked to indicate demographic 

information, including age, sex, and years of education. Education was used in place of SES due 
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to the complexity of accurately quantifying SES (McLaren, 2007), and because individuals without 

a high school diploma are more than six times more likely to live in poverty than individuals with 

a college degree (De Vita & Farrell, 2014). 

2.2.1 Weight Loss Intervention 

Upon enrollment in the study, participants were randomized to one of three groups: energy 

restricted diet-only, diet + 150 minutes/week of moderate intensity physical activity, or diet + 250 

minutes/week of moderate intensity physical activity. Participants were randomized equally across 

all groups and all assessments were conducted by blinded personnel. All weight assessments 

before, after, and during the intervention were conducted privately between the participants and 

the intervention staff. At the first pre-intervention assessment, participants had their weight and 

height measured and underwent a dual-energy X-ray absorptiometry (DXA) scan. DXA scans 

involve the participant laying on a table with an X-ray arm that beams two different energy rays 

at his or her body. The scans measure bone mineral density by creating fat-to-mass ratios from the 

difference between hard and soft tissue X-ray absorption. These ratios can be used to quantify 

adiposity (Kelly, Wilson, & Heymsfield, 2009). These measurements were taken again 

immediately after the completion of the intervention. Participants self-reported their height and 

weight to assessment staff at the pre- and post-intervention neuroimaging sessions. For the 

purposes of this thesis, self-reported weight was used to measure change in adiposity, as quantified 

through percentage of initial body weight lost.  

Regardless of randomized group, all participants were prescribed an energy-restricted 

dietary intervention that previously has been shown to reduce body weight by 8-10% in the first 6 

months of treatment (Goodpaster et al., 2010; Jakicic et al., 2008). All participants had their energy 
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intake reduced to 1200-2100 kilocalories per day based on their initial body weight. They had a 

targeted macronutrient composition for their diets (i.e., 20%-30% fat, 50%-55% carbohydrate, and 

20%-25% protein). Participants recorded their meals in a food diary, which they gave to the 

intervention staff to monitor dietary adherence and receive feedback. 

Throughout the intervention, all participants completed a behavioral weight control 

program. The program consisted of weekly, hour-long meetings with either a group of 15-20 

participants or an individual meeting with intervention staff. In Months 1-6, three of the weekly 

meetings were in a group setting and involved an educational component related to weight loss, 

eating behaviors, or physical activity behaviors. The other week of the month was an individual 

meeting to focus on participant progress in the intervention. In Months 7-12, only two of the 

weekly meetings were in a group setting. During the other two weeks of the month, participants 

had individual phone calls with intervention staff to discuss their progress. 

2.2.2 Executive Functioning Assessment 

Before randomization, participants completed computerized versions of the Iowa Gambling Task 

(IGT; (Bechara et al., 1994; Bechara et al., 1998) and the Stroop task (Stroop, 1935). The IGT was 

administered outside of the MRI scanner prior to neuroimaging. At the beginning of the IGT, 

participants were given a $2000 credit with which they were instructed to play a game with the 

goal of winning as much money as possible. They were instructed to select cards one at a time 

from one of four decks (i.e., Deck A, B, C, or D) presented on the screen. They were told that some 

decks are better than others, but they were not told which decks were better. Participants were also 

told that the game was fair, so they should play as if they were using real money. Participants 

completed five blocks of 20 card selection trials, totaling 100 trials (Bechara, 2007; Bechara et al., 
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1994). A Net Total score was calculated by subtracting the number of cards chosen from 

disadvantageous decks from the number of cards chosen from advantageous decks. A learning 

score was calculated by subtracting the net score of the first 20-card trial from the net score of the 

second 20-card trial. This metric was created to evaluate changes in strategy between the two initial 

trials. 

While in the scanner, participants completed the Stroop task (Stroop, 1935) to measure 

inhibitory control. Participants completed 182 trials and wore a glove on their right hand with 

buttons to indicate a response choice corresponding with each finger. During the Stroop task, they 

were asked to indicate the color of the text that was written on the screen, regardless of the word 

that was written. In the Congruent condition, the word presented matched the color of the text 

(e.g., “red” written in red ink). In the Incongruent condition, the word presented did not match the 

color of the text (e.g., “red” written in green ink). In the Neutral condition, the word presented was 

not a color name (e.g., “table” written in red ink). Comparison of these conditions can be quantified 

as the Stroop effect, a metric of interference between the incongruent and congruent conditions 

that quantifies inhibitory control (Van der Elst et al., 2006). The Stroop effect can be calculated 

with the equation: (incongruent – congruent) / congruent. 

2.2.3 Visual Food Cuing Task 

While in the scanner, participants viewed images of high-caloric foods, low-caloric foods, and 

neutral images (i.e., flowers, furniture). These images were presented in blocks, such that one 

block of images was all high-caloric foods, one was all neutral images, and so on. The blocks were 

fixed so that each participant viewed all the images in the same order. Participants were instructed 

to remain focused on the pictures on the screen and asked to rate their hunger before each block 
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on a 1-4 Likert scale, using their right-hand fingers to indicate their choice. Each block lasted 

approximately 45 seconds, yielding a total task duration of approximately ten minutes, including 

time for instructions (see Figure 1). 

 

Figure 1. Visual Food Cuing Task Design 
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2.2.4 MRI Data Acquisition 

Data were collected using a Siemens Verio 3-Tesla magnet with a 32-channel transmit-receive 

head coil. Head motion was restricted using foam inserts placed inside of the head coil. Each 

imaging session consisted of fMRI scans while the participant was at rest and during the VFC task. 

Neuroimaging also included a high-resolution anatomical scan. Functional MR images were 

acquired using single-shot T2-weighted echo-planar imaging (EPI) with BOLD contrast imaging 

to quantify the changes in blood oxygenation, or hemodynamic response, in the brain [echo time 

(TE) = 35ms; repetition time (TR) = 2.0s; flip angle = 75°]. We acquired 34 axial-oblique slices 

3.5 mm thick with a 1 mm gap at a scan resolution of 64 x 64, reconstructed to 128 x 128, and 240 

x 240 x 149mm FOV. The high-resolution structural scan was acquired using a sagittal T1-

weighted image with magnetization-prepared rapid gradient echo [256 slices; 1mm thick; TE = 

2.93ms, TR = 1.9s, flip angle = 9°, and 256 x 256 x 176mm FOV]. 

Stimuli were presented on a visual display that projects from a computer running E-prime 

software to the participant via a rear-projecting mirror mounted on the head coil. Button presses 

were recorded using MRI-compatible gloves with buttons on each finger. 



 22 

2.3 STATISTICAL ANALYSES 

 

 

2.3.1 Descriptive Statistics 

 

The relationships between weight loss and initial body weight, age, sex, race, and education were 

examined using bivariate correlations. All variables related to weight loss and EF were tested for 

normality of distribution and found to be normally distributed. Variability in Stroop task 

performance was analyzed using paired t-tests to compare response time (RT) between the 

conditions and verify the Stroop effect within this sample. 

Investigators remained blind to intervention group assignment; therefore, secondary 

analyses controlling for intervention group were not completed. Two of the three intervention 

groups were also prescribed a physical activity regimen and physical activity has been shown to 

be a contributing factor for weight loss, though to a significantly smaller extent than dietary 

changes (Jakicic et al., 2014). These analyses will be completed when investigators are unblinded 

to group assignment. 

2.3.2 Neuroimaging 

FMRI data were analyzed using general linear models with FSL software (FMRIB, Oxford, UK). 

Standard preprocessing steps were conducted on each subject prior to statistical analyses. Rigid 

body motion correction using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002) was done 
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with realignment to the center image in the time series. High-pass temporal filtering was completed 

using a threshold of 100 seconds. Spatial smoothing using a full weight at the half maximum 

Gaussian kernel of 5 millimeters was employed to accommodate variability between participants. 

Statistical parameter maps were constructed for each participant and each condition and contrast 

at each voxel using a gamma function.  

Five individual-level contrasts were used, including:  each condition of the VFC task (i.e., 

low-caloric foods, high-caloric foods, or neutral images) compared to a fixation period, high-

caloric compared with low-caloric foods, and high- + low-caloric foods compared with neutral 

images. Lower-level contrasts were forwarded to a higher-level analysis where the images were 

used to examine associations with weight loss and EF. Thresholds were set using a family-wise 

error rate correction using a voxel-wise threshold (p<.01) and cluster-based threshold (p<.05). 

Neural activation was examined using a whole-brain, voxel-wise approach with a priori 

hypotheses for corticostriatal regions related to reward processing and EF. 

2.3.3 Testing Aim 1 

To test Aim 1, we conducted hierarchical linear regressions to test the association between 

BOLD activation at baseline and weight loss following the intervention. Weight loss was 

quantified as percentage of initial body weight lost at the end of the intervention. BMI does not 

correlate strongly with percentage of body fat in overweight participants (Romero-Corral et al., 

2008), therefore using the percentage of initial body weight lost may more accurately reflect 

changes in adiposity. Sex was included as a covariate in these analyses.  

Due to the implications of corticostriatal circuitry across multiple disorders, including 

obesity, we focused our reported results on regions contained within this corticostriatal pathway. 
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2.3.4 Testing Aim 2 

Aim 2 was tested with hierarchical linear regressions to examine the associations between BOLD 

activation during the VFC task and EF task performance at baseline. Sex and years of education 

were included as a covariate in these analyses. To reduce the number of statistical comparisons, 

we chose to focus only on the regions within the corticostriatal pathway that were associated with 

weight loss in Aim 1. 

2.3.5 Testing Aim 3 

Aim 3 was tested with hierarchical linear regression models between weight loss and EF task 

performance. Sex and years of education were entered as covariates in these models. Given the 

relationship between sex and performance on cognitive tasks in different cognitive domains (Bolla 

et al., 2004; van den Bos et al., 2013; Van der Elst et al., 2006), interaction terms with sex were 

created for each cognitive variable and included in the regression models. When these terms did 

not significantly contribute to the variance in weight loss, they were dropped from the regression 

models. 

2.3.6 Testing Aim 4 

To test Aim 4, we confirmed that the assumptions to conduct statistical mediation were met by 

examining the results of Aims 2 and 3 (i.e., the a and b paths of a mediation model, respectively; 

see Figure 2). If they were met, we would use PROCESS (Hayes, 2013) to test if EF at baseline 
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statistically mediated the relationship between BOLD activation during the VFC task at baseline 

and weight loss following the intervention. 

 

Figure 2. Conceptual Model of Aim 4 
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3.0  RESULTS 

3.1 PARTICIPANTS 

125 participants were enrolled in the neuroimaging arm of the intervention. 115 completed all 

study procedures and returned for follow-up testing. Of these, seven participants were excluded 

from analyses due to:  not completing the VFC task at baseline (n=3), inaccurate or lack of weight 

reporting at baseline or follow-up (n=4). The final study sample was 108 community-dwelling 

adults. 

Participants had a mean age of 44.75 + 8.55 years, weighed ~193 pounds (192.55 + 28.77), 

and had a BMI of ~31 kg/m2 (30.93 + 3.59) on average at baseline. They were highly educated, 

with an average of 16.54 + 2.55 years of education, 96% right-handed, and 77% female (see Table 

1). The sample was 76% Caucasian, 18% African American, 3% Asian, and 3% multiracial, which 

is similar to the racial makeup of Pittsburgh (Pittsburgh, 2011).  

 

Table 1. Demographic Information. 

 

 

 

 

 

 

 Mean St. Dev. 

Baseline Age 44.75 8.55 

Sex (%Female) 76.9 - 

Education (years) 16.54 2.55 

Race (%Caucasian) 75.9 - 

Baseline Weight (lbs) 192.55 28.77 

Follow-up Weight (lbs) 174.97 28.68 

Weight Change (%) 9.06 6.86 

Baseline BMI 30.93 3.59 

Follow-up BMI 28.19 3.95 

BMI Change 2.74 2.23 
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Prior to the intervention, participants’ baseline weight was significantly associated with 

sex [r(108)=-.435, p<.001], such that males had a higher weight than females. However, baseline 

BMI was not associated with sex (p=.668). Baseline weight and BMI were not significantly 

associated with participants’ age, race, or years of education (all p-values>.220; see Table 2). 

 

Table 2. Relationships Between Baseline Weight, BMI and Demographic Information. 

*p < .05, **p < .01, ***p < .001 

3.2 AIM 1 

At the 12-month follow-up, participants had lost an average of ~18 pounds (17.58 + 14.12), or 9% 

of their initial body weight (9.06% + 6.86%). This weight loss is equivalent to a 2.7 kg/m2 decrease 

in BMI, with an average follow-up BMI of 28.19 kg/m2 (see Table 1). There was no association 

between baseline weight and percentage of weight lost [r(108)=.067, p=.490]; therefore, analyses 

and results described below did not include initial weight as a covariate. 

First, we conducted whole-head, voxel-wise analyses to determine which regions showed 

activation during the VFC task conditions. The most robust differences in neural activation 

occurred during the high-caloric foods versus fixation, high-caloric versus low-caloric foods, and 

food versus neutral images contrasts. This is consistent with prior work using similar food-cuing 

  Age Gender Race Education Weight BMI 

Weight (lbs) r -.080 -.435 -.004 .013 1.000 .740 

p .412 <.001* .968 .892 - <.001*** 

BMI (kg/m2) r -.106 .042 -.092 .017 .740 1.000 

p .276 .668 .352 .865 <.001*** - 
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paradigms (Pursey et al., 2014) and supported our hypothesis that our participants would show 

more neural responsivity to food stimuli, and specifically high-caloric foods (see Figure 3).  

 

Figure 3. Differences in Neural Activation by VFC Contrast.  

Whole-brain activation in the VFC task in our contrasts of interest: (a) high-caloric foods vs. 

fixation; (b) high-caloric vs. low-caloric food images; (c) food vs. neutral images.  

 

The primary aim of this thesis was to test whether neural reward network responsivity to 

visual food cues at baseline predicted weight loss in a dietary intervention. Consistent with our 
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predictions, we found that weight lost over the 12-month period was correlated with baseline 

activation during the VFC task. While participants viewed images of high-caloric foods or any 

food, five clusters were significantly associated with weight loss:  two in the right cingulate cortex 

(one extending from the right subgenual cingulate cortex to the left dorsal anterior cingulate cortex 

(ACC) and one in the medial ACC), one extending from the right precentral gyrus to the right 

dorsolateral PFC (dlPFC), one in the right OFC, and one extending from the right caudate into the 

right NAcc (see Table 3, Figures 4-5). Participants who lost more weight showed greater 

differences in activity in the ACC clusters while viewing pictures of high-caloric foods versus 

fixation [r(108)=.387, p<.001] and versus low-caloric foods [r(108)=.192, p=.046].  

 

Table 3.  Regions Showing Differential Activation During the Visual Food Cuing Task in 

Relation to Weight Loss and EF. 

 

 

 

ROI Task Contrast Dir. # Voxels Peak X Peak Y Peak Z Add’l Regions 

L. ACC VFC High-Cal > 

Fixation 

Pos. 690 45 68 29 R. subcallosal 

cortex 

R. ACC VFC High-Cal > 

Low-Cal 

Pos. 65 44 83 42  

R. dlPFC VFC Food > 

Neutral 

Neg. 484 14 77 39 R. precentral 

gyrus, IFG 

R. OFC VFC Food > 

Neutral 

Neg. 121 32 94 28  

R. Caudate VFC Food > 

Neutral 

Neg. 106 36 73 40 R. NAcc 

L. NAcc IGT 

Learn 

High-Cal > 

Low-Cal 

Pos. 12 48 69 35  

R. Caudate IGT Net 

Total 

High-Cal > 

Low-Cal 

Pos. 60 38 61 46  
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Figure 4. Activation Clusters in the Caudate Nucleus and Anterior Cingulate Cortex.  

(a) Negative association between weight loss and differences in activation in the right caudate 

nucleus in the food vs. neutral images contrast; (b) Positive associations between weight loss and 

differences in activation in the bilateral anterior cingulate cortex in the high-caloric foods vs. 

fixation contrast (red), and between weight loss and differences in activation in the right anterior 

cingulate cortex in the high-caloric vs. low-caloric foods contrast (green). 
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Figure 5. Activation Clusters in the Dorsolateral Prefrontal Cortex and Orbitofrontal 

Cortex.  

Negative associations between weight loss and differences in activation during the food vs. neutral 

images contrast in the dlPFC (blue) and OFC (yellow) on the right. 

  

 

 

 

 

 

 

 

 

 

 

In contrast with the findings described above for the ACC, weight loss was negatively 

associated with changes in brain activity in the right caudate, which is involved in reward 

processing, and the right dlPFC and right OFC, which are involved in inhibitory and attentional 

control. Participants who lost more weight at the end of the intervention showed less of a difference 

in activity in the right caudate [r(108)=-.308, p=.001] and in these right frontal regions [dlPFC 

r(108)=-.301, p=.002; OFC [r(108)=-.290, p=.002] while viewing images of food compared to 

neutral images (see Figure 6).  
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Figure 6. Relationships between Weight Loss and BOLD Activity in the Caudate, OFC, and 

ACC. 
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3.3 AIM 2 

Consistent with the literature and our predictions, participants selected more cards from the 

advantageous (61.06 + 13.93) rather than disadvantageous (38.56 + 13.85) decks of the IGT. Our 

participants selected cards using successful strategic planning during the task, as indicated by an 

average Net Total score of 23 (22.87 + 27.70; see Table 4). In line with earlier work, the 

participants’ learning trajectories varied between trial blocks, with the largest improvement in task 

strategy between blocks 1 and 2 (see Figure 7). This improvement early in the task denotes a 

learning curve that may reflect a lack of EF deficits in this younger adult population. 

 

Figure 7. IGT Learning Across Blocks. 
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Participants also performed in line with our predictions and prior research by responding 

significantly faster in the Stroop task during the Congruent (759.78 + 74.51ms) condition 

compared to the Neutral (793.25 + 82.94ms) or Incongruent (899.86 + 117.49ms) conditions (all 

t>11.21, all p-values <.001; see Tables 4 and 5 for details). They also responded significantly faster 

during the Neutral condition compared to the Incongruent condition (t=16.54, p<.001). Consistent 

with our predictions and prior literature, participants responded more accurately during the 

Congruent and Neutral conditions (0.97 + 0.04) compared to the Incongruent condition (0.89 + 

0.12; all t>6.83, all p-values>.001). There was no difference in response accuracy between the 

Congruent and Neutral conditions. 

 

Table 4. Executive Functioning Task Performance. 

 Mean St. Dev. 

IGT Net Total 22.87 27.70 

IGT Learning (B1 to B2) 10.17 13.15 

Stroop CON RT 759.78 74.51 

Stroop NEU RT 793.25 82.94 

Stroop INC RT 899.86 117.49 

Stroop CON ACC 0.97 0.04 

Stroop NEU ACC 0.97 0.04 

Stroop INC ACC 0.89 0.12 

 

Table 5. Stroop Task Performance Comparison by Condition. 

 t Significance 

Response Time   

CON INC -20.08 <.001*** 

CON NEU 11.21 <.001*** 

INC NEU 16.54 <.001*** 

Accuracy   

CON INC 7.18 <.001*** 

CON NEU -1.80 .075 

INC NEU -6.83 <.001*** 

*p < .05, **p < .01, ***p < .001 



 35 

 

 Aim 2 of this thesis was designed to test if brain regions that are active while viewing 

images of food were related to performance on EF tasks. Within the regions of the corticostriatal 

circuit where activation during the VFC task was associated with weight loss, there were no 

activation clusters significantly associated with Stroop task performance. However, differences in 

activation in regions related to reward processing were positively associated with IGT performance 

in the high-caloric versus low-caloric foods contrast. Individuals with higher Net Total scores 

showed heightened activation in the right caudate [r(108)=.271, p=.005] and those who improved 

more across the first two trials of the task showed heightened activation in the left NAcc 

[r(108)=.198, p=.040] (see Table 3 for details). However, the right caudal activation cluster did 

not overlap with the cluster significantly associated with weight loss. While the right caudate was 

activated in response to food cues relative both to EF and weight loss, it is not clear if this 

relationship between EF and reward responsivity is related to weight loss. 

3.4 AIM 3 

Aim 3 of this thesis was designed to examine whether EF before randomization into the weight 

loss intervention was predictive of the amount of weight lost. Although we predicted that weight 

loss would be significantly associated with EF, hierarchical regression models of these 

relationships were not significant for any EF variables, including IGT Net Total, IGT learning, and 

Stroop incongruent condition accuracy (see Table 6 for details). The interaction term of sex and 

each cognitive variable was not significant and subsequently dropped from the regression models. 

After dropping the interaction term, the Stroop interference accuracy accounted for a significant 
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proportion of the variance in weight loss [=-.206, t(100)=-2.142, p=.035]; however, this was no 

longer significant after correcting for multiple comparisons (see Table 6).  

 

Table 6. Weight Loss and Neurocognitive Task Performance.  

*p < .05, **p < .01, ***p < .001 

Note:  IGT=Iowa Gambling Task, B1=block 1, B2=block 2, INC=incongruent condition, 

CON=congruent condition, RT=response time in milliseconds, ACC=accuracy; all cognitive 

measures reported were assessed at baseline. All regression models controlled for sex and years of 

education. 

3.5 AIM 4 

Aim 4 of this thesis was to test if EF statistically mediated the relationship between brain activation 

while viewing images of food and weight lost over a 12-month dietary intervention (see Figure 2). 

Testing for statistical mediation requires that the relationships between the independent variable 

and mediator (a path), and the mediator and dependent variable (b path) are statistically significant 

(Hayes, 2013). Aim 1 described above tested the c’ path and showed a significant relationship 

between BOLD activation in reward regions during the VFC task and weight loss. Aim 2 described 

above tested the a path and showed that there was a significant relationship between BOLD 

activation in regions related to reward processing during the VFC task and EF task performance. 

    t Significance 

IGT Net Total .154 1.614 .109 

IGT Learning (B1 to B2) -.037 -.381 .704 

Stroop CON RT -.070 -.708 .481 

Stroop INC RT -.051 -.511 .610 

Stroop Interference RT .019 .190 .850 

Stroop CON ACC .015 .149 .882 

Stroop INC ACC -.190 -1.968 .052 

Stroop Interference ACC -.206 -2.142 .035* 
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Aim 3 tested the b path and did not show any significant relationships between EF task 

performance and weight loss. Since the b path did not support our hypothesis that EF was related 

weight loss, the assumptions necessary for statistical mediation were not met and those analyses 

were not conducted.  



 38 

4.0  DISCUSSION 

This thesis sought to examine the predictive power of brain activation in reward regions during a 

VFC task and EF task performance on weight loss after a 12-month dietary intervention. We also 

sought to explore if EF would statistically mediate the relationship between BOLD activity during 

the VFC task and weight loss, which would indicate that cognition contributes to weight loss above 

and beyond neural reward sensitivity. We found evidence consistent with our hypotheses that 

neural responsivity to food cues predicted long-term weight loss and was related to EF task 

performance. However, EF did not predict weight loss, and therefore statistical mediation could 

not be tested. 

Multiple brain areas showed reduced differences in activation while viewing food 

compared to non-food images that were associated with weight loss. These regions included those 

involved in reward processing (i.e., the caudate), and those involved in EF (i.e., the dlPFC and 

OFC). Notably, individuals who lost more weight over the course of the intervention showed 

reduced neural sensitivity to visual food stimuli in regions associated with reward processing. 

These results could indicate that overweight and obese individuals who do not react as strongly to 

visual food cues in reward-related brain circuitry could be the most responsive to dietary 

interventions. Contrary to our predictions, the individuals who showed less sensitivity in brain 

regions related to EF, including the OFC and dlPFC, were more successful at losing weight. 

Although this reduced difference in activity of the OFC and dlPFC is often associated with reduced 

inhibitory control and increased impulsive decision-making (Brooks, Cedernaes, & Schioth, 2013; 

Fitzpatrick et al., 2013; Gunstad et al., 2007; Smith et al., 2011), one other weight loss intervention 

also found that successful weight loss was associated with reduced activation in the PFC 
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(Murdaugh et al., 2012). Here, the individuals who lose more weight may not need to inhibit 

impulsive decision-making when viewing images of food to adhere to their dietary intervention. 

Taken together, it is possible that the individuals losing more weight recruited fewer EF resources 

because they were less sensitive to the rewarding food stimuli. 

We also found that increased activity in the ACC while viewing images of high-caloric 

food was associated with more weight lost over the intervention. Notably, there were no main 

effects of activation in these regions in response to the food cues, just as the activation related to 

weight loss. As the ACC is implicated in processing conflicts (Botvinick, Nystrom, Fissel, Carter, 

& Cohen, 1999), heightened activity in this region in response to visual food cues may be related 

to the evaluation of outcomes related to eating. One meta-analysis of fMRI studies examining the 

differences in activation between obese and lean participants in response to food cues posited that 

this ACC activity may reflect the balance between a desire to eat and a desire to control appetite 

(Brooks et al., 2013). Since significant activation clusters in the ACC were only seen relative to 

weight loss, it is possible that this conflict evaluation is only elicited in obese participants when 

they are prompted with potentially conflicting cues (i.e., eating high-caloric foods and losing 

weight in an intervention). This function can also work in conjunction with the dlPFC role in 

making decisions related to goals. The unique anatomical proximity of the ACC to the striatum 

and PFC allows this region to function as part of a corticostriatal circuit that incorporates reward 

sensitivity and decision-making about future behaviors (Pannacciulli et al., 2006; Raji et al., 2010; 

Verstynen, 2013). Our findings that reduced neural sensitivity to images of food in reward and EF 

regions and increased sensitivity in the ACC may reflect an ability to analyze costs and benefits 

as they relate to impulsive behaviors and long-term goals, such as losing weight. 
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We measured EF with two tasks:  the IGT as a measure of impulsive decision-making 

related to future goals, and the Stroop task as a measure of inhibitory control. We found that 

activity in the right caudate and left NAcc while viewing images of food was positively associated 

only with the IGT variables. Specifically, better total performance and learning across the first two 

trials – metrics related to risk aversion and adaptive planning – were associated with increased 

activation in these reward regions. This could indicate that increased sensitivity in reward regions 

during a VFC task is more closely related to stronger abilities to avoid making maladaptive 

choices. However, these activation clusters did not overlap with those associated with weight loss. 

In conjunction with finding no activation clusters within this corticostriatal circuit that were related 

to Stroop task performance, this suggests that the neural processes elicited by a VFC task are 

differentially related to weight loss and EF.  

Contrary to our predictions, EF task performance at baseline was not associated with the 

amount of weight lost over the 12-month dietary intervention. Although previous work has shown 

that cognition may predict future weight loss, these studies employed shorter interventions and 

diverse metrics of EF (Brockmeyer et al., 2016; Galioto et al., 2016; Xu et al., 2017). In trying to 

understand the factors that predict weight loss, our evidence showed that EF does not account for 

variance above and beyond that of neural reward region activation in response to visual food cues. 

With our younger sample that did well on our EF tasks, we may have had limited variability of 

IGT and Stroop performance to show significant relationships with weight loss. It is also possible 

that these metrics of EF, while well-studied and frequently used, are not as closely related to weight 

loss as they are to obesity (Fitzpatrick et al., 2013; Gunstad et al., 2007). While obese individuals 

show deficits on EF tasks compared to healthy controls, it is not clear if this behavioral task 

performance can predict future weight loss. 
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Since we were not able to test for statistical mediation in this sample, it is not clear if EF 

mediates the relationship between neural reward sensitivity and weight loss. Although EF was 

related to brain activity during the VFC and there is literature to suggest that it is related to weight 

loss, no studies to date have tested this mediation model.  

There are several reasons why predicting weight loss is difficult, including the relatively 

low proportion of variance accounted for by individual predictors and differences across study 

populations and results (Stubbs et al., 2011). Although weight loss has been studied in long-term 

interventions, we still do not fully understand the cognitive processes that facilitate adherence to 

dietary or physical activity regimens. The biological risk factors for obesity (e.g., metabolic 

functioning, cardiovascular disease) interact with each other to create varying levels of risk, which 

can be difficult to quantify or control. Additionally, restricting our sample to individuals with a 

truncated BMI range (i.e., 25.0 kg/m2 or higher) may have limited the variability we could see in 

our results. Although our sample had a normal distribution of baseline BMI and percentage of 

initial weight lost, this restricted range could reduce the sensitivity with which we were able to 

detect relationships between weight loss and our cognitive variables of interest. With these 

considerations, it may not be surprising that we did not find evidence to corroborate some previous 

literature using behavioral metrics to predict weight loss. 

Though we found compelling evidence that neural responses in reward regions to visual 

food cues are related to future weight loss, this study is not without its limitations. Our sample was 

taken from one area in Western Pennsylvania, highly educated, and was 76% Caucasian. This may 

limit the generalizability of our results, particularly to more racially-diverse areas. FMRI analyses 

do not allow for temporal resolution that may tell us which brain regions are first activated upon 

seeing food images versus which are activated in response to that activation. As this makes fMRI 
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data difficult to interpret, we did so cautiously. There was no long-term follow-up of participants 

beyond the 12-month assessment and it has been shown that weight loss intervention participants 

typically re-gain 2-3% of their initial body weight after the intervention (Franz et al., 2007; Wu et 

al., 2009). Additionally, percentage of initial body weight lost is a crude estimate of weight loss 

and was reported subjectively by our participants. While this percentage may be a better reflection 

of weight loss than BMI (Romero-Corral et al., 2008), objective metrics of adiposity should be 

used in future work to ensure that the measurement of weight loss is as objective as possible. The 

use of two EF metrics may not have been sufficient to capture all the various processes typically 

associated with EF (e.g., working memory). Though we used multiple variables within the IGT 

and Stroop task, other tasks should be used to confirm and follow-up on associations between EF 

and weight loss.  

Notably, we are still blinded to group assignment and were not able to assess how the 

intervention groups may have influenced weight loss. Although all groups engaged in an energy-

restricted diet, two-thirds of our participants also engaged in increased physical activity that could 

not be accounted for in our analyses. Despite evidence that only high levels of physical activity 

contribute to a significant proportion of weight lost in interventions (Jakicic et al., 2008), it is 

possible that these participants engaged in other behaviors that could be related to weight loss, 

such as eliminating certain unhealthy foods from their diets. With the additional motivation of 

exercise, two of the three intervention groups may have lost more weight than the diet-only group.  

However, most weight loss interventions include both dietary and physical activity changes to 

promote healthier lifestyles. Thus, our study likely represents the real-world implications of dietary 

interventions. 
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Although we do not know if our participants show the same differences in activation after 

the intervention, future work will examine changes in VFC activity and EF task performance over 

time. It is possible these changes are related to weight loss even though baseline EF did not predict 

the amount of weight lost. Additionally, we can examine brain activity during the Stroop task to 

see how it is related to activity during the VFC, EF task performance, and weight loss. With the 

wide range of cognitive processes elicited by the Stroop task, we may see differential relationships 

with reward region sensitivity that could not be explored with behavioral metrics alone. Future 

work should examine the ability of these predictions to be successful in clinical populations with 

explicit comorbid medical and/or psychiatric conditions. 

This study was the first to examine whether fMRI activity during a VFC task and measures 

of EF predict weight loss following a 12-month dietary intervention in an overweight and obese 

sample. Although other lifestyle interventions have examined the predictive value of neural 

responses or EF on weight loss, none have focused on weight loss in an obese sample over a 12-

month period. Instead, many prospective intervention studies have been of shorter durations (i.e., 

4- or 12-weeks) and most have not examined both neural responsivity and EF as contributing 

factors (Murdaugh et al., 2012; Xu et al., 2017). We examined how cognitive processes interacted 

with neural activation to rewarding food stimuli to influence future weight loss. While past work 

has found that differences in brain activity in these areas in response to food cues is predictive of 

weight loss (Pursey et al., 2014), our evidence incorporates EF to show that sensitivity in these 

areas is also related to cognition. Our results can inform future research by further corroborating 

and expanding on previous literature implicating reward regions of the brain in successful weight 

loss in a dietary intervention. 
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 While brain activity is typically used as a targeted outcome or mediator, we used the ‘brain-

as-predictor’ approach to examine neural metrics (e.g., task-related activation during a VFC task) 

as predictors of real-world outcomes (Berkman & Falk, 2013). Focusing on this heterogeneity in 

neural responsivity, which may partially underlie the etiology of conditions like obesity, may allow 

for the distinction of vulnerable individuals who are at higher risk for developing these harmful 

conditions (Erickson, Creswell, Versynen, & Gianaros, 2014). With this additional delineation of 

how individuals respond to weight loss protocols, individualized treatments can be created to aid 

in weight loss and improve the health of the 38% of Americans afflicted by obesity. 
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