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SEQUENTIAL CLUSTERING VIA RECURRENCE NETWORK ANALYSIS

Zhang Zhang, PhD

University of Pittsburgh, 2017

In this dissertation, we propose a new sequential clustering method based on nonlinear dynamic

theories and exponential random graph models (ERGMs), a class of social network models. In

particular, we convert each sequence to its recurrence network and make use of the flexibility and

information of the network. Our algorithm shows good performance on simulated data, real-world

data and public benchmark data based on clustering evaluation metrics.

To make sure the connection between a sequence and a network is reliable, we also conduct a

study to examine whether the network contains enough information of the original sequence. We

consider recurrence networks as images and build state of the art convolutional neural network

(CNN) models based on image data to predict the labels of original sequences. Our method is

very competitive compared with other advanced sequential classification methods. This also ver-

ifies that recurrence networks are very informative and give us enough information for real-world

applications.

Keywords: Sequential clustering; Nonliear dynamical systems; Recurrence networks; Exponen-

tial random graph models; Recurrence image classification; Convolutional neural networks.
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1.0 INTRODUCTION

Benefiting from rapid development of technology, sequential data have been collected and ana-

lyzed in more and more domains with different goals. In contrast with common static data in

feature space, sequential data usually has dynamic properties. If we regard each sequence as an

observation point and each time stamp as a coordinate, sequential data also has high dimensions in

general. In addition, all the components are temporal and many of them are highly correlated.

Sequential clustering, as an unsupervised learning task, has been shown to be effective in

providing useful information in various domains such as biology Ernst et al. (2005), ecology Li

et al. (2001), astronomy Ng and Huang (1999), finance Maharaj (2000), economics Van Wijk

and Van Selow (1999) and information science Niennattrakul and Ratanamahatana (2006). It can

help us gain insight into the mechanisms that generate the sequences and find common features for

each cluster. Although sequential clustering is very important, there is little literature on sequential

clustering as sequential classification. This may result from the fact that we do not have ground

truth for clustering analysis. It is harder to evaluate performance of clustering analysis on some

benchmark data sets.

There are several different ways to consider and process sequential data, such as time series,

longitudinal data and functional data. The goals and models used in these different areas not only

share some common elements but also have many differences. Nonlinear dynamic time series is a

subclass of time series that is based on nonlinear dynamical systems and chaos theory. Although

it is called time series, the models used here are quite different from some common time series

models such as ARIMA and GARCH which are widely used. An observed nonlinear dynamic

time series is considered as a sequence of scalar measurements which is a projection of a trajec-

tory in a nonlinear dynamic system. Nonlinear dynamic theory regards the stochastic element as

a small contamination of an essentially deterministic, nonlinear process. Many sequential cluster-
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ing approaches work well for linear time series and linear systems. However, many systems are

nonstationary and nonlinear in real-world problems. And those powerful linear tools usually do

not work well for these systems. To the best of our knowledge, there is no literature on sequential

clustering based on rigorous nonlinear dynamic theories.

With the emergence of online network communities, such as Facebook, Twitter and LinkedIn,

social network analysis has become one of the fastest growing fields in recent years. Social network

analysis is used to investigate social structures through the use of networks and graph theory. It

characterizes networked structures in terms of nodes and edges. Goldenberg et al. (2010) provided

an overview of many models and techniques in this field.

In this thesis, we propose a sequential clustering method based on social network models. In

particular, the proposed method is based on nonlinear dynamic theory and recurrence network anal-

ysis (RNA) using exponential random graph models (ERGM). The main steps of the method are

as follows: we would convert the nonlinear time series into a recurrence plot, which is equivalent

to a conversion to an adjacency matrix. ERGMs, with appropriate network statistics, are fitted and

selected for each adjacency matrix, and the sequential clustering are completed based on ERGM

profiles (model coefficients).

The rest of the dissertation is organized as follows: In Chapter 2, we review some previous

methods in the field. Chapter 3 gives the related definitions and background techniques for our

research including nonlinear dynamics, recurrence plots and recurrence images. Chapter 4 is de-

voted to our proposed sequential clustering method in detail, with a simulation study, real-world

application and benchmark datasets evaluation. Chapter 5 conducts a study to check whether recur-

rence networks contain enough information from the original sequences via corresponding image

classification. It also provides a tool for common sequential classification tasks.

2



2.0 SOME SEQUENTIAL CLUSTERING APPROACHES

Clustering is to organize unlabeled subjects into homogeneous groups using algorithms and dis-

tance (similarity) measures. There has been a lot of literature written concerning sequential clus-

tering over the past 20 years. Liao (2005), Rani and Sikka (2012) provided fairly complete surveys

about sequential clustering from the perspective of time series. McNicholas and Murphy (2010),

Komárek et al. (2013) and Coffey et al. (2014) focused on clustering longitudinal data which usu-

ally refers to shorter sequential data.

2.1 BASELINE APPROACHES

It is hard to enumerate all sequential clustering approaches due to the extensive of literature in

this field. It is even difficult to classify all those approaches perfectly. Here we will discuss

some of the most popular ones. Perhaps, the most common but simplest class of approaches

is to use the traditional clustering algorithms for static data on the raw sequential data directly.

By doing so, each temporal measurement of the sequence is considered a feature of that subject.

The most commonly used algorithms in this category are K-means, hierarchical clustering and

spectral clustering. Euclidean distance is chosen as the dissimilarity measure in most of cases.

Many researchers still use traditional clustering methods on raw data. Sometimes they do provide

adequate results. Although traditional algorithms often provide acceptable performance in certain

cases, they usually do not provide a reasonable interpretation. They are hardly considered the best

choice in one’s toolbox. They are often considered baseline approaches instead.
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2.2 ARIMA BASED APPROACHES

One traditional class of approaches is based on the Autoregressive Integrated Moving Average

(ARIMA) models, considered classical time series models. Piccolo (1990), Maharaj (2000) ,

Baragona (2001) and Kalpakis et al. (2001) did time series clustering based on ARIMA mod-

els. Although their approaches varied in their details, they had similar ideas. Given a time series,

an ARIMA or subclass of ARIMA model was fit based on their autocorrelation function (ACF)

and partial autocorrelation function (PACF). Then a distance measure was built based on either

fitted ARIMA coefficients or residuals by Euclidean distance or p-value of an appropriate hypoth-

esis test. Finally, traditional clustering algorithms such as hierarchical clustering were used on the

pairwise distance matrix to get homogeneous groups. This class of approaches has very rigorous

and extensive theoretical foundation due to our thorough understanding of ARIMA models and

experience with them in time series analysis. Although this class of approaches performs well in

many simulation studies, it does not perform well on many read-world data sets. In fact, the naive

baseline approaches sometimes outperform this class of approaches in some applications based on

our test.

Bad performance may be due to several reasons. First of all, this class of approaches is very

sensitive to nonstationarity. The integrated parameter cannot always cope with some complicated

global trends well. However, purely stationary time series are hard to observe in real world prob-

lems. Secondly, fitting an ARIMA model is sometimes fairly subjective. Although some R pack-

ages fit a group of ARIMA models automatically, the generated ARIMA orders may not be the

ones the users select themselves via ACF and PACF. In general, lower order models are preferred

if several models are comparable. However, lower order models also give smaller sets of coeffi-

cients. They might make some time series hard to separate from others.

2.3 HMM BASED APPROACHES

Hidden Markov Models (HMM) are another class of model - based approaches. HMM assumes

that the observed sequence is governed by an unobserved sequence which follows a Markov pro-
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cess. It has the advantage of modeling state changes in sequential data, thus sequence clustering

with HMM is of interest to many researchers. Smyth et al. (1997) first used HMM in sequential

clustering. HMM was fit to each sequence to obtain the transition matrix and emission parame-

ter estimates. For each pair of sequences, the log-likelihood of one sequence given the estimated

transition matrix and emission parameters of another sequence was calculated. The symmetrized

log-likelihood was used to measure the dissimilarity between two sequences. Finally hierarchi-

cal clustering was applied on the resulting distance matrix. Other researchers considered various

metrics to compute the distance or similarity between HMM sequences. Panuccio et al. (2002)

developed a model-based method and Bicego et al. (2003) proposed a similarity-based method.

Jebara et al. (2007) combined spectral clustering with the mixture of HMM. Coviello et al. (2014)

proposed a variational hierarchical EM algorithm for clustering HMM, using the parameters to

characterize the cluster centers.

Perhaps HMM is the class of models that statisticians, computer scientists and engineers all

accept. It not only has mature model-based theoretical foundation but also performs well in many

applications in the machine learning and data mining community. However, this class still has

several limitations. Firstly, the number of states of an unobserved sequence is not easy to confirm

without further study. For many problems, a finite number of states does not exist, but is a useful

conceptualization only. Moreover, the assumption of Markov property may not be satisfied for

given data and almost all of applications only considered using a first-order model which may not

be the best choice. Finally, this class does not scale well for large data problems.

2.4 OTHER APPROACHES

In addition to those two model-based classes of approaches mentioned above, there are also many

nonparametric or data driven approaches. Sakoe and Chiba (1978) first proposed a dynamic time

warping (DTW) algorithm. It is a parameter free approach initially used for speech recognition.

The basic idea is to find out an optimal match between two given sequences with certain restric-

tions. DTW also has several variants proposed by Kahveci and Singh (2001), Kahveci et al. (2002),

Niennattrakul and Ratanamahatana (2007) and Jeong et al. (2011). There are also several cluster-
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ing approaches based on frequency domain. Vlachos et al. (2003) presented an approach to per-

form incremental clustering of time series at various resolutions using the Haar wavelet transform.

De Lucas (2010) considered a distance measure based on the integrated periodograms. There does

not exist an approach that could outperform all other approaches. In this thesis, we will focus more

on model-based approaches.
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3.0 BACKGROUND

3.1 NONLINEAR DYNAMIC SYSTEMS

The nonlinear dynamic time series discussed in this thesis is mainly based on the theory of dynami-

cal systems. Compared with common stochastic linear time series models, nonlinear dynamic time

series can be regarded as an essentially deterministic, nonlinear process with some small stochas-

tic elements. We could also consider a purely deterministic system as a limiting case of a Markov

process on a continuum of states Kantz and Schreiber (2004).

We will first introduce some notation for dynamical systems in phase space. Consider a state

vector x ∈ Rm. The dynamical systems can be defined either by an m dimensional map in the

discrete case:

xn+1 = F(xn), n ∈ Z

or in the continuous case:
d

dt
xt = f(xt), t ∈ R

The solutions of the differential equations above are called trajectories of the dynamical systems.

In the autonomous case, the trajectory is known to exist and to be unique if the vector field f is

Lipshitz continuous, given the initial conditions. The behavior of the trajectory depends on both f

or F and initial conditions x(0) or x0. The observation of a real system usually does not generate

all possible state variables. Not all of them can be measured or are visited by the process up to that

time. Usually only one scalar sequence un is available:

un = u(x(n4t)) + εn

That means we can only observe the dynamic system through some measurement function u with

some random noise εn. We therefore have to convert the observations into state vectors through

7



phase space reconstruction Abarbanel et al. (1993). The most commonly used method is to re-

construct a time delay trajectory s(t): si = (ui, ui+τ , ..., ui+(m−1)τ )T , where m is the embedding

dimension and τ is the time delay parameter. Takens (1981) pointed out that if m ≥ 2d + 1, the

topological structure of the original trajectory can be preserved, where d is the dimension of the

underlying attractor.

Both embedding parameters, the dimension m and the delay τ , have to be chosen carefully. A

precise knowledge of m is desirable since we want to exploit determinism with minimal computa-

tional effort. Ifm is too small, the assumption of Taken’s embedding theorem is unlikely to satisfy,

i.e. the topological property of reconstructed systems may be different from the original systems.

If m is too large, not only will the computational cost be too expensive, but also the redundant

information will degrade the performance of clustering or other related algorithms. Kennel et al.

(1992), Kantz and Schreiber (2004), Cao (1997) proposed approaches for the determination of m.

A good estimate of the delay parameter τ might be more difficult to obtain. Random noise

and temporal correlations can lead to a linear dependence between the successive components.

Therefore the delay has to be chosen in a way that such dependence vanishes. However, if τ is too

large, successive components become almost independent, and we will lose too much information.

3.2 RECURRENCE PLOT AND RECURRENCE NETWORK

In this section, I will briefly introduce the recurrence plot (RP) and its connection with a network.

An RP is an advanced analysis technique for nonlinear dynamic time series, which was first intro-

duced by Eckmann et al. (1987). It is a graph of a square distance - like matrix in which the matrix

elements correspond to those times at which a state of a dynamic system recurs. Technically, the

RP shows all the times when the phase space trajectory visits roughly the same area in the phase

space. Formally, it is defined as a matrix:

Ri,j(ε) = Θ(ε− ||xi − xj||), (3.1)

where || · || is a suitable norm (usually the Euclidean norm) in the considered phase space, Θ(·) is

the Heaviside function and ε is a threshold parameter that is reasonably small. xi is the phase space

8



vector observed at time i for the trajectory x(t). As mentioned in last section, usually we can only

observe a scalar time series u(t) and need to use the embedding si = (ui, ui+τ , ..., ui+(m−1)τ )T ,

where m is the embedding dimension and τ is the time delay parameter.

Equation 3.1 shows that a recurrence is defined as a state xj is sufficiently close to xi. The

threshold distance ε defines how close we think ”sufficiently close” is, i.e., if xj falls into an m-

dimension ε ball of xi, xj is a recurrence point of xi. ε is a crucial parameter in the RP analysis.

If ε is too small, many recurrences and recurrence structures will be lost. On the other hand, if ε

is too large, redundant information or random noise will distort any existing structure in the RP.

In general, the optimal choice of ε depends on the applications and heuristic studies, but a smaller

threshold is desirable in most of cases.

The original purpose of RPs was to visualize higher dimensional phase space trajectories.

Structural patterns in RPs reveal hints about the dynamics of these trajectories. RPs can be not

only used on noisy data, but also applied to nonstationary data. The RPs show characteristic

large scale and small scale patterns. From left to right, Figure 1 shows four common patterns of

recurrence plots, from left to right: homogeneous (uniformly distributed noise), drift (logistic map

with linear global trend), periodic (sine function) and disrupted (Brownian motion). The length of

all four time series are N = 200. No embeddings are used and the thresholds are ε = 0.1. In the

plots, a pixel shows black when the corresponding Ri,j(ε) = 1.

In addition to global structures, RPs can also show local structures which consist of a combi-

nation of isolated dots (chance recurrences), dots forming diagonal lines (deterministic structures)

as well as vertical/horizontal lines or dots clustering to inscribe rectangular regions (laminar states,

singularities). These local structures are the basis for network analysis of the RPs. In fact, RPs

preserve all topological properties of the system, such that we can reconstruct a time series from

its recurrence matrix (Thiel et al., 2004a), (Robinson and Thiel, 2009).

The recurrence matrix R(ε) can be converted to an adjacency matrix naturally:

Y(ε) = R(ε)− IN , (3.2)

where Y(ε) is the adjacency matrix representation of some undirected binary network. It is easy to

see that this conversion in fact just removes the self-similarity in the undirected network. Thus all

the topology properties and dynamics are preserved. A RP is equivalent to a undirected unweighted

9



Figure 1: Four common patterns of recurrence plots

network. The advantage of doing recurrence network analysis (RNA) is that we can currently deal

with a dynamic system as a complex network, where plenty of network statistics, theories and

models are available. Donner et al. (2010), Marwan et al. (2009) tried to connect network statistics

and recurrence plots. However, their works only discussed some common network descriptive

statistics without any model settings.

Moreover, the definition of recurrence networks should not be confused with recurrent neural

networks (RNN), a class of artificial neural networks where connections between units form a

directed cycle. In recurrence network, each node denotes a time point subject while each edge

denotes the revisiting property of the trajectory. Recurrence networks are used to study the global

and local relationship between different time nodes. However in a recurrent neural network, each

node denotes a mathematical function whose inputs are some transformations of variables. In other

words, a recurrence network is a special case of social network while a recurrent neural network

is a special case of graphical model. We will study time series and their corresponding recurrence

networks from the perspective of social network models in Chapter 3.

10



3.3 RECURRENCE IMAGE

In the last section, we showed that a recurrence plot (RP) is equivalent to an undirected binary net-

work. A natural question arises: How much information is contained in a RP? Thiel et al. (2004b)

discussed this problem. They stated that under some conditions, it is possible to reconstruct an

attractor of a dynamical system from the recurrence plot, at least topologically. However, they

admitted the results are of mainly theoretical relevance. We want to study this problem from a

practical perspective: can we use the information of a RP to solve some real-world time series

related tasks, such as time series classification? If we could classify time series purely using recur-

rence plots with high accuracy compared with other time series classification algorithms, we could

quite confidently say that recurrence plots contain enough information and even more than its time

domain form of the original time series.

The binary edges of RPs come from setting the threshold parameter which could help reduce

noise. This also leads to unavoidable information loss, although some methods for efficiently

choosing hyperparameters have been proposed to minimize the loss. To make the problem some-

what easier, we would use unthresholded RPs, i.e., weighted recurrence networks, as our input

training data. To differentiate these with original RPs which are binary networks, we will call

them recurrence images since each edge in a weighted network has a continuous value like a pixel

in an image. We will study time series and their corresponding recurrence networks from the

perspective of image recognition in Chapter 4.
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4.0 SEQUENTIAL CLUSTERING VIA RECURRENCE NETWORKS AND

EXPONENTIAL RANDOM GRAPH MODELS

In this chapter we will first introduce exponential random graph models (ERGMs) in section 4.1.

Then we will propose our sequential clustering method which is based on recurrence networks and

exponential random graph models (RN-ERGM hereafter) in section 4.2. Our method is initially

intended for clustering of nonlinear dynamic time series. Although we will use a surrogate data

testing method to test nonlinear dynamics of the sequences for reference, it is generally very hard

to judge whether the data are generated from linear stochastic models like ARIMA models, or from

nonlinear dynamic systems. Moreover linear stochastic time series can be considered as a special

case of nonlinear dynamic time series with much noises. Thus we will try to connect our proposed

method with linear stochastic time series and check the robustness of our method in section 4.3.

Section 4.4 presents some simulation results. In section 4.5, a case study about measles time series

clustering is presented followed by applying our proposed method on several famous benchmark

data sets.

4.1 EXPONENTIAL RANDOM GRAPH MODELS

Exponential random graph models (ERGMs) are a family of statistical models for analyzing net-

work data. Since they are the basis of our clustering algorithm, we will introduce it first in this

section. Frank and Strauss (1986) proposed the following characterization for the probability dis-

tribution of undirected networks:

P (Y = y) = exp
(
n−1∑
k=1

θkSk(y) + γT (y) + c(θ, γ)
)
, (4.1)
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where y is the observed adjacency matrix, θks and γ are parameters, c(θ, γ) is the normalizing

constant, the statistics Sk are the number of k-stars and T is the number of triangles defined as:

Sk(y) =
∑

1≤i≤n

(
yi+
k

)
, T (y) =

∑
1≤i≤j≤h≤n

yijyihyjh

Here yi+ is the centrality degree of ith node. When k = 1, S1(y) degenerates to the number

of edges in the network. Frank and Strauss (1986) used primarily S1(y) and S2(y), i.e. they set

θk = 0 for k ≥ 3. Although the models fairly look like the common generalized linear regression

models (GLMs) with exponential family, they are quite different. In GLMs, all covariates might be

correlated, but they are observed separately. In network models above, all covariates are dependent

since they are different statistics calculated from the same adjacency matrix.

Wasserman and Pattison (1996) proposed a generalized class of network models that is the

current formulation of Exponential Random Graph Models (ERGM):

P (Y = y) = exp
(
θTu(y)− φ(θ)

)
, (4.2)

where u(y) can be a vector of any network statistics and φ(θ) is the normalization constant. This

setting highly extends ERGM family and makes this class of models more flexible. Morris et al.

(2008) summarized most commonly used ERGM statistics. The estimation of ERGMs is not a

trivial problem due to normalization constant. Snijders (2002) proposed a MCMC based method

to estimate parameters in ERGMs. Hunter et al. (2008) estimated likelihood ratios for nearby θi

using a MCMC procedure related to the work of Geyer and Thompson (1992).

4.2 PROPOSED METHOD

The steps of our proposed RN-ERGM sequential clustering method are summarized below:

(1) Given a set of sequences, test whether each sequence has nonlinear dynamic structure against

null hypothesis that the sequence is a linear stochastic process.

(2) Construct recurrence plots and then recurrence networks for all sequences with selected em-

bedding parameters m, time delay parameter τ and threshold distance ε.
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(3) Fit an ERGM for each sequence and obtain a vector of ERGM parameter estimates. For N se-

quences, there are N vectors of parameter estimates. Build a distance (affinity) matrix, where

each entry is the distance (similarity) between each pair of vectors of estimates. Apply hi-

erarchical clustering (spectral clustering) on the obtained distance (similarity) matrix to get

clusters.

We will show the details of each step in following.

4.2.1 Testing of Nonlinear Dynamics

Given a set of time series, the first step is to confirm whether they are linear stochastic processes

or nonlinear dynamic time series. For former cases, we should always try linear approaches first,

since linear approaches are more mature and interpretable. For latter cases, our approaches will

work better. The hypothesis testing we need to do is:

H0: the time series is a Gaussian linear process

Hα: the time series is a nonlinear dynamic time series

We will use the surrogate data testing first proposed by Schreiber and Schmitz (2000). The test

is implemented by generating several surrogate data according to H0 and comparing the values

of a discriminating nonlinear statistic between the original data and the surrogate data. If the

statistics value of original series are far from the surrogate ones, the null hypothesis is rejected and

nonlinearity is concluded.

Generating surrogate data sets is a challenging step. Adequate surrogate data sets must contain

correlated random numbers which have the same power spectrum as the original data. This is the

case if the Fourier transforms of the original data and the surrogates differ only in their phases but

have the same amplitudes which go into the power spectrum. Roughly speaking, we will generate

a surrogate time series that has almost the same power spectrum as original data and also follows

Gaussian assumption, by using fast Fourier transform (FFT) and phase randomization.

Consider the example in Figure 2. We simulate two time series: the first one is a Ulam map, a

special case of logistic map:

x0 = 0.1, xn+1 = 1− 2x2
n
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Figure 2: Upper left: Ulam map time series; upper right: square of AR(1) time series; lower left:

surrogate nonlinearity testing of Ulam map; lower right: surrogate nonlinearity testing of square

of AR(1).
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The second one is a quadratic transformation of AR(1):

yn = a2
n, an = 0.5an−1 + ηn

From the two bottom graphs in Figure 2, we can observe that the test for Ulam map is sig-

nificant, while for the square of AR(1) is not. Although we did a quadratic transformation for a

AR(1) time series, there is still no nonlinear dynamics in the process, i.e., all the dynamics are

contained in the linear AR(1) part and the nonlinearity is purely static. This illustrates the surro-

gate testing works well when we want to differentiate nonlinear dynamics and common nonlinear

transformation of linear processes.

4.2.2 Construction of Recurrence Plots

To construct recurrence plots and then recurrence networks for all sequences, we need to select the

embedding parameter m, time delay parameter τ and threshold distance ε appropriately. Since we

have a set of sequences, those parameters should be at a global level, otherwise, the comparison of

generated networks will be unfair.

For embedding parameter m, the basic idea is that by decreasing the m an increasing amount

of phase space points will be projected into the neighborhood of any phase space point. Points

whose coordinates which are eliminated by the projection differ strongly, are good candidates for

false neighbors in the lower dimensional space (Kantz and Schreiber, 2004). More formally, for

each point of the time series, we could take its closest neighbor in m dimensions, and compute the

ratio of the distances between these two points in m + 1 dimensions and in m dimensions. If the

ratio is larger than a threshold r , the neighbor is false:

Xfnn(r) =

∑N−m−1
n=1 Θ

(
|s(m+1)
n −s(m+1)

k(n) |

|s(m)
n −s(m)

k(n)|
− r

)
Θ
(
σ
r
− |s(m)

n − s(m)
k(n)|

)
∑N−m−1
n=1 Θ

(
σ
r
− |s(m)

n − s(m)
k(n)|

) , (4.3)

where s(m)
k(n) is the closest neighbor to sn in m dimensions. From our experience in simulation

studies and real-world cases, the embedding dimensions are usually overestimated. Heuristic study

helps a lot in choosing embedding parameters. Since we have a set of sequences, we usually
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would choose an embedding parameter that gives both small Xfnn(r) and smaller Xfnn(r) than

Xfnn(r − 1) for most of sequences.

For time delay parameter τ , we would choose it by calculating the mutual information (Fraser

and Swinney, 1986):

I(τ) = −
∑

ui,ui+τ

pui,ui+τ (τ) log pui,ui+τ (τ)
puipui+τ

(4.4)

The mutual information here measures the average shared information between current time i and

a later delay time i + τ . Smaller value means that we could not get too much information for a

latter delay time given current values. Thus we should take the τ where I(τ) is fairly small. Again,

this approach tends to give overestimates of the delay time parameter. We will choose the smallest

τ among estimated τ ’s of all sequences.

For the threshold distance parameter ε, several works have given some ideas for choosing

it (Thiel et al., 2002), (Matassini et al., 2002), (Marwan et al., 2007), however a general and

systematic solution on the remains an open task for future work. For our specific clustering task

with ERGM, we need to consider what kinds of values that could fit ERGM well. More specifically,

we would like to choose ε that matches the ERGM terms well. In general, the values should make

the edge density of a network less than 1% and make the degree distribution highly right skewed,

i.e., we tend to use lower order centrality degree to represent a network.

4.2.3 ERGM Model Terms

There are a lot of available model terms in ERGMs. In fact, any network statistics can be consid-

ered as predictors and put into ERGMs in the model setting. It is very hard to use a global model

selection algorithm or a stepwise model selection algorithm. First, there can be infinite network

statistics in principle. Second, the network statistics can be highly dependent. The selection of

model terms is mainly based on both heuristic study and some goodness-of-fit statistics. However,

not all network statistics are appropriate to represent the networks. Since we are talking about

recurrence networks, we tend to use network statistics that have direct or indirect interpretations in

theory of nonlinear dynamics. Here we will talk about some network statistics that we use in our

models.
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The edge density,

ρ̂(ε) = 1
N(N − 1)

N∑
i,j=1

Yi,j(ε) (4.5)

is defined as the average of the degree densities of all nodes and characterizes the proportion of

possible edges that are present in the network. It is easy to show that ρ̂(ε) is a monotonically

increasing function of the threshold parameter ε. It also can be interpreted as the recurrence rate

of the underlying trajectory.

The edge density is one very important term. Since it has a direct connection with correlation

dimension of the system:

D = lim
ε→∞

lim
N→∞

∂ ln ρ̂(ε)
∂ ln ε . (4.6)

Correlation dimension is one commonly used type of fractal dimensions to characterize dynamic

systems. It is an invariant nonlinear statistic, i.e., its value would not change under smooth trans-

formations such as state space reconstructions. Although edge density is not an invariant statistic,

it still provides some information about the correlation dimension.

The centrality degree of a node v in an undirected network is:

k̂v(ε) =
N∑
i=1

Riv(ε) (4.7)

We could then use the number of k-degree statistics:

d(k) =
N∑
i=1

I(k̂i(ε) = k), (4.8)

where I(·) is an indicator function. d(k) calculates the number of nodes in the network of degree

k. Using both k-degree statistics and edge density, we could represent a network in edge-level.

Another type of network statistics are path-level statistics. A commonly used one is the average

path length:

L̂(ε) = 2
N(N − 1)

∑
i<j

li,j(ε), (4.9)

where li,j(ε) is the shortest path length between time point i and j given ε. The shortest path length

is set to zero for disconnected pairs of nodes. Although Donner et al. (2010) pointed out that the

zero length definition has no major impact on the corresponding statistics, it would be biased when

characterizing a network. In recurrence networks, if the distance between two states is small, there

would be a short path between them. However if the distance is large, the path length between two
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states becomes zero by this definition. That contradicts the monotonicity. We will use a more local

path-level statistics instead:

l2 =
N∑

i<j<k

RijRjk (4.10)

This statistic will calculate the number of paths that have length 2 in the network.

Most of the network statistics above characterize the geometric instead of dynamical properties

of underlying systems. (Marwan et al., 2007) summarized some recurrence quantification (RQ)

statistics that could characterize the dynamical properties. Those statistics in general are not used

in ERGM models and some of them would make model degenerated in our experiments. However,

the histogram of the lengths of the diagonal structures in the RP is one important RQ statistics that

contributes to our method. It is defined as:

HD(l) =
N∑

i,j=1
(1−Ri−1,j−1) (1−Ri+l,j+l)

l−1∏
k=0

Ri+k,j+k, (4.11)

where l denotes the length of diagonal lines in the recurrence plot. If the trajectory visits the same

region of the phase space multiple times at different time stamps, the count of diagonal lines would

increase. The diagonal line length is determined by the duration of such similar local evolution of

the trajectory segments. In general, we want to count length 2 or length 3 diagonal lines in the

recurrence plot.

After fitting the ERGM models, we get ERGM coefficients profiles for all sequences. We

calculated the Euclidean distance matrix between the coefficients profiles of all the networks and

used them to cluster the set of networks using complete-linkage hierarchical clustering.

4.2.4 Method Evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of

errors or the precision and recall of a supervised classification algorithm. There are several evalu-

ation metrics but most of them require the knowledge of the ground truth labels which are almost

never available in practice.

If the true labels are not known, evaluation must be performed based on the models themselves.

The Silhouette Coefficient (Rousseeuw, 1987) is such an evaluation metric, where a higher Silhou-

ette Coefficient score relates to a model with better defined clusters. The Silhouette Coefficient is
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defined for each data point i as:

S(i) = b(i)− a(i)
max{a(i), b(i)} , (4.12)

where a(i) is the mean distance between a data point and all other points in the same class and b(i)

is the mean distance between a data point and all other points in the next nearest cluster. From the

definition, it is clear that −1 ≤ s(i) ≤ 1. The Silhouette Coefficient for a set of samples is given

as the mean of the Silhouette Coefficient for each sample. Thus the average Silhouette Coefficient

over all data of a cluster could measure of how tightly grouped all the data in the cluster are and the

average Silhouette Coefficient over all data of the entire data set could measure how appropriately

the data have been clustered.

Although Silhouette score cannot be considered as a well regarded criteria such as AIC, BIC

in model selection, it does not need ground truth and it is metric free, i.e., it works for any distance

function. The Silhouette score is higher when generated clusters are dense and well separated,

which relates to the common definition of a cluster. We used the mean silhouette coefficient to

compare several methods for the measles case study where no ground truth exists.

For the data sets that have ground truth, accuracy rate could still be used for binary labeled

data. However for multiclass clustering problems, calculating accuracy rate is impossible since we

could not match the true labels and cluster labels. There are several evaluation metrics, such as

the adjusted Rand index, mutual information based scores and homogeneity indexes. We used the

adjusted Rand index to evaluate and compare methods on simulation study and several data sets of

UCR time series database in later chapters. It is defined as:

ARI =
∑
ij

(
nij
2

)
− [∑i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2 [∑i

(
ai
2

)
+∑

j

(
bj
2

)
]− [∑i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) (4.13)

where nij, ai, bj denote cell count, row summation and column summation respectively, of a two

way contingency table generated based on the true partition and clustering partition of all data.
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4.3 RECURRENCE NETWORK ANALYSIS FOR ARMA MODELS

Although recurrence network analysis (RNA) was proposed for nonlinear dynamic time series

originally, it is worthwhile to do RNA for ARMAs. In this section, we will explore the relationship

between ARMA coefficients and some common network statistics.

Lemma 1 For a causal ARMA (p,q) model, φ(B)xt = θ(B)wt, if φ(z) 6= 0 for |z| ≤ 1,

P (|xi − xj| < ε) = 2Φ
(

ε

C|i−j|

)
− 1,

where C2
|i−j| =

∑|i−j|−1
j=0 ψ2

j +∑∞
k=0(ψk+|i−j| − ψk)2, ψ(z) = θ(z)

φ(z) .

Proof: If φ(z) 6= 0 for |z| ≤ 1, an ARMA (p,q) is causal so that it can be written as a one-sided

linear process: xt = ∑∞
j=0 ψjwt−j , where

∑∞
j=0 |ψj| < ∞. Without loss of generality, let i < j,

h = j − i. We have:

xi+h − xi =
h−1∑
j=0

ψjwi+h−j +
∞∑
j=h

ψjwi+h−j −
∞∑
k=0

ψkwi−k

=
h−1∑
j=0

ψjwi+h−j +
∞∑
k=0

ψjwi−k −
∞∑
k=0

ψkwi−k

=
h−1∑
j=0

ψjwi+h−j +
∞∑
k=0

(ψk+h − ψk)wi−k

Since the model is causal,
∑∞
k=0(ψk+h − ψk)2 converges. By Levy’s continuity theorem and char-

acteristic functions, the second term converges in distribution. Since first term and second term are

independent, we have xi+h − xi ∼ N(0,∑h−1
j=0 ψ

2
j +∑∞

k=0(ψk+h − ψk)2)

P (|xi+h − xi| < ε) = P (−ε < xi+h − xi < ε)

= P (− ε

Ch
< Z <

ε

Ch
)

= 2Φ
(
ε

Ch

)
− 1

Since for ARMA models, the coefficients polynomials are the ratio of the MA and AR coef-

ficients polynomials, it is very difficult to represent the mean edge density by ARMA coefficients

directly. We will give a simple expression of mean edge density for AR(1) model.
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Theorem 1 The mean edge density of an AR(1) recurrence network is equal to

2
N(N − 1)

N∑
i=1

N−i∑
h=1

(
2Φ(ε

√
1− φ2

2− 2φh )− 1
)
. (4.14)

Proof: By lemma 1, it is easy to calculate the mean edge density of an ARMA (p,q) model:

E(ρ̂(ε)) = E( 1
N(N − 1)

N∑
i,j=1

Yi,j(ε))

= E( 2
N(N − 1)

N∑
i=1

N∑
j=i+1

Yi,j(ε))

= E( 2
N(N − 1)

N∑
i=1

N−i∑
h=1

Yi,i+h(ε))

= 2
N(N − 1)

N∑
i=1

N−i∑
h=1

(
2Φ( ε

Ch
)− 1

)

For an AR(1) model,

C2
h =

h−1∑
j=0

φ2j +
∞∑
k=0

(φk+h − φk)2

=
h−1∑
j=0

φ2j + (φh − 1)2
∞∑
k=0

φ2k

= 1− φ2h

1− φ2 + (φh − 1)2 1
1− φ2

= 2− 2φh
1− φ2

Thus

E(ρ̂(ε)) = 2
N(N − 1)

N∑
i=1

N−i∑
h=1

(
2Φ(ε

√
1− φ2

2− 2φh )− 1
)
.

The mean edge density can be interpreted as the probability of recurrence in the network.

Figure 3 shows the simulation results and real mean edge density curves given by Theorem 1. The

simulated mean edge densities are calculated based on 100 sequences for each AR (1) coefficients

from 0.01 to 0.99 and for ε = 0.05, 0.1, 0.2, 0.3. It is easy to see that the higher AR(1) coefficients

the lower edge density, and the higher threshold distance the higher edge density.
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Figure 3: Four points lines: Simulation results of mean edge density for ε = 0.05, 0.1, 0.2, 0.3;

Four solid lines: The real mean edge density for ε = 0.05, 0.1, 0.2, 0.3
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4.4 SIMULATION STUDY

In this section, we conduct a simulation study to evaluate the performance of our proposed sequen-

tial clustering method and compare it with some other common sequential clustering methods. The

dynamical system we check is logistic map:

xn+1 = rxn(1− xn),

where r is the parameter. The logistic map is a polynomial mapping with degree 2. It is often

used as an archetypal example of how chaotic and complicated behavior could arise from simple

nonlinear dynamical systems. The range of interest for parameter r is [0, 4]. Depending on the

different values of r, the behaviors of the sequence can be completely different. For example, if r

is between [2, 3], the sequence would eventually converge to the same value r−1
r

, independent of

the initial conditions; if r is greater than 3.56995, the system exhibits chaotic behavior.

We repeat the parameter setting in Marwan et al. (2009). Two groups of sequences are simu-

lated, one with r = 3.83, another with r = 3.679. The former type is called period-3 dynamics

while the latter one is called band merging. Each sequence has random initial state that follows a

uniform (0,1) distribution. We tried two different settings of random noise: uniform(-0.1, 0.1) and

uniform (-0.2, 0.2). Each group contains 20 sequences and the length of each sequence is T=500,

800 or 1000.

When doing clustering, we let ε = 0.0015 for uniform (-0.1, 0.1) noise and let ε = 0.0025 for

uniform (-0.2, 0.2) noise, which makes mean edge density less than 1%. The ERGM terms used

are mean degree, number of two-paths, degree distribution for 1 to 4 for T=500, 800 and degree

distribution for 2 to 5 for T=1000 . Figure 4shows the dendrogram of RN-ERGM clustering and

dendrogram of raw data with Euclidean distance when T=500 and noise is Uniform(-0.1, 0.1).

Figure 5 shows the dendrogram of LPC cepstral coefficients clustering (Kalpakis et al., 2001) and

dendrogram of correlation based clustering method proposed by Golay et al. (1998). All methods

use hierarchical clustering with complete linkage. We repeat the simulation with same setting 50

times. The average performance is reported in Table 1, Table 2, Table 3, Table 4. In general, our

proposed method performs pretty well. In particular, when the length of sequence increases, the
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proposed method performs better. By increasing the value of ε, our method filters out some larger

noises.

Table 1: Accuracy rates of different methods, using U(-0.1,0.1) noise

U(-0.1,0.1) raw RN-ERGM AR.LPC.CEPS COR

T=500 0.6000 0.8650 0.6512 0.5925

T=800 0.5775 0.8750 0.8550 0.5612

T=1000 0.5538 0.9850 0.9175 0.5662

Table 2: Adjusted Rand Index of different methods, using U(-0.1,0.1) noise

U(-0.1,0.1) raw RN-ERGM AR.LPC.CEPS COR

T=500 0.0465 0.5401 0.2367 0.0384

T=800 0.0081 0.6814 0.6786 -0.0008

T=1000 -0.0021 0.9478 0.8060 0.0058

Table 3: Accuracy rates of different methods, using U(-0.2,0.2) noise

U(-0.2,0.2) raw RN-ERGM AR.LPC.CEPS COR

T=500 0.5962 0.8188 0.7275 0.5788

T=800 0.6225 0.9075 0.8725 0.5925

T=1000 0.575 0.9250 0.9875 0.590

Table 4: Adjusted Rand Index of different methods, using U(-0.2,0.2) noise

U(-0.2,0.2) raw RN-ERGM AR.LPC.CEPS COR

T=500 0.0319 0.4302 0.3226 0.0202

T=800 0.0633 0.6852 0.6629 0.0354

T=1000 0.0153 0.8525 0.9515 0.0176
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Figure 4: Top: RN-ERGM clustering; bottom: raw sequences with Euclidean distance
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Figure 5: Top: LPC cepstral coefficients clustering; bottom: correlation based clustering by Kollias
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4.5 APPLICATION

4.5.1 Case Study: Measles Patterns in the United States

In addition to our simulation study, we will use our proposed method on a real-world data set from

epidemiology. Disease control is typically organized by administrative area, but this is not how

disease transmission works. Therefore, it is a worthy effort to try to cluster geographical units

(U.S. states) into areas that have similar measles transmission patterns. Cummings et al. (2006)

used hierarchical clustering on the raw measles sequences of provinces in Cameroon. However,

doing hierarchical clustering directly on the raw data neither explains the whole story well in theory

nor performs well in practice. Therefore, new works that have more solid theoretical foundation

and better practical performance would be meaningful.

Nonlinear dynamics of infectious diseases provide a clear illustration of the essentially spatio-

temporal nature of population dynamics. The paradigm is provided by the oscillatory dynamics of

acute, immunizing infections such as measles. Many researchers have discussed the problems from

perspective of nonlinear dynamics (Bartlett, 1956), (Finkenstädt and Grenfell, 2000), (Grenfell

et al., 2002), (Xia et al., 2004). Those works indicate the potential of using nonlinear dynamics

approaches. The available Project Tycho data provides weekly measles surveillance data at both

city and state level of the pre-vaccine era in the US. We use state level measles time series between

1940 and 1954, during which time period we have fewer missing values.

We removed the sequences that contain more than 20% missing values. For the remaining 46

sequences, linear interpolation was used for missing values. All sequences were log transformed

and normalized. Nonlinear surrogate testing were done for all sequences to verify the nonlinear

dynamics and 36 of them were significant. Through previous study and the testing results, our

RN-ERGM clustering approach has potential to work well for the given data set. Figure 6 shows

the changes of mutual information with different τ of all 46 sequences. Most of the sequences get a

minimum at τ = 14 or τ = 15. Next we consider the embedding dimensionm. Figure 7 shows that

all FNNs decrease quickly. Since this approach usually would overestimate embedding dimension,

we would use smaller one, m = 3 or m = 4. The threshold distance ε needs to be confirmed with

ERGM terms and other two embedding parameters. The rule of thumb is to choose a ε that makes
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the edge density less than 1%, makes the network can be represented by lower centrality degree

and makes ERGMs converge. A grid search was done to find three parameters and ERGM terms.

Our final model set τ = 14, m = 3, ε = 0.25 with one to four centrality degree, edge density and

two-path as model terms.

Figure 8 shows the gap statistic. It appears that there is a local peak when k = 5. We used this

as a reference to set our cluster size equal to 5. Figure 9, Figure 10, Figure 11 and Figure 12 show

the clustering results using our RN-ERGM approach, dynamic time warping distance, Maharaj

and Piccolo model-based dissimilarity respectively. The last two clustering approaches are based

on the ARIMA models. For comparison, we used the hierarchical clustering with five clusters in

all approaches. It is easy to see that the distribution of measles pattern clusters matches better

with geographical distribution in our approach than other three approaches. In fact, the clusters of

measles pattern are highly correlated with their longitude.

Table 5 shows Silhouette coefficients for our methods and some other methods. The results

show that our proposed method performs better than some other sequential clustering methods.

4.5.2 UCR Time Series Data

UCR Time Series Classification Archive Chen et al. (2015) is a prominent public database for

time series classification. Although the database is initially built for comparison of classification

methods, we could still utilize it to compare different clustering methods. One disadvantage of

this public database is that it does not show how those data sets are collected and their original

meanings. But the good part is that all sequences of all data sets here are labeled. We can use

adjusted Rand index, mutual information and accuracy rate to compare performance of our method

with some other methods.

Dynamic Time Warping (DTW) clustering is one of the most popular clustering methods in

the field of time series clustering. It has shown that it is powerful and robust in many applications

and case studies. We apply a raw Euclidean distance based hierarchical clustering method, DTW

clustering and our proposed method on five public data sets. The first method above is regarded as

a baseline method. We focus on the performance of our proposed RN-ERGM method and DTW

clustering.
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Figure 6: Mutual information against τ of 46 sequences
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Figure 7: FNN statistics against m of 46 sequences
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Figure 8: Gap statistic
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Figure 9: Map of clustering by RN-ERGM approach

Figure 10: Map of clustering by dynamic time warping distance
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Figure 11: Map of clustering by Maharaj model-based Dissimilarity

Figure 12: Map of clustering by Piccolo model-based Dissimilarity
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Table 5: Performance comparison of different methods

silhouette

l2 0.09324

dtw 0.0616

Piccolo 0.0650

Cepstral 0.0697

Maharaj 0.2002

ERGM 0.2298

Table 6, Table 7, Table 8, Table 9 and Table 10 show the results. For FaceFour and CinC ECG

data, we just calculate adjusted Rand index and mutual information since they have more than two

unique labels for which accuracy loses the meaning. The results shows that our proposed method

performs better in all five data sets.

Table 6: Performance evaluation on Coffee Data

Coffee Accuracy Adjusted Rand Index Mutual Information

l2 0.5714 0.0158 0.0407

dtw 0.8036 0.3578 0.2418

ERGM 0.8214 0.4035 0.2560
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Table 7: Performance evaluation on Gun Point Data

Gun Point Accuracy Adjusted Rand Index Mutual Information

l2 0.5400 0.0056 0.0286

dtw 0.5800 0.0242 0.0589

ERGM 0.8100 0.3816 0.2499

Table 8: Performance evaluation on Wafer Data

Wafer Point Accuracy Adjusted Rand Index Mutual Information

l2 0.6540 -0.005 0.001

dtw 0.8520 0.0331 0.001

ERGM 0.8290 0.1035 0.007

Table 9: Performance evaluation on FaceFour Data

FaceFour Adjusted Rand Index Mutual Information

l2 -0.1031 0.0562

dtw -0.0974 0.0614

ERGM 0.1067 0.0297

Table 10: Performance evaluation on CinC ECG Data

CinC ECG Adjusted Rand Index Mutual Information

l2 0.65 0.0122

dtw 0.625 0.0018

ERGM 0.85 0.0382
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5.0 HOW MUCH INFORMATION IS CONTAINED IN A RECURRENCE NETWORK?

5.1 MOTIVATION

One important assumption that our RN-ERGM clustering algorithm would work is that the re-

currence networks must contain enough information of the original time series. Besides those

clustering performance metrics that we have used to show the effectiveness of our algorithm, we

would like to use another task, classification, and tools from another field, image recognition, to

further study the properties of recurrence networks.

As illustrated in Chapter 2, we call weighted recurrence networks as recurrence images. Since

our time series have been converted to “virtual images”, many advanced image recognition algo-

rithms may work here. We would introduce one of the most popular class of models in machine

learning and artificial intelligence communities, convolutional neural network (CNN) in next sec-

tion. We believe that if recurrence images can be classified well by CNN on public time series

database, they contain more than enough information of the original time series. The method

proposed in this chapter is also self-contained for time series classification tasks.

5.2 INTRODUCTION

In recent years, Convolutional Neural Networks (CNN), as one of the core class of models in

deep learning, has shown huge successes in many fields, such as speech recognition, natural lan-

guage processing, information retrieval and especially for computer vision. It has many famous

applications, such as self-driving cars, photo search, face recognition, artificial robot and online

recommender systems. Roughly speaking, a CNN architecture is formed by a stack of selective
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and distinct layers that transform the input volume into an output volume via linear combinations

of input volume and differentiable activation functions.

One of the key feature of CNN is that it can automatically learn complex feature representations

for you. This saves people much time compared with traditionally manual data cleaning and feature

engineering procedures which usually take around 80% of time of data scientists. In addition,

CNN outperforms other traditional machine learning algorithms with huge margins in all famous

computer vision competitions since 2012.

The pioneering CNN architecture, LeNet, was developed by LeCun et al. (1998) in 1998.

However The ability to process higher resolution images needs larger and more convolutional

layers in the architecture. The availability of computing resources constrained the performance of

CNN. CNN did not receive enough attention until 2012. The milestone work, commonly known

as AlexNet, by Krizhevsky et al. (2012) is widely regarded as one of the most influential CNN

architecture in the field. It was submitted to the ImageNet ILSVRC challenge in 2012 and achieved

a top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry which used

traditional computer vision algorithms. Their work popularized CNN in computer vision.

After AlexNet, the winner of ILSVRC 2013, ZF Net by Zeiler and Fergus (2014), the winner of

ILSVRC 2014, GoogLeNet by Szegedy et al. (2015) and the runner-up of ILSVRC 2014, VGGNet

by Simonyan and Zisserman (2014) are some phenomenon work in the field. They significantly

increase the classification accuracy each year on ImageNet. Perhaps one of the most important

thought from these papers is that deeper neural networks are more efficient than wider neural

networks given the fixed model complexity. The pretrained models from those architectures can

be further fine-tuned on other image data sets and show good generalization performance.

Another very influential work is ResNet, the winner of ILSVRC 2015, by He et al. (2016a),

He et al. (2016b) from Microsoft Research Asia. ResNet has a very deep, 152-layer, architecture

and sets new records in many ILSVRC challenges. Their best result based on ensembles has an

incredible top-5 error rate of 3.6% compared with human benchmark of 5.1% error rates. After

ResNet, the progress in ImageNet classification is slow down since people are closer and closer to

the Bayes error.

In this thesis, we propose a method to classify time series data based on CNN models. We

intend to connect time series analysis with image processing via weighted recurrence networks
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generated from the original time series. More specifically, each weighted recurrence network is

processed as a recurrence image. We then build CNN models to process and classify recurrence

images as common image classification problems. We consider two types of CNN architectures,

one VGGNet style plain networks, one ResNet style residual networks.

5.3 RELATED WORK

Time series classification has been studied for a long time. Most of the traditional algorithms we

mentioned in Chapter 2 for time series clustering can be easily converted to corresponding clas-

sification algorithms. For algorithms that define pairwise similarity or distance metrics between

the time series directly, a k-Nearest Neighbor (kNN) classifier can be built on top of those metrics.

For algorithms that extract dense feature vectors from the original time series, a traditional classi-

fication algorithm, such as random forest or support vector machine can be used on top of those

feature vectors.

There are several studies that share some common elements of our method. Silva et al. (2013)

measured the similarity between time series via recurrence plots using a Kolmogorov complexity

based distance, Campana-Keogh (CK-1) distance. They used Recurrence Patterns Compression

Distance (RPCD) to refer to the CK-1 distance over recurrence plots. Michael et al. (2015) intro-

duced another distance measure between time series based on the compression of cross recurrence

plots (CRPCD). Both methods used kNN to classify time series based on the pairwise distance

matrix. Souza et al. (2014) proposed a method that extracts time series features from RP manu-

ally, and used those features to classify time series data with support vector machine (SVM).Dalto

(2014) built CNN with variables that were processed via an input variable selection (IVS) algo-

rithm. Cui et al. (2016) proposed a Multi-scale Convolutional Neural Network (MCNN), which

incorporates feature extraction and classification in a single framework. MCNN can automatically

extract features at different scales and frequencies.

Some of the methods above use the information extracted from the RPs and build classifiers

using traditional classification algorithms. Some others extract the information from the raw time

series and build CNNs on top of them. However, none of the methods above give simple solutions
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and connect raw time series, recurrence images and most advanced CNN models together as our

method. We will show comparison of our method with some of these methods in later sections.

5.4 PROPOSED METHOD

The steps of our proposed recurrence images based convolutional neural network (RI-CNN) clas-

sification method is summarized below:

(1) Construct recurrence images for all sequences. Embedding parameters m, time delay parame-

ter τ are considered as the hyperparameters of the models.

(2) Preprocess recurrence images with image scaling, data augmentation or both of above to avoid

overfitting.

(3) Consider two CNN architectures, one with VGGNet style, one with ResNet style. The final

model with all hyperparameters is selected based on the prediction performance on the valida-

tion set.

We will show the details and reasoning of each step in following.

5.4.1 Recurrence Images and Why CNN Works

A recurrence image is defined as:

Ri,j(ε) = ||si − sj|| (5.1)

where || · || is a suitable norm (usually the Euclidean norm) in the considered phase space, si =

(ui, ui+τ , ..., ui+(m−1)τ )T is the reconstructed phase space vector observed at time i for the trajec-

tory s(t) , ui is the original scalar time series, m is the embedding dimension, τ is the time delay

parameter.

In a traditional fully connected neural network, each neuron in a hidden layer would connect

all neurons of the previous layer. If layer l+ 1 has n neurons and l has m neurons, we would have

n×m parameters. For common tabular data, this might not be a big issue. However, the number of

parameters would be huge for image data. Suppose the input data(layer) is a 32× 32× 3 image. If
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we set 100 neurons in the first hidden layer, we would have 32×32×3×100 = 307200 parameters

for just a single layer. Obviously, the huge number of parameters would quickly lead to overfitting.

The CNN could solve this issue based on two important assumptions for input image data:

(1) Local Connectivity: Each neuron is only connected to a local region of the input volume. This

works since common image data are full of local structures. For example, we do not need to

check all pixels to recognize a bird’s beak. A few pixels in general is enough.

(2) Parameter Sharing for each filter: Each filter is like a detector that would scan the whole

image map to detect a single local structure/feature. To detect different features, we just add

more filters in the network and let the algorithm learn the weights automatically. Parameter

sharing means that all neurons correspond to same filter would have the same weights. This

works since for most of computer vision tasks a bird’s beak appears at the top-left corner is

same as it appears at bottom-right corner, i,e., translationally-invariance.

It is straightforward to see that recurrence images satisfy those two assumptions as common

images. Since recurrence images are just weighted version of recurrence plots, we will just discuss

recurrence plots for symbol simplicity.

First, recurrence plots have many local structures. For example, a diagonal line Ri+k,j+k = 1

for (k = 1...l, where l is the length of the diagonal line) when the trajectory revisits the same

region of the phase space at different times. The CNNs can capture those local structures easily.

Second, in most of cases we just care about the number of occurrences of some local patterns

when doing recurrence quantification analysis. That means if a diagonal line is useful to compute

at some spatial position (x1, y1, then it should also be useful to compute at a different position

(x2, y2. Thus recurrence images satisfy the two assumptions above.

5.4.2 Image Scaling and Data Augmentation

Although using CNN instead fully connected networks has already reduced the model complexity

a lot, the total number of parameters is still too much for recurrence images. In fact, real world

time series can be very long. However for common image data, the resolution of the image usually

has an upper limit. Thus, we need to scale our recurrence images to the appropriate size. More

specifically, we need to downsample the original higher resolution recurrence images to smaller

41



images. This can be done in several ways in computer vision and the discussion of those algorithms

is beyond the scope of this thesis. Here we use a bilinear interpolation algorithm, one of the

most common algorithms in the field. The dimension of the scaled recurrence images would be

considered as a hyperparameter which would be tuned based on validation set.

For some time series datasets, the length of time series is quite small but we do not have a

large enough training set. We can consider the crop a number of patches from a recurrence image

uniformly from top-left to bottom-right. The crop size is a hyperparameter that can be tuned using

validation set.

The process is as follows: At training step, first crop k patches from each recurrence image.

Then just consider each patch as a training data point. That is:

(Xi, yi) −→ (Xi(1), yi), ...(Xi(k), yi),

where Xi is the matrix of a recurrence image in the training set, yi is the label of original time

series, Xi(j) for j = 1, .., k is k patches of image i.

At testing step, first still crop k patches from each recurrence image. Then use our trained CNN

model to make predictions on all patches and get the mean of softmax layer output(a multinomial

probability vector) of all the patches that are cropped from the same image. We could then predict

based on the aggregate probability vectors. That is:

Xi −→ Xi(1), ...Xi(k) −→ pi(1), ...pi(k) −→
∑
k

pi(k) −→ ŷi.

Sometimes, we may have limited training samples while each time series is quite long. We

can then consider using both image scaling for dimension reduction and data augmentation for

increasing size of training set. The exact strategy is data driven and tuned based on validation set.
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5.4.3 CNN Architectures

We consider two CNN architectures, one VGGNet style plain network (network 1), one ResNet

style residual network (network 2). Since our available time series data sets are very small, we

would just build shallow CNN architectures.

Our network 1 starts with two convolutional layers with 32 3 × 3 filters and ReLU activation

functions followed by a 2 × 2 Maxpooling layer for downsampling. We also use a dropout rate

0.25 for regularization purpose. We would call above three layers as a type 1 block. Depending

on the size of training set, we could replicate type 1 block several times. After type 1 block,

the feature map would be flattened and feed into a fully connected layer with 64 or 128 neurons

and ReLU activation function. Here we would use dropout rate 0.5. The last layer is a common

softmax layer which has equal number of neurons as number of class. Table 11 shows the whole

network 1 architecture with input image size = 64 × 64 and number of class = 15. There are total

3,698,031parameters.

Our network 2 starts with one Convolutional layers with 32 3 × 3 filters and ReLU activation

functions followed by a 2×2 Maxpooling layer for downsampling. After that, a residual block that

contains two Convolutional layers with 32 3 × 3 filters would be stacked. Depending on the size

of training set, we could replicate residual blocks several times. The network ends with a global

average pooling, an optional fully-connected layer, and a softmax layer. Table 12 shows the whole

network 2 architecture with input image size = 64 × 64, number of class = 15 and two residual

blocks. There are total 160,207 parameters.
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Table 11: Summary of the CNN network 1

Layer (type) Output Shape number of Parameters

input (InputLayer) (None, 64, 64, 1) 0

conv2d 1 (Conv2D) (None, 62, 62, 32) 320

activation 1 (Activation) (None, 62, 62, 32) 0

conv2d 2 (Conv2D) (None, 60, 60, 32) 9248

activation 2 (Activation) (None, 60, 60, 32) 0

max pooling2d 1 (None, 30, 30, 32) 0

dropout 1 (Dropout) (None, 30, 30, 32) 0

flatten 1 (Flatten) (None, 28800) 0

dense 1 (Dense) (None, 128) 3686528

activation 3 (Activation) (None, 128) 0

dropout 2 (Dropout) (None, 128) 0

dense 2 (Dense) (None, 15) 1935
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Table 12: Summary of the CNN network 2

Layer (type) Output Shape number of Parameters

input (InputLayer) (None, 64, 64, 1) 0

conv2d 1 (Conv2D) (None, 64, 64, 32) 320

activation 1 (Activation) (None, 64, 64, 32) 0

max pooling2d 1 (MaxPooling2D) (None, 32, 32, 32) 0

conv2d 2 (Conv2D) (None, 32, 32, 32) 9248

activation 2 (Activation) (None, 32, 32, 32) 0

conv2d 3 (Conv2D) (None, 32, 32, 32) 9248

add 1 (Add) (None, 32, 32, 32) 0

activation 3 (Activation) (None, 32, 32, 32) 0

conv2d 4 (Conv2D) (None, 32, 32, 32) 9248

activation 4 (Activation) (None, 32, 32, 32) 0

conv2d 5 (Conv2D) (None, 32, 32, 32) 9248

add 2 (Add) (None, 32, 32, 32) 0

activation 5 (Activation) (None, 32, 32, 32) 0

average pooling2d 2 (None, 16, 16, 32) 0

flatten (Flatten) (None, 8192) 0

dense (Dense) (None, 15) 122895
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5.5 EXPERIMENTAL EVALUATION

In this section, we perform experiments on 10 benchmark datasets of UCR Time Series Classifica-

tion Archive Chen et al. (2015) to evaluate our method and compare it with many other time series

classification methods. Figure 13, Figure 14, Figure 15, Figure 16, Figure 17 show the mean time

series and their corresponding recurrence images of 5 datasets by class. For some datasets, it is

even difficult to find significant differences of different class by humans.

5.5.1 Model Configuration

We conduct the experiments on all 10 datasets with two different network architectures. We use

the Adam algorithm which essentially is mini-batch gradient descent algorithm with momentum

and RMSprop, to optimize the model parameters. The hyperparameters include batch size, number

of epochs, scaling dimension, patch dimension, number of patches, two architectures, and some

optional convolutional layers. We check the evaluation performance on validation set to choose

the best model. When the validation error does not decrease after a few epochs, the training would

be terminated.

Our method is implemented with Keras and Tensorflow on the machine with NVIDIA GTX

760ti graphics card and AWS EC2 node. Since the datasets are not very large, most of experiments

can be done within half an hour.

Table 13 contains information of 10 datasets and part of the hyperparameter values of our

trained best model. The empty cell means the corresponding technique is not used.

5.5.2 Performance Evaluation

We report the performance of our method against some other popular time series classification

algorithms in table 14. Those algorithms include 1-NN with Euclidean distance (ED) Faloutsos

et al. (1994), 1-NN with dynamic time warping distance (DTW) Berndt and Clifford (1994), Fast

Shapelet (FS) Rakthanmanon and Keogh (2013), Sax with vector space model (Sax-vsm) Senin and

Malinchik (2013), recurrence patterns compression distance (RPCD) Silva et al. (2013), Texture

Features from Recurrence Patterns (TFRP) Souza et al. (2014), time series based on bag-of-features
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Figure 13: Recurrence images and time series of class mean for Coffee
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Figure 14: Recurrence images and time series of class mean for Wafer
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Figure 15: Recurrence images and time series of group mean
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Figure 16: Recurrence images and time series of class mean for GunPoint
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Figure 17: Recurrence images and time series of class mean for ChlorineConcentration
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Table 13: Datasets information and optimal model hyperparameters

Dataset nclass ntrain ntest Length Scaling dim Patch dim Patch size Batch size nepoch

Coffee 2 28 28 286 − 32 1000 64 150

Wafer 2 1000 6174 152 − 32 100 64 50

ECG200 2 100 100 96 − 84 5 20 15

GunPoint 2 50 150 150 − 32 1000 64 150

50Words 50 450 455 270 72 − − 32 50

WordSyn 25 267 638 270 90 72 100 32 30

Adiac 37 390 391 176 108 90 100 32 30

Beef 5 30 30 470 64 − − 15 80

Chlorine 3 467 3840 166 90 − − 32 50

SwedishLeaf 15 500 625 128 128 110 15 32 15

(TSBF) Baydogan et al. (2013) and multi-scale convolutional neural network (MCNN) Cui et al.

(2016).

For each dataset, we rank all 9 algorithms based on their testing errors. We also calculate

the mean rank for each algorithm. We see that our RI-CNN has mean rank 1.8 which overall

has the best performance. This shows that our algorithm is very competitive compared with other

mainstream algorithms.
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Table 14: Performance comparison based on testing error

Dataset ED DTW FS Sax-vsm RPCD TFRP TSBF MCNN RI-CNN

Coffee 0 0 0.068 0 0 0.036 0.004 0.036 0

Wafer 0.005 0.02 0.004 0.002 0.003 0.0002 0.004 0.002 0

ECG200 0.120 0.120 0.220 0.140 0.140 0.170 - - 0.050

GunPoint 0.087 0.093 0.061 0.013 0 0.020 0.011 0 0

50Words 0.369 0.310 0.489 0.374 0.226 0.437 0.209 0.190 0.233

WordSyn 0.382 0.351 0.563 0.436 0.276 0.497 0.302 0.276 0.276

Adiac 0.389 0.396 0.514 0.417 0.384 0.205 0.245 0.231 0.192

Beef 0.467 0.367 0.447 0.467 0.367 0.367 0.287 0.367 0.133

Chlorine 0.350 0.352 0.417 0.334 0.489 0.300 0.336 0.203 0.269

SwedishLeaf 0.213 0.208 0.269 0.275 0.098 0.050 0.075 0.066 0.045

Mean Rank 6.1 5.8 7.95 5.95 4.3 4.9 4.6 3.6 1.8
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5.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we study whether recurrence plots or recurrence networks are informative enough

to be used for further machine learning tasks. We consider weighted recurrence networks as recur-

rence images and build advanced convolutional neural network (CNN) models for them to predict

labels of original time series. Based on our experiments on benchmark UCR time series datasets,

our method has the best performance among 9 advanced classification algorithms.

Our main contribution is that we show recurrence networks are good representations of the

original time series and they even capture some information that is hard to retrieve through original

time domain. Our other contribution is that our proposed RI-CNN method can be used for many

time series classification tasks.

Converting time series to recurrence images has many advantages. However our current con-

volutional layers are not perfect since recurrence images are symmetric with respect to main di-

agonal. In the future, one interesting research direction is to map a symmetric high dimensional

recurrence image to an asymmetric low dimensional image with minimal information loss. We

will also consider using alternative filters to scan the symmetric images more efficiently.
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B. F. Finkenstädt and B. T. Grenfell. Time series modelling of childhood diseases: a dynamical
systems approach. Journal of the Royal Statistical Society: Series C (Applied Statistics), 49(2):
187–205, 2000.

O. Frank and D. Strauss. Markov graphs. Journal of the american Statistical association, 81(395):
832–842, 1986.

A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from mutual
information. Physical review A, 33(2):1134, 1986.

C. J. Geyer and E. A. Thompson. Constrained monte carlo maximum likelihood for dependent
data. Journal of the Royal Statistical Society. Series B (Methodological), pages 657–699, 1992.

X. Golay, S. Kollias, G. Stoll, D. Meier, A. Valavanis, and P. Boesiger. A new correlation-based
fuzzy logic clustering algorithm for fmri. Magnetic Resonance in Medicine, 40(2):249–260,
1998.

A. Goldenberg, A. X. Zheng, S. E. Fienberg, E. M. Airoldi, et al. A survey of statistical network
models. Foundations and Trends R© in Machine Learning, 2(2):129–233, 2010.

B. T. Grenfell, O. N. BJøRNSTAD, and B. F. Finkenstädt. Dynamics of measles epidemics: scaling
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