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Acid mine drainage (AMD) has been proposed as a potential source of strategic rare earth 

elements (REEs). To simulate AMD-rock interactions and determine the source of energy-

critical REEs, we conducted experiments using overburden, coal (Pittsburgh Coal), and 

underclay samples from an AMD generating mine in the Appalachian Basin. Sulfuric acid 

(0.05N) leached < 10% of whole rock total REEs from all samples except the underclay, which 

released 35%. Unlike the relatively flat North American Shale Composite (NASC) normalized 

whole rock REE patterns, sulfuric acid leachates of these units show middle rare earth element 

(MREE) enrichment patterns similar to what is observed in AMD. 

Measured ƐNd(0) values for the whole rocks range from -11.2 to -12.0. Most leachates for 

those rock units have more radiogenic ƐNd(0)  values between -5.8 and -9.3, similar to that of 

AMD from the Pittsburgh Coal. When corrected to a late Carboniferous depositional age 

(300Ma), the ԐNd(T) range for all samples (whole rocks and leachates) narrows to -9.9 to -6.2 for 

all samples. These data, together with geochemical and petrographic analysis, suggest that the 

MREE enrichment of AMD results from preferential leaching of a readily dissolvable, MREE-

rich, high Sm/Nd mineral phase such as carbonate or phosphate accessory minerals. 
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1.0  INTRODUCTION 

Mine drainage is a serious environmental concern due to its ability to mobilize and 

transport metals into streams and groundwater (Johnson and Hallberg 2005; Cravotta 2008a; 

Nordstrom 2011; Blowes et al. 2014). This ubiquitous waste stream from metal workings and 

coal mines results from the oxidation of sulfide minerals when exposed to oxygen and water. 

Pyrite (FeS2), an abundant sulfide mineral common to both coal and ore deposits, is often used to 

illustrate acid generating sulfide oxidation reactions (Nordstrom and Alpers 1999; Johnson and 

Hallberg 2005; Akcil and Koldas 2006; Blowes et al. 2014; Simate and Ndlovu 2014; 

Nordstrom, Blowes, and Ptacek 2015): 

FeS2 + 15/4 O2 + 7/2 H2O     Fe(OH)3 (s) + 2H2SO4       [Rxn. 1]  

The above reaction summarizes a two-step oxidation process where both oxygen and ferric iron 

act as oxidizers (over-simplification of the oxidation process):   

FeS2+ 7/2 O2 + H2O Fe2+ + 2SO4
2- + 2H+                  [Rxn. 2]  

Fe2+ + 1/4 O2 + 7/2 H2O   Fe(OH)3 (s) + 2H+            [Rxn. 3]  

Each mole of pyrite oxidized generates one mole of Fe2+, two moles of SO4
2-, and four 

moles of H+ (Blowes et al. 2014). Several chemical (Fe3+ reactivity, site mineralogy, pH, Eh, 

etc.), physical (temperatures, surface area, permeability, etc.) and biological (microbial 

populations) factors determine the rate of the above reactions at a given site (Nordstrom and 

Alpers 1999; Plumlee et al. 1999; Akcil and Koldas 2006; Nordstrom 2011; Blowes et al. 2014; 
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Nordstrom, Blowes, and Ptacek 2015). The acid generated dissolves carbonate, oxide, and 

aluminosilicate minerals, resulting in elevated concentrations of Al, Mn and heavy metals in 

mine drainage (Akcil and Koldas 2006; Cravotta 2008a). 

Flows of acidic, metal-polluted (e.g., iron, aluminum, arsenic) waters can continue for 

decades after operations have ceased, degrading water quality, reducing aquatic diversity, and 

corroding infrastructure (Younger 1997; Johnson and Hallberg 2005; Cravotta 2008a; Jennings, 

Blicker, and Neuman 2008; Simate and Ndlovu 2014). Acid mine drainage (AMD) is a global 

problem, both for countries with under-regulated to nonregulated mining industries operating 

today, and for regions with historic mines that operated with little to no regulation. The 

Appalachian Basin is an example of the latter, with extensive coal resources and a long mining 

history. It is estimated that in Pennsylvania alone, over 4,500 km of waterways have been 

affected by AMD (USGS 2010).  

In addition to metals, AMD contains elevated concentrations of rare earth elements 

(REEs) (Cravotta 2008a; Cravotta 2008b; Ayora et al. 2015). When normalized to a shale 

composite, REEs in AMD commonly show a middle rare earth element (MREE)-enriched 

pattern, which is characteristic of natural and anthropogenically impacted acidic waters (Worrall 

and Pearson 2001; Merten et al. 2005; Pérez-López et al. 2010; Stewart et al. 2017). REEs, 

lanthanide series elements (La-Lu), have unique chemical and physical properties that result 

from their trivalent charge. In addition to their similar valence state, the ionic radii of REEs 

systematically decrease down series (lanthanide contraction), resulting in predicable chemical 

behavior within this suite of elements. These properties allow for the retention of source 

signatures through weathering, transport, and diagenesis, making REEs powerful tracers of 

geochemical processes like petrogenesis and water-rock interactions in aqueous environments 
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(Elderfield, Upstill-Goddard, and Sholkovitz 1990; McLennan et al. 1993; Johannesson and 

Zhou 1999; Worrall and Pearson 2001).  

The unique chemical and physical properties of the REEs, have also made them critical 

components of lamp phosphors, catalysts, and electronics, notably permanent magnets and 

rechargeable batteries (DOE 2011; Binnemans et al. 2013; Commission 2014; Gunn 2014; Ayora 

et al. 2015). Due to concerns with global market supply and increasing demands for REEs in 

growing technological sectors, the search for alternative sources of these critical elements 

(notably: Nd, Dy, Tb, Eu, Yb) has become a growing priority for many countries (Figure 1) 

(DOE 2011; Binnemans et al. 2013; Commission 2014). It should be noted that of the five 

elements identified as critical by the U.S. Department of Energy, MREEs (Sm-Dy) are 

disproportionally critical relative to light- (La-Pm) and heavy- (Ho-Lu) REEs.  

 

 

Figure 1. Clean energy technology criticality matrix (DOE 2011). The U.S. Department of Energy 

(DOE) evaluated 16 elements to assess their role in the clean energy economy. Five REEs, including 

neodymium, were found to be of high importance with potential supply challenges. For these reasons, 

these elements have been identified as critical from 2015 to 2025.  
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Recent demand for alternate sources of REEs has resulted in several studies investigating 

the feasibility of economic REE recovery from coal deposits and coal by-products like AMD and 

coal fly ash (Seredin and Dai 2012; Ayora et al. 2015; Franus, Wiatros-Motyka, and Wdowin 

2015; Ziemkiewicz et al. 2016). Should mine drainage prove to be a viable source of REEs, an 

understanding of these complex chemical systems is imperative to assess resource potential from 

these nearly perpetual waste streams (Seredin and Dai 2012; Ziemkiewicz et al. 2016).  

REE concentrations in natural waters are a function of solution chemistry, the 

concentration and reactivity of REE sources in the local substrate (soil or bedrock), and 

geochemical and biogeochemical processes (mixing, sorption-desorption, precipitation, colloid 

formation, ion exchange, redox and biological factors) (Humphris 1984; Braun and Pagel 1990; 

Elderfield, Upstill-Goddard, and Sholkovitz 1990; Sholkovitz 1995; Dia et al. 2000; Ingri et al. 

2000; Welch et al. 2009). However, the source of MREE-enrichment found in acidic waters 

remains uncertain (Åström and Corin 2003; Olías et al. 2005; Zhao et al. 2007). Several studies 

have proposed various source- and process-driven controls for this distinctive pattern, including 

preferential leaching of a MREE-enriched mineral phase in local strata (Worrall and Pearson 

2001; Merten and Buchel 2004; Leybourne and Cousens 2005; Merten et al. 2005; Wood, 

Shannon, and Baker 2005; Sun et al. 2012); MREE mobilization by S-species complexation 

during pyrite oxidation (Grawunder, Merten, and Buchel 2014); fractionation by colloidal 

complexes (Åström and Corin 2003); solid-liquid exchange reactions with surface coatings 

and/or clays (Gimeno Serrano, Auqué Sanz, and Nordstrom 2000; Leybourne et al. 2000; Åström 

2001; Coppin et al. 2002; Gammons, Wood, and Nimick 2005); preferential removal through the 

formation of secondary minerals (Welch et al. 2009); and variable complex stabilities for REE 

(Tang and Johannesson 2003). 
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This study investigates the origin of REEs in northern Appalachian Basin coal mine 

drainage, by determining the geochemical characteristics and isotopic signatures of (1) AMD 

from Pittsburgh Coal discharges (2) whole rock samples from a representative stratigraphic 

section, and (3) the fraction of readily leachable REEs within the local strata. Constraining the 

origin of REEs in AMD will increase understanding of water-rock interactions and weathering in 

this system, and clarify the controls responsible for the MREE-enrichment observed in AMD.  

In this study, neodymium (Nd) isotopes were used as unique tracers of REE provenance 

and mobility in AMD. Due to the similar chemical and physical properties of lanthanide series 

elements, the source and transport behavior of Nd (a REE) should be an ideal proxy for the 

behavior of the REE suite. Additionally, the Nd-Sm isotope system is a powerful tool for 

determining origin, as minerals have different affinities for incorporating Sm into their crystal 

structure at the time of formation. Over geologic time, mineral 143Nd/144Nd ratios (144Nd is a 

stable isotope) diverge due to the radioactive decay of 147Sm into 143Nd (half-life = 106 b.y.). 

This results in minerals with unique 143Nd/144Nd ratios that are a function of the original 147Sm 

the concentration, for example minerals with high Sm/Nd ratios will develop high 143Nd/144Nd 

ratios. Rock units also have unique Nd isotope compositions, resulting from the average Nd 

signature of all the minerals that make up the unit.  

Filtration experiments were also conducted to constrain colloidal influences in this 

system, specifically to determine whether REEs are fully dissolved or sorbed to a solid phase. 

This has implications for water-rock interaction interpretations, as the partitioning of REEs 

between the solid and aqueous phase is a control on REE transport and behavior that is 

independent of source.  
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2.0  GEOLOGIC SETTING  

The Pittsburgh Coal of the Monongahela Group was deposited in the Appalachian Basin, 

a laterally extensive, NNE-SSW trending, peripheral foreland basin that spans the eastern margin 

of North America, during the Upper Pennsylvanian Period (Castle 2001) (Figure 2).  The basin 

formed during the Paleozoic Wilson cycle that began with the rifting of Rodina and ended with 

the convergence of Gondwana and Laurentia, which closed the Iapetus Ocean and formed the 

supercontinent Pangea (Faill 1997; Hatcher 2010). During this period, the eastern margin of 

Laurentia was impacted by three successive orogenies, the Taconic, the Acadian, and the 

Alleghenian, which resulted in thick sediment accumulations in the foreland basin (Castle 2001; 

Hatcher 2010). Glacio-eustatic controls on sea-level and fluctuating tectonic and climatic 

controls on sedimentation have been preserved in the extensive stratigraphic record within the 

basin, which includes the carboniferous age coals beds (Greb et al. 2008; Heckel, Gibling, and 

King 1998; Klein and Kupperman 1992; Cecil 1990). 

Basin formation during the carboniferous period is largely attributed to tectonic loading 

of the Alleghenian orogeny and has been characterized as a relatively broad, shallow foreland 

basin (Tankard, 1986, Ettensohn, 1994). Detrital sediments from the ancestral Appalachian 

Mountains (source to the south) and the Canadian Shield (source from the north) formed 

elongate deltaic fans across a broad coastal plain adjacent to the Alleghenian fold and thrust belt 

(Arkle 1974; Donaldson 1974; Ruppert et al. 2002). Strata of the Monongahela Group, the 
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underlying Conemaugh group, and the overlying Dunkard group, represent a period of evolution 

from shallow-water deltas to alluvial plains and flood basins (Donaldson 1974). Much of the 

strata in the Upper Pennsylvanian though Lower Permian interval are terrestrial to marginal-

marine siliciclastic units, with lesser amounts of limestone and coal. Peat deposits are associated 

with a regional, west sloping alluvial plain that graded to a shallow marine environment to the 

west (Arkle 1974; Edmunds, Skema, and Flint 1999).  

The Monongahela Group ranges in thickness from 73 to 130 m and consists of 

interbedded red and grey shales and clays, lacustrine limestones, thin-bedded sandstones and 

siltstones, and coals (Figure 3) (Arkle 1974; Ruppert et al. 1999; Karacan 2009) deposited on 

fluvial dominated deltas in the coastal plain (Donaldson 1974; Cecil et al. 1985). Eustatic sea-

levels changes, coupled with a hiatus in detrital supply, resulted in the development of 

widespread, transgressive, fresh-water swamps (peat mires) on the upper deltas (Donaldson 

1974; Tewalt et al. 2001; Cecil 1990). This lead to the formation of several coal deposits, most 

notably the Pittsburgh Coal of the Pittsburgh Formation, which delineates the Monongahela 

Group from the underlying Conemaugh Group (Ruppert 2000).   

The Pittsburgh Coal extends over 13,000 km2 through OH, PA, WV and MD (Figure 4). 

It is the thickest and most extensively mined coal unit in the Appalachian Basin (Ruppert et al. 

2002), and the third largest producing coal bed in the United States (EIA 2016). Over the last 

two centuries, this unit has produced more coal than any other bed in the nation (Watson et al. 

2001; Ruppert et al. 2002). It is a high rank, high volatile, bituminous coal with variable ash and 

sulfur content (Ruppert et al. 1999; Ruppert and Rice 2000; Ruppert et al. 2002). It is estimated 

that, of the original total resource (30 billion tons), 14.5 billion tons of the Pittsburgh Coal 
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remain unmined. The largest portion of this remaining resource is in Southwestern PA (Ruppert 

et al. 1999; Tewalt et al. 2001; Watson et al. 2001).   

 

 

Figure 2. Map of the Appalachian Basin Province (outlined in red - as delineated by Ryder (2008)). 

Areas of bituminous coal are shaded in gray, and Appalachian Basin coal regions are labeled and 

divided by green lines (Modified from Ruppert, 2002). 
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Figure 3. Generalized stratigraphic section of the Monongahela Group (from Edmunds, Skema and Flint 

1999). The sampled section of the lower Pittsburgh formation is expanded, with sampling locations labeled. 
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Figure 4. Map of the Pittsburgh Coal bed (shaded in blue) of the Upper Pennsylvanian, 

Monongahela Group (modified from Ruppert, 2002). The primary field site (PBG) is 

indicted in with a red dot and the Irwin syncline is outlined by a red rectangle. 
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3.0  METHODS  

3.1 SAMPLE COLLECTION & PREPARATION 

3.1.1 The Lower Pittsburgh Formation 

The primary field site for this study is located in the Pittsburgh Botanic Gardens (PBG), 

approximately 14 km west of downtown Pittsburgh in Allegheny County, Pennsylvania (Figure 

4). The sampling site is 400 m south of the visitor center on Pinkerton Run Road (Figure 5).  In 

2011, as part of an ongoing reclamation project, the PBG authorized the re-mining of an 

abandoned Pittsburgh Coal deep mine on the property, which was producing untreated AMD 

(Czebiniak 2016). Subsequent surface mining allowed for the sampling of a representative 

stratigraphic section of the lower Pittsburgh Formation, including the underclay, main Pittsburgh 

Coal seam, clay partings, roof coal, clastic overburden units, and mineral separates of pyrite from 

the main coal seam (Figure 6, Figure 7 and Figure 8). A flow chart detailing sample collection 

and analysis can be found in Figure 9.   
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Figure 5. Satellite imagery of the PBG sampling site (images courtesy of Google, DigitalGlobe, 2016). (A) The location 

of the surface mine relative to the PBG visitor center (labeled Pittsburgh Botanic Garden). Sampling site is located 

within the white rectangle.  (B) An enlarged image of the sampling site (yellow arrow indicates the sampling site). 

Figure 6. PBG strip mine, March 8, 2016. 

A B 
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Figure 7. PBG mine sample site, March 8, 2016 (note the rock hammer on the right for scale). 

 

 

Whole rock samples were powdered in a Ti-carbide ball mill and split for analysis. One 

split was reserved for major and trace element analysis. A second split (~2 g) was sequentially 

leached with ultrapure reagents. For sequential extraction powdered samples were leached for 4 

hours with 1 N ammonium acetate buffered to a pH of 8 to remove easily exchangeable ions. 

Figure 8. PBG mine stratigraphic section sampled. The columns from previous mine operations are delineated by 

the red dashed lines. White lines show the lateral correlation extent of major units. The main Pittsburgh Coal bed is 

labeled, as well as the Rooster Coal that marks the top unit of the Pittsburgh Coal.   
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This was followed by a rinse with ultrapure (MilliQ 18Mwater (MQW). The residues were 

then leached with 0.05 N sulfuric acid (pH = 1.3) for 4 hours to mimic the effects of AMD 

(Rxn.1). All leaches were conducted at a 1:40 sample:liquid ratio and all leachates were filtered 

to 0.22 μm (Figure 9).  

Pyrite nodules from the Pittsburgh Coal main seam (PBG-1) were coarsely crushed and 

manually separated from coal samples. Pyrite was then finely crushed and separated from 

organic matter using bromoform heavy liquid density separation. Bromoform was washed from 

pyrite using acetone and ethanol rinses, sample was dried between rinses. Dried mineral 

separates were split and analyzed for elemental composition (Figure 9).  

 

Figure 9. Method flow chart for sample preparation and analysis. 
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3.1.2 Acid Mine Drainage 

AMD samples from an adjacent Pittsburgh Coal deep mine on the PBG property 

(approximately 800 m northwest of the surface mine sampling site) were collected for 

geochemical analysis in December 2016. Samples were collected from an underground pipe that 

feeds into the PBG passive treatment system installed by Hedin Environmental. Samples were 

filtered to 0.45 μm in acid-washed polypropylene bottles and acidified with ultrapure HNO3 to a 

pH < 2.0. Field measurements of AMD included pH, temperature, conductivity, and alkalinity. 

AMD was also collected from the PBG in April of 2017 for filtration experiments that 

investigated potential colloidal controls on REE chemistry. Three replicates of unfiltered, 0.45 

μm filtrate, and 0.22 μm filtrate were collected. Three additional unfiltered samples were 

collected with no headspace, brought back to the lab at the University of Pittsburgh, and 

centrifuged through a 3 kDa molecular weight cut-off (MWCO) membrane filter within 3 hours 

of collection. All samples were acidified with ultrapure HNO3 to a pH < 2.0 in acid-washed 

polypropylene bottles.   

Filtration experiments were also conducted at four Pittsburgh Coal mine drainage sites 

within the Irwin Syncline, southwest of Pittsburgh, in May of 2017 (Figure 4). The Irwin 

syncline is a plunging, NE-SW trending syncline with multiple mine drainage discharges that 

range from low pH to circumneutral (Winters and Capo 2004). The collection procedure used at 

the PBG was repeated at the Export, Delmont, Irwin, and Lowber mine discharge sites. 

All samples for the AMD filtration experiments, both filtered and unfiltered, were hot 

block digested using a 1:5 ratio of ultrapure concentrated HCl: HNO3. A 25 mL aliquot of each 

sample was digested at 95oC for a total of 90 minutes, covered for the first 45 minutes and 
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uncovered for the remaining 45 minutes. All samples were then brought up to a final volume of 

30 mL with 2% HNO3. It should be noted that the PBG samples collected in 2016 and analyzed 

for major and trace element geochemistry, were filtered and acidified in the field and did not 

require hot block digestion.  

  

3.2 ANALYTICAL METHODS  

3.2.1 Elemental analysis  

Concentrations of major and trace elements in whole rock and pyrite samples collected 

from PBG in 2016 were determined by ICP-MS, at Activation Laboratories (ActLabs), Canada. 

In addition to elemental analysis, sulfur speciation analysis and proximate analysis (moisture, 

ash, volatile matter, fixed C) were conducted on coal samples at ActLabs. Ash content, the 

residue remaining after moisture, volatiles and fix carbon have been driven from the sample, was 

used as a relative estimation of mineral matter in the coal samples.  Petrographic analysis was 

also used to determine preliminary mineralogic composition of siliciclastic samples. 

Ammonium acetate leachates, sulfuric acid leachates and PBG AMD (collected in 2016), 

were analyzed for 36 elements (including major elements, trace metals and Si) by ICP-OES at 

ActLabs. Leachates were also analyzed for REEs on a Perkin-Elmer ICP-MS at the University of 

Pittsburgh. Major element and REE concentrations for AMD filtrates collected in 2017 were 

determined using a Perkin Elmer ICP-MS at the University of Pittsburgh (Figure 9).  
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3.2.2 Neodymium isotopes 

Neodymium isotope preparation and analysis were carried out under clean laboratory 

conditions at the University of Pittsburgh. Powdered whole rock samples were acid digested 

(HNO3, HClO4, and HF) and evaporated to dryness in Teflon vials at 120oC under HEPA filtered 

airflow. Aliquots of leachate and AMD samples were also evaporated to dryness in Teflon vials 

at 120oC under HEPA filtered airflow. To fully dry down sulfuric acid leachates, samples were 

treated with H2O2 to the hydrophilic sample behavior that was attributed to the formation of 

organosulfides. All samples were then re-dissolved in 1.5N HCl.  

REEs were then separated from the sample matrix using cation exchange columns eluted 

with dilute HCl. Nd was separated from other REEs using LnSpec resin packed columns, 

eluted with dilute HCl. An aliquot containing approximately 150 ng of Nd was the evaporated 

under HEPA airflow conditions onto a Re filament. Nd isotopes of the sample, as well as the La 

Jolla Nd Standard, were measured using a Finnigan MAT 262 multi-collector thermal ionization 

mass spectrometer (TIMS) at the University of Pittsburgh. A total of 100 ratios were measured 

during each analysis.  
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4.0  RESULTS 

4.1 GEOCHEMISTRY & REE PATTERNS 

4.1.1 AMD samples  

 Major metal (Al, Fe, Mn, Mg, Ca, Na, K, Si), trace metal (Ag, As, Cd, Co, Cr, Cu, Ni, 

Pb, Zn), S and P concentrations in the PBG AMD collected in the spring of 2016 are reported in 

Table 1. Major (Al, Fe, Mn, Mg, Ca, Na, K) and trace (Ag, As, Cd, Co, Cr, Cu, Ni, Pb, Zn) metal 

data for unfiltered and filtered Pittsburgh Coal mine drainage collected in the spring of 2017 are 

reported in Table 2. Sulfur data (Table 1) was used in mass balance calculations that assessed 

pyrite as a potential source REE enrichment in AMD. Also of note are the similar trends in Al 

concentration (Table 2) and total REE (TREE) concentration (Table 3 and 4) in mine drainage 

samples relative to the pH.  Both Al and TREE concentrations are inversely related to pH, and 

both sharply decrease in at pH > 5.  

 Pittsburgh Coal mine discharges with pH < 5.1 (PBG, Export, and Delmont) had TREE 

concentrations that ranged from 68 μg/L to 185 μg/L (Tables 3 and 4). REE concentrations in 

circumneutral (pH > 5.1) discharges at Lowber (pH = 6.4) and Irwin (pH = 5.9) were below the 

method detection limit (MDL). REE concentrations in Pittsburgh Coal AMD normalized to the 

North American Shale Composite (NASC) (Gromet et al., 1984) exhibited a characteristic 
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MREE-enriched pattern (Figure 10) similar to other AMD studies (Verplanck, Nordstrom, and 

Taylor 1999; Worrall and Pearson 2001; Gammons et al. 2003; Merten et al. 2005; Zhao et al. 

2007; Pérez-López et al. 2010; Sun et al. 2012). REE concentrations in filtrate samples 

overlapped within the measurement error regardless of filter size at each AMD site, with all size 

fractions exhibiting the same MREE-enrichment pattern (Figure 10).  

 

Table 1. Major element and metal concentrations (mg/L) in PBG acid mine drainage in western, PA. Samples 

measured by ICP-OES at Activation Laboratories. 

 

Si Al Fe Mn Mg Ca Na K P S Ag As Cd Co Cr Cu Ni Pb Zn

PBG-AMD-R1 15.8 19.3 0.580 1.04 45.8 86.9 10.5 1.10 < 0.02 150 < 0.005 < 0.03 <0.002 0.069 < 0.02 0.024 0.174 < 0.01 0.229

PBG-AMD-R2 15.4 18.4 0.420 0.70 47.5 104 12.4 1.00 < 0.02 192 < 0.005 < 0.03 <0.002 0.057 < 0.02 0.015 0.146 < 0.01 0.171

mg/L
Sample 
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Table 2. Major metal (reported in mg/L) and trace metal (reported in μg/L) concentrations in filtered and unfiltered 

mine drainage samples from successive filtration experiments at the Pittsburgh Botanic Garden and Irwin Basin. 

Samples were measured by ICP-MS at the University of Pittsburgh. Note the change in units.  

 

Al Fe Mg Mn Ca Na K Ag As Cd Co Cr Cu Ni Pb Zn

PBG Pittsburgh, PA   pH=3.2

Replicate Samples 

PBG-AMD-Raw (1) 26.1 0.696 57.4 0.138 14.7 11.5 5.25 < 3.0 < 1.2 1.80 90.2 6.28 29.5 220 0.433 274

PBG-AMD-0.45 μm (1) 26.0 0.803 57.9 0.148 15.3 12.1 5.18 < 3.0 < 1.2 1.74 94.8 6.12 32.0 236 0.399 286

PBG-AMD-0.22 μm (1) 26.6 0.745 58.2 0.148 15.0 12.1 4.92 < 3.0 1.43 2.18 93.3 6.12 30.8 230 0.424 277

PBG-AMD-3kD (1) 25.3 0.725 57.4 0.150 14.1 11.9 5.52 < 3.0 < 1.2 1.73 97.0 6.06 31.1 233 0.457 283

PBG-AMD-Raw (2) 26.0 0.718 57.6 0.140 12.3 12.0 4.94 < 3.0 < 1.2 1.94 92.7 6.15 31.1 227 0.415 274

PBG-AMD-0.45 μm (2) 25.3 0.649 55.9 0.135 13.2 11.6 4.46 < 2.9 2.06 1.69 88.0 5.30 29.2 216 0.402 275

PBG-AMD-0.22 μm (2) 25.9 0.736 56.3 0.140 15.8 11.7 4.76 < 3.0 < 1.2 1.53 91.9 6.07 29.9 223 0.400 270

PBG-AMD-3kD (2) 24.9 0.694 57.0 0.136 13.8 11.9 4.72 < 3.0 < 1.2 1.50 88.3 5.65 29.1 214 0.389 264

PBG-AMD-Raw (3) 25.9 0.670 58.2 0.136 16.2 11.6 6.70 < 3.0 1.77 1.65 90.4 5.48 30.2 225 0.377 277

PBG-AMD-0.45 μm (3) 26.4 0.683 57.8 0.131 13.2 11.5 8.34 < 3.0 1.19 2.48 84.0 5.57 28.6 209 0.416 272

PBG-AMD-0.22 μm (3) 24.9 0.640 55.9 0.135 13.2 11.1 12.6 < 3.0 < 1.2 3.07 86.9 4.96 28.8 214 0.460 290

PBG-AMD-3kD (3) 24.7 0.623 55.7 0.121 17.2 11.3 10.4 < 3.0 1.63 1.72 78.9 5.06 25.1 190 0.406 271

Sample Average 

PBG-AMD-R (AVG) 26.0 0.695 57.7 0.138 14.4 11.7 5.63 < 3.0 1.77 1.80 91.1 5.97 30.3 224 0.408 275

PBG-AMD-0.45 (AVG) 25.9 0.712 57.2 0.138 13.9 11.7 5.99 < 3.0 1.63 1.97 88.9 5.66 29.9 220 0.406 278

PBG-AMD-0.2 (AVG) 25.8 0.707 56.8 0.141 14.7 11.6 7.41 < 3.0 1.43 2.26 90.7 5.72 29.9 222 0.428 279

PBG-AMD-U (AVG) 25.0 0.681 56.7 0.135 15.0 11.7 6.87 < 3.0 1.63 1.65 88.1 5.59 28.5 213 0.418 272

Export, PA     pH=3.3

EX-AMD-R 13.6 2.45 34.4 0.161 11.1 24.4 8.11 < 3.0 < 1.2 < 1.2 37.0 2.46 9.24 97.9 < 0.34 150

EX-AMD-0.45 14.7 2.32 35.5 0.147 12.6 24.1 8.68 < 3.0 < 1.2 < 1.2 33.6 2.53 8.05 90.1 < 0.34 146

EX-AMD-0.2 14.4 2.31 36.1 0.151 12.6 24.4 10.8 < 3.0 < 1.2 < 1.2 33.5 2.38 8.14 91.4 < 0.34 167

EX-AMD-U 13.8 2.25 34.6 0.146 12.9 25.3 15.1 < 3.0 1.50 < 1.2 34.7 1.79 8.01 89.6 < 0.34 156

Delmont, PA   pH = 5.1

DEL-AMD-R 0.818 30.1 30.3 0.180 12.1 32.9 13.1 < 3.0 4.44 < 1.2 6.73 < 0.32 < 1.4 23.1 < 0.34 35.0

DEL-AMD-0.45 0.843 29.9 30.3 0.182 12.5 34.8 15.5 < 3.0 4.04 < 1.2 6.84 < 0.32 < 1.4 23.0 < 0.34 43.9

DEL-AMD-0.2 0.866 31.3 31.0 0.184 9.88 34.8 18.4 < 3.0 4.16 < 1.2 7.28 < 0.31 < 1.4 22.7 < 0.34 50.3

DEL-AMD-U 0.231 30.2 30.0 0.189 11.0 31.6 16.6 < 3.0 6.47 < 1.2 7.01 < 0.32 < 1.4 23.0 < 0.34 44.4

Irwin, PA       pH= 5.9

IR-AMD-R < 0.078 51.7 37.3 0.139 18.7 166 17.8 < 3.0 7.21 < 1.2 2.29 < 0.31 < 1.4 5.45 < 0.34 < 13

IR-AMD-0.45 < 0.078 51.9 37.6 0.133 17.5 167 20.2 < 3.0 11.1 < 1.2 1.97 < 0.31 < 1.4 3.78 < 0.34 29.9

IR-AMD-0.2 < 0.078 51.5 37.6 0.136 15.2 166 21.8 < 3.0 9.37 1.61 2.08 < 0.31 < 1.4 4.76 < 0.34 53.1

IR-AMD-U < 0.079 30.9 36.8 0.136 17.8 169 22.7 < 3.0 7.19 < 1.2 2.10 < 0.32 < 1.4 5.91 < 0.34 < 14

Lowber, PA    pH= 6.4

LOW-AMD-R < 0.078 47.8 41.9 0.081 20.2 413 21.2 < 2.9 2.77 < 1.2 1.15 0.31 < 1.4 2.66 < 0.34 < 13

LOW-AMD-0.45 < 0.079 47.3 43.0 0.082 14.2 444 20.0 < 3.0 3.52 1.63 1.10 0.86 < 1.4 3.00 < 0.34 < 14

LOW-AMD-0.2 < 0.076 46.1 40.6 0.083 19.6 429 20.2 < 2.9 4.65 < 1.2 1.12 < 0.31 < 1.4 2.62 < 0.33 < 13

LOW-AMD-U < 0.078 8.46 39.7 0.069 22.2 419 21.9 < 3.0 1.99 1.96 0.828 < 0.31 < 1.4 1.77 < 0.34 < 13

Sample Id
(mg/L) ---------------------------------------------(ug/L)---------------------------------------------
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Table 3. REE concentrations (μg/L) in mine drainage filtrates from successive filtration experiments at the Pittsburgh Botanic Garden, Pittsburgh, PA. Samples 

were measured by ICP-MS at the University of Pittsburgh. 

 

Location/Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

PBG Pittsburgh, PA   pH=3.2

Replicate Samples 

PBG-AMD-Raw (1) 17.1 59.7 9.50 43.4 11.9 2.76 13.6 1.84 9.25 1.50 3.87 < 0.76 2.55 < 0.37 178

PBG-AMD-0.45 μm (1) 17.5 61.2 9.72 44.2 12.8 2.95 14.3 1.82 9.73 1.62 3.78 < 0.77 2.81 < 0.38 183

PBG-AMD-0.22 μm (1) 17.2 62.5 9.65 45.5 12.4 2.93 13.6 1.89 9.49 1.56 3.70 < 0.77 2.69 0.40 184

PBG-AMD-3kD (1) 17.3 62.3 10.1 45.8 12.6 2.90 13.7 1.87 9.60 1.64 3.58 < 0.76 2.64 0.38 185

PBG-AMD-Raw (2) 17.1 59.2 9.79 42.8 11.9 2.75 13.5 1.77 9.34 1.54 3.68 < 0.77 2.58 < 0.37 177

PBG-AMD-0.45 μm (2) 16.5 57.3 9.17 42.3 10.8 2.56 12.6 1.72 8.68 1.51 3.53 < 0.75 2.35 < 0.37 170

PBG-AMD-0.22 μm (2) 16.8 58.8 9.50 42.9 12.4 2.80 13.7 1.73 9.06 1.53 3.64 < 0.76 2.44 < 0.37 176

PBG-AMD-3kD (2) 16.1 57.1 9.41 41.3 11.6 2.81 13.1 1.78 8.88 1.47 3.49 < 0.76 2.55 < 0.37 170

PBG-AMD-Raw (3) 17.3 59.1 9.57 45.3 12.4 2.78 13.7 1.92 9.00 1.68 3.68 < 0.77 2.60 < 0.38 179

PBG-AMD-0.45 μm (3) 17.7 63.5 10.1 45.3 12.0 2.95 14.3 1.77 9.45 1.70 4.01 < 0.77 2.72 0.43 186

PBG-AMD-0.22 μm (3) 18.7 66.2 10.3 48.3 14.1 3.10 14.7 2.02 9.99 1.69 4.03 < 0.77 2.70 0.42 196

PBG-AMD-3kD (3) 17.2 59.1 9.22 42.9 12.5 2.95 13.3 1.78 9.49 1.54 3.55 < 0.77 2.43 < 0.38 176

Sample Average 

PBG-AMD-Raw 17.2 59.3 9.62 43.9 12.1 2.76 13.6 1.84 9.20 1.57 3.74 < 0.77 2.57 < 0.37 178

PBG-AMD-0.45 μm 17.2 60.7 9.65 44.0 11.9 2.82 13.8 1.77 9.29 1.61 3.77 < 0.76 2.63 < 0.40 180

PBG-AMD-0.2 μm 17.6 62.5 9.81 45.6 13.0 2.94 14.0 1.88 9.52 1.59 3.79 < 0.77 2.61 < 0.40 185

PBG-AMD-3kD 16.9 59.5 9.58 43.3 12.2 2.89 13.4 1.81 9.32 1.55 3.54 < 0.76 2.54 < 0.38 177

ug/L
TREE
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Table 4. REE concentrations (μg/L) in Pittsburgh Coal mine drainage filtrates from Irwin Basin successive filtration experiments. Samples were measured by  

ICP-MS at the University of Pittsburgh. 

 

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Export, PA     pH=3.3

EX-AMD-Raw 6.19 22.1 3.48 15.6 3.94 1.11 5.68 0.80 4.36 0.77 1.76 < 0.76 1.38 < 0.37 67.5

EX-AMD-0.45 μm 6.70 22.3 3.57 15.6 4.14 1.01 5.73 0.81 4.14 0.76 1.83 < 0.77 1.45 < 0.38 68.4

EX-AMD-0.22 μm 6.22 22.3 3.59 15.0 5.47 1.09 5.59 0.79 4.64 0.72 1.55 < 0.77 1.37 < 0.37 68.6

EX-AMD-3kD 6.40 23.5 3.76 16.3 5.37 0.98 5.77 0.81 4.53 0.87 1.87 < 0.76 1.50 < 0.37 72.0

Delmont, PA pH = 5.1

DEL-AMD-Raw < 1.1 3.08 0.57 2.65 1.21 < 0.81 1.24 < 0.50 0.99 < 0.27 < 0.53 < 0.77 < 0.80 < 0.38

DEL-AMD-0.45 μm < 1.1 3.04 0.51 2.59 0.84 < 0.80 1.34 < 0.50 1.08 < 0.27 < 0.53 < 0.77 < 0.80 < 0.38

DEL-AMD-0.22 μm < 1.0 3.29 0.57 2.81 0.93 < 0.79 1.44 < 0.49 1.17 < 0.27 0.60 < 0.76 < 0.79 < 0.37

DEL-AMD-3kD < 1.1 3.31 0.56 2.95 < 0.78 < 0.80 1.29 < 0.50 1.05 < 0.27 < 0.53 < 0.77 < 0.80 < 0.38

Irwin, PA       pH= 5.9

IR-AMD-Raw < 1.0 0.42 < 0.29 < 0.51 < 0.77 < 0.79 < 1.1 < 0.49 < 0.49 < 0.26 < 0.52 < 0.75 < 0.78 < 0.37

IR-AMD-0.45 μm < 1.0 0.35 < 0.29 0.8 < 0.77 < 0.80 < 1.1 < 0.50 < 0.50 < 0.27 < 0.53 < 0.76 < 0.79 < 0.37

IR-AMD-0.22 μm < 1.0 0.46 < 0.29 0.6 < 0.77 < 0.80 < 1.1 < 0.50 < 0.50 < 0.27 < 0.53 < 0.76 < 0.79 < 0.37

IR-AMD-3kD < 1.1 < 0.27 < 0.29 < 0.52 < 0.78 < 0.80 < 1.1 < 0.50 < 0.50 < 0.27 < 0.53 < 0.77 < 0.80 < 0.38

Lowber, PA    pH= 6.4

LOW-AMD-Raw < 1.0 < 0.26 < 0.29 0.5 < 0.76 < 0.79 < 1.1 < 0.49 < 0.49 < 0.26 < 0.52 < 0.75 < 0.78 < 0.37

LOW-AMD-0.45 μm < 1.1 < 0.27 < 0.29 < 0.52 < 0.78 < 0.81 < 1.1 < 0.50 < 0.51 < 0.27 < 0.53 < 0.77 < 0.80 < 0.38

LOW-AMD-0.22 μm < 1.0 < 0.26 < 0.28 < 0.50 < 0.75 < 0.77 < 1.1 < 0.48 < 0.48 < 0.26 < 0.51 < 0.74 < 0.77 < 0.36

LOW-AMD-3kD < 1.0 < 0.26 < 0.29 < 0.51 < 0.77 < 0.80 < 1.1 < 0.50 < 0.51 < 0.27 < 0.53 < 0.76 < 0.79 < 0.37

.

TREE
ug/L

Location/Sample
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Figure 10. NASC-normalized REE patterns of unfiltered and filtered (0.45μm, 0.22μm, ultrafiltration = 3kD 

MWCO) Pittsburgh Coal AMD in Western, PA. 
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4.1.2 Whole rock & pyrite samples 

Full geochemical data for all whole rock samples and pyrite are reported in Table 5 

(major oxides), Table 6 (trace elements), and Table 7 (REEs). Whole rock samples included 

overburden sandstones and shales (TREE: 147- 296 ppm), clay partings within the coal seam 

(TREE: 216-256 ppm), the underclay (TREE: 377 ppm) and two coal units (Table 7). 

Mineralogy of the siliciclastic units is dominated by quartz, mica, and aluminosilicate clay 

minerals (Figure 11). Petrographic analysis suggests the possible presence of fine-grained apatite 

in select overburden units, as well as other accessory minerals (notably zircon) and bioclastic 

fragments. Pittsburgh Coal samples include the main seam (2.6% ash and TREE = 12 ppm) and a 

sample from higher in the section with more mineral matter (49.7% ash and TREE = 156 ppm).  

As was expected, NASC-normalized REE patterns for whole rock samples from the PBG 

plot in a relatively flat pattern for all units, except for the main seam coal. The main seam was 

depleted in all REEs relative to NASC by an order of magnitude, and exhibited a greater 

depletion in heavy-REEs (HREEs) relatively to the other lanthanide series elements (Figure 12).  

Both sandstone samples had REE concentrations similar to the NASC values, whereas the clay 

partings, shale samples from overburden, and the underclay showed some enrichment relative to 

NASC for all REEs.  

The TREE concentration in pyrite (~2 ppm) is two orders of magnitude below all other 

samples in the section, except for the main coal seam. Pyrite also shows a relatively flat, to 

slightly light-REE (LREE) enriched, REE pattern with a positive Eu anomaly (Figure 12). The 

TREE concentration for pyrite at this site is at the extreme low end of values cited for REE 

content in pyrite (1.5 - 66.3 ppm) by Grawunder, Merten, and Buchel (2014).  
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Table 5. Major element oxide concentrations (%) in whole rock samples from the PBG stratigraphic section, measured ICP-MS at ActLabs, Canada 

SiO2 Al2O3 Fe2O3(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI % Ash Total

PBG-SS2 Sandstone 67.0 11.6 9.12 0.168 1.110 0.490 0.500 1.35 0.718 0.17 8.10 100

PBG-SS1 Sandstone 82.5 7.89 2.17 0.038 0.400 1.17 0.560 0.850 0.779 0.10 3.06 99.5

PBG-16 Shale 57.8 15.8 9.74 0.180 1.44 0.580 0.170 2.50 0.987 0.26 11.1 101

PBG-15 Shale 43.6 18.0 18.0 0.347 1.60 0.680 0.210 2.95 0.722 0.24 14.4 101

PBG-13 Shale above coal 48.1 23.0 5.74 0.085 1.30 0.390 0.230 3.02 0.791 0.20 16.8 99.7

PBG-9 Clay Parting 50.6 22.1 2.26 0.010 0.700 0.160 0.200 2.23 1.21 0.18 20.3 99.9

PBG-6 Clay Parting 57.1 25.8 1.26 0.005 0.450 0.080 0.230 2.08 1.35 0.08 12.2 101

PBG-4 Coal 31.1 12.7 1.74 0.004 0.430 0.060 0.120 1.60 0.622 0.04 49.7 98.1

PBG-3 Clay Parting 59.4 25.4 1.46 0.005 0.430 0.080 0.220 2.24 1.28 0.06 9.84 100

PBG-1 Main Coal Seam 1.48 0.630 0.43 0.001 0.060 0.130 < 0.01 0.010 0.03 < 0.01 2.61 2.78

PBG-UC Underclay 54.0 19.8 4.70 0.024 1.30 3.47 0.230 3.26 1.01 2.20 10.3 100

PBG-PY1 Pyrite Nodule 0.760 0.320 60.4 0.019 0.010 0.200 0.060 0.020 0.005 < 0.01 38.9 99.2

…………………………………………………………………………………...………..
%

.............................................................................................................................................

Sample Description

 

Table 6. Trace element concentrations (ppm) in whole rock samples from the PBG stratigraphic section, measured by ICP-MS at ActLabs, Canada. 

Ag As Ba Be Co Cr Cs Cu Ga Ge Hf Mo Nb Ni Pb Rb Sb Sc Sn Sr Ta Tl Th U V W Y Zn Zr

PBG-SS2 2 < 5 253 2 15 60 1.3 10 15 1 4.8 < 2 9 < 20 14 48 < 0.5 11 2 63 1.2 0.1 7.6 2.3 62 44 24 70 202

PBG-SS1 1.4 7 158 < 1 12 230 0.9 < 10 9 2 16 3 11 20 12 31 1.6 5 2 63 1.1 0.2 10.8 2 42 34 32 30 693

PBG-16 3.5 < 5 472 3 21 90 3.8 20 20 2 7.3 < 2 15 30 17 99 < 0.5 17 3 121 1.4 0.4 13.1 3.9 107 11 43 130 301

PBG-15 2.5 < 5 515 4 16 100 6.2 30 24 2 3 < 2 13 40 18 124 < 0.5 21 3 143 1.1 0.6 12.1 3.4 142 2 42 110 107

PBG-13 < 0.5 26 526 4 30 110 9.2 70 29 2 3.7 2 14 80 45 138 2.0 19 4 214 1.2 0.9 18.3 3.8 150 6 36 130 135

PBG-9 < 0.5 16 405 3 35 120 10.4 70 29 3 5.6 3 21 60 47 124 2.1 23 7 145 1.8 0.9 18.1 4 146 8 32 60 209

PBG-6 4.4 < 5 405 2 11 100 8.5 60 25 2 5.3 < 2 21 < 20 29 110 0.7 16 4 93 2.1 0.6 17.9 4.8 92 6 33 40 204

PBG-4 - 22.9 246 2 3 120 6.7 64 18 1 3.1 < 2 9 38 32 98 1.3 24 3 67 1.0 0.7 11.1 2.6 81 - 22 41 121

PBG-3 5.1 < 5 468 3 35 120 7.1 40 32 1 5.9 < 2 22 50 40 109 0.7 16 5 133 2.1 0.7 17.2 4.4 118 6 32 110 212

PBG-1 - 142 11 < 1 1 145 < 0.5 203 1 < 1 < 0.2 < 2 < 1 154 125 < 2 2.3 27 < 1 30 < 0.1 < 0.1 0.6 0.2 5 - 2 149 6

PBG-UC 7 9 544 4 30 130 9.1 90 28 1 3.5 < 2 18 70 18 157 1.4 21 3 645 1.6 1.1 15.3 6.1 128 3 63 140 130

PBG-PY1 < 0.5 624 < 2 < 1 2 < 20 < 0.5 40 < 1 < 1 < 0.2 21 < 1 < 20 7.0 < 2 1.0 < 1 2 < 2 < 0.1 0.1 < 0.1 < 0.1 < 5 4 < 1 < 30 5

Sample
ppm
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Table 7. REE concentrations (ppm) in whole rock samples from the PBG stratigraphic section, Pittsburgh, PA. Samples measured by ICP-MS at Activation 

Laboratories, Canada. 

 

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu TREE

PBG-SS2 Sandstone 28.9 59.7 7.1 27.1 5.4 1.1 4.9 0.8 4.7 0.9 2.6 0.4 2.6 0.4 147

PBG-SS1 Sandstone 35.3 75.8 8.8 34.0 6.7 1.1 5.8 0.9 5.4 1.1 3.2 0.5 3.2 0.5 182

PBG-16 Shale 51.8 111 13.0 49.3 10.6 2.1 9.5 1.5 8.5 1.6 4.5 0.6 4.2 0.7 269

PBG-15 Shale 46.1 99.3 11.4 44.5 9.3 2.0 9.2 1.5 8.3 1.6 4.3 0.6 4.0 0.6 243

PBG-13 Shale above coal 58.4 124 14.3 56.6 11.6 2.2 9.6 1.4 7.4 1.4 4.0 0.6 4.0 0.6 296

PBG-9 Clay Parting 53.2 109 12.1 46.9 8.8 1.7 6.6 1.1 6.5 1.2 3.6 0.6 3.8 0.6 256

PBG-6 Clay Parting 54.9 111 11.9 42.5 7.5 1.5 5.8 0.9 5.7 1.1 3.4 0.5 3.6 0.6 251

PBG-4 Coal 33.2 67.9 7.7 27.0 4.9 1.0 3.7 0.6 3.8 0.8 2.3 0.3 2.1 0.4 156

PBG-3 Clay Parting 49.0 92.0 9.8 34.8 6.7 1.4 5.6 1.0 6.1 1.2 3.5 0.5 3.6 0.6 216

PBG-1 Main Coal Seam 3.0 5.6 0.6 2.2 0.4 0.1 0.4 < 0.1 0.3 < 0.1 0.2 < 0.05 0.1 < 0.01 13.0

PBG-UC Underclay 78.1 158 17.8 67.3 13.7 2.9 12.4 1.9 11.4 2.1 5.6 0.7 4.3 0.7 377

PBG-PY1 Pyrite Nodule 0.5 0.8 0.1 0.4 0.1 0.0 0.1 < 0.01 0.1 0.0 0.0 < 0.005 0.0 0.0 2.0

ppm
Sample Description

 

Figure 11. Photomicrographs of Pittsburgh Coal overburden sandstone (A) and shale (B) (Field of view: 33 mm x 17 mm). 
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4.1.3 Leachate samples 

Geochemical data for all leachates are reported in Table 8 (major elements), Table 9 

(trace elements), and Table 10 (REEs). REE concentrations in ammonium acetate leachates were 

below MDL for most units. Two samples with concentrations above detection limits exhibited a 

convex, MREE-enriched pattern (Figure 13). However, REE concentrations (μg REE leached per 

gram of sample) in leachates are lower than what would be expected to account for REE 

concentrations in AMD, since AMD is generated in a significantly more dilute environment. 

Figure 12. NASC-normalized REE patterns of whole rock, coal and pyrite 

samples from the lower Pittsburgh Formation. 
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 Sulfuric acid leachates yielded higher REE concentrations for all samples except for the 

main coal seam (least mineral matter), which was below MDL for most REEs. The highest REE 

concentrations were found in the underclay leachate (TREE = 130 ppm), followed by the 

sandstones and shales of the overburden (TREE = 12-14 ppm). Other than the main coal seam 

(mostly below MDL), the lowest REE concentrations (TREE = 1.8 – 3.2 ppm) were found in 

leachates of the clay partings and mineral-rich coal. These concentrations are similar to the 

ammonium acetate leachates with the highest REE concentration (Figure 13).  All sulfuric acid 

leachates, with the except of the main coal seam, exhibited a MREE-enriched pattern (Figure 

13). It should be noted that although the underclay leachate shows the highest REE 

concentrations, its NASC-normalized concentration ratio (N) of La/Sm is greater than 1 

(La/Sm)N>1), indicating a less developed MREE-enriched pattern relative to the shales and 

sandstones of the overburden with (La/Sm)N  < 1 (Seredin and Dai 2012; Sun et al. 2012). 

 

Table 8. Major element concentrations (μg/g leached) in leachate samples of the Pittsburgh Botanic Garden's 

stratigraphic section. Samples were measured by ICP-OES at Activation Laboratories, Canada. 

Si Al Fe Mg Mn Ca Na K Ti P

Ammonium Acetate 

PBG-SS1 Sandstone 5.90 < 1.5 < 0.15 22.1 11.8 1520 5.90 42.8 < 0.15 0.295

PBG-15 Shale 4.55 1.52 < 0.15 256 9.41 809 36.4 349 < 0.15 0.304

PBG-13 Shale above coal 13.9 < 1.3 0.13 313 13.4 1104 22.8 232 < 0.13 0.380

PBG-9 Clay Parting 1.48 8.88 < 0.15 62.2 1.63 54.8 < 1.5 8.88 < 0.15 0.444

PBG-4 Coal 6.76 < 1.3 4.19 16.2 < 0.13 56.8 17.6 16.2 < 0.13 0.541

PBG-3 Clay Parting < 1.4 1.38 0.138 68.9 1.38 103 15.2 132 < 0.14 < 0.28

PBG-1 Main Coal Seam < 1.2 < 1.2 < 0.12 2.51 0.125 22.6 10.0 < 1.2 < 0.12 0.376

PBG-UC Underclay 6.62 < 1.3 0.662 379 8.74 2146 30.5 395 < 0.13 5.96

Sulfuric Acid

PBG-SS1 Sandstone 32.1 348 2767 479 109 3608 9.88 54.4 2.72 232

PBG-15 Shale 374 536 13780 594 465 1021 15.2 106 1.77 161

PBG-13 Shale above coal 70.0 299 4308 112 159 709 10.6 48.8 0.637 183

PBG-9 Clay Parting 83.9 800 783 19.8 3.70 7.41 < 2.5 17.3 0.494 83.9

PBG-4 Coal 40.6 94.7 643 6.76 0.451 15.8 2.25 9.02 0.676 18.0

PBG-3 Clay Parting 156 586 419 9.16 1.83 6.87 4.58 48.1 0.458 5.49

PBG-1 Main Coal Seam < 2.1 6.28 120 2.09 < 0.21 8.37 < 2.1 < 2.1 < 0.21 1.05

PBG-UC Underclay 193 667 729 102 16.2 18079 129 195 0.886 5915

(μg/g)
DescriptionSample Leach 
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Table 9. Trace element concentrations (μg/g leached) in leachate samples of the Pittsburgh Botanic Garden's stratigraphic section. Samples were measured by 

ICP-OES at Activation Laboratories, Canada. 

 

Ag As Ba Be Cd Ce Co Cr Cu Li Mo Ni Pb S Sb Se Sn Sr Te Tl U V W Y Zn

Ammonium Acetate Leach

PBG-SS1 < 0.07 < 0.4 1.3 < 0.03 < 0.03 < 0.4 0.43 < 0.3 0.059 < 0.7 < 0.07 0.09 < 0.2 15 < 0.2 < 0.3 < 0.2 3.7 < 0.2 < 0.2 < 0.7 < 0.2 0.44 0.15 0.97

PBG-15 < 0.08 < 0.5 19 < 0.03 < 0.03 < 0.5 0.15 < 0.3 3.2 < 0.8 < 0.08 0.86 < 0.2 46 < 0.2 < 0.3 < 0.2 3.5 < 0.2 < 0.2 < 0.8 < 0.2 < 0.2 < 0.2 4.0

PBG-13 < 0.06 < 0.4 24 < 0.03 0.025 < 0.4 0.58 < 0.3 8.2 < 0.6 0.089 1.2 0.38 101 < 0.1 0.38 < 0.1 4.2 0.25 < 0.1 < 0.6 < 0.1 < 0.1 < 0.2 4.6

PBG-9 < 0.07 < 0.5 1.5 < 0.03 0.13 < 0.4 0.89 < 0.3 11 < 0.7 0.10 3.7 < 0.2 518 < 0.2 < 0.3 < 0.2 0.15 0.30 < 0.2 < 0.7 < 0.2 < 0.1 < 0.2 3.8

PBG-4 < 0.07 < 0.4 1.6 < 0.03 < 0.03 < 0.4 0.32 < 0.3 0.42 < 0.7 0.095 0.93 < 0.1 352 < 0.1 < 0.3 < 0.1 2.0 < 0.1 < 0.1 < 0.7 < 0.1 < 0.1 < 0.1 2.1

PBG-3 < 0.07 < 0.4 9.0 < 0.03 0.041 < 0.4 1.5 < 0.3 2.8 < 0.7 0.096 1.8 0.28 262 < 0.1 0.41 < 0.1 1.1 < 0.1 < 0.1 < 0.7 < 0.1 0.28 < 0.1 7.1

PBG-1 < 0.06 < 0.4 0.63 < 0.03 < 0.03 < 0.4 0.088 < 0.3 0.21 < 0.6 < 0.06 0.14 < 0.1 113 < 0.1 < 0.3 < 0.1 1.0 < 0.1 < 0.1 < 0.6 < 0.1 < 0.1 < 0.1 3.3

PBG-UC < 0.07 < 0.4 24 < 0.03 0.040 < 0.4 3.8 < 0.3 10 < 0.7 0.13 12 < 0.1 1139 < 0.1 < 0.3 < 0.1 29 < 0.1 < 0.1 < 0.7 < 0.1 0.13 < 0.1 7.7

Sulfuric Acid Leach

PBG-SS1 < 0.1 1.2 1.7 0.049 0.25 2.7 6.3 0.74 0.25 < 1 < 0.1 1.6 4.2 13319 < 0.3 < 0.5 < 0.3 9.4 0.49 0.25 < 1 0.99 2.2 3.5 4.8

PBG-15 < 0.1 < 0.8 3.5 0.30 1.1 2.3 3.4 1.3 2.8 < 1 < 0.1 3.0 3.3 36915 0.76 < 0.5 < 0.3 4.0 1.8 0.76 1.3 4.8 < 0.3 4.0 12

PBG-13 < 0.1 1.1 4.2 0.45 0.40 2.8 9.1 0.64 18 < 1 < 0.1 7.6 8.3 10779 0.21 < 0.4 < 0.2 4.7 0.64 < 0.2 < 1 2.5 0.21 4.7 28

PBG-9 < 0.1 6.2 2.2 0.20 0.25 < 0.7 20 1.7 12 2.2 < 0.1 3.5 0.99 7728 < 0.3 < 0.5 < 0.3 0.25 0.49 < 0.3 < 1 1.2 < 0.3 0.49 15

PBG-4 < 0.1 2.9 0.90 < 0.05 0.068 1.1 2.7 < 0.5 1.9 < 1 < 0.1 2.1 1.8 5772 < 0.2 < 0.5 < 0.2 0.68 < 0.2 < 0.2 < 1 0.45 < 0.2 < 0.2 7.4

PBG-3 < 0.1 3.9 2.7 0.21 0.14 < 0.7 18 0.46 5.7 1.6 < 0.1 4.3 5.3 8494 < 0.2 < 0.5 < 0.2 0.46 < 0.2 < 0.2 < 1 0.69 0.46 0.69 43

PBG-1 < 0.1 < 0.6 < 0.42 < 0.04 < 0.04 < 0.7 0.15 < 0.4 0.52 < 1 < 0.1 0.17 < 0.2 2385 < 0.2 < 0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 1 < 0.2 < 0.2 < 0.2 1.3

PBG-UC < 0.1 4.9 5.8 0.49 0.13 36 9.1 0.66 10 < 1 0.22 7.0 2.4 27694 < 0.2 < 0.4 < 0.2 187 0.44 < 0.2 < 1 0.44 < 0.2 28 25

Sample 

Leach (μg/g)
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Table 10. REE concentrations (μg/kg leached) in leachate samples of the Pittsburgh Botanic Garden's stratigraphic section. Samples were measured by ICP-MS 

at the University of Pittsburgh. 

 

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu TREE

Ammonium Acetate Leach

PBG-SS1 Sandstone 72.6 176 28.4 143 64.9 21.7 87.1 14.0 74.0 15.2 39.2 < 4.8 28.5 4.06

PBG-15 Shale < 3.5 < 6.2 < 1.4 < 1.8 < 6.2 < 2.1 < 3.1 < 0.78 < 2.6 < 0.80 < 2.1 < 0.22 < 1.3 < 0.27

PBG-13 Shale above coal < 4.6 < 7.5 < 0.78 < 7.0 < 0.45 < 1.4 6.01 < 0.74 < 5.0 < 0.73 < 2.7 < 0.14 < 1.3 < 0.055

PBG-9 Clay Parting < 3.6 < 6.6 < 0.97 < 2.6 < 4.4 < 2.9 6.17 < 0.71 < 4.4 < 0.38 < 0.74 < 0.076 0.00 0.00

PBG-4 Coal < 3.5 9.75 < 1.0 < 5.4 < 1.3 < 0.51 < 1.9 < 0.061 < 0.83 < 0.21 < 0.52 < 0.031 < 0.37 < 0.043

PBG-3 Clay Parting 42.2 104 17.9 107 26.0 < 6.8 37.4 < 4.4 < 16 < 3.2 < 6.3 < 0.54 < 3.2 < 0.22

PBG-1 Main Coal Seam < 0.74 < 2.0 < 0.20 < 0.81 < 0.50 0.00 < 0.16 < 0.073 0.00 0.00 0.00 0.00 < 0.059 0.00

PBG-UC Underclay < 0.75 < 2.1 < 0.47 < 1.5 0.00 < 0.15 < 0.17 < 0.080 < 0.60 < 0.11 < 0.80 < 0.017 < 0.25 0.00

Sulfuric Acid Leach

PBG-SS1 Sandstone 1033 3452 553 2865 989 261 1196 175 957 174 442 63.3 374 51.2 12585

PBG-15 Shale 791 3156 534 3312 1462 376 2020 276 1175 187 415 50.4 257 38.0 14051

PBG-13 Shale above coal 896 3542 572 3288 1370 388 2048 283 1409 224 512 62.7 352 46.4 14994

PBG-9 Clay Parting 98.5 403 77.1 481 182 47.1 213 25.8 157 26.3 76.1 < 9.9 52.2 7.68 1858

PBG-4 Coal 405 1372 177 758 172 35.8 152 18.8 82.3 12.2 25.5 < 2.8 17.9 1.85 3235

PBG-3 Clay Parting 164 695 117 570 168 45.7 269 44.9 258 46.8 121 < 15.0 102 14.2 2633

PBG-1 Main Coal Seam 19.6 44.1 < 5.4 18.3 < 5.5 < 1.2 < 5.0 < 0.43 < 2.4 < 0.31 < 0.72 < 0.07 < 0.60 < 0.22

PBG-UC Underclay 15052 48110 6861 29641 7088 1633 7846 1160 6667 1209 2794 311 1493 172 130035

.

μg/kg
Sample Description
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Figure 13. NASC-normalized REE patterns for ammonium acetate leachates (left) and sulfuric acid leachates (right) of rock units adjacent to 

the Pittsburgh Coal in the lower Pittsburgh Formation. 
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4.2 NEODYMIUM ISOTOPE GEOCHEMISTRY 

Samarium and neodymium concentrations and neodymium isotope data for selected 

whole rock samples, ammonium acetate leachates, and sulfuric acid leachates are presented in 

Table 11. 143Nd/144Nd ratios are reported in epsilon notation where ԐNd at time (T) is given by: 

ԐNd (T) =   104       143Nd/144Nd (T)sample   - 1 

                       143Nd/144Nd (T)CHUR           

Epsilon notation reports the isotopic ratio relative to the chondritic uniform reservoir (CHUR), a 

proxy for bulk earth at time (T) in years before present. Time (T) is generally the age of 

formation, whereas ԐNd (0) is the measured value at present day (DePaolo and Wasserburg 1976).  

All measured ԐNd (0) values for selected whole rock units adjacent to the Pittsburgh Coal 

(Table 11), leachates (Table 11) and AMD (Table 12) are negative, consistent with an older 

continental crust source. Whole rock ԐNd (0) values (-11.3 to -12.2) agree with reported ԐNd (0) 

values for Pennsylvanian age strata of Western PA (Schatzel and Stewart 2012). Additionally, 

when corrected back to an approximate age of sedimentation (300 Ma) whole rock ԐNd (T) values 

are in the range of ԐNd (T) values reported for Appalachian Basin strata by Patchett, Ross, and 

Gleason (1999). However, regional mine drainage from the Pittsburgh Coal is notably more 

radiogenic (ԐNd (0) between -8.0 to -9.1) than the local strata with which AMD interacts. Most 

leachate ԐNd (0) values ranged from -5.8 to -9.3, straddling the ԐNd (0) range of Pittsburgh Coal 

AMD (Figure 14). The underclay leachate was anomalous with a ԐNd (0) of -11.0, which was 

closer to whole rock values.  
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Table 11. Nd isotope data for whole rock and leachate samples of the Pittsburgh Botanic Garden's 

stratigraphic section, Pittsburgh, PA. Isotope data determined by TIMS at the University of Pittsburgh. 

Whole Rock 

PA-PBG-SS1 Sandstone 0.1192 -11.18 ± 0.12 -8.21 ± 0.27

PA-PBG-3 Clay Parting 0.1164 -12.02 ± 0.16 -8.94 ± 0.31

PA-PBG-UC Underclay 0.1231 -11.53 ± 0.12 -8.72 ± 0.26

Ammonium Acetate Leach  

PA-PBG-SS1 Sandstone 0.2747 -5.78 ± 0.14 -8.78 ± 0.29

PA-PBG-3 Clay Parting 0.1462 -8.09 ± 0.14 -6.15 ± 0.23

Sulfuric Acid Leach

PA-PBG-SS1 Sandstone 0.2088 -6.10 ± 0.20 -6.57 0.22

PA-PBG-15 Shale 0.2669 -7.13 ± 0.12 -9.83 0.25

PA-PBG-13 Shale above coal 0.2520 -6.23 ± 0.12 -8.36 0.22

PA-PBG-9 Clay Parting 0.2288 -6.80 ± 0.12 -8.04 0.18

PA-PBG-4 Coal 0.1375 -9.28 ± 0.12 -7.01 0.23

PA-PBG-3 Clay Parting 0.1777 -7.87 ± 0.14 -7.15 ± 0.17

PA-PBG-OA Underclay 0.1446 -11.02 ± 0.16 -9.03 ± 0.26

1
 
143

Nd/
144

NdCHUR=0.511847

2
 
147

Sm/
144

NdCHUR=0.1967

Sample Description
147Sm/

144Nd
ԐNd(0)

1
ԐNd(300Ma)

2

 
 

 

 

Table 12. Nd isotope data for Pittsburgh Coal mine discharges in Western, PA. Samples measured 

by TIMS at the University of Pittsburgh. 

 

Sample

Date

IB-Export 3/3/1999 0.1899 -8.65 ± 0.14

IB-Delmont 3/3/1999 0.2044 -8.19 ± 0.25

CH-McLaughlin 2/28/2002 -7.97 ± 0.23

CH-Whiskey Run 2/28/2002 0.1803 -8.67 ± 0.31

CH-Presto Sygan 2/28/2002 0.1707 -8.83 ± 0.14

CH-Hope Hollow 2/28/2002 0.2057 -8.05 ± 0.2

CH-Botanical Garden 2/28/2002 0.1869 -8.83 ± 0.33

Pittsbugh Botanic Garden 12/10/2016 -9.12 ± 0.57

1
 
143

Nd/
144

NdCHUR=0.511847

147Sm/

144Nd
ԐNd(0)

1Pittsburgh Coal 

Discharges 
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Figure 14. ԐNd values of whole rock leachates compared to Pennsylvanian strata of the lower 

Pittsburgh Formation and Pittsburgh Coal AMD from Western, PA. AMD from the 

Pittsburgh Coal is more radiogenic than Pennsylvanian strata from Appalachian Basin. ԐNd 

values for leachates also show a more radiogenic isotopic signature, straddling the AMD ԐNd 

range. This suggests the Nd signature, of AMD is a result of preferential leaching of a high 

Sm/Nd phase mineral(s) within the whole rock. 
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A pseudo-isochron for this system was created by plotting whole rock and leachate 

143Nd/144Nd vs 147Sm/144Nd data. A best fit line was generated, the slope of which suggests an 

approximate age of 320 + 98 Ma (Figure 15). This approximate age of formation (T) for the Nd 

sources in theses samples falls within the mid-Carboniferous Period, more specifically the lower 

Pennsylvanian (~315 – 323 Ma)(Cohen 2013). The general agreement between the calculated 

age and known depositional age of the Pittsburgh Coal argues against this being a simple mixing 

relationship. 

 

 

Figure 15. PBG pseudo-isochron generated from whole rock (black 

circles), ammonium acetate leachate (green squares), and sulfuric acid 

leachate (red circles) Sm-Nd data (143Nd/144Nd vs 147Sm/144Nd).  

Slope of best fit line approximates time T (320Ma + 98). 



 36 

5.0  DISCUSSION 

5.1 SOLID PHASE CONTROLS ON REES IN AMD  

5.1.1 Colloidal Controls on REEs in AMD  

Colloids are reactive solids (0.45 μm to 1 nm)  that stay in suspension and behave 

differently than dissolved constituents (Gardner and Apul 2002). They are a significant transport 

mechanism in aqueous systems, controlling the mobility and distribution of reactive metals that 

sorb to their surfaces (Gustafsson and Gschwend 1997; Gardner and Apul 2002). Groundwater 

and surface water studies (pH range from 4.4 to 7.5) have shown a directly proportional 

relationship between REE concentrations and filter size (Viers et al. 1997; Dia et al. 2000; Ingri 

et al. 2000; Åström and Corin 2003). In these studies, the decrease in REE concentrations 

between unfiltered and filtered (0.45µm to 0.025µm) samples, and the decrease in REE 

concentrations between filtered and ultra-filtered (100 kDa to 3 kDa) samples, supports the 

strong influence of organic matter and colloids on REE transport and chemical behavior in 

natural waters (filter size varied by study). Dia et al. (2000) reported that 40–60% of REEs were 

transported and controlled by the colloidal fraction in natural aqueous environments. Ingri et al. 

(2000) also reported similar percentages.  
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As a majority of REE transport can be attributed to colloid mobility in some aqueous 

systems, the degree of colloidal interaction must be determined in order to understand REE 

behavior in a given system. It is especially important to determine if REEs exist as stable 

aqueous complexes, or if they have partitioned into the solid phase, when using REE patterns to 

interpret geochemical processes (Verplanck 2013). This is due to the systematic variation in 

reactivity along the REE series, with HREEs and MREEs having a greater affinity for the solid-

phase than the LREEs (this relationship generally exists at higher pH) (Sun et al. 2012; 

Verplanck 2013). If REE are reacting with colloids, then the REE patterns yielded will be a 

product of colloid reactivity and transport and water-rock interaction within the system. For this 

reason, unfiltered samples and three filtered samples (from 0.45 µm to 0.22 µm to 3kDa 

molecular weight cutoff (MWCO)) of Pittsburgh Coal mine discharges were collected at each 

mine drainage site.    

Unlike previously discussed studies of natural waters, successive filtration of Pittsburgh 

Coal acidic discharges yielded little to no change in REE concentrations relative to unfiltered 

samples (Figure 10). AMD filtration data from this study supports previous studies that have 

found REEs to be completely, or nearly completely, dissolved in mine drainage with pH < 5.1 

(Verplanck et al. 2004; Verplanck 2013). This supports the use of REE as tracers of water-rock 

interactions in acidic systems like the PBG, as misinterpretations due to unknown partitioning 

behavior are less likely (Verplanck 2013).  

5.1.2 Oxyhydroxide precipitate controls on REEs in AMD   

The TREE concentration and pH of Pittsburgh Coal mine drainage are inversely related 

(REE concentration decreases as pH increases), and when mine discharges reach circumneutral 
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pH (pH > 5.1) REE concentrations decrease sharply (Table 3 and 4). Several studies have 

observed similar pH dependent REE behavior in aqueous systems (Leybourne et al. 2000; 

Andersson et al. 2001; Åström 2001; Verplanck et al. 2004; Olías et al. 2005; Welch et al. 2009; 

Verplanck 2013). The drastic decrease in REE concentrations at circumneutral pH has been 

attributed to sorption to the solid phase - notably oxide and hydroxide precipitates (Serrano, 

Sanz, and Nordstrom 2000; Coppin et al. 2002; Verplanck et al. 2004; Gammons et al. 2005; 

Verplanck 2013; Xu and Han 2009). The similar pH dependent trend seen in Al concentrations 

(Table 2) in Pittsburgh Coal mine drainage suggests that Al oxyhydroxides (Nordstrom and Ball 

1986) may be the dominant solid phase preferential scavenging REEs in the circumneutral Irwin 

Basin discharges (pH > 5.1). Thus, at higher pH REEs are more reactive in this system, 

partitioning to the solid phase. 

5.2 PREFERENTIAL DISSOLUTION OF DISCRETE MINERAL PHASES AS A 

SOURCE OF MREE ENRICHMENT  

As noted by Worrall and Pearson (2001), AMD exhibits a shale normalized MREE-

enriched pattern that is dissimilar to that of the local strata with which these fluids interact. Yet, 

when these same rock units are leached, the resulting leachates exhibits similar MREE-enriched 

patterns to what is seen in AMD. Whole rock and leachate data from this study support these 

findings (Figure 16). This suggests that REEs in AMD originates from discrete phases within the 

rock units that are preferentially dissolved in dilute acid, rather than from whole rock dissolution. 

Other studies (Worrall and Pearson 2001; Merten and Buchel 2004; Leybourne and Cousens 

2005; Merten et al. 2005; Wood, Shannon, and Baker 2005; Sun et al. 2012) have proposed 
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preferential dissolution of MREE-enriched mineral phases within the bedrock as the source for 

MREE-enrichment in acidic waters.  

 

In this study, sulfuric acid leachates of the whole rock samples yielded similar MREE-

enriched patterns and ԐNd (0) values as those observed in AMD, distinct from bulk rock REE 

patterns and ԐNd (0) values. This supports the use sulfuric acid leaches as reasonable proxies for 

Figure 16. Compilation of NASC-normalized REE patterns of study samples. 

Ammonium acetate leachates (dashed lines) and sulfuric acid leachates (solid 

lines) of whole rock samples adjacent to the Pittsburgh Coal in the lower 

Pittsburgh Formation exhibit a MREE-enrichment pattern. This is similar to the 

NASC-normalized REE patterns of Pittsburgh Coal AMD (shaded in tan). 

Conversely, NASC-normalized whole rock REE patterns (shaded gray) are 

relatively flat.   
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the fluid-rock interactions in an AMD systems. Additionally, the more radiogenic ԐNd (0) values 

of the leachates, relative to whole rock samples, further supports preferential dissolution of a 

discrete mineral phase(s) in the regional strata as a primary source of MREE-enrichment in 

AMD. This suggests the leaching of a relatively high Sm/Nd ratio mineral phase in the 

siliciclastic units surrounding the coal seam.  

The less radiogenic signature of the underclay leachate (ԐNd (0) = -11) suggests that this 

unit experiences a higher degree of whole rock dissolution relative to the other siliciclastic units 

in the section, which appear to experience preferential leaching of discrete phases when exposed 

to acidic leaching conditions. This interpretation is further supported by the high percentage of 

TREEs removed from the bulk rock by the leach (>30%), and the less developed MREE-

enriched pattern (La/Sm)N >1. This unit still may be a major contributor of REEs to AMD. Since 

this is not a closed system in nature, the isotopic signature of Pittsburgh Coal mine drainage 

likely results from interactions with multiple units (i.e. mixing between a less radiogenic 

underclay leachate and a more radiogenic overburden leachate). Therefore, units which yielded 

high concentrations of MREEs when leached are most likely dominant contributors to the REE 

concentrations and signatures seen in AMD.  

5.3 PHASES CONTRIBUTING TO REE PATTERNS OF AMD  

The general trend of the leachate data along the best fit line of the pseudo-isochron 

(Figure 9), suggests the source of Nd in the leachates was present during deposition and 

diagenesis, and not formed during a later stage alteration event. Regression calculations also 

support a REE source that is syngenetic to these stratigraphic units (coeval to deposition), rather 
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than a polygenetic/multistage hydrothermal origin (Seredin and Chekryzhov 2011). Additionally, 

the low REE concentration of the main seam coal sample (2.61% ash) relative to the more 

mineral-rich coal sample (49.7% ash), suggests a mineral origin for REEs rather than an organic 

compound association (Seredin and Dai 2012). The source of REEs, and ultimately MREE-

enriched patterns, in AMD appears to be a mineral phase present at the time of deposition that is 

readily dissolvable in dilute acid, with high total REE concentrations, and a Sm/Nd greater than 

the bulk rock.  

Apatite is one such mineral that yields MREE-enriched patterns (Joosu et al. 2016). It has 

been suggested as a potential source for the MREE-enriched patterns found in studies of acidic 

natural waters (Aubert, Stille, and Probst 2001; Hannigan and Sholkovitz 2001; García et al. 

2007). Petrographic analysis of the Pittsburgh Coal stratigraphic section supports the possible 

presence of apatite in the shale overburden.  

Mass balance calculations using a range of Nd concentrations for Apatite (300-1300 

ppm) (Nagasawa 1970; Comodi et al. 1999; Aubert, Stille, and Probst 2001) were used to test the 

plausibility of apatite as a potential source in this system. Calculations yielded theoretical 

estimates of how much Nd apatite could contribute to each leachate, assuming all phosphorous in 

the leachates (Table 8) resulted from apatite dissolution. Assuming apatite with a low Nd 

concentration (300 ppm), calculations estimate that 10-30% of the Nd present in overburden 

shale and sandstone unit leachates could be accounted for by apatite dissolution. The same 

calculation, assuming the presence of apatite with higher Nd concentrations (1300 ppm), 

estimates that 40-60% of the Nd present in those same leachates could be accounted for by 

apatite dissolution. Similar calculations for the clay units within the coal seam were not possible. 

Stoichiometrically, there was not enough Ca in these leachates for all P to be generated from 
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apatite, assuming that for each mole of apatite there are 5 moles of Ca and 3 moles of P.  Thus, 

the assumption that all phosphorus present in the leachates was from apatite dissolution was 

invalidated for those units.  

Carbonate minerals/cements also meet the above mentioned criteria and can exhibit 

MREE-enriched patterns (Phan et al. 2017). There are several non-marine to marginal-marine 

limestone units in the Conemaugh and Monongahela groups (Arkle 1974; Ruppert et al. 1999; 

Karacan 2009) making it a reasonable potential source of REEs in this system. However, it 

should be noted, no limestone units were present at the sampling site, and none of the whole rock 

samples analyzed showed evidence of carbonate cement. In addition to apatite and carbonate 

minerals, there are several REE-rich accessory minerals from the phosphate and oxide (Gunn 

2014) mineral families, which cannot be ruled out as potential sources of REE at this time. 

Pyrite has also been proposed as a potential source of MREE-enrichment in AMD 

(Grawunder, Merten, and Buchel 2014). Grawunder et al. (2014) reported a pronounced MREE-

enriched pattern when pyrite was leached with sulfuric acid. The authors postulate that MREE 

mobilization by S-species complexation during pyrite oxidation in low pH environments could 

account for the common REE pattern found in AMD. However, additional mass balance 

calculations with sulfur data from this study show that the low REE concentrations in pyrite 

make it a highly improbable source of REE enrichment.  

The amount (g) of pyrite need to generate an average sulfur concentration of 171 mg 

(Table 1) in 1 L of AMD was determined using the assumption that two moles of sulfate are 

released for every mole of pyrite dissolved (Eq. 1). This theoretical amount of pyrite 

(approximately 0.32 g) allowed us to determine the amount of TREEs pyrite would release per 

liter of AMD, assuming a TREE concentration of 2 μg/g for pyrite (Table 7). In this scenario, 
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pyrite would generate 0.64 μg/L TREE, which is less than 0.4% of the TREE found in PBG 

AMD (average TREE concentration = 180 μg/g) (Table 2). Even when the calculation was 

repeated assuming a higher TREE concentration for pyrite (66 μg/g: the highest concentration 

reported in Grawunder (2014), the contribution of pyrite to the TREEs found in the PBG system 

would be approximately 10%.  
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6.0  CONCLUSIONS 

The evidence put forth in this study supports a source derived origin for MREE-

enrichment in AMD and provides geochemical and isotopic constraints on mineral phases in the 

local substrate contributing REE to AMD. Filtration data indicates REEs in acidic (pH < 5.1) 

coal mine drainages are fully dissolved, not bound to particles or colloids. This argues against 

process driven colloidal controls as a mechanism for enrichment and further supports the 

interpretation of REE data as a tracer of source. 

REE patterns of AMD are inconsistent with whole rock dissolution of the local strata. 

However, the generation of MREE-enrich patterns in laboratory leaching experiments implies 

MREE-enrichment is derived from discrete mineral phases within these rock units, further 

supporting a source derived origin for MREE-enrichment in Pittsburgh Coal AMD. Additionally, 

REE patterns of these leachates suggest that mineral phases within the siliciclastic overburden 

units are primary contributors of REE concentrations and MREE-enrichment in this system.  

Preferential dissolution is further supported by Nd isotope data. ԐNd (0) values for most 

leachates (-5.8 to -9.3) were similar to AMD values (-8.0 to -9.1), and were more radiogenic than 

the whole rock samples being leached (-11.3 to -12.2). This indicates that Nd in the leachates 

results from the preferential dissolution of mineral phases with a higher Sm/Nd ratios than the 

bulk rock. The similar Ԑ (0) values for leachates and AMD samples supports a similar Nd source 

in AMD systems. Additionally, regression calculations corrected to a late-Carboniferous 
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depositional age support a Nd source present at the time of deposition, which has not chemically 

interacted with the bulk rock during a later stage alteration event.  

Geochemical and isotopic data suggests an AMD Nd (and therefore other REE) source 

derived from preferential leaching/dissolution of discrete high Sm/Nd, MREE-enriched mineral 

phases in local rock units. As mass balance calculations show, pyrite is an improbably source. 

Possible mineral phases with high REE concentrations and high Sm/Nd ratios, which are readily 

dissolved in dilute acid, include apatite and other phosphate minerals, carbonate minerals and 

cements, and other accessory minerals. An understanding of REE source and mobility in AMD 

systems will allow researchers to more effectively target promising locations for REE resource 

recovery in the future. This study emphasizes the importance of geochemical and mineralogical 

characterizations of local rock units to properly assess site potential.  
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